AT

Karlsruher Institut fur Technologie

Success rates in simplified
threshold public goods
games - a theoretical model

by Christian Feige

No. 70 | JUNE 2015

KIT — University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association



Impressum

Karlsruher Institut fur Technologie (KIT)
Fakultat fur Wirtschaftswissenschaften
Institut fur Volkswirtschaftslehre (ECON)

Schlossbezirk 12
76131 Karlsruhe

KIT — Universitat des Landes Baden-Wirttemberg und
nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Working Paper Series in Economics
No. 70, June 2015

ISSN 2190-9806

econpapers.wiwi.kit.edu




Success rates in simplified threshold public goods
games — a theoretical model

Christian Feige®*

®Karlsruhe Institute of Technology (KIT), Institute of Economics (ECON), Neuer Zirkel
3, 76131 Karlsruhe, Germany

Abstract

This paper develops a theoretical model based on theories of equilibrium
selection in order to predict success rates in threshold public goods games,
i.e., the probability with which a group of players provides enough contri-
bution in sum to exceed a predefined threshold value. For this purpose, a
prototypical version of a threshold public goods game is simplified to a 2 x 2
normal-form game. The simplified game consists of only one focal pure strat-
egy for positive contributions aiming at an efficient allocation of the threshold
value. The game’s second pure strategy, zero contributions, represents a safe
choice for players who do not want to risk coordination failure. By calculat-
ing the stability sets of these two pure strategies, success rates can be put in
explicit relation to the game parameters. It is also argued that this approach
has similarities with determining the relative size of the strategies’ basins of
attraction in a stochastic dynamical system (cf. Kandori, Mailath, and Rob,
1993, Econometrica, Vol. 61, p. 29-56).
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1. Introduction

The general idea of a threshold public goods game (ThrPG)[|is that a
group of people need to jointly provide a given amount of money to fund a
project of “public interest”, which can mean anything from stopping global
warming or building a public library to developing a new gaming software
that everybody in the group will enjoy. The problem is that the group
members must not only come to an agreement (whether tacit or overt) on
whether or not to provide this public good, but also on which player will
provide which share of the total.

Roughly fifteen years ago, (Croson and Marks (2000) published a meta-
study on success rates in ThrPGs, i.e., whether or not the group’s total
contribution exceeds a predefined threshold value, postulating the “step re-
turn,” which refers to the ratio of total valuation from reaching the threshold
to the necessary threshold contribution, as one of the main explanatory vari-
ables in this game. Since then quite a number of additional experimental
studies have been concerned with ThrPGs, but to my knowledge there is still
no theoretical model which sufficiently explains the experimental data, i.e.,
why some subject groups reach the threshold consistently, while other groups
appear to have no hopes of ever reaching this goal, leading them to converge
on an outcome where nobody contributes anything.

In the present study, I will present just such a model, which I derive from

previous work on equilibrium selection (Harsanyi and Selten, 1988} Harsanyi,

LThis type of game is also discussed in the literature under the names “step-level public
good” or “provision-point public good”, the latter being more applicable to games with
some kind of rebate of contributions in case of overcontribution.



1995)). The idea is that the players in a ThrPG concentrate on the most focal
(in the sense of |Schelling, 1980) allocation of the threshold in their group and
then decide whether or not this risky Nash equilibrium is to be preferred to
the safe choice of contributing zero. I argue that the relative attractiveness
of the most focal threshold allocation compared to zero contributions is the
main determinant in a class of ThrPGs that give no or only a partial refund of
contributions if the threshold is missed. It is only indirectly, via this relation,
that the step return and other game parameters affect average success rates.

Admittedly, there have been a number of other attempts in the past to
theoretically predict contribution behavior in ThrPGs, but they all have their
limitations, if they make accurate predictions at all. A first attempt has been
made by Palfrey and Rosenthal| (1984)), who calculate the equilibria for binary
ThrPGs with and without a refund of contributions if the threshold is missed.
In binary ThrPGs, each player has only two pure strategies — contribute
or not contribute — which means that there is no symmetric pure-strategy
equilibrium that exactly reaches the threshold (unless the threshold is equal
to the total endowment of all players). |Offerman et al.| (1998)) calculate the
quantal response equilibria (McKelvey and Palfreyl 1995) for this type of
ThrPG. |Goeree and Holt) (2005) use a similar approach and are even able
to perform a comparative statics analysis for success rates dependent on the
number of players and the step return. Yet despite the minimal strategy set,
both models can provide only implicit characterizations of the success rate,
which could be taken to mean that an explicit model for (binary) ThrPGs
simply does not exist.

Recently, |Alberti et al| (Unpublished) and Cartwright and Stepanova



(Unpublished)) have applied impulse balance theory (see also Ockenfels and
Selten), [2005; Selten and Chmura, 2008)) to ThrPGs, theorizing that players
learn from outcomes in previous rounds and experience a certain drive (im-
pulse) to adapt their contributions afterwards. Just as the quantal response
models, theirs ends up being only an implicit characterization of success
rates, albeit with a more general applicability to larger individual strategy
sets.

What all these models have in common, though, is that they ignore the
possibility of equilibrium convergence, i.e., of the idea that the players learn
to coordinate their behavior and then attain a stable outcome. Palfrey and
Rosenthal (1984) at least mention that “the inefficient pure strategy equi-
libria of the [game with refund rule| are weak” (ibid., p. 180) and there-
fore inferior, but do not discuss the implications of this result in a repeated
gameE] With quantal response, a concept that does account for repeated
interactions, the disregard of convergence arises from the assumption that
the group composition changes after each round. |Offerman et al.| (1998) (see
also Offerman et al., 1996, 2001) accordingly use a strangers procedure (i.e.,
randomly changing group compositions) in their accompanying experimental
study, controlling for effects of learning through repeated interaction. Un-
fortunately, however, the large majority of experimental studies involving
ThrPGs are repeated games with a fized group composition (partners pro-
cedure), so that these models should not be able to predict more than the
success rates in “initial” rounds of these experiments.

On the other hand, papers discussing convergence in ThrPGs (or its lack

2See also Bagnoli and Lipman| (1989} [1992).



thereof) frequently point out that it may be hard to put this “initial” stage
in terms of rounds. For instance, (Cadsby and Maynes (1999) state that
“14 periods did not appear to be sufficient in many cases for convergence
to an equilibrium. [...] we increase the number of periods to 25.” In con-
trast, other studies observe convergence to zero contributions after only seven
rounds (Guillen et al.. [2006]) or ten rounds (Isaac et al., [1989; Feige et al.,
Unpublished). The convergence of total contributions to the threshold level
is discussed in several studies by (Croson and Marks| (1998, 1999), as well as
by |Cadsby and Maynes| (1999)), but only on the basis of experimental data,
not a theoretical model for why groups should coordinate on a particular
threshold equilibrium (instead of, for example, zero contributions).

By developing such a convergence model, much can also be learned about
success rates in ThrPGs, because the one is contingent on the other: In order
to converge on zero contributions, a group must necessarily fail to reach the
threshold. In contrast, the lower the probability of convergence to zero con-
tributions, the higher the success rate. This is the general principle behind
the model of a “simplified ThrPG” as it is presented here. The remainder of
the paper is structured as follows. After a more detailed motivation of the
theoretical approach in Section [2 the theoretical model is derived in Section
A comparative statics analysis based on this model is subsequently con-

ducted in Section[d Section [5] concludes with suggestions for future research.



2. Risk dominance and the probability of playing a particular equi-

librium

The theoretical work on equilibrium selection, like [Harsanyi and Selten
(1988)), rarely goes beyond discussing 2 x 2 normal-form games, clearly be-
cause a generalized analysis of more complicated games is, well, too compli-
cated to be worthwhile. Having two players with two strategies each is suffi-
cient to create the fundamental part of this problem. Assuming x; > y; > 2;
for each player i = 1,2, the game shown in Figure [I| has two Nash equilib-
ria in pure strategies: (X, X), which is payoff dominant because it yields the
highest payoff x; to each player i, and (Y, Y), which gives a “safe” payoff of y;
no matter what the other player does. This safe option becomes particularly
attractive if 2y; > x; + z; for all 4, i.e., if (Y, Y) is risk dominant, which also
means that there is a conflict between these two dominance criteria in this
case. The game also has a unique mixed-strategy equilibrium, which figures

prominently in the subsequent theoretical analysis.

Player 2

X Y
Player 1 X [ 21,22 | 21,2
Y vz | Y1,y

Figure 1: A 2 x 2 normal-form game with two pure strategy Nash equilibria (x; > y; > 2;
for each player i = 1,2).

Harsanyi (1995), placing more importance on risk dominance here than
in his and Selten’s earlier equilibrium selection theory (Harsanyi and Selten,
1988)), argues that the probability with which a particular pure strategy is
chosen by player ¢ in such a coordination game depends on this strategy’s

stability set, i.e., the set of mixed strategies of the other player against which



this pure strategy is a best response for player ¢, which in turn is determined
by the game’s parameters z;,y;, and z;. So we can calculate, for example,
how increasing z; affects the probability that strategy X is chosen by player 1,
and even derive the probability that (X, X) results as an outcome. If payoff
dominance were the more important selection criterion, the relation between
y; and z; should not matter at all, only that x; is greater than both y; and
z; for a given player 7.

Following the reasoning of Harsanyi| (1995), the probability that (X, X),
i.e., the payoff-dominant equilibrium, results, depends on the relative dis-
tance between this equilibrium and the mixed-strategy equilibrium. Fig-
ure |2 illustrates this reasoning for the game described above. Subfigure a)
shows the strategy space of this game, whereby X and Y refer to the two
pure-strategy equilibria (X, X) and (Y, Y), whereas M denotes the mixed-
strategy equilibrium. In symmetric games the mixed-strategy equilibrium M
is located on the straight line from X to Y, but this need not be the case
in a game with asymmetric payoffs. However, the simplex containing the
stability sets of player ¢’s pure strategies is indeed one-dimensional, as shown
in Subfigure b). Here, the mixed-strategy equilibrium cleanly separates the
stability set of strategy X from that of strategy Y. At any point closer to X
on the simplex, player ¢ will be better off switching to the pure strategy X.
Similarly, at any point closer to Y, player ¢ will prefer switching to strategy
Y.

Let o; denote the probability with which player ¢ plays X in the mixed-
strategy equilibrium. The probability p that the associated pure-strategy
equilibrium (X, X) is played, is then equal to the distance between (X, X)
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Figure 2: Strategy space (a) and simplex with stability sets (b) of a 2 x 2 normal-form
game with two pure-strategy equilibria X and Y and a single mixed-strategy equilibrium
M. The probability that equilibrium (X,X) (at point X) is played, is equal to the relative
distance between X and M, i.e., [XM/(| x|+ |MY]).



and M relative to the total distance between (X, X) and M as well as M
and (Y, Y):

. |XM| . \/(1 — 0'1)2 + (1 — 0'2)2
X M|+ |MY| V1 =01)2+ (1 —02)2 ++/0} + 03

(1)

p

In a symmetric game with * = 1 = 29, y = y; = ¥y, and 2z = 21 = 2y,
the mixed-strategy probabilities in equilibrium play are the same for both

players. Accordingly, by letting 0 = o1 = 09, can be simplified to

r—y
=1—0 = . 2
p o= (2)

If (X, X) is risk dominant in this symmetric game, we must have 2y < = + 2.
then implies that p > 0.5. Consequently, and as Harsanyi suggests as well
(Harsanyi, |1995 p. 92), the equilibrium with the highest theoretical proba-
bility of being played is the risk-dominant outcome.

Note, from , that p is equal to the weight placed on strategy Y (i.e.,
the other strategy) in this game’s unique mixed-strategy Nash equilibrium.
While this may appear a bit confusing at a first glance, it is actually correct
and consistent with Harsanyi’s “proportionality requirement” for unanimity
gameﬂ (cf. Harsanyi, 1995, p. 106f., Lemmas I and II): The more weight
player ¢ puts on strategy Y in the mixed-strategy equilibrium, the greater is
this equilibrium’s geometrical distance from (X, X), the larger is X’s stability

set, the higher is the probability that a player will choose X over Yf_r]

3For more on unanimity games see Harsanyi and Selten| (1988), p. 213ff.

YHarsanyi| (1995) shows (Lemma I) that using the size of the stability set directly as
a proxy does not necessarily work if there are more than two available strategies, making
this round-about approach necessary.



Extending the model to n players playing a “2 x ... x 2”7 game is straight-
forward. This game still has only two pure-strategy Nash equilibria, X and
Y, in which either all players choose X or all choose Y, respectively, as well
as a unique mixed equilibrium ME] Furthermore, the simplex of this game is
once again one-dimensional, with M separating the stability sets of the two
pure-strategy equilibria. Analogous to above, the theoretical probability p
that all players choose X is therefore:

p= Z?:l (1—0y)?
\/Z?:l (1—0i)?+ \/Z:'L:l o}

At the mixed equilibrium M, player ¢ is indifferent between the pure

(3)

strategies X and Y, but if any other player were to change his own mixed
strategy only slightly, either X or Y would immediately become a best re-
sponse. Consequently, assuming that all other players choose their strategies
independently, so that, e.g., player j plays X with probability o;, player ¢

faces the following decision problem:

(X:Hj#aj,Y:l—Hj#Uj)

X (Iuo)z+ Q=110
Y Yi

The break-even point, for which X and Y yield the same expected payoff
to player ¢+ and which characterizes the mixed-strategy equilibrium, is given

by the following set of equations:

5Cf. [Kim| (1996), Lemma 1, although technically the game described here does not
belong to the set of games II to which the lemma applies, since ’7T]€I = ﬂ,{,{_l,Vk < n.
Palfrey and Rosenthal| (1984), show a similar result (Proposition 10) for a binary ThrPG.

10



Vi=1l,...n:[Jo,= L7 (4)

Solving this set of equations for an explicit expression for the mixed strat-

egy o; yields the following result:

Lemma 1. In the n-player two-strategy normal-form game defined abowve,

the equilibrium mized strategy for player i is given by:

Proof: For any two players ¢ and j, divide the respective equations in ({4)
by each other to receive a new equation containing only o; and ;. Repeating
the process for the same 4, but in combination with other players, yields
n — 1 such two-variable equations. Substituting these equations back into
(4), namely into the equation generated from for player ¢’s choice between X
and Y, and solving for o; yields the above expression. [

For the homogeneous case with n players we can use (3) and (b)) to derive
a theoretical probability p that all players choose X of

pzl—azl—”ﬂ%%é. (6)

Consequently, p decreases in larger groups, approaching zero if n ap-
proaches infinity, which conforms to the intuition that coordination should
be more difficult with more players. In the geometric interpretation of the

model, increasing the number of players moves M closer to X, implying that,

11



for any particular player, Y’s stability set becomes increasingly larger relative
to X, so that this player has an increasingly lower probability of choosing X
over Y.

This generalization to n players also yields a more general definition of
risk dominance based on the size the pure strategies’ stability sets:ﬁ Even
for more than two players we can say that equilibrium X risk dominates
equilibrium Y if p > 0.5, that is, if strategy X has the higher probability of
being played. For the game discussed here, this is the case if for all players

i, T; + (2”'_1 — 1)2’1 > 2n—1yi.

3. The simplified ThrPG

While this approach seems to work well for games with only two pure
strategies, this may still seem a long way away from ThrPGs with continuous
contributions. However, I will argue that a model based on a 2 x 2 normal-
form game is already rich enough to provide a basic understanding of what

goes on in even a complicated game like a ThrPG.

8.1. Basic model

A ThrPG consists in a group of n players, each simultaneously choosing
their individual contributions to a public account with a threshold T'. Each
player ¢ = 1,...,n starts with an endowment e; > 0 which can be used to
pay for his contribution ¢; € [0, ¢;] to the public good. The marginal costs of

contribution, meaning the conversion rate from endowment to contribution,

6This corresponds to one of the characterizations of n-player risk dominance given by
Kim| (1996) which refers to the relative size of the pure-strategy equilibria’s basins of
attraction. See also Section

12



is given by ¢; > 0[] Usually, ¢;G; = e; for all 4, meaning that the players can
spend their entire endowment on contributions, but not more than that.

If the total contribution @ = > " | ¢; is equal to or exceeds the threshold
value T" > 0, i.e., Q@ = T, each player i receives an individual benefit of
v; > 0. Otherwise, the contribution costs are returned to each contributing
player at a refund rate of 0 < r < 1. This means that, if » = 1, a full refund
of contributions is granted, similar to a money-back guarantee. Let ¢; < T
for all players i, as well as T < Z?:l q;, so that one player alone cannot reach
the threshold, but the entire group can. By assuming ¢;T" < Z?Zl v; for all ¢,
we ensure that reaching the threshold is collectively profitable for all feasible
allocations of 7" among the players.

Player i’s payoff m;(¢;) is given by:

i) = e —cigp+v;  if Q=T )
ei—(1—r)eq if Q<T

Any vector of individual contributions q = (q1,...,¢,), with ¢q¢ < v;
for all i, that exactly reaches a total contribution of @ = T is a (strict)
Nash equilibrium of this game. If any player decreases his own contribution
below this amount, the threshold is missed and the player loses v;, which is
more than the contribution costs ¢;¢; that he could save in the process. And
by increasing this contribution beyond ¢;, the same player only manages to

further reduce his endowment to no additional benefit.

“The idea of contribution costs, which may be different for different players, has been
modeled by |Palfrey and Rosenthal (1991)) in the case of binary ThrPGs, yet their approach
is more closely related to having heterogeneous endowments.

13



Another equilibrium is constituted by the zero-contribution vector q° =
(0,...,0), which arises from the assumption that no player alone can reach
the threshold and accordingly should not contribute, if he believes to be the
only contributor. Zero contributions is a strict equilibrium in the case of no
or only partial refund if the threshold is missed (r < 1), but only a weak
equilibrium if contributions are fully refunded (r = 1). In addition, a full
refund establishes an entire set of “weak” Pareto inferior equilibria with a
total contribution of () < T. Because of the refund of contribution costs, a
player is indifferent to changes of his individual contribution at any of these
points, since whatever he contributes, the threshold will not be reached and

his payoff will be the same.

3.2. Simplified ThrPG

Given that the general idea behind a ThrPG is very simple, it will be

helpful to look separately at the two main components of this game:

1. Will the group reach the threshold or not?

2. Among the large number of possible threshold allocations, which one

(if any) does the group choose?

You may notice that the first question is binary: the group will or will
not reach the threshold. Assuming that “not reaching the threshold” is the
same as an overall and individual contribution of zero (so as not to waste
any contributions), this translates into the two strategies of Z (for “zero”),
which is contribute zero, and @,, (to indicate a positive total contribution

“quantity”), which has a particular player i contribute his “fair” (or otherwise

14



assigned) share of the threshold, denoted by «;. If all players contribute their
assigned share, the threshold value is reached exactly.

As long as all players agree on what a “fair share” is, we have already
come a long way in simplifying this game. Based on the general model of a
ThrPG presented above, we can then specify a simplified ThrPGF for a given
threshold allocation o = (ay, ..., 4, ..., ), where 0 < a; < 1is the relative
share of the threshold value provided by player ¢, resulting in a contribution
of Qn, = ;T ﬂ Obviously, >7* ; o = 1. An example for a simplified ThrPG
with only two players is given in Figure [3

Player 2
Qas Z
0 er — il + vy, er— (1 —=r)aaqT,
Player 1 a1 €9 — CQOZQT + Uy €9
7 €1, e1,
ey — (1 —r)eaT €2

Figure 3: A simplified two-player threshold public goods game with two pure-strategy
Nash equilibria.

Note the similarity to the game shown in Figure [1, which effortlessly
translates to the n-player case: If c;o; T < v; for all 7 and r < 1, Z yields a
guaranteed payoff of e; to player i, whereas (),, yields either strictly more

than e; if all players j choose the complement share Q),; or strictly less than

8This simplified game is not the same as the “reduced game” discussed by (Harsanyi
and Selten) [1988]) and (Harsanyil, (1995) which eliminates only clearly non-essential game
components like dominated or duplicate strategies or players.

9Since no individual player can reach the threshold value on his own, a; = 1 is ruled
out for any player i. Assigning to any particular player i a share of «; = 0 is tantamount
to removing this player from the game and thus equivalent to reducing the number of
players by one to only those with strictly positive shares.

15



e; if even a single other player chooses Z[/'] The first qualifying assumption
implies that the benefit from providing the public good, v;, is strictly greater
than the costs a player suffers from contributing his share, c;a;7T, which
simply means that participation in this game must be individually rational.
In addition, if » = 1, that is if a full refund is granted, any player ¢ always
earn at least e;, even if he contributes and the others do not, making this a
riskless choice between (),, and Z and thus a case to which the model does
not apply. For this reason, it is also assumed that r» < 1.

Accordingly, the theoretical probability with which the threshold in a
public goods game is reached, i.e., its predicted success rate, should like-
wise depend on the stability sets of two pure strategies. The predicted (or
theoretical) success rate then corresponds to the probability with which the
pure-strategy equilibrium associated with (),, is played. For reasons of sim-
plicity, I will call the equilibria associated with these two pure strategies Z
and Q..

To be true, this approach assumes that the obstacle of selecting one of
the large number of feasible threshold allocations, by itself an interesting
problem, has already been overcome by the group, meaning that all players
already know which one of the many threshold allocations is targeted and
compared to Z. This is usually not the case in an experimental session where
the group members have just come together for the first time for an unfamiliar

task. However, theoretical concepts like focal points (Schelling, 1980) or

10Here it becomes most apparent what is behind this simplification process, and what is
potentially lost in comparison to a more general analysis: In the original game, interme-
diate outcomes, with some players contributing and others not, may still entail a positive
probability that the threshold is reached.

16



team reasoning (Sugden, (1995)) as well as data from previous experimental
studies can be used to single out the threshold allocation(s) that will be
the most attractive to experimental subjects.E I simply assume that any
feasible threshold allocation, i.e., any efficient pure-strategy equilibrium of
the original ThrPG, is a possible candidate for a “fair” outcome.

As before, we only need to determine the mixed-strategy equilibrium,
M,,, in order to calculate the theoretical probability p, that the associated
pure-strategy equilibrium Q, is played, which due to the impossibility of
overcontribution in this simplified game also equals the theoretical success
rate. Let o0;(«) denote the probability with which player i plays Q,, in
the mixed equilibrium M, given a particular allocation «. The theoretical
success rate p, is then equal to the distance between Q. and M, relative to

the distance between Q, and M, as well as M,, and Z:

_ V2 (1= 04(a))?
\/2;1 (1 —0oi(a))? + \/22;1 01‘2(04)

By letting x; = e; — ;o T + vy, y; = e;, and z; = e; — (1 —r)c;oi T, we can

(8)

Pa

use Lemma [I] to derive the following:

Corollary 1. In a simplified ThrPG, the equilibrium mized strategy for

player 1 is given by:

oi(a) = \/ - %_QTT - LZT - T] ©)

1 Conceivably, the method described by |[Harsanyi and Selten| (1988) could be used just to
single out a unique threshold allocation, but it is biased towards payoff-dominant equilibria
(see ibid., Section 10.12) and would always predict that the threshold is reached.

17



Although the model is technically not defined for the case of a full refund,
that is if 7 = 1, taking the limit of (9)) for r approaching 1 gives o;(a) = 0
and a success rate of p, = 1. This means that Q, is the only equilibrium
predicted to occur by this theoretical approach in this special case, because
M., moves closer and closer to Z as r approaches 1, being located at the same
point as Z in the limit. This is consistent with the fact that Z is just a “weak”
Nash equilibrium in this case and therefore presumably less attractive than
the strict equilibrium Q,, no matter how the game parameters are chosen.
Obviously, this establishes a limitation of this model to the class of ThrPGs

with no or only a partial refund.

3.8. Success rates for homogeneous games

If the players are homogeneous, so that e = ¢; = ¢;,v = v; = v;, and
c = ¢; = ¢; for all players 7 and j, it is once again possible to simplify
further in order to better identify the effects of the particular game elements
on success rates. Symmetry can then be used as a justification to also assume
o; = a; = + as a (unique) focal allocation. Similar to the example in

Section [2, the mixed-strategy probabilities will consequently be the same for

all players as well, i.e., 0 = 0; = 0;. Furthermore, the theoretical success

1 —
pa=l-o=1- |z —. (10)
cT

Realizing that Z7 is just the step return SR (Croson and Marks, 2000),

rate is then given by

the theoretical success rate for a ThrPG with homogeneous players appears

18



to depend only on the step return, the number of players, and the refund

n—1 ]‘_r

Alternatively, we can define p := % as the proportion of total endowments

rate:

required to provide the public good,@ so that the success rate can also be

stated as

(12)

The probability given in (L1) also results by translating the “unanimity

rule” variant in Palfrey and Rosenthal (1984) into the notation used in this

paper[?|

3.4. Equilibrium convergence
In the introduction to this chapter I have criticized previous theoreti-
cal approaches for ignoring the possibility of equilibrium convergence. At a

first glance, the model presented above is similarly flawed, because Harsanyi

12Gince 0 < T' < ne, we have 0 < p < 1. By allowing p = 0 (or T' = 0) it may also
be possible to integrate linear public goods games into this model as an extreme case.
However, for all ¢ Q),, and Z are then indistinguishable, making the parameter v; mean-
ingless. Instead, linear public goods games grant a financial return on “overcontribution”
(commonly referred to as a “rebate”) to reward positive contributions. The fact that zero
contributions is a dominant strategy in these games is nevertheless consistent with the
idea that both “focal” pure strategies coincide in this case so that no coordination problem
exists.

13Their model assumes that the valuation v is normalized to 1. By letting ¢ = o, M = n
and ¢ = /SR, follows from the equation ¢ = ¢7=Yin Proposition 10 (Palfrey and
Rosenthal| [1984] p. 185) in the case of no refund (r = 0).
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(1995) only discusses one-shot (normal-form) games and the mixed-strategy
equilibrium is calculated under the assumption that the players act indepen-
dently of each other. However, there has been extensive theoretical work in
the literature on evolutionary game theory about the relation between risk
dominance according to |[Harsanyi and Selten| (1988) and stochastically stable
strategies (e.g., [Kandori et al., 1993; |Kim, 1996, Samuelson, [1997)).

The stability sets of a pure strategy are closely relate to the respective
equilibrium’s basin of attraction, meaning that a measure of their size will
also be a predictor of equilibrium convergence. In other words, if there is a
high probability that equilibrium Q, is played in initial rounds of the experi-
ment, game-play will likely also converge to Q,, in the long run. Convergence
to a threshold equilibrium may or may not increase success rates, though, de-
pending on the remaining volatility of total contributions. Even groups that
are very efficient in terms of total contributions may have only low success
rates, because the total contribution can just as likely be marginally above
or below the threshold. Similarly, some groups may converge more quickly
than others and therefore make fewer coordination errors which also affects
empirical success rates.

The model presented here cannot capture this kind of convergence behav-
ior (and the associated effect on success rates), because this behavior appears
to be concerned with the coordination process for how exactly the threshold
should be allocated among the group members. Convergence to zero contri-
butions, on the other hand, is a clear indicator for a collective unwillingness
to take the risk involved in providing the public good, and it will obviously

lead to significantly lower success rates than if game-play converges to the
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threshold.

With respect to the original ThrPG, it should be pointed out that the
basins of attraction of the threshold equilibria are actually infinitesimally
small if contributions are continuous — even though these equilibria are strict,
which is usually taken to imply asymptotic stability under a replicator dy-
namic (cf. [Samuelson), (1997, Proposition 2.11 on p.75) — because the set of
threshold allocations is convex and the next closest equilibrium is reached in
just two infinitesimally small steps[™ On the other hand, Z’s basin of attrac-
tion has a measurable extension (unless r = 1), which again varies with the
location of the mixed-strategy equilibrium, suggesting this basin’s relative
size as a suitable measure for the predicted success rate, that is, the smaller

the basin, the higher the success rate.

4. Comparative statics

Is the theoretical success rate consistent with the results reported in the
experimental literature? A first benchmark in this regard is the meta-study
by |Croson and Marks| (2000)). Table [1| translates their main empirical find-
ings{Tj into the notation used in this model, whereby + and — denote, respec-
tively, a positive or negative effect on success rates and * denotes statistical
significance (p < 0.05).

Except for SR, n, and p, the independent variables in this meta-analysis

are dummies, indicating whether or not a particular treatment has this prop-

14The first subtracts a negligible amount € > 0 from the contributions of player i, the
second adds the same amount ¢ to the contributions of any other player j.
15Gee |Croson and Marks| (2000), Table 2.
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Table 1: Empirical findings by |Croson and Marks| (2000).
SR n p Binary

Success rate +%* —* — —*

Refund (r) Rebate Homogeneous Communication

Success rate +* + + +*

* denotes statistical significance (p < 0.05)

erty. “Binary” refers to treatments that allow only binary contributions. “Re-
fund” applies only to treatments with a full refund (r = 1). “Rebate” refers
to a return on contributions beyond the required threshold value. Obviously,
“Homogeneous” indicates groups with homogeneous players. In the Croson
and Marks| (2000) meta-study, “Communication” applies to any treatment in
which the groups have a face-to-face discussion about the individual contri-
butions, which at that point in time had only been done in two treatments
from the study by van de Kragt et al.| (1983), however.

As most of the literature is concerned with homogeneous groups (and
marginal costs of ¢ = 1), I shall restrict the comparative statics analysis
to this special case. In , the step return SR is in the denominator of
a negative term and therefore positively correlated with the success rate.
Letting the refund rate r approach 1 makes the fraction it is contained in
converge to 0, so that the success rate converges to 1.

The effect of the number of players n is more difficult to determine, be-
cause it is also a component of the step return. SR increases in n, because
more players receive the same valuation v at the same cost 1. However, this

upward impulse on success rates is more than compensated in larger groups
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by the increasing risk of coordination failure. Mathematically, the increasing
power of the root term means that the success rate ceteris paribus decreases
in larger groups, approaching 0 as n approaches infinity.

In order to determine the effect of the proportion of the threshold value
to total endowments p, we need to refer to for p,. Realizing that p
is inversely proportional to the step return, but otherwise placed in a sim-
ilar position as SR is in (11}, we should expect lower success rates if this
proportion is increased.

The results are accordingly quite consistent with the meta-study by [Cro-
son and Marks| (2000), as shown in Table Although they do not find a
statistically significant effect of p on the success rate, this does not neces-
sarily mean that is wrong. For one thing, |Croson and Marks (2000)
include a large number of treatments in their sample that grant a full refund
(r = 1) to the groups that do not reach the threshold. As, strictly speaking,
the model presented in this study does not apply to these treatments, it is
still possible that a significant effect of p on success rates appears in only the
sub-sample of treatments with partial or no refund.

The other dummy variables included in the Croson and Marks (2000)
analysis are not fully accounted for in the simplified ThrPG. Although it
seems plausible that binary contributions reduce success rates, because of
the lack of focal threshold equilibria in pure strategies, this result cannot
be derived from the model. Simplifying the ThrPG also abstracts from any
effects of a rebate rule on success rates if the Nash equilibrium is unaffected,
simply because overcontribution cannot occur.

Homogeneous groups may have an advantage over heterogeneous groups
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playing a simplified ThrPG as well, given that the only focal allocation in
a symmetric game is equal contributions, which is likely to have a compar-
atively high success rate due to its central location.m Interestingly, though,
the most frequent type of heterogeneity investigated in the literature, het-
erogeneous endowments, leads to the same theoretical success rate in the
simplified ThrPG as the homogeneous case, provided that the players also
coordinate on equal contributions. Since experimental subjects usually do
not coordinate on this “risk-minimizing” allocation, the frequently observed
lower success rates in heterogeneous groups are in part compatible with the

theoretical model.

5. Conclusion

In summary, the main finding of this paper is that success rates in ThrPGs

appear to be determined by three different major components:

1. the relative size of the basin of attraction of the zero contribution equi-
librium, or respectively this strategy’s stability sets

2. the selection process of a unique (focal) equilibrium from the set of
threshold equilibria

3. the convergence process (speed and volatility) towards coordination on

a specific equilibrium

16put briefly, assigning one player a larger contribution share makes it more risky for
him to contribute, so that he is less likely to do so. Even though another player becomes
more likely to contribute at the same time as the result of a reduced contribution share, the
trade-off of the individual probabilities of contribution is not one-to-one (cf. (). A math-
ematical analysis in fact shows that equalizing the individual probabilities of contribution
maximizes the theoretical success rate.
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The first of these components is analyzed in more detail, resulting in a model
that sets the most prominent parameters of the game in explicit relation to
the success rate. As a secondary finding it follows that, in theory, granting
a full refund of contributions, if the threshold is not reached, removes the
possibility of convergence to zero contributions, suggesting that games with
this parameter setting should be treated as an altogether different type of
game and be investigated separately.

It should be pointed out that this mathematical model can be nothing
more than an approximation, a factor that correlates with observed success
rates, but does not provide a formula to directly calculate these rates (like
a physical model), let alone explain why some groups are successful, while
others are not. What it can do is give support for more general behavioral
theories which might predict that coordination is more difficult in larger
groups or that larger incentives increase the willingness to contribute, but do
not exactly state how these two factors will interact. As a consequence, this
model may give rise to additional experimental work, in particular examining
the effect of the step return in larger groups of, say, thirty or even forty
players, or at least methodically varying the number of players in smaller
groups.

Future work should also extend the model to cover the other two com-
ponents as well as other design variations. This extension is likely to create
additional “novel” predictions (cf. |Lakatos, [1970) to be tested experimentally
in order to corroborate (or refute) the model. As this model assumes that a
focal threshold allocation can be reached by playing pure strategies, it com-

plements the studies by [Palfrey and Rosenthal| (1984), |(Offerman et al.| (1998),
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and |Goeree and Holt| (2005) who (at least implicitly) assume that the only
(focal) symmetric equilibria are in mixed strategies, a fact which makes it

difficult for groups to coordinate their behavior and reach the threshold.
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