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Abstract

This study quantifies soil and land use controls on sediment mobilisation and redistri-
bution in cultivated loess soil landscapes, as these landscapes are frequently used for
intensive cultivation and are highly susceptible to erosion. To this end we developed
and verified a process based model named CATFLOW-SED at the plot, hillslope and
catchment scales. The model relies on an explicit representation of hillslopes and their
dominant physiographical characteristics which control overland flow formation, parti-
cle detachment and sediment redistribution (transport and sedimentation). Erosion pro-
cesses are represented by means of the steady state approximation of the sediment
continuity equation, their interaction is conceptualized based on the sediment transport
capacity of overland flow. Particle detachment is represented by means of a threshold
approach accounting for the attacking forces of rainfall and overland flow which need
to exceed a threshold in soil erosion resistance to mobilize soil particles (Scherer et
al., 2012). Transport capacity of overland flow is represented as proposed by Engelund
and Hansen (1967). Top soil particles and aggregates are detached and transported
according to their share in the particle size distribution. Size selective deposition of soil
particles is determined based on the sink velocity of the various particle size classes.
CATFLOW-SED was verified on the plot, hillslope and catchment scale, where either
particle detachment or lateral redistribution or sedimentation is the limiting factor, to
check whether the respective parameterizations are transferable for simulations at the
next higher scale. For verification we used the Weiherbach data set providing plot scale
rainfall simulation experiments, long term monitoring of sediment yields on a selected
hillslope as well as observed sediment fluxes at the catchment outlet. Our findings cor-
roborate that CATFLOW-SED predicted the sediment loads at all scales within the error
margin of the measurements. An accurate prediction of overland flow turned out as be-
ing necessary and sufficient to guarantee spatial transferability of erosion parameters
optimized at smaller scales to the next higher scale without need for further calibration.
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Based on the verified model setup, we investigate the efficiency of land use manage-
ment to mitigate measures in erosion scenarios for cultivated loess landscapes.

1 Introduction

Surface runoff, erosion and sediment redistribution play a pivotal role in the terrestrial
ecosystem as they directly influence water quality, soil biogeochemical cycles and soll
functions. In particular, surface waters in intensively cultivated areas are threatened
by emissions of sediments and associated nutrients and contaminants (Owens et al.,
2005; Walling, 2006; Kronvang et al., 2007; Bilotta and Brazier, 2008; Verheijen et al.,
2009). There is thus an urgent need for adequate models to support design of mitiga-
tion measures to prevent on- and off-site damages of soil erosion as well as to estimate
global change impacts on erosion and related environmental damage.

Soil erosion results from non-linear interactions of three main processes with differ-
ent characteristic spatial scales, namely detachment, transport and deposition of sed-
iments. Particles and aggregates are eroded when local thresholds for surface runoff
generation and particle detachment are exceeded. These thresholds depend on topog-
raphy, patterns of soil types, land use and management practice (Zhang et al., 2009b;
Knapen et al., 2007; Scherer et al., 2012). The most important temporally varying con-
trols on surface runoff formation and erosion are precipitation intensity, antecedent soil
moisture as well as surface density and connectivity of vertical preferential flow paths
(Zehe and Sivapalan, 2009; Zehe and Bldschl, 2004). The latter are either biologically
mediated as in the case of worm borrows, root channels or emerge in the case of
shrinkage cracks during sufficiently dry soil moisture conditions (Zehe et al., 2007).

The ratio of eroded sediment which is delivered to surface water bodies depends
however on the transport capacity of overland flow and its limiting factors, as well as
on the spatial connectivity of overland flow paths to the river network. Hillslope scale
patterns of topography, morphology, land use and vegetation are thus first order con-
trols of sediment delivery (Cammeraat, 2004; Wainwright et al., 2011; Lesschen et al.,
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2009) as they control overland flow depth and velocity and thereby sediment transport
capacity. A decreasing slope at the hill foot or an increasing surface roughness due to
vegetation cover reduces for instance overland flow velocity: soil particles and aggre-
gates are deposited and thus retained within the catchment (Beuselinck et al., 2000;
Takken et al., 1999).

The main asset of process-based numerical models is that, in principle, they may
represent these cross scale process interactions, predict water and sediment dynam-
ics at hillslopes and small catchment scales and even project related global change
impacts. However, most process-based erosion models rely in fact on a mixture of first
principles and empirical parameterizations of, for instance, particle detachment and
transport capacity. The “zoo0” of erosion models that have been developed in recent
years thus differ significantly with respect to (a) process representation and their em-
pirical parameterization, (b) the spatial and temporal scales addressed by the models’
scope and (c) last not least the underlying numerical methods (Harmon and Doe, 2001;
Boardman and Favis-Mortlock, 1998; Jetten and Favis-Mortlock, 2006). The present
state of the art is thus far away from the above sketched ideal of universally applicable
models and transferable model parameterizations (Morgan and Quinton, 2001; Board-
man, 2006). The large spatial and temporal variability of soil erosion phenomena and
of the underlying landsape controls cause, furthermore, a considerable uncertainty in
the model parameters. This strongly hampers calibration and validation of spatially dis-
tributed models (Jetten et al., 2003; Nearing, 2006; Brazier et al., 2001, 2000; Morgan
and Quinton, 2001).

Here we suggest that these problems cannot be solved by constructing ever more
complicated models. The challenge is to balance the necessarymodel complexity to re-
solve the dominant process patterns and related landscape characteristics with great-
est possible simplicity to avoid model over-parameterization and related problems (Paik
and Kumar, 2010; Zehe and Sivapalan, 2009; Jetten et al., 2003). Our notion of a bal-
anced model complexity is based on the following essential model requirements:
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1. The model should predict the interplay of water driven mobilization, redistribution
and export of sediments from catchments for the key different grain size fractions
in the soil landscape of interest. This implies that spatial variability of the under-
lying controls must be explicitly addressed and the hillslope catena is the key
organizing landscape element (Jackisch et al., 2014).

2. The model should be based on observable parameters and the representations
of the main processes should be testable in an independent manner along the hi-
erarchy of characteristic spatial scales of the governing processes; this avoids pa-
rameter interdependence, which reduces their identifiability and is a major source
of predictive/extrapolative model uncertainty.

3. The model should be capable of estimating catchment scale impacts of land use
and climate change within spatially explicit and continuous simulations.

In the present study we demonstrate the development and verification of such a bal-
anced model for loess landscapes, as these are highly susceptible to erosion and are
frequently used for intensive cultivation (Clemens and Stahr, 1994; Van Oost et al.,
2005; Zhang et al., 2009b; Rejman and Iglik, 2010; Winteraeken and Spaan, 2010). As
reliable spatially distributed representation of the various runoff processes along the
catena is of prime importance for process-based erosion modelling, we chose CAT-
FLOW as a model platform for supplementing the components for erosion and named
the extended model CATFLOW-SED. This is because CATFLOW is a catena based
dynamic, spatially distributed model system that was successfully applied to predict
runoff formation, the water balance and solute transport in different landscapes and at
different scales (Maurer, 1997; Plate and Zehe, 2008; Zehe et al., 2001, 2005; Zehe
and Bloschl, 2004; Graeff et al., 2009; Klaus and Zehe, 2010, 2011; Wienhdfer and
Zehe, 2014).

In the remaining sections we discuss the dominant controls of erosion and deposition
processes in loess landscapes and suggest process approaches of adequate complex-
ity. We then explain their implementation into the hydrological model as well as their
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evaluation against observations at the plot, hillslope and catchment scales in a typical
representative of a loess soil landscape. Finally, we discuss the sensitivity of the most
important model parameters and evaluate the capability of the model to project change
impacts exemplified by the simulation of different land use patterns

2 Theory, model structure and numerics
2.1 Process approaches for erosion and their parameterizations

2.1.1 The sediment continuity equation and interactions of different processes

The principle of mass conservation in the form of the sediment continuity equation
(Eqg. 1) is fundamental for representing and coupling different erosion processes. As
proposed by Bennett (1974) it consists of three terms: the first one represents the
divergence of the solid flux along the flow path, the second accounts for changes in
sediment storage in the cross-section and the third term accounts for detachment and

deposition and related changes of local bed elevation. These three terms are equal to
the dispersion of suspended solids.
d(h-vy-c d(c,-h 0 dc

0x ot ot 0Ox ox

where h is flow depth in m, v, velocity of sediment in ms™", ¢, volume concentration of

sediment in m®*m=3, x spatial coordinate in m, f time step in s, n porosity of deposited

sediment, y change of local bed elevation and &, sediment particle mass transfer co-
efficientin m?s™".

Dispersion is normally negligible in hillslope erosion processes (Bennett, 1974) when
compared to the other processes. Also the storage term can be neglected for small and

slowly changing overland flow depths (Haan et al., 1994). Both simplifications lead to
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the stationary form of the sediment continuity equation (Eq. 2), which was implemented
in CATFLOW-SED. We thus approximate temporal changes of erosion and deposition
rates by a sequence of steady state conditions.

0q, _
LT @)

where g, is sediment mass flow per unit width in kg m s

, @ net input/output of
sediments from overland flow in kg m2s™", x length coordinate in m and ¢ time step in
S.

The term ®(x, t) in EqQ. (2) quantifies the net erosion and deposition rates and is thus
controlled by the interaction of detachment, transport and deposition of sediments. In
line with many process-based erosion models such as CREAMS (Knisel, 1980), WEPP
(USDA, 2015), LISEM (De Roo et al., 1998), EUROSEM (Morgan et al., 1998), AN-
SWERS (Bouraoui and Dillaha, 1996) we determine, on the basis of available transport
capacity, whether soil particles are detached or deposited.

Meyer and Wischmeier (1969) suggested that detachment of soil particles and ag-
gregates is a separable process and, after the threshold value for soil detachment is ex-
ceeded, the detachment rate increases linearly until the transport capacity is reached.
In contrary to this approach, Foster and Meyer (1972, 1975) proposed that the detach-
ment rate depends on the difference between the transport capacity 7. (kg m™ s'1)
and the actual sediment load (Eq. 3). This implies a downstream/downslope decrease
in the detachment rate, as the sediment concentration increases downstream. Please
note that this approach is mathematically equivalent to a first-order reaction (Merten
et al., 2001; Huang et al., 1996; Govers et al., 2007).

0q,
ox

=a- (Tc - QS) (3)

where a is rate control constantinm™".
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This equivalence implies, as criticized by Nearing et al. (1990), that Foster and Meyer
(1972, 1975) postulated a linear relation between the two boundary points of a discrete
model element along the flow path without any experimental verification. In fact the
change in the transport deficit is deemed as being proportional to the deficit itself. The
relationship between both points is, however, discussed controversially in the literature
(Govers et al., 2007). Huang et al. (1996) observed during field experiments that de-
tachment in rills and sediment transport appeared to be de-coupled; their experimental
data support the concept of Meyer and Wischmeier (1969). In line with this, Giménez
and Govers (2002) report that sediment load had no systematic effect on the detach-
ment rate in their laboratory experiments. On the other hand, Merten et al. (2001) found
that the detachment rate decreased with increasing sediment load. However, their ex-
perimental results did not entirely support the concept of Foster and Meyer (1972,
1975). Lei et al. (2006) observed in laboratory experiments in an eroding rill using
rare earth element tracers that for certain combinations of slope and discharge, sedi-
ment load affected the detachment rate and for other combinations it did not. Govers
et al. (2007) explain these ambiguous results in the difficulty of studying the exclusive
effect of sediment load on detachment in experiments. This is because of a feedback
between the sediment flux and water flux arising from the transfer of kinetic energy
from the stream to the sediments (Kleidon et al., 2013), which affects the capacity of
the flow to detach and transport sediments.

Hairsine and Rose (1992b, a) propose that detachment and deposition occur simul-
taneously. They suggest that after the mobilization of soil particles from the flow bed,
some are deposited and form a deposition layer, from which particles may be remobi-
lized. The actual sediment load results from the interaction of three processes, namely
(i) the entrainment of particles from the flow bed, (ii) the re-entrainment of particles
from the deposition layer and (iii) the deposition of particles. The first two processes
are regarded as being separable due to the different cohesion between the respective
materials. Hairsine and Rose (1992b, a) suggested a coupled system of equations to
describe these processes based on stream power. The key idea is to balance the ki-

3534

Jaded uoissnosiq

Jladed uoissnosiq | Jadeq uoissnosiq | Jaded uoissnasiq

HESSD
12, 3527-3592, 2015

Predicting land use
and soil controls on
erosion and sediment
redistribution

U. Scherer and E. Zehe

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/3527/2015/hessd-12-3527-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/3527/2015/hessd-12-3527-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

netic energy of the flow and account for feedbacks due to kinetic energy transfer to the
sediment. Although this equation system is not based on an empirical transport capac-
ity, it is structurally identical to the model concept of Foster and Meyer (1972, 1975)
(Yu, 2003; Merten et al., 2001; Govers et al., 2007). A major critique of the approach of
Hairsine and Rose (1992b, a) is that sediment detachment and transport by overland
flow are not necessarily controlled by the same hydraulic variables (Govers et al., 2007;
Govers and Rauws, 1986).

We conclude that to date there is no clear experimental evidence that supports rejec-
tion of one or the other of the concepts outlined above describing the interaction of sed-
iment transport and detachment. Some experiments support the concept of Meyer and
Wischmeier (1969). Other experiments provide evidence that sediment load may af-
fect detachment, while a first-order coupling seems questionable (Govers et al., 2007).
A clear drawback of the concept of Foster and Meyer (1972, 1975) is that the detach-
ment rate is largely dependent on the selected formulation of transport capacity. Such
an interdependence reduces identifiability of the related parameters due to parame-
ter interactions as shown by Bardossy (2007). To avoid this source of equifinality, we
adopt the concept of Meyer and Wischmeier (1969) and treat detachment and sediment
transport as separable and independent processes. Sediment delivery to the stream is
thus limited either by the detachment rate or by the transport capacity of overland flow.

With respect to deposition of particles, both concepts of Foster and Meyer (1972,
1975) as well as of Hairsine and Rose (1992a, b) result in similar expressions, as
shown by Beuselinck et al. (1999, 2002).

2.1.2 Detachment of soil particles

Detachment of soil particles and aggregates is triggered by the attacking forces of rain-
drop impact (splash erosion) and overland flow. On arable land splash erosion occurs
primarily on inter-rill areas (Kinnell, 2005; Salles et al., 2000) while rill detachment is
mainly caused by attacking fluid forces due to concentrated overland flow in micro-relief
channels (Knapen et al., 2007). However, the spatial separation of rill and inter-rill ar-
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eas is often not clearly defined, varies in time (Giménez and Govers, 2001; Lei et al.,
1998; Nearing et al., 1997) and is not observable at larger scales. Models for catch-
ment scale erosion and sediment yields thus often treat detachment by rainfall and
overland flow in an effective lumped manner (Smith et al., 1995; Wicks and Bathurst,
1996; Heatwole et al., 1998; De Roo et al., 1998; Schmidt et al., 1999; Johnson et al.,
2000), by merging the underlying attacking forces.

In CATFLOW-SED we implemented a semi-empirical approach (Eq. 4) that relates

the potential detachment rate e,,; (kg m™2 3'1) bi-linearly to the attacking forces of rain-

fall, characterised as rainfall momentum flux m, (N m_2), and overland flow, charac-

terised as shear stress 7 (N m’2) (Scherer et al., 2012). The resisting forces acting
against detachment are characterised by two empirical parameters: the erosion resis-
tance f;; (N m'z) as well as the erodibility parameter p; (-), scaling the growth of the
detachment rate in case the attacking forces exceed the threshold 7;;. The parameter
P, (-) weighs the momentum flux of rainfall against shear stress from overland flow.
The empirical parameters were determined for conventionally tilled loess soils using
data from rainfall simulation experiments performed in the laboratory (Schmidt, 1996)
and at erosion plots in the field (comp. Sect. 3.2.3 and Scherer et al., 2012):

ep0t=p1'(T+P2'mr_fcrit) if epot<0a epot=0- (4)

We assume equal mobility of all particle sizes during the detachment phase, which
implies that all particle size fractions and aggregates are mobilized according to their
share in the top soil layer. This assumption is supported by grain size analyses of
eroded loess material gained in rainfall experiments carried out in the Weiherbach
catchment (comp. Sect. 3.2).

2.1.3 Transport of soil particles in overland flow and stream flow

Although the hydraulic conditions for stream flow and overland flow are different, stream
flow equations are often implemented in soil erosion models due to the lack of widely
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tested approaches for overland flow. The most commonly used stream flow based ap-
proaches in erosion models are the bed load equation of Yalin (1972) and the total load
equations of Yang (1973) and Engelund and Hansen (1967). Several studies tested the
applicability of stream flow based equations for overland flow conditions using exper-
imental data of transport rates derived in the lab (Alonso et al., 1981; Govers, 1992;
Ferro, 1998; Nord and Esteves, 2007; Ali et al., 2013; Hessel and Jetten, 2007). Due to
the particular experimental conditions, different equations performed equally well and
none of them turned out to be generally superior. Julien and Simons (1985) theoret-
ically evaluated the relationship between sediment transport rates and the dominant
controls such as hillslope gradient, runoff rate for laminar and turbulent overland flow
and compared the results with 14 stream flow equations. The approach of Engelund
and Hansen (1967) was the only one that covered the whole range of overland flow
conditions. Prosser and Rustomiji (2000) performed a similar analysis using transport
approaches for overland flow and stream flow. They conclude that sediment transport
in overland flow and stream flow is controlled by the same processes and parameters
and that stream flow equations are in principle — after proper calibration and validation
- applicable for overland flow conditions.

Most of the transport approaches developed for overland flow conditions employ sim-
ple regressions between observed transport rates and hydraulic predictors for different
sediment mixtures (Huang, 1995; Nearing et al., 1997; Ferro, 1998; Jayawardena and
Bhuiyan, 1999; Tayfur, 2002; Zhang et al., 2009a; Everaert, 1991). More complex ap-
proaches were developed for example by Govers (1992), Guy et al. (2009a, b), Abra-
hams et al. (2001), Ali et al. (2013) or Li et al. (2011). All these approaches show
a good correlation between observed and predicted transport rates for the experimen-
tal conditions under which they were developed. However, up to now only a few studies
tested the extrapolation of the approaches to other conditions (Ali et al., 2013; Hessel
and Jetten, 2007; Nord and Esteves, 2007; Nord et al., 2009). A comprehensive test
for varying conditions and sediment properties under field conditions is still missing. In
addition most of the experimental studies for overland flow used sandy, non-cohesive
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sediment material (Zhang et al., 2011; Ali et al., 2012) and the results are thus difficult
to transfer onto fine cohesive soil material.

As there is to date no evidence that one of the above listed approaches is superior,
we defined the following criteria to select an equation that meets our model require-
ments:

— The transport capacity equation should be sensitive to different grain size frac-
tions and sediment densities, which is crucial for modelling particulate transport
of nutrients and contaminants (Nadeu et al., 2011).

— Govers (1992) showed that bed load equations underestimate the transport ca-
pacity of fine particles smaller than the sand fraction. As Nord et al. (2009) have
corroborated these findings, we consider bed load equations as inappropriate for
loess soils.

— Various transport equations contain a threshold parameter for the incipient move-
ment of grains and aggregates. However, several studies revealed that this thresh-
old can be neglected for small grain sizes (Hessel and Jetten, 2007) and that all
grain size fractions are simultaneously mobilized even under shallow flow condi-
tions (Everaert, 1991; Li and Abrahams, 1999). For loess soils an equation without
such a threshold for incipient motion should thus be preferred.

— An increased surface roughness significantly reduces the transport capacity of
overland flow (Govers and Rauws, 1986; Abrahams et al., 2001). Following Gov-
ers (1992) we prefer equations based on hydraulic variables with a clear depen-
dence on surface roughness.

Based on these criteria we selected the approach of Engelund and Hansen (1967) as
most appropriate for our purpose (Eq. 5). Since Eq. (5) was developed for stream flow
conditions, a calibration of the empirical parameters might be necessary (Prosser and
Rustomiji, 2000).
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where ¢ is dimensionless transport intensity, 8; dimensionless stream intensity, 1 di-
mensionless resistance coefficient, d,, mean particle diameter in m, g’ modified ac-

celeration of gravity in ms‘z, g acceleration of gravity in ms'2, pp density of particles

kg m~3, o, density of water kg m~2 and v, friction velocity in ms™.

Due to the narrow range of particle sizes of loess soils and the fact that cohesive
loess material is transported in aggregated form (Beuselinck et al., 2000), we assumed
equal mobility of all particle size classes during transport along the hillslope. This as-
sumption is further supported by observations of Fuchs and Schwarz (2007) who mea-
sured no significant enrichment of clay and fine silt fractions in eroded soil material
in a cultivated loess region in Southwest Germany. The apportionment of transport
capacity on the various grain size fractions in a hillslope section is based on the fre-
quency distribution of the grain size fractions within the transported sediment mixture
and within the detached amount of surface soil material.

2.1.4 Deposition of soil particles

As particle deposition is controlled by the sinking velocity of suspended soil particles,
it is a highly size selective process (Beuselinck et al., 2002, 1999, 2000; Nadeu et al.,
2011). Generally, the process descriptions for deposition are based on two assump-
tions: (i) complete mixture of particles in overland flow and (ii) independence of the
sinking velocity from overland flow conditions. The first assumption is justified during
rainfall driven conditions, because the induced turbulence will enhance vertical mixing.
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Beuselinck et al. (1999) corroborated the validity of the second assumption by compar-
ing observed particle size fractions from sediment transport experiments in a laboratory
flume over an area of net deposition. They found that the observed and predicted de-
position rates matched well when using approaches to quantify the sinking velocities
which were derived for fluids at rest.

Equation (6) determines the sinking velocity v (m 3’1) of a spherical particle in a fluid
at rest based on the balance of the drag force, gravity and buoyancy.

g"dm
=2.‘/

where vg is sinking velocity in ms™2 and C,, dimensionless drag coefficient. The drag
coefficient C,, depends on the Reynolds number Re related to the particle stream (Eq.
7).

(7)

where v is kinematic viscosity m?s™" of the fluid.

For higher Reynolds numbers (Re > 0.1) inertia forces cannot be neglected. For
these conditions a range of experimentally determined approaches are available, as
for instance the relationship of Kazanskij (1972), which is valid for Re < 4.3 x 10°® and
thus including the Stokes’ range (Eq. 8).

Cw=ﬁ+£+0.25 (8)
Re /Re

The sinking velocity of particles increases with increasing sediment concentration

(Beuselinck et al., 1999; Hessel, 2006). Equation (9) presents the adaptation of the

sinking velocity for particle swarms.

Veps = Vs* (1- Cv)b 9)
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where vg ¢ is the sinking velocity of particles in a particle swarm and b the dimension-
less empirical parameter. Wan and Wang (1994) suggest a constant value of 5 for the
empirical parameter b.

The deposition rate in a model discretization element depends on the question of
whether a particle reaches the flow bed within a certain discretization element and
time step or not. The vertical travel distance of a particle in a certain time step can be
calculated based on the relationship of the sinking velocity and the lateral flow velocity
(Eqg. 10) and travel distance of the particle Ax (m).

VS
Ay = —=-Ax (10)

Y

The proportion of particles deposited within the time step At is equal to the ratio of Ay
to the flow depth A (Eq. 11).

Ay v

Cdep=7_§-Ax (11)

where Cye, is dimensionless coefficient of deposition and g flow rate per unit width
m?s™".

Foster (1982) found in laboratory experiments that the coefficient of deposition di-
minished under rainfall driven conditions due to increased turbulence. Based on the
results of the experiments Foster (1982) suggested decreasing of Cge, by a factor of

0.5.
2.2 From CATFLOW to CATLFOW-SED
2.2.1 Model structure and water balance components

CATFLOW is a continuous, spatially distributed model for water dynamics at the hill-
slope and small catchment scale (Zehe et al., 2001; Plate and Zehe, 2008; Maurer,
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1997). The model represents a hillslope catena along the steepest descent line as
a two-dimensional cross-section that is discretized using curvilinear orthogonal coor-
dinates. The size and number of model elements in the cross-section of individual hill-
slopes can be chosen as required. Each surface model element extends over the width
of the hillslope, which can vary from the top to the foot of the slope. At the catchment
scale, the hillslopes are connected to a drainage network of permanent and temporal
streams. Water dynamics is described by the Richards equation in the mixed form that
is numerically solved by an implicit mass conservative Picard iteration. The simulation
time step is dynamically adjusted to achieve an optimal change of the simulated soil
moisture per time step, which assures fast convergence of the Picard iteration.

Accordingly, the model allows simulation of subsurface flow under saturated and
unsaturated conditions. The shape of the retention curve is parameterized using the
van-Genuchten model (Mualem, 1976; van Genuchten, 1980). Macropore flow is rep-
resented by a simplified, effective approach that increases local hydraulic conductivity
(Eqg. 12). To account for high unsaturated conductivities at high water saturation values,
we used a threshold value RS, for the relative saturation RS, which is motivated by the
experimental findings of Zehe and Fluhler (2001). If RS at a macroporous grid point at
the soil surface exceeds this threshold, the bulk hydraulic conductivity at this point is
assumed to increase linearly.

RS - RS,
ks,tot = ks + ks'fm (W
Ks, tot = Ks otherwise
0-06,
" 0.-6,
where RS is dimensionless relative saturation, RS, threshold value for relative satura-
tion indicating the beginning of preferential flow (dimensionless), kg saturated hydraulic
conductivity of the soil matrix in ms™', K, 1ot bulk hydraulic conductivity of the soil ma-

trix and the macropore system in ms™, f,, dimensionless macroporosity factor, 8 soil
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moisture in m®m~3, 6, and 6, saturated and residual soil moisture, respectively in
m3m=2.

Evaporation and transpiration are simulated using an advanced approach based on
the Penman—Monteith equation, which accounts for annual cycles of plant morpholog-
ical and physiological parameters, albedo as a function of soil moisture and the impact
of local topography on wind speed and radiation.

The model simulates overland flow as sheet flow using the diffusion wave equation,
which is a simplification of the Saint—Venant equations for shallow water flow. The diffu-

sion wave equation is composed of the continuity equation for mass conservation (Eq.
13) and the dynamic core equation (Eq. 14). In contrast to the Saint—Venant equations,
the acceleration terms are neglected in Eq. (14) in the diffusion wave approach.

oh _ 1 0(A-vV) Qa

Y - 13
ot b ox b (19)

oh
Q'O—X—g'(so‘se)=o (14)

where b is flow width in m, A flow cross section in m2, v flow velocity in ms‘1, G)at
lateral inflow in m?s™", S, topographical gradient of the hillslope and S, gradient of the
water level.

Flow velocity is quantified based on the Manning—Strickler-formula. Flow in the
drainage network is also simulated based on the kinematic wave approach.

2.2.2 Coupling of water and sediment budgets

The process representations for erosion and sediment redistribution derived in

Sect. 2.1 were implemented in a separate module in CATFLOW-SED. The hydraulic

variables flow depth h, flow velocity v and gradient of the water level S,, which are

calculated for each discretization element and time step, constitute the interface for

the direct coupling of overland flow and erosion. Figure 1 presents the discretisation

scheme for the numerical simulation of overland flow based on the diffusion wave.
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As shown in Fig. 1 the hydraulic variables vary along the flow path and thus within
the discretization elements. Therefore the hydraulic input variables used for simulating
the erosion sub-processes have to be carefully selected. The potential detachment
rate per area ey, is calculated based on Eq. (4). The total detachment rate per unit

width g, por (kg m™’ s‘1) for each discretization element is thus given by integrating the
area-specific potential detachment rate e, along x (into downslope direction, Eq. 15):

Xj

ds, pot = / epot'dX (15)

Xj-1
Due to the threshold character of particle detachment, detachment starts at the downs-
lope location where the attacking forces of rainfall and shear stress exceed the erosion
resistance. This point needs to be determined by integration and a coarse spatial dis-
cretization implies a spatial uncertainty. To overcome this problem, each discretization
element above a critical length is further discretized into sub-elements during computa-
tion. The average flow depths are interpolated for each sub-element and the potential
detachment rate e, is quantified. The total potential detachment rate g . of the
given discretization element is obtained by numerical integration of detachment rates
of the sub-elements along the extent of the model element. A sensitivity analysis re-
vealed that a good approximation of Eq. (15) is reached for a sub-element length of
1 m. With this the spatial discretization for overland flow simulation can remain of the
order of 10—20 m, which considerably reduces computation time due to the explicit time
stepping.

As the transport capacity integrates the capacity of overland flow to transport sedi-
ments over the flow length per unit width, we used hydraulic variables calculated at the
end of each discretization element for its calculation. The deposition coefficient Cge,
(Eg. 11) was determined using the average flow velocity and flow depth within each
element as relevant input variables.
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3 Study area, experimental data base and model setup
3.1 The Weiherbach catchment

The Weiherbach catchment is located in a hilly loess region in Southwest Germany
(Fig. 2). The climate is semi humid with an annual precipitation of 800 mm yr‘1, annual
runoff of 150 mmyr'1, and annual potential evapo-transpiration of 775 mmyr'1. The
bedrock is composed of lower and middle Keuper (Gipskeuper and shilf sandstone)
which is almost completely covered by a loess layer that reaches to a massive 15m
(Fig. 3). The loess in the Weiherbach catchment is highly calcareous (25-30 % lime
by weight), the percentage of coarse silt ranges between 50-55 % and the porosity
between 0.45 and 0.50.

More than 90 % of the catchment area is arable land or pasture, 7 % is forested and
2.5% is paved (farm yards and rural roads). The predominant crop rotation types are
the short maize — winter wheat rotation and the multiple sugar beet — winter wheat
— spring barley — maize — (sun flower) — winter wheat — maize rotation. The tillage
practice is mainly conventional with a ploughing depth of 30—35cm in early spring or
early autumn depending on the crop type. In the Kraichgau region, severe runoff and
erosion events are typically caused by thunder storms in late spring and summer.

Due to the absence of lateral subsurface strata and the huge loess layers, Hortonian
overland flow dominates event runoff generation. Because the apparent macropores el-
evate infiltrability of soils, rainfall runoff events are rare. Event runoff coefficients range
from 12 % during extreme thunder storms down to only 2 %. Base flow is almost con-
stant throughout the year.
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3.2 The Weiherbach data set
3.2.1 Hydro-meteorological data

Figure 2 presents a map of the monitoring network in the northern part of the Wei-
herbach catchment, which has been established since the 1990s (Zehe et al., 2001;
Plate and Zehe, 2008) during an interdisciplinary research project on water, sediment
and material flow in intensively cultivated areas. Discharge and rainfall data were mea-
sured at gauge Menzingen (3.5 kmz) and several rain gauges at a resolution of 6 min.
Standard meteorological variables were recorded at the central meteorological station
in an hourly time step. Soil moisture was measured at 61 locations in intervals of 1-2
weeks using two-rod TDR equipment that integrates over 15, 30, 45 and 60 cm of sail
depth, respectively.

3.2.2 Soil hydraulic properties, macropores and land use

A soil map was compiled using data from field mapping and additional soil texture infor-
mation. The soil type pattern turned out to be highly organized: most of the hillslopes
exhibit a typical loess catena with calcaric regosol soils at the hill top and mid slope
and Colluvisol soils located at the hill foot due to erosion caused by intensive cultiva-
tion in the catchment over a long period (Fig. 3). The soil hydraulic properties after
van Genuchten—Mualem (van Genuchten, 1980; Mualem, 1976) were measured in the
laboratory using undisturbed soil samples taken along transects at several hillslopes
(Table 1) (Plate and Zehe, 2008).

The macropore system consists of anecic earthworm burrows (Lumbricus terrestris
and Aporectodea longa). The macropore system was mapped at 15 sites in the Wei-
herbach catchment, at which horizontal soil profiles were prepared. For each profile
macropores that were connected to the soil surface were counted and their depth and
diameter were measured using a vernier caliper and a wire. In addition sprinkling ex-
periments with brilliant blue were carried out to analyze preferential flow patterns. The
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spatial pattern of macroporosity was closely related to the soil catena. The macroporos-
ity tends to be lower in the dryer calcaric regosols located at the hilltop and mid slope,
than in the colluvisols at the hill foot, which are typically moister due to higher contents
of organic matter and clay. This spatial organization pattern along the hillslopes may
be explained by the habitat preferences of Lumbricus terrestris which is the dominat-
ing anecic earthworm species in the Weiherbach (Zehe and Flihler, 2001; van Schaik
et al., 2014). In addition the number of earthworm borrows connected to the surface
varied throughout the year, since their connectivity is partly destroyed by ploughing.
After tillage, the pore system is rebuilt by the earthworms (Zehe and Bléschl, 2004).

The pattern of main crops and catch crops was mapped in several campaigns. Ta-
ble 2 presents the percentage of land use for the main crop periods of 1994 and 1995
(April-September), Fig. 4 displays the land use pattern in 1994. The crop phenolog-
ical and physiological parameters of the dominant crop types such as plant height,
root depth, percentage of soil cover, surface roughness, leaf area index and stomatal
resistance were determined during the growth period.

3.2.3 Sediment loads in the river, short and long term erosion experiments

Sediment concentrations in the Weiherbach at gauge Menzingen (Fig. 2) were
recorded during runoff events by using automatic water samplers (Hahn and Beud-
ert, 1997). Sediment concentration was analyzed in the lab and the sediment load for
discrete events was calculated from sediment concentration and discharge data.
During the monitoring period three strong erosion events have been observed (Ta-
ble 3). The largest event occurred on 24 June in 1994 with a cumulative rainfall of
83mm in 3h and a peak discharge of 7.92 m3s™" at gauge Menzingen. During this
event part of the storm runoff bypassed the weir and the volume had to be recon-
structed from the flooded bank area using hydraulic calculations. The second largest
event occurred on 13 August 1995. Although the cumulative rainfall amount of 73.6 mm
and antecedent wetness were similarly high as for the event in 1994, the peak dis-
charge reached only 50 % of the peak discharge of the largest event. Apparently, the
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infiltration capacity of the soils was much higher than in June 1994. In August 1994,
a smaller event was observed with a flood volume comprising 10 % of the volume of the
largest event in June 1994. The balanced sediment loads at gauge Menzingen reveal
a strongly non-linear dependence on discharge volume with a maximum sediment load
of nearly 2000t for the event in June 1994 (Table 3).

To quantify the erodibility and erosion resistance of the loess soils in the Weiherbach
catchment, 58 rainfall simulation experiments have been carried out within the years
1993-1995 (Gerlinger, 1997; Gerlinger and Scherer, 1998). A transportable rainfall
simulator was used that consists of modular elements. For 56 experiments an area of
2m in width and 12m in length was irrigated while two experiments were carried out
on larger plots. The total range of rainfall intensity varied between 34 and 62 mm h'.
The experiments were conducted in different seasons (spring and late summer) to
examine varying soil conditions e.g. initial soil moisture. Most of the experiments were
performed on bare soil after seed bed preparation. Additionally, 11 experiments were
carried out to investigate the highly erodible row crops maize and sugar beet during
the growing period. At the end of the irrigated area a channel was installed to collect
the runoff. Water samples were taken manually every minute, starting with the onset of
surface runoff generation, to measure the runoff rate. Sediment concentrations in the
runoff samples were measured in every third sample in the lab. At each experimental
site antecedent soil moisture was measured gravimetrically in soil samples taken at
a depth of 5—10cm. Particle size distribution (clay, fine, middle and coarse silt, fine,
middle and coarse sand) and organic content of the top soil were measured in the
lab. The roughness coefficients of the plots (Mannings n) were estimated by fitting the
falling limb of the observed hydrograph after irrigation was terminated (Engman, 1986;
Govers et al., 2000). Further details on the experimental setup are given by Gerlinger
(1997), Seibert et al. (2011) and Scherer et al. (2012).

In addition to the rainfall simulation experiments a long-term soil erosion plot of 69 m
in length and 4 m in width was set up on a hillslope in the Weiherbach catchment with
a gradient of 13% (Fig. 2). At the lower end, a tank was installed to collect runoff
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and sediment from the plot. During the extreme soil erosion event on 27 June 1994
a sediment load of 1.17t was collected in the tank. The runoff volume could not be
measured, since the tank was flooded. We thus assume that the total soil loss of the
plot was above the measured quantity. At 27 June 1994 sugar beet was cultivated on
the plot in the direction of slope with a soil cover of 90 %.

3.2.4 Regionalization of erosion resistances based on rainfall experiments

Based on the rainfall experiments the detachment rates and erosion resistance f;
(Eq. 4) were determined for each irrigation site. In order to regionalize these plot scale
results to the catchment, the erosion resistance was related to candidate predictors
such as clay content, organic content, antecedent soil moisture, surface roughness,
crop type and percentage of vegetation cover of the erosion plots (Scherer et al., 2012).
This analysis revealed cultivation and land use as the first order control of the erosion
resistance, because the soil texture is rather homogeneous in the Weiherbach. Ex-
periments conducted at sites covered by maize and sugar beet revealed systematically
small erosion resistances without significant correlations to soil properties. These crops
are strongly susceptible to detachment because runoff is channelled along the interme-
diate areas of plant rows. Since the effect of the concentrated flow regime surpasses
other possible influencing factors, we chose a constant average erosion resistance of
0.73Nm™? for maize and sugar beet.

For bare soils we found a strong correlation between the erosion resistance, sur-

face roughness according to Manning—Strickler n (m s‘1/3) and clay content CC (%)
which explained 70 % (R“ = 0.70, significant at the 0.1 % level) of the observed vari-
ance within a bilinear regression.

foit =0.061+17.991-n+0.014-CC (16)

Further details on the monitoring network installed in the Weiherbach catchment are
given by Zehe et al. (2001) and Plate and Zehe (2008).
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3.3 Model verification and scenario setup
3.3.1 Hierarchical verification procedure

The components of the erosion module of CATFLOW-SED are verified along the hi-
erarchy of scales which is characteristic for the three governing processes. The ap-
proach for characterizing particle detachment (Sect. 2.1.2) is verified based on the
rainfall simulation experiments, as sediment transport capacity is not the limiting factor
at this scale. On the hillslope sediment transport capacity is regarded as the limiting
factor and sediment deposition gains importance when moving to the entire catchment
(Sects. 2.1.3 and 2.1.4). To test our choices to characterize transport capacity we thus
chose the sediment loads eroded from the long term plot during the heavy storm event
in June 1994. The simulated integral response of all erosion processes at the catch-
ment scale is tested against sediment loads monitored at gauge Menzingen for the
three storms observed during the project period (Sect. 3.2.).

A highly accurate simulation of surface runoff on the event scale is pivotal for veri-
fication of the proposed modelling approaches for erosion, as the errors in simulated
runoff directly propagate to the simulated sediment loads (Sect. 2.2.1). The model was
thus in a first step calibrated to reproduce runoff. Following the procedure of Zehe and
Bléschl (2004) the average macroporosity factor f,, (Eq. 12) of the hillslopes was used
as a calibration parameter, since the number of macropores connected to the surface
varies throughout the year and is very difficult to measure (Sect. 3.2) (van Schaik et al.,
2014). As goodness of fit measures we used the balance error BIAS, the root mean
square error RMSE and the Nash Sutcliffe efficiency £ (Nash and Sutcliffe, 1970).

3.3.2 Plot scale simulation of rainfall experiments

For validation of the detachment approach, 39 rainfall simulation experiments were
modelled with CATFLOW-SED as these experiments cover the entire range of possible
hydrological conditions: 19 experiments were performed under very dry conditions in
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late summer (between 23 August and 3 September) and 20 experiments under wet-
ter conditions in spring (between 29 March and 22 April). The rainfall simulation plots
were discretized in a cross- section scheme of 21 lateral and 29 vertical model ele-
ments covering a depth of 1 m. For the model setup of each experiment, measured
values of initial soil moisture of top soil, soil hydraulic parameters, surface roughness,
percentage of soil cover, soil texture as well as intensity and duration of irrigation were
included. Initial soil moisture in deeper layers of the soil profile was not measured and
therefore interpolated using the data set gained from TDR monitoring (Sect. 3.2). Each
experiment was modelled by a stepwise increase of the macroporosity factor until the
simulated surface runoff volume matched the observed runoff volume. The calibrated
macroporosity factors were then correlated to the soil properties clay content, organic
matter content and initial soil moisture since a positive correlation between these pa-
rameters and the density of macropores was observed during mapping campaigns in
the catchment (Sect. 3.2). The objective of this task was to find a simple approach to
regionalize the macroporosity factor 7,,. Finally each rainfall simulation experiment was
modelled using the best specific parameter sets for the macroporosity factor 7, and the
erosion resistance ;. In addition, the sensitivity of the parameters was analyzed (see
Sect. 3.3.5).

3.3.3 Hillslope scale: long term soil erosion plot

Erosion on the long term soil erosion plot was simulated for the heaviest observed
storm event in the Weiherbach catchment on 27 June 1994. The soil erosion plot was
discretized using the same vertical discretization scheme as for the rainfall simulation
plots (Sect. 3.3.2). The length of the model elements was set to 3.3 m each. Figure 5
presents a cross-section of the topography (Fig. 5, top) and the discretization in lateral
model elements along the hillslope (Fig. 5, bottom). Soil texture of the calcaric regosol
at the hill top is classified as loamy silt and as very loamy silt for the colluvisol at the hill
foot (Table 4). In the model setup a transition zone between both soil types/textures was
assumed (Fig. 5, top). During the vegetation period in spring 1994 rainfall simulation
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experiments were carried out on sugar beet in the neighborhood of the long term sail
erosion plot (Fig. 2). For the model setup we used the macroporosity factor f,, of one
of these experiments, which was carried out a few days before the storm event (17
June 1994, f,, = 2.6). It was assumed that the macroporosity factor increases along
the hillslope according to the findings of Zehe et al. (1999). The erosion resistance
was set to f;; = 0.73 for sugar beet. Surface roughness (Mannings n) was measured

for sugar beet as 0.036sm™ /3. Initial soil moisture was interpolated from the TDR
monitoring data set. For the simulation of the storm event, the rainfall data measured
at the meteorological station were used which is near the soil erosion plot (Fig. 2).

3.3.4 Catchment scale: Weiherbach catchment

At the catchment scale we simulated the three largest storm events. For the catchment
simulations we used the discretization scheme and the organisation pattern of soil
types and macroporosity suggested in former hydrological modelling studies with CAT-
FLOW (Zehe and Bléschl, 2004; Plate and Zehe, 2008). The catchment was subdivided
into 169 hillslopes, which are connected to a temporary drainage network (Fig. 6a).
Each slope was represented by a cross-section along the line of the slope. Figure 6b
presents the top view of the discretisation elements of each hillslope. The typical loess
catenas in the Weiherbach catchment (Sect. 3.2) were represented by a sequence of
80 % calcaric regosol (hill top and mid slope) and 20 % colluvisol (hill foot) with regard
to the length of the hillslopes. As presented in Sect. 3.2, this high degree of spatial
organisation of soil types induces a structured organisation of biogenic macroporosity.
The hydraulic conductivity of macroporous colluvisols at the hill foot is about 1.5-2.5
times higher than the hydraulic conductivity of calcaric regosols at the hill top where
less macropores were found (Schéfer, 1999; Zehe, 1999).

To account for this structured variability in the model parameterization, we used
scaled values of the macroporosity factor 7, (Eq. 12) at each hillslope: at the upper
70 % of the hillslope a macroporosity factor of f,, = 0.8 was used, while at the mid
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slope ranging from 70 to 80 % and the hill foot ranging from 85 to 100 % a factor of
f, = 1.0 and 7, = 1.3, respectively, was used to represent the observed relationship of
hydraulic conductivities and macropore volumes. The depth of the macroporous layer
was assumed to be constant throughout the whole catchment and was set to 0.4 m. On
the basis of the given soil hydraulic parameters (Table 1) and the spatial variability of
macroporosity, the only remaining free parameter is the average macroporosity factor
f,» which has to be calibrated to adapt the runoff simulation for the three specific runoff
events in the Weiherbach catchment.

Soil texture was determined from the soil map for each surface model element. In the
Weiherbach catchment, five soil textures can be differentiated. Each type is parameter-
ized by the percentage of 8 grain size fractions (Table 4). The erosion resistance was
regionalized to the catchment area according to the procedure presented in Sect. 3.2
(Scherer et al., 2012). The crop type and growth stage of vegetation for the point in
time of the three storm events was determined for each surface model element from
the mapped cropping pattern and time series of plant growth parameters.

The model was driven with observed time series of rainfall and climate variables. For
initial soil moisture conditions, average values of the TDR monitoring data set mea-
sured shortly before each event were used, as specified in Zehe and Bléschl (2004).

3.3.5 Sensitivity analysis and land use scenarios

The macroporosity factor f,, and the erosion resistance f;; are deemed to be the most
sensitive model parameters of CATFLOW-SED. The sensitivity to the runoff and ero-
sion response was tested by varying both parameters in the simulation of the plot
scale experiments. The sample experiments are the same as for the verification step
(Sect. 3.3.2). Each experiment was modelled using (i) the optimum macroporosity fac-
tors (Sects. 3.3.2 and 4.1.1) and predicted erosion resistances (Sect. 3.2.4, Eq. 16),
(i) the predicted macroporosity factors (Sects. 3.3.2 and 4.1.1) and optimum erosion
resistances and (iii) predicted macroporosity factors and predicted erosion resistances.
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In order to test the capability of the model to analyze land use scenarios, we varied
the given land use pattern for the main crop period of 1994 (Table 2, Fig. 4a) and
simulated the strongest observed storm event in the Weiherbach catchment on 27
June 1994. The land use pattern of 1994 was rearranged in a “best case” and a “worst
case” scenario whereby the percentage of the land use categories was kept constant.
To assess the spatial pattern of susceptibility for erosion as a function of topography,
soil texture and macroporosity, the storm was first simulated for bare soils (Fig. 4b).
Based on this analysis we re-arranged the land use pattern within the field borders.
For the “best case” scenario the grass land was located on the highly erosive steep
slopes in the east of the catchment, grain was placed on areas with a medium erosion
risk and row crops such as corn, sugar beet and sun flower were arranged on fields
with shallow slope. For the “worst case” scenario grassland and grain were placed on
areas with a low susceptibility to erosion while crops with a high erosion risk were
located on the steep slopes except for the very steep south-eastern slopes: these
slopes are covered with pasture in the given land use pattern, which was retained
since it is unlikely that the steep slopes would be cultivated to carry a crop. In addition,
the forested and sealed areas were retained in both scenarios. Figure 7 presents the
land use patterns for both scenarios.

4 Results
4.1 \Verification of CATFLOW-SED at various scales

4.1.1 Rainfall simulation experiments

Figure 8 presents the range of macroporosity factors that was necessary to fit the
runoff observed within the 39 experiments. The optimal f,,, factors for experiments in
late summer are on average higher (mean f,, = 3.0, median f,, = 3.0) than for the cam-
paign in spring (mean f,, = 2.2, median f,, = 1.9). These differences can be explained
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by tillage practice: the vertical worm burrows are cut by tillage in spring and rebuilt
during the vegetation period. Thus by the end of the vegetation period in late summer,
a seasonal maximum of macropores connected to the soil surface is reached (Beven
and Germann, 1982; Zehe, 1999).

Figure 9 presents the observed and modelled hydrograph for a selected experi-
ment. We simulated soil detachment using the best fit macroporosity factors and mea-
sured erosion resistances to reproduce the observed soil loss. Figure 10 presents the
comparison of observed and modelled detachment volumes for the 39 experiments.
The detached soil volume is slightly over-predicted with a BIAS of 3.4kg (mean de-
tached soil volume (observed): 65.8 +48.7 kg, mean detached soil volume (simulated):
69.3+47.3kg). The model efficiency £ at 0.95 is very good. Overall, the agreement be-
tween observed and simulated detachment volume during the calibration phase is very
good. The small deviations between observed and simulated detachment volumes are
due to discrepancies between the shape of measured and modelled hydrographs and
the assumption that the erosion resistances are constant during the rainfall simulation
experiments.

In a last step the calibrated macroporosity factors were correlated with the clay con-
tent, initial soil moisture and the content of organic matter of the irrigation plots (Ta-
ble 5). The highest regression coefficient for the entire sample was achieved for the
linear regression of f,, to clay content with an R? of 0.46. The coefficient of determina-
tion increases when the summer and spring campaign samples are treated separately.
For the spring period and the summer period the R?is 0.66 and 0.51, respectively. Note
that the slope of the regression equations is 0.17 (Table 5) for both measuring cam-
paigns. For organic matter content a regression coefficient of R? = 0.31 was reached
for the spring sample, while the R? for both the summer sample and the sample con-
taining all experiments was much lower (Table 5). However, the clay and organic matter
contents of all 39 irrigation plots are positively correlated (Hz of 0.3) so that consider-
ation of organic matter content in addition to clay content in a multi-linear regression
analysis did not show a positive effect on the coefficient of determination.

3555

Jaded uoissnosiq

Jladed uoissnosiq | Jadeq uoissnosiq | Jaded uoissnasiq

HESSD
12, 3527-3592, 2015

Predicting land use
and soil controls on
erosion and sediment
redistribution

U. Scherer and E. Zehe

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/3527/2015/hessd-12-3527-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/3527/2015/hessd-12-3527-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

4.1.2 Heavy storm event at the long term soil erosion plot

Figure 5 (bottom) presents the area-specific erosion and deposition rates simulated
for the largest storm event, on 27 June 1994. In the upper and middle region of the
hillslope, the erosion rates are controlled by the topographic gradient, which is reflected
in the high erosion rates in the mid slope. In the transition zone (Fig. 5, top) and at
the flatter hill foot the infiltration capacity increases due to the elevated macroporosity,
thereby decreasing overland flow sediment transport capacity and the surplus particles
are deposited. In total, a runoff volume of 3.9 m° was calculated for the storm event,
corresponding to a runoff coefficient of 18 % for the erosion plot. The simulated runoff
volume cannot be verified, since the tank installed at the end of the erosion plot was
flooded. The simulated soil loss is 1.3t: in total, 1.5t were eroded and 0.24t were
deposited at the hill foot. With respect to the error margin this corresponds very well
with the observed sediment mass of 1.2t. We thus conclude that the selected approach
for simulating the transport capacity of overland flow is well suited for this loess sail
landscape.

4.1.3 Erosion events at the catchment scale

At the catchment scale (Sect. 3.3.4) we simulated the three largest erosion events,
the target variables being the river discharge and sediment loads at gauge Menzin-
gen. Figure 11a presents the rainfall intensities as well as the observed and simulated
hydrograph for the storm event on 27 June 1994. The best fit of the modelled hydro-
graph was achieved when using an average macroporosity factor 7, = 2.1. Overall, the
shape of the main hydrograph was well represented by the model, with a model ef-
ficiency of 0.98. Differences between observed and modelled hydrographs are within
the range of measurement uncertainty. The third largest event occurred 6 weeks after
the largest event on 12 August 1994 (Table 3). The best fit of the corresponding hydro-
graph (E =0.98) was achieved with the same average macroporosity factor 7, = 2.1
as for the largest event in June. This value is slightly larger as it is the mean of the
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best macroporosity factors that were obtained during simulation of the spring plot scale
rainfall simulation experiments.

Figure 11b presents the modelled and predicted hydrographs of the second largest
observed event that occurred on 13 August 1995. Although this rainfall event was very
similar to the largest event in June 1994 as regards initial conditions, rainfall amount
and intensity, the observed runoff volume was comparably small, with only two-thirds
of the volume of the largest event. A reasonable fit for this event required a higher
average macroporosity factor of 7, = 3.35. This increase can likely be explained by
a higher surface density of worm burrows in August. Again this value corresponds well
with the mean of the best macroporosity factors that were obtained during simulation
of the summer plot scale rainfall simulation experiments (Sect. 4.1.1).

Based on these optimum macroporosity values, erosion and deposition were simu-
lated for the three events, respectively. The predicted sediment loads agree well with
the observed ones, the slight over-prediction is within the error margin of the obser-
vation (Table 6). Figure 12 displays the spatial pattern of the simulated cumulative
erosion (a) and deposition rates (b) for the largest storm event on 27 June 1994. Areas
covered with highly erodible crop types cultivated in rows such as corn, sugar beet and
sunflower reveal high erosion rates, in particular when these crop types are located
on the steep convex shaped slopes in the east of the catchment (Fig. 4). The aver-
age cumulative erosion rates for these crop types vary between 2.0-2.5kg m~2 with
the highest rates for sunflowers, since they were mainly located on the eastern hill-
slopes. The cumulative erosion rates for wheat were much lower with an average value
of 0.8 kg m~2 due to the high soil cover ratio of about 80 % in late June. For forested or
grass covered areas the erosion rates were low, as expected.

In total, 26 % of the detached soil material was deposited in the catchment. Retention
areas are mainly located on plain areas along the temporary channel network and on
hillslopes with a complex geometry (Figs. 12b and 4b). The total simulated deposition
rate for the other two storm events was with 19% (13 August 1995) and 12% (12
August 1994) lower than for the event on 27 June 1994. An analysis of the spatial
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variation of erosion showed that the main source areas were located on the steep
convex shaped hillslopes in the east of the catchment. These convex shaped hillslopes
have no distinct plain areas at the hill foot which is why the sedimentation rate was
lower for these two smaller events. Beuselinck et al. (2000) monitored deposition rates
in two small cultivated loess catchments in central and east Belgium. The catchment
area, mean slope and land use of both catchments is comparable to the Weiherbach
catchment. Beuselinck et al. (2000) report deposition rates of 25 and 40 %, respectively,
for two thunderstorms in summer (16 mm 15 min~' and 49 mm 30 min~" )- The simulated
deposition rates for the Weiherbach catchment therefore seem plausible in comparison
to the findings of Beuselinck et al. (2000).

4.2 Sensitivity and scenario analysis
4.2.1 Sensitivity analysis of the model parameters

To analyse the sensitivity of the model output due to the variation of the macroporosity
factor f,, and the erosion resistance f;;, we repeated the simulations of the rainfall ex-
periments using different combinations of optimum and predicted values of both param-
eters (Table 7). The use of predicted values for the macroporosity factor decreased the
model efficiency from E = 0.97 to E = 0.66 (Fig. 13a for runoff volumes). For predicted
values of the erosion resistance parameter, the model efficiency of simulated detach-
ment rates decreased from E = 0.95 to £ = 0.56 (for specific macroporosity factors)
and £ = 0.46 (for predicted macroporosity factors), respectively (Table 7 and Fig. 13b).
Despite the spread of data points, the cumulative runoff volumes and detachment rates
were neither systematically over- nor under-estimated, which is shown by the low sys-
tematic errors of —0.01 m® and +4.87 kg (Fig. 13).
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4.2.2 Land use scenarios

The “best case” and the “worst case” scenarios of the given land use percentage for
1994 (Sect. 3.2.4, Fig. 7) were modelled for the storm event on 27 June 1994 and the
results were compared to the observed sediment yield at gauge Menzingen. For the
“best case” scenario the sediment yield was reduced to 1147t (40 % reduction) while it
was increased to 24271t (30 % increase) for the “worst case” scenario. The proportion
of deposition for the “worst case” scenario was 25 % which is in the same range as
for the given land use pattern. For the “best case” scenario it was increased to 32 %.
This is mainly because the convex shaped slopes in the east of the catchment were
covered with pasture in this scenario while the erodible arable land was placed on
convex-concave shaped hillslopes with a distinct deposition area at the hill foot. Both
scenarios show the importance of the land use pattern in the catchment. The sediment
yield at the catchment outlet can be reduced by 40 % for an optimal arrangement of
the land use pattern. However, both scenarios were idealized, since agricultural and
economic aspects such as crop rotation were not considered.

5 Discussion and conclusions

The objective of this study was to develop, parameterize and verify a process-based
soil erosion model for the catchment scale, which balances necessary complexity with
greatest possible simplicity. We used the hydrologic model CATFLOW as a platform
and further developed it to CATFLOW-SED by integrating approaches to simulate soil
erosion and deposition in a loess landscape. The model was validated on a hierarchy
of scales at which either particle detachment or sediment transport capacity or parti-
cle deposition are the limiting factors. For validation of the soil detachment approach,
rainfall simulation experiments on the plot scale were modelled (Sect. 4.1.1). Sediment
transport was verified on the hillslope scale by using data from a long-term soil erosion
experiment (Sect. 4.1.2). Finally, erosion and deposition were simulated at the catch-
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ment scale and the integrated sediment flux was compared against observed sediment
loads of three heavy storm events at the catchment outlet (Sect. 4.1.3). For the verifica-
tion of the implemented erosion approaches, the runoff simulation of CATFLOW-SED
was calibrated by adapting the macroporosity factor f,, (Sect. 3.3.1). CATFLOW-SED
predicted the sediment loads at all scales very well, with good agreement between sim-
ulated and observed runoff. The differences between simulated and observed sediment
loads were within the error margin of the measurements so that no further calibration
of the erosion approaches was necessary.

The governing process representations depend further on the spatial and tempo-
ral variability of the model parameters. Besides directly measured input data such as
precipitation, initial soil moisture, soil hydraulic properties, soil texture, soil cover, etc.,
the most important model parameters are the erosion resistance f.;; and the macrop-
orosity factor f,,. We analyzed the sensitivity of both parameters on the plot scale by
using optimum and predicted parameter sets for the simulation of the rainfall experi-
ments. The model efficiency decreased to an acceptable 0.66 when using regionalized
macroporosity values and below 0.5 when using regionalized macroporosity values
and erosion resistance (Sect. 4.2.1.). These findings are in line with those of Nearing
(2006) and Bagarello and Ferro (2012).

Nearing (2006) analyzed the predictability of soil detachment rates on the plot scale
by applying the “physical model concept”. The idea of this concept is that the best
model of an erosion plot is a neighbouring plot with similar properties. Nearing (2006)
therefore correlated the erosion rates of neighbouring plots for a large number of exper-
iments and found that the coefficient of determination A2 reaches a maximum of 0.77.
He concluded that no better prediction of soil detachment rates on the plot scale is pos-
sible due to the random variability of this natural process on small scales. Bagarello and
Ferro (2012) repeated the experiment of Nearing (2006) using data from soil erosion
plots in ltaly and achieved the same result: the coefficient of determination was be-
low 0.77. This high natural variability on the plot scale is also found within the rainfall
simulation experiments carried out in the Weiherbach catchment (Scherer et al., 2012).
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Seyfried and Wilcox (1995) proposed that the type of variability of natural data is ei-
ther stochastic or deterministic, depending on the scale: on the plot scale the variability
is stochastic, while it is deterministic on larger scales, such as the catchment scale, be-
cause local structures control the response of the system. Kirkby (1998) showed that
the deterministic variability on the catchment scale is mainly dependent on the interac-
tion of topography, vegetation and soil type. In the case where the relevant catchment
characteristics and structures controlling the response of the system are identified, the
spatial and temporal pattern of a state variable can be parameterized by average val-
ues, while the small-scale variability can be neglected (Seyfried and Wilcox, 1995; Zehe
and Bléschl, 2004). We found that cultivation and tillage operations were the first order
control of the erosion resistance for the homogeneous loess soils in the Weiherbach
catchment (Scherer et al., 2012). Although the erosion resistance showed a high sen-
sitivity to the simulation results on the plot scale, the spatial and temporal pattern of
this parameter was adequately predicted on the catchment scale (Sect. 4.1.3) by using
a regionalization approach that represented the dominant control factors.

The spatial and temporal pattern of the macroporosity factor depends on two main
influencing factors: (i) the earthworm species in the Weiherbach prefer the Colluvisols
at the hill foots which are rich in clay and organic matter (Zehe and Flihler, 2001; van
Schaik et al., 2014) leading to higher densities of earthworm borrows in comparison
to the calcaric regosols at the hill tops (Sects. 3.2.2 and 4.2.1). This catena related
pattern was represented in the model setup by increasing the macroporosity factor from
the hill top to the foot (Sect. 3.3.4). (ii) The number of earthworm borrows connected
to the surface on intensively cultivated areas varies throughout the year, since the
pore system is destroyed by ploughing. After tillage the macropores are rebuilt during
the vegetation period by the earthworms (Zehe and Bléschl, 2004). We observed the
seasonal variation in macropore connectivity during the calibration of the runoff volume
on the plot (Sect. 4.1.1) as well as at catchment scale (Sect. 4.1.3): while the average
level of the macroporostiy factors was low during spring, the macroporosity factors
reached higher levels at the end of the vegetation period in August and September.
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We conclude that all relevant processes and influencing factors for modelling ero-
sion and deposition processes for loess soils on the catchment scale were adequately
represented and parameterized in CATFLOW-SED. The validated model setup can be
used to shed light on the role of the hillslope form, rainfall intensity, infiltration capacity,
land use and tillage practice in erosion scenarios for cultivated loess landscapes. Such
scenario analyses are important since heavy storm events are difficult to observe in
a specific catchment due to the rareness and the local occurrence of heavy thunder-
storms. The capability of the model to analyze land use scenarios was demonstrated
by simulating the heaviest observed storm event in the Weiherbach catchment with
rearranged land use patterns in a best case and worst case scenario (Sect. 4.2.1). In
addition, the model is a useful tool to analyze the risk of particulate substance emis-
sions via erosion and to quantify the effect of mitigation measures.

Future work will focus on the improvement of the predictability of surface runoff sim-
ulation. Up to now, the temporal and spatial regionalization of the macroporosity factor
dependant on the various land uses and crop types in not yet feasible for the Wei-
herbach catchment. Zehe et al. (2013) have suggested a promising further approach
by using optimality principles to predict the macroporosity of different landscape con-
figurations.
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Table 1. Soil hydraulic properties after van Genuchten—Mualem (van Genuchten, 1980; g. U. Scherer and E. Zehe
Mualem, 1976). Where k is saturated hydraulic conductivity, 8, porosity, 8, residual water =
content, a air entry value and n shape parameter. S
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Table 2. Percentage of land use in the Weiherbach catchment for the main crop periods of 1994 S
and 1995. &
2 R
Land use 1994 1995 -
Grain/vegetables 122ha (34.7%) 152ha (43.4%) - - -
Corn 55ha (15.7%) 42ha (12.1%) @]
Fodder/sugar beet 24 ha (6.9 %) 19ha (5.3 %) 8 - -
Sun flower 43ha (12.4%)  27ha (7.7%) ~ Tabes  Figues
Grass land/forest/sealed area 106 ha (30.3%) 110ha (31.6%) S
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Table 3. Cumulative rainfall as well as discharge volume and sediment load balanced at gauge %- S SR el = A
Menzingen for three heavy erosion events in the Weiherbach catchment. %
QO
©
Date of the event cumulative rainfall discharge volume peak flow sediment load Q _
27 Jun 1994 78.6% 32682 7.92 1815 o
12 Aug 1994 34.4° 3699 1.00 35 ° B
13 Aug 1995 73.6° 20376 3.7 607 ~ Tabes  Figues
2
=
& Measured at rainfall gauge WBO, ® measured at rainfall gauge WB1.
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Table 4. Mean percentages of grain size fractions for the main soil textures in the Weiherbach

catchment.

Soil texture clay silt sand

in % fine middle coarse finest fine middle coarse
Silty loam 27.6 77 21.7 35.9 2.4 0.7 1.8 2.2
Loamy silt 14.6 6.0 23.9 51.0 25 0.4 1.1 0.5
Very loamy silt  21.7 6.7 23.0 457 1.8 0.3 0.6 0.2
Clayey loam 37.0 135 14.6 20.8 2.6 1.6 4.2 5.7
Loamy clay 51.0 114 13.9 17.5 2.1 1.0 1.5 1.5
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Table 5. Results of the regression analysis between calibrated macroporosity factors f,, and
soil properties (clay content CC, organic matter OM and initial soil moisture 8) of the irrigation
plots for 39 rainfall simulation experiments carried out in two intensity measuring campaigns in

spring and late summer.

Sample Clay content (CC) Organic matter (OM)  Soil moisture (6)

%o Y% Vol.-%
All experiments fn=0.16xCC-0.86 f,=133x0OM+0.21 f,=-0.03x06+3.03
(n=39) R?=0.46 R?=0.13 R?=0.02
Spring experiments f,=017xCC-163 f,=175x0OM+1.06 f,=0.17x6-1.60
(n=20) R?=0.66 R?*=0.13 R*=0.17
Summer experiments £, =0.17xCC-0.54 f,=150xOM+0.44 f,=014x6+1.54
(n=19) R?=0.51 R?=0.11 R*=0.14
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Table 6. Comparison of observed and modelled sediment volumes at gauge Menzingen for %
three heavy storm events. 2
. TWePage
Date of the event sediment volume sediment volume variation
observed in t modelled in t % - - -
27 Jun 1994 1815 1949 +7.4 s i R
12 Aug 1994 35 37 +5.7 <
15 Aug 1995 607 60 138 ; N
=
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Table 7. Goodness of fit measures for the comparison of observed and modelled cumulative
runoff and detachment rates of 39 rainfall simulation experiments for different combinations of
specific and predicted values for the model parameters macroporosity factor 7, and erosion
resistance f;. Where RMSE is root mean square error and £ model efficiency (Nash and
Sutcliffe, 1970).

Combination f;: specific fi: predicted

f: specific runoff: E =0.97, RMSE=0.04m>  runoff: same as before
detachment: E =0.95, RMSE=11.0kg detachment: E =0.56, RMSE = 31.9kg

f.,: predicted  runoff: E =0.66, RMSE = 0.13m*®  runoff: same as before

detachment: E =0.79, RMSE=22.8kg detachment: £ =0.46, RMSE = 35.4kg

3579

Jaded uoissnosiq

| Jadeq uoissnosiq | Jaded uoissnasiq

Jaded uoissnosiq

HESSD
12, 3527-3592, 2015

Predicting land use
and soil controls on
erosion and sediment
redistribution

U. Scherer and E. Zehe

(&)
()


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/3527/2015/hessd-12-3527-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/3527/2015/hessd-12-3527-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

precipitation (q,,/)
T R I

S

i

T i )
infiltration , \\\“’
L ax + exfiltration (q,,/) vS

A X, A X,

A Xi+1

Figure 1. Scheme for overland flow modeling in CATFLOW-SED according to the diffusive
wave procedure. Where S, is gradient of the discretization element, S, gradient of the water
level, h flow depth in m, @ discharge in m®s™", g4t is lateral inflow by precipitation and infiltra-
tion/exfiltration in m? 3_1, x length coordinate in m, Ax length of discretization element in m, /
index of discretization element, j index of time step.
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Figure 5. Model setup and simulation results for the long-term soil erosion plot in the Wei-
herbach catchment. Top panel: Cross-section of the soil erosion plot and assignment of soil
textures. Bottom panel: Simulation results of cumulative erosion and deposition rates for the
storm event on 27 June 1994.
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Figure 6. Discretization of the catchment area in hillslopes, drainage network and modelling
elements. (a) Topview on hillslopes and fall lines of slopes. (b) Topview on model elements.
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Figure 10. Comparison of observed and modelled cumulative detachment rates of 39 rainfall
simulation experiments. Where BIAS is systematic error, RMSE root mean square error and £
model efficiency (Nash and Sutcliffe, 1970).
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Figure 12. Visualization of modelled cumulative erosion and deposition rates in kg m~2 for the
largest observed erosion event in the Weiherbach catchment on 27 June 1994.
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Figure 13. Comparison of (a) observed and modelled cumulative surface runoff and (b) cu-
mulative detached soil material of 39 rainfall simulation experiments using predicted values for
the model parameters macroporosity factor and erosion resistance. Where BIAS is systematic

error, RMSE root mean square error and £ model efficiency (Nash and Sutcliffe, 1970).
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