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ABSTRACT Phenotypic variability among bacteria depends on gene expression in response to different environments, and it also
reflects differences in genomic structure. In this study, we analyzed transcriptome sequencing (RNA-seq) profiles of 151 Pseu-
domonas aeruginosa clinical isolates under standard laboratory conditions and of one P. aeruginosa type strain under 14 differ-
ent environmental conditions. Our approach allowed dissection of the impact of the genetic background versus environmental
cues on P. aeruginosa gene expression profiles and revealed that phenotypic variation was larger in response to changing envi-
ronments than between genomically different isolates. We demonstrate that mutations within the global regulator LasR affect
more than one trait (pleiotropy) and that the interaction between mutations (epistasis) shapes the P. aeruginosa phenotypic
plasticity landscape. Because of pleiotropic and epistatic effects, average genotype and phenotype measures appeared to be un-
correlated in P. aeruginosa.

IMPORTANCE This work links experimental data of unprecedented complexity with evolution theory and delineates the tran-
scriptional landscape of the opportunistic pathogen Pseudomonas aeruginosa. We found that gene expression profiles are most
strongly influenced by environmental cues, while at the same time the transcriptional profiles were also shaped considerably by
genetic variation within global regulators. The comprehensive set of transcriptomic and genomic data of more than 150 clinical
P. aeruginosa isolates will be made publically accessible to all researchers via a dedicated web interface. Both Pseudomonas spe-
cialists interested in expression and regulation of specific genes and researchers from other fields with more global interest in the
phenotypic and genotypic variation of this important model species can access all information on various levels of detail.
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One of the key traits of living organisms is the ability to main-
tain a dynamic equilibrium of metabolism even in changing

environments (1). Bacterial populations can respond phenotypi-
cally by environment-driven flexible changes in the transcrip-
tional profiles (phenotypic plasticity) and adapt to selective pres-
sures through the process of evolution (evolutionary adaptation)
to benefit in distinct habitats (2).

Recent technological advances in acquiring genome-wide data
have led to substantial progress in identifying the genomic se-
quence of a plethora of bacterial pathogens. These genomes are
shaped by evolutionary processes and encode optimized gene
expression-based systems that guarantee phenotypic plasticity (3,
4). However, only knowledge on the dynamic expression of inter-
acting gene regulatory networks will lead to a more comprehen-
sive understanding of the biology underlying complex bacterial
adaptation mechanisms and the expression of virulence traits (5).

Pseudomonas aeruginosa is a ubiquitous Gram-negative bacte-
rium that is capable of surviving in a broad range of natural envi-
ronments (6, 7). Furthermore, it is an important opportunistic
bacterial pathogen and a causative agent of severe acute infections

and chronic infections that are often associated with biofilms (8,
9). The reason for this remarkable ecological success can be attrib-
uted to its large metabolic versatility and flexibility (7). Global
regulators and signaling systems are highly abundant in the
P. aeruginosa genome (10, 11) and form a complex and dynamic
regulatory network responsible for phenotypic plasticity and the
expression of virulence genes (12–14).

The finding that the distribution of various P. aeruginosa
clones found in the clinic largely match those found in environ-
mental habitats (15–17) suggests that all or most members of the
P. aeruginosa species are equipped with optimized regulatory
mechanisms that guarantee bacterial survival in diverse environ-
ments, including the human host. Nevertheless, nosocomial
transmission can increase the prevalence of distinct clones in
P. aeruginosa-positive patients at a particular center, and there
might be subspecies variants of P. aeruginosa that are particularly
adapted and benefit in the clinical setting.

Here, we aimed at exploring the transcriptional landscape of
the opportunistic pathogen P. aeruginosa. By analyzing strand-
specific RNA sequences of 151 clinical P. aeruginosa isolates, we
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gained profound insights into the variation of transcription pat-
terns across genomically heterogeneous lineages. Furthermore,
we analyzed the transcriptome of the P. aeruginosa type strain
PA14 that has been recorded under a plethora of different envi-
ronmental conditions (18–21), including conditions encountered
within the eukaryotic host. The transcriptional states were affected
considerably by environmental cues, and almost the entire ge-
nome of P. aeruginosa PA14 was transcriptionally active at least
under certain conditions. As opposed to this significant pheno-
typic plasticity, the variation in gene expression profiles was much
smaller among the transcriptomes of the 151 clinical P. aeruginosa
isolates cultivated under one environmental condition. Further-
more, we found only a weak correlation between genomic simi-
larity and expression profiles; instead, the expression profiles were
shaped by a few genetic variations within global regulators.

RESULTS
Global survey of P. aeruginosa gene expression profiles. With
the aim to delineate the P. aeruginosa transcriptional landscape,
we analyzed strand-specific single-nucleotide-resolution mRNA
sequence data that have been recorded on 151 clinical P. aerugi-
nosa isolates (22) (genome data set; available in the SRA database
under accession numbers SRP034661 and SRP036144) and the
transcriptomes of the P. aeruginosa type strain PA14 grown under
14 different conditions (environment data set), including condi-
tions encountered within the eukaryotic host (18–21) (the envi-
ronment data set is accessible in the GEO database under acces-
sion number GSE55197).

The distribution of normalized gene expression for all tran-
scribed regions, following mapping to the P. aeruginosa PA14 ref-
erence genome, was continuous and unimodal in both data sets
(histograms in Fig. 1). Overall, between 24 and 46% of the genes
within one transcriptome showed an average level of expression
below the sensitivity limit (as defined in Materials and Methods);
however, most of these genes were found to be actively expressed
at least in some isolates or under some culture condition(s)
(Fig. 1). Only 243 genes in the clinical data set and 82 genes in the

environment data set never exceeded the sensitivity limit (red dots
in Fig. 1). These results indicate that almost the entire genome of
P. aeruginosa is transcriptionally active at least under certain con-
ditions. On the other end of the scale, 1,488 genes in the clinical
data set and 2,139 genes in the environment data set were found to
be transcriptionally active above the sensitivity limit in all tran-
scriptomes within a data set. Next, we recorded the 25% most
highly expressed genes for every transcriptome and assigned them
to functional classes. Among the transcriptomes of the 151 clinical
isolates, a common set of 430 genes was always expressed at high
levels. This set included many genes involved in central cellular
processes like transcription, translation, and cell division. In the
environment data set, the core set of highly active genes was
smaller, but still 356 genes were always found among the 25%
most active ones. Overall, 261 genes were highly expressed in all
isolates and under all culture conditions (see Table S1 in the sup-
plemental material).

Next, we compared the impact of environmental conditions
and genomic background on global gene expression patterns. The
transcriptional profiles were compared pairwise within the 151
clinical isolates and within the 51 samples of the reference strain
PA14 grown in 14 different environmental conditions to deter-
mine the differential gene expression. Altogether, 1,121 genes
were found to exhibit highly variable gene expression with 25% of
all gene expression comparisons exhibiting a differential larger
than 4 (75th percentile of fold changes, FC75 � 4) either in the
genome or environment data set of samples (see Table S2 in the
supplemental material). The number of such genes with highly
variable expression profiles was larger (796 genes) among the
PA14 samples in different culture conditions than in the clinical
data set (592 genes). A total of 267 genes exhibited a FC75 of �4 in
both data sets. Figure 2 visualizes the transcriptional variation in
the genome data set and environment data set. Despite the
heterogeneous origin of the clinical isolates, the overall pattern
of transcriptional activity in the genome data set was more
uniform, whereas changes in the environment had a substantial
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FIG 1 Distribution of transcriptional activity throughout all samples. (A and B) The genes were ordered from left to right by their median gene expression (black
line) for the genome data set (A) and environment data set (B). Dots above and below the median indicate the observed maximum and minimum gene expression
for a particular gene. Red dots indicate the genes that were always below the sensitivity limit (red dotted line; nRPK0 � 3.26), and green dots indicate the genes
that were always above the sensitivity limit. Inserts show the histogram of gene expression (nRPK values) for all genes annotated in reference strain PA14 and a
pie chart indicating the fractions of genes that are always above (always on) and always below (always off) the nRPK0 limit.
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impact on the transcriptional profile of the P. aeruginosa type
strain PA14.

Figure 3 illustrates the assignment of the differentially regu-
lated genes to different functional categories. The functional class
of secreted factors showed the highest fraction of highly variably
expressed genes both in the clinical isolates (variably expressed in
52% of the isolates) and in the PA14 samples (variably expressed

in 51% of the environmental conditions), including virulence-
related genes involved in the synthesis of phenazines and effectors
of type III secretion. Genes that are related to mobile genetic ele-
ments (functional class PhaTraPla [related to phage, transposon,
plasmid]) or involved in antibiotic resistance (class ABresist [an-
tibiotic resistance and susceptibility]) showed substantially higher
variability in the clinical isolates (Fig. 3), which may reflect the
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FIG 2 Global comparison of transcriptional activity. (A) Principal component analysis of the combined data set, including the 151 clinical isolates (genome data
set) and the 51 samples of strain PA14 under 14 different environmental conditions (environment data set). The analysis was based on the expression of the 1,121
genes that showed highly variable expression in at least one of the two data sets. The first three principal components (PC1 to PC3) displayed account for ~47%
of the total variance of the data. The environmental conditions used for cultivation were as follows: late exponential phase (late exp.), exponential growth phase
(exp.), stationary growth phase (stat.), heat shock at 42°C or 50°C, low osmolarity (osmol.), iron deficiency (iron def.), 24-h-old static biofilm (BF 24h), 48-h-old
biofilm (BF 48h), attached cells (attach), nonattached population in attachment experiment (att. cont), anoxic cultivation, minimal phosphate concentration
(low P), and mouse tumor infection model (ex vivo). (B) Hierarchical clustering of the combined data set, including both the genome and environment data sets.
Branches representing samples of the environment data set are drawn in red with thick black lines. The colored boxes in panel B correspond to the colors used
in panel A and reflect the different culture conditions. Clinical isolates are indicated by white boxes with gray outlines.
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effect of evolutionary adaptation to specific habitats, rather than a
phenotypic response. In contrast, noncoding RNA genes
(ncRNA) and genes classified as functional class adaptation and
protection (AdptProt) and functional class chaperones and heat
shock proteins (ChapHsp) were much more variable under differ-
ent culture conditions and showed much less variation in the clin-
ical isolates.

Genotypic component of phenotypic variation. Since all clin-
ical isolates were cultivated under identical growth conditions,
any differential in gene expression between the clinical isolates can
be assumed to be caused by differences in the genetic background
and thus reflects the genotypic component of phenotypic variabil-
ity within the P. aeruginosa species. We calculated the phenotypic
distance between isolates based on Pearson correlations and con-
structed a phenotypic tree showing a representation of all isolates
clustered by their phenotype (Fig. 4A). In order to compare phe-
notypic and genotypic similarity, we also constructed a dendro-
gram reflecting genotypic relatedness based on the occurrence of
oligonucleotide sequences (k-mers; Fig. 4A). One can observe sev-
eral smaller subclusters that correspond in both dendrograms, but
no global correlation between genomic similarity and transcrip-
tional profiles. Even distantly related P. aeruginosa isolates exhib-
ited gene expression profiles that were as similar as the transcrip-
tional profiles of more closely related isolates. A direct comparison
of phenotypic and genotypic distances (Fig. 4B) confirms that
phenotypic distance is on average independent of the genotypic
distance beyond genotypically highly similar strains (coefficient of
correlation [r] � 0.08, P � 0.05, simple Mantel test). Notably,
quite distinct transcriptional profiles were also recorded for many
closely related isolates, and the reduced average phenotypic dis-

tance was caused mainly by some of the clusters (Fig. 4A and B).
This suggests that independent of the genetic background, any
strain may adopt a distinct transcriptional profile and that the
transcriptional landscape seems to be shaped considerably by only
a few genetic variations.

Environmental component of phenotypic variation. The en-
vironment data set consists of transcriptomes of the PA14 type
strain that were recorded under different culture conditions and
thus reflects the pattern of phenotypic expression variation of a
single genotype across a range of environments (reaction norm).
Although the environment data set is smaller than the genome
data set (51 instead of 151 transcriptomes), the median pheno-
typic distance was larger in the environment data set (Fig. 4C).
This is also reflected in the combined data set, where most of the
clinical isolates form a cluster that is distinct from the more di-
verse environment samples (Fig. 2). The only samples of the PA14
strain that clustered phenotypically within the clinical isolates
were those grown in exponential or late exponential growth phase
and under low-osmolarity conditions. The growth conditions for
the clinical isolates were identical to those of the late exponential
cultures and the difference to the exponential cultures was merely
the time point at which RNA was isolated. The clinical isolates are
phenotypically intermediate between exponential and late expo-
nential cultures, which may be due to a different “timing” of their
growth phase regulation. Further deviations in the environmental
conditions mostly resulted in distinct transcriptional profiles
(Fig. 2).

Inactivation mutations within lasR are frequent and consid-
erably alter the transcriptional profile. On a global level, the den-
drograms of transcriptional profiles can be subdivided into four
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FIG 3 Assignment of genes that varied among the transcriptomes to different functional categories. Bars indicate the percentage of genes that exhibited highly
variable gene expression (FC75 of �4) within each functional category. Values for the genome data set of 151 clinical isolates and values for the environment data
set of reference strain PA14 samples grown under 14 different culture conditions are shown. Functional categories were assigned according to the annotation for
strain PA14 available from the Pseudomonas genome database (43, 44). The PseudoCAP functional classes are abbreviated as follows: AAsynth, amino acid
biosynthesis and metabolism; ABresist, antibiotic resistance and susceptibility; AdptProt, adaptation and protection; CCatab, carbon compound catabolism;
CellDiv, cell division; CellEnv, Cell wall/lipopolysaccharide (LPS)/capsule; ChapHsp, chaperones and heat shock proteins; Chemotax, chemotaxis; CIM, central
intermediary metabolism; Cofactor, biosynthesis of cofactors, prosthetic groups, and carriers; DNAetc, DNA replication, recombination, modification, and
repair; EnergMb, energy metabolism; FAPOL, fatty acid and phospholipid metabolism; Hypoth, hypothetical, unclassified, and unknown; membrane, mem-
brane proteins; MotAtt, motility and attachment; ncRNA, noncoding RNA (rRNA and tRNA were excluded in this study); NuclSynth, nucleotide biosynthesis
and metabolism; PhaTraPla, related to phage, transposon, or plasmid; ProtExpo, protein secretion/export apparatus; Putative, putative enzymes; Secreted,
secreted factors (toxins, enzymes, alginate); SmallTrans, transport of small molecules; TranscRNA, transcription, RNA processing and degradation; TranslEtc,
translation, posttranslational modification, degradation; TRs, transcriptional regulators; TwoComp, two-component regulatory systems.
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large clusters of similar phenotypes (clusters a to d in Fig. 4A). We
performed a more in-depth analysis of a group of seven clinical
isolates (highlighted by green symbols in Fig. 4A) which formed a
distinct genotypic cluster within the k-mer dendrogram due to
their high genomic similarity but showed large differences in their

transcriptional profiles. Two of the isolates grouped with pheno-
typic cluster a (hexagons in Fig. 4A), while five highly similar
isolates belonged to cluster b (squares). We next searched for an
enrichment of group-specific sequence variations in isolates
grouping with cluster a (2 isolates) and b (five isolates). Interest-
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FIG 4 Comparison of the genomic and phenotypic tree. (A) Correlation matrix comparing gene expression profiles (the phenotype) and the genotypic
relatedness of the clinical isolates. Each square reflects the position of an individual isolate on the two axes. The horizontal dimension represents the genomic
relatedness calculated by a hierarchical clustering of the similarity of k-mer profiles of each isolate’s RNA-seq data. The vertical dimension represents the
hierarchical clustering of gene expression data based on normalized expression of the 592 genes that were classified as highly variable (FC75 of �4) in the data
set of clinical isolates. Clusters of similar expression profiles (a to d) are indicated by colored subtrees within the dendrogram. Clinical isolates that harbor a
loss-of-function mutation in lasR are marked with red squares in the matrix and by red bars alongside the two axes. The seven isolates that were included in an
in-depth analysis of the genotype as shown in Fig. 5B are marked by green symbols. (B) The phenotypic distance is calculated as the Pearson correlation distance
between the normalized expression profiles of the 592 genes that were classified as highly variable (FC75 of �4) in the genome data set. Genomic distance is the
difference in the k-mer profiles of each isolate’s RNA-seq data. Each dot represents a pairwise comparison between two transcriptomic profiles. The orange
dashed line represents the fit of a saturation function (analogous to Michaelis-Menten and Monod-type kinetics) to represent the approximate average
phenotypic distance in response to genotypic distance. (C) Boxplots showing the phenotypic distances of all pairwise comparisons in the genome and environ-
ment data sets. The difference between the two distributions is highly significant (P � 10�200 by Mann-Whitney U test).
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ingly, we found that whereas the lasR gene, which encodes a global
transcriptional regulator (LasR), was intact in the two isolates
grouping with cluster a, an identical inactivating deletion within
the lasR gene was present in the other five isolates. To test whether
this mutation is responsible for the observed transition of the
transcriptional profiles from cluster b to cluster a, we comple-
mented two isolates of the subgroup harboring the lasR mutation
with the PA14 wild-type lasR gene and recorded the transcrip-
tional profiles of the complemented strains. As depicted in Fig. 5,
the transcriptional profiles of the complemented strains now
grouped with those of the strains of the subgroup harboring the
wild-type lasR allele.

These results indicate that the differences in the transcriptional
profiles between the two subgroups of the phylogenetically related
isolates can be almost exclusively explained by the mutation in
lasR in the one subgroup that is absent in the other. Nevertheless,
despite this dominant effect of an inactivating mutation in lasR on
the transcriptional profile in this particular strain background,
not all strains that exhibited a similar transcriptional profile har-
bored a mutation in lasR (cluster b in Fig. 4A). Conversely, we
found LasR inactivating mutations very frequently (indels and/or
stop codons in 48 of the 151 P. aeruginosa isolates [indicated in red
in Fig. 4A]) not only in cluster b but also in clusters a and c, but
strikingly never in cluster d.

A comparison of the transcriptional profiles between cluster d
and clusters a, b, and c revealed a lower expression of many genes
that are known to be under LasR control (including, e.g., lasA,
lasB, pqsABCDE, and rhlR) in the clusters with defective LasR.

Apparently, a large fraction of the clinical P. aeruginosa isolates
included in this study harbor LasR-inactivating mutations (indi-
cated in red in Fig. 4A) and consequently exhibit a LasR-negative
phenotype. In addition, many isolates were found to have similar
transcriptional profiles, thus clustering closely with the LasR-
defective isolates despite harboring no LasR-inactivating muta-
tions (although the possibility that there are single nucleotide
polymorphisms [SNPs] that impact on the functionality of LasR
in this subgroup cannot be excluded). This indicates that other
(downstream) mutations within clusters a, b, and c might mimic

the LasR-negative phenotype, although our search for additional
mutations that are specifically enriched in cluster b was not suc-
cessful.

DISCUSSION

Phenotypic plasticity allows living organisms to react at least to
some extent to changes in their environment by adjusting their
metabolism through specific regulation of gene expression. Such
phenotypic plasticity might be favored either by natural selection
in changing environments or reduced by the fixation of genetic
variants that contribute to adaptive phenotypes if conditions re-
main constant for a prolonged time period. This process has been
analyzed in detail in long-term experiments of in vitro evolution of
Escherichia coli for example and led to the identification of parallel
changes in gene expression profiles (3, 23, 24).

The opportunistic pathogen P. aeruginosa is commonly de-
scribed as highly versatile, because it is able to thrive in a great
variety of different habitats, including host organisms all across
the tree of life (6, 25). This versatility is usually traced back to its
large genomic potential with more than 5,000 genes and a high
regulatory complexity reflected by the large proportion of tran-
scriptional regulators and two-component regulatory systems
that represent about 10% of the genome (10). P. aeruginosa seems
to be a generalist organism that sustains the ability to survive in a
large variety of habitats. Its range of environments encompasses a
broad range of phenotypes that are governed by a complex regu-
latory network with a modular structure with each module con-
trolling specific phenotypic traits in response to environmental
stimuli (21).

Such phenotypic plasticity can be enhanced and greatly facili-
tated via genome expansion by acquisition of mobile genomic
elements (11, 26, 27); however, longitudinal studies on the ge-
nomes of P. aeruginosa isolates originating from the chronically
infected lung of patients with cystic fibrosis (CF) also highlighted
the importance of specific mutations in global regulatory elements
in the adaptation process (28–30).

Here, a broad cross-sectional study based on the transcrip-
tomes of 151 clinical isolates enabled a comprehensive analysis of
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the genotypic dimension of phenotypic variation. The (transcrip-
tional) phenotypes of the 151 isolates varied substantially, but the
isolates still formed clusters in the global comparison of both data
sets (Fig. 2) and showed a lower median phenotypic distance com-
pared to the transcriptional profiles of one P. aeruginosa genotype
(PA14) in response to different environmental conditions
(Fig. 4C). It has been reported that the overall genome-wide SNP
ratio is in the range of 1 order of magnitude lower in P. aeruginosa
than the ratio reported for other bacterial organisms such as Esch-
erichia coli (30–32), which was also confirmed by the sequence
data obtained from the clinical isolates in this study (data not
shown). This underpins that survival of P. aeruginosa in diverse
habitats is mainly achieved by phenotypic variability rather than
via adaptive mutations.

In general, the correlation between genomic background and
transcriptional phenotype was low. We observed that even be-
tween highly similar genotypes, the divergence of the transcrip-
tional phenotype was substantial, while some completely unre-
lated genotypes exhibited strikingly similar phenotypes. This
pattern strongly supports the idea of pleiotropic and epistatic ef-
fects. If the phenotype (the gene expression profile) is under con-
trol of a few master regulators, where mutations result in pheno-
typic changes in many traits (pleiotropy), average genotype and
phenotype measures can be uncorrelated, since what matters is
not the average genotype but the sequence of those few loci. Thus,
groups of similar phenotypes may be traced back to certain key
genetic variations that reflect adaptations to specific environ-
ments during the evolutionary history of the isolates. One impor-
tant example is the loss-of-function mutation in lasR that has a
strong impact on the phenotype as shown in the example of a
small cluster of isolates. The common appearance of mutations
within lasR has been noted previously in clinical settings (33–35),
especially in P. aeruginosa isolates recovered from the chronically
infected respiratory tracts of patients suffering from cystic fibrosis
(28, 30, 36). However, apart from the pleiotropic effect of LasR,
which is a global regulator affecting the expression of more than
100 genes, we also observed epistatic effects. Clinical isolates that
exhibit a mutation in LasR did not cluster with respect to pheno-
typic similarity. Obviously, there are multiple interacting genes
that lead to the same phenotype, such that mutations in LasR do
not lead to dominant changes in the phenotype that would be
observed in all isolates. In conclusion, our results indicate that in
general, the P. aeruginosa species is able to thrive in diverse habi-
tats and that survival is greatly facilitated by regulatory processes,
which are mainly organized in modular regulons under the con-
trol of master regulators. Any P. aeruginosa strain seems to have a
similar potential to cope with a broad range of distinct environ-
mental conditions that probably also include those encountered
within the human host. In addition, mutations in master regula-
tors, such as LasR, allow for a fast adaptation of global expression
patterns (18, 21, 37–39) that mimic environmentally elicited phe-
notypes. Thus, the versatility of P. aeruginosa as a species does not
stem only from flexible responsiveness of a complex regulatory
network but also from the abundance of various regulatory mod-
ules that facilitate fixation of adaptive traits in an evolutionary
process. Our results highlight the need to understand the nature
and structure of variation as the basis for complex adaptation
processes that generate phenotypic variation and drive its evolu-
tion. The identification of key regulatory components and their

impact on the transcriptomic landscape might have implications
for unique interferences with bacterial pathogenicity.

MATERIALS AND METHODS
Bacterial strains and growth conditions. Single-nucleotide-resolution
RNA sequencing data from 151 clinical P. aeruginosa isolates (22) served
as the basis for the delineation of the P. aeruginosa transcriptional land-
scape in this study. The clinical isolates were recovered from clinical in-
fections at various sites from a total of 143 individuals. Twenty-three of
the clinical isolates were isolated from cystic fibrosis patients. Total RNA
was isolated after growth to late exponential growth phase (optical density
at 600 nm [OD600] of 2.0) in LB medium at 37°C with shaking at 180 rpm
(22). Raw sequence data of the clinical isolates is available from the SRA
database with accession numbers SRP034661 and SRP036144.

Furthermore, RNA sequencing data of the P. aeruginosa PA14 refer-
ence strain cultivated under 14 different growth conditions (a total of 51
samples) were used in the global gene expression analysis in this study.
Those conditions included growth within biofilms, at various tempera-
tures, growth phases, osmolarities, phosphate and iron concentrations,
under anaerobic conditions, attached to a surface, and conditions en-
countered within the eukaryotic host. The P. aeruginosa PA14 transcrip-
tome sequencing (RNA-seq) data have in part been generated in the con-
text of previous studies in our lab (18–21) and are accessible as a single
data set from the GEO database under the accession number GSE55197.
Four replicates of PA14 that are available under the accession number
SRP034661 (genome data set) were included in 51 samples used for this
part of this analysis. Details on the culture conditions of strain PA14 to
generate environment-driven differentials in gene expression as well as
the differential gene expression profiles on single or groups of PA14
strains can be explored via the web-based Bactome database (https://
bactome.helmholtz-hzi.de).

Calculation of gene expression. Sequence reads were separated ac-
cording to their bar codes, and bar code sequences were removed. The
longer reads (110 nucleotides [nt]) resulting from the sequencing of clin-
ical samples were trimmed using the fastq-mcf script of the ea-utils pack-
age (40) removing adapters and low-quality sequences. Trimming was
omitted for short reads (50 nt), since the fraction of artifacts and poor-
quality sequence was found to be low (data not shown). Trimmed se-
quences were mapped to the genome sequence of the reference strain
P. aeruginosa PA14 using stampy (41) with default settings. Absolute gene
expression was calculated by counting the number of reads that mapped
to annotated genes as described previously (19). The R package DESeq
(42) was used for further expression analysis. Absolute read counts were
normalized to yield nRPK (normalized reads per kilobase of gene se-
quence) values using the following equation:

nRPKij � log2�1, 000

li
�

RPGi

Fj
� 1�

where nRPKij is the number of normalized reads per kilobase of gene
sequence of gene i and expression profile j, li is the length of gene i, RPGi

is the number of reads that mapped to the locus of gene i, and Fj is the size
factor (calculated by DESeq) of expression profile j.

Identification of highly expressed and nonexpressed genes. Since the
sensitivity toward genes with low transcriptional activity strongly depends
on the sequencing depth, which varied across all samples between 427,000
(427K) and 8,800K total reads, we sought to level off this difference.
Therefore, we defined a sensitivity limit for gene expression nRPK0, based
on the sample showing the lowest sequencing depth (i.e., the expression
profile with the lowest size factor as calculated by DESeq). By that means,
a gene is defined as not expressed if its normalized read count is below the
sensitivity limit defined as follow:

nRPK0 � log2�1, 000

lavg
�

1

Fmin
� 1� � log2�1,000

855
�

1

0.136
� 1�

� 3.26
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where nRPK0 is the nRPK at the limit of sensitivity, lavg is the median
length (in base pairs) of a gene in the PA14 genome (excluding rRNA and
tRNA genes), and Fmin is the smallest size factor resulting from the simul-
taneous normalization of all expression profiles with DESeq. Depending
on the strain, between 20 and 46% of all genes showed an expression level
below this sensitivity limit (nRPKij � nRPK0). It is important to note that
this fraction was independent of the total read count (Pearson correlation
with size factors, r � �0.12) but was larger in clinical strains (median,
37.5%) than in the 51 PA14 samples (median, 29.7%), presumably due to
accessory genes that are fully absent from their genomes.

Comparison of gene expression profiles. Gene expression profiles
were compared by calculating the fold change for each gene between any
pair of samples across all 151 clinical isolates and independently across the
51 samples of the reference strain PA14, using the nbinomTest function of
the DESeq package. The variation of gene expression was calculated for
each gene by determining the 75th percentile of the absolute fold changes
(FC75) across all pairwise comparisons. Genes with a FC75 of �4 were
classified as highly variable. Functional classification of genes was adapted
from the Pseudomonas genome project using the PseudoCAP functional
annotation (43, 44). rRNA and tRNA genes were excluded from the clas-
sification and analysis.

A phenotypic tree was calculated by clustering the gene expression
profiles using hierarchical clustering with the unweighted pair group
method with arithmetic mean (UPGMA, in R using the
“method�‘average’” option of the hclust function) of their Pearson cor-
relation distance, which was calculated as (1 � r)/2 with r being the Pear-
son correlation calculated using the R function cor using normalized read
counts (nRPK) of the 592 highly variable genes (FC75 of �4) of the ge-
nome data set. To test the robustness of this method, distances were cal-
culated from Kendall and Spearman correlation coefficients and as Eu-
clidean and Manhattan distance (a summary of the different measures
applied here can be found in reference 45). The clustering method was
also varied using weighted pair group method using arithmetic averages
(WPGMA), median linkage (weighted pair group method using centroids
[WPGMC]), centroid linkage (unweighted pair group method using cen-
troids [UPGMC]), single linkage, and complete linkage as alternatives.

The phenotypic distances of the two individual data sets were com-
pared using the Mann-Whitney U test, a nonparametric test of the null
hypothesis that the mean ranks of two populations are equal.

Bactome database. Access to the data stored in the Bactome database
is achieved through a system of web services (https://bactome.helmholtz-
hzi.de), which offer tools for the display of the data, e.g., in the form of a
“Gene Feature Card,” or for the processing of data sets with statistical
analysis in R. The Bactome database is implemented on a Linux-based
Apache web server and consists of data stored in a MySQL database sys-
tem. Programs are written in Python, while web pages are in HTML with
JavaScript functionality. Bactome stores the basic sequence information
in flat files, whereas all of the annotation is contained in the MySQL
database. Group comparisons of clinical isolates for significant gene ex-
pression enrichment in one of the groups were performed using Student’s
t test. The Benjamini-Hochberg (bh) correction was used to calculate
adjusted P values (padj) to control the false discovery rate (FDR) in the list
of regulated genes.

Calculation of genotypic distances (k-mer tree). The genotypic tree
was created using the sequencing reads of the clinical isolates and the four
wild-type samples of reference strain PA14 directly. Genotypic distances
between the strains were calculated using a k-mer approach developed by
Ole Lund and Rolf Kaas (46). The reads were split into 17-mers, which
were then compared between the strains. The number of times a 17-mer
appeared in a single isolate was not taken into account. This approach uses
genome-wide sequence data and as such offers a high resolution in the
comparison of global genotypes. Its comparability with gene-based meth-
ods like multilocus sequence typing (MLST) was tested by calculating an
alternative genotypic tree from the sequences of nine consistently ex-
pressed genes: spuD (PA14_03920), nirS (PA14_06750), rpoB

(PA14_08760), icd (PA14_30190), clpX (PA14_41230), tig (PA14_41250),
hpd (PA14_53070), ftsZ (PA14_57275), and atpD (PA14_73240). The re-
sulting tree showed high similarity with the k-mer-based tree but offered
much less resolution in the segregation of closely related strains (data not
shown).

The genotypic distances between the clinical isolates were compared
statistically with the phenotypic distances calculated from the Pearson
correlation distances as described in the section “comparison of gene ex-
pression profiles” using the simple Mantel test (100,000 iterations), im-
plemented as the command line script zt by Eric Bonnet (47).

Accession numbers. Data for sequences determined during this study
can be found under accession numbers SRP034661 and SRP036144 (ge-
nome dataset); and GSE55197 (environment dataset).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.00749-15/-/DCSupplemental.

Table S1, XLS file, 0.1 MB.
Table S2, XLS file, 0.3 MB.
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