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1. Introduction

With the Large Hadron Collider (LHC), a new era for particle physics has started. In
2012, physicists of the CERN collaboration discovered the Higgs boson whose existence
is postulated by a mechanism which explains how mass could arise in local gauge the-
ories, proposed in three scientific papers, written in 1964. Its authors are Robert Brout
and Francois Englert [1}2], Peter Higgs [3] and Gerald Guralni, C. Richard Hagen and
Tom Kibble [4/5]. In 2013, Francois Englert and Peter Higgs were awarded with the No-
bel Prize in Physics »for the theoretical discovery of a mechanism that contributes to
our understanding of the origin of mass of subatomic particles, and which recently was
confirmed through the discovery of the predicted fundamental particle, by the ATLAS
and CMS experiments at CERN’s Large Hadron Collider« [6]. Indeed the discovery of
the Higgs boson was a huge success for the current Standard Model of particle physics
(SM) since its properties are in agreement with SM predictions [7]. However, there are
some deficiencies in the SM regarding neutrino oscillations, the nature of dark matter
and dark energy, the matter-antimatter asymmetry and the hierarchy problem [8-12].
There are many theoretical developments to resolve some of these issues, e.g. string
theory, extra dimensions or supersymmetric extensions of the SM [13].

One of the best studied candidates for physics beyond the SM is the Minimal Super-
symmetric Standard Model (MSSM) which realizes supersymmetry with the minimum
number of new particle states and new interactions, consistent with phenomenology,
see e.g. [12]. Supersymmetry relates bosons which have an integer-valued spin with
fermions which have a half-integer-valued spin, i.e. each boson is associated with a
fermionic superpartner and vice versa. In a theory with unbroken supersymmetry, each
pair of partner and superpartner share the same mass and internal quantum numbers
except the spin. However, no superpartner has been found yet and therefore, supersym-
metry must be broken to allow for heavy supersymmetric particles. To avoid a gauge
anomal an additional Higgs doublet is introduced in the MSSM, see e.g. . To give
an overview of the MSSM field content, the chiral fields are shown in Table and the
gauge fields in Table 1.2/including their associated transformation properties under the
SM gauge group SU(3)c x SU(2)p x U(1)y. A supersymmetric partner of a SM state is
denoted by a tilde.

'The conditions for cancellation of gauge anomalies include Tr(T32Y) = Tr(Y3) = 0 where T3 and Y
are the third component of the weak isospin and the weak hypercharge, respectively and the traces
run over all left-handed Weyl fermionic degrees of freedom. A fermionic partner of a Higgs chiral
supermultiplet would make a non-zero contribution.
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Names spin 0 spin 1/2 | SU(3)c, SU(2), U(1)y

squarks, quarks | Q | (i dp) | (up dp) (3,2, %)
(x3 families) | 7 iy uh (3,1,-2)

d| dt (3.1, 3)

sleptons, leptons | L (v ér) (v er) (1, 2, —%)
(x3 families) é & eh (1,1, 1)
Higgs, Higgsinos | H, | (HY Hy) | (H) H)) (1,2, —%)
H, | (Hf HY) | (A HY) (1,2, +53)

Table 1.1.: Chiral fields in the MSSM. The spin-0 fields are complex scalars and the spin-
1/2 fields are left-handed two-component Weyl fermions [12].

Names spin1/2 | spinl | SU(3)c, SU(2)., U(1)y
gluino, gluon g g (8,1,0)
winos, W bosons | W WO | w* WO (1,3,0)
bino, B boson BY B? (1,1,0)

Table 1.2.: Gauge fields in the MSSM .

There are two possibilities to search for supersymmetry, indirect and direct searches.

In the latter, one uses simplified models for parameter constraints. Since many assump-
tions are employed, these constraints cannot be applied to general supersymmetry mod-
els. So far, no supersymmetric particle was discovered, see e.g. [14].

In indirect searches, one precisely measures observables which are sensitive to quantum
effects due to supersymmetric particles and compares experimental results with precise
theoretical predictions.

With the discovery of the Higgs boson, a careful study of its properties in combination
with precise theoretical predictions could be very valuable for finding hints of super-
symmetry.

For example, the mass of the SM-Higgs boson is a free parameter whereas in the MSSM
the lightest CP-even Higgs boson mass can be predicted by theory. Therefore, by as-
suming the lightest CP-even Higgs boson to be the measured spin-zero particle, one can
predict its mass and exclude those MSSM scenarios for which the theoretical value is not
in agreement with experimental data.

The calculation of the lightest CP-even Higgs boson mass in the MSSM is very sensitive
to the value of the running top-quark mass. Therefore, a precise determination of the
latter is of great importance to reach experimental precision in theoretical predictions.

In addition, great interest is devoted to the study of Higgs boson couplings, especially
to the top and bottom quarks. They are very sensitive to new physics at the multi-TeV
scale [15l/16]. Deviations in the Higgs boson couplings from SM predictions can be an
indirect evidence of the existence of additional Higgs bosons [17].

In this thesis, a new method for the computation of the running top-quark mass and top
Yukawa coupling in the MSSM is presented, taking into account strong-coupling and the
dominant electroweak radiative corrections.



The outline of this thesis is the following.

In Chapter |2, the basic principles of an effective field theory are discussed and all steps
are described to relate the relevant SM parameters to their counterparts in the MSSM.
In Chapter 3, details on the actual computation and some analytical results are given. A
numerical analysis of these results is presented in Chapter |4/for selected MSSM scenarios.
In Chapter 5, the effects of the running top-quark mass on the determination of the
lightest CP-even Higgs boson mass in the MSSM are discussed.






2. Decoupling Coefficients

In order to describe physical phenomena in an efficient way, it is advisable to have a
theory with the minimum number of dynamical degrees of freedom. The energy scale is
a good classifier to rank those degrees of freedom. Effects of physical processes which
only play a role at very small energy scales can be quite important but in many cases the
knowledge of the exact dynamics is redundant.

In particle physics one can observe many different effects depending on the energy at
which the experiments take place. Therefore a reduction of a ’full’ theory to an effective
theory, which is valid in a certain energy range, seems desirable. In this way one can
isolate the most important phenomena.

For example, in the context of a Grand Unitying Theory (GUT) one assumes that gauge
or Yukawa couplings are unified at some scale which is higher than the GUT scale. With
the help of Renormalization Group Equations (RGEs) one can run those couplings to low
energy scales at which one can compare them to experimental results. When using an
on-shell renormalization scheme, gigantic logarithms appear which spoil perturbation
theory to a degree where predictions are not valid anymore. To avoid such logarithms,
one can use a mass independent renormalization scheme, e.g. the MS scheme | .
But then a mechanism is needed to take into account mass threshold effects since the
RGEs do not depend on masses and therefore the theory remains unbroken regarding
the evolution of gauge couplings.

2.1. Decoupling Theorem

In Quantum Field Theory (QFT) it is possible to construct an effective theory which has
the same predictions of low energy processes as the full theory but contains only the
light degrees of freedom. This reduces the amount of dynamical particles which have to
be taken into account. The decoupling theorem by Appelquist and Carazzone states
that effects of heavy particles can be neglected below a certain energy scale. However,
this statement is not valid for mass independent renormalization schemes. The reason
for this is that the g functions and anomalous dimensions do not depend on any mass
but on the number of active particles. To circumvent this problem one has to rescale the
parameters of the effective field theory by so-called decoupling coefficients [22]] which
depend on heavy particle masses and on the underlying theory.

Let £ be a Lagrange density which contains fields of light particles ¢ as well as fields of
heavy particles ¢:

L=L(p, ) (2.1)
One can isolate terms £;;4;,; which contain only fields of light particles:
L(p, ¢) = ﬁlight((P) +£rest((l)f (P) (2.2)
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Now one can construct an effective theory whose Lagrange density .C’(go’ has the same
structure as £;; ght(go Its predictions are the same as in the full theory up to a correction
of the order of the inverse of the heavy masses. The fields ¢’ and parameters in the
effective theory are related to the original fields ¢ and parameters by multiplicative
factors called decoupling coefficients which are calculated by matching the effective and

full theory [23].

2.2. Decoupling Limit

Throughout this thesis, the MSSM is regarded as the full and the SM as the effective field
theory. In the MSSM, an additional Higgs doublet has to be introduced since otherwise
the electroweak gauge symmetry would suffer a gauge anomaly. Therefore, the Higgs
sector is changed compared to the SM. On the other hand, all current data by the CMS
and ATLAS collaboration suggest, that the observed scalar state is a SM-like Higgs boson
[24,25]. Fortunately, there exists a so-called decoupling limit of the MSSM where
the low-energy Higgs spectrum is identical to that of the SM. In short, it is defined by
considering the CP-odd Higgs mass M, to be much larger than the electroweak scale:

MA > MZ (2.3)

In this limit the tree level Higgs masses are

Mpo ~Mpy: ~ My > My, (2.4)
and
Mo = Mz|cpgl- (2.5)
The trigonometric functions are abbreviated as
tan(x) = t,,
sin(x) = s,
and
cos(x) = cy. (2.9)

It should be noted that quantum corrections can easily shift the mass M, to its experi-
mental value at about 125 GeV. In Table 2.1] the tree-level couplings of the Higgs boson
H in the SM and h° in the MSSM to top and bottom quarks and vector bosons, normal-
ized to the corresponding SM values are shown. Expanding in inverse powers of My,
one gets

2
c M
2= +O(—§), (2.10)
Sp M}
2
S M
——"‘:1+O(—§) (2.11)
cp My
IFields and parameters of effective theories are denoted by a prime throughout this thesis, except stated

otherwise.
2In addition, new interactions in the Lagrange density can potentially occur.
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b | 8yt 8obb  pVV
SM H 1 1 1
MSSM  R° | co/sg  —su/cg  Sp-a

Table 2.1.: Tree level Higgs couplings in the MSSM, normalized to the SM couplings

and

oMz
Sﬁ—a =1 +O(—4) (212)

A
Therefore, in the decoupling limit the tree-level couplings of the MSSM Higgs boson
h? are identical to the couplings of the SM Higgs boson H. In addition, similar results
have been observed at the one-loop level, see e.g. [27]. It has been shown that for both
large SUSY mass parameters and a large CP-odd Higgs mass the I'(h® — bb) decay width
approaches its SM value. Also the Higgs masses keep a similar pattern as the tree level

ones [28].

However, it should be noted that in some cases an apparent SM-like Higgs signal can also
arise in a region that may not be governed by the decoupling limit [27][29]. However,
this possibility will not be considered in this thesis.

2.3. Gauge-less Limit

To simplify the calculations, the so-called gauge-less limit is used. In this limit, the elec-
troweak gauge couplings g , are neglected which leads to vanishing masses for the W
and Z bosons. One can write

2.2
4
M3, = £Y (2.13)
2 52,2
+ v
M} = % —0 (2.14)
while keeping the ratio
My
= 2.15
W=, (2.15)

and the vacuum expectation value v fixed. It is a reasonable limit since effects of the
strong and Yukawa couplings are dominant at the TeV scale where calculations in this
thesis are performed. The effects of the gauge-less limit on the sectors of the MSSM are
reviewed in the following. The notation is mainly based on [30|[31].

2.3.1. Squark Sector

The tree-level mass terms for the squarks 4 r are given by

Lhhass = (3] a3 ) M3 (gz) (2.16)
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with the non-diagonal mass matrix

M2, M?
M2 = ( gLr ZLR) (2.17)

1 MqLR MqRR

and
My = MG +mg+cap(T) = Qqsiy) M3, (2.18)
-21)

MZ g = mg(A —wfﬁ ), (2.19)
M RR = M +m +czﬁQqstz (2.20)

M é is the parameter of the soft supersymmetry-breaking term of the left-handed dou-
L

blet. M {%R is the parameter of the soft supersymmetry-breaking term of the right-handed
singlet. m, is the mass of the corresponding quark. The third component of the isospin is
Tq3 and the charge is denoted by Q,. A, is the parameter of the trilinear supersymmetry-
breaking term and y is the Higgsino mass parameter. The electroweak angle is denoted
by W and ¢ is the ratio of the Higgs vacuum expectation values.

If one assumes zero quark masses the mass matrix becomes diagonal. Additionally im-

posing the gauge-less limit yields M > L= =M é which is identical for squarks of the same
L

generation. Therefore, the tree-level masses of squarks which correspond to left-handed
quarks are identical in the same generation, e.g.

mg = mp, . (2.21)

2.3.2. Slepton Sector

The slepton sector is analog to the squark sector and is shown for completion. The mass
terms of the superpartner of a lepton e are given by

e
Lhuss = (8] &) M? (e;) (2.22)
with the mass matrix
M?Z . M?
MZ = ( gL 5LR) (2.23)
‘ MeLR MeRR
and
M? M2 +m?+c (—l M?
iLL = 25(—= + 53y )MZ, (2.24)
MéLR =m(Ae— ﬂt/ﬂ): (2.25)
MeRR —M§R+m§—c2ﬂ5%\,M§. (2.26)

Mz 2 is the soft supersymmetry-breaking parameter of the left-handed doublet and M,

of the right-handed singlet. m, is the mass of the corresponding lepton. A, is the pa-
rameter of the trilinear supersymmetry-breaking term.
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2.3.3. Higgs Sector

One can express the two Higgs doublets H; and H, with vacuum expectation values vy
and v, through fields (/)(1),2: (p?'z, ¢1 and ¢3 whose vacuum expectation values vanish
by writing

0 1 0_ .0
H, = (Hl_) = (ﬁ(vl tor “Pl)) (2.27)
Hl —4)1
and
Hf 2
Hy=(_3|= N 2.2
3 (Hg) (\/%(1& + ¢+ l(PS)) (2.28)
The mass terms are
¢ 1 0
Linass = -3 (<p? <p3)M§00 (Zé) (2.29)
0 1 0
Lhgss = -5 (cp(f ¢3)pro (i&) (2.30)
2
and
+ +
Loess = —(cp; cpg)/\/lzi (%) (2.31)
with
2 72
P R o
¢ m? m2 _ &+g” (w2—v2)| :
12 2 3 17 V2
2 72 2
2 _ a2 &8 t8 V] —V17V;
Mo =My + =4 (—vlvz 2 ) (2.33)
and
2 2
v Vv
MG = MG + gz (_vaz vlf 2). (2.34)

Here, m; and m, are the soft supersymmetry-breaking mass parameters and m, the
mixing parameter of the Higgs doublets H; and H,. The gauge couplings of the SU(2),
and U(1)y symmetry are denoted by g and g’.

The diagonalization of the Higgs mass matrices is performed via orthogonal transfor-
mations with the angle a for the CP-even part and f for the charged and CP-odd part,

i.e. the mass Eigenstates (GO,AO), (HO, ho) and (Gi,Hi) can be written as

0 0
(%) uip)|%4), (235
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0 0
(I,fo):Uw)( 6) (2.36)
2
and
()-oot
with
U(X)=(_C;‘x Z) (2.38)

The mixing angles are determined by diagonalizing the mass mixing matrices, e.g.

U(a)M?,U(-a) = diag(M?

fr0- M), (2:39)

The mixing angle & can be written as

try = tzﬁw. (2.40)
MA - MZ
The tree-level masses are
M2 = %{Mf\ +MZ - (M3 + M2)? - 4MEMECE, } (2.41)
M2 = %{Mj +MZ+ (M2 + M2)2 - 4M§M§c§ﬁ} (2.42)
and
M} = M3 + Mgy, (2.43)
In the gauge-less limit, the tree-level masses simplify to?]
M, =0 (2.44)
and
M} = Mf = M3. (2.45)
One gets for the mixing angles
Sa = —Cp (2.46)
and
Ca =SB (2.47)

which is compatible with the decoupling limit, see equations (2.10)-(2.12).

3The formal requirement M), = 0 seems a bit strong, e.g. in the context of calculating the lightest CP-
even Higgs boson mass. However, it is a common practice for higher-order correction to use this limit,
seee.g. . A consistent treatment of the gauge-less limit without imposing M}, = 0 is shown in .

10
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2.3.4. Chargino and Neutralino Sector

The Higgsinos H ,, which are the superpartners of the Higgs bosons, can be expressed
through left-handed Weyl spinors

- (A"
H =|A! .
()
and
H, :( %) (2.49)
2

Let B be the gaugino of the U(1)y and W' (i = 0,1,2) the gauginos of the SU(2);
gauge group. By setting W* = %(Wl F W2), one can define the chargino fields Wy | as

W = (VP‘III__) (2.50)
and
W = (LV;) (2.51)

The chargino mass terms can be written as

L6105 = —i (W XWE + W XM (2.52)

mass —

with o# = (1,7") and 6" = (1, -7") expressed through Pauli matrices 7' (i = 1,2, 3). The
chargino mass mixing matrix X is given by

M2 \/EMWsﬂ

X =
\/EMWcﬁ 14

(2.53)

M, is the soft supersymmetry-breaking parameter of the wino W' (i = 0,1, 2).

In the gauge-less limit, X becomes diagonal with the resulting tree-level masses as M,

and p.

One can define the neutralino fields as

BO
n_ | WO
\I/ = 0 (254)
i)
H,
with the mass terms
n 1 nT n Tl vhin
L ass :_E(\P YW" + @t yTgr), (2.55)

11
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Here, the mixing matrix of the neutralinos is

Ml 0 —MzswC‘B Mzswsﬁ
_ 0 Mz M2CWCﬁ —MzCWsﬂ
Y= —MzswClg MszCﬁ 0 —H ' (2.56)
Mzswslg —M2CWSﬁ i Z 0

M, is the soft supersymmetry-breaking parameter of the bino B°. Applying the gauge-
less limit yields

M, 0 0 0

{0 M, 0O O
Y={ o 0 o —;4 (2.57)
0 0 -u O
which can be diagonalized by
Y=N*YNT = diag(mfg,mfg,mfg,mﬁ)
= diag(M1, My, i, p) (2.58)
with
1 0 0 O
01 0 O
N = i i |. 2.59
00 & & (2.59)
oo =L L
V2 V2

N is chosen complex to ensure the masses to be non-negative. Alternatively, as done
in [33] and which is a common practice, one can drop the factors 7 in equation (2.59) and

formally use a negative value for m 0.
Xy

Without applying the gauge-less limit, it is a non-trivial task to make use of unitar-
ity relations in calculations where diagonalization matrices of the neutralino sector are
present. In the gauge-less limit N can just be expressed by equations which sim-
plifies the calculations.

2.4. Renormalization Constants and Decoupling
Coefficients of the Bottom- and Top-Quark Mass

Within the framework of supersymmetry, the decoupling coefficients of the bottom-
and top-quark mass have been computed in SQCD up to O(a?). In this thesis, also
electroweak effects are taken into account and therefore a short review on how to calcu-
late decoupling coeflicients is given. In addition, explicit formulas for the corresponding
renormalization constants are derived.

One possibility is to calculate Green’s functions both in the effective and in the full the-
ory. Then the decoupling coefficients can be derived by demanding equality of both
Green’s functions. However, the calculation of decoupling coefficients can be reduced to
the solution of vacuum integrals as shown in [22]]. The explicit formulas for decoupling

12



2.4. Renormalization Constants and Decoupling Coefficients of the Bottom- and Top-Quark Mass

Figure 2.1.: Corrections to the fermionic propagator, drawn with Jaxodraw . One-
particle-irreducible diagrams are denoted by a gray circle.

coeflicients of the top- and bottom-quark mass can be derived through the requirement
that on-shell parameters are identical in both the effective and full theory. This was done
in and the explicit calculation is presented in the following.

In the full theory, the on-shell top-quark mass M; can be related to the bare mass m(to)

by the on-shell renormalization constant Z%S:

my) = ZOM, (2.60)

In the effective theory, the analog relation is
m" = Z,05M, (2.61)

. . . ’ 0
with the on-shell renormalization constant ans and the bare top-quark mass m;( ) of the
effective theory. The on-shell top-quark mass is identical in both theories. To connect
the bare mass of the full and effective theory one can introduce the decoupling coefficient

C 5,9 t) by writing

/(0 0 0
il = 00 262

Combining equations (2.60) to (2.62) yields

(0) Z/OS
Cm, = —e (2.63)
my ths

The on-shell mass M; is defined by demanding the top-quark propagator to have a pole at
q> = M?, where g is the external momentum. In the MSSM the self-energy i ¥ consists
of a vector, an axial, a scalar and a pseudoscalar part as defined in equation (A.3). If the
parameters of the MSSM are chosen to be real the pseudoscalar part vanishes because of
hermiticity, see e.g. [30|[36]. For simplicity, the color structure will be suppressed in the
following discussion.

To compute corrections to the fermionic propagator one can sum up one-particle-
irreducible diagram iXp. Graphically, this is illustrated in Figure where i¥p is
denoted by a gray circle.

Using the Feynman rule for fermionic propagators g%m, one can sum up the diagrams

%i.e. diagrams which cannot be split into two parts by removing a single line

13
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shown in Figure
, ] i i i : i
iSp “m + g—mle(q)g—m + g—mle(q)g— ZZF(q)g—m +... (2.64)
e k
i , i
=7—m ;(121?((1)%_7”)
-1
1z )

By exploiting the Lorentz structure one can calculate the inverse of g —m + Xr(g). The
result reads

m[T3a%) - ys2R@?) - 1] - a[=F (@) - ys T (g?) + 1]

el e |-efo-shel -]

iSp =i

If the bare mass m is renormalized with the on-shell renormalization constant Z,%S, the
loop-corrected inverse propagator has to vanish for g> = M? with M being the on-shell
mass. This leads to the equation

0=(2z9M)’

(1 _ )Zf;(MZ))Z - (zE(MZ))zl (2.65)
_ M2 l(1 ; Z}/(M2))2 - ():;‘(MZ))Q]. (2.66)

Solving for Z9° gives

(1 +>:}’(M2))2—(z;§(M2))2
= (1 i ):IS:(MZ))Z j ():?(MZ))z . (2.67)

(ON]
Zm

To extract C,g?) from equation (2.62) one has to calculate Z%S both in the effective and
full theory. Since all masses in the effective theory are much smaller than the heavy
ones of the full theory one can approximate them to be zero. Since g°> = M?, this leads
to a vanishing external momentum and consequently, one has to calculate only tadpole
diagrams. In the effective theory, the integrals appearing in the self-energies become
dimensionless and disappear in dimensional regularization or dimensional reductio

[38]/39]. This approximation leads to

Cinot) = % = (1 _25(0)): _ (25(0)):. (2.68)
Zon, (1+th(0) —():{‘(0))

>Dimensional reduction will be briefly discussed in Section
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2.4. Renormalization Constants and Decoupling Coefficients of the Bottom- and Top-Quark Mass

Therefore, the calculation of C,(??t) is reduced to the calculation of self-energies of the
full theory with vanishing external momenta. Only diagrams with at least one heavy
particle in loop integrals have to be considered. For ©¥ = ¥4 = 0, which is valid in the
SM, equation is identical to equation (12) in [22].

Ci,?t) relates bare masses of the full and effective theory. Additionally one can define an
analog relation for ﬁﬂ renormalized masses with Cmt through

m/PR = Cpn, M. (2.69)
Since both m'DR and m?ﬁR are finite, C,, , must be finite.
In order to connect C,, , to C,(??t) one can use the relations
my) = ZDRmPR (2.70)
in the full theory and

m;(o) = Z'DRm;DR (2.71)

in the effective theory. With equations (2.62), (2.69), (2.70) and (2.71) one gets

o), (2.72)

The calculation of the renormalization constant of the top-quark mass in the DR scheme
is described in . For convenience, the main steps are discussed in the following.

The renormalization constants for the left- and right-handed fields of the top quark are
defined as

P =\ ZIPRyk (2.73)

% = \|ZRPRyR, (2.74)

By introducing the left- and right-handed self-energies X&' and XX via

sl=x)y 34 (2.75)
and

IVAED WS v (2.76)

the inverse of the top-quark propagator can be written as

(iS)) " (q) =— iq[PLZ§PI‘<1 +3H(g%) + PRZXPR(1 + £R(92)) (2.77)

+Him 2525251 -0 (g?)

The DR renormalization scheme is analog to the MS scheme but within the framework of dimensional
reduction.
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2. Decoupling Coefficients

where the pseudoscalar part is set to zero. The DR renormalization constant is defined
by the requirement that the propagator is finite. This leads to the recursive relations

Z5PR = 1- K (2Hq?)ZER),
78R = 1 - K (3K (?) 25X

and

—_ e
VAPRZERZEE < 14 K25 P 2P 2PN 20K

(2.78)

(2.79)

(2.80)

which have to be solved iteratively. The operator K, (x) is defined by only taking terms of
x proportional to some positive power of 1/€. To retrieve explicit formulas for the renor-
malization constants one can make a perturbative expansion in the appearing couplings

and separate the different loop orders by writing
Z=1+zW4+724
and
y=1+3xW4x@4

Up to two loops one gets

LDR(1) L(1)
zl :—Ke()jt )

and
RDR(2 R(1 R(1 R(2
Zzt (2) Ke(zt( )Ke(zt( ))) Ke(zt( ))

The renormalization constant for the top-quark mass is

DR(1 1(_IDR(1 RDR(1 S(1
7K >:_§(22t (1), 7 ROR ))+K€(Et( >)
Zp?) :_{3(Z§PR‘”) " 3(25?““’) —475PR?) 47RO

. 2ZLDR(1)ZRDR(1) —4K€(Zf(1))(Z§PR(1) +Z§tDR(l))

+ 8K€(Ef(l)K6(Zf(l))] + 8K€()Zf(2))}.
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2.5. Decoupling Coefficient of the Strong Coupling Constant

2.5. Decoupling Coefficient of the Strong Coupling
Constant

Within the framework of QCD, the decoupling coefficient of the strong coupling constant

is known to two- [22/[41l[42], three- and even four-loop order and the simul-

taneous decoupling of two heavy quarks has been computed at three-loop order [45].

In the context of supersymmetry, SQCD corrections at two-loop order were calculated
for a degenerate supersymmetric mass spectrum and for the general case [34].
For certain mass hierarchies even the O(a?) corrections were computed . In the
scope of this thesis, also electroweak effects on the decoupling coefficient are calculated,
hence the main steps of the computation are reviewed here.

To calculate the decoupling coefficient of the strong coupling constant g;, one has to
consider a physical quantity that includes g;. To simplify the calculation one can for

example use the géc vertex. Analog to equation (2.62), the definition of Cg) reads

/(0 0) (0
& =cyel”. (2:88)
Matching the full and the effective theory leads to

¢ = (2.89)

=(0 0
&y
with the decoupling coefficient C~1(0) of the one-particle-irreducible géc vertex, the de-

coupling coefficient C (30) of the ghost wave function and éo) of the gluon wave function.
They can be computed according to

0 0),h
O =141 0),
=(0 0),h
&y =1+ (0),
~ (0 h
Cl( ):1+Fg(?c) (0,0) (2.90)

where rg(gc)(q, k) is the one-particle-irreducible part of the amputated géc Green'’s func-

tion with outgoing four-momenta g and k and Hfgo)(qz) and Hio)(qz) are the gluon and
ghost vacuum polarizations, respectively. The superscript / indicates that only the hard
part of the respective quantities needs to be computed.

In general, equation (2.89) can be written as

(0)
C(O) _ Cvertex (2.91)

coupling — 0
[Tiy/Co,

where the product goes over all external particles i with the corresponding decoupling

. . 0
coefficients of the wave function Cé)‘).
1

It has been shown that C~1(0) is equal to one up to two-loop order. To compute the de-
coupling coefficient of the ghost wave function, the self-energy of the ghost propagator
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2. Decoupling Coefficients

has to be considered where only the color structure is projected out. For the decoupling
coefficient of the gluon wave function, the self-energy of the gluon propagator has to
be separated into a longitudinal and a transversal part, see equation (A.2). Because of
the generalized Ward-Takahashi identity only the transversal part contributes. The
renormalized decoupling coefficient C, can be computed analog to equation by

DR
Co =~y (2.92)
&~ DR & ° :
Zg,

To compute the renormalization constants ZESR and Z;?R one can proceed in an analog
way. This gives

_ DR
ZR= 52 (2.93)

7Rz}

with ZgDC-IE as the renormalization constant for the gcc vertex, Z?R for the ghost wave

function and Z?fR for the gluon wave function. The analog relation holds for the effective

theory. The renormalization of the decoupling coefficient C;?) in equation (2.92) can also
be written as

DR

Zc‘c”'O
gcg)

Zgol
Co. = — —, (2.94)
Zz" =(0 V4 0
20 [0

> /DR /DR
4 3 4 3

emphasizing independent renormalization of the vertex and the wave function decou-
pling coefficients. This has the advantage that all individual pieces

DR
Z = Zgzc ~(0)
l - Z/ﬁ 1
gcc

) (2.95)

DR
= Z3 =(0)

G5 =

7 3 (2.96)

and

ZPR (o
(= 0 (2.97)
Z3

are finite which enables additional checks for the calculation. In order to calculate the
renormalization constants one proceeds in a similar way to the previous section, i.e.
decomposing the renormalization constants to different loop orders and solving the re-
cursive relations.
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2.6. Decoupling Coefficient of the Top Yukawa Coupling

2.6. Decoupling Coefficient of the Top Yukawa
Coupling

As explained in the previous section, the calculation of the decoupling coefficient of the
top Yukawa coupling is done by considering a physical quantity where this coupling
appears. One can use the h°ft vertex where h° is the light SM-like Higgs boson. By
considering the decoupling limit, the tree-level couplings to the top quarks are identical

in the MSSM and the SM, as can bee seen in table In this way, one can compute CJ(J?)’

which relates the bare SM top Yukawa coupling yt/(o) to its analogon in the MSSM y}(o)
through the relation

/(0 0) -
yt( = C;t)yt(o)- (2.98)

In contrast to the definition in the SM, the MSSM definition of the top Yukawa coupling

yio) contains an additional factor of 1/5(;). The tree-level coupling of the top quark to
the lightest CP-even Higgs boson in the decoupling limit can be written as

0) (0 0) (0
EhOft N}’i ey = Vi )5;3)
~(0
=5\, (2.99)
This leads to
/(0 0) (0) (0
v =cy)s”. (2.100)

C;?) can be derived according to equation (2.91). The result is

(0)

Choft
/ (0),L -(0),R -(0)
C2t CZt Cho

where Cg)’ are the decoupling coefficients of the left/right handed top-quark wave
functions and Cjo for the Higgs wave function. They are computed according to

oV = (2.101)

L/R

0 0),h
G = 1+11,0"(0),

0),L 0),L,h
O =141 (0),

0),R 0),R,h
O = 1411 0),

0 0),h
Chor = 1+L0r"(0,0) (2.102)
with pr(? ;’th(q,k) being the one-particle-irreducible part of the amputated h°ft Green’s

function and H;l%)’h(qz) and l_I(tO) (g*) being the self-energy of the Higgs boson and

the left-/right-handed vector part of the self-energy of the top quark, respectively. The
latter is defined in equation (A.4). Again, one can define the renormalized decoupling
coefficient C,, through the relation

,L/R,h

Y = Cy,5pyt = Cy, ¥y (2.103)
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2. Decoupling Coefficients

with
ﬁ

R (2.104)

ZDR
v

where the renormalization constant ZETR is calculated with the equation

ZDR
ZDR = Wit (2.105)
\/ ZLDR ZRDR ZDR

in the full theory and in an analog way in the effective theory. As discussed in the pre-
vious section, it is advisable to decompose equations (2.104) and (2.105) into individual

finite pieces. One gets

zb
hOFt
Choqr = — = Chott; (2.106)
hOFt
ZL/RDR
L/R _ (0)
Cyp = LR C2t (2.107)
2t
and
7DR
_ “no ~(0)
Cho = —=Cp0- (2.108)
Ko
Since Z]?TR is not the renormalization constant of the top Yukawa coupling, see equation

(2.100), a comparison to literature is not directly possible. However, one can calculate
ZJI?tR by considering the ¢pJtf Verte which is at tree level proportional to y; without a
factor of ca

¢1 and ¢, can be retrieved by rotating the mass Eigenstates h° and H? with the orthog-
onal matrix U(a), as can be seen by equations (2.36) and (2.38).

One can relate the renormalization constants Zé{)cho for the fields (p? , which can be
192 !

written in the diagonal form

AV IRY 2.109
03 | 0 Zl{)z ( )

with Z 11_1/0 0 for the wave functions of the physical fields
Zl/2 Zl/2
VAL 2.110

"The Higgs field (pg is defined through equations and l)
8= sg in the decoupling limit
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2.7. Decoupling Coefficient of the Bottom Yukawa Coupling

by rotating the basis with equations . Since these DR renormalization constants do
not depend on masses, one can calculate them in a massless theory for which the pole
part of the corresponding renormalized Lagrange density has to vanish. This leads to
the equations

Ke((Z330) (@ + Saon) Z430)) = 0 (2.111)

where g is the external momentum and )iHoho the self-energies in the basis of H? and
h®. One can calculate the renormalization constants of the physical fields in equations
(2.111) order by order in perturbation theory and consequently Z 9 by switching to the

(P(j) basis . The result is

(1) (2)
Zo=1+Z,+72, 2.112
qbo (]52 (i)z ( )
with
1
Z;)(; =c2 z< >+2casa2;{3ho + ﬁZLJ (2.113)
and
2) 1 1 ) . ,
Z((Pg) - Z{Ci((z;ighop+4Z;io))+5§((2;{3h0)2+4ZL§)
1 1 1 1
+2C“5a(ziio)z;43ho ~(Zyo + ZioeZig 42;43;:0)} (2.114)

Now one can use the analog equation of (2.105) for the ¢, ft vertex to compute Z}I,)TR. The
result was checked with the literature [50] and full agreement was obtained. The result

of ZPR to O(ag, agay ;) reads

DR 3a; a
DR _ 45 L 20% M
o 2e 2 7CR de ' Be
1 3 3 1
+E{as(§CF+ZTCF—RCFCA)+ Zasat}

1 -3 1 3 1
+z{aZ(ZTCF+§C§+RCFCA)—aSat—EaSab} (2.115)

with a, = a,/n where a, = g2/47 and Ay pr = yt%b' ./4m. The quadratic Casimir invari-
ants for the adjoint and fundamental representations are expressed as C4 and Cr and
the Dynkin index is T = 1/2. In the Yukawa sector, these symbols are substituted by
their numerical values.

2.7. Decoupling Coefficient of the Bottom Yukawa
Coupling

The calculation of the bottom is analog to the top Yukawa coupling. The corresponding
vertex is the h°bb vertex. In the decoupling limit, the lightest CP-even Higgs boson in
the MSSM has the same tree-level couplings to bottom quarks as the SM Higgs boson, see
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2. Decoupling Coefficients

table One can introduce the decoupling coefficient for the bottom Yukawa coupling
by writing

0) .
= i)y, 0. (2.116)

As for the top Yukawa coupling, the definition of the bottom Yukawa coupling in the
MSSM yéo) differs from the one in the SM by a factor. For down-type quarks this factor

is 1/c;30) which leads to

0 0) (0) (0
=0y (2.117)
One can compute Cyb through
(0)
C _
@ (2.118)

v Clz”bcgbcho

with the decoupling coefficient of the left/right handed bottom-quark wave function.

The renormalized decoupling coefficient Cy, is

ﬁ
2.119)
Yo DR C% (
Z
Y
where Z}%TR can be calculated according to
DR
“iob (2.120)
\/2LDRzRDRzDR

in the full theory theory and in an analog way in the effective theory.

Decomposing equations (2.119) and (2.120) into individual finite pieces leads to the finite

quantities

DR
Cro _ZhObb 0
hobb = TR hobb’
hobb

(2.121)

L/RDR LIR(0)
chR="20 ¢ (2.122)

and

Z
A ) (2.123)
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3. Calculating the Decoupling
Coefficients

In the following, the details of the calculation of the decoupling coefficients and renor-
malization constants, mentioned in the previous chapter, are discussed. The calculation
is quite extensive, therefore several computer programs are needed to perform the com-
putation.

3.1. Used Computer Programs

To generate Feynman diagrams, the program QGRAF is used. In the configuration
file one can define fermionic and bosonic propagators and vertices of the desired model.
After specifying external particles, the loop order, options and constraints, QGRAF gener-
ates all corresponding Feynman diagrams. Symmetry factors and factors regarding Dirac
fermions are computed correctly but the treatment of Majorana fermions has to be cor-
rected according to with the help of the additional program majoranas.pl [53|/54].
In order for exp to read the output of QGRAF, the program q2e is used. In
this step the Feynman rules of the MSSM are taken into account.

Since the number of Feynman rules for the MSSM is large, it is advisable to make use
of a well tested implementation and transfer it to QGRAF and g2e. Fortunately, the pro-
gram FeynArts has already implemented the MSSM Feynman rules, among other
models. The transformation to a format which can be read by QGRAF and qg2e is done
with the program FeynArtsToQ2E [58,/59]. exp can now be used to create amplitudes
out of Feynman diagrams and perform naive and asymptotic expansions in masses and
momenta, see Section 3.2, The mapping to master integrals is done with MATAD for
diagrams with vanishing external momenta and with MINCER for massless diagrams.
Both MATAD and MINCER are based on FORM [62H65], a program for symbolic manipula-
tion of mathematical terms. In the case of one-loop on-shell integrals, the diagrams are
expressed in terms of By functions [66]].

Since many different physical quantities have to be calculated, an automation of the
procedure described above is useful. For this purpose, the Python program Project.py
was written. It reads a global configuration file which contains all the relevant infor-
mation (e.g. external particles, loop order, projectors) and sequentially runs QGRAF,
majoranas.pl, g2e, exp and MATAD/MINCER and presents the result in a FORM file.

Figure 3.1/ gives a schematic overview of the used programs.
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3. Calculating the Decoupling Coefficients

Project.py
| QGRAF |— majoranas.pl q2e || exp [—{ MATAD / MINCER [—{ FORM
i )

v

FeynArts FeynArtsToQ2E

Figure 3.1.: Schematic overview of the used programs, the upper ones are managed by
the program code Project.py

3.2. Asymptotic Expansion

Analytic expressions for higher order corrections are in most cases too complex to com-
pute since the appearing integrals contain several different mass scales. In order to solve
this problem, one can make use the so-called asymptotic expansion technique [67], a
mathematical prescription to consistently expand Feynman diagrams in large scales. In
this way, occurrent hierarchies between different mass scales can be exploited to expand
the given diagram with respect to a small quantity. The result of a certain diagram is
obtained in four steps:

« Shrink the lines of the hard subgrap to a point, the remaining diagram is called
co-subgraph.

+ Expand the propagators and evaluate the integrals in the hard subgraph for which
the result is inserted into the co-subgraph.

« Evaluate the remaining integrals in the co-subgraph.

« Sum over all terms.

3.3. Dimensional Reduction and Epsilon Scalars

To preserve gauge invariance, unitarity and global supersymmetry, a modified form of
dimensional regularization is used, called dimensional reduction . Unlike in di-
mensional regularization, the dimension of the gauge boson fields is held fixed. In di-
mensional reduction to D = 4 — 2¢ dimensions, the remaining 2e components of the
gauge field behave under gauge transformations as a multiplet of scalar fields which are
called epsilon scalars.

3.4. Assumptions and Simplifications

Even though the top Yukawa coupling is the most dominant one in the Yukawa sector,
the bottom and tau Yukawa couplings are not approximated to be zero since they can

!In the case of expansions w.r.t. a large mass one has to find all subgraphs which contain all lines carrying
the large mass and are one-particle-irreducible w.r.t. light lines in their connected parts.
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3.5. Tadpole Diagrams

get enhanced by large values of tg. At tree level, one can write y,/y; = (my/ m;)tg and
Y¢/y: = (my/my)tg so that their ratios become large for large values of f;.

Since the measured particles of the SM are assumed to be much lighter than their super-
symmetric counterparts, their masses are approximated to be zero. However, care has
to be taken regarding the masses of the top and bottom quark and the 7 lepton. Their
masses cannot be set to zero from the beginning since they may also appear in projectors
which are used to extract left- and right-handed scalar contributions from self-energy
diagrams, see Appendix|Al In addition, they can contribute to Yukawa couplings since
these are proportional to their masses. Therefore a naive expansio in myp, . is per-
formed.

In order to be as flexible as possible regarding different MSSM scenarios, masses of occur-
ring heavy particles should be distinct. However, computations become more extensive
and results are more lengthy if one chooses each particle to have a distinct mass, espe-
cially in the Yukawa sector at two-loop order.

In the SQCD and one-loop electroweak sector, each mass of the heavy particles is chosen
to be distinct except the heavy Higgs masses which are equal due to the decoupling limit.
The couplings g, are not set to zero at one-loop order except for C;;, . In the two-loop
electroweak sector, the gauge-less limit is applied and every particle is approximated to
have the same mass M. except f, and b,, whose masses are My, and M , respectively.
The latter ensures that renormalization of the mixing angles 6; and 6, as well as the
transitions

Sz@t(MS2 — mtgz) — 2X;my, (3.1)
520, (Mg — 1y ) — 2Xpmy (3.2)

can be performed without any additional complications, e.g. see Section 3.6/ The effect
of mass degeneracy at one-loop order will be discussed in Chapter

Some MSSM scenarios predict neutralinos which are lighter than some SM particles. In
this case, light neutralinos must be present in the effective theory. One example mass
spectrum of such a scenario will be discussed Chapter|4 and is given in Section|C.1|in the
appendix. A consistent treatment of light neutralinos is postponed to future analysis.

The masses of epsilon scalars are free parameters and are chosen to be Mg. In this way,
they can be integrated out with the rest of the supersymmetric particles. This corre-
sponds to dimensional regularization in the effective theory and dimensional reduction
in the full theory, as was shown in [34//68]]. The diagonalization matrices of the neutrali-
nos and charginos in the two-loop Yukawa sector are set according to the gauge-less
limit, see Section The full dependence on all gauge parameters was kept to ensure
gauge independence of the final results.

3.5. Tadpole Diagrams

The so-called tadpole diagram denotes a subdiagram which is connected to the rest
of a Feynman diagram only through a single line, e.g. see Figure

2That means purely performing an expansion in small quantities of the integrand, in contrast to asymp-
totic expansion.
3Mj is chosen to be the arithmetic mean of the corresponding masses.
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3. Calculating the Decoupling Coefficients

In the SM, electroweak corrections to the relationships between the Yukawa couplings
and the pole masses are free of tadpole contributions [7 . However, tadpole contri-
butions are indispensable to ensure gauge- 1ndependence in the electroweak sector for
MS quark masses. Since a MS mass is not a physical quantity nor a Lagrangian parameter
the requirement of gauge-invariance is not mandatory An alternative definition, with-
out the inclusion of tadpole contributions, was used in [72)73] and can also be established
for the DR top-quark mass in supersymmetry. In Chapter the running top-quark mass
will be used in the self-energies of the CP-even Higgs boson in the MSSM which are
calculated without the inclusion of tadpole diagrams, see Figure 1 of [32]. In the context
of this thesis, tadpole diagrams are therefore omitted.

O

Figure 3.2.: Tadpole contribution to a fermionic propagator: One-particle-irreducible di-
agrams are represented as a gray circle.

3.6. Mixing in the 7 Sector

The limit of equal masses can cause complications for mixing particles, if not done cor-
rectly. To give an example, the mixing in the 7 sector in the computation of Cjoj;, is
discussed.

To simplify calculations, one can suppose that the masses of 7} , are equal to an arbitrary
mass Mg. It turns out, that this assumption has to be carefully applied in practice. For
example in the calculation of Cjop;, see equation (2.121), there are diagrams at two-loop
order where tau sleptons occur. One example diagram is shown in Figure

Figure 3.3.: Sample two-loop diagram needed for the calculation of (o, involving tau
sleptons

In the case of Mz # M3, there are terms

~ 520, (M2 —M2) (3.3)
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3.7. Diagrams

which can be written as
~2X . M. (3.4)

Throughout the calculation a naive expansion in the top, bottom and T masses is per-
formed. However, m, of equation (3.4) can be absorbed into y, through the relation

mee

I (3.5)
\/EMwCBSw

Yr

while Myy is canceled by prefactors coming from Feynman rules. Finally one ends up
with terms

~ X Yr (3.6)

which are non-zero. By putting Mz = Mp, in the beginning, those terms would not
occur in Cpopy- Therefore, the approximation Mz = Mz, = Mg can only be applied after
the substitution

520, (M2 = M2 ) — 2X,m,. (3.7)

3.7. Diagrams

In the following, the counting of contributing diagrams is based on taking into account
all one-particle-irreducible diagrams of O(a?, a;ar) with a = e?/4m and discarding all
diagrams which are proportional to My, 7 since they vanish in the gauge-less limit and
discarding all diagrams which only contain light particles since they are scaleless and
vanish in dimensional reduction. An example file for QGRAF is given in Appendix|B| The
number of diagrams of the corresponding vertices are listed in Table Some sample
diagrams are shown in Figures

External Particles # Diagrams
ft 3+9+134+256=402
bb 3+9+134+264=410
hOno 0+18+0+218=236
hOFt 5+27+403+1324=1759
hobb 5+15+403+1372=1795

Table 3.1.: Number of contributing diagrams, displayed as:
one-loop SQCD + one-loop Yukawa + two-loop SQCD + two-loop mixed
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3. Calculating the Decoupling Coefficients
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Figure 3.6.: Sample diagrams needed for the calculation of Cé{R
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Figure 3.7.: Sample diagrams needed for the calculation of Cjoz;

Figure 3.8.: Sample diagrams needed for the calculation of Cjoj;,
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3. Calculating the Decoupling Coefficients

3.8. Renormalization Scheme

Each parameter is renormalized in the on-shell scheme, except m,; . and the couplings
for which the DR scheme is used. To simplify the renormalization procedure, the Yukawa
couplings v, ;, . are expressed in terms of m, j . using

= L (3 8)
Yt \/EMWSISSW, .
enty,
= (3.9
yb \/EMwCﬁSW
and
em,
=— " (3.10)
Ve \/EMwCﬁSW

Since only O(a?, asa) corrections are taken into account, only few counterterms are
needed:

8 = & +0gs &—E+0E, M, — M, + M.,
My — Myp + OMyp, Mg — Mg+ 0Msg, Mg — Mg+ 0Mj,
Otp — O+ 060, (3.11)

Here, & denotes the gauge parameter of the gluon and € the corresponding € scalar.

The renormalization of the mixing angles 0, j, is performed using the common prescrip-
tion

Eflxz(Mle)"'lexz(Mg)

1 f
00, = = 2 (x=t,b), (3.12)
2 2
2 Mg - Mg
introduced in [74]]. For more details, see [30].
By imposing the relation
2X, my
$20,= 55 (x=1t,b,7) (3.13)
Mfl - Mx*z

to hold to all orders in perturbation theory, it is clear that X;; ; is given in a mixed
scheme.

The computation of the renormalization constants was done according to [30}31].

For some counterterms, 1, ; cannot be assumed to be zero in the beginning and a naive
expansion up to O(m; ) must be performed. The limit m,; — 0 can only be applied
in the final result since the counterterms will be inserted into the one-loop expression
which can potentially contain factors of the inverse of the masses due to projectors, see
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3.9. One-Loop Decoupling Coefficients

Appendix A, An expansion of the counterterms up to O(e?) is sufficient since the pole
part of the one-loop result is mass independent.

Care has to be taken regarding the on-shell renormalization of the squark masses since
the soft-breaking parameters for the left-handed up- and down-type squarks are identical
due to SU(2)-invariance. Therefore, the counterterms of the squark masses within a
generation are not fully independent, as described in and one gets

1

Z\TZ— 2 012 2 pIZ 2 Z\IZ p12 ?\12

6 El —_ C2 (Ceté t~1 +59t5 t~2 _Sgbé Ez _Szet( fl - fz)éet
O

+529b(M§1 - M§2)59b —2mpom; + Zmbémb) (3.14)
and for the remaining two generations
6M§~1 = oM} (3.15)
and
SMZ = sM? (3.16)

since the quark masses and mixing angles are assumed to be zero.
3.9. One-Loop Decoupling Coefficients
The renormalization of bare decoupling coefficients C,(CO) is done with the general relation

c _ZPR )
X_Z},CD7R X -

(3.17)

The parameters appearing in Z;C]TR are parameters of the effective theory and have to be
decoupled in order to express the final result in terms of parameters of the full theory.
Again, the Yukawa couplings v; , are expressed in terms of 11, j,. Therefore, the following

decoupling relations have to be applied in the one-loop result of Z DR,

My = Cony M b & =08, 8 =Cg & (3.18)

The needed renormalized one-loop decoupling coefficients up to O(e€) are given in Ap-

pendix

3.10. Results

In the following, the results of the decoupling coefficients are presented. Since the com-
plete expressions up to O(a2, Qs p 7, Asy Ay ) £1,2) are very lengthy, they are only given
as an attachment in an electronic format. To get a first impression, the results are shown
in certain limits.
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3. Calculating the Decoupling Coefficients
3.10.1. C P2

The two-loop SQCD result for C,_is very compact and reads

et L)

qg i=1,2
8(4) 9

Cal1+2Ly,) +TZZLM]
1 (a, 1 125 44 4, )
~(& L oL
+2(4){CA 18 9 Mt oMy

g i=1,2
M g 2
+CATZ 30+ZZ M2 Bo,fin(M2, My, 0)
q i=1,2

2M§ - 5Mg2Mq% + 6M;}, M?
1 1 + —L
2212 2 i 2 2 =M
M~(Mg~—Mq,) i M: - M: g)l

+ ZLMq.LMg -

e PO ap o R B apal (B

qg i=1,2 qg i=1,2
M2 M‘Iz 2 3Mgg B 2M§1
- M; BOﬁn(MqilMglo)_z Mgg—M[% Mqi

M;  2M7
+ 4+Mg + LMg)
q

Mz_Mz

M? M2
+Z(_3 7 - MZ qulBOﬁn(Mgul'Mg"’o)

gen da1 qd1

Mqul

! Miﬂ

The abbreviations Ly = In( MZ) and a, = a,/m are used where a, are the coupling

constants of the full theory. The sum Zq runs over all quark flavors and den over all

generations. B g, denotes the finite part of the B, function . Equation (3.19) is in
full agreement with the results in the literature [48].

3.10.2. C,, and C,,,

Even at one-loop order, the full electroweak results for C,,, and C,,, are too lengthy to
be displayed. To give an impression on the results, the gauge-less limit is applied. Also,
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3.10. Results

all masses appearing in the Yukawa sector are chosen to have the same value Mg except
M;, and M by The result reads

2 2
M M;
32(M? —M?2) ! 32(M? —M?2)
fl g t~2 g
4 4 2a12 4 2a12 4
Mg (2Mg = 2MZM; +M; - 2MZM? + M)

Cmt =1+ 4(15Cp{

+LM~(_
$ 32(M7 ~ M2 (Mg~ M} )?
ngt
" 8(MZ - M2 ) (M2 - M2
(Mg —M; )(Mg - M)
2 2 2 2
. - M7 (-2Mg + Mg) . MgM? X i s
Ma\" 3o M2 - M2z s(M2 —M2)ME -M2)) T
ty g 151 g 151 12
LMS 2 Mgl
rafB(amsge M)
16 M- M)
4
LMfz(_HL)
16 (Mg_Mé)Z
2M?
+_(_1_3c2_—5)}
B 2 2

Ty R veRend
32(Mg - M )2sp

2

- (4(1 + L) + (7 + 6LMS))M;}5,3

+ 2(3 + 2Ly + C5(7 + 6Lygg) + 2L, )JvfszMgzs,S
— (CE(7 + 6LMS) + 2(1 + LMS + LMEZ))MgZSﬂ
3 2
+8C13M5Xb+8Cﬁ(—l +LMS _LMEZ)MSMEZXb}' (3.20)
The indication f; <> f, means that the expression inside the bracket is repeated whereas
f; is interchanged with .
The expression for C,,, can be derived from C,,, by interchanging

at Rd ab,

h o M, (3.21)
and for terms which are proportional to 4, and a; one has to additionally interchange
Cﬁ > Sﬁ’ (322)

This was verified analytically at one- and two-loop order. The decoupling coefficient
Cyn, Was compared to the literature up to O(a?) and full agreement was obtained.
The terms of O(ay, a;) in C,,, are in full agreement with .

To give an impression for the two-loop results of the SQCD part, the following special
mass hierarchies are chosen.
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3. Calculating the Decoupling Coefficients

« Scenario A: The squark masses are chosen to be Mg and much heavier than the
gluino mass M, (known as split supersymmetry | @I )-

« Scenario B: All supersymmetric particles have the same mass Ms.

In Scenario A, the result is

Ms>>Mg,5QCD

my

1 1
:ECF{— — Ly, + M—(Mg? — 2MgX,)

2

4 s

2
1
M§[M‘*(1+LMS LM)+2XM( 1+LMg—LMS)]}
2

as) C
+(—) C

(4 F{ 72M}
+120Ly, — 72LMg_ +576((2)) - 36M(Mg(38 + 4Ly,
+13L3y + 2Ly, = 20L gLy, + 7L12w§ —20C(2))

LM (- 481+ 4321, +108L3,

— 4X(5+ 19Ly + 3Ly, — 16Lyy, — 3Ly Ly, +2C(2)))
+ 72MZMg(2X,(7 + 6Ly, — 3Lyt +20(2))

+Mg(=15+ 3Ly — 6Ly, + 10C(2)))l

Cr
+ —| = 8MZMg(Mg(21 + Ly, — 208 (2

TV EMg(Mg(21 + Ly —20C(2))
+ X¢(5— 6Lyt — 8C(2))) — 2M3(Mg(175 + 60L3.
+90Ly, + 56L12\,I§ — 2Ly (43 +58Ly;,) — 104C(2))

+4X,(15 = 6L3; + 11Lyg, + Lygg (<17 + 6Ly ) — 8C(2)))

+ M{(~ 189 - 48Ly +4Lp, + 120c(2))l

T 2
+ 3—]\4§1[ - 36Ms Mg((—l + LMS)Mg + Xt - ZLMSXt)

+ 3M§((—13 — 1213 + 6Ly, + 6Ly (=3 + 2Ly )) Mg

+ 4(7 + 6Ly, + Lyt (9 — 6Lpg,) — 3Lag, )X, )

and for Scenario B one gets
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M;,SQCD

+ M{(127 = 30Lyy +36L3, — 36C(2))]} (3.23)
a X;
_ZSCF(_1+_S+LMS)
2
ag\2 [ L[ 71 13 1,
+(Z) {C ~g st ol MS( 5+ L)

109 X,
+CFTlT—16LMS+12LM + 12Ms( 1+LMS)]

23 37 1

X
+CFCA[_ﬁ_ZLMS_EL12VIS MS(1+3LMS)]} (3.24)



3.10. Results

where C(x) is the Riemann zeta function. For both scenarios, the asymptotic expan-
sion method was used which is available in the code q2e/exp [55//56]. The results were
verified analytically and numerically against the exact calculation. For Scenario A, the
verification for the first three terms of the expansion in the mass ratio ME/MS% was
performed. In addition, the direct numerical comparison of the exact and asymptoti-
cally expanded results gives good agreement. For Scenario B, agreement is obtained
by neglecting corrections proportional to the mass differences between supersymmetric
particles.

3.10.3. C})t and Cyb

For C,,, applying the same assumptions as for C,,,, one gets at one-loop order

SQCD,(1
Gy =1+ G

ay { 2 2 ( 4
+ MS—-M: ) —6(1+2Ly )M
32(M§—Mt~22)3 (s tz) ( s M

+2(5+10Lyy + 2Ly, )Mth?2

—2(2+ 5Ly + L, )Mgl2 +3(1 + 2Ly ) (M3 —Mt?z)zsg)

+6( = Mg +2(~Ly, + Ly, IMIM + M )sgxf}

2
+ %
128(M¢ - M? )3
2

2 4 2a02 4 2
{24(:/3( ~ Mg +2(~Lygg + Lgg JMEM; + M )X;

O 215 4 203100, 0
+ (114 10Lpgg + 4Lty )M} + (7 + 6L (M5 = M} )
32cMs(M2 + (-1 +In Mg — In M, )M?2 )X,
2 bz

: )
Sp

aT

48M3

X2 (3.25)

The abbreviation C,Sn?CD’(l) denotes the one-loop SQCD part of ,,,. It is not accidental,
that the SQCD parts of Cy, and C,, coincide, since the decoupling coefficients of the
parameters e, My, sg and sy in equation 1i only get electroweak contributions.

In addition, C;, was calculated in the mass hierarch 4 Mg > M, > Mj, by making use
of the asymptotic expansion method using the code q2e/exp. An analytical comparison
against the expanded exact result was performed and agreement for the first few terms
in the mass ratios Mz,/Ms, Mj /Ms and Mj_/Mj, was obtained.

Cy, can be retrieved from C,, by applying the substitutions (3.21) and (3.22). This was
verified analytically up to two-loop order.

Up to O(a, a;), Cy, was compared to the literature and full agreement was obtained.

“This mass hierarchy is only used for internal checks.
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4. Running and Decoupling of «,, «;
and m,

In this chapter, a method is presented to compute the strong coupling, top Yukawa cou-
pling and running top-quark mass in the MSSM.

In a straightforward way, one can calculate the conversion relation between the run-
ning and pole mass for the top quark in the MSSM. At two-loop order, the fermion
self-energies and pole masses for a general renormalizable theory with massless gauge
bosons are known and can be evaluated numerically using the program code TSIL
[82]. However, if supersymmetric particles are assumed to be at the TeV scale, the radia-
tive corrections of the top-quark pole mass are large. This is caused by the occurrence
of logarithms of the form In(M;/Msysy) in the self-energy of the top quark, with Mgysy
being the typical mass scale of supersymmetric particles. For M; << Mgysy, these loga-
rithms are large and spoil perturbation theory resulting in radiative corrections that can
be one magnitude larger than the experimental uncertainties. Unfortunately, the needed
on-shell self-energy diagrams at three-loop order with several mass scales are currently

not feasible!|

In the following, an alternative method is presented where large logarithms are auto-
matically resummed by the use of Renormalization Group Equations (RGEs). It can be
applied as long as M; < Mgysy. In the following, details on this procedure as well as a
numerical analysis is presented.

4.1. Running-And-Decoupling in SQCD

In this section, the two-loop SQCD threshold corrections for the prediction of the run-
ning top-quark mass at some high scale is discussed. The results are published in [83].
Since RGEs are used to evolve the running top-quark mass from one scale to another
and decoupling coefficients to decouple heavy particles, this approach will be named
running-and-decoupling. The running-and-decoupling approach can be written as

Q) o G (iii) (iv)
My — my(My) = mi(paec) — Me(faec) = mMe(p) (4.1)

with the following steps:

« (i) The transition between the top-quark pole mass M; and the running mass m; in
the SM is done using the three-loop relation from [84-87], which is also available
at four-loop order [88]].

lwithout using asymptotic expansion techniques
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4. Running and Decoupling of a5, a; and m,

« (ii) The evolution of m;(M;) to an arbitrary scale pge. is done using the RGE at
three-loop order from [89H93]], which is also calculated to four- and even five-
loop order [95]. pgec is the scale at which the decoupling is performed. To ensure
smallness of the appearing logarithms 4. should be chosen around the SUSY
scale Mgysy. In this work, the arithmetic average over the squark masses and the
gluino mass is chosen:

Msusy = 11—3(Mg~ + Z Z Mql.) (4.2)

qg i=1,2

« (i11) For a consistent analysis, n-loop RGEs are combined with (1n—1)-loop thresh-
old corrections, see e.g. [96]. Therefore, the threshold corrections are evaluated at
two-loop order. Since the € scalars are decoupled with the rest of the SUSY parti-
cles, there is also a change in the renormalization scheme from MS to DR.

+ (iv) The evolution of m;(yge.) to some renormalization scale y is done using the
RGEs at three-loop order from and [54].

4.2. Analyzed Scenarios

For the numerical evaluation, the SM values of M7 and the strong coupling in five-flavor

QCD a4(My) are taken from and the top-quark pole mass from :

My =91.1876 +0.0021 GeV
a(My) = 0.1184+0.0007
M, =173.34+0.27 £ 0.71 GeV (4.3)

Regarding the parameters of the MSSM, two scenarios where chosen, which are moti-
vated in [100]. In the following, they are denoted by the Heavy Higgs and the Heavy
Sfermions scenario. For simplicity, the Supersymmetry Les Houches Accord (SLHA)
is followed which specifies generic file structures for supersymmetric model
specification and input parameters. The explicit values are taken from the spectrum
generator SOFTSUSYv. 3.6.1 for which the following input parameters are chosen:

« Heavy Sfermions: All DR breaking parameters are defined at the input scale Q.
The defining parameters are listed in Table This scenario results in very
weakly mixing top squarks which are about 1 TeV lighter than the other sfermions.
One can increase the squark mass spectrum by increasing the value of ;. For
11y = 3 TeV the mass of the lightest Higgs boson is compatible with the currently
measured value.

« Heavy Higgs: The defining parameters of this scenario are listed in Table|4.2| Here,
light Higgs masses are possible for sub-TeV values of #1; which is due to stop
mixing. Also, one can get light stop masses of order 300 GeV for #i; values of
the same size.
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4.2. Analyzed Scenarios

Block: EXTPAR Value Comment
0 an Input scale Q;,
46 1y Mg,
43 an M, (third generation)
31-42,44,45,47-49 | 11, + 1 TeV | Sfermion mass breaking parameters
11 20 GeV Ay
12 4 TeV Ay
13 4 TeV A
1 1.5 TeV M,
2 1.5 TeV M,
3 1.5 TeV M3
23 200 GeV Hsusy
26 1 TeV My
Block: MINPAR Value Comment
3 20 tg

Table 4.1.: Input parameters of the Heavy Sfermions scenario, #i; is held as a free param-
eter

So far, in the Heavy Higgs and Heavy Sfermions scenario ¢4 is chosen to be 20. To give
an impression on how the running-and-decoupling procedure works for scenarios with
higher values of f4, the following cMSSM parameter point is chosen, taken from ||

tg =50,
mgy = 7240 GeV,
M, = 800 GeV,
Ag =-6000 GeV,
u>0 (4.4)

In the following, it will be called the cMSSM scenario. It has attractive dark matter prop-
erties and the mass of the lightest CP even Higgs boson agrees with the experimental
central value, see Chapter|5| Also the gluino and squark masses are heavy enough not to
be ruled out by current LHC data. Since f4 is quite large, the bottom and tau Yukawa cor-
rections have a higher impact on the running-and-decoupling procedure which enables
more extensive studies, as will be discussed in Section

The explicit mass spectra of the chosen scenarios are given in Appendix|Cl
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4. Running and Decoupling of a5, a; and m,

Block: EXTPAR Value Comment
0 1014.91 GeV Input scale Q;,
46 1y Mg,
31-45,47-49 1000 GeV Sfermion mass breaking parameters
11 1500 GeV A,
12 2469.45 GeV A,
13 2469.45 GeV A,
1 5s%,/(3¢3, )M, M,
200 GeV M,
3 800 GeV M;
23 200 GeV Ususy
26 1 TeV MA
Block: MINPAR Value Comment
3 20 tﬁ
Table 4.2.: Input parameters of the Heavy Higgs scenario, 1, is chosen as a free param-
eter

4.3. Numerical Results in SQCD

The running-and-decoupling approach is now discussed and numerical results for the
Heavy Higgs, Heavy Sfermions and cMSSM scenario are presented. In the following,
the running-and-decoupling method is denoted by nl with n being the loop order of the
RGEs and (n—1) being the loop order of the threshold corrections. The decoupling-scale
dependence of the running top-quark mass is unphysical and therefore a measure of the
theoretical uncertainty due to the truncation of the perturbative expansion. Hence, it
is expected that the decoupling-scale dependence will decline when taking into account
radiative corrections at higher orders in the analysis as will be discussed in the following.

In Figure the dependence of the running top-quark mass on the decoupling scale
in the Heavy Higgs, Heavy Sfermions and cMSSM scenario is shown. The arithmetic
average over all squark masses and the gluino mass is denoted by Mgysy as defined in
equation (4.2). The vertical lines corresponds to pg.. = M;. The decoupling scale is
varied in the range from My to 10Mgysy while the renormalization scale is fixed to
Pren = /Mj, Mjz,. At one-loop level, one observes a huge decoupling-scale dependence
in all investigated scenarios and a precise determination of the running top-quark mass
is not possible. By including more loop corrections to the analysis, the dependence de-
clines until at three-loop order the variation of the running top-quark mass in all three
scenarios is below 100 MeV for p4.. 2 0.5Mgysy. This precision is sufficient since the
current experimental error on the top-quark pole mass is about 1 GeV and is expected
to be of O(100 MeV) at future experiments at the ILC [[105]. For small decoupling scales
Hdee S 0.1 Mgysy, the convergence regarding the inclusion of higher order corrections is
worse than for higher values of pge. since the logarithms log(Msysy/Hgec) appearing in
the decoupling coefficients are large and spoil the perturbative expansion. In the Heavy
Higgs scenario, setting 11, = 350 GeV will result in a light stop mass at an intermediate
scale of about the same size while the rest of the SUSY spectrum has masses of about
1 TeV. This could in principle lead to complications since in this analysis all SUSY parti-
cles are decoupled simultaneously at a certain decoupling scale, where not all logarithms
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4.3. Numerical Results in SQCD
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Figure 4.1.: Dependence of the running top-quark mass on the decoupling scale in the
Heavy Higgs, Heavy Sfermions and cMSSM scenario. The renormalization
scale is kept fixed. The result of the one-, two- and three-loop running-and-
decoupling analysis in SQCD is shown as dotted, dashed and solid curves,
respectively.

are small if the particle spectrum contains both heavy and light masses. However, Fig-

ure 4.1 (a) demonstrates that at least the decoupling-scale dependence is small for this
dangerous scenario.

In order to do a comparison with the result of the running-and-decoupling approach, an
alternative method for the determination of the running top-quark mass is used, namely
to calculate the ratio between the running and the pole top-quark mass through a direct
numerical evaluation of one- and two-loop on-shell integrals within SQCD using the
computer program TSIL. This method is denoted by TSIL nl where # is the loop order
of the on-shell integrals. Three-loop on-shell integrals are not implemented in TSIL.
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4. Running and Decoupling of a5, a; and m,
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Figure 4.2.: Dependence of the running top-quark mass on the renormalization scale in
the Heavy Higgs and Heavy Sfermions scenario. The decoupling scale is
kept fixed at Mgygy. The result of the one-, two- and three-loop running-
and-decoupling analysis in SQCD is shown as dotted, dashed and solid black
curves, respectively. The result obtained with TSIL at one- and two-loop
order in SQCD is shown as dashed and solid blue curves, respectively.

In Figure 4.2, the running top-quark mass of both approaches as a function of the renor-
malization scale is shown in the Heavy Higgs and Heavy Sfermions scenario. In the
running-and-decoupling approach, the predictions for the running top-quark mass at
every renormalization scale quickly converge for both investigated scenarios by includ-
ing higher loop corrections in the analysis and thus reaching experimental precision. In
Figure 4.2 (b), the two-loop curve is almost indistinguishable from the three-loop curve.
However, radiative corrections from one- to two-loop order of the direct numerical com-
putation with TSIL are much larger than the experimental uncertainty. They amount to
approximately 3 GeV in the Heavy Higgs and 5 GeV in the Heavy Sfermions scenario for
Mren = M; and increase for higher values of the renormalization scale. For small renor-
malization scales at about p, = My, the running-and-decoupling approach and the di-
rect computation have compatible predictions for the running top-quark mass. This is
expected, since a resummation of logarithms of the form log(,n/M;) is not needed for
small renormalization scales. However, this is not the case for higher values of p .
Such logarithms are only resummed in the running-and-decoupling approach but are
present in the direct computation. Therefore, the direct computation is not reliable for
high renormalization scales since perturbation theory is spoiled.

In Figure 4.3, the running top-quark mass is shown as a function of the SUSY scale #; in
the Heavy Sfermions scenario. The renormalization scale is set to the geometric mean
of both stop-quark masses. One can see that in the running-and-decoupling approach
radiative corrections are small for all values of i1;, compared to the direct computation.
Since there are no large logarithms for small values of ri1;, the predictions of both ap-
proaches coincide. However, by increasing the SUSY scale #i; the direct computation
becomes unreliable since the radiative corrections from one- to two-loop order are of
O(10 GeV) which spoils perturbation theory.
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Figure 4.3.: Dependence of the running top-quark mass on the SUSY scale 7, in the
Heavy Sfermions scenario. The decoupling scale is kept fixed at Mgygy. The
renormalization scale is set to \/Mz Mj,. The result of the one-, two- and
three-loop running-and-decoupling analysis in SQCD is shown as dotted,
dashed and solid black curves, respectively. The result obtained with TSIL at
one- and two-loop order in SQCD is shown as dashed and solid blue curves,
respectively.

In summary, both methods provide results in good agreement for small renormalization
scales or low SUSY mass scales. However, both results differ significantly when SUSY
particles have masses in the multi-TeV regime. These discrepancies can have important
phenomenological implications. The radiative corrections from one to two loops and
from two to three loops in the running-and-decoupling approach show good conver-
gence behavior which leads to small theoretical uncertainties due to unknown higher
order corrections which are well below the present experimental error on the top-quark
pole mass.

4.4. Running-And-Decoupling including Electroweak
Interactions

In addition to the pure SQCD analysis, effects of electroweak interactions on the running-
and-decoupling procedure are discussed in this section.
The SM gauge couplings a; , = gl2 /47 in the MS scheme with six flavors evaluated at

Jiren = Mz can be computed according to [[106] using the equations
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4. Running and Decoupling of a5, a; and m,

al JMS _ : a -~ (45)
(6),MS
(™)
and
— (6),MS
oM _ & (4.6)

with a(6)MS being the QED coupling constant. They can be derived from the experimen-
tal measured fine-structure constant and the weak-mixing angle, taken from [98]:

a = 1/137.035999074(44),

(sﬁj)'MS(MZ))Z — 0.23116(12) 47)

The strong coupling ag My) is derived from the experimental input a£5)'MS(MZ)

using the computer program RunDec [107]. With the experimental input from equations

(4.3) and (4.7) one gets
4.7) one g

6),MS
MM

o\ (M) = 0.016925,
"™ (M) = 0.0337207,
! (M) = 0.117329. (4.8)

For the computation of the Yukawa couplings, the relations

(6),MS

at,b,r

(Mz) = (4.9)

can be used. The vacuum expectation value can be computed according to formula (D.17)

of [108] which reads
_ 2 T,(6)
(v(é) S(Mz))2 _ 1 (Mg Relly; (My) (4.10)
T3 (6)MS (6),MS
504 (Mg) 2 (Mz)

with the transversal part of the self-energy of the Z boson H;’Zm). The latter can be

derived from the self-energy of the Z boson in 't Hooft-Feynman gauge in the MSSM, see
equation (D.4) of [[108]], by only taking into account the SM contributions and neglecting
tadpole diagrams. For the top Yukawa coupling a precise determination is necessary
since it is the most dominant one. The relation between M, and the MS top Yukawa
coupling at M; is given in a numerical format [[109]:

a5y = L (4.11)
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4.4. Running-And-Decoupling including Electroweak Interactions

with

5),MS
5) (

— M
M (M,) = 0.93690 + 0.00556( o 173.34) ~0.00042%
€

My)—0.1184
0.0007

(4.12)

To give an insight on the computation at the two-loop level, equation (4.12) was obtained
according to

— G 1/2
6),MS 1 2
p 0 =2 EwE) ey o (@13
with
1
yi )(Mt) = _6(1)y98|ﬁn’
2
1 (M) = 0@y lg, + A, (4.14)
and

G 2500 AP
e ot )

- 2( G, M2)2(5<2>Mt ard ary! [5(1)Mt 3Ar(()1)])
_ t _

+ +
M, 2 2 | M, 4

(4.15)

Here, |5, denotes the finite par u of the corresponding quantity and A, is the two-loop
finite contribution to y; that is obtained when the OS parameters entering the 1/€ pole
. . T ., 1 2

in the OS counterterm are expressed in terms of MS quantities. Ar(() ) and Ar(() ) are the
one- and two-loop corrections, coming from the relation between the Fermi constant GM

and the bare vacuum v:

G 1
H (1) (2)
— =—(1+Ary +Ar, 4.16

V2 21}5( 0 o) (4.16)
The one- and two-loop top-quark mass counterterms 6/')M, and 6>’ M, do not include

tadpole contributions, see Section To be consistent, the renormalized vacuum is
chosen to be the minimum of the radiatively corrected potential.

In [109], the full NNLO electroweak and the NNNLO QCD effects for y§6)’MS are taken

into account which leads to a theoretical uncertainty in y£6)'MS of £0.00050.

The bottom Yukawa coupling can be computed according to equations (4.9). The value
of the bottom-quark mass in the five-flavor MS scheme can be take from :

my(mp) = 4.18 +0.03 GeV (4.17)

2w.r.t. the regularization parameter e

3A more precise value for the bottom-quark mass is given in || However, the numerical effects
of small deviations of the bottom-quark mass are small for the discussed running-and-decoupling
procedure and the conservative value from is sufficiently precise.
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4. Running and Decoupling of a5, a; and m,

The transition to the six-flavor MS scheme can be done using RunDec, taking into account
three-loop QCD corrections to C,,. Since the tau Yukawa coupling is very small for
most MSSM scenarios, a precise determination is not necessary. The MS tau mass can
therefore be approximated by the value of the tau pole mass from [98]:

M, =1776.82+0.16 MeV (4.18)

The transition to the tau Yukawa coupling is then done according to equations (4.9). The
running of the couplings is done using a system of RGEs taking into account strong and
electroweak interactions and of the top-quark mass strong and Yukawa interactions.

For the SM, the RGEs for v, j, 1, 81,2,s can be taken from the literature []111[], []112[], []113[],
[114], [115]. The QCD and Yukawa part of the anomalous dimension of the top-quark

mass can be extracted from the renormalization constant Z,, by writing

Oy, (4.19)

with Z,ln/t ¢ being the % part of Z,, . The latter can be retrieved by taking the product
of the renormalization constants of the vacuum expectation value and the top-Yukawa
coupling, as can be seen by the relation

1
my = %}?tu

The renormalization constants Z, and Z, are available in an electronic format on the
arXiv pages of [93] and [116].

For the MSSM, the RGE:s for the couplings can be taken from [97], [117]. However, care
has to be taken regarding the anomalous dimension of the top-quark mass. The SQCD
part is identical to the anomalous dimension of the chiral superfield y;, see equations
(7),(8a) and (9a) of [97]. The Yukawa part of the anomalous dimension of the top-quark
mass can be extracted from its renormalization constant, see equation , which was

(4.20)

already needed at two-loop order for the renormalization of c,‘f t).

So far, the couplings ag S : (Mz)and a§6) S(Mt) are determined. Since the differential
equations are coupled, one has to proceed in an iterative way to evaluate a£6)'MS(M 7).

As a starting value for a§6) ’MS(M 7), the QCD value for the MS top-quark mass, obtained

from the on-shell top-quark mass using RunDec, is used as an input in equation (4.10).
Then, one evolves the couplings from ., = Mz to pre, = M;. At this scale, the value

for a§6) ’MS(Mt) from equations (4.11) and (4.12) is used. Running down to p,e, = Mz will
give a new value for aié)’Ms(M 7) which is used for the next iteration step. Practically,

only one iteration is sufficient to have a stable result up to more than seven digits.

In order to have a precise starting value for the mass of the top quark, one uses the value

of a§6) ’MS(M 7) together with equation to retrieve m'" ’MS(M 7).
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4.4. Running-And-Decoupling including Electroweak Interactions

Alternatively, one can directly compute the running top-quark mass by using the relation
between the pole and MS mass up to O(a?, ;) | @ However, care has to
be taken regarding tadpole diagrams which give the largest contribution of O(10 GeV).
The relationship between the pole and MS mass is gauge independent only if tadpole
contributions are retained, see Section[3.5 However, using a definition for the running
top-quark mass without tadpole contributions has the advantage that electroweak cor-
rections to the relation between the pole and MS mass become small . Using the
direct relation between the pole and MS mass without tadpole contributions leads to a
result in good agreement with the running top-quark mass obtained from [109] up to an
error of O(100 MeV) in the MS top-quark mass .

Now all couplings can be evolved to an arbitrary decoupling scale 4. at which the de-
coupling procedure takes place. The decoupling constants depend on X; in the mixed
scheme, see equations (3.13). Since the top-Yukawa coupling is the most dominant
Yukawa coupling, X; should be computed with one-loop precision. Therefore, in a first

step, mPR in the MSSM is computed from mItVIS in the SM with the help of the one-loop
decoupling coefficient C%). X; which appears in C,(it) can be approximated by

1

X, = ——
t 2Mt529t

(Mt?1 - M?) (4.21)

%)

and the DR couplings in the MSSM by their corresponding SM MS values. Then, a more
precise value for X; can be computed according to

C(l)

m 2 2

X; = ﬁ529t (Mt~1 -M fz)' (4.22)
2m;

In a similar manner, a% , at one-loop level are computed from aiwfs with their corre-

sponding one-loop decoupling coefficients where MSSM DR couplings are approximated

Tc DR
by SM MS ones. Then, a b

two-loop decoupling coefficients where MSSM DR couplings at one-loop level are used.
All other needed parameters are taken from the spectrum generator. The resummation of
tg-enhanced supersymmetric radiative corrections for @}, is done according to [121/122].
Since 0(113’}22 are numerically not as important as a?ﬁb,
be their SM ones.

can be computed at two-loop level, using the corresponding

their values are approximated to
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4. Running and Decoupling of a5, a; and m,

4.5. Numerical Analysis including Electroweak
Interactions

4.5.1. Decoupling-Scale Dependence

In a first numerical analysis, the decoupling-scale dependence of the running top-quark

mass is analyzed to estimate the theoretical uncertainty of the result. For this purpose,

mPR is evaluated at different renormalization and decoupling scales.

In the following plots, Mgysy is defined to be the arithmetic mean of all gluino and squark
masses, as defined in equation (4.2), since strong interactions give the most dominant
corrections in the running-and-decoupling procedure for which this scale is meaningful.
The smallest shown value corresponds to pg.. = Mz and the vertical line to pge. = M;.
The notation is analog to the SQCD analysis.
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Figure 4.4.: Dependence of the running top-quark mass on the decoupling scale in the
Heavy Higgs scenario for four different choices of 77; and p,. The result
of the one-, two- and three-loop running-and-decoupling analysis including
electroweak effects is shown as dotted, dashed and solid curves, respectively.
The dashed-dotted curve shows the three-loop result where only SQCD cor-
rections are included in the RGEs and decoupling coefficients.

In Figure the decoupling-scale dependence of the running top-quark mass in the
Heavy Higgs scenario for four different combinations of 7; and e, is shown. In
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4.5. Numerical Analysis including Electroweak Interactions

Figure 4.4 (a), the renormalization scale is chosen to be \/M; Mz, and the parameter
11; is set to 350 GeV which results in a light stop mass of the same size. As one can
see, including radiative corrections at higher orders to the analysis strongly reduces the

decoupling-scale dependence of the running top-quark mass, as expected. At the three-

loop level, the change in mPR when varying the decoupling scale in the shown range

is comparable in size to the SQCD analysis and amounts to less than 1 GeV. Restrict-
ing the decoupling scale to be in the range 0.5Mgysy to 10Mgysy reduces the variation

in mPR to be about 100 MeV. Setting pi4c. to low scales like M; or My is not a good
choice regarding convergence behavior. However, in some cases supersymmetric cor-
rections to the running top-quark mass are evaluated at low energy scales, see e.g. [104].
At pgec = My, which corresponds to the lowest shown value of pg4.., the difference in

mPR going from the one- to the two-loop analysis is approximately 5.8 GeV and from
the two- to the three-loop analysis 2 GeV. Therefore, at this decoupling scale, a three-
loop analysis is necessary to compete with the experimental uncertainty of the top pole
mass of about 1 GeV. The intersections of the one-, two- and three-loop curves are at
Hdec = 0.6Mgysy. At this scale, higher order corrections are small. For this scenario
and at this renormalization scale, this value for pg.. would be the optimal choice re-
garding the convergence behavior. However, no general statement can be made since it
depends on the scenario. The difference to the pure SQCD analysis amounts to less than
0.8 GeV but strongly depends on the chosen renormalization scale. In Figure 4.4/ (b), the
same curves are shown but with ., set to 3,/Mj My,. Here, the difference to the pure
SQCD analysis is increased and amounts to approximately 3 GeV which indicates that
the renormalization-scale dependence of the running top-quark changes when includ-
ing electroweak effects in the analysis, this will be discussed below. In Figure 4.4 (c), the
parameter 11, is increased to 1 TeV which corresponds to a higher value of the light stop
mass of the same size. Compared to the result of Figure 4.4/ (a), the three-loop result is
decreased by approximately 4.5 GeV while the difference to the pure SQCD analysis is
increased by approximately 0.6 GeV. In Figure 4.4 (d), the renormalization scale is set to
the top-quark pole mass to investigate the decoupling-scale stability at low renormaliza-
tion scales. Furthermore, the running top-quark mass at this scale is needed in Chapter|5|
in the context of determining the lightest CP even Higgs boson mass. At this renormal-
ization scale, electroweak effects in the running-and-decoupling procedure reduce the
value of the running top-quark mass by approximately 2.4 GeV. In all four shown com-
binations of #1; and py,, the three-loop result is stable up to an order of 100 MeV w.r.t.
a variation of the decoupling scale in the range 0.5Mgygy < pigec < 10Mgysy. Since the
masses of the neutralinos M X0, and the chargino M X+ are below the top-quark mass in

the Heavy Higgs scenario, theﬂf should have been present in the effective theory, which
would complicate this procedure. However, a consistent treatment of light neutralinos
and charginos is beyond the scope of this thesis.

So far, the running-and-decoupling procedure including electroweak effects was shown
in the Heavy Higgs scenario. To give an insight on the predictions for the running top-
quark mass in a different scenario, the following plots show the results of the same
analysis done in the Heavy Sfermions scenario for four different combinations of #;
and plyep.
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Figure 4.5.: Dependence of the running top-quark mass on the decoupling scale in the
Heavy Sfermions scenario for four different choices of 771; and pi,e,. The result
of the one-, two- and three-loop running-and-decoupling analysis including
electroweak effects is shown as dotted, dashed and solid curves, respectively.
The dashed-dotted curve shows the three-loop result where only SQCD cor-
rections are included in the RGEs and decoupling coeficients.

In Figure[4.5/(a), the parameter 11, is set to 3 TeV which corresponds to sfermion masses
of the same size. The renormalization scale is set to the geometric mean of both stop
masses. Including radiative corrections at higher orders in the analysis reduces the
decoupling-scale dependence, as seen in the Heavy Higgs scenario. A variation of pge.

in the shown range results in a change in mPR of about 1.3 GeV. However, choosing
the decoupling scale to be > Mgygy reduces this scale dependence and the running top-
quark mass is stable up to an order of 100 MeV. In this plot, the shift in the top-quark
mass regarding electroweak effects amounts to approximately 2.5 GeV. Increasing the
renormalization scale to 3,/My, Mj, increases the effect of electroweak interactions to
about 4.5 GeV, as can be seen in Figure [4.5/(b). The effect of heavy sfermion masses
of about 8 TeV is analyzed in Figure |4.5/(c) where the parameter #i; is set to the men-
tioned value. In this plot, the running top-quark mass at pen = /My, Mg, is about
133 GeV when including electroweak interactions in the running-and-decoupling pro-
cedure and about 3.2 GeV below that value by only considering SQCD contributions.
For high values of pg4e., the two- and the three-loop curves are very close and the dif-
ference amounts to approximately 100 MeV. To ensure decoupling-scale stability of the
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4.5. Numerical Analysis including Electroweak Interactions

running top-quark mass for small renormalization scales, ., is set to M; in Figure

(d). In this plot, electroweak effects result in a change in m°} of about 3 GeV. In all four
shown plots in Figure the theoretical error of the running top-quark mass of the
three-loop analysis based on a variation of the unphysical decoupling scale in the range
O-SMSUSY < Hdec < 10MSUSY is of 0(100 MeV).
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Figure 4.6.: Dependence of the running top-quark mass on the decoupling scale in the
cMSSM scenario for two different choices of pe,. The result of the one-,
two- and three-loop running-and-decoupling analysis including electroweak
effects is shown as dotted, dashed and solid curves, respectively. The dashed-
dotted curve shows the three-loop result where only SQCD corrections are
included in the RGEs and decoupling coefficients.

To complete the analysis about decoupling-scale stability of the running top-quark mass,
the cMSSM scenario is discussed in Figure |4.6 for two different renormalization scales.
In Figure 4.6/ (a), phren is set to /My Mj,. As expected, the inclusion of radiative correc-

tions at higher orders in the analysis reduces the decoupling-scale dependence of mPX.
In the shown range, one observes a variation in the running top-quark mass of about
1.6 GeV. However, restricting pge. to be between 0.5Mgysy and 10Mgygy reduces this
variation to about 100 MeV. The contribution of electroweak corrections in the running-
and-decoupling procedure amounts to approximately 3 GeV for the running top-quark
mass. In Figure |4.6|(b), the renormalization scale is set to M; to investigate decoupling-
scale stability at small renormalization scales. Compared to Figure 4.6/ (a), one observes
a shift of the one-, two- and three-loop curves of about 9 GeV. However, the shift of the
result of the SQCD analysis amounts to approximately 16 GeV. This indicates a different
renormalization-scale behavior of the running top-quark mass which depends on includ-
ing or not including electroweak effects in the analysis. At this renormalization scale,
the effect of electroweak contributions amounts to approximately —4 GeV for the run-
ning top-quark mass. In both plots of Figure the difference between the two- and the
three-loop curve is of O(100 MeV) for sufficiently large decoupling scales pgec = Msysy-

It is interesting to know, how the two-loop corrections of O(a;a; p, ) contribute to the
decoupling-scale stability of the running top-quark mass since these are only calculated
in the gauge-less limit and in the limit of equal masses.
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Figure 4.7.: Dependence of the running top-quark mass on the decoupling scale in the
Heavy Higgs, Heavy Sfermions and cMSSM scenario. The renormalization
scale is kept fixed at /My M;,. The result of the three-loop running-and-
decoupling analysis including electroweak effects is shown as a solid curve.
In the dotted and dashed curves, the the two-loop Yukawa corrections are
disabled in the decoupling coefficients. In the dotted curve, the assumptions
used for the two-loop Yukawa sector are also applied in the one-loop Yukawa
part of Cyy,,.

In Figure the dependence of the running top-quark mass on the decoupling scale in
the Heavy Higgs, Heavy Sfermions and cMSSM scenario is shown. In the solid curve,
the result of the three-loop analysis is plotted. The dashed curve represents the result
obtained by doing the same analysis but disabling the two-loop Yukawa corrections of
O(asayp o) in the decoupling coefficients. This result is called 3I. One can see that for
high values of the decoupling scale pg.. > Mgysy, the two-loop Yukawa corrections for
the decoupling coefficients reduce the decoupling-scale dependence in all three plots in
Figure However, for small values of the decoupling scale, the decoupling-scale de-
pendence is increased. In this region, the anomalous dimension of the top-quark mass in
the MSSM becomes more relevant for which the three-loop Yukawa part is not included
in the analysi It is assumed that including this part will reduce the decoupling-scale
dependence. Nevertheless, to avoid huge scale dependence, one can set the decoupling
scale to p4.. ® Mgysy where the decoupling-scale dependence is very weak. In the range

*1t is not directly available in the literature
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Mgusy < pigec < 10Mgysy including (not including) two-loop Yukawa interactions in the

decoupling coefficients results in a change of mPR of about 50 MeV (100 MeV) in the
Heavy Higgs, 30 MeV (40 MeV) in the Heavy Sfermions and 10 MeV (30 MeV) in the
cMSSM scenario, as can be seen in Figure |4.7|(a)-(c).

In the dotted curves, denoted by 317, the two-loop Yukawa part in the decoupling coeffi-
cients is disabled and in addition, the assumptions used for the two-loop Yukawa secto
are also applied in the one-loop Yukawa part of C,, . The effect of these assumptions

on mPR amounts to approximately 0.5 GeV in the Heavy Higgs, 0.25 GeV in the Heavy

Sfermions and 0.4 GeV in the cMSSM scenario. Therefore, the effect of the used as-
sumptions in the two-loop Yukawa sector on the running top-quark mass is assumed to
be small, compared to remaining uncertainties.

So far, the decoupling-scale stability of the running top-quark mass was analyzed. In the
following, the decoupling-scale dependence is investigated for the top Yukawa coupling,
as can bee seen in Figure

5The gauge-less limit is applied and all particles share the same mass Mg except £, and b,.
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Figure 4.8.: Dependence of the top Yukawa coupling on the decoupling scale in the Heavy
Higgs, Heavy Sfermions and cMSSM scenario. The renormalization scale is
kept fixed at \/My, My,. The result of the one-, two- and three-loop running-
and-decoupling analysis including electroweak effects is shown as dotted,
dashed and solid curves, respectively. The dashed-dotted curve shows the
three-loop result where only SQCD corrections are included in the RGEs and
decoupling coeflicients.

In Figure [4.8] (a), the decoupling-scale dependence of the top Yukawa coupling in the
Heavy Higgs scenario is shown, where the parameter i, is set to 350 GeV. As expected,
including radiative correction at higher orders in the analysis reduces the decoupling-

scale dependence of the top Yukawa coupling. At three-loop level, the variation of

aPR amounts to approximately 0.0012 when varying pge. in the shown range. The

increase of the value of the top Yukawa coupling due to electroweak effects amounts
to approximately 0.001 at pgec ® Mgysy. The same analysis in the Heavy Sfermions
scenario with the parameter #i; set to 3 TeV is shown in Figure |4.8 (b). Here, varying

the decoupling scale in the shown range results in a change in aP® of about 0.0008
in the three-loop analysis. However, restricting the decoupling scale to be in the range

0.5Mgusy < Pdec < 10Mgysy reduces the variation in aPR to about 0.0001. Electroweak

effects in the running-and-decoupling analysis lead to an increase of the value of aP}
of about 0.0022. For high values of g4, the difference between the two- and three-loop
curves is only about 0.0002. In the cMSSM scenario, as shown in Figure (c), the re-
sults are very similar to the ones in the Heavy Sfermions scenario. A variation of the

decoupling scale in the range 0.5Mgysy < pigec < 10Mgysy leads to a variation in aPR
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4.5. Numerical Analysis including Electroweak Interactions

of about 0.00015. Electroweak effects lead to an increase in aP® of about 0.0025.
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Figure 4.9.: Dependence of the strong coupling on the decoupling scale in the Heavy
Higgs, Heavy Sfermions and cMSSM scenario. The renormalization scale is
kept fixed at \/Mj, M,. The result of the one-, two- and three-loop running-
and-decoupling analysis including electroweak effects is shown as dotted,
dashed and solid curves, respectively.

The decoupling-scale dependence of the strong coupling aPR is now discussed. In Fig-

ure aPR is computed for the Heavy Higgs, Heavy Sfermions and cMSSM scenario
as a function of the decoupling scale. Since electroweak interactions do not appear at
one-loop order in the decoupling coefficient C,_, their contributions to the running-and-
decoupling procedure are expected to be small. A numerical analysis could confirm this
assumption. The absolute difference in aP® between the pure SQCD analysis and the
analysis including electroweak interactions is of the order 1077 and therefore negligi-
ble. In Figure 4.9 (a), the strong coupling in the Heavy Higgs scenario is shown, where
the parameter #1, is set to 350 GeV. There is a strong decrease in the decoupling-scale
dependence of aP® in the two-loop analysis, compared to the result of the one-loop
analysis. In the three-loop analysis of the Heavy Higgs, Heavy Sfermions and cMSSM
scenario, the variation of aP® when varying the decoupling scale in the shown range
amounts to approximately 0.0002.
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4. Running and Decoupling of a5, a; and m,

4.5.2. Renormalization-Scale Dependence

Since the running top-quark mass does not change significantly when varying the de-
coupling scale in a reasonable rang the latter will be kept fixed at prge. = Msysy in the
following discussion, except stated otherwise.
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Figure 4.10.: Dependence of the running top-quark mass on the renormalization scale in
the Heavy Higgs, Heavy Sfermions and cMSSM scenario. The decoupling
scale is kept fixed at Mgysy. The result of the one-, two- and three-loop
running-and-decoupling analysis including electroweak effects is shown as
a dotted, dashed and solid black curve, respectively. The dashed-dotted
curve shows the three-loop result where only SQCD corrections are in-
cluded in the RGEs and decoupling coefficients. The blue curve is the result
obtained with SOFTSUSY v. 3.6.1.

In Figure the dependence of the running top-quark mass on the renormalization
scale in the Heavy Higgs, Heavy Sfermions and cMSSM scenario is shown. One can see
that enabling electroweak interactions in the running-and-decoupling procedure flat-
tens the curves in all three scenarios. The different dependence on the renormalization
scale which depends on including or not including electroweak corrections shows that

a consistent analysis must be performed when including mP®(piye,) in subsequent cal-
culations. This feature will be shown in the context of the determination of the lightest

%A reasonable range would be 0.5Msysy < pdec < 2Msusy-
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4.5. Numerical Analysis including Electroweak Interactions

CP even Higgs boson mass in Chapter 5, In Figure (a), the Heavy Higgs scenario
with the parameter 1, set to 350 GeV is shown. At p.,, = M, the SQCD result is about
4 GeV higher than the result of the analysis including electroweak contributions and for
Mren = 10Mgysy about 6 GeV lower. In Figure (b), the Heavy Sfermions scenario
with 11, = 3 TeV is shown. At p.., = My, the SQCD result is about 4.5 GeV higher
and at pe, = 10Mgysy 6 GeV lower than the result of the electroweak analysis. In the
cMSSM scenario, the corresponding numbers are about 6 GeV at p,, = Mz and 7 GeV

at pren = Msusy, as shown in Figure (c).

In all three scenarios, the convergence behavior when including more loop corrections in
the electroweak analysis seems to be the approximately the same for all renormalization
scales in the shown range. In the Heavy Higgs scenario, going from the one- to the two-
loop analysis leads to an increase of the value of the running top-quark mass of about
1.5 GeV and from the two- to the three-loop analysis of about 0.4 GeV. In the Heavy

Stermions and cMSSM scenario, the difference of m1; DR hetween the one- and two- -loop
analysis is about 2.2 GeV and between the two- and three-loop analysis below 100 MeV.

The blue curves show the result obtained with SOFTSUSYv.3.6.1. Since the DR value
of the running top-quark mass can’t be retrieved directly from SOFTSUSY, it is calcu-
lated by combmmg the DR vacuum expectation value with the DR top Yukawa coupling,
see equation (4.20). The result of SOFTSUSY seems to be too large in the Heavy Higgs
and Heavy Sfermions scenario. In the Heavy Higgs scenario, the difference between
the result of SOFTSUSY and the running-and-decoupling analysis amounts to approxi-
mately 4 GeV for .., = Mz and reduces to 0.8 GeV for pe, = 10Mgygy. In the Heavy
Sfermions scenario, the corresponding numbers are 6 GeV for p., = M and 1.6 GeV
for pren = 10Mgysy and in the cMSSM scenario 2 GeV for p,., = My and —1 GeV for

Hren = 10Mgysy.

Care has to be taken regarding the comparison of the running top-quark mass of
SOFTSUSY with the result obtained with the running-and-decoupling procedure because
of the following reasons. In SOFTSUSY, the running top-quark mass in the MSSM is
computed at the scale M using the two-loop QCD and the full one-loop supersymmet-

ric contrlbutlons to m R(M) from equations (D.16)-(D.18) of |.| as stated in equa-
tion (3.2) of [103]. However, it seems that the high-precision spectrum generation for
the Heavy Higgs and Heavy Sfermions scenario does not include three-loop RGE terms
and/or 2-loop threshold corrections since the generation process is much faster than the
typical runtime of »a minute per parameter point« [104]. Therefore it is assumed that
for both the Heavy Higgs and the Heavy Sfermions scenario only a two-loop analysis is
performed. For the cMSSM scenario, for which MSUGRA input parameters are used, the
stated runtime of a minute per parameter point is confirmed which leads to the assump-
tion that only in this scenario the high-precision calculation is done. A comparison with
the running-and-decoupling approach is only reasonable if one sets the decoupling scale
to the value pg.. = Mz. However, this is not a good choice if only a two-loop analysis is
performed, as can be seen in Figures 4.4/4.6, At this decoupling scale, the appearing log-
arithms involving supersymmetric particles become huge and spoil perturbation theory.
The smallest value of g in this Figure corresponds to M ;. Setting pg.. = M instead of
Hdec ® Mgusy Will increase the running top-quark mass in the two-loop analysis, which
is an effect due to bad convergence behavior of the perturbative series.
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Figure 4.11.: Dependence of the running top-quark mass on the renormalization scale
in the Heavy Higgs, Heavy Sfermions and cMSSM scenario. The decou-
pling scale is kept fixed at M. The result of the one-, two- and three-loop
running-and-decoupling analysis including electroweak effects is shown as
a dotted, dashed and solid black curve, respectively. The dashed-dotted
curve shows the three-loop result where only SQCD corrections are in-
cluded in the RGEs and decoupling coefficients. The blue curve is the result
obtained with SOFTSUSY v. 3.6.1.

In Figure [4.11, the same curves are displayed as in Figure but the decoupling scale
has been set to p4. = My to enable a reasonable comparison with the result obtained
with SOFTSUSY. As one can see, the convergence in the running-and-decoupling ap-

proach for pg.. = My is much worse than for pg4.. = Mgysy. The difference of mPR
between the two- and the three-loop analysis is increased from 0.4 GeV to about 1 GeV
in the Heavy Higgs and from below 100 MeV to almost 4 GeV in the Heavy Sfermions
and cMSSM scenario, strongly indicating a bad choice for pg4.. regarding convergence
behavior. As already mentioned, the results of the Heavy Higgs and Heavy Sfermions
scenario obtained with SOFTSUSY are assumed to not include three-loop RGEs and/or
two-loop threshold corrections. Therefore one expects the SOFTSUSY results to be near
the results of the two-loop running-and-decoupling analysis which can be confirmed in
Figure (a) and (b) for small renormalization scales. However, the dependence on the
renormalization scale of the running-top quark mass obtained with SOFTSUSY is some-
where in between the dependence of the result of the pure SQCD and the full running-
and-decoupling analysis which leads to the assumption that SOFTSUSY overestimates
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4.5. Numerical Analysis including Electroweak Interactions

SQCD effects in RGEs. Therefore, one observeg difference for high renormalization
scales. At pen = 10Mgysy, this difference in mPR is about 2 GeV for the Heavy Higgs

and 3 GeV for the Heavy Sfermions scenario. In the cMSSM scenario, the value of mPR
agrees well with the result of the three-loop running-and-decoupling analysis for small
renormalization scales. However, for y,., = 10Mgygy one observes a difference of about
2 GeV.

In summary, electroweak effects in the running-and-decoupling procedure for the de-
termination of the running top-quark mass and the top Yukawa coupling are in gen-
eral not negligible. A variation of the unphysical decoupling scale in the range from
1/2Mgysy to 2Mgysy does not change the values of the running top-quark mass and
the top Yukawa coupling significantly. In all investigated scenarios, electroweak effects
soften the renormalization-scale dependence of the running top-quark mass. A compar-
ison with SOFTSUSY is only valid if one sets the decoupling scale to M, which spoils
the perturbative series and leads to bad convergence behavior. At this decoupling scale,
a three-loop analysis is necessary to reduce the theoretical uncertainty to be of the same
size as the experimental error of the top-quark pole mass. If these aspects are incor-
porated, the result for the running top-quark mass of the running-and-decoupling pro-
cedure is in quite good agreement with the SOFTSUSY result for small renormalization
scales. The effects of Yukawa interactions in the determination of the strong coupling

are of O(1077) in aPR and therefore negligible.
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5. Mass of the Lightest CP-Even
Higgs Boson in the MSSM

In July of 2012, both CMS and ATLAS discovered the Higgs boson which was a huge
milestone in particle physics. The combined uncertainty of the Higgs boson mass of the
current measurements is about 0.3%:

M, =125.09+0.21+0.11 GeV  ATLAS and CMS (5.1)

In the SM, the mass of the Higgs boson is a free parameter but if one assumes the MSSM
as the underlying theory, the masses of the Higgs bosons can be predicted. Here, the
lightest CP-even Higgs boson is assumed to be the discovered one. It should be noted that
there is also the possibility that a lighter Higgs boson exists which was neither detected
by LEP nor by LHC experiments [125]. This possibility is beyond the scope of this
thesis and will not be discussed. By doing a high-precision analysis to determine the
mass of the lightest Higgs boson one can exclude the MSSM scenarios whose resulting
masses do not coincide with the experimental measurements, given in equation (5.1).

The dominant corrections to the CP-even Higgs boson self-energies originate from the
top quark/squark sector and are proportional to a,m? ~ m}, see e.g. . At one-
loop order, the corresponding diagrams are shown in Figure In the following, the
approximation by only taking into account the dominant terms in the electroweak sector

~ atmtz is denoted by m? approximation.
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Figure 5.1.: Dominant corrections to the Higgs boson mass at one-loop order

Currently, the commonly used computer programs to determine the mass of the lightest
CP-even Higgs boson are FeynHiggs [[127-131]] which contains all numerically impor-
tant two-loop corrections and includes resummations of large logarithms and CPsuperH
which is based on a renormalization group improved diagrammatic calculation.
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5. Mass of the Lightest CP-Even Higgs Boson in the MSSM

In 2010, the computer program H3.m was released which contains three-
loop SQCD corrections to the CP-even Higgs boson self-energies in certain mass hierar-
chies in the m? approximation. In the following, these corrections will be simply denoted
by O(a?a;) corrections.

They are expressed in terms of DR instead of on-shell parameters for the sake of bet-
ter convergence of the perturbative series, see Figure 8 of [126]]. This was also studied
recently in [136].

The basic workflow of H3.m is the following:
« H3.m makes use of FeynHiggs to compute the on-shell two-loop corrections.

« The exact corrections to the self-energies of the CP-even Higgs bosons up to
O(a;ay, a;) in the on-shell scheme are computed by H3.m and subtracted from
the FeynHiggs result.

« The exact corrections to the self-energies of the CP-even Higgs bosons up to
O(a,a, a;) and corrections of O(a2a;) with parameters expressed in the DR
scheme are computed by H3.m and added to the previous result.

Most DR and on-shell parameters can be taken from the output of the spectrum genera-
tor which is managed by H3.m. However, the mass of the lightest Higgs boson Mj, is very

sensitive to the value of mPR due to the dominant mff terms. Numerically, a variation

of one GeV in mItTR will result in a variation of approximately one GeV in M, for SUSY

masses of O(1 TeV). Therefore a precise determination of mPR is crucial for the calcula-
tion of My,. In order to resum large logarithms, the running-and-decoupling procedure

for the determination of mP® is used, as it is discussed in Chapter

As it is shown in Section the dependence of the running top-quark mass and the
top Yukawa coupling on the renormalization scale strongly depends whether or not one
includes electroweak interactions in the running-and-decoupling procedure. Since the

on-shell Higgs boson mass is very sensitive to mP} a consistent analysis is important to
ensure stability of the on-shell Higgs boson mass regarding a variation of the unphysical
renormalization scale. Therefore, if one includes electroweak interactions in the deter-
mination of the running top-quark mass and the top Yukawa coupling, one must also
include electroweak interactions in the calculation of the on-shell Higgs boson mass to

ensure renormalization-scale stability. The parameters aPR, aP® and mPR are computed

according to the running-and-decoupling approach, discussed in Chapter |4, All other
DR parameters are taken from the output of the spectrum generato

In a first approach, H3.m is modified to determine the running top-quark mass using the
running-and-decoupling procedure in SQCD. This modification among other features is
included in the release of H3.m version 1.3 [83]. Details on the changelog of this ver-
sion are given in Appendix D! In the recent version of H3.m which is not yet published
also electroweak effects regarding the determination of the running top-quark mass m>}
and the top Yukawa coupling yPR are included. To guarantee consistency, the analytic
a? corrections to the Higgs boson self-energies which are expressed through pa-
rameters of the DR and on-shell scheme are implemented which give the dominant con-
tribution in the pure electroweak sector. The implementation of bottom and tau Yukawa

ITo be precise, the DR stop masses are computed from the DR stop mass matrix using mltTR from the
running-and-decoupling procedure.
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corrections to the on-shell Higgs boson mass are not discussed in this thesis since their
contributions are small for not too large values of #g.

5.1. The Lightest CP-Even Higgs Boson Mass in the m;}
Approximation

Corrections to the Higgs boson self-energies in the m? approximatio up to O(a’ay)
with parameters expressed in the DR scheme are available in H3.m. The remaining one-
and two-loop corrections are not included but can be taken from FeynHiggs.

In a first approach, only the dominant m} corrections are included in the determination

of the lightest CP-even Higgs boson mass, in the following denoted by M . In this
approach, the program FeynHiggs is not use 3. Therefore, the restriction to Hren = M,
is not necessary enabling important checks regarding renormalization-scale stability, as
it will be discussed in the following.

To fix the notation, the running top-quark mass and top Yukawa coupling obtained

through the runnlng -and-decoupling procedure including electroweak effects are de-

noted by mPR and yPR, respectively. The corresponding parameters are labeled mDR ,SUSY

and yDR SUSY if only strong interactions are taken into account in the RGEs and decou-

pling coefficients in the running-and-decoupling procedure. The result of the running
DR, SOFTSUSY

top-quark mass obtained from SOFTSUSY is called 1,
In Figure the dependence of the on-shell Higgs boson mass in the m? approxima-
tion on the renormalization scal is shown. This dependence is unphysical and due to
the truncation of perturbative expansions. Hence, it can be used as a measure for the-

4
oretical uncertainties of M;ln ‘. The smallest shown value of the renormalization scale
corresponds to y.., = M and the vertical line to p,., = M;. The latter is chosen for the
combination with the FeynHiggs result, as discussed in Section 5.2

Varying the renormalization scale from p., = 0.1Mgysy to prren, = 2Mgysy leads to a

change in the Higgs boson mass of about 1 GeV using m]tTR and yPR in the correc-

tions to the Higgs boson self-energies of O(aZay, asa;, a?, a;), as shown in the solid

DR,SQCD and yDR ,SQCD .

black curve. Using mt in the corrections to the Higgs boson self-

4
energies of O(aZay, sy, ) leads toa 31m11ar Varlatlon inM," , > asshownin the dashed-

dotted black curve. However, usmg mPR and PR in the corrections to the on-shell
Higgs boson mass without O(a?) terms in the Higgs boson self-energies, increases the

4
renormalization-scale dependence which leads to a change in M;ln " of approximately

5 GeV in the shown range, displayed in the solid red curve. On the other hand, using

m]t)R'SQCD and y? RSQED i) the corrections to the Higgs boson self-energies including

terms of O(a?) leads to a renormalization-scale dependence which is comparable in size

2regarding the one- and three-loop corrections to the self-energies, the two-loop results are directly
taken from [?,

3in contrast to the approach discussed in Section

“normalized to Msygy as defined in equation li
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Figure 5.2.: Dependence of the on-shell Higgs boson mass on the renormalization scale in

the Heavy Sfermions scenario. In the solid (dashed-dotted) curves aDR nd

mPR are calculated with the running-and-decoupling procedure including

(not including) electroweak effects. In the dashed-dotted red (black) curve
a? corrections to the Higgs boson self-energies are (not) included. In the
solid black (red) curve atZ corrections to the Higgs boson self-energies are
(not) included. The blue curve represents the result where the top-quark
mass is obtained with SOFTSUSY and O(a?) corrections to the Higgs boson

self-energies are included.

but with a different sign, as shown in the dashed-dotted red curve. Thus, the effects
on the renormalization-scale dependence of electroweak corrections in the running-
and-decoupling procedure for the determination of the running top-quark mass and
top Yukawa coupling mainly compensate the effects on the renormalization-scale de-
pendence of corrections to the on-shell Higgs boson self-energies of O(a?). For small
renormalization scales, a naiv inclusion of O(a?) corrections appears to have a strong

effect. The difference to the result without O(a?) corrections is approximately 3 GeV for

Hren = M; and using m?R’SQCD and y? R’SQCD, as can be seen by comparing the dashed-

dotted black and red curves. However, due to the huge renormalization-scale depen-
dence, a precise quantization of pure O(a?) effects is not possible. The effects of elec-
troweak corrections to the running-and-decoupling analysis for the determination of the
running top-quark mass and top Yukawa coupling together with the effects of O(a?)

4
corrections to the Higgs boson self-energies amount to a change in M, "t of less than
1.2 GeV in the shown range, as can be seen by comparing the solid and dashed-dotted

black curves. The renormalization-scale dependence of M when using mDR SOFTSUSY

is strong and amounts to a change in the Higgs boson mass of about 3.7 GeV when

DR

*i.e. not using n1;
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Figure 5.3.: Dependence of the on-shell Higgs boson mass on the renormalization scale

in the Heavy Sfermions scenario. In the solid (dashed-dotted) curves m™}

is calculated with the running-and-decoupling procedure including (not in-
cluding) electroweak effects. In the dashed-dotted red (black) curve af cor-
rections to the Higgs boson self-energies are (not) included. In the solid
black (red) curve atz corrections to the Higgs boson self-energies are (not)
included. The blue curve represents the result where the top-quark mass and
top Yukawa coupling are obtained with SOFTSUSY and O(a?) corrections to

the Higgs boson self-energies are included.

varying the renormalization scale in the same range, as can be seen in the blue curve.

In Figure the same curves as in the previous plot are shown but with 1, = 9 TeV.

Qualitatively, the behavior of the different results w.r.t. a variation of the renormal-

ization scale is very similar to the ones in Figure However, the scale dependence
4

of the dashed-dotted black curve is slightly worse. The change in M;ﬂ * when varying
the renormalization scale in the shown range amounts to approximately 2.5 GeV. Re-
4

garding the solid black curve, the change in M;ln * amounts to approximately 1.8 GeV.
As expected, the red curves have a strong renormalization-scale dependence due to the
inconsistent treatment of the running top-quark mass and top Yukawa coupling w.r.t.

4
evaluating the Higgs boson self-energies. The change in MZZ ' is about 6 GeV for the
solid and 11.5 GeV for the dashed-dotted red curve. Again, the scale-dependence of

4 =5 4
M;ln " using mlt)R’SOFTSUSY is strong and leads to a change in M;ln " of about 6.2 GeV for a

variation of ., in the shown range.

In Figure the same curves as in Figure 5.2/ and [5.3| are shown for the Heavy Higgs
scenario. Including O(a?) corrections in the Higgs boson self-energies and electroweak

4
interactions in the running-and-decoupling procedure leads to a change in M;ln * of ap-
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Figure 5.4.: Dependence of the on-shell Higgs boson mass on the renormalization scale in

the Heavy Higgs scenario. In the solid (dashed-dotted) curves m;

DR js calcu-

lated with the running-and-decoupling procedure including (not including)
electroweak effects. In the dashed-dotted red (black) curve a? corrections
to the Higgs boson self-energies are (not) included. In the solid black (red)
curve a? corrections to the Higgs boson self-energies are (not) included. The
blue curve represents the result where the top-quark mass and top Yukawa
coupling are obtained with SOFTSUSY and O(a?) corrections to the Higgs
boson self-energies are included.

proximately 0.5 GeV when varying i, in the shown range, as can be seen in the solid
black curve. Not including the (9(at2 ) terms in the Higgs boson self-energy corrections
and electroweak effects in the running-and-decoupling analysis will result in a change

4
in MIT * of about 2 GeV in the given range, shown in the dashed-dotted black curve. As
expected, the inconsistent analysis leads to a huge scale-dependence and the change in

4
M ;Zn * amounts to approximately 6.8 GeV for the solid and 5.5 GeV for the dashed-dotted
red curve.

4
To complete the analysis regarding renormalization-scale stability of M]T *, the cMSSM
scenario is investigated in the following.
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5.1. The Lightest CP-Even Higgs Boson Mass in the m} Approximation
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Figure 5.5.: Dependence of the on-shell Higgs boson mass on the renormalization scale

in the cMSSM scenario. In the solid (dashed-dotted) curves mPR is calculated
with the running-and-decoupling procedure including (not including) elec-
troweak effects. In the dashed-dotted red (black) curve af corrections to the
Higgs boson self-energies are (not) included. In the solid black (red) curve
a? corrections to the Higgs boson self-energies are (not) included. The blue
curve represents the result where the top-quark mass and top Yukawa cou-
pling are obtained with SOFTSUSY and O(a?) corrections to the Higgs boson
self-energies are included.

In Figure the dependence of the on-shell Higgs boson mass on the renormalization
scale in the cMSSM scenario is shown. The different curves in the plot have a similar
behavior as the ones in Figure However, since the result of the top-quark mass
obtained with SOFTSUSY is assumed to also include three-loop RGEs and/or two-loop
threshold corrections for this scenario, the resulting Higgs boson mass is expected to be

near the result of the running-and-decoupling analysis, which is confirmed. Both the

results with m?R’SOFTSUSY and with mPR are stable up to difference of about 1.2 GeV in

4
M Zq " when varying the renormalization scale in the shown range, as can be seen in the
4
blue and the solid black curve. The difference in M;Zn " for both results is smaller than
1.2 GeV and declines when increasing ., up to about p., = 0.6Mgysy. The dashed-
4

dotted black curve has a very weak dependence on p, and the change in M Zl ' is about
0.7 GeV in the shown range. Again, a consistent analysis is crucial for a precise determi-
nation of the on-shell Higgs boson mass, as can be seen in the huge scale dependence of

the red curves. The change in M ;n " when varying the renormalization scale in the shown
range amounts to approximately 8 GeV for the solid and 9.5 GeV for the dashed-dotted
red curve.
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5. Mass of the Lightest CP-Even Higgs Boson in the MSSM

In summary, the renormalization-scale dependence of the lightest CP-even Higgs boson

mass in the m;} approximation is stable up to a variation in M IT i of less than 2 GeV in
the range My < pon, < 2Mgygy for all investigated scenarios. However, this is only the
case, if a consistent analysis is done, i.e. (not) including electroweak corrections in the
running-and-decoupling procedure for the determination of the running top-quark mass
and top Yukawa coupling and (not) including the O(a?) corrections to the self-energies
of the Higgs bosons.

5.2. The Lightest CP-Even Higgs Boson Mass

So far, only corrections of O(a2a,, asa,, a?, a;) have been discussed. However, the com-
plete set of one-loop corrections and the dominant two-loop corrections are available in
FeynHiggs. To get a more precise value for the Higgs boson mass, one also has to include
these corrections.

To accomplish this, the on-shell corrections of O(asav;, ;) as well as corrections of O(a?)
are subtracted from the full FeynHiggs on-shell self-energies. Then, corrections of the
same order are added back where the parameters are expressed in the DR scheme.

The renormalization scale of the FeynHiggs result must be set to piren = M; [137] where
DR parameters appearing in the corrections to the self-energies have to be evaluated.
Therefore, a variation of ., for checks regarding renormalization-scale stability is not
possible anymore. However, the previous analysis shows that at least corrections of
O(a?ay, agay, a2, ;) are stable up to a difference in the Higgs boson mass of O(1 GeV)
for a very wide range of p,.,, when doing a consistent analysis, see Figures(5.2]-

In Figure the result of the Higgs boson mass including the remaining one- and two-
loop self-energy corrections from FeynHiggs is shown in the Heavy Sfermions scenario.
The black (orange) curves represent the three-loop (two-loop) results for which the re-
spective remainder of the corrections to the self-energies at one- and two-loop level,
dengted by FH,en, is taken from FeynHiggs 2.11.0. In the red curves, the three-loop

M;ln " results are shown for which the remaining corrections from FeynHiggs are not
included. For consistency, electroweak corrections in the determination of the running
top-quark mass and top Yukawa coupling via the running-and-decoupling analysis are
only included in the solid curves, where O(ozt2 ) corrections to the self-energies of the
Higgs bosons are included. For comparison, the stand-alone results of FeynHiggs are
displayed. In the dotted (dashed) green curve, the two-loop FeynHiggs result is shown
where the top-quark mass is expressed in the on-shell (MS) scheme. In the solid green
curve, the FeynHiggs flag looplevel is set to 3 which corresponds to an all-order re-
summation of the leading and subleading contributions from the stop sector. A resum-
mation of large logarithms is also accomplished by calculating the running top-quark
mass and top Yukawa coupling via the running-and-decoupling method which enables
a reasonable comparison. The blue curve represents the result for the Higgs boson mass
which is directly computed by SOFTSUSY. The gray band represents the measured Higgs
boson mass, as shown in equation .

One can see that the resummed FeynHiggs result, shown in the solid green curve, is very
close to the two-loop result where the parameters in the O(a;a;, a;) corrections are cal-
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Figure 5.6.: Dependence of the on-shell Higgs boson mass on the parameter i; in the
Heavy Sfermions scenario. The black (orange) curves represent the three-
loop (two-loop) results for which the respective remainder of the corrections
to the self-energies at two-loop level is taken from FeynHiggs 2.11.0. In
the red curves, the three-loop results are shown for which the missing cor-
rections from FeynHiggs are not included. In the dotted-dashed black and
red curves, the Yukawa interactions are not included in the running-and-

decoupling procedure for the determination of mP} and O(a?) corrections
to the Higgs boson self-energies are not expressed in terms of DR parame-
ters. In the dotted (dashed) green curve, the two-loop FeynHiggs result is
shown where the top-quark mass is expressed in the on-shell (MS) scheme.
In the solid green curve, the FeynHiggs flag looplevel is set to 3. The blue
curve shows the result by SOFTSUSY. The gray band represents the measured

Higgs boson mass.

culated in the DR scheme with the running top-quark mass and top Yukawa coupling ob-
tained with the SQCD running-and-decoupling analysis, as shown in the dashed-dotted
orange curve. The difference amounts to less than 1 GeV for the shown range of ;.

However, for high values of r1; there is a difference of about 6 GeV to the resummed
FeynHiggs result when using the DR scheme for the parameters also for the (’)(octz)
corrections and electroweak effects in the running-and-decoupling analysis for the de-
termination of the running top-quark mass and top Yukawa coupling, as shown in the
orange solid curve.

It is unclear how this discrepancy occurs. The running-and-decoupling approach for
resumming large logarithms is different from the method which is implemented in
FeynHiggs and therefore, a step-by-step comparison is not possible. Different sources of
errors have been investigated. Complications can either arise in the subtraction proce-
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5. Mass of the Lightest CP-Even Higgs Boson in the MSSM

dure of on-shell corrections of O(a?) to the self-energies of the FeynHiggs resuhﬂ or in
the calculation and implementation of corrections of the same order expressed through
DR parameters. In the subtraction procedure of the O( oct ) terms of the self-energies, the
same parameters are used as in FeynnggsI The O(a;) corrections to the self-energies
in the on-shell scheme are directly taken from n 138]]. Regarding the DR corrections
of O(at ), renormalization-scale stability with variations of the Higgs boson mass below
2 GeV indicates consistency with the determination of the running top-quark mass and
top Yukawa coupling through the running-and-decoupling procedure which is an im-
portant check. Also, the implementation of O(a?) corrections in H3.m leads to a result
which is in agreement with the right plot of Figure (2) in , when using the sam
input numbers as the authors.

Regarding the determination of the running top-quark mass for the Higgs boson self-
energies, the philosophy of the running-and-decoupling approach at three-loop order
clearly differs from the FeynHiggs approach. In the latter only a one-loop conversion
from the top-quark pole mass to the MS mass is done [136] which is in principle com-
patible with the required two-loop precision of the nggs boson self-energies. However,
higher order corrections in the relation between the top-quark pole and MS mass are im-
portant and are of O(GeV), see e.g. [88]. Therefore, it is advisable to use a more precise

value of mPR. However, the analysis must be consistent regarding renormalization-scale
stability of the on-shell Higgs boson mass. In the running-and-decoupling approach for
the determination of the running top-quark mass for the Higgs boson self-energies, this
requirement is not spoiled.

In SOFTSUSY, the leading two-loop corrections are implemented in the calculation of the
CP-even Higgs boson masses. The small difference of <1 GeV between the three-loop
analysis and the SOFTSUSY result is therefore assumed to be accidental, as can be seen
by comparing the solid black and dashed-dotted blue curve.

Adding the three-loop corrections to the self-energies, displayed by changing the color
of the curves from orange to black, will result in a positive shift of the Higgs boson mass
up to approximately 3 GeV for high values of 7, in the given range.

The shift of the FeynHiggs result w.r.t. changing the renormalization scheme of the
top-quark masﬂ amounts to about 4.5 GeV for #1; = 8600 GeV and demonstrates the
sensitivity of the Higgs boson mass on #1;, as can be seen by comparing the dotted and
dashed green curve.

The values of 1, for which the experimental value of the measured Higgs boson mass
of approx1mately 125 GeV is reached, strongly depends on the analysis. In the case
where O(a2ay, asa;, a2, a;) corrections are expressed in DR parameters and the running
top-quark mass and top Yukawa coupling are obtained via the running-and-decoupling
procedure including electroweak effects, #1; must be > 7 TeV, as can be seen by the

~

®Thanks goes to T. Hahn for fixing an important bug in the function FHAddSelf. This fix is included in
FeynHiggs >2.11.0.

"It turns out that not all parameters are given in the on-shell scheme. The gluino mass, extracted by the
function FHGetPara, is the DR mass and the stop masses slightly differ from the ones of the output
of SOFTSUSY. However, it is unlikely that slightly different parameters are the reason for the big
discrepancy in Mj,.

8 A precise comparison is not possible since the exact value of @R is not given in .

%from on-shell to MS
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Figure 5.7.: The value of the on-shell Higgs boson mass in the cMSSM scenario. The
black (orange) lines represent the three-loop (two-loop) results for which the
respective remainder of the corrections to the self-energies at two-loop level
is taken from FeynHiggs 2.11.0. In the red lines, the three-loop results are
shown for which the missing corrections from FeynHiggs are not included.
In the dotted (dashed) green line, the two-loop FeynHiggs result is shown
where the top-quark mass is expressed in the on-shell (MS) scheme. In the
dotted-dashed black and red line, the Yukawa interactions are not included
in the running-and-decoupling procedure for the determination of mPR and
(’)(oct2 ) corrections to the Higgs boson self-energies are not expressed in terms
of DR parameters. In the solid green line, the FeynHiggs flag looplevel
is set to 3. The blue line shows the result by SOFTSUSY. The gray band
represents the measured Higgs boson mass.

intersection of the black solid curve with the gray band. Without expressing the pa-
rameters of the O(atz) corrections in the DR scheme and using the SQCD values for the
running top-quark mass and Yukawa coupling, the experimental value can be reached
for 1, = 3500 — 4500 GeV, as can be seen by the intersections of the dashed-dotted
black curve with the gray band.

In Figure the same analysis is done for the cMSSM scenario. For the reader’s conve-
nience, the plotting style was adapted from the previous figure.

Qualitatively, the results are very similar to the ones of the Heavy Sfermions scenario.
The difference between the two-loop analysis, where the parameters in the corrections
of O(asay, ;) to the Higgs boson self-energies are expressed with DR parameters tak-
ing into account the running top-quark mass and top Yukawa coupling of the SQCD
running-and-decoupling procedure and the resummed FeynHiggs result amounts to ap-
proximately 1 GeV, as can be seen by comparing the solid green and the dashed-dotted
orange curve. Again, including corrections of O(a?) with the parameters expressed in
the DR instead of the on-shell scheme and taking into account electroweak interactions
in the running-and-decoupling procedure leads to a reduction of the value of the Higgs
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5. Mass of the Lightest CP-Even Higgs Boson in the MSSM

boson mass of about 6 GeV, as can be seen by comparing the dashed-dotted with the
solid black and orange curves. The three-loop result of this analysis is compatible with
the experimental value, if theoretical errors of at least +1 GeV are taken into account.
The difference between the FeynHiggs result when using the MS instead of the on-shell
top-quark mass, amounts to approximately 3 GeV, by comparing the dotted with the
dashed green curve. The result of the Higgs boson mass of SOFTSUSY, shown as the
dashed-dotted blue curve, is only about 1 GeV higher than the solid orange curve.

In summary, the result of the lightest CP-even Higgs boson mass is calculated based
on using the one- and two-loop on-shell self-energy corrections from FeynHiggs ex-
cept corrections of O(a’ay, asay, atz, a;) which are calculated in terms of DR parameters
whereas the improved result for the running top-quark mass through the running-and-
decoupling procedure is used. In this way, large logarithms are resummed which enables
a comparison with the resummed FeynHiggs result. One observes a significant differ-
ence whose origin is not yet known. However, if only SQCD corrections are included

in the running-and-decoupling procedure for the determination of mPR and O(af) cor-
rections to the Higgs boson self-energies are expressed through on-shell parameters, the
difference to the resummed FeynHiggs result is within the theoretical error.
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6. Summary

The decoupling coeflicients Cgs, C}/t,h and Cmt,b w.r.t. the SM as the effective the-
ory and the MSSM as the full theory were computed in the decoupling limit up to
O(aZ, a5ty o g ppan2) At O(aZ, &gy p01,2), the full mass dependence was taken into
account and at O(a;a;p, ), the gauge-less limit was applied and a common SUSY mass
scale was chosen.

The relevant decoupling coefficients Conys Cyt and Cgs were used to determine the DR
top-quark mass, top Yukawa coupling and strong coupling in the MSSM, based on ex-
perimental values of SM parameters and certain choices of MSSM spectra.

In order to resum large logarithms, RGEs of the SM were used to evolve the masses and
couplings to an arbitrary decoupling scale at which the decoupling takes place. Then,
MSSM RGEs were used to run the parameters to the desired renormalization scale.

For the numerical analysis of this procedure, three different MSSM scenarios were in-
vestigated. An estimation of the theoretical error was done by varying the unphysical
decoupling scale. In all analyzed scenarios, three-loop RGEs and two-loop decoupling co-
efficients reduced the scale dependence of the top-quark mass to about 100 MeV, which

is is sufficiently precise w.r.t. the experimental error on the on-shell top-quark mass of
O(1 GeV).

As an example, the mass of the lightest CP-even Higgs boson was calculated by modify-
ing the existing computer program H3.m to take into account the improved determina-
tion of the running top-quark mass and the top Yukawa coupling.

Consistency regarding the different renormalization-scale dependence of the running
top-quark mass and top Yukawa coupling whether or not one includes electroweak
corrections in the running-and-decoupling analysis was observed by investigating the
unphysical renormalization-scale dependence of the on-shell Higgs boson mass at
O(a?ay, agay, a2, ;) and O(a2a,, asay, ay), respectively.

Since not all known corrections to the Higgs boson self-energies are available, the miss-
ing one- and two-loop corrections were taken from FeynHiggs. In a first approach,
the on-shell self-energy corrections of order O(a?ay, a;a;, a;) were subtracted from the
FeynHiggs result and added back again but with parameters expressed in the DR scheme.
For the DR top-quark mass, the result from the SQCD running-and-decoupling proce-
dure was used. At two-loop order, agreement with the resumed FeynHiggs result was
observed. The relevant changes, among other features, were included in version 1.3
of H3.m. In a second approach, electroweak corrections in the running-and-decoupling
analysis for the determination of the top-quark mass were included. To be consistent,
also the corrections to the Higgs boson self-energies of O(a?) were subtracted from
the on-shell FeynHiggs result and added back but with parameters expressed in the DR
scheme. A significant difference to the resummed FeynHiggs result was found, whose
origin is yet unclear.
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A. Lorentz Structure of Self-Energies

In the following, the decompositions of one-particle-irreducible diagrams (shown as gray
circles) are listed. The external momentum is denoted by g, color charges by a and b.

A.1. Scalars

Scalar particles do not have a Lorentz structure. Thus, only a factor i and the color
structure 9, are extracted.

S Y
(A.1)
A.2. Vector Bosons

The self-energies of vector bosons X, can be decomposed into a transversal part Z‘T, and
a longitudinal part ):%,.

. g T HgY
- Zdab((glw - Iq(ZI )EV + qqg 2V>

a, [ b,v

(A.2)

A.3. Fermions

The self-energy of a fermion F with mass m can be decomposed into a scalar part ©3, a
vector part XV, an axial part Z? and a pseudoscalar part 25.

= i5a;}(g2¥ + 75%2‘;1 +mX% + ysmEE)

S
o

(A.3)

In an alternative way, one can decompose the fermion self-energy into a left/right handed
scalar and vector part.
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A. Lorentz Structure of Self-Energies

= i6up(mPLYE + mPrEES + ¢PLYE 4 ¢PrEEY)
(A.4)
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B. Example of QGRAF.dat

This example file generates diagrams for the h°ft vertex of O(a?, a ) only taking into
account one-particle-irreducible diagrams with at least one heavy internal particle.

B.1. QGRAF.dat

output = ’outfile ’ ;
style = ’q2enew.sty’
model = 'MSSM.lag’ ;
in = ft ,ho,fT ;

out = ;

loops = 2
loop_momentum = k ;
options =

x» vevs from gauge bosons and epsilon scalars vanish
true = sbridge [gamma, Z0t, Z0l , Wminust, Wminusl, g,
es ,esgamma, esZ0 ,esWminus,0,0] ;

+ include at least one heavy particle

false = iprop[fchiO1l,fchi02 ,fchi03,fchio4 ,

fchil , fchi2 , fg ,HO0, A0, Hminus,

snuel ,snumu, snutau , sell ,sel2 ,smul,smu2, staul ,stau2 ,
sul ,su2,scl,sc2,stl ,st2 ,esgamma, esZ0,es,esWminus,
sd1,sd2,ssl1,ss2,sbl,sb2,0,0] ;

» diagram must be proportional to the strong coupling,
« vertices have to be defined in MSSM.lag

+ according to e.g.

+ [HO,sc2,Sc2; gpow = '07]

* OT
» [St1,stl,Sb1,sbl; gpow = ’27]
true = vsum/[gpow,2 ,8];

+ only include 1 PI diagrams

true = bridge[g,gamma, Z0t,Z0l , Wminust, Wminusl,

es ,esgamma, esZ0 ,esWminus,

c,cgamma, cz , cplus ,cminus, fchi01 , fchi02 , fchi03 , fchio4 ,
fchil , fchi2 , fg ,h0,H0, A0, Hminus, G0, Gminus,

snuel ,snumu, snutau, sell , sel2 ,smul,smu?2, staul , stau2 ,
fnuel ,fnumu, fnutau , fel ,fmu, ftau ,

sul ,su2,scl,sc2,stl,st2,fu,fc, ft,
sd1,sd2,ss1,ss2,sb1,sb2,fd,fs ,fb,0,0];
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C. MSSM Scenarios

In the following, the mass spectra of the scenarios used for the numerical analysis in
Chapter |4 and Chapter [5/are shown. The MSSM models are defined in Section 4.2, The
values are given in units of GeV.

C.1. ’Heavy Higgs’

M, =876.65,  M;=331.00,  M; =1012.88, M, =1028.88,
Mg =1028.91,  M;=1031.70,  M; =1029.46,  M; =1028.88,
M, =1028.91, M =1031.70, M, =1029.46, M, = 1000.00,
My =1003.57,  Mpo=1000.05, M0 =86.72, M, =158.41,
My =21113,  Mp=27112,  M,:=15430, Mz =270.33,
My, =999.24, My =999.24,  M; =998.40,  M; =1002.63,
Mg, =1001.51, M, =1002.63, M, =1001.51, Mg =999.66,
M;,=1001.92,  Mj =1045.29, M =1027.31, it = 350.00
C.2. ’Heavy Sfermions’

Mg =1762.43,  Mj; =3008.54, M; =3030.91, M, =4049.37,
M, =4042.41,  M; =4050.03,  M; =4041.94,  M; =4049.37,
M, =4042.41, M, =4050.03, M, =4041.94, M, = 1000.00,
My:=1003.48,  Mpo=1000.06, M, =202.93,  M,q=208.35,
My =149594,  M,0=1556.03, M, =205.62, M =1556.05,
M;, =4008.29,  M; =4008.29, M; =4006.59,  Mj =4009.42,
M,, =4004.71, M, =4009.42, M, = 400471, M, =4001.28,
M, =4007.75, M, =3034.18, M =4034.17, 1, = 3000.00
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C.3. ’cMSSM’

82

M, =1964.83,
M, =7315.14,
M, =7315.18,

My = 1697.93,

Mo = 498.28,

M;, = 7240.27,
M;, = 7239.89,
Mg, = 6266.55,

M;, = 4304.76,
M; =7315.85,
Md} =7316.33,
Mpo =1695.75,
M _o0=722.37,
X4
M; =7237.12,
u
Mﬁ1 =7237.90,
Mfz =4905.19,

M;, =4899.72,
M; =7314.77,
Mg =7315.70,
Mo = 355.85,

M, =483.14,

Mj, = 6265.69,
My, =7233.57,
M;, = 5409.09

M, =7315.54,
M, =7316.02,
M, = 1695.80,
Mo = 487.93,

M, = 722.50,

M, =7241.05,
M;, =5098.68,



D. H3.m Version 1.3

D.1. Introduction

H3.m is a Mathematica package for evaluating the mass of the lightest CP-even
Higgs boson within the MSSM to three loop accuracy. In 2014, version 1.3 of H3.m was
published [83]. Its new features including details on the internal structure are described
in the following.

D.2. Functions that Set Up or Retrieve Parameters

To define various parameters used in the calculation it is a common practice to make
use of the SUSY Les Houches Accord (SLHA) interface [101}[102]. It includes a unique
set of conventions for supersymmetric extensions of the Standard Model together with
generic file structures. Since most spectrum generators (e.g. SOFTSUSY [103]) handle
their input variables according to the SLHA interface, it is feasible to include a robust
SLHA interface into H3.m.

In previous versions of H3.m a self-written routine handled the reading and writing of
SLHA files. Since conventions of the SLHA structure might change in future versions,
it is easier to rely on an external program which is specialized to handle those files.
The MATHEMATICA package SLAM proves to be a more robust way to take care of
this requirement. In H3.m version 1.3, SLAM is used per default. To enable backward
compatibility the old routine was not removed and remains as an optional choice. An
additional feature of SLAM is the possibility to create a spectrum SLHA file out of built-in
scenarios (e.g. msugra) for which the user can directly specify its input parameters. Also
the user can create a spectrum SLHA file by defining a complete model.

The SLHA spectrum file should contain at least the following data:
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D. H3.m Version 1.3

Block Required Entries
SMINPUTS 2,3,4,5,6
GAUGE 1,2,3
HMIX 1,2,3
MSOFT 3,41 -49
AU (3, 3)
YU (3, 3)
MASS 36, 1000021,

1000001-1000006,
2000001-2000006

STOPMIX (1,1)
STOPMIX (1, 2)
STOPMIX 2, 1)
STOPMIX (2, 2)

In order to properly determine the mixing angle, all four STOPMIX entries have to be
given. For more information see Section D.2.1.2

D.2.1. H3GetSLHA

The function H3GetSLHA parses an SLHA spectrum file and sets the parameters for the
calculation accordingly. Then, it passes the file to FeynHiggs. If the SLHA path is set to
“Null” or the path doesn’t lead to a file, SLAM is used to generate an SLHA file. Addi-
tionally, the DR top-quark mass and the strong coupling constant are calculated within
SQCD.

D.2.1.1. Options

o useSLAM: If True, use SLAM to take care of the SLHA service.
« SpectrumGenerator: Set spectrum generator, e.g. “softsusy”

« calemt: Define which methods are used to calculate the top-quark mass, e.g.
{"Mtdec”} or {"Mtdec”, "MtTSIL”}. Possible strings in braces are "Mtdec” (decou-
pling method), "MtTSIL” (fixed order calculation using TSIL, not recommended),
"Mtspect” (out of spectrum generator, not recommended).

« usemt: Define which method for the top-quark mass is used for H3m[]. Possible
strings are "Mtdec”, "MtTSIL” or "Mtspect”.

D.2.1.2. Internal Structure
The inner workings of SLAM are documented in the official documentation. Here I review
the main aspects.

First, one defines an input request list where one can store the values of the needed
parameters into local variables. If no file is given, SLAM creates a spectrum via
SLAM‘ObtainLesHouchesSpectrum.
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D.3. Running-and-Decoupling Procedure

Otherwise SLAM will read the SLHA file with the function
SLAM‘ReadLesHouchesSpectrumFile.

One has to include an extra block ("EXTPAR”) in the SLHA file for it to be properly read
by FeynHiggs. It contains information about the renormalization scale at which the
parameters (and later the Higgs boson mass) are calculated.

With the obtained parameters one can compute the quantities needed in the calculation,
e.g. the mixing angle out of the squark rotation matrix. For this purpose a new routine

WriteRotationMatrix

was written. First one creates a rotation matrix which fulfills certain conventions: The
Eigenvectors have to be orderd by ascending Eigenvalues in order to make sure that the
mass of the first mass Eigenstate is lower than the second. This is done with the function
SortEigenVectors.

Also, if the determinant is not equal to one, the second Eigenvector will be multiplied
by —1 to ensure that it is a proper rotation matrix and not a reflexion matrix. Then the
mixing angle can be determined. All the models which are included in SLAM can be used
to generate a spectrum.

D.2.2. H3SetSLHA (Obsolete)

The function H3SetSLHA was substituted by H3GetSLHA but still remains in H3.m to
enable backward compatibility. The information on how to use this function including
optional arguments is included in the official documentation.

D.3. Running-and-Decoupling Procedure

In version 1.3 of H3.m a new implementation of the running-and-decoupling method is
included. For this purpose, the decoupling coefficient C,,, which relates the top-quark
mass of the SM with the one of the MSSM was calculated up to O(a?). In addition,
for the top-quark mass the fixed-order calculation which evaluates the two-loop on-
shell integrals numerically with the program TSIL is included again for consistency
checks.

D.3.1. Internal Structure

The whole running-and-decoupling procedure is included in the package
/MtopAlphasDR/MtopAlphasDR.m and invoked with the function

MtopAlphasDR

which returns the strong coupling constant « and the top-quark mass 1, in the MSSM.
Its arguments are (in this order):

a(Myz), Mz, MPS, M2, 005, M;IS, Mg,, Mgy, Mg, Mz, M, Mg,, Mg,
Mg, My, Mg,

Also, it has the following optional arguments:

Loop order (default: 4),

decoupling scale (default: -1 which sets the decoupling scale to the mean of all squark
and gluino masses),

decoupling loop order (default: -1 which uses the same order as the loop order)

M-

Sy

Mg,
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D.4. Installation and Usage Example

D.4.1. Download

H3.m version 1.3 can be downloaded from:
https://www.ttp.kit.edu/Progdata/ttpl4/ttpl4-025/h3m.tar.gz

D.4.2. Installation

In version 1.3 of H3.m the installation procedure changes a bit. All the required steps are
documented in the new manual. Here, I point out the difference to the old version.

SLAM has to be installed as an additional package. For this, a link to SLAM has to be in the
directory where H3.m is installed. This is done with the command

1n -s /path/to/SLAM-directory /path/you/want/to/install/to/H3/SLAM.
The rest of the installation procedure is unchanged.

D.4.3. Usage Example

To make it easy for new users, an example file is provided in the installation directory.
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E. One-Loop Decoupling Coefficients
Ce> Cg and Gy

In the following, the one-loop decoupling coeficients C¢, Co and C;%SD up to O(e) are
given. Here, all supersymmetric particles share the same mass Mg except f, and b,,
whose masses are My, and My, , respectively.

Cs = 1+%{CA +2C Ly, + T(lOLMS + L, +LM52)

+§[2CA(LMS N c(2))+ T(10L§45 L3 +13, 4 125(2))]}, (E.1)
Cg = 1+%{ —CA(l + 2LMS)— T(10LMS + Ly, +LM52)

+§[— ZCA(LMS P12+ (:(2))— T(10L]2V[S #L3y, L3y, + 12c(2))]}, (E.2)

SQCD ds 4 212
C =1+C {(1—4L )M +4(—1+L + Ly, )M M:?
" F 16(Mg —M; )2 Ms s s M ST

#(3 - 2Lag, ~ 2L, ML - 8MIX, + 8(1 - Lyg, + Ly, MsM2X,
+%[ — 16(1 + L )MSXt + 8(2 - LIZVIS + L, (2+ Lagg, ))Mstszt
+M;}(5 + 2Ly — 4Ly - 4C(2))

FAMEMR (~ 4+ (—4-+ L) Lug, + 2Lag, + Ly, +20(2))

~M? ( ~ 11+ 2(~4+ Ly )Lygg + 2Lag, (1 4+ Log, ) + 4@(2))]} (E3)

The decoupling coefficient CTSH%CD can be derived from Cf,gCD by applying the substitu-
tions (3.21). Cgs and C;QBCD are in full agreement with the literature .
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