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Emergent Complex Network 
Geometry
Zhihao Wu1, Giulia Menichetti2, Christoph Rahmede3 & Ginestra Bianconi4

Networks are mathematical structures that are universally used to describe a large variety of 
complex systems such as the brain or the Internet. Characterizing the geometrical properties of these 
networks has become increasingly relevant for routing problems, inference and data mining. In real 
growing networks, topological, structural and geometrical properties emerge spontaneously from 
their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent 
complex geometry. Here we show that a single two parameter network model, the growing 
geometrical network, can generate complex network geometries with non-trivial distribution 
of curvatures, combining exponential growth and small-world properties with finite spectral 
dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate 
scale-free networks with clustering and communities, in another limit planar random geometries with 
non-trivial modularity. Finally we find that these properties of the geometrical growing networks are 
present in a large set of real networks describing biological, social and technological systems.

Recently, in the network science community1–4, the interest in the geometrical characterizations of real 
network datasets has been growing. This problem has indeed many applications related to routing prob-
lems in the Internet5–8, data mining and community detection9–14. At the same time, different defini-
tions of network curvatures have been proposed by mathematicians15–24, and the characterization of the 
hyperbolicity of real network datasets has been gaining momentum thanks to the formulation of network 
models embedded in hyperbolic planes25–29, and by the definition of delta hyperbolicity of networks by 
Gromov22,30–32. This debate on geometry of networks includes also the discussion of useful metrics for 
spatial networks33,34 embedded into a physical space and its technological application including wireless 
networks35.

In the apparently unrelated field of quantum gravity, pregeometric models, where space is an emer-
gent property of a network or of a simplicial complex, have attracted large interest over the years36–43. 
Whereas in the case of quantum gravity the aim is to obtain a continuous spacetime structure at large 
scales, the underlying simplicial structure from which geometry should emerge bears similarities to net-
works. Therefore we think that similar models taylored more specifically to our desired network structure 
(especially growing networks) could develop emergent geometrical properties as well.

Here our aim is to propose a pregeometric model for emergent complex network geometry, in which 
the non-equilibrium dynamical rules do not take into account any embedding space, but during its evo-
lution the network develops a certain heterogeneous distribution of curvatures, a small-world topology 
characterized by high clustering and small average distance, a modular structure and a finite spectral 
dimension.

In the last decades the most popular framework for describing the evolution of complex systems has 
been the one of growing network models1–3. In particular growing complex networks evolving by the 
preferential attachment mechanism have been widely used to explain the emergence of the scale-free 
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degree distributions which are ubiquitous in complex networks. In this scenario, the network grows 
by the addition of new nodes and these nodes are more likely to link to nodes already connected to 
many other nodes according to the preferential attachment rule. In this case the probability that a node 
acquires a new link is proportional to the degree of the node. The simplest version of these models, the 
Barabasi-Albert (BA) model44, can be modified1–3 in order to describe complex networks that also have 
a large clustering coefficient, another important and ubiquitous property of complex networks that char-
acterizes small-world networks45 together with the small typical distance between the nodes. Moreover, it 
has been recently observed46,47 that growing network models inspired by the BA model and enforcing a 
high clustering coefficient, using the so called triadic closure mechanism, are able to display a non trivial 
community structure48,49. Finally, complex social, biological and technological networks not only have 
high clustering but also have a structure which suggests that the networks have an hidden embedding 
space, describing the similarity between the nodes. For example the local structure of protein-protein 
interaction networks, analysed with the tools of graphlets, suggests that these networks have an under-
lying non-trivial geometry50,51.

Another interesting approach to complex networks suggests that network models evolving in a hyper-
bolic plane might model and approximate a large variety of complex networks28,29. In this framework 
nodes are embedded in a hidden metric structure of constant negative curvature that determine their 
evolution in such a way that nodes closer in space are more likely to be connected.

But is it really always the case that the hidden embedding space is causing the network dynamics or 
might it be that this effective hidden metric space is the outcome of the network evolution?

Here we want to adopt a growing network framework in order to describe the emergence of geometry 
in evolving networks. We start from non-equilibrium growing dynamics independent of any hidden 
embedding space, and we show that spatial properties of the network emerge spontaneously. These net-
works are the skeleton of growing simplicial complexes that are constructed by gluing together simplices 
of given dimension. In particular in this work we focus on simplicial complexes built by gluing together 
triangles and imposing that the number of triangles incident to a link cannot be larger than a fixed 
number m that parametrizes the network dynamics. In this way we provide evidence that the proposed 
stylized model, including only two parameters, can give rise to a wide variety of network geometries and 
can be considered a starting point for characterizing emergent space in complex networks. Finally we 
compare the properties of real complex system datasets with the structural and geometric properties of 
the growing geometrical model showing that despite the fact that the proposed model is extremely styl-
ized, it captures main features observed in a large variety of datasets.

Results
Metric spaces satisfy the triangular inequality. Therefore in spatial networks we must have that if a node 
i connects two nodes (the node j and the node k), these two must be connected by a path of short dis-
tance. Therefore, if we want to describe the spontaneous emergence of a discrete geometric space, in 
absence of an embedding space and a metric, it is plausible that starting from growing simplicial com-
plexes should be an advantage. These structures are formed by gluing together complexes of dimension 
>d 1n , i.e. fully connected networks, or cliques, formed by = + >n d 1 2n  nodes, such as triangles, tetra-

hedra etc. For simplicity, let us here consider growing networks constructed by addition of connected 
complexes of dimension =d 2n , i.e. triangles. We distinguish between two cases: the case in which a link 
can belong to an arbitrarily large number of triangles ( = ∞m ), and the case in which each link can 
belong at most to a finite number m of triangles. In the case in which m is finite we call the links to which 
we can still add at least one triangle unsaturated. All the other links we call saturated.

To be precise, we start from a network formed by a single triangle, a simplex of dimension =d 2n . At 
each time we perform two processes (see Fig. 1).

• Process (a)- We add a triangle to an unsaturated link ( , )i j  of the network linking node i to node j. 
We choose this link randomly with probability Π( , )i j

[1]  given by

Π
ρ

ρ
=
∑ ( )

( , )
,

a

a 1i j
ij ij

r s rs rs

[1]

where aij is the element ( , )i j  of the adjacency matrix a of the network, and where the matrix element ρ ij 
is equal to one (i.e. ρ =1ij ) if the number of triangles to which the link ( , )i j  belongs is less than m, oth-
erwise it is zero (i.e. ρ =0ij ). Having chosen the link ( , )i j  we add a node s, two links ( , )i s  and ( , )j s  and 
the new triangle linking node i, node j and node s.

• Process (b)- With probability p we add a single link between two nodes at hopping distance 2, and 
we add all the triangles that this link closes, without adding more than m triangles to each link. In order 
to do this, we choose an unsaturated link ( , )i j  with probability Π( , )i j

[1]  given by Eq. (1), then we choose 
one random unsaturated link adjacent either to node i or node j as long as this link is not already part 
of a triangle including node i and node j. Therefore we choose the link ( , )r s  with probability Π ,r s

[2] given 
by
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where δ ,x y is the Kronecker delta and N  is the normalization constant. Let us assume without loss of 
generality that the chosen link ( , ) = ( , )r s r j . Then we add a link ( , )i r  and all the triangles passing 
through node i and node r as long as this process is allowed (i.e. if by doing so we do not add more than 
m triangles to each link). Otherwise we do nothing.

With the above algorithm (see Supplementary Information for the MATLAB code) we describe a 
growing simplicial complex formed by adding triangles. From this structure we can extract the cor-
responding network where we consider only the information about node connectivity (which node is 
linked to which other node). We call this network model the geometrical growing network. In Fig. 1 we 
show schematically the dynamical rules for building the growing simplicial complexes and the geomet-
rical growing networks that describe its skeleton.

Let us comment on two fundamental limits of this dynamics. In the case = ∞m , =p 0, the network 
is scale-free and in the class of growing networks with preferential attachment. In fact the probability 
that we add a link to a generic node i of the network using process ( )a  is simply proportional to the 
number of links connected to it, i.e. its degree ki. Therefore, the mean-field equations for the degree ki 
of a generic node i are equal to the equations valid for the BA model, i.e. they yield a scale-free network 
with power-law exponent γ=3. Actually this limit of our model was already discussed in52 as a simple 
and major example of scale-free network. For =m 2, instead, the degree distribution can be shown to be 
exponential (see Methods and Supplementary material for details). The Euler characteristic χ of our 
simplicial complex and the corresponding network is given by

χ = − + ( )N L T 3

where N  indicates the total number of nodes, L the total number of links and T  the total number of 
triangles in the network. For =m 2 and any value of p, or for =p 0 and any value of m the networks are 
planar graphs since the non-planar subgraphs K 5 (complete graph of five nodes) and ,K 3 3 (complete 
bipartite graph formed by two sets of three nodes) are excluded from the dynamical rules (see Methods 
for details). Therefore in these cases we have an Euler characteristic χ=1 (in fact here we do not count 
the external face).

In general the proposed growing geometric network model can generate a large variety of network 
geometries. In Fig. 2 we show a visualization of single instances of the growing geometrical networks in 
the cases =m 2, = .p 0 9 (random planar geometry), = ∞m , = .p 0  (scale-free geometry), and =m 4, = . .p 0 9

The growing geometrical network model has just two parameters m and p. The role of the parameter 
m is to fix the maximal number of triangles incident on each link. The role of the parameter p is to allow 
for a non-trivial K-core structure of the network. In fact, if =p 0 the network can be completely pruned 

Figure 1. The two dynamical rules for constructing the growing simplicial complex and the 
corresponding growing geometrical network. In process (a) a single triangle with one new node and two 
new links is added to a random unsaturated link, where by unsaturated link we indicate a link having less 
than m triangles incident to it. In process (b) with probability p two nodes at distance two in the simplicial 
complex are connected and all the possible triangles that can link these two nodes are added as long as this 
is allowed (no link acquires more than m triangles incident to it). The growing geometrical network is just 
the network formed by the nodes and the links of the growing simplicial complex. In the Figure we show 
the case in which =m 2.
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if we remove nodes of degree =k 2i  recursively, similarly to what happens in the BA model, while for >p 0 
the geometrical growing network has a non-trivial K-core. Moreover the process ( )b  can be used to 
“freeze” some region of the network. In order to see this, let us consider the role of the process ( )b  occur-
ring with probability p in the case of a network with =m 2. Then for =p 0, each node will increase its 
connectivity indefinitely with time having always exactly two unsaturated links attached to it. On the 
contrary, if >p 0 there is a small probability that some nodes will have all adjacent links saturated, and a 
degree that is frozen and does not grow any more. A typical network of this type is shown for 
= , = .m p2 0 9 in Fig. 2 where one can clearly distinguish between an active boundary of the network 

where still many triangles can be linked and a frozen bulk region of the network.
The geometrical growing networks have highly heterogeneous structure reflected in their local prop-

erties. For example, the degree distribution is scale-free for = ∞m  and exponential for =m 2 for any 
value of p. Moreover for finite values of >m 2 the degree distribution can develop a tail that is broader 
for increasing values of m (see Fig. 3). Furthermore, in Fig. 3 we plot the average clustering coefficient 
( )C k  of nodes of degree k showing that the geometrical growing networks are hierarchical49, they have 

a clustering coefficient ( ) ∝ α−C k k  with values of α that are typically α ≤ 1.
Another important and geometrical local property is the curvature, defined on each node of the net-

work. For either =m 2 and any value of p or for =p 0 and any value of m, the generated graph is a planar 
network of which all faces are triangles. Therefore we consider the curvature Ri

19–22 given by

= − + , ( )R
k t

1
2 3 4i

i i

where ki is the degree of node i, and t i is the number of triangles passing through node i.
We observe that the definition of the curvature satisfies the Gauss-Bonnet theorem

∑χ = .
( )=

R
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N

i
1

For a planar network, for bulk nodes which have =k ti i the curvature reduces to

= − ( )R
k

1
6 6i

i

and for nodes at the boundary for which = +k t 1i i , it reduces to

=
−

. ( )R
k4

6 7i
i

Note that the expression in Eq. (7) is also valid for >m 2 as long as =p 0. In fact for these networks 
only process ( )a  takes place and it is easy to show that = +k t 1i i . This simple relation between the 

Figure 2. The growing geometrical network model can generate networks with different topology and 
geometry. In the case =m 2, = .p 0 9 a random planar geometry is formed. In the case = ∞m , 
= .p 0 9 a scale-free network with power-law exponent γ = 3 and non trivial community structure and 

clustering coefficient is formed. In the intermediate case = , = .m p4 0 9 a network with broad degree 
distribution, small-world properties and finite spectral dimension is formed. The colours here indicate 
division into communities found by running the Leuven algorithm53.
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Figure 3. Local properties of the growing geometrical model. We plot the degree distribution ( )P k , the 
distribution of curvature ( )P R , and the average clustering coefficient ( )C k  of nodes of degree k for networks 
of sizes =N 105, parameter p chosen as either =p 0 or = .p 0 9, and different values of = , , , ,∞m 2 3 4 5 . 
The network has exponential degree distribution for =m 2 and scale-free degree distribution for = ∞m . 
For >p 0 and >m 2 it shows broad degree distribution. The networks are always hierarchical, to the 
extent that ( ) α−

C k k  with α shown in the figure. The distribution of curvature R is exponential for 
=m 2 and scale-free for = ∞m . For α < 1 the curvature has a positive tail.
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curvature Ri and the degree ki allows to characterize the distribution of curvatures in the network easily. 
The curvature is intuitively related to the degree of the node. As all triangles are isosceles, a bulk node 
with degree six has zero curvature. In fact the sum of the angles of the triangles incident to the node is 
π2 . Otherwise the sum is smaller or larger than π2  resulting in positive or negative curvature respec-

tively. The argument works similarly for the nodes at the boundary.
For >m 2 and >p 0 the networks are not planar anymore, and the definition of curvature is debated 

[15–18]. Here we decided to continue to use the definition given by Eq. (4). This is equivalent to the 
definition of curvature by Oliver Knill23,24, in which the curvature Ri at a node i is defined as

∑= (− )
( )=

+R
V
n

1
8i

n

N
n i

n

1

1

where ( )Vi
n  are the number of simplices of n nodes and dimension = −d n 1n  to which node i belongs. 

In fact the definition of curvature given by Eq. (4) is equivalent to the definition given by Eq. (8) if we 
truncate the sum in Eq. (8) to simplices of dimension ≤d 2n , i.e. we consider only nodes, links and 
triangles since these are the original simplices building our network.

For =p 0 the curvature distribution is dominated by a negative unbounded tail that is exponential in 
the case =m 2 and power-law in the case = ∞m . In particular while the average curvature is =R 0 for 
=p 0 and any value of m, in the limit → ∞N  the fluctuations around this average are finite (i.e. < ∞R2 )  

for =m 2, and infinite (i.e. = ∞R2 ) for = ∞m . We note here that in the BA model the clustering 
coefficient Ci of any node i vanishes in the large network limit, therefore the curvature − /R k1 2i i ,  
and the curvature distribution has a power-law negative tail and diverging R2  in the large network limit, 
similarly to the case = ∞m  and =p 0 of the present model.

For a general value of p, we can assume that the average clustering ( )C k  of nodes of degree k, scales 
as ( ) α−

C k k . Then the average number of triangles ( )t k  of nodes of degree k, scales as 
( ) = ( + ) ( )/ α−

t k k k C k k1 2 2 . Therefore, for large k and as long as α<1 the average curvature of 
nodes of degree k ( ) =

=
R k Ri k ki

, is dominated by the contribution of triangles and scales like 
( ) α−

R k k 2  with a positive tail for large values of k. This allows us to distinguish the phase diagram 
in two different regions according to the value of the exponent α: the case α<1 in which the curvature 
has a positive tail, and the case α=1 in which the curvature can have a negative tail.

We make here two main observations. First of all, with the definition of the curvature given by 
Eq. (4), our network model has heterogeneous distribution of curvatures. Therefore here we are charac-
terizing highly heterogeneous geometries and the geometrical growing network does not have a constant 
curvature. This is one of the main differences of the present model compared to network models embed-
ded in the hyperbolic plane28,29. In particular all the networks with =m 2 or =p 0 have χ=1 and therefore 
the average curvature is zero in the thermodynamical limit, but they have a curvature distribution with 
an unbounded negative tail that can be either exponential for =m 2 (i.e. < ∞R2 ) or scale-free as for 
the case = ∞m  (i.e. = ∞R2 ).

We illustrate this in Fig.  3 where we plot the distribution ( )P R  of curvatures for different specific 
models of growing geometrical networks for =p 0 and = .p 0 9 for different values of m. We show that for 
=p 0 the negative tail can be either exponential or scale-free. For = .p 0 9 we have for =m 2 a negative 

exponential tail and for = ∞m  a positive scale-free tail of the curvature distribution consistent with a 
value of the exponent α<1 and a power-law degree distribution.

Our second observation is that the case =m 2 and =p 0 is significantly different from the case >m 2 
and >p 0. In fact for =m 2 and for =p 0 the Euler characteristic of the network is χ=1 and never increases 
in time (see Methods for details), while for the case >m 2, >p 0 we expect χ/N  to go to a finite limit as 
N  goes to infinity. In Fig. 4 the numerical results of the Euler characteristic χ as a function of the network 
size N  shows that, for >m 2 and ≠p 0, χ grows linearly with N . The quantity χ/→∞lim NN  gives the 
average curvature in the network and is therefore zero for =m 2 and =p 0.

The generated topologies are small-world. In fact they combine high clustering coefficient with a 
typical distance between the nodes increasing only logarithmically with the network size. The exponen-
tial growth of the network is to be expected by the observation that in these networks we always have 
that the total number of links as well as the number of unsaturated links scale linearly with time. This 
corresponds to a physical situation in which the “volume” (total number of links) is proportional to the 
“surface” (number of unsaturated links). Therefore we should expect that the typical distance of the nodes 
in the network should grow logarithmically with the network size N . In order to check this, in Fig. 4 we 
give D, the average distance of the nodes from the initial triangle over the different network realisations 
as a function of the network size N . From this figure it is clear that asymptotically in time ∝D logN , 
independently of the value of p and m.

The effects of randomness and emergent locality in these networks are reflected by their cluster struc-
ture, revealed by the lower bound on their maximal modularity measured by running efficient commu-
nity detection algorithms53 (Fig. 5). Moreover also their clustering coefficient provides evidence for their 
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emergent locality (Fig. 5). Finally we observe that for >p 0 the network develops also a non-trivial K-core 
structure. In order to show this in Fig. 5 we also plot the value of K  corresponding to the maximal K
-core of the network. As we already mentioned, for =p 0 we have =K 2 and the network can be com-
pletely pruned by removing the triangles recursively. For >p 0 instead, the maximal K-core can have a 
much larger value of K , as shown in Fig. 5 for a network of =N 104 nodes.

Therefore these structures are different from the small world model to the extent that they are always 
characterised by a non-trivial community and K-core structure.

The geometrical growing network is growing exponentially, so the Hausdorff dimension is infinite. 
Nevertheless, these networks develop a finite spectral dimension dS as clearly shown in Fig.  6, for 
= , ,m 2 3 4 and = .p 0 9. We have checked that also for other values of p the spectral dimension remains 

finite. This is a clear indication that these networks have non-trivial diffusion properties.
The geometrical growing network model is therefore a very stylized model with interesting limiting 

behaviour, in which geometrical local and global parameters can emerge spontaneously from the 
non-equilibrium dynamics. Moreover here we compare the properties of the geometric growing network 
with the properties of a variety of real datasets. In particular we have considered network datasets com-
ing from biological, social, and technological systems and we have analysed their properties. In Table 1 
we show that in several cases large modularity, large clustering, small average distance and non-trivial 
maximal K-core structure emerge. Moreover, in these datasets a non-trivial distribution of curvature 
(defined as in Eq. (4)) is present, showing either negative or positive tail (see Fig. 7). Finally the Laplacian 
spectrum of these networks also displays a power-law tail from which an effective finite spectral dimen-
sion can be calculated (see Table  1 and Supplementary Information for details). This shows that the 

Figure 4. Maximum distance D from the initial triangle and Euler characteristic χ as a function of the 
network size N . The geometrical network model is growing exponentially, with ( ) ∝ ( )D N log N . Here we 
show the data = , , , ,∞m 2 3 4 5  and = .p 0 9 (panel A). The Euler characteristic χ is given by χ=1 for =m 2 
and =p 0 and grows linearly with N  for the other values of the parameters of the model (panel B).

Figure 5. Modularity and clustering of the growing geometrical model. The modularity M calculated 
using the Leuven algorithm53 on 10 realisations of the growing geometrical network of size =N 105 is 
reported as a function of the parameters m and p of the model. Similarly the average local clustering 
coefficient C calculated over 10 realisations of the growing geometrical networks of size =N 105 is reported as 
a function of the parameters m and p. The value of K  of the maximal K-core is shown for a network of 
=N 104 nodes as a function of m and p. These results show that the growing geometrical networks have finite 

average clustering coefficient together with non-trivial community and K-core structure on all the range of 
parameters m and p.
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geometrical growing network models have many properties in common with real datasets, describing 
biological, social, and technological systems, and should therefore be used and modified to model several 
real network datasets.

Discussion
In conclusion, this paper shows that growing simplicial complexes and the corresponding growing 
geometrical networks are characterized by the spontaneous emergence of locality and spatial properties. 
In fact small-world properties, non-trivial community structure, and even finite spectral dimensions are 
emerging in these networks despite the fact that their dynamical rules do not depend on any embedding 
space. These growing networks are determined by non-equilibrium stochastic dynamics and provide evi-
dence that it is possible to generate random complex self-organized geometries by simple stochastic rules.

An open question in this context is to determine the underlying metric for these networks. In par-
ticular we believe that the investigation of the hyperbolic character of the models with =m 2 and =p 0 
(that have zero average curvature but a negative third moment of the distribution of curvature) should 
be extremely interesting to shed new light on “random geometries” in which the curvature can have finite 
or infinite deviations from its average. A full description of their structure using tools of geometric group 
theory could be envisaged to solve this problem. This analysis could be facilitated also by the study of 

Datasets N L


C M K dS

1L8W (protein) 294 1608 5.09 0.52 0.643 7 1.95

1PHP (protein) 219 1095 4.31 0.54 0.638 6 2.02

1AOP chain A (protein) 265 1363 4.31 0.53 0.644 7 2.01

1AOP chain B (protein) 390 2100 4.94 0.54 0.685 7 2.03

Brain-(coactivation) [55] 638 18625 2.21 0.384 0.426 46 4.25

Internet [57] 22963 48436 3.8 0.35 0.652 25 5.083

Power-grid [45] 4941 6594 19 0.11 0.933 5 2.01

Add Health (school61) [58] 1743 4419 6 0.22 0.741 6 2.97

Table 1.  Table showing the structural properties of a variety of real datasets. N  indicates the total 
number of nodes, L the total number of links, 


 the average shortest distance between the nodes, C the 

average local clustering coefficient, M the modularity found by the Leuven algorithm53, K  the maximal K-
core, and dS the spectral dimension of the networks. The average shortest distance 


 can be checked to be 

of the same order of magnitude as = ( )/L log N log krand  which is the average shortest distance in a 
random network with the same density of links as the real dataset. The average local clustering coefficient C 
can be checked to be much larger than = /C k Nrand  indicating the average clustering coefficient of a 
random network with the same density of links as the real dataset. For the implications of the finite spectral 
dimension of proteins on their stability see59. The references indicate the source of the data (for the four 
contact maps of the considered proteins, extracted from56 see Supplementary Information for details).

Figure 6. The spectral dimension of the geometrical growing networks. Asymptotically in time, the 
geometrical growing networks have a finite spectral dimension. Here we show typical plots of the spectral 
density of networks with =N 104 nodes, = .p 0 9 and = , ,m 2 3 4 (panel A). In panel B we plot the fitted spectral 
dimension for =N 104 averaged over 40 network realizations for = . , .p 0 8 0 9.
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the dual network in which each triangle is a node of maximal degree m3 . In fact each edge of the trian-
gle is at most incident to other m triangles in the geometrical growing network.

Furthermore we mention that the model can be generalized in two main directions. On the one hand 
the model can be extended by considering geometrical growing networks built by gluing together sim-
plices of higher dimension. On the other hand, one can explore methods to generate networks that have 
a finite Hausdorff dimension, i.e. that they have a typical distance between the nodes scaling like a power 
of the total number of nodes in the network. Another interesting direction of further theoretical inves-
tigation is to consider the equilibrium models of networks (ensembles of networks) in which a constraint 
on the total number of triangles incident to a link is imposed, similarly to recent works that have con-
sidered ensembles with given degree correlations and average clustering coefficient ( )C k  of nodes of 
degree k54.

Finally the geometrical growing network is a very stylized model and includes the essential ingredi-
ents for describing the emergence of locality of the interactions in complex networks and can be used 
in a variety of fields in which networks and discrete spaces are important, including complex networks 
with clustering such as biological, social, and technological networks.

Methods
Degree distribution of = ∞m  and =p 0-. In the case = ∞m  and =p 0 the geometrical growing 
network model is reduced to the model proposed in52. Here we show the derivation of the scale-free 
distribution in this case for completeness. In the geometrical growing network with = ∞m  and =p 0 at 
each time a random link is chosen and a new node attaches two links to the two ends of it. Therefore 
the probability that at time t a new link is attached to a given node of degree k is given by k

t2
. Using this 

result we can easily write the master equation for the number of nodes ( , )N k t  of degree k at time t,

δ δ( , + )= ( , ) +
−

( − , ) − − ( , ) + . ( ), ,N k t N k t k
t

N k t k
t

N k t1 1
2

1 [1 ]
2 9k k2 2

Since the network is growing, asymptotically in time the number of nodes of degree k will be propor-
tional to the degree distribution ( )P k , ( , ) ( )N k t tP k , where the total number of nodes in the net-
work is = + N t t1 . Therefore, substituting this scaling in Eq. (9) we get

( + ) ( ) = ( − ) ( − ) ( )k P k k P k2 1 1 10

for every >k 2, while ( )= /P 2 1 2 yielding the solution

( ) =
( + )( + ) ( )

P k
k k k

12
2 1 11

for ≥k 2, which is equal to the degree distribution of the BA model with minimal degree equal to 2,  
i.e. scale-free with power-law exponent γ=3. Here we observe that the curvature of the nodes is in this 

Figure 7. Curvature distribution in real datasets. We plot the distribution ( )P R  in a a variety of datasets 
with additional structural and local properties shown in Table 1.
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case = − /R k1 4, therefore ( )P R  has a power-law negative tail, i.e. ( ) −
P R R 3 for <R 0 and 

R 1.  
Moreover we have =R 0 (consistent with χ=1) but R2  is diverging with the network size N .

Degree distribution of =m 2 for =p 0-. The degree distribution for =m 2 is exponential for any value 
of p. Here we discuss the simple case =p 0 leaving the treatment of the case >p 0 to the Supplementary 
Information. For =p 0 every node has exactly two unsaturated links. The total number of unsaturated 
links is = + L t t1  at large time t. Therefore the average number of links that a node gains at time t 
by process ( )a  is given by /t2  for t 1. The master equations for the average number of nodes ( , )N k t  
that have degree k at time t are given by

δ( , + ) = ( , ) + ( − , ) − ( , ) + . ( ),N k t N k t
t

N k t
t

N k t1 2 1 2
12k 2

In the large time limit, in which ( , ) ( )N k t tP k , the degree distribution ( )P k  is given by

( ) =





 ( )

−

P k 1
2

2
3 13

k 1

for ≥k 2. The curvature = − /R k1 4 is therefore in average =R 0 in the limit → ∞t  with finite second 
moment R2 .

Euler characteristic χ of geometrical growing network with either =m 2 or =p 0-. The Euler 
characteristic of the geometrical growing networks with =p 0 is χ=1 at every time. In fact we start from 
a single triangle, therefore at =t 0 we have χ=1. At each time step we attach a new triangle to a given 
unsaturated link, therefore we add one new node, two new links, and one new triangle, so that 
∆χ ∆ ∆ ∆= − + =N L T 0. Hence χ=1 for every network size. For =m 2 also the process ( )b  does not 
increase the Euler characteristic. In fact in this case when the process ( )b  occurs, and =m 2, we add only 
one new link and one new triangle, therefore ∆χ=0 also for this process. Instead in the case >m 2 and 
>p 0, process ( )b  always adds a single link but the number of triangles that close is in average greater 

than one, therefore the Euler characteristic χ grows linearly with the network size N .

Definition of Modularity M-. The modularity M is a measure to evaluate the significance of the 
community structure of a network. It is defined48 as

∑ δ=




−





( , ) .

( )
M

L
a

k k

L
q q1

2 2 14ij
ij

i j
i j

Here, a denotes the adjacency matrix of the network, L the total number of links, and q{ }i , where 
= , …q Q1 2i , indicates to which community the node i belongs. Finding the network partition that opti-

mizes modularity is a NP hard problem. Therefore different greedy algorithms have been proposed to 
find the community structure such as the Leuven method53 that we have used in this study. The modu-
larity found in this way is a lower bound on the maximal modularity of the network.

Definition of the Clustering coefficient-. The clustering coefficient is given by the probability that 
two nodes, both connected to a common node, are also connected. In the context of social networks, it 
describes the probability that a friend of a friend is also your friend. The local clustering coefficient Ci 
of node i has been defined as the probability that two neighbours of the node i are neighbours of each 
other,

=
( − )/

,
( )

C
t

k k 1 2 15i
i

i i

where t i is the number of triangles passing through node i, and ki is the degree of node i.

Definition of the K-core-. We define the K-core of a network as the maximal subgraph formed by 
the set of nodes that have at least K  links connecting them to the other nodes of the K-core. The K-core 
of a network can be easily obtained by pruning a given network, i.e. by removing iteratively all the nodes 
i with degree <k Ki .

Definition of the spectral dimension of a network-. The Laplacian matrix of the network L has 
elements
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δ= − . ( )L k a 16ij i ij ij

If the density of eigenvalues λ( )g  of the Laplacian scales like

λ λ( ) ∼ ( )/ −g 17d 2 1S

with >d 0S , for small values of λ, then dS is called the spectral dimension of the network. For regular 
lattices in dimension d we have =d dS . Clearly, if the spectral dimension of a network is well defined, 
then the cumulative distribution λ( )Pc  scales like

λ λ( ) ∼ ( )/P 18c
d 2S

for small values of λ.

Real datasets. We analysed a large variety of biological, technological and social datasets. In particu-
lar we have considered the brain network of co-activation55, 4 protein contact maps56 (see Supplementary 
Information for details on the data analysis), the Internet at the Autonomous System level57, the US 
power-grid45, and a social network of friendship between high-school students coming from the Add 
Health dataset AddHealth.
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