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On the arid lands there will spring up industrial colonies without smoke and 

without smokestacks; forests of glass tubes will extend over the plains and 

glass buildings will rise everywhere; inside of these will take place the 

photochemical processes that hitherto have been the guarded secret of 

the plants, but that will have been mastered by human industry which will 

know how to make them bear even more abundant fruit than Nature, for 

Nature is not in a hurry and mankind is. And if in a distant future the supply 

of coal becomes completely exhausted, civilization will not be checked by 

that, for life and civilization will continue as long as the sun shines!  

Giacomo Ciamician (1912) 
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ABSTRACT 

The development of new modular photochemical conjugation techniques as well as 

the use of light-induced cycloaddition chemistry for applications in various fields of 

polymer science is reported. 

The present thesis thus includes investigations towards the development of 

advanced light-driven ligation processes enhancing the performance of 

photochemical tools, e.g., nitrile imine-mediated tetrazole-ene cycloaddition (NITEC), 

azirine-based ligation, photoenol chemistry, and Paternò–Büchi reactions. The 

advanced photochemical features enable access to novel applications in polymer 

science, such as a light-driven step-growth polymerization technique, polymer end 

group modification induced by visible light, reversible encoding of polymer termini, 

generation of block copolymers, and crosslinking of polybutadienes. 

First, a novel class of photoreactive profluorescent monomers which efficiently 

polymerize at ambient temperature adhering to Carothers’ kinetics, generating 

strongly fluorescent polymers, is introduced. The newly designed monomers, which 

carry a tetrazole and a dipolarophile unit respectively, are readily prepared and 

photo-triggered to polymerize with easily accessible and inexpensive light sources. 

The structure of the new polymer class is analyzed in detail via size exclusion 

chromatography (SEC), nuclear resonance spectroscopy (NMR) and electrospray-

ionization mass spectrometry (ESI-MS), evidencing the polymerization mechanism 

and kinetics. 

Moreover, an ultra-rapid visible light-driven avenue for catalyst-free ligation is 

reported. The highly efficient process is based on photochemistry of azirines and thus 

suitable for cycloaddition reactions with a multitude of reactants. Small molecules 

were subjected to the conjugation reaction as well as polymeric materials with a 

reactive terminus. Both processes were monitored in detail employing, for instance, 

high-performance liquid chromatography (HPLC) or high-resolution mass 

spectrometry (high-res ESI-MS). 



 

II 
 

Next, the suitability of Paternò-Büchi chemistry for reversible encoding of polymer 

termini was investigated applying an aldehyde-capped poly(ethylene glycol) system. 

Besides the photochemical generation of oxetane functions, their photosensitized 

cleavage behavior was explored supported by characterization via collision induced 

dissociation (CID) ESI-MS. The proof of principle for recodability was demonstrated 

by performing three consecutive photochemical end-group transformations. 

Furthermore, a novel polymer conjugation reaction for non-activated dithioesters was 

established, which is based on a light-triggered hetero Diels–Alder reaction with a 

highly reactive photoenol diene. The enhanced activity of the photochemically 

generated reactive species enables nearly quantitative coupling of polymer blocks 

without a catalyst on very short timescales.  

Finally, the crosslinking of unsaturated polymers featuring non-activated double 

bonds via NITEC that functions in sunlight is reported. Developing a tetrazole-

containing di-functional linker moiety allows for the transformation of linear 1,2-

polybutadienes into insoluble networks with fluorescent properties, enabling the 

fabrication of fluorescent patterned surfaces and designs. 
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ZUSAMMENFASSUNG 

Die vorliegende Arbeit behandelt die Neuentwicklung modularer photochemischer 

Konjugationsmethoden, sowie die Weiterentwicklung bereits etablierter Photo-

ligationsmethoden basierend auf lichtinduzierten Zykloadditionsreaktionen in deren 

Anwendung auf verschiedenste Bereiche der Polymerwissenschaft. 

Diese Arbeit enthält Untersuchungen die auf verbesserte Leistungsfähigkeit diverser 

photochemischer Synthesewerkzeuge, wie zum Beispiel die Nitrilimin-vermittelte 

Tetrazol-Ene Zykloaddition (NITEC), Ligation basierend auf Azirinchemie, 

Photoenolchemie und Paternò–Büchi Reaktionen abzielt. Die dadurch erreichten 

fortgeschrittenen Möglichkeiten der photochemischen Methoden eröffnen Zugang zu 

deren neuartiger Anwendung im Bereich der Polymerchemie, wie beispielsweise in 

auf Licht basierender Stufenwachstumspolymerisation, der Modifikation von 

polymeren Endgruppen mittels sichtbaren Lichts, der reversiblen Kodierung von 

Polymerendgruppen, die Herstellung von Blockcopolymeren sowie die Vernetzung 

von Polybutadienen.  

Zu Beginn wird eine neuartige Klasse photoaktivierbarer, profluoreszenter Monomere 

vorgestellt, die bei Raumtemperatur polymerisiert werden können, dabei die 

Carothers Kinetik erfüllen und stark fluoreszierende Polymere erzeugen. Diese 

neuentwickelten Monomere, die eine Tetrazolkomponente sowie eine entsprechende 

Dipolarophileinheit enthalten, sind einfach herzustellen und mit leicht zugänglichen 

preisgünstigen Lichtquellen photochemisch zu polymerisieren. Um Polymerizations-

mechanismus und -kinetik zu untermauern wird die Struktur der dargestellten 

neuartigen Polymere mittels Größenausschlusschromatographie, Kernresonanz-

spektroskopie und Elektrospray-Ionisations Massenspektrometrie detailliert 

charakterisiert. 

Desweiteren wird eine extrem schnelle, durch sichtbares Licht induzierbare Variante 

zur katalysatorfreien Ligation behandelt. Der höchsteffiziente Prozess basiert auf der 

Photochemie von Azirinen und ist daher für Zykloadditionsreaktionen mit einer 
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Vielzahl an Reaktionspartnern geeignet. Kleine Moleküle wurden der Konjugations-

methode ebenso unterzogen wie polymere Materialien mit reaktiven Endgruppen. 

Beide Prozesse wurden detailliert charakterisiert, zum Beispiel mittels Hochleistungs-

flüssigkeitschromatographie (HPLC) oder hochaufgelöster Massenspektrometrie.  

Als nächstes wurde die Eignung von Paternò–Büchi Chemie zur reversiblen 

Kodierung polymerer Termini unter Verwendung eines Aldehyd-funktionalisierten 

Polyethylenglykols untersucht. Außer der photochemischen Erzeugung von 

Oxetanfunktionalitäten wurde deren photosensibilisiertes Spaltungsverhalten 

erforscht, unterstützt durch kollisionsinduzierte Dissoziations-Massenspektrometrie. 

Durch drei aufeinanderfolgende photochemische Endgruppenumwandlungen wurde 

der Beweis für wiederholte Kodierung erbracht.  

Des weiteren wird eine neuartige Reaktion von Dithioestern zur Konjugation von 

Polymeren etabliert, die auf der lichtinduzierten hetero Diels–Alder Reaktion 

hochreaktiver Diene beruht. Die erhöhte Aktivität der photochemisch erzeugten, 

reaktiven Spezies ermöglicht die schnelle, nahezu quantitative Kupplung von 

polymeren Bausteinen ohne Zusatz von Katalysatoren.  

Abschließend wird von der Vernetzung ungesättigter Polymere, die nicht-aktivierte 

Doppelbindungen enthalten, mittels NITEC im Sonnenlicht berichtet. Durch die 

Entwicklung eines Tetrazol-basierenden difunktionalen Linkers konnte die 

Umwandlung von linearen 1,2-Polybutadienen in unlösliche, fluoreszierende 

Netzwerke erreicht werden, die die Erzeugung von fluoreszenten Mustern auf 

Oberflächen ermöglichen.  
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1 
1INTRODUCTION 

"Is it time to shoot for the sun?" was the title of an article addressing global energy 

concerns published ten years ago.1 It is a fair question which the Italian visionary 

Giacomo Ciamician had answered for himself already at the beginning of the last 

century. With an unparalleled clear-sightedness, he envisaged the future of mankind 

to be dependent on solar energy.2 Although solely relying on the fundamental 

knowledge of organic and photochemistry at the beginning of the 20th century, 

Ciamician's vision was highly accurate: He predicted an increasing need for clean 

energy and efficient industrial processes. Furthermore, mankind would be destined to 

solve this technological challenge for its survival. In a nutshell, he had actually 

commenced the debate on sustainability about 100 years before scientists of the 

modern era have stepped in.  

Awakened by global warming and other unambiguous evidence for our destructive 

dealing with Nature, the contemporary scientific society – including research, 

industry, and education – is dominated by aspects concerning environmental and 

energy issues. However, attempting to solve the energy challenge in the context of a 

Ph.D. thesis would be quite ambitious. Yet, Ciamician's optimistic enthusiasm was 

not exclusively restricted to employing solar radiation for providing humanity with 

energy. Being an active photochemist himself, he was convinced that photochemical 

techniques based on solar radiation would evolve to constitute future industrial 
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processes. A modern and progressive philosophy coinciding with Ciamician's 

inspiration by Nature's photosynthesis – the gold standard of efficient systems – is 

termed green chemistry.3 Consequently, green chemistry represents simple, efficient, 

feasible, and environmentally benign processes.4 Despite the research and 

development efforts in this area, Nature still exceeds the photoscientists by far, since 

the efficiency and predominantly the sustainability of its photosynthesis is currently 

out of reach for every synthetic chemist. Thus, the motivation for today's 

photochemical research is obvious: The exploration of novel light-induced techniques 

requires acceleration in order to address the challenges of contemporary society.  

Since photochemistry and its application are a wide field, it is critical to define the foci 

of research for the present thesis. The general aim, however, is set by the previously 

formulated motivation of stepwise improving the existing state-of-the-art techniques in 

photochemical science. More specifically, the photochemical tools themselves are to 

be enhanced, for instance, in terms of accessible excitation wavelengths. Sunlight-

induced or – to be even more demanding – visible light-triggered ligation systems are 

just commenced to be developed and shifting established photochemical methods 

from the UV region to ubiquitously present radiation is highly desirable. Another 

opportunity for improving a system's performance stems from highly reactive species 

which can be generated upon irradiation. Thus, accessing novel pairings is possible 

and the current work seeks to establish the corresponding protocols. Finally, to 

demonstrate a broadened scope of photochemical methods, e.g., photoenol,5 

azirine,6 tetrazole,7 and Paternò–Büchi chemistry,8-9 it is important to target novel 

applications for established as well as improved techniques, retaining a good balance 

between industry related requirements and the academic need for fundamental 

research. 

In order to present photochemical achievements on a broad platform, polymer 

science forms the fundamental basis of the current thesis. The extensive and rapidly 

progressing field of macromolecular chemistry provides a variety of aspects from 

which the polymerization process, post-polymerization modification of polymer 

termini, the generation of block copolymers, and polymer crosslinking for surface 

patterning were chosen to be closely investigated. Merging photochemistry-based 

endeavors with applications for polymer science results in the following intended 

advances, ordered by increasing size of the polymeric system: (i) A step growth 
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polymerization process based on tetrazole-ene cycloaddition demonstrating the 

efficiency and feasibility of this photochemical tool to generate fluorescent polymeric 

materials from non-fluorescent photoreactive monomers. (ii) By designing a novel 

chromophore-azirine conjugate, a visible light-induced ligation method is developed 

and applied for polymer end group modification. (iii) Reversible end group encoding 

of polymers may be attempted using the Paternò–Büchi approach. An exploratory 

study trials the retro Paternò–Büchi reactions for its applicability. (iv) Photoenol 

chemistry allows for accessing poorly activated polymer termini involving a 

conventional reversible addition-fragmentation chain transfer agent. Thus, the 

enhanced reactivity of the photo-induced moieties broadens the scope of applied 

photoenol conjugation. (v) Advanced tetrazole design enables to increase their 

activity towards non-activated dipolarophiles. Hence, spatially controlled surface 

patterning via crosslinking of polybutadienes is demonstrated in the current thesis.  

Each of the single projects alluded to above is categorized in the following scheme 

depending on its respective photochemical technique as well as its role in the field of 

polymer science (Figure 1). 
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Figure 1: Overview of projects addressed in the current thesis. In each project a macromolecular 

challenge (right side) is approached via a particular photochemical technique (left side), introducing 

specific features (middle). 
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2 
2PHOTOCHEMISTRY IN POLYMER 

SCIENCE – A LITERATURE REVIEW 

The current thesis covers a large area of aspects in the fields of polymer science and 

photochemistry. Although the combination of two such large disciplines provides the 

opportunity to discuss a diversity of aspects and develop various novel systems, 

neither of the single topics should be addressed cursory. Thus, it is essential for the 

reader to possess a solid theoretical background in both fields. Nevertheless, the 

rapid evolution of research requires a more detailed knowledge in the particular 

directions the various specialized topics the present thesis is addressing. Therefore, 

it is the purpose of the current chapter to provide on the one hand the very 

fundamentals in the fields of polymer science and photochemistry, which constitute 

the first two sections and on the other hand the up-to-date state-of-the-art 

developments in the area which combines the two extensive disciplines in the final 

section of this chapter. Thus, it is intended to provide a summary of all the required 

information allowing the reader to follow the scientific discussions of the subsequent 

chapters. 
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2.1   Polymer Science 

Synthetic polymeric materials are ubiquitously present in today's society. It was 

inevitable that polymer science has become the basis for a major industrial branch 

due to the exceptional developments of the past century. Even before the molecular 

understanding of what a polymer is emerged, rubbers were an important industrial 

product and a highly required material with unique properties.10 In 1929, Hermann 

Staudinger proposed an initially controversial theory in which polymers were 

assumed to be macromolecules.11 His initial studies on the simplest polymeric 

materials, as well as their physical and chemical properties, are a benchmark in the 

history of polymer chemistry since they provide the first idea about the molecular 

constitution of macromolecules.12-17 Therefore, Staudinger was awarded the Noble 

Price in 1953. From the 1950s on, the increasing knowledge and experience led to 

further improvements of the material's performance and thus, a steady increase in 

the annual industrial production (Figure 2.1). By today, polymer industry has reached 

a level where macromolecular materials are an essential ingredient in the majority of 

products.  

 

Figure 2.1: Worldwide production of macromolecular materials from 1950 to 2013. Data was 

reproduced from ref.
18
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Nevertheless, the demands for modern materials become continuously more 

challenging, emphasizing the importance of our research. Although controlling 

polymer functionality, topology, and designing architectures for tailor-made functional 

materials are standard procedures for the synthetic chemist,19 the need for improved 

synthetic tools and increasing efficiency, which can broaden the scope of application 

and enhance the material's performance, is always present. 

In the current chapter the reader will be introduced to the fundamentals of polymer 

chemistry. The following sections contain basic knowledge about polymerization 

kinetics, as well as more specialized aspects in the field of macromolecular science. 

The main foci of discussion are, for instance, step-growth and chain-growth 

polymerization processes, as well as modern polymerization techniques. Thus, the 

essential knowledge about polymers with regard to the explicit topics addressed in 

the present thesis is provided.  

2.1.1   Step-growth Polymerization 

The variety of polymers concerning their constitution, size, monomer type, synthesis, 

functionality, physical, chemical, and mechanical properties appears to be almost 

infinite. The attempt to classify polymers – which is not generally feasible – into two 

categories can be somewhat confusing.20 In contrast to Wallace H. Carothers' initial 

classification of polymers into condensation and addition polymers,21 which was not 

entirely well engineered, Paul J. Flory's approach to distinguish polymers by their 

generation mechanism was broadly acknowledged although he applied the same 

terminology as Carothers.22 The most recent terminology employs the terms step-

growth and chain-growth polymers, where step-growth includes condensation 

(formation of a low molecular weight side-product during the polymerization) and 

addition (no formation of side-products) polymers. Chain-growth polymers, which are 

mostly – yet not exclusively – made of vinyl type monomers, are the subject of 

discussion in the subsequent section (2.1.2). The most prominent of synthetic step-

growth polymers are polyesters, polyamides, polycarbonates, polyurethanes, and 

polysiloxanes, where Nylon – a polyamide –is by far the most popular product.  
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In a typical step-growth polymerization, the reaction of two different reactive groups, 

for instance a carboxylic acid and an alcohol, form the linkage between two monomer 

units. Thus, monomers containing at least two functional groups are required for 

macromolecular growth. These monomers can be of two different types: They either 

carry the same function at both ends (A-A, B-B), a case in which it is essential that 

the two monomers are deployed in the same molar ratio, or one monomer unit 

contains both functionalities. In the latter case, the problem of equal molarity for the 

functional groups is eliminated. The schematic representation for both options is 

depicted in Scheme 2.1.1-1. 

 

Scheme 2.1.1-1: Step-growth polymerization for two types of monomers: top AA + BB, bottom AB. 

Taking a closer look at the kinetics of step-growth polymerization is necessary for two 

reasons: The kinetics are of importance for the practical use of this type of 

polymerization, enabling the prediction of molecular weight and allowing to adjust the 

reaction conditions. Knowledge about kinetics also offers insight into the major 

differences compared to the chain-growth polymerization process.  

At first, some preliminary thoughts about the molecular weight of a step-growth 

polymer are noted, which is the primary concern to the synthetic chemist. The 

number average degree of polymerization, DPn, is defined as the initial number of 

monomer molecules (N0), divided by the number of molecules present at a certain 

reaction time (Nt). In combination with the conversion p, which represents the fraction 

of monomers converted to polymer (Eq 2.1-1), the resulting equation is known as the 

Carothers equation (Eq 2.1-2). 

p = 1 - 
Nt

N0
      Eq 2.1-1 

DPn = 
N0

Nt
 = 

1

1 - p
     Eq 2.1-2 

Assuming the two functional groups are not present in an equimolar amount, the 

Carothers equation complicates to Eq 2.1-3, where q is the fraction of functional 

groups, which is defined to be smaller than unity. 
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DPn = 
1 + q

1 + q - 2qp
    Eq 2.1-3 

An alternative version of the Carothers equation (Eq 2.1-4) connects conversion, the 

molar mass of the monomer (Mmon) and weight average molar mass of the polymer 

(Mw), which is of importance to the discussion in Chapter 3. 

Mw = Mmon  
1 + p

1 - p
     Eq 2.1-4 

In order to generate kinetic equations for the polymerization process, the elementary 

reactions need to be identified and evaluated. Firstly, the monomers present in the 

reaction mixture react with each other to form dimers. The newly formed dimer can 

itself react with another monomer unit, a dimer, or a trimer, generating a trimer, 

tetramer, or pentamer, respectively. It becomes obvious that in the case of for 

example a simple polyesterification, the number of elementary steps is infinite and 

the resulting kinetic equations for the polymerization process are complex. Therefore, 

a feasible simplification is required, which can be achieved by assuming that each 

single reaction step is independent from the size of the monomer/ oligomer/ polymer. 

Experimental experience, as well as theoretical calculations confirm this assumption 

to be reasonable since the mobility of the reactive function itself decreases not as 

much as the mobility of the entire molecule.23-24 Thus, the polymerization reaction 

can be summarized by the following reaction scheme (Scheme 2.1.1-2). 

 

Scheme 2.1.1-2. General reaction scheme for a polyesterification. 

The reversibility of esterification reactions causes not only problems with solving the 

kinetic equations, but it also needs to be suppressed in an actual polymerization 

system since high conversions must be achieved to obtain molar masses of 

reasonable value. Therefore, the generated water is typically removed in a 

polyesterification. The resulting equation for the consumption of functional groups 

(COOH and OH) is displayed in the following equation (Eq 2.1-3): 

 −  
d COOH

d t
 = −  

d OH

d t
 = ke ∙ cat ∙ COOH ∙ OH   Eq 2.1-5 
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Furthermore, the addition of an external catalyst accelerates the reaction and further 

simplifies the kinetic equation, since ke and cat can be combined to kc. In addition, if 

equimolarity of both functional groups is given, COOH and OH can be termed M, 

resulting in Eq 2.1-4. 

−
d M

d t
 = kc ∙ M

2
      Eq 2.1-6 

By integrating from starting time t = 0 to reaction time t = t and substitution in the 

Carothers equation, Eq 2.1-5 is obtained. 

DPn = 
1

1 - p
 = 1 + M ∙ kc ∙ t     Eq 2.1-7 

Hence, the degree of polymerization is proportional to the reaction time for an 

externally catalyzed system. 

2.1.2   Chain-growth Polymerization 

One of the simplest and most popular polymerization techniques is free radical 

polymerization (FRP). FRP follows a chain-growth mechanism, which is distinctly 

different from the step-growth polymerization discussed above.20 In a chain-growth 

polymerization an initiator generates a starting radical, anion, or cation, which reacts 

with a monomer moiety – typically vinyl monomers – by transferring the reactive 

center to the monomer unit. Thus, additional monomers are consecutively added to 

the so-called propagating chain. Therefore, the greatest differences to the step-

growth process are on the one hand that there are only three types of species 

present in a chain-growth polymerization mixture: monomer, polymer, and 

propagating chains. On the other hand, high molar mass material is produced from 

the very beginning of the polymerization. Due to its simplicity, FRP is a cost-saving 

process and therefore the most industrially applied polymerization technique. Close 

to 50 % of the annual polymer production is generated by FRP.25 

The kinetics of free radical polymerization are determined by four elementary steps: 

initiation, propagation, termination, and chain transfer. The initiation reaction itself 

can be divided into two steps (Scheme 2.2-1). Initially, radicals are produced from an 

initiator moiety, which dissociates yielding two radicals. The dissociation reaction can 
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be triggered under variable conditions, including heat, irradiation, or electrochemical 

processes, where the first two triggers are more frequently employed. A more 

detailed discussion of photoinitiators is provided in Section 2.3.2. In the second step 

of the initiation process the newly generated radical reacts with the first monomer 

molecule, which represents an important step in polymerization kinetics. 

 

Scheme 2.1.2-1: The first two steps in free radical polymerization consist of the initiator dissociation 

reaction (top) and monomer addition to the initiating species (bottom). 

The rate coefficient of the decomposition of the initiator, kd, varies with the reaction 

conditions and is typically in the order of 10-5 s-1. In contrast, the transfer reaction to 

the first monomer unit is of second order (ki ≈ 104 M-1 s-1). The propagation reaction 

describes the subsequent addition of monomer molecules to the radical species 

generated from the initiation process (Scheme 2.1.2-2). Therein, the rate coefficient 

of propagation, kp, is dependent on the properties of the monomer. The value of kp is 

in the order of 10 M-1 
s

-1 for very slowly polymerizing monomers, such as dicyclohexyl 

itaconate, and 105 M-1 s-1 for acrylates, which are fast polymerizing monomers.26 

 

Scheme 2.1.2-2: General propagation reaction in FRP. 

Termination reactions remove radical species from the polymerization mixture. There 

are two pathways how the propagation of growing chains can be terminated: 

combination or disproportionation (Scheme 2.1.2-3). The combination process 

describes the collision of two radicals or macro-radicals, resulting in a dead polymer 

chain with the combined molar mass of the macro-radicals. Disproportionation, on the 

other hand, occurs via hydrogen abstraction by one macromolecule from another. In 

contrast to the combination process, disproportionation produces two dead polymer 

chains, each one of the same molar mass as the corresponding macro-radicals. The 

termination process in general is a statistical process, which involves polymer chains 

of different lengths in the reaction mixture. It is diffusion controlled and thus strongly 

dependant on the viscosity of the reaction medium27 as well as the chain length of 
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the polymer.28 Therefore, an increasing viscosity and chain entanglement with 

conversion leads to a decreasing termination reaction rate which can lead to a so-

called auto acceleration behavior.28 

 

Scheme 2.1.2-3: Termination step of FRP. Termination can occur via combination of two polymer 

chains (top) or through a disproportionation reaction (bottom). 

A further step in conventional free radical polymerization is the chain transfer reaction 

(Scheme 2.1.2-4). Similar to the termination reaction, chain transfer also results in 

the formation of inactive polymer chains. However, in contrast to the termination 

reaction, the radical concentration remains constant. The radical is transferred from 

one polymer chain to another moiety, which can subsequently re-initiate propagation. 

The moiety the radical is transferred to is either the initiator, the solvent, a monomer 

molecule, another polymer chain, or a transfer agent that is deliberately added. 

Radical transfer to polymer chains gives rise to branched polymers, if the generated 

radical is positioned within the chain.29 

 

Scheme 2.1.2-4: Chain transfer in FRP. The top reaction depicts the chain transfer to molecule 'T', 

which could be solvent, initiator, monomer, polymer, or a transfer agent. The bottom reaction depicts 

the addition of monomer to the re-initiating radical. 

Although FRP is a very robust process and therefore the most commonly 

implemented polymerization technique, it includes some significant limitations. 

Products produced via FRP are highly unsuitable for advanced applications, the 

design of polymeric architectures, or simply post-polymerization modification of the 

resulting polymer, due to a lack in end group functionality and poor control over 

molecular weight and dispersity. Thus, more advanced polymerization techniques 

need to be applied.  
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Opposing the properties of FRP, anionic polymerization is the prime example for a 

living polymerization process.30 Since no chain termination events occur, it 

consequently provides perfect control over molecular weight and end group 

functionality. Further characteristics are a linear evolution of molar mass with 

conversion and low dispersity values. Moreover, living polymerization enables to 

produce blockcopolymers by simply adding another monomer after complete 

consumption of the one initially present. Despite these advantages, anionic 

polymerization has limited use in industrial processes due to the small number of 

suitable monomers and very stringent reaction conditions.31 Thus, the development 

of novel polymerization techniques was highly important and during the last decades 

polymer chemists attempted to combine the simplicity of radical polymerization with 

the advantageous properties of living polymerization techniques. 

2.1.3   Modern Polymerization Techniques 

Looking for the ideal polymerization process, polymer chemists developed controlled 

radical polymerization techniques, termed reversible-deactivation radical 

polymerization (RDRP) by the International Union of Pure and Applied Chemistry 

(IUPAC). The term 'controlled' will be used from now on, as truly living radical 

polymerization is impossible since radical-radical termination can never be 

completely suppressed. However, control over a radical polymerization process can 

be gained via two generic mechanisms: reversible termination of the propagating 

species or reversible degenerative chain transfer. Either way, the key to a controlled 

polymerization is the rapid exchange between dormant and propagating species 

allowing all polymer chains to grow simultaneously. An alternative approach to 

produce well defined polymers can be achieved via ring opening polymerization 

(ROP). ROP features similar advantageous properties and will be introduced 

subsequent to the introduction of the radical-based techniques. 
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2.1.3.1   Nitroxide-Mediated Radical Polymerization 

Nitroxide-mediated radical polymerization (NMP) was first introduced by Solomon in 

1985.32 The concept behind NMP is that propagating chains are reversibly terminated 

by a stable radical control reagent. Nitroxide moieties are employed as stable 

radicals forming alkoxy amines upon combination with the propagating macro-

radicals.33 The dormant species – depicted on the right side of the reaction 

equilibrium (Scheme 2.1.3-1) – is not affected by termination or propagation events, 

which provides the controlled character of the polymerization method.34 On the 

opposite side of the equilibrium, the free radical species reacts naturally with the 

present monomer compounds.35 NMP can either be induced via dissociation of a 

preliminarily present alkoxy amine, or by a typical radical initiator, which requires the 

addition of a free nitroxide control agent. A commonly employed stable and 

commercially available radical control reagent is 2,2,6,6-tetramethylpiperidine-1-oxyl 

(TEMPO).  

 

Scheme 2.1.3-1: General reaction equilibrium for NMP. The propagating radical is reversibly 

terminated by the nitroxide radical, generating a dormant species that is not affected by termination. 

In order to obtain controlled polymerization it is important that the rate coefficient of 

the deactivation (kda) reaction is much larger than the one of the activation step (ka). If 

this is not the case, the radical concentration in the reaction would be too high, 

causing the termination reaction to proceed to a significant extent. 

Although NMP is able to produce narrowly distributed polymers of defined chain 

length, it involves numerous disadvantages. The reaction temperature, for instance, 

must often be high (up to 130 °C) to accelerate the activation reaction. Moreover, 

only styrene could initially be polymerized with this controlled radical polymerization 

system, before the development of advanced control agents enabled to improve the 

selection of monomers and reduce the polymerization temperature.36 The most 

significant and yet unsolved problem is the long reaction time – up to 72 hours – 

which is necessary for the reaction to proceed caused by the low radical 
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concentration. In order to further reduce the amount of side reactions caused by high 

temperatures, photo-induced NMP was established enabling ambient temperature 

polymerization.37-39  

2.1.3.2   Atom Transfer Radical Polymerization 

Atom transfer radical polymerization (ATRP), first reported by the groups of 

Matyjaszewski40 and Sawamoto,41 is one of the most investigated controlled radical 

polymerization techniques in terms of mechanism and synthesis.42-43 The key feature 

of ATRP is identical to that of NMP: free radicals are reversibly trapped to protect 

them from termination. To gain control over the polymerization process, ATRP 

employs redox chemistry, most commonly a CuI/CuII system, to generate an 

equilibrium between deactivated (i.e., dormant) and activated species (Scheme 

2.1.3-2). Therein, the initial alkyl halide is reduced via single electron transfer from 

the copper(I) species to form the free radical, which undergoes propagation steps 

upon its release. The resulting copper(II) halide re-traps the free radical as alkyl 

halide (most commonly bromine). Again, for a well controlled process, it is important 

that the deactivation rate coefficient (kda) is significantly larger than its counterpart 

(ka).
44 

 

Scheme 2.1.3-2: General activation/deactivation equilibrium for ATRP. L = ligand; X = halide. 

Although the copper-catalyzed process appears to be the most robust technique, 

other transition metals (Ru,41 Fe,45 Ni,46 Pd,47 Rh48) have been successfully 

employed for controlling ATRP reactions.49 Reduced end group functionality, as 

observed for higher conversions,50 can be improved by a modern modification of 

ATRP called activator regenerated by electron transfer (ARGET).51 By adding a 

reducing agent, only a minimum amount of copper catalyst is required and enhanced 

functionality can be achieved.52 Nevertheless, removal of the cytotoxic copper is a 

crucial step in performing ATRP. A very recent approach to elegantly eliminate the 
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copper contamination was successfully conducted applying an electrochemical 

technique.53 ATRP has also been conducted via photo-initiation,54 however, the 

mechanism of photo-ATRP is still under investigation.55 

It is worthy to note that the ATRP technique results in halide functional polymers, 

which is highly advantageous, as it can be further employed as a synthetic handle for 

post-polymerization modifications. In combination with the wide variety of alkyl halide 

initiators, ATRP has proven to be a versatile synthetic tool for generating divers 

macromolecular architectures.56 

2.1.3.3   Reversible Addition-Fragmentation Chain Transfer 

Polymerization 

Reversible addition fragmentation chain transfer (RAFT) polymerization was first 

reported by a group from the Commonwealth Scientific and Industrial Research 

Organization (CSIRO) in 1998.57 They observed that a regular free radical 

polymerization could be controlled by the intentional addition of a transfer agent 

(RAFT agent), in their case a dithioester. At the same time, a French research group 

invented a similar polymerization method using xanthates as control agents.58 The 

RAFT process differs from the previously introduced methods in the way it prevents 

the radicals from undergoing termination.59-62 In the presence of a RAFT agent, the 

termination reaction competes with the radical transfer to the RAFT agent.63 

Consequently, the rate of the latter reaction has to be several orders of magnitude 

larger than the termination reaction rate in order to achieve a well controlled process. 

Thus, the probability of single polymer chain termination is transferred from one 

polymer chain to all chains. Moreover, the main equilibrium also causes all chains to 

grow simultaneously – a crucial criterion for controlled polymerization and narrow 

dispersities.59, 64 A graphical description of the entire process is depicted in Scheme 

2.1.3-3.  
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Scheme 2.1.3-3: General reaction scheme for the RAFT process.
65

 

The choice of a suitable RAFT agent is crucial for an efficient process. The stabilizing 

effect of the Z-group has to be adapted based on the monomer reactivity, as well as 

the stability and re-initiating properties of the R-group radical. In case of an 

inappropriate choice, retardation or reduced control over the polymerization can 

occur.66  

The advantage of the RAFT process is that a large variety of monomers, ranging 

from styrene to vinyl acetate, can be polymerized, especially when the RAFT agent is 

chosen judiciously.67 The formation of block copolymers can only be achieved if the 

monomer reactivity of the monomer building the first block does not differ too much 

from the reactivity of the subsequently utilized monomer.68 Another advantageous 

aspect of RAFT polymerization is the resulting end group functionality of the 

produced material. The dithio-terminus can serve as synthetic handle for instance for 
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aminolysis69-70 or RAFT-OH exchange.71-73 Moreover, electron withdrawing Z-groups 

activate the C=S-double bond for hetero Diels-Alder reactions.74-75 The so-called 

RAFT-HDA technique is a highly efficient and versatile tool for the design of 

challenging polymeric architectures76 and smart materials.77-78 The RAFT-HDA 

concept will be discussed in detail in Section 6.1. 

2.1.3.4   Ring Opening Polymerization 

Ring opening polymerization (ROP) is disparate from the techniques presented 

above, as there are three different induction methods for ROP, i.e., radical, cationic, 

and anionic initiation. However, radical and cationic ROP are both susceptible to 

termination events79 – unless control agents are added intentionally80 – and thus, 

only anionic ROP is suitable to be conducted in a controlled manner. Therefore, 

water-free conditions as well as an absence of protic impurities are required. An 

anionic ROP process, however, which is conducted under inert conditions is a 

convenient technique for producing polyethers, polyesters, and polyamides of low 

dispersity with well-defined end groups.81 A typical anionic polymerization process is 

depicted in Scheme 2.1.3-4. The driving force of the polymerization reaction is 

derived from the ring strain of the cyclic monomers. Typical monomers are for 

example, -caprolactam, -caprolactone, or ethylene oxide, yielding polyamides (i.e., 

Nylon), polyesters, or poly(ethylene glycol), upon polymerization.  

 

Scheme 2.1.3-4: Exemplary anionic ROP process for ethylene oxide: Initiation (top), propagation 

(middle) and termination (bottom).  

In general, the ROP process is beset with a series of possible disadvantages: The 

propagation step is reversible and, thus, depolymerization can occur, which is not 

only a disadvantage, but a required feature for degradable materials;82 cyclization 

reactions can produce dead material resulting in broad distributions; long reaction 

times are not only time consuming, yet also increase the risk of harmful 
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contamination. In order to solve all these problematic issues at once several catalytic 

systems have been developed. The main mechanisms proceed via small organic 

molecules,83 metal-catalysis,84 or enzymatic catalysis.85 Either way, backbiting – the 

intramolecular reaction of the chain terminus with the polymer backbone – is 

suppressed and the reaction time drastically reduced by coordination to (organic and 

metal catalysis) or activation of (enzyme) the cyclic monomer. Thus, well defined 

polymers with narrow dispersity can be obtained. Despite the restriction to a few 

cyclic monomers, ROP represents a feasible and powerful tool for customized 

polymer synthesis.86 
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2.2   Photochemistry 

The photochemistry section constitutes the basis for understanding the following 

description of research projects with regard to processes resulting from light-

induction. Initially, an introduction to the history of photochemistry in general will be 

given and the importance of ongoing progress of research in the field of 

photochemistry is pointed out. Subsequently, a more detailed look into the processes 

which occur upon the irradiation of matter with light will be provided. In particular, the 

phenomena of absorption, radiationless transitions, and photoluminescence will be 

concisely discussed on a molecular level. Finally, an example for a multistep 

photochemical process will conclude the photochemistry section. 

2.2.1   Introduction and History of Photochemistry 

Photochemistry and -physics describe the interaction between matter and light. The 

first results on photochemical transformations were reported by Trommsdorff in 1834, 

who observed a change of color when santonin was exposed to blue or violet light.87 

Later, Max Planck's work on the black body radiation was the groundbreaking step 

into the investigations of photo physics.88 Following Planck's findings was the 

discovery of the photoelectric effect in 190589 by Albert Einstein, who also formulated 

the quantum equivalence law.90 It was the first attempt to quantify photochemical 

processes, a task which was later optimized by Stark and Bodenstein.91 The first 

experimental success in photochemistry was achieved by Ciamician and Silber,92-94 

who were not only pioneers in synthetic photochemistry, yet also visionaries. The 

motivation of Ciamician was to employ light in general (or sunlight in particular) in 

order to solve environmental problems, supply humanity with clean energy and 

additionally trigger industrial processes directly by solar radiation.2 His inspiration 

was provided by Nature and its photosynthesis, a process which is the demonstration 

of sustainability since water and carbon dioxide are transformed into glucose and 

oxygen under use of solar energy. Although Ciamician's ideas were honorable, 

photochemistry did not take over substantial parts of industrial applications. 



2.2 PHOTOCHEMISTRY 

21 
 

Nevertheless, photoscientists were focused on obtaining insights into photochemical 

processes of biological origin or artificially triggered ones. 

The first group to systematically study photochemical reactions in solution was 

Norrish and coworkers. Employing advanced analytical and experimental techniques 

for the investigation of the decomposition of carbonyl compounds, they set a 

milestone for the detailed understanding of photochemical processes.95-97 Thus, it 

was possible to unravel, for example, the mechanisms of photosynthesis in Nature or 

the need of sunshine for human beings.  

The challenges that need to be overcome for establishing photochemical synthetic 

processes in industry – as proposed by Ciamician – are still immense. Not only is the 

required power a costly factor, but also the intensity gradient in larger vessels is an 

obvious problem. Nevertheless, current technology is more dependent on 

photochemistry than ever before, since the age of light-emitting diodes has begun 

just recently. The importance of this novel technology is well justified since former 

illumination sources were by far less efficient and the need for heavy metals has 

expired in the context of lighting. Additional industrial applications for photochemistry 

are for example surface coatings, which will be discussed in section 2.3.6. 

Furthermore, surface coatings and sealing materials mostly rely on photo-induced 

polymerization processes (section 2.3.2).  

By now, synthetic photochemical methods provide a platform for a large variety of 

applications. In addition, the rapidly expanding interest in photo-induced processes is 

also proof for the potential of photochemistry and its relevance for the future. An 

entirely novel field of application, for instance, is encouraged by the evolution in the 

field of laser-technology. Based on a steadily increasing performance of laser setups 

three dimensional structures can be generated on micro- or nano-scale.98 

Underpinning the unique advantage of photo-induced chemistry, i.e., spatial 

resolution, direct laser writing (DLW) is the prime example for utilizing this property 

for producing nanostructures with remarkable precision.99 
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2.2.2   Photochemical Processes 

The current section is devoted to the theoretical aspects of photochemistry and is 

therefore of immediate interest to the scientist keen on understanding photochemical 

processes on a molecular level. In order to describe the phenomena occurring upon 

irradiation of matter, Jablonski developed a clear way of graphically displaying the 

various transitions,100 i.e., absorption, radiationless transitions, luminescent 

transitions, and bond cleavage (Figure 2.2-1), which will each be discussed in detail 

in the following subsections. 

 

Figure 2.2-1: Jablonski diagram. The possible photochemical processes are absorption, internal 

conversion (IC), inter system crossing (ISC), vibrational relaxation, fluorescence, and 

phosphorescence. Sx = singlet states, T1 = first excited triplet state. 

2.2.2.1   Absorption and Excited States 

The absorption of radiation by materials – or molecules, to be more specific – is a 

crucial process in photochemical applications. It describes the excitation of the 

molecules from their electronic ground states to excited states. Thus, the absorption 

process precedes all the different transitions which the compounds undergo when 

partaking in photoreactions. The most delicate challenge in controlling the absorption 
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process is to trigger the desired transition. Various electronic and vibrational states 

can be reached upon irradiation of molecules and the consecutive transitions depend 

on the initial energy absorbed by the molecule. Therefore, the excitation wavelength 

– presenting the ultimate handle in controlling the absorption process – is of 

exceptional importance and thus, it needs to be chosen judiciously. For ordinary 

carbonyl compounds, for example, transitions to excited singlet states like n-*, -*, 

and n-* can occur as well as the less likely transitions to triplet states.101-102 

Absorption spectroscopy is the suitable tool for retrieving useful information about the 

transitions and excited states experimentally. Thus, data on physical properties of 

excited states can be provided.103 Quantum chemical calculations serve as 

theoretical approach to gain information about the energy levels of different states of 

a system. Whereas it is straightforward to obtain reliable data about the ground state 

of molecules,104 determining energies of excited states is more sophisticated and can 

be achieved via Hartree-Fock calculations based on molecular orbital theory,105 

internally contracted multiconfiguration-reference configuration interaction,106 or 

single reference ab initio methods for the calculation of large molecules.107 

2.2.2.2   Radiationless Transitions 

Once the molecule has been excited by absorbing energy, several transitions can 

occur. One group of transitions is termed radiationless transitions, including a 

molecule's change in excited state without emission of radiation. Assuming the 

transition occurs with a change in spin multiplicity, i.e., singlet to triplet or triplet to 

singlet, the process is termed intersystem crossing (ISC), whereas transitions 

between states of equal spin multiplicity are referred to as internal conversions (IC). 

In case chemical bonds are broken, the process is called predissociation. The 

following general properties of radiationless transitions have been observed 

experimentally:108 (i) emission of radiation only occurs from the lowest electronically 

excited level of polyatomic organic molecules, implying rapid radiationless transitions 

between higher excited states, (ii) radiationless transitions are first-order processes, 

(iii) the rate of radiationless transitions decreases with an increasing energy gap 

between the electronic terms of the initial and final state, (iv) the rate of radiationless 

transitions is greatly reduced upon deuteration of molecules containing C-H bonds, 

causing increased lifetimes of the excited states, (v) the impact of radiationless 
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processes increases at elevated temperatures, (vi) unlike the behavior of small 

molecules, the phenomenon of radiationless transitions for structures of higher 

complexity occurs exclusively intramolecularly – in the absence of perturbing 

collisions.  

In order to provide theoretical calculations for backing up these experimental results, 

a large variety of approaches have been published. A detailed overview of this 

extensive field of physical chemistry would exceed the scope of the present thesis by 

far. Thus, the reader is referred to the respective literature.109  

2.2.2.3   Photoluminescence 

The term luminescence was introduced by Eilhard Wiedemann in 1888.110 It 

describes the phenomena where radiation is emitted by materials not resulting from 

heat. Thus, luminescence is an example for cold-body radiation and 

photoluminescence complements the radiationless transitions discussed above 

(Section 2.2.2.2). The luminescence of materials can be triggered in a variety of 

different ways, i.e., (bio- / electro-) chemically, electrically, mechanically, thermally, or 

by radiation. The latter version is the so-called photoluminescence, which describes 

the relaxation of molecules from an excited electronic state under emission of 

radiation. Importantly, the initial excitation was achieved by the absorption of 

radiation. Among other rare examples, the most common types of emission are 

fluorescence and phosphorescence, differing in their initial excited state. As 

fluorescence occurs between two singlet states and is therefore a favored transition, 

typical lifetimes are in the region of nanoseconds. Phosphorescence, on the other 

hand, represents a 'forbidden' transition between an excited triplet state and a singlet 

ground state, implying an ISC which occurs earlier. Therefore, phosphorescence can 

last from milliseconds up to hours.  

Ironically, the term 'phosphorescence' is derived from phosphorus, yet white 

phosphorus does not exhibit phosphorescence, since emission of phosphorus is 

based on chemiluminescence. The role of phosphorescence is of rather reduced 

impact, compared to wide applicability of fluorescent materials. Mainly composed of 

inorganic compounds, phosphorescent materials are employed for 'glow-in-the-dark' 

toys, paints, or similar applications.111 
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Although the first fluorescent materials were discovered in the 16th century,112 the 

phenomenon known as fluorescence was established and named by George Gabriel 

Stokes in 1852, who was investigating the luminescence of calcium fluorites.113 One 

of his key experiments was the irradiation of a quinine solution with UV-light – 

generated through a prism – yielding blue light. A measure for the fluorescence 

intensity is the quantum yield. It displays the number of absorbed photons divided by 

the number of emitted photons.  

There are several general rules, which can serve as a guideline to fluorescence 

phenomena, yet there are also exceptions and the rules do not always apply:  

(i) Kasha's rule. The rule states that photon emission from an electronic excited state 

occurs predominantly from the lowest vibrational state. The theoretical background 

behind this rule is based on the difference in timescale of vibronic transitions 

(differing electronic and vibrational wavenumber of initial and final state) compared to 

the relaxation among vibrational levels. Since the rate of a transition is dependent on 

the overlap of vibrational wavefunctions, which is expressed in the Franck-Condon 

factors, the transition between two neighboring vibrational states with similar energy 

is much faster than any vibronic transition. The Kasha-Vavilov rule – a corollary of 

Kasha's rule – states that the fluorescence quantum yield is independent of the 

excitation wavelength, also relating to the fact that non-radiative transitions to the 

vibrational ground state occur much faster than the radiative relaxation. 

Exceptions of the Kasha rule occur when large energy gaps or more than the first 

electronic excited state are involved. 

(ii) Mirror image rule. For a broad range of fluorophores, the emission spectrum 

resembles the mirror image of the absorption spectrum.114 This observation is 

supported by the Franck-Condon principle, which stipulates vibronic transitions to be 

of a vertical nature since they occur in a much shorter timeframe than the distance of 

two nuclei changes. Therefore, the shape of the absorption and emission spectra 

depend on the vibrational states of the final states of the respective transition, which 

are often similar.  

(iii) Stokes shift. Except for a few examples, the wavelength of the emitted radiation is 

longer than the wavelength of the absorbed light. Therefore, a difference of the 

maxima in the corresponding absorption/emission spectra is observed, which is 
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known as Stokes shift.114 The energy loss associated with the increasing wavelength, 

results from radiationless transitions, vibrational relaxation and perturbation events 

(see also: Kasha's rule and Franck-Condon principle, above). 

Fluorescent materials are of high interest to not only chemists but for example in all 

areas of life sciences or for lighting techniques. The typical fluorescence lamp tube – 

commercially available since 1939 – consists of a fluorescent inner coating of the 

tube, which converts the UV light into visible light. Therein, the UV light is generated 

by the emission of mercury vapor. Continuing in the field of optoelectronics, a modern 

approach and application for fluorescent materials is based on light-emitting diodes 

(LEDs). Effort for the development of LED techniques and materials is constantly 

increasing and inorganic, organic, as well as polymeric systems are competing to set 

new records for efficiency. Additional information on LED materials will be provided in 

section 2.3.6. In the life sciences, fluorescent markers are particularly interesting for 

labeling applications. Attached to cells, proteins, or DNA fluorescent materials allow 

to track substances in living organisms. Moreover, fluorescence is suitable for 

providing access to additional characterization techniques. Due to the high sensitivity 

of fluorescent spectrometers, fluorometry is of high impact in biological applications. 

A more sophisticated analytical technique is, for instance, Förster Resonance Energy 

Transfer (FRET), where non-radiative dipol-dipol coupling between two 

chromophores is involved. FRET is highly sensitive to distance changes and thus 

provides information about the interaction of different reactive groups, changes in 

conformation, or concentration of substances.115 

2.2.2.4   Example for a Light-Induced Chemical Process 

In order to complete the picture of photochemical processes, this section provides an 

example about the interplay of the single transitions in an actual system. The current 

example is devoted to the irradiation of ortho-alkyl benzophenone, an aromatic 

carbonyl compound. This species was not chosen randomly since the photochemical 

process yields a highly reactive moiety and applications of the herein described 

mechanism will later be subject of several subsections in Section 2.3 as well as 

Chapter 6.  
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In the years before 1970, the photoreaction of 2,4-dimethyl benzophenone was a 

mystery to chemists since the typical photo-induced pinacolization did not occur,116 

yet oxidation of the ortho-methyl group or an anthraquinone moiety were observed.5 

The mechanism was the subject of a debate even after Tchir and Porter succeeded 

to investigate the irradiation process of the benzophenone derivative by laser flash 

photolysis. Since the irradiation time in flash photolysis is extremely short, lasting just 

10-9-10-15 s, flash experiments allow the operator to take snapshots of the current 

state of a system and determine its lifetime. Thus, Tchir and Porter were able to 

identify five transients and proposed an according mechanism for the irradiation of 

2,4-dimethyl benzophenone (Scheme 2.2-1).  

 

Scheme 2.2-1: Mechanism of the photoenolisation as reported by Tchir and Porter. 

Firstly, absorption occurs followed by a n-* transition from the singlet ground state to 

the first excited singlet state ( < 10 ns). This process demonstrates the typical 

behavior of most carbonyl compounds. ISC to the lowest excited triplet state was 

found to occur subsequently, agreeing with the predicted progress ( = 38 ns). The 

next step involves the inevitable formation of radicals, yet instead of intermolecular 

radical coupling and the formation of the pinacol product, rapid hydrogen abstraction 

occurs, yielding a biradical intermediate with a lifetime of 67 ns. in a final step, the 

aromatic system is cleaved, giving rise to the generation of two final enol derivatives. 

With typically close to 5 s and 250 s, respectively, the lifetime of these highly 

conjugated enols is comparably high, enabling further reactions such as the 

formation of anthraquinone or – more relevant to future applications – Diels–Alder 

reactions with suitable dienophiles. The light-triggered Diels–Alder ligation, 
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particularly its properties and advantages, is discussed in detail in Section 2.3.1.1 of 

the current thesis. 
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2.3   Applications for Light-Induced Chemistry in Polymer 

Science 

The purpose of the above two sections (2.1 and 2.2) was to provide the very 

fundamentals of two extensive fields of chemistry: macromolecular science and 

photochemistry. Given the basic knowledge about photochemical processes and 

polymerization techniques, the current section is devoted to introduce light-induced 

modification methods applied to polymeric systems in more detail. Besides the 

demonstration and evaluation of versatile photochemical tools, examples from state-

of-the-art research of light-induced chemistry in polymer science are included.  

Previous to the detailed discussion of photochemical techniques, some general 

remarks on the impact of light-triggered applications are noteworthy. The 

developments in the photochemical section of polymer science have evolved 

immensely during the last decades. Since light was simply applied for the initiation of 

radical polymerizations, photochemists have achieved substantial progress in both 

understanding the ongoing processes and introducing powerful photoreactions to 

alter properties, modify structures, or generally enhance the performance of 

customized polymers. The introduction of light-induced ligation reactions set a 

milestone in the field of photochemistry directing the research to efficient usage of 

radial energy. A set of atom economic reactions, sometimes termed click 

reactions,117-118 has addressed the distinct challenges in macromolecular design. 

Unrivaled among the advantageous features of photochemical tools is the possibility 

for spatial and temporal control on a scale far off the limits for thermally induced 

chemistry. Moreover, a modern field of research concerns pushing the limits in terms 

of resolution employing sophisticated laser setups.99  

In the following subsections, the most prominent photochemical tools for polymer 

ligation will be presented, followed by consecutively discussed projects of the present 

thesis: polymerization via light-sensitive monomers, visible light-triggered conjugation 

reactions, reversible photochemical reactions, generation of versatile polymer 

architectures via photoligation, and the photocrosslinking processes for surface 

patterning. Thus, a literature review containing detailed information particularly on the 

topics of the subsequently following research chapters is provided.  
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2.3.1   Modern Light-Induced Ligation Techniques 

As alluded to above, modern light-induced ligation methods aim for efficiency and 

sustainability. Therefore, contemporary research is obliged to tackle the challenges of 

green chemistry.4 Consequently, the perfect photoreaction is sunlight-induced, 

bioorthogonal, highly selective, synthetically feasible, conducted in water, and 

importantly atom efficient. Although fulfilling all of these desirable properties at once 

is a tall order, chemists have made great advances, and continuously improved and 

evaluated possible candidate systems. A very promising reaction class is the 

pericyclic reaction, or specifically, Diels–Alder and dipolar cycloaddition reactions. 

Both of them include examples which have been termed click reactions and, thus, 

they have been proven useful in macromolecular design,119-123 in the modification of 

substrates,124 or the generation of smart materials.125-126 Despite the success of the 

thermal representatives, photochemical versions of Diels–Alder and dipolar 

cycloaddition systems are required to further improve the properties of the existing 

thermal methods particularly due to a lack of spatial control in thermal reactions.  

Photochemical Diels–Alder chemistry opposes with the common knowledge about 

the Woodward-Hoffmann rules.127 6-electron systems such as Diels–Alder 

chemistry are photochemically disfavored, which might cause confusion since they 

are actually applied for light-induced ligation. Yet, taking a closer look at all of these – 

for a reason – efficient conjugation tools, the actual cycloaddition step is never based 

on a photochemical process. Instead, the primary formation of the reactive species, 

i.e., the diene or the dienophile, is generated upon irradiation whereas the 

cycloaddition itself is indeed a rapid thermally induced reaction. Therefore, the 

precursors capable of releasing the reactive moieties for Diels–Alder reactions are 

sometimes termed 'caged dienes/dienophiles'. However, the rate determining step is 

in every case the photochemical release of the reactive species. The same rules 

apply for photo-induced 1,3-dipolar cycloadditions. 
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2.3.1.1   Photoenol Chemistry 

The first conjugation tool presented here is the photoenol technique. It is based on 

ortho-methyl benzaldehyde or ortho-methyl benzophenone derivatives, which form 

ortho-quino dimethanes – so-called photoenols – upon irradiation. A detailed 

description of the photoenolization process is provided in section 2.2.2.4. The 

general reaction scheme for the photoenol-based ligation reaction is depicted in 

Scheme 2.3-1. 

 

Scheme 2.3-1: General photoenol reaction. R = H, Ph; EWG = electron withdrawing group. 

After excitation, the resulting photoenol is a highly reactive diene. It undergoes rapid 

cycloaddition with electron deficient alkenes, for instance, maleimide, acrylate, or 

similar groups. In contrast to the photochemical excitation step, the cycloaddition is 

irreversible. Thus, the diene species forms the desired product, provided that a 

suitable reaction partner is in close range. Yet – assuming the reaction partner is 

consumed – it returns to the non-activated species (starting material) without forming 

any side-products. Although the cycloaddition behavior of photoenols was introduced 

about 40 years ago,128 their application was just recently introduced into the realm of 

polymer science by the group of Barner-Kowollik. In an initial study ortho-methyl 

benzophenone, a photoenol precursor, was attached to a polymer chain and 

subsequently conjugated with a maleimide end-capped polymer in a light-triggered 

process.129 Inspired by the success of this block copolymer formation, photoenol 

chemistry was combined with thermal click methods, i.e., cyclopentadiene/maleimide 

Diels–Alder chemistry and the copper catalyzed azide-alkyne cycloaddition (CuAAC). 

Thus, ABA as well as ABC block copolymers could be generated.130 An advanced 

version of the photo Diels–Alder reaction was enabled by a second generation of 

photoenol moieties. Based on an ortho-methyl benzaldehyde derivative, the reactivity 

of the intermediate diene could be increased and thus acrylate-type double bonds 

were accessible for the ligation. Consequently, the difference in reactivity between 

the two photoenol moieties could be employed to perform orthogonal photoenol 

reactions. Therefore, a polymer building block with an acrylate end group and a first 
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generation photoenol moiety attached to the opposite side was synthesized by acrylic 

diene-metathesis (ADMET). Next, the polymer was irradiated in the presence of a 

polymer building block (PEG) containing a maleimide end group. Due to the reactivity 

differences, only the desired coupling between the photoenol and the maleimide-

terminal polymer was observed, enabling a subsequent photoreaction between the 

residual acrylate terminus and a second generation photoenol-bearing poly(-

caprolactone) (PCl).131 

 

Figure 2.3-1: Photochemical strategy to ABC-triblock copolymers via orthogonal photoenol chemistry. 

Red polymer: PEG; black polymer: ADMET; green polymer: PCl. The figure was adapted from Ref.
131

 

with permission from the American Chemical Society (ACS). 

A further study in solution focused on the design of single-chain nanoparticles 

(SCNPs). By introducing a statistical distribution of photoenol and maleimide 

functionalities into a polymer backbone, SCNPs could be generated by irradiating a 

diluted solution of the multifunctional polymer.132 The same principle of self-reacting 

polymer chains was applied for the preparation of cyclic polymers. In order to obtain 

purely monocyclic structures, a linear polymer containing a second generation 

photoenol and an acrylate group was synthesized by ROP. In high dilution the 

polymer end-caps undergo an intramolecular cycloaddition and the resulting cycles 

can be readily isolated.133 Due to the UV light present in solar irradiation, the cycle 

formation was also feasible in sunlight.134 
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The photoenol technique was also applied for the spatially resolved modification of 

surfaces. Due to the light-induced nature of the photoenol process, locally 

constrained functionalization of silicon substrates could be achieved using a shadow 

mask. Therefore, the surfaces were modified with bromine components, polymers, 

and peptides, each synthetically altered to contain a maleimide component.135 

Moreover the combination of 3,4-dihydroxyphenyl alanine (DOPA) with photoenol 

chemistry leads to a mussel adhesive mimicking substrate capable of being modified 

by photo Diels–Alder reactions.136 Not only silicon substrates were suitable for 

patterning, also biosubstrates, such as cellulose and hyaluronan are accessible for 

modification with photoenol moieties and subsequent spatially resolved 

functionalization with model peptides.137  

Micro- and nanoparticles also provide interesting features and applications where 

light-induced Diels–Alder chemistry can serve as a versatile tool. For example the 

surface of silver nanoparticles could be covered with photoenol moieties via a linker 

compound containing a silver anchoring group (benzotriazole).138 Moreover, the 

generation of polymeric Janus spheres of micrometer scale could be realized by a 

combination of photoenol chemistry and RAFT polymerization.139   

2.3.1.2   Naphthoquinone Methides 

Similar to the photoenol process introduced above, another highly reactive diene 

species can be generated by light. Ortho-naphthoquinone methides (NQM) result 

from irradiating (hydroxymethyl)naphthalene-2-ol –the NQM-precursor (NQMP). The 

general reaction scheme for the NQM-ligation is given in Scheme 2.3-2. 

 

Scheme 2.3-2: General NQM reaction. R = organic substituent. 

A detailed look at the reaction mechanism reveals that similar to the photoenolization 

process the NQM formation is also based on an equilibrium. During the irradiation 

process a water molecule is released which can rapidly react with NQM to form the 

initial NQMP. However, in the presence of a suitable reaction partner the NQM has 
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the tendency to undergo a hetero Diels–Alder (HDA) reaction. The HDA reaction 

itself is an irreversible process which causes full conversion of the starting 

component. In contrast to the photoenol process, the diene is electron deficient 

requiring an electron rich dienophile for an efficient Diels–Alder reaction. Inverse 

electron demand is for instance fulfilled for vinyl ether dienophiles, which were found 

to react rapidly with NQMs.140 This photochemical technique – introduced by the 

group of Popik – has been mostly employed for surface patterning. Fluorescence 

markers synthetically connected to NQMs could for instance be immobilized on glass 

substrates in a spatially resolved fashion.141 Moreover, photoreactive polymer 

brushes on silica surfaces were patterned with variable fluorescent markers proving 

the orthogonality of the photochemical tool towards the CuAAC method.142  

NQMs are not only capable of HDA reactions. The activated diene species is 

sensitive to nucleophiles, which is also the general deactivation step in water. By 

intentionally adding thiol components, for instance thiol containing peptides, the 

formation of thiol ether linkages occurs rapidly. In addition, this process can be 

reversed under irradiation in high dilution.143 The versatility of this approach for 

modular surface modification was demonstrated by attaching, replacing, and 

removing different photoreactive NQMs on thiol functionalized substrates.144 

2.3.1.3   Thioaldehydes 

In contrast to the two reactive diene species discussed previously, thioaldehyde 

derivatives behave like dienophiles. Generated from irradiation of phenacyl sulfides, 

thioaldehyde moieties are efficiently released, giving access to rapid HDA reactions. 

The general reaction scheme is depicted below (Scheme 2.3-3). 

 

Scheme 2.3-3: General photo induced thioaldehyde reaction. R = alkyl, polymer substituent; R' = 

organic substituent. 
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Our team introduced the thioaldehyde technique to polymer chemistry.145 The 

synthesis of a phenacyl sulfide terminated poly(ethylene glycol) was shown to be a 

feasible procedure and the resulting photosensitive polymer could be employed to 

screen the HDA reaction with versatile dienes. Therein, efficient photochemical 

conjugation of the functionalized polymer with 2,3-dimethyl butadiene, trans,trans-

2,4-hexadien-1-ol, cyclohexadiene, cyclopentadiene, and trans,trans-2,4-hexadienoic 

acid was demonstrated. Ultimately, phenacyl sulfide moieties, covalently attached to 

silicon wavers, were shown to react with cyclopentadiene end-capped poly(ethylene 

glycol). Thus, site-specific immobilization of polymeric material was enabled. In a 

subsequent study, the thioaldehyde precursor was synthetically attached to cellulose 

surfaces. By irradiation of the biosubstrate in the presence of a diene modified 

peptide or polymer, spatially resolved surface patterning could be achieved.146  

 

Figure 2.3-2: Time-of-flight secondary ion mass spectrometry (ToF-SIMS) images produced via 

thioaldehyde chemistry. Left: pattern of PEG (red) immobilized on a silicon substrate (green); right: 

pattern of fluorine containing polymer (bright) on cellulose (dark). Images were adapted from Ref.
145

 

and Ref.
146

, respectively with permission from the Royal Society of Chemistry (RSC) and Wiley-VCH. 

An elegant solution for the synthesis of versatile phenacyl sulfide terminated 

polymers was demonstrated via the design of a functional RAFT agent. By synthetic 

conjugation of a trithiocarbonate with the photosensitive phenacyl sulfide, a novel 

substance was generated which is suitable for controlling radical polymerization and 

simultaneously installs the thioaldehyde precursor at the chain end. In combination 

with diene functional polymeric microspheres or planar surfaces, grafting reaction as 

well as photo patterning were enabled.147  

Similar to the previously mentioned NQM method, thioaldehyde compounds are also 

sensitive to nucleophiles. The resulting products for the reaction of thioaldehyde 
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moieties with amines, hydroxyl amines, and thiols were investigated. Subsequently 

the technique was applied for site-specific trapping of functional nucleophiles on 

phenacyl sulfide carrying silicon surfaces.148 

2.3.1.4   Tetrazole Chemistry 

The behavior of tetrazoles under irradiation has been studied extensively for the last 

50 years. In the beginning the light-induced cycloaddition, first developed in 1967 by 

Huisgen and coworkers,149 has been investigated mainly for its mechanism. In 

various studies, the nitrile imine could be isolated as an intermediate.149-153 

Therefore, the tetrazole cycloaddition was later termed NITEC (nitrile imine-mediated 

tetrazole-ene cycloaddition).154 The general reaction scheme of the NITEC ligation 

method is depicted in Scheme 2.3-4.  

 

Scheme 2.3-4: General light-induced tetrazole-ene reaction. EWG = electron withdrawing group; Ar, 

Ar' = general aromatic substituents.  

The literature about tetrazole chemistry is too wide to be discussed in detail, yet the 

most important applications are considered in the following. A pioneer in the field of 

photo-induced tetrazole chemistry is Qing Lin. He and his team published an 

enormous quantity of articles and countless different diaryl tetrazole structures were 

synthesized by his group. Studies on the effect of substituents, solvents, and 

dipolarophiles were carried out, whereas most of the targeted applications were in 

the field of peptide modifications. Thus, Lin introduced NITEC chemistry as a modular 

and biocompatible ligation technique.155-164  

In our group, the focus of research was on application-related projects. An initial 

study on the functionalization of surfaces also involves the synthesis of block 

copolymers by linking maleimide and tetrazole functional polymers. Optimized 

reaction conditions were applied for the grafting of polymers onto silicon wavers and 

spatially resolved surface grafting was performed on photoreactive cellulose 

material.154 In another study concerning functional cellulose, filter paper was 
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synthetically modified to contain tetrazole moieties. Subsequently, a meander pattern 

was produced in a light-induced process using a model peptide as well as an ATRP 

initiator. By surface-initiated ATRP poly(carboxybetaine acrylamide) could be grafted 

from the surface, evidenced by high resolution Fourier transform infrared microscopy 

(FT-IR).165 A similar approach where a polymer with anti-fouling properties –

 poly(oligoethylene glycol methyl ether methacrylate) (PMeOEGMA) – was grafted 

from polydopamine (PDA) surfaces resulted in an accurate pattern of cells after the 

final anti-fouling tests. Due to the structured nature of the grafted polymer, the 

growing cells follow the meander line, only growing in non-functionalized areas. The 

basic light-triggered chemistry that was necessary to obtain the spatial control was 

NITEC.166 Moreover, photoresponsive azobenzene surfaces167 and functional gold 

nanoparticles were accessible by NITEC chemistry.168 

 

Figure 2.3-3: ToF-SIMS image of photo-patterned PMeOEGMA on a PDA surface (left). Image of cell 

pattern after 7 h culture, fixation, and staining (right). Images were adapted from Ref.
166

 with 

permission from Wiley-VCH. 

A solution-based study on the formation of block copolymers from acrylonitrile 

rubbers gave interesting insight into the reactivity of a tetrazole component which 

was previously used for surface grafting. Synthetic rubbers with one tetrazole end 

group were subjected to a light-induced reaction with a di-linker containing two 

maleimide units. Efficient block copolymer formation could be shown, evidencing the 

suppression of crosslinking/polymerization by side reactions of the tetrazole with the 

pendant nitrile units.169 In another study involving tetrazoles, cellulose was also the 

basic material: In an ionic liquid solution, cellulose could be modified to contain 

tetrazole units, which were subsequently employed to graft poly(N-iso-propyl 

acrylamide) side chains in a light-triggered process. Thus, a renewable, fluorescent, 
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and thermoresponsive material was produced.170 Tetrazoles were additionally applied 

in biological applications for the post-modification of DNA by Wagenknecht and 

coworkers,171 as well as for introducing a photochemical tool to disulfide intercalators 

by our team and the group of Weil.172  

2.3.1.5   Azirine Photoligation 

The photochemistry of 2H-azirines has been extensively investigated in the 1970s. 

Former studies of Padwa and coworkers in the first place concerned the behavior of 

the three-membered heterocycles.173 Upon irradiation nitrile ylide species are 

generated via a ring-opening mechanism6 in very high quantum yields.174 Naturally, 

nitrile ylides – representing highly reactive 1,3-dipoles – react with electron deficient 

multiple bonds in a cycloaddition reaction.175 The general reaction scheme is 

presented in Scheme 2.3-5.  

 

Scheme 2.3-5: General reaction scheme of the light-induced azirine reaction. Ar = aromatic 

substituent; R = H, alkyl, aromatic substituent. 

Thus, an efficient and feasible route to -pyrrolines is provided, whereas its scope 

and the properties of this synthetic pathway have already been studied.176-178 

Moreover, theoretical work has been conducted on activation energies and reaction 

kinetics.179  

Although the azirine-based cycloaddition is an atom-efficient process, Lin and 

coworkers were the only ones to employ azirines in polymer science. In order to 

evaluate the scope of the ligation method, five diaryl 2H-azirine compounds with 

varying substituents were synthesized and tested for their reactivity towards methyl 

acrylate and dimethyl fumarate in an ethanol/water mixture. Promising yields of 

mostly more than 90 % intensified the motivation to use this technique for polymer-

peptide ligation. Therefore, a fumarate terminus was installed at a poly(ethylene 

glycol) chain and an azirine moiety was synthetically anchored to lysozyme. The 
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resulting bioconjugate was obtained in 41 % conversion according to densitometry 

analysis.180  

2.3.1.6   Light-Triggered Azide-Alkyne Cycloaddition 

The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) has been the most 

prominent of all click reactions.181 Its efficiency and versatile applicability was 

demonstrated in a large variety of applications, ranging from materials design,119, 182-

183 chemical biology184-185 to drug discovery.186-187 However, the drawback of this 

technique is the necessity of cytotoxic copper.188 Therefore, a copper-free version of 

the azide-alkyne cycloaddition was developed employing cyclooctynes.189 Due to the 

strain of the 8-membered ring, the alkyne is more reactive towards azides and thus, 

the strain promoted azide-alkyne cycloaddition (SPAAC) was established.190 In 2009, 

Popik and coworkers introduced a strategy to produce cyclooctynes via photo-

induction (photo-SPAAC).191 Therein, cyclopropenones serve as precursors for the 

photo-chemical generation of the reactive alkynes. Their thermal stability and 

insensitivity to organic solvent or water make them suitable for applications and a two 

step synthesis provides synthetic feasibility.192 Under irradiation, cyclopropenones 

release a carbon monoxide unit and the desired ring strain activated alkyne is 

generated.193 Rapid cycloaddition occurs at ambient temperature in the presence of 

azide moieties (Scheme 2.3-6).  

 

Scheme 2.3-6: General reaction scheme for photo-SPAAC. R1, R2, and R3 are varying organic 

substituents. 

The initial work of Popik and coworkers on photo-SPAAC demonstrated the 

successful formation of triazole cycles by light-triggered reaction of cyclopropenones 

and azide compounds. Moreover, labeling of living cells with fluorescence markers 

was shown. In addition, cyclopropenones anchored to silicon surfaces were 

employed to generate multicomponent containing pattern. In a two step process, 
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rhodamin B (RB) and flavin azido (FL) compounds could be immobilized on the 

surface using a shadow mask.194  

 

Figure 2.3-4: Fluorescence microscope images of a sequentially photopatterned surface. Left: RB; 

middle: FL; right: RB and FL. Figure was adapted from Ref.
194

 with permission from the ACS. 

In order to further increase the reactivity of the alkyne component, particularly in 

aqueous media, oxa-dibenzocyclooctenones were developed. Their enhanced 

performance was proven in a kinetic study of the involved photochemical process. 

Rapid cycloaddition with different azides was demonstrated in water, methanol 

(MeOH), and mixtures of both solvents.195 

2.3.1.7   Paternò–Büchi Chemistry 

The combined work of Paternò in 1909 and Büchi in 1954 introduces one of the most 

famous photochemical processes of all time.8-9 It describes the photo-induced 

cycloaddition of a carbonyl compound (i.e., aldehyde or ketone) with an alkene via a 

radical mechanism (Scheme 2.3-8). Since its discovery, the Paternò–Büchi (PB) 

reaction has been subject to a large range of studies mostly concerning mechanistic 

issues196-200 or – to be more specific –the selectivity of the reaction with varying 

reactants and reaction conditions.201-207  

 

Scheme 2.3-7: General reaction scheme for a Paternò–Büchi reaction. 
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Another important step for the PB reaction in terms of application was the work of 

Junkers and coworkers who introduced this photochemical tool to polymer science.208 

In a first study, a benzaldehyde terminated ATRP-polymer was applied for a reaction 

condition screening. Using the versatility of alkenes, the PB reaction was proven to 

proceed to high conversions in the presence of, however, a large excess of the 

alkene moiety. Besides for polymer end group modifications, the reaction could also 

be proven useful for functionalizing nanoparticles209 and advanced reaction setups 

were developed by employing a flow reactor.210  

The stability of oxetanes – the products of typical PB reactions – is the topic of 

numerous publications especially with regard to the cycloreversion reaction.211-213  

 

Scheme 2.3-8: General reaction scheme for the photosensitized ring cleavage of oxetane compounds. 

Ar = aromatic substituent. 

Furthermore, the reversible PB chemistry is also of interest for biochemists since 

DNA lesions – caused by UV-irradiation – are caused by [2+2] cycloaddition 

reactions. By investigating the repair of such DNA lesions, a photosensitized ring 

cleavage reaction triggered by photolyases was found.214-215 Thus, photosensitized 

ring cleavage of oxetane moieties – proceeding via a radical cationic mechanism – 

appears to be an applicable tool to reverse the PB reaction.216 The mechanistic 

issues of the retro PB reaction were addressed in several studies.213, 217-218  

A further important tool involving PB chemistry was introduced in a recent exploration 

of lipid characterization, where oxetane cleavage is the key chemistry for the 

detection of double bonds by collision induced dissociationelectrospray-ionization 

mass spectrometry (CID ESI-MS).219 Therein, CID ESI-MS was presented to be an 

efficient method for cleaving oxetanes on an analytic scale and thus it represents a 

useful method for investigating their retro PB behavior.  
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2.3.1.8   Additional Techniques 

The current subsection contains ligation methods which have been rarely employed 

in polymer or materials science, yet they are very suitable for spatially resolved 

surface modification.  

The first example – from our team – is based on an initial, thermal Diels–Alder 

reaction between phencyclone and maleimide derivatives. The resulting cycloadduct 

is sensitive to UV irradiation and undergoes efficient decarbonylation and 

dehydrogenation yielding a large aromatic structure sensitive to nucleophilic addition. 

This irradiation step is suitable for introducing spatial control as the irradiated 

positions can be functionalized subsequently. Thus, peptides can be immobilized in 

distinct positions via a mild and catalyst-free procedure.220 The reaction sequence is 

depicted in Scheme 2.3-7. 

 

Scheme 2.3-9: General scheme for the phencyclone reaction sequence. Ar = p-Ph-OMe; R1 = peptide; 

R2 = organic substituent 

Another highly efficient method to produce patterned structures on surfaces is the 

photo-induced oxime ligation also introduced by us. Ortho-nitrobenzyl acetals 

quantitatively release benzaldehyde derivatives upon irradiation with wavelengths in 

the range of 370 nm. The resulting benzaldhyde moiety can subsequently be 

modified with reactive nucleophiles such as hydroxyl amines yielding highly resolved 

patterns of the substitution product.221 The reaction scheme is presented in Scheme 

2.3-8. 
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Scheme 2.3-10: General reaction scheme of photo-triggered oxime ligation. R1 = substrate, R2 = 

labelling component. 

2.3.2   Light-Induced Polymerization Mechanisms 

Inducing polymerization reactions by light is a well-known technique for radical 

polymerization. Great importance has been given to the investigation of the 

photoinitiation processes since it determines not only the initiation rate, yet also 

critically influences the properties of the final polymer.222 The photoinitiator itself plays 

a major role in this context, as it produces the initiating radical and thus, the terminus 

of the resulting polymer. Examples for the most common photoinitiators are depicted 

in Scheme 2.3.2. Four major issues influence the initiation efficiency of a typical 

photoinitiator: absorbance at the desired wavelength must be provided, intersystem 

crossing from the first excited singlet state to the excited triplet state is required, 

fragmentation into radicals must occur (in most cases by -cleavage), and finally, the 

generated radicals need to initiate the polymerization.223 Therefore, the early steps of 

the initiation process have been studied for instance by femtosecond pump-probe 

experiments supported by density functional theory (DFT) calculations,224 whereas 

initiation efficiencies of the resulting radicals are typically determined by post mortem 

ESI-MS analysis of polymers produced via pulsed-laser polymerization (PLP).225-226 

Extensive studies combining femtosecond spectroscopy with the insights of PLP-ESI-

MS experiments draw a detailed image of the entire photoinitiation process for radical 

chain-growth polymerization.227 
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Scheme 2.3.2: Typical radical photoinitiators. DMPA = 2,2-dimethoxy-2-phenyl acetophenone; AIBN = 

azo-bis-(isobutyronitirile). 

Although it requires more synthetic effort than a radical polymerization, step growth 

polymerization reactions can also be induced be light. There exist few examples 

where light-triggered cycloaddition reactions have been applied to trigger 

polymerization processes. The photoenol approach, for instance, has attracted 

attention of the National Aeronautics and Space Administration (NASA). Along with a 

corresponding publication, a patent was filed on the light-induced reaction between 

bismaleimides and difunctional photoenol moieties.228-229 Thus, polyimides with a 

number average molecular weight of up to 80,000 g mol-1 could be produced. An 

alternative pathway to generate polyimides was reported based on the photo-induced 

cycloaddition reaction of bismaleimides with benzene.230 Moreover, the dimerization 

reactions of coumarin or cinnamate groups were shown to be feasible for 

polymerizing oligo(ethylene glycol) monomers.231 Additional information and a 

detailed discussion of dimerization reactions is provided in Section 2.3.4. 

2.3.3   Visible Light-Induced Chemistry 

As discussed above, light-induced chemistry in general has become one of the most 

rapidly growing fields of contemporary research. A particularly challenging discipline 

in photochemistry is based on a very special set of photoreactions, presenting very 

recent developments and a modern approach to apply photochemical tools: visible 

light-induced chemistry. Since inducing chemical reactions with visible light is a highly 

attractive topic in terms of sustainability, a variety of approaches has been published 

lately. Versatile methods and systems provide powerful tools particularly on the 

platform of synthetic organic chemistry. More specifically, the trends in modern 

organic chemistry concerns the design of novel catalysts and their use for synthetic 

challenges. In order to provide an overview of the diversity of photocatalytic 
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approaches, the current section addresses divers examples for ligation reactions, 

including metal-based as well as organic dye catalysts. In addition, a more detailed 

description of a highly interesting metal-free photocatalytic example for a formal [3+2] 

cycloaddition reaction based on azirines will be discussed. A collation of accessible 

ligation reactions is depicted in Scheme 2.3.3. 

Since the first examples of organic synthesis catalyzed by visible light have been 

reported,232 increasing attention has been paid to this field of photochemistry. By 

now, the literature is extensive and the versatility of reactions and catalysts has been 

summarized in multiple review articles.233-235 Besides the diversity of investigated 

processes, where detailed reaction mechanisms have been formulated, the focus of 

the following examples is on the synthetic aspects. For instance, the addition of -

aminoalkyl compounds to electron deficient double bonds has been reported. The 

radical-mediated reaction between methyl diphenylamine and diethyl ethylidene 

malonate was found to proceed catalyzed by 1 mol% of an iridium-based or eosin Y 

catalyst. High yields up to 97 % were achieved at ambient temperature in 18 h.236 A 

metal-free system for the direct C-H arylation of heteroarenes was reported using the 

photoredox catalyst eosin Y under visible light irradiation. Therein, diazonium salts 

were employed as starting materials and a single electron transfer mechanism 

produces the desired products in up to 86 % yield.237 A very popular transition metal 

for visible light redox catalysis is ruthenium. It can for instance be applied for the 

generation of cyclobutane adducts from bis-enone moieties via a [2+2] cycloaddition. 

By reductive quenching of an excited Ru-complex, the resulting dimer is formed in 

high yields and excellent diastereoselectivity.238 Moreover, [3+2] cycloaddition 

reactions are accessible by photoredox catalysis of ruthenium complexes. 

Cyclopropyl amines were reported to react with alkenes in a regioselective fashion. 

The formation of the resulting cyclopentene derivatives is compatible with a multitude 

of functional groups and proceeds under mild conditions.239 1,3-Dipolar 

cycloadditions can also be activated by visible light catalysis. Irradiation of tertiary 

amines in the presence of suitable iridium or ruthenium pyridyl complexes leads to 

the formation of a mediating azomethine ylide. Subsequently, cycloaddition with 

electron deficient double bond containing moieties results in a newly formed 5-

membered heterocycle.240 This photochemical technique has also been applied for 

the synthesis of pyrrolo isoquinolines via a catalytic oxidation/cycloaddition/oxidative 

aromatization sequence.241 The final example employs azirines as starting material 
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for photoredox catalytic synthesis of pyrrole derivatives. In the presence of an organic 

dye photocatalyst, 2H-azirines were demonstrated to undergo [3+2] cycloaddition 

reactions with activated carbon-carbon triple bonds. Thus, a series of highly 

functional pyrrole moieties could be generated utilizing white or blue LEDs.242  

 

Scheme 2.3.3: Collation of ligation reactions induced by visible light catalysis. EWG = electron 

withdrawing group; R1, R2 = organic substituents; org. = organic dye catalyst.  
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2.3.4   Reversible Photoreactions 

A particular set of photochemical reactions has the property of being reversible. 

Photoreversible reactions are especially appealing, as they do not only introduce 

spatial resolution and precise temporal control over a single photoreaction, but further 

enable the reverse reaction for designing materials properties. Thus, the range of 

applications for reversible photochemical techniques is immense, particularly in the 

field of polymer chemistry and material science.243 So-called photoresponsive 

materials are for instance applied in photoresists, where crosslinking of polymeric 

material enables the generation of 2D and 3D structures.244 In Section 2.3.6 

photoresists will be discussed in more detail. By introducing hydrophilic groups to the 

polymeric structure, photoresponsive hydrogels can be produced.245 They consist of 

crosslinked polymer chains capable of absorbing large amounts of water.246-247 

Recent studies have confirmed that reversible photochemistry is also suitable for 

applications in the field of self-healing materials, designed to repair cracks or 

fractures by an external stimulus.248 A more biological application is the production of 

nanocarriers. Polymeric micelles formed by amphiphilic block copolymers can be 

crosslinked photochemically and decrosslinked when desired, which makes them 

ideal for drug delivery applications.249-251 The final application of this list is the less 

complex idea of reversible linear polymers. This concept allows to control the 

polymerization and depolymerization by light induction.252  

The chemistry these applications (above) are based on, are dimerization reactions.253 

Their characteristic property is the reversibility of the reaction. Depending on the 

wavelength, either the dimer formation or the dissociation into monomers is triggered. 

The following scheme depicts the most popular photoreversible dimerization 

reactions, including anthracene,254 cinnamic acid,255 coumarin,256 thymine,257 or 

stilbene derivatives258 (Scheme 2.3.4).  
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Scheme 2.3.4: Collation of photoreversible dimerization reactions. 
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2.3.5   Complex Polymeric Architectures via Light-Induced 

Chemistry 

Materials engineering is a complex field and important for applications in 

contemporary chemistry. A more detailed investigation of the properties of materials 

reveals that molecular structures – predominantly macromolecular structures – have 

a very significant impact. Thus, controlling macromolecular structures and careful 

design of polymeric architectures are key to modern material science. The tools for 

producing macromolecular designs rely on a combination of controlled polymerization 

techniques and efficient conjugation and modification reactions, including light-

induced methods. An overview of these tools has already been given in the current 

chapter (Section 2.3.1). The following examples for the generation of polymeric 

designs are determined to provide an idea of the applicational scope light-triggered 

methods possess. Besides the smart usage of one photochemical tool, especially the 

combination of two different methods can result in synthetic advantages.  

The advantages of NITEC chemistry were already highlighted in Section 2.3.1.4. Yet, 

a more detailed description how NITEC chemistry can be utilized for modern 

materials design is given by introducing the work of Willenbacher et al. from our 

team. Therein, a peptide mimicking substrate was generated, which is additionally 

suitable for fluorescence labeling. The approach, therefore, is based on single-chain 

nanoparticles, a modern and extensive field of chemical research.259 SCNPs are 

typically formed by folding polymers, in this case irreversibly by NITEC chemistry. In 

order to produce a suitable folding precursor polymer, polystyrene with pendant 

tetrazole and furan-protected maleimide groups was synthesized by NMP. By light-

induced folding of the resulting precursor polymers, fluorescent as well as 

profluorescent nanoparticles could be obtained. The size of the respective SNCPs 

can be finely adjusted by changing the tetrazole/maleimide ratio along the polymer 

backbone. In addition, pro-fluorescent SCNPs were produced using the nitrile imine 

dimerization reaction7 to generate the folded material. Thus, residual tetrazole units 

were applied for subsequent conjugation reactions with for instance functional 

microspheres. Since neither the SCNPs, nor the microspheres were fluorescent prior 

to the final conjugation reaction, the success of the coupling process – yielding a 

fluorescent pyrazoline linkage – could be monitored by the discernable 

fluorescence.260  
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Figure 2.3-5: Three-dimensional atomic force microscopy (AFM) image of SCNPs folded via NITEC 

(left). Three-dimensional reconstruction of a confocal image stack depicting SCNP-functionalized 

micropheres (right). Images were adapted from Ref.
260

 with permission from the ACS. 

Sophisticated architectures are accessible when not only one, but two different 

photochemical methods are combined. Moreover, by smartly designing the 

respective photoconjugations a novel type of orthogonality can be introduced. 

Hiltebrand et al. from our group demonstrated that photoenol and NITEC chemistry 

are suitable for so-called -orthogonal ligation, which is also applicable to surface 

modifications.261 An -functional building block containing a tetrazole as well as a 

photoenol terminus represents the core compound of the study. Since the photoenol 

can be excited above 310 nm, where the tetrazole group does not absorb when the 

substituents are chosen appropriately, successful photoenol ligation can be induced 

without altering the tetrazole end group. The latter can be activated at wavelengths 

shorter than 310 nm in a second conjugation step. Thus, by choosing the initiation 

wavelength, a macromolecular construct could be site-selectively encoded with small 

molecules (maleimides), fluorescent markers, functional polymers – yielding triblock 

copolymers – or peptides.262  

It is considered one of the most challenging tasks in contemporary macromolecular 

chemistry to achieve sequence control in synthetic polymers.263-264 A photochemical 

protocol to approach synthesizing macromolecules with exactly defined molar mass, 

was reported by us. In the respective study, altering photoenol and thioaldehyde 

ligation chemistry was employed to consecutively conjugate two photoreactive 

synthons. Commencing from a difunctional maleimide unit, a photoenol reaction was 

conducted, generating a compound with two open chain diene termini. A subsequent 

light-induced thioaldehyde ligation yielded two furan-protected maleimide end 
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groups, which – upon deprotection – were available for repeating the reaction cycle. 

Thus, a macromolecule containing 10 monomer units with a molar mass of 

3231.58 g mol-1 and a dispersity of 1.00 could be produced.265  

2.3.6   Light-Induced Crosslinking Techniques for Surface 

Patterning 

Surface encoding is one of the major applications for photochemical methods. In 

contrast to the techniques previously alluded to, where the photosensitive 

compounds were covalently connected with the surface material, the current section 

addresses an entirely different approach. Despite the advantages of covalently 

binding photoligation precursors to substrates, a feasible and established method for 

surface modifications is based on crosslinking the desired material on the surface. 

Polymer networks are typically insoluble and can thus not be removed by washing 

procedures. To break the adhesive interaction between crosslinked material and the 

substrate, mechanical force is required. In addition, the crosslinking approach for 

surface patterning is applicable to almost any substrate since the properties of the 

surface do not necessarily affect the crosslinking reaction.  

In the context of crosslinking polymeric materials, photochemical methods play a vital 

role. In order to gain spatial control over the network formation process, various light-

induced approaches have been explored. This section introduces the most common 

crosslinking techniques, ranging from typical radical crosslinking polymerization to 

advanced click-type ligation chemistry. Multifunctional acrylate photoresists, for 

instance, can be radically crosslinked whereas epoxide based photoresists are 

similar to the crosslinking polymerization of oxetane functionalized polymer 

backbones. The above mentioned photochemical dimerization reactions are also 

suitable techniques to achieve efficient crosslinking which will be demonstrated in a 

few examples. Light-induced click chemistry has also entered the stage of 

crosslinking chemistry and methods such as thiol-ene, photoenol, or NITEC 

significantly increase the available chemical toolbox. All entries from the above list of 

chemical approaches to build polymeric networks have been employed for a large 

variety of applications, ranging from 3D structures with attached fluorescent dyes,266 
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to the generation of light-emissive pattern,267 or dental care materials.268 To 

demonstrate the current state-of-the-art in light-induced surface modification via 

crosslinking, a selection of examples will be presented for each crosslinking method. 

An overview of  the respective crosslinking chemistry is depicted in Scheme 2.3.6. 

 

Scheme 2.3-6: Schematic depiction of the crosslinking chemistries. P = connection to polymer or 

linker; R = organic substituent 

Radical polymerization of multifunctional double bond containing compounds is 

arguably the most feasible route to produce crosslinked material. To induce the 

polymerization process, benzophenone – or other typical photoinitiators – can be 

employed to either initiate the polymerization of mixtures of multifunctional 

monomers, so-called photoresins,269 or crosslink polymer chains by hydrogen 

abstraction.270 Dental care, where UV-initiated curing of viscous material is targeted 

to yield a robust surface coating,268 was the first field of application for radical 
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photoresins. Radical crosslinking was further explored and established particularly 

with respect to the mechanical properties of crosslinked polymer blends,271 

polyethylene surfaces272 and melts,273 as well as multiphase systems.274 

Immobilization of biomolecules onto polymer surfaces could be obtained by 

introducing functional compounds into crosslinked films, for example azide 

moieties.275 The first examples for producing patterned substrates were achieved by 

employing a shadow mask, which restricts the crosslinking to proceed only in the 

illuminated areas. Thus, crosslinking monolayers of amphiphilic block copolymers 

yielding patterns of Langmuir-Blodgett films276 or the production of light-emissive 

patterns on micrometer scale by incorporation of fluorescent species were 

achieved.277 Moreover, optoelectronics are applications with constantly increasing 

impact, motivating studies on, e.g., hole-transporting materials via radical 

photocrosslinking triphenylenes,278 modulated optical diffraction gratings through 

photolithographic patterning of electroactive polymer films,279 or photocrosslinking of 

conjugated polymers to produce three color polymer light-emitting diodes.280 

A further famous type of polymeric network formation is based on epoxy resins and 

proceeds via photoinitiated polymerization of multifunctional epoxide moieties. SU-8, 

a development of IBM in 1989,281 is a commercially available photoresist which 

appears in a large number of patents and journal articles concerning micro 

electromechanical systems (MEMS) or photolithography in general. The extensive 

literature about applications involving SU-8 is summarized in multiple review 

articles.282 Although SU-8 is more popular, a related type of crosslinking technique 

has been demonstrated to be suitable for producing optoelectronic materials. By 

cationic ring-opening of multifunctional oxetane compounds – small molecules, or 

pedant on polymer backbones – crosslinking can be readily induced. Thus, networks 

of conjugated polymer could be generated283 and blue light-emitting diodes via 

polymerization of a difunctional oxetane monomer were produced.284 Moreover, the 

fabrication of a pixelated RGB matrix display was achieved by consecutive 

crosslinking of oxetane functionalized polymers luminescent in red, green, and 

blue.267 
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Figure 2.3-6: Picture of an electroluminescent RGB color emitting device (left) produced via radical 

crosslinking. Photograph of a pixelated RGB device (right) generated by oxetane crosslinking. Images 

were adapted from Ref.
280

 and Ref.
267

 with permission from Wiley-VCH and the Nature Publishing 

Group (NPG) 

From a molecular point of view, the above noted crosslinking techniques are based 

on cross-polymerization mechanisms yielding materials with hardly characterized 

linking points. Dimerization reactions, on the other hand, are well understood, in-

depth analyzed processes. As alluded to in the reversible photoreactions section 

(2.3.1.4), dimerization approaches can also be utilized to generate networks.253 Here, 

selected examples for surface patterning via crosslinking are presented, proving 

these techniques to be an advanced tool for producing surface modifications via 

interconnecting polymer chains. For example the light-triggered dimerization of 

coumarin based polyesters is suitable for generating complementary surface 

patterns, depending on the excitation wavelength which controls whether crosslinking 

(350 nm) or decrosslinking and polymer chain scission (254 nm) occur.285 Reversible 

crosslinking utilizing anthracene derivatives enables the production of honeycomb 

structured films, which can be photochemically crosslinked and subsequently 

patterned on an additional level by reversing the dimerization reaction.286 In order to 

enter water based media, thymine pendant groups can be incorporated into 

polymers. Thus, an aqueous medium approach for surface coating via 

photocrosslinking of environmentally benign copolymers could be achieved,287 as 

well as the development of water based photoresists for patterning copolymers244 

and terpolymers.288 The cinnamate approach, however, is today's most widely 

applied photochemical dimerization system for surface encoding. Initially, polymer 

crosslinking via cinnamate functionalities was employed for incorporating fluorescent 

acidic dyes,289 whereas nowadays most efforts are directed to the development of 
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optoelectronics, e.g., patterns of hole-transport material for light-emitting diodes,290 

optical writing in liquid crystal cells,291 blue light-emitting copolymers,292 electro-

chromic conjugated films,293 and organic transistors.294 

 

Figure 2.3-7: Scanning electron microscopy (SEM) image of the top of a woodpile structure fabricated 

via thiol-ene-induced DLW (left). Patterning of the respective three-dimensional structure with a 

fluorescene maleimide component (right). Images were adapted from Ref.
266

 with permission from 

Wiley. 

Since the era of click chemistry has begun, the set of efficient light-triggered 

reactions have proven to be a valuable tool for surface crosslinking. For instance, the 

photoinitiated thiol-ene reaction was employed for designing novel photoresists 

applied for surface patterning of ultrathin films295 or rapid prototyping of multilayer 

thiol-ene fluidic chips.296 In addition, electroluminescent networks could be 

photopatterned by crosslinking polyfluorenes via thiol-ene chemistry297 and 

conjugated polymer networks with tunable bandgaps could be generated.298 

Moreover, solution-processed multilayer light-emitting diodes were produced, 

representing hole-transporting surface coatings.299 Another advanced application for 

light-induced techniques in general, i.e., thiol-ene chemistry, is direct laser writing 

(DLW). For instance, 3D photofixation of furan-maleimide Diels–Alder networks could 

be realized by laser induced thiol-ene reaction.300 Processable 3D microstructures – 

woodpile photonic crystals – could also be generated using the thiol-ene reaction 

itself for the crosslinking process. Precise patterning of the written surfaces with a 

fluorescent dye was additionally accessible since the resulting surface of the 

structures still contains residual photoreactive groups.266 Apart from the thiol-ene 

reaction, other light-induced click reactions have been subjected to surface 

crosslinking. A combination which had already attracted industrial attention,301 is a 

photosensitive mixture of multifunctional photoenol and polymeric maleimide species 

suitable to form a photoresist. The latter was employed to generate woodpile 
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photonic crystals via DLW with a rod distance of 500 nm. Again, the residual surface 

exposed photoenol moieties were subsequently employed for site-specific patterning 

of surface markers.302 
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3 
3STEP-GROWTH POLYMERIZATION VIA 

NITEC – FLUORESCENT POLYMERS 

FROM NON-FLUORESCENT 

PHOTOREACTIVE MONOMERS1 

The development of novel polymerization techniques requires a judicious design of 

the targeted system. First of all, the mechanism for connecting the monomer units 

needs to be selected. When cycloaddition reactions are utilized for the propagation 

step, the polymerization mechanism is typically characterized by step-growth 

behavior. Modern and efficient conjugation tools have recently revived the concept of 

step-growth polymerization. Click chemistry enabled, for instance, accessing 

conjugated polymers,303 polyferrocenes,304 or palladium containing polymers305 via 

step-growth polymerization. The current chapter focuses on two issues, the first one 

being the suitability of NITEC chemistry for step-growth polymerization. As alluded to 

                                            
Parts of the current chapter are reproduced from J. O. Mueller, D. Voll, F. G. Schmidt, G. Delaittre, C. 
Barner-Kowollik, Chem. Commun. 2014, 50, 15681-15684, (DOI: 10.1039/c4cc07792j) with 
permission from the RSC. 
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in the theoretical background section, the conversion in step-growth polymerization 

processes is required to be well above 90 % to obtain polymeric material of 

reasonably high molar mass. Therefore, side-reactions must be absent in order to 

achieve such high conversion values. The most important reasons to conduct the 

study presented in the current chapter are the properties of the final product. Since 

tetrazoles themselves are not fluorescent in contrast to the NITEC cycloaddition 

product, the approach leads to fluorescent polymers from non-fluorescent monomers. 

Thus, a novel platform technology for fluorescent polymers is established applying a 

biocompatible and light-induced conjugation method. The following figure describes 

the idea of the project in a graphical fashion (Figure 3-1). 

 

Figure 3-1: Overview of the polymerization strategy for producing fluorescent polymers from 

profluorescent monomers. 
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3.1   Design of Photoreactive Monomers 

To allow for the development of a novel light-induced polymerization technique, the 

photoreactive monomers themselves had to be designed (Scheme 3.1-1). In step-

growth polymerization, linear and non-branched polymers can only be obtained with 

monomers carrying two functional groups. Moreover, the monomers were designed 

to contain both functional groups (i.e., tetrazole and dipolarophile) in one molecule – 

an A-B-type monomer – which provides equimolarity of both functions and thus 

simplifies the polymerization setup (Scheme 3.1-1).  

 

Scheme 3.1-1: Photoreactive monomer M2. 

In order to enable the investigation of the effect of different dipolarophiles, two 

monomers were prepared carrying different electron deficient double bond moieties, 

i.e., acrylate as well as fumarate functionalities were included in the monomer design. 

Besides the photoreactive functionality and its counterpart, the monomers also 

contain a spacer, which is in both cases a short alkyl chain. The spacer is on the one 

hand necessary for the monomer synthesis and on the other hand it increases the 

mobility of the entire compound, to improve the monomers solubility. The synthetic 

pathway to both monomers is straightforward: A carboxylic acid-functionalized diaryl 

tetrazole (synthesis is reported in literature),166 which will be subject of a detailed 

discussion in Chapter 7, is esterified by transformation into the corresponding acyl 

chloride. The acrylate dipolarophile is commercially available carrying a hydroxyl 

ethyl substituent, which readily reacts with the tetrazole acyl chloride to yield the first 

monomer (M1) (Scheme 3.1-2).  
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Scheme 3.1-2: Synthesis of M1. a) 1. SOCl2, THF, 4 h, 75 °C, 2. hydroxyethyl acrylate, pyridine, dry 

THF, 0 °C – RT, overnight. 

The synthetic pathway for the second monomer (M2) requires an additional 

preparative step for connecting the monoethyl fumarate with propanediol. Thus, a 

compound (2) bearing a terminal hydroxyl function for the final esterification step with 

1 is generated (Scheme 3.1-3).  

    

 

Scheme 3.1-3: Synthesis of M2. a) 1,3-propanediol, EDC-HCl, DMAP, THF, 0 °C – RT, overnight. b) 1. 

SOCl2, THF, 4 h, 75 °C, 2. 2, pyridine, THF, 0 °C – RT, overnight. 

Hence, two photoreactive monomers, designed for step-growth polymerization, with a 

molar mass of 394.4 g·mol-1 (M1) and 480.5 g·mol-1 (M2) were prepared via 

straightforward organic synthesis. 
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3.2   Light-Induced Polymerization of Photoreactive 

Monomers 

Upon completed preparation of the two novel monomers, their behavior in light-

induced polymerization processes was investigated. Due to the novelty of the light-

driven polymerization approach, the reaction parameters including concentration, 

total batch size, irradiation time, and irradiation intensity had to be explored and 

optimized. The general preparation of the samples is facile since the NITEC reaction 

is insensitive to oxygen or water as evidenced in earlier studies.164 Thus, the 

monomers simply had to be dissolved in a suitable solvent, the sample vials were 

crimped airtight to avoid evaporation of the solvent and irradiated in a custom-built 

photoreactor (refer to the Methods section for details regarding the photoreactor). In 

order to establish the optimal conditions, M1 was subjected to the polymerization 

process and the monomer concentration as well as the total amount of monomer 

were screened (Scheme 3.2-1).  

 

Scheme 3.2-1: Light-triggered polymerization of M1. 

When the monomer solution is exposed to UV light (max = 320 nm), the excited 

tetrazole moieties form highly reactive nitrile imine species by releasing a nitrogen 

molecule. The resulting 1,3-dipols react rapidly in a [3+2]-cycloaddition with the 

dipolarophile units present in an equimolar amount. The newly formed cycloadduct 

represents the connection between the monomer units in the propagation step and 

can potentially either be positioned between two monomers, oligomers, or polymeric 

species. If the cycloaddition proceeds intermolecularly, a step-growth polymerization 

process takes place, whereas an intramolecular reaction leads to a cyclic termination 



STEP-GROWTH POLYMERIZATION VIA NITEC 

 

62 
 

product. The inevitable termination reaction via ,-cycloaddition is subject to 

discussion in Section 3.3.  

The first parameter to be varied was the concentration. High concentrations were 

expected to increase the molar mass of the resulting step growth polymer since the 

probability for intermolecular reaction between two different polymer chains is more 

likely in concentrated systems. In contrast, formation of cyclic low molar mass 

material should be favored in diluted media. The initial concentration study reveals 

this assumption to be correct  (Figure 3.2-1, left). The amount of higher molar mass 

material increased when the polymerization medium was concentrated. 

       

Sample Mn [g·mol-1] Mw [g·mol-1] Đ 

a 1600 2700 1.69 

b 1800 3700 2.07 

c 2400 6000 2.56 

d 2100 3300 1.56 

e 2300 4000 1.73 

f 2600 5400 1.73 

Figure 3.2-1: Concentration (left) and total batch size (right) study conducted by light-induced 

polymerization of M1. Bottom: Collation of molar mass values. Reaction conditions: DMAC, 36 W, 

24 h, a) 2 mg·mL
-1

, 2 mg; b) 10 mg·mL
-1

, 2 mg; c) 40 mg·mL
-1

, 2 mg; d) 100 mg·mL
-1

, 10 mg; e) 

100 mg·mL
-1

, 5 mg; f) 100 mg·mL
-1

, 2 mg. 

Consequently, all further polymerization reaction were conducted with a 

concentration of 100 mg·mL-1 which is close to saturation. Moreover, the optimum 

scale of a single polymerization batch needed to be investigated. It was found that 

the reaction time scales with the total amount of monomer employed for the 

polymerization (Figure 3.2-1, right). Since the best results were obtained for the 

smallest batch size and in order to consume resources responsibly, all future 
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polymerizations were carried out with the minimum amount of material required for 

common analytical techniques (NMR, SEC, ESI-MS).  

Compared to P2, the solubility of P1 was found to be reduced in organic solvents 

suitable for analytic methods. Consequently, the polymerization process of M2 was 

monitored closely and the kinetic study as well as detailed characterization of the 

final product were conducted with polymeric material stemming from polymerizing the 

second monomer (Scheme 3.2-2).  

 

Scheme 3.2-2: Light-driven polymerization of M2. 

Improved solubility of polymer P2 in volatile organic solvents, for instance THF, 

facilitates isolation and enables to subject the product to versatile analytic methods, 

such as size-exclusion chromatography (SEC), nuclear magnetic resonance (NMR) 

spectroscopy, electrospray-ionization mass spectrometry (ESI-MS), UV-visible 

spectroscopy (UV-vis), and fluorescence spectroscopy. NMR analysis gives detailed 

insight into the molecular composition of the material. By comparing the proton NMR 

spectra of M2 and the corresponding polymer P2, a shift of the aromatic protons (a, b, 

c, d) to lower ppm values (a', b', c', d') can be detected (Figure 3.2-2, top). In addition, 

a new set of resonances corresponding to the pyrazoline moieties appears (e', e''), 

whereas the resonance assigned to the fumarate group (e) vanishes completely. 

Moreover, all product resonances are relatively broad compared to the monomer 

spectrum which is a typical observation for polymeric samples. Furthermore, the 

exceptional purity of the crude spectrum of P2 evidences a very clean polymerization 

process which proceeds without any detectable side-reactions.  
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Figure 3.2-2: Analytic results of the product from the light-driven polymerization of M2. Top left: 
1
H 

NMR spectrum with the corresponding structures; top right: picture of the fluorescent vial containing P2 

under excitation with a handheld TLC-lamp (ex = 365 nm); bottom left: SEC; bottom right: UV-vis and 

fluorescence spectroscopy. 

SEC is an ideal tool to prove the existence of macromolecules. Since the material is 

separated by its hydrodynamic radius, polymers can be well distinguished from 

residual monomer or oligomeric material. Figure 3.2-2 (bottom, left) demonstrates the 

difference in retention time of M2 (36-37 min) and the  polymer P2 (26-34 min), which 

was purified by precipitation. Although molar mass values determined by SEC have 

to be treated carefully due to the required calibration which is not available for the 

novel type of polymer, molar mass values of Mn = 7400 g·mol-1 and Mw = 

12900 g·mol-1 indicate the success of the light-driven polymerization. A more detailed 

discussion of the SEC results follows in a subsequent section (Section 3.4). The 

current polymerization method was developed because of the properties of the 

polypyrazolines which can be detected by UV-vis and fluorescence spectroscopy. A 

dramatic change in the absorption properties of the material can be observed during 

the polymerization process. The absorption of the tetrazole with a maximum of close 



3.2 LIGHT-INDUCED POLYMERIZATION OF PHOTREACTIVE MONOMERS 

65 
 

to 300 nm (Figure 3.2-2, bottom right, black dashed line) differs significantly from the 

pyrazoline absorption spectrum (350-500 nm) (Figure 3.2-2, bottom right, red dashed 

line). Despite the clear evidence from UV-vis analysis, the success of the desired 

cycloaddition is even more obvious by evaluating the fluorescence spectroscopy 

data. The fluorescence spectrum of the tetrazole monomer does not show any 

emission (Figure 3.2-2, bottom right, black plain line), whereas P2 fluoresces 

intensely, emitting a broad spectrum in the visible range (450-750 nm) (Figure 3.2-2, 

bottom right, red plain line).  

Summarizing the above noted results, it is evident that a well defined 

polycycloaddition can be induced by irradiation, resulting in a reasonably large step-

growth polymer which exhibits strong fluorescence. 
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3.3   Characterization of the Termination Product 

Due to the assumed cyclization reaction, the step-growth polymerization presented in 

the current chapter is susceptible to termination. In order to confirm the hypothesis of 

cyclic low molecular weight material produced throughout the polymerization process, 

it is worth investigating the products in more detail. First of all, it is important to note 

that the monomer (black plain line) is completely consumed since the RI-signal 

intensity in the monomer region is reduced to baseline level subsequent to irradiation 

(Figure 3.3-1). However, besides the desired polypyrazoline (34-26 min), SEC 

analysis of the crude polymerization product (dashed line) reveals a significant 

amount of low molar mass material (34-36 min) in the reaction mixture. The overall 

molar mass values of the crude material are Mn = 2500 g·mol-1 and 

Mw = 12000 g·mol-1, hence significantly smaller than the purified polymer. 

Fortunately, the polymer can be readily separated from the termination product by 

precipitation in cold methanol. Thus, both types of product could be isolated yielding 

60 wt% polymer and 40 wt% cyclic oligomers. Subsequent SEC analysis of the single 

precipitation fractions demonstrates the success of this facile separation method, 

since the precipitated material (red plain line) is almost quantitatively free of the 

oligomeric species in the non-precipitating fraction (dotted line).  

  

Figure 3.3-1: SEC chromatograms corresponding to M2 (black plain), its crude polymerization product 

(black dashed), as well as the separated low molar mass termination product (black dotted) and the 

isolated polymer (red) generated by light-induced polymerization of M2. 
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In order to verify the cyclic structure of the termination product, the low molar mass 

material was additionally analyzed by ESI-MS (Figure 3.3-2). The respective ESI-MS 

spectrum clearly depicts three signals in the region below 2000 m/z. The 

experimental values of the respective signals correspond well to the predicted 

masses for the cyclic dimer, trimer, and tetramer. Moreover, linear oligomers which 

would still contain an intact tetrazole unit are not detected. In addition, the absence of 

linear material confirms the NMR results, which suggest that full conversion of the 

tetrazole units to the pyrazoline species was achieved. 

  

signal m/zexp m/ztheo  m/z sum formula 

O2 927.50 927.31 0.19 C48H48N4O14Na+ 

O3 1379.58 1379.46 0.12 C72H72N6O21Na+ 

O4 1831.50 1831.63 0.13 C96H96N8O28Na+ 

Figure 3.3-2: ESI-MS spectrum of oligomers accumulated during the polymerization process of 

monomer M2 (left). Right side: Structures corresponding to the signals in the ESI-MS spectrum. 

Bottom: Experimental and theoretical m/z values of the low molecular weight termination product. 
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3.4   Investigation of the Polymerization Kinetics 

A crucial aspect for establishing a novel polymerization technique is the investigation 

of the reaction kinetics. Therefore, the conversion as well as the molar mass need to 

be monitored throughout the polymerization process. As part of the kinetic study, the 

influence of the irradiation intensity was investigated by varying the number of UV-

lamps employed for the polymerization between 1, 3, and 5 (for lamp specifications 

as well as photoreaction setups see Methods section 8.3). In the case of the current 

investigation, NMR is a suitable analytic tool for following the progress of the reaction 

since the signals of starting material and product can be assigned and integrated 

without significant overlap. In order to visualize the reaction progress, the resonances 

in the aromatic region (a, b, c, a', b') are depicted in Figure 3.4-1.  

                 

           

Figure 3.4-1: Aromatic region of the NMR spectra for samples of the kinetic study conducted with 

different irradiation intensities. Top left: 1 lamp; top right: 3 lamps; bottom left: 5 lamps; bottom right: 

plot of the conversion values against the irradiation time. 
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For integration and subsequent calculation of monomer to polymer conversion, the 

signals a, b, a', b' can be employed as can the pyrazoline signals (e, e') or the 

resonances corresponding to the spacer (k, k') (compare Figure 3.2-2). Either 

integration method yields conversion values within an error margin of 5 % which is a 

typical uncertainty for NMR analysis. The conversion values were calculated 

according to equation Eq 3.4-1 which includes the product signal (x') and the 

corresponding signal of the starting material (x). To obtain the exact values plotted in 

Figure 3.4-1 the integration values for a and a' were inserted in the following 

equation. 

conversion  %  = 
100 · x'

x + x'
    Eq 3.4-1 

Consequently, the resulting conversion values were plotted as a function of reaction 

time under variation of the irradiation intensity (1, 3, or 5 lamps, each 36 W). The 

results coincide with the expectation of a reduced reaction time for increasing 

irradiation intensity. Thus, the reaction time to achieve full conversion is 24 h applying 

one UV lamp (36 W), whereas the monomer is fully converted into polymer in 4 h 

when the photoreactor is equipped with 5 lamps (180 W). Noteworthy is the excellent 

agreement of the experimental data points with the exponential fit, evidencing a 

reaction with pseudo first-order kinetics for all employed irradiation intensities.  

 

Figure 3.4-2: Kinetic plot representing the experimentally determined tetrazole concentration values for 

the polymerization of M2 in correspondence to the reaction time for three different irradiation 

intensities. 



STEP-GROWTH POLYMERIZATION VIA NITEC 

70 
 

In order to determine the kinetic parameters, a different form of displaying the 

conversion values is required (Figure 3.4-2). Therefore, the molar fraction of tetrazole 

present in the reaction mixture was plotted against the reaction time (displayed in 

seconds). An exponential fit – according to the Arrhenius equation (Eq 3.4-2) – to 

each data set gives access to the kinetic parameters k and A. 

 ct = c0 · e
-kt + A     Eq 3.4-2 

Table 3.4: Collation of kinetic parameters and their standard deviation (). The entries were 

determined by the plot in Figure 3.4-2. 

entry c0  (c0) A  (A) k [s-1]  (k [s-1]) 

1 lamp 0.911 5.92·10-2 5.92·10-2 3.48·10-2 7.23·10-5 1.03·10-5 

3 lamps 0.988 1.94·10-2 4.56·10-3 1.55·10-2 1.73·10-4 8.80·10-6 

5 lamps 1.000 1.76·10-2 4.77·10-3 1.63·10-2 2.56·10-4 1.22·10-5 

 

In order to obtain a molar mass vs. conversion plot, information about the molar mass 

is required. SEC analysis provides such information, yet the data has to be treated 

cautiously. Evaluating the polypyrazolines of the current study via SEC is problematic 

since this analytic technique – particularly when it is coupled to an RI-detector – 

requires calibration with polymers of the same type and defined molar mass. The 

absence of Mark-Houwink parameters for polypyrazolines further decreases the 

accuracy of the absolute molar mass values determined by SEC. However, the 

respective error is systematic and as such it is fairly similar for each measurement 

when the consecutive samples in a kinetic study are compared. Moreover, not the 

absolute molar mass values, but the overall trend is of major concern in the kinetic 

analysis. Thus, the same crude polymerization mixtures which were applied for NMR 

analysis were subjected to SEC analysis. The respective elugrams for the 

investigation with different irradiation intensities are depicted in Figure 3.4-3. For 

each setup – 1, 3, or 5 UV lamps – a continuous increase of the overall molar mass 

with irradiation time is observed. Three reactions with different irradiation intensities 

were conducted and the obtained weight-average molar mass values (Mw) were 

compared to the respective theoretical molar mass evolution given by Carothers306 

(Figure 3.4-3, bottom right). It can be observed that all three sets of experimental 

data correlate well with Carothers' theory (for detailed information about Carothers' 

theory refer to Section 2.1.1). An exception are the values associated with very high 
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conversions where the molar masses of the experimental data still fit the shape of the 

curve, yet the experimental values are notably lower. 

    

  

Figure 3.4-3: SEC chromatograms corresponding to the kinetic study conducted with 1 (top, left), 3 

(top, right), and 5 UV lamps (bottom, left). Bottom, right: comparison of the experimental molar mass 

vs. conversion plot with Carothers' theoretical prediction.  

Despite the inaccuracy of the SEC molar mass values due to the calibration issue, 

the slightly lower molar mass values for high conversion values can also be 

explained by the effect of the termination reaction producing low molar mass 

material. Due to the termination product which remains in the polymer mixture, the 

overall molar mass is significantly lowered. In addition, a termination reaction such as 

the present irreversible ring closure was not taken into account in Carothers' original 

theoretical work. 
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3.5   Summary 

In conclusion, the study presented in the current chapter demonstrates the suitability 

of NITEC chemistry for a light-driven step-growth polymerization approach. By 

designing photoreactive monomers – each bearing a tetrazole as well as a 

dipolarophile function – light-induced polymerization was enabled. Highly fluorescent 

polypyrazolines were prepared via a facile polymerization protocol. Due to the 

advantageous properties of the NITEC reaction, the polymerization can be conducted 

at ambient temperature and atmosphere without requiring a catalyst. Optimizing the 

reaction conditions in terms of concentration and total batch size was explored 

utilizing the acrylate functional monomer. The low molecular weight termination 

product which accumulates during the light-triggered polymerization of the fumarate-

monomer was isolated and determined to be of a cyclic nature via ESI-MS 

characterization. In addition, the polymerization kinetics were monitored by 1H NMR 

and SEC analysis. Except for the generation of the low molar mass termination 

product, the light-triggered step-growth polymerization behaves according to the 

classical predictions of Carothers. Thus, an efficient light-induced polymerization 

protocol as a facile avenue to fluorescent polymers from profluorescent monomers is 

presented. The fluorescence can be induced at wavelengths exceeding 400 nm and 

might therefore be appealing for imaging applications in living organisms. 
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4 

4END GROUP MODIFICATION VIA 

AZIRINE CHEMISTRY – VISIBLE 

LIGHT-INDUCED LIGATION2 

In the current chapter we progress from employing cycloaddition reactions for 

connecting monomer units to a larger system. Herein, an azirine-based method is 

applied for the post-polymerization modification of polymer termini. The aim of the 

current study is the introduction of a catalyst-free visible light-induced ligation 

chemistry. To date, visible light-triggered reactions require, without exception, a 

photoredox catalyst as summarized in the literature section. However, by merging a 

chromophore and a moiety which can readily be activated by irradiation (2H-azirine), 

photoconjugation can be triggered at wavelengths above 400 nm. An initial small 

molecule study allows for the detailed characterization of the azirine reacting with 

variable dipolarophiles, e.g. maleimide, fumarate, acrylate and an activated acetylene 

derivative. Among other characterization techniques, high-performance liquid 

chromatography (HPLC) was employed to follow the kinetics of the photoreactions 

and to demonstrate the efficiency of the approach. Besides evidencing the suitability 

                                            
Parts of the current chapter are reproduced from J. O. Mueller, F. G. Schmidt, J. P. Blinco, C. Barner-
Kowollik, Angew. Chem. Int. Ed. 2015, in press (DOI: 10.1002/anie.201504716) with permission from 
WILEY-VCH. 
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of the system for organic synthesis triggered by irradiation with low energy light 

sources, the novel photoreactive compound is additionally subjected to polymer 

ligation reactions. The advanced demands of polymer ligation reactions are satisfied 

by the current method via employment of functionalized poly(ethylene glycol) 

derivatives. High resolution mass spectrometry evidences the rapid and atom 

economic process. Via visible light induction it is possible to achieve complete end 

group conversion within only one minute at ambient temperature. Moreover, the 

insensitivity to moisture or oxygen further emphasize the robust nature of this 

synthetic tool. The general reaction scheme for the approach is depicted below 

(Figure 4-1). 

  

Figure 4-1: General reaction scheme for the visible light-induced polymer ligation. EWG = electron 

withdrawing group. 
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4.1   Design of a Visible Light Sensitive Reactant 

Two key points must be addressed in order to acquire a photoreactive moiety which 

can undergo visible light-induced conjugation reactions. Firstly, the compound's 

absorption spectrum must coincide with the desired excitation wavelength. The 

second crucial step is the efficient generation of the active species – in this case a 

nitrile ylide. In order to address the first point, a visible light absorbing chromophore is 

required. Depending on the substituents, the absorption spectrum of pyrene exceeds 

the 400 nm benchmark, enabling to excite the compound with low energy visible light. 

However, the properties of the final photosensitive compound need to be judiciously 

designed in terms of the absorption wavelength. For instance rapid decomposition of 

the target compound in the presence of ambient light should be suppressed, 

although absorption in the region of visible light (400 nm) is indispensable. Thus, a 

carefully balanced system is required, which absorbs just sufficient light above 

400 nm to trigger the desired reaction efficiently. Azirines are known to form a 

reactive nitrile ylide with high quantum yields (refer to the literature section).174 By 

synthetically installing an azirine substituent at the chromophore pyrene (Figure 4.1-

1), both of the above noted criteria can be fulfilled simultaneously yielding compound 

3 in an elegant approach.  

                      

Figure 4.1-1: Left side: Schematic depiction of the newly designed visible light sensitive compound. 

Right side: UV-vis (plain) and fluorescence spectra of 3. 

In addition, the pyrene exhibits fluorescence in the region between 375 nm and 

550 nm, which is another advantageous feature for this ligation technique since 

attaching fluorescence markers to substrates or substances is an important imaging 
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tool.307 Furthermore, the pyrene group is not only a fluorophore, yet it can also act as 

--stacking anchor.308-310 Both of these additional features remain throughout the 

light-triggered process and are hence available for applications of the cycloaddition 

product. The synthetic strategy to prepare 3 is straightforward (Scheme 4.1-1): 

Commercially available acetyl pyrene can be transformed into a hydrazone. 

Subsequent methylation yields a hydrazonium salt which undergoes a cyclization to 

the desired azirine in the presence of a strong base. The first two synthetic steps 

proceed very smoothly, enabling the intermediates to be readily subjected to the 

subsequent reaction without detailed characterization. 

  

Scheme 4.1-1: Synthesis of the visible light sensitive compound 3. Reaction conditions: a) dimethyl 

hydrazine, TFA, toluene, 120 °C, 5 h; b) MeI, 40 °C, overnight; c) NaH, DMF, 0 °C, 1 h. 
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4.2   Small Molecule Conjugation 

Subsequent to its preparation and characterization, the novel azirine-pyrene 

conjugate was subjected to light-induced cycloaddition reactions. In order to provide 

evidence for the accessibility of diverse types of dipolarophiles and confirm the 

cycloaddition process to occur, a small molecule study was conducted. As alluded to 

in the literature review section, the nitrile ylide formation as well as the subsequent 

cycloaddition of azirines under irradiation have been studied previously. Thus, in the 

current approach the most common types of dipolarophiles were selected to confirm 

the novel azirine moiety to behave in a typical manner. Consequently, visible light-

induced reactions, employing a light-emitting diode (LED) setup, were performed with 

derivatives of the following functional group classes: Fumarate, maleimide, and 

acrylate derivatives represent moieties with electron deficient double bonds, whereas 

an activated acetylenes allows for the synthesis of pyrrole derivatives. An overview of 

compounds which are photochemically accessible via the current technique is 

provided in Scheme 4.2-1. 

 

Scheme 4.2-1: Small molecule conjugation reactions of 3 induced by visible light LEDs. 

The small molecule study has a distinct advantage compared to polymer ligation: The 

range of analytic techniques available for characterization of the isolated products is 

broad. NMR, ESI-MS, UV-vis, and fluorescence spectroscopy can be applied to 

characterize the cycloaddition products without the interfering effects of a polymer 

chain. Moreover, the progress of the reaction was monitored by HPLC. The most 

employed analytic tool of an organic chemist is NMR, providing useful information 
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about the structure of the analyte. Figure 4.2-1 displays specific sections of the 1H 

NMR spectra of 3, 4, 5, 6, and 7 to facilitate following the occurring changes, 

whereas the full spectra can be found in the experimental section of the present 

thesis (Chapter 9).  

     

Figure 4.2-1: Left: 
1
H NMR analysis of 3, 4, 5, 6, and 7. Right: Structures corresponding to the NMR 

spectra. 

The spectrum of 3 contains two doublets assigned to the protons a and b in the 

aromatic region (9.5-7.5 ppm), which are predominantly affected by changes to the 

azirine function. Upon the photoreaction with a maleimide or fumarate derivative, 

resonance a, for instance, is shifted to higher fields (signal a1 or a2, respectively). In 

contrast, a slight shift to lower field can be observed for compound 6. The signal of 

proton a4 is also shifted high-field and cannot be identified between the large number 

of aromatic resonances b4 and c4. Similarly, obvious changes are discernable for 

proton b which was observed to be shifted to lower fields for the compounds 4 and 5, 

whereas the same signal for 6 and 7 was found to overlap with the c3 and c4 signals. 

In addition, new sets of signals appear in the region of 5.0-3.5 ppm for all 

cycloadducts, whereas no such resonances are observed for the azirine. These 

newly arising signals are labeled dx and ex and refer to protons adjacent to the newly 

generated 5-membered heterocycle or substituents of the dipolarophile. Since 

unsaturated 5-membered heterocycles bear uncommon bond angles, the resonances 

in this region are fairly broad and cannot be assigned to particular protons. However, 

the overall integration values correspond to the correct number of protons. In the 

case of 7, a rearrangement which occurs subsequent to the cycloaddition reaction 
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produces an aromatic pyrrole derivative, a process, which has been reported in 

literature.242 Thus, the signals d4 differ from the other d-signals (4-6) since they 

appear in the aromatic region.  

Another powerful analytic tool for the identification of substances is ESI-MS. Hence, 

ESI-MS spectra of the starting material and the isolated product of the light-triggered 

process were acquired (Figure 4.2-2).  

 

Compound Sum formula m/zexp m/ztheo  m/z 

3 C18H12N
+ 242.08 242.10 0.02 

4 C29H21N2O2
+ 429.16 429.16 0.00 

5 C26H24NO4
+ 414.16 414.17 0.01 

6 C22H18NO2
+ 328.12 328.13 0.01 

7 C26H21NO4Na+ 434.16 434.14 0.02 

Figure 4.2-2: ESI-MS analysis of 3, 4, 5, 6, and 7. Sum formulae as well as the values of exact 

masses for experimental results, theoretical values and the deviation of both for each compound. 

ESI-MS ionization of the substrate is a crucial issue. A good example is the spectrum 

of 3, where a decreased signal-to-noise ratio can be observed. The reduced quality 

of the spectrum can be explained by the absence of polar functionalities which 

support the ionization process and increase the total ion count. In contrast to the 

spectrum of 3, remarkably clean spectra for 4, 5, 6, and 7 – each carrying at least 

one polar function – provide unambiguous evidence for the successful generation of 

the desired products. In addition, the experimentally obtained m/z values coincide 

almost perfectly with the theoretically calculated exact mass values ( m/z < 0.03, 

see table in Figure 4.2-2). In combination with the results from NMR analysis, the 

analytic results provide unambiguous evidence for the success of the light-triggered 
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reactions. However, to complete the characterization of the photoadducts, UV-vis and 

fluorescence experiments were conducted (Figure 4.2-3).  

     

Figure 4.2-3: UV-vis (left) and fluorescence (right) analysis of the compounds 3, 4, 5, 6, and 7 

recorded in MeCN. 

The structural change of the azirine substituent and the corresponding conjugated 

-system can be witnessed by UV-vis spectrometry. By comparing the spectra of 

Figure 4.2-3, it is evident that the initial well-structured absorbance band of 3 

between 300 nm and 400 nm changes shape to give rather one broad absorbance 

upon successful cycloaddition. Interestingly, the entire absorption spectrum is slightly 

shifted to shorter wavelengths for all four cycloadducts. By recording the 

fluorescence emission it is obvious that the pyrene system remains intact throughout 

the photoreaction since strong fluorescence is observed for all compounds. The 

shapes of 3, 4, 5, and 6 are fairly similar exhibiting two emission maxima, whereas 

the spectrum of 7 is characterized by a single, broad emission band. The observed 

difference can be caused by the enlarged aromatic system of the pyrrole substituent. 

However, the most important message of the fluorescence study is that the pyrene 

system is potentially still available for imaging applications subsequent to the ligation 

reaction.  

HPLC is a facile, yet highly sensitive technique, which was applied to monitor the 

reaction conversion. The minimal amount of material that is required for accurate 

HPLC analysis facilitates the experiments since samples can just be taken from the 

reaction mixture without altering the conditions significantly. Another advantageous 

aspect of the current system in combination with HPLC analysis is that UV-vis 

absorption and fluorescence can both be detected simultaneously enabling detailed 
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insight of the photoreaction process. A selection of kinetic experiments is provided in 

Figure 4.2-3. 

      

     

Figure 4.2-3: HPLC elugrams associated with the small molecule kinetic study. Top left: fluroescence 

detection at 450 nm (ex=350 nm) monitoring the reaction of 3 and diethylester acetylene; top right: 

absorbance detection at 350 nm monitoring the reaction of 3 and benzyl maleimide; bottom left: 

fluorescence detection at 450 nm (ex=350 nm) for 3 as well as the crude material for the preparation 

of 4, 5, 6, and 7; bottom right: absorbance detection at 350 nm for 3 as well as the crude material for 

the preparation of 4, 5, 6, and 7. 

Exemplarily, the reactions between 3 and benzyl maleimide (absorbance at 350 nm 

detected) or diethylester acetylene (fluorescence emission at 450 nm detected) are 

monitored in detail (top left and right), whereas the final elugrams are depicted by 

emission and absorption detection (bottom, left and right). The combined results of 

the HPLC analysis of the crude reaction mixtures demonstrates the properties of the 

visible light-induced reactions: (i) In the kinetic experiments it is obvious that full 

conversion can be achieved since the intensity of the starting material signal 

decreases until it disappears completely. (ii)  The visible light-induced cycloaddition 

process is highly efficient. Thus, only in the case of the fumarate a significant amount 

of side product can be detected. (iii) Finally, the reaction kinetics can be monitored 
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either via absorption or fluorescence detection, proving complete formation of 4, 6, 

and 7 after 30 min. In summary, the HPLC results show that the new visible light-

induced approach to be remarkably clean enabling highly efficient organic 

photosynthesis. 
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4.3   Visible Light-Induced Polymer End Group Modification 

In order to achieve efficient post-polymerization end group modification of synthetic 

polymer strands, the applied ligation techniques have to fulfill a series of demanding 

criteria.118 Moreover, the ability to alter polymer termini is a necessity for many 

subsequent architectural efforts and highly important for a multitude of advanced 

applications. Therefore, the development of novel (light-induced) techniques is an 

ongoing process in an attempt to improve the efficiency and synthetic feasibility of the 

systems. Thus, the capability to perform polymer ligation reactions is a demonstration 

of the strength of modular conjugation techniques. 

A suitable macromolecular system was required to explore the feasibility of the novel 

visible light-induced cycloaddition approach for polymer ligation reactions. Therefore, 

a set of comparable polymers containing different dipolarophilic termini is useful. In 

addition, the polymers should allow for ESI-MS characterization – a powerful tool for 

polymer characterization. Poly(ethylene glycol) derivatives, for instance, provide a 

series of beneficial properties which facilitate the preparation of starting materials as 

well as monitoring the photoreaction: (i) Poly(ethylene glycol) chains enable precise 

ESI-MS measurements due to their unique ionization properties in combination with 

sodium ions; (ii) Poly(ethylene glycol) substrates with versatile end groups are 

commercially available; (iii) Introduction of customized end groups is accessible by 

esterification of readily available hydroxyl-terminated poly(ethylene glycol) (Figure 

4.3-1).  

 

Figure 4.3-1: Synthesis of polymers P3 and P4 via esterification of commercially available hydroxyl-

terminated poly(ethylene glycol). Reaction conditions: a) monoethyl fumarate, DCC, DMAP, DMF, 

DCM, RT, 2 d; b) penteneoic acid, DCC, DMAP, DMF, DCM, RT, 2 d. 

Thus, a set of four poly(ethylene glycol) compounds was selected containing end 

groups with varying reactivity towards dipoles. Besides the synthetically 

manufactured fumarate (P3) and pentene (P4) terminated moieties, polymers with 

maleimide (PEG-mal) and acrylate (PEG-acr) end groups were purchased and the 

entire set was subjected to the light-triggered process (Scheme 4.3-2).  
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Scheme 4.3-2: Overview of light-induced reactions of 3 with the polymeric dipolarophiles P3, P4, PEG-

mal, and PEG-acr. 

The photo-induced process for the reaction of 3 with P3 was monitored in close detail 

via ESI-MS, CID ESI-MS, NMR, UV-vis and fluorescence analysis. In ESI-MS a shift 

of the entire polymeric distributions in the single, double, triple and four times 

charged region is clearly discernible in the overview spectra presented in Figure 

4.3-1.  

        

 

Label Sum formula m/zexp m/ztheo  m/z 

P3 C93H182NaO47
+ 2074.183 2074.174 0.009 

P6 C101H173NNaO42
+ 2095.142 2095.132 0.010 

Figure 4.3-1: High-res ESI-MS analysis of the reaction between 3 and P3. Left side: overview spectrum 

of the starting material (P3) and the product (P6). Right side: ESI-MS of the single charged region of 

the samples after 0, 30, and 60 s. Middle and table: Structures as well as experimental and theoretical 

exact mass values corresponding to the spectra. 
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By inspecting one repeating unit of the single charged region after 0, 30, and 60 s of 

irradiation it can be observed that the desired reaction proceeds in a remarkably 

clean fashion. After 30 s, a second distribution arises in addition to the highly pure 

spectrum of P3 (0 s). Further 30 s suffice to convert the starting polymer completely 

into the cycloadduct (P6), which represents the only signals in the spectrum after 

60 s. The extraordinary quality of the spectra underpins the efficiency of the end 

group modification method, which proceeds without any sign of side product 

formation. Moreover, the theoretical values coincide excellently with the experimental 

values.  

In order to verify the proposed structure of the product, CID ESI-MS experiments 

were conducted with the resulting material. Therefore, ions corresponding to a single 

signal in the double charged region of P6 were isolated in the ion trap and made to 

collide with helium ions injected into the ion trap. Thus, the ions were excited with a 

tunable collision energy, which causes the molecules to decompose above a certain 

threshold. The resulting spectrum is depicted in Figure 4.3-2. 

       

Label Sum formula m/zexp m/ztheo  m/z 

P6 C111H193NNa2O47
2+ 1169.25 1169.13 0.12 

a C109H189NNa2O47
2+ 1155.17 1155.11 0.06 

b C108H189NNa2O45
2+ 1133.17 1133.12 0.05 

c C87H176Na2O44
2+ 985.67 985.57 0.10 

d C87H174Na2O43
2+ 976.67 976.56 0.11 

Figure 4.3-2: CID ESI-MS experiment of P6 (left). Structures corresponding to the signals (right). 

Experimental and theoretical exact mass values corresponding to the spectra (bottom). 

The weakest bonds in the structure of the isolated ion P6 are allocated around the 

ester groups. Thus, cleavage next to the ester bonds is expected. Consequently, the 

resulting CID pattern of P6 exhibits four main signals which correlate perfectly to the 
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proposed decomposition structures. The few smaller signals in the CID spectrum 

refer to the loss of monomer units. The results from the CID experiment are in total 

very conclusive since all signals can be assigned to reasonable cleavage products, 

which supports the assumption of a successful cycloaddition reaction. 

Since the poly(ethylene glycol) chain of P6 is rather short, NMR characterization is 

still an accurate tool for determining the polymer end groups. The 1H NMR spectra of 

P3 and P6 are presented in Figure 4.3-3. 

     

Figure 4.3-3: 
1
H NMR characterization of P3 and P6.  

The previously assured high purity of P3, the synthesized starting material for the 

photoreaction, is confirmed by proton NMR. Therein, the fumarate end group (d1) is 

clearly visible as a singlet at 6.87 ppm. Subsequent to irradiation of P3 in the 

presence of the azirine, the signal of the fumarate double bond has completely 

vanished. Therefore, resonances in the aromatic region (8.8-7.9 ppm) arise, which 

can be assigned to the pyrene protons in agreement with the small molecule study. 

Assigning additional product signals – for instance the 5-membered heterocycle – is 

relatively complicated since they can be hardly distinguished from the noise of the 

baseline. Yet, the NMR results are still very convincing due to the disappearance of 

the fumarate signals in combination with the apparent pyrene resonances. 

Similar to the small molecule study, UV-vis and fluorescence analysis of P6 should 

provide twofold information (Figure 4.3-4): Firstly, the absorption spectrum of the 

resulting polymer should differ from the absorption spectrum of 3 since the azirine 

has undergone the photoreaction. Due to the observed change in absorption 

behavior, further evidence is given that the azirine compound does not simply adhere 

to the polymer chain. Fluorescence spectroscopy, on the other hand, confirms the 
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pyrene moiety to be present and intact subsequent to the photochemical ligation. 

Thus, a fluorescent dye has been successfully installed at the terminus of a 

poly(ethylene glycol) chain. 

 

Figure 4.3-4: UV-vis and fluorescence spectra of P6 in comparison to 3. 

Subsequent to the detailed characterization of P6 and given the unambiguous 

evidence for the occurring cycloaddition by multiple analytic techniques, additional 

dipolarophile termini were employed for the visible light-triggered process. The light-

induced reaction of 3 with PEG-mal or PEG-acr, respectively, was monitored by 

high-resolution ESI-MS (Figure 4.3-5). In either case, a rapid photochemical 

conjugation was observed producing the desired cycloaddition product in very high 

purity. Analogous to the experiment with P3, P5 is produced by complete conversion 

of the starting material after just one minute of irradiation, whereas about 50 % 

conversion is achieved after 30 s. The reaction of 3 with the commercially available 

PEG-acr of a shorter chain length behaves similarly. After 2 min the signals of the 

PEG-acr were found to disappear completely and two product distributions – proton 

ionized (P7H
+) and sodium ionized species (P7Na+) – emerge. However, a small 

amount of impurity (PEG-acrX), which was already present in the starting material, 

remains through all spectra due to the absence of the terminal double bond. The 

reduced reactivity of the acrylate moiety compared to maleimide or fumarate 

functions leads to an increased reaction time (2 min to full conversion). Again, the 

experimental values are in excellent agreement with the theoretical predictions (table 

in Figure 4.3-5).  
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Label Sum formula m/zexp m/ztheo  m/z 

PEG-mal C100H194N2NaO49
+ 2230.275 2230.265 0.010 

P5 C108H185N3NaO44
+ 2251.232 2251.223 0.009 

PEG-acr C22H42NaO11
+ 505.262 505.262 0.000 

PEG-acrX C19H40NaO10
+ 451.251 451.251 0.000 

P7H
+ C40H54NO11

+ 724.369 724.370 0.001 

P7Na+ C40H53NNaO11
+ 746.351 746.351 0.000 

Figure 4.3-5: High-res ESI-MS analysis of P5 (left) and P7 (right). The corresponding structures are 

depicted in the middle, whereas the table collates the experimental and theoretical exact mass values. 

The final experiments of this study on visible light-induced polymer ligation were 

conducted with P4 and P2, respectively (Figure 4.3-6). The non-activated double 

bond, which was installed at the chain terminus of P4, is less reactive towards 1,3-

dipolar cycloaddition reactions due to the absence of electron withdrawing 

substituents and a large resulting energy gap between the highest occupied 

molecular orbital (HOMO) of the dipol and the lowest unoccupied molecular orbital 

(LUMO) of the dipolarophile. Thus, the absence of any cycloaddition product after 

90 min of irradiation is not particularly surprising, yet it confirms the selectivity of the 

photochemical technique towards electron deficient double bonds. In addition to the 

selectivity test with P4, two control reactions without LED irradiation were performed 

with P2. The first sample was stirred in complete darkness for 1 h, whereas the 

second sample was allowed to stand on the laboratory bench for the same time. For  
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Figure 4.3-6: ESI-MS characterization of the reaction between 3 and P4 (left) as well as the control 

reactions between 3 and P6 without LED irradiation (right). 

clarification, the laboratory illumination remained switched on to simulate typical 

working conditions, however, the sample was protected from sunlight. Both control 

samples were subject to ESI-MS analysis, confirming that LED irradiation is crucial 

for the photoreaction to proceed since no product was discerned. The fact that even 

one hour on the laboratory bench does not suffice to generate a significant amount of 

cycloadduct from the photoreactive mixture approves the judicious design of the 

photolabil component: On the one hand, the material can be handled under ambient 

conditions and on the other hand it reacts rapidly upon appropriate irradiation. 
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4.4   Summary 

The current chapter introduces an ultra-rapid visible light-driven avenue for catalyst-

free ligation – a long sought and thus far not achieved aim in modern modular 

chemistry. The macromolecular task was the photochemical modification of polymer 

termini, which was fulfilled via an azirine-based approach. By designing and 

synthesizing a photoreactive component, the properties of a photolabil 2H-azirine 

and the chromophore pyrene could be combined. Thus, a novel substance was 

developed, which absorbs visible light in the range slightly above 400 nm and 

immediately produces a nitrile ylide suitable for rapid 1,3-dipolar cycloaddition 

reactions. The applicability of the visible light-induced azirine ligation was proven in 

organic synthesis with representatives of the most common reactive groups 

(maleimide, fumarate, acrylate, and acetylene), which was confirmed via NMR, ESI-

MS, UV-vis and fluorescence spectrometry. Moreover, the reaction progress was 

monitored by HPLC and shown to be highly efficient. The advanced demands of 

polymer ligation reactions were additionally satisfied by the current system by 

connecting a fluorescent dye (pyrene) to poly(ethylene glycol) chains with various 

termini. Furthermore, the selectivity of the current system towards electron deficient 

double bonds was demonstrated, enabling highly clean and complete end group 

modification of polymers in irradiation times as short as one minute at ambient 

temperature. 
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5 
5REVERSIBLE END GROUP 

MODIFICATION VIA PATERNÒ–BÜCHI 

CHEMISTRY – AN EXPLORATORY 

STUDY 

The next logical progress from post-polymerization modification of end groups in 

terms of photochemical advancement is to develop a reversible conjugation system. 

Reversible photochemistry is highly appealing for a multitude of applications as 

alluded to in the literature section (2.3.4). In the current chapter, two issue are of 

major concern. On the one hand, the study aims for the establishment of a 

photochemical tool to encode polymer end groups reversibly, which might – upon 

success – eventually lead to a technique applicable to reversible surface encoding in 

a spatially controlled fashion. On the other hand, the strategy is based on Paternò–

Büchi (PB) chemistry, a well know process, which is however of limited use in 

polymer science. The current study was conducted to determine the applicability and 

thus the scope of PB systems for reversible photochemistry and their applicability. 

The polymeric frame is – similar to the previous chapter – a benzaldehyde-

functionalized poly(ethylene glycol) since it has been proven to be most feasible for 
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ESI-MS characterization. The initial aldehyde-terminated polymer will be subject of 

three consecutive photochemical processes: (i) A PB reaction with different alkene 

components resulting in an oxetane-functional polymer, (ii) photosensitized ring 

cleavage of the oxetane unit to yield the initial aldehyde terminus, and (iii) a final 

forward PB reaction to proof the principle of reversible encoding. The entire process 

can be monitored by ESI-MS as well as NMR analysis. Moreover, a powerful analytic 

tool – CID ESI-MS – is applied for exploring the stability of oxetane moieties since the 

cleavage reaction is expected to be the crucial step in the photochemical reaction 

sequence (Figure 5-1).  

 

Figure 5-1: Schematic representation of the proposed strategy to demonstrate reversible photo-

encoding of polymer end groups. The concept contains three consecutive photochemical steps, each 

including a modification of the chain terminus. 
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5.1   Preparation of Oxetane-Functionalized Poly(ethylene 

glycol)  

In the current chapter, a reaction sequence containing three consecutive 

photochemical reactions is explored: Forward PB, cycloreversion (retro PB), and 

finally an additional PB reaction with a different reactant compared to the first step. 

Each single step requires careful analysis and in-depth characterization to 

understand and optimize the entire system. In order to provide ideal conditions for a 

detailed characterization, a PEG backbone was selected as polymeric basis for the 

same reasons as discussed in Chapter 4. In addition, PEG provides good solubility in 

a variety of organic solvents, which facilitates its handling during the exploration of 

novel reaction processes. Consequently, the starting material for all photoreactions 

was synthesized via esterification of PEG-OH with 4-carboxy benzaldehyde (Scheme 

5.1-1).  

 

Scheme 5.1-1: Synthesis of benzaldehyde terminal PEG (P9). a) 4-carboxy benzaldehyde, DCC, 

DMAP, DMF, DCM, RT, 2 d. 

The resulting polymer (P9) was obtained in good quality containing exclusively 

aldehyde terminal chains, as demonstrated by NMR (Figure 5.1-1) and ESI-MS 

(Figure 5.1-2). Work of Junkers and coworkers previously described the photo-

chemical transformation of aldehyde terminal polymers synthesized via ATRP with 

several alkenes.208 Nevertheless, detailed characterization of the PB forward reaction 

for the present system was required due to a diversity of necessary changes 

compared to the photoreactions reported by Junkers: Extension of the scope of 

reaction partners to styrenic double bond compounds, change of the polymer 

backbone, different reaction setup and irradiation conditions. Thus, the 

photochemical conversion of P9 with three styrene derivatives as well as 2-pentene 

was conducted (Scheme 5.1-2).  
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Scheme 5.1-2: The photochemical conversion of P9 with various double bond containing moieties 

yielding P10 (R1 = H; R2 = Ph), P11 (R1 = H; R2 = Ph-pMe), P12 (R1 = Me; R2 =  Ph), or P13 (R1 = Me; R2 = 

C2H5). a) toluene, alkene (styrene, p-methyl styrene, trans-methyl styrene, 2-pentene). 

Most of the reaction partners for the aldehyde end-capped polymers were chosen to 

be styrene-based since the resulting oxetanes were expected to be suitable for 

subsequent cycloreversion reactions.217 The results of the 1H NMR characterization 

for P10 are depicted in Figure 5.1-1.  

            

Figure 5.1-1: 
1
H NMR characterization of  P9 and P10. 

Two analytic methods – NMR and ESI-MS – were combined to confirm the success 

of the photo-induced polymer modification reactions and evaluate the results 

quantitatively. By comparing the NMR spectra of P9 and P10, several changes can be 

witnessed after the irradiation. To facilitate following the changes to the reader, only 

the aromatic region of the NMR spectra is displayed in Figure 5.1-1. Resonance a, 

which corresponds to the aldehyde proton of P9, disappears almost completely – a 

clear indication for a successful oxetane formation. Moreover, the aromatic protons b 

and c are shifted to higher fields for both possible regioisomers (b', b'', c', c'') and 

their integrals coincide with the vanishing resonance of the aldehyde. The protons of 

the newly generated oxetane ring appear in the region of 2-6 ppm due to the unusual 

bond angle in 4-membered heterocycles and can therefore not be perfectly assigned 

(for full spectra as well as the spectra of P11-13, see Experimental section). 
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Nevertheless, an increased number of scans (NS) for the NMR measurement 

(NS = 256) enables accurate integration of the aromatic region. The evaluation of 

signal a, b, and c suggests an end group conversion to the resulting oxetane of 90 %. 

       

Label Sum formula m/zexp m/ztheo  m/z 

P9 C87H164NaO42
+ 1904.17 1904.06 0.11 

P10 C91H164NaO40
+ 1920.08 1920.07 0.01 

P11 C92H166NaO40
+ 1934.08 1934.09 0.01 

P12 C92H166NaO40
+ 1934.08 1934.09 0.01 

P13 C90H170NaO41
+ 1930.17 1930.11 0.06 

Figure 5.1-2: ESI-MS spectra depicting two repeating units in the single charged region of P9 (top) and 

the crude reaction mixtures of P9 with styrene (P10, 2
nd

 line), para-methyl styrene (P11, 3
rd

 line), trans-

methyl styrene (P12, 4
th
 line), and 2-pentene (P13, bottom). Table: collation of sum formulae and m/z 

values corresponding to the ESI-MS spectra.  

ESI-MS is also a powerful tool for witnessing end group changes of polymer 

substrates.311 By judiciously choosing the PEG-chain to be no longer than 

2000 g·mol-1, the photoreaction is perfectly suitable for being monitored by ESI-MS. 

The spectra collated in Figure 5.1-2 depict the successful PB reaction of P9 with 

Styrene (Sty), para-methyl styrene (PMS), trans-methyl styrene (TMS) and 2-pentene 

(2-pen). Two repeating units in the single charged region are displayed. In each 

case, the starting material disappears almost completely (P9), whereas new signals 

corresponding to the oxetane-functionalized substrates arise (P10, P11, P12, and P13). 

Whether quantitative evaluation of ESI-MS spectra is possible for the respective 

system must be evaluated carefully. Since changing parameters such as the 

molecular weight or the polarity of the analyst have an effect on the ionization 

properties of the substrate and therefore on the signal intensity, integration of ESI-MS 

spectra needs to be conducted judiciously. In the current case, the sodium ion is 

expected to be attached to the PEG chain which is not altered throughout the 
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reaction process. On the other hand, the total mass of the product is slightly higher 

than the starting material's mass, yet the change is only about 10 % of the total 

mass. Moreover, average integral values including 5 repeating units were applied for 

determining conversion values from the ESI-MS spectra. Therefore, it is resonable to 

assume that also quantitative information can be retrieved from ESI-MS analysis for 

the current system. Moreover, NMR provides an additional analytic method to 

underpin the accuracy of the ESI-MS results. Integration of the spectra in Figure 5.1-

2 provides conversion values for the PB reaction of more than 90 % in each case. 

Conversion values calculated from NMR and ESI-MS employing Eq 3.4-1 differ no 

more than 5 % for the values determined for the photochemical processes, which 

proves quantitative ESI-MS evaluation to be applicable. Thus, following the kinetics 

of the photoreaction by ESI-MS is also feasible. Figure 5.1-3 depicts one repeating 

unit in the single charged region of samples stemming from the reaction between P9 

and 2-pentene.  

       

Figure 5.1-3: ESI-MS spectra representing one repeating unit in a kinetic study of the reaction 

between P9 and 2-pentene (left). Right: Kinetic plot originating from the evaluation of ESI-MS spectra 

following the reactions of P9 with Sty, TMS, PMS, and 2-Pen. 

The samples were taken from the reaction mixture and directly subjected to ESI-MS 

analysis. Thus, it is remarkable that no side products are discernible and the reaction 

appears to proceed very cleanly. Finally, the integration values obtained from the 

kinetic samples were plotted vs. the reaction time (Figure 5.1-3, right). The plotted 

exponential fits match the data points very well in all cases, confirming the expected 

behavior. It is furthermore notable that the photoconversion takes significantly longer 

with styrenic types of reaction partners compared to 2-pentene.  
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5.2   Investigation of the cycloreversion process  

Referring to the literature section, CID ESI-MS experiments were expected to give 

insight into the retro PB behavior of the prepared oxetane-functionalized polymers 

(Scheme 5.2-1). During the CID process, particular polymer ions are isolated and 

made to collide with helium ions present in the ion trap. Thus, by increasing the 

collision energy which excites the polymeric species, the mother ion can be 

fragmented.  

 

Scheme 5.2-1. The general cycloreversion reaction of the oxetane polymers.  

Assuming the weakest bonds to break first, CID experiments are carried out for 

structure elucidation. In this particular case, the goal was to analyze in which way the 

oxetane unit – the least stable section of the polymer moiety – would cycloreverse. 

Therefore, an oxetane species of defined chain length was isolated for each 

cycloadduct and the decomposition spectrum was recorded (Figure 5.2-1).  

The CID ESI-MS results reveal a surprisingly clean cycloreversion reaction. For all 

three oxetane species in both spectra – the medium collision energy and the high 

collision energy – the only signals of importance are the mother ion (oxetane) and 

one cycloreversion product. The m/z value of the cycloreversion product matches the 

initial aldehyde species perfectly. In addition, all the spectra are remarkably clean, 

showing only neglectable side products, which can hardly be distinguished from the 

baseline noise. 
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Label Sum formula m/zexp m/ztheo  m/z 

P9 C85H160NaO41
+ 1860.00 1860.03 0.03 

P10 C93H168NaO41
+ 1964.08 1964.10 0.02 

P11 C92H166NaO40
+ 1978.92 1979.11 0.19 

P13 C90H170NaO41
+ 1930.00 1930.11 0.11 

P9 (MS3) C95H180Na2O46
2+ 1051.75 1051.58 0.16 

PX (MS3) C87H173Na2O43
2+ 976.75 977.06 0.31 

P9 (MS2) C101H192Na2O49
2+ 1117.83 1117.62 0.21 

PX (MS2) C193H186Na2O46
2+ 1042.83 1042.51 0.32 

 

Figure 5.2-1. CID ESI-MS experiments. Left, 1
st
 line: Overlay of 3 isolated ions (P10, P11, and P13). 

PEG species with a chain length of 38 ethylene glycol units were investigated. Left, 2
nd

 line: Overlay of 

CID pattern corresponding to the top spectra with medium collision energy. Left, 3
rd

 line: Overlay of 

CID pattern corresponding to the top spectra with high collision energy. Decomposition pattern of the 

aldehyde signal stemming from the aldehyde signal obtained by CID of P10 (top, MS
3
) and the initial 

aldehyde P9 (bottom, MS
2
) are depicted (right). Table: collation of sum formulae and m/z values 

corresponding to the ESI-MS spectra.  

Thus, it appears that the retro PB reaction is a feasible reaction channel for the decay 

of the oxetane moieties, which is promising for the following synthetic approach to 

revert the cycloaddition. In an attempt to further verify the retro PB product signal to 

be the aldehyde moiety, MS3 experiments were conducted in which the CID product 

signal was once again subjected to CID (Figure 5.2-1). The resulting pattern obtained 

for medium collision energy (P10 (MS3)) were compared to the CID pattern of the 

initial aldehyde polymer (P9 (MS2)). Although ions with different polymer chain lengths 

were analyzed, the patterns coincide ideally revealing signals corresponding to the 

expected elimination of the end group at the ester function. 

For the synthetic approach of the cycloreversion, a literature-known process was 

applied.216 Due to success reported with naphthalene dinitrile (NDN) as a 

photosensitizer, it was employed for all retro PB attempts (Scheme 5.2-2).  
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Scheme 5.2-2: General reaction scheme for the photosensitized ring cleavage reaction. a) NDN, 

MeCN, RT, 3 h. 

At first, the reaction conditions needed to be optimized due to changes compared to 

the literature system: The molar amount of photosensitizer, the dilution of the 

reagents, as well as the reaction time were varied. The results for a kinetic 

investigation of the retro PB reaction (P10) with optimized conditions are depicted in 

Figure 5.2-2.  

           

Figure 5.2-2: ESI-MS results of the synthetic cycloreversion reaction of P10. Left: ESI-MS spectra 

referring to the samples of the kinetic investigation; right: kinetic plot corresponding to the ESI-MS 

spectra.  

The photosensitized cycloreversion reaction appeared to be more delicate than 

expected. In most cases (P11, P12, and P13), the desired reaction could not be 

observed. In the case of P11, destruction of the entire polymer chain was found, 

whereas the product of the P12 cycloreversion appeared to be the reduced version of 

the desired cycloreversion product bearing a benzyl alcohol end group. For P13, no 

cleavage of the oxetane moiety could be achieved. However, the retro PB results of 

P10 were more promising. As displayed in Figure 5.2-2, the ESI-MS spectra evidence 

an increasing amount of aldehyde end groups up to reaction times of three hours. 

Simultaneously, the signals for the oxetane derivative decrease until they almost 

disappear in the baseline noise. The kinetic plot corresponding to the integration 

values of the ESI-MS spectra is also depicted in Figure 5.2-2 (right). The conversion 
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for the photosensitized cycloreversion levels off at 80 % according to ESI-MS. 

Unfortunately, the NMR results (Figure 5.3-1, right, 3rd line) do not coincide with the 

ESI-MS values as well as for the forward reaction. A maximum amount of 40 % 

aldehyde functionality can be found after 2 h of irradiation according to NMR and with 

continued reaction time the value starts to decrease. Since the degradation of the 

aldehyde group cannot be detected by ESI-MS, it can only be concluded that some 

sort of rearrangement takes place. A rearrangement would explain the consumption 

of aldehyde functionalities – as observed by NMR – whereas no changes can be 

observed via ESI-MS due to the constant m/z values. Nevertheless, the synthetic 

approach to cleave the oxetane function photochemically and reproduce aldehyde 

termini can be conducted. Although a certain amount of side product was found, a 

detailed study for increasing the efficiency of the cycloreversion was postponed to 

future studies.  
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5.3   Proof of Principle – Reversibility 

An impure starting material for the third consecutive step in the photoreaction 

sequence is certainly not ideal, yet the fact that aldehyde end groups could be 

regenerated allows for the investigation of subsequent photochemical trans-

formations (Scheme 5.3-1).  

 

Scheme 5.3-1: Synthetic sequence for the proof of principle for reversible encoding of aldehyde 

functionalized poly(ethylene glycol). a) styrene, toluene, RT, 24 h; b) NDN, MeCN, RT, 3 h; c) 2-

pentene, toluene, RT, 1 h. 

The results from the investigation of the first step of the photochemical reaction 

sequence (Section 5.1) suggest to employ 2-pentene for the final reaction step since 

it was found to undergo the most rapid and efficient PB reaction with P9. The reaction 

conditions and kinetics were carefully explored for the initial step, thus the details of 

the third reaction step are depicted by collating all three consecutive steps 

(Figure 5.3-1).  

     

Figure 5.3-1. Left: ESI-MS spectra of P9 (top) and the three consecutive photoreactions (line 2-4). 

Right: corresponding NMR spectra. 

The three consecutive steps can be clearly followed by ESI-MS: The shift from the 

initial P9 (top) to P10 (2
nd line), the retro PB reaction regenerating P9 (3

rd line), and as 

final conjugation the subsequent forward PB reaction with 2-pentene yielding P13 
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(bottom). The first three spectra are of remarkable quality, being highly clean without 

evidence of side-products. The bottom spectrum however, reveals the side-reaction 

occurring in the 2nd step. The regenerated aldehyde-functional material was 

converted into P13, whereas the rearrangement product remains in the final spectrum 

at the m/z value of P9. The NMR spectra (Figure 5.3-1, right) support this theory: A 

very clean first forward PB reaction (line 2) is followed by a spectrum for the 

cycloreversion product which reveals some side-product (signal x). Its signal does not 

disappear during the final photoreaction, whereas the regenerated aldehyde (line 3, 

signal a, disappears entirely after the final step. Combining the ESI-MS and NMR 

results, the final spectra demonstrate that polymer end groups can be reversibly 

encoded via Paternò–Büchi chemistry. The side-reaction, which can certainly not be 

neglected, supports the conclusion that the current system requires further 

optimization. Yet, the proof of concept for a synthetic approach towards a PB/retro 

PB system is given by the evidence of three consecutive photoreactions. 
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5.4   Summary 

The investigation of the current chapter concerns a light-triggered methodology to 

produce a reversible system for modifying polymer end groups with versatile oxetane 

units. Employing poly(ethylene glycol), an aldehyde function was installed at the 

chain end. An initial forward [2+2] cycloaddition reaction of the polymer with styrene 

derivatives and 2-pentene yielding oxetane functionalized PEG was monitored in 

detail by NMR and ESI-MS characterization. Therein, the PB reaction was observed 

to proceed to conversion values of larger than 90 %. The resulting oxetane end-

capped PEG moieties were subjected to CID ESI-MS experiments, where the 

respective oxetane units could be cleaved to regenerate the aldehyde terminus. A 

synthetic approach to reverse the PB reaction was attempted by irradiating the 

resulting oxetane functional polymer in the presence of a photosensitizer (NDN). For 

the styrene substituted oxetane polymer, reasonable amounts of aldehyde-termini 

could be regenerated, although a side-reaction was witnessed by NMR. The resulting 

aldehyde terminal polymer was subjected to a consecutive forward PB reaction with 

2-pentene, proving the principal of reversibly encoding polymer end groups. Thus, 

the presented photochemical switching of polymer end groups provides an option for 

recoding substrates with different reactants in a catalyst-free fashion. However, the 

experimental effort for each individual step reduces the applicability of the targeted 

PB/retro PB approach. In addition, the unexpected side-reaction for P10 as well as the 

unsuccessful cycloreversion results for the polymers P11-13 further limit the future 

prospects of PB chemistry with regard to applications for the reversible encoding of 

polymeric substrates. 
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6 

6BLOCK COPOLYMER FORMATION VIA 

PHOTOENOLS – ACCESSING NOVEL 

CONJUGATES3 

 

The current chapter is concerned with a light-induced technique applied for the 

synthesis of block copolymers. The conjugation of two polymer blocks is a highly 

delicate reaction with extreme demands in terms of efficiency. Thus, the development 

of ligation techniques enabling block copolymer synthesis is challenging, yet highly 

valued by synthetic polymer chemists. Herein, a hetero Diels–Alder (HDA) reaction is 

described connecting a photoenol moiety and a dithioester derivative. In order to 

introduce the idea behind the investigation presented in the current chapter, the 

novel conjugation reaction will be discussed with regard to theoretical considerations 

about the HDA activity of RAFT polymers. Subsequently, the results from block 

copolymer synthesis proof the suitability of the light-triggered approach to access 

novel conjugates and apply their formation for  macromolecular architecture design. 

                                            
Parts of the current chapter are reproduced from K. K. Oehlenschlaeger, J. O. Mueller, N. B. Heine, M. 
Glassner, N. K. Guimard, G. Delaittre, F. G. Schmidt, C. Barner-Kowollik, Angew. Chem. Int. Ed. 2013, 
52, 762, (DOI: 10.1002/anie.201206905) with permission from WILEY-VCH. The project was a 
collaboration with Dr. Kim Oehlenschlaeger from our research group. He analyzed the structure of the 
novel conjugate in detail by size-exclusion chromatography/electrospray  ionization-mass  
spectrometry  (SEC/ESI-MS), CID ESI-MS, 

1
H NMR spectroscopy, as well as UV-vis spectroscopy. 

Moreover, he synthesized a initial block copolymer for the proof of concept.  
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In detail, a photoenol precursor was installed at the chain end of a poly(-

caprolactone), which was investigated towards its behavior under irradiation in the 

presence of RAFT polymers. To further prove the broad scope of the novel synthetic 

method, RAFT polymers of different molar masses and monomer compositions were 

synthesized and employed for block copolymer formation, evidenced via SEC. The 

general reaction scheme depicting the reaction of interest is displayed below 

(Figure 6-1). 

 

Figure 6-1: General light-induced reaction of the photoenol-based formation of block copolymers 

employing conventional RAFT polymers. 
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6.1   Design of an Advanced RAFT-HDA System 

Controlled/Living polymerization protocols enable precise preparation of customized 

polymers. In combination with efficient, modular, and orthogonal post-polymerization 

modification techniques, the synthetic chemist is provided with powerful tools for the 

design of advanced macromolecular architectures.312 One of these suitable concepts 

is RAFT-HDA chemistry – introduced in Section 2.1.3.3 – which combines the power 

of RAFT polymerization with the advantageous properties of Diels–Alder cyclo-

additions (Scheme 6.1-1).313 

 

Scheme 6.1-1: General RAFT-HDA reaction. R1,2 = polymeric substituents. 

The atom-efficient and versatile process makes use of the increased Diels–Alder 

activity of RAFT agents with electron withdrawing Z-groups. The most prominent 

examples of HDA-suitable dithioester (DTE) compounds are depicted in Scheme 

6.1-2.  

 

Scheme 6.1-2: HDA-suitable dithioesters. R = organic substituent. 

In contrast to the increasing affinity of the DTEs for HDA reaction, the ability to 

control a radical polymerization process is reduced for strong electron withdrawing 

substituents. DTE1 and DTE2 for instance are relatively good control agents, yet their 

HDA reaction requires addition of an activating catalyst.76 DTE3, on the other hand, 

does not require catalysis and enables controlled polymerization of for example 

isobornyl acrylate. Unfortunately, the strongly electron withdrawing sulfonyl group 

decomposes upon completed cycloaddition.314 The remarkably efficient and catalyst-
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free HDA reaction of DTE4 has been demonstrated in applications such as reversible 

step-growth polymerizations125 or self-healing materials.126 However, a successfully 

controlled polymerization involving the cyano dithioester has not yet been reported. 

In summary, the development of a RAFT-HDA system which enables not only the 

controlled polymerization of a broad variety of monomers but is also suitable for 

efficient and rapid HDA conjugation is highly desired.  

The efficiency and enhanced reactivity of photoenols has already been pointed out in 

the literature review of the current thesis (Chapter 2). Thus, a promising approach 

seems to be the combination of the concepts of RAFT-HDA with light-triggered 

DielsAlder chemistry. One of the most universally applicable RAFT-agents is 2-

cyanopropyl dithiobenzoate (CPDB). It is commercially available and, indeed, 

enables the controlled polymerization of a diversity of monomers, e.g., styrenics, 

(meth)acrylates, and (meth)acrylamides.60-62 Therefore, the investigation reported in 

the current chapter is based on the reaction of CPDB and the advanced second 

generation of photoenols (Scheme 6.1-3). 

 

Scheme 6.1-3: Approach for a light-induced RAFT-HDA system involving the universally applicable 

RAFT agent CPDB. R1,2 = polymeric substituents. 

A highly demanding task for conjugation techniques is the connection of two polymer 

blocks. Since separation or polymeric side-products from the reaction mixture is 

hardly possible, the ligation reaction needs to proceed to complete conversion under 

entire consumption of both starting blocks. The original RAFT-HDA concept has 

proven to be suitable for, e.g., ultra-rapid block copolymer formation,75 the generation 

of high molecular weight block copolymers,315 as well as star polymers.316 The 

present exploration is focused on the preparation of block copolymers and the 

detailed analysis of the progress of the photoreaction. Therefore, the two building 

blocks containing the desired functional groups needed to be synthesized. In terms of 

the RAFT end group, the synthetic goal could be achieved by purchasing the RAFT 
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agent and conducting controlled polymerizations of styrene and methyl acrylate 

(Scheme 6.1-4). 

 

Scheme 6.1-4: General reaction scheme for CPDB-mediated RAFT polymerizations. a) methyl 

acrylate, AIBN, benzene, 70 °C, 6 h, Mn = 5400 g·mol
-1

, Đ = 1.05.; b) styrene, AIBN, toluene, 90 °C, 

13 h, Mn = 5900 g·mol
-1

, Đ = 1.05.  

For the preparation of a photoenol-capped polymer, a polymerization initiator had to 

be synthesized. An established synthetic strategy towards an initiator for ring-opening 

polymerization had been explored in an earlier study by our group (Scheme 6.1-5).131 

 

Scheme 6.1-5: Synthetic strategy for a ROP initiator bearing a photoenol precursor species. a) 

K2S2O8, CuSO4 · 5 H2O, MeCN/H2O, 90 °C, 45 min; b) AlCl3, DCM, 0 °C-RT, overnight; c) 11-bromo 

undecanol, K2CO3, DMF, RT, 72 h. 

ROP of -caprolactone afforded a polymer of narrow dispersity fully functionalized 

with the photoenol precursor (Scheme 6.1-6). The molar mass of the resulting 

polymer was determined by SEC, while NMR analysis confirmed quantitative end 

group functionality.  

 

Figure 6.1-6: ROP of -caprolactone employing a photoenol functionalized initiator. a) -caprolactone, 

TBD, toluene, benzoic acid, RT, 7 h, Mn = 8500 g·mol
-1

, Đ = 1.08.  
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6.2   Generation of Block Copolymers 

The investigation of the photo-induced RAFT-HDA conjugation was conducted in two 

separate parts: Confirming the existence of the expected cycloadduct and exploring 

the scope of the novel synthetic tool. Detailed information about the initial study 

concerning the verification of the cycloadducts structure can be retrieved from ref.317, 

as well as the Ph.D. thesis of Dr. Kim K. Oehlenschlaeger, as noted above. However, 

it is noteworthy that a variety of analytic techniques was applied to determine the 

structure of the isothiopyrane linkage in a model reaction based on a poly(methyl 

methacrylate) RAFT polymer (PMMA) of short chain length (Mn = 3300 g·mol-1). 

Thus, SEC/ESI-MS, CID ESI-MS, NMR, and UV-vis spectroscopy could be applied to 

the conjugation product of PMMA with compound 9. Moreover, SEC, ESI-MS and 

NMR were employed for monitoring the light-triggered process of PMMA and 

photoenol end-capped low molar mass poly(-caprolactone) (Mn = 2000 g·mol-1). 

The unambiguous evidence – given by the analytic methods noted above – for the 

modular formation of the desired cycloadduct provides the proof of principle for the 

idea of photo-induced HDA chemistry. However, the applicability of the novel ligation 

technique to polymers of higher molar mass and different monomer composition 

needed to explored. Moreover, an optimization of the reaction times was conducted 

to assess the limits of the current approach. Therefore, mixtures of the – compared to 

the previous results – larger ROP polymer P16, and the RAFT polymers P14 or P15 in 

acetonitrile (MeCN/DCM for P15) were prepared containing both functional end 

groups in equimolar amounts. The respective reaction schemes are provided in 

Scheme 6.2-1. It is important to note that removal of oxygen by three consecutive 

freeze-pump-thaw cycles is crucial for successful photoenol reactions due to a 

possible peroxide formation in the presence of oxygen.318 Upon complete degassing, 

the photoreactions were conducted, taking samples for SEC analysis after 0, 2.5, 5, 

7.5, and 10 min. The corresponding SEC chromatograms are presented in Figure 

6.2-1. 
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Scheme 6.2-1: Preparation of block copolymers via light-triggered RAFT-HDA. a) P14, MeCN, RT, 

10 min; b) P15, MeCN/DCM, RT, 10 min. Light source: Cosmedico Arimed B6, 36 W. 

          

Figure 6.2-1: SEC chromatograms corresponding to the kinetic runs monitoring the preparation of P17 

(left) and P18 (right). 

The SEC chromatograms in Figure 6.2-1 provide important information about the 

light-induced block copolymer formation process. The red plain lines represent the 

mixtures of the initial starting polymers, whereas the green plain lines depict the 

resulting block copolymers. The preparation of P17, which contains the PMA-based 

RAFT polymer, is almost complete after 2.5 min. The changes compared to the 

elugram obtained after 5 min irradiation time are insignificant and the chromatograms 

after 7.5 or 10 min are identical to the one obtained after 5 min. Thus, a rapid 

conjugation reaction occurs and the resulting product does not decompose upon 

further irradiation. In contrast to the complete product formation of P17 after 3 min, the 
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generation of P18 requires about 10 min of irradiation. The prolonged reaction time 

can be either caused by the polystyrene block, which might absorb some UV-

irradiation, or the additionally added DCM due to solubility issues of P15 in pure 

MeCN, causes a reduced reaction rate. However, after 10 min, no further increase of 

the molar mass of the block copolymer could be observed. A graphic depiction of the 

number average molar mass evolution for both reaction mixtures is provided in 

Figure 6.2-2.  

 

Figure 6.2-2: Kinetic plot corresponding to the SEC results depicted in Figure 6.2-1. 

An even more obvious form of displaying the success of the block copolymer 

formation is provided in Figure 6.2-3. The two starting blocks (RAFT polymer in red 

lines, ROP polymer in black lines), as well as the final block copolymer (green line) 

are displayed. Compared to the starting materials, a clear shift of the chromatogram 

for the product to lower retention times and therefore higher molar masses is 

observed. Although the photo-induced process is rather efficient, little traces of 

starting material can be discerned in the elugrams of the block copolymers. A 

possible explanation for the presence of starting material in the final product is the 

unavoidable termination during the RAFT process. Despite the controlled nature of 

the polymerization process, the termination reaction cannot be fully suppressed, 

resulting in non-functional (dead) polymer chains.49b, 50 Due to a lack of functionality, 

these termination products are not accessible for Diels–Alder reactions and therefore 

not only the terminated material itself, but also an equimolar amount of ROP polymer 

remain in the final product. However, the results of SEC analysis clearly indicate the 

successful coupling of the single blocks. 
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 P14 P15 P16 P17 P18 

Mn [g·mol-1] 5400 5900 8400 13000 13400 

Đ   1.05 1.05 1.08 1.21 1.19 

Figure 6.2-3: SEC analysis of the starting polymers (P14 and P16 (left), P15 and P16 (right)), as well as 

the resulting block copolymers (P17 (left), P18 (right)). The number average molar mass and dispersity 

values are collated at the bottom.  

Very high conversions are achieved for both conjugation reactions, which is also 

underpinned by the good agreement of the measured Mn values with the expected 

Mn values for the copolymers (Table in Figure 6.2-3). The slight differences between 

the experimental and theoretical values can be explained since the block copolymers 

possess a different elution behavior due to the differing properties of the two polymer 

blocks.319  
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6.3   Summary 

The current chapter presents the successful combination of two concepts in polymer 

ligation chemistry. By merging the RAFT-HDA approach and the light-induced 

photoenol ligation technique it was possible to access the conjugation of a so far 

unavailable RAFT group for hetero Diels–Alder reactions. The non-activated 

dithioester functionality in a commercially available RAFT agent allows for the 

controlled polymerization of a large variety of monomers and is thus one of the most 

universally applied control agents. Accessing a conventional RAFT agent for HDA 

reactions broadens the scope of the RAFT-HDA concept and simultaneously 

demonstrates the abilities of light-induced ligation protocols. The efficiency of the 

herein introduced light-triggered method was demonstrated by the preparation of 

block copolymers. Therefore, a photoenol precursor-bearing ring opening 

polymerization initiator was synthesized and subsequently employed for the 

polymerization of -caprolactone, yielding a well defined and photoenol end-capped 

polymer. Poly(methyl acrylate) and polystyrene were obtained via RAFT 

polymerization. The block copolymer formation was investigated in terms of reaction 

time monitored by SEC. The catalyst-free conjugation requires no more than 10 min 

to achieve full conversion from an equimolar mixture of starting blocks. The 

establishment of a modular ligation technique for conventional RAFT polymers 

greatly expands the synthetic toolbox available to macromolecular chemists. 
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7 
7POLYMER CROSSLINKING VIA NITEC 

– ACCESS TO FLUORESCENT 

POLYMER NETWORKS4 

The final project of the current thesis concerns the largest polymeric systems 

discussed so far: polymer networks. Herein, the establishment of a cycloaddition-

based technique for crosslinking polybutadienes is presented. In general, 

crosslinking pre-existing polymer strands is a powerful method for tuning material 

properties. For instance the viscosity, solubility, and optical properties can be 

adjusted by controlling the extent of crosslinking, making it an ideal handle for 

materials design. Moreover, physical properties of crosslinked materials can be 

readily modulated, which makes network-based substances valuable for industrial 

applications.320-321 Polybutadienes, or in general, unsaturated polymeric materials, 

are suitable for crosslinking reactions since they contain carbon-carbon double 

bonds. These double bonds can be readily exploited to further modify the material.322 

The electronically non-activated nature of the double bonds of polybutadienes allows 

radical crosslinking mechanisms, whereas performing cycloaddition reactions is 

                                            
Parts of the current chapter are reproduced from J. O. Mueller, N. K. Guimard, K. K. Oehlenschlaeger, 
F. G. Schmidt, C. Barner-Kowollik, Polym. Chem. 2014, 5, 1447, (DOI: 10.1039/ c3py01381b) with 
permission from the RSC. 
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rather challenging. Thus far, radical thiol-ene chemistry323-325 or typical radical 

initiators, such as AIBN,326 benzophenone derivatives,327-330 acyl phosphines,331-332 

-thiocyanato ketones,333 were successfully employed for crosslinking (1,2-) 

polybutadienes, as well as UVC light-induced self-crosslinking.334 A detailed literature 

overview of crosslinking methods and applications is available in the literature review 

section (2.3.6). 

The photochemical approach for tackling the challenge of crosslinking the non-

activated polymers is based on NITEC chemistry. Reactions of nitrile imines with 

non-activated alkenes have been previously reported155 and thus, NITEC appears to 

be a feasible tool for the crosslinking study. By fusing the concepts of NITEC ligation 

and unsaturated polymer crosslinking, a sunlight-triggered method for transforming 

linear 1,2-polybutadienes into networks with fluorescent properties is targeted, 

enabling the fabrication of fluorescent patterned surfaces and designs. Based on a 

novel di-functionalized linker compound, bearing two diaryl-substituted tetrazole 

groups, the reaction with vinylic type carbon-carbon double bonds is enabled under 

UV-irradiation. Similar to other studies described in the present thesis, a small 

molecule model study was initially performed, in order to explore the efficiency of the 

NITEC system. Subsequent to the detailed analysis of the characteristics of the light-

triggered process, 1,2-polybutadienes were utilized for the generation of fluorescent 

networks. Ultimately, the crosslinking reaction was performed in sunlight to generate 

an insoluble fluorescent film with high spatial resolution. The following figure depicts 

the content of the current chapter graphically (Figure 7-1). 

 

Figure 7-1: Graphic depiction for the sunlight-induced crosslinking of 1,2-polybutadienes (gray 

polymers) employing a tetrazole di-functional linker molecule (yellow). Due to the resulting fluorescent 

linkages (green), fluorescent patterns of crosslinked material can be produced (KIT logo in the 

background).
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7.1   Design of a Photoreactive Di-Linker 

Light-sensitive crosslinking agents are well known in the literature and are particularly 

valuable to polymer and biochemists.335-337 Most of the previously utilized light-

induced methods for crosslinking pre-existing polymers are based on carbene and 

nitrene chemistry338 or radical processes.327-328 In contrast to the poorly characterized 

reaction processes noted above, the current study targets the generation of polymer 

networks via a well-defined cycloaddition reaction, consistent with the polymer 

community's growing interest in light-induced cycloaddition chemistry.339 Therefore, a 

newly designed light-sensitive linker compound needed to be designed which is 

capable of NITEC reactions. Various di-functional tetrazole moieties, either directly 

connected, or separated by an aryl or alkyl spacer, have already been synthesized as 

reported elsewhere340-341 and the photochemical generation of their respective bis-

nitrile imines were analyzed, for example by different low-temperature spectroscopic 

methods and in time resolved studies.150-151, 153, 342 However, a novel customized 

linker moiety containing two diaryl substituted tetrazoles was designed (Scheme 

7.1-1) to fulfill two crucial criteria in order to allow for an in-depth characterization of a 

small molecule model reaction and successful sunlight-triggered crosslinking of 

polybutadienes: (i) good solubility/ionization properties and (ii) a suitable excitation 

wavelength.  

 

Scheme 7.1-1: Structure of the novel tetrazole di-linker. 

The first criterion was addressed by judiciously selecting the spacer connecting the 

photosensitive tetrazole functions in order to provide good solubility of the entire 

linker compound. Therefore, a tetraethylene glycol spacer was introduced, offering 

advantageous properties similar to poly(ethylene glycol) as discussed in Chapters 4 

and 5. Moreover, the diol species enables a facile esterification protocol to prepare 

12 from a carboxylic acid functional tetrazole derivative (1). The synthesis of the 

novel tetrazole derivative was adapted from literature343 and upon optimization, the 
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two step process enabled the preparation of the desired compound in 65 % overall 

yield. The synthetic strategy is depicted in Scheme 7.1-2.  

 

Scheme 7.1-2: Synthetic sequence towards the tetrazole di-linker. a) toluenesulfonyl hydrazide, 

ethanol, 40 °C, 1 h; b) anisidine, HCl, ethanol/H2O, THF, 0 °C – RT, overnight; c) 1. thionyl chloride, 

THF, 75 °C, 4 h, 2. tetraethylene glycole, pyridine, THF, RT, overnight. 

The absorption properties of the linker moiety were adjusted by substituting the 

tetrazole with aryl groups. In detail, the absorption range of the diaryl tetrazoles 

mostly depends on the aromatic substituents in para-position.158, 164 For the current 

study, a significant overlap with the solar emission spectrum was required to provide 

efficient excitation of the photoreactive groups. The two substituents – an electron 

donating substituent (e.g., OMe) on the N2-phenyl ring and an electron withdrawing 

substituent (e.g., COOH) on the C5-phenyl ring – were introduced,344 causing a 

bathochromic shift compared to formerly employed diaryl tetrazoles.154, 167 Thus, the 

resulting absorption spectrum of 12 ranges from 250 nm to 345 nm and permits the 

usage of a large variety of light sources emitting at different wavelengths, as well as 

the sunlight, which also exhibits UV-irradiation (Figure 7.1-1).  

 

Figure 7.1-1: UV-Vis analysis of 12. Emission spectra of various UV-lamps as well as a section of the 

solar emission spectrum. 
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A crucial requirement for high reaction rates as well as efficient conjugation is the 

overlap of the UV-lamp emission spectra with the absorption spectrum of 12. 

However, self-crosslinking of polybutadienes – occurring under irradiation with high 

energy UVC-light (200-280 nm)334 – needs to be suppressed and therefore irradiation 

in the wavelength region of ex < 300 nm should be avoided. Although excitation by 

sunlight is desired for the final application, compact low pressure UV-lamps were 

employed for most of the following investigations to exclude the influence of 

environmentally changing irradiation conditions. Light sources such as a typical UVA-

emission lamp (Philips Cleo PL-L) as well as two UVB-emission lamps (Arimed B6, 

Philips TL01) were utilized for investigating the effect of the light source. Detailed 

lamp specifications are available in the Methods section (9.2). 
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7.2   Small Molecule Model Study  

At first, the reaction of the novel di-linker moiety with non-activated alkenes was 

investigated in a small molecule reaction (Scheme 7.2-1). The small molecule study 

was conducted to gain detailed knowledge regarding the conditions influencing the 

efficiency of the NITEC reaction and for elucidating the reaction kinetics of the 

photochemical process. 1-Pentene is employed as dipolarophile due to the electron 

density of its the terminal double bond, which is similar to the vinylic double bonds 

present in the 1,2-polybutadienes used in subsequent experiments. A further 

advantageous feature of 1-pentene is its facile removal from the reaction mixture 

simplifying the workup subsequent to the reaction. The majority of the following 

photoreactions was conducted using a UVB emission lamp (Arimed B6), which 

mimics the high energy section of the sunlight spectrum and provides an emission 

spectrum overlapping reasonably well with the absorption spectrum of 12. Thus, 

reliable and reproducible results could be obtained, since inconsistencies associated 

with fluctuations in sunlight emission were avoided. A detailed study concerning the 

irradiation source was subsequently conducted in combination with the kinetic 

investigations (Section 7.2.2). 

 

Scheme 7.2-1: Reaction scheme of the small molecule model system. 
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7.2.1   Investigation of the Cycloadduct 

A variety of spectroscopic characterization methods was applied to demonstrate the 

efficiency of the NITEC reaction. Upon successful cycloaddition the molar mass of 

the analyte increases, which can for instance be monitored by ESI-MS or SEC. The 

differing optical properties of the starting material and cycloadduct can be witnessed 

by UV-vis and fluorescence spectroscopy. Moreover, the structural changes can be 

followed by 1H NMR characterization.  

The m/z values of 14 and 15 are well within the detection range of an LXQ ESI-MS 

spectrometer, enabling access to the extent to which the light-induced reaction 

proceeds (Figure 7.2-1).  

       

Label Sum formula m/zexp m/ztheo  m/z 

12 C38H38N8NaO9
+ 773.25 773.27 0.02 

13 C48H58N4NaO9
+ 857.50 857.41 0.09 

Figure 7.2-1: ESI-MS spectrum of 12 (top) and 13 (bottom) as well as the corresponding structures 

(right). Bottom: Collation of sum formulae and m/z values corresponding to the ESI-MS spectra.  

Noteworthy is the excellent purity of the starting material (12) appearing at 

773.25 amu. Upon two hour irradiation in the presence of 1-pentene,  the signal of 12 

disappeared completely and the new signal emerging at 857.5 amu corresponds to 

the addition of two 1-pentene molecules under loss of two nitrogen molecules from 

the tetrazole units. The ESI-MS spectrum of 13 demonstrates that the reaction occurs 

without producing any significant amount of side products. A high ion count detected 

for both spectra indicates the excellent ionization quality of the material which was 

targeted by introducing the tetra(ethylene glycol) spacer. 
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The molar mass – and therefore hydrodynamic volume – difference between the 

starting material and the product also allows for SEC analysis (Figure 7.2-2).  

 

Figure 7.2-2: SEC elugrams of 12 (dashed line, Mn = 750 g·mol
-1

, Đ = 1.01) and 13 (plain line, 

Mn = 860 g·mol
-1

, Đ = 1.01). 

Since both components are monodisperse, narrow molar mass distributions are 

expected which was confirmed by the measurements. A clear shift to lower retention 

times and therefore higher molar mass was observed for the cycloadduct in 

comparison with the starting material. The high purity of both compounds causes a 

symmetrical shape of the chromatograms indicating that no side reactions, such as 

nitrile imine dimerization, take place. Although polystyrene calibration was applied for 

the SEC system, the obtained molar mass values are very accurate.  

In addition, the differences in optical properties of 12 and 13 can be determined by 

UV-vis and fluorescence spectroscopy (Figure 7.2-3). Both the tetrazole di-linker as 

well as the cycloadduct correspond well to the expected behavior reported in 

literature.158 The initial tetrazole absorption maximum of abs = 290 nm (plain line) is 

clearly shifted to an absorption maximum of close to 410 nm for 13 (dashed line). The 

latter value is within the typical absorbance range of di-aryl pyrazolines.345 Even more 

evident for a successful cycloaddition is the observed fluorescence of the product 

(em = 450 - 750 nm) associated with the presence of pyrazoline moieties (dotted 

line). The tetrazoles on the other hand, do not fluoresce. 
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Figure 7.2-3: UV-vis spectra of 12 (plain) and 13 (dashed), as well as the fluorescence emission 

spectrum of 13 (dotted). 

1H NMR characterization of obtained cycloadduct is less simple than it appears to be 

at first sight (Figure 7.2-4). Due to a mixture of regioisomers caused by the cyclo-

addition reaction which can occur in two different ways at both nitrile imine sites, the 

observed spectrum suffers from reduced clarity compared to the previous analytic 

techniques (ESI-MS, SEC, UV-vis, fluorescence spectroscopy). However, full 

conversion of the initial tetrazole units upon irradiation in the presence of 1-pentene 

is confirmed by the 1H NMR results since all aromatic protons (a-d) disappear, 

whereas resonances shifted to higher fields emerge (a'-d'). Moreover, all the 

expected resonances can be assigned to the major cycloaddition product.  

        

Figure 7.2-4: 
1
H NMR spectra of 12 (top) and 13 (bottom) as well as the corresponding structures 

(right). 
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Although evidence for the light-induced tetrazole-ene cycloaddition with terminal non-

activated carbon-carbon double bonds exists in contemporary literature,155, 160 the 

light-induced reaction of tetrazoles with moieties bearing internal carbon-carbon 

double bonds has not yet been reported to the best of the candidate's knowledge. If 

efficient conjugation of tetrazoles with moieties such as cis-2-hexene or trans-2-

octene was provided, the scope of the NITEC ligation technique would be 

significantly widened as typical 1,4-polybutadienes would also be accessible for 

crosslinking. Thus, 12 was subjected to photoreactions with several alkene moieties 

including cyclo-hexene, cis-2-hexene, and trans-2-octene (Scheme 7.2-2). 

 

Scheme 7.2-2: Overview of light-induced synthesis with 12 employing 1-pentene, cyclo-hexene, cis-2-

hexene, and trans-2-octene. 

In order to evaluate the efficiency of the light-induced NITEC reaction with non-

activated alkenes, the previously established model study was repeated using the 

above noted components as dipolarophiles applying the same conditions as 

described above. The results of the light-induced cycloaddition reactions were 

evaluated by ESI-MS (Figure 7.2-5). Regardless of the employed dipolarophile, the 

formation of the desired product was observed, confirming the high reactivity of the 

nitrile imine intermediate. However, a clear decrease in the reaction efficiency was 

found for the reactions conducted with dipolarophiles bearing internal double bonds. 

Unidentifiable side products appear in the spectra of the reaction mixtures with cyclo-

hexene, cis-2-hexene, and trans-2-octene. In contrast, the product generated from 

the reaction with 1-pentene was highly pure. Integration of the respective ESI-MS 

spectra was applied to allow for a more quantitative statement about the efficiency of 

cycloadduct formation based on different dipolarophiles. 
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Label Sum formula m/zexp m/ztheo  m/z 

12 C38H38N8NaO9
+ 773.25 773.27 0.02 

13 C48H58N4NaO9
+ 857.50 857.41 0.09 

14 C50H58N4NaO9
+ 881.50 881.41 0.09 

15* C50H62N4O9
+. 862.17 862.45 0.28 

15 C50H62N4NaO9
+ 885.50 885.44 0.06 

16* C54H70N4O9
+. 918.42 918.51 0.09 

16 C54H70N4NaO9
+ 941.50 941.50 0.00 

Figure 7.2-5: ESI-MS spectra of 12 as well as the crude reaction mixtures of 13, 14, 15, and 16 (left). 

Integration of the respective signals results in the diagram to the right. The sum formulae and m/z 

values corresponding to the ESI-MS spectra are collated in the table at the bottom. 

Since the integration method includes a noise correction factor, the integration values 

for 12 and 13 are slightly below 100 %, although the corresponding signals are the 

only detectable signals. Nevertheless, integration values over 90 % are considered to 

associate with highly pure products. However, the values corresponding to the 

integrated product signals of 13, 14, 15, and 16 are significantly lower, with relative 

abundance values of less than 40 %. The increased extent to which side reactions 

appear to occur prohibits the use of internal double bond-based polymers for 

crosslinking applications since high conversion of the photosensitive groups is crucial 

for efficient network formation. It is worth noting that the large conjugated system of 

the pyrazoline group is susceptible to oxidation during the electrospray ionization 

process. Therefore, 15 and 16 can be detected as both the sodium adducts and 

radical cation species (15*, 16*).346 Regardless, the efficiency for the formation of 13 

from 12 and 1-pentene provides an excellent opportunity to crosslink 1,2-

polybutadienes employing the di-functional tetrazole linker.  

Before commencing the upcoming crosslinking reactions, the high excess of 

dipolarophile required for efficient cycloaddition needs to be discussed. An excess of 



POLYMER CROSSLINKING VIA NITEC 

126 
 

1000 equivalents was applied in all reactions included in the small molecule model 

study. Reducing the excess leads to a clear reduction in efficiency along with the 

formation of side-products. However, for the targeted application of crosslinking 

polybutadienes, a high excess of double bonds is operational since the photoreactive 

linker is present in small fractions.  

7.2.2   Kinetic Investigations 

Photoreactions depend strongly on various parameters, for example, quantum 

efficiency, absorbance of the reaction medium, concentrations, molar ratios, size of 

the reaction vessel, and the power and emission spectrum of the light source. 

Therefore, to correctly predict the crosslinking rate for applications, these parameters 

must be considered when investigating a reaction process in detail. In former studies 

the reaction kinetics for the photochemical decay of tetrazoles have been studied 

extensively.53 Thus, the current section focuses on confirming the expected two-step 

reaction process depicted in Scheme 7.2-4 as well as on determining the influence of 

the irradiation source on the reaction time. The di-functional linker molecule of the 

current system is not expected to react at both photolabile sites at the same time, 

which implies the intermediate existence of a mono-pyrazoline intermediate. 

Consequently, a reaction mechanism containing two consecutive cycloaddition 

reactions is more likely for the conjugation of 12 and two 1-pentene molecules.  
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Scheme 7.2-4: Proposed 2-step reaction process of the light-induced reaction between 12 and 1-

pentene. 

In order to confirm the proposed two-step mechanism depicted above, ESI-MS 

characterization was employed. As previously alluded to (Chapter 4, 5), the reliability 

of the quantitative evaluation of ESI-MS spectra is highly dependent on the ionization 

properties of the system to be analyzed. By intentionally selecting a strongly polar 

tetra(ethylene glycol) spacer, good and reasonably constant ionization is provided, 

resulting in strong ESI-MS signals. Given these requirements, ESI-MS in combination 

with a previously established integration method makes this characterization 

technique a powerful tool for following the reaction processes in detail.311 

Nevertheless, the absolute integration values of signals detected by ESI-MS 

generally need to be treated carefully. However, the lack of side products in the 

current study indicates that meaningful trends can be derived from the following 

kinetic study (Figure 7.2-6). 
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Label Sum formula m/zexp m/ztheo  m/z 

12 C38H38N8NaO9
+ 773.25 773.27 0.02 

12'* C43H48N6O9
+. 792.25 792.35 0.10 

12' C43H48N6NaO9
+ 815.33 815.34 0.01 

13* C48H58N4O9
+. 834.33 834.42 0.09 

13 C48H58N4NaO9
+ 857.50 857.41 0.09 

Figure 7.2-6: ESI-MS spectra of samples from the kinetic study conducted with the Arimed B6 UV-

lamp (left). The integration values as well as the respective fits are depicted on the right. 

The light-triggered reaction process of 12 and 1-pentene was first investigated 

employing the Arimed B6 UVB lamp. Samples were taken from the reaction mixture 

after 5, 10, 20, and 60 min and subjected to ESI-MS analysis. The respective ESI-MS 

spectra indicate the disappearance of 12 after approximately 10 min. After approx. 

5 min the relative abundance of the intermediate mono-substituted adduct (12' and 

12'*) reaches a maximum and subsequently decreases until in vanishes after 20 min. 

Consequently, the intensity of the signals corresponding to the final product (13, 13*) 

increases constantly with reaction time until a pure bis-pyrazoline spectrum can be 

observed after 60 min. The respective integral values of the recorded ESI-MS spectra 

are presented in the form of a kinetic plot confirming the typical two-step reaction 

behavior.  

Analogous to the photochemical experiment described above, the identical reaction 

was monitored utilizing different UV lamps as well as sunlight for irradiation (Figure 

7.2-7). The reaction times to achieve full conversion – the point at which all starting 

material and the intermediate signals have vanished completely – vary from 10 min 

(Philips TL01), 30 min (Arimed B6), and 120 min (Philips Cleo PL-L) up to 240 min 

(sunlight). In addition, independent from the employed light source, the product was 



7.2 SMALL MOLECULE MODEL STUDY 

129 
 

always obtained in good purity, proving that variable irradiation conditions are 

applicable to the present NITEC system.  

   

     

Figure 7.2-7: Results of the kinetic study for the reaction between 12 and 1-pentene employing 

different irradiation sources. ESI-MS spectra are depicted on top, whereas the respective kinetic plots 

are displayed below. Irradiation sources: Philips TL01 (left), Philips Cleo (middle), sunlight (right). 

Fluorescence spectroscopy additionally provides the opportunity to monitor the 

progress of tetrazole-based cycloadditions. The current NITEC reaction can be 

triggered at the same wavelength which is required to excite the fluorescence of the 

newly formed product. Thus, the photoreaction can be induced by the excitation 

beam of the fluorescence spectrometer, enabling to analyze the reaction process on-

line. The optimal wavelength fulfilling the dual function of inducing tetrazole decay as 

well as pyrazoline fluorescence was determined to be 315 nm. The optimized 

wavelength is close to the absorption maximum of the tetrazole and is therefore 

promising to induce an efficient conjugation reaction. Although the ideal wavelength 

for triggering the fluorescence is above 400 nm and the absorption spectrum of the 

pyrazoline product is rather low at 315 nm (compare Figure 7.2-3), intense 

fluorescence was observed, enabling accurate product detection. The on-line 

fluorescence spectrometry experiment was conducted in two detection modes 

(Figure 7.2-8): The fluorescence can either be repetitively recorded between 400 and 

800 nm (cycle mode, left) or the fluorescence at 535 nm – representing the emission 

maximum of 13 – can be detected continuously (right). For both methods constant 

excitation (ex = 315 nm) is provided. 
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Figure 7.2-8: On-line fluorescence experiments investigating the reaction between 12 and 1-pentene 

applying a constant excitation wavelength of 315 nm. Left: Consecutive fluorescence spectra are 

recorded in the range of 400-800 nm. Right: The fluorescence at em = 535 nm is recorded 

continuously. 

The first fluorescence spectrum (bottom solid line, Figure 7.2-8 left) already exhibits 

the typical broad pyrazoline emission proving the reaction to proceed rapidly at the 

beginning when a high tetrazole concentration is present. Subsequently recorded 

spectra each display an increase in fluorescence, witnessing the expected reaction 

progress with increasing irradiation time. The relative increase of the emission signal 

becomes smaller with every repetitive cycle (dashed lines) until the spectrum remains 

constant after 17 runs of the measurement at the highest intensity (top solid line). In 

total agreement with the first experiment, the fluorescence the signal was found to 

initially increase with time and then plateau after about 30 min in the second 

experiment. Thus, the reaction was confirmed to proceed to completion in short 

timeframes by on-line analysis, providing irradiation at a suitable wavelength occurs. 
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7.3   Polymer Crosslinking and Patterning 

The next step towards the final application of patterning fluorescent materials was to 

conduct a detailed investigation of the light-induced crosslinking reaction of 

polybutadienes. Therefore, two commercially available 1,2-polybutadienes, PBD1 

(Sigma-Aldrich, 3000 g·mol-1, 90 % vinyl content) and PBD2 (Japanese Synthetic 

Rubber Company, RB 820, 100000 g·mol-1, 92 % vinyl content) were employed. The 

large difference in molar masses was selected to enable two analytic methods for the 

evaluation of the crosslinking reaction. For the reaction of 12 with PBD1, SEC was 

employed for monitoring the molar mass, since the resulting material remained 

soluble. On the other hand, fluorescent gels and films were generated utilizing PBD2. 

The networks generated from the high molar mass starting material were 

characterized by gravimetric analysis. In order to optimize the crosslinking process, 

the reaction parameters needed to be adjusted. Therefore, the reaction time, 

concentration of the di-linker/polymer mixture as well as the molar composition of the 

mixture, were varied. First, the short chain length PBD1 was reacted with 12 under 

irradiation of the UVB-lamp Arimed B6  and subsequently analyzed by SEC (Figure 

7.3-1). 

         

Figure 7.3-1: Dependence on the reaction time of the crosslinking reaction of PBD1. Left: SEC 

chromatograms corresponding to the samples taken during the crosslinking process. Right: Plot of the 

respective Mn and Mw values. 

The influence of the reaction time on the crosslinking reaction was studied by 

irradiating a mixture of PBD1 (10 mg) and 12 (3 mg) at high concentration (300 g·L-1). 

Samples were collected for reaction times ranging from 0 to 240 min. An advantage 
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of the current system is that subsequent SEC characterization enables simultaneous 

detection of the starting materials and the product, providing information about 

shifted molar masses, as well as the consumption of the di-linker. A rapid decrease of 

the signal of 12 – detected at a retention time of 37 min – was found at the beginning 

of the reaction, expressing its incorporation into the polymeric material. After 60 min 

the signal of free 12 disappeared entirely indicating that the linker compound was 

completely attached to the polymer chains and, therefore, at least one tetrazole 

moiety per molecule has reacted with PBD1. Thus, at that time during the process, 

the overall molecular weight exceeds that of pure PBD1 since it was reduced in the 

beginning by addition of the low molar mass di-linker. Upon the reaction of the 

remaining tetrazole groups with the polybutadiene, material of higher molar mass is 

generated due to the connection of multiple PBD chains. The SEC elugrams for 

longer reaction times confirm the occurrence of the crosslinking reaction depicting a 

shoulder which appears on the high molar mass side of the polymer distribution as 

well as the sudden increase in number average molecular weight (Mn) and weight 

average molecular weight (Mw) (Figure 7.3-1, right). The molar mass of the mixture 

was observed to increase continuously during the first 2-3 h of irradiation, whereas it 

was found to stabilize after approximately 4 h, corresponding to the consumption of 

all tetrazole moieties.  

Next, the concentration of the photoreactive di-linker/polymer mixture was altered, 

which was kept constant for the kinetic study (Figure 7.3-2). For a starting mixture 

with a diluted solution of 8 mg·mL-1 the molar mass of the product hardly differed 

         

Figure 7.3-2: Crosslinking reaction of PBD1 under variation of the concentration. Left: SEC 

chromatograms corresponding to the samples with varying concentration. Right: Plot of the respective 

Mn and Mw values. 
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from that of the control (i.e., PBD1 without addition of 12), suggesting that mostly 

intramolecular reactions occurred since the probability of the di-linker to react with a 

single chain twice is drastically increased in a diluted mixture. Thus, as expected, it 

was found that an increasing concentration of the photosensitive mixture leads to 

higher molar masses for the respective crosslinking product. Consequently, the 

material with the highest molar mass was achieved close to the saturation point of 12 

(320 g·L-1). Therefore, the only possibility to further increase the concentration and 

the extent of crosslinking was to perform the reaction in bulk. However, the general 

reaction rates for photoreactions in bulk are significantly reduced compared to photo-

reactions in solution, and thus it was not surprising that only limited crosslinking was 

achieved in reasonable timeframes. Moreover, the importance of the judicious design 

of the di-linker component is obvious: Since extremely high starting material 

concentrations are needed, the linker component must be highly soluble in the 

polymeric mixture.  

Finally, the molar ration between 12 and PBD1 was varied while the concentration 

and the reaction time were maintained constant (Figure 7.3-3). As expected, an 

increasing molar mass is observed as the amount of di-linker in the photosensitive 

mixture increases. The highest molar mass is achieved for a linker fraction of 43 wt%. 

However, especially for industrial applications, systems with a linker content of 

43 wt% are unfortunately far from cost effective. 

 

         

Figure 7.3-3: Influence of the molar ratio on the crosslinking reaction of PBD1 with 12. Left: SEC 

chromatograms corresponding to the samples with varying linker content. Right: Plot of the respective 

Mn and Mw values. 
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So far, no insoluble material could be obtained from the crosslinking reactions of 

PBD1 during the optimization studies, suggesting that side reactions might interfere 

with the crosslinking process. As alluded to above, nitrile imines can undergo 

dimerization reactions resulting in a six-membered heterocycle (i.e., tetrazine)347 

when there is no dipolarophile present or a dipolarophile of reduced activity is not 

available in high excess. In the current system, the selected dipolarophiles (i.e., 1-

pentene or polybutadiene) are less reactive for cycloadditions than typical 

dipolarophiles, such as maleimides or maleic esters. Therefore, the molar excess of 

carbon-carbon double bonds compared to tetrazoles needs to be extremely high to 

minimize the side-reaction. Hence, due to the existence of the side-reactions and the 

low molar mass of PBD1 the number of linkages per polymer chain likely remains low 

resulting in a poor crosslinking efficiency. In summary, PBD1 is not suitable for 

producing fluorescent gels by the current approach.  

In order to generate insoluble polybutadiene-based networks via NITEC chemistry, a 

1,2-polybutadiene of high molar mass – PBD2 (Mn = 100 kg·mol-1) – was subjected to 

the light-triggered crosslinking process. The resulting partly insoluble material was 

analyzed by gravimetric determination of the gel fraction. Due to the fact that the 

leftover soluble material obstructs syringe filters (0.2 m) – employed before SEC 

analysis – immediately, SEC was not available for characterization of the PBD2 

system. Analogous to the investigation of the crosslinking process of PBD1, the 

reaction parameters such as the irradiation time, the concentration, and the di-linker 

fraction needed to be optimized (Figure 7.3-4). In agreement with the kinetic 

investigation of the light-induced crosslinking reaction of PBD1, the gel fraction of a 

mixture containing 12 (10 wt%) and PBD2 (200 g·L-1) was observed to increase 

steadily at the beginning and plateau after extended reaction times when high 

conversions are achieved (Figure 7.3-4, top left). The maximum possible gel fraction 

for the mixture (80 %) was obtained after an irradiation time of 20 h. In contrast, the 

control samples, which were subjected to identical treatment except for the omitted 

addition of di-linker, stayed completely soluble. Hence, the network formation results 

from the desired cycloaddition instead of a self-crosslinking mechanism of 

polybutadiene. However, it is noteworthy that the reaction times for the crosslinking 

reactions of PBD2 are much longer than for the model system with 1-pentene (and 

longer than with PBD1), which is the expected behavior when expanding a system 

from small molecules to polymers.348 As noted in the literature section, the concen- 
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Figure 7.3-4: Investigation of the crosslinking reaction of PBD2 varying the irradiation time (top, left), 

the concentration (top, right), and the di-linker fraction (bottom, left). Bottom right: images of 

fluorescent gels under excitation with a handheld TLC lamp ( = 365 nm). 

tration of the linker/polymer mixture can strongly influence the outcome of the 

photoreaction. For instance, at high concentrations (50-200 g·L-1), crosslinking is 

more likely than at low concentrations, where single chain folding becomes 

favored.132, 260 Importantly, the reaction was found to proceed in a reasonable 

timeframe when the presence of solvent is provided, whereas only limited conversion 

(27 % gel fraction) could be achieved in bulk (Figure 7.3-4, top right).  

Applying the optimized conditions of the previous investigations (high concentration 

and 24 h of irradiation), the effect of changing linker content present in the reaction 

mixture was explored (Figure 7.3-4, bottom left). In contrast to the linker fraction 

study conducted with PBD1, the high molecular weight of PBD2 enabled using 

relatively small quantities of 12 (2.5-7.5 wt%) for successful crosslinking. Gel 

fractions of 64-86 wt% could be achieved since a large molar excess of double bonds 

exists under optimal crosslinking conditions for PBD2, reducing the possible side-
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reactions. Increasing the linker fraction beyond 7.5 wt% (10-15 wt%) results in 

decreasing gel fractions of 80-59 wt%, which supports the theory that more soluble 

material-generating side-reactions occur when the amount of di-linker becomes too 

high. The success of the current crosslinking approach can also be visualized by a 

tube inversion test of the respective gels under excitation with a handheld TLC lamp 

(Figure 7.3-4, bottom right). Strong fluorescence is observed as well as insolubility of 

the gelatinous material which are crucial factors for successfully applying the 

crosslinking reaction for photo-patterning of substrates. 

The spatial resolution of light-triggered reactions – besides excellent temporal control 

–is one of the primary reasons that (bio)chemists and material scientists apply 

photochemical methods. In order to demonstrate spatial control for the current 

crosslinking system, insoluble polybutadiene patterns were generated from a mixture 

of PBD2 and 12. The photosensitive mixture was solvent casted on a glass slide, 

which was subsequently irradiated in the presence of a shadow mask. Employing 

shadow masks to introduce spatial control is a typical procedure for patterning 

surfaces.142, 344, 349 Surface patterning was finally achieved by irradiating the solvent 

casted film consisting of PBD2 and 12 (5 wt%) covered with a shadow mask 

(depicting the KIT logo) with sunlight. All the non-crosslinked material which was 

protected from the sunlight was subsequently removed by immersing the entire glass 

substrate in a tetrahydrofuran (THF) bath. The irradiated – and thus crosslinked – 

sections of the film remained on the glass substrate exhibiting the fluorescent pattern. 

Thus, the desired spatial control of crosslinking system could be evidenced on a 

macroscopic scale (Figure 7.3-5). The sample preparation technique, which causes 

varying film thickness, results in slight irregularities in the light emission of the film. 

However, the simplicity of the sunlight-induced patterning setup as well as the facile 

workup emphasize the applicability of the herein reported crosslinking system. 
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Figure 7.3-5: Image of fluorescent pattern produced by crosslinking a 12/PBD2 film in the sunlight 

employing a shadow mask. The fluorescence was visualized using a handheld TLC lamp (max = 365 

nm). 
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7.4   Summary  

The current chapter introduces the investigation of a crosslinking system based on 

NITEC chemistry, which is applicable for the preparation of fluorescent patterns on 

substrates. A novel tetrazole containing photoreactive di-linker was designed to 

enable sunlight-induced reactions. Judicious selection of tetrazole substituents 

allowed to adjust the absorption range to be compatible to the UV emission of the 

sun. Moreover, the di-linker was designed to be soluble in high concentrations for 

efficient crosslinking reactions, which could be achieved by installing a tetra(ethylene 

glycol) spacer. The behavior of the novel tetrazole derivative was explored in a small 

molecule model study, monitored by ESI-MS, SEC, NMR, UV-vis, and fluorescence 

spectroscopy. Thus, the reaction of di-linker with 1-pentene was evidenced to yield 

the desired cycloadduct. A kinetic study revealed rapid progress of the photo-induced 

process achieving full conversion in 10-240 min depending on the irradiation source. 

Besides the off-line investigation via ESI-MS, the reaction progress could also be 

monitored by on-line fluorescence spectroscopy. Subsequent to the small molecule 

study, the light-triggered reaction of the di-linker with a low molar mass 1,2-poly-

butadiene was established. Based on SEC results, the reaction conditions were 

found to yield the best results employing a high molar amount of linker, at high 

concentrations, in 4 h. Furthermore, highly fluorescent polymer gels were produced 

via crosslinking of a 1,2-polybutadiene (100 kg·mol-1). Gravimetric determination of 

the insoluble gel fraction was applied for exploring the crosslinking reaction kinetics, 

the influence of the molar ratio of di-linker as well as the reagent concentration 

dependence on the extent of crosslinking. Gel fractions of up to 86 % were obtained 

under optimized conditions (200 g·L-1 concentration, 7.5 wt% di-linker, 24 h irradia-

tion time). Finally, fluorescent patterns were generated by crosslinking a solvent 

casted film of a polybutadiene/di-linker mixture under irradiation with sunlight for two 

hours employing a shadow mask. The well resolved pattern confirmed the excellent 

spatial control of the sunlight-induced NITEC-based crosslinking process. 
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8 
8CONCLUDING REMARKS  

In contemporary chemical science, efficient and readily accessible conjugation 

techniques are highly valued. In particular, a continuously increasing impact is 

assigned to light-induced methods, which are suitable to access rapid and 

quantitative ligation in a spatially resolved fashion. However, to the best of the 

candidate's knowledge, few synthetic examples are highly efficient as required for 

modern polymer based processes. Therefore, continued advances are required to 

satisfy the increasingly challenging demands of (bio)chemists and material scientists.  

The present thesis contains the development of novel light-triggered conjugation 

techniques as well as the improvement of existing methods by merging 

photochemistry and polymer science. Combining both of these extensive fields, 

various photochemical tools, including NITEC, azirine ligation, photoenols, and 

Paternò-Büchi reactions, were applied for polymerization processes, (reversible) 

polymer end-group modification, block copolymer synthesis as well as crosslinking of 

pre-existing polymer strands. Thus, advances are reported with regard to the 

reactivity of the photoreactive species enabling access to novel conjugates, the 

available excitation wavelengths, which allows for sunlight and visible light induction, 

and in general the broadened scope of the respective photo-induced techniques. 
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In Chapter 3, a novel polymerization procedure based on NITEC chemistry is 

reported. Therefore, photoreactive and profluorescent monomers were designed 

bearing a photosensitive tetrazole function as well as a suitable dipolarophile unit. 

UV-light irradiation of concentrated monomer solutions consequently triggers an 

ambient temperature step-growth polymerization process, which was found to adhere 

to Carothers’ kinetics. In addition, strong fluorescence was observed for the resulting 

polymers stemming from the generated pyrazoline units incorporated in the polymer 

backbone. 

Red-shifting the excitation wavelength for conjugation reactions into the visible light 

region of the electromagnetic spectrum has thus far only been achieved by 

photoredox catalysis. A catalyst-free system enabling ultra-rapid visible light-driven 

ligation is described in Chapter 4 of the present thesis. Therein, a photosensitive 

compound is presented which combines the absorption properties of a chromophore 

(pyrene) with the reactivity of azirine moieties allowing for efficient cycloaddition 

reactions with a multitude of reactants. Thus, small molecules were ligated as well as 

polymeric materials with reactive termini.  

Chapter 5 includes an exploratory study evaluating the applicability of the Paternò–

Büchi reaction for the reversible encoding of polymer end groups. The investigation is 

based on a poly(ethylene glycol) system, which was monitored in detail by NMR, ESI-

MS and CID ESI-MS. Thus, the efficiency of three consecutive photochemical end 

group transformations – Paternò–Büchi reaction, photosensitized ring cleavage, an 

additional Paternò-Büchi reaction – was determined.  

In Chapter 6, the extremely high reactivity of photoenols is applied for developing a 

novel conjugation tool which broadens the scope of controlled/living radical 

polymerization. Due to the enhanced affinity of the photoenol diene towards 

dipolarophiles, non-activated dithioesters – present in conventional polymers 

prepared via the RAFT technique – were accessible for hetero Diels–Alder reactions. 

The remarkable efficiency of the rapid ligation method enabled the synthesis of block 

copolymers of different monomer constitutions.  

Since spatially resolved crosslinking is a progressive discipline in modern material 

science, a novel crosslinking system based on NITEC chemistry is provided in 

Chapter 7. By judiciously designing a di-functional tetrazole linker compound, the 
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reactivity as well as the excitation wavelength of the photolabil moiety could be 

adjusted allowing for the sunlight induced reaction with non-activated double bonds 

present in 1,2-polybutadienes. Thus, the fabrication of insoluble fluorescent surface 

patterns was enabled. 

In summary, the present thesis describes significant advances in the field of light-

induced polymer ligation. A series of newly developed techniques and the application 

of improved methods is demonstrated. By altering absorption properties, making use 

of substituent effects, and in general combining photochemical tools with 

contemporary challenges in polymer chemistry, examples for the broad scope of the 

herein reported systems were given. In particular, the advancement into the direction 

of sunlight and visible light triggered chemistry, which allows to avoid the biologically 

harmful UV-irradiation, is a remarkable achievement.  

However, the major challenges of the present society remain unsolved. Despite the 

herein reported successfully improved properties of photochemical techniques, these 

advancements can only be viewed as a small step in the right direction. A significant 

amount of photochemical research and technological advances are still required until 

industrial processes can be driven by solar radiation. Similarly far from success 

appears the desirable goal of providing mankind with clean solar energy. 

Nevertheless, exploratory research and continuous advances towards sustainable 

processes are the crucial requirements for approaching these ultimate aims step by 

step. 
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9 
9EXPERIMENTAL SECTION 

The experimental section contains more detailed information related to the synthetic 

and analytic procedures. Besides a list of materials (Section 9.1), details about the 

analytic instrumentation and methods are provided (Section 9.2). Finally, Section 9.3 

contains the synthetic procedures accompanied with the corresponding analytic data 

of the species included in the present thesis.  
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9.1   Materials 

Acetonitrile (MeCN, reagent grade, Chem-Supply), 1-acetyl pyrene (97 %, Aldrich), 

aluminum chloride (anhydrous, >99%, ROTH), anisidine (99 %, ABCR), benzoic acid 

(99.5 %, Sigma-Aldrich), benzyl maleimide (99 %, Aldrich), 11-bromo-1-undecanol 

(purum, Fluka), copper sulfate pentahydrate (99+ %, Acros), 2-cyanopropyl 

dithiobenzoate (CPDB, >97%, Sigma-Aldrich), cyclohexane (VWR, GPR 

RECTAPUR), dichloromethane (DCM, VWR, AnalaR NORMAPUR), dichloromethane 

(DCM, extra dry, 99.8 %, Arcos Organics), dicyclohexyl carbodiimide (DCC, 98 %, 

Aldrich), diethyl ester acetylene (95 %, Aldrich), diethyl ether (Et2O, reagent grade, 

Fisher Chemical), diethyl fumarate (98 %, Aldrich), 4-dimethyl aminopyridine (4-

DMAP, purum, >98 %, Fluka Analytical), 2,3-dimethyl anisole (97 %, Alfa-Aesar), 

dimethyl hydrazine (98 %, Aldrich), ethyl acetate (EA, VWR, AnalaR NORMAPUR), 

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-hydrochloride (EDC-HCl, ≥99 % Carl 

Roth), formyl-benzoic acid (96 %, Acros Organics), hydrochloric acid (HCl, 37 %, Carl 

Roth), 2-hydroxyethyl acrylate (HEA, contains monomethyl ether hydroquinone as 

inhibitor,  96 %, Aldrich), iodo methane (MeI, stab. with copper foil, 99 %, Chem-

Supply), magnesium sulfate (MgSO4, ≥99 %, Carl Roth), methyl acrylate (stab. with 

monomethyl ether hydroquinone, 98 %, Aldrich), monoethyl fumarate (95 %, Aldrich), 

pentenoic acid (95 %, Aldrich), p-toluenesulfonyl hydrazide (98 %, Alfa Aesar), 

polybutadiene predominantly 1,2-addition (PBD1, approx. 90 % 1,2-vinyl, Sigma-

Aldrich), poly(ethylene glycol) monomethyl ether (Mn = 2000 g·mol-1, Aldrich), 

potassium peroxodisulfate (97 %, Sigma-Aldrich), 1,3-propanediol (98 %, Aldrich), 

pyridine (99+ %, Alfa Aesar), silica gel (Geduran Si 60, 40-63 µm, for column 

chromatography, Merck), sodium chloride (NaCl, >99.8 %, Carl Roth), sodium 

hydride (65 % with petrol ether, Aldrich), sodium hydrogen carbonate (NaHCO3, 

≥99 %, Carl Roth), sodium nitrite (NaNO2, 98 %, Alfa Aesar),  sodium sulfate 

(NaSO4, >99 %, Carl Roth), tetrahydrofuran (THF, extra dry, 99.5 %, stabilized, 

Acros Organics), thionyl chloride (SOCl2, ReagentPlus, ≥99 %, Aldrich), toluene 

(reagent grade, Chem-Supply), and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD, Sigma-

Aldrich) were used as received.  

Methyl methacrylate (MMA, 99+ %, Acros), styrene (99 %, extra pure, Acros), and 

methyl acrylate (MA, 99+ %, Acros) were passed through a column of basic alumina 
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(VWR) to remove inhibitor and subsequently stored at -19 °C. 2,2’-Azobis(2-

methylpropionitrile) (AIBN, Sigma-Aldrich) was recrystallized twice from methanol 

(MeOH, VWR) and subsequently stored at -19 °C. ε-Caprolactone (ε-CL, Sigma-

Aldrich) was distilled from CaH2 and stored over molecular sieves. Dichloromethane 

(DCM, VWR) and N,N-dimethyl formamide (DMF, 99+ %, Alfa Aesar) were dried and 

stored over CaCl2 prior to use. Ethyl acetate (EA, reagent grade, Chem-Supply) and 

n-hexane (fraction, Chem-Supply) were distilled prior to use for column 

chromatography. 1,2-Polybutadiene (JSR RB_820, PBD2) was kindly provided by 

NRC (Nordmann, Rassmann).  

For GPC measurements tetrahydrofuran (THF, multisolvent, stabilized with BHT, 

Scharlau) and dimethyl acetamide (DMAC, CHROMASOLV Plus for HPLC, ≥99 %, 

Aldrich) were used as solvent as received. For photopolymerization reactions 

tetrahydrofuran (THF, multisolvent, stabilized with BHT, Scharlau), and dimethyl 

acetamide (DMAC, CHROMASOLV Plus for HPLC, ≥99 %, Aldrich) were used as 

solvents as received. 

Chloroform-d1 (CDCl3, EURISO-TOP, 99.8 %,) and dimethyl sulfoxide-d6 (DMSO-d6, 

EURISO-TOP, 99.8 %,) were utilized for NMR measurements.  

For ESI-MS measurements tetrahydrofuran (THF, multisolvent, stabilized with BHT, 

Scharlau), dichloromethane (DCM, ROTISOLV HPLC ultra gradient grade, Carl 

Roth), and methanol (MeOH, ROTISOLV HPLC ultra gradient grade, Carl Roth) were 

used as solvent and sodium trifluoro acetate (NaTFA, 98 %, Aldrich) was used as 

doping agent (5 mol) as received.  

Purification of the monomers of M1 and M2 as well as the polymerization sample 

preparation were conducted in a laboratory illuminated by a high pressure sodium 

lamp (SYLVANIA TWINARC, SHP-S, 50 W, E27) (amber light) due to the 

photosensitivity of the monomers. The photopolymerization reactions were performed 

utilizing crimp-top vials (VWR, crimp neck vial, 0.7 mL, 40×7 mm, clear glass, 

conical) and the corresponding caps (VWR, cap alu 8 mm, silicon white/PTFE red 

1.3 mm).
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9.2   Methods and Analytic Instrumentation 

Nuclear magnetic resonance (NMR) spectroscopy. The synthesized compounds 

were analyzed via 1H- and 13C-NMR spectroscopy using a Bruker Avance 400 

spectrometer (1H, 400 MHz; 13C, 101 MHz). Samples were dissolved in CDCl3. The δ-

scale was referenced with tetramethylsilane (δ = 0.00) as internal standard. 

Abbreviations used in the description of the materials’ syntheses include singlet (s), 

doublet (d), triplet (t), quartet (q), broad multiplet (bm), and unresolved multiplet (m). 

The synthesized compounds described in Chapter 4 were analyzed via 1H- and 13C-

NMR spectroscopy using a Varian INOVA 400 (1H, 400 MHz; 13C, 101 MHz). The 

samples were dissolved in CDCl3. The -scale was referenced with tetramethyl silane 

(δ = 0.00).  

Electrospray ionization - mass spectrometry (ESI-MS). ESI-MS spectra were 

recorded on a LXQ mass spectrometer (ThermoFisher Scientific, San Jose, CA, 

USA) equipped with an atmospheric pressure ionization source operating in the 

nebulizer assisted electrospray mode. The instrument was calibrated in the m/z 

range of 195-1822 using a standard containing caffeine, Met-Arg-Phe-Ala acetate 

(MRFA) and a mixture of fluorinated phosphazenes (Ultramark 1621) (all from 

Aldrich). A constant spray voltage of 4.5 kV was used. Nitrogen was applied at a 

dimensionless sweep gas flow-rate of 2 (approx. 3 L·min-1) and a dimensionless 

sheath gas flow-rate of 12 (approx. 1 L·min-1) were applied. The capillary voltage, the 

tube lens offset voltage and the capillary temperature were set to 60 V, 110 V, and 

300 °C respectively. 

Orbitrap Electrospray-Ionization Mass Spectrometry (high-res ESI-MS). Mass 

spectra were recorded on a Q Excative (Orbitrap) mass spectrometer (Thermo Fisher 

Scientific, San Jose, CA, USA) equipped with an atmospheric pressure ionization 

source operating in the nebulizer assisted electrospray mode. The instrument was 

calibrated in the m/z range 150-2000 using a standard containing caffeine, Met-Arg-

Phe-Ala acetate (MRFA) and a mixture of fluorinated phosphazenes (Ultramark 

1621) (all from Aldrich). A constant spray voltage of 3.5 kV and a dimensionless 

sheath gas of 6 and a sweep gas flow rate of 2 were applied. The capillary voltage 

and the S-lens RF level were set to 68.0 V and 320 °C, respectively. 
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Size exclusion chromatography (SEC). To determine molecular weight 

distributions (MWD) a SEC system (Polymer Laboratories PL-GPC 50 Plus) 

comprised of an auto injector, a guard column (PLgel Mixed C, 50 × 7.5 mm) 

followed by three linear columns (PLgel Mixed C, 300 × 7.5 mm, 5 μm bead-size) and 

a differential refractive index detector was employed. THF was used as the eluent at 

35 °C, with a flow rate of 1 mL·min-1. The SEC system was calibrated using narrow 

poly(methyl methacrylate) standards ranging from 600 to 6 × 105 g mol-1 (Polymer 

Standards Service (PSS), Mainz, Germany). The resulting molecular weight 

distributions were determined by universal calibration using Mark-Houwink 

parameters for polystyrene (K = 14.1 × 10-5 dL g-1, α = 0.7).  

Fluorescence and UV-vis spectroscopy. Fluorescence emission spectra were 

recorded for samples in quartz cuvettes loaded with a sample volume of 230 µL on a 

Varian Cary Eclipse Fluorescence Spectrometer. UV-visible spectroscopy was 

performed using a Varian Cary 300 Bio spectrophotometer featuring a thermostatted 

sample cell holder. Absorption spectra were measured for 1.0 × 10-4 mol L-1 samples 

in acetonitrile solution from 200 to 800 nm with a resolution of 1 nm and slit width of 

2 nm in a 1 cm UV cuvette. 

Analytical high performance liquid chromatography (HPLC) was carried out on a 

HPLC system using a Prep-C18 scalar column (4.6 Χ 150 mm, 10 μm) with a flow 

rate of 1 mL/min. A solvent mixture of THF/H2O 50:50 was applied. 

Photoreactions were carried out in a custom-built photoreactor equipped with 1,3, or 

5 low pressure UV-lamps (Figure 8.3-1): 

Arimed B6, Cosmedico GmBH, Stuttgart, Germany. Compact low-pressure 

fluorescent lamp, 36 W, max = 320 nm (±30 nm). 

Philips Cleo PL-L, Philips Deutschland GmBH. Compact low-pressure fluorescent 

lamp, 36 W, max = 355 nm (±50 nm). 

Philips TL01, Philips Deutschland GmBH. Philips Medical Therapy UV-B Narrow 

Band/01, 36W max = 312 nm (±5 nm). 
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Figure 9.2-1: Illustration of the custom-built photoreactor employed in the current thesis. 

The photo-reactions described in Chapter 4 were carried out in Rayonet Photoreactor 

using an LED system for irradiating the samples. Three light emitting diodes (Avonec, 

410-420 nm, 3 W, actinic blue) with an emission angle of 120° grafted on cooling 

elements (Fischer, SK577-25SA - 50mm x 25mm) were set up triangularly on top of a 

magnetic stirrer. The samples were positioned above the LED setup at a distance of 

~5 cm.



9.3 SYNTHETIC PROCEDURES 

149 
 

9.3   Synthetic Procedures 

Synthesis of 4-((2-tosylhydrazono)methyl)benzoic acid (11). A mixture of 4-

formyl-benzoic acid (6.558 g, 43.7 mmol, 1.0 eq) and p-toluenesulfonyl hydrazide 

(8.138 g, 43.7 mmol, 1.0 eq) in ethanol (100 mL) was heated to reflux for 30 min. The 

solution was diluted with water (100 mL) and the precipitate was filtered off. The solid 

was washed with aqueous ethanol (100 mL). Yield 14.5 g (98 %) 1H-NMR (DMSO, 

250 MHz) / ppm: 13.07 (s, 1H, a), 11.68 (s, 1H, b), 7.96 (s, 1H, c), 7.94 (d, 

3J = 8.3 Hz, 2H, d), 7.77 (d, 3J = 8.2 Hz, 2H, e), 7.66 (d, 3J = 8.2 Hz, 2H, f), 7.41 (d, 

3J = 8.3 Hz, 2H, g), 2.35 (s, 3H, h). 13C-NMR (DMSO, 100 MHz) / ppm: 166.74 (a), 

145.63 (b), 143.49 (c), 137.54 (d), 136.01 (e), 131.63 (f), 129.65 (g), 127.12 (h) 

126.69 (i), 20.91 (k). 

 

Figure 9.3-1: 
1
H-NMR spectrum of 12 recorded in CDCl3. 

 

4-(2-(4-methoxyphenyl)-2H-tetrazol-5-yl)benzoic acid (1). Preparation of the 

diazonium salt: Anisidine (4 g, 32.5 mmol, 1.0 eq) was dissolved in a mixture of 

concentrated HCl (8.46 mL), water (26.9 mL) and EtOH (26.9 mL) and cooled to 

0 °C. A cooled solution of sodium nitrite (2.241 g, 32.5 mmol, 1.0 eq) in water 

(13.45 mL) was added dropwise and stirred for 10 min at 0 °C. 
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Preparation of the tetrazole: The in situ generated diazonium salt solution was added 

dropwise to a solution of 12 (10.34 g, 32.5 mmol, 1.0 eq) in pyridine (200 mL) at 

-10 °C to -5 °C over a period of 45 min. After complete addition the solution was 

stirred at 0 °C for 30 min and at ambient temperature overnight. The turbid solution 

was poured into HCl-solution (10 %, 500 mL), the precipitate was filtered off and 

washed with EtOH (250 mL). Yield: 6.2 g (65 %). 1H-NMR (DMSO, 400 MHz) 

/ ppm: 13.23 (s, 1H, a), 8.24 (d, 3J = 8.1 Hz, 2H, b), 8.13 (d, 3J = 8.1 Hz, 2H, c), 

8.05 (d, 3J = 8.8 Hz, 2H, d), 7.20 (d, 3J = 8.8 Hz, 2H, e), 3.86 (s, 3H, f). 13C-NMR 

(DMSO, 100 MHz) / ppm: 166.63 (a), 163.43 (b), 160.40 (c), 132.55 (d), 130.24 (e), 

130.15 (f), 129.41 (g), 126.59 (h) 121.59 (i), 115.02 (k), 55.62 (k). 

 

Figure 9.3-2: 
1
H-NMR spectrum of 1 recorded in CDCl3. 

 

Synthesis of (2-(Acryloyloxy)ethyl 4-(2-(4-methoxyphenyl)-2H-tetrazol-5-

yl)benzoate) (M1). 1 (3.00 g, 10.1 mmol, 1.0 eq) was suspended in dry THF (80 mL) 

and SOCl2 (12.05 g, 7.34 mL, 101.3 mmol, 10.0 eq) was added under inert 

atmosphere. The mixture was heated to reflux (75 °C) for 3.5 h and the volatiles were 

subsequently removed under reduced pressure. The residue was dissolved two times 

in dry THF (40 mL) and dried in vacuum to remove the excess of SOCl2. The 

resulting product (3.10 g, 9.86 mmol, 1.0 eq) was dissolved in dry THF (80 mL) and 

added dropwise to a cooled solution (0 °C) of 2-hydroxyethyl acrylate (HEA, 11.5 g, 

11.3 mL, 98.6 mmol, 10.0 eq) and pyridine (2.92 g, 3.00 mL, 37.0 mmol, 3.8 eq) in 



9.3 SYNTHETIC PROCEDURES 

151 
 

dry THF (15 mL). After complete addition, the reaction mixture was stirred at 0 °C for 

an additional hour before it was stirred at ambient temperature overnight. All 

purification steps were carried out in a yellow light laboratory using a high pressure 

sodium lamp (refer to the Methods section). The precipitate was subsequently 

removed by filtration. The solution was diluted with DCM (300 mL) and washed 2 

times with HCl (5 %, 2 × 130 mL), water (2 × 130 mL) and brine (2 × 130 mL). The 

organic phase was dried over MgSO4 and the volatiles were removed under reduced 

pressure. The crude monomer M1 was washed two times with cold ethanol and 

subsequently dried under reduced pressure. The pure monomer M1 was obtained by 

column chromatography (silica gel, CH/EA (1:1)) as a white solid; yield: 0.75 g 

(19 %). 1H NMR (CDCl3, 400 MHz)  / ppm: 8.33 (d, J3 = 8.6 Hz, 2H, a), 8.19 (d, J3 = 

8.7 Hz, 2H, b), 8.11 (d, J3 = 9.2 Hz, 2H, c), 7.07 (d, J3 = 9.2 Hz, 2H, d), 6.47 (m, 1H, 

e), 6.17 (m, 1H, f), 5.88 (m, 1H, g), 4.60 (m, 4H, h, i), 3.90 (s, 3H, k). 13C NMR 

(CDCl3, 100 MHz)  / ppm: 166.08 (C, a), 165.92 (C, b), 164.22 (C, c), 160.85 (C, d), 

131.64 (C, e), 130.47 (C, f), 128.13 (C, g), 127.08 (C, h), 121.61 (C, i), 114.89 (C, k), 

63.09 (C, l), 62.34 (C, m), 55.83 (C, n). Exact mass: m/ztheo = 417.12; 

m/zexp = 417.25. 

 

Figure 9.3-3: 
1
H-NMR spectrum of M1 recorded in CDCl3. 

 

 



EXPERIMENTAL SECTION 

152 
 

Synthesis of 3-hydroxypropyl fumarate (2). Monoethyl fumarate (10.0 g, 

87.6 mmol, 1.0 eq), 1,3-propanediol (25.3 mL, 26.6 g, 350 mmol, 4.00 eq), and 4-

dimethylaminopyridine (DMAP, 214 mg, 17.5 mmol, 0.02 eq) were dissolved in dry 

THF (200 mL). The solution was cooled to 0 °C in an ice bath and 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide-hydrochloride (EDC-HCl, 21.8 g, 114 mmol, 

1.3 eq) was added portion-wise to the stirred solution. After complete addition, the 

reaction mixture was stirred at 0 °C for an additional hour before it was stirred at 

ambient temperature overnight. The solvent was removed under reduced pressure 

and the residue was dissolved in diethyl ether (400 mL). The organic layer was 

washed two times with HCl (5 %, 3 × 150 mL), saturated NaHCO3 solution 

(3 × 150 mL), and distilled water (3 × 150 mL). The organic phase was dried over 

MgSO4 and the volatiles were removed under reduced pressure. The crude product 

was purified via column chromatography (silica gel, CH/EA (1:1)) to afford a light 

yellow oil; yield: 4.48 g (25 %). 1H NMR (CDCl3, 400 MHz)  / ppm: 6.83 (s, 2H, a), 

4.34 (t, J3 = 6.2 Hz, 2H, b), 4.24 (q, J3 = 7.1 Hz, 2H, c), 3.71 (m, 2H, d), 2.05 (bs, 1H, 

e), 1.91 (p, J3 = 6.2 Hz, 2H, f), 1.30 (t, J3 = 7.1 Hz, 3H, g). 13C NMR (CDCl3, 

100 MHz)  / ppm: 165.39 (C, a), 165.03 (C, b), 134.09 (C, c ), 133.37 (C, d), 62.34 

(C, e), 61.52 (C, f), 59.05 (C, g), 31.64 (C, h), 14.18 (C, i). 

 

Figure 9.3-4: 
1
H-NMR spectrum of 2 recorded in CDCl3. 
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Synthesis of Ethyl 3-(4-(2-(4-methoxyphenyl)-2H-tetrazol-5-yl)benzoyloxy) 

propyl fumarate (M2). (3.00 g, 10.1 mmol, 1.0 eq) was suspended in dry THF 

(80 mL) and SOCl2 (12.05 g, 7.34 mL, 101.3 mmol, 10.0 eq) was added under inert 

atmosphere. The mixture was heated to reflux (75 °C) for 3.5 h and the volatiles were 

subsequently removed under reduced pressure. The residue was dissolved two times 

in dry THF (40 mL) and dried in vacuum to remove the excess of SOCl2. The 

resulting product (2.30 g, 7.31 mmol, 1.0 eq) was dissolved in dry THF (60 mL) and 

added dropwise to a cooled solution (0 °C) of ethyl 3-hydroxypropyl fumarate (refer to 

step 1, 4.43 g, 21.9 mmol, 3.0 eq) and pyridine (2.17 g, 2.21 mL, 27.4 mmol, 3.8 eq) 

in dry THF (12 mL) via a syringe. After complete addition, the reaction mixture was 

stirred at 0 °C for an additional hour before it was stirred at ambient temperature 

overnight. All purification steps were carried out in a yellow light laboratory using a 

high pressure sodium lamp (refer to the Materials section). The precipitate was 

subsequently removed by filtration. The solution was diluted with DCM (250 mL) and 

washed 2 times with HCl (5 %, 2 × 100 mL), water (2 × 100 mL) and brine 

(2 × 100 mL). The organic phase was dried over MgSO4 and the volatiles were 

removed under reduced pressure. The crude monomer M2 was washed two times 

with cold ethanol to remove major impurities and subsequently dried under reduced 

pressure. The pure monomer M2 was obtained by column chromatography (silica gel, 

CH/EA: 1/1) as a white solid; yield: 1.41 g (40 %). 1H NMR (CDCl3, 400 MHz) 

 / ppm: 8.33 (d, J3 = 8.3 Hz, 2H, a), 8.18 (d, J3 = 8.3 Hz, 2H, b), 8.12 (d, J3 = 9.1 Hz, 

2H, c), 7.08 (d, J3 = 9.1 Hz, 2H, d), 6.86 (s, 2H, e), 4.48 (t, J3 = 6.2 Hz, 2H, f), 4.41 (t, 

J3 = 6.2 Hz 2H, g) 4.25 (q, J3 = 7.1 Hz, 2H, h), 3.91 (s, 3H, i), 2.22 (p, J3 = 6.2 Hz, 

2H, k), 1.31 (t, J3 = 7.1 Hz, 3H, l). 13C NMR (CDCl3, 100 MHz)  / ppm: 166.04 (C, a), 

164.99 (C, b), 164.24 (C, c), 160.86 (C, d), 134.26 (C, e), 133.25 (C, f), 131.69 (C, g), 

130.36 (C, h), 127.09 (C, i), 121.63 (C, k), 114.91 (C, l), 61.90 (C, m), 55.85 (C, n), 

28.17 (C, o), 14.24 (C, p). Exact mass: m/ztheo = 503.15; m/zexp = 503.25. 
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Figure 9.3-5: 
1
H-NMR spectrum of M2 recorded in CDCl3. 

 

General photo-induced polymerization procedure for the monomers M1 and M2 

(P1, P2). All photopolymerization samples were prepared in crimp-top vials (refer to 

the Materials section) containing 2 mg M1 or M2 and 20 μL THF or DMAC 

(c = 100 mg·mL-1) if not otherwise stated. The vials were sealed with appropriate 

caps and directly irradiated in a custom-built photoreactor. After the desired reaction 

time, the solvent of each sample was removed under reduced pressure. 

Subsequently, NMR spectra (in CDCl3) and GPC (in THF or DMAC) were measured.  

 

Synthesis of 3-(pyren-1-yl)-2H-azirine (3). 1-acetyl pyrene (2.00 g, 8.29 mmol, 

1.0 eq) was dissolved in toluene (15 mL) before N,N-dimethyl hydrazine (0.98 g, 

24.90 mmol, 3.0 eq) and a catalytic amount of trifluoroacetic acid (0.01 mL) were 

added to the solution. The mixture was heated to reflux for 5 h and allowed to cool to 

ambient temperature. The solution was diluted with toluene (35 mL), washed with 

water (3 × 50 mL) and the organic layer was dried over Na2SO4. The volatiles were 

subsequently removed under reduced pressure. The crude yellow product was used 

for further synthesis without additional purification. 

The crude product of the previous step was dissolved in iodomethane (10 mL) and 

stirred at 40 °C overnight. The resulting suspension was diluted with diethyl ether 
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(100 mL). The precipitate was filtered off and washed with additional diethyl ether 

(100 mL). The crude precipitate was dissolved in dichloromethane (100 mL) before 

diethyl ether (100 mL) was added dropwise until the product precipitated. The pure 

product was obtained by filtration as a yellow powder and was of sufficient purity to 

be used in the next step. Yield: 1.5 g (55 %) 

The hydrazonium salt of the previous step (0.70 g, 1.63 mmol, 1.0 eq) was dissolved 

in DMF (dry, 10 mL) and the resulting solution was cooled to 0 °C in an ice-bath. 

Sodium hydride (60 %, 0.26 g, 6.50 mmol, 4.0 eq) was added in one portion and the 

mixture was stirred at 0 °C for 1 h. Diethyl ether (200 mL) was added to the reaction 

mixture and the insoluble material was removed by filtration. The filtrate was 

subsequently washed with water (5 × 100 mL), dried over Na2SO4 and the volatiles 

were removed. The crude product was purified by column chromatography using 

hexane/ethyl acetate (gradient 9:1 to 5:1) as an eluent. The pure product was 

obtained as yellow powder. Yield: 80 mg (20 %). 1H NMR (CDCl3), / ppm: 9.18 (d, J 

= 9.2 Hz, 1 H, a); 8.37 (d, J = 7.9 Hz, 1 H, b); 8.38-8.17 (m, 5 H, c); 8.09-8.05 (m, 2 

H, d); 1.96 (s, 2 H, e). 13C NMR (CDCl3): = 164.84 (s, 1 C); 134.33 (s, 1 C); 131.09 

(s, 1 C); 130.89 (s, 1 C); 130.58 (s, 1 C), 129.99 (s, 2 C); 129.59 (s, 1 C); 127.09 (s, 1 

C); 126.73 (s, 1 C); 126.65 (s, 1 C), 126.51 (s, 1 C); 124.56 (s, 1 C); 124.37 (s, 1 C); 

123.96 (s, 1 C); 123.54 (s, 1 C); 117.27 (s, 1 C); 17.78 (s, 1 C). 

 

Figure 9.3-6: 
1
H-NMR spectrum of 3 recorded in CDCl3. 
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Synthesis of fumarate end-capped poly(ethylene glycol) (P3). Monoethyl 

fumarate (576 mg, 4.0 mmol, 4.0 eq), poly(ethylene glycol) monomethyl ether 

(2.00 g, 1.0 mmol, 1.0 eq), DCC (900 mg, 4.4 mmol, 4.4 eq), and DMAP (50.0 mg, 

0.4 mmol, 0.4 eq) were dissolved in DCM (dry, 10 mL). The mixture was stirred at 

ambient temperature for 48 h before the precipitate was filtered off and the solvent 

removed under reduced pressure. The polymer was purified by threefold precipitation 

in cold Et2O yielding 1.6 g (75 %) of pure product. 1H NMR(CDCl3), / ppm: (s, 2 H, 

a); 4.34 (t, J = 4.8 Hz, 2 H, b); 4.25 (q, J = 7.1 Hz, 2 H, c); 3.82-3.73 (m, 4 H, d); 3.63 

(bs, 180 H, e); 3.55-3.44 (m, 4 H, f); 3.37 (s, 3 H, g); 1.31 (t, J = 7.1 Hz, 3 H, h). 

 

Figure 9.3-7: 
1
H-NMR spectrum of P3 recorded in CDCl3. 

 

Synthesis of alkene end-capped poly(ethylene glycol) (P4). Petenoic acid (1.10 g, 

5.0 mmol, 5.0 eq), poly(ethylene glycol) monomethyl ether (2.00 g, 1.0 mmol, 1.0 eq), 

DCC (1.13 g, 5.5 mmol, 5.5 eq), and DMAP (62.5 mg, 0.5 mmol, 0.5 eq) were 

dissolved in DCM (dry, 10 mL). The mixture was stirred at ambient temperature for 

72 h before the precipitate was filtered off and the solvent removed under reduced 

pressure. The polymers were purified by threefold precipitation in cold Et2O yielding 

1.4 g (70 %) of pure product. 1H NMR(CDCl3), / ppm: 5.86-5.76 (m, 1 H, a); 5.07-

4.98 (m, 2 H, b); 4.22 (t, J = 4.8 Hz, 2 H, c); 3.82-3.67 (m, 4 H, d); 3.63 (bs, 190 H, 

e); 3.56-3.44 (m, 4 H, f); 3.37 (s, 3 H, g); 2.46-2.34 (m, 4 H, h). 
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Figure 9.3-8: 
1
H-NMR spectrum of P4 recorded in CDCl3. 

 

Visible light-induced small molecule synthesis. Dipolarophile (46.0 mol, 5.0 eq) 

and 3 (5.0 mg, 9.2 mol, 1.0 eq) were weighed into 50 mL round bottom flasks. The 

materials were dissolved in acetonitrile (15 mL) and placed in the photoreactor, 

where they were irradiated for the desired reaction time under continuous stirring. 

Samples for HPLC analysis (0.5 mL) were taken from the reaction mixture 

immediately after dissolving, and subsequently after the required reaction times. The 

samples were subjected to HPLC analysis without any purification steps. The 

volatiles were removed under reduced pressure and the product was separated from 

the excess of dipolarophile by column chromatography. Isolated yields: 4 (90 %), 1H 

NMR (CDCl3), / ppm: 9.02 (d, J = 9.4 Hz, 1 H, a); 8.40 (d, J = 8.1 Hz, 1 H, b); 8.26-

8.23 m, 3 H, c); 8.17-8.03 (m, 4 H, c); 7.28-7.14 (m, 5 H, d); 4.99-4.79 (m, 1 H, e); 

4.82-4.66 (m, 2 H, e); 4.62 (d, J = 14.2 Hz, 1 H, e); 4.51 (d, J = 14.2 Hz, 1 H, e). 13C 

NMR (CDCl3), / ppm: 177.73 (s, 1 C); 172.89 (s, 1 C); 167.76 (s, 1 C); 135.32 (s, 1 

C); 132.92 (s, 1 C); 131.15 (s, 1 C); 131.58 (s, 1 C); 129.99 (s, 1 C); 129.10 (s, 1 C); 

129.06 (s, 1 C); 129.00 (s, 1 C); 128.66 (s, 1 C); 128.47 (s, 1 C); 128.19 (s, 1 C); 

127.99 (s, 2 C); 127.25 (s, 1 C); 126.23 (s, 1 C); 126.00 (s, 1 C); 125.72 (s, 1 C); 

125.60 (s, 1 C); 125.09 (s, 1 C); 124.82 (s, 1 C); 124.38 (s, 1 C); 124.03 (s, 1 C); 

64.37 (s, 1 C); 58.50 (s, 1 C); 43.94 (s, 1 C); 42.63 (s, 1 C). 5 (25 %), 1H NMR 

(CDCl3), / ppm: 8.79 (d, J = 9.6 Hz, 1 H, a); 8.55 (d, J = 9.3 Hz, 1 H, b); 8.23-8.02 
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m, 7 H, c); 4.98-3.76 (m, 8 H, d); 1.38-0.74 (m, 6 H, e). 6 (50 %), 1H NMR 

(CDCl3), / ppm: 9.22 (d, J = 9.4 Hz, 1 H, a); 8.24-8.02 (m, 8 H, b+c); 4.70-4.49 (m, 

2 H, d); 3.80 (s, 3 H, e); 3.77-3.68 (m, 1 H, d); 3.53-3.43 (m, 2 H, d). 13C NMR 

(CDCl3), / ppm: 177.73 (s, 1 C); 172.89 (s, 1 C); 167.76 (s, 1 C); 135.32 (s, 1 C); 

132.92 (s, 1 C); 131.15 (s, 1 C); 131.58 (s, 1 C); 129.99 (s, 1 C); 129.10 (s, 1 C); 

129.06 (s, 1 C); 129.00 (s, 1 C); 128.66 (s, 1 C); 128.47 (s, 1 C); 128.19 (s, 1 C); 

127.99 (s, 2 C); 127.25 (s, 1 C); 126.23 (s, 1 C); 126.00 (s, 1 C); 125.72 (s, 1 C); 

125.60 (s, 1 C); 125.09 (s, 1 C); 124.82 (s, 1 C); 124.38 (s, 1 C); 124.03 (s, 1 C); 

64.37 (s, 1 C); 58.50 (s, 1 C); 43.94 (s, 1 C); 42.63 (s, 1 C), 7 (50 %), 1H NMR 

(CDCl3), / ppm: 8.80 (bs, 1 H, a); 8.23-7.96 (m, 9 H, b); 7.53 (d, J = 2.6 Hz ,1 H, c); 

4.34 (q, J = 7.1 Hz, 2 H, d); 3.95 (q, J = 7.1 Hz, 2 H, d); 1.37 (t, J = 7.1 Hz, 3 H, e); 

0.77 (t, J = 7.1 Hz, 3 H, e). 

 

Figure 9.3-9: 
1
H-NMR spectrum of 5 recorded in CDCl3. 
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Figure 9.3-10: 

1
H-NMR spectrum of 6 recorded in CDCl3. 

 

 

Figure 9.3-11:
 1
H-NMR spectrum of 7 recorded in CDCl3. 
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Figure 9.3-12: 
1
H-NMR spectrum of 8 recorded in CDCl3. 

 

Visible light-induced polymer ligation. Functionalized poly(ethylene glycol) (P5-P8, 

0.45 mol, 1.0 eq) and 3 (1.0 mg, 2.3 mol, 5.0 eq) were weighed up into a 

headspace vial (Pyrex, dia. 20 mm). The vial was sealed with a crimp top containing 

a PTFE inner liner. The solids were dissolved in acetonitrile (5 mL) and placed in the 

photoreactor, where they were stirred for 1 h in the dark before the lamps were 

switched on. Samples for ESI-MS analysis (0.1 mL) were taken from the reaction 

mixture immediately after dissolving, before the lamps were switched on, and 

subsequently after the preset reaction times. The samples were subjected to ESI-MS 

without any purification steps. P6 was subsequently purified by twofold precipitation in 

cold Et2O and subjected to NMR analysis. 1H NMR(CDCl3), / ppm: 8.81-8.78 (m, 

1 H, a); 8.46-8.44 (m, 1 H, b); 8.23-7.97 (m, 7 H, c); 5.07-3.93 (m, 4 H, c); 3.87-3.70 

(m, 4 H, d); 3.63 (bs, 180 H, e); 3.57-3.45 (m, 4 H, f); 3.37 (s, 3 H, g); 3.19-2.95 (m, 

4 H, h); 1.43-1.16 (m, 3 H, i). 
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Figure 9.3-13: 
1
H-NMR spectrum of P6 recorded in CDCl3. 

 

Synthesis of aldehyde terminal poly(ethylene glycol) (P9). Poly(ethylene glycol) 

methyl ether (1.00 g, 0.5 mmol, 1.0 eq), 4-carboxy benzaldehyde (300 mg, 2.0 mmol, 

4.0 eq), and DMAP (24 mg, 0.2 mmol, 0.4 eq) were dried in vacuum and 

subsequently dissolved in a mixture of DMF (4 mL) and DCM (4 mL). DCC (450 mg, 

2.2 mmol, 4.4 eq) was dissolved in dry DCM (3 mL), added to the dissolved reactants 

and the mixture was stirred for 48 h at ambient temperature. The solvent was 

removed under reduced pressure and the residue was suspended in DCM. The 

dissolved product was purified by twofold precipitation in cold ether (yield: 520 mg, 

50 %). 1H NMR(CDCl3), / ppm: 10.10 (s, 1 H, a); 8.21 (d, 3J = 8.3 Hz, 2 H, b); 7.94 

(d, 3J = 8.4 Hz, 2 H, c); 4.50 (t, 3J = 4.8 Hz, 2 H, d); 3.84 (t, 3J = 4.8 Hz, 2 H, e); 3.63 

(bs, 180 H, f); 3.50-3.42 (m, 2 H, g); 3.37 (s, 3 H, h). 
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Figure 9.3-14: 
1
H-NMR spectrum of P9 recorded in CDCl3. 

 

General procedure for light triggered [2+2]-cycloaddition reactions of P9. A 

stock solution of aldehyde functional poly(ethylene glycol) methyl ether (10 mg) in a 

mixture of styrene, 4-methyl styrene, or 2-pentene (10 mL) and toluene (10 mL) was 

prepared and portioned into headspace vials which were crimped airtight. The 

reaction mixture was subsequently deoxygenated by purging with nitrogen for 15 min. 

The samples were irradiated for the desired reaction time revolving in a custom built 

photoreactor equipped with 5 low pressure mercury lamps (Cosmedico Arimed B6, 

36 W). The volatiles were removed under reduced pressure. In the cases where 

styrenics were utilized as enes, polymeric material stemming for self polymerization 

under irradiation was removed by precipitation in cold methanol. The product was 

obtained after precipitation in cold ether.  

 

General procedure for the light-triggered cycloreversion of P10-P13. Oxetane 

functional poly(ethylene glycol) methyl ether (2 mg, 0.87 mmol, 1.0 eq) and 1,4-

naphthalene dinitrile (1.5 mg, 4.3 mmol, 5.0 eq) were dissolved in acetonitrile (1 mL). 

The reaction mixture was subsequently deoxygenated by purging with nitrogen for 

15 min. The sample was irradiated for the desired reaction time revolving in a custom 

built photoreactor equipped with a low pressure mercury lamps (Cosmedico Arimed 
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B6, 36 W). Subsequent to irradiation, the product was purified by precipitation in cold 

ether.  

 

2-Methoxy-6-methylbenzaldehyde (8). 2,3-Dimethyl anisole (7.03 g, 51.6 mmol, 

1.0 eq), copper sulfate pentahydrate (13.1 g, 52.5 mmol, 1.0 eq) and potassium 

peroxodisulfate (41.9 g, 154.8 mmol, 3.0 eq) were added to a mixture of MeCN/water 

(1:1, 500 mL) in a round bottom flask. The suspension was vigorously stirred and 

heated at 90 °C in a temperature regulated oil bath until thin layer chromatography 

(TLC) revealed that all the starting material had been consumed. At this point, 45 min 

after the start of the reaction, the mixture was allowed to cool down to ambient 

temperature and the non-dissolved copper salt was removed by filtration. DCM 

(150 mL) was added and the phases were separated. The aqueous phase was 

extracted two times with DCM (100 mL) and the combined organic layers were dried 

over magnesium sulfate. After removal of the solvent under reduced pressure, the 

crude product was purified by flash chromatography (silica gel, hexane/ethyl acetate 

5:1 v/v), yielding 5.2 g (68 %) of a yellow solid. 1H-NMR (DMSO, 250 MHz), / ppm: 

10.51 (s, 1H, a), 7.48 (t, 3J = 8.0 Hz, 1H, b), 7.04 (d, 3J = 8.5 Hz, 1H, d), 6.70 (d, 3J = 

7.4 Hz, 1H, e), 3.87 (s, 3H, e), 2.45 (s, 3H, f). 

 

Figure 9.3-15: 
1
H-NMR spectrum of 8 recorded in DMSO-d

6
. 
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2-Hydroxy-6-methylbenzaldehyde (9). 2-Methoxy-6-methylbenzaldehyde (5.20 g, 

34.6 mmol, 1.0 eq) was dissolved in anhydrous DCM (75 mL) and cooled to 0 °C. 

AlCl3 (13.9 g, 103.9 mmol, 3.0 eq) was added and the mixture was stirred at ambient 

temperature overnight. The reaction was quenched with H2O and the phases were 

separated. The aqueous layer was extracted three times with DCM (100 mL). The 

combined organic layers were dried over magnesium sulfate and the solvent was 

evaporated. The final purification was carried out by flash chromatography (silica gel, 

cyclohexane/ethyl acetate 2:1 v/v) yielding 3.9 g (82 %) of a yellow solid. 1H-NMR 

(CDCl3, 250 MHz), / ppm: 11.91 (s, 1H, a), 10.32 (s, 1H, b), 7.37 (t, 3J = 7.9 Hz, 1H, 

c), 6.81 (d, 3J = 8.5 Hz, 1H, d), 6.71 (d, 3J = 7.4 Hz, 1H, e), 2.61 (s, 3H, f). 

 

Figure 9.3-16: 
1
H-NMR spectrum of 9 recorded in CDCl3. 

 

2-((11-Hydroxyundecyl)oxy)-6-methylbenzaldehyde (10). To a suspension of 

K2CO3 (394 mg, 2.85 mmol, 1.7 eq) in anhydrous DMF (5.2 mL) 2-hydroxy-6-

methylbenzaldehyde (909 mg, 6.68 mmol, 1.2 eq) was added and the mixture was 

stirred for 30 min. A solution of 11-bromo-undecanol (1.36 g, 5.47 mmol, 1.0 eq) in 

anhydrous DMF (2 mL) was added dropwise over a period of 30 min. After stirring for 

72 h the reaction was quenched with H2O (50 mL). The mixture was extracted with 

diethyl ether three times and the combined organic layers were washed with 5 % 
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NaOH (2 x 50 mL) and H2O (2 x 100 mL). After drying over magnesium sulfate and 

evaporating the solvent, the crude product was purified by flash chromatography 

(silica gel, cyclohexane/ethyl acetate 2:1 v/v) yielding a yellow solid (0.77 g, 45 %). 

1H-NMR (CDCl3, 250 MHz), / ppm: 10.67 (s, 1H, a), 7.34 (t, 3J = 7.9 Hz, 1H, b), 

6.80 (t, 3J = 8.2 Hz, 2 H, c), 4.03 (t, 3J = 6.3 Hz, 2H, d), 3.64 (t, 3J = 6.6 Hz, 2H, e), 

2.57 (s, 3H, f), 1.89-1.74 (m, 2 H, g), 1.62-1.25 (m, 16H, h). 

 

Figure 9.3-17: 
1
H-NMR spectrum of 10 recorded in CDCl3. 

 

RAFT polymerization of methyl acrylate with CPDB (P14). Methyl acrylate (4.016 

g, 46.5 mmol, 128 eq), 2-cyanopropyl dithiobenzoate (0.080 g, 0.363 mmol, 1.00 eq) 

and 2,2’-azobis(isobutyronitrile) (0.0137 g, 0.084 mmol, 0.23 eq), and benzene 

(3.756 g) were weighed into a round bottom flask. The flask was sealed with a rubber 

septum, the solution stirred and nitrogen was bubbled through the mixture for 30 min. 

The mixture was subsequently heated to 70 °C for 6 h, after which it was exposed to 

air and cooled with an ice bath. Two consecutive precipitations from cold n-hexane 

yielded 1.108 g of a pink viscous oil which was analyzed via SEC (Mn = 5400 g∙mol−1, 

Đ = 1.05) (conversion determined by NMR: 28 %). 

 

RAFT polymerization of styrene with CPDB (P15). Styrene (3.3 mL, 3 g, 0.028 mol, 

200 eq), 2-cyanopropyl dithiobenzoate (0.032 g, 0.148 mmol, 1.00 eq) and 2,2’-
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azobis(isobutyronitrile) (0.0011 g, 0.0067 mmol, 0.10 eq) were weighed into a round 

bottom flask and dissolved in toluene (3.3 mL). The flask was sealed with a rubber 

septum, and the solution was deoxygenated by purging with nitrogen for 60 min. The 

mixture was subsequently heated to 90 °C. After 13 h the solution was exposed to air 

and cooled to ambient temperature. Three consecutive precipitations from cold 

MeOH yielded 1 g of a pink powder, which was analyzed via SEC (Mn = 

5900 g∙mol−1, Đ = 1.05). 

 

Photoenol end-capped poly(-caprolactone) (P16): 10 (121 mg, 0.396 mmol, 0.08 

eq) and TBD (6.00 mg, 0.043 mmol, 0.008 eq) were dissolved in toluene (2.5 mL) 

under inert atmosphere. -CL (565 mg, 4.95 mmol, 1.0 eq) was added and the 

solution was stirred under argon atmosphere at ambient temperature for 7 h. The 

reaction was quenched with benzoic acid (50.0 mg, 0.40 mmol, 0.08 eq) and the 

polymer was precipitated in cold hexane/Et2O (1:1 v/v, 200 mL). 1H-NMR (CDCl3, 250 

MHz), / ppm: 10.67 (s, 1H, a), 7.37 (t, 3J = 7.9 Hz, 1H, b), 6.80 (t, 3J = 8.3 Hz, 2H, 

c), 4.05 (t, 3J = 6.6 Hz, 2 H along backbone, d), 3.64 (t, 3J = 6.4 Hz, 2H, e), 2.56 (s, 

3H, f), 2.30 (t, 3J = 7.5 Hz, 2H along backbone, g), 1.86-1.24 (m, 4 H along 

backbone, h). (Mn = 8500 g∙mol−1, Đ = 1.08). 

 

Figure 9.3-18: 
1
H-NMR spectrum of P16 recorded in CDCl3. 
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Light-triggered reaction of photoenol end-capped poly-(-caprolactone) with 

the RAFT-poly(methyl acrylate) (P17). Equimolar amounts of both polymers were 

weighed up in Schlenk-flasks and dissolved in MeCN to give a polymer concentration 

of 5 g∙L−1. The solution was deoxygenated by performing three consecutive freeze-

pump-thaw cycles. In an argon glovebox the stock solution was transferred into a 

headspace vial (Pyrex, dia. 20 mm), which was crimped airtight using a 

styrene/butadiene rubber seal with a PTFE inner liner. The vial was irradiated (e.g., 5 

min) by revolving it around a compact low-pressure fluorescent lamp (Arimed B6, 

Cosmedico GmbH, Stuttgart, Germany) emitting at 320 nm (±30 nm) at a distance of 

40–50 mm in a custom-built photo reactor. After ending the reaction, the solvent was 

evaporated under reduced pressure and the polymer was dissolved in THF for SEC 

analysis (Mn = 13000 g∙mol−1, Đ = 1.21). 

 

Light-triggered reaction of photoenol end-capped poly(-caprolactone) with 

RAFT-polystyrene (P18). Equimolar amounts of both polymers were weighed up in 

Schlenck-flasks and dissolved in MeCN/ DCM (1:1) to give a polymer concentration 

of 5 g∙L−1 solution. The solution was deoxygenated by three consecutive freeze-

pump-thaw cycles. In an argon glovebox the stock solution was transferred into a 

headspace vial (Pyrex, dia. 20 mm), which was crimped airtight using a 

styrene/butadiene rubber seal with a PTFE inner liner. The vial was irradiated (e.g., 

10 min) by revolving it around a compact low-pressure fluorescent lamp (Arimed B6, 

Cosmedico GmbH, Stuttgart, Germany) emitting at 320 nm (±30 nm) at a distance of 

40–50 mm in a custom-built photo reactor. After ending the reaction, the solvent was 

evaporated under reduced pressure and the polymer was dissolved in THF for 

SEC/ESI-MS analysis (Mn = 13400 g∙mol−1, Đ = 1.20). 

 

Synthesis of (Oxybis(ethane-2,1-diyl) bis(4-(2-(4-methoxyphenyl)-2H-tetrazol-5-

yl)benzoate) (12). (3.00 g, 10.1 mmol, 1.0 eq) was suspended in dry THF (80 mL) 

and SOCl2 (12.05 g, 7.34 mL, 101.3 mmol, 10.0 eq) was added under inert 

atmosphere. The mixture was heated to reflux (75 °C) for 3.5 h and the volatiles were 

subsequently removed under reduced pressure. The residue was dissolved two times 

in dry THF (40 mL) and dried in vacuum to remove the excess of SOCl2. The 
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resulting product (1.06 g, 3.374 mmol, 5.0 eq) was dissolved in dry THF (20 mL), a 

solution of pyridine (134 mg, 136 L, 1.69 mmol, 2.5 eq) and tetraethylene glycol 

(131 mg, 116 L, 0.675 mmol, 1.0 eq) in dry THF (20 mL) was added dropwise at 

ambient temperature and the mixture was stirred overnight. The reaction was 

quenched with water (5 mL), the solvent was evaporated, and the resulting residue 

was suspended in dichloromethane (100 mL). The insoluble, unreacted starting 

material was filtered off. The filtrate was subsequently washed with aqueous HCl 

(5 %) and then water. The organic layer was dried over magnesium sulfate and 

concentrated under reduced pressure. The crude product was suspended in a 

minimum amount of chloroform, insoluble side-products were filtered off and the 

dissolved product was precipitated in ethanol at ambient temperature to give the di-

linker in 25 % yield (120 mg). 1H-NMR (CDCl3, 400 MHz),  / ppm: 8.29 (d, 3J = 

8.6 Hz, 4 H, a), 8.18 (d, 3J = 8.6 Hz, 4 H, b), 8.08 (d, 3J = 9.1 Hz, 4 H, c), 7.04 (d, 3J = 

9.1 Hz, 4H, d), 4.50 (t, 3J=4.8 Hz, 4H, e), 3.88 (s, 6H, f), 3.86 (t, 3J = 4.8 Hz, 4H, g), 

3.71 (m, 4H, h). 13C-NMR (CDCl3, 160 MHz)  /ppm: 165.93 (a), 164.04 (b), 160.63 

(c), 131.45 (d), 130.25 (e), 126.80 (f), 121.40 (g), 114.69 (h) 70.71 (i), 69.17 (j), 64.33 

(k), 55.64 (l). Exact mass: m/zcalculated = 750.28; m/zexp = 750.25. 

 

Figure 9.3-19: 
1
H-NMR spectrum of 12 recorded in CDCl3. 
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Kinetic study of the light-triggered model reaction of 12 and 1-pentene. 12 

(1.0 mg, 1.3 mmol, 1.0 eq) was dissolved in THF (1 mL). 1-Pentene (93.4 mg, 

146.0 mL, 1.3 mol, 1000 eq) was added to the mixture and the resulting stock 

solution was aliquoted into 5 headspace vials (Pyrex, dia. 20 mm), which were 

crimped airtight using a styrene/butadiene rubber seal with a PTFE inner liner. The 

vials were irradiated for a given reaction time by revolving them around a compact 

low-pressure fluorescent lamp (lamp specifications are available in the Methods 

section) at a distance of 40-50 mm in a custom-built photoreactor (Methods section). 

After ending the reaction, the solvent and the excess of 1-pentene were evaporated 

under nitrogen flow and the product was dissolved in THF for ESI-MS, SEC, NMR, 

UV-vis, and fluorescence analysis.  

 

Typical procedure for the kinetic study of the light-triggered crosslinking 

reaction of PBD1. PBD1 (70 mg, 1.3 mol(vinyl bonds), 127 eq (vinyl bonds)) and 12 

(7.70 mg, 10.2 mmol, 1.0 eq) were dissolved in THF (5 mL). After both components 

were completely dissolved, equal amounts of the stock solution were aliquoted into 

headspace vials (Pyrex, dia. 20 mm). The solvent was removed under reduced 

pressure and THF (50 L) was added to each vial, before they were flushed with 

nitrogen and crimped airtight using styrene/butadiene rubber seals with PTFE inner 

liner. The samples were irradiated for the desired reaction time by revolving around a 

low-pressure compact UV-lamp (Arimed B6) at a distance of 40-50 mm. After 

irradiation, the solvent was removed and the samples were characterized by SEC 

analysis. 

 

Typical procedure for the kinetic study of the light-triggered crosslinking 

reaction of PBD2. 1,2-Polybutadiene (70 mg, 1.3 mol(vinyl bonds), 127 eq(vinyl 

bonds)) and 12 (7.70 mg, 10.2 mmol, 1.00 eq) were dissolved in THF (5 mL) while 

shaking at 40 °C for 1 h. After both components were completely dissolved, equal 

amounts of the stock solution were aliquoted into headspace vials (Pyrex, dia. 20 

mm). The solvent was removed under reduced pressure and THF (50 L) was added 

to each vial, before they were flushed with nitrogen and crimped airtight using 

styrene/butadiene rubber seals with PTFE inner liner. The samples were irradiated 
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for the desired reaction time by revolving around a low-pressure compact UV-lamp 

(Arimed B6 or Philips TL01) at a distance of 40-50 mm. After irradiation, THF (3 mL) 

was added and the gelatinous mixture was allowed to stand for 3 h. The soluble 

polymer/linker mixture and the insoluble gel were separated by decanting and both 

were subsequently dried and weighed. 

 

Light-triggered crosslinking for the preparation of a fluorescent pattern. 1,2-

Polybutadiene (PBD-2, 200 mg, 3.7 mol(vinyl bonds), 278 eq(vinyl bonds)) was 

dissolved in THF (5 mL) under stirring at 35 °C. After complete dissolution, 12 

(10 mg, 13.3 mmol, 1.0 eq) was added and the mixture was stirred for an additional 

10 min. The polymer/linker solution was solvent casted on a glass slide 

(100 × 50 mm). After evaporation of the solvent, the glass slide was covered with a 

second glass slide and covered with a shadow mask. This setup was placed into the 

sunlight for 2 h so that the light shone perpendicularly on the shadow mask. After 

irradiation, the mask and the top glass slide were removed and the bottom glass slide 

with the polymer/linker mixture was placed in a THF bath. After complete dissolution 

of the non-crosslinked polymer, the plate was visualized under a 365 nm TLC lamp to 

analyze the fluorescent pattern. 
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