
Parallel Pruned Landmark Labeling for
Shortest Path Queries on Unit-Weight

Networks

Bachelor Thesis of

Damir Ferizovic

At the Department of Informatics
Institute of Theoretical Informatics

Reviewer: Prof. Dr. rer. nat. Peter Sanders
Second reviewer: Prof. Dr. Dorothea Wagner
Advisor: Prof. Dr. rer. nat. Peter Sanders
Second advisor: Prof. Guy Blelloch

Duration: November 1st, 2014 – February 28th, 2015

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

ii

ii

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, February 25, 2015

. .
(Damir Ferizovic)

Contents

Abstract vii

1 Introduction 1

2 Preliminaries 3

2.1 Graph . 3

2.2 Notations . 3

2.3 The problem . 3

2.4 Breadth-first search (BFS) . 4

2.5 Labeling . 4

3 Related work 5

3.1 Exact methods . 5

3.2 Approximate methods . 5

3.3 Pruned landmark labeling[AIY13] . 5

3.3.1 Landmark labeling . 6

3.3.2 Pruned landmark labeling . 6

3.3.3 Bit parallel labeling . 7

3.3.4 Results . 8

4 Parallel pruned landmark labeling 11

4.1 Vertex order . 11

4.2 Phase I . 12

4.2.1 Bit-parallel search from any k vertices 13

4.3 Phase 2 . 14

4.4 Query . 16

4.5 Implementation . 16

4.5.1 Initialization . 16

4.5.2 Pruning of the frontier . 17

v

vi Contents

4.5.3 Vertex order induced cache-efficiency 17

4.5.4 Locks . 17

4.6 Variations . 17

4.6.1 Lower memory consumption . 17

4.6.2 Directed edges . 18

4.6.3 Weighted edges . 18

5 Experimental evaluation 19

5.1 Environment . 19

5.2 Datasets . 19

5.3 Performance of PLL . 20

5.4 Our performance results . 21

5.4.1 Single threaded . 21

5.4.2 Multi-threading . 21

5.4.2.1 Speed-ups with the memory-light version 23

5.4.2.2 Speed-ups within the individual phases 24

5.4.2.3 Size of the constructed index 25

5.4.2.4 Query-performance . 26

5.4.2.5 Asymptotic analysis of the memory usage 26

6 Future work 27

7 Conclusion 29

Appendix 31

A Failed methods . 31

A.1 Generalised bit-parallel labeling . 31

A.2 Parallel Breadth-first-search . 31

A.3 Multi-source . 31

8 Acknowledgments 33

Bibliography 35

vi

Abstract

While using graphs inside of an application, there is often a need to repeatedly answer
shortest-path distance queries between pairs of vertices. There are numerous ways to
solve this problem. In this thesis, we present an approach that utilizes the research done
within labeling-based methods, which represent a compromise between online-search-based
methods (e.g., Breadth-First-Search) and transitive-closure-based methods (e.g., by using
Floyd-Warshall), and thread-parallelism. Our focus within this thesis is to introduce an
approach that scales well in a multi-threaded environment. It is based on a two-phased la-
beling method as found in [AIY13]; this method also forms a baseline for our comparisons.
Additionally, we present general performance measures and discuss the scaling behaviour
of our approach.

vii

viii 0. Abstract

viii

1. Introduction

Being able to answer shortest-path distance queries between any two vertices represents
one of the fundamental problems on graphs and its usage spans over a wide range of
applications. It is prevalent in most scenarios where data is represented in a graph-like
manner. Bioinformatics, databases, and social networking are some of them.

For example, the distance between two users within social networks gives us information
about the social relationship they have.
If we model web pages as vertices and the links between them as edges, the length of the
path between two web pages indicates the relevance of one to another.

Different types of graphs require different types of techniques. This work sets its focus on
complex networks (e.g., social networks). These graphs are small in diameter and dense
in their construction. Another type of interesting real-world networks is road networks.
They are not within the scope of this thesis as they require the utilization of different
techniques; which are not efficiently usable together with complex networks.

There are numerous approaches to the problem stated in the above paragraphs. There is
the possibility of answering the distance queries by computing them without any prepro-
cessed information about the graph. This can be done by simply executing a breadth-first
search (BFS) for every query. The downside to this solution is the time performance on
larger graphs, which is not acceptable if there is a great amount of queries that have to
be answered. The other extreme is to memorize the distances between all pairs of vertices
by storing them within an index – possibly a two-dimensional array. Queries would be
answered instantly. The critical problem with this approach is that any feasible methods
have a high memory consumption and take a considerably amount of time to construct
the index. A solution to this problem lies in combining the search with a precomputed
index, as is done within [AIY13], [Wei10], [ADGW12].

The resulting index of our approach is based on a 2-hop cover [CHKZ02]; we assign a
vertex-set Sv to each vertex v in the graph in such a way that for every pair of vertices u
and w, Su∩Sw contains a vertex that lies on a shortest path between u and w. If for every
pair of vertices x and r ∈ Sx, the distance dist(x, r) in the graph is known, the distance
between two vertices can be computed as min

r∈Su∩Sw

dist(u, r) + dist(r, w). The list of pairs

{(w, dist(v, w)) : w ∈ Sv} is called a label for vertex v. That is why the other name for
creating a 2-hop cover is also the labeling method.

In the upcoming sections, we introduce existing techniques to compute and utilize these

1

2 1. Introduction

labels. Most of these techniques use breadth-first search (BFS), which is the state-of-the-
art method to compute distances within our graph type. Special attention is given to
the pruned landmark labeling (PLL) from [AIY13]. It combines extremely fast distance
computation with fast preprocessing. Closer look within its implementation shows possi-
bilities for high parallelism. After introducing the existent research, we show the needed
changes on PLL to integrate thread-parallelism and finally analyse the results over various
datasets.

2

2. Preliminaries

Knowledge of some fundamental concepts is required in order to fully understand the
research in this thesis. The following section introduces the needed topics and clarifies the
notations we use.

2.1 Graph

Let V be an arbitrary finite set and E ⊆ V × V . A graph is defined as an ordered pair
G = (V,E). The edges of G are called undirected if for every (v, w) ∈ E, (w, v) ∈ E also
holds, otherwise they are defined as directed. Undirected edges are written as unordered
sets, that is: {u, v} ∈ E instead of (u, v) ∈ E and (v, u) ∈ E. Graphs that only contain
undirected edges are also called undirected graphs.

2.2 Notations

Further, for simplicity, we define the following notations:

• b - the word size.

• NG(v) = {w : {v, w} ∈ E} - the set of neighbors of vertex v.

• DG(u, v) - the distance between u and v inside the graph G.

• L(v) = {(w,DG(v, w)) : w ∈ S ⊆ V } - label of v.

2.3 The problem

Given an undirected graph G, construct an index that efficiently answers distance queries.
The construction should scale well in terms of multi-threading and the resulting index
should be similar to the one form [AIY13].

3

4 2. Preliminaries

2.4 Breadth-first search (BFS)

As the utilization of breadth-first-searches is extensively done in our thesis, a short overview
is given here.

BFS is an exploration algorithm that is commonly used within undirected graphs. One of
its mayor usages lies in the distance computation from a chosen vertex to all other vertices
in the graph – therefore solving the single-source shortest path problem. Throughout its
execution a set of vertices is maintained, called the frontier. After the BFS has done d
steps, the frontier contains the vertices whose shortest path to the chosen vertex has the
distance d. In order to avoid visiting some vertices multiple times, an array is used for
marking the visited vertices.

Algorithm 1 Breadth-first search (BFS) on G = (V,E) from vertex r ∈ V
1: procedure BFS(G, v)
2: Q← an empty queue . Initialization of the frontier.
3: P [v]←∞ for all v ∈ V . Initialization of the distance array.
4: P [r]← 0
5: Enqueue r onto Q
6: while Q is not empty do
7: Dequeue v from Q
8: for all u ∈ NG(v) do
9: if P [u] =∞ then

10: P [u]← P [v] + 1
11: Enqueue r onto Q

2.5 Labeling

The index resulting from our construction is composed of a list of labels. That is, for each
vertex v ∈ V , it contains a label L(v). The process of creating these labels is referred as
labeling the vertices. Each label contains a list of pairs (u, distG(v, u)) and with them the
distance can be found by:
DL(v, w) = min{d1 + d2 : (r, d1) ∈ L(v), (r, d2) ∈ L(w)}

If there is no common vertex for L(v) and L(w), w is unreachable from v (DL(v, w) =∞).

The bit-parallel labels, that are introduced in the upcoming sections, compute the distance
in a different way. However, this computation takes essentially the same approach as the
computation of the normal labels does.

4

3. Related work

The next two sections describe the main groups of approaches previously considered for
this problem: exact and approximate. Due to the close relation of [AIY13] to our approach,
we present a detailed discussion at this point.

3.1 Exact methods

In the group of exact methods, most prevalent are methods based on 2-hop covers [CHKZ02],
possible examples include: decomposition of the graph into a tree [Wei10], highway-centric
labeling [JRXL12] (creating a spanning tree and using it as a ”highway” for answering
queries), and hierarchical hub-labeling [ADGW12].

3.2 Approximate methods

For some applications, approximative answers to the queries are sufficient. This setting
can be used to develop methods that are more time-efficient. Landmark-labeling is the
most prominent among the approximation approaches.
In landmark-labeling, a subset of vertices is selected and the distances from them to all
other vertices is computed and stored as their labels. More formally, for a selected subset
of vertices S ⊆ V , the distances DG(l, w), l ∈ S,w ∈ V are computed. Since it is possible
that no shortest path between two vertices goes through any of the selected roots, distance
queries on these labels are not necessarily exact. The initial selection of the vertex-set
S ⊆ V has severe impact on the approximative quality; centric vertices represent in most
scenarios a good choice – more discussion about this is done in 4.1.

3.3 Pruned landmark labeling[AIY13]

The pruned landmark labeling (PLL) combines the advantages of several previous meth-
ods to approach this problem. Its key idea is similar to approximate landmark-labeling.
Central vertices are prioritized and used to reduce the size of all further searches. This is
done, as seen in more detail in 3.3.2, with pruning.

Pruned landmark labeling consists of two phases. In the first phase, pruning is ignored
and several landmarks are processed by using bit-parallelism. After a number of vertices
are processed this way, the algorithm switches to the second phase. The key-element of

5

6 3. Related work

this phase is pruning – during its labeling of the vertices, it does not traverse those vertices
whose distance can already be computed from the existing labels.

The following sections introduce the phases in more detail, with 3.3.2 and 3.3.3 corre-
sponding to the second and first phase, respectively (starting with the second phase leads
to a better understanding of the first one).

3.3.1 Landmark labeling

For answering shortest-path distance queries between two vertices, precomputed informa-
tion can be used for a better time-performance. Suppose that b lies on a shortest path
between a and c, and that we know the distance between a and b, d1 and the distance
between b and c, d2. With this, one can infer the distance between a and c:
DG(a, c) = DG(a, b) +DG(b, c) = d1 + d2.

This is the core idea of landmark labeling. Landmarks are selected and the distance
between them and all other vertices is computed. For all pairs of vertices on whose shortest
path a landmark was selected, the shortest path can be computed. In order to achieve
exact answers, all vertices have to be processed as roots – and this is also done here. The
distance between x and y can be then computed by DG(x, y) = min

r∈L
{DG(x, r) +DG(r, y)},

where L is the set of selected landmarks. That is, for every pair of vertices a and c, it is
possible to find a landmark-vertex b that lies on one of the shortest paths between a and
c.

Example:
Consider figure 3.1. We see that the vertex r covers all shortest paths between the vertex
sets {a, b} and {c, d, e} (as it is the only vertex connecting both sets). In order to compute
the distance between, for example, a and e, it is enough to add the corresponding distances
to r together, that is: DG(a, e) = DG(a, r) +DG(r, e) = 3.

3.3.2 Pruned landmark labeling

The next problem lies in reducing the number of label-entries that are being added to the
label-lists of all vertices in the graph. In case we have to store the distance to every other
vertex in G, we end up requiring O(|V |2) memory space. The introduction of pruning
prevents this.

Assuming all vertices in G have been labeled with some landmarks L ⊆ G, it can be seen
that for the next vertex that is being selected as a landmark, not all vertices have to
contain the distance to that landmark.

Let r ∈ V be the next landmark we want to process, v ∈ V a vertex to whose label we want
to add r, and dBFS be the distance from r to v (computed by the BFS). If no vertices
have already been pruned, two cases can happen: DL(r, v) ≤ dBFS and DL(r, v) > dBFS .
When DL(r, v) > dBFS holds, we do not prune v – the solution of the query is improving
by adding (r, dBFS) to the label L(v). For the other case, DL(r, v) ≤ dBFS , however,
pruning is feasible – no distance can be shortened by continuing this search.

Example:
Consider again figure 3.1. Let c be the next root we add to our landmarks. As BFS is
executed, at some point the frontier-state {r, d, e} is reached. At this stage, pruning is
possible. The exact distance to vertex r is already known due to the label-entries that
were produced while taking vertex r into the set of landmarks. Therefore, r can be pruned,
and, consequently, vertices a and b do not get additionally processed.

It is obvious that the order in which the vertices are processed influences the number of
pruned vertices. The vertices being processed earlier influence the pruning-quality for the

6

3.3. Pruned landmark labeling[AIY13] 7

Figure 3.1: Graphical demonstration of the pruned landmark labeling method. The values
over the vertices represent the distances to the root-vertex.

upcoming searches. Good choices include central vertices: high-degree vertices or the ones
through which a large number of shortest paths go. The approach taken here is sorting
the vertices according to their degrees – from the highest to the lowest.

Algorithm 2 illustrated the given approach.

Algorithm 2 Pruned landmark labeling

1: procedure Pruned-Landmark-Labeling(G)
2: G← RearrangeVertices(G) . Sort vertices according to their degrees
3: L[v]← ∅ for all v ∈ V
4: for all v ∈ V do
5: Pruned-Landmark-Labeling-BFS(G,L, v)

6: return L
7:

8: procedure Pruned-Landmark-Labeling-BFS(G,L, r)
9: P [v]←∞ for all v ∈ V . Holds the distance from the root to v.

10: Q← an empty queue
11: P [r]← 0
12: Enqueue r onto Q
13: while Q is not empty do
14: Dequeue v from Q
15: if P [v] ≥ DL(r, v) then . Check if v should be pruned
16: continue
17: L[v]← L[v] ∪ {(r, P [v])}
18: for all u ∈ NG(v) do
19: if P [u] =∞ then
20: P [u]← P [v] + 1
21: Enqueue u onto Q

3.3.3 Bit parallel labeling

Not many prunes are made in the first phase of creating the index. Therefore, we could
avoid pruning at all for the first few searches. Avoiding them gives us the possibility to
improve our approach in another way. For this purpose, we use another kind of labels.
They allows us to process several landmarks with the same overhead as processing only
one. The key idea for this approach is bit-parallelism. We take a root r ∈ V and up to
64 vertices (or b vertices if the word size is different) adjacent to r. With these vertices,

7

8 3. Related work

Figure 3.2: Graphical demonstration of approximating the distance between x and y by
using the bit-parallel labels that are created from the root r. Computation of the distance
between x and y by using the bit-parallel labels: DS(x, y) = (DG(x, r)−1)+(DG(y, r)−1)

we create the ordered set S = (v0, ..., v63). For every vertex v in the graph, we compute
the label-entry (r,DG(v, r), S−1r (v), S0

r (v), S1
r (v)). The three elements S−1r (v), S0

r (v), and
S1
r (v) represent sets. We partition vertices from S into them according to their relative

distance to v; compared to the distance from r to v. This gives us a fast way to compute
the distance from v to any of the vertices in {r} ∪ S.
Internally, Si

r(v) is a bit-mask and the j − th bit is set to 1, if the distance from v to vj
changes by i compared to the distance the distance from v to r. That is: DG(v, vj) =
DG(v, r) + i.

As the bitwise-OR of S−1r (v), S0
r (v), and S1

r (v) covers all bits, knowing S−1r (v) and S0
r (v)

is enough to infer S1
r (v).

For a bit-parallel root r ∈ V and any pair of vertices x, y ∈ V , let dr = DG(x, r)+DG(r, y).
In order to know the distance of the shortest path between x and y that is going through
S, from now on defined as DS(x, y), it is sufficient to look at the bit-parallel-label-entries
(r, S−1r (x), S0

r (x)) and (r, S−1r (y), S0
r (y)). Three cases have to be considered. Note: | is the

bitwise-OR operator. If

• S−1r (x) | S−1r (y) 6= 0, then DS(x, y) = dr − 2,

• S−1r (x) | S0
r (y) 6= 0 or S0

r (x) | S−1r (y) 6= 0, then DS(x, y) = dr − 1,

• otherwise DS(x, y) = dr.

Example:
In figure 3.2 a simple example is given for approximating the distance between x and y
through the bit-parallel root r and its adjacent vertices a, b, c. We see that the distance
from x and y to r equals 2, and that their distance to b changes by −1 compared to the
distance to the root (therefore is b in their S−1r set). The approximative distance, then, is:
DS(x, y) = DS(x, b) + DS(y, b) = (DG(x, r) − 1) + (DG(y, r) − 1). As the distance to the
root is stored inside the labels, DG(x, r) and DG(y, r) are already known and, therefore,
the distance of the shortest path between x and y (through S!) is computable.

Algorithm 3 shows the construction of the labels in O(|V |+ |E|) for a selected root r and
a set of up to 64 adjacent vertices, Sr.

3.3.4 Results

In the domain of complex networks, PLL is more efficient than other approaches by a large
margin. Table 3.3, taken from [AIY13], showcases that performance difference. Hierarchi-
cal Hub Labeling represents the work done from [ADGW12] and Tree Decomposition is
an improved version of [Wei10] ([ASK12]).

8

3.3. Pruned landmark labeling[AIY13] 9

Algorithm 3 Bit-parallel BFS from r ∈ V and k ∈ N0 Sr ⊆ NG(r) [AIY13]

1: procedure BP-BFS(G, r, Sr)
2: (P [v], S−1r [v], S0

r [v])← (∞, ∅, ∅) for all v ∈ V
3: (P [r], S−1r [r], S0

r [r])← (0, ∅, ∅)
4: (P [v], S−1r [v], S0

r [v])← (1, v, ∅) for all v ∈ Sr
5: Q0, Q1 ← an empty queue
6: Enqueue r onto Q0

7: Enqueue v onto Q1 for all v ∈ Sr
8: while Q0 is not empty do
9: E0 ← ∅ and E1 ← ∅

10: while Q0 is not empty do
11: Dequeue v from Q0

12: for all u ∈ NG(v) do
13: if P [u] =∞∨ P [u] = P [v] + 1 then
14: E1 ← E1 ∪ {(v, u)}
15: if P [u] =∞ then
16: P [u]← P [v] + 1
17: Enqueue u onto Q1

18: else if P [u] = P [v] then
19: E0 ← E0 ∪ {(v, u)}
20: for all (v, u) ∈ E0 do
21: S0

r [u]← S0
r [u] ∪ S−1r [v]

22: for all (v, u) ∈ E1 do
23: S−1r [u]← S−1r [u] ∪ S−1r [v]
24: S0

r [u]← S0
r [u] ∪ S0

r [v]

25: Q0 ← Q1 and Q1 ← an empty queue

26: return (P, S−1r , S0
r)

9

10 3. Related work

Even for networks with several millions of vertices, indexing is fast, queries remain quick,
and memory consumption stays in an acceptable range.

To the best of our knowledge, no thread-parallel index construction for the chosen problem
and graph-type exists. We decided to research the parallelism within PLL as it is one of
the main methods of constructing an index for complex networks and also shows potential
for good parallelism.

Figure 3.3: Performance comparison between PLL and previous methods for the real-world
data sets. IT denotes indexing time, IS denotes index size, QT denotes query time, and
LN denotes average label size for each vertex. DNF means it did not finish in one day or
run out of memory. Taken from [AIY13]. Note: The results are taken with a different
machine. Details about the corresponding machines can be found in the paper from where
the table originates.

10

4. Parallel pruned landmark labeling

In its core, the algorithm in this thesis is based on PLL from [AIY13]. The algorithm
uses differentiation between two phases and the two kinds of labels that come with that:
the normal and bit-parallel labels. The main structure of the approach is depicted in
Algorithm 4.

The first step is to rearrange all vertices. Processing specific vertices first impacts the
performance greatly as they influence the pruning throughout the second phase.

Algorithm 4 Parallel pruned landmark labeling of G, taking k vertices as roots for the
bit-parallel labeling

1: procedure PPLL(G, k)
2: G← RearrangeVertices(G) . sorts vertices in a specific order
3: (LBP , L)← (∅, ∅)
4:

5: LBP ← LBP∪ PhaseI(G, k)
6: L← L∪ PhaseII(G,LBP)
7: return (LBP , L)

Having reordered the vertices, we proceed to create the labels for all vertices. For the
first k searches, we run the first phase. They do not include any pruning, but do allow us
to process considerably more vertices. Lastly, in the second phase, we create the normal
labels by using the bit-parallel and normal labels to prune the spanning of a BFS. These
pruning mechanisms, which are used within this phase, keep the memory consumption of
the index and the time-performance low.

The outlined structure until now is identical to the one used within PLL. Modifications
within individual sections make our approach different and enables the utilization of
thread-parallelism.

4.1 Vertex order

As already mentioned, the order of processing the vertices greatly influences the pruning
quality. Experiments and previous work [PBCG09][AIY13] has shown that vertices lying
in more ”central” regions represent good choices. In these ”central” regions, the selected
vertices cover a great number of shortest paths between all the pairs of vertices. Selecting

11

12 4. Parallel pruned landmark labeling

vertices at random intuitively does not lead to a good performance, as the selected vertices
are not going to necessarily have large number of shortest paths going through them.

The order we use in our method is based on the degree property of a vertex – we sort the
vertices descending by their degrees. Another feasible approach is to sort the vertices by
their approximate clossenes centrality. In [AIY13] both orders have been tested, and the
conclusion is that the order according to the degrees performs marginally better than the
one based on the approximate clossenes. This has also been verified from our side with
experimental tests.

No parallelism has been integrated in this section. The reordering can easily be done with
an O(|V |log(|V |) + |E|) algorithm: sort the vertices descending by their degrees, create a
mapping of the vertices, and then update the structure that is managing the adjacency
properties. Implementing parallel sorting at this point does not lead to any performance
improvements because it consumes only a small part of the computation time.

4.2 Phase I

Algorithm 5 Phase 1

1: procedure PhaseI(G, k)
2: for i := 1 to k in parallel do
3: idmem ← UnusedMemoryId() . Getting a free index for memory access.
4: r ← NextRoot()
5: M ← up to b vertices from NG(r)
6: LBP [i]←BP-BFS(G, r,M)
7: unset(idmem) . Reinitializing the used memory for the next searches.

8: return LBP

Intuitively, not many vertices get pruned within the first searches. The reason to this lies
within the fact that in order to prune a vertex, specific entries are needed within the labels.
These entries are more probable to exist, the more searches we have accomplished. Because
of that, ignoring the pruning in the beginning motivates us to approach the labeling with
a bit-parallel search; which is not well suited alongside with the pruning techniques.

In the bit-parallel labeling, we execute k searches in order to accomplish the needed label-
ing. For each search we select a vertex-root r ∈ V and up to b vertices from the set NG(r).
The algorithm then takes the selected vertices and labels with them all vertices inside the
graph in one BFS-like search.

Parallelism
The first impression one might get by looking at the way the bit-parallel roots are com-
puted, is that the update over the labels is difficult to parallelize. However, a closer look
shows that they are easily made independent by assigning an unique index to each labeling
(as already done by using r within algorithm 3). This finding immediately motivates us
to consider executing multiple searches in parallel.

In order to achieve thread-safety, an unique id, idmem, is given to each thread. This
ensures that the thread can access memory that is specifically assigned to it. Assigning
memory anew every time a thread starts slows performance down. This effect is induced
by the synchronisation the threads have to accomplish on every allocation. Also, adding
such memory-management-layer enables us to easily reinitialize the memory for the next
searches.

12

4.2. Phase I 13

For finding a root that has not been processed, an integer rootlast pointing to the last
selected root is used. When a new, unprocessed, root r is needed, an incremental search
is executed from rootlast to |V |. When found, rootlast is updated to r.

The section for finding rootlast and idmem are protected within their own locks. Exploring
NG(r) can be also easily made thread-safe by either protecting it wholly under a lock or
adding a lock for each individual vertex – the choice has no effects on the performance.
It is also interesting to note that a race condition exists here. Two roots might share an
adjacent vertex. Depending which root takes it first, different bit-parallel labels can be
made. As these changes are minor, the performance does not get affected from this.

Updating the index with the new label-entries does not require any further mechanisms
for multi-threading. By using the unique index that is assigned to each labeling in the
beginning, no access has to be done between the individual searches – labels are easily
accessed independently of each other.

It is important to note that this phase is executed until k roots have been processed. The
selection of k influences the efficiency of this and the upcoming phases. Higher values of
k make the first phase slower and the upcoming one faster, and vice-versa. In [AIY13],
values ≤ 64 were sufficient, but as we have acquired high parallelism in this phase, higher
values for k can be also taken into consideration.

The main structure of this phase is very similar to that of algorithm 3. Algorithm 5 depicts
the steps needed to synchronize the constructed labels. The only line that does not require
any lock is 6.

4.2.1 Bit-parallel search from any k vertices

An important area that we investigated was if there is an efficient way to generalise the
bit-parallel labeling. We checked if there is a way to make the labeling from any b vertices
possible – removing the requirement that the vertices share an adjacent vertex.

Our approach to this was to select a set of b vertices and assign to each of them an index
between 0 and b−1 (used to identify them in a bit-mask). Then, a search is executed that
is similar to a multi-source BFS. The idea is to merge the search from several roots into
one and label each reached vertex with the merged set in one step. In order to do that, to
each element in the frontier a bit-mask is added.

After the search expanded its frontier d times, the i-th index in the bit-mask is set to 1
if the i-th selected root reaches the vertex in d steps. In order to know the set of vertices
that have already visited a vertex in a search, an additional bit-mask is attached to each
vertex in the graph; which are used to filter out the vertices that have already visited it.
All necessary operations can be done with simple bitwise operations.

In order to compute the distance between x ∈ V and y ∈ V , we assign an integer to each
label-entry, which identifies the chosen set of b roots. Then, we compare the label-entries
between x and y with the same identifier. Let (id,maskx(i),Dx(i)) be the label-entry for x
and (id,masky(i),Dy(i)) for y (index i is used to distinguish between the different entries
with the same identifier). The distance between x and y is then computable by:
min
id,i
{Dx(i) + Dy(i) : maskx(i) & masky(j) 6= 0}; where & represents the bitwise-AND

operator. Some important optimizations can be done here: We kept the label-entries
sorted by id. This enabled us to easily select the set of entries with a specific identifier in
x’s and y’s labels. Experiments have also shown that the number of entries a vertex owns
for a fixed id is very small. For Epinions that is 2.6, for Skitter 3.5 (5.1). However, this
still imposes a bigger label size than the one that is achieved in the bit-parallel labeling
from [AIY13]. This also increases the time that is needed to compute the distance between

13

14 4. Parallel pruned landmark labeling

two vertices – slowing down the pruning in the second phase. Unfortunately, this leads to
an overall worse performance.

4.3 Phase 2

As the second phase produces labels that are different from the ones the first phase pro-
duces, the pruning phase is also split into two phases. First, a pruning-check is made by
using the bit-parallel labels. If the check is unsuccessful, another pruning-check is executed
on the normal labels. For a vertex surviving both checks, a new label-entry (root, dBFS)
is added to its list.

Parallelism
Parallelism in this phase is accomplished by executing multiple searches at the same time.
Selecting the next root and the memory space that is required for this phase is identical
to the one from the first phase. The section that requires more attention lies within
the introduced pruning. As already stated, this phase produces different kind of labels
compared to the first phase, called normal labels. While new entries are being added to
the normal labels, care has to be taken with the sections that might also access the labels.
To make this execution safe, an array of spin-locks is used. Only one segment within the
algorithm is allowed to access a vertex’s label at a time. This also eliminates the possibility
of adding unnecessary entries to the labels, as the section where the labels are computed
and used for pruning belong within the same lock.

As all searches are done in parallel, race conditions occur often during the labeling pro-
cess. The reason to this lies within the section where pruning and insertions on the normal
labels are done. A thread might outrun another thread and insert its label before another
does. Therefore, the order of the label-entries may be mixed up. This also means that the
received order is not necessarily increasing by the vertex-id. This property is crucial for
integrating a cache-efficient query procedure (4.4).

Creating ordered labels:
To acquire an ordered list for all labels at the end, a simple sorting algorithm can be used.
We decided to use insertion-sort. Per vertex, the size of the normal label is generally small
and fits in cache. Also, the displacement of each entry is, intuitively, not far from its orig-
inal place, as it is only based on the race conditions. This also implies that the changes
induced by the race conditions are overall small. While repairing the order, vertices are
processed in parallel.

14

4.3. Phase 2 15

Algorithm 6 Phase 2

1: procedure PhaseII(G,LBP)
2: G← RearrangeVertices(G) . sort vertices according to their degrees
3: L[v]← ∅ for all v ∈ V
4: for all not processed v ∈ V in parallel do
5: idmem ← UnusedMemoryId()
6: PhaseII -BFS(v,G,LBP , L))
7: unset(idmem)

8: fixOrder(L)
9: return L

10:

11: procedure PhaseII-BFS(r,G, LBP , L)
12: P [v]←∞ for all v ∈ V
13: Q← an empty queue
14: P [r]← 0
15: Enqueue r onto Q
16: while Q is not empty do
17: Qnxt ← an empty queue
18:

19: for all v ∈ Q do
20: if P [v] ≥ DLBP

(r, v) then
21: remove v from Q
22: else
23: lock.acquire()
24: if P [v] ≥ DL(r, v) then
25: remove v from Q
26: else
27: L[v]← L[v] ∪ {(r, P [v])}
28: lock.release()

29:

30: for all v ∈ Q do
31: for all u ∈ NG(v) do
32: if P [u] =∞ then
33: P [u]← P [v] + 1
34: Enqueue u onto Qnxt

35: Q← Qnxt

15

16 4. Parallel pruned landmark labeling

4.4 Query

One can take several approaches to find the distance between two pairs of vertices by using
the labels. Additionally, as two kinds of labels exist, two phases exist. Algorithm 7 and 8
illustrate how to estimate the distance with the bit-parallel and normal labels, respectively.

Another approach to answer the queries is to search for a matching pair in a merge-like
fashion. It has to be ensured, however, that the labels have the same relative order between
all vertices. This approach, compared to algorithm 8, is cache efficient, and our tests have
shown that this improves the performance of a query by several factors (in some cases over
20).

Interesting to note: Algorithm 8 is not only useful for the queries, but also for the pruning
mechanism within the second phase. The array D can be initialized in the beginning and
used throughout the search – distance computation becomes significantly faster.

Algorithm 7 Estimating the distance between u, v ∈ V with the bit-parallel labels LBP

1: procedure QueryBP(LBP , v, w)
2: res←∞
3: for i = 1 to k do
4: d← LBP [i].P [v] + LBP [i].P [w]
5: if LBP [i].S−1r [v] & LBP [i].S−1r [w] then
6: d← d− 2
7: else if LBP [i].S−1r [v] & LBP [i].S0

r [w] or LBP [i].S0
r [v] & LBP [i].S−1r [w] then

8: d← d− 1

9: if res > d then
10: res← d
11: return res

Algorithm 8 Estimating the distance between u, v ∈ V with the normal labels L

1: D[v]←∞ for all v ∈ V
2: procedure Query(L, v, w)
3: for all (r, d) ∈ L[v] do
4: D[r]← d

5: res←∞
6: for all (r, d) ∈ L[w] do
7: if D[r] + d < res then
8: res← D[r] + d

9: for all (r, d) ∈ L[v] do
10: D[r]←∞
11: return res

4.5 Implementation

The implementation requires attention within several segments in order to acquire an
efficient algorithm. Most of the upcoming sections can be also found within [AIY13]. The
same is true for the variations of our implementation within section 4.6.

4.5.1 Initialization

While executing the searches inside the second phase, it is possible that some searches
reach only a small amount of vertices. This fact can be used in order to speed up the array
initialization for the next search – we keep track of the changed fields and revert them
back to the initial value after the search is finished.

16

4.6. Variations 17

4.5.2 Pruning of the frontier

In order to speed up the pruning section in the second phase, three things can be done.

• Looking at algorithm 6, we see that on line 20 the distance is always computed to
the root r. Algorithm 8 shows that the changes on D are sufficient to be made at
the beginning and in the end of each search. With this, we spend |L[r]| steps for
each search, instead of cntnodes · |L[r]| steps, where cntnodes is the number of reached
vertices in the search. This alleviates a high amount of unneeded work.

• If the vertex that we compare to the current root was already processed (taken as
a landmark), DL(r, v) equals to zero. Therefore, the overhead that is given with
that query can be avoided by simply checking if the vertex was already selected as a
landmark.

• We can also use the fact that we compute DL(r, v) by constantly updating an upper
bound, δ (for example, res in 7 and 8). If we find a δ, such that P [v] ≥ δ ≥ DL(r, v)
holds, the computation of DL(r, v) can be interrupted.

4.5.3 Vertex order induced cache-efficiency

As already stated, an ordered set of all the vertices is created. In our case that order
requires the vertices to be sorted from the one with the highest degree to one with the
lowest.

There are two straightforward ways to utilize this in our construction. We can either
relabel all vertices (giving the vertex with the highest degree the lowest index) and update
their adjacency lists accordingly or leave the vertices as they are and simply execute the
searches in order.

Using the first method represents a better choice. Processing the vertices increasingly by
their index utilizes the spatial locality in the memory efficiently. A strong support for this
argument is the content that the labels receive – roots are ordered increasingly by their
index. Making the distance computation with the labels more cache-efficient.

4.5.4 Locks

The usage of spin-locks for particular critical sections made the performance of our im-
plementation better. This specifically holds for the sections in the second phase, where
parallel access is done on the index-structure.

For the other sections, like the assignment of the memory-id, no significant difference has
been noticed – mutexes and spin-locks can be used.

4.6 Variations

4.6.1 Lower memory consumption

As the bit-parallel index construction allocates O(|V |+ |E|) memory per thread, we also
developed a reduced memory version with O(|V |) memory consumption. To achieve this,
we introduced a simple modification on Algorithm 3.

The idea is to go twice over the frontier instead of once. This way we are able to avoid
the computation of E0 and E1. Instead of adding entries to E0, we compute the changes
done on S0

r [u] right away. Then, we iterate again over the frontier to process the changes
that are made with E1.

17

18 4. Parallel pruned landmark labeling

Algorithm 9 Memory-reduced version of the bit-parallel labeling

1: while Q0 is not empty do
2: //E0 ← ∅ and E1 ← ∅
3: for all v ∈ Q0 do
4: for all u ∈ NG(v) do
5: if P [u] =∞∨ P [u] = P [v] + 1 then
6: // E1 ← E1 ∪ {(v, u)}
7: if P [u] =∞ then
8: P [u]← P [v] + 1
9: Enqueue u onto Q1

10: else if P [u] = P [v] then
11: S0

r [u]← S0
r [u] ∪ S−1r [v]

12: // E0 ← E0 ∪ {(v, u)}
13: while Q0 is not empty do
14: Dequeue v from Q0

15: for all u ∈ NG(v) do
16: if P [u] = P [v] + 1 then
17: S−1r [u]← S−1r [u] ∪ S−1r [v]
18: S0

r [u]← S0
r [u] ∪ S0

r [v]

19: Q0 ← Q1 and Q1 ← an empty queue

Algorithm 9 illustrates the modifications. Sections that did not require any attention have
been left out.

The reason we did not introduce this approach right away is the worse time performance
it produces.

4.6.2 Directed edges

In order to create an equivalent index for graphs with directed edges, a small change
suffices. We split up all labels (bit-parallel and normal) into two groups: LIN and LOUT .
We create LIN by executing the same steps as for undirected graphs, while taking only
ingoing edges in consideration. The same has to be done for LOUT , but with the outgoing
edges.

4.6.3 Weighted edges

Although the bit-parallel labeling is not usable for weighted edges, it is still possible to
modify this algorithm for weighted edges. Instead of running a BFS, Dijkstra’s algorithm
can be run – the pruning mechanism remains the same. The same kind of parallelism can
be used by executing multiple searches at the same time.

18

5. Experimental evaluation

5.1 Environment

The implementation of the method we presented in this thesis has been implemented in
C++. We compiled it using the Intel C++ Compiler, icpc/icc (version 14.0.2), with the -O3
flag.

Hardware: The machine that was used for evaluating the presented implementation was
a NUMA Intel machine. It consisted of four Xeon E7-8870 with 2.40GHz per core and
a 1066Mhz bus. This gave us 40 physical and 80 logical cores (with hyper-threading).
The total main memory that was available for each test-run was 256GiB, where 64GiB
belonged to each processor.

5.2 Datasets

We evaluated the presented approach on a set of various real-life datasets, modelling
different complex structures. Special focus within the analysis was set on the behaviour
within a multi-threaded environment. In order to achieve this, we analyzed the behaviour
and the speed-ups resulting from our implementation.

All datasets used for evaluating our implementation are given in table 5.1.

Dataset |V| |E|
Gnutella 62 562 147 878
Slashdot 70 069 358 647
Epinions 75 888 405 740
Google 916 428 4 322 051
WikiTalk 2 394 385 4 659 565
Skitter 1 696 416 11 095 298
Flickr 1 715 256 15 555 042
eu-2005 862 665 16 639 895
Hollywood 1 139 906 57 515 616
Indochina 7 414 866 153 487 303

Table 5.1: Used datasets

19

20 5. Experimental evaluation

Datasets - description

Gnutella: A peer-to-peer network for file-sharing. Snapshot from August 2002 [RFI02].

Slashdot: Friend/foe network from Slashdot. Snapshot from Februrary 2009 [LLDM08].

Epinions: A who-trust-whom online social network of a general consumer review site
Epinions.com. Members of the site can decide whether to ”trust” each other [RAD03].

Google: Web pages represented with vertices and a hyperlink between them with an edge.
Dataset was released inside a Google Programming Contest [Goo02], [LLDM08].

WikiTalk: Vertices represent members. There is an edge from x to y if user x has edited
at least once a talk-page of user y [LHK10b][LHK10a].

Skitter: An internet topology graph created from traceroutes [LKF05].

Flickr: Photo-sharing website (www.flickr.com) [MMG+07].

eu-2005: A small crawl of the .eu domain [BV04],[BRSV10],[BCSV04].

Hollywood: Actors are represented with vertices and there is an edge between them if
they have been in the same movie (at least once) [BV04],[BRSV10],[BCSV04].

Indochina: Web graph network of the Indochina region [BV04], [BRSV10], [BCSV04].

Note: We treated directed edges as undirected in the datasets with directed edges.

5.3 Performance of PLL

The table 5.2 shows the performance of PLL. The number of bit-parallel roots has been
selected by considering the resources (time and memory) that the datasets required. Tests
have shown that our selections for the number of bit-parallel roots were also beneficial for
PLL.

For example, in Indochina, by taking 64 bit-parallel roots, we would get an average of
ca. 2000 normal labels. Taking 2048 bit-parallel roots gives us a much better perfor-
mance with approximately the same memory usage. These values have been also verified
experimentally.

The number of bit-parallel roots that have been considered in the analysis were from the
set of numbers that are a power of two. This is due to the time that is needed to evaluate
a test-run and also due to the fact that testing other values does not make a significant
contribution to our analysis.

Dataset IT [s] LN QT [µs]

Gnutella 23.7 151+ 256 4.0
Slashdot 2.1 26+ 32 1.1
Epinions 1.3 16+ 32 0.9
Google 142.0 36+ 256 2.9
WikiTalk 59.3 9+ 64 1.4
Skitter 494.4 47+ 256 3.8
Flickr 934.1 80+ 512 5.8
eu-2005 334.0 33+ 512 4.3
Hollywood 4 403.7 78+2 048 18.0
Indochina 7 336.6 166+ 512 7.0

Table 5.2: Performance of PLL in our environment (single threaded). IT denotes the
indexing time, QT denotes the query time, and LN denotes the average label size (first
number being the number of normal and second of bit-parallel labels).

20

5.4. Our performance results 21

We also included a table from [AIY13]: Table 3.3 depicts their achieved results in compar-
ison to other competitors. It can be seen that within their selected set of test data, PLL
performs significantly better.

5.4 Our performance results

Section 5.4.1 shows the overall performance of our implementation without multi-threading,
while section 5.4.2 depicts the overall performance of our implementation with multi-
threading. An analysis from different perspectives is made and a discussion over the
achieved results is given.

5.4.1 Single threaded

By comparing table 5.2 and 5.3, we see that the amount of time needed to construct the
indices is similar. As both implementations follow the same logic in a single-threaded
environment, the computed index has the same contents and, therefore, the same index
size.

Although the same steps are being executed using a single thread, there are some marginal
differences regarding the time performance. Those differences are based on the actual
implementation of both techniques - our approach contains mechanisms that enable it to
scale well on multiple threads and is differently implemented within some sections.

Dataset IT [s] LN QT [µs]

Gnutella 27.3 151+ 256 4.1
Slashdot 1.9 26+ 32 1.1
Epinions 1.4 16+ 32 1.0
Google 147.1 36+ 256 3.0
WikiTalk 59.4 9+ 64 1.6
Skitter 381.0 47+ 256 3.7
Flickr 994.2 80+ 512 5.9
eu-2005 284.1 33+ 512 4.4
Hollywood 4 454.1 78+2 048 18.2
Indochina 6 901.3 166+ 512 6.8

Table 5.3: Performance of our implementation (single threaded). IT denotes the indexing
time, QT denotes the query time, and LN denotes the average label size (first number
being the number of normal and second of bit-parallel labels).

The last part that requires our remarks is the query performance. The time required to
answer a query is also mostly the same for both implementations. This result is induced
by the similar query-implementation as compared to PLL.

5.4.2 Multi-threading

Table 5.4 shows that the multi-threaded index construction can be several times faster than
a single-threaded execution. The speed-up factors that were achieved with the parallel
execution enabled us to process networks considerably faster.

21

22 5. Experimental evaluation

Number of threads
Dataset 1 2 4 8 16 32 64

IT [s] Speed-up

Gnutella 27.3 1.7 3.4 6.6 9.0 17.4 16.3

Slashdot 1.9 1.5 2.4 3.5 4.3 3.1 1.5

Epinions 1.4 1.5 2.0 2.9 3.4 2.3 1.9

Google 147.1 1.6 3.0 5.7 7.5 11.1 17.4

WikiTalk 59.4 1.5 2.7 4.2 5.8 6.3 6.5

Skitter 381.0 1.7 3.2 6.0 8.8 10.2 20.4

Flickr 994.2 1.8 3.5 6.9 12.0 13.0 23.1

eu-2005 284.1 1.7 3.2 6.1 10.8 17.4 22.2

Hollywood 4 454.2 1.8 3.3 6.5 11.6 19.9 25.3
Indochina 6 901.3 1.8 3.5 6.9 12.3 10.5 DNF

Table 5.4: Running time of the parallel implementation. Only the column for a single
thread contains the actual time (in seconds); other columns contain only the speed-up.
DNF means it run out of memory. IT denotes the indexing time.

Throughout our experiments it is evident that the achieved speed-up is not solely depen-
dent on the size of the graph, but rather its structure too. Indochina has a significantly
larger structure than Hollywood (see 5.1), yet it performs better in terms of parallelism.
Overall, a correlation between the size of the graph and the speed-ups exists, though.

Anomalies within the speed-ups

Extreme changes in the speed-up are also noticeable on some occasions – an example for
this is Gnutella. These fluctuations arise from the internal thread-management algo-
rithms; which we left to the operating system to choose. As we see in 5.5, utilizing the
memory in a different way influences these anomalies. The same applies to the cases where
the speed-up goes up, down, and up again.

Number of bit-parallel roots

The effect the selected number of bit-parallel roots has on the construction is also analyzed
with figure 5.1. Because the parallelism performs so well in the first phase (5.4), it is good
to choose a larger number of bit-parallel roots. Furthermore, increasing k too much worsens
the performance. In our example with Gnutella, we found that this is case from k = 1024
to k = 4096.

Therefore, in order to reduce the index size, a lower number of bit-parallel roots can be
considered without having to lose the benefits on the construction time – this applies to
all datasets.

22

5.4. Our performance results 23

1 2 4 8 16 32 64

50

100

150

200

250

Thread #

B
it

-p
a
ra

ll
el

-r
o
o
t

co
u

n
t

k=4096
k=1024
k=256
k=64
k=16
k=4
k=1

Figure 5.1: Influence of the selected number of bit-parallel roots in a multi-threaded envi-
ronment. Evaluation done on Gnutella.

5.4.2.1 Speed-ups with the memory-light version

As each thread allocates O(|V | + |E|) space in the first phase, the memory consumption
becomes very high for graphs with hundreds of millions of edges. Because of this, some
limits exist over our main approach. For example, Indochina fails to construct the index
with 64 threads for that reason.

Number of threads
Dataset 1 2 4 8 16 32 64

IT [s] Speed-up

Gnutella 28.7 1.8 3.5 6.6 5.6 4.8 4.8

Slashdot 4.2 1.7 2.9 3.9 2.4 3.6 2.5

Epinions 1.7 1.6 2.1 2.9 3.3 3.7 2.7

Google 166.5 1.7 3.2 5.8 8.0 10.3 16.0

WikiTalk 68.8 1.7 2.8 4.2 5.7 5.9 6.4

Skitter 433.7 1.7 3.2 6.1 8.5 9.3 20.5

Flickr 1 096.9 1.7 3.5 6.9 11.9 11.9 23.7

eu-2005 337.8 1.7 3.2 6.4 10.6 15.4 21.5

Hollywood 5 664.2 1.8 3.4 6.4 11.6 19.2 25.5

Indochina 7 419.7 1.8 3.4 6.8 12.0 10.0 11.0

Table 5.5: Running time of the parallel implementation with memory optimization in a
multi-threaded environment. Only the column for a single thread contains the actual time
(in seconds); other columns contain only the speed-up. IT denotes the indexing time.

Within the memory-light variation, that we introduced in 4.6.1, only O(|V |) gets allocated
per thread. Thus, when used, Indochina is executed without any problems. This im-
provement greatly eliminates the limits posed from the memory’s side. An evaluation of
the memory-light implementation is given with table 5.5.

It is evident that the additional time that is needed within the memory-light variation
remains proportionally constant and very small (see figure 5.2). Therefore, it is also

23

24 5. Experimental evaluation

1 2 4 8 16 32 64

1

1.25

1.5

Thread #

S
p

ee
d
-u

p

WikiTalk
eu-2005
Skitter

Hollywood

Figure 5.2: Speed-up without memory optimizations compared to the implementation with
the optimizations.

acceptable to consider the memory-light variation equal to the main approach that was
introduced here. The decision to differ between these variations was made due to the focus
on time efficiency.

5.4.2.2 Speed-ups within the individual phases

We also conducted an evaluation of the individual phases. Figure 5.3 shows the perfor-
mance of the first phase. It is noticeable that the performance-increase drops when the
thread count reaches a certain amount (mostly 32 in our cases). The second phase, though,
gains on performance even when the thread-count reaches 64 threads (as seen in figure
5.4).

1 2 4 8 16 32 64
12
4

8

16

32

Thread #

S
p

ee
d
-u

p

eu-2005
Flickr

Gnutella
Hollywood

Skitter
WikiTalk

Figure 5.3: Depicting the speed-up factors of the first phase.

24

5.4. Our performance results 25

1 2 4 8 16 32 64
12
4

8

16

32

Thread #

S
p

ee
d
-u

p

eu-2005
Flickr

Gnutella
Hollywood

Skitter
WikiTalk

Figure 5.4: Depicting the speed-up factors of the second phase.

5.4.2.3 Size of the constructed index

The index’s size itself is not significantly changing between our and the PLL’s implemen-
tation. For a single-threaded execution we get identical labels, while for a multi-threaded
execution only minor differences exist – induced by the race conditions. Table 5.6 illus-
trates these differences on a selected subset of datasets. We see that these changes are in
most cases minor. Surprisingly, they also often go in our favour. Extremes exist, as it is
the case with WikiTalk.

Avg. label size per thread
Dataset 1 2 4 8 16 32 64

Slashdot 26.4 26.4 26.4 26.2 26.2 25.9 26.9

Epinions 16.5 15.4 16.2 16.9 16.9 14.3 15.1

Google 36.1 36.1 36.1 36.1 36.4 37.3 38.1

WikiTalk 9.6 9.5 9.3 9.4 10.1 8.7 4.8

Skitter 47.4 45.9 46.0 45.8 44.9 44.8 45.0

eu-2005 33.2 33.3 33.5 33.8 35.7 38.7 38.2

Indochina 166.7 172.4 174.6 173.3 174.8 181.4 174.0

Table 5.6: Effects of multi-threading on the average number of normal labels a vertex has.

25

26 5. Experimental evaluation

5.4.2.4 Query-performance

As we have seen, different indices can be acquired from the race conditions. This finding
motivated us to also benchmark the performance of the shortest-path distance queries with
the resulting labels. Unfortunately, we found that we got slower results in this domain –
up to 20% in some cases. Table 5.7 showcases this finding.

Query time [µs]
Dataset 1 2 4 8 16 32 64

Slashdot 1.1 1.2 1.2 1.2 1.3 1.2 1.3

Epinions 1.0 1.0 1.1 1.2 1.1 1.1 1.1

Google 3.0 3.8 4.0 4.1 4.1 4.0 4.0

WikiTalk 1.6 2.3 2.2 2.1 2.2 2.2 2.2

Skitter 3.8 4.6 4.9 4.9 4.8 4.8 4.5

eu-2005 4.4 5.6 6.0 6.0 6.1 6.0 5.6

Indochina 6.8 8.1 7.7 7.8 7.9 7.9 7.8

Table 5.7: Relation of the query performance (in nanoseconds) to the given number of
threads.

5.4.2.5 Asymptotic analysis of the memory usage

The interesting part to note regarding memory consumption lies within the amount of space
that is used during the computation (excluding the index). Let p be the number of threads
working on the index construction. From the asymptotic perspective, O(p · (|V | + |E|))
memory-space is utilized for the construction of an index. As the number of edges can get
very high, the memory-improvement has also been proposed; this leads to O(p · |V |+ |E|)
memory usage.

26

6. Future work

Theoretically, both phases of our approach have a linear speed-up in the number of threads
that are assigned to it.

It has to be noted that race conditions exist within both phases. The flow of the execu-
tion often diverges from previous runs and may construct a slightly different index each
time. This also means that the time-performance may be different each time. However,
a large number of tests have shown that these changes are minor. In order to make such
conditions thread safe, various mechanisms were implemented. These mechanisms and
the overhead caused by the internal workflow of the system induce some slowdown on the
performance. Therefore, we believe that improvements within our approach would mainly
include technical details.

An interesting idea to explore for better time-performance is to utilize the research that
has been done in the area of concurrent hash-tables. There is often the need to access an
array concurrently, and it may prove useful to use a hash-table for that. Supportive for
this argument is also the random access on an array on which only a few fields may ever
get accessed. This way, cache-efficiency may be better utilized. We believe that this may
open new areas within this work.

Further research could be also done on our attempt to generalize the bit-parallel labeling.
The difficulty we see here lies in the utilization of the resulting labels. We were not able to
make the querying over them efficiently enough, which, if possible, could lead to a better
coverage for the roots, smaller indices, and faster distance queries.

27

28 6. Future work

28

7. Conclusion

As demonstrated, high parallelism can be achieved for the landmark-labeling method as in
PLL. Network-instances, for which PLL showcased impractical time performance, can be
executed several factors faster and, thus, enter in the domain of practical usage. We were
also able to maintain the benefits that PLL offered: small query times and small index
size. The main method does use more memory throughout its construction, but with the
memory-improved version this remains in an acceptable range.

We introduced concurrency in PLL by executing multiple searches in its phases in parallel.
The main challenge that existed, and for which we offered a solution, were the mechanisms
needed to make it thread-safe.

We proved its practical usage by benchmarking its performance on several real-life net-
works from various scenarios. In every instance that we tested, speed-ups were achieved.
Theoretically, a linear speed-up can be achieved with this approach; due to the overhead
introduced by multi-threading this theoretical bound could not be reached.

It is essential to note that using our approach leads to a slightly worse performance with re-
gard to the queries (as seen in 5.7). The significance of this drawback has to be determined
on a case-to-case basis.

29

30 7. Conclusion

30

Appendix

A Failed methods

Throughout our research on this topic, several other approaches have been tested to im-
prove the performance of the index construction. In the following sections we summarize
some of them and briefly explain the difficulties that were encountered.

A.1 Generalised bit-parallel labeling

Addressed in 4.2.1: We were not able to improve the performance of the bit-parallel
labeling by introducing an approach that is able to use roots without a common, adjacent,
vertex.

A.2 Parallel Breadth-first-search

Instead of running several searches in parallel, the search itself can be also made concurrent.
This can be done by introducing parallelism within the part where the new frontier gets
computed, which is usable in both phases. Unfortunately, results have shown that this
approach is, by far, slower. Using the threads to execute multiple searches in parallel leads
to a much better performance. The problem with this approach was within the pruning
section in each search.

It is also important to note, however, that this approach does lead to some speed-up (rarely
exceeding the one-digit domain).

The experiments included the usage of the Ligra framework [SB13] (a graph processing
framework for shared memory).

A.3 Multi-source

In order to maximize the throughput of each search, the selection of multiple roots was
tested. The problem here was the overhead of having to maintain multiple arrays for
each root individually. As stated in 6, concurrent hash-tables with cache-efficiency may
represent useful for handling these drawbacks.

31

32 Appendix

32

8. Acknowledgments

In this section, I would like to express my gratitude to professor Guy Bleloch and Ph.D.
student Julian Shun from Carnegie Mellon University (CMU). They supported my research
throughout my stay at CMU; weekly meetings with them, in which we discussed both my
results and new ideas, proved essential. They also provided me with access to several
high-quality machines for testing my algorithm.

Additionally, my gratitude goes to professor Peter Sanders, Niklas Baumstark from Karl-
sruhe Institute of Technology and Madeline Lemberg from Yale University. Professor
Sanders supervised my thesis, gave the initial topic, and offered some of his thoughts re-
garding it. Niklas helped me from the technical side and introduced me to the new working
environment at CMU. Madeline Lemberg edited several sections of my thesis.

33

34 8. Acknowledgments

34

Bibliography

[ADGW12] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “Hierarchical
hub labelings for shortest paths,” Tech. Rep. MSR-TR-2012-46, April 2012.
[Online]. Available: http://research.microsoft.com/apps/pubs/default.aspx?
id=163231

[AIY13] T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path distance
queries on large networks by pruned landmark labeling,” pp. 349–360, 2013.
[Online]. Available: http://doi.acm.org/10.1145/2463676.2465315

[ASK12] T. Akiba, C. Sommer, and K.-i. Kawarabayashi, “Shortest-path queries for
complex networks: Exploiting low tree-width outside the core,” in Proceedings
of the 15th International Conference on Extending Database Technology,
ser. EDBT ’12. New York, NY, USA: ACM, 2012, pp. 144–155. [Online].
Available: http://doi.acm.org/10.1145/2247596.2247614

[BCSV04] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler: A scalable
fully distributed web crawler,” Softw. Pract. Exper., vol. 34, no. 8, pp.
711–726, Jul. 2004. [Online]. Available: http://dx.doi.org/10.1002/spe.587

[BRSV10] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation:
A multiresolution coordinate-free ordering for compressing social networks,”
CoRR, vol. abs/1011.5425, 2010.

[BV04] P. Boldi and S. Vigna, “The webgraph framework i: Compression techniques,”
in Proceedings of the 13th International Conference on World Wide Web,
ser. WWW ’04. New York, NY, USA: ACM, 2004, pp. 595–602. [Online].
Available: http://doi.acm.org/10.1145/988672.988752

[CHKZ02] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability and distance
queries via 2-hop labels,” in Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, ser. SODA ’02. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2002, pp. 937–946. [Online].
Available: http://dl.acm.org/citation.cfm?id=545381.545503

[Goo02] Google, “Google programming contest 2002,” 2002.

[JRXL12] R. Jin, N. Ruan, Y. Xiang, and V. Lee, “A highway-centric labeling approach
for answering distance queries on large sparse graphs,” in Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’12. New York, NY, USA: ACM, 2012, pp. 445–456. [Online].
Available: http://doi.acm.org/10.1145/2213836.2213887

[LHK10a] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive
and negative links in online social networks,” in Proceedings of the
19th International Conference on World Wide Web, ser. WWW ’10.

35

http://research.microsoft.com/apps/pubs/default.aspx?id=163231
http://research.microsoft.com/apps/pubs/default.aspx?id=163231
http://doi.acm.org/10.1145/2463676.2465315
http://doi.acm.org/10.1145/2247596.2247614
http://dx.doi.org/10.1002/spe.587
http://doi.acm.org/10.1145/988672.988752
http://dl.acm.org/citation.cfm?id=545381.545503
http://doi.acm.org/10.1145/2213836.2213887

36 Bibliography

New York, NY, USA: ACM, 2010, pp. 641–650. [Online]. Available:
http://doi.acm.org/10.1145/1772690.1772756

[LHK10b] ——, “Signed networks in social media,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’10.
New York, NY, USA: ACM, 2010, pp. 1361–1370. [Online]. Available:
http://doi.acm.org/10.1145/1753326.1753532

[LKF05] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: Densification
laws, shrinking diameters and possible explanations,” in Proceedings of the
Eleventh ACM SIGKDD International Conference on Knowledge Discovery
in Data Mining, ser. KDD ’05. New York, NY, USA: ACM, 2005, pp.
177–187. [Online]. Available: http://doi.acm.org/10.1145/1081870.1081893

[LLDM08] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters,” CoRR, vol. abs/0810.1355, 2008.

[MMG+07] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee,
“Measurement and analysis of online social networks,” in IMC’07, 2007.

[PBCG09] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, “Fast shortest
path distance estimation in large networks,” in Proceedings of the 18th
ACM Conference on Information and Knowledge Management, ser. CIKM
’09. New York, NY, USA: ACM, 2009, pp. 867–876. [Online]. Available:
http://doi.acm.org/10.1145/1645953.1646063

[RAD03] M. Richardson, R. Agrawal, and P. Domingos, “Trust management for the
semantic web,” in The Semantic Web - ISWC 2003, ser. Lecture Notes
in Computer Science, D. Fensel, K. Sycara, and J. Mylopoulos, Eds.
Springer Berlin Heidelberg, 2003, vol. 2870, pp. 351–368. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-39718-2 23

[RFI02] M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the gnutella network:
Properties of large-scale peer-to-peer systems and implications for system de-
sign,” arXiv preprint cs/0209028, 2002.

[SB13] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing framework
for shared memory,” SIGPLAN Not., vol. 48, no. 8, pp. 135–146, Feb. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2517327.2442530

[Wei10] F. Wei, “Tedi: Efficient shortest path query answering on graphs,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’10. New York, NY, USA: ACM, 2010,
pp. 99–110. [Online]. Available: http://doi.acm.org/10.1145/1807167.1807181

36

http://doi.acm.org/10.1145/1772690.1772756
http://doi.acm.org/10.1145/1753326.1753532
http://doi.acm.org/10.1145/1081870.1081893
http://doi.acm.org/10.1145/1645953.1646063
http://dx.doi.org/10.1007/978-3-540-39718-2_23
http://doi.acm.org/10.1145/2517327.2442530
http://doi.acm.org/10.1145/1807167.1807181

	Contents
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph
	2.2 Notations
	2.3 The problem
	2.4 Breadth-first search (BFS)
	2.5 Labeling

	3 Related work
	3.1 Exact methods
	3.2 Approximate methods
	3.3 Pruned landmark labelingakiba
	3.3.1 Landmark labeling
	3.3.2 Pruned landmark labeling
	3.3.3 Bit parallel labeling
	3.3.4 Results

	4 Parallel pruned landmark labeling
	4.1 Vertex order
	4.2 Phase I
	4.2.1 Bit-parallel search from any k vertices

	4.3 Phase 2
	4.4 Query
	4.5 Implementation
	4.5.1 Initialization
	4.5.2 Pruning of the frontier
	4.5.3 Vertex order induced cache-efficiency
	4.5.4 Locks

	4.6 Variations
	4.6.1 Lower memory consumption
	4.6.2 Directed edges
	4.6.3 Weighted edges

	5 Experimental evaluation
	5.1 Environment
	5.2 Datasets
	5.3 Performance of PLL
	5.4 Our performance results
	5.4.1 Single threaded
	5.4.2 Multi-threading
	5.4.2.1 Speed-ups with the memory-light version
	5.4.2.2 Speed-ups within the individual phases
	5.4.2.3 Size of the constructed index
	5.4.2.4 Query-performance
	5.4.2.5 Asymptotic analysis of the memory usage

	6 Future work
	7 Conclusion
	Appendix
	A Failed methods
	A.1 Generalised bit-parallel labeling
	A.2 Parallel Breadth-first-search
	A.3 Multi-source

	8 Acknowledgments
	Bibliography

