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Abstract

In spring 2013, extensive measurements with multiple Doppler lidar systems were per-
formed. The instruments were arranged in a triangle with edge lengths of about 3 km in
a moderately flat, agriculturally used terrain. For six mostly cloud-free convective days,
vertical velocity variance profiles were compared for the three locations. On the aver-5

age over all considered cases, differences between variances at different sites were
about three times higher than between those derived from measurements by different
lidars at the same site. For all investigated averaging periods between 10 min and 4 h,
the differences were not significant on the average when considering the statistical er-
ror. However, statistically significant spatial differences were found in several individual10

cases. These could not be explained by the existing surface heterogeneity.
In some cases, nearby energy balance stations provided surface fluxes that were

not suitable for scaling the variance profiles. Weighted-averaged values proved to be
more applicable, but even then, the scaled profiles showed a large scatter for each
location. Therefore, it must be assumed that the intensity of turbulence is not always15

well-determined by the local heat supply at the Earth’s surface. Instead, a certain de-
pendency of turbulence characteristics on mean wind speed and direction was found:
thermals were detected that travelled from one site to the other with the mean wind
when the travel time was shorter than the large-eddy turnover time. At the same time,
no thermals passed for more than two hours at a third site that was located perpendic-20

ular to the mean wind direction in relation to the first two sites. Subsidence prevailing
in the surroundings of thermals advected with the mean wind can thus partly explain
significant spatial variance differences existing for several hours.

1 Introduction

The vertical velocity variance, w ′2, is one of the relevant parameters describing the25

turbulent structure of the convective boundary layer (CBL). Measurements of w ′2 have
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been analyzed for several decades (e.g. Wyngaard et al., 1971; Panofsky and Maz-
zola, 1971; Kaimal et al., 1976; Young, 1988). Most of these early investigations were
based on aircraft observations. Later, radar wind profiler (e.g., Eymard and Weill, 1988;
Angevine et al., 1994; Eng et al., 2003) and more recently, Doppler lidar measurements
(e.g. Lothon et al., 2009; Hogan et al., 2009; Ansmann et al., 2010; Lenschow et al.,5

2012) became available for studying vertical velocity characteristics in the CBL. Both
in-situ aircraft measurements and ground-based remote sensing have advantages and
disadvantages: as aircraft observations are expensive, data are usually available for
a small number of flight levels only. The measurements must cover a certain distance,
i.e. flight legs must be long enough, to meet the requirements of turbulent statistics10

(Lenschow and Stankov, 1986; Lenschow et al., 1994), so that the turbulence charac-
teristics on the different levels are not available simultaneously. Ground-based remote
sensing observations provide turbulent statistics on different levels at the same time for
time periods of typically one hour or even longer. However, even if it is assumed that
temporal and spatial integration are comparable, i.e. that time can be transformed into15

space via the mean wind speed, lidar measurements are representative of a restricted
region only.

In the part of the CBL where buoyant production dominates over the shear produc-
tion of turbulent kinetic energy, turbulent mixing is supposed to be driven mainly by the
heat supply at the Earth’s surface. Deardorff (1970a) proposed that for situations with20

sufficient thermal instability, vertical velocity fluctuations could be scaled by the convec-
tive velocity w∗. Warner (1972), Willis and Deardorff (1974) and Caughey and Palmer
(1979) were among the first to present scaled variance profiles, based on laboratory
experiments as well as aircraft measurements performed over mainly homogeneous
terrain. Large eddy simulations (LES) confirmed the empirical profiles (e.g. Deardorff,25

1974; Moeng, 1984; Hadfield et al., 1991). Different fit functions were proposed by
Kaimal et al. (1976), Lenschow et al. (1980), or Sorbjan (1988, 1989), which reveal
a considerable uncertainty. Hogan et al. (2009), e.g., found that scaled variance pro-
files derived from lidar measurements at one particular site displayed a case-to-case
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variability that was about as large as the scatter of the fit functions given by Lenschow
et al. (1980) and Sorbjan (1986), which had been derived from aircraft measurements.
Hence, the uncertainty or representativeness of point measurements is very relevant
and becomes even more important for heterogeneous terrain.

Different studies addressed the representativeness of point measurements of the5

surface energy balance (e.g. Mahrt, 1998; Steinfeld et al., 2007) and examined sam-
pling errors made by aircraft measurements (e.g. Lenschow and Stankov, 1986;
Schröter et al., 2000). Lenschow et al. (1994) considered general statistical errors that
should be taken into account when calculating turbulence statistics. To our knowledge,
no investigation specifically addressed the statistical errors made for simultaneously10

performed point measurements of vertical turbulence profiles.
During the High Definition Clouds and Precipitation for Climate Prediction (HD(CP)2)

observational prototype experiment (HOPE) performed in April and May 2013 in the
Lower Rhine region in Germany, Doppler lidars were deployed in a triangle in an agri-
culturally used, moderately flat terrain (Fig. 1). The length of about 3 km of the three15

edges had been chosen such that the measurements could be assumed to be inde-
pendent. As it was suppossed that most processes in the CBL scale with its depth (e.g.
Deardorff, 1970a; Willis and Deardorff, 1974), the lengths had to be larger than the
CBL depth of 1–2 km. On the other hand, the locations had to be close enough to be
situated within the area of the given surface heterogeneity. The aims of this study were20

(1) to compare the vertical velocity variance profiles at the three sites, i.e. to investigate
the spatial variability of CBL turbulence and with this, to assess the representativeness
of point measurements over patchy terrain; (2) to analyze the conditions of the time
periods with statistically significant spatial variance differences in more detail; (3) to

investigate the effect of w∗-scaling on the spread of profiles of w ′2 by using spatially25

averaged values of w∗ or those derived from stations near to the lidar locations; and (4)
to determine the impact of the averaging time on spatial variance differences.

The paper is structured as follows: in the next section, the observations and the
measurement setup are described. Section 3 presents the computation of the verti-
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cal velocity variances and considered errors and includes considerations regarding the
normalization procedure. In Sect. 4, the main results are presented and discussed.
This comprises the spatial comparison of the variances, the investigation of surface
and atmospheric conditions during periods with statistically significant differences of
the variances, and the discussion of possible influencing factors. Finally, Sect. 5 sum-5

marizes the main findings.

2 Overview of the measurements

2.1 Measurement site and instruments

The HOPE measurement area was located near Forschungszentrum Jülich, in the
north of a low mountain range (Eifel), with two larger open-pit coal mines (up to 10 km10

wide) and several smaller wooded areas in the vicinity. All instruments considered
here were located within an agriculturally used area near the villages of Hambach and
Niederzier (Fig. 1). The diagonals of the individual fields with various crops are roughly
between 100 and 500 m. As part of HOPE, the Karlsruhe advanced mobile observa-
tion platform KITcube (Kalthoff et al., 2013) was installed. Most of the KITcube instru-15

mentation was operated at Hambach (50.897◦N/6.464◦ E, 110 mm.s.l.). Additionally,
instruments were installed at a second site, called Wasserwerk (50.891◦N/6.430◦ E,
96 mm.s.l.), 2.6 km west of Hambach. For this study, Doppler lidar data from a site
near Selhausen (50.869◦N/6.451◦ E, 105 mm.s.l.) and energy balance data from eddy-
covariance stations (Graf et al., 2010) of the Terrestrial Network of Observatories20

(TERENO; Zacharias et al., 2011) were applied as well. The instruments whose data
are used here are briefly described below.

2.1.1 Doppler lidars at three sites

At Hambach, a 1.6 µm heterodyne Doppler lidar (WindTracer “WTX” with an Er:YAG
laser, Lockheed Martin Coherent Technologies, Inc.) was deployed. The lidar measures25
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the radial wind velocity via the Doppler shift of radiation scattered at aerosol particles.
Mean horizontal wind speed profiles can be calculated with the VAD algorithm (Brown-
ing and Wexler, 1968). Applying the vertical stare mode yields vertical velocity w with
a time resolution of 1 s from about 375 m above ground level (a.g.l.) to the top of the
boundary layer and partly above, depending on the aerosol concentration as well as5

on the measurement setup. Technically, a higher data rate of 10 Hz would be possible,
but a temporal resolution of 1 Hz is considered the optimal setting for the vertical stare
mode, as it ensures higher signal-to-noise ratios by longer averaging. The effective
range-gate resolution is about 60 m (Träumner et al., 2011). The measurements are
mainly restricted to the cloud-free atmosphere, because lidars only partly penetrate10

clouds. In order to cover the range between the top of the surface layer and the lowest
measurement heights of WTX, a Doppler lidar (WLS7-V2, Leosphere, hereafter called
WLS7) with a wavelength of 1.5 µm was used. Applying the VAD mode yields the wind
profile from 40 m a.g.l. up to about 400 m a.g.l. with a temporal resolution of 1.6 s to
10 min and a vertical range resolution of 20 m. As for WTX, operation of the system in15

the vertical stare mode allows for the direct detection of vertical velocity. In combination
with the WindTracer WTX at Hambach, a full vertical coverage of vertical velocity from
the top of the surface layer up into the entrainment zone results.

Two Doppler lidars (a 2 µm lidar called WindTracer “HYB” with a Tm:LuAG
laser/Lockheed Martin CT, and WLS200/Leosphere) were operated at the Wasserw-20

erk. Apart from the different laser transmitters, the HYB has similar system settings as
the WTX. The Doppler lidar at Selhausen, the third site, was a Stream Line manufac-
tured by HALO Photonics Ltd. (Pearson et al., 2009, hereafter called HALO), which
measures with a range-gate length of 18 m (Eder et al., 2015). In contrast to the Wind-
Tracer systems having a laser pulse of high energy, the HALO and the WLS200 op-25

erate in a “low-pulse energy/high-pulse rate mode” and they can resolve the lowest
hundreds of meters a.g.l. An overview of the lidar instruments at the different locations
is also given in Table 1. The variability of the threshold of signal-to-noise ratio taken for
filtering noisy data for the different instruments is also related to the different technical
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specifications. The measurement frequency of 1 Hz was the same for all Doppler lidars
and the measurement settings were chosen such that vertical velocity data were avail-
able at intervals of 25 m for the WindTracer systems as well as for the systems from
Leosphere. For the WindTracer systems, this setup causes an overlap of the effective
range gates. The data of HALO were interpolated to the same heights.5

As all heights used in this study will be in m a.g.l., we will omit the adjunct “a.g.l.” in
the following sections.

2.1.2 Energy balance stations

The energy balance stations measure solar and reflected irradiance, long-wave incom-
ing and outgoing radiation, soil heat, sensible heat, latent heat, and momentum fluxes.10

For the turbulent fluxes, temperature, humidity, and wind speed are measured with an
ultrasonic anemometer/thermometer and a fast infrared hygrometer at a height of 4 m.
All turbulent fluxes used in this study were calculated for time intervals of 30 min us-
ing the eddy-covariance software package TK3.11 of Mauder and Foken (2011) and
Mauder et al. (2013). Altogether, data of five energy balance stations were used: two15

energy balance stations of KITcube that were co-located with the lidar instruments at
Hambach and at the Wasserwerk site and three TERENO stations at Niederzier, Sel-
hausen, and Ruraue (Fig. 1).

2.1.3 Additional instruments at Hambach

To obtain vertical profiles of temperature, humidity, wind speed, and wind direction, the20

KITcube radiosonde system (DFM-09, Graw) was operated at Hambach. On 18 days
selected as intensive operation periods (IOPs), radiosondes were launched at 2-hourly
intervals. On all other days, launches were done at least at 11:00 and 23:00 UTC.
A microwave radiometer (HATPRO, Radiometer Physics GmbH) was also operated at
Hambach. The instrument detects thermal radiation emitted by atmospheric compo-25

nents. From these data, for example time series of integrated water vapor (IWV) can

18017

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/18011/2015/acpd-15-18011-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/18011/2015/acpd-15-18011-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
15, 18011–18064, 2015

Variability of BL
turbulence

V. Maurer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

be derived with high accuracy (Pospichal and Crewell, 2007). An additional ultrasonic
anemometer was installed on a tower and measured wind components and virtual
temperature at a height of 30 m. Finally, a ceilometer (CHM 15k, Jenoptic) measured
cloud-base heights.

2.2 Turbulent surface fluxes5

An overview of the daily averaged Bowen ratios (ratio of daily averaged sensible heat
flux to daily averaged latent heat flux, using 09:00–15:00 UTC) indicates that the val-
ues were very high (up to 4) for some stations until 6 May 2013, but below one at all
stations after that date (Fig. 2a). The Bowen ratio was below one at Selhausen and
Ruraue during all the time so that spatial heterogeneity within the respective area of10

about 5km×5km existed in April until early May. The rain gauge measurements at
the Wasserwerk (Fig. 2b) reveal that there was much less rainfall during this period
than after 6 May. From the land-surface point of view, the whole measurement period
may be divided into a drier period with considerable spatial heterogeneity and a wetter
period with less heterogeneity. Similar differences of Bowen ratio between a wet and15

a dry period were found during the field experiment LITFASS-2003, which also took
place in an area dominated by agricultural land use (Beyrich and Mengelkamp, 2006).

In order to derive spatially representative values of sensible heat flux, an average
of flux measurements was calculated by weighting each station with the fraction of
the respective land-use class in the considered area (Fig. 1). The land-use map was20

available at 15m×15m horizontal resolution and the land-use classes were combined
to the following three categories: bare soil, crops, and meadow/forest, with fractions
of 70.2, 22.8, and 7.1 %, respectively. As the growth of vegetation was not yet ad-
vanced in spring 2013, the fluxes of Niederzier were considered to be representative
of bare soil, even though the station was located in a field of sugar beets. The stations25

Selhausen and Wasserwerk (crops) were assigned to the second land-use class and
Ruraue and Hambach (meadow) to the third one. As the fraction of bare soil was by
far the highest and the Bowen ratio at Niederzier was high during the drier period, the
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weighted-averaged flux also is higher during the drier than during the wetter period
(Fig. 2a).

2.3 Selected days

On six days with mainly cloud-free CBL conditions, at least one lidar at each site was
configured for w measurements: 18, 20, 22, and 24 April as well as 04 and 19 May.5

Here, the variance profiles for all of these days were analyzed. From the radiosound-
ings, mean CBL conditions were estimated for these six days (Table 2): on four of
the six days, the main regime was governed by westerly to southwesterly flow. On
20 April, the mean wind direction was from northeast and on 19 May, it varied between
northeast to north in the CBL, while it was from the east directly above the CBL. As10

indicated by microwave radiometer measurements, the IWV was moderately high on
most days and much higher on 24 April. Incoming shortwave radiation, as measured
by a pyranometer network operated by TROPOS (Leipzig), naturally increased from
18 April to 19 May. At the same time, the spatial standard deviation of incoming ra-
diation, in combination with ceilometer data and cloud camera images, revealed the15

existence of some CBL clouds on 18 April, of cirrus clouds at about 8 km on 24 April,
and of altocumulus clouds at about 5 km on 19 May. In comparison to the other days,
however, the maximum sensible heat flux was reduced on 19 May because this was
the only day falling into the wetter period. The height of the capping inversion of the
CBL was also lowest on 19 May, while it was highest on 18 April. As indicated by the20

temporal evolution of temperature profiles of the radiosondes for 18 April (not shown),
a neutrally stratified residual layer was present between 800 and 1400 m at 09:00 UTC
above the mixed layer. When the boundary layer grew into this neutral layer, its height
increased abruptly from 700 m at 09:00 UTC to 1600 m at 11:00 UTC. This also may
have contributed to the formation of some boundary-layer clouds on this day as the25

sudden mixing throughout the deepened CBL led to a cooling of the former residual
layer.
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3 Vertical velocity measurements and variance calculations

3.1 Characteristics of vertical velocity data

As an example, vertical velocity measurements from 11:00–13:00 UTC on 20 April at
the three sites are shown for comparison (Fig. 3). Up- and downdrafts with a maximum
vertical velocity of more than 2.5 ms−1, which are typical of convective boundary layers,5

were observed at all sites. The thermals lasted for several minutes and rose up to
1200 m during this time period. The isolines of 283–285 K of potential temperature
(Fig. 3b) display the height of the inversion layer at 1200 m, which also agrees with the
measurement heights of the lidars WTX and HALO (Fig. 3b and c). The HYB yielded
measurements up to 1500 m (Fig. 3a). This is due to the averaging of a higher number10

of laser pulses so that the signal-to-noise ratio is still above the selected threshold
(Table 1) at heights where the aerosol concentration is much lower. It can also be
seen that the w measurements of the WLS7 and WLS200 for the lowest 400 m are
subjectively consistent with the measurements above (Fig. 3a and b).

For a first analysis of the time series, power density spectra of w were calculated at15

different heights for the instruments at Hambach (Fig. 4a). Additionally, the spectrum of
w measurements by an ultrasonic on a 30 m tower is given and can be compared with
those of WLS7 at the lowest range gate (60 m). At low frequencies of about 10−3 to
10−2 Hz (i.e. time periods of about 2–15 min), the energy is highest for all range gates
except for the lowest one. Maximum turbulent energy for the considered time series can20

be found at 400 m height, as indicated by the integral spectrum (Fig. 4b). At the low-
est given range gate and for the ultrasonic measurement, maximum energy is shifted
towards higher frequencies (0.01 to 0.1 Hz) and smaller time periods (10 s to 2 min),
respectively. Besides, as discussed by Frehlich et al. (1998) or Brugger et al. (2015)
for example, it is obvious that in the inertial subrange, the energy of the lidar spectra25

decreases faster than the theoretical −2/3-slope, i.e. for frequencies higher than about
0.1 Hz for the WTX (400 m and above) and about 0.3 Hz for WLS7 (60 and 200 m). Even
if the measurement frequencies of 1 Hz of the two lidar systems would be high enough
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to register fluctuations on these scales, the sampling frequency is restricted due to the
spatial averaging of the lidar pulses. This affects the absolute values of variance, as
can be seen in the integral spectra: while the contribution to the total energy still in-
creases up to the highest frequency resolved by the measurement frequency for the
WLS7 spectra, this is not the case for the WTX spectra. The total energy or variance,5

respectively, is therefore higher at 200 m than at 900 m. Apart from that, the spectra
of WLS7 show some artefacts at the highest frequencies, which were also observed
by Carbajo Fuertes et al. (2014), for example. This is presumably the signature of an
aliasing effect. As the effect of missing variance contributions at high frequencies due
to the spatial averaging is found for all lidar systems and as the main aim of our inves-10

tigation is an intercomparison of lidar measurements at different locations, this effect
will be neglected below.

The integral spectra indicate that the largest contributions to the variance (> 50 %)
lie in the frequency range of 2×10−3 to 10−2 Hz (Fig. 4b). Based on the spectra, the
peak frequency fp,w lying within this range was estimated for all days. From fp,w , the15

time and length scales on which the turbulent energy contained in the vertical motions
is highest were calculated. They varied for the considered days between five and eight
minutes or 2–2.7 km, respectively (Table 2). Additionally, scales can be estimated from
the autocorrelation function of w: it becomes negative at a certain time interval and
will have a second maximum (and further maxima), if a dominant periodic fluctuation20

exists. The interval, at which the second maximum can be discerned does then cor-
respond to the repetition frequency of the up- or downward motions. This repetition
frequency often corresponds to the peak wavelength. The values are slightly larger
than those estimated from the spectra, but they confirm that the peak wavelength is
about 3 km (Table 2). This means that the energy-containing length scale of the tur-25

bulent motions in the CBL was much larger during HOPE than the length scale of the
surface heterogeneity, which is several 100 m at the maximum.

Instead of the calculation via the integrated spectrum, the w ′2 profiles were deter-
mined directly from the time series. For a validation of both computation methods, the
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hourly variances for all considered instruments and all six days calculated by both
methods were compared for the 600 m range gates and were found to be in good
agreement, with a mean relative deviation of 3 %.

3.2 Errors considered for variance calculations

As in Träumner et al. (2011), the variances were corrected for uncorrelated random5

noise using a technique proposed by Lenschow et al. (2000). Additionally, the statistical
error was considered as described by Lenschow et al. (1994). This method is based
on the separation of the random and the systematic error (Appendix A).

Even if the signal noise is considered, we cannot be sure that different instruments
can provide identical measurements, especially if they are from different manufactur-10

ers and are based on different technical principles like HALO and WLS200 compared
to the WindTracer systems. Therefore, both WLS200 and HYB were operated at the
Wasserwerk in the vertical stare mode on 20, 22, and 24 April, so that the w mea-
surements of the two lidar systems could be compared directly. The cross correlation
function between the two w time series on 20 April was calculated for measurement15

heights between 400 and 1000 m (not shown). The highest correlations (> 0.8) can be
found between 600 and 800 m. As for the autorcorrelation functions, an oscillation be-
tween positive and negative values is observed for increasing time lags, symmetrically
for positive and negative ones. For 18 and 22 April, the maximum correlations are 0.88
and 0.95, respectively. This means that the two measurements were not perfectly the20

same on all days, but sufficiently well correlated to possibly yield similar statistics. The
variance differences resulting from the different devices will be taken into account for
the spatial comparisons in Sect. 4.4.

Finally, another error that may have an influence is the missing contribution to turbu-
lent energy in the higher frequency part of the spectrum due to the vertical averaging25

of the lidar measurements. As explained above, this error will be neglected here, as it
would lead to higher variances at all stations and not change the spatial differences.
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3.3 Scaling of variance profiles

According to Lenschow et al. (1980) and Sorbjan (1989), vertical profiles of w ′2 can be
normalized and best fitted by

w ′2

w∗2
= 1.8

(
z
zi

)2/3(
1−0.8

z
zi

)2

and
w ′2

w∗2
= 1.17

(
z
zi

)2/3(
1− z

zi

)2/3

, (1)

respectively. The convective velocity scale is defined as5

w∗ =

zi g
θv ,0

w ′θv
′
∣∣∣

0

1/3

, (2)

with the CBL height zi , the gravitational acceleration g, the temporal mean of virtual
potential temperature at the surface θv ,0, and the kinematic sensible heat flux at the

surface, w ′θv
′
∣∣∣

0
. For the sensible heat flux, either the weighted-averaged heat flux

(see Sect. 2) or the fluxes measured by the energy balance stations next to the lidar10

instruments can be used here.
For z axis scaling as well as to calculate w∗, the CBL height has to be determined.

At least, three different methods are in use, depending on the available measurement
systems (cf. Emeis et al., 2008; Träumner et al., 2011, and references therein): (1)
determining the CBL capping inversion from radiosonde profiles, (2) estimating the top15

of the aerosol layer from lidar backscatter data, and (3) calculating the top of CBL
convection from profiles of the vertical velocity variance. While the first two methods
can be regarded as proxies for the CBL depth, the third method is a direct one. Tucker
et al. (2009) systematically investigated the determination of the CBL height using
variance profiles and found that a threshold value to which the variance decreases was20

the best objective criterion. Träumner et al. (2011) determined this threshold value for
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the HYB for several field campaings and found that a value of 0.16m2 s−2 gave the
best results. However, the threshold value was not applicable to all of the profiles here.
With this in mind and as the zi values derived by methods (1) and (2) showed a good
agreement (dashed lines and black dots in Fig. 5), method (2) was chosen, because
it provides values for periods when no radiosoundings are available. The values of w∗5

resulting from using zi determined by method (2) and the weighted-averaged fluxes are

also given in Fig. 5 (gray lines). A comparison of diurnal maximum values of w ′2 and
w∗ is included in Table 2. From w∗, a convective time scale t∗ = zi/w∗ can be derived
that describes how long it takes to transport an air parcel from the ground to the top of
the CBL.10

4 Spatial and temporal differences of vertical velocity variances

4.1 Profiles of variance and skewness: examples for 20 April

Examples of profiles of w variance calculated for four instruments at the three locations
are shown in Fig. 6. The given times always indicate the end of the averaging period
of one hour. As described by Deardorff (1974) or Lenschow et al. (1980), the variance15

profiles display a maximum at a height of about one third of the convective boundary
layer (the top of the CBL is between 1000 and 1400 m on 20 April, Fig. 5) and a de-
crease above. The profiles in Fig. 6 are not normalized so that the diurnal evolution
may be observed: variances are small at 10:00 UTC (12:00 LT), increase to maximum
values at about 12:00–14:00 UTC and decrease subsequently. Above a local minimum20

indicating the top of the CBL, an increase of variance can be seen in several profiles
(e.g. 13:00–16:00 UTC profiles of HYB at about 1500 m, Fig. 6a). These higher values
lie in and above the capping inversion of the CBL (Fig. 3b) and can presumably be
attributed to the existence of gravity waves there.

As already shown by the comparison of vertical velocity measurements of the smaller25

WLS7 and of WTX (Fig. 3), the combined variance profiles fit well at the transition
18024
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height from one instrument to the other (Fig. 6d). The maximum variance is sometimes
located at low heights that are not covered by HYB or WTX (for example, at 11:00 UTC
in Fig. 6c), indicating the usefulness of the combination of different lidar systems with
complementary ranges. The variance profiles derived from the measurements of HYB
and WLS200 (Fig. 6a and b) do not agree in all details, as indicated by the calculated5

cross correlations, but the profiles are much more similar to each other than to the
profiles from the other two sites in termes of structure, temporal evolution, and absolute
values.

Additionally, profiles of skewness
(
w ′3/w ′2

3/2
)

were analyzed (Fig. 6). Positive

skewness is usually expected in the CBL and means strong, narrow updrafts and10

weaker, broader downdrafts. On 20 April, values of skewness are positive within the
CBL. They confirm the existence of a well-mixed boundary layer, as they illustrate a net
upward transport of variance (according to the variance budget equation of Stull, 1988)
and with this, of turbulent energy. This means that the turbulent energy is mainly cre-
ated at the surface, i.e. by buoyancy.15

4.2 Spatial comparison of variances

One noticeable difference between the hourly variance profiles at the three locations
on 20 April (Fig. 6) is the diurnal cycle: while maximum variance occurs at 12:00 UTC
at Wasserwerk and Selhausen, it occurred at 14:00 UTC at Hambach. The question is
whether this is statistically significant or not. To investigate this, the height of maximum20

variance, zmax, was determined for all days and all hourly variance profiles. It was en-

countered between 0.1 zi and 0.5 zi . A maximum variance w ′2max was then calculated
by vertical averaging of each profile over a height range of zmax±250 m. The statistical

errors were determined for the same height range. The time series of w ′2max for the

three locations are shown in Fig. 7. The difference of w ′2max between Wasserwerk and25

Hambach on 20 April for the 12:00 UTC period is not significant when considering the
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statistical error. However, for some time periods, as for example for 11:00 and 15:00–
16:00 UTC on 18 April, 11:00 and 14:00 UTC on 20 April or 12:00 UTC on 24 April,
significant differences between the individual locations can be discerned.

For 20 April, 13:00–14:00 UTC for example, differences are also obvious in the time
series of vertical velocity (Fig. 8): at Hambach, where the variance is the highest, about5

5–6 periods with convective cells can be distinguished. As the peak energy resides at
the lowest frequencies (Fig. 4), as it is associated with the largest turbulence elements,
the high variance at Hambach for this hour is attributable to the multiple occurrence
of convective cells. At Wasserwerk, the variance is slightly lower than at Hambach
because less convective cells passed the site. At Selhausen, the variance is smallest10

and the least convective cells occurred. Obviously, the spatial variance differences are
attributable to the different numbers of convective cells at the three sites that are only
about 3 km apart. For the three selected periods with significant differences, we will
investigate now whether these differences can be explained by surface conditions.

4.3 Influence of surface conditions15

Spatial differences of the state of the CBL may be caused by spatially heterogeneous
surface conditions. For the days investigated here, positive values of skewness con-
firm that the strength of turbulence is dominated by surface-based buoyancy-driven
convection (examplarily shown for 20 April in Fig. 6). The spatial heterogeneity of the
buoyancy flux at the surface may be considered by scaling the variance profiles with20

w2
∗ . Generally, surface heterogeneity as observed during the drier period (Fig. 2) may

be caused by heterogeneous surface characteristics such as land use and soil mois-
ture, which influence the partitioning of available energy into sensible and latent heat.
On the other hand, heterogeneity also can result from the available energy itself, which
can be modified strongly by the occurrence of clouds. As shown in Sect. 2.3, clouds25

actually occurred on three of the six selected days.
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4.3.1 Scaled profiles: selected periods

For the three selected time periods on 18, 20, and 24 April when spatial differences
were observed, scaled profiles with the corresponding error bars are given in Fig. 9.
For each site, the surface sensible heat flux from a nearby energy balance station was
used for calculating w∗ and, thus, for scaling. Two energy balance stations were located5

near Selhausen: The energy balance station of Niederzier was about 1 km north of
Selhausen which may be relatively far away, but the land-use class was the same as
at the lidar location. The station called SE1 was closer, but the land-use class there
differed and the flux was very low, even lower than at Ruraue (Figs. 2 and 10), which
was located in a meadow close to a river. Hence, Niederzier was chosen for scaling10

the variances of Selhausen.
For all time periods, at least two profiles still show statistically significant differences

after applying the w∗-scaling. For 18 April, 15:00 UTC (Fig. 9a), the difference between
Hambach and Wasserwerk becomes even more obvious than without scaling. This
means that the spatial differences cannot be explained by the surface heterogeneity.15

The reason becomes obvious when looking at the net radiation and surface sensible
heat flux for the three selected time periods (Fig. 10): on 18 April at 15:00 UTC, the
w variance is the highest at Selhausen and lower at Hambach as well as at Wasserwerk
(Fig. 7). If local sensible heat fluxes were responsible for the spatial differences of the
turbulence between 14:00–15:00 UTC, the spatial flux differences would be similar.20

However, the flux is highest at Hambach (Fig. 10) so that the scaled variance was
the lowest. At Niederzier, the flux is slightly lower and much lower at Wasserwerk.
Consequently, the differences of the sensible heat flux can not explain the variance
differences. Moreover, net radiation (Fig. 10) shows that some clouds occur on this day
and from cloud camera images, it is known that also boundary-layer clouds are present.25

These clouds do not cause considerably temporal variation in the sensible heat flux
data, but they can certainly influence the variance profiles (e.g. Neggers et al., 2003).
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On 20 April, 14:00 UTC (Fig. 9b), the variance is highest at Hambach and lower at
Wasserwerk as well as at Selhausen (Fig. 7). However, the surface sensible heat flux
is equally high at the three locations. At the same time, the net radiation shows little
variability (< 20Wm−2) at this time. Thus, the surface forcing does not display large
differences between the three locations, which explains why a scaling using the fluxes5

from the nearby stations does not remove the spatial differences of variances.
On 24 April, 12:00 UTC (Fig. 9c), the variance at Selhausen is significantly lower

than at Hambach and Wasserwerk (Fig. 7) but again, the spatial differences between
the fluxes can not explain this difference. The flux is highest at Niederzier (Fig. 10)
so that the scaled variance profile for Selhausen becomes very low compared to the10

scaled profiles at the other two locations.
As regards the selected examples, it must be concluded that the heterogeneous

surface conditions can not explain the statistically significant differences of the w vari-
ances.

4.3.2 Scaled profiles: whole data set15

To investigate the impact of the scaling on all available w variance profiles in a sys-
tematic way, all profiles were normalized by both averaged scaling (using weighted-
averaged fluxes for w∗) and local scaling (using fluxes of nearby stations as in
Sect. 4.3.1). It is assumed that the local diurnal cycle of the energy input as well as
local differences from day to day can be taken into account better by local scaling than20

by the averaged one. Therefore, also the question is addressed whether the spread
between the profiles at each individual location is smaller for the locally scaled profiles.
19 May, which is the only day falling into the wetter period with less surface hetero-
geneity (see Sect. 2.2), is excluded from the following analysis.

In Sect. 4.3.1, Niederzier had been chosen before for scaling because of the land-25

use class, but proved not to be completely suitable. A different land-use class is given
at SE1, but the station is closer. Consequently, both were used for scaling the variance
profiles from Selhausen (Fig. 11g and h). As Niederzier is a bare-soil station with rela-
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tively high sensible heat fluxes (Fig. 10), i.e. a high Bowen ratio, and SE1 is character-
ized by a low Bowen ratio, large differences are found between the two normalizations:
the maximum values of mean normalized variance are 0.31 and 0.70, respectively. For
the averaged scaling, by contrast, the maximum value of the mean scaled variance at

Selhausen is 0.35 (Fig. 11c), which is more similar to the mean values of w ′2/w2
∗ at5

Hambach and Wasserwerk (0.38 and 0.37, respectively, Fig. 11a and b). This means
that in comparison to the scaled variances at the other locations, the surface sensible
heat flux at Niederzier is too high for scaling the variances from Selhausen and SE1
too low with respect to the observed CBL turbulence.

The mean profiles using averaged scaling (thick lines in Fig. 11a–c) display a vertical10

behavior that is similar to the profile of Lenschow et al. (1980, Fig. 11d), but with a lower

maximum (w ′2/w2
∗ < 0.4). The similarity of these three mean profiles implies that also

the mean profiles of w variances (without scaling) are similar at the three locations.
For WTX at Hambach (Fig. 11a and e), the difference between averaged and local

scaling is very small for both mean values (mean maximum of w ′2/w2
∗ = 0.39 for local15

scaling) as well as the scatter of the profiles. This means that the energy balance
station at this site provides values which are representative of the considered domain.
For HYB (Fig. 11b and f), the locally scaled profiles exhibit a smaller scatter than those
generated by averaged scaling.

To investigate the dependence of the spread between the profiles on the scaling20

method, correlation coefficients were determined: (1) between the w variance values

at 0.35zi (w ′20.35) and w2
∗ , calculated with weighted-averaged fluxes (averaged scaling,

Fig. 12a), and (2) between w ′20.35 and w2
∗ , calculated with the respective fluxes used for

local scaling (Fig. 12b). In case of 1), the squared correlation coefficient R2 is 0.25 for
Hambach and 0.32 for Wasserwerk; in case of 2), the correlation is slightly higher than25

in case (1) for Hambach (R2 = 0.28) and strongly for Wasserwerk (R2 = 0.58). For Sel-
hausen, the squared correlation coefficient is higher in case (1) than in case (2) when
using the fluxes from Niederzier or Selhausen (0.21 or 0.29, respectively, compared
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to 0.33 for case 1). This means that the local scaling is not preferable for Selhausen
when using either of the available energy balance measurements. For Hambach, local
scaling is only slightly better than averaged scaling, but local scaling is clearly better
for Wasserwerk. The correlations are all significant according to a t-test on a 1 %-level,
except for R2 = 0.21 (Fig. 12b). However, the values also indicate that the explained5

variances (concerning the temporal evolution of the w ′20.35, hereafter called “temporal
variance” to avoid ambiguity) are about 30 % in all cases but in one. Deardorff (1970b,

1974) showed that w ′20.35 = a w
2
∗ and found values of a between 0.37 and 0.44 which

were derived from both numerical experiments and different observations. Here, a is
0.32–0.44 for the averaged w2

∗ values and 0.36–0.47 for the local ones. This varia-10

tion is not negligible and, in combination with high portions of unexplained temporal
variances, it implies that either the intensity of turbulence in the CBL also depends on
parameters other than the heat supply at the Earth’s surface or that the uncertainty of
the calculated scaling parameters is too large. Spatial variability of zi may be larger
than assumed so that the values of w∗ using zi derived from variance measurements15

at Hambach are not valid for Wasserwerk and Selhausen. However, the normalized
variance profiles mainly display a minimum at z/zi = 1 (Fig. 11). For HALO, the pro-
files break off at z/zi ≈ 0.95, which may indicate a lower zi at Selhausen. The value of

w ′2/w2
∗ would be less than 4 % higher in this case, i.e. the uncertainty in zi does not

explain the variability of a and the temporal variance.20

Besides, some of the profiles with particularly high values of w ′2/w2
∗ display a max-

imum at a height which is considerably above the average one at about 0.35zi . They
are more similar to the profile of Sorbjan (1989, Fig. 11d). Caughey and Palmer (1979)
also discuss the variability of heights of the variance maxima given by different authors.
One assumption is that this is caused by strong thermals rising up to a certain height.25

Lenschow and Stephens (1980) developed a method for a sub-sampling of thermals
from the time series of w and Lenschow and Stephens (1982) showed that the vari-
ance of thermals is 2–2.5 times higher than for the environment, depending on the
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method of calculation (the ratio is higher when the mean velocity of the sub-samples is
subtracted before calculating the variance). Inspection of the time series of w for pe-
riods corresponding to the profiles with elevated w variance maxima (Fig. 11) reveals
that these often contain strong convective cells. LES of van Heerwaarden et al. (2014)
also support the finding that an elevated maximum of variance is related to particularly5

strong plumes.
Hence, it is concluded that local scaling, i.e. using the surface sensible heat flux

from a single nearby station for the calculation of w∗, can lead to errors, especially
when small-scale heterogeneity of the surface fluxes exists. This is reflected here by
the large difference of the Bowen ratio between the two energy balance measurements10

of SE1 and Niederzier, which are less than 1.5 km apart. On the other hand the local
scaling for one station (Wasserwerk) results in a much higher correlation than all other
combinations. This means that it is possible for a single station to provide fluxes that
are representative of the area influencing the CBL turbulence. Nevertheless, it can
generally be assumed that the radius of influence and, thus, the area of representative15

w∗ upstream of the measurements is several kilometers, depending on the mean wind
and the convective time scale. When multiple energy balance measurements cannot
be used, the representativeness of a single flux measurement site for scaling should
be considered very carefully.

4.4 Influence of averaging periods and measurement uncertainties20

The variance profiles considered so far were determined using hourly averaging peri-
ods. We now want to investigate how strongly the spatial differences are dependent on
the length of the applied averaging periods. For this reason, the differences between

w ′2max values at different locations were calculated for different averaging periods ∆t.
For the computation of variances for ∆t > 1 h, the non-stationarity of the CBL, espe-25

cially due to increasing zi in the morning, has to be considered. For this, w ′2max values
were first determined for the hourly averaging periods and then averaged to retrieve
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w ′2max for longer averaging periods. After that, relative deviations (absolute difference
normalized by the mean value) were calculated for each time step and each instru-
ment combination. Finally, relative daviations were averaged for each day. The resulting
mean relative differences are given as an average for all considered six days (Fig. 13a).
For the three days when simultaneous w measurements by HYB and WLS200 at the5

Wasserwerk were available (20, 22 and 24 April), the relative difference between these
two measurements at the same site was calculated as well. This gives a good estimate
for the uncertainty that exists due to the comparison of measurements by instruments
that are based on different technologies or made by different manufacturers (instrument
uncertainty).10

The daily mean relative deviation for HYB and WLS200 is less than 0.1 for ∆t = 1 h
and about 0.05 for longer averaging periods. For the other instrument combinations,
it is about 0.5 for ∆t = 10 min and decreases to about 0.2 for ∆t = 3 h. For ∆t > 3 h, it
does not clearly decrease further. The mean normalized statistical error for ∆t = 3 h is
about 0.1 (Fig. 13b), so that the relative deviation is about twice the error. This means15

that the spatial differences between the variances are not statistically significant on
the average, at least if the instrument-to-instrument uncertainty is considered. How-
ever, this does not exclude the possibility of individual periods with significant spatial

differences existing, as shown in Sect. 4.2; the diurnal time series of w ′2max with the
corresponding error bars were also compared for larger ∆t and the significant differ-20

ences for the periods concerned remained (not shown). At the same time, a mean
relative deviation of about 0.2 for ∆t = 3 h means that the mean error that has to be
expected when calculating variances from point measurements is about 10 % minus
the instrument uncertainty of about 2 % (a factor of 0.5 is taken into account to derive
the uncertainty of a single instrument from the calculated deviation); in other words,25

a point measurement is – on the average – spatially representative with an uncertainty
of less than 10 % when a measurement period of three hours is covered. This agrees
with the statistical error of Lenschow et al. (1994) that was derived by theoretical con-
siderations.
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As the absolute difference does not provide any evidence of possible biases between

the instrument measurements, absolute values of w ′2max/w
2
∗ are compared in Fig. 13c.

The variances were normalized by w2
∗ (averaged scaling) to retrieve comparable values

for the different days. As for the normalized profiles (Fig. 11), the values mainly range
from 0.25 to 0.5. While on the average they are as high at the Wasserwerk (HYB and5

WLS200) as at Hambach, most values are below the 1-1 diagonal for HALO. This ex-
plains why the relative difference is higher between HALO and both other instruments
than between HYB and WTX (Fig. 13a). Nevertheless, there is no clear explanation
why the variance is systematically smaller at Selhausen than 3 km north of this loca-
tion. The sensible heat flux of SE1 mostly is quite low, but as shown in Sect. 4.3, it is not10

representative of the surroundings of the HALO site. Finally, to compare the daily differ-
ences, the absolute differences between the lidars were normalized by w2

∗ (Fig. 13d).
The comparison reveals that on three days (18, 20, 22 April), the deviations are largest
between HALO and WTX and on one day between HALO and HYB (24 April). On
4 May, which is the most perfect cloud-free day, all differences are smallest and on15

19 May, which is a day with several mid-level clouds, they are largest. 19 May is the
only day that falls into the wetter period with the Bowen ratio being low for all stations.
Due to this, scaling with w2

∗ (using a small sensible heat flux) results in higher values
than for the other days. The variation of the differences from day to day can, hence,
partly be explained by the occurrence of clouds and therefore, by differences of the20

incoming radiation (Table 2).
For this section, we finally conclude that the spatial differences on the average are as

large as the statistical error, which is derived from theory, and that this is independent
of the averaging period. The instrument uncertainty can be estimated to about 2 % and
the error is about 10 % for an averaging period of three hours.25
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4.5 Influence of the mean wind

Finally, we want to investigate the impact of the mean wind on spatial differences of the
w variance, especially for periods when surface heterogeneities do not explain the dif-
ferences and when differences do not disappear, even if the averaging interval amounts
to several hours. For two of the three time periods investigated in Sect. 4.3.1 (on 18 and5

24 April), the mean wind is from west to southwest. On both days, it is noticeable that

the diurnal time series of w ′2max at Wasserwerk and Hambach are very similar (Fig. 7),
while it is different at Selhausen (see also Fig. 13d). As the variances are similar, it can
be expected that also the time series of w at Wasserwerk and Hambach exhibit a cer-
tain similarity. To investigate this, the cross correlation function of the two time series10

of w was determined (Fig. 14).
As the convective time scale t∗, also referred to as large-eddy turnover time, is of the

order of 10 min and the travel time for the given distances between the lidar locations
of about 3 km is between 4 and 12 min, convective cells can be preserved between two
locations at least on days with relatively strong mean wind. This means that the origi-15

nal assumption that the w measurements were independent as long as they were more
than 2 km apart turned out to be not valid for some days. The day with the strongest
mean wind was 18 April; in the mean westerly flow, the WTX at Hambach is located
downstream of WLS200 at the Wasserwerk. The cross correlation function between
WLS200 and WTX in fact reveals a distinct maximum of correlation at a time lag of20

200 s (Fig. 14a). The maximum correlation of 0.44 is found at heights between 500 and
900 m. When shifting the time series of w ′ at 600 m for WTX backwards by 200 s com-
pared to that of WLS200, the two time series agree very well (Fig. 14a). That means
that the larger convective cells are advected from the Wasserwerk to the Hambach site
without substantial changing, which explains the similarity of the two time series of w25

and w ′2max.
In contrast to 18 April, the mean wind direction on 20 April is northeast. On this day,

large differences of w ′2max are observed between Hambach and Wasserwerk in the
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afternoon. The cross correlation function (not shown) also shows very low correlations
(< 0.1).

On 24 April, the mean wind again is from southwest, but weaker than on 18 April.
A maximum of the cross correlation function between WLS200 and WTX can also be
discerned (Fig. 14b), but it is only 0.27. Nevertheless, the two time series (WTX shifted5

by 400 s) at 700 m agree again very well, at least after 11:45 UTC. At the same time,
the cross correlation mainly gives negative values, if it is calculated between the time
series of vertical velocity for Selhausen and Hambach or between Selhausen and the
Wasserwerk (not shown).

The mean wind direction may thus be a possible explanation why differences be-10

tween the variances at Wasserwerk and at Hambach are found on 20 April, but not
on 18 and 24 April (Fig. 7), although similar surface conditions exist on all of these
days: the diurnal cycles of variances are similar at the two sites when the mean wind
is parallel to their connecting axis, but different otherwise. For the time periods when
the correlation between the two sites is high, the correlation between the third site15

and each of the two is low. It is remarkable that on 24 April, when convective cells
are advected past Wasserwerk and Hambach without substantial changings, the mean
vertical velocity (Fig. 15) is positive at Wasserwerk between 11:00–12:00 UTC (more
than 1 ms−1) and negative at Selhausen (11:00–13:00 UTC, i.e. even for two hours).
We hypothesize that, while many cells are observed on the northern axis, less oc-20

cur about 3 km further south due to the subsidence in the surroundings of the cells.
This assumption is confirmed by model simulations for 24 April with the Consortium for
Small-scale Modeling (COSMO) model in LES mode. They were performed on a grid
with 100 m horizontal resolution using a 3-D-turbulence parameterization by Herzog
et al. (2002). Model analyses of the operational model COSMO-DE (Baldauf et al.,25

2011) provided atmospheric initial and boundary conditions. The vertical velocity as
calculated by the model is shown on a horizontal cross sections at 600 m (Fig. 16).
About 1–1.5 km the south and north of the regions where the mean vertical velocity
is positive on the hourly average, which is caused by convective cells advected with
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the mean wind, subsidence prevails. As shown by Lenschow and Stephens (1982),
the mean w within thermals is positive and nearly two times higher than in the envi-
ronment, where it is negative. This agrees very well with the mean w observed at the
different locations on 24 April (Fig. 15). The spatial variance differences can therefore
be explained by the occurrence of thermals: while more convective cells travel past the5

Wasserwerk as well as past Hambach, less occur near Selhausen. This structure is
presumably the signature of horizontal rolls that develop during conditions of combined
surface heating and strong winds (Stull, 1988, Ch. 11.2), as was observed by Brown
(1970) or Kropfli and Kohn (1978).

5 Summary and conclusions10

During the HOPE campaign, multiple Doppler lidars were operated simultaneously at
three different sites in the vertical stare mode to retrieve temporally high-resolved ver-
tical velocity measurements. For this study, vertical velocity variance profiles were de-
rived for the three sites to investigate the spatial heterogeneity of turbulence in the
cloud-free CBL. The aims were to compare, in a first step, the variance profiles for15

the different sites and to examine how large spatial differences were and, in a second
step, to investigate if these differences were significant and if they depended on surface
conditions, atmospheric conditions or on the averaging intervals.

The investigated area was characterized by patchy agricultural land use. The typical
size of the crop fields was of the order of 100 m. The eight weeks of the measurement20

period were divided into a drier period (mid-April to 6 May) and a wetter one (starting
on 7 May). It was found that the Bowen ratio varied between 0.5 and 4 during the drier
period, while it was < 1 at all stations during the wetter period. Five of the six selected
days fell into the drier period.

Boundary-layer mixing was strong on all of the selected days and the height of the25

CBL was between 1.2 and 2 km. Different methods to derive zi agreed well. On three
of the days, clouds occurred and the diurnal cycle of incoming radiation was slightly
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affected on 18 April, when some boundary-layer clouds occurred and on 19 May, when
mid-level clouds were observed. Some cirrus clouds occurred on 24 April, but they did
not perceptibly reduce incoming radiation. Moderate westerly wind dominated on most
days; on 18 April, the mean wind was stronger than on the other days and it came from
northeast on 20 April and 19 May.5

The combination of smaller and larger Doppler lidars with complementary measure-
ments at different range gates and heights above ground proved to be beneficial for
the investigations. For the calculation of higher-order moments of w as measured by
lidars, different aspects were considered: (1) the random noise of the signal (“uncor-
related noise”) was removed, (2) the lack of spectral contribution to the total energy10

caused by spatial averaging of the lidar measurement was neglected, and (3) the sta-
tistical errors (systematic and sampling error according to Lenschow et al., 1994) that
appear due to the spatial and temporal sub-sampling were determined. Moreover, as
measurements by lidar instruments from different manufacturers were compared here,
also the instrument-dependent differences were calculated.15

We found spatial differences of vertical velocity variances that were statistically sig-
nificant. To investigate whether these differences were generated by heterogeneous
surface conditions, scaling with the convective velocity w∗ was applied. For the scal-
ing, representative surface fluxes are needed. It is assumed that the relevant area for
these has a side length of t∗|v | ≈ 3–5 km. This means that a sensible heat flux that is20

representative of the whole area and with this, a spatially representative w∗, should be
most suitable for scaling. However, using the same values of w∗ for all locations, only
the temporal variability of the variances can be eliminated. Spatial differences can only
be reduced by using different values of w∗ for each location for scaling the variances.
Both scaling methods were applied and the results imply that the spatial differences of25

the w variances can not be explained by the heterogeneity of the surface conditions.
Moreover, scaled profiles for the whole data set showed large variations at the indi-
vidual locations, which indicates that the local hourly heat supply is not the only factor
influencing the w variance during the respective time interval in all cases. Apart from
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that, it was found that in some cases, the nearby energy balance stations could not
provide representative surface fluxes so that the use of weighted-averaged fluxes for
the calculation of scaling variables was preferable in these cases. Only at one loca-
tion was the temporal variability of w variance well related to the variability of w∗ using
the flux of the co-located energy balance station, with the correlation coefficient being5

58 %. Lenschow et al. (2012) analyzed variance profiles for one location. As expected,
the scatter around their mean value decreased after scaling, but a certain variation
between values of 0.2 and 0.6 (for the vertical maximum) also remained. By removing
the statistical error, they estimated that the real case-to-case variability was about 10 %
and attributed it to the atmospheric stability which can be determined via the Obukhov10

length. However, the atmospheric stability can not be the main factor causing the case-
to-case variability in this investigation, as only days with buoyancy-driven turbulence
have been chosen.

Secondly, the influence of different averaging intervals on the spatial differences of
w variance were analyzed. Relative deviations of w variances between all instruments15

averaged over all days were about as large as the relative statistical errors that can
be derived from theoretical considerations (Lenschow et al., 1994) for all averaging
intervals. Mean relative deviations as well as errors decreased strongly with increas-
ing averaging intervals. Postulating that the uncertainty of a point measurement should
not be larger than 10 %, measurement periods of at least 3 h – or hourly measurement20

periods of three instruments at different locations – are necessary. However, the uncer-
tainty does not decrease much further for longer averaging intervals. Moreover, daily
averages revealed that mean deviations were larger for days with a small number of
clouds than on days with no clouds.

Finally, a varying degree of correlation between vertical velocity fluctuations existed25

for two locations on a east-west axis, depending on the mean wind speed. On 18 April,
a day with stronger southwesterly wind, and on 24 April with moderate wind speed,
the travel time was smaller than the large-eddy turnover time. On these days, fluctua-
tions and variances were similar at the two locations, while the correlation of both with
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fluctuations at the third location about 2.5 km further south was low. It could be shown
that for example on 24 April, the mean vertical velocity at the third location was nega-
tive for a time period of two hours, while it was positive at the other sites. The reason
is that several convective cells travelled past the two northern sites, while subsidence
prevailed at the third site during the whole 2 h period, which also explains why spatial5

variance differences do not disappear even for averaging periods of more than three
hours. This is confirmed by LES.

Based on these findings, the following conclusions can be drawn: (1) The represen-
tativeness of single-column turbulence characteristics as observed by Doppler lidars is
not necessarily given, even if long time periods are available (with the maximum pos-10

sible length of the time period being the whole part of day with an existing CBL); (2)
local scaling with w∗ should only be considered, if the representativeness of a single
energy balance station for a larger area is given; and (3) it is recommended to register
turbulence profiles at more than one location – if Doppler lidar measurements are per-
formed – to take the spatial variability of turbulence into account, which can depend on15

the relative location of the measurements compared to the mean wind direction.

Appendix A: Error statistics

A1 Uncorrelated noise

The so-called “uncorrelated noise” defined by Lenschow et al. (2000) is based on the
assumption that the measurement signal is “contaminated by uncorrelated random20

noise”. By definition, it is uncorrelated from the signal and the error can, thus, be re-
moved from the calculated variance. According to Eq. (8) from Lenschow et al. (2000),
the error is equal to the difference between the first and zero lag of the autocovariance
function.
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A2 Systematic error

According to Lenschow et al. (1994), the statistical error can be separated into the
systematic and the random error (see Appendix A3). The systematic error is caused

by the fact that the variance w ′2 derived from the measurement is, strictly speaking,

a time average w ′2
t
, which is not equal to the ensemble average w ′2

t,x
. With these5

definitions, Eq. (14) from Lenschow et al. (1994) is

w ′2
t,x

w ′2
t
≈ 1−2

T̃
∆t

, (A1)

with the averaging time ∆t and the integral time scale T̃ (see Appendix B). The absolute
error can, thus, be calculated as∣∣∣∣w ′2t,x −w ′2t∣∣∣∣ = w ′2t ·2 T̃∆t . (A2)10

From this, it can be seen that the error decreases for increasing averaging periods and
increases with the integral time scale.

A3 Random error

The random or sampling error takes into account that the length of the measured time
series is not unlimited and that “random” time slots may differ. Lenschow et al. (1994)15

show that, using the error variance σ2
2 for the second moment, the error can be approx-

imated to

σ2 = w ′2
t
·

√
2
T̃
∆t

. (A3)
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The ratio of the systematic to the random error can, thus, be determined as
√

2 T̃
∆t . For

the commonly used averaging time of 1 h and a typical integral time scale of about 50 s
(in this study, which agrees with numbers from Lothon et al., 2006, for example), this
expression amounts to 0.17. This means that in this case, the random error is more
than five times higher than the systematic error. Only for larger integral time scales, i.e.5

T̃ ≥ 450 s, does the systematic error become higher than the random error for the 1 h
averaging period.

Appendix B: Integral time scale

Going back to Lumley and Panofsky (1964), the integral time scale is defined as the in-
tegral of the autocorrelation function R. Here, it was calculated as the integral between10

lag zero determined by extrapolation (Lenschow et al., 2000) and the first zero-crossing
of R.
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Table 1. Overview of lidar instruments at the three sites, with abbreviations used in the text,
measurement range r for the vertical stare mode, range-gate length ∆r , and applied threshold
of signal-to-noise ratio (SNR; w measurements with SNR below the threshold were not used in
this study).

lidar HYB WLS200 HALO WTX WLS7

location Wasserwerk Wasserwerk Selhausen Hambach Hambach
specification WindTracer WINDCUBE 200S Stream Line WindTracer WindCube v2
manufacturer Lockheed Martin CT Leosphere Halo Photonics Lockheed Martin CT Leosphere
r in m a.g.l. 350 – above CBL top 50 – CBL top 60 – CBL top 350 – CBL top 40–290
∆r in m ≈ 60 25 18 ≈ 60 25
SNR thresh-
old in dBZ

−8 −26 −16 −8 −22
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Table 2. Overview of characteristic mean values and scales for all considered days: Diurnal
maximum of surface sensible heat flux H0 and of boundary-layer height zi ; daily mean values
of integrated water vapor IWV, of spatial mean and standard deviation of incoming shortwave
radiation QSW,in, of mean boundary-layer wind speed |v |, and of wind direction; diurnal maxi-
mum of convective velocity scale w∗ and corresponding convective time scale t∗; diurnal mean

of w ′2max and of integral time scale T̃ (instrument mean); estimated peak wavelength of turbu-
lence spectra in 600 m height (10:00–17:00 UTC), λp,w = |v |f −1

p,w (using Taylor’s hypothesis), with

time period T = f −1
p,w , and period T of the autocorrelation function with corresponding wavelength

λ (denoted as n/a when no estimation was possible).

18/04 20/04 22/04 24/04 04/05 19/05

|v | in m s−1 12 8 4 5 8 5
wind dir. in ◦ 250 45 270 270 270 0–90
IWV in kg m−2 12 8 8 20 10 10
QSW,in in W m−2 460 490 510 520 560 580
σ(QSW,in) in W m−2 100 60 30 60 30 90
H0 in W m−2 200 210 180 180 200 90
zi in m 2030 1350 1900 1330 1280 1250

peak wavelength from spectra:
T in min n/a 5.5 8 8 5 n/a
λp,w in km n/a 2.7 2 2.5 2 n/a

period of autocorrelation function:
T in min n/a 6–10 15 10 n/a 6
λ in km n/a 2.8–4.4 3.6 3 n/a 1.8

w ′2max in m−2 s−2 1.65 1.55 1.2 0.95 1.1 1.05
w∗ in m s−1 2.24 1.98 2.02 1.82 1.93 1.39
t∗ in min 15 11 16 12 11 15
T̃ in s 40 47 55 56 40 45
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Hambach 
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Ruraue 
SE1 

Figure 1. Land-use classification with positions of energy balance stations and lidars at Ham-
bach and Wasserwerk and of the lidar at Selhausen (black crosses) as well as of the TERENO
energy balance stations at Ruraue, near Selhausen (SE1), and at Niederzier (gray crosses);
black lines denote the relative lidar locations.
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Figure 2. Bowen ratio for all energy balance stations as well as for the weighted-averaged fluxes
(weighted with the area fraction of each land-use class), calculated from daily averaged values
of surface fluxes for 09:00–15:00 UTC (a) and precipitation from rain gauge measurements at
Wasserwerk (b).
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Figure 3. Vertical velocity as observed by Doppler lidars at three different locations on 20 April
2013 (11:00–13:00 UTC) with isolines of potential temperature (in K) in (b) as derived from
radiosoundings.
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Figure 4. (a) Turbulence spectra of w measurements at Hambach on 20 April 2013, 09:00–
15:00 UTC, from an ultrasonic at 30 m, WLS7 (60 and 200 m), and WTX (400, 600, 900 m);
additionally, the theoretical slope in the inertial subrange is given; (b) as in (a) but accumulated
curves to illustrate the contributions of different frequencies to the variance.
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Figure 5. Boundary-layer heights derived from radiosoundings (maximum temperature gradient
= inversion) and from lidar backscatter data (WTX) for all considered cloud-free days; addition-
ally, the convective velocity scale w∗ (determined using weighted-averaged values of sensible
heat flux) is given.
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Figure 6. Vertical profiles of hourly vertical velocity variance and skewness from lidar mea-
surements at the three locations for 10:00–17:00 UTC on 20 April 2013; the legend labels in (a)
refer to the end in UTC for each averaging period of 60 min.
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Figure 7. Vertical velocity variances (hourly profiles averaged over zmax ±250 m) at the three
locations with error bars displaying the statistical error according to Lenschow et al. (1994) for
all six days (different panels).
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Figure 8. Time series of vertical velocity at Hambach, Wasserwerk, and Selhausen (from top
to bottom) on 20 April, 13:00–14:00 UTC.
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a) 18 April, 15 UTC b) 20 April, 14 UTC c) 24 April, 12 UTC
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Figure 9. Normalized variance profiles with error bars (statistical error according to Lenschow
et al., 1994) for three time periods; the black dashed line corresponds to the fit of Lenschow
et al. (1980), Eq. (1).
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Figure 10. Net radiation (Q0, upper row) and surface sensible heat flux (H0) at the five energy
balance stations (NIE – Niederzier; RUR – Ruraue; SE1 – Selhausen; HAM – Hambach; WAS
– Wasserwerk, cf. Fig. 1) for three days with significant spatial differences of vertical velocity
variances.

18058

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/18011/2015/acpd-15-18011-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/18011/2015/acpd-15-18011-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
15, 18011–18064, 2015

Variability of BL
turbulence

V. Maurer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|
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Figure 11. Normalized hourly variance profiles for 18, 20, 22, 24 April and 04 May (11:00–
16:00 UTC), with averaged (a, b, c) and local scaling (e, f, g, h) for each location; different
energy balance stations were used for scaling in (g) and (h); in (d), the idealized profiles ac-
cording to Eq. (1) are given.
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Figure 12. Vertical velocity variance at 0.35zi over w2
∗ , calculated using the weighted-averaged

fluxes (a) and fluxes of nearby stations (b) for all time steps as in Fig. 11, with lines of best fit
from linear regression and squared correlation coefficients R2.
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a) relative deviations, average of all days b) average error
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Figure 13. Relative deviations between w ′2max time series of each two lidars, averaged daily
and over all days (a) and statistical error for each instrument, normalized with the respective

w ′2max time series (b), given as a function of the averaging interval used for the calculation

of the variance profiles; absolute values of w ′2max/w
2
∗ for the 3 h averaging interval for HYB,

HALO, and WLS200 as a function of w ′2max/w
2
∗ for WTX (c); deviation normalized with w2

∗ for
3 h averaging interval for each day (d).
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a) 18 April b) 24 April
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Figure 14. Cross correlation functions between w ′ time series (10:30–15:00 UTC) at Hambach
and Wasserwerk (WTX and WLS200, respectively) for all range gates between 380 and 1000 m
(upper row) and w ′ time series (±50 s running average) for both lidars at one range gate (lower
row) on 18 April (a) and 24 April 2013 (b).
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Figure 15. Mean vertical velocity (running average of 60 min) at 700 m (±1 range gate) at
Wasserwerk and Selhausen on 24 April.
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a) w at 1230UTC b) w averaged between 1200 and 1300UTC

Figure 16. Vertical velocity at 600 m on 24 April 2013 from LES model output.
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