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Minimum Covariance Bounds for the Fusion under
Unknown Correlations

Marc Reinhardt∗, Benjamin Noack∗, Pablo O. Arambel†, and Uwe D. Hanebeck∗

Abstract—One of the key challenges in distributed linear
estimation is the systematic fusion of estimates. While the fusion
gains that minimize the mean squared error of the fused estimate
for known correlations have been established, no analogous
statement could be obtained so far for unknown correlations. In
this contribution, we derive the gains that minimize the bound
on the true covariance of the fused estimate and prove that
Covariance Intersection (CI) is the optimal bounding algorithm
for two estimates under completely unknown correlations. When
combining three or more variables, the CI equations are not
necessarily optimal, as shown by a counterexample.

Index Terms—Data Fusion, Distributed Estimation, Kalman
filtering, Covariance Intersection

I. INTRODUCTION

In decentralized target tracking, spatially distributed nodes
maintain local estimates of the same or overlapping states.
When nodes communicate with each other, information is
exchanged and estimates are systematically fused. Quite often,
especially in linear estimation, the quality of point estimates
is assessed by means of covariances and hence, the objective
is to derive fusion algorithms that minimize a cost function of
these covariances. Depending on communication structure and
processing type of the nodes, estimates are combined pairwise
or several estimates are collected and fused batchwise.

For (exactly) known correlations, the linear gains minimiz-
ing the mean squared error have been derived for two [1]
and arbitrary many [24] estimates. However, in the considered
tracking scenario with distributed nodes, correlations emerge
between estimates due to past data exchanges and common
process noise [1]. The evolution of these cross-covariance ma-
trices depends on filter and fusion transformations of remote
nodes [16], which are typically only known locally. To the
authors’ knowledge, even for linear systems with white noise
that are observed by two sensors, the distributed calculation
of cross-covariance matrices requires to store process noise
covariances separately, resulting in an ever-increasing number
of terms until the estimates are fused.

Hence, different strategies have been pursued to cope with
unavailable cross-covariance matrices. A simple technique is
to ignore the correlations, as it is proposed for the simple
convex combination [4]. Consensus [19] and diffusion [2]
approaches optimize weights according to sensor network
parameters. Alternatively, the lack of knowledge about the
correlations can be explicitly modeled. As the covariance of
the fused estimate varies with the (unknown) underlying cross-
covariance matrices between the estimates, all permissible
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cross-covariance matrices must be considered, which, in turn,
leads to a set of possible covariances for the fused estimate.

The fusion under unknown correlations was first considered
with Covariance Intersection (CI) [12]. Since then, a variety
of methods has been proposed [3], [5], [8], [13], [18], [21],
[25], and the techniques have been applied, e.g., to distributed
estimation [10]. The key feature of these approaches is to
provide a covariance bound, i.e., a covariance which overes-
timates the true covariance of the fused estimate and thus,
allows to pursue consistent estimation without processing
cross-covariance matrices [25].

Techniques that aim at reducing the computational effort of
CI have been discussed in [6], [17], [26]. As covariance bounds
by definition are significantly larger than covariances provided
by the fusion under known correlations [1], [24], more general
approaches have been derived that permit to shrink bounds
by including additional information in the fusion process.
One way is to assume that the local errors consist of two
independent parts and correlations between one of the parts is
exactly known [8], [18] or zero [13]. Alternatively, possible
correlations are bounded by means of a scalar factor [7], [21].
If the lack of knowledge about cross-covariance matrices can
be modeled by means of additive norm-bounded terms, the
linear combination that provides the minimal worst-case bound
on the mean squared error is obtained as the solution of a
semidefinite programming problem [20].

Recently, an alternative to CI, termed Ellipsoidal Intersec-
tion, has been presented [23], which provides smaller covari-
ances than the bounds obtained with CI. However, although
simulations justify the use of Ellipsoidal Intersection, a con-
sequence of the results from this paper is that the covariances
obtained with Ellipsoidal Intersection underestimate the true
error for some cross-covariance matrices and thus, the obtained
estimates are inconsistent.

In this contribution, we derive the fusion gains for two
estimates that minimize the covariance bound of the fused
estimate under unknown correlations subject to a whole class
of cost functions – including trace and determinant. As it turns
out, the optimal gains are given by CI and therefore, we prove
that CI is the optimal bounding technique for two estimates
under completely unknown correlations.

Although statements concerning the tightness of CI in the
joint space have been made before [25], optimality of the
fusion result could not be proven so far. The reason is that
positive definite matrices feature inner dependencies between
entries such that the set of possible joint covariance matrices
exhibits a complicated structure [11]. Hence, checking all
possible fusion outcomes for arbitrary gains and providing
optimal bounds analytically is not feasible, and the alternative,
i.e., finding a bound on possible covariances in the joint space,
is not guaranteed to provide the optimal result in the fused
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space. Chen et. al. [3] focused on a family of scalar inflated
covariances and showed that the optimal gains in this family
are given by CI. However, the proof is based on a specific trace
structure of the covariance of the fused estimate, which is not
satisfied for arbitrary linear combinations. Hence, optimality
holds only within the considered family of scalar inflated
covariances.

In our proof, the complicated set of possible joint covariance
matrices is shown to define a tractable necessary condition for
bounds of the fused estimate. By means of a result from set
theory, the necessary condition can be formulated in terms of
ellipsoids. Only because the bounds obtained with CI satisfy
this necessary condition, i.e., they define ellipsoids that tightly
circumscribe the intersection of ellipsoids, we are able to prove
optimality. Unfortunately, for more than two estimates, CI
provides larger bounds than those defined by the necessary
condition as demonstrated in a counterexample and thus, the
proof does not generalize to more than two estimates.

II. PROBLEM FORMULATION

Consider two unbiased estimates x̂i ∈ Rn of a common
state x ∈ Rn with covariances Pi, i ∈ {1, 2} and cross-
covariance matrix P12. Throughout the paper, let P1 and
P2 be positive definite and let J (·) denote an arbitrary
strictly monotonically increasing cost function, i.e., it satisfies
P1 > P2 ⇒ J (P1) > J (P2), such as trace or determinant.

The unbiased linear combination1 of two estimates in the
Kalman filter framework boils down to finding gains Ki such
that the fused estimate x̂c = K1x̂1 + K2x̂2 is optimized
according to a cost function of the covariance J (Pc), i.e.,

argmin
K1,K2

J (Pc) , (1)

where the covariance of the fused estimate is given as Pc =
E{(x̂c − x)(x̂c − x)⊤} = KP(K)⊤ with K =

(
K1 K2

)
and joint covariance matrix P =

(
P1 P12

P21 P2

)
. If the cross-

covariance matrix P12 is known, the solution to this problem
is given by the Bar-Shalom/Campo formulas [1].

In this paper, we seek to find fusion gains when P12 is
unknown to the fuser. Indeed, the covariance of the fused
estimate Pc depends on the underlying true but unknown P12

and therefore, cannot be calculated. However, the possible
cross-covariance matrices are bounded [11], which, in turn,
restricts the possible outcomes of Pc to a bounded set. It
has already been shown that consistent estimation is feasible,
if a covariance bound Bc with Bc ≥ Pc is provided as a
substitute for the unknown true covariance Pc [25], where ≥ is
to be understood in the positive semi-definite sense. Therefore,
the equivalent to the optimization (1) for the fusion under
unknown correlations is given by

argmin
K1,K2,Bc

J (Bc) with Bc ≥ Pc for all possible P12 . (2)

1Let x̂ denote a biased estimator with E{x̂} = E{x} + b. Then,
E{(x̂− x)(x̂− x)⊤} = P + bb⊤, where P denotes the covariance of
the unbiased estimator x̂ − b and bb⊤ is a positive (semi-)definite matrix.
Therefore, biased linear combinations with K1 + K2 ̸= I yield estimates
with a higher MSE than their unbiased counterparts and are therefore not
considered in this contribution.

x

Figure 1. Two centered ellipses and their intersection in shaded light blue.
The dashed red ellipse depicts the covariance of the fused estimate from
Lemma 1 for P12 = 0. The green cross depicts an arbitrary point x from
the intersection.

In this contribution we solve (2).

III. MINIMAL COVARIANCE BOUNDS

In the following, statements and properties from linear
fusion theory, set theory, and bounding theory are utilized,
which will be stated before the main theorem. The connection
between set theory and estimation theory is established by
means of centered (multidimensional) ellipsoids

E = {x |x⊤P−1x ≤ 1, x ∈ Rn} ,

which are utilized as the geometric counterpart of positive
definite covariances P. These ellipsoids are in particular useful
to illustrate positive definite relations as P1 ≤ P2 ⇔ E1 ⊆
E2 [5]. The lemmata and statements are already informally
motivated and give a rough structure of the final proof. For
clarity, we prove them in the Appendix.

The optimal fusion gains and covariances under known
correlations, i.e., the solution to (1), are well known in
literature as the Bar-Shalom/Campo formulas [1].

Lemma 1 Let

K∗
1 =(P2 −P21)(P1 +P2 −P12 −P21)

−1

and K∗
2 = I−K∗

1, then x̂∗
c = K∗

1x̂1+K∗
2x̂2 with covariance

P∗
c = P1 −K∗

2(P1 −P12)
⊤ is the solution to (1) with P∗

c ≤
Pc for covariances Pc of any other linear combination.

As it becomes apparent in the formulas of Lemma 1, the
gains as well as the covariance of the fused estimate depend on
the cross-covariance matrix P12, amounting to different com-
bination rules subject to different cross-covariance matrices.
An example that illustrates Lemma 1 is given in Fig. 1.

By means of P1 and P2, the set of possible cross-covariance
matrices and thus, the set of covariances that result from the
optimal fusion under known correlations, can be bounded.

Lemma 2 Let E1, E2 denote the ellipsoids for P1 and P2,
respectively. It holds

x ∈ E1 ∩ E2 ⇔ there is a valid P12 with x ∈ E∗
c ,

where E∗
c denotes the ellipsoid for P∗

c from Lemma 1.

Hence, for all points x, there is a (possible) cross-covariance
matrix P12 such that the covariance from Lemma 1 defines
an ellipsoid that contains it. Vice versa, all ellipsoids from
Lemma 1 are contained in the intersection of the input
ellipsoids. This relation is depicted in Fig. 1.
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Figure 2. The intersection of two centered ellipses in shaded light blue. If a
bound Bc is not tight, a smaller bound B∗

c from the set defined in Theorem 3
with B∗

c ≤ Bc can be found.

Note that E1 ∩ E2 defines a set of covariances that are
obtained with different gains, which, in turn, are individually
optimized with respect to the corresponding known cross-
covariance matrices. A fusion algorithm that solves (2) must
choose a specific pair of gains – irrespective of the true cross-
covariance matrix. Therefore, bounding the intersection E1∩E2
is only a necessary but not a sufficient condition to guarantee
that the true covariance of the fused estimate is bounded. Still,
finding the best representative from the set of ellipsoids that
circumscribes the intersection of two centered ellipsoids is a
known problem from set theory. An illustration of the problem
is given in Fig. 2. The solution has been derived by Kahan [14],
[15].

Theorem 3 Let E1, E2, E∗
c denote the centered ellipsoids of

covariances P1, P2, and B∗
c , respectively. When E∗

c tightly
circumscribes the intersection E1 ∩ E2, i.e., E1 ∩ E2 ⊆ Ec ⊆
E∗
c ⇒ Ec = E∗

c for an arbitrary ellipsoid Ec, then

(B∗
c)

−1 = ωP−1
1 + (1− ω)P−1

2 , ω ∈ [0, 1] . (3)

Let K and P denote the joint space matrix vectors and
covariances from the problem formulation. Eventually, the
challenge is to derive fusion gains such that the true covariance
of the fused estimate Pc = KP(K)⊤ is bounded by B∗

c for
all cross-covariance matrices P12. To this end, we note that
joint space bounds imply bounds on the fused estimate.

Lemma 4 Let K1,K2 ∈ Rn×n denote fusion gains and let(
B1 0
0 B2

)
≥

(
P1 P12

P21 P2

)
denote a bound on the true joint covariance matrix. Then,
Bc = K1B1(K1)

⊤ + K2B2(K2)
⊤ is a bound on the

covariance of the fused estimate x̂c = K1x̂1 +K2x̂2.

Note that the other direction does not hold, i.e., a bound
on the covariance of the fused estimate does not imply a
bound in the joint space in general. In order to derive the
optimal solution to (2), it is not even sufficient to find a
tight bound in the joint space. However, when a joint space
bound with appropriate fusion gains yields the ellipsoids from
Theorem 3, which define a necessary size of the bound, the
result is optimal.

Lemma 5 Let ω ∈ (0, 1), then(
1
ωP1 0
0 1

1−ωP2

)
≥

(
P1 P12

P21 P2

)
.

Figure 3. The ellipse of a bound of the fused estimate in green. The ellipses
for specific cross-covariance matrices, e.g., the one in dashed red, are enclosed
by the ellipse of the bound.

Combining the joint space bounds from Lemma 5 with
appropriate fusion gains results in our main theorem.

Theorem 6 (Optimal Covariance Bounding) Let Bc denote
a bound obtained with arbitrary fusion gains and let

K∗
1 = ωB∗

cP
−1
1 and K∗

2 = (1− ω)B∗
cP

−1
2 (4)

denote specific fusion gains with B∗
c from (3). Then, B∗

c defines
a bound on the fused estimate and Bc ≤ B∗

c implies Bc = B∗
c .

The solution to (2) is given by (3) and (4) with

ω∗ = argmin
ω

J (B∗
c) . (5)

PROOF. First we note that for each cross-covariance matrix
P12, the covariance of the optimally fused estimates P∗

c is
given by Lemma 1. As the optimality holds in the positive
definite sense, the combination of estimates by means of
any other gains yields a covariance Pc that is larger in the
positive definite sense. In other words, the ellipsoid E∗

c of P∗
c

is contained in the ellipsoid Ec of Pc, i.e., E∗
c ⊆ Ec.

Hence, a necessary (but not sufficient!) condition is that a
covariance bound Bc must be larger than P∗

c for all possible
cross-covariance matrices in order to guarantee that Bc ≥
Pc ≥ P∗

c , where Pc is the covariance of the fused estimate
subject to the gains used in (2). According to Lemma 2, the
set of optimal covariances for all possible cross-covariance
matrices is depicted by the ellipsoidal intersection E1 ∩ E2,
where Ei is the ellipsoid of covariance Pi, i ∈ {1, 2}. From
P∗

c ≤ Bc, it follows that the ellipsoid which depicts the
optimal bound B∗

c must contain the intersection E1 ∩ E2.
According to Theorem 3, for all bounds Bc not described

by (ωP−1
1 + (1− ω)P−1

2 )−1, ω ∈ [0, 1], a smaller covariance
with B∗

c < Bc can be derived. Hence, no bounds obtained with
arbitrary fusion gains can be smaller than B∗

c in the positive
definite sense. In particular, if gains can be found so that the
true covariances are bounded by B∗

c , it is a consequence of the
strict monotonicity of the cost function that J (B∗

c) < J (Bc)
and thus, the solution to (2) is found within these gains and
bounds.

Let ω ∈ (0, 1) be fixed. The inflated covariance from
Lemma 5 combined with the gains (4) yield

ωB∗
cP

−1
1 (B∗

c)
⊤ + (1− ω)B∗

cP
−1
2 (B∗

c)
⊤ = B∗

c .

According to Lemma 4, the true covariance of the fused
estimate with gains (4) is smaller than B∗

c . Therefore, B∗
c

specifies a consistent bound. For ω ∈ {0, 1}, one of the gains
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is zero and the fusion result corresponds to a prior estimate,
which is bounded by the corresponding covariance trivially.

As discussed above, the solution to (2) is found within
the gains (4) and bounds (3), and is therefore given by the
optimization (5). □

Indeed, fusion gains and bound of Theorem 6 correspond to
the CI formulas. An implication of this result is that algorithms
that provide smaller covariances than CI and operate under
unknown correlations cannot satisfy Bc ≥ E{êc(êc)⊤}.

Note that the fusion gains are not only calculated without
knowledge of the cross-covariance matrices but are also the
same for all possible cross-covariance matrices. Hence, it
seems as if the bound on the fused estimate should be much
larger than the set E1∩E2 that is obtained based on individual
optimizations considering known cross-covariance matrices.
Although the covariance of the fused estimate is indeed worse
than the theoretic optimum under known correlations, the true
covariance is still bounded by the smallest ellipsoid enclosing
the intersection E1 ∩ E2 as it is depicted in Fig. 3.

Moreover, the result raises the question whether the natural
generalization of CI to more than two estimates satisfies
similar optimality properties. For N estimates, it has been
proposed, e.g., in [25], to inflate covariances Pi, i = 1, . . . , N
with scalar factors 1

ωi
so that

∑N
i=1 ωi = 1 is retained. Utiliz-

ing appropriate gains, the covariance B−1
c =

∑N
i=1 ωiP

−1
i is

obtained as a bound on the fused estimate. However, consider
the covariances

P−1
1 =

(
0.1 0
0 4.1

)
,P−1

2 =

(
3.1

√
3√

3 1.1

)
,P−1

3 =

(
3.1 −

√
3

−
√
3 1.1

)
,

with (almost) ribbon shaped ellipses as discussed in Example 1
in [15]. Then, the trace minimization of Bc leads to a circle
with radius ≈ 0.69. Indeed, as depicted in Fig. 4, the inter-
section of the three ellipses, i.e., the hexagon in the center, is
circumscribed by a circle with radius ≈ 0.58, which is strictly
smaller. As the ellipses obtained by the optimal fusion [24] lie
within this hexagon, an optimality proof for the generalization
must be conceptually different from the one proposed in this
paper. In fact, the counterexample even suggests that there may
exist linear combinations of more than two estimates under
unknown correlations that yield a smaller bound than the CI
generalization.

IV. CONCLUSION

In this contribution, we proved that covariance intersection
(CI) provides the optimal bound in the fusion of two estimates
under unknown correlations subject to strictly monotonically
increasing cost functions.

A generalization of the procedure to more than two es-
timates is still an open research question. In particular, a
statement about the tightness of ellipsoids for the intersection
of more than two centered ellipsoids has not been provided
yet [15].
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Figure 4. The illustration of the slightly adapted Example 1 from [15]. The
covariances P1,P2, and P3 are depicted in blue, the bound obtained by the
natural CI generalization for more than two estimates in red, and the (optimal)
tight bound in green.

APPENDIX

PROOF OF LEMMA 1. As a bias in the fusion
gains leads to a positive definite residual and thus,
suboptimal fusion gains, we confine our attention to
unbiased combinations with K2 = I − K1. Then,
KP(K)⊤ = P2 + K1A(K1)

⊤ − K1(B)⊤ − B(K1)
⊤ =

(K1 − BA−1)A(K1 −BA−1)⊤ + P2 − BA−1(B)⊤

where A = P1 + P2 − P12 − P21 and B = P2 − P12.
As (K1 − BA−1)A(K1 −BA−1)⊤ ≥ 0, the covariance
is minimized in the positive definite sense by K1 = BA−1. □

PROOF OF LEMMA 2. ⇐: As according to Lemma 1, the
fused covariance for known P12 is P∗

c = P1 − A1 with
A1 = (P1−P12)(P1+P2−P12−P21)

−1(P1 −P12)
⊤ ≥ 0,

P∗
c ≤ P1. An analogous derivation proves P∗

c ≤ P2.
⇒: statement (2) in [3]. □

PROOF OF LEMMA 4. A result from linear algebra states that
B ≥ P ⇒ KB(K)⊤ ≥ KP(K)⊤ for K ∈ Rn×m with m ≤
n [9]. Let K =

(
K1 K2

)
, then the joint matrix inequality

implies

K

(
B1 0
0 B2

)
(K)⊤ ≥ K

(
P1 P12

P21 P2

)
(K)⊤ .

As the left hand side amounts to Ec and the right hand side
of the inequality denotes the true covariance of the fused
estimate x̂c, the claims follows. □

PROOF OF LEMMA 5. The inequality is equivalent to(
1
ωP1 −P1 −P12

−P21
1

1−ωP2 −P2

)
≥ 0 .

According to Theorem 7.7.3 from [9] in combination with the
exercise following Theorem 7.7.6, this inequality is satisfied
for positive definite P1 and P2 if and only if

ω

1− ω
P2 ≥ P21

(
1− ω

ω
P1

)−1

P12 ⇔ P2 ≥ P21P
−1
1 P12

which, in turn, proves the lemma for positive semi-definite
joint covariance matrices P. Note that this result was originally
proven for ellipsoids in set theory [22]. □
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