
Faster Full Text Search through
Document Clustering

Diploma Thesis

Jonathan Dimond

At the Department of Informatics
Institute of Theoretical Informatics

Reviewer/Advisor: Prof. Dr. rer. nat. Peter Sanders

January 1, 2013 – July 31, 2013

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, July 31, 2013

. .
(Jonathan Dimond)

Faster Full Text Search through Document Clustering
Jonathan Dimond <mail@dimond.de>

Typeset using LATEX on July 31, 2013, 09:21

Zusammenfassung

Schneller und einfacher Zugang zu Informationen ist einer der Grundpfeiler un-
serer heutigen Informationsgesellschaft. Eine wichtige Technik im Bereich von
Information Retrieval stellt die Volltextsuche dar. Volltextsuche ist nach wie vor
ein Gebiet der aktiven Forschung. Eine schnellere Volltextsuche führt zu höherem
Durchsatz, geringeren Hardwarekosten und einer verbesserten Benutzerfreund-
lichkeit durch geringere Latenzen.

Volltextsuchen benutzen in der Praxis häufig einen invertierten Index. Ein in-
vertierter Index speichert für jedes Wort die Menge an Dokumenten die dieses
Wort enthalten. Eine häufige Form von Suchanfragen sind konjunktive Suchan-
fragen bei denen Dokumente gesucht werden, die alle Wörter aus der Suchanfrage
enthalten. Konjunktive Suchanfragen können mit einem invertiertem Index be-
antwortet werden, indem die Mengen der Dokumente für alle Wörter aus der
Suchanfrage geschnitten werden.

Diese Diplomarbeit beschäftigt sich mit der Frage, wie die Einteilung von Doku-
menten in Cluster die Berechnung dieser Schnitte beschleunigen kann. Ein Clus-
ter bezeichnet in dieser Arbeit eine Menge von zusammengehörigen Dokumenten.
Die Idee ist einfach, aber neu. Moderne und effiziente Schnittalgorithmen haben
eine Zeitkomplexität, die von der Größe der kleinsten zu schneidenden Menge
dominiert wird. Wenn Dokumente so in Cluster aufgeteilt werden, dass Wörter
möglichst ungleichmäßig auf die Cluster verteilt werden entsteht ein positiver Ef-
fekt für die Schnittalgorithmen. In den meisten Clustern kommt jeweils ein Wort
der Suchanfrage nur sehr selten vor und die Schnittalgorithmen profitieren von
einer kürzeren Laufzeit durch eine geringere Größe der kleinsten Menge. Über
alle Cluster summiert ergibt sich so eine deutlich geringere Zeitkomplexität.

Die Basis der Diplomarbeit bildet eine neuartige und effizient berechenbare Be-
wertungsfunktion die diese Idee umsetzt. Die Bewertungsfunktion optimiert ge-
zielt die erwartbare Zeitkomplexität von Schnitten für Suchanfragen bei der Zu-
weisung von Dokumenten zu Clustern. Die Berechnung der Bewertungsfunktion
für jedes Dokument basiert auf wenigen Feldzugriffen einer vorberechneten Da-
tenstruktur. Die Datenstruktur wird mit einem ausführlichem Korrektheitsbeweis
hergeleitet.

Diese Bewertungsfunktion dient als Grundlage für zwei Algorithmen zum Clus-
tern von Dokumenten, die in dieser Arbeit vorgestellt und analysiert werden. Die
Algorithmen sind an den bekannten K-Means-Algorithmus angelehnt. Im Kern
basieren die Algorithmen auf der gierigen Zuweisung von Dokumenten zu Clus-
tern. Die Qualität der Cluster wird über mehrere Iterationen hinweg verbessert.
Nach einer kurzen Analyse der Algorithmen folgen mehrere Optimierungen, die

v

vi

die Effizienz der Algorithmen noch weiter steigern. Die Optimierungen beinhalten
unter anderem eine effizientere Vorberechnung der Datenstrukturen für die Be-
wertungsfunktion und die Betrachtung der Parallelisierungsmöglichkeiten beider
Algorithmen.

Neben den beiden Algorithmen zum Clustern von Dokumenten beleuchtet die
Diplomarbeit mehrere Ansätze, bei denen Dokumentencluster verwendet werden,
um konjunktive Suchanfragen zu beschleunigen. Der erste Ansatz ist ein neuer
Algorithmus, der explizit Cluster benutzt, um schnellere Schnitte zu ermöglichen.
Dabei greift der Algorithmus auf einen generischen Schnittalgorithmus für die ei-
gentlichen Schnitte zurück. Dieser Ansatz führt zu einer theoretisch geringeren
Zeitkomplexität, wenn die Dokumentencluster gut gewählt sind. Der zweite An-
satz verwendet eine Neuanordnung der Dokumente, um in der Praxis schnellere
Laufzeiten zu erreichen. Auch wenn keine theoretisch bessere Zeitkomplexität er-
reicht wird, so zeigen Experimente, dass dieser Ansatz in der Praxis gut oder sogar
besser funktioniert als der erste Ansatz. Die Analyse wird durch die Betrachtung
der Einsatzmöglichkeiten dieser Techniken in der Praxis abgerundet.

Im Rahmen der Diplomarbeit entstand ein einfaches, aber funktionales Open-
Source-Framework für Volltextsuche in der funktionalen Programmiersprache
Haskell. Das Framework enthält auch parallele und effiziente Implementierungen
der beiden Clustering-Algorithmen in der Programmiersprache C. Die Experi-
mente dieser Diplomarbeit werden mit Hilfe dieses Frameworks ausgeführt.

Das Clustern von Dokumenten führt bei Experimenten auf realen Datensätzen
zu guten Ergebnissen. Evaluiert werden, neben den Laufzeiten der Clustering-
Algorithmen, die theoretische Beschleunigung durch die geringere Zeitkomplexi-
tät sowie gemessene Beschleunigungen auf realen Suchanfragen. Die Experimente
geben einen Einblick in die Beschleunigungen, die in der Praxis erreicht werden
können.

Auf dem geläufigem Datensatz GOV2 wird sowohl eine theoretische als auch eine
reale Beschleunigung um den Faktor 1,8 erreicht. In der Praxis können also die
Schnitte für Suchanfragen fast doppelt so schnell berechnet werden. Auf einem
anderen Datensatz, der auf realen Sucheingaben basiert, steigen die gemesse-
nen Beschleunigungen sogar auf den Faktor 4. Experimente zur Laufzeit zeigen,
dass auch die Clustering-Algorithmen sehr effizient laufen. Der GOV2-Datensatz
kann bei geeigneter Parameterwahl mit einer Geschwindigkeit von 60 µs pro Do-
kument auf einem handelsüblichen PC geclustert werden. Dabei erreichen sowohl
die theoretischen als auch die realen Beschleunigungen für diese Parameter Werte
von über 1,75.

Neben den erzielbaren Beschleunigungen beleuchtet die Evaluation der Algo-
rithmen weitere interessante Aspekte und bietet Einblicke in die Einflüsse der
verschiedenen Parameter. So wird unter anderem der Einfluss der Größe und Be-
schaffenheit der Dokumentensammlung auf die Qualität der Clustering-Verfahren
untersucht. Untersuchungen zeigen auch, dass für qualitativ hochwertige Ergeb-
nisse nur wenige Wörter in den Algorithmen berücksichtigt werden müssen. Eine
kurze Auswertung der produzierten Cluster ergibt, dass die Verfahren es schaffen
Terme ungleichmäßig auf die Cluster zu verteilen.

Nach bestem Wissen ist diese Diplomarbeit die erste Arbeit, die ein Verfahren

vi

vii

vorstellt, das explizit die Zeitkomplexität von Schnittalgorithmen durch die Ver-
wendung von Dokumentenclustern verringert. Dies führt zu einer Reihe interes-
santer und fortführender Fragen, die außerhalb des Rahmens dieser Diplomarbeit
liegen. Experimente zeigen, dass das Verfahren im einfachen Fall für konjunktive
Suchanfragen gut funktioniert. Weitere Forschung ist nötig um festzustellen, ob
und wie das Verfahren auf weitere Bereiche der Volltextsuche übertragen werden
kann.

vii

Abstract

Fast and easy access to information has become a keystone in our fast-paced
world. Full text search remains an important technique in the area of information
retrieval and excels wherever fast access to large amounts of text is a prime
concern. Improving full text search is still an active research area. Faster full
text search leads to higher throughput, reduced hardware costs and an overall
improved user experience through lower latencies.

This thesis focuses on how document clustering can improve the efficiency of
conjunctive queries. Conjunctive queries are typically solved by intersecting sets
of documents containing the terms of a query. The idea is simple, yet novel:
The best set intersection algorithms have a time complexity that is dominated
by the size of the smallest set. If the documents can be clustered in a way that
each term is frequent in only a few clusters and rare in all the other clusters, an
algorithm can process those clusters in which terms occur rarely much faster, and
thus improve full text search speed overall.

This idea is incorporated in an efficient scoring function for assigning documents
to clusters. The scoring function specifically minimizes the time complexity of
conjunctive queries. The scoring function is used by two efficient and scalable
clustering algorithms presented in this thesis. Experiments show that clustering
documents of the GOV2 data collection can be as fast as 60 µs per document on
a single commodity PC.

The clustering algorithms are supplemented by an analysis on how document
clusters can be used to improve the performance of conjunctive queries. Two
separate techniques are presented. While one leads to better theoretical time
complexities, the other can perform better in practice.

The theoretical foundations are backed up by an open source implementation of
the clustering algorithms and a small full text search engine framework in the
functional language Haskell. The framework is used to conduct experiments on
real world datasets.

The experiments show that the approach presented in this thesis works well. On
the commonly used GOV2 dataset two-term conjunctive queries run close to 2
times faster and the theoretical time complexity decreases by nearly a factor of 2.
For a dataset that consists of documents specialized on a single topic, speedups
of over 4 can be measured on actual queries by real users.

ix

Contents

1 Introduction 1
1.1 Contribution . 2
1.2 Outline . 2

2 Related Work 3

3 Technical Foundations 5
3.1 Full Text Search Basics . 5
3.2 Search Engine Design . 6
3.3 Conjunctive Queries . 7
3.4 Efficient Set Intersections . 7
3.5 Compression . 9

4 Document Clustering 11
4.1 Basic Idea . 11
4.2 Definitions and Terminology . 12
4.3 Fast Scoring Function . 12

4.3.1 Scoring Function for Intersections in O(m) 13
4.3.2 Learning the Query Language Model 20

4.4 Fast Clustering of Documents . 21
4.4.1 Fast Multi-Level Clustering . 21
4.4.2 Document-Grained vs Iteration-Grained 22
4.4.3 Fast Hierarchical Clustering . 23

4.5 Optimizations . 24
4.5.1 Parallelization . 24
4.5.2 Term Cutoff . 25
4.5.3 Omitting α2 and α4 . 25

4.6 Summary . 25

5 Search with Document Clusters 27
5.1 Set Intersection Data Structure for Clusters 27
5.2 Document ID Relabeling . 28
5.3 Hybrid and Parallel Intersections . 30
5.4 Distributed Search and Document Clusters 30

6 Implementation 33
6.1 Core Library . 34

6.1.1 Basic Data Types . 34
6.1.2 Text Processing . 34

xi

xii Contents

6.1.3 Clustering . 34
6.1.4 Set Intersections . 36

6.2 File Formats . 36
6.3 Tools . 38

6.3.1 Tokenization . 38
6.3.2 Index Construction . 38
6.3.3 Clustering . 38
6.3.4 Evaluation . 38

7 Experimental Evaluation 41
7.1 Evaluation Measures . 41
7.2 Experimental Methology . 42

7.2.1 Environment . 43
7.3 Datasets . 43

7.3.1 Document Collections . 43
7.3.2 Query Logs . 44

7.4 Experimental Results . 45
7.4.1 Speedups . 45
7.4.2 FMClustering versus TopDown . 48
7.4.3 Clustering Effect . 50
7.4.4 Compression . 51
7.4.5 Speedups with Comparison-Based Intersection Algorithms 52
7.4.6 Query Language Model versus Document Collection Language Model 52
7.4.7 Clustering Stability . 53
7.4.8 Influence of Term-Cutoff . 54
7.4.9 Influence of Number of Documents 55
7.4.10 Speedups for Single Queries . 56
7.4.11 Exact Scoring Function . 58

7.5 Clustering Runtimes . 58
7.5.1 FMClustering versus TopDown . 60
7.5.2 Influence of Term-Cutoff . 61
7.5.3 Influence of Document Collection Size 61

8 Conclusion 65
8.1 Summary . 65
8.2 Future Work And Outlook . 66

Bibliography 67

xii

1. Introduction

Fast and easy access to information has become a keystone in our fast-paced world. With
the rise of information technology, the drop in storage costs and the invention of the
Internet the amount of available data exploded into inconceivable dimensions. While
many methods exist to provide fast and easy access across various domains, full text
search remains an important technique in the area of information retrieval. The rise and
success of internet search engines make a compelling argument for the adoption of full text
search for very large collections of documents. But aside from the Internet, full text search
excels wherever fast access to large amounts of text is a prime concern.

While full text search has been heavily studied over the last decades, improving search
speed is still a concern and full text search on huge document collections is still a chal-
lenge [Con13]. Faster full text searches lead to higher throughput, reduced hardware costs
and an overall improved user experience through lower latencies. Furthermore, new and
emerging technologies, e. g., question answering or cognitive systems, can benefit from
improved full text access.

At the base of every search is the task of finding relevant results. For full text search this
corresponds to finding the documents matching a search query (and optionally ranking
them). Commonly this task is solved using an Inverted Index. For each term, an Inverted
Index holds a set of documents containing that term. Matching documents to a search
query is then simply a matter of intersecting the corresponding sets of documents1. How-
ever, the process of intersecting sets can involve millions of documents and therefore fast
set intersection algorithms are crucial to fast full text search.

This thesis focuses on how document clustering can improve the performance of existing
set intersection algorithms. The idea is simple2: Efficient set intersection algorithms have
an algorithmic time complexity that is dominated by the size of the smallest set. If the
documents can be clustered in a way that each term is frequent in only a few clusters and
rare in all the other clusters, an algorithm can process those clusters in which terms occur
rarely much faster, and thus improve full text search speed overall.

1Regarding conjunctive queries, for a more detailed explanation please refer to Section 3.3
2This concept is explained in depth in Section 4.1

1

2 1. Introduction

1.1 Contribution

The contribution of this thesis is manifold:

1. An efficiently computable scoring function for assigning documents to clusters that
specifically optimizes the expected time complexity of a query.

2. Two scalable, parallel and efficient clustering algorithms that work well in combina-
tion with the scoring function.

3. Two new techniques for using document clusters to accelerate conjunctive queries in
full text search.

4. An in-depth evaluation and analysis of theoretical and practical speedups achieved
on posting list intersections through document clusterings on real-world datasets
using the clustering algorithms discussed in this thesis.

5. A search engine framework implemented in Haskell [JHA+99] that can handle mil-
lions of documents consisting of hundreds of gigabytes of text.

1.2 Outline

The rest of the thesis is structured as follows:

• Chapter 2 looks at related work and discusses previous approaches for both document
clustering and improving search performance.

• Chapter 3 gives a brief overview over the technical foundations of full text search.
The discussion is limited to topics relevant to this thesis.

• Chapter 4 discusses fast clustering of documents. First, an efficient and semantically
meaningful scoring function for assigning documents to clusters is introduced and
proven. Next, the chapter discusses efficient clustering algorithms. The chapter
closes with several optimizations that can improve clustering runtimes.

• Chapter 5 illustrates how document clusters can be used to accelerate full text search
and set intersections. It introduces a new data structure which can be used for
conjunctive queries on document clusters and discusses alternative approaches.

• Chapter 6 explains details of the implementation.

• Chapter 7 evaluates the clustering algorithms on real world data. A detailed analysis
and systematic benchmarks give insights into important parameters.

• Chapter 8 closes this thesis with a summary and an outlook on further work.

2

2. Related Work

Many speedup techniques have been studied in the area of full text search, including geo-
graphical tiering [CPBY09], static index pruning [DMdSF+05] and dynamic index pruning
[Per94]. The techniques improve efficiency by disregarding parts of the index. In contrast,
the approach in this thesis achieves speedups while still using the whole index. However,
a full evaluation of speedup techniques is out of the scope of this work. The focus here
lies on the improvement of search efficiency by clustering documents or partitioning the
posting lists.

The idea of clustering documents in the context of full text search is not new. Berkhin
[Ber06] gives a good overview over common clustering techniques, many of which can be
applied to document clustering.

Many approaches are based on the clustering hypothesis [VR79], which states that docu-
ments that are relevant to a query tend to be more similar to each other than documents
that are non-relevant. Documents similar to each other are clustered together1. Queries
are then executed via collection selection. Document clusters considered irrelevant are
disregarded and only clusters relevant to the query are used for searching. This imposes
two main problems:

• Which clusters are relevant?

• How many clusters are relevant?

The approach in this thesis circumvents the two problems caused by collection selection
by improving search efficiency without losing accuracy.

Clustering Documents

Xu et el. [XC99] use a 2-phase K-means algorithm [M+67] to cluster documents. In a first
pass, the first k documents are chosen as initial clusters and all subsequent documents are
added to the cluster with the highest similarity. A second pass reassigns documents and
corrects errors from the first pass. They use a slightly modified Kullback-Leibler divergence
as a pseudo distance metric between clusters and documents which is used to assign the

1In this thesis we use cluster in the sense of semantic cluster, not computer cluster

3

4 2. Related Work

documents to clusters. Cluster centers are formed by concatenating all documents in a
cluster and treating it as if it where a single document. Collection selection is based on a
unigram language model for both queries and clusters. The Kullback-Leibler divergence
based on the unigram language model is used to find the top-k clusters for a given query.

More recently, Puppin et al. [PSL06] introduce a method of using co-clustering of docu-
ments and queries to perform collection selection. Similar queries and similar documents
are clustered together. Each query cluster is assigned a contribution value to each docu-
ment cluster based on ranking each document in the cluster for each query in the query
cluster. For collection selection, the query cluster contribution values are used to score and
select the top document clusters. The contribution values are weighted by the similarity
of the query to the query clusters.

In her dissertation, Kulkarni [Kul13] reexamines and evaluates how clustering can be used
to partition the document collection into shards to maximize both, search efficiency and
search effectiveness. The hypothesis is that by clustering documents by similarity, many
shards can be disregarded for the query. She introduces a modified version of the K-Means
algorithm which improves scalability. The clustering approach is similar to the one in this
thesis. Instead of clustering all documents at once, a small sample of documents is picked
at random and used to find the initial cluster centers. The rest of the collection is then
assigned in a single pass as second step. With a small random sample, K-Means will take
significantly less time to converge towards stable clusters. The properties of the clusters
are not likely to alter dramatically after assigning the rest of the documents.

All these approaches concentrate on collection selection by clustering similar documents
together. However, they suffer from the aforementioned limitations of determining which
clusters are relevant. This thesis breaks out in a new direction and tries to improve
efficiency not by eliding clusters, but by organizing clusters in a way so that algorithms
will run faster. To the best of our knowledge, this thesis is the first to look at this question.
However, ideas of clustering algorithms, using query logs, and other techniques still apply
and are used in this thesis.

Improving Search Efficiency

Apart from collection selection, there exist other methods to improve search efficiency.
For term partitioned indexes, Luccese et al. [LOPS07] formulate term partitioning as an
optimization problem. Their algorithm tries to minimize the average latency for queries
and maximizes overall throughput. Probabilities of terms occurring in queries are explicitly
used in the optimization problem. They present a greedy algorithm which tries to assign
terms to servers and use query logs to estimate the query probabilities. This resembles
closely the goal of this thesis, but is limited to term partitioned indexes. The work in this
thesis is independent from a concrete partitioning scheme and can be applied to term and
document partitioned indexes.

4

3. Technical Foundations

This chapter gives a brief overview over the fundamental concepts and data structures for
full text search. The explanations in this chapter are kept short and simple and only go
into depth when relevant to this thesis.

3.1 Full Text Search Basics

Full text search has been applied to many domains, most notably web search [BP98].
While there exist other data structures, inverted indexes have become the prevalent choice
for full text search due to their good runtime characteristics, compact representation and
simple structure. An extensive overview over full text search is given in the introductory
book Modern Information Retrievel by Baeza-Yates and Ribeiro-Neto [BYRN+99].

An inverted index maps terms to their occurrences in documents as illustrated in Fig-
ure 3.1. An inverted index holds, for each term, a list of all occurrences in the documents,
commonly referred to as posting list. For compact representation, unique identifiers are
used to represent terms (abbreviated term ID) and documents (abbreviated doc ID). A
dictionary maps words to their corresponding term IDs. The posting list can, depending
on the requirements, hold additional information, e. g., position and relevance of the term
within the document.

Before a document is indexed it is preprocessed. Common steps include stripping any
unwanted information, e. g., potential markup, and removing term separators (spaces,
punctuation marks, ...). Removing common words with low semantic value, called stop
words, can reduce the index size and improve search effectiveness. Stemming, the process
of transforming words into their word stem, can be beneficial at times.

The preprocessing step returns a list of terms for a document. This list can then be used
to easily add the document to the inverted index. Typically the whole inverted index
containing all documents is constructed in an offline preprocessing phase.

Listing all the documents containing a particular term is a simple lookup in the inverted
index. An implementation for accessing posting lists should be optimized for speed to
allow for fast searches.

5

6 3. Technical Foundations

an apple
a day

Document 1

eat a
fruit
every
day

Document 2

an apple
is a fruit

Document 3

term documents

an 1, 3
apple 1, 3
a 1, 2, 3
day 1, 2
eat 2
fruit 2, 3
every 2
is 3

Inverted Index

Figure 3.1: Inverted Index

3.2 Search Engine Design

Large-scale enterprise search engines require a carefully thought out design. For huge
document collections like the web, single-server, monolithic search engines do not suf-
fice [BDH03]. For one thing, the index does not fit into either internal or external memory.
By partitioning the index and distributing it over several shards memory consumption for
a single server can be reduced and throughput and latency can then easily be improved
through parallelization and concurrency. Replication of shards can further improve search
engine performance through inter-query parallelization, answering multiple queries con-
currently.

A typical simple setup for a shard-based search engine is illustrated in Figure 3.2. Queries
are handled by a broker which in return forwards the queries to relevant shards. The
broker then joins the results from each shard into a single, final result.

There are two common partitioning schemes: by term and by document [JO95]. When
using partitioning by term, an inverted index is built for the entire collection and each
shard holds only a subset of terms of an inverted index. Queries are only sent to the shards
containing a term in the query. For conjunctive queries, if terms are distributed among
shards, posting lists have to be sent between shards causing significant communication
overhead. When partitioned by document, each shard holds a subset of documents and
holds a full inverted index for those documents. In this case, the queries are sent to all
shards by the broker.

Although term partitioning seems to be the more efficient choice, since only some of the
shards have to be contacted for every query, document partitioning has shown to have

6

3.3. Conjunctive Queries 7

Shard Shard Shard Shard

Broker

Query Result

Figure 3.2: Search Engine Architecture

better characteristics in practice. Term partitioning suffers from communication overhead
and load imbalancing problems [MMR00].

Traditionally, inverted indexes have been stored on hard disks due to the size and cost of
random access memory. More recently, with the decrease of internal memory costs, inverted
indexes stored in internal memory have become more popular [Tra10]. Because disk access
and seek times are order of magnitudes slower than RAM access, storing inverted indexes
in internal memory can have a tremendous impact on the performance of a search engine.

3.3 Conjunctive Queries

While inverted indexes can also be used to answer phrase queries and disjunctive queries,
this thesis concentrates on conjunctive queries. Conjunctive queries, also referred to as
boolean AND queries, select documents that contain all the terms specified in the query,
hence the word conjunctive. They are generally faster to compute than disjunctive or
phrase queries and therefore are predominant in the area of web search where the document
collections are generally large and a fast query processing time is important.

Evaluating conjunctive queries boils down to simply intersecting the posting lists for all
terms specified in the query. Efficient algorithms are explained in detail in the next section.

For an inverted index residing in external memory the posting lists for the terms in a
query are loaded into memory and intersection is then performed in main memory. Due to
slow access and high latency for external memory, loading times are generally much higher
than intersection run times and optimizing disk accesses is a bigger concern than improving
intersection algorithms. However, posting lists might be cached and in in-memory search
engines, intersection run times play a crucial role for latency and throughput. This thesis
assumes posting lists in memory.

3.4 Efficient Set Intersections

A posting list can effectively be seen as a set of integers. Intersections of sets of integers
have been thoroughly researched in the last decades and numerous efficient algorithms

7

8 3. Technical Foundations

have been proposed. Algorithms relevant to this thesis are presented and discussed here.
All algorithms require a precalculated data structure for efficient intersection. For the
remainder of this section n denotes the size of the larger set and m the size of the smaller
set.

While there exist specialized solutions for intersecting multiple sets, only two set intersec-
tions are considered in this section. Extension to multiple terms can easily be achieved
by first intersecting the two smallest sets, and iteratively intersecting the result with the
next larger set.

Zipper

Consider sorted posting lists. A trivial, yet effective solution is to simultaneously scan
both lists in order, advancing in the list with the currently smaller element. If the current
elements in both lists are equal, it can be added to the result set.

Zipper has an algorithmic complexity of O(n + m) with a small constant factor. It is a
very good solution when both sets are of about equal size.

Lookup

Sanders and Transier [ST07] introduce an efficient set intersection algorithm based on
buckets. Elements are divided into buckets. A top-level data structure holds the sizes and
pointers to a bottom-level data structure containing the actual elements for each bucket.
These combined data structures are referred to as Lookup list.

The upper bits of an element are used to determine the index of the bucket it is placed
in. This can be achieved efficiently with machine bit-shifting instructions. A parameter
B controls the average bucket size and together with the set size determines how many
upper bits are used. The number of bits also dictate how many buckets exist. Elements
in each bucket are sorted.

To intersect two sets, the smaller set is scanned in order. For each element in the smaller
set, the bucket index in the larger set is computed. A lookup in top-level data structure
yields the starting position of that bucket in the bottom-level data structure. The elements
of the bucket are scanned in order until one of the following occurs:

• The end of the bucket is reached, in which case the element from the smaller set is
not contained in the larger set.

• A larger element in the bucket is reached. Because the elements in the buckets are
ordered the element is not contained in the larger set.

• The element is found in the bucket.

Because elements in both sets are sorted, sequential scans starting in the same bucket can
advance from the previous position in the bottom-level data structure. This ensures that
each element of a bucket is scanned at most once.

Sanders and Transier show that, assuming randomly distributed elements, bucket sizes
average about B and the algorithmic complexity is O(m + min(n,Bm)). With small
bucket sizes this can effectively be seen as O(m). Lookup is suitable where large ratios
between set sizes are to be expected.

8

3.5. Compression 9

3.5 Compression

Inverted indexes can use significant amounts of memory. Compression helps to keep the
memory requirements small. Moreover, when inverted indexes reside in external memory,
compression improves the number of posting lists that can be cached as well as the transfer
time from external to internal memory for the posting lists.

A simple approach is to use ∆-encoding together with variable-length encoding. Instead
of storing the integers, respectively the document IDs directly, ∆-encoding stores the
differences between the integers. That is, the sorted sequence d1, . . . , dn is stored as d1, d2−
d1, d3 − d2, . . . , dn − dn−1. Because variable-length encoding uses less bits for smaller
integers, less bits are needed to encode a posting list in total if ∆-encoding is used.

Common variable-length encodings include Golomb coding [Gol66], Elias-γ and Elias-δ
encoding [Eli75]. A detailed explanation is out of the scope of this thesis. However, Elias-γ
coding requires 1 + 2blog2 xc bits to encode an arbitrary integer x > 0, whereas Elias-δ
coding uses 1 + 2blog2 log2 2xc + blog2 xc bits [BYRN+99]. Golomb coding requires an
additional parameter b. With a good choice for b and values with a geometric distribution,
Golomb coding uses roughly about 2 + log2 x bits on average.

9

4. Document Clustering

4.1 Basic Idea

The idea behind this thesis is simple, yet novel. Assume documents can be clustered in
a way that each term occurs only in a minority of clusters. In other words, documents
containing a particular term only occur in a few clusters. Then, for conjunctive queries,
clusters can be elided when they do not contain any documents for any term in a query.

While such a clear cut clustering is not always possible for realistic inputs, clustering
documents can still have great impact on intersection performance. The goal is to cluster
documents so that the intersections within the clusters run faster in total than intersecting
the whole posting list.

The advantages are illustrated using a simple example. Assume a conjunctive query with
two terms and four document clusters. Table 4.1 lists the number of documents containing
term 1 and 2 in each cluster and in total. As described in Section 3.4, modern and efficient
set intersection algorithms have a time complexity that is dominated by the smaller set.
In this case we assume the linear complexity of Lookup. For the normal approach without
clusters, the smaller set has a size of 37 000 and thus intersecting both sets will result in
a time complexity of approximately 37 000. If each cluster is intersected separately, the
intersection time complexities will be approximately 2 000, 1 000, 1 000, 1 000 for clusters
1 through 4 respectively.

Cluster #Documents Term 1 #Documents Term 2

1 2000 10 000
2 10 000 1000
3 40 000 1000
4 1000 25 000

Total 53 000 37 000

Table 4.1: Example clustering of documents

Added up this totals a time complexity of approximately 5 000, nearly an order of magni-
tude faster compared to the original 37 000!

11

12 4. Document Clustering

Finding a clustering that works well for all or most combinations of terms, not only a single
pair of terms, is a challenge. However this thesis shows that the idea works in principle and
on real data and illustrates its further benefits, e. g., compression. This chapter discusses
algorithms, data structures and optimizations to cluster documents in an effective and
efficient way.

4.2 Definitions and Terminology

This section introduces some terminology and definitions used in the remainder of this
thesis.

Let D = {d1, . . . , dn} be the set of all documents and T = {t1, . . . , tm} the set of distinct
terms occurring in documents from D. A document di = ti1ti2 . . . tij is a list of terms.
For simplicity t ∈ di is used to refer to terms occurring in di. The indices are omitted
whenever the context is clear. The size of a document d ∈ D is denoted by |d|. Note that
terms might occur more than once in a document.

A clustering is given by the set C = {c1, . . . , ck}. A cluster ci ∈ C is a set of documents
ci = {di1, . . . , dil}. For this thesis, clusters are non-overlapping: ∀i, j, i 6= j : ci ∩ cj = ∅.
Indices are again omitted whenever the context is clear.

For this thesis the universe of queries Q = {{t, u} | t, u ∈ T, t 6= u} is limited to the set
of all possible two term queries. Note that there is no order for the terms in queries and
queries containing the same term twice are prohibited. This is not a serious constraint,
as conjunctive queries are commutative and intersecting a set with itself is the identity
function.

The number of documents containing a term in a cluster is given by n(c, t) = |{di | t ∈
di, di ∈ c}|. This can also be viewed as the size of the posting list for a term t when
considering only documents d ∈ c from a single cluster c. Similarly the number of clusters
containing at least one document with the term t is denoted by k(t) = |{ci | ∃d ∈ ci : t ∈ d}|

Iverson brackets [Knu92] are used to increase readability. Given a logical statement P the
brackets are used as follows.

[P] =

{
1, if P is true.

0, otherwise.

At times it is convenient if T is totally ordered. Given a total order and two terms t, u ∈ T ,
t < u is true if, and only if, t precedes u.

4.3 Fast Scoring Function

While many other approaches cluster documents by similarity, this thesis runs another
path. The documents are clustered by explicitly optimizing the expected query time. To
keep things simple, the query time is modeled by the set intersection complexity. This
might be oversimplifying, however, optimizing the set intersection complexity will likely
also reduce query time in general, despite constant factors and overhead. Only two term
conjunctive queries are considered here. The usual approach for queries with more terms
is to start by intersecting the two smallest sets of the query. Therefore the effects for two
term queries are likely to also apply to queries with more terms.

12

4.3. Fast Scoring Function 13

The following paragraphs introduce a cost function that models the time complexity for
two term queries. The cost function uses the assumption that all clusters are intersected
independently. The complexity of determining the clusters containing documents for any
term for a query is added to the total complexity of intersecting all the posting lists in all
those clusters.

Let Φ(n,m) be the time complexity of intersecting two sets with size n and m, C a
clustering of documents and Cq be the set of clusters with at least one document containg
any term from the query q ∈ Q. We use the function Φ to model a cost function ΨC(t, u)
for a query {t, u} ∈ Q:

ΨC(t, u) = Φ(k(t), k(u)) +
∑
cq∈Cq

Φ(n(cq, t), n(cq, u)) (4.1)

Note that Cq is defined implicitly by t and u.

The cost function ΨC is justified by the following observations: The number of clusters
containing term t and u is k(t) and k(u) respectively. The set of clusters Cq contain-
ing documents for a query q ∈ Q can be determined using standard set intersections in
Φ(k(t), k(u)). For this, each term has a cluster posting list holding the cluster IDs con-
taining at least one document with that particular term. Iterating over each cluster, the
set of documents for each cluster can be computed in Φ(n(cq, t), n(cq, u)) and added to the
output set.

Let Q be the sample space of all queries q ∈ Q and p(t ∧ u) := p({t, u}) the probability
mass function for a query q = {t, u} ∈ Q. Given a clustering C, ΨC is a random variable
and has the expected value of:

E [ΨC] =
∑

{t,u}∈Q

p (t ∧ u)ΨC(t, u)

=
∑

{t,u}∈Q

p (t ∧ u)

Φ(k(t), k(u)) +
∑
cq∈Cq

Φ(n(cq, t), n(cq, u))

 (4.2)

The expected value for ΦC is a meaningful cost function for an optimization problem. The
work, that is the time complexity, should be minimal over all queries, with more attention
to more frequent queries. This also permits defining a simple scoring function for local
search clustering algorithms. Let C ′ be the clustering after adding document d to cluster
c ∈ C. The scoring function then is:

Score(d, c, C) := E[ΨC′]− E[ΨC] (4.3)

As C is mostly defined by the context, we use Score(d, c) as short for Score(d, c, C). The
next sections discuss how Score(d, c) can be computed efficiently. Note that by definition
a lower score means a better score.

4.3.1 Scoring Function for Intersections in O(m)

The best set intersection algorithms have a time complexity of O(m), as discussed in
Section 3.4, where m is the size of the smaller set. This allows a simple approximation for

13

14 4. Document Clustering

Φ(n,m) := min(n,m). While there exist different constant factors for set sizes and ratios,
this allows for an easier analysis and still holds true in principle: The smaller the smaller
set, the faster the intersection will be.

This section shows how to compute the scoring function Score(d, c) in O(|d|) time. The
function is split into four separate parts αi(d, c), i ∈ {1, 2, 3, 4}, of which each can be
computed separately in linear time O(|d|).

Lemma 4.3.1. The function Score(d, c) can be rewritten using an arbitrary total order on
T as:

Score(d, c) = α1(d, c) + α2(d, c) + α3(d, c) + α4(d, c)

where

α1(d, c) =
∑
t∈d

∑
u∈T

p(t ∧ u)[n(c, t) < n(c, u)]

α2(d, c) =
∑
t∈d

∑
u∈d
u>t

p(t ∧ u)[n(c, t) = n(c, u)]

α3(d, c) =
∑
t∈d

∑
u∈T

p(t ∧ u)[k(t) < k(u) ∧ t /∈ c]

α4(d, c) =
∑
t∈d

∑
u∈d
u>t

p(t ∧ u)[k(t) = k(u) ∧ t, u /∈ c]

Proof. Let c′ = c ∪ {d} be the new cluster after adding document d. For simplicity we
write n′(c, t) := n(c′, t) and k′(t) when referring to the new clustering.

Score(d, c) = E[ΨC′]− E[ΨC]

=
∑

{t,u}∈Q

p (t ∧ u)

min
(
k′(t), k′(u)

)
+

∑
cq∈C′

q

min(n′(cq, t), n
′(cq, u))

−

∑
{t,u}∈Q

p (t ∧ u)

min (k(t), k(u)) +
∑
cq∈Cq

min(n(cq, t), n(cq, u))

=

∑
{t,u}∈Q

p(t ∧ u)
∑
cq∈C′

q

min(n′(cq, t), n
′(cq, u))

−
∑

{t,u}∈Q

p(t ∧ u)
∑
cq∈Cq

min(n(cq, t), n(cq, u))

+
∑

{t,u}∈Q

p(t ∧ u)min(k′(t), k′(u))

−
∑

{t,u}∈Q

p(t ∧ u)min(k(t), k(u))

14

4.3. Fast Scoring Function 15

As all but one cluster are left unchanged by the document addition, it is obvious that
∀cq 6= c : n′(cq, t) ≡ n(cq, t) and therefore the sum over the clusters can be simplified to

=
∑

{t,u}∈Q

p(t ∧ u)

min(n′(c, t), n′(c, u))−min(n(c, t), n(c, u))︸ ︷︷ ︸
a(t,u)

+

∑
{t,u}∈Q

p(t ∧ u)

min(k′(t), k′(u))−min(k(t), k(u))︸ ︷︷ ︸
b(t,u)

=

∑
t∈T

∑
u∈T
u>t

p(t ∧ u)a(t, u)

︸ ︷︷ ︸
(1)

+
∑
t∈T

∑
u∈T
u>t

p(t ∧ u)b(t, u)

︸ ︷︷ ︸
(2)

(4.4)

Note that by definition of Q and with the total ordering on T the sum
∑

{t,u}∈Q can be
rewritten as

∑
t

∑
u>t. The notation t ∈ T is omitted for simplicity. In the following the

proof only handles (1). The proof for (2) is analogous with the additional constraint of
t /∈ c for most cases.

Obviously n′(c, t) = n(c, t) + δt where

δt =

{
1, if t ∈ d

0, otherwise

and so a(t, u) can be defined as follows:

ζ(t, u) := δt[n(c, t) < n(c, u)]

η(t, u) := δu[n(c, u) < n(c, t)]

ξ(t, u) := min(δt, δu)[n(c, u) = n(c, t)]

a(t, u) = min(n(c, t) + δt, n(c, u) + δu)−min(n(c, t), n(c, u))

=

δt, if n(c, t) < n(c, u)

δu, if n(c, u) < n(c, t)

min(δt, δu), if n(c, t) = n(c, u)

= ζ(t, u) + η(t, u) + ξ(t, u)

Without loss of generality assume a total order where ∀t, u ∈ T : t ≤ u =⇒ n(c, t) ≤
n(c, u). Then (1) from Equation 4.4 can be rewritten as

(1) =
∑
t

∑
u>t

p(t ∧ u)a(t, u)

=
∑
t

∑
u>t

p(t ∧ u)

ζ(t, u) + η(t, u)︸ ︷︷ ︸
≡0

+ξ(t, u)

=

∑
t

∑
u>t

p(t ∧ u)ζ(t, u) +
∑
t

∑
u>t

p(t ∧ u)ξ(t, u)

15

16 4. Document Clustering

Because t /∈ d =⇒ δt = 0 =⇒ ∀u : ζ(t, u) = 0 the outer sum in the first summand can be
limited to terms from the document and similarly because t /∈ d ∨ u /∈ d =⇒ ξ(t, u) = 0
the second summand can be limited to terms from the document in inner and outer sums

=
∑
t∈d

∑
u>t

p(t ∧ u)ζ(t, u) +
∑
t∈d

∑
u∈d
u>t

p(t ∧ u)ξ(t, u)

From the definition of ζ and the ordering, it follows that u < t =⇒ ζ(t, u) = 0 and
therefore the inner sum can be expanded from the range u ∈ T : u > t to the whole range
of terms u ∈ T

=
∑
t∈d

∑
u∈T

p(t ∧ u)ζ(t, u) +
∑
t∈d

∑
u∈d
u>t

p(t ∧ u)ξ(t, u)

Evidently because t ∈ d =⇒ ∀u ∈ T : ζ(t, u) = [n(c, t) < n(c, u)] and t, u ∈ d =⇒
ξ(t, u) = [n(c, t) = n(c, u)] this can be rewritten using the definitions from the lemma

=
∑
t∈d

∑
u∈T

p(t ∧ u)[n(c, t) < n(c, u)]

+
∑
t∈d

∑
u∈d
u>t

p(t ∧ u)[n(c, t) = n(c, u)]

= α1(d, c) + α2(d, c)

While the definition from the lemma uses an arbitrary total order, the proof adds an
additional constraint to the ordering. This constraint however is not a problem in practice,
because the constraint allows an arbitrary order between terms t, u ∈ T : n(c, t) = n(c, u).

Using a Unigram Language Model for Queries

A language model tries to estimate the probabilities of sentences. Sentences are modeled
as a list of terms, e. g., t1t2t3 . In the context of conjunctive two-term queries, the language
model should estimate the probability of a query. Since conjunctive queries are commuta-
tive, the language model should ignore the order of the terms, that is p(t1∧t2) := p(t1t2) =
p(t2t1). One of the simplest language models is a unigram language model. In a unigram
language model the probability of a term occurring is independent from other terms.

So far the analysis assumes that p(t∧u) is known. However in practice this will not be the
case. For one thing, determining p(t ∧ u) empirically is mostly infeasible. The set of all
two term queries can be prohibitively large as its size is quadratic in the number of terms.
In a unigram language model for two-term queries the probability of a term occurring
in a query is independent from the other term. In other words, in a unigram language
model the probability for two terms t and u occurring is p(t∧u) = p(t)p(u). The unigram
language model allows to calculate the scoring function very efficiently, as is shown later
on. It is important to see that the unigram language model is only used for the scoring
function itself.

While a unigram language model for queries might be oversimplifying, there is still a
justification for its use. A simple example illustrates how correlation between terms can

16

4.3. Fast Scoring Function 17

still be preserved even if it is not directly reflected in the scoring function. This is because
the scoring function takes all terms of a document into account.

Consider the following simple example. Assume the terms t1 and t2 occur frequently
in general, but rarely together in either queries or documents. Let cluster c1 hold the
documents where only term t1 occurs and cluster c2 the documents where only term t2
occurs. Let documents with both terms t1 and t2 be evenly distributed over both clusters.
Assume a new document in which term t1 occurs, but term t2 does not. Obviously c1 is
the better choice for this document. This will also be reflected in the scoring function.
Because n(c1, t1) > n(c1, t2) it follows that [n(c1, t1) < n(c1, t2)] = 0 for cluster c1, whereas
n(c2, t1) < n(c2, t2) and therefore [n(c2, t1) < n(c2, t2)] = 1 for cluster c2. With all else
equal, this leads to a lower and therefore better score for cluster c1, just as desired. Even
with a unigram language model for the scoring function, correlation between terms will be
reflected in the clusters and therefore in the scoring function.

Calculating α1(d, c) and α3(d, c) in O(|d|)

With the unigram language model, α1 and α3 from Lemma 4.3.1 can be calculated using
lookup tables as formulated in the following lemma.

Lemma 4.3.2. Using a unigram language model, α1 and α3 can be calculated using lookup
tables Lc

1 and L3.

α1(d, c) =
∑
t∈d

p(t)Lc
1[t]

α3(d, c) =
∑
t∈d
t/∈c

p(t)L3[t]

Proof. The proof is outlined here for α1, but also applies to α3.

α1(d, c) =
∑
t∈d

∑
u∈T

p(t ∧ u)[n(c, t) < n(c, u)]

=
∑
t∈d

∑
u∈T

p(t)p(u)[n(c, t) < n(c, u)]

=
∑
t∈d

p(t)
∑
u∈T

p(u)[n(c, t) < n(c, u)]

=
∑
t∈d

p(t)
∑
u∈T

n(c,t)<n(c,u)

p(u)

Let be Lc
1 be a lookup table with

Lc
1[t] :=

∑
u∈T

n(c,u)>n(c,t)

p(u)

which proves the lemma

α1(d, c) =
∑
t∈d

p(t)Lc
1[t]

17

18 4. Document Clustering

The same applies for α3 (without proof):

α3(d, c) =
∑
t∈d
t/∈c

p(t)L3[t]

where

L3[t] :=
∑
u∈T

k(u)>k(t)

p(u)

Note that Lc
1 has to be calculated for each cluster c individually while L3 can be calculated

for all clusters globally. For each term t, the lookup tables Lc
1 and L3 hold the prefix sum∑

u>t p(u) with the terms ordered by n(c, t) and k(t) respectively. Lemma 4.3.2 directly
suggests a simple algorithm to calculate Lc

1 for a cluster c:

1. Sort all t by n(c, t) in descending order

2. Calculate the prefix sum Lc
1[t] with a linear scan through the terms.

Equivalently the same applies to L3, however the elements are sorted using k(t) instead of
n(c, t). With the lookup table it is evident that α1 and α3 can be calculated in O(|d|).

Efficiently sorting the terms by their frequencies can turn into a complex matter. When
clusters do not contain many documents and therefore the frequencies are generally low, a
radix sort or counting sort can sort the terms in O(|T |). However, later on the frequencies
can become significantly larger than the number of terms |T |. If terms are already nearly
sorted from the previous calculation of Lc

1 or L3 an insertion sort can be an efficient
alternative in O(|T |). In any case the sorting of terms can be achieved in O(|T | log |T |)
using efficient comparison based sorting algorithms. The further analysis assumes that the
frequencies are bound by an upper constant limit and sorting can be achieved in O(|T |).

Calculating α2(d, c) and α4(d, c) in O(|d|)

Lemma 4.3.3. Assuming statistical independence α2 and α3 can be calculated using lookup
tables

α2(d, c) =
∑
t∈d

p(t)L2[t]

α4(d, c) =
∑
t∈d
t/∈c

p(t)L4[t]

Proof. As with the previous proofs, the proof only handles the case of α2. The proof for
α4 is analogous.

18

4.3. Fast Scoring Function 19

α2(d, c) =
∑
t∈d

∑
u∈d
u>t

p(t ∧ u)[n(c, t) = n(c, u)]

=
∑
t∈d

∑
u∈d
u>t

p(t)p(u)[n(c, t) = n(c, u)]

=
∑
t∈d

p(t)
∑
u∈d
u>t

p(u)[n(c, t) = n(c, u)]

=
∑
t∈d

p(t)
∑
u∈d
u>t

n(c,t)=n(c,u)

p(u)

Once again let L2 be a lookup table with

L2[t] :=
∑
u∈d
u>t

n(c,t)=n(c,u)

p(u)

which proves the lemma

α2(d, c) =
∑
t∈d

p(t)L2[t]

It remains to show how L2 and L4 can be calculated efficiently. The algorithm for calcu-
lating L2 is illustrated in Algorithm 1.

Algorithm 1 L2(d,c)

1: H ← uniquesort(d)
2: l← |H|
3: currentCount ← −1
4: for i ∈ 0, . . . , l − 1 do
5: t← H[i]
6: if n(c, t) 6= currentCount then
7: sum ← 0
8: currentCount ← n(c, t)
9: end if

10: L2[i]← sum
11: sum ← sum + p(t)
12: end for
13: return L2

H is the array of terms from document d sorted by frequency n(c, t) with duplicate terms
removed. Since the order of terms is not fixed beforehand, without loss of generality
assume an ordering where u > t =⇒ t appears after u in H. This allows a linear scan
through H to build L2. L2 is a prefix sum of p(t) using n(c, t) as sort key.

19

20 4. Document Clustering

The definition here for L2 differs from the definition in the lemma, since L2 is indexed over
the position of terms in H, not the terms itself. However H can be used to calculate α2:

α2(d, c) =

i<|H|∑
i=0

p(H[i])L2[i]

Note that L2 and L4 are unique to each cluster c and document d. Therefore efficient
calculation in O(|d|) for both lookup tables is necessary. It is clear that lines 2–13 can be
calculated in O(|H|) ⊂ O(|d|). However sorting in O(|d|) remains difficult as the range of
n(c, t) is potentially much larger than |d|, rendering linear sorting algorithms infeasible.
However no absolute order between terms is necessary. The algorithm only needs groups
of terms with the same value for n(c, t). Using a hash table based method, these groups
can easily be calculated in O(|d|) and allows uniquesort to be implemented in O(|d|).

L4 can easily be produced with the same algorithm by additionally filtering out all terms
t /∈ c in H. This can be achieved with a linear scan through d in O(|d|).

Summary

Theorem 4.3.4. Using the pre-calculated arrays Lc
1 and L3, the probability function p(t)

and using a unigram language model for queries, the scoring function Score(d, c) can be
calculated in O(|d|).

Proof. This follows directly from Lemma 4.3.1, Lemma 4.3.2 and Lemma 4.3.3.

From Theorem 4.3.4, it follows that the scoring function defined in Equation 4.3 can be
calculated efficiently. It provides a semantically meaningful and fast scoring function which
can be used in local search clustering algorithms. The issue of pre-calculating Lc

1 and L3

is discussed in detail in Section 4.4.2.

4.3.2 Learning the Query Language Model

The scoring function requires the probability p(t) of a term occurring in a query to be
known in advance. Therefore a method for determining the probabilities is necessary. A
common solution when using a unigram language model is to use the maximum likelihood
estimator [SC99].

Query Log

If query logs are present the solution is straightforward. Let nΥ(t) be the number of
occurrences of a term t in a query log Υ. The probability of a term occurring in a query
can then be determined using a maximum likelihood estimator

pML(t) =
nΥ(t)∑

u∈T nΥ(u)

Note that there is no necessity to use additive smoothing or similar measures [CG96] here,
as terms with zero probability are not a problem. Smoothing reduces noise and in the case
of additive smoothing prevents terms with zero probability. Documents consist of many,
possibly correlated, terms. Even if some terms have an estimated probability of zero, other

20

4.4. Fast Clustering of Documents 21

terms will contribute to the scoring function. Furthermore terms with no occurrences in the
query log will have a small impact on the scoring function even with additive smoothing.
This is because p(t) is low for terms with no occurrences even with additive smoothing
and terms with low p(t) have little impact on the scoring function. Finally, scoring a single
document wrongly does not have a big impact on the total running time of a query.

Document Collection

If a query log is not present, some other method is required to estimate p(t). A simple
presumption is that queries and the document collection share the same language model.
This leads to similar definition as before. Let tf (t) be the number of occurrences of a term
t in the document collection D. The maximum likelihood estimator is given by

pML(t) =
tf (t)∑

u∈T tf (u)

The assumption that the document collection and queries will share the same language
model is somewhat bold. However, in absence of any other information about queries,
the document collection language model can lead to reasonable results as shown in Sec-
tion 7.4.6.

4.4 Fast Clustering of Documents

While the previous section focuses on how to score documents efficiently, this section
discusses efficient clustering algorithms. To be applicable in the context of full-text search,
clustering algorithms have to be fast and scalable. Algorithms with non-linear time or
space complexities become less feasible as the amount of documents increases.

4.4.1 Fast Multi-Level Clustering

Presented here in Algorithm 2 is an iterative method loosely inspired by the K-Means
Algorithm [M+67] and modified to improve performance over the standard algorithm.
Though it is similar to the algorithm presented by Kulkarni [Kul13] it was developed
independently. While the algorithm from Kulkarni takes one sample and then runs one
assignment round, the algorithm presented here recursively samples the documents and
runs an assignment round in each iteration.

The hypothesis behind the algorithm is that clustering a small random subsample of doc-
uments will give a good initial solution which can be further refined after adding the rest
of the documents. Finding good solutions for a considerably smaller subset is likely to be
much more efficient.

The algorithm recursively extracts a random subset of documents until the amount of
remaining documents is equal to the amount of clusters. Each document is then treated as
a cluster for the initial solution. The documents in each recursion step are then iteratively
reassigned to the best fitting cluster until no significant improvement occurs. This corre-
sponds to the iterations in the K-Means algorithm. By recursively using less documents,
the algorithm can spend more time on deeper recursion levels, where solutions are likely to
fluctuate and finding good clusters is important. On higher recursion levels the algorithm
can spend less time where a stable solution is more likely and simply assigning documents
suffices.

21

22 4. Document Clustering

Algorithm 2 FMClustering

Require: documents D, number of clusters K, shrink factor SF
1: if |D| = K then
2: return {{d1}, {d2}, . . . , {dK}}
3: end if
4: n← max (k, SF · |D|)
5: D′ ← random subsample of size n taken from D
6: C ←FMClustering(D′,K, SF)
7: repeat
8: for all d ∈ D do
9: assign d to the cluster cd ∈ C where d fits “best”

10: end for
11: until no “significant“ improvement

The algorithm leaves two issues open. Firstly, documents are added to the cluster that
fits “best”. The best cluster ĉ for a document d is determined using the scoring function
from Section 4.3:

ĉ = argmin
c∈C

Score(d, c)

Using this definition, documents are explicitly clustered to minimize the modeled expected
query time. However, the scoring function still needs pre-calculated data structures. This
is discussed in depth in the next section.

Secondly, the algorithm does not specify the stopping criteria to determine when improve-
ments are not “significant”. This is because multiple criteria can be used. For example,
improvements could be considered significant if more than a specified threshold of docu-
ments changed clusters in the last iteration. However, the scoring function gives another
criteria. If the total sum of scores for each document does not improve by a threshold
value compared to the last iteration, the improvement is not considered significant. This
enables a direct tradeoff between clustering run times and the desired quality. Because
the score is directly linked to the expected query time, the threshold value indicates which
improvements are considered significant enough for another clustering round to be worth-
while. This thesis uses a fixed threshold and considers improvements as significant if the
total score is less than 99% of the score from the last iteration. Note that lower scores are
better.

Because the number of iterations in each recursion level are indeterministic, an exact time
analysis of the whole algorithm is not possible. However, the time complexity of a single
iteration of each recursion level can be determined. All documents of a recursion level
have to be assigned to K clusters. If scoring occurs in constant time this gives a time
complexity of O(K · |D|) for each iteration. Even though the scoring function presented
in this thesis runs in O(|d|) it can be argued that the average document size is a constant
of the document collection and independent from the clustering algorithm.

4.4.2 Document-Grained vs Iteration-Grained

Section 4.3 gives a detailed analysis on how the scoring function used in this thesis works.
The fast computation of the scoring function depends heavily on pre-calculated data struc-
tures. While this makes the scoring fast, overhead can severely limit the performance of
the clustering algorithm. Two alternatives are discussed here. One is document-grained,

22

4.4. Fast Clustering of Documents 23

that is the data structures are updated after each document is added and the other is
iteration-grained, where the data structures are updated only after all documents where
assigned in each iteration.

Accuracy can suffer by only recomputing after all documents have been assigned to clusters.
Three observations justify why a loss in accuracy is acceptable:

• The score of a document is primarily determined by the terms that occur in the
cluster more frequently than terms in the document. If the score is low, meaning
good, most terms in a document occur often within a cluster. By adding a document,
occurrences of these terms will remain large. Clusters with low values for a document
therefore are unlikely to change the order of terms with regard to occurrences after
adding the document.

• Properties of clusters with many documents are unlikely to change greatly after
adding a few documents.

• By iteratively reassigning documents, clusters become more stable and loss in accu-
racy will become less significant.

However, for small clusters this is not necessarily the case. This thesis takes a pragmatic
approach. In deeper recursion levels, where clusters are smaller, the data structures are
recalculated after each document assignment. This ensures an exact solution, but is only
feasible if a fraction of documents are considered. In higher recursion levels, where clus-
ters are larger, data structures are only recalculated after all documents were assigned
in each iteration. Since clusters are reasonably stable at this point in the algorithm, the
performance gain outweighs the potential loss in accuracy, which is expected to be small.

In practice, clusters with about 50–100 documents seem to be big enough to recompute the
data structures only after each iteration. When clusters are much smaller, an interesting
effect occurs. With smaller clusters, the number of terms with potentially more occurrences
decreases. Because only terms with more occurrences than terms from the document
influence the score, this leads to a lower and better score.

Sometimes a single cluster has a very low score for most documents in the collection. This
happens when a particular cluster is very small compared to other clusters. Since the data
structures for the scoring function is not adapted after every document, most documents
are assigned to the single small cluster. In the next iteration, since all documents score
very badly for this cluster because it is huge in comparison to other clusters, documents
are reassigned to other clusters leaving the originally huge cluster nearly empty.

The result is an oscillation between a huge cluster with nearly all documents and a nearly
or even totally empty cluster. However experiments show this effect disappears with
sufficiently large clusters or recalculation after each document.

4.4.3 Fast Hierarchical Clustering

The FMClustering algorithm presented in Section 4.4 has a time complexity of O(K · |D|)
per iteration. This can be improved by the observation that clusters tend to be hierarchical
by nature. Several hierarchical clustering algorithms have been proposed in the past and
successfully applied in many domains [SKK+00].

The FMClustering algorithm is used as a foundation for the recursive Algorithm 3 inspired
by the bisecting K-Means algorithm [SKK+00]. The documents are initially clustered into

23

24 4. Document Clustering

χ clusters, where χ is small compared to the amount of final clusters K. Each cluster
is then recursively clustered again into χ clusters until the minimum size of a cluster is
reached.

Algorithm 3 TopDownClustering

Require: Documents D, minimum cluster size sc, split factor χ, shrink factor SF
1: if |D| ≤ sc then
2: return D
3: end if
4: C ′ ←FMClustering(D,χ, SF)
5: C ← ∅
6: for all c′ ∈ C ′ do
7: C ← C ∪TopDownClustering(c′, sc, χ, SF)
8: end for
9: return C

The unknown number of iterations in the FMClustering algorithm makes an exact time
analysis difficult again. However, under assumption that the number of iterations in the
FMClustering algorithm is a small constant, the TopDown algorithm runs inO(|D| log |D|

sc
).

With the choice of sc =
|D|
K this effectively becomse O(|D| logK). This is a nice property,

as the number of clusters does not weigh in as a linear factor and makes clustering for
many clusters considerably faster.

Apart from being faster, there are several other advantages with a recursive algorithm. For
one thing, a hierarchical clustering might be beneficial in some scenarios. For example,
using super-clusters consisting of several smaller clusters can be used to distribute clusters
among shards, as discussed in Section 5.4. Moreover, recursively splitting up clusters
allows more control over the size of clusters. Recursion can be stopped once the desired
size is reached.

A more sophisticated stopping criteria also might be used. One example is to use a
similarity measure of documents within a cluster instead of the size of a cluster. The
expected query time from Equation 4.2 suggests a promising approach: Stop clustering
once the ratio between the expected query time and number of remaining documents lies
beneath a predefined threshold. However this thesis limits its experiments to the simple
size criterion.

4.5 Optimizations

This section looks at practical and pragmatic attempts to increase clustering speed. While
some optimizations diverge from the theoretical analysis, experiments show that they
work well in practice. The optimizations discussed here are parallelization, reducing the
overhead from the pre-calculated data structure and using a faster scoring function.

4.5.1 Parallelization

Parallelization of the TopDown clustering algorithm is straightforward and simple. It-
erating over all subclusters c′ ∈ C ′ can be done in a parallel loop as there are no data
dependencies between the runs.

24

4.6. Summary 25

The FMClustering algorithm is not this straightforward but still simple. The focus lies
on the loop of assigning documents to clusters. The rest is considered to have negligible
impact on performance. Scoring documents can be easily parallelized by calculating the
score for each cluster in parallel.

The algorithm itself can be applied to the MapReduce programming model [DG08]. MapRe-
duce has been successfully applied to K-Means [CKL+07]. With the iteration-grained pre-
calculation this process is straightforward. In the Map-step each document is scored and
the best cluster is determined. In the Reduce-step all documents for a cluster are gathered
together and the cluster data structures are recalculated using the new documents.

For document-grained preprocessing parallelization is more complicated. Documents can
not be easily added to clusters in parallel, because clusters change with every document
added and the scoring might be outdated and wrong. There are two possible solutions
to this problem. One option is to simply accept outdated and wrong scores. Since local
search clustering algorithms are heuristic, this can be an acceptable solution and wrong
or outdated scores may not have a big impact. The other option is to implement a
sophisticated locking scheme or similar measures. However this thesis does not go into
details.

4.5.2 Term Cutoff

To use the data structures discussed in Section 4.3 a pre-computation step with time
complexity of O(|T |) is necessary. Furthermore, the arrays Lc

1 and L3 use O(|T |) space.
WithK clusters this leads to a total time complexity inO((K+1)|T |) and space complexity
in O((K + 1)|T |) for calculating L3 and Lc

1 for all clusters.

However, according to Zipf’s law only a few terms account for most occurrences in both
queries and documents [BY]. This means p(t) will only be large, and therefore important
to the scoring function, for a few terms while most terms will have a small p(t). These
terms will be insignificant with regard to the scoring function. Furthermore, the terms
with large p(t) are more common in documents, which leads to a consolidation of this
effect.

This suggests a simple optimization: Disregard terms with low p(t). Terms are ordered
with regard to p(t) and documents are filtered by leaving only the top j terms in the
document. With j � |T | pre-calculating is reduced to O((k + 1)j) time and space. Let
dj be the document d consisting only of the top j terms. Then scoring a document for a
cluster is additionally reduced from O(|d|) time to O(|dj |) time.

4.5.3 Omitting α2 and α4

Calculating α2 and α4 requires sorting the terms of a document by their frequencies.
This is an expensive operation compared to the simple table lookups used for α1 and α3.
Furthermore α2 and α4 only touch a fraction of terms from the document collection and
are therefore negligible compared to α1 and α3. A simple optimization is to omit α2 and
α4, rendering the sorting unnecessary and reducing the calculation overhead.

4.6 Summary

This chapter introduces 2 clustering algorithms which can be parallelized and scale to mil-
lions of documents. A semantically meaningful scoring function which explicitly minimizes

25

26 4. Document Clustering

query times completes the clustering algorithms. An analysis shows that an extremely
fast calculation is possibly with pre-calculation, leading to a few simple table lookups per
document. The clustering speed can further be improved by several optimization tricks
described in Section 4.5.

26

5. Search with Document Clusters

While the previous chapter focuses on how to cluster documents, this chapter explains in
detail how set intersection algorithms can be altered to use a clustering of documents to im-
prove intersection speed. There are two main approaches investigated and discussed here.
Firstly, a new data structure which explicitly supports clusters and secondly, a relabeling
scheme which improves the performance of existing algorithms. Lastly, a brief overview is
given on how clustering can be used in a term- or document-partitioned distributed search
engine.

5.1 Set Intersection Data Structure for Clusters

Dividing the documents into clusters requires a new data structure for accessing posting
lists. The Lookup algorithm described by Sanders and Transier [ST07] serves as starting
point to the data structure and algorithm presented here. Lookup has been shown to work
well in theory and practice for real world datasets. The data structure used by the Lookup
algorithm is referred to as Lookup list. See Section 3.4 for a detailed description for the
Lookup algorithm.

Algorithm 4 Cluster-Lookup(t1, t2)

Require: Lookup lists
1: l1 ← Lookup list for clusters and term t1
2: l2 ← Lookup list for clusters and term t2
3: C ← lookup(l1, l2)
4: D ← ∅
5: for c ∈ C do
6: l1 ← document Lookup list for term t1 and cluster c
7: l2 ← document Lookup list for term t2 and cluster c
8: D ← D ∪ lookup(l1, l2)
9: end for

10: return D

The basic idea is to use a 2-level Lookup algorithm pictured in Algorithm 4. On the
top-level, clusters are intersected using the Lookup algorithm on cluster posting lists. The

27

28 5. Search with Document Clusters

cluster posting list for a term t contains the ID of a cluster if, and only if, the cluster
contains at least one document with that term. From this it follows that intersecting
the cluster posting lists for a conjunctive query yields all clusters containing at least one
document for either term. Note that this is not necessarily the same document for both
terms. However, documents containing both terms will only be in clusters returned by the
intersection algorithm.

Document posting lists are kept separate for each cluster. A separate Lookup list is
therefore needed for each cluster c and every term t that occurs in cluster c. These lists
are referred to as document Lookup lists. The final set of document IDs are then retrieved
by intersecting the document Lookup lists for each cluster found by the cluster intersection.
The results for each cluster are joined into the final set.

The data structure containing both the Lookup list for the clusters and the document
Lookup lists for each cluster is referred to as Cluster-Lookup list. In general, there is a
Cluster-Lookup list for each term.

Fast access to the individual Lookup lists is important. For the Lookup lists for clusters,
this can easily be achieved using a term-indexed array. This provides optimal access in
O(1) and is a compact representation because a Lookup list is needed for each term t.

For the document Lookup lists however, not every term t might occur in a cluster c. Using
a term-indexed array would be a waste of space as entries would be sparse. However
there is a one-to-one relationship between an element in the Lookup list for clusters and
its corresponding document Lookup list. The position of a cluster c in the Lookup list
for term t can be used as an index to an array of document Lookup lists for term t as
illustrated in Figure 5.1. This provides easy and fast O(1) access to the document Lookup
lists for every term t. The position of a cluster c within the Lookup list for clusters is
known during traversal. An alternative approach is to piggy-back the document Lookup
list as part of each element in the Lookup list for clusters.

Since Lookup has an intersection time complexity that lies in O(m), where m is the size
of the smaller set, this data structure achieves the time complexity that is used in the cost
function from Equation 4.1 with Φ(m,n) := min(m,n).

5.2 Document ID Relabeling

While the data structure presented in Section 5.1 provides an optimal solution with regard
to cost function from Equation 4.1, it introduces some considerable overhead due to the
level of indirection caused by having multiple document Lookup lists per term. This section
discusses an alternative approach without the theoretical guarantees which proves to work
well or even better in practice as shown in Section 7.4. It is discussed on the basis of the
Lookup algorithm, but can be applied to most set intersection algorithms.

The theoretical analysis of the Lookup algorithm from Transier [Tra10] assumes randomly
distributed document IDs. The analysis also mentions that relabeling document IDs in a
non-random order might be beneficial to both compression and actual run times, but does
not research this hypothesis.

The basic idea is to assign consecutive IDs to documents with documents grouped together
by cluster membership. In other words, documents from the same cluster will have con-
secutive document IDs. For the remainder of this section assume the original document

28

5.2. Document ID Relabeling 29

Bottom-Level List with Cluster IDs for a Term t

c1 c2
. . .

. . .
ci

Array of Document Lookup
Lists for the Term t

..
.

..
.

Doc ID Doc ID

Doc ID Doc ID

Doc ID Doc ID

Doc ID Doc ID

Doc ID Doc ID

Bottom-Level Lists with
Doc IDs for Term t

Figure 5.1: The index of a cluster c in the Cluster-Lookup list for a term t is used to resolve
the document Lookup list for cluster c and term t

IDs are uniformly distributed in the range from [0, U]. Posting lists will have document
IDs evenly distributed over the entire range as illustrated in the first chart of Figure 5.2.
After clustering and relabeling, document IDs will be clustered together, similar to the
second chart. The strength of this effect depends on how well a term t was clustered by
the clustering algorithm.

Original Posting List

0 U

Relabeled Posting List

0 U

Figure 5.2: The position of the document IDs in the range [0, U] before and after relabeling.

The benefit of relabeling is twofold:

Run Times

Two effects come into play here. For one thing, the scoring function explicitly tries to split
up common terms into different clusters. This leads to small overlapping between clusters
for two common terms. Through relabeling, documents from a particular cluster can only

29

30 5. Search with Document Clusters

fall into a small range of buckets from the Lookup list. Two buckets for two different,
common terms will have little or no overlap. For the Lookup algorithm this means that
many buckets can be skipped, leading to less buckets visited.

The other effect is that bucket sizes become skewed. While this proves bad for the theoret-
ical analysis, this is not a problem in practice. As Transier shows, entering a new bucket is
relatively expensive compared to traversing the bucket. Because of the clustering, multiple
hits within buckets are more likely. This has positive influence on caching behavior and
branch prediction.

However, the theoretical runtime still is no better than O(m) as all elements from the
smaller set have to be traversed.

Compression

When using compressed posting lists, the document IDs are commonly encoded as dif-
ferences between IDs, referred to as ∆-encoding. For variable-length encodings, such as
Elias-γ coding [Eli75], less bits are used for smaller values. By relabeling the documents,
gaps between document IDs decrease, and therefore the average number of bits needed to
encode a document ID decreases.

5.3 Hybrid and Parallel Intersections

The Cluster-Lookup algorithm and data structure presented in Section 5.1 come with a
notable overhead. For each cluster matched in the intersection, a separate run of the
Lookup algorithm has to be carried out. This is involves dereferencing the Lookup data
structure and initializing the Lookup algorithm variables. When the number of documents
for a term in a cluster is low, this becomes a serious and noticeable overhead.

A hybrid model can keep this overhead low. Instead of keeping a separate Lookup data
structure for all clusters, one data structure is used for a single super-cluster consisting of
several smaller clusters. Within this super-cluster however, the document IDs are relabeled
using the smaller clusters. This combines the best of both worlds. For one thing, the
Cluster-Lookup can have an asymptotically better time complexity than the standard
Lookup algorithm. Moreover, the algorithm can take advantage of the benefits introduced
by the Document ID relabeling scheme.

Using Cluster-Lookup lists makes parallelization straightforward. Each cluster can be
intersected in parallel as there are no data dependencies between clusters. This makes it
a good choice on modern multi-core architectures.

5.4 Distributed Search and Document Clusters

Distributed Search has two common partitioning schemes, by document and by term.
Document clusters can be used to improve performance in both partitioning schemes.

Document Partitioned Indexes

Applying document clusters to document partitioned indexes is straightforward. Docu-
ments are assigned to shards based on cluster assignment. In the case of hierarchical
clustering, document clusters within the same super-cluster are assigned to the same shard.

30

5.4. Distributed Search and Document Clusters 31

If the broker keeps an index of which shards contain documents for a particular term,
a shard can be omitted for a query if it does not contain any documents for any of the
terms in the query. The clustering can help to minimize the amount of shards that contain
documents for a term. Communication overhead sinks with less shards. However, load
unbalancing might become a problem.

In general the size of the clusters will be smaller than the number of documents assigned
to each shard. Multiple clusters per shard can be used to employ the techniques discussed
in the previous sections.

Term Partitioned Indexes

In a term partitioned index each shard holds only a subset of all terms. Therefore each doc-
ument is distributed among multiple shards. This prohibits the use of document clustering
directly. However, a separate clustering can be used for each individual shard. Since each
shard only holds a subset of terms, the clustering should only take into account the terms
actually indexed by that shard. Experiments suggest that using less terms can improve
the clustering quality.

However, this is only useful if terms that typically occur together in conjunctive queries
reside on the same shard. Luccese et al. [LOPS07] address the problem of assigning terms
to shards. They explicitly try to minimize the communication overhead that occurs if
terms in a single query are distributed over multiple shards.

31

6. Implementation

To control every aspect of the indexing stage and to be able to adapt to the needs of this
thesis, a small and simple full text search library was developed. The library is written in
the lazy functional programming language Haskell1. Where execution times are a prime
concern the engine uses C libraries and Haskell’s foreign function interface to call the
library functions from within Haskell. The library includes over 4000 lines of Haskell code
and nearly 2000 lines of C code. The implementation is available under the New BSD
Licence on GitHub2.

The search engine is split into a core library and separate command line tools for the differ-
ent processing steps. The core library provides all the basic data types and functionality.
The tools make heavy use of the functionality provided by the library.

There are four processing steps:

1. Tokenization. A collection of raw documents is processed into a binary represen-
tation. Documents are split into words and each word is added to a dictionary and
assigned an integer term ID. Documents are now represented as an array of term
IDs. The dictionary, meta information for each document and term frequencies are
all saved on disk together with container files holding the term representations of the
documents. This uncouples tokenization from later steps and makes using the same
document collection for different purposes easy.

2. Index Construction. Using the document collection from step one an inverted
index is constructed and stored on disk.

3. Clustering. The clustering step is optional, but essential to this thesis. The cluster-
ing algorithm clusters document collections. Clusterings have a binary representation
and can easily be persisted to disk.

4. Evaluation. The inverted index can be used to perform several tasks, such as
evaluating different measures or running an interactive search engine. Clusterings
from the previous step are used where appropriate.

1
http://www.haskell.org

2
https://www.github.com/jdimond/diplomarbeit

33

http://www.haskell.org
https://www.github.com/jdimond/diplomarbeit

34 6. Implementation

6.1 Core Library

The core library provides all the necessary data types and functions that are needed
to implement a search engine. The core library is divided into several modules with
distinct functionality. The functionality includes, but is not limited to, text processing
functions, search support, reading and writing of core data structures to disk and clustering
algorithms.

6.1.1 Basic Data Types

The core library makes extensive use of Haskell’s type system to ensure correctness. It
provides the basic data types for things like documents, terms and inverted indexes. Ev-
erything is strongly typed and the library uses Haskell’s newtype mechanism to ensure
type safety without performance penalties at runtime whenever possible.

Types defined with newtype use another type as runtime representation. However, types
are not interchangeable, even if their runtime type is the same. For example, DocId,
TermId and ClusterId are defined as unsigned 32-bit integers. At runtime there is no
performance penalty compared to using simple unsigned integers. However, the compiler
checks the type and a DocId can not be used where a TermId is expected. This reduces
the number of mistakes that can occur by using the wrong kind of IDs.

The same applies to other data types. Documents are represented as an array of unsigned
integers at runtime, but as lists of TermIds at compile time.

6.1.2 Text Processing

Documents are parsed from the input format and loaded as UTF-8 strings into memory.
Documents are then split into terms using the token separators from Table 6.1. The table is
taken from Transier [Tra10] with small modifications. Terms are converted to lower-case
and filtered using the stop word list in Figure 6.1, which consists of the most common
English words3.

<0x20 0x20

!
0x21

”
0x22

#
0x23

$
0x24

%
0x25

&
0x26

’
0x27

(
0x28

)
0x29

*
0x2a

+
0x2b

,
0x2c

-
0x2d

.
0x2e

/
0x2f

:
0x3a

;
0x3b

<
0x3c

=
0x3d

>
0x3e

?
0x3f

@
0x40

[
0x5b

\
0x5c

]
0x5d

ˆ
0x5e 0x5f

‘
0x60

{
0x7b

|
0x7c

}
0x7d

˜
0x7e 0xa0 0xb0

Table 6.1: Token Separators with Unicode Code Points

6.1.3 Clustering

The clustering algorithms described in Section 4.4 are implemented in C to ensure maximal
performance and competitive execution times. Before clustering starts, documents are
loaded into main memory to ensure disk I/O has no influence on the runtimes of the

3The list was taken from http://www.textfixer.com/resources/common-english-words.txt

34

http://www.textfixer.com/resources/common-english-words.txt

6.1. Core Library 35

a, able, about, across, after, all, almost, also, am, among, an, and, any, are, as,
at, be, because, been, but, by, can, cannot, could, dear, did, do, does, either,
else, ever, every, for, from, get, got, had, has, have, he, her, hers, him, his, how,
however, i, if, in, into, it, its, just, least, let, like, likely, may, me, might, most,
must, my, neither, no, nor, not, of, off, often, on, only, or, other, our, own, rather,
say, says, should, since, so, some, than, that, is, what, she, said, the, their, them,
then, there, these, they, this, to, too, us, wants, was, we, were, when, where,
which, while, who, whom, why, will, with, would, yet, you, your

Figure 6.1: Stop Word List

algorithm. More sophisticated implementations will probably want to implement some
kind of document caching to fine tune the tradeoff between memory footprint and algorithm
performance.

The C implementation uses OpenMP4 to support parallel execution.

Implementation Details

Documents are represented as uint32_t arrays. Documents are all loaded into memory
prior to clustering. Terms are filtered according to the chosen Term-Cutoff value and term
IDs are reassigned to a continuous range. Duplicate terms are removed while loading. This
improves the efficiency of the scoring function as this step becomes unnecessary during the
actual scoring.

Instead of randomly sub-sampling the documents in each recursion, the order of the docu-
ments is randomized once in the beginning of the algorithm and the document IDs stored
in an array. Randomly sub-sampling the documents can then be achieved by simply taking
the first elements from this array which runs in constant time. The same array can be
used for all recursion levels.

In order to calculate the lookup table Lc
1 each cluster holds an array counting the term

occurrences for each term in cluster c. Additionally there is a global array counting in how
many clusters a term t occurs. This is used to calculate the lookup table L3. All these
arrays, including the lookup tables are indexed by term.

If the amount of documents is smaller than than k ·100, where k is the number of clusters,
document-grained recalculation of the lookup tables is used. In all other cases iteration-
grained recalculation is used.

Document-grained recalculation is implemented without support for parallel execution.
This simplifies the code considerably. The lookup tables Lc

1 and L3 are only recalculated
if the assignment of a document to a cluster changes. This results in a huge speedup if
documents stay in the same cluster in between iterations.

For iteration-grained recalculation, documents are first assigned to the clusters. This is
done in parallel using the OpenMP omp parallel pragma and dividing the documents
among the threads. The new term frequencies for each cluster are calculated in parallel
by dividing the clusters among threads. Finally, the lookup tables are calculated in the
same way.

4
http://www.openmp.org

35

http://www.openmp.org

36 6. Implementation

There are two implementations for the scoring function which can be chosen at runtime.
The first calculates the inexact scoring function by omitting α2 and α4 as described in
Section 4.5.3. The second calculates the scoring function like in the original definition from
Theorem 4.3.4. However, sorting of the terms is done in O(n log n) with the standard C
qsort function.

For the TopDown algorithm the minimum size per cluster is determined by sc =
|D|
k where

k is the desired amount of clusters. The split factor is set to χ = min(8, |D
′|

sc
), where |D′| is

the number of documents in the current recursion level. Because the TopDown algorithm
recursively splits clusters until a minimum size is reached, the final amount of clusters can
vary between runs. To circumvent this, a post-processing step is applied when using this
algorithm. If the final amount of clusters is larger than the desired amount of clusters, the
two currently smallest clusters are merged until the desired amount of clusters is reached.
In cases where there are less clusters than desired, the currently largest cluster is split
into two equally sized clusters until the right amount of clusters is reached. Documents
are randomly distributed among the two new clusters. While this does not improve the
quality of the clustering it makes the number of clusters deterministic and comparable.

In deep recursion levels it can happen that the TopDown algorithm produces tiny clusters.
This can happen if the documents are very similar and a few outliers form a separate
cluster. To prevent tiny clusters, clusters are merged together if the size lies below a
certain threshold. The threshold is set to half the minimum size sc of a cluster.

6.1.4 Set Intersections

The Lookup algorithm [ST07] is implemented in pure C to achieve maximal performance.
The algorithm is accessed via Haskell’s Foreign Function Interface. The overhead of calling
native C code from Haskell has similar overhead to a normal C function call when the
unsafe keyword is used.

The Cluster-Lookup algorithm from Section 5.1 is implemented in pure C as well. The
Lookup algorithm used to intersect clusters and documents is based on the basic Lookup
algorithm to ensure comparable results.

The bucket size is set to B = 16 for document Lookup lists and B = 8 for cluster Lookup
lists. This seems a good tradeoff between space and speed requirements.

6.2 File Formats

Each processing step saves its intermediate result on disk to enable repeatable experiments
in the next processing step. This section gives a small overview over the file formats used.
When not specified otherwise, the binary representations of integers are in the big endian
format. Term IDs, document IDs and cluster IDs are all represented by unsigned 32-bit
integers.

Document Collection

The document collection is a folder containing multiple files. Documents are saved in a
container format to keep the number of files low. An index file holds all the necessary
information to access the documents.

36

6.2. File Formats 37

Index File This file contains an array of fixed width entries. The entry at posi-
tion i corresponds to the document with ID i. An entry consists of an
8-bit unsigned integer which specifies in which container the document
is stored. It is followed by a 32-bit unsigned offset within the container
and a 16-bit length of the document. The length is given in bytes. Thus
a document is limited to 65536

w terms, where w denotes the size of a term
in bytes. In this case w = 4.

Container File A container file holds concatenated documents as array of terms. A term
is a 32-bit unsigned integer. Container files are limited to 4GiB in size
due to the size of the offset in the index file.

Term
Frequencies

The term frequencies are stored as an array of 32-bit unsigned integers.
The position within the array corresponds to the term ID.

Meta File Each document has a meta record associated with it. The meta record is
of arbitrary length. The meta records are stored in this file sequentially
without any separator tokens.

Meta Offsets The meta offset file holds an array of 64-bit unsigned integers. The
integer at position i represents the offset of the meta information for the
document with ID i in the meta file.

Dictionary The dictionary consists of concatenated null-terminated UTF-8 strings.
The position in the dictionary is the corresponding term ID. This implies
that the dictionary can not be loaded partially.

This design has several limitations. However, the design choices are a tradeoff between
necessary functionality, simplicity and access times. For example, the length of documents
is limited to 16 384 terms and the size of the processed collection to 1TiB. Larger docu-
ments are truncated. Limits can easily be raised by using larger integers. However, the file
formats for the document collection are easy to read and write and suffice for experiments
in this thesis. The design also supports easy, fast and memory efficient loading of single
documents.

Clustering

A clustering is in principle a mapping from cluster IDs to sets of document IDs. The
clustering is saved to disk as follows. A 32-bit unsigned integer n specifies the range of
mappings. A mapping must exist for IDs 0 until n − 1 inclusive. This is followed by a
32-bit unsigned integer m which specifies the number of non-empty mappings. A mapping
is considered non-empty if it maps to a non-empty set.

This is followed by m entries. Each entry stores a 32-bit unsigned integer which is the
original cluster ID in the mapping followed by a 32-bit unsigned integer which represents
the size of the set. Finally, in order, the set for each entry is stored as an array of 32-bit
unsigned integers representing the document IDs.

Inverted Index

The inverted index is essentially a mapping from term IDs to sets of document IDs. The
same file format as described for the clustering is used. The only difference is that term
IDs are used instead of cluster IDs and document IDs are sorted within sets. By loading
the array of entries into memory, individual posting lists can be loaded into memory on
demand.

37

38 6. Implementation

6.3 Tools

Several command line tools take care of the processing steps. The most important tools
are described here.

6.3.1 Tokenization

The tool Tokenize converts an input of raw documents to the format for document col-
lections specified in Section 6.2. It allows multiple input formats, including documents
as plain UTF-8 text files, HTML files and container formats. Container formats include
the GOV25 file format and concatenated, length delimited UTF-8 texts in plain and com-
pressed formats. The tool also supports multi-threading. However, synchronized access to
the dictionary and single threaded writing to the document collection limits the speedup.
The implementation uses streaming techniques to keep the memory footprint low. Doc-
uments are converted into lists of terms and then saved to disk immediately. Only the
dictionary and term frequency counters are kept in main memory during the entire process.

6.3.2 Index Construction

Using the document collection, the tool BuildIndex can construct the inverted index de-
scribed in Section 6.2. Special care is given to the memory footprint of index construction.
The document collection is split into subsets and the inverted index is constructed sepa-
rately for each subset. This requires less memory. In a final step all inverted indexes are
joined. This can happen with a relatively small memory overhead as each posting list can
be handled separately.

The tool also supports concurrent construction of the index. However, because random
disk accesses are used excessively, concurrent construction can descrease the performance
when random disks access is slow, as is the case with magnetic hard drives.

6.3.3 Clustering

The tool Cluster performs the clustering illustrated in Section 4.4. The tool is written
in Haskell but uses a C implementation of the algorithms to ensure fast and efficient
clustering, as described in Section 6.1.3.

The command line parameters control the different aspects of the clustering algorithm.
The tool can use either the fast scoring method or the exact scoring method. This exact
scoring function is used if the -exact flag is specified. The tool can also cluster subsets of
the document collection if specified.

6.3.4 Evaluation

There are different tools for the evaluation stage. Here is a short overview over the different
tools.

5See Section 7.3.1 for a detailed explanation on GOV2

38

6.3. Tools 39

Benchmark

The Benchmark program takes a query log, a document collection and a clustering and
evaluates different measures. This includes the theoretical speedup that can be achieved
with this clustering6. The tool also measures the actual speedup between the naive Lookup
algorithm and the variants described in this thesis. The tool uses the criterion7 library
to measure the intersection times for queries. The number of runs can be given as a
command line parameter. The statistics are printed to the standard output.

Search

This tool provides an interactive search for conjunctive queries on the command line. It
uses the meta data generated in the first step to load the first n documents for a query
and presents them on the command line. It also displays the total number of documents
matching a query. The documents are not ranked.

Stats

The Stat tool prints several interesting statistics from a document collection to the stan-
dard output.

Compression

Compression ratios of the posting lists can be determined with the Compression tool. For
each term, it outputs the number of elements in the corresponding posting list together
with the size of the posting list for several encodings with and without relabeling.

6This is explained in depth in Section 7.1
7version 0.8.0, http://hackage.haskell.org/package/criterion

39

http://hackage.haskell.org/package/criterion

7. Experimental Evaluation

This chapter evaluates the algorithms introduced in the previous sections on real world
datasets. The experiments are chosen to give insights into the most valuable configurations
and parameters. The large amount of data prohibits an evaluation of all combinations
of parameters. However, important tendencies and observations are investigated using
carefully chosen representative examples.

7.1 Evaluation Measures

The quality of the clustering algorithms is evaluated using three different measures. The
first is the theoretical speedup based on the theoretical time complexities for set intersec-
tions. The other two are real speedups based on measuring actual execution times for set
intersections.

Theoretical Speedup

Equation 4.1 defines the cost function ΨC(ti, tj) for a query q = {ti, tj} as a function of a
cost function Φ(n,m) for intersecting two sets of size n and m. Let n(t) be the size of the
posting list for term t using all documents. Given a testing query log Υ and a clustering
C the cost function ΨC is used to calculate the theoretical speedup ST , which is defined as

ST =

∑
{ti,tj}∈ΥΦ(n(ti), n(tj))∑

{ti,tj}∈ΥΨC(ti, tj)
(7.1)

The cost function Φ(n,m) for set intersections is used here as base case without clustering.
This is divided by the cost for intersecting posting lists with clustering which is modeled
by ΨC(ti, tj).

Since this thesis focuses primarily on intersections in O(m), the cost function Φ(n,m) :=
min(n,m) is set to the minimum of both set sizes for the remainder of this chapter.

41

42 7. Experimental Evaluation

Real Speedup

While the theoretical speedup gives an implementation-independent insight into the qual-
ity of a clustering, the speed of actual implementations is influenced by many external
parameters, e. g., processor speed, implementation details and the compiler that is used.
Instead of measuring actual intersection times, we therefore use the speedup of an improved
algorithm A in comparison to a base case.

Given measurements for the execution times TB(q) for each query q ∈ Υ for the base case
and the execution times TA(q) for an algorithm A the speedup is given as

S =

∑
q∈Υ TB(q)∑
q∈Υ TA(q)

(7.2)

The evaluation uses two algorithms for A. The first uses the Cluster-Lookup algorithm
from Section 5.1. The speedup is referred to as cluster speedup or SC . The second uses
the standard Lookup algorithm with the relabeling scheme discussed in Section 5.2 and is
referred to as relabeling speedup or SR. The base case is a standard implementation of the
Lookup algorithm.

The algorithms for the base case, the relabeled scheme and the document intersections for
the Cluster-Lookup algorithm all use the same implementation. This ensures comparable
results and keeps the influence of implementation details at a minimum.

7.2 Experimental Methology

Each experiment consists of multiple runs with varying configurations. A configuration
includes the type of algorithm and the parameters used in the algorithm. Each run consists
of two parts. First a clustering is generated using the algorithm and the parameters from
the configuration. With that clustering, the speedups are benchmarked using a query log.
For the real speedups SC and SR the benchmark is run 5 times and the arithmetic mean
of the total speedups is used as final result.

Each dataset is accompanied by a matching query log. The query log is divided into a
training set to learn the language model and a testing set to evaluate the queries. In
general only two term queries from the query log are used for testing, while all queries are
used to learn the language model.

Because datasets are very large in general, clustering and benchmarking can take a consid-
erable amount of time. This prohibits multiple runs for the same configuration. Exceptions
are the experiments from Section 7.4.7 which discuss the stability of the clustering algo-
rithms. However, as Section 7.4.7 shows, this does not pose a serious problem since the
results are very stable in general.

The FMClustering algorithm generally takes more time than the TopDown algorithm1.
Running the FMClustering algorithm for multiple configurations is therefore very time
consuming. Even though the FMClustering yields better results than the TopDown algo-
rithm, as shown in Section 7.4.2, the TopDown algorithm is used for most experiments.
This is because an extensive evaluation using the FMClustering algorithm is considered
too time consuming.

1see Section 7.5.1

42

7.3. Datasets 43

7.2.1 Environment

Experiments are all conducted on a machine with two octa-core Intel Sandy Bridge Xeon
E5-2670 processors with a clock rate of 2.6GHz. The machine has 64GiB of main memory.
Each processor has a 20MiB L3 cache, a 256KiB L2 cache and a 64KiB L1 cache. The
machine runs on SuSE Linux Enterprise Server 11 (kernel version 3.0.42).

The source code is built with GHC 7.6.2 and GCC 4.7.2 with the -O3 flag enabled.

The process for benchmarking the speedups is pinned to a single processor with 32GiB
RAM to circumvent any influences of non-uniform memory access.

7.3 Datasets

Three independent document collections are used for evaluation. The GOV2s dataset is
generated from the GOV2 dataset. An overview of the datasets is given in Table 7.1.

GOV2 GOV2s Wikipedia pagenstecher.de

Documents 25 205 179 631 975 969 6 096 279 786 474
Terms 38 562 580 25 221 691 12 295 297 573 725
Terms / Document 652.22 18.19 230.54 35.70

Input size (raw) 396.74GB 396.74GiB 12.37GiB 175.14MiB
Inverted Index size 16.25GiB 32.83GiB 3.09GiB 89.8MiB

Table 7.1: Dataset Statistics

7.3.1 Document Collections

GOV2

The GOV2 test collection [CSC04] is a large portion of available pages from the .gov

top-level domain in early 2004. The collection comprises of 396GiB of raw data and
contains approximately 25 million documents. Each document is stripped of all HTML
tags and converted into plain text before it is indexed.

GOV2s

The GOV2s test collection is based on the GOV2 collection. Documents are split into
sentences and each sentence is treated as separate document. The main textual content is
extracted from each website using the boilerpipe library2 based on the paper by Kohlschüt-
ter et al. [KFN10]. Sentences are then extracted using the Stanford NLP parser3.

Wikipedia

Articles from the English Wikipedia are the base for this document collection. Using
a dump of all articles from May 20134 the articles are converted into plain text using
the gwtwiki library5. The class PlainTextConverter is modified to strip out math and
other irrelevant tags. Additional whitespace is added after certain tags to prevent falsely
concatenated words.

2version 1.2.0, http://code.google.com/p/boilerpipe/
3version 1.3.5, http://nlp.stanford.edu/software/corenlp.shtml
4
http://dumps.wikimedia.org/enwiki/20130503/enwiki-20130503-pages-articles.xml.bz2

5version 3.0.19, http://code.google.com/p/gwtwiki/

43

http://code.google.com/p/boilerpipe/
http://nlp.stanford.edu/software/corenlp.shtml
http://dumps.wikimedia.org/enwiki/20130503/enwiki-20130503-pages-articles.xml.bz2
http://code.google.com/p/gwtwiki/

44 7. Experimental Evaluation

pagenstecher.de

pagenstecher.de is one of the biggest German online communities for car tuning. We use
the publicly accessible user posts from it’s message board as documents. Each post is
treated as single document. This dataset is interesting in two ways. First, the documents
concentrate on a single, specialized topic. Second, this dataset comes with a query log of
real searches by users of the community. This allows testing of the clustering algorithms
on a combination of realistic documents and query logs.

7.3.2 Query Logs

Each document collection is accompanied by a query log. These are partly real world user
queries and partly generated artificial query logs. The query logs are split into a training
set and testing set. While the sets are in principle disjoint, queries might appear multiple
times in a query log. This can lead to overlapping queries between the training and the
testing set. However, this is also to be expected with realistic inputs, as queries repeat
over time. The terms in queries follow Zipf’s law as is shown in Figure 7.1.

AOL Wikipedia pagenstecher.de

Queries 29 077 553 11 000 000 13 230
Distinct Terms 1 501 946 1 067 091 981

Table 7.2: Query Log Statistics

AOL Wikipedia Pagenstecher
10−1

10−3

10−5

10−7

102 104 106 102 104 106 102 104 106

Rank

P
ro
b
ab

il
it
y

Figure 7.1: Probability of a term appearing in a query as a function of its rank on a log-log
scale. A sample of 100 terms with exponentially growing ranks is plotted.

AOL

In 2006 AOL [PCT06] released a collection of 29 million queries collected from about
650 000 users over the timespan of three months. Due to privacy concerns the original
data was taken offline shortly after. However, the data is still available on the Internet6.
We use the logs as semi-realistic input for our GOV2 and GOV2s test collections. Any
queries containing a domain are filtered out, as the user probably intended to visit that
website rather than perform an actual web search.

6
http://www.gregsadetsky.com/aol-data/

44

http://www.gregsadetsky.com/aol-data/

7.4. Experimental Results 45

Artificial Wikipedia Logs

Because realistic queries are not freely available for the Wikipedia dataset7, a simple
approach is used to generate artificial queries. All articles are scanned for links to other
Wikipedia articles. For each link, the title of the article the link points to is added to the
artifical query log. We consider article titles a somewhat realistic input for conjunctive
queries and a good compromise for the unavailable real query logs. Furthermore, important
articles, i. e., articles with many links pointing to it, are more common in the query log,
yielding a query log with term probabilities that follow Zipfs law. This can be seen in
Figure 7.1.

Wikipedia titles are generally longer than 2 terms. For example, two of the most common
words in the artificial query log, United and States, in general appear together with other
words. This yields mediocre results, because the query language model does not fit the two
term queries very well. To circumvent this, the Wikipedia query logs are used differently.
For queries that are longer than two terms, all combinations of two terms from that query
are used in the evaluation run.

pagenstecher.de Query Logs

The query log for the pagenstecher.de community consists of 13 230 queries entered by real
users using the full text search feature on the website. The queries are very specific to the
dataset. For example 7 out of the 20 most common search query words are car makes.

7.4 Experimental Results

This section examines the speedups achieved with document clustering. Symbols referring
to common parameters and variables are listed in Table 7.3.

Description Symbol

Theoretical Speedup ST

Speedup with Relabeling SR

Speedup with Cluster-Lookup SC

Number of Clusters K
Number of Documents to Cluster |D|
Shrink-Factor SF
Term-Cutoff TC

Table 7.3: Algorithm and Evaluation symbols

7.4.1 Speedups

Perhaps the most interesting question is what kind of speedups are possible with document
clustering. Plotted in Figure 7.2 are the speedups ST , SR and SC for the three datasets
GOV2, Wikipedia and pagenstecher.de as a function of the number of clusters. The
clusterings are produced with the FMClustering algorithm with a shrink factor SF = 0.1.

7see https://blog.wikimedia.org/2012/09/19/what-are-readers-looking-for-wikipedia-search-data-

now-available/

45

https://blog.wikimedia.org/2012/09/19/what-are-readers-looking-for-wikipedia-search-data-now-available/
https://blog.wikimedia.org/2012/09/19/what-are-readers-looking-for-wikipedia-search-data-now-available/

46 7. Experimental Evaluation

GOV2

1.25

1.50

1.75

0 500 1000

K

S
p
ee
d
u
p ST

SR

SC

Wiki

1.0

1.1

1.2

1.3

1.4

0 500 1000

K

S
p
ee
d
u
p ST

SR

SC

Pagenstecher

2.5

3.0

3.5

4.0

0 500 1000

K

S
p
ee
d
u
p ST

SR

SC

Figure 7.2: Speedups as a function of the number of clusters on different datasets. The
FMClustering algorithm is used with SF = 0.1 and TC = 100 000.

46

7.4. Experimental Results 47

The speedups depend heavily on the dataset. For GOV2, the best theoretical speedup is
ST = 1.89, with the relabeled speedup closely following at SR = 1.83. The speedup with
the Cluster-Lookup algorithm is SC = 1.53. In practice, posting list intersections can be
done nearly twice as fast with document clustering than without. Wikipedia has a best
theoretical speedup of ST = 1.45 and real speedups of SR = 1.33 and SC = 1.16. While
this is not as good as with GOV2 there is still a considerable speedup compared to the
base case without clustering. Finally, the pagenstecher.de shows the best speedups with
ST = 3.06. This is outperformed by the real speedups SR = 4.16 and SC = 3.94. This
means that intersecting posting lists occurs 4 times faster on the pagenstecher.de dataset
with clustering than without.

All datasets show an increasing speedup with the number of clusters for all three measures.
However, the slope quickly decreases with increasing number of clusters. For a large
number of clusters, doubling the number of clusters only improves the speedup marginally.
The irregularities on the pagenstecher.de set are discussed in detail later in this section.

For the GOV2 and the Wikipedia dataset the theoretical speedup outperforms both real
speedups, i. e., SR and SC . However, the relabeling speedup SR is generally higher than the
cluster speedup SC . The lower values for SC can be explained with the overhead introduced
by the Cluster-Lookup algorithm. Even though the algorithm has the time complexity that
is used in the theoretical speedup, the constant factors play an important role here. While
the theoretical speedup assumes that intersecting the cluster posting lists is as expensive
as intersecting the document posting lists this is not true in practice. For each cluster
found in the cluster posting list intersection, a new run of the Lookup algorithm has to be
bootstrapped. While this runs in constant time, it produces considerable overhead which
is noticeable in the lower speedup SC . Furthermore, the complexity of the Cluster-Lookup
algorithm has negative effects on branch prediction and cache efficiency. The overhead
also has an influence on the decreasing values for SC for larger number of clusters in the
Wikipedia dataset.

This overhead does not pose a problem for the relabeling speedup SR. The speedups from
relabeling occur because of better branch prediction and cache effects. Branching into a
bucket is comparably expensive as it has to lookup the new position in the posting list
and initialize several variables. With relabeling, the number of buckets which have to be
visited decreases, which improves performance. Buckets contain more elements which leads
to better performance in the inner loop intersecting the bottom-level data structure. Even
though the time complexity still remains in O(m), these effects make relabeling achieve
speedups that are similar to the theoretical speedup ST .

The speedups ST , SR and SC show a high correlation in all three datasets. Apart from
the jump of the real speedups SR and SC in the pagenstecher.de dataset, the theoretical
speedup ST gives a good indication of how good SR and SC are. If an empirical evaluation
of the real speedup is not feasible, the theoretical speedup can be used to evaluate the best
parameters for the clustering.

The plot for the pagenstecher.de dataset shows some irregularities. With K = 160 clusters
there is a sudden increase for both, the relabeled speedup SR and the cluster speedup SC .
The theoretical speedup however remains roughly constant for a large number of clusters.
Because the inverted index for the pagenstecher.de dataset is small, some portions of the
posting lists can remain in the cache in between queries. For common combinations of
terms in queries, only a small subset of clusters are relevant. The parts of the posting lists
that correspond to these clusters remain in the cache. For a smaller amount of clusters in

47

48 7. Experimental Evaluation

the clustering, the (parts of the) posting lists that are relevant become too large and are
replaced in the cache in between queries.

Figure 7.3 shows the speedups for the GOV2s dataset using the first 100 000 000 documents
of the dataset. This corresponds to the first 100 000 000 sentences of the GOV2 dataset.
For reasons of feasibility the TopDown algorithm is used with TC = 100 000 and SF = 0.1.

GOV2s

1.0

1.5

2.0

2.5

3.0

0 1000 2000

K

S
p
ee
d
u
p ST

SR

SC

Figure 7.3: Speedups as a function of the number of clusters on the first 100 000 000 docu-
ments of the GOV2s dataset. The TopDown algorithm is used with SF = 0.1
and TC = 100 000.

The theoretical speedup ST is much higher on the GOV2s dataset than on the GOV2
dataset for all cluster sizes K. The reason for this lies in the much shorter documents. If
documents are shorter, there are less terms that determine which cluster is best. With less
terms, there are potentially less conflicts in the scoring function between which cluster is
scored best for each term. With K = 2560 the theoretical speedup is as high as ST = 2.9.
The real speedups SR and SC , however, fail to achieve such good values and are generally
much lower than ST . The relabeling speedup SR, in contrast to ST and SC , does not
benefit from a better theoretical speedup. This explains why relabeling falls short of the
speedups predicted by ST . For the cluster speedup SC the discrepancies come from the
overhead introduced by the algorithm. On average, the size of the posting list of each
cluster is only 40. Considering the impact of branch prediction and cache effects on the
runtime, the Cluster-Lookup algorithm struggles to capitalize on the better theoretical
time complexities with so few elements. A better implementation could help the actual
cluster speedup SC on the GOV2s dataset.

7.4.2 FMClustering versus TopDown

The speedups on the GOV2 datasets for the FMClustering and the TopDown algorithm
are plotted in Figure 7.4. The clusterings are produced with varying cluster sizes K
and a shrink factor of SF = 0.1 and Term-Cutoff of TC = 100 000. The speedups for

48

7.4. Experimental Results 49

FMClustering are plotted using contoured shapes, the speedups for TopDown use solid
shapes. Due to time constraints and the large runtimes of the FMClustering algorithm,
the speedups for the FMClustering algorithm are only plotted up to K = 1280.

1.00

1.25

1.50

1.75

0 1000 2000

K

S
p
ee
d
u
p

FM: ST

FM: SR

FM: SC

TD: ST

TD: SR

TD: SC

Figure 7.4: Speedups for varying cluster sizes K for the two algorithms FMClustering
(FM) and TopDown (TD) on the GOV2 dataset. The shrink factor is set to
SF = 0.1. The speedups for the FMClustering algorithm are plotted with
contoured shapes, the speedups for the TopDown algorithm with solid shapes.

The FMClustering algorithm produces consistently better values than the TopDown algo-
rithm. However, the difference between the individual speedups is small in general. For
example for K = 1280, the speedup ST with the TopDown algorithm is only 6.2% worse
than with the FMFClustering algorithm. For the speedups SR and SC , the TopDown algo-
rithm is 5.3% and 6.4% worse, respectively. Considering the significantly faster run times
for the TopDown clustering algorithm, the worse speedups might be an acceptable trade-
off. Further, with the TopDown algorithm, a larger amount of clusters can be clustered in
equal or less running time, which in general yields better results.

The better results for the FMClustering algorithm compared to the TopDown algorithm
can be explained with initially less clusters in the TopDown algorithm. Assume the FM-
Clustering algorithm clusters an arbitrary but fixed subset of documents into 3 clusters.
Because the TopDown algorithm initially has less clusters, the same documents might be
clustered into only 2 clusters by the TopDown algorithm. Assume documents from cluster
3 are then divided among these two clusters. In deeper recursion levels there is no possi-
bility to form a third cluster from the documents that were split among the clusters in the
higher recursion levels because the TopDown algorithm runs independently for all clusters
from the current recursion level. This prevents documents from being assigned to better
fitting clusters from other recursive runs in the TopDown algorithm. A solution might be
to run a final assignment round on all clusters after the TopDown algorithm has finished.
However, this is not researched in this thesis.

Effects similar to those described in Section 7.4.1 occur in the TopDown algorithm. The
three speedups ST , SR and SC show a high correlation, with ST being slightly better than

49

50 7. Experimental Evaluation

SR and significantly better than SC . The speedup SC decreases for K = 2560, while
the theoretical speedup still increases. The explanation lies once again in the overhead
introduced by the Cluster-Lookup algorithm.

7.4.3 Clustering Effect

For high speedups, terms should appear in as few clusters as possible. This circumstance is
illustrated in Figure 7.5. The plot shows the average cumulative distributions of documents
in clusters for the 100 000 most common terms split by total posting list length l. The
plot shows the percentage of the largest clusters for a term covering the percentage of
the documents containing that term. The plot averages over the most common terms.
The FMClustering algorithm is used with a shrink factor of SF = 0.1, a Term-Cutoff of
TC = 100 000 and K = 1280 clusters.

50

75

100

0 25 50 75 100

Clusters [%]

D
o
cu

m
en
ts

[%
]

106 ≤ l

105 ≤ l < 106

104 ≤ l < 105

103 ≤ l < 104

Figure 7.5: Distribution of documents among clusters for different posting list lengths l on
the GOV2 dataset for K = 1280 clusters using the FMClustering algorithm.

The plot shows that most documents for a term are distributed among only a few clusters.
For example, on average 12 clusters, i. e., 1%, contain roughly 50% of the documents for a
particular term. 50% of the clusters are enough to cover 97.5% of documents on average.
This increases to 99.5% if the total number of documents containing a term lies beneath
100 000.

Not surprisingly the clustering works better for terms occurring in less documents. This
is shown by faster climbing curves in the plot. Nonetheless, even for terms occurring in
more than a million documents—for the GOV2 dataset this corresponds to more than 4%
of the corpus—a heavy clustering effect is still visible. With only 25% of the clusters 90%
of the documents are covered. When recall is not important, inexact search methods could
use this fact to prune a large portion of the clusters. However, for conjunctive queries,
documents containing all terms may likely be in clusters that only contain a few documents

50

7.4. Experimental Results 51

for a term from the query. If the clusters are pruned by posting list size, these documents
will not be found.

7.4.4 Compression

As discussed in previous sections, the clustering effect can improve compression of the
posting lists. Figure 7.6 shows the average number of bits per element for different clus-
tering algorithms and encodings on the GOV2 dataset. The plot is divided into two parts,
where one shows the average number of bits per element for the complete index and the
other only for posting lists with more than l > 106 elements.

The compression is achieved using ∆-encoding and different variable-length encodings
as discussed in Section 3.5. In the case of the FMClustering and TopDown algorithm,
documents from the same cluster are assigned consecutive IDs, as discussed in Section 5.2.
K = 1280 clusters are used. This is compared to the base case were no ID relabeling is
performed. The parameter for Golomb coding is set to b = N

l ln 2 for each posting list,
where N is the sum of all differences in the posting list and l is the length of the posting
list.

Complete Index l > 106

0.0

2.5

5.0

7.5

10.0

Elias-γElias-δ Golomb Elias-γElias-δ Golomb

b
it
s
p
er

el
em

en
t

FM

TD

None

Figure 7.6: Compression of the inverted index using different clustering algorithms and
encodings on the GOV2 dataset with K = 1280 clusters.

For the base case without relabeling Golomb coding yields the best results. Elias-δ and
Elias-γ are much worse. With relabeling however, the opposite is the case. While Golomb
coding fails to achieve any significant improvement with relabeling, Elias-δ and Elias-γ cod-
ing use considerably less bits than without relabeling. With the FMClustering algorithm,
Elias-δ uses 33% less space on average than the best coding scheme without relabeling,
which is the Golomb code. Compression with the Golomb code depends mainly on it’s
parameter b which in return depends on the sum of all the differences in the posting list.
The sum of the differences, however, is left unchanged by relabeling document IDs.

The improvement for the Elias codes comes from the fact, that relabeling with clusters
causes most of the gaps between document IDs in a posting list to decrease. For the
complete index, Elias-δ is best choice if clusters are used. This changes if only large

51

52 7. Experimental Evaluation

posting lists with more than a million elements are considered. With many elements the
average gap between document IDs decreases. Because Elias-δ code uses more bits for
small numbers and less bits for large numbers in comparison to the Elias-γ code, Elias-γ
becomes the better choice when posting lists are large. Therefore, using different encodings
for different posting lists could help improve compression even more. Elias-γ coding uses
45% less space on the GOV2 dataset with clusters and relabeling for posting lists with
more than a million elements.

In general the FMClustering algorithm achieves better compressions than the TopDown
algorithm. This is in line with the speedups that can be observed for the two algorithms.
However the differences are subtle and both achieve considerably better compression than
without clustering and relabeling.

7.4.5 Speedups with Comparison-Based Intersection Algorithms

While the Lookup algorithm can intersect sets in O(m), comparison based intersection
algorithms achieve time complexities of O(m log n

m) on average [BY04]. However this is
not a good choice for the cost function directly, as log n

m approaches 0 as the ratio between
the set sizes reaches 1. We therefore use a theoretical lower bound for the number of
comparisons

ΦL(n,m) := log

(
n+m

min(n,m)

)
as cost function for intersecting sets. The speedup SL is calculated as described in Sec-
tion 7.1 with the new cost function ΦL. Note that the scoring function for the clustering
algorithms still uses the cost function Φ(n,m) := min(n,m). The new cost function ΦL is
used solely for evaluation of the speedups.

Figure 7.7 shows the speedup SL for comparison based algorithms in comparison to the
theoretical speedup ST for the Lookup algorithm on different datasets. With exception
of GOV2-TD, which uses the TopDown algorithm, all clusterings are produced by the
FMClustering algorithm. The number of clusters is set to K = 1280 and the shrink factor
to SF = 0.1.

The speedup SL is consistently higher than the speedup ST on all datasets. On the
pagenstecher.de dataset the speedup SL is even as high as 6, twice the value of the speedup
ST . On the other datasets the differences between the two speedups are subtle. Even if
the speedup SL is only an indication for realistic speedups, comparison based algorithms
should also benefit from clustering. Further experiments have to show which speedups can
be achieved in practice.

7.4.6 Query Language Model versus Document Collection Language Model

Section 4.3.2 discusses how to determine the probability distribution of the unigram lan-
guage model used in the scoring function. Two methods are presented. The first uses
a query log and the second estimates the language model from the document collection
itself.

Figure 7.8 illustrates the speedups on the GOV2 dataset for K = 2500 clusters using
the TopDown algorithm and a shrink factor SF = 0.1. The plots are divided by speedup
type. Each plot shows the speedups achieved when using the document collection language
model (DC-LM) and the query language model (Q-LM).

52

7.4. Experimental Results 53

0

2

4

6

GOV2 GOV2-TD Wiki Pagenstecher

S
p
ee
d
u
p

ST

SL

Figure 7.7: Speedups ST and SL on different datasets using the adapted cost function
for SL. The clusterings have K = 1280 clusters and use the FMClustering
algorithm with exception of GOV2-TD.

The clustering is run 10 times for each language model. The AOL query log is divided into
10 parts. For the query language model, 9 parts of the log are used to learn the language
model. The remaining part is used to benchmark the speedups. For each run, a different
part is used for benchmarking. Since no query log is necessary to determine the document
collection language model, the query log is only used for benchmarking. As with the query
language model, each run uses a different part of the query log for benchmarking.

The query language model works better for all three speedup types. This is not surprising
since the query language model fits the actual queries better, while the document collection
language model assumes that queries will use the same language model as the document
collection. This is not necessarily the case and so the scoring function leads to a clustering
that is suboptimal for the given queries. Nevertheless, in the absence of a query log, using
the document collection to generate the language model still yields comparable results.
The median for all speedups is less than 6% worse compared to the query language model.

7.4.7 Clustering Stability

The large amount of data prohibits a complete evaluation of all configurations. That is why
the analysis in this chapter is based on representative examples. However, the usefulness
of an example depends heavily on how reproducible the results are.

This section gives insights into how reproducible the results are. The speedups on the
GOV2 dataset for K = 2500 clusters are plotted in Figure 7.8. Each configuration is run
10 times. More details on the parameters are given in Section 7.4.6. The same data, for
the query language model, is listed in Table 7.4

The TopDown algorithm generally produces very stable results. The variances range from
1.0× 10−4 for ST to 2.0× 10−4 for SC when using the query-log language model. Because
each run uses a different part of the query log for testing and training, the variances

53

54 7. Experimental Evaluation

ST SR SC

1.3

1.4

1.5

1.6

1.7

1.8

DC-LM Q-LM DC-LM Q-LM DC-LM Q-LM

S
p
ee
d
u
p

Figure 7.8: Boxplots for the different speedups on GOV2 using the AOL query log language
model (Q-LM) and using the document collection language model (DC-LM).
K = 2500 clusters are used with a shrink factor of SF = 0.1

ST SR SC

Minimum 1.790 1.739 1.387
Median 1.813 1.762 1.403
Max 1.832 1.772 1.418

Mean 1.810 1.759 1.403
Variance 2.0× 10−4 1.5× 10−4 1.0× 10−4

Table 7.4: Statistics for the speedups ST , SR and SC for the GOV2 dataset after 10 dif-
ferent clustering runs with the same parameters on different parts of the query
log. K = 2500 clusters are used with a shrink factor of SF = 0.1

are higher than when using the document collection language model. For the document
collection language model, where the language models is the same for all runs, the variance
decreases to 9.1× 10−6 for ST .

This result is important for the validity of the other experiments. Even though there is
only one run per configuration, the low variance for the speedups make it a representative
example. Big differences between runs are very improbable.

7.4.8 Influence of Term-Cutoff

Figure 7.9 plots the influence of the Term-Cutoff parameter on speedups that are achieved
on the GOV2 dataset. The TopDown-Algorithm is used with K = 2500 clusters and a
shrink factor of SF = 0.1. The x-axis uses a logarithmic scale.

The results remain stable for all three speedup measures up until about TC = 5000. With
less terms the speedups decrease quickly. The 1000 most common terms make up for
55% of all term occurrences in the GOV2 collection. This increases to about 90% for the

54

7.4. Experimental Results 55

1.00

1.25

1.50

1.75

101 102 103 104 105

TC

S
p
ee
d
u
p ST

SR

SC

Figure 7.9: Speedups for GOV2 with varying TC. Clustering is produced by the TopDown-
Algorithm with K = 2500 and SF = 0.1.

10 000 most common terms in GOV2. For the clustering this means that with using a
Term-Cutoff of TC = 10 000 roughly 90% of the terms occurring in a document will be
used to assign a cluster. The figure shows that this is enough to produce consistent and
good results. However, using less terms quickly decreases speedups. The speedups for ST

and SR still are above 1, even with just 10 terms. This is because the ten most common
terms have a big influence on the speedup. Firstly, posting lists are longer for common
terms and therefore take longer to intersect in general. With longer intersection times,
the influence on the speedup grows. Secondly, common terms are common in queries,
increasing the influence even more. However, for the speedup SC the overhead from the
data structure is too high, and 10 terms are not enough to reach speedup greater than 1.

This result has positive implications for the clustering algorithm. As discussed in Sec-
tion 4.5.2, pre-calculation for the scoring function runs in O(K|T |) and uses O(K|T |)
space. With a small Term-Cutoff of TC = 10 000 this is nearly 4000 times faster com-
pared to using all terms for GOV2. Regarding the speedups however, there is no noticeable
difference.

7.4.9 Influence of Number of Documents

Figure 7.10 shows the speedups as a function of the number of documents |D| used in the
clustering. For this experiment |D| random documents are chosen from the GOV2 dataset
and clustered using the TopDown algorithm with K = 2500 clusters and a shrink factor
of SF = 0.1. The term-cutoff is set to TC = 10 000.

The speedups show a tendency to increase with the number of documents. While this effect
is only small for ST and SR, the cluster speedup SC profits greatly from an increased

55

56 7. Experimental Evaluation

number of documents. For |D| = 5× 106 documents, the cluster speedup is as low as
SC = 1.14, this increases to SC = 1.41 for |D| = 25× 106.

While more documents seem to be better for the speedups in general, the large increase for
SC can be explained with the overhead for setting up the intersection algorithm for each
cluster. With more documents, the posting list in each cluster will be larger. With larger
posting lists and longer intersections, the overhead for setting up the clustering algorithm
has less influence on the total running time.

1.3

1.5

1.7

5× 106 10× 106 15× 106 20× 106 25× 106

|D|

S
p
ee
d
u
p ST

SR

SC

Figure 7.10: Speedups for GOV2 with varying number of documents |D| for K = 2500
clusters. The shrink factor is set to SF = 0.1.

7.4.10 Speedups for Single Queries

A interesting question is how the speedup depends on the original intersection time. Fig-
ure 7.11 shows a scatter plot for the speedups for 5000 randomly sampled two-term queries
from the AOL query log. The line in red marks a speedup of 1, that is, no speedup at
all. The queries are run on the GOV2 dataset with K = 2500 clusters produced by the
TopDown algorithm. Each circle represents one query and is plotted with a transparency
value of α = 0.1.

The speedup varies greatly between queries. Even if the speedup of a single query might be
influenced by many factors, like processor utilization or cache lines, there is a clear tendency
for higher speedups for longer running set intersections. While some queries show no or
even negative speedup if the intersection times are very short, there are virtually no slower
queries for longer intersections. This is especially good for the latency of a query. Longer
queries, with generally higher latency, tend to achieve a higher speedup.

A scatter plot with the same configuration for the cluster speedup SC is displayed in
Figure 7.12. The increase in speedup for longer intersection times shows in an even more

56

7.4. Experimental Results 57

0

1

2

3

10−5 10−4 10−3 10−2 10−1

Intersection Time [ms]

S
R

Figure 7.11: The relabeled speedup SR as a function of the original intersection execution
time on the GOV2 dataset with K = 2500 clusters. The red horizontal line
marks no speedup.

0

1

2

3

10−5 10−4 10−3 10−2 10−1

Intersection Time [ms]

S
C

Figure 7.12: The cluster speedup SR as a function of the original intersection execution
time on the GOV2 dataset with K = 2500 clusters. The red horizontal line
marks no speedup.

57

58 7. Experimental Evaluation

obvious way. For very short intersections there are virtually no speedups. The overhead
introduced through the Cluster-Lookup algorithm effaces the theoretically better time
complexities. However, with longer intersection times, the overhead in general becomes
marginal and the speedups increase.

7.4.11 Exact Scoring Function

Section 4.5.3 discusses how the α2 and α4 terms from the scoring function can be omitted
to increase scoring speed. Figure 7.13 plots the influence of omitting the α terms from
the scoring function. The same procedure that is described in Section 7.4.7 is used. The
query log is split into 10 parts where 9 parts are used for training and the remaining part
is used for testing. This is repeated 10 times, where each part is used once for testing.
The clustering is produced by the TopDown algorithm with K = 2500 and SF = 0.1. The
normal scoring function is referred to as Exact, the scoring function where α2 and α4 are
omitted is referred to as Fast.

An interesting observation is that the exact scoring function produces slightly worse results
for all three evaluation measures, most noticeable for the theoretical speedup ST and
relabeled speedup SR. The inexact scoring function can be the better choice for both
speed and quality of the clustering. However, the TopDown algorithm has less clusters to
choose from compared to the FMClustering algorithm, which might decrease the influence
of which scoring function is used. Nonetheless we do not have an explanation why the
inexact scoring function produces better results than the exact scoring function.

ST SR SC

1.4

1.5

1.6

1.7

1.8

Exact Fast Exact Fast Exact Fast

S
p
ee
d
u
p

Figure 7.13: Boxplots show the difference between the Exact and the Fast scoring function
for the three different speedups ST , SR and SC . The TopDown algorithm is
run 10 times on the GOV2 dataset withK = 2500, SF = 0.1 and TC = 10 000

7.5 Clustering Runtimes

This section discusses how fast the clustering algorithms are in practice and the influence
of various parameters on the runtimes. While a fast implementation of the algorithms is

58

7.5. Clustering Runtimes 59

not a prime concern of this thesis, the experiments show that the algorithms and their
implementations run well on large document collections.

The experiments are all conducted on the machine described in Section 7.2.1 and use 16
cores for parallel execution. Since the runtimes vary greatly between individual runs, the
experiments are repeated several times in general.

Figure 7.14 and Figure 7.15 show the clustering runtimes as a function of K for the
FMClustering and the TopDown algorithm, respectively. The algorithm is executed 10
times on the GOV2 dataset using a Term-Cutoff of TC = 100 000 and shrink factor
SF = 0.1 for a fixed number of clusters K. The red line connects the arithmetic mean
values from the 10 iterations for each K.

0

5000

10000

15000

20000

0 100 200 300

K

T
im

e
[s
]

Figure 7.14: Clustering runtimes for increasing number of clusters K on the GOV2 dataset
with the FMClustering algorithm. The shrink factor is set to SF = 0.1 and
the term cutoff to TC = 100 000. The clustering algorithm is run 10 times
for each K

For the FMClustering algorithm in Figure 7.14 there is a super-linear increase of the
average runtime for increasing K. The time complexity analysis in Section 4.4.1 gives a
lower bound that is linear in the number of clusters. While the depth of the recursion is
deterministic, the number of iterations in each recursion level is not. With an increasing
number of clusters the algorithm needs more time to converge to a stable solution. The
result is a super-linear increase of the average runtime. A large number of clusters can
therefore become infeasible for the FMClustering algorithm.

In contrast, the TopDown algorithm does not show this super-linear increase. The runtimes
for the TopDown algorithm are plotted in Figure 7.15. The plot shows a sub-linear increase
of the average runtimes for increasing number of clusters K. Since the quality of the
clustering, with regard to the achievable speedup, increases with the number of clusters,
this is an important observation.

59

60 7. Experimental Evaluation

For K = 2560 clusters, the TopDown algorithm takes on average 1477 s, or just short
of half an hour, to cluster the GOV2 dataset. This corresponds to a average time of
59 µs per document. K = 2560 clusters is a value that works well on the GOV2 dataset.
The processing and indexing of a document in our framework is in the order of several
milliseconds per document. Even if the processing is not highly optimized, clustering
with the TopDown algorithm has a negligible influence on the total processing time. A
technique like ID relabeling, as discussed in Section 5.2, can therefore be used without a
large impact on preprocessing time.

0

500

1000

1500

0 1000 2000

K

T
im

e
[s
]

Figure 7.15: Clustering runtimes for increasing number of clusters K on the GOV2 dataset
with the TopDown algorithm. The shrink factor is set to SF = 0.1 and the
term cutoff to TC = 100 000. The clustering algorithm is run 10 times for
each K

7.5.1 FMClustering versus TopDown

There is a vast difference between the runtimes of the TopDown algorithm and the FMClus-
tering algorithm. A direct comparison is difficult, since the runtimes for both algorithms
show different behavior for increasing number of clusters. However, the rule of thumb is
that the TopDown algorithm performs more than 10 times faster than the FMCluster-
ing algorithm. With an increasing number of K the discrepancy between the runtimes
increases even more.

This leads to a simple tradeoff between query and preprocessing time. The FMClustering
algorithm leads to somewhat better results. However the long runtimes can be prohibitive.
If a quick preprocessing of the document collection is more important, the TopDown
algorithm achieves very good clustering times with reasonable quality for the clustering.

60

7.5. Clustering Runtimes 61

7.5.2 Influence of Term-Cutoff

The influence of the Term-Cutoff parameter on the clustering runtimes is plotted in Fig-
ure 7.16. The plot shows the runtimes as a function of the Term-Cutoff parameter TC on
the GOV2 dataset for K = 100 clusters.

The Term-Cutoff parameter has a big influence on the runtimes of both clustering al-
gorithms. While the runtimes do not increase linearly with the Term-Cutoff parameter,
runtimes decrease significantly with a lower Term-Cutoff. Section 7.4.8 shows that the
choice of the Term-Cutoff parameter has no influence on the quality of the clusterings
above a certain threshold. Implementations that are interested in fast clusterings with the
best possible quality should therefore choose a value for the Term-Cutoff parameter that
comes close to the threshold value. Choosing a low Term-Cutoff value also decreases space
requirements of the algorithm.

7.5.3 Influence of Document Collection Size

Figure 7.17 shows the influence of the number of documents to cluster on the runtimes
of the two algorithms. The algorithms use K = 250 clusters with a shrink factor of
SF = 0.1 and Term-Cutoff of TC = 10 000 on randomly sampled documents from the
GOV2 document collection.

From |D| = 3× 106 upwards there is an obvious linear tendency for the runtimes for both
algorithms. However, both algorithms show a local maximum at |D| = 2× 106. This is an
artifact introduced by the constant threshold described in Section 4.4.2. If the number of
documents is less than K · 100, the mode changes from multi-threaded iteration-grained
execution to single-threaded document-grained iteration. While the document-grained
iteration can be implemented with multi-threading support, the implementation in this
thesis uses single-threaded execution for simplicity. Because of the shrink factor SF = 0.1
and the number of clusters K = 250, the number of recursions that use iteration-grained
pre-calculation is higher when the number of documents is smaller than |D| < 2.5× 106.
With a higher number of single-threaded document-grained recursion levels, the algorithms
also run slower, resulting in the visible local maximum at |D| = 2× 106. Document-grained
pre-calculation is generally slower and single-threaded execution further intensifies this.
With a higher resolution on the x-axis, there would be a sharp drop of runtimes at |D| =
2.5× 106. Nonetheless, the linear tendency holds when the number of recursion levels that
use document-grained pre-calculation stays constant.

61

62 7. Experimental Evaluation

0

500

1000

1500

2000

0

50

100

150

200

F
M

T
D

0 25 000 50 000 75 000 100 000

TC

T
im

e
[s
]

Figure 7.16: Clustering runtimes as a function of the Term-Cutoff parameter TC on the
GOV2 dataset with K = 100 and SF = 0.1

62

7.5. Clustering Runtimes 63

0

300

600

900

0

20

40

60

F
M

T
D

0 2× 106 4× 106 6× 106 8× 106 10× 106

|D|

T
im

e
[s
]

Figure 7.17: Clustering runtimes as a function of the number of documents to cluster |D|
on the GOV2 dataset with K = 250, SF = 0.1 and TC = 10 000

63

8. Conclusion

This chapter summarizes this thesis and gives an outlook on future work.

8.1 Summary

The work on this thesis is based on an efficient and effective scoring function for assign-
ing documents to clusters. The scoring function explicitly minimizes the expected time
complexity of conjunctive queries. To the best of our knowledge, this thesis is the first to
optimize the amount of work for intersecting posting lists by document clustering while
maintaining accuracy.

The thesis shows that the scoring function can be calculated very efficiently in O(|d|) time
for each cluster and document with simple pre-calculated data structures. The thesis fur-
ther discusses two fast and scalable clustering algorithms suitable for document clustering.
The algorithms use the scoring function to greedily assign documents to clusters. Clusters
are refined through iteratively reassigning documents to the cluster with the best score.
On the GOV2 dataset clustering is as fast a 60 µs per document on current commodity
hardware.

Two techniques that use a clustering of documents to speedup conjunctive queries are
presented and analyzed. The first uses a new data structure to improve the actual time
complexity of posting list intersections. While the first comes along with considerable
overhead, the second technique uses relabeling of document IDs which does not introduce
any overhead for intersections. The technique does not yield a better time complexity
in general, but experiments show that the technique achieves a considerable speedup in
practice.

A systematic evaluation of the clustering algorithms on real world data rounds the work
of this thesis off. Theoretical and actual speedups are examined on multiple real world
datasets. The experiments give insights into the various tuning parameters of the clus-
tering algorithms. On the widely used GOV2 dataset, posting list intersections can be
close to 2 times faster with document clustering than without. On a document collection
that concentrates on a specialized topic a real speedup of over factor 4 can be measured.
Evaluation of the clustering algorithm runtimes show that clustering even large document
collections is feasible with the approaches presented in this thesis.

65

66 8. Conclusion

8.2 Future Work And Outlook

Because this thesis is the first to use document clustering to minimize the intersection
times of posting lists, a new range of interesting research questions emerge.

Implementation

The implementation of the Cluster-Lookup algorithm is kept simple. Using fine-tuned and
benchmarked code could improve the speedup and reduce overhead. For example, while
the Lookup algorithm provides the best time complexity, the Zipper algorithm can perform
faster in practice [Tra10]. For clusters with only a couple of documents for a term, using
a simpler algorithm than Lookup could increase performance.

The implementations for the FMClustering and TopDown algorithms leave room for fur-
ther improvements. Both implementations contain sequential code that can be parallelized.

Compression

In-memory full text search engines utilize compression to minimize the amount of memory
necessary for posting lists [Tra10]. While this thesis shows that document clustering can
improve posting list compression, the question remains how the real speedups change when
compression is involved.

Queries

The analysis in this thesis is limited to two-term conjunctive queries. However in practice
queries often contain multiple terms. Moreover queries can also be disjunctive, where a
document matches a query if it contains any term from the query. An interesting open
research topic is how the speedup changes if more than 2 terms occur in a conjunctive query.
Research is needed to determine whether disjunctive queries can benefit from document
clustering. Ranking results, top-k and phrase queries are important techniques in the area
of information retrieval. A question is how document clusters can also benefit top-k and
phrase queries or how ranking the documents influences the speedups.

Other Set Intersection Algorithms

There exist a variety of set intersection algorithms. The analysis in this thesis is limited
to the Lookup [ST07] algorithm because it has a time complexity that is linear in the size
of the smaller set. Ding and König [DK11] present an algorithm based on hashes that can
perform faster than Lookup under some circumstances. The theoretical speedup that can
be achieved when using document clustering indicates that the approach from this thesis
can also be applied to other state-of-the-art posting list intersection algorithms.

Clustering Algorithms

The scoring function presented in this thesis is not limited to the algorithms discussed.
While the algorithms in this thesis are chosen to fit the problem well, other algorithms
might produce better results or execute faster.

Distributed Search

Large document collections are usually handled by using distributed search, and parti-
tioning either terms or documents among shards. Section 5.4 handles the applicability of
document clustering to distributed search. However no experimental analysis is performed
in this thesis. An open question is which speedups can be achieved when using distributed
search.

66

Bibliography

[BDH03] Luiz André Barroso, Jeffrey Dean, and Urs Holzle. Web search for a planet:
The google cluster architecture. Micro, Ieee, 23(2):22–28, 2003.

[Ber06] Pavel Berkhin. A survey of clustering data mining techniques. In Grouping
multidimensional data, pages 25–71. Springer, 2006.

[BP98] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. Computer networks and ISDN systems, 30(1):107–117,
1998.

[BY] Ricardo Baeza-Yates. Web log mining in search engines.

[BY04] Ricardo Baeza-Yates. A fast set intersection algorithm for sorted sequences.
In Combinatorial Pattern Matching, pages 400–408. Springer, 2004.

[BYRN+99] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information re-
trieval, volume 463. ACM press New York, 1999.

[CG96] Stanley F Chen and Joshua Goodman. An empirical study of smoothing
techniques for language modeling. In Proceedings of the 34th annual meeting
on Association for Computational Linguistics, pages 310–318. Association
for Computational Linguistics, 1996.

[CKL+07] Cheng Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski,
Andrew Y Ng, and Kunle Olukotun. Map-reduce for machine learning on
multicore. Advances in neural information processing systems, 19:281, 2007.

[Con13] Library Of Congress. Update on the twitter archive at the library of congress.
White Paper, 2013.

[CPBY09] B Barla Cambazoglu, Vassilis Plachouras, and Ricardo Baeza-Yates. Quan-
tifying performance and quality gains in distributed web search engines. In
Proceedings of the 32nd international ACM SIGIR conference on Research
and development in information retrieval, pages 411–418. ACM, 2009.

[CSC04] Charlie Clarke, Ian Soboroff, and Nick Craswell. Gov2 test collection, 2004.
URL: http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[DK11] Bolin Ding and Arnd Christian König. Fast set intersection in memory.
Proceedings of the VLDB Endowment, 4(4):255–266, 2011.

67

http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm

68 Bibliography

[DMdSF+05] Edleno S De Moura, Célia F dos Santos, Daniel R Fernandes, Altigran S
Silva, Pavel Calado, and Mario A Nascimento. Improving web search effi-
ciency via a locality based static pruning method. In Proceedings of the 14th
international conference on World Wide Web, pages 235–244. ACM, 2005.

[Eli75] Peter Elias. Universal codeword sets and representations of the integers.
Information Theory, IEEE Transactions on, 21(2):194–203, 1975.

[Gol66] Solomon. W. Golomb. Run-length encodings. IEEE Trans Info Theory,
12(3):399–401, 1966.

[JHA+99] S Peyton Jones, John Hughes, Lennart Augustsson, Dave Barton, Brian
Boutel, Warren Burton, Joseph Fasel, Kevin Hammond, Ralf Hinze, Paul
Hudak, et al. Haskell 98: A non-strict, purely functional language, 1999.

[JO95] Byeong-Soo Jeong and Edward Omiecinski. Inverted file partitioning
schemes in multiple disk systems. Parallel and Distributed Systems, IEEE
Transactions on, 6(2):142–153, 1995.

[KFN10] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. Boilerplate
detection using shallow text features. In Proceedings of the third ACM inter-
national conference on Web search and data mining, pages 441–450. ACM,
2010.

[Knu92] Donald E Knuth. Two notes on notation. The American Mathematical
Monthly, 99(5):403–422, 1992.

[Kul13] Anagha Kulkarni. Efficient and effective large-scale search. 2013.

[LOPS07] Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and Fabrizio Sil-
vestri. Mining query logs to optimize index partitioning in parallel web
search engines. In Proceedings of the 2nd international conference on Scal-
able information systems, page 43. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2007.

[M+67] James MacQueen et al. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability, volume 1, page 14. California,
USA, 1967.

[MMR00] Andy MacFarlane, Julie A McCann, and Stephen E Robertson. Parallel
search using partitioned inverted files. In String Processing and Information
Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International Sympo-
sium on, pages 209–220. IEEE, 2000.

[PCT06] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of search.
In Proceedings of the 1st international conference on Scalable information
systems, page 1. Citeseer, 2006.

[Per94] Michael Persin. Document filtering for fast ranking. In Proceedings of the
17th annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 339–348. Springer-Verlag New York,
Inc., 1994.

[PSL06] Diego Puppin, Fabrizio Silvestri, and Domenico Laforenza. Query-driven
document partitioning and collection selection. In Proceedings of the 1st

68

Bibliography 69

international conference on Scalable information systems, page 34. ACM,
2006.

[SC99] Fei Song and W Bruce Croft. A general language model for information re-
trieval. In Proceedings of the eighth international conference on Information
and knowledge management, pages 316–321. ACM, 1999.

[SKK+00] Michael Steinbach, George Karypis, Vipin Kumar, et al. A comparison of
document clustering techniques. In KDD workshop on text mining, volume
400, pages 525–526. Boston, 2000.

[ST07] Peter Sanders and Frederik Transier. Intersection in integer inverted indices.
In Proc. 9th ALENEX, volume 7, 2007.

[Tra10] F Transier. Algorithms and Data Structures for In Memory Text Search
Engines. PhD thesis, PhD thesis, University of Karlsruhe, 2010.

[VR79] C.J. Van Rijsbergen. Information retrieval. Butterworths, 1979.

[XC99] Jinxi Xu and W Bruce Croft. Cluster-based language models for distributed
retrieval. In Proceedings of the 22nd annual international ACM SIGIR
conference on Research and development in information retrieval, pages
254–261. ACM, 1999.

69

	Contents
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Related Work
	3 Technical Foundations
	3.1 Full Text Search Basics
	3.2 Search Engine Design
	3.3 Conjunctive Queries
	3.4 Efficient Set Intersections
	3.5 Compression

	4 Document Clustering
	4.1 Basic Idea
	4.2 Definitions and Terminology
	4.3 Fast Scoring Function
	4.3.1 Scoring Function for Intersections in O(m)
	4.3.2 Learning the Query Language Model

	4.4 Fast Clustering of Documents
	4.4.1 Fast Multi-Level Clustering
	4.4.2 Document-Grained vs Iteration-Grained
	4.4.3 Fast Hierarchical Clustering

	4.5 Optimizations
	4.5.1 Parallelization
	4.5.2 Term Cutoff
	4.5.3 Omitting 2 and 4

	4.6 Summary

	5 Search with Document Clusters
	5.1 Set Intersection Data Structure for Clusters
	5.2 Document ID Relabeling
	5.3 Hybrid and Parallel Intersections
	5.4 Distributed Search and Document Clusters

	6 Implementation
	6.1 Core Library
	6.1.1 Basic Data Types
	6.1.2 Text Processing
	6.1.3 Clustering
	6.1.4 Set Intersections

	6.2 File Formats
	6.3 Tools
	6.3.1 Tokenization
	6.3.2 Index Construction
	6.3.3 Clustering
	6.3.4 Evaluation

	7 Experimental Evaluation
	7.1 Evaluation Measures
	7.2 Experimental Methology
	7.2.1 Environment

	7.3 Datasets
	7.3.1 Document Collections
	7.3.2 Query Logs

	7.4 Experimental Results
	7.4.1 Speedups
	7.4.2 FMClustering versus TopDown
	7.4.3 Clustering Effect
	7.4.4 Compression
	7.4.5 Speedups with Comparison-Based Intersection Algorithms
	7.4.6 Query Language Model versus Document Collection Language Model
	7.4.7 Clustering Stability
	7.4.8 Influence of Term-Cutoff
	7.4.9 Influence of Number of Documents
	7.4.10 Speedups for Single Queries
	7.4.11 Exact Scoring Function

	7.5 Clustering Runtimes
	7.5.1 FMClustering versus TopDown
	7.5.2 Influence of Term-Cutoff
	7.5.3 Influence of Document Collection Size

	8 Conclusion
	8.1 Summary
	8.2 Future Work And Outlook

	Bibliography

