
Engineering an Efficient Reachability
Algorithm for Directed Graphs

Diploma Thesis of

Florian Merz

At the Department of Informatics
Institute of Theoretical Informatics

Algorithmics II

Reviewer: Prof. Dr. Peter Sanders

9th December 2013

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

PLACE, DATE

. .
(YOUR NAME)

Contents

1 Introduction 7
1.1 Related Work . 7

1.1.1 GRAIL . 8
1.1.2 Topological Folding . 9

1.2 Overview . 9

2 Preliminaries 10
2.1 Graph Definitions . 10
2.2 DAG-Properties . 11
2.3 Algorithms and Data Structures . 12

2.3.1 First-In-First-Out Queue (FIFO) . 12
2.3.2 Priority Queue . 12
2.3.3 Depth-First-Search . 12
2.3.4 Breadth-First-Search . 13
2.3.5 Bidirectional Search . 13

3 Prune to Reach 14
3.1 Search Spaces . 14
3.2 Topological Levels . 16
3.3 DFS-Trees . 18
3.4 Base Reachability Query . 20
3.5 More Pruning . 22

3.5.1 Reverse Topological Levels . 22
3.5.2 Peek Nodes . 23

4 Construction and Query 27
4.1 Construction . 27

4.1.1 Construction of Search Spaces . 27
4.1.2 Setting Topological Levels . 29
4.1.3 Construction of DFS-Trees . 29

4.2 Query . 33

5 Experiments 36
5.1 Test Data . 36
5.2 Experiments on P2REACH . 38

5.2.1 Search Spaces . 38
5.2.2 Priority Function for Search Spaces 38
5.2.3 Topological Levels and DFS-Trees 40
5.2.4 Query Time Distribution . 40

5.3 Comparison with TF and GRAIL . 45
5.3.1 Varying Degree and Size . 46
5.3.2 Small Real Datasets . 50

5

Contents

5.3.3 Large Synthetic Datasets . 52
5.3.4 Large Real and Stanford Datasets 53

6 Conclusion and Future Work 55
6.1 Conclusion . 55
6.2 Future Work . 55

Bibliography 57

6

1. Introduction

A reachability query on a directed graph G asks if there exists a path from a node s to a
node t. Answering such queries on large graph like datasets has become an issue in various
fields of research and real world applications over the past 20 years. Therefore, answering
reachbility queries fast and efficiently has become more and more relevant. Nowadays, most
XML [2] files make extensive use of ID [11] and IDREF, which transforms their tree based
layout into a more complex directed graph. Therefore, querying for reachability requires
a reachability query on a directed graph instead of a simple ancestor query. Similarly,
the RDF model [20] relies on directed graphs. Various queries on RDF graphs involve
reachability, for example to infer the relationship between objects. Since the semantic web
builds on RDF, this topic gains more attention as the semantic web becomes more popular.

Network biology uses reachability queries to query for protein-protein interaction on
databases like the DIP [33]. Furthermore, reachability plays a role in querying for metabolic
pathways on metabolic networks [19] or interaction on gene regulatory networks [3]. Addi-
tionally, in the field of model checking [9] reachability queries are needed to check whether
a state can reach another state. Similarly, source code analysis uses reachability queries for
pointer and dataflow analysis [26, 25].

Since the answer of a reachability query on a directed graph, which contains a cycle covering
all nodes is always true, we can reduce a directed graph to its condensation. This is done
by calculating the strongly connected components and contracting them into a single node.
The condensation is a directed acyclic graph (DAG) which is much smaller in most cases.

The two naive algorithms to answer reachability queries for a DAG are either traversing the
graph using a Depth-First Search (DFS) or a Breadth-First Search (BFS) or calculating
the transitive closure of the DAG. Simply traversing the DAG results in a query time in
O(m) whereas storing the transitive closure needs O(n2) space and has a complexity of
O(nm) to compute but can answer a query in O(1).

1.1 Related Work

Throughout the past years, numerous different approaches for graph reachability emerged.
They often combine the previously mentioned two methods for reachability querying. Thus
trading off query performance for lower index size while keeping precomputation time low
is the challenge of combining aspects of indexing via transitive closure and pure search.

7

1. Introduction

The different approaches can be largely classified into three categories as done by [15].
Those are: transitive closure compression, hop-labeling and refined online search. Next we
will present a short description and notable results for each category.

Transitive Closure Compression

Those approaches calculate a compressed reachability set (TC) for each node u based on a
compressed transitive closure. Thus, to answer if a node v is reachable from node u can be
answered by checking v against TC(u). Some notable methods based on transitive closure
compression are chain representation [14, 5], interval representation [24], dual labeling [32],
path-tree [16] and PWAH [31]. On graphs of moderate size these methods tend to perform
the best, especially the latest version of path-tree. However, the performance comes with
the cost of a large index size which today limits those methods to graphs of a size around
one million nodes on reasonable hardware. Additionally, the precomputation time is worse
in most cases and can even include the computation of the complete transitive closure.

Hop-Labeling

Methods of the second category gather two sets of nodes for each node u, where the
first set contains intermediate nodes that can be reached (Lout) and the second one Lin

contains intermediate nodes that can reach u. To answer a reachability query they use the
intersection between Lout of the start node and Lin of the end node. 2-hop labeling by
Cohen et al. [10] and 3-hop labeling by Jin et al. [18] are approaches which use this method.
Hop-labeling can result in a smaller index size than methods of the first category, but result
in a slower query answering time and the construction complexity is high, in the case of
the original 2-hop labeling approach even in O(n3|transitive closure|). Several heuristic
speed-up methods [8, 7, 29] have been introduced, but scalability remains a problem of
these methods.

Refined Online Search

The third category of methods are online searches on the DAG. They use a precomputation
phase to store auxiliary data for edges and nodes which enables aggressive pruning during
an online search. GRIPP [30] and Label+SSPI [4] use a tree cover to speed up a DFS.
GRAIL [34] uses several random DFS traversals to assign interval labels to each node.
Since GRAIL is the state-of-the-art algorithm of this methods we explain it further in
Section 1.1.1.

The algorithms of this category have in general a fast precomputation time since they don’t
need an optimization process or the transitive closure. Thus, they have the disadvantage
of a longer query answering time which grows with the size of the input DAG.

1.1.1 GRAIL

GRAIL is a scalable reachability indexing scheme by Yildirim et al. [34] which provides a
good trade-off between query time and construction time. Their approach requires linear
time and space for indexing and results in query times that range from constant time to
linear time w.r.t. the order and size of the DAG. GRAIL utilizes multiple random traversals
where each traversal yields an interval label for each node. An interval Li

u := [rx, ru]
consists of the post-order rank1 ru of u and rx, which denotes the lowest rank of any node
x reachable from u. A label Lv := {L0

v, . . . , L
d
v} of a node v has dimension d which is the

number of intervals that have been calculated. Let u, v be two nodes with labels Lu, Lv. If
there exists one interval in the labels such that Li

u 6⊆ Li
v, then v is not reachable from u.

1equals finishTime in Section 2.3.3

8

1.2. Overview

On the other hand, if for all i, Li
u ⊆ Li

v holds, u may be reachable from v, but does not
have to. Therefore, if for all i, Li

u ⊆ Li
v, but v 6→ u holds, we call the node u a false positive

for the node v. Thus GRAIL uses either an exception list for each node for those false
positives, or it utilizes a “smart” online DFS that uses the interval label for pruning. Since
calculating exceptions lists generates overhead with respect to precomputation time and
index size and they don’t scale to very large graphs, GRAIL focuses on the DFS approach.

1.1.2 Topological Folding

TF which stands for topological folding is the latest labeling scheme from Cheng et al. [6].
They use topological levels 2 which are basically a partition of V (G) into independent
subsets L1(G), . . . , L`(G)(G), where `(G) denotes the topological level number of G and i
of Li denotes the level of Li. Furthermore, for any two nodes u, v if (u, v) ∈ E(G), u ∈
Li(G), v ∈ Lj(G) then j > i holds. They introduce topological folding on topological levels,
which in each step deletes the odd levels and preserves reachability by inserting according
edges. For edges spanning more than one level, dummy nodes are inserted in order to
achieve a correct folding. This process folds G in half with each step until only one level
exists. This results in a topological folding G = {G1, . . . , G`(G)} where G1 = G. A Gi ∈ G
is called folding graph. Each node v has a topological folding number tf(v), which is the
highest level in which the node is still present.

The labeling scheme of TF maintains two labels for each node v, labelin(v) and labelout(v).
The in-label labelin(v) is built by adding v and then recursively adding the nodes in
N−Gtf(u)

(u) 3 of each node u contained in labelin(v). The out-label labelout(v) is built
analogously. Using this labeling scheme a reachability query s, t is answered positively if
labelout(s) ∩ labelin(t) 6= ∅ and negatively otherwise. Furthermore, they describe how to
substitute dummy nodes and also how to handle nodes with high degree.

1.2 Overview
This thesis will describe a scalable efficient algorithm for reachability queries on directed
graphs. Our algorithm provides faster construction time on large graphs than other methods
with competitive query times and scales to graphs orders of magnitude larger than methods
of comparable query performance can handle. The thesis is structured as follows: First
we provide preliminaries on directed graphs and algorithms used throughout this thesis.
Subsequently we introduce Search Spaces, a contraction technique inspired by [13], followed
by several pruning and shortcutting techniques in Chapter 3. In Chapter 4, we then
describe the algorithm used to preprocess a DAG, in order to obtain the auxiliary data
used to speed up a bidirectional breadth-first-search. Furthermore, we introduce our query
algorithm in detail.

In Chapter 5 we provide experiments to demonstrate the performance gains of our techniques.
Furthermore, we show that our approach scales better than existing methods with similar
query performance. Subsequently, we compare our algorithm with the two state-of-the-art
algorithms on real world data. Finally, we present the conclusions we drew form those
experiments and take a look into future possibilities of our approach.

2see Section 3.2 on DAGs for a detailed definition
3The out-neighbors of u in the folding graph Gtf(u), see Section 2.1

9

2. Preliminaries

This chapter introduces the basic notations, algorithms and data structures used in this
thesis. Most of the notation regarding graph theory is chosen according to [1]. For more
detailed information on algorithms and data structures [22] is a good start.

2.1 Graph Definitions
We define a directed graph (digraph) as a pair G of sets, where V (G) is a set of elements
called nodes and E(G) ⊆ (V (G)×V (G)) is a set of ordered pairs of nodes called edges. V (G)
is called node-set and E(G) is called edge-set. A digraph is often denoted as G = (V,E).

For an edge e = (u, v), u is called start-node and v is called end-node. Furthermore, for
e = (u, v), u and v are called consecutive and u and v are incident to e. Throughout this
thesis we only regard digraphs without self loops, which are edges e = (v, v), v ∈ V . We
use n = |V | to denote the number of nodes and m = |E| to denote the number of edges.
E := {(v, u) | (u, v) ∈ E} denotes the set of reverse edges of G and G = (V,E) is called
the reverse graph of G.

A digraphH is called subdigraph ofG if V (H) ⊆ V (G), E(H) ⊆ E(G). Furthermore, given a
digraph G = (V,E) and V ′ ⊆ V , then V ′ induces the subdigraph G(V ′) = (V ′, E∩(V ′×V ′)).
Similarly for a digraph G = (V,E) an edge set E′ ⊆ E induces a subdigraph G(E′) of G,
with E(G(E′)) = E′ and V (G(E′)) = {v, u ∈ V | (v, u) ∈ E′}.

For a node v ∈ V (G) we define G − v := (V \ {v}, {(u,w) ∈ E(G) : {u,w} ∩ {v} = ∅})
which is G without the node v and without the edges incident to v. This process is called
deleting v from G.

Furthermore, we define

N+
G (v) := {u | (v, u) ∈ E(G)}

N−G (v) := {u | (u, v) ∈ E(G)}
NG(v) := N+

G ∪N
−
G

and call N+
G (v), N−G (v) and NG(v) the out-neighborhood, in-neighborhood and neighborhood

of v in G. The degree of a node v is defined by dG(v) = |NG(v)| and accordingly d+
G(v) =

|N+
G (v)| and d−G(v) = |N−G (v)| denote the out-degree and in-degree of v. For a node v ∈ V (G)

if d+
G = 0 we call v a sink, if d−G(v) = 0 we call v a source. Further we denote the set of all

sources of G by Ssource(G) and the set of all sinks by Ssink(G).

10

2.2. DAG-Properties

We define a walk W := (v1, v2, . . . , vk−1, vk) as a sequence of nodes vi, such that (vi−1, vi) ∈
E(V) for 1 < i ≤ k. Since we only consider graphs with unique edges, the W defines a set
of edges between the nodes. A walk is called path if the nodes v1, v2, . . . , vk are distinct.
The length of a walk is the number of its implied edges and a (u, v)-walk (path) is a walk
(path) between u and v. For a path C = (v1, v2, . . . , vk), k ≥ 3 and v1 = vk, we call C a
cycle. A directed acyclic graph (DAG) is a digraph which contains no cycle.

Given a DAG G = (V,E) and two nodes (s, t), we say t is reachable from s if there exist an
(s, t)-path in G. We denote this by s→ t and if there exists no (s, t)-path in G we denote
it by s 6→ t.

A directed tree is a DAG T with one root r ∈ V (T) and for every node v 6= r ∈ V (T) exists
exactly one (r, v)-path in T . For a tree T = (V,E) we call T = (V,E) a reverse directed
tree.

Given a digraph G and an edge e = (u, v) ∈ E(G). The contraction of e = (u, v) results in
a digraph G′ with V (G′) = {ve} ∪ V (G) \ {u, v} and

E(G′) ={(x, y) ∈ E(G) | {x, y} ∩ {u, v} = ∅}
∪ {(ve, x) | (v, x) ∈ E(G)or(u, x) ∈ E(G)}
∪ {(x, ve) | (x, v) ∈ E(G)or(x, u) ∈ E(G)}.

We call a digraph G strongly connected if for every pair u, v of nodes an (u, v)-walk and
a (v, u)-walk exist. A maximal induced subdigraph which is strongly connected is called
strong connected component. If we contract every strong connected component into a single
vertex, we obtain a DAG which is called condensation or SCC-graph of G.

Throughout this thesis we consider a graph to be finite.

2.2 DAG-Properties
A DAG G has at least one sink and one source. To prove this, take any node v ∈ V (G),
then either v is already a sink or it has an outgoing edge (v, w), following this edge we can
recursive apply this statement. Since a DAG contains no cycle and we only consider finite
graphs the recursion has to stop, hence we find a sink. The same argument applies to the
existence of a source analogously.

A DAG has a topological sorting, which means that a bijective function f : V (G) →
{1, . . . , n} exists, such that for each edge (u, v) ∈ E(G) : f(u) < f(v) holds. A simple
algorithm to obtain a topological sorting and proof its existence would be the following:

1 begin
2 V ′ ← V
3 order ← 1
4 for i from 1 to n do
5 v ← GetASource(V ′)
6 SetOrder(v, order)
7 V ′ ← V ′ \ {v}
8 order ← order + 1

Algorithm 2.1: GetTopologicalSorting

As this algorithm successively deletes sources, we know for any edge (u, v) ∈ E(G) that u
has to be deleted before v can be deleted. Therefore u will receive a lesser order than v.

An rather simple but in our case important property of a DAG G is that for any node
v ∈ V (G), V ′ = V \ {v} and E′ = E \ {(u,w) ∈ E | u = v ∨w = v}, G′ = (V ′, E′) is still a
DAG. In words deleting a node v ∈ V (G) from a DAG G results in a DAG.

11

2. Preliminaries

2.3 Algorithms and Data Structures

In this section we describe the algorithms and data structures we use throughout this
thesis.

2.3.1 First-In-First-Out Queue (FIFO)

A FIFO is a data structure that manages a set of elements. It allows to access elements in
the same order they where enqueued. In general it provides four simple operations:

push_back Inserts an element at the end of the FIFO

pop_front Removes the first (and therefore oldest) element of the FIFO.

first Returns the first element of the FIFO.

size Returns the number of elements, that are currently contained in the FIFO.

A simple pop operation often combines pop_front and first in one step.

2.3.2 Priority Queue

A Priority Queue is similar to a FIFO queue but the elements of a priority queue are
associated with a priority. Instead of the oldest element it returns the element associated
with the highest priority that currently resides in the queue. A priority queue provides the
following operations:

push Insert an element with an associated priority into the queue.

deleteMin Return the element associated with the highest priority and remove it from
the queue.

Furthermore, most priority queues provide operations to initialize a priority queue on a
given set of elements and priorities, which can be more efficient than just inserting the
elements consecutively. A peek operation is common as well. The peek operation returns
the element associated with the highest priority without deleting it.

There exist many data structures implementing priority queues, like binary heaps and
Fibonacci heaps [12]. See [27] for a comparison. We decided to use sequence heaps
introduced by [28] in our implementation, as they are cache efficient and perform well on
large inputs.

2.3.3 Depth-First-Search

A Depth-first-search (DFS) on a directed graph G is a way to traverse a subgraph of
G starting at a node s ∈ V (G). Starting at node s we traverse the fist outgoing edge
e = (s, v) ∈ E(G). We mark the start-node of e and then continue at v. We don’t traverse
to marked nodes and we return to the previous node only when no unmarked out-neighbors
are left for the current node. During the traversal we can number the nodes in the order
they where visited, this number is called DFS number, denoted by dfsNum. Furthermore,
we can number the nodes in the order they were finished (last visited, before returning
to their predecessor). This number is denoted by finishTime. Algorithm 2.2 implements
a simple DFS, which is initially started on a start node v, and an initial dfsPos and

12

2.3. Algorithms and Data Structures

finishTimer of 0. We can traverse G completely be starting a DFS for each source of G
keeping the marks. See Section 3.3 and [22] for further details.

Data: DAG G, dfsPos, finishTimer
1 begin
2 mark v
3 dfsNum(v)← dfsPos
4 dfsPos ← dfsPos + 1
5 for (v, w) ∈ E(G) do
6 if w is not marked then
7 DFS (w)

8 finishTime(v)← finishTimer
9 finishTimer ← finishTimer + 1 return dfsPos

Algorithm 2.2: DFS(v)

2.3.4 Breadth-First-Search

Breadth-first-search (BFS) is another method to traverse a subtree G′ of a digraph G. It
traverses G′ layer by layer, where a starting node s defines layer 0. All nodes in N+(s)
form layer 1. Furthermore, the out-neighborhoods of the nodes in layer i, that have not
been traversed yet, form layer i+ 1. In order to keep track of the nodes in the next layer
BFS needs a queue to maintain the nodes of the current layer and the next layer.

2.3.5 Bidirectional Search

Bidirectional Search is a speedup technique generally used in the field of shortest path
queries. To answer a query for a path between two nodes s and t we search from s forward
and from t backward until both searches have hit a common node. In most cases this
method reduces the total search space and is often combined with other speedup techniques.

13

3. Prune to Reach

In this chapter we present our approach Prune to Reach (P2REACH). We use a bidirectional
BFS on a divided forward and backward search space. During the traversal we prune the
search spaces using precalculated auxiliary node data, which includes topological orders and
precalculated DFS-Trees. First we explain search spaces in Section 3.1, next the topological
levels in Section 3.2 followed by shortcuts and pruning via DFS-Trees Section 3.3 and
finally we present a base query algorithm in Section 3.4. Furthermore, in Section 3.5 we
explain additional methods for pruning using the previous introduce auxiliary data.

3.1 Search Spaces
As we use a bidirectional BFS we will show that we can restrict the forward and backward
searches to their own edge disjoint search spaces. The motivation behind this is to lower
the branching factor of a search space during traversal. Therefore, we introduce a forward
search space Efwd and a backward search space Ebwd . Each edge e ∈ E(G) is either in
Efwd or its reverse edge e is in Ebwd . While assigning the edges to Efwd and Ebwd we
have to assure that the forward and backward search have at least one common node for
each positive query, which can even be the source or the target. Next we present the
assigning scheme and then prove that a simple bidirectional BFS will succeed for any
positive reachability query.

DAG-Decomposition

Since a DAG G always contains at least one sink and one source we can decompose a
DAG completely by deleting sources and sinks iteratively from G. In general, a DAG
has several sources and sinks. To induce an order on the nodes to be deleted we define a
priority function (see Section 4.1.1 for details). Using a generic priority function we take
the sink or source v with the lowest priority in each step. Then the incident edges to v are
added to either Efwd if v was a source or their according reverse edges to Ebwd if v was a
sink. Subsequently we delete v from G and update the priority of all affected nodes. We
repeat this until only one node remains. Thus every edge has been assigned to Efwd or
Ebwd and Efwd ∪ Ebwd = E. Figure 4.1 in Section 4.1 provides an example of such a DAG
decomposition.

Following this decomposition scheme for an edge e = (u, v) ∈ Efwd the node u was deleted
as a source and for an edge e = (u, v) ∈ Ebwd the node v was deleted as a sink.

14

3.1. Search Spaces

u v w

(u, v) ∈ E (v, w) ∈ E

(a) DAG G with 2 edges

u v w

(v, u) ∈ Ebwd (v, w) ∈ Efwd

(b) Invalid search spaces that cannot be constructed using DAG-Decomposition on G

Figure 3.1: A simple base case for Lemma 2

As we want to restrict the forward search on Efwd and the backward search on Ebwd it is
necessary that for any nodes s, t with s→ t there exists a node v, such that there exists an
(s, v)-path in G(Efwd) and there exists an (t, v)-path in G(Ebwd).

Lemma 1. Let G = (V,E) be a DAG and Efwd , Ebwd the forward and backward search
spaces obtained by a DAG-Decomposition. For any node v ∈ V the following holds:

∃(v, u) ∈ Ebwd =⇒ ¬∃(v, w) ∈ Efwd

Intuitively this means, if any node v has an outgoing edge that has been added to Ebwd , no
outgoing edge of v has been added to Efwd .

Proof. Suppose there exists a node v and ∃(v, u) ∈ Ebwd ∧ ∃(v, w) ∈ Efwd , Figure 3.1
depicts the most simple case. Then (v, u) ∈ Ebwd implies that v was deleted as a sink.
However this contradicts (v, w) ∈ Efwd which requires that v was deleted as a source. Hence
∃(v, u) ∈ Ebwd =⇒ ¬∃(v, w) ∈ Efwd

Lemma 2. Let G = (V,E) be a DAG and Efwd , Ebwd the forward and backward search
spaces obtained by a DAG-Decomposition. For any path P = (v1, . . . , vk) in G there exists
a d ∈ {1, . . . , k}, such that

⋃
i<d(vi, vi+1) ⊆ Efwd and

⋃
i≥d(vi+1, vi) ⊆ Ebwd .

Proof. We distinguish two cases. As for every edge (vi, vi+1) ∈ E either (vi, vi+1) ∈ Efwd
or (vi+1, vi) ∈ Ebwd holds, either (v1, v2) ∈ Efwd or (v2, v1) ∈ Ebwd holds.

Assume (v2, v1) ∈ Ebwd : If k = 2, then d = 1. Otherwise, suppose the set F := {j ∈
{2, . . . , k − 1} | (vj , vj+1) ∈ Efwd} is not empty. Hence, there exists a j = min(F). Then,
(vj , vj − 1) ∈ Ebwd ∧ (vj , vj+1) ∈ Efwd holds, but contradicts with Lemma 1. Therefore
F = ∅ and

⋃
1≤i<k(vi+1, vi) ⊆ Ebwd holds. And therefore, d = 1.

Now assume that, (v1, v2) ∈ Efwd . If k = 2, then d = k = 2. Otherwise, let F := {j ∈
{2, . . . , k − 1} | (vj+1, vj) ∈ Ebwd}. If F = ∅, then

⋃
1≤i<k(vi, vi+1) ⊆ Efwd holds and

therefore, d = k. If F 6= ∅, let j = min(F). Then, (vj−1, vj) ∈ Efwd , (vj+1, vj) ∈ Ebwd holds.
Because of (vj+1, vj) ∈ Ebwd , we can apply the first case to the subpath (vj , . . . , vk), which
yields

⋃
j≤i<k(vi+1, vi) ⊆ Ebwd . And therefore, d = j.

Since for a positive s, t query there exists at least one (s, t)-path, Lemma 2 shows that for
such an (s, t)-path there exists a node v, such that in G(Efwd) there exists an (s, v)-path
and in G(Ebwd) there exists an (t, v)-path.

15

3. Prune to Reach

(a) DAG representing a company line of
command.

(b) Forward (red) and backward (blue)
search spaces

Figure 3.2: Example for search spaces using a simple DAG

Level 0

Level 1

Level 2

Level 3

Figure 3.3: Topological Levels of a DAG G

The motivation behind splitting the search space in two is to stop a search if the branching
factor gets high. A priority function which prefers nodes with a low degree can increase
the number of deleted edges incident to a source or sink of height degree before that node
is being deleted itself and therefore reduce the branching factor. A simple example is a
graph representing the hierarchy in a company, see Figure 3.2. In that case the resulting
search spaces end at the node with the highest degree.

3.2 Topological Levels
Chen et al. [6] introduced topological levels which we use to prune the search space. Given
a DAG G = (V,E) we define the topological level LG(v) by:

• L(v) = 0, if d−G(v) = 0

• L(v) = max({L(u) | (u, v) ∈ E}) + 1 else

We denote the number of levels |{L(v) : v ∈ V }| by l(G). The important information
concerning reachability is the following Lemma.

Lemma 3. Given a DAG G and two nodes u, v ∈ V (G), u 6= v and the topological levels
LG. If LG(u) ≥ LG(v) then u 6→ v holds.

16

3.2. Topological Levels

Lfwd = 2
Lbwd = 0

Figure 3.4: Left: DAG where Lbwd(v) = l(G)−Lfwd(v)− 1. Right: General case where the
former doesn’t apply

Level 3

Level 2

Level 1

Level 0

Figure 3.5: Topological Levels of G, see Figure 3.3

Proof. Assume LG(u) ≥ LG(v) and u→ v. Then there exists a (u, v)-path P = (w1, . . . , wk)
with u = w1 and v = wk, k > 1. For any wi, wi+1 ∈ P , L(wi+1) ≥ L(wi) + 1 holds, because
(wi, wi+1) ∈ E(G) and L(wi+1) = max({L(u) | (u,wi+1) ∈ E}) + 1. Therefore L(v) =
L(wk) > L(wk−1) > · · · > L(w1) = L(u) holds, which contradicts LG(u) ≥ LG(v).

Topological levels are derived from topological sorting 2.2 but provide more information
on reachability. Suppose s : V (G)→ N is a topological sorting on a DAG G and LG are
the topological levels of G. According to Lemma 3, for any two nodes u, v ∈ V (G), u 6= v
with L(u) = L(v), u 6→ v and u 6→ v both hold. W.l.o.g., let s(u) < s(v), then we know
that, v 6→ u holds, but we have no information whether u 6→ v holds too. For an example
of topological levels of a DAG, see Figure 3.3.

Now we can define the forward topological levels Lfwd
G and the backward topological levels

Lbwd
G , as Lfwd

G = LG and Lbwd
G = LG. Note that in some cases Lbwd

G (v) = l(G)−Lfwd
G (v)− 1

may hold, but in general this is not the case, see Figure 3.4. In Figure 3.5 we show Lbwd
G

for the DAG G of Figure 3.3.

17

3. Prune to Reach

(0, 5)

(1, 5)

(2, 5)

(3, 4) (4, 5)

(12, 13)

(10, 15)

(10, 15)

(11, 13)

(14, 15)

(13, 15)

(15, 17)

(16, 17)

(9, 10)

(8, 10)

(5, 10)

(6, 10)

(7, 8)

(a) A DAG G with colored DTfwd(G)

(0, 6)

(1, 5)

(2, 5)

(3, 4) (4, 5)

(5, 6)

(8, 16)

(9, 13)

(10, 11)

(11, 13)

(12, 13)

(13, 16)

(14, 16)

(15, 16)

(6, 8)

(7, 8) (16, 17)

(b) A DAG G with colored DTbwd(G)

Figure 3.6: Example of DFS-Trees, normal 3.6a and reverse 3.6b

3.3 DFS-Trees

We introduce DFS-Trees DT (G) on a DAG G. DT (G) = (DT1, . . . , DTk) is an ordered
partition of V (G) where each DTi ∈ DT (G) induces a sub-DAG in G containing only one
source r(DTi). Furthermore, G(DT1) is the maximal DAG in G containing r(DT1) as
a sole source and each G(DTi) is maximal in G −

⋃
j<iDTj containing r(Di) as its sole

source.

18

3.3. DFS-Trees

Lemma 4. Given a DAG G and any source s of G. Let V ′ ⊆ V (G) be the set containing
all nodes a DFS, rooted at s, marked during traversal. Then G′ = G(V ′) is the maximal
sub-DAG of G, that has s as a sole source.

Proof. G′ = G(V ′) is maximal in respect of s being its sole source, if V ′ = {v ∈ V | s→ v}
holds. Therefore, it suffices to show that a DFS rooted at s marks exactly the nodes
reachable from v. As a DFS only traverses forward-edges, it can only mark reachable nodes.

Suppose there exists a node v ∈ V (G), with v 6∈ V ′ and s → v. Then, there exists an
(s, v)-path P in G, with P = (w1, . . . , wk), w1 = s, wk = v. As s has been marked by the
DFS, there exists a wi ∈ P , with i = min({j | wj has not been marked}).

Thus, wi−1 has been marked and there exists an edge (wi−1, wi) ∈ E(G). Therefore, the
call of 2.2 on wi−1 would have called 2.2 on wi. However, this contradicts with wi not
being marked. Hence, there exists no node v ∈ V (G), with v 6∈ V ′ and s → v and G′ is
maximal in respect of s being its sole source.

As of Lemma 4, a maximal sub-DAG G′ of a DAG G can be easily constructed. We
start a DFS on any source s of G and add all nodes that have been marked to a node
set V ′. Furthermore, G−G′ yields no additional sources compared to G. More precisely,
for any source v ∈ V (G − G′), d−G(v) = 0 holds. Otherwise, there would exist an edge
(u, v), u ∈ V (G′), which contradicts with Lemma 4. Therefore, we construct DTi by running
a DFS rooted at r(DTi) on G−

⋃
j<iDTj .

Given DT (G) we define the label functions tlorder : V (G) → {0, . . . , n − 1} and tl till :
V (G)→ {1, . . . , n}. Additionally we define tl (v) = (tlorder(v), tl till(v)).

Algorithm 3.1: SetDFSNums(v, dfsPos)
Data: DAG DTi

1 begin
2 mark v
3 dfsNum(v)← dfsPos
4 dfsPos ← dfsPos + 1
5 for (v, w) ∈ E(DTi) do
6 if w is not marked then
7 DFS (w, dfsPos)

8 dfsNumMax(v)← dfsPos
9 return dfsPos

For each DTi ∈ DT (G) we start Algorithm 3.1 with v = r(DTi), dfsPos = 0, visiting only
nodes in DTi. During such a DFS we set the following two labels:

• for v ∈ DTi : dfsNum(v) = dfsPos when first visiting v and

• for v ∈ DTi : dfsNumMax(v) = dfsPos when last visiting v before returning to its
predecessor.

Let oi = |
⋃

j<iDTi|. Then for v ∈ DTi we define tlorder(v) = oi + dfsNum(v) and
tl till(v) = oi + dfsNumMax(v).

19

3. Prune to Reach

Note that tl defines a tree on each DTi ∈ DT (G). Given this labeling scheme tlorder is
a bijection. Further tl till(r(DTi))− tlorder(r(DTi)) = |DTi| holds. And tlorder(r(DTi)) =
tl till(r(DTi−1) for 0 < i ≤ k holds. Additionally tlorder(r(DTi)) ≤ tlorder(v) < tl till(v) ≤
tl till(r(DTi) holds for all v ∈ DTi.

Lemma 5. Given a DAG G, DT (G) and an according tl. For any two nodes u, v ∈ V (G),
if tl till(u) > tlorder(v) ≥ tlorder(u) then u→ v holds.

Proof. As tl till(u) > tlorder(v) ≥ tlorder(u) holds, v and u are part of the same DFS-Tree
DTi. And since tlorder(v) ≥ tlorder(u) holds, u has been visited for the first time before
v has been visited for the first time. Furthermore, as tl till(u) > tlorder(v) holds, v has
been visited before u has been visited for the last time. Therefore v has been visited by a
recursion of the DFS that stared at u. Therefore, there exists a tree T ⊆ G(DTi) with u as
its root, hence an (u, v)-path exists.

Lemma 6. Given a DAG G, DT (G) and an according tl. For any two nodes u, v ∈ V (G),
if tl till(v) ≤ tlorder(u) then v 6→ u holds.

Proof. Either ∃DTi ∈ DT (G) : u, v ∈ DTi or u ∈ DTi and v ∈ DTj for i 6= j. If the former
holds and if tl till(v) ≤ tlorder(u) holds too, u was visited for the first time by the DFS after
v was visited for the last time. In that case there exists no tree T ⊆ G(DTi) with v as
root that contains u and there for there exists no (v, u)-path in G(DTi). And as G(DT1)
is the maximal DAG in G with r(DT1) as sole source and each G(DTi) is maximal in
G−

⋃
j<iDTj , there exists no (v, u)-path in G.

Otherwise, if u ∈ DTi and v ∈ DTj for i 6= j holds. Then, since tl till(v) ≤ tlorder(u) holds,
j < i holds, too. Thus, there exists no (v, u)-path in G, otherwise u would be contained in
DTj since G(DTj) is maximal in G−

⋃
l<j DTl.

Furthermore, we define DTbwd(G) = DT (G), which we call backward DFS-Tree and
therefore we call DTfwd(G) = DT (G) the forward DFS-Tree, see Figure 3.6. We use the
notation tl fwd and tlbwd , respectively.

3.4 Base Reachability Query
This section introduces the basic idea of the query algorithm using a bidirectional BFS
and the pruning methods we presented. We omit several aspects regarding performance
in order to keep the algorithm simple and focus on the main idea of the query algorithm.
Later we discuss several improvements in Section 3.5.

Given a DAG G = (V,E), the forward and backward search spaces Efwd and Ebwd , the
topological levels Lfwd and reverse topological levels Lbwd , and the DFS-Tree labels tl fwd
and tlbwd , we can use Algorithm 3.2 as query algorithm to answer a reachability query
for s, t ∈ V on G. It uses Algorithm 3.3 and Algorithm 3.4 to traverse G. Since we use a
bidirectional BFS we need to maintain two first-in-first-out queues.

Algorithm 3.2 starts by pushing s into the forward queue and t into the backward queue
then it repeatedly alternately calls Algorithm 3.3 and Algorithm 3.4 on the the popped
node of their respective queue until either both queues run empty or the searches have met.

Algorithm 3.3 first checks if the active node v has been visited by the backward search, if so
it sets meet to true and returns. In that case v has been visited by both search directions
and a path from s to v exists in G(Efwd) and a path from t to v exists in G(Ebwd) and
therefore an (s, t)-path exists in G, according to Lemma 2. Next we check if Lfwd(v) is

20

3.4. Base Reachability Query

Algorithm 3.2: BaseQuery(s, t)
input : source node s, target node t
output : Boolean representing if s→ t
Data: G, Efwd , Ebwd , Lfwd , Lbwd , tl fwd , tlbwd

1 begin
2 forward ← true
3 meet ← false
4 PushToForwardFifo(s)
5 PushToBackwardFifo(t)
6 while ¬meet and ¬(ForwardFifoIsEmpty() and BackwardFifoIsEmpty())

do
7 if forward or BackwardFifoIsEmpty() then
8 v ← PopFromForwardFifo()
9 ForwardBFS(v)

10 forward ← false
11 else
12 v ← PopFromBackwardFifo()
13 BackwardBFS(v)
14 forward ← true

15 return meet

Algorithm 3.3: ForwardBFS(v)
input : node v
Data: G, Lfwd , tl fwd , meet, t

1 begin
2 MarkForward(v)
3 if IsMarkedBackward(v) then
4 meet ← true
5 return
6 if Lfwd(v) ≥ Lfwd(t) then return
7 if tlorder

fwd (t) ≥ tl till
fwd(v) then return

8 if tl till
fwd(v) > tlorder

fwd (t) ≥ tlorder
fwd (v) then

9 meet ← true
10 return
11 for u ∈ N+

G (v) and ¬IsMarkedForward(u) do
12 if (v, u) ∈ Efwd then PushToForwardFifo(u)

21

3. Prune to Reach

Algorithm 3.4: BackwardBFS(v)
input : node v
Data: G, Lbwd , tlbwd , meet, s

1 begin
2 MarkFBackward(v)
3 if IsMarkedForward(v) then
4 meet ← true
5 return
6 if Lbwd(v) ≥ Lbwd(s) then return
7 if tlorder

bwd (s) ≥ tl till
bwd(v) then return

8 if tl till
bwd(v) > tlorder

bwd (s) ≥ tlorder
bwd (v) then

9 meet ← true
10 return
11 for u ∈ N−G (v) and ¬IsMarkedBackward(u) do
12 if (v, u) ∈ Ebwd then PushToBackwardFifo(u)

greater or equal than Lfwd(t), if that’s the case we can prune the search space because
the former holds for every node in the branch starting at v according to Lemma 3. Also
if tlorder

fwd (t) ≥ tl till
fwd(v) we can prune according to Lemma 6. In both cases we can return

instantly. Furthermore, we check if tl till
fwd(v) > tlorder

fwd (t) ≥ tlorder
fwd (v), if that is the case,

s→ t holds according to Lemma 5. Thus, we set meet to true and return. Now we check
each node u in N+

G (v) that has not yet been marked by the forward search and if the edge
incident to u and v is in Efwd we push u into the according queue.

Algorithm 3.4 proceeds basically the same way. First it checks if the active node v has been
visited by the forward search, if so it sets meet to true and returns. Next we check whether
Lbwd(v) is greater or equal than Lbwd(s), if that’s the case we can prune the search space.
Also, if tlorder

bwd (s) ≥ tl till
bwd(v) we can prune at v. As for the forward search in both cases we

return. Furthermore, we check if tl till
bwd(v) > tlorder

fwd (s) ≥ tlorder
bwd (v), if that is the case, we

know s→ t and we can set meet to true and return. Then we check each node u in N−G (v)
that has not yet been marked by the by the backward search and, if the edge incident to u
and v is in Ebwd , we push u into the according queue.

3.5 More Pruning
In this section we introduce methods using additional auxiliary data and improvements
based on the previous techniques. In Section 4.2 we implement the methods in an improved
version of Algorithm 3.2 and in Section 5.2 we finally compare the impact of our pruning
and shortcut techniques.

3.5.1 Reverse Topological Levels
In Algorithm 3.3 we can also check for pruning via reverse topological levels. If Lbwd

G (v) ≤
Lbwd

G (t) we can prune at v according to Lemma 3. We can use Lfwd
G in Algorithm 3.4,

respectively.

22

3.5. More Pruning

3.5.2 Peek Nodes

Given the DFS-Trees DT (G) and a node v ∈ V (G) we can calculate peek nodes for v. In
general a peek node p of a node v is a node that is reachable from v. We define three types
of peek nodes:

• minimal peek nodes pmin(v): a peek node p which minimizes

{tlorder(p) | p ∈ V (G), v → p} and tlorder(p) ≤ tlorder(v)

• tree peek nodes ptree(v): a peek node p which maximizes

{tl till(p)− tlorder(p) | p ∈ V (G), v → p} and tlorder(p) < tlorder(v)

• maximal peek nodes pmax(v): a peek node p which maximizes

{tl till(p) | p ∈ N+(v), tlorder(p) < tlorder(v)} ∪ {tl till(p) | p = pmax(w), w ∈ N+(v)}

Intuitively, the minimal peek of a node v is the node p with the minimal tlorder reachable
from v. The tree peek node of a node v is the node p 6= v with the largest sub-DFS-Tree
reachable from v.

The definition of a maximal peek node p of a node v is more complex. Therefore, we will
explain the two sets it maximizes in detail. Let P1 = {p ∈ N+(v) | tlorder(p) < tlorder(v)}.
P1 contains all out-neighbors of v that have been visited before v during the construction
of tl. Hence, they are either part of a previous DFS-Tree or a previous branch of the same
DFS-Tree as v. Suppose P1 = N+(v), then v is last node of its branch during construction
of the DFS-Tree containing v. Thus, for any node u reachable from v, there exists a w ∈ P1,
such that w → u holds. According to Lemma 6, tlorder(u) < tl till(w) holds. Therefore, for
k = max({tl till(p) | p ∈ P1}), k is larger than the maximal tlorder reachable from v. Hence,
any node with an tlorder between k and tlorder(v) is not reachable from v.

Now, let P2 = {p | p = pmax(w), w ∈ N+(v)}. Note, that for any node p ∈ P1, tl till(p) >
tl till(pmax(p)) holds. Since later, we choose the node that maximizes {tl till(p) | p ∈ P1∪P2},
we only need to consider nodes in P3 = {p | p = pmax(w), w ∈ (N+(v) \ P1)}. P3
contains the maximal peek nodes of all successors of v visited after v during construction
of tl. We use the previous definition k = max({tl till(p) | p ∈ P1}). If k′ ≥ k, for
k′ = max({tl till(p) | p ∈ P3}), is smaller than tlorder(v), then any node with an tlorder

between k′ and tlorder(v) is not reachable from v. Otherwise, if tlorder(v) < k′, we cannot
use k′ to predict the reachability of a node with a tlorder smaller than k′.

Intuitively, we can use a maximal peek node of a node v, to check if a node u, is placed
between the node with the maximal tlorder , that is lower than tlorder(v), still reachable
from v and v. In Figure 3.7 we show a DAG G with according tlorder labels. The
node v with tlorder(v) = 13 has the maximal peek node u (tlorder(u) = 6). Therefore,
tl till(pmax(v)) = tl till(u) = 9. Thus, the red colored nodes cannot be reached from v, as
their tlorder ranges from 9 to 12.

Note, that in case a peek node of a node v was inherited from an out-neighbor u (pmax(v) =
pmax(u)), it is possible that tl till(pmax(v)) > tlorder(v) holds. This behavior is intended,
since it allows faster construction and does not interfere with Lemma 9. Following Lemma 9,
we explain how we can use maximal peek nodes during the BFS to prune and proof it.

In Figure 3.8 we show an example of a DAG G an according DFS-Tree labeling tl. Since
tlorder(v) = 13 we set the minimal peek node to u, because tlorder(u) = 2 is the node

23

3. Prune to Reach

0

1

(w)2

3 12

13(v)

14

4

5

6(u)

7 89

10

11

Figure 3.7: A DAG G labeled with tlorder . Concerning node v, the red colored nodes are
not reachable from v, according to Lemma 8, and the blue colored nodes are
not reachable from v, according to Lemma 9.

(0, 7)

(1, 7)

(2, 3)

(5, 6)

(4, 7)

(3, 7)

(6, 7)

(7, 13)

(8, 13)

(9, 13)

(10, 13)

(11, 12) (12, 13)

(13, 15)

(14, 15)

(a) a DAG G with DSF-Trees an tl

u = pmin(v)
w = ptree(v)

x = pmax(v)

v

v′

(b) G with v ∈ V (G), pmin(v), ptree(v) and
pmax(v)

Figure 3.8: A peek nodes example

24

3.5. More Pruning

with minimal tlorder reachable from v. Furthermore, w is the node that has the maximal
subtree and tlorder(w) = 3 < 13, hence it becomes ptree(v). To determine the maximal
peek node of v we have to know the maximal peek node v′, first. We observe that v′ has
the out-neighbors u,w, x. Both, x and u have no outgoing edges, therefore pmax(u) and
pmax(x) are ε (they do not exist). Likewise, w leads to a simple tree, which also results to
pmax(w) = ε. Therefore the maximal peek node of v′ is x, since x is the out-neighbor of v′
which maximal tl till . Now we can focus on v. We observe that v has no out-neighbors of
smaller tlorder . Additionally x maximizes {tl till(p) | p = pmax(w), w ∈ N+(v)} ∪ {tl till(p) |
p ∈ N+(v), tlorder(p) < tlorder(v)}. Hence, x is the maximal peek node v. Note that peek
nodes of v can be part of the same DFS-Tree as v. Also pmin(v) = ptree(v) = pmax(v)
may apply some times.

Lemma 7. Given a DAG G and according functions tl and ptree. For any two nodes
v, t ∈ V (G),

tl till(ptree(v)) > tlorder(t) ≥ tlorder(ptree(v)) =⇒ v → t

holds.

Proof. Assume tl till(ptree(v)) > tlorder(t) ≥ tlorder(ptree(v)) holds. By definition of ptree,
v → ptree(v) holds. Additionally, Lemma 5 holds for the tow nodes ptree(v) and t. Which
yields ptree(v)→ t. Therefore, v → t holds.

According to Lemma 7 we can check in each call of Algorithm 3.3 on v if tl till(ptree(v)) >
tlorder(t) ≥ tlorder(ptree(v)), if so, we can answer the query positively.

Lemma 8. Given a DAG G an according functions tlorder and pmin. For any two nodes
v, t ∈ V (G),

tlorder(pmin(v)) > tlorder(t) =⇒ v 6→ t

holds.

Proof. Assume tlorder(pmin(v)) > tlorder(t) holds. Since pmin(v) is the node with the
smallest tlorder reachable from v and tlorder(t) is smaller, v 6→ t holds.

Additionally, we can check in each call of Algorithm 3.3 on v if tlorder(pmin(v)) < tlorder(t).
If the former holds, we can prune according to Lemma 8.

Lemma 9. Given a DAG G an according functions tl and pmax. For any two nodes
v, t ∈ V (G),

tl till(pmax(v)) ≤ tlorder(t) < tlorder(v) =⇒ v 6→ t

holds.

Proof. We defined pmax the way that for any node u, if tlorder(pmax(u)) ≤ tlorder(u)
holds, tl till(pmax(u)) > tlorder(w) holds for any node w, tlorder(w) ≤ tlorder(u). Intuitively,
tl till(pmax(u))− 1 is the largest order of a node x, that is smaller than the order of u and
still reachable by u. Hence, any node x with a tlorder(x) between tl till(pmax(u)) (including)
and tlorder(u) (excluding) is not reachable from u.

Assume tl till(pmax(v)) ≤ tlorder(t) < tlorder(v) holds. Then v 6→ t holds by definition of
pmax, since tl till(pmax(v)) < tlorder(v) holds.

25

3. Prune to Reach

According to Lemma 9 we can check in each call of Algorithm 3.3 on v if tl till(pmax(v)) ≤
tlorder(t) < tlorder(v) holds. If it does hold, we can prune the search space at v.

We could also use pmin(v) and pmax(v) to check for positive reachability, but as those
checks are expensive and by discarding that option we can save index size and lookups
by just storing tlorder(pmin(v)) and tl till(pmax(v)) we decided not to use them in our
algorithm.

Peek nodes can be used on DTfwd and DTbwd , hence the same applies for Algorithm 3.4
and we only have to substitute t by s for the checks. Furthermore, we can calculate peek
nodes efficiently while constructing the DFS-Trees as shown in Section 4.1.3.

26

4. Construction and Query

4.1 Construction

The Search Spaces (3.1), DFS-Trees (3.3), Peek Nodes (3.5.2) and Topological Levels
(3.2) for a DAG G are calculated in a construction phase. DFS-Trees, Peek Nodes and
Topological Levels can be stored as auxiliary data of the nodes V (G), whereas the Search
Spaces Efwd(G) and Ebwd(G) replace E(G) since Efwd(G) ∪ Ebwd(G) = E(G). The former
three can be computed in linear time regarding nodes and edges and identifying the Search
Spaces needs O(m + n logn) time if we use a general priority function. If we do not
prioritize the sources and sinks we would only have to maintain candidates for deletion
without any ordering, which needs O(n+m) time.

4.1.1 Construction of Search Spaces

We can construct the Search Spaces Efwd and Ebwd as described in Section 3.1 by iteratively
deleting sources and sinks. At first we initialize Efwd and Ebwd as empty sets and add edges
to them during node deletion. To obtain the next node ready for deletion we maintain the
candidates in a priority queue, which we initialize by adding all sources and sinks of the
DAG G along with their calculated priority. We delete the node with the lowest priority
and assign its incident edges to either Efwd or Ebwd until only one node remains in the
queue. When deleting a node we have to update the priority queue by adding all new
sources and sinks. Thus at any time all sinks and sources of the current DAG are included
in the priority queue. Finally, by Lemma 10, we know that if only one node remains in the
priority queue, all edges have been assigned.

We use

prio(v) =
{
dG(v) if v is a sink or source in G′

n else

as a priority function, where G is the original graph and G′ is the current graph missing
the deleted nodes. It provides a low priority for nodes of small degree, thus it delays the
deletion of high degree nodes.

Lemma 10. Let G = (V,E) be a DAG and S = {v ∈ V | d−(v) = 0 ∨ d+(v) = 0} then
|S| = 1 =⇒ E = ∅ holds.

27

4. Construction and Query

Proof. Suppose |S| = 1 and E 6= ∅, then there exists an edge e = (u, v) ∈ E. Let p be a
maximal path that contains e and let s be the start node and t the end node of p, since p
is maximal and (t, s) 6∈ E as G is acyclic, s is a source and t is a sink. Thus d−(s) = 0 and
d+(t) = 0 and therefore s, t ⊆ S which contradicts with |S| = 1, since s 6= t.

We use Algorithm 4.1 to construct the Search Spaces Efwd and Ebwd of a DAG G.

Algorithm 4.1: Construction of Search Spaces Efwd and Ebwd

input : DAG G = (V,E)
output :Efwd , Ebwd

1 begin
2 Efwd ← {}
3 Ebwd ← {}
4 PQ← empty priority queue

// initialize the priority queue with sinks and sources of G
5 for v ∈ V do
6 if v is a source of sink then
7 priority ← prio(v)
8 Push(PQ, v, priority)

// delete sinks and sources according to their priority
9 while Size(PQ) > 1 do

10 v ← DeleteMin(PQ)
11 DeleteNode(v)

Algorithm 4.2: DeleteNode(v)
input : node v
Data: DAG G = (V,E), Efwd , Ebwd , priority queue PQ

1 begin
2 if IsSource(v) then
3 for u ∈ N+(v) do
4 Efwd ← Efwd ∪ {(v, u)}
5 E ← E \ {(v, u)}

// check if u has become a source or sink, if so push it
into the queue

6 priority ← NodePriority(u)
7 if priority < |V | then
8 Push(PQ, u, priority)

9 else
10 for u ∈ N−(v) do
11 Ebwd ← Efwd ∪ {(u, v)}
12 E ← E \ {(u, v)}

// check if u has become a source or sink, if so push it
into the queue

13 priority ← NodePriority(u)
14 if priority < |V | then
15 Push(PQ, u, priority)

28

4.1. Construction

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 4.1: Building search spaces Efwd (red) and Ebwd (blue) in a DAG G.
To simplify the process we handle nodes with only one edge left in one step.
Therefore, each figure except (7) and (9) contains multiple node deletions.

4.1.2 Setting Topological Levels

We use a modified DFS to compute the topological levels of a DAG G. For each node
v ∈ V (G) we maintain a counter visted(v), which is initially set to zero. Furthermore, we
initialize L(v) = 0 for any node v of G. We sequentially start the modified DFS on the
sources of G. When we traverse an edge (u, v) ∈ E(G) we update the topological level of v
to max({L(v), L(u) + 1}) and increase visited(v) by one. We only recurse at v if visited(v)
equals the d−G(v).

Additionally, we count the number of nodes, on which we recursed during the modified DFS,
started at a source s. We store this number as TreeSize(s) and use it as a heuristic to
determine an ordering of the sources used in Section 4.1.3. Algorithm 4.4 and Algorithm 4.3
implement such a modified DFS.

Algorithm 4.4 constructs the topological levels L for an input DAG G. More precisely, it
constructs Lfwd. In order to obtain Lbwd we can just run Algorithm 4.4 on G.

4.1.3 Construction of DFS-Trees

Algorithm 4.6 constructs DFS-Trees DT (G) for a DAG G and also calculates pmin(v),
ptree(v) and pmax(v) for each node v in linear time regarding edge count. To determine
the Topological Levels we start a DFS from each source of G. Each DFS only traverses
edges that haven’t been traversed yet by a former DFS.

29

4. Construction and Query

Algorithm 4.3: SetLevel(v)
input : node v, size nsize
output : size nsize
Data: G, L, visited

1 begin
2 for (v, u) ∈ E(G) do
3 if L(u) ≤ L(v) then
4 L(u)← L(v) + 1
5 visited(u)← visited(u) + 1
6 if visited(u) = d−(u) then
7 nsize← SetLevel (u, nsize + 1)

8 return nsize

Algorithm 4.4: SetLevels()
input : DAG G
Data: L, TreeSize

1 begin
2 for s ∈ Ssource(G) do
3 L(s)← 0
4 TreeSize(s)← SetLevel (s, 1)

Hence, the ordering of the sources in which we process the DFS has an impact on the
number of the nodes in DT (G). Using TreeSize, introduced in Section 4.1.2, we define such
an ordering by Osource. Let Osource = (s1, . . . , sk) for si ∈ Ssource(G) for k = |Ssource(G)|
and TreeSize(si) ≥ TreeSize(si+1).

To build DT1 we start a DFS on s1. For each node v 6∈ DT1 we visit, we:

• set dfsNum(v),

• add v to DT1,

• continue with its out-neighbors,

• set dfsNumMax(v),

• set tlorder(v) = dfsNum(v),

• set tl till(v) = dfsNumMax(v),

• set pmin(v) = v,

• set ptree(v) = INVALID,

• set pmax(v) = INVALID and

• return to its predecessor we came from.

Then for each si ∈ Ssource, i 6= 1 in the order given by Osource we build DTi by starting a
DFS on si. We start again with dfsNum = 0 and use the offset oi = |

⋃
j<iDTj |+ 1 to set

the labels tl. For each node v we visit and which hasn’t been visited yet we:

• set dfsNum(v) as before,

• add v to DTi

30

4.1. Construction

0
(0, 5)
0
∅
∅

1
(1, 5)
1
∅
∅

2
(2, 5)
2
∅
∅

3
(3, 4)
3
∅
∅

3
(4, 5)
4
∅
∅

0
(5, 10)

5
∅
∅

1
(6, 10)

6
∅
∅

2
(7, 8)
7
∅
∅

2
(8, 10)

8
∅
∅

3
(9, 10)

9
∅
∅

0
(10, 15)

1
(1, 5)
9

1
(11, 13)

3
(4, 5)
4

2
(12, 13)

4
(4, 5)
4

1
(13, 15)

9
(9, 10)

9

2
(14, 15)

9
(9, 10)

9

0
(15, 17)

6
(6, 10)
14

1
(16, 17)

9
(14, 15)

14

L(v)
tl(v)

tlorder(pmin(v))
tl(ptree(v))

tltill(pmax(v))

Figure 4.2: Forward DFS-Trees and according labels of a DAG G

• continue with its out-neighbors,

• set dfsNumMax(v),

• set tlorder(v) = oi + dfsNum(v),

• set tl till(v)) = oi + dfsNumMax(v),

• set pmin(v) to the node u that minimizes tlorder(u) for u = pmin(w), w ∈ N+
G (v), if

none exist set pmin(v) to v,

• set ptree(v) to the node u that maximizes tl till(u) − tlorder(u) and is in one of the
following two sets:

– {u ∈ N+(v) | tlorder(u) < tlorder(v)} and

– {ptree(u) | u ∈ N+(v) ∧ ptree(u)is set},

if no such node exists we set ptree(v) to INVALID,

• set pmax(v) to the node u that maximizes tl till(u) for u = pmax(w), w ∈ N+
G (v) and

tl till(u) ≤ tlorder(v), if none exist set pmax(v) to INVALID,

• return to the predecessor we came from.

Using this labeling scheme we obtain the labels tl(v) = (tlorder(v), tl till(v)) and the peek
nodes pmin(v), ptree(v) and pmax(v) for each node v ∈ V (G). Since the DFS-Tree DTi

is the maximal subtree in G−
⋃

j<iDTj starting at ri we can use Lemma 6 for pruning
during the BFS.

Since we use minimal and maximal peek nodes only for pruning and tree peek nodes
only for shortcuts we only need to store tlpeek_min(v) := tlorder(pmin(v)), tlpeek_max(v) :=
tl till(pmax(v)), tlpeek_order(v) := tlorder(ptree(v)) and tlpeek_till(v) := tl till(ptree(v)). This

31

4. Construction and Query

is relevant for cache optimization and provides simpler labels for our figures, despite that
we continue to refer to pmin, ptree and pmax throughout our algorithms, as they are more
intuitive.

Algorithm 4.6 computes tl, pmin, ptree and pmax for a DAG G, as for topological levels
this means it computes the forward DFS-Trees with tl fwd , pminfwd, ptreefwd and pmaxfwd.
We can compute the according backward DFS-Trees and therefore tlbwd , pminbwd, ptreebwd

and pmaxbwd by running Algorithm 4.6 on G.

Figure 4.2 shows the a DAG G with colored forward DFS-Trees and according labels
including forward Topological Levels.

Algorithm 4.5: UpdatePeekNodes(v, u)
input : node v, node u
Data: pmin, pmax, ptree, tlorder , tl till , tl

1 begin
// we define Range(x) := tl till(x)− tloder(x)

2 if ptree(u) is not invalid then
// since v → u holds, check if u has a better ptree

3 if Range (ptree(u)) > Range(ptree(v)) then
4 ptree(v)← ptree(u)

5 if tlorder(u) < tlorder(v) then
// u is part of an earlier branch or DFS-Tree.
// Therefore, we have to check if u is an better ptree

6 if Range(u) > Range(ptree(v)) then
7 ptree(v)← u

8 if tlorder(pmin(u)) < tlorder(pmin(v)) then
// we can reach a node with smaller tlorder.
// Therefore, we update pmin

9 pmin(v)← pmin(u)
10 if pmax(u) is set then

// check if we have to update pmax
11 if (pmax(v)is not set ∨ tl till(pmax(u)) > tl till(pmax(v))) then

// In case pmax(v) is not set yet, we update it anyway.
// Otherwise, we check pmax(u) is better

12 pmax(v)← pmax(u)

Algorithm 4.6: SetDFSTrees(v, dfsPos)
input :G, Osource

1 begin
2 dfsPos ← 0
3 for s ∈ Osource do
4 dfsPos ← SetDFSTree (s, dfsPos)

32

4.2. Query

Algorithm 4.7: SetDFSTree(v, dfsPos)
input : node v, current dfsPos
output : dfsPos
Data: G, pmin, pmax, ptree, tlorder , tl till , tl

1 begin
2 tlorder(v)← dfsPos
3 pmin(v)← v
4 ptree(v)← invalid
5 pmax(v)← invalid
6 dfsPos ← dfsPos + 1

// iterate over all outgoing-neighbors of v
7 for u ∈ N+(v) do
8 if tl(u) is not set then

// u has not been visited yet, therefore process u
9 dfsPos ← SetDFSTree (u, dfsPos)

// Since u has been processed in any case,
// we have to update the peek nodes of v

10 UpdatePeekNodes(v, u)

11 tl till(v)← dfsPos
12 tl(v)← (tlorder(v), tl till(v))
13 return dfsPos

4.2 Query

Finally, we present our query algorithm. Given:

• a DAG G,

• Ebwd and Efwd , obtained from Algorithm 4.1,

• Lfwd and Lbwd , obtained from Algorithm 4.4 and

• tl, pmin, pmax, ptree, obtained from Algorithm 4.6 for both directions.

We implement a query algorithm that performs a bidirectional BFS and utilizes Lem-
mata 3,6,8,9 for pruning and Lemmata 5,7 to shortcut during traversal.

Suppose, we visit a node v during the forward search of an s, t-query. There exists an
(s, v)-path in G(Efwd), as we traversed from s to v using only edges of Efwd . Therefore, if
v has been visited by the backward search, there also exists a (t, v)-path in G(Ebwd) and
s→ t holds according to Lemma 2. Furthermore, if Lfwd(u) ≥ Lfwd(t) or Lbwd(t) ≥ Lbwd(u)
hold, v 6→ t holds according to Lemma 6. Additionally, we use tl fwd , pminfwd and pmax fwd
to check if v 6→ t holds according to Lemma 6, Lemma 8 or Lemma 9. Finally we check if
v → t holds, using tl fwd and ptree according to Lemma 5 and Lemma 7. If neither of the
above holds, we add all out-neighbors of v in G(Efwd), that have not been visited by the
forward search, to the FIFO of the forward BFS, and continue the search. Otherwise, if
v → t holds, there exists an (s, t)-path in G and we can answer the query positively. In
case v 6→ t holds, we prune the forward search space at v, since there exists no (v, t)-path.

During the backward search we proceed analogously, checking whether s is reachable from
currently visited node v in G(Ebwd) or not. Algorithm 4.9 implements this step of the
forward search. An according step of the backward search would be implemented by
performing the checks against t instead of s and using the according bwd data.

33

4. Construction and Query

Algorithm 4.8 implements such a query algorithm. Initially, we check if s = t, in which
case s→ t holds. Otherwise, we proceed with the bidirectional BFS, until the forward and
backward searches meet, or both FIFOs run empty.

Algorithm 4.8: Query(s, t)
input : source node s, target node t
output : Boolean representing if s→ t
Data: G

1 begin
2 if s = t then
3 return true

// start the bidirectional BFS
4 forward ← true
5 meet ← false
6 PushToForwardFifo(s)
7 PushToBackwardFifo(t)
8 MarkForward(s)
9 MarkBackward(t)

// Loop until the searches have met, or both queue are empty
10 while ¬meet and ¬(ForwardFifoIsEmpty() and BackwardFifoIsEmpty())

do
11 if forward or ¬BackwardFifoIsEmpty() then
12 v ← PopFromForwardFifo
13 ForwardBFS(v)
14 forward← false
15 else
16 v ← PopFromBackwardFifo
17 BackwardBFS(v)
18 forward← true

19 return meet

34

4.2. Query

Algorithm 4.9: ForwardBFS(v)
input : node v
Data: G, Lfwd, tl fwd , meet

1 begin
// Check if searches have met according to Lemma 2

2 if IsMarkedBackward(v) then
3 meet← true
4 return

// Check for levels according to Lemma 3
5 if Lfwd(v) ≥ Lfwd(t) then
6 return

// Check reverse Topological Levels according to Section 3.5.1
7 if Lbwd(v) ≤ Lbwd(t) then
8 return

// Check if can prune via tl according to Lemma 6
9 if tl till

fwd(v) ≤ tlorder
fwd (t) then

10 return
// Check if we can shortcut according to Lemma 5

11 if tl till
fwd(v) > tlorder

fwd (t) ≥ tlorder
fwd (v) then

12 meet← true
13 return

// Check if we can prune using the minimal peek node according to
Lemma 8

14 if tlorder
fwd (pminfwd(v)) > tlorder

fwd (t) then
15 return

// Check for a short cut via the tree peek node according to
Lemma 7

16 if tl till
fwd(ptreefwd(v)) > tlorder

fwd (t) ≥ tlorder
fwd (ptreefwd(v)) then

17 meet← true
18 return

// Check if we can prune using the maximal peek node according to
Lemma 9

19 if tl till
fwd(pmax fwd(v)) ≤ tlorder

fwd (t) < tlorder
fwd (v) then

20 return
21 for (v, u) ∈ Efwd and ¬IsMarkedForward(u) do
22 MarkForward(u)
23 PushToForwardFifo(u)

35

5. Experiments

In this chapter we will first discuss the performance of P2REACH and the impact of the
individual pruning options based on our experiments. Later we compare the performance
of our approach with PATHTREE [16], GRAIL [34] and TF [6].

All of our experiments have been conducted on an Intel Xeon X5550 running at 2.67GHz
with 8MB Level3 cache, 4 x 256kB Level2 cache and 48GB of DDR3 RAM. All algorithms
have been implemented in C++ and have been compiled using gcc 4.8.2. The system ran
Ubuntu 12.04.2 using a Linux kernel 3.5.

5.1 Test Data

Algorithm 5.1: GenerateRandomDAG
input : number of nodes n, number of edges m
output : DAG G

1 begin
2 V ← {0, . . . , n− 1}
3 P ← permutation of V
4 i← 0
5 while i < m do
6 s, t← random pair with s, t ∈ V ∧ s 6= t
7 if s < t then
8 E ← E ∪ {(P (s), P (t))}
9 else

10 E ← E ∪ {(P (t), P (s))}

11 return (V,E)

We provide experiments on graphs of five categories, mainly we use the same graphs used
by [34], [16] and [6]:

Small Real Sparse: These graphs have edge-node ratio less than 1.2. They represent
XML documents (xmark, nasa), metabolic networks (amaze, kegg), and the rest
was introduces by the authors of GRAIL [34] and were obtained from BioCyc and
represent pathway and genome databases. See Table 5.1a for a complete list and
their properties.

36

5.1. Test Data

Dataset Nodes Edges |E|/|V |
agrocyc 12 684 13 657 1.07
amaze 3 710 3 947 1.06
anthra 12 499 13 327 1.07
ecoo 12 620 13 575 1.08
human 38 811 39 816 1.01
kegg 3 617 4 395 1.22
mtbrv 9 602 10 438 1.09
nasa 5 605 6 538 1.17
vchocyc 9 491 10 345 1.09
xmark 6 080 7 051 1.16

(a) small real sparse

Dataset Nodes Edges |E|/|V |
arxiv 6 000 66 707 11.12
citeseer-sub 10 720 44 258 4.13
go 6 793 13 361 1.97
pubmed 9 000 40 028 4.45
yago 6 642 42 392 6.38

(b) small real dense

Dataset Nodes Edges |E|/|V |
citeseer 693 947 312 282 0.45
citeseerx 6 540 399 15 011 259 2.30
cit-patents 3 774 768 16 518 947 4.38
go-uniprot 6 967 956 34 770 235 4.99
uniprot22m 1 595 444 1 595 442 1.00
uniprot100m 16 087 295 16 087 293 1.00
uniprot150m 25 037 600 25 037 598 1.00

(c) large real

Dataset Nodes Edges |E|/|V |
rand1m2x 1M 2M 2
rand1m5x 1M 5M 5
rand1m10x 1M 10M 10
rand10m2x 10M 20M 2
rand10m5x 10M 50M 5
rand10m10x 10M 100M 10

(d) large random

Dataset Nodes Edges |E|/|V |
email-EuAll 231 000 223 004 0.97
p2p-Gnutella31 48 438 55 349 1.15
soc-LiveJournal1 971 234 1 024 140 1.05
web-Google 371 764 517 805 1.39
wiki-Talk 2 281 879 2 311 570 1.01

(e) stanford

Table 5.1: Graphs used in our experiments

Small Real Dense: These graphs are mostly obtained from citation networks (pubmed,
citeseer, arxiv). All of them have been initially used by [17].

Large Real: The authors of GRAIL [34] introduced seven large graphs to demonstrate
their scaling abilities. citeseer, citeseerx and cit-patents are citation net-
works, go-uniprot is a joint graph of Gene Ontology terms and the annotations
file from the UniProt database. The rest of the graphs (uniprot22m, uniprot100m,
uniprot150m) are subsets of the UniProt RDF graph. See [34] for more detailed
information on these graphs.

Large Random: These graphs are randomly generated DAGs. They where obtained by
Algorithm 5.1 analogously to [34]. We use the naming scheme rand{N}{D}x, where
N is the number of nodes (e.g.: 1m for 1 million) and D is the average degree.

Stanford: These graphs were obtained from Stanford Large Network Dataset Collection.
They were introduced by the authors of TF [6] and represent different real networks.
These graph represent an email network from a EU research institution (email-EuAll),
the Gnutella peer to peer network from August 31 2002 (p2p-Gnutella31), the
LiveJournal online social network (soc-LiveJournal1), the Web graph from Google
(web-Google) and the Wikipedia communication network (wiki-Talk).

All query times aggregate times for 100000 s, t reachability queries. We use three different
types of such batch queries:

random: Random queries provided by randomly picking s, t ∈ V (G), s 6= t

37

5. Experiments

positive: Positive queries obtained by randomly picking s ∈ V (G), dG(s) > 0, calculating
a tree TG with s as root and then picking a random node t ∈ TG.

negative: Negative queries obtained by randomly picking s ∈ V (G), calculating a tree TG

with s as root and then picking a random node t 6∈ TG.

5.2 Experiments on P2REACH
The techniques described in Chapter 3 can each provide a speedup for the BFS. In
this section we demonstrate the impact of those techniques, by comparing results of
experiments on various graphs using different subsets of Search Spaces (Section 3.1),
DFS-Trees (Section 3.3) and Topological Levels (Section 3.2).

Search Spaces DFS-Trees Topological Levels Binary Priority
p2reach-sdl x x x
p2reach-s x
p2reach-
p2reach-sd x x
p2reach-sl x x
p2reach-sdlb x x x x
p2reach-dl x x

Table 5.2: Naming scheme for different P2REACH configurations

5.2.1 Search Spaces

As described in Section 3.1 our motivation was decreasing the branching factor during
a BFS, therefore we compare p2reach-, without Search Spaces, with p2reach-s including
Search Spaces. Both versions do not use any pruning or shortcut techniques. Therefore,
they implement a normal bidirectional BFS, where the latter is restricted to the according
Search Spaces.

In Table 5.3 we can see that Search Spaces provide a great speedup on nearly all graphs.
For large random graphs, the speedup increases as they get denser and the branching factor
of the normal bidirectional BFS gets higher. In case of the large real dataset, we observe
that p2reach- can be slightly faster on negative queries, which have mostly a quite small
branching factor on those graphs. But for those graphs p2reach-s is up to several orders of
magnitude faster than p2reach-. Throughout the small datasets, Search Spaces provide a
good speed up. Finally for the stanford dataset, using Search Spaces is at least two orders
of magnitude faster than pure bidirectional BFS, on positive, as well as on negative queries.
Only p2p-Gnutella31 is an exception, but still Search Spaces provide a speed up of a
factor of 3 on positive queries and nearly 100 on negative ones.

5.2.2 Priority Function for Search Spaces

In order to demonstrate the impact of the priority function used during the construction of
the Search Spaces we compare

• p2reach-sdl with Efwd and Ebwd obtained using the priority function defined in
Section 4.1.1,

• p2reach-sdlb with Efwd and Ebwd obtained using no priority function and

• p2reach-dl without Search Spaces.

38

5.2. Experiments on P2REACH

positive negative
p2reach_ p2reach_s p2reach_ p2reach_s

query on large random
random10m10x > 107 118 587.00 > 107 65 685.80
random10m2x 205.01 127.91 224.83 132.52
random10m5x 42 446.50 1 618.45 31 001.90 1 009.51
random1m10x 1 876 450.00 40 334.90 1 153 620.00 37 504.40
random1m2x 132.24 72.55 142.98 76.07
random1m5x 29 463.80 1 177.91 20 001.10 716.34

query on large real
cit-Patents 38 188.20 1 770.02 13 355.50 776.24
citeseer 10 190.80 19.14 18.06 21.64
citeseerx 373 587.00 135.32 171 640.00 146.09
go-uniprot 1 901 810.00 71.76 189.22 109.22
uniprotenc-100m 3 589 980.00 60.19 61.22 85.93
uniprotenc-150m 6 879 470.00 82.10 110.05 116.41
uniprotenc-22m 347 632.00 16.20 16.08 32.64

query on small real dense
arxiv 3 481.36 659.05 2 960.09 2 030.30
citeseer-sub 284.85 29.54 125.91 50.76
go 10.35 10.89 44.45 34.59
pubmed 497.40 47.69 163.82 67.06
yago 472.03 8.19 19.56 19.07

query on small real sparse
agrocyc 111.19 7.72 23.79 7.13
amaze 228.33 5.20 539.23 5.27
anthra 93.99 7.50 22.70 6.86
ecoo 120.25 8.93 26.80 7.35
human 110.57 8.36 19.91 7.36
kegg 217.18 6.24 620.97 6.14
mtbrv 110.21 8.38 26.36 7.26
nasa 28.05 9.34 57.78 13.30
vchocyc 98.78 8.54 24.77 7.44
xmark 73.23 37.75 141.05 17.83

query on stanford
email-EuAll 24 598.30 15.00 4 786.67 19.34
p2p-Gnutella31 26.73 7.04 716.31 8.28
soc-LiveJournal1 68 717.30 25.76 175 111.00 25.53
web-Google 23 431.80 23.68 55 371.00 25.14
wiki-Talk 2 713.15 25.98 28 303.80 32.65

Table 5.3: Query times of 100 000 positive or negative queries in milliseconds. Comparing
P2REACH with and without Search Spaces (both without DFS-Trees and
without Toplogical Levels)

39

5. Experiments

Other than in Section 5.2.1, we enable our pruning and shortcutting techniques for all
configurations we use in this Section.

We see in Table 5.4 and Table 5.5 that p2reach-sdlb and p2reach-dl have nearly the same
query times on all graphs. Whereas p2reach-sdl provides a great speed up for dense graphs,
on both, positive and negative queries. For positive queries on random10m10x, p2reach-sdl
is nearly 18 times faster than p2reach-sdlb and p2reach-dl. Therefore, Search Spaces
obtained using our priority function enable P2REACH to scale on large and dense graphs.

5.2.3 Topological Levels and DFS-Trees

P2REACH uses Topological Levels and DFS-Trees to prune the search space during the
BFS, further we use DFS-Trees to shortcut if possible. We compare

• p2reach-sdl with all methods enabled,

• p2reach-sl, which is missing DFS-Trees,

• p2reach-sd, which is missing Topological Levels and

• p2reach-s, which is missing both

on positive and negative queries.

We see in Table 5.6 that for positive queries DFS-Trees provide a speedup up to a factor
of 15 on arxiv. Best query times for positive queries come from either p2reach-sdl or
p2reach-sd. The latter performs better in most cases due to less overhead of negative
pruning checks. Looking at the query times of p2reach-sl we can see that checking for
Topological Levels slows the BFS down in most cases, but as we can see for rand10m10x
and rand1m10x it can even provide a minor speedup on large dense graphs.

In Table 5.7 we see that p2reach-sdl performs the best on nearly all graphs for negative
queries. If we compare p2reach-sl and p2reach-sd with p2reach-s we observe that both
pruning methods provide a good speedup. Combined we achieve a speedup up to a factor
of nearly 100 for arxiv.

5.2.4 Query Time Distribution

Figures 5.1, 5.2 and 5.3 show the query time distribution of 100000 random queries on our
test graphs. We used the <chrono> classes of C++11 to obtain query times in nanoseconds.
We chose box-and-whisker plots to summarize the distribution using whiskers, which
represent the lowest time still within 1.5 times the inner quartile range of the lower quartile,
and the highest time still within 1.5 times the inner quartile range of the upper quartile.
The red flier points are representing times that extend beyond the whiskers, called outliers.

Throughout all plots we see, that the lower limit for a query is around 100 nanoseconds.
For small graphs, the median of the query time is between 100 and 120 nanoseconds. Even
the third quartile ranges around 100 to 120 nanoseconds for most small graphs. Only
pubmed, arxiv and citeseer-sub have a third quartile of up to 300. Concerning small
real sparse graphs, the outliers mainly stay well below 1 000 nanoseconds. For small real
dense graphs, the outliers extend up to 40 microseconds. In Figure 5.2, we observe that
the query times on graphs of the stanford dataset have slightly higher medians, still below
200 nanoseconds. The according outliers rarely extend above 1 000 nanoseconds.

Figure 5.3 depicts the query distributions on the large real and large random test sets. For
large real graphs, the query time distribution for negative is similar to previous test sets.
The medians range between 200 and 300 nanoseconds, and the third quartile stays below 300
nanoseconds. The whiskers reach out up to 500 nanoseconds. For cit-Patents the outliers

40

5.2. Experiments on P2REACH

positive
p2reach_sdl p2reach_sdlb p2reach_dl

query on large random
random10m10x 78 060.90 1 281 320.00 1 384 970.00
random10m5x 1 457.01 6 628.25 7 567.84
random10m2x 71.47 76.02 78.77
random1m10x 19 982.90 134 655.00 143 967.00
random1m5x 1 009.24 4 435.46 5 038.19
random1m2x 30.41 33.74 34.75

query on large real
cit-Patents 1 438.80 7 828.89 9 221.59
citeseer 4.00 4.02 4.00
citeseerx 49.20 113.98 119.56
go-uniprot 45.23 528 002.00 529 803.00
uniprotenc-100m 5.46 5.37 5.39
uniprotenc-150m 6.08 6.01 6.01
uniprotenc-22m 3.60 3.60 3.61

query on small real dense
arxiv 40.52 86.12 93.31
citeseer-sub 12.78 25.97 30.68
go 5.05 5.10 5.04
pubmed 20.17 66.44 81.31
yago 4.39 8.39 11.80

query on small real sparse
agrocyc 1.26 1.21 1.21
amaze 1.25 1.22 1.23
anthra 1.25 1.23 1.22
ecoo 1.29 1.23 1.22
human 1.31 1.26 1.26
kegg 1.35 1.37 1.34
mtbrv 1.25 1.22 1.21
nasa 2.25 2.32 2.21
vchocyc 1.26 1.23 1.28
xmark 4.15 5.69 5.97

query on stanford
email-EuAll 3.06 3.26 3.21
p2p-Gnutella31 3.50 3.51 3.46
soc-LiveJournal1 5.02 5.32 5.32
web-Google 5.09 5.38 5.46
wiki-Talk 6.12 6.34 6.10

Table 5.4: Query times of 100 000 positive queries in milliseconds. Comparing P2REACH
with Search Spaces obtained using a priorty queue, without using a priorty
queue and without Search Spaces. All pruning and shortcutting techniques are
enabled.

41

5. Experiments

negative
p2reach_sdl p2reach_sdlb p2reach_dl

query on large random
random10m10x 14 561.60 122 477.00 131 245.00
random10m5x 497.67 1 355.04 1 495.10
random10m2x 58.91 56.75 55.17
random1m10x 4 250.29 13 560.40 14 306.60
random1m5x 324.51 885.78 959.64
random1m2x 21.46 20.64 19.91

query on large real
cit-Patents 154.46 361.12 397.51
citeseer 3.49 3.52 3.60
citeseerx 13.12 16.93 16.82
go-uniprot 5.47 22.92 23.13
uniprotenc-100m 7.72 7.85 7.89
uniprotenc-150m 10.36 10.38 10.43
uniprotenc-22m 3.24 3.22 3.23

query on small real dense
arxiv 17.85 16.70 17.19
citeseer-sub 6.11 8.29 8.73
go 3.07 3.19 3.05
pubmed 5.09 5.66 5.80
yago 1.96 3.66 4.12

query on small real sparse
agrocyc 0.72 0.70 0.70
amaze 0.87 0.85 0.87
anthra 0.69 0.68 0.68
ecoo 0.71 0.70 0.71
human 0.75 0.74 0.74
kegg 0.92 0.89 0.90
mtbrv 0.72 0.70 0.75
nasa 2.13 2.13 1.89
vchocyc 0.73 0.71 0.76
xmark 2.21 2.08 1.97

query on stanford
email-EuAll 2.82 2.87 2.86
p2p-Gnutella31 1.00 0.99 1.04
soc-LiveJournal1 2.96 2.94 3.02
web-Google 4.23 4.24 4.26
wiki-Talk 3.48 3.45 3.96

Table 5.5: Query times of 100 000 negative queries in milliseconds. Comparing P2REACH
with Search Spaces obtained using a priorty queue, without using a priorty
queue and without Search Spaces. All pruning and shortcutting techniques are
enabled.

42

5.2. Experiments on P2REACH

positive
p2reach_sdl p2reach_s p2reach_sd p2reach_sl

query on large random
random10m10x 78 060.90 119 507.00 87 189.80 83 091.20
random10m5x 1 457.01 1 609.27 1 460.53 1 647.99
random10m2x 71.47 122.33 70.66 128.53
random1m10x 19 982.90 40 567.70 23 307.80 23 230.30
random1m5x 1 009.24 1 183.01 1 149.51 1 182.51
random1m2x 30.41 68.64 29.57 74.66

query on large real
cit-Patents 1 438.80 1 780.24 1 456.08 1 942.98
citeseer 4.00 17.45 3.46 19.36
citeseerx 49.20 130.15 48.31 147.50
go-uniprot 45.23 68.98 44.69 74.58
uniprotenc-100m 5.46 58.53 4.48 61.16
uniprotenc-150m 6.08 82.71 5.10 86.47
uniprotenc-22m 3.60 15.05 2.81 15.89

query on small real dense
arxiv 40.52 648.04 40.15 536.14
citeseer-sub 12.78 29.06 12.42 32.30
go 5.05 10.09 4.84 11.26
pubmed 20.17 47.04 20.51 46.00
yago 4.39 7.58 4.04 9.30

query on small real sparse
agrocyc 1.26 7.45 1.08 8.55
amaze 1.25 4.72 1.01 5.27
anthra 1.25 7.15 1.08 8.08
ecoo 1.29 8.61 1.12 8.95
human 1.31 7.97 1.13 8.53
kegg 1.35 5.50 1.10 6.16
mtbrv 1.25 8.33 1.07 9.40
nasa 2.25 9.01 2.00 9.85
vchocyc 1.26 8.20 1.08 8.46
xmark 4.15 35.82 3.76 34.63

query on stanford
email-EuAll 3.06 12.20 2.57 13.91
p2p-Gnutella31 3.50 6.28 3.24 7.12
soc-LiveJournal1 5.02 25.00 4.47 27.75
web-Google 5.09 21.21 4.54 23.97
wiki-Talk 6.12 22.96 5.65 25.11

Table 5.6: Query times of 100 000 positive queries in milliseconds. Comparing P2REACH
with different combinations of Topological Levels and DFS-Trees

43

5. Experiments

negative
p2reach_sdl p2reach_s p2reach_sd p2reach_sl

query on large random
random10m10x 14 561.60 65 684.10 18 850.30 15 519.60
random10m2x 58.91 128.42 73.31 71.92
random10m5x 497.67 995.20 580.06 501.12
random1m10x 4 250.29 37 722.00 6 396.85 4 969.61
random1m2x 21.46 73.79 32.91 30.46
random1m5x 324.51 702.22 387.20 337.10

query on large real
cit-Patents 154.46 779.37 194.03 207.68
citeseer 3.49 19.86 9.53 4.22
citeseerx 13.12 143.88 36.89 26.98
go-uniprot 5.47 104.99 34.76 3.71
uniprotenc-100m 7.72 81.57 53.15 8.73
uniprotenc-150m 10.36 114.20 61.22 13.72
uniprotenc-22m 3.24 30.72 17.49 2.06

query on small real dense
arxiv 17.85 1 992.28 34.95 28.84
citeseer-sub 6.11 50.73 11.01 10.41
go 3.07 32.61 6.96 4.05
pubmed 5.09 67.22 9.42 7.45
yago 1.96 18.81 5.44 2.51

query on small real sparse
agrocyc 0.72 6.86 3.29 0.75
amaze 0.87 4.64 3.46 0.90
anthra 0.69 6.45 3.27 0.69
ecoo 0.71 6.86 3.48 0.73
human 0.75 6.22 4.06 0.73
kegg 0.92 5.39 3.70 1.25
mtbrv 0.72 6.86 3.22 0.74
nasa 2.13 12.80 4.99 2.56
vchocyc 0.73 6.88 3.27 0.81
xmark 2.21 16.39 4.60 2.87

query on stanford
email-EuAll 2.82 16.14 11.41 3.48
p2p-Gnutella31 1.00 7.07 4.04 0.81
soc-LiveJournal1 2.96 23.89 17.42 5.34
web-Google 4.23 23.07 13.29 5.94
wiki-Talk 3.48 29.57 15.33 3.03

Table 5.7: Query times of 100 000 negative queries in milliseconds. Comparing P2REACH
with different combinations of Topological Levels and DFS-Trees

44

5.3. Comparison with TF and GRAIL

extend to over one millisecond for one query and for citeseerx up to 300 microseconds.
Whereas, concerning the rest of the test set, outliers stay below 100 microseconds. For
positive queries, we observe a similar result, except for cit-Patents, on which the median
is 1 000 nanoseconds and the third quartile is at 6 000 nanoseconds.

On large random graphs, the ranges between the first and third quartile grow larger as
the graphs get denser. For negative queries the medians stay below 300 nanoseconds, even
though the third quartile can range up to 100 microseconds on random10m10x. The outliers
reach out to more than 10 milliseconds, for the latter. For positive queries the medians
and the first quartiles reach higher, up to 200 milliseconds on random10m10x. However,
the outliers are nearly the same than for negative queries.

(a) small real spare, positive queries (b) small real spare, negative queries

(c) small real dense, positive queries (d) small real dense, negative queries

Figure 5.1: Query time distribution for positive and negative queries on small real graphs

5.3 Comparison with TF and GRAIL
In this section we compare P2REACH with GRAIL [34], and TF [6]. All algorithms have
been publicly provided by the authors and have only been modified to unify their output
for automated comparison. Due to memory restrictions some algorithms have been unable
to process some input graphs, see the according sections for further information. We used
GRAIL with both, two (GRAIL) and five (GRAIL5) traversals, which define the number
of intervals in the labels. In Section 5.3 we focus on GRAIL5, as it scales better on large
graphs. Furthermore, we recommend [6] for a further comparison with other reachability
algorithm, as their experiments can be easily converted and compared with our results.

45

5. Experiments

(a) stanford, positive queries (b) stanford, negative queries

Figure 5.2: Query time distribution for positive and negative queries on our stanford graph
set

5.3.1 Varying Degree and Size

We used Algorithm 5.1 and a Kronecker graph [21] generator according to the Graph500
benchmark [23] to generate graphs with varying node and edge sets. We directed the
edges of the Kronecker graphs by using their integer labels as a topological ordering. In
order to compare the impact of the average node degree we generated random DAGs using
Algorithm 5.1 with 10,000, 100,000 and 1 million nodes and a varying average node degree
from 20 to 26. Further we generated Kronecker graphs with 216 nodes and varying average
node degree between 20 and 26. To compare the impact of |V | we generated random DAGs
using Algorithm 5.1 with varying sizes from 104 to 108 and |E|/|V | = 2. Also we generated
Kronecker graphs with sizes from 210 to 223 with the parameters used in the Graph500
benchmark.

Varying Degree

In Figure 5.4 we see construction and query time for Kronecker graphs with varying degree.
P2REACH needs less construction time than GRAIL5 and is on a par with GRAIL, whereas
TF is several orders of magnitude slower and was unable to handle degrees beyond 2 on
48GB main memory. Concerning the query times, P2REACH manages to answer the
100000 random queries faster than GRAIL, GRAIL5 and TF. As the graphs get denser
P2REACH is more than an order of magnitude faster than GRAIL. For node degrees of 1
and 2 TF provides query times faster than GRAIL but much slower than P2REACH.

As wee see in Figure 5.5 on random graphs with 10,000 nodes and varying node degree
GRAIL and P2REACH have practically the same construction time, GRAIL5 is by a factor
of three slower. Beginning with |E|/|V | = 8 TF is several orders of magnitude slower in
construction than P2REACH and finally failed on a node degree of 64 due to memory
consumption. For query processing TF and P2REACH are very similar, P2REACH is
three time faster on |E|/|V | = 1 whereas TF is three times faster than P2REACH on
|E|/|V | = 4. At |E|/|V | = 32 P2REACH is faster than TF which fails on the last graph.
GRAIL and GRAIL5 are slower by an order of magnitude than P2REACH for denser
random graphs regarding query time.

46

5.3. Comparison with TF and GRAIL

(a) large real, positive queries (b) large real, negative queries

(c) large random, positive queries (d) large random, negative queries

Figure 5.3: Query time distribution for positive and negative queries on large graphs

1 2 4 8 16 32 64
|E|/|V |

101

102

103

104

105

co
ns

tr
uc

ti
on

ti
m

e
in

m
s

TF
GRAIL5
GRAIL
P2REACH

(a) construction time

1 2 4 8 16 32 64
|E|/|V |

100

101

102

103

qu
er

y
ti

m
e

in
m

s

TF
GRAIL5
GRAIL
P2REACH

(b) query time

Figure 5.4: Kronecker graphs |V | = 216, varying |E|/|V | from 20 to 26

In Figure 5.6 we can see that for random graphs with 100,000 nodes and varying degree we
get the same result as for random graphs with 10,000 nodes, except TF fails in construction
starting at |E|/|V | = 16.

47

5. Experiments

1 2 4 8 16 32 64
|E|/|V |

100

101

102

103

104

105

106

co
ns

tr
uc

ti
on

ti
m

e
in

m
s

TF
GRAIL5
GRAIL
P2REACH

(a) construction time

1 2 4 8 16 32 64
|E|/|V |

100

101

102

103

104

qu
er

y
ti

m
e

in
m

s

TF
GRAIL5
GRAIL
P2REACH

(b) query time

Figure 5.5: random DAGs |V | = 10000, varying |E|/|V | from 20 to 26

1 2 4 8 16 32 64
|E|/|V |

101

102

103

104

105

106

co
ns

tr
uc

ti
on

ti
m

e
in

m
s

TF
GRAIL5
GRAIL
P2REACH

(a) construction time

1 2 4 8 16 32 64
|E|/|V |

100

101

102

103

104

105

qu
er

y
ti

m
e

in
m

s

TF
GRAIL5
GRAIL
P2REACH

(b) query time

Figure 5.6: random DAGs |V | = 100000, varying |E|/|V | from 20 to 26

Varying Size

To study the impact of the size of V we generated random graphs with |V | from 104 to 108

and |E|/|V | = 2, random graphs with |V | from 104 to 107 with |E|/|V | = 8 and Kronecker
graphs with |V | from 210 to 223 according to the Graph500 benchmark.

Figure 5.7 shows the construction and query times on Kronecker graphs with varying |V |.
We can observe that GRAIL,GRAIL5 and P2REACH scale linear for the construction time
and that P2REACH and GRAIL have nearly the same construction time. P2REACH is
slightly faster on small graphs and slightly slower on large graphs, as the logn factor of
the priority queue when constructing the search spaces gets larger than the constant factor

|V | |E| |V | |E|
210 23 735 217 5 069 222
211 53 032 218 10 499 510
212 117 160 219 21 631 044
213 254 721 220 44 353 834
214 545 888 221 90 575 952
215 1 157 119 222 184 358 089
216 2 431 565 223 374 192 078

Table 5.8: Kronecker graphs with varying |V | and |E|

48

5.3. Comparison with TF and GRAIL

of GRAIL. TF is at least two orders of magnitude slower than P2REACH and fails due to
lack of memory on graphs larger than 212 nodes. Regarding query times P2REACH is at
least one order of magnitude faster than GRAIL,GRAIL5 and TF.

210 211 212 213 214 215 216 217 218 219 220 221 222 223

|V |
100

101

102

103

104

105

106

co
ns

tr
uc

ti
on

ti
m

e
in

m
s

TF
GRAIL5
GRAIL
P2REACH

(a) construction time

210 211 212 213 214 215 216 217 218 219 220 221 222 223

|V |
100

101

102

103

104

105

qu
er

y
ti

m
e

in
m

s

TF
GRAIL5
GRAIL
P2REACH

(b) query time

Figure 5.7: Kronecker graphs with |V | from 210 to 223 and varying |E| see Table 5.8

In Figure 5.8 we show construction and query times on random graphs with |E|/|V | = 2
with |V | varying from 104 to 108. All algorithms scale linear regarding node size, where
P2REACH and GRAIL are three times faster than TF and GRAIL5. The query times of
TF are the best in all cases. As the graphs get larger P2REACH gets slower up to a factor
of 4 compared with TF on graphs of size 108. Starting at |V | = 107 GRAIL is slightly
faster than P2REACH, as the graphs are thin and even for 100,000 random queries none is
positive and GRAIL performs very well on negative queries.

104 105 106 107 108

|V |
100

101

102

103

104

105

106

co
ns

tr
uc

ti
on

ti
m

e
in

m
s

TF
GRAIL5
GRAIL
P2REACH

(a) construction time

104 105 106 107 108

|V |
100

101

102

103

qu
er

y
ti

m
e

in
m

s

TF
GRAIL5
GRAIL
P2REACH

(b) query time

Figure 5.8: Random graphs with |V | from 104 to 108 and |E|/|V | = 2

Furthermore, we study random graphs with |V | between 104 and 107 and |E|/|V | = 8.
Similar to Kronecker graphs we can see that the construction times for GRAIL and
P2REACH are nearly the same, GRAIL5 is slower by a factor of two. TF has a construction
time slower by two orders of magnitude compared with P2REACH and fails to run on
graphs larger than 105 nodes. Regarding query times P2REACH is an order of magnitude
faster than GRAIL and GRAIL5. TF runs slightly faster than P2REACH but as mentioned
fails as the graphs grow larger.

49

5. Experiments

104 105 106 107

|V |
101

102

103

104

105

106

co
ns

tr
uc

ti
on

ti
m

e
in

m
s

TF
GRAIL5
GRAIL
P2REACH

(a) construction time

104 105 106 107

|V |
101

102

103

104

105

106

qu
er

y
ti

m
e

in
m

s

TF
GRAIL5
GRAIL
P2REACH

(b) query time

Figure 5.9: Random graphs with |V | from 104 to 107 and |E|/|V | = 8

Index Size

In Figure 5.10 we see the index size of GRAIL, GRAIL5, TF and P2REACH for the
previous experiments. The index size accumulates the size of the auxiliary data and in case
of GRAIL and P2REACH, the size of E(G). In technical terms, the index size represents
the number of integer values an algorithm needs to store.

GRAIL, GRAIL5 and P2REACH have nearly the same index sizes as the have a constant
label size per node, and need to store the edge set for traversal. Whereas the index size of
TF depends mainly on the density of the graphs and does not scale to dense large graphs.
We observed, that the memory consumption of the construction phase of TF scales even
worse than the index size.

Concerning scaling on degree and size we can finally say that P2REACH scales at least an
order of magnitude better than GRAIL and GRAIL5 on large dense graphs. Furthermore,
we observe that TF is unable to process those graphs. It performs especially bad on larger
Kronecker graphs as they contain long paths. Regarding construction time P2REACH is
on a par with GRAIL and scales very good even though it needs a priority queue, which
adds an n logn factor.

5.3.2 Small Real Datasets
Table 5.9 shows the construction time, index size and query time on our small real sparse
dataset. As GRAIL and P2REACH need to maintain the edge set of the DAG for traversal
and TF does not, we decided to take the edge set into account to calculate the index size
needed. Furthermore, we present the index size as ratio to |V |, one could say the average
label size of a node, despite it also refers to the number of edges in the DAG. We provide
the query times for the three of our query types rnd, pos and neg for 100,000 queries
respectively. Also we added a column #POS, which shows the amount of positive queries
for the rnd test sets.

Concerning construction time on the small real sparse dataset, P2REACH performs best
and is a least one order of magnitude faster than TF and at least four times faster than
GRAIL. As for index size TF provides the smallest labels up to two times smaller than
P2REACH.

The query times of P2REACH are at least three times smaller than those of GRAIL and
up to two times smaller than those of TF. This holds for random, positive and negative
queries and especially on positive queries P2REACH performs an order of magnitude faster
than GRAIL.

50

5.3. Comparison with TF and GRAIL

104 105 106 107 108

|V |
104

105

106

107

108

109

1010

in
de

x
si

ze

TF
GRAIL5
GRAIL
P2REACH

(a) random |V | = 104 − 108, |E|/|V | = 2

104 105 106 107

|V |
105

106

107

108

109

in
de

x
si

ze

TF
GRAIL5
GRAIL
P2REACH

(b) random |V | = 104 − 107, |E|/|V | = 8

210 211 212 213 214 215 216 217 218 219 220 221 222 223

|V |
104

105

106

107

108

109

in
de

x
si

ze

TF
GRAIL5
GRAIL
P2REACH

(c) Kronecker |V | = 210 − 223

1 2 4 8 16 32 64
|E|/|V |

104

105

106

107

108

in
de

x
si

ze

TF
GRAIL5
GRAIL
P2REACH

(d) random |V | = 104, |E|/|V | from 20 to 26

1 2 4 8 16 32 64
|E|/|V |

105

106

107

108

109

in
de

x
si

ze

TF
GRAIL5
GRAIL
P2REACH

(e) random |V | = 105, |E|/|V | from 20 to 26

1 2 4 8 16 32 64
|E|/|V |

105

106

107

108

in
de

x
si

ze

TF
GRAIL5
GRAIL
P2REACH

(f) Kronecker |V | = 216, |E|/|V | from 20 to 26

Figure 5.10: Index sizes, in number of entries, of graphs with varying |V | and varying
|E|/|V |

The results of our small real dense dataset are displayed in Table 5.10. Again P2REACH
performs the best regarding construction time, P2REACH is at least one order of magnitude
faster than TF and twice as fast as GRAIL. On arxiv the construction time of TF is three
orders of magnitude slower than of P2REACH.

The index size of TF on arxiv is 30 times larger than of P2REACH. In general the index
sizes on the small real dense dataset vary slightly but stay in close range. Query times are
in a closer range then on the sparse dataset.

TF performs best for random, negative and positive queries on most graphs of this dataset.
P2REACH however, stays in close range for random and negative queries, and is at most a

51

5. Experiments

GRL5 TF P2R
agrocyc 15.95 26.54 2.18
amaze 5.03 9.54 0.72
anthra 15.66 43.46 2.11
ecoo 16.60 33.57 2.15
human 70.16 75.18 6.89
kegg 4.82 9.85 0.77
mtbrv 11.74 17.49 1.66
nasa 6.59 18.59 1.41
vchocyc 11.89 41.41 1.62
xmark 7.28 23.60 1.35

(a) construction time in ms

GRL5 TF P2R
agrocyc 17 13 15
amaze 17 7 15
anthra 17 12 15
ecoo 17 13 15
human 17 9 15
kegg 17 7 15
mtbrv 17 8 15
nasa 17 11 15
vchocyc 17 14 15
xmark 17 11 15

(b) index size, in number of integers per node
random positive negative

GRL5 TF P2R #POS GRL5 TF P2R GRL5 TF P2R
agrocyc 4.37 1.67 0.73 105 23.67 21.54 1.28 3.74 1.66 0.72
amaze 7.22 1.19 1.07 17 075 25.41 1.70 1.28 2.80 0.95 0.88
anthra 3.82 1.55 0.69 98 23.00 16.46 1.25 3.98 1.52 0.69
ecoo 3.92 1.65 0.74 103 23.89 3.83 1.30 3.91 1.68 0.72
human 6.51 1.44 0.74 18 23.81 22.22 1.34 6.41 1.43 0.75
kegg 8.05 1.35 1.19 20 174 26.09 1.95 1.30 3.01 1.02 0.97
mtbrv 3.66 1.47 0.73 157 23.79 1.82 1.31 3.60 1.34 0.72
nasa 5.59 2.56 2.05 552 29.60 4.25 2.28 4.79 2.52 2.07
vchocyc 3.71 1.60 0.72 146 23.45 3.35 1.26 3.56 1.64 0.73
xmark 6.95 2.61 2.03 1 443 24.69 7.69 4.12 6.37 2.59 2.14

(c) query time for 100 000 queries in ms

Table 5.9: small real sparse graphs

two times slower for positive queries. For random and negative queries P2REACH is even
up to two times faster than TF on arxiv. Furthermore, P2REACH is two times faster
than TF and ten times faster than GRAIL for positive queries on yago. Throughout all
graphs of this dataset, GRAIL is at least two times slower than TF and P2REACH.

GRL5 TF P2R
arxiv 16.77 6 648.44 6.36
citeseer-sub 21.92 109.64 8.18
go 9.64 33.82 2.61
pubmed 17.11 86.86 7.74
yago 13.78 47.83 4.37

(a) construction time in ms

GRL5 TF P2R
arxiv 27 646 25
citeseer-sub 20 26 18
go 18 12 16
pubmed 20 29 18
yago 22 15 20

(b) index size, in number of integers per node
random positive negative

GRL5 TF P2R #POS GRL5 TF P2R GRL5 TF P2R
arxiv 98.50 36.08 21.43 15 441 224.43 26.91 40.75 54.73 43.16 18.24
citeseer-sub 12.71 4.08 6.18 379 64.75 6.86 12.59 12.34 4.17 6.12
go 5.96 2.92 3.00 236 27.40 4.69 5.00 5.85 2.94 3.09
pubmed 14.86 4.05 5.20 695 107.25 9.23 20.20 13.39 4.06 5.14
yago 5.27 1.70 1.95 156 43.81 9.35 4.41 5.16 1.67 1.98

(c) query time for 100 000 queries in ms

Table 5.10: small real dense graphs

5.3.3 Large Synthetic Datasets

In Section 5.2.4 we saw that TF does not scale for dense large graphs, thus TF failed to
run on random1m10x and random10m10x due to memory limitation. In Table 5.11 we see
also see that TF performed worst regarding construction on the large random dataset,
being more than an order of magnitude slower than P2REACH, which was fastest on all
graphs of this dataset. GRAIL was at most by a factor of three slower than P2REACH.

For random1m2x and random10m2x TF has the smallest index size, slightly smaller than
P2REACH followed by GRAIL. Whereas for random1m5x and random10m5x the index size
of TF is one order of magnitude larger than the index sizes of P2REACH and GRAIL.

TF provides the fastest query times for random, positive and negative queries on large
random graphs, however only up to a degree of 5, as it failed to run on denser graphs. For
|E|/|V | = 2 P2REACH and GRAIL are in close range but P2REACH is faster by a factor
of four for positive queries. Starting at |E|/|V | = 5, P2REACH is at least five times faster
than GRAIL and for |E|/|V | = 10 P2REACH is over an order of magnitude faster than
GRAIL.

52

5.3. Comparison with TF and GRAIL

GRL5 TF P2R
random10m10x 143 619 – 70 419
random10m5x 96 466 484 582 41 892
random10m2x 63 232 71 630 22 433
random1m10x 9 327 – 5 267
random1m5x 6 565 42 223 3 152
random1m2x 4 618 5 595 1 751

(a) construction

GRL5 TF P2R
random10m10x 26 – 24
random10m5x 21 248 19
random10m2x 18 12 16
random1m10x 26 – 24
random1m5x 21 250 19
random1m2x 18 12 16

(b) index size, in number of integers per node
random positive negative

GRL5 TF P2R #POS GRL5 TF P2R GRL5 TF P2R
random10m10x 589 450 – 16 611 5 487 2 002 120 – 76 301 262 931 – 16 620
random10m5x 2 722 52 482 16 7 799 68 1 384 2 735 61 484
random10m2x 53 18 58 0 192 28 71 56 17 58
random1m10x 84 840 – 5 179 9 941 231 149 – 19 555 34 005 – 4 193
random1m5x 1 835 44 327 190 5 253 55 975 1 787 44 315
random1m2x 37 11 21 1 137 17 30 37 11 21

(c) query time for 100 000 queries in ms

Table 5.11: large random graphs

5.3.4 Large Real and Stanford Datasets

In Table 5.12 we see the results on the large real dataset. P2REACH is at least five times
faster than TF regarding construction time except for citeseer for which P2REACH
still beats TF by a factor of more than two. GRAIL is at least two times slower for the
citation networks and for the UniProt RDF graphs it is an order of magnitude slower than
P2REACH.

With respect to the index size, TF needs at most half the label size of P2REACH and
GRAIL except for cit-Patents and citeseerx. For cit-Patents TF has an index size
more 15 times larger than P2REACH and for citeseerx its four times larger.

As for the query times, P2REACH provides the smallest query times for random, positive
and negative queries on the uniprotenc graphs and on citeseerx, but TF stays in close
range. TF performs best on cit-Patents, TF performs the best, beating P2REACH
by a factor of three for random and negative queries and by a factor of nearly 20 for
positive queries. Furthermore, on citeseer TF is about four times faster for negative
and random queries than P2REACH, but the latter is twice as fast as TF for positive
queries. Throughout all graphs, P2REACH answers negative and random queries between
two and five times faster than GRAIL. For negative queries GRAIL is more than an order
of magnitude slower, except on cit-Patents.

GRL5 TF P2R
cit-Patents 22 006 216 741 9 921
citeseer 2 213 810 319
citeseerx 21 580 84 154 9 022
go-uniprot 35 453 63 242 6 231
uniprotenc-100m 73 385 39 839 6 897
uniprotenc-150m 133 436 56 939 11 735
uniprotenc-22m 5 463 2 237 501

(a) construction time in ms

GRL5 TF P2R
cit-Patents 20 334 18
citeseer 16 6 14
citeseerx 18 67 16
go-uniprot 21 8 19
uniprotenc-100m 17 7 15
uniprotenc-150m 17 7 15
uniprotenc-22m 17 7 15

(b) index size, in number of integers per node
random positive negative

GRL5 TF P2R #POS GRL5 TF P2R GRL5 TF P2R
cit-Patents 562.48 53.42 157.08 52 5 541.42 85.82 1 431.63 565.34 51.58 150.92
citeseer 11.07 0.94 3.46 243 98.41 10.85 3.98 11.03 0.93 3.53
citeseerx 40.86 19.11 13.28 0 756.46 99.62 48.72 39.18 18.67 13.04
go-uniprot 10.51 4.87 5.41 0 153.54 113.46 44.98 10.74 5.13 5.46
uniprotenc-100m 18.02 9.53 7.82 0 115.53 14.21 5.41 17.90 9.50 7.75
uniprotenc-150m 21.38 11.52 10.40 0 136.64 18.09 5.95 24.59 11.45 10.85
uniprotenc-22m 8.94 3.76 3.23 0 82.56 6.67 3.56 9.52 3.77 3.23

(c) query time for 100 000 queries in ms

Table 5.12: large real graphs

Table 5.13 displays the results of the stanford dataset. P2REACH is nearly twice as fast as
TF regarding construction time and 5 to 8 times faster than GRAIL.

TF only needs half the index size of P2REACH and GRAIL for all graphs. Whereas
P2REACH provides the fastest query times on all graphs of the test set except on

53

5. Experiments

email-EuAll for all query types. P2REACH is nearly two times faster on positive queries
than TF and an order of magnitude faster than GRAIL. For random and negative queries
TF and P2REACH perform quite alike, whereas GRAIL is around three times slower.

GRL5 TF P2R
email-EuAll 655.28 151.55 78.59
p2p-Gnutella31 109.30 46.22 14.83
soc-LiveJournal1 2 936.28 657.17 337.45
web-Google 1 105.72 470.92 230.89
wiki-Talk 8 220.39 1 676.31 987.09

(a) construction time in ms

GRL5 TF P2R
email-EuAll 17 6 15
p2p-Gnutella31 17 7 15
soc-LiveJournal1 17 7 15
web-Google 17 7 15
wiki-Talk 17 7 15

(b) index size, in number of integers per node
random positive negative

GRL5 TF P2R #POS GRL5 TF P2R GRL5 TF P2R
email-EuAll 12.55 2.15 2.99 5 163 65.67 9.12 3.04 8.90 1.52 2.84
p2p-Gnutella31 7.70 1.70 1.06 766 38.08 5.40 3.41 6.86 1.71 1.02
soc-LiveJournal1 25.91 6.12 3.59 21 317 75.95 11.14 5.07 10.37 3.86 2.94
web-Google 25.39 5.63 4.45 14 927 73.03 9.30 5.15 16.13 4.65 4.24
wiki-Talk 10.27 4.24 3.50 800 106.11 15.65 7.33 11.88 4.08 3.47

(c) query time for 100 000 queries in ms

Table 5.13: stanford graphs

54

6. Conclusion and Future Work

6.1 Conclusion
We engineered an efficient and scalable algorihm to answer reachability queries on directed
graphs. P2REACH provides better query performance than other methods that scale
comparable and scales better than other methods with comparable query performance.
Furthermore, we provide the best positive query performance on a wide range of instances.
We introduced several methods for pruning and shortcutting during an online search on a
directed acyclic graph, which can be combined with other techniques, and stand out for
themselves. In Section 5.3 we saw that TF is unable to process large and dense graphs.
Regarding query performance, TF was mostly on a par with P2REACH in our experiments.
In the cases TF povided faster query times, it was at the cost of construction time or index
size. GRAIL was able to handle all graphs of our experiments but P2REACH provides
faster query times, up to an order of magnitude faster, especially for positive queries.

6.2 Future Work
There is still room for improvement left concerning our approach. For once, the auxiliary
data used by P2REACH could be compressed and stored more efficiently, since pmin and
pmax are often invalid or useless peek nodes and ptree and tl till can be shared between nodes.
Furthermore, more work can be done regarding the priority function, that determines
the ordering of the node contractions, when constructing the Search Spaces. Similarly, a
better heuristic for the ordering of the DFS-Trees could improve the query performance.
Additionally, P2REACH could be integrated into the reachability framework introduced by
Jin et al. [15]. Concerning huge graphs with several billions nodes, a parallel construction
phase could be developed and furthermore, optimization for external memory would bring
support for even larger graphs. Also, it would be interesting how P2REACH could be
modified to handle dynamic cases.

55

Bibliography

[1] Jørgen Bang-Jensen and Gregory Z Gutin. Digraphs: Theory, Algorithms and Appli-
cations. Springer, 2009.

[2] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François Yergeau.
Extensible markup language (XML). World Wide Web Journal, 2(4):27–66, 1997.

[3] Anita Burgun and Olivier Bodenreider. An ontology of chemical entities helps iden-
tify dependence relations among gene ontology terms. In Proceedings of the First
Symposium on Semantic Mining in Biomedicine (SMBM), 2005.

[4] Li Chen, Amarnath Gupta, and M Erdem Kurul. Stack-based algorithms for pattern
matching on dags. In Proceedings of the 31st International Conference on Very Large
Data Bases (VLDB), pages 493–504. VLDB Endowment, 2005.

[5] Yangjun Chen and Yibin Chen. An efficient algorithm for answering graph reachability
queries. In Proceedings of the 24th International Conference on Data Engineering
(ICDE), pages 893–902. IEEE, 2008.

[6] James Cheng, Silu Huang, Huanhuan Wu, and Ada Wai-Chee Fu. TF-Label: A
topological-folding labeling scheme for reachability querying in a large graph. 2013.

[7] Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun Wang, and S Yu Philip. Fast
computation of reachability labeling for large graphs. In Proceedings of the 10th
International Conference on Extending Database Technology (EDBT), pages 961–979.
Springer, 2006.

[8] Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun Wang, and Philip S Yu. Fast
computing reachability labelings for large graphs with high compression rate. In
Proceedings of the 11th International Conference on Extending Database Technology
(EDBT), pages 193–204. ACM, 2008.

[9] Edmund M Clarke. The birth of model checking. In 25 Years of Model Checking,
LNCS, pages 1–26. Springer, 2008.

[10] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance
queries via 2-hop labels. SIAM Journal on Computing, 32(5):1338–1355, 2003.

[11] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. A query
language for XML. Computer networks, 31(11):1155–1169, 1999.

[12] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. Journal of the ACM (JACM), 34(3):596–
615, 1987.

[13] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction
hierarchies: Faster and simpler hierarchical routing in road networks. In Proceedings
of the 7th International Conference on Experimental Algorithms, WEA, pages 319–333,
Berlin, Heidelberg, 2008. Springer-Verlag.

57

Bibliography

[14] H. V. Jagadish. A compression technique to materialize transitive closure. ACM Trans.
Database Syst., 15(4):558–598, December 1990.

[15] Ruoming Jin, Ning Ruan, Saikat Dey, and Jeffrey Yu Xu. SCARAB: Scaling reachability
computation on large graphs. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 169–180. ACM, 2012.

[16] Ruoming Jin, Ning Ruan, Yang Xiang, and Haixun Wang. Path-tree: An efficient
reachability indexing scheme for large directed graphs. ACM Transactions on Database
Systems (TODS), 36(1):7, 2011.

[17] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 3-hop: A high-compression
indexing scheme for reachability query. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, pages 813–826. ACM, 2009.

[18] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. Efficiently answering
reachability queries on very large directed graphs. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, pages 595–608. ACM,
2008.

[19] Markus Krummenacker, Suzanne Paley, Lukas Mueller, Thomas Yan, and Peter D
Karp. Querying and computing with BioCyc databases. Bioinformatics, 21(16):3454–
3455, 2005.

[20] Ora Lassila and Ralph R Swick. Resource description framework (RDF) model and
syntax specification. Technical report, W3C, 1999.

[21] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin
Ghahramani. Kronecker graphs: An approach to modeling networks. The Journal of
Machine Learning Research, 11:985–1042, 2010.

[22] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic Toolbox.
Springer, 2008.

[23] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. Introducing
the graph 500. Cray User’s Group (CUG), 2010.

[24] Esko Nuutila. An efficient transitive closure algorithm for cyclic digraphs. Information
Processing Letters, 52(4):207–213, 1994.

[25] Thomas Reps. Program analysis via graph reachability. Information and Software
Technology, 40(11):701–726, 1998.

[26] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 49–61. ACM, 1995.

[27] Robert Rönngren and Rassul Ayani. A comparative study of parallel and sequential
priority queue algorithms. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 7(2):157–209, April 1997.

[28] Peter Sanders. Fast priority queues for cached memory. Journal of Experimental
Algorithmics (JEA), 5:7, 2000.

[29] Ralf Schenkel, Anja Theobald, and Gerhard Weikum. Hopi: An efficient connection
index for complex xml document collections. In Proceedings of the 9th International
Conference on Extending Database Technology (EDBT), pages 237–255, 2004.

[30] Silke Trißl and Ulf Leser. Fast and practical indexing and querying of very large graphs.
In Proceedings of the 2007 ACM SIGMOD International Conference on Management
of Data, pages 845–856. ACM, 2007.

58

Bibliography

[31] Sebastiaan J van Schaik and Oege de Moor. A memory efficient reachability data
structure through bit vector compression. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, pages 913–924. ACM, 2011.

[32] Haixun Wang, Hao He, Jun Yang, Philip S Yu, and Jeffrey Xu Yu. Dual labeling:
Answering graph reachability queries in constant time. In Proceedings of the 22nd
International Conference on Data Engineering (ICDE), pages 75–75. IEEE, 2006.

[33] Ioannis Xenarios, Danny W. Rice, Lukasz Salwinski, Marisa K. Baron, Edward M.
Marcotte, and David Eisenberg. DIP: the database of interacting proteins. Nucleic
Acids Research, 28(1):289–291, 2000.

[34] Hilmi Yildirim, Vineet Chaoji, and Mohammed J Zaki. GRAIL: Scalable reachability
index for large graphs. Proceedings of the VLDB Endowment, 3(1-2):276–284, 2010.

59

	Contents
	1 Introduction
	1.1 Related Work
	1.1.1 GRAIL
	1.1.2 Topological Folding

	1.2 Overview

	2 Preliminaries
	2.1 Graph Definitions
	2.2 DAG-Properties
	2.3 Algorithms and Data Structures
	2.3.1 First-In-First-Out Queue (FIFO)
	2.3.2 Priority Queue
	2.3.3 Depth-First-Search
	2.3.4 Breadth-First-Search
	2.3.5 Bidirectional Search

	3 Prune to Reach
	3.1 Search Spaces
	3.2 Topological Levels
	3.3 DFS-Trees
	3.4 Base Reachability Query
	3.5 More Pruning
	3.5.1 Reverse Topological Levels
	3.5.2 Peek Nodes

	4 Construction and Query
	4.1 Construction
	4.1.1 Construction of Search Spaces
	4.1.2 Setting Topological Levels
	4.1.3 Construction of DFS-Trees

	4.2 Query

	5 Experiments
	5.1 Test Data
	5.2 Experiments on P2REACH
	5.2.1 Search Spaces
	5.2.2 Priority Function for Search Spaces
	5.2.3 Topological Levels and DFS-Trees
	5.2.4 Query Time Distribution

	5.3 Comparison with TF and GRAIL
	5.3.1 Varying Degree and Size
	5.3.2 Small Real Datasets
	5.3.3 Large Synthetic Datasets
	5.3.4 Large Real and Stanford Datasets

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

