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Vorwort des

Herausgebers

Der Mobilfunk spielt im täglichen Leben eine immer größere Rolle und
wird in den kommenden Jahren, unter anderem getrieben durch Maschine-
zu-Maschine (M2M) Kommunikation, weiter stark an Bedeutung gewin-
nen. Dabei ist das zur Verfügung stehende elektromagnetische Spektrum
begrenzt, weshalb Mittel und Wege gefunden werden müssen, mit deren
Hilfe deutlich höhere Übertragungskapazitäten als die derzeit vorhan-
denen nutzbar gemacht werden können. In der Forschung haben sich
drei Technologien herauskristallisiert, deren Anwendungen besonders
erfolgversprechend erscheinen:

• Höhere Übertragungsbandbreiten: Der einfachste Weg, zu
höheren Funkkapazitäten zu kommen, besteht natürlich in der
Zuteilung weiterer Frequenzbereiche. Solche sind aber unterhalb
von 6 GHz kaum noch zu identifizieren, so dass inzwischen unter
anderem untersucht wird, mit welchen Mitteln höhere Frequenzbere-
iche (28 GHz, 38 GHz, 90 GHz) für die Mobilkommunikation nutzbar
gemacht werden können.

• Heterogene Netze: Ein derzeit bereits genutzter Ansatz zur
Kapazitätserweiterung besteht darin, Basisstationen mit niedriger
Leistung und damit Pico- bzw. Femtozellen in bestehende Netze
einzufügen. Andere Untersuchungen zielen auf den Einsatz der
Device-to-Device (D2D) Technologie oder von Ad-hoc Netzen ab.
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• Mehrantennentechnologien: Die Nutzung der räumlichen Di-
mension durch Multiple Input Multiple Output (MIMO) Systeme
zur Verbesserung der Verbindungsqualität oder zur Erhöhung der
Datenrate wird in zukünftigen Netzen eine wichtige Rolle spielen. Je
nachdem, welche Kanalzustandsinformation sende- und empfangs-
seitig verfügbar ist, kann hier an räumliches Multiplexing, räumliche
Interferenzverringerung, Raumdiversity oder Kombinationen dieser
Technologien gedacht werden.

Die vorliegende Dissertation beschäftigt sich mit Interferenzminderung
durch den Einsatz von Mehrantennensystemen mit Diversity Combining in
Ad-hoc und heterogenen zellularen Netzen. Der Schwerpunkt liegt dabei
auf der Untersuchung des Maximum Ratio Combinings (MRC), einer Tech-
nologie bei der die von den beteiligten Empfangsantennen aufgenommenen
Signale proportional zum dort vorliegenden Signal-zu-Stör- und Rauschver-
hältnis (Signal-to-Interference and Noise Ratio, SINR) gewichtet und
dann addiert werden. Die zentrale Frage, die es zu beantworten gilt, ist
die nach der an einem (“typischen“) Empfänger innerhalb eines Netzes
auftretenden Interferenz unter der Annahme, dass die von den Antennen
des MRC Systems gelieferten Störsignale korreliert und somit bei der
Berechnung des zugehörigen SINR diese Korrelationen zu berücksichtigen
sind.

Die damit umrissene Aufgabenstellung ist offenbar komplex und die
Lösung könnte beispielsweise mit Hilfe von Monte Carlo Simulationen
angegangen werden. Ralph Tanbourgi hat sich aus guten Gründen dafür
entschieden, dass nicht zu tun. Simulationen wären, da sie, um statistisch
relevante Ergebnisse generieren zu können, über viele Netzkonstellatio-
nen mitteln müssten, extrem aufwändig. Darüber hinaus stellen solche
Simulationen oft die funktionalen Zusammenhänge unvollständig oder
nicht richtig dar und liefern deshalb schwer interpretierbare oder sogar
fehlerhafte Ergebnisse. Hier wird bewusst der Weg über analytische
Modelle auf Basis der stochastischen Geometrie (insbesondere der sta-
tionären Poisson’schen Punktprozesse mit konstanter Dichte) eingeschla-
gen. Aufwändige Simulationen werden dennoch zur Evaluierung der
analytischen Ergebnisse herangezogen.

Karlsruhe, im Juni 2015
Friedrich Jondral
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Abstract

Interference due to concurrent transmissions has become evermore an
important issue in wireless communications systems as wireless networks
continue to become increasingly dense. Moreover, trends such as limited
site-planning, heterogeneous deployments, and increased user mobility, has
rendered interference strongly varying and hard to predict, and it is thus
appropriate to treat interference as a random variable in network analysis.
A fundamental statistical property of interference is that it is correlated
in space; two close-by receivers will likely experience a similar level of
interference. This type of correlation, in turn, affects the performance
of diversity combining, which is a well-known method to increase link
reliability in communication systems. Today, many practical and mass-
market receivers employ simple linear diversity-combining schemes such
as maximal-ratio combining, which were primarily designed to combat
channel fading. However, their vulnerability to interference correlation
is not well understood, which makes it difficult for a system designer to
properly choose the right scheme offering the best performance-complexity
trade-off for a given scenario.

In this thesis, a theoretical framework is developed that enables a perfor-
mance analysis for diversity combining under interference correlation. To
reflect the quasi-random nature of the interference, an approach based
on stochastic geometry is chosen, which allows taking into account the
irregularity of the spatial network geometry usually encountered in prac-
tice. Within this framework, tractable stochastic models for different
types of diversity combining and network architectures are presented and
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used for analysis. Besides capturing the irregularity in the node locations,
these models also consider performance-relevant system aspects such as
network density, distance-dependent path loss, channel fading, number
of antennas, and transmitter/receiver processing. The general scenarios
treated in this thesis can be grouped into the following four parts.

First, wireless ad hoc networks with multi-antenna receivers employing di-
versity combining are considered. In such networks, excessive interference
due to lack of centralized medium access control may occur, leading to
distinct properties of the interference correlation across receive antennas.
The performance under this type of correlation is analyzed for a typical
multi-antenna receiver as a function of the various system parameters.

Second, the effect of interference correlation on the performance in down-
link heterogeneous cellular networks with multiple antennas at both the
base stations and the mobile users is analyzed. In contrast to wireless ad

hoc networks, cellular networks have a user association mechanism, which
influences the interference correlation properties at the multi-antenna
receiver. In addition, the number of antennas at the interfering base
stations co-influence these properties as well.

Third, a cooperative scenario involving a single-antenna source, relay,
and destination node under interference is considered. In such a scenario,
interference is correlated across the relay and destination, thereby influ-
encing the performance of the cooperative transmission after diversity
combining at the destination. Assuming selection decode-and-forward as
the relay protocol, this influence is studied with focus on the achievable
diversity.

Last, frequency-diversity reception through non-contiguous or large spec-
trum allocation is studied in the context of downlink heterogeneous cellular
systems with single-antenna base stations and mobile users. Here, inter-
ference is correlated across different parts of the allocated spectrum and
the resulting effect on data rate and probability of coverage is analyzed.

In all cases, theoretical results are derived and validated by detailed
simulations, performance comparisons are presented, and valuable design
insights for use of diversity combining under interference correlation are
obtained.
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Zusammenfassung

Als Folge der fortwährenden Verdichtung drahtloser Netze ist Interferenz
aufgrund gleichzeitiger Übertragungen zunehmend zu einem bedeutsamen
Problem für drahtlose Nachrichtensysteme geworden. Darüber hinaus
haben Trends wie beispielsweise beschränkte Netzplanung, heterogene
Netzstationierung sowie höhere Nutzermobilität Interferenz zu einer stark
variierenden und schwer vorhersagbaren Größe gemacht und es ist da-
her in der Netzanalyse zweckmäßig, Interferenz wie eine Zufallsvariable
zu behandeln. Eine grundlegende statistische Eigenschaft der Inter-
ferenz ist, dass sie räumlich korreliert ist; es ist wahrscheinlich, dass
zwei benachbarte Empfänger einen ähnlichen Interferenzpegel erfahren
werden. Diese Art von Korrelation wiederum beeinträchtigt die Leis-
tungsfähigkeit von Diversity-Combining-Verfahren, welche als Mittel zur
Erhöhung der Übertragungszuverlässigkeit in Kommunikationssystemen
bekannt sind. Heute finden sich in vielen einfachen und massenmarkt-
tauglichen Empfängern simple lineare Diversity-Combining-Verfahren, wie
beispielweise das Maximal-Ratio-Combining-Verfahren, die vorrangig zur
Bekämpfung des Kanalschwunds entwickelt wurden. Ihre Empfindlichkeit
gegenüber Interferenzkorrelation wurde bislang jedoch noch nicht ganz
verstanden, was eine fachgerechte Auswahl des richtigen Verfahrens für ein
gegebenes Szenario, nämlich das Verfahren mit dem besten Kompromiss
zwischen Leistungsfähigkeit und Komplexität, seitens des Systementwick-
lers erschwert.

In dieser Arbeit wird ein theoretisches Rahmenwerk, das die Analyse der
Leistungsfähigkeit von Diversity-Combining-Verfahren unter Interferenz-
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korrelation ermöglicht, erarbeitet. Um die quasi-zufällige Natur der Inter-
ferenz widerzuspiegeln wird ein Ansatz basierend auf der Stochastischen
Geometrie gewählt, was eine Berücksichtigung der in der Praxis üblicher-
weise vorherrschenden Unregelmäßigkeit in der räumlichen Netzgeometrie
erlaubt. In diesem Rahmenwerk werden geeignete stochastische Modelle
für verschiedene Arten von Diversity-Combining-Verfahren und Netzar-
chitekturen vorgestellt und zur Analyse eingesetzt. Neben der Erfassung
der Unregelmäßigkeit in den Positionen der Netzknoten, berücksichtigen
diese Modelle auch Performance-relevante Systemaspekte wie Netzdichte,
distanzabhängiger Pfadverlust, Kanalschwund, Antennenanzahl sowie
Signalverarbeitung am Sender/Empfänger. Die übergeordneten Szenarien,
die im Zuge dieser Arbeit betrachtet werden, können inhaltlich in die
folgenden vier Teile gegliedert werden.

Zunächst werden drahtlose ad hoc Netze mit Multiantennen-Empfänger
nach dem Diversity-Combining-Konzept behandelt. In solchen Netzen
kann es aufgrund des Nichtvorhandenseins einer zentralen Medienzu-
griffssteuerung zu sehr hoher Interferenz kommen, was mit speziellen
Eigenschaften für die Interferenzkorrelation zwischen den Empfangsan-
tennen einhergeht. Die Leistungsfähigkeit unter Einfluss dieser Art von
Korrelation wird anhand eines typischen Multiantennen-Empfängers unter
Berücksichtigung der verschiedenen Systemparameter untersucht.

Anschließend wird der Effekt der Interferenzkorrelation auf die Leistungs-
fähigkeit in heterogenen zellularen Netzen mit Multiantennen-bestückten
Basisstationen und mobilen Nutzern im Downlink untersucht. Im Gegen-
satz zu drahtlosen ad hoc Netzen besitzen zellulare Netze einen Zellzuord-
nungsmechanismus, welcher die Eigenschaften der Interferenzkorrelation
am Mehrantennen-Empfänger beeinflusst. Ferner hat die Anzahl an An-
tennen an den interferierenden Basisstationen ebenfalls einen Einfluss auf
diese Eigenschaften.

Danach wird ein kooperatives Szenario bestehend aus einem Quell-, Relay-
und Zielknoten mit jeweils einer Antenne unter dem Einfluss von Inter-
ferenz betrachtet. In einem solchen Szenario ist die Interferenz zwischen
dem Relay- und Zielknoten korreliert, was sich auf die Leistungsfähigkeit
der kooperativen Übertragung nach dem Diversity-Combining am Ziel-
knoten auswirkt. Unter Annahme, dass Selection-Decode-and-Forward
als Relay-Protokoll benutzt wird, werden diese Auswirkungen mit Fokus
auf die erreichbare Diversität untersucht.
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Zuletzt wird der Empfang unter Frequenzdiversität, realisiert durch eine
nicht zusammenhängende oder große Allokation im Frequenzspektrum,
im Kontext von heterogenen zellularen Netzen im Downlink mit Basis-
stationen und mobilen Nutzern mit jeweils einer Antenne untersucht.
Hierbei ist die Interferenz in den verschiedenen Teilen des allokierten
Spektrums korreliert. Die resultierenden Auswirkungen auf die Datenrate
und die Abdeckungswahrscheinlichkeit werden hier analysiert.

Zu jedem der obengenannten Teile in dieser Arbeit werden theoretische
Ergebnisse erarbeitet und diese mithilfe von detaillierten Simulationen
validiert, Performance-Vergleiche präsentiert und wertwolle Erkenntnisse
für den praktischen Einsatz von Diversity-Combining-Verfahren unter
Einfluss von Interferenzkorrelation erworben.
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1

Introduction

Mobile wireless networking has continued to cover more and more of our
daily life and it is a common perception that this global trend is not to
decelerate in the near future. This forecast is supported by recent market
studies conducted by notable industry institutions, projecting an 11-fold
growth in global mobile data traffic and over 10 billion mobile-connected
devices by 2018 [1]. But besides gearing up to meet these dramatically
increasing capacity demands, sometimes termed as the “1000x capacity
challenge” [2], future network architectures must also cope with newly
emerging types of services. For instance, Machine-Type Communications
(MTC), which is typically characterized by inexpensive hardware, low
data-rate, and high link reliability depending on the underlying use case
[3], is expected to increase at a compound annual growth rate of roughly
25%-35% between 2014 and 2018 [1, 4].

The wireless community has largely agreed on the following key technolo-
gies that hold the promise of providing the required innovation in the
specific optimization direction, see [5] for an overview.

(i) Multi-antenna techniques: Leveraging the spatial dimension
through use of Multiple-Input Multiple-Output (MIMO) to increase
link reliability and/or data rate will play a key role in future networks.
Depending on the number of antennas and the amount of Channel
State Information (CSI) at the transmitter and receiver, spatial
multiplexing, spatial interference-mitigation, spatial diversity, or
combinations thereof are possible.
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(ii) Heterogeneous networks: Deploying low-power Base Stations
(BSs), i.e., pico and femto BSs, within macro coverage areas is a
promising way to boost capacity in dense cellular systems [6]. Device-
to-Device (D2D) communications allows mobile users to connect
directly using operator-owned spectrum, which introduces an ad hoc

component to cellular networks [7, 8]. Besides, the trend towards
ubiquitous connectivity and spontaneous network formation has not
lessened the importance of mobile ad hoc and sensor networks [9].

(iii) Larger transmission bandwidths: Allocating more spectrum to
users allows communication at higher data rates. Carrier aggre-
gation, where multiple frequency bands are allocated to a single
user in cellular networks, is now being increasingly adopted by
3rd Generation Partnership Project (3GPP) Long Term Evolution
(LTE) systems [10]. Due to spectrum scarcity in the microwave
band, researchers are currently considering to move to even higher
frequencies lying in the mmWave band above 6 GHz, where huge
amounts of spectrum are available [11].

This thesis capitalizes on (i) and (ii) in the above list, more specifically, on
multi-antenna techniques with diversity combining in ad hoc networks and
Heterogeneous Cellular Networks (HCNs). Thereby, the main focus will be
on the effect of interference created by concurrently transmitting devices
on the performance of diversity combining in both types of networks. In
the following, the general scenario considered in this thesis is introduced
and motivated, and the main leading questions are crystallized.

1.1 Background and Motivation

The interest in using multiple antennas for communication was initiated
by the early works [12–14], and was further fueled by [15–18] in the mid
90s. To date, multi-antenna communications has advanced to a well-
researched technology and is covered in most common communication
theory textbooks, see for instance [19,20]. The use of multiple antennas
opens up a new signaling dimension, namely space, in which information
can be intelligently allocated and/or recovered. In (rich-scattering) fading
channels, signals transmitted from or received by different antennas are
subject to different channel conditions as a result of physical propagation
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phenomena affecting the communication channel between each Tx-Rx
antenna pair differently [20]. This introduces a certain number of so-
called spatial signatures, which, if distinguishable, let the communication
channel appear as having independent paths over which information can
be conveyed from the transmitter to the receiver.

Multi-antenna techniques can be used for mainly three purposes: spatial
diversity, spatial multiplexing, and spatial interference-mitigation. Spatial
diversity uses multiple antennas at the transmitter and/or the receiver
to convey the same information over the different independent paths
to increase link reliability: if one path experiences a deep fade, the
information may still be received successfully on another path. Spatial
multiplexing, in contrast, encodes multiple information streams across
antennas to increase capacity. This concept is more demanding than
spatial diversity since cross-antenna interference must be resolved at the
receiver [15]. If knowledge about the interfering channels is available
in a multi-antenna system, spatial interference-mitigation can remove
undesirable interference created by other transmissions in the same band
to improve link performance. There exists a multitude of techniques that
realize one or a combination of the above three multi-antenna concepts,
see for instance [21]. These techniques can be roughly divided into
closed-loop and open-loop based. Closed-loop techniques exploit CSI,
i.e., (some) knowledge of the spatial signatures, at both the transmitter
and receiver to optimize antenna parameters in some specific way. For
instance, maximal-ratio transmission uses a channel-matched pre-coding
at the transmitter to maximize the received useful signal power.

Among the different possibilities outlined above, diversity combining at
the receiver is a popular multi-antenna approach [22, Sec. 9]. By linearly
combining the desired signal received at the different Rx antennas un-
der CSI-Rx, diversity combining offers Rx diversity independent of the
particular signaling scheme employed by the transmitter. Its popularity
is mainly due to its relatively good trade-off between performance and
complexity. For instance, while comparable open-loop based Tx-diversity
schemes suffer a power penalty [22, Sec. 14.3], this is not the case for diver-
sity combining. Moreover, availability of reliable CSI-Tx may sometimes
not be possible [23, Sec. 11.2.1] due to, e.g., a noisy CSI feedback link to
the transmitter in Frequency Division Duplexing (FDD) systems or high
user mobility, in which case diversity combining becomes a viable fallback
option. It is known that, under ideal conditions, interference-mitigating
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multi-antenna receivers are more powerful than simple diversity combin-
ing in the presence of interference. However, the picture changes when
accounting for real-life impairments such as imperfect interference-channel
estimation, finite dynamic range of analog-to-digital converters in receiver
front-ends, and residual (non-canceled) interference [24,25].

Besides, the emergence of heterogeneous networks has assigned evermore
importance to the problem of interference, which affects also the per-
formance of diversity-combining receivers. Depending on the particular
scenario, characteristics of heterogeneous networks include multi-tier de-
ployment, high transceiver density, limited site-planning, opportunistic
roll-out, and dynamic network topology. In HCNs, for instance, small-cell
BSs are deployed within macro-cell coverage areas to serve wireless-traffic
hotspots in the same band, which introduces inter-tier interference in
addition to intra-tier interference [6]. Mobile or vehicular ad hoc net-
works, in contrast, are infrastructure-less and highly dynamic, which
renders tight interference and power control difficult [19, Sec. 16]. In
such networks, harmful interference situations may thus occur sometimes
unpredictably fast.

Interference is the inevitable result of the spatial reuse concept, which
originally laid the foundation for cellular network design in the late 70s
[26] and is now imperatively followed due to today’s spectrum scarcity.
By reusing radio resources in the same geographical area and noting
that signal power decays with distance according to some path loss law
[19,27], it follows that the interference experienced at a certain location
depends upon the spatial network geometry. Now, taking into account
the nature of heterogeneous networks and that, in addition, the fading on
the interfering channels co-influences the interference shape, it becomes
evident that interference itself is essentially a hard-to-predict quantity in
practice. As the reader may already imagine, this certainly has an impact
on the performance of diversity-combining receivers. In order to approach
this key point from a more concrete perspective, the discussion will be
continued by specializing on a particular diversity-combining scheme.

1.1.1 A Prominent Example: Maximal-Ratio Combining

Maximal-Ratio Combining (MRC) is a popular diversity scheme found
in a variety of multi-antenna receivers. In a nutshell, MRC assigns more
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weight to branches with good reception quality and less weight to those
with poor reception quality [12]. In the absence or without knowledge
of interference, MRC is known to maximize the post-combiner Signal-to-
Interference-plus-Noise Ratio (SINR). MRC is the top choice for many
WiFi access points with IEEE 802.11.n multi-antenna support, typically
in combination with 2–3 antennas, and the same holds for the receiver
front-end of mobile devices, see for instance [28, 29]. In 3GPP LTE
systems, MRC can be used in mobile multi-antenna receivers to improve
downlink performance [23, Sec. 11.1.4], e.g., as a backup solution in
situations where the use of more sophisticated schemes is not practical.

Like for other diversity-combining schemes, the performance of MRC is
affected by interference. More specifically, its performance depends on the
spatial configuration of interfering transmitters on the one hand, and on
the fading on the interfering channels on the other hand. To understand
this, consider for instance the post-combiner SINR for Interference-Aware
(IA) MRC, i.e., when the receiver knows the current interference-plus-noise
power, with N Rx antennas, which can be expressed as

SINRΣ =
N∑

n=1

go,ny
−α

In + σ2
, (1.1)

where go,ny
−α describes the useful power from the desired transmitter at

distance y received at Rx antenna n under random fading gain go,n and
average path loss yα, In is the interference power (hereafter and throughout

this thesis, simply interference) at Rx antenna n, and σ2 is the power of
the Rx noise, typically assumed Additive White Gaussian Noise (AWGN).
The reader is referred to Appendix B for details. Due to spatial reuse, the
interference In is created by multiple interfering transmitters at locations
{xi} with random fading gains {gi,n} to antenna n of the considered
receiver, hence In =

∑

xi∈ϕ gi,n‖xi‖−α ⇒ In(ϕ), where ϕ = {xi} is the
spatial configuration of interfering transmitters or simply, the spatial

network geometry. As a result, SINRΣ is essentially a function of ϕ, i.e.,

SINRΣ ⇒ SINRΣ(ϕ) =
N∑

n=1

go,ny
−α

In(ϕ) + σ2
. (1.2)

Obviously, the interference-plus-noise power In(ϕ)+σ2 inside the addends
in (1.2), i.e., in the per-antenna SINRs, may have different levels across
the N Rx antennas, depending on the spatial network geometry ϕ and
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the fading gains {gi,n}. This kind of branch imbalance may significantly
affect the performance of MRC as reported in [30–32] for a fixed number
of interferers, a specific spatial network geometry ϕ, and exponentially
distributed fading gains {gi,n} (Rayleigh fading). Although this is a
material finding, it does not help answering a system designer’s question
whether or not to bank on MRC in a dynamic interference environment.
More specifically, while the implementation aspects of MRC do not change
with the considered scenario, its performance will certainly do and thus,
finding a general performance-complexity trade-off remains impossible
as the performance will depend on the particular spatial network geome-
try. For instance in the context of 3GPP LTE, the gain of Interference
Rejection Combining (IRC) over MRC varies significantly with the spa-
tial configuration of interfering BSs [33] and for some configurations the
higher complexity of IRC may not be justified. It thus becomes evident
that many spatial network geometries need to be considered in order
to obtain a clearer picture. In other words, one needs to average the

performance over many spatial network geometries. Thereby, the number
of network geometries that need to be considered largely depends upon
the degree of spatial randomness inside the network; and this degree can
be considerably high in heterogeneous networks.

1.1.2 Spatial Averaging in Wireless Networks

Spatial averaging, i.e., averaging over many spatial network geometries,
is necessary to decouple the outcome of a performance evaluation from
the actual spatial network geometry ϕ. This is typically realized by
means of Monte-Carlo simulations, where in each iteration a particular
network geometry is generated according to some law, and the results
obtained are finally averaged over all simulated geometries. Although
popular, simulations have several shortcomings. First, despite the high
processor power of today’s computers, detailed simulations are often time
consuming, thereby quickly wearing out a researcher’s daily routine. Sec-
ond, simulations fail to reveal the functional relationship and dependence
of the relevant system parameters since all effects are lumped into a
single number. In this sense, simulations can often provide only marginal
insights and limited intuition, if any. Third, simulations may be prone
to dubious or even erroneous results if no possibility for cross-validation
exists.
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As a viable approach to complement simulation-based methods and
to overcome their shortcomings listed above, spatial averaging using
analytical tools has attracted much interest recently. The basic idea
behind this approach picks up on the fact that the spatial network
geometry ϕ in heterogeneous networks typically appears random to a
mobile receiver due to the characteristics of heterogeneous networks
explained before. It is thus reasonable to treat ϕ as a particular realization
of a random variable Φ, which represents all possible spatial network
geometries that may occur with some probability. Following this key idea
leads to the stochastic geometry framework [34], which formalizes the
concept of assigning a certain probability law to Φ. More specifically, the
locations {xi} of interfering transmitters are now assumed to follow a
spatial point process denoted by Φ , {xi}. In essence, this randomization

of locations yields a stochastic description of the spatial network geometry,
which can be viewed as the equivalent to what is commonly done to model
fading channels, i.e., assuming a certain stochastic model to decouple the
analysis from a particular fading realization. The application of stochastic
geometry to problems in wireless networks has become a notable research
branch, see for instance [35–39] and the references therein.

Revisiting (1.2), the post-combiner SINR for IA-MRC can then be ex-
pressed as a function of the point process Φ, i.e.,

SINRΣ(ϕ)
spatial

randomization⇒ SINRΣ(Φ) =
N∑

n=1

go,ny
−α

In(Φ) + σ2
. (1.3)

Comparing (1.2) and (1.3), the post-combiner SINR is no longer a ran-
dom variable of only the fading gains but also of the spatial network
geometry Φ of interfering transmitters. Now, from a system designer’s
perspective, the probability distribution of SINRΣ(Φ) represents an in-
formative quantity: it offers a basis for comparisons with other schemes,
reveals the effect of the different system parameters, and allows deducing
related key performance indicators such as the average post-combiner
SINR E[SINRΣ(Φ)]. Glancing at the mathematical structure of the right-
hand side of (1.3), it becomes apparent that obtaining the distribution of
SINRΣ(Φ) is not straightforward as SINRΣ(Φ) is now a sum of correlated

random variables. The correlation is induced by the interference terms
{In(Φ)}, which themselves are correlated across the N Rx antennas due to
the common locations of interferers Φ. Knowing that (fading) correlation
across branches reduces diversity and hence, degrades the performance of
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MRC [40], it is evident that interference correlation will do so as well; to
which degree, however, is not quite clear. Unfortunately, characterizing
the underlying correlation structure is difficult since, in addition, the
fading gains {gi,n} usually have a de-correlation effect. As a result, the
interference terms {In(Φ)} are neither uncorrelated nor identical across
branches, which renders a mathematical analysis of SINRΣ(Φ) challenging.
In order to obtain a better understanding on how interference correlation
impacts or limits performance, it is however mandatory to approach this
problem from an analytical perspective.

1.2 Main Contributions

This thesis leverages stochastic geometry tools to model and analyze the
effect of interference correlation on diversity combining. Thereby, empha-
sis is put on multi-antenna systems with IA-MRC at the receiver, since
analyzing this form of diversity combining under correlated interference
has been an open problem in the research community. Using the theory
of point processes, a stochastic model for two types of networks is derived,
namely for wireless ad hoc networks and HCNs. In the former, interfering
transmitters may be located close to a receiver, thereby creating excessive
interference while in the latter, the strongest BS is typically the serving
one. Each of the two models captures the main characteristics of the
underlying network, such as transmitter/BS density, Tx power, number of
antennas, fading statistics, and path loss law. Thereby, considerable effort
is put in finding the optimal balance between generality and realism on
the one side and analytical tractability on the other side. The models are
then modified to analyze also other forms of diversity under interference
correlation such as cooperative relaying and frequency-diversity based
resource allocation. Numerous theoretical expressions characterizing the
performance under interference correlation are obtained and turned into
practical guidelines for system design. For reference, the main take-away
messages are summarized below.

• Ignoring interference correlation across Rx antennas significantly
overestimates the true performance of IA-MRC. In contrast, assum-
ing the same interference level at all Rx antennas only slightly un-
derestimates the performance. The degree of over-/underestimation
thereby depends mainly on the channel characteristics.
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• Interference-Blind (IB) MRC, which does not have information
about the current interference-plus-noise power at the Rx antennas,
performs only slightly worse than its IA counterpart. Although
estimating the interference-plus-noise power is relatively simple,
IB-MRC may in certain cases offer a better performance-complexity
trade-off than IA-MRC. In particular, when the fluctuations on
the interfering channels become weak, e.g., in Nakagami-m fading
channels with large m or in Tx diversity systems, the gain of IA-
MRC over IB-MRC becomes negligibly small due to the increased
interference correlation across Rx antennas.

• A comparison of MRC with other schemes indicates that IA-Selection
Combining (SC) may offer a better performance-complexity trade-
off at certain operating points. The gain of MRC over IA-SC in
terms of average post-combiner SINR is strictly lower in the pres-
ence of interference compared to without. Minimum Mean Square
Error (MMSE) combining has better performance than MRC only
at small SINRs and/or large path loss exponents. In the opposite
regime, MRC may be more favorable than MMSE combining due
to its lower complexity and almost same performance.

• Cooperative relaying using Selection Decode-and-Forward (SDF)
with MRC cannot increase the spatial diversity order, i.e., the outage
probability slope as the interferer density becomes asymptotically
small, under Rayleigh fading. This is due to the inability of the
relay to reduce the interference at the destination on the one hand,
and to the interference correlation across the relay and destination
on the other hand. However, without fading and assuming a perfect
relay-destination link, e.g., as in distributed Single-Input Multiple-
Output (SIMO) systems, the spatial diversity order increases if the
relay-destination separation is large enough to let the interference
appear independent across the relay and destination.

• Exploiting frequency diversity under interference correlation in sys-
tems with large and/or flexible transmission bandwidths improves
performance at small target data rates. Besides, ignoring inter-
ference correlation may overestimate the true offered data rate
considerably. Thereby, the degree of overestimation also depends
on how much frequency diversification is realized.
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1.3 Organization

Chapter 2 develops a stochastic model for slotted-Aloha based wireless
ad hoc networks to analyze the effect of interference correlation on IA-
MRC, while related results on IB-MRC are borrowed from the literature
for comparison reasons. As the main result, a theoretical expression
for the success probability for dual-antenna IA-MRC is derived for the
general case with Rx noise and Nakagami-m fading. A more tractable
and asymptotically tight expression for the general N Rx-antenna case
is presented as well. The main result can be efficiently computed using
a semi-numerical method proposed and discussed in the same chapter.
Using the theoretical results, the gain of MRC over Single-Input Single-
Output (SISO), the accuracy loss due to oversimplified correlation models
for IA-MRC, the spatial throughput of MRC, and the relative performance
between MRC and other linear combining schemes are studied.

Chapter 3 develops a stochastic model for analyzing the performance of
MRC under interference correlation in multi-tier HCNs in the downlink.
While Chapter 2 focuses on the SIMO case, the model in Chapter 3 takes
into account that BSs are typically equipped with multiple antennas
as well. Theoretical expressions for the coverage probability when BSs
employ Orthogonal Space-Time Blockcodes (OSTBCs) using multiple Tx
antennas are derived for both IB-MRC and IA-MRC at the mobile multi-
antenna receivers (MIMO diversity). Using the developed model, the
second-order statistics of the interference, i.e., the variance and correlation
of the interference across Rx antennas, are derived in order to gain insights
into how the interference properties in HCNs fundamentally limit the
gains of IA-based diversity-combining schemes. The theoretical framework
is then used to discuss the separate effects of Multiple-Input Single-
Output (MISO) and SIMO in HCNs, the gain over SISO transmission,
as well as the effect of interference correlation through comparisons
with oversimplified correlation models. The chapter concludes with an
exemplary performance comparison between IB/IA-MRC and IA-SC.

Chapter 4 extends the considerations made in Chapter 2 and Chapter 3,
which focused on diversity combining in multi-antenna receivers, by look-
ing at other forms of diversity reception under interference correlation.
In Section 4.1, this is done for cooperative relaying, where a source and
destination node communicate with the help of a relay node. Although
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spatially separated, the relay and destination experience correlated in-
terference, since interference originates from the same set of interfering
transmitters. The impact of this form of spatial interference correlation
is studied for the case of SDF with MRC at the destination node. In
particular, the diversity order is analyzed for different assumptions about
the fading statistics and the relay-destination placements. In Section 4.2,
the effect of interference correlation on frequency-diversity reception in
HCNs is studied. Here, information is received by a receiver in different
parts of the spectrum under correlated interference, which yields a math-
ematical structure similar to (1.3). Theoretical expressions for the rate
coverage probability are derived and used to study the gains of frequency-
diversity reception in HCNs under correlated interference. Furthermore,
the rate overestimation when ignoring this type of interference correlation
is analyzed as well.

Chapter 5 concludes this thesis by summarizing the main findings and
discussing possible future extensions.
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2

Diversity Combining

in Multi-Antenna

Ad-Hoc Networks

Wireless ad hoc networks consist of wireless devices spontaneously form-
ing a network and communicating directly with each other without the
need for pre-existing infrastructure such as access points, see for instance
[9,41]. Due to lack of centralized medium access coordination between the
devices, strong interference may occur in such networks thereby limiting
transmission reliability and throughput [42]. Another fundamental prop-
erty of wireless ad hoc networks is the highly dynamic network geometry
as a result of opportunistic deployments and node mobility, which causes
the interference scenario to vary frequently and sometimes unpredictably
fast [37].

Multi-antenna receivers employing diversity combining are a promising
technique to increase the performance in wireless ad hoc networks with
interference [43, 44]. Among different schemes, MRC [12, 19, 22] is a
popular choice and therefore ubiquitously found in practice. While
the well-known conventional MRC approach for single-user networks,
i.e., channel-matched MRC or IB-MRC, is relatively well-understood
for wireless ad hoc networks with interference, this is not the case for
IA-MRC. In IA-MRC, the current interference power (hereafter, simply

interference) is taken into account in the computation of the MRC weights
and hence, the interference properties may greatly influence the resulting

12



2.1 Related Work

performance of IA-MRC. More specifically, interference may increase (i)
reception-quality imbalance as well as (ii) correlation across Rx antennas;
two effects already known to decrease the performance of MRC in the
interference-free case [40,45]. The objective of this chapter, which is based
on [T1,T2], is thus to analyze the performance of IA-MRC in wireless ad

hoc networks under the effect of interference using a realistic model.

2.1 Related Work

The effect of interference on the performance of MRC was first studied
assuming fixed interference levels at all Rx antennas, which corresponds
to assuming a fixed spatial network geometry [30,31]. Using the notion
of outage probability, these works demonstrated that interference may
indeed severely degrade the expected performance of MRC, depending
on the number of interferers and their signal strengths. This degradation
is further amplified when interference is received with different levels
across Rx antennas [32], e.g., due to different realizations of the fading
gains to each Rx antenna, as a result of the increased reception-quality
imbalance across Rx antennas. In a broader sense, the outage probability
expressions derived in these prior works may be seen as conditional,
i.e., being conditioned on a certain spatial network geometry creating a
specific interference scenario. This narrows down the range of obtainable
insights and does not offer general guidelines for system design. Clearly,
to evaluate the overall performance of MRC under interference, one thus
needs to average over many realizations of the interference scenario and
hence, over many spatial network geometries. Due to the dynamic nature
of wireless ad hoc networks, this task is however challenging as the spatial
network geometry, and hence the interference often appears random to a
receiver.

A promising and fairly recent approach to address the above challenge is
to use stochastic geometry tools [34]. The reader is referred to [35–38,46]
and the references therein for an overview on this research direction.
Using such tools, the performance of IA-MRC in the presence of inter-
ference, modeled as a Poisson shot noise field, was studied in several
works; mainly under two simplified interference correlation models: for
instance, in [47, 48] the interference was assumed statistically indepen-
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dent across Rx antennas.1 However, interference is correlated across
Rx antennas since the interference at the different Rx antennas origi-
nates from the same source of randomness, i.e., from the same set of
interfering transmitters. This type of correlation is often neglected in
the literature [49], which results in significantly overestimating the true
diversity that IA-MRC can offer. In contrast, treating the interference
as being equally strong at all Rx antennas, as done for instance in [50],
can be seen as assuming full correlation of the interference across Rx
antennas. This, in turn, underestimates the true diversity IA-MRC can
provide as the de-correlation effect of the channel fading is not taken
into account. Clearly, the true correlation structure is in between these
two extremes and capturing it is important for better understanding the
performance of IA-based diversity-combining receivers [51–53]. In [51,52],
the interference properties measured at a multi-antenna receiver were
analyzed within the continuum between complete independence and full
correlation of the interference. In [53], the second-order statistics of the
interference and of outage events were characterized. These works led for
instance to a more realistic performance characterization of the simple
retransmission scheme [54], IA-SC [55], as well as cooperative relaying
[56] in wireless ad hoc networks.

In line with the model treated in [50], another frequent assumption in
the literature is that the MRC weights do not depend on the per-antenna
interference, i.e., they are proportional to only the fading gains of the
desired link, see for instance [32, 57–59]. This type of MRC is referred
to as IB-MRC, in which the receiver is blind to the current per-antenna
interference, and is suboptimal when interference varies across Rx anten-
nas. In slight contrast, the MRC weights in [51,60] were assumed to be
inversely proportional to the spatial density of interferers corresponding
to the interference seen by each Rx antenna. Since the interferer density
is proportional to the mean interference [38], this type of MRC essen-
tially adapts to the long-term effects of the interference. The authors
showed that such a long-term adaptation yields some improvements when
interference is correlated across Rx antennas.

In summary, while IB-MRC is well researched in the context of wireless ad

hoc networks with random interference, this is not the case for IA-MRC,

1In [47], the different Rx antennas correspond to spatially separated single-antenna
receivers in a cooperative relaying scenario.
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which has yet been analyzed only using simpler correlation models for
tractability reasons. This may lead to a distorted performance character-
ization and a wrong performance-complexity trade-off of IA-MRC. For
fair comparison with other linear combining schemes and to allow for
proper system design, a realistic modeling and analysis of IA-MRC is
hence required. This is the main objective of this chapter.

2.2 Contributions and Outcomes

The main contributions and outcomes of this chapter are summarized
below.

Performance characterization of IA-MRC: Using stochastic geom-
etry tools, the success probability (1-outage probability) for IA-MRC
is derived in Section 2.4.1 for the dual-antenna case under influence of
spatially-correlated interference, Rx noise and independent Nakagami
fading. For the asymptotic regime (small outage probabilities), simplified
expressions and a generalization to the case with more than two Rx anten-
nas are presented in Section 2.4.2. To complement the theoretical work,
a methodology for numerical evaluation of the main results is proposed
and discussed in Section 2.4.3.

Comparison with simpler correlation models: In Section 2.5.1,
the theoretical results for IA-MRC are used to study the validity of
simpler correlation models frequently used in the literature due to their
analytical tractability. It is shown that simply ignoring interference
correlation (No Correlation (NC) model) across Rx antennas considerably
overestimates the true performance of IA-MRC, particularly when channel
fading variability is low. In contrast, assuming identical interference levels
across antennas (Full Correlation (FC) model) slightly underestimates
the available diversity, and hence the true performance of IA-MRC. The
resulting performance gap rapidly decreases with the Nakagami parameter
mI of the interfering links and remains less than about 10% depending
on the path loss exponent. This observation suggests the existence of an
asymptotic equivalence between the FC model and the exact correlation
model covered in Section 2.4, which is mathematically established in
Section 2.5.1. One key insight is that the much simpler FC model can
be used whenever the interfering links undergo a strong path loss and/or
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Figure 2.1: Comparison between IB-MRC and IA-MRC along with NC
and FC models.

poor scattering (large mI). Moreover, it is shown that the FC model for
IA-MRC corresponds to IB-MRC in terms of post-combiner SINR. Thus,
all insights obtained for IA-MRC under the FC model apply to IB-MRC
as well. Fig. 2.1 illustrates the above findings.

Diversity order and spatial throughput: Exploiting the correspon-
dence between the FC model and IB-MRC, the diversity order of IA-MRC
and IB-MRC in the presence of spatial interference correlation is studied
in Section 2.5.2. It is shown that both types of MRC cannot provide
a diversity order gain since the diversity order is the same as for con-
ventional SISO systems, irrespective of the number of Rx antennas. In
Section 2.5.3, the improvement of MRC receivers on spatial throughput is
studied, where it is found that the critical density of concurrent transmis-
sion given a target outage probability scales sublinearly in the number of
Rx antennas. Thereby, the critical density gain over SISO systems scales
considerably larger for IA-MRC than for IB-MRC in typical settings. For
the dual-antenna case, it is further shown that MRC enables much better
throughput operation points in terms of the transmission capacity metric
compared to the SISO case.

Comparison with other linear combining schemes: Using the theo-
retical results, the performance of MRC is compared with other commonly
known diversity-combining schemes in Section 2.5.4. It is found that
MMSE combining, which adapts to the interference correlation across
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Rx antennas, yields significant gains over MRC in terms of both success
probability and average post-combiner SINR with increasing path loss
exponent. For small path loss exponents, however, there is almost no
benefit from estimating/exploiting the interference correlation, as MRC,
although sub-optimal, achieves almost the same performance as MMSE
combining. Using Jensen’s inequality, the average post-combiner SINR
gain of MRC over IA-SC is found to be generally smaller in wireless
ad hoc networks than in the interference-free case, and monotonically
decreasing with the path loss exponent. For typical path loss exponents,
the average post-combiner SINR gain of MRC over IA-SC is about 1 dB.
Especially for large path loss exponents, these observations suggest that
MMSE combining and IA-SC may offer a better performance-complexity
trade-of than MRC.

2.3 System Model

Consider an N -antenna receiver communicating with a single-antenna
transmitter over an arbitrary distance y. In this SIMO scenario, the
transmitted signal received at the N Rx antennas is corrupted by Rx
noise and interference caused by other nodes concurrently transmitting
over the same time-frequency resources inside the wireless network. To
capture the spatial dynamics inherent to ad hoc networks, the locations
of these interferers are modeled by a stationary Poisson Point Process
(PPP) Φ , {xi} on R

2 with density λ, see Definition A.3. Here, xi
denotes the location of the i-th interferer. A realization of the point
process Φ can be viewed as a single snapshot of the spatial network
geometry, which typically varies over time, e.g., due to mobility. The
PPP model is widely accepted for studying multiple kinds of networks, see
for instance [36,39,61] and the references therein. Since Φ is stationary
its statistics (and hence, the interference statistics) are location-invariant,
see Definition A.3. Thus, the considered receiver can be placed in the
origin o ∈ R

2 without loss of generality.

From the independence property of the PPP, see (ii) in Definition A.2, it
follows that there exists no spatial inhibition of interferers and hence, an
interferer may be located (arbitrarily) close to any point in R

2, including
the considered receiver at o. The PPP is thus a reasonable model for
networks without tight medium access coordination, e.g., slotted Aloha.
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Interferer

Considered
MRC Receiver

Desired
Transmitter

Figure 2.2: Illustration of the scenario for the example N = 2. The
considered dual-antenna receiver communicates with the
desired transmitter (solid), while experiencing interference
from surrounding interferers (dashed).

All transmitted signals are subject to a distance-dependent path loss and
small-scale narrowband channel fading. Large-scale or shadow fading is
not modeled but can be included, e.g., using ideas from [62–65]. The path
loss between the i-th interferer and the considered receiver is given by
‖xi‖α, where α > 2 is the path loss exponent. Assuming unit Tx power
for all nodes, the received power from interferer i at the n-th Rx antenna
then becomes gi,n‖xi‖−α, where gi,n is the channel fading (power) gain on
the respective link. The {gi,n} are assumed to be i.i.d. Gamma random
variables with shape mI and rate mI, see Definition A.1. This leads to the
widely used Nakagami-m fading model with parameter m ≥ 1/2, where
the fading amplitude

√
gi,n has Probability Density Function (PDF)

f√
gi,n(z) =

2mmz2m−1

Γ(m)P̄mr
exp

(

−mz2

P̄r

)

, (2.1)

where P̄r is the average received power, which can be set equal to one since
‖xi‖−α already accounts for it. The Nakagami-m model is fairly general,
covering rich-scattering (Rayleigh, m = 1), medium-scattering (Rice with
fading parameter Ω, m = (Ω + 1)2/(2Ω + 1)), and poor-scattering (pure
path loss, m → ∞) environments, see for instance [19].

Similarly, the fading gain between the desired transmitter and the n-th
Rx antenna of the considered receiver, denoted by go,n, is assumed i.i.d.
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2.3 System Model

Table 2.1: Notation used throughout this chapter

Notation Description

Φ; λ Set of (random) interferer locations modeled as PPP;

spatial density of interferers

N Number of Rx antennas (branches)

y Distance between considered receiver and desired

transmitter

α Path loss exponent

gi,n; go,n Power fading gain between n-th antenna of considered

receiver and i-th interferer; and desired transmitter

mI; mD; κDI Nakagami parameter of fading on interfering links; on

desired links; κDI = mD/mI

In Current interference (power) at n-th Rx antenna

SNR Average SNR at the considered receiver

SINRn SINR at n-th Rx antenna

SINRΣ Post-combiner SINR for MRC

T SINR threshold

Pc Success/coverage probability

λǫ Critical density for given outage probability constraint ǫ

TC(ǫ) Transmission capacity for given outage probability

constraint ǫ

Gamma distributed with shape mD and rate mD, where mD ∈ N
+. To

preserve generality, the fading parameters mI and mD do not need to
be identical, i.e., interferers and desired transmitter may be subject to
different fading statistics. The case mD = mI = m is referred to as
the symmetric fading case with parameter m while the term asymmetric

fading is used whenevermD 6= mI. The short-hand notation κDI ,mD/mI

will be used throughout this chapter. By Lemma A.1, it follows that
E[gi,n] = E[go,n] = 1 ∀n ∈ {1, . . . , N} and xi ∈ Φ. Furthermore, it
is easy to check from (A.2) that gi,n → 1 (go,n → 1) almost surely
∀n ∈ {1, . . . , N} and xi ∈ Φ as mI → ∞ (mD → ∞). Fig. 2.2 illustrates
the considered scenario.

Medium access is assumed to be slotted with a duration equal to or
less than the channel coherence time. Since the receiver is interference-
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2 Diversity Combining in Multi-Antenna Ad-Hoc Networks

aware, it can not only perfectly estimate the instantaneous fading gain of
the desired link (the {go,n}) but also the current interference-plus-noise
power within one slot. By [12], the MRC weight in the n-th branch is
then chosen proportional to the fading amplitude of the desired link and
inversely proportional to the current interference-plus-noise power at the
n-th antenna, see Appendix B for further details. The post-combiner
SINR for IA-MRC can then be expressed as (B.7)

SINRΣ ,
N∑

n=1

SINRn =
go,1

I1 + SNR−1 + . . .+
go,N

IN + SNR−1 , (2.2)

where

In , yα
∑

xi∈Φ

gi,n‖xi‖−α (2.3)

is the interference experienced at the n-th Rx antenna normalized by y−α

and SNR is the average Signal-to-Noise Ratio (SNR). In is understood as
the instantaneous interference averaged over the interferer symbols within
one transmission slot, and hence corresponds to the current variance of
the sum interference signal at the n-th Rx antenna given that the signal
is zero mean, see Appendix B for more details. Since medium access is
slotted, In can be assumed to be constant for the duration of one slot. It
can be shown that In < ∞ almost surely ∀n ∈ {1, . . . , N} when α > 2,
see for instance [38]. Table 2.1 summarizes the notation used in this
chapter.

Note that, although all fading gains {gi,n} on the interfering links are
independent across interferers and Rx antennas, the interference levels
{In} and hence, the individual {SINRn} are not. In fact, the {SINRn}
are correlated since the {In} originate from the same set of interferers,
i.e., from the common point process Φ. The distribution of (2.2) can, in
general, be obtained through the use of the joint PDF of the interference
envelopes derived in [52] for the case of isotropic interference, i.e., by
averaging the conditional distribution of the post-combiner SINR over
the interference statistics. However, this approach is analytically involved
since (i) the joint PDF of the interference envelopes cannot be expressed
by a closed-form expression (ii) and one has to deal with the sum of
non-identical Gamma random variables, which is analytically difficult.
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2.4 Performance of IA-MRC

2.4 Performance of IA-MRC

In this section, the success probability for IA-MRC for the setting de-
scribed in Section 2.3 is derived for the special case N = 2 (Theorem 2.1).
Then, further simplifications and a generalization to N > 2 for the asymp-
totic regime (Theorem 2.2) is presented. Finally, a semi-analytical method
for evaluating some of the theoretical expressions is also discussed.

2.4.1 Dual-Antenna Case

A common way of studying the performance of diversity-combining
schemes is to analyze the distribution of the post-combiner SINR. More
specifically, one is interested in the probability of the post-combiner SINR
exceeding a given threshold. This concept is formalized next.

Definition 2.1 (Success/coverage probability). The success or coverage

probability is defined as

Pc , P (SINRΣ ≥ T ) (2.4)

for a modulation- and coding-specific threshold T > 0.

Pc can be seen as

(i) the probability of the transmission between the considered receiver
and the desired transmitter being successful.

(ii) the complementary Cumulative Distribution Function (CDF) of
SINRΣ or 1 − outage probability.

(iii) the probability of the considered receiver being covered by the
desired transmitter.

(iv) the average fraction of successful transmissions of the same type
inside the network.

The alternative term coverage probability (iii) will be more appropriate in
Chapter 3, where cellular systems with BSs covering the mobile users are
considered. Point (iv) follows from the ergodicity of the PPP Φ [34].

The number of antennas mounted on practical wireless consumer devices,
such as smartphones or WiFi devices, typically remains small due to
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2 Diversity Combining in Multi-Antenna Ad-Hoc Networks

space limitations and complexity constraints, thereby often not exceeding
N = 2 antennas. The following result gives the success probability for
this prevalent scenario.

Theorem 2.1 (Success probability for dual-antenna IA-MRC). The

success probability for dual-antenna IA-MRC (N = 2) in the described

setting is given by

PIA
c =

mD−1∑

k=0

(−1)k+mD

k! Γ(mD)

∫ ∞

0

z−1

× ∂k+mD

∂sk∂tmD

[

exp
(

−mD

SNR

(
(T − z)+s+ zt

)
− πλA(z, s, t)

)]

s=1
t=1

dz,

(2.5)

where

A(z, s, t)

y2κ
2/α
DI Γ(1 − 2

α )
=







s2/α(T − z)2/α Γ(2mI + 2
α )

×2F1

(

− 2
α ,mI, 2mI; 1 − zt

(T−z)s

)

, 0 ≤ z < T (2.6a)

z2/αt2/α
Γ(mI + 2

α )

Γ(mI)
, z ≥ T. (2.6b)

Proof: See Section 2.7.1.

The function 2F1(a, b, c; z) , 2F1(a, b, c; z) /Γ(c) is known as the regular-

ized Gaussian hypergeometric function [66] and is implemented in most
numerical software programs. A method for semi-analytical evaluation
of (2.5) is presented and discussed later in Section 2.4.3. In practice,
the channel fading statistics are often symmetric, i.e., mD = mI = m, in
which case κDI = 1 can be assumed in (2.6).

Remark 2.1 (Integral decomposition). The integral in (2.5) over [0,∞)

can be split into two integrals with limits [0, T ) and [T,∞) to get rid of

the (·)+ function and to exploit the fact that the integrand of the upper

integral becomes zero for all derivatives with respect to s.

Theorem 2.1 covers only the dual-antenna case and an extension to N > 2

is analytically too involved unfortunately. For practical operating points,
where PIA

c is close to one, a possible extension to general N is presented
in Section 2.4.2. Starting from the result of Theorem 2.1, simplified
expressions can be obtained in certain cases as shown next.
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2.4 Performance of IA-MRC

Corollary 2.1 (Rayleigh fading (mD = mI = 1)). When mD = mI = 1

(symmetric Rayleigh fading), the success probability for dual-antenna

IA-MRC (N = 2) in the described setting reduces to

PIA
c = −

∫ ∞

0

z−1 d

dt

[

exp

(

− (T − z)+ + zt

SNR
− λπA(z, 1, t)

)]

t=1

dz, (2.7)

with

A(z, 1, t) = πy2 2

α
csc

(
2π

α

)
((T − z)+)

1+2/α − (zt)1+2/α

(T − z)+ − zt
. (2.8)

The path loss exponent observed in typical urban and rural scenarios is
often around α = 4 [19, 20]. This observation motivates the following
corollary, which further simplifies Corollary 2.1.

Corollary 2.2 (Rayleigh fading, α = 4). When mD = mI = 1 (symmet-

ric Rayleigh fading) and α = 4, the success probability for dual-antenna

IA-MRC (N = 2) in the described setting reduces to

PIA
c = −

∫ ∞

0

z−1 exp

(

− (T − z)+

SNR

)

× d

dt

[

exp

(

− zt

SNR
− λπ2y2

2

((T − z)+)
3/2 − (zt)3/2

(T − z)+ − zt

)]

t=1

dz (2.9)

Similar simplifications that allow (2.5) to be expressed through elementary
functions can be obtained by invoking functional identities of the Gaussian
hypergeometric function for suitable α and mI, see for instance [66–68].

Remark 2.2 (Interference-/noise-limited performance). The success

probability for the interference-limited case can be obtained by setting

1/SNR = 0 in (2.5). Likewise, the success probability for the noise-limited

case can be recovered by setting λ = 0. In the later case, the success

probability becomes PIA
c = 1 − Fgo,1+go,2(T/SNR) as expected [19].

The success probability for dual-antenna IA-MRC under poor scattering
can in general be obtained by letting mD,mI → ∞, eventually leading
to the pure path loss model. However, noting that gi,n, go,n → 1 as
mD,mI → ∞ ∀n ∈ {1, . . . , N} and xi ∈ Φ, SINRΣ for the case of N Rx
antennas becomes SINRΣ = N

SNR−1+I
, with I = yα

∑

xi∈Φ ‖xi‖−α. This, in
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Figure 2.3: Success probability PIA
c for different mD = mI = m (sym-

metric Nakagami fading). Parameters: λ = 10−3, α = 4,
d = 10, and SNR = 0 dB. Dashed line (m → ∞) was obtained
using [49, Eq. (3.17)].

turn, corresponds to the SINR for the SISO case without fading and
with N -fold received power increase. The success probability for this case
can be obtained, e.g., by Laplace inversion [35] or using the dominant-
interferer technique [42]. For α = 4, a closed-form expression can be
obtained using [49, Eq. (3.17)]. Fig. 2.3 shows the success probability PIA

c

for different mD = mI = m (symmetric Nakagami fading). It can be seen
that the result from Theorem 2.1 perfectly matches the simulation results.
Furthermore, increasing the Nakagami parameter m has two effects on
Pc: for reasonable values of PIA

c > 0.3, a smaller channel variability (m ↑)
improves transmission reliability, whereas for (non-practical) small values
of PIA

c this trend is reversed. Interestingly, all curves seem to intersect
at one unique point (in this example around T = 2.3 dB). The success
probability for m → ∞ (no fading) is also shown for reference and was
obtained by [49, Eq. (3.17)].

This subsection focused on the success probability for IA-MRC for general
operating points. When focusing on practically relevant operating points,
i.e., reasonably large success probabilities, further simplifications and a
generalization to N > 2 are possible as shown in the following.
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2.4 Performance of IA-MRC

2.4.2 Asymptotic Analysis and Extension to N Antennas

Practical communication systems typically operate at reasonably high
success probabilities in order to be energy efficient. It is therefore interest-
ing to study the performance of IA-MRC as T → 0. Another motivation
for studying such an asymptotic performance is that the resulting asymp-
totic expression often follows a fairly simple law that can be expressed in
closed-form. For instance, it would be desirable to have such a asymp-
totic expression for PIA

c in (2.5) that does no longer contain an improper
integral over two higher-order derivatives.

Asymptotic Analysis I: Comparison with SISO Transmission

The following corollary gives an asymptotically tight expression for the
success probability for dual-antenna IA-MRC in the absence of Rx noise.
A similar though more bulky expression can be derived also for the case
with Rx noise, however, with no additional insights.

Corollary 2.3 (Asymptotic PIA
c for dual-antenna case). Without Rx

noise (1/SNR = 0), the asymptotic success probability for dual-antenna

IA-MRC in the described setting becomes

PIA
c ∼ 1 − πλy2κ

2/α
DI T

2/α

(
Γ(mD − 2

α )Γ(mI + 2
α )

Γ(mI) Γ(mD)

− 2 Γ(2mI + 2
α )

αB(mI,mD)

mD−1∑

k=0

Γ(− 2
α +mD + k)Ck

B(mI, k + 1)(mI + k)

)

(2.10)

as T → 0, where B(x, y) ,
Γ(x)Γ(y)
Γ(x+y) is the Beta function [66] and

Ck ,

∫ 1

0

u2/α−1−k (1 − u)
k

×2F1

(
− 2
α +mD + k,mI + k, 2mI +mD + k; 2 − 1

u

)
du. (2.11)

Note that (2.10) does neither contain an improper integral nor higher-
order derivatives. The integral in (2.11) can be computed using standard
numerical software. For the special case mD = mI = 1 (Rayleigh fading)
and α = 4, (2.11) becomes C0 = 2 + 2−3/2 log(6 − 4

√
2) − 2−1/2 log(2 +√

2) ≈ 0.753 and (2.10) then reduces to

PIA
c ∼ 1 − 0.2176π2λy2

√
T . (2.12)
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Figure 2.4: Relative outage probability reduction ∆IA-MRC-SISO
E[SINR] when

switching from SISO to IA-MRC. Parameters: mD = mI =

m (symmetric Nakagami fading), no Rx noise, and y = 10.

Remark 2.3. The first term inside the brackets in (2.10) corresponds

to the asymptotic success probability for the SISO case

PSISO
c ∼ 1 − πλy2T 2/ακ

2/α
DI

Γ(mD − 2
α )Γ(mI + 2

α )

Γ(mI) Γ(mD)
, (2.13)

which was derived in [69] for symmetric Nakagami fading. Hence, the

second term in (2.10) characterizes the success probability gain due to

dual-antenna IA-MRC.

By Remark 2.3, the outage probability (1 − Pc) for the above special case
mD = mI = 1 and α = 4 is hence reduced by 56.2% when switching
from SISO to dual-antenna IA-MRC in the asymptotic regime. This
observation is generalized to the case of different m and α next.

Figure 2.4 shows the relative reduction in outage probability in the
asymptotic regime when switching from a SISO system to dual-antenna
IA-MRC. The relative reduction is defined as ∆IA-MRC-SISO

1−Pc
= (PIA

c −
PSISO

c )/(1 − PSISO
c ) and can be obtained by leveraging Remark 2.3 and

(2.13). As expected, decreasing the per-antenna SINRn variance through
increasing the Nakagami parameter m reduces the relative improvement
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2.4 Performance of IA-MRC

due to dual-antenna IA-MRC. For typical path loss exponents 3 < α < 6,
the relative improvement is 20% < ∆IA-MRC-SISO

1−Pc
< 40% for large m, and

40% < ∆IA-MRC-SISO
1−Pc

< 70% for small m (close to Rayleigh fading).

Asymptotic Analysis II: Extension to General N

In [42], a general technique for lower bounding the outage probability
1 − Pc in random ad hoc networks was proposed, which is based on the
idea of dominant interferers. In contrast to non-dominant interferers,
the individual interference contribution from a single dominant interferer
already suffices to cause outage at the considered receiver. Mathematically,
this means

N∑

n=1

go,n

yαgi,n‖xi‖−α + SNR−1 < T ⇔ interferer i is dominant. (2.14)

The set of dominant interferers is essentially a subset of Φ obtained by
independent thinning, see Lemma A.5. This set can be expressed as

D ,

{

xi ∈ Φ :

N∑

n=1

go,n

yαgi,n‖xi‖−α + SNR−1 < T

}

. (2.15)

Note that D depends on the fading gains {go,n}, which can viewed as a
“breathing” of the dominant-interferer set according to the actual channel
quality on the desired link. Clearly, ignoring the non-dominant interfer-
ers, i.e., those from the set Φ \ D, underestimates the true interference
and yields a sufficient condition for outage. Consequently, one has the
inequality relation

PIA
c ≤ PIA

c,dom , P (D = ∅) . (2.16)

As explained in [42, Sec. III-D] for the no-fading case, the lower bound
constructed using the dominant-interferer approach is remarkably tight
for small outage probabilities, e.g., for T → 0. This is due to the fact
that the random variables {‖xi‖−α} follow a subexponential distribution.
Using [70, Thm. 2.1], it can be shown that the latter observation extends
to the model at hand with fading included, i.e., the product gi‖xi‖−α

is subexponential as well. Subexponential random variables satisfy the
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property

P

(
ξ
∑

i=1

gi

‖xi‖α
> v

)

∼ P

(

max

{
g1

‖x1‖α , . . . ,
gξ

‖xξ‖α
}

> v

)

= P

(
ξ
⋃

i=1

{
gi

‖xi‖α
> v

})

(2.17)

as v → ∞ for some ξ ∈ N, which is also referred to as the single big-jump

principle [71, Sec. I]. Thus, (2.16) becomes an equality in the asymptotic
regime, where outage events are dominated by the presence of close-by
interferers. The following theorem gives the success probability bound
PIA

c,dom for arbitrary number of Rx antennas N and absence of Rx noise.

Theorem 2.2 (Success probability upper bound for IA-MRC). Without

Rx noise (1/SNR = 0), the success probability for N -antenna IA-MRC is

(tightly) upper bounded by

PIA
c .PIA

c,dom= exp

(

− πλT 2/αy2Γ(mD)N

B(mD,mI)NΓ(2/α)

×
∫ ∞

0

u2/α−1U

(

mD, 1 −mI,
u

κDI

)N

du

)

, (2.18)

where U(a1, a2, x) , 1
Γ(a1)

∫∞
0
ta1−1(1 + t)a2−a1−1e−xt dt with a1 > 0 is

the confluent hypergeometric function (Kummer’s U -function) [66].

Proof: See Section 2.7.2.

In comparison with Theorem 2.1, Theorem 2.2 has three advantages for
characterizing the success probability for IA-MRC;

• Arbitrary number of Rx antennas N > 1, i.e., no longer just N = 2.

• General Nakagami fading parameters mD,mI ≥ 1/2, i.e., no need
for mD ∈ N

+ anymore.

• Single-integral form without higher-order derivatives.

Figure 2.5 shows the success probability bound from Theorem 2.2 along
with simulation results for different number of Rx antennas N . In line
with the above discussion on the subexponentiality of the {gi‖xi‖−α},
it can be seen that (2.18) tightly upper bounds the success probability
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Figure 2.5: Outage probability (1 − Pc) for N = 2, 4, 8. Dashed curves
correspond to the success probability bound from Theo-
rem 2.2. Parameters: mD = 3.2, mI = 2.4, y = 10, and
α = 3.5, no Rx noise.

for IA-MRC in the asymptotic regime; in this example, the gap becomes
vanishingly small already at practically relevant outage probability values
around 5%. Hence, in this regime Theorem 2.2 can be used instead
of Theorem 2.1 or instead of time-consuming simulations to assess the
performance of IA-MRC for different number or Rx antennas N .

2.4.3 Semi-Analytical Evaluation of Theorem 2.1

The mathematical form of (2.5) in Theorem 2.1 involves two higher-order
derivatives of a composite function as well as an integral, which makes a
purely analytical evaluation of the result difficult if not impossible. Thus,
one has to resort to numerical tools, of which several approaches exist in
the literature. In the following, a methodology for efficient and robust
semi-numerical evaluation of (2.5) is proposed and discussed.
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Faà di Bruno’s formula and Bell polynomials for analytical t-
differentiation: High-order derivatives of general composite functions
of the form f(g(x)) can be evaluated using the well-known Faà di Bruno
formula, see for instance [66, 72]. Whenever the outer function f(·) is an
exponential function (as it is the case in (2.5)), it is useful to express Faà
di Bruno’s formula through Bell polynomials [73]

dn

dxn
f(g(x)) = f(g(x))Bn

(

g(1)(x), . . . , g(n)(x)
)

, (2.19)

where Bn (x1, . . . , xn) is the n-th complete Bell polynomial. The complete
Bell polynomials can be easily constructed using the matrix determinant
identity from [74]. From (2.19) it is clear that the derivatives of the
inner function g(x) must be computed up to order n in advance. This, in
turn, means that the derivatives inside the exp-term in (2.5) need to be
computed up to order mD. This task is addressed next.

Corollary 2.4 (n-th t-derivative of A(z, s, t)). The n-th derivative of

A(z, s, t) with respect to t evaluated at t = 1 is given by

∂n

∂tn

[

A(z, s, t)
]

t=1

z2/α y2κ
2/α
DI

=







(−1)n+1

Γ(mI)
Γ(− 2

α + n) Γ(mI + n) Γ( 2
α + 2mI)

×2F1

(

− 2
α + n,mI, 2mI + n; 1 − (T−z)s

z

)

,

0 ≤ z < T (2.20a)

2π Γ( 2
α +mI) csc( 2π

α )

αΓ(mI) Γ( 2
α − n+ 1)

, z ≥ T. (2.20b)

Using the approach described above, the derivative of the inner func-
tion with respect to t is computed analytically, i.e., without numerical
difference methods. For the subsequent derivative with respect to s,
however, Faà di Bruno’s formula may not be the best choice since the
outer function is no longer an exponential function and the derivatives of
the resulting inner function are difficult to obtain. A different approach
for the computation of the s-derivatives is therefore needed.

Chebyshev interpolation method for numerical s-differentiation:
Before explaining this differentiation technique, first note that the dk/dsk

derivative in (2.5) can be moved outside the integral over z according to
Leibniz’s integration rule for improper integrals [66]. This step comes
with the advantage of first numerically computing the integral without
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2.4 Performance of IA-MRC

caring about how to evaluate the s-derivative. Interpreting the integration
result as a function of s, say V (s), this function is then approximated
using the Chebyshev interpolation method in some interval [a, b], yielding
[75]

V (s) ≈ Ṽ (s) , − c0

2
+

p−1
∑

i=0

cℓ Tℓ

(
2s− (a+ b)

b− a

)

, (2.21)

where s ∈ [a, b], Tℓ(x) , cos(ℓ arccosx) is the ℓ-th Chebyshev polynomial
of the first kind, p is the number of sampling points, and

cℓ =
2

p

p−1
∑

i=0

V
(

1
2 (b− a) cos

[
π
p (i+ 1/2)

]

+ 1
2 (a+ b)

)

× cos
[
ℓπ
p (i+ 1/2)

]

(2.22)

is the ℓ-th Chebyshev node. Differentiating Ṽ (s) in (2.21) instead of V (s)

at s = 1 yields

dk

dsk

[

V (s)
]

s=1
≈ dk

dsk

[

Ṽ (s)
]

s=1

=

p−1
∑

ℓ=0

cℓ
dk

dsk

[

Tℓ

(
2s− (a+ b)

b− a

)]

s=1

(a)
=

(
2

b− a

)k p−1
∑

ℓ=k

cℓ T
(k)
ℓ

(
2 − (a+ b)

b− a

)

, (2.23)

where (a) follows from the fact that dkTℓ(s)/ds
k = 0 if ℓ < k ∀s. It is

well-known that the Chebyshev interpolation has the smallest maximum
error among all polynomial approximations. This is due to the fact
that end-point effects at the boundaries of the approximation interval
are effectively avoided through projecting the function’s domain onto
the angular interval [0, π] [75, Sec. 5.8]. As a result, the Chebyshev
approximation achieves exponential convergence as p increases.

A step-by-step overview of the proposed semi-analytical method for
evaluating (2.5) is shown in Fig. 2.6. All numerical results and figures in
this chapter were obtained using this method.
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2 Diversity Combining in Multi-Antenna Ad-Hoc Networks

1: procedure Evaluation of (2.5)
2: w0, . . . , wmD−1 ← s-Diff(mD)

3: Pc =
∑mD−1

k=0
(−1)k+mD

wk
k! Γ(mD)

4: end procedure

5: function s-Diff(mD) ⊲ s-derivatives up to order mD − 1
6: s← [a, . . . , b] ⊲ Chebyshev points, 0 < a < 1 < b

7: for ℓ← 0, p− 1 do in parallel

8: V [ℓ]←
∫

∞

0
z−1 t-Diff(z, s[ℓ]) dz ⊲ Values at Chebyshev points

9: end for

10: c1, . . . , cp ← (2.22) ⊲ Get all Chebyshev nodes
11: for k ← 0, mD − 1 do

12: ∂k

∂sk

[
Ṽ (s)

]

s=1
← (2.23) ⊲ Differentiate interpolant

13: end for

14: end function

15: function t-Diff(z, s) ⊲ mD-th t-derivative for specific z, s

16: f(x)← ex

17: g(1)(1), . . . , g(mD)(1)← (2.20) ⊲ Get inner t-derivatives
18: ∂mD

∂tmD
f(g(t))← (2.19) ⊲ Invoke Faà di Bruno’s formula

19: end function

Figure 2.6: Numerical recipe for semi-analytical evaluation of (2.5).

Some comments regarding the numerical recipe in Fig. 2.6:

• Line 2: The method exploits the fact that the higher-order s-
derivatives can be moved outside the integral over z. This is
especially useful because this integral can be efficiently computed
using powerful built-in numerical integration tools with maximum-
error criterion, e.g., using the quadgk routine in Matlab.

• Lines 6 & 7: The value p = mD + 5 was used throughout this
thesis, which was found to yield a good balance between complexity
and accuracy. Furthermore, the interval boundaries were chosen as
a = .8 and b = 1.2.

• Lines 7–9: This for-loop is the most time-consuming task and can
be executed in parallel whenever allowed by the employed hardware
and software.

• Line 18: When SNR < ∞, the linear combination of A(z, s, t) and

the SNR-related term in the exponent of (2.5) must be differentiated
at t = 1. It is easy to check that the latter has first-order derivative
zmD/SNR and higher-order derivatives equal to zero.
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2.5 Discussion

2.5 Discussion

In this section, the theoretical results developed in Section 2.4 are used
for further discussions on the performance of IA-MRC.

2.5.1 Comparison with Simpler Correlation Models

For analytical tractability, it is frequently assumed in the literature
that the interference across different antennas is either equally-strong
or statistically independent. Certainly, such simplifications may lead to
considerable accuracy losses as the true interference correlation structure
across the {In} and hence, across the {SINRn} is distorted. With the
exact model developed in Section 2.4.1 at hand, the validity of these
simpler correlation models is verified for use with IA-MRC and accuracy
losses are quantified in the following.

No-correlation model: In this correlation model, the interference levels
{In} are assumed statistical independent across Rx antennas. Then, (2.2)
boils down to a sum of i.i.d. random variables, which is easier to handle.
Note that the NC model overestimates the true diversity as it assumes
that the interference originates from a separate point process for each Rx
antenna.

Definition 2.2 (NC model). In the NC model, the interference levels

{In} at the N Rx antennas are assumed to be statistically independent, i.e.,

fIn,Im(In, Im) = fIn(In) fIm(Im) ∀m,n ∈ {1, . . . , N}. The corresponding

post-combiner SINR is denoted by SINRNC
Σ .

For N > 1, one can obtain PIA
c,NC by (numerical) Laplace inversion [35,

Cor. 2.3.4] exploiting the i.i.d. property of the {SINRn}, provided the
Laplace transform of SINRn is known. However, this approach is quite
involved because (i) obtaining the Laplace transform of SINRn in closed-
form for general α is difficult and (ii) performing the inverse Laplace
transform requires solving a complex integral. For the practical case
N = 2, the following result gives the success probability for IA-MRC
under the NC model.
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2 Diversity Combining in Multi-Antenna Ad-Hoc Networks

Proposition 2.1 (Success probability PIA
c,NC for dual-antenna IA-MRC).

The success probability for dual-antenna IA-MRC under the NC model

has the same form as in (2.5) with A(z, s, t) replaced by

y2κ
2/α
DI

Γ(1 − 2
α ) Γ( 2

α +mI)

Γ(mI)

((
s (T − z)+

)2/α
+ (zt)2/α

)

. (2.24)

Proof: See Section 2.7.3.

In contrast to (2.6), s (T − z)+ and zt now appear in a sum. This, in
turn, means that the integrand in (2.5) decomposes into the product
fSINR1

(T − z) fSINR2
(z), as expected for independent SINR1 and SINR2.

Full-correlation model: In contrast to modeling the current interfer-
ence as being statistically independent across branches, it can be assumed
to be equally strong, i.e., In ≡ Im ∀m,n ∈ {1, . . . , N}. This assumption
effectively ignores the additional variability in the {SINRn} resulting from
the de-correlation effect of the fading on the interfering links.

Definition 2.3 (FC model). In the FC model, the interference levels

{In} at the N Rx antennas are assumed equal, i.e., gi,m ≡ gi,n ∀m,n ∈
{1, . . . , N} and xi ∈ Φ. The corresponding post-combiner SINR is SINRFC

Σ .

Thus, in the FC model the post-combiner SINR becomes

SINRFC
Σ =

∑N
n=1 go,n

yα
∑

xi∈Φ gi‖xi‖−α + SNR−1 . (2.25)

The next result gives the success probability PIA
c,FC under the FC model

for arbitrary N ≥ 1.

Proposition 2.2 (Success probability PIA
c,FC for N -antenna IA-MRC).

The success probability for N -antenna IA-MRC under the FC model is

PIA
c,FC =

NmD−1∑

k=0

(−1)k

k!

dk

dsk

[

exp

(

−smDT

SNR

−λπy2(sκDIT )2/αΓ(1 − 2
α )

Γ( 2
α +mI)

Γ(mI)

)]

s=1

. (2.26)

Proof: See Section 2.7.4.
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Figure 2.7: Success probability for different mD = mI = m (symmetric
Nakagami fading). Parameters: λ = 10−3, α = 4, d = 10,
SNR = 0 dB.

Note that the expression in (2.26) is much simpler than (2.5), since
no convolution-type integral over z is present. When mI is large, the
exponent in (2.26) can be further simplified noting that m−2/α

I Γ(2/α+

mI)/Γ(mI) → 1 as mI → ∞ [66].

Remark 2.4 (Relationship between FC model and IB-MRC). Assuming

equal interference levels at all Rx antennas in IA-MRC yields the same

post-combiner SINRΣ as for IB-MRC, which is blind to interference.

Consequently, Proposition 2.2 also characterizes the success probability

for IB-MRC; this can be verified by comparing (2.26) with [50, Thm. 1

and Eq. (43)]. Thus, the following discussions on IA-MRC under the FC

model apply to IB-MRC as well.

Figure 2.7 compares the success probability for the exact model against
the success probability for the NC and FC correlation model. Simula-
tion results confirm the theoretical expressions from Proposition 2.1 and
Proposition 2.2. It can be seen that the NC model considerably overesti-
mates PIA

c for practically relevant success probability values around 0.9.
Interestingly, the gap between PIA

c and PIA
c,NC increases with the Nakagami
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2 Diversity Combining in Multi-Antenna Ad-Hoc Networks

parameter m. This is due to the fact that the de-correlation effect of
the channel fading is reduced as mI increases which, in turn, increases
the correlation across the {SINRn}. Ignoring correlation as mI increases
hence becomes even more inappropriate as the diversity is significantly
overestimated in this case.

In contrast, Fig. 2.7 suggests that the FC model yields a closer approx-
imation to PIA

c ; the gap between PIA
c and PIA

c,FC remains fairly small for
practically relevant success probability values. Furthermore, this gap vir-
tually vanishes already for mD = mI = 4 as the curves for PIA

c and PIA
c,FC

become indistinguishable, which is due to the smaller fading variability
for larger mI. This intuitive trend observed in Fig. 2.7 is mathematically
established in the following.

Corollary 2.5 (Asymptotic equivalence of exact model and FC model for
IA-MRC). The exact model and FC model for IA-MRC become equivalent

in terms of success probability as mI → ∞.

Proof: See Section 2.7.5.

Corollary 2.5 is particularly useful for justifying the use of the FC model
for scenarios where the interfering links undergo poor scattering. The
remaining accuracy loss with respect to the exact model can be further
studied by looking at the relative success probability deviation, which is
defined as δFC

Pc
, (PIA

c,FC − PIA
c )/PIA

c = PIA
c,FC/P

IA
c − 1.

Fig 2.8 illustrates the impact of different mD and mI on the deviation
δFC

Pc
for α = 3. For reasonable operating points, e.g., PIA

c > 0.3, δFC
Pc

is
negative due to the underestimated diversity in the FC model; assuming
full interference correlation across Rx antennas reduces the gains of IA-
MRC. The maximal gap, however, remains below 5%. Interestingly,
δFC

Pc
becomes positive for large T (practically non-relevant PIA

c values,
e.g., PIA

c < 0.3). This is in line with the findings in [56], where a similar
behavior was observed within an interference-limited relay communication
scenario. Moreover, reducing fading variance on the interfering links, i.e.,
increasing mI, reduces the gap as already seen in Fig. 2.7 for symmetric
fading. For asymmetric fading, though, the situation is more complex:
while increasing mI reduces δFC

Pc
, increasing mD results in a larger δFC

Pc
.

The latter effect is due to the smaller fading variance on the desired
link, which renders the “modeling error” associated with the FC model
more salient. Although the overall success probability deviation is fairly
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Figure 2.8: Relative success probability deviation δFC
Pc

for different mD,
mI. Parameters: α = 3, λ = 10−3, d = 10. No Rx noise.
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Figure 2.10: Relative success probability deviation δFC
Pc

for different mD,
mI. Parameters: α = 4, λ = 10−3, d = 10, SNR = 7 dB.

small, the FC model may hence be inappropriate when fading variance
on the desired link is smaller than on the interfering links, e.g., when
the desired transmitter pre-compensates for the fading (channel-inversion
power control) or uses multiple Tx antennas to smooth out the fading.
Varying α and/or including Rx noise does not change the above trends for
the success probability deviation as can be seen in Fig. 2.9 and Fig. 2.10.

So far, it has been demonstrated using the exact model that the success
probability deviation for the FC model is not overwhelming (still below
5%). In some cases, though, it may be desirable to quantify the perfor-
mance of a communication system in terms of the complement of Pc, i.e.,
the outage probability 1−Pc, see for instance [19,27]. From a wireless engi-
neer’s perspective, it is hence interesting to know in addition the relative
outage probability deviation caused by the FC model. Similar to the suc-
cess probability deviation, it is defined as δFC

1−Pc
, (1−PIA

c,FC)/(1−PIA
c )−1.

The deviation δFC
1−Pc

is shown in Fig. 2.11 and Fig. 2.12 for different α.
The same parametrization as in Fig. 2.8 and Fig. 2.9 was chosen. Observe
that δFC

1−Pc
is positive in the practical regime as the outage probability is

now overestimated in the FC model. While δFC
1−Pc

and δFC
Pc

share the same
behavior in mD,mI, the deviation is much stronger now. For α = 4.5,
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Figure 2.11: Relative outage probability deviation δFC
1−Pc

for FC model
for different mD, mI. Parameters: α = 3, λ = 10−3,
d = 10. No Rx noise.
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2 Diversity Combining in Multi-Antenna Ad-Hoc Networks

the deviation is between 3% and 15%, while for α = 3 the deviation is
nearly doubled, thereby suggesting that δFC

1−Pc
decreases with α in the

practical regime.

Recall that the FC model corresponds to IB-MRC in terms of suc-
cess/outage probability, see Remark 2.4. Thus, large values for δFC

Pc

and δFC
1−Pc

imply a better performance of IA-MRC relative to IB-MRC.

2.5.2 Diversity Order Analysis

In addition to success/outage probability, the performance of diversity-
combining schemes can be studied by analyzing also their diversity order,
which characterizes the increase in robustness against outage events. In
the single-user case without interference, the diversity order is defined
as the slope of the error probability plotted against the mean SNR in a
log-log fashion [20]. Assuming strong channel coding, e.g., concatenated
convolutional codes or Turbo codes, the error probability is a steep
function of the SNR, see for instance [76, 77], and the outage probability
may then be used instead of the error probability. However, characterizing
the diversity order in the multi-user case with random interference is
not straightforward, since increasing the mean SINR can be realized in
several ways. This problem was discussed in detail in [54], where a specific
diversity order formulation was derived for the retransmission scheme.
For MRC, a different formulation of the diversity order is needed, which
will be the focus next.

Definition 2.4 (Diversity order). The diversity order is defined as

d , − lim
E[SINRΣ]→∞

logP(SINRΣ < T )

logE[SINRΣ]
. (2.27)

Starting from the general expression in Definition 2.4, E[SINRΣ] → ∞ in
(2.27) can be obtained by introducing a parameter c with cE[SINRΣ] =

E[c SINRΣ] and letting c → ∞. Then, (2.27) can be rewritten as

d = − lim
c→∞

logP(c SINRΣ < T )

logE[c SINRΣ]

= − lim
c→∞

logP(SINRΣ < T/c)

log c+ logE[SINRΣ]

(a)
= − lim

T ′→0

logP(SINRΣ < T ′)

log T − log T ′ + logE[SINRΣ]
, (2.28)
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where (a) follows from the substitution T ′ = T/c. Hence, the diversity
order d can be obtained by appropriately scaling the SINR threshold
T . As an example, consider the SISO case with N = 1, for which the
asymptotic success probability is given by (2.13). The diversity order for
the SISO case is

dSISO = lim
T→0

2/α log T + c1

log T + c2
=

2

α
, (2.29)

which can be seen as the baseline, i.e., there is no diversity gain at all.

Next, consider the asymptotic success probability for IB-MRC for general
N , which is given by [51, (5.24)]

PIB
c ∼ 1 − πλy2T 2/ακ

2/α
DI

Γ(mI + 2
α ) Γ(NmD − 2

α )

Γ(mI) Γ(NmD)
. (2.30)

Note that although the term interference-blind is not explicitly used in
[51], (2.30) applies to IB-MRC, since the combining weights depend solely
on the fading gains of the desired link, see [51, Sec. 5.5.2] for further
details. It can be easily verified that

dIB-MRC =
2

α
. (2.31)

Thus, IB-MRC offers no diversity-order increase compared to the SISO
case, irrespective of the number of Rx antennas N . In contrast to IB-
MRC, IA-MRC takes into account the interference. However, using (2.18),
the diversity order of IA-MRC is

dIA-MRC =
2

α
(2.32)

as well, thus dSISO = dIB-MRC = dIA-MRC. Hence, MRC with N Rx
antennas does not increase the diversity order in ad hoc networks with
interference.

The diversity behavior for the various MRC expressions including the
NC and FC model is shown in Fig 2.13 for N = 2. It can be observed
that the outage probability slope for both IB-MRC and IA-MRC is the
same as for the SISO case, thereby validating the diversity-order results.
Interestingly, while the FC model captures the true diversity order of IA-
MRC (which follows from the equivalence with IB-MRC), the NC model
does not; the diversity order in this case is doubled, thereby suggesting
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that IA-MRC achieves full diversity. However, since the NC model ignores
the interference correlation across Rx antennas, the diversity that can be
harvested is greatly overestimated, which explains this misleading result.
This observation underlines the fact that ignoring interference correlation
may significantly distort the true performance of IA-MRC.

2.5.3 Spatial Throughput

From the results obtained in the prior sections it is apparent that
adding more nodes increases the interference, and hence worsens the
post-combiner SINR. In wireless ad hoc networks it is desirable to know
the number of transmissions per unit area that can be supported over a
target distance y subject to a quality-of-service constraint, i.e., the spatial
throughput. The target-distance assumption is known in the literature as
the “dipole model” [36, Chap. 16.2] and is commonly used for studying
the spatial throughput in wireless networks, see for instance [42]. Given a
target outage probability ǫ , P(SINRΣ < T ), the critical density λǫ is the
maximum allowable density of simultaneous transmissions over distance
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y with probability of failure ǫ ∈ (0, 1). For N = 2, λǫ can be obtained
by numerically solving 1 − PIA

c for λ in (2.5). For sufficiently small ǫ, the
asymptotic expression from (2.18) can be used instead for an analytical
solution. Note that the success probability is monotonically decreasing in
λ [42].

Figure 2.14 shows the critical density gain of IA-MRC and IB-MRC over
SISO systems for different N and mD = mI = 1 (symmetric Rayleigh
fading). The SISO outage probability for symmetric Rayleigh fading is
[42,78]

1 − PSISO
c = exp

(

−λπ2y2T 2/α 2

α
csc

(
2π

α

))

, (2.33)

which is a special case of Proposition 2.2 with N = 1. For general mD,mI

and sufficiently small ǫ, the SISO critical density may be obtained using
the first term in (2.10). Solving (2.33) for λ yields

λSISO
ǫ =

−α log(1 − ǫ)

2π2y2T 2/αcsc(2π/α)
. (2.34)

The critical density gain is then defined as ∆IA-MRC-SISO
λǫ , λIA-MRC

ǫ /λSISO
ǫ

and ∆IB-MRC-SISO
λǫ , λIB-MRC

ǫ /λSISO
ǫ for the respective MRC expressions.

As expected, multiple-antenna receivers employing MRC increase the
critical density compared to SISO receivers; for the same target outage
probability ǫ, more concurrent transmissions can take place simultaneously
due to a higher link reliability. This gain is considerably larger for IA-
MRC than for IB-MRC as the number of Rx antennas N grows. For
N = 8 Rx antennas, IA-MRC yields an 7-fold critical density increase,
while for IB-MRC the increase is approximately 4.5 in this example.
Interestingly, Fig. 2.14 reveals a sublinear growth of the critical density
gain in N in this example. A first-order approximation indicates that the
scaling is proportional to

√
N in the case of IA-MRC.

While the critical density λǫ can characterize the maximal allowable
number of concurrent transmissions per unit area, it cannot tell whether
the parameter pair (ǫ, λǫ) leads to an efficient network operation point.
The transmission capacity is another spatial throughput metric for wireless
ad hoc networks, which takes into account also the probability of success.
It is defined as the maximum number of concurrent transmissions that
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Figure 2.14: Critical density gain ∆IA-MRC-SISO
λǫ

and ∆IB-MRC-SISO
λǫ

ver-
sus N . Parameters: ǫ = 0.05, α = 4, d = 15, T = 1,
mD = mI = 1 (symmetric Rayleigh fading), no Rx noise.
Curve fitting coefficients are a = 3 and b = −2.
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Figure 2.15: Transmission capacity c(ǫ) versus target outage probability
ǫ for different mD = mI = m (symmetric Nakagami fading).
Parameters: T = 3, N = 2, d = 10, α = 4, SNR = 6 dB.
Marks represent simulation results.
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2.5 Discussion

can take place simultaneously subject to a target outage probability ǫ,
weighted by the resulting probability of success 1 − ǫ [42], i.e.,

TC(ǫ) , (1 − ǫ)λǫ. (2.35)

The reader is referred to [42,46] for further discussions on the transmis-
sion capacity metric. While the effect of increasing the number of Rx
antennas N on the spatial throughput was already discussed in Fig. 2.14,
the influence of the Nakagami fading parameter m is studied next for
symmetric Nakagami fading and N = 2.

Figure 2.15 shows the TC(ǫ) for dual-antenna IA-MRC for different m
(symmetric Nakagami fading). In agreement with the observations made
in Section 2.5.1, the NC model yields a significantly optimistic result
for IA-MRC while the FC model is slightly pessimistic. Interestingly,
while the accuracy loss of the NC model increases with the Nakagami
parameter m, as expected, the transmission capacity gap between the FC
and the exact model remains fairly small even for m = 1. Recalling that
the FC model corresponds to IB-MRC, this, in turn, means that IA-MRC
and IB-MRC have similar performance in terms of transmission capacity.
The SISO case is also shown for reference. As can be seen, switching
from SISO to dual-antenna MRC offers the possibility to operate the
network at smaller target outage probabilities ǫ as a result of the higher
link reliability. This improvement further increases with the Nakagami
parameter m due to higher robustness against fading induced outages.

2.5.4 Comparison with other Combining Schemes

Besides MRC there exist also other diversity-combining techniques, which
differ in both performance and implementation complexity. The latter is
generally dictated by system design and hardware requirements and hence,
does not change with the communication environment. This, however, is
not true for the performance since different assumptions about the com-
munication environment may lead to significantly different performance
outcomes. To better understand the performance-complexity trade-offs
of diversity-combining techniques, it is hence essential to compare their
performance under realistic model assumptions, such as correlated inter-
ference. In the following, the performance of MRC is compared with two
other popular schemes, namely IA-SC and MMSE combining.
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2 Diversity Combining in Multi-Antenna Ad-Hoc Networks

In IA-SC, only the Rx antenna providing the highest instantaneous SINRn

is selected among all N Rx antennas [19]. Since the incoming signals do
not have to be coherently combined, IA-SC exhibits a lower complexity
compared to MRC, though at the cost of lower performance. In [55],
the success probability for IA-SC under PPP modeled interference was
derived for symmetric Rayleigh fading (mD = mI = 1) and absence of Rx
noise (SNR → ∞) as

PSC
c =

N∑

n=1

(
N

n

)

(−1)n+1 exp

(

−λπ2y2T 2/α 2

α
csc

(
2π

α

)

Dn

(
2

α

))

, (2.36)

where Dn(x) ,
∏n−1
i=1 (1 + x/i) is called the diversity polynomial.

In MMSE combining, the weights are chosen so as to maximize the post-
combiner SINR under knowledge of the interference correlation matrix.
Because it maximizes the post-combiner SINR, MMSE combining is also
referred to as optimum combining [13]. Since the interferer correlation
matrix must be estimated, e.g., by decoding the pilot symbols from
interfering transmitters, MMSE is more complex than MRC. The success
probability for MMSE combining under PPP modeled interference with
symmetric Rayleigh fading (mD = mI = 1) was derived in [79] as

PMMSE
c =

Γ
(
N,λπ2y2T 2/α 2

α csc
(

2π
α

)
+ T

SNR

)

Γ(N)
, (2.37)

where Γ(a, z) =
∫∞
z
ta−1e−tdt is the upper incomplete Gamma function.

Note that similar success probability expressions for IA-SC and MMSE
combining for Nakagami fading with general mD,mI are currently not
available in the literature.

Figure 2.16 compares the success probability for IA-MRC, IB-MRC, IA-
SC, and MMSE combining for mD = mI = 1 (symmetric Rayleigh fading)
for different path loss exponents α. The results for IB-MRC were obtained
using Proposition 2.2 for the FC model, see Remark 2.4. As expected, the
performance of both IA-MRC and IB-MRC is between IA-SC on the lower
and MMSE combining on the upper. Interestingly, the success probabili-
ties of MRC and MMSE combining become similar as α decreases. This
result suggests that for small path loss exponents, almost no improvement
is obtained from estimating the interference correlation matrix and adapt-
ing the combining weights accordingly (MMSE combining), compared to
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2 Diversity Combining in Multi-Antenna Ad-Hoc Networks

computing the weights individually for all Rx antennas (MRC). Such a
strong dependence on the path loss exponent is not observed when com-
paring MRC to IA-SC; the horizontal width of the success probability gap
varies no more than about 1.2 dB over a wide range of SINR thresholds T
independent of α. These observations are further elucidated in Fig. 2.17,
which shows the gain of MRC over IA-SC and MMSE combining in terms
of the post-combiner SINR, i.e., ∆MRC-SC

E[SINR] , E[SINRΣ]/E[SINRSC] and
∆MRC-MMSE

E[SINR] , E[SINRΣ]/E[SINRMMSE] versus α. The above expectations

are obtained using the relation E[z] =
∫∞

0
P(z > z) dz. Note that the

average post-combiner SINR for IA-MRC is the same as for IB-MRC
due to the linearity property of the expectation. It can be seen that
∆MRC-MMSE

E[SINR] plotted in dB decreases almost linearly in α. The gain of
MRC over IA-SC is roughly 1.1 dB for practically relevant path loss
exponents around α = 3.5. This gain over IA-SC, however, is always
smaller than in the well-studied interference-free case; in the latter, the
gain for Rayleigh fading (m = 1) can be expressed in terms of the har-
monic series as ∆MRC-SC

E[SINR],noise(N) , N(
∑N
n=1 1/n)−1 for arbitrary number

of Rx antennas N [19, Sec. 7.2.2], yielding ∆MRC-SC
E[SINR],noise(2) ≈ 1.249 dB for

N = 2. The fact that ∆MRC-SC
E[SINR] ≤ ∆MRC-SC

E[SINR],noise(N) for arbitrary N can
be easily verified using Jensen’s inequality [80], since

∆MRC-SC
E[SINR] =

E

[
go,1
I1

+ . . .+
go,N
IN

]

E{go,n}
[

E{In}
[

max
{

go,1
I1
, . . . ,

go,N
IN

}]]

(a)

≤ NE
[

go
I

]

E{go,n}
[

max
{

EI1

[
go,1
I1

]

, . . . ,EIN

[
go,N
IN

]}]

(b)
=

EI

[
I−1
]
N E[go]

EI [I−1] E{go,n} [max {go,1, . . . , go,N}]

= ∆MRC-SC
E[SINR],noise(N), (2.38)

where (a) follows from the fact that go,1/I1, . . . , go,N/IN and hence, the
max function are convex in I1, . . . , IN , and by Jensen’s inequality, (b)
follows from the {In} being identically distributed and independent of the
{go,n}. Note that the inequality in (a) applies to general fading distri-
butions. Interestingly, it can be seen that ∆MRC-SC

E[SINR] → ∆MRC-SC
E[SINR],noise(2) ≈

1.249 dB as α → 2. This can be explained by the fact that as α → 2, the
{In} degenerate to In ≡ ∞ almost surely [38]; for a degenerate random
variable, Jensen’s inequality becomes an equality.
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The effect of increasing the number of Rx antennas N on the outage
probability is shown in Fig. 2.18 for the considered diversity schemes. As
expected, MMSE combining, which takes into account the interference
correlation across Rx antennas, performs best. In contrast to MRC and
IA-SC, MMSE combining can significantly decrease outage probability by
using more Rx antennas, which is in line with the findings obtained in [79].
Interestingly, MRC and IA-SC follow a similar outage probability scaling
law with N . This suggests that considerable gains using multi-antenna
receivers can be obtained only by leveraging the interference correlation
structure in the computation of the combining weights, as done in MMSE
combining.

2.6 Summary

In this chapter, a theoretical framework for analyzing the performance of
IA-MRC in wireless ad hoc networks under fairly general model assump-
tions was derived. The analysis led to tractable expressions, which were
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2 Diversity Combining in Multi-Antenna Ad-Hoc Networks

further used to obtain several insights for both network modeling and
network design. For instance, while the NC model leads to a considerably
distorted performance evaluation of IA-MRC, the FC model provides a
reasonably tight approximation to the true performance whenever the
fading variance is low and/or the path loss exponent is large. This result
justifies the use of the FC model and could help studying also other
combining schemes, which would otherwise not be tractable when consid-
ering the exact correlation structure. Since the FC model corresponds
to IB-MRC in terms of post-combiner SINR, it follows that IB-MRC
may be the better choice in radio environments with poor scattering
and/or high path loss exponent due to its lower complexity compared to
IA-MRC. Furthermore, a performance comparison between MRC, IA-SC,
and MMSE combining demonstrated that system design should factor
in the particular nature of the channel before deciding which combining
scheme to select in order to find the optimal performance-complexity
trade-off. For instance, in scenarios with small path loss exponents, IA-
MRC achieves almost the same performance as MMSE combining though
with less complexity. Similarly, at large path loss exponents, IA-SC may
be more favorable than MRC due to their similar performance.

2.7 Proofs

2.7.1 Proof of Theorem 2.1

Consider the random variable

SINR2 =
go,2

I2 + SNR−1 (2.39)

and condition PIA
c on the point process Φ and SINR2, yielding

PIA
c = EΦ,SINR2

[

P
(
go,1 ≥ (T − SINR2)(I1 + SNR−1)

∣
∣Φ, SINR2

) ]

. (2.40)

The conditional success probability in (2.40) can be written as

P
(
go,1 ≥ (T − SINR2)(I1 + SNR−1)

∣
∣Φ, SINR2

)

= EI1

[

P
(
go,1 ≥ (T − SINR2)(I1 + SNR−1)

∣
∣Φ, SINR2, I1

) ]
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(a)
= EI1

[
mD−1∑

k=0

ψk1
k!

(I1 + SNR−1)k exp
(
−ψ1(I1 + SNR−1)

)

]

(b)
=

mD−1∑

k=0

(−1)k

k!
EI1

[
(−1)kYke−Y

]

(c)
=

mD−1∑

k=0

(−1)k

k!

dk

dsk

[

LY(s)
]

s=1
. (2.41)

(a) follows from the fact that go,1 is Gamma distributed with shape mD

and rate mD, see Definition A.1, and from the substitution ψ1 , (T −
SINR2)+mD. (b) follows from the substitution Y , ψ1(I1 + SNR−1), and
(c) is a result of the differentiation property for Laplace transforms
[80, Sec. XIII.2].

The Laplace transform LY(s) is obtained as

LY(s) = E{gi,1}

[

exp

(

−sψ1

(

SNR−1 +
∑

xi∈Φ

gi,1
yα

‖xi‖α

))]

(a)
= exp

(

−sψ1

SNR

)
∏

xi∈Φ

Egi,1

[

exp

(

−sψ1gi,1
yα

‖xi‖α
)]

(2.42)

where (a) follows from the i.i.d. property of the {gi,n}. With (2.42),
(2.41) can hence be rewritten as

P
(
go,1 ≥ (T − SINR2)(I1 + SNR−1)

∣
∣Φ, SINR2

)

=

mD−1∑

k=0

(−1)k

k!

dk

dsk

[

exp

(

−sψ1

SNR

)
∏

xi∈Φ

Egi,1

[

exp

(

−sgi,1ψ1y
α

‖xi‖α
)]]

s=1

.

(2.43)

In order to de-condition (2.43) on SINR2 conditional on Φ, the PDF
fSINR2|Φ(z) is first needed. It is obtained as

fSINR2|Φ(z)

=
d

dz
P (SINR2 ≤ z|Φ)

=
d

dz
EI2

[
P
(
go,2 ≤ z

(
I2 + SNR−1

)∣
∣Φ
) ]

(a)
=

d

dz
EI2

[
1

Γ(mD)
γ
(
mD, zmD

(
I2 + SNR−1

))
]
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(b)
= EI2

[
1

Γ(mD)

d

dz
γ
(
mD, ψ2

(
I2 + SNR−1

))
]

(c)
=

1

z Γ(mD)
EI2

[

ψmD

2 (I2 + SNR−1)mD exp
(
−ψ2(I2 + SNR−1)

) ]

(d)
=

(−1)mD

z Γ(mD)

dmD

dtmD

[

exp

(

− tψ2

SNR

)
∏

xi∈Φ

Egi,2

[

exp

(

− tgi,2ψ2y
α

‖xi‖α
)]]

t=1

,

(2.44)

where (a) follows from (A.2), (b) is allowed by the dominated convergence
theorem [81], (c) follows from the relation dγ(a, x)/dx = xa−1e−x [66]
and from substituting ψ2 , zmD, and (d) follows from applying the same
technique for obtaining (2.42) and (2.43). Substituting (2.43) and (2.44)
into (2.40), PIA

c can be written as

EΦ,SINR2





mD−1∑

k=0

(−1)k

k!

dk

dsk

[

e− sψ1
SNR

∏

xi∈Φ

Egi,1

[

exp

(

−sgi,1ψ1y
α

‖xi‖α
)]]

s=1





=

mD−1∑

k=0

(−1)k

k!
EΦ,SINR2

[

dk

dsk

[

exp

(

−sψ1

SNR

)

×
∏

xi∈Φ

Egi,1

[

exp

(

−sgi,1ψ1y
α

‖xi‖α
)]]

s=1

]

=

mD−1∑

k=0

(−1)k

k!

∫ ∞

0

(−1)mD

z Γ(mD)
EΦ

[

dk

dsk

[

exp

(

−sψ1

SNR

)

×
∏

xi∈Φ

Egi,1

[

exp

(

−sgi,1ψ1y
α

‖xi‖α
)] ]

s=1

fSINR2|Φ(z)

]

dz

(a)
=

mD−1∑

k=0

(−1)k+mD

k! Γ(mD)

∫ ∞

0

z−1 ∂k+mD

∂sk∂tmD

[

exp

(

−sψ1

SNR
− tψ2

SNR

)

×EΦ

[
∏

xi∈Φ

Egi,1

[

e
−gi,1

sψ1y
α

‖xi‖α

]

Egi,2

[

e
−gi,2

tψ2y
α

‖xi‖α

] ]]

s=1
t=1

dz

(b)
=

mD−1∑

k=0

(−1)k+mD

k! Γ(mD)

∫ ∞

0

z−1

× ∂k+mD

∂sk∂tmD

[

exp

(

−sψ1

SNR
− tψ2

SNR
− πλA(z, s, t)

)]

s=1
t=1

dz, (2.45)
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where (a) follows from the dominated convergence theorem [81] and (b)
follows from the Probability Generating Functional (PGFL) for PPPs,
see Theorem A.3, where

A(z, s, t) =

∫ ∞

0

2r

(

1 − Eg1

[

exp

(

−sg1ψ1y
α

‖xi‖α
)]

×Eg2

[

exp

(

− tg2ψ2y
α

‖xi‖α
)])

dr. (2.46)

Using the same approach as in [49, Chap. 3.2], i.e., evaluating the integral
over r first, (2.46) becomes

A(z, s, t) = y2 Γ(1 − 2/α)Eg1,g2

[

(sψ1g1 + tψ2g2)2/α
]

. (2.47)

For z ≥ T , one has ψ1 = 0. Using Lemma A.1, (2.47) then reduces to

A(z, s, t) = (mDzt)
2/α y2 Γ(1 − 2/α)

Γ(2/α+mI)

m
2/α
I Γ(mI)

. (2.48)

For 0 ≤ z ≤ T , the expectation in (2.47) can be obtained by invoking
Lemma A.4 for computing fractional moments. For this, the Laplace
transform of G , sψ1g1 + tψ2g2 is first considered. Using Lemma A.2,
this is obtained as

LG(u) = E
[

exp (−uG)
]

(a)
= Eg1

[
exp (−usψ1g1)

]
Eg2

[
exp (−utψ2g2)

]

(b)
=

(

1 +
usψ1

mI

)−mI
(

1 +
utψ2

mI

)−mI

, (2.49)

where (a) follows from the i.i.d. property of g1 and g2, and (b) follows
from the Laplace transform for Gamma distributed random variables, see
Lemma A.2. With (2.49) and Lemma A.4, the expectation in (2.47) can
then be calculated as

Eg1,g2

[

G2/α
]

=
2/α

Γ(1 − 2
α )

∫ ∞

0

1 − LG(u)

u1+2/α
du

= (sκDI(T − z))
2/α

Γ( 2
α + 2mI)

×2F1

(

− 2
α ,mI, 2mI; 1 − zt

(T−z)s

)

, (2.50)
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where 2F1(a, b, c; z) , 2F1(a, b, c; z) /Γ(c) is the regularized Gaussian hy-
pergeometric function [66]. Hence, for 0 ≤ z ≤ T ,

A(z, s, t) = (sκDI(T − z))
2/α

y2Γ(1 − 2
α )Γ( 2

α + 2mI)

×2F1

(

− 2
α ,mI, 2mI; 1 − zt

(T−z)s

)

. (2.51)

Combining (2.48), (2.51), and (2.45) finally yields the result.

2.7.2 Proof of Theorem 2.2

The dominant-interferer set D can be interpreted as another PPP on R
2

obtained by independent thinning of the original PPP Φ, see Lemma A.5.
Thus, PIA

c,dom in (2.16) is simply the void probability for this new PPP,
i.e., the probability of having no points in R

2. Since the number of points
in D is Poisson distributed, this probability becomes

PIA
c,dom = P (|D| = 0) = e−Λdom . (2.52)

It remains to calculate the mean Λdom, which can be obtained as

Λdom = EΦ,{go,n},{gi,n}

[
∑

xi∈Φ

1

(
N∑

n=1

go,n

yαgi,n‖xi‖−α < T

)]

(a)
= πλ

∫ ∞

0

2rE{vn}




1




r <

yT 1/α

(
∑N
n=1 vn

)1/α









 dr

(b)
= πλy2T 2/α

E{vn}





(
N∑

n=1

vn

)−2/α


 , (2.53)

where (a) follows from the Campbell-Mecke theorem, see Theorem A.2,
and from defining the random variable vi,n , go,n/gi,n, and (b) follows
from interchanging the order of integration and expectation and evaluating
the integral. The random variables vn are i.i.d. with PDF [82]

fv(v) =
κmD

DI

B(mD,mI)
(1 + κDIv)

−mD−mI vmD−1, v > 0, (2.54)

where B(x, y) ,
Γ(x)Γ(y)
Γ(x+y) is the Beta function [66]. Computing the

fractional moment in (2.53) directly is too involved due to the sum to the
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power of −2/α appearing inside the expectation. Instead, a detour via
the Laplace transform is chosen, similarly as in the proof of Theorem 2.1.
Invoking Lemma A.4, one then obtains

E{vn}





(
N∑

n=1

vn

)−2/α


 =
1

Γ(2/α)

∫ ∞

0

u2/α−1
L∑N

n
vn

(u) du

(a)
=

1

Γ(2/α)

∫ ∞

0

u2/α−1
Lv(u)N du

(b)
=

Γ(mD)N

B(mD,mI)NΓ(2/α)

×
∫ ∞

0

u2/α−1U
(

mD, 1 −mI, u
mI

mD

)N

du, (2.55)

where (a) follows from the i.i.d. property of the {vn} and (b) follows
from

E
[
e−sv

]
=

∫ ∞

0

e−svfv(v) dv =
Γ(mD)

B(mD,mI)
U
(

mD, 1 −mI, s
mI

mD

)

, (2.56)

where U(a1, a2, x) , 1
Γ(a1)

∫∞
0
ta1−1(1 + t)a2−a1−1e−xt dt with a1 > 0

is the confluent hypergeometric function (Kummer’s U -function) [66].
Combining (2.52), (2.53), and (2.55) yields the result.

2.7.3 Proof of Proposition 2.1

The proof is analogous to the proof of Theorem 2.7.1 until step (a) in
(2.45). Due to distinct interferer sets for each antenna, the expectation
with respect to Φ in (2.45) step (a) decomposes into the product

EΦ

[
∏

xi∈Φ

Egi,1

[

exp

(

−sψ1
yαgi,1

‖xi‖α
)]]

×EΦ

[
∏

xi∈Φ

Egi,2

[

exp

(

−tψ2
yαgi,2

‖xi‖α
)]]

(a)
= exp

(

−λπ
∫ ∞

0

2r
(

2 − Eg1

[

e−sψ1
yαg1
rα

]

− Eg2

[

e−tψ2
yαg2
rα

])

dr

)

,

(2.57)

where (a) follows from the PGFL for PPPs, see Theorem A.3. Evaluating

the integral with respect to r, using the fact that E[g
2/α
n ] = m

−2/α
I Γ(2/α+

mI)/Γ(mI), and substituting this result back into (2.45) step (a) concludes
the proof.
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2.7.4 Proof of Proposition 2.2

We first note that
∑N
n=1 go,n is Gamma distributed with shape NmD and

rate mD, see Appendix A. Define I , yα
∑

xi∈Φ gi‖xi‖−α. Applying the
same technique as in the proof of Theorem 2.1, one obtains

PIA
c,FC = EI

[
NmD−1∑

k=0

(
mDT (I + SNR−1)

)k

k!
exp

(
−mDT (I + SNR−1)

)

]

=

NmD−1∑

k=0

(−1)k

k!

dk

dsk
[
LY(s)

]

s=1
, (2.58)

where Y , mDT (I + SNR−1). The Laplace transform LY(s) is finally
computed using the same approach as in the proof of Theorem 2.1.

2.7.5 Proof of Proposition 2.5

We first consider the Laplace transform of G in (2.49) of Appendix 2.7.1
as mI → ∞. Since limmI→∞ LG(u) = exp (−u (sψ1 + tψ2)), this implies
that G converges in distribution to a degenerate random variable with
density δ(sψ1 + tψ2). Since G is uniformly integrable for mI ≥ 1/2, it
then follows from [81, Theorem 5.9] that

lim
mI→∞

E

[

G2/α
]

= (sψ1 + tψ2)2/α. (2.59)

On the other hand, using the same approach as in the proof of Theorem 2.1
until step (a) in (2.45), PIA

c,FC can be written as

mD−1∑

k=0

(−1)k+mD

k! Γ(mD)

∫ ∞

0

z−1 ∂k+mD

∂sk∂tmD

[

exp

(

−sψ1

SNR
− tψ2

SNR

)

×EΦ

[
∏

xi∈Φ

Egi

[

exp

(

−gi(sψ1 + tψ2)
yα

‖xi‖α
)]]]

s=1
t=1

dz, (2.60)

where the fact that gi,m ≡ gi,n ∀m,n ∈ {1, . . . , N} and xi ∈ Φ by
Definition 2.3 is used. Using the PGFL for PPPs, see Theorem A.3, the
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expectation with respect to Φ in (2.60) can be computed as

exp

(

−λπ
∫ ∞

0

2r

(

1 − Eg

[

e
−g(sψ1+tψ2) yα

‖xi‖α

])

dr

)

= exp

(

− πλy2(sψ1 + tψ2)2/αΓ(1 − 2/α)
Γ(2/α+mI)

m
2/α
I Γ(mI)

)

(2.61)

and shown to converge to exp(−πλy2(sψ1 + tψ2)2/αΓ(1 − 2/α) as mI →
∞. Finally comparing (2.61) for the FC model with the corresponding
expression obtained after substituting (2.59) into (2.47) for the exact
model, the asymptotic equivalence follows.
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3

Diversity Combining

in Multi-Antenna

Heterogeneous

Cellular Networks

Network densification and MIMO communications are two promising
approaches to address the increasing rate and coverage demands in cel-
lular systems [5]. Network densification is realized by deploying tiers of
low-power BSs inside the existing network, e.g., to serve high-traffic areas
within macro cells, thereby rendering the network increasingly hetero-

geneous. MIMO, on the other hand, can increase link reliability and/or
capacity by leveraging the spatial degrees-of-freedom in fading chan-
nels. Due to the radical shift associated with HCNs, MIMO and HCNs
cannot be analyzed separately; many characteristics unique to HCNs
such as multi-tier deployment, limited site-planning, and heterogeneous
parametrization clearly influence the channel “seen” by a multi-antenna
receiver. Understanding this interplay, however, is challenging and makes
a comprehensive analysis of MIMO in HCNs difficult. This chapter,
which is based on [T3–T5], addresses the above challenge by developing
a tractable stochastic model, which allows studying the performance of
MIMO diversity in HCNs.
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3.1 Related Work

MIMO techniques can be open-loop or closed-loop based and the latter
have been the focus of many works on MIMO cellular networks, see for in-
stance [83] and the references therein. These works show that closed-loop
MIMO schemes can significantly improve performance when CSI-Tx is
available. Reliable CSI-Tx, however, may not always be available in prac-
tice, e.g., in high mobility scenarios [84], and open-loop schemes requiring
CSI only at the receiver (CSI-Rx) have to be used instead. For instance,
3GPP LTE supports different open-loop modes, e.g., transmission mode
2 uses a Space-Frequency Blockcode (SFBC) for Tx diversity over two or
four Tx antennas [85]. On the mobile receiver side, space and complex-
ity limitations typically preclude the use of many Rx antennas—often
not exceeding two antennas—and allow only for simple linear combin-
ing schemes. One such combining scheme is MRC [12], which offers a
good trade-off between performance and complexity, and is therefore
ubiquitously found in multi-antenna consumer devices. Especially in the
context of MIMO communications, MRC may sometimes be even more
appealing than interference-canceling receivers, since the latter require
accurate knowledge of the other-cell interference channels, which is harder
to realize when multiple Tx antennas are active [20, Sec. 10.5.4].

Two types of MRC exist that differ in the way interference due to concur-
rent transmissions is treated, namely IB-MRC and IA-MRC. The former,
and more popular, ignores the interference at all. The combiner coeffi-
cients then follow from the well-known channel matched-filter approach
in this case [20, Sec. 3.3.1]. IA-MRC, in contrast, takes the interference
power (hereafter, simply interference) into account. More specifically,
the (possibly unequal) interference experienced at each Rx antenna in
one block/frame is treated as additional Rx noise. Following the original
MRC approach from [12], the combiner then give less weight to branches
with poor reception quality, i.e., with strong interference and/or adverse
fading states. Estimating the per-antenna interference can be done within
the channel estimation phase, e.g., after decoding and removing the pilot
symbols sent by the serving BS [86] or by using techniques from [87,88].
Both types of MRC are well-understood for networks with fixed geometry,
see for instance [12,30–32], and recently also for wireless ad hoc networks
with dynamic/varying geometry, see for instance [50–52], and in particular
Chapter 2 in this thesis in the case of IA-MRC.
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In the context of downlink HCNs, MIMO diversity with MRC is yet not
well-understood, since prior works do not directly apply due to the specific
nature of the interference governing HCNs. An interesting question, for
instance, is whether the gain of IA-MRC over IB-MRC justifies the slightly
higher complexity in a typical MIMO HCN setting, and how this trade-off
varies with the number of Tx and Rx antennas.

Certainly, extensive system-level simulations can only partly help in ad-
dressing the above challenge as they usually offer only limited insights.
As a viable alternative approach to simulations, spatial modeling using
stochastic geometry [34] has gained much attention recently, see for in-
stance [39,89,90] and in particular [91–95] for MIMO cellular networks.
In [91], the Average Symbol Error Probability (ASEP) was analyzed
for multi-antenna single-tier cellular networks with spatial-multiplexing,
where it was found that Rx diversity can significantly improve perfor-
mance. In [92], a unifying framework using the Equivalent-in-Distribution
approach was presented, which studies the ASEP of MIMO diversity with
IB-MRC in single-tier networks. The energy efficiency of small-cell MISO
cellular system with maximal-ratio transmission in the downlink was an-
alyzed in [93]. MIMO HCNs with different kinds of CSI-Tx based MIMO
schemes were analyzed in [95] with load balancing and in [94] without
load balancing. Complementing the above works, the main objective of
this chapter is to derive a tractable model and to conduct a meaningful
analysis in order to obtain a better understanding of MIMO diversity
with IA-MRC/IB-MRC in HCNs.

3.2 Contributions and Outcomes

The main contributions and outcomes of this chapter are summarized
below.

Analytical model: In Section 3.3, a tractable stochastic model for
downlink MIMO diversity with OSTBCs and IB-MRC/IA-MRC is devel-
oped. To reflect the irregular and multi-tier deployment of BSs observed
in practice, a PPP is used to model the BS locations of a K-tier HCN.
The model captures relevant tier-specific parameters, such as BS density
and Tx power, path loss exponent, and number of Tx antennas. Based
on this model, the coverage probability for both types of MRC is then
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derived in Section 3.5. For IA-MRC, focus is put on the case with two Rx
antennas. The theoretical expressions can be evaluated fairly easily using
standard numerical software, while in certain cases they can be further
simplified analytically.

Second-order statistics of HCN interference: In Section 3.4, the
interference dynamics experienced at a multi-antenna receiver in HCNs
are analyzed, thereby complementing earlier work, which focused on
Aloha-based ad hoc networks [55]. Interference dynamics affect the
performance of IA diversity-combining schemes such as IA-MRC. The
analysis shows that the interference variance measured at a typical user is
tier-independent if the path loss exponent and the number of Tx antennas
are constant across tiers. In direct comparison with the literature, the
analysis indicates that the interference variance is smaller in HCNs than
in Aloha-based ad hoc networks, where interferers can be much closer to
a receiver. Moreover, the gains of IA diversity combining are expected to
decrease when more Tx antennas are active (Tx diversity) as interference
variance then becomes smaller. Interestingly, the interference correlation
coefficient across Rx antennas is independent from the tier with which
this user associates when the number of Tx antennas is equal in each
tier. In this case, the correlation becomes entirely tier-independent and
increases with the number of active Tx antennas. In line with the effect of
decreasing interference variance explained above, the gains of IA diversity
combining are expected to decrease when more Tx antennas are active
due to the higher interference correlation across Rx antennas.

Design insights: In Section 3.6, the theoretical results are discussed
using numerical examples. In a typical three-tier MIMO scenario with
IB-MRC at the receivers, the gain of doubling the number of Rx antennas
is roughly 2.5 dB at operating points of practical relevance. For IA-MRC,
this gain is roughly 3.6 dB. Adding more Tx antennas is beneficial only at
large coverage probabilities. The gain of IA-MRC over IB-MRC decreases
with the number of Tx antennas due to the higher interference correlation
across Rx antennas resulting from the interference-smoothing effect of Tx
diversity. The relative coverage probability gain of 1 × 2 SIMO over SISO
transmission in the practical regime is between 12%–66% for IB-MRC,
while an additional improvement of only 1%–3% is obtained by IA-MRC.
Although interference estimation needed in IA-MRC can be realized with
acceptable complexity, the outcome of this comparison hence suggests
that IB-MRC is more favorable in MIMO HCNs with Tx diversity.
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Spatial interference correlation across Rx antennas, caused by the com-
mon locations of interfering BSs, influences the performance of IA-MRC
and should not be ignored in the analysis; ignoring this type of correlation
significantly overestimates the true performance. In contrast, assuming
full correlation underestimates the true performance only slightly. More-
over, it is shown that assuming full correlation in IA-MRC is equivalent
to IB-MRC. Interestingly, it does not matter for the diversity order of IA-
MRC if one assumes no correlation or full correlation of the interference
as both simplifying assumptions result in the true diversity order.

The coverage probability for IA-SC is derived for SIMO HCNs and the
resulting performance is compared with MRC. The results show that
the gain of MRC over IA-SC is not overwhelming for small number of
Rx antenna. The higher complexity of MRC may thus not be justified
in this case. Moreover, the performance-complexity trade-off between
both types of MRC and IA-SC in HCNs may differ significantly from the
interference-free case.

3.3 System Model

3.3.1 Network Geometry and User Association

Consider a K-tier HCN in the downlink with BSs irregularly scattered in
the plane, see Fig. 3.1. The irregular BS locations in tier k ∈ K, where K =

{1, . . . ,K}, are modeled by an independent stationary PPP Φk , {xi}
on R

2 with density λk, see Definition A.3. Denote by Φ , ∪Kk=1 Φk the
entire set of BSs, which is obtained by independent superposition of the
K PPPs, see Lemma A.6. The spatial Poisson model is widely-accepted
for analyzing (multi-tier) cellular networks [39,89,90], and recently also
MIMO HCNs [94,95]. All BSs in tier k transmit an OSTBC using Mk Tx
antennas. Similarly, mobile receivers (users) are assumed to be equipped
with N Rx antennas. The users are independently distributed on the
plane according to some stationary point process. By Slivnyak’s theorem,
see Theorem A.1, and due to the stationarity of Φ, see Definition A.3, one
can focus the analysis on a typical user located at the origin o ∈ R

2.

BSs in tier k transmit with total power Pk, which is equally divided
across all active Tx antennas. At the typical user, the long-term received
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Figure 3.1: Example: Downlink HCN with K = 2. Tier-1 (macro)
BSs have 4 Tx antennas; Tier-2 (small-cell) BSs have 2 Tx
antennas. Typical user has 2 Rx antennas.

power from a tier k BS located at xi ∈ Φk is thus Pk‖xi‖−αk , where
‖ ·‖αk is the distance-dependent path loss with path loss exponent αk > 2.
Focusing on narrowband signaling, e.g., Orthogonal Frequency Division
Multiplexing (OFDM) in 4th Generation (4G) LTE and proper antenna
design in a rich scattering environment, it is reasonable to assume i.i.d.
frequency-flat Rayleigh fading [86]. Table 3.1 summarizes frequently
recurring notation used in this chapter.

Users are assumed to associate with the BS providing the strongest
average measured received power, which is a common assumption in
cellular systems. Note that this association rule is generally not coverage
maximizing in MIMO HCNs with unequal Mk and requires a biased

association rule, see [95] for more details. Including biasing in the model,
i.e., using similar techniques as in [89, 95], is outside the scope of this
chapter. For the typical user, the serving BS is hence the one maximizing
Pk‖xi‖−αk . Without loss of generality, the location of this BS is labeled
as xo to emphasize its association with the typical user located at o. Its
distance to the typical user is denoted by y , ‖xo‖. For convenience,
Φo , Φ \ {xo} and Φo

k , Φk \ {xo} are defined for short-hand notation,
i.e., the set of interfering BSs.
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Table 3.1: Notation used in this chapter

Notation Description

Φk; λk PPP describing the BS locations in tier k; average

density of BSs in tier k; Φ , ∪K
k=1 Φk

Pk BS Tx power in tier k

αk Path loss exponent in tier k

N ; Mk Number Rx antennas at the typical user; number of Tx

antennas at BS in tier k

Hi; hi,nm N × Mk channel matrix between typical user and i-th

BS in tier k; entries of Hi from CN(0, 1)

σ2 Rx noise power, AWGN variance

(Mk, Lk, rk) OSTBC with codeword length Lk, code rate rk, and

Mk Tx antennas

Sk Number of symbols encoded in an (Mk, Lk, rk)-OSTBC;

number of active Tx antennas per slot

{Anm}, {Bnm} Dispersion matrices characterizing an OSTBC

In; Ii,eqv Interference (power) at the n-th Rx antenna;

interference (power) from i-th BS after diversity

combining

SNR(ℓ, y) Mean SNR from a serving ℓ-th tier BS at distance y

SINRΣ(ℓ, y) Post-combiner SINR from a serving ℓ-th tier BS at

distance y

SINRΣ Post-combiner SINR at the typical user

T SINR threshold

Pc Coverage probability P(SINRΣ > T )

From the user association rule it follows that, given y = y and that the
serving BS is from tier ℓ ∈ K, Φok is a homogeneous PPP on R

2 \ b(0, dk),

where dk = P̂
1/αk
k y1/α̂k with P̂k , Pk/Pℓ and α̂k , αk/αℓ. It will be

useful to know the probability that a user associates with a certain tier
ℓ ∈ K and the conditional PDF of the distance y to the serving BS.

Lemma 3.1 (Association probability and distance PDF [89]). A user

associates with the ℓ-th tier with probability

Aℓ = 2πλℓ

∫ ∞

0

y exp

(

−π
K∑

k=1

λkP̂
2/αk
k y2/α̂k

)

dy. (3.1)
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The PDF of the distance y , ‖xo‖ to the serving BS, given that it belongs

to tier ℓ ∈ K, is

fy,ℓ(y) =
2πλℓy

Aℓ
exp

(

−π
K∑

k=1

λkP̂
2/αk
k y2/α̂k

)

, y ≥ 0. (3.2)

3.3.2 OSTBC MIMO Signal Model

All BSs in tier k use an (Mk, Lk, rk)-OSTBC, where Lk ≥ 1 is the
codeword length and rk ∈ (0, 1] is the code rate; Lk can be seen as
the number of slots needed to convey Sk = Lkrk symbols using Mk Tx
antennas. For analytical tractability, only power-balanced (Mk, Lk, rk)-
OSTBCs shall be considered, i.e., having the property that exactly Sk
symbols are transmitted—or equivalently that Sk Tx antennas are active—
in every slot. This allows assigning a constant power load of Pk/Sk to
every symbol-antenna pair in every slot. Practical examples of balanced
OSTBCs are for instance (1, 1, 1) (single-antenna), (2, 2, 1) (Alamouti),
(4, 4, 1/2), and (4, 4, 3/4), see [96, 97]. The notation vi,τ ∈ {0, 1}Mk is
used to indicate the active Tx antennas of BS i in slot τ , i.e., the m-th
entry of vi,τ is one if Tx antenna m is active and zero otherwise.

Assume for the moment that the typical user associates with the ℓ-th tier.
It will then be served by an (Mℓ, Lℓ, rℓ)-OSTBC. The interference-plus-
noise corrupted received signal at the typical user in slot τ ∈ {1, . . . , Lℓ}
can then be expressed by

rτ = Ho co,τ +
K∑

k=1

∑

xi∈Φo
k

Hi ci,τ + nτ , (3.3)

where

• Hi ∈ C
N×Mk is the channel matrix describing the fading from the

i-th BS of the k-th tier to the typical user. The entries of Hi,
hi,nm, are CN(0, 1) distributed and typically assumed constant for
the duration of one codeword.2 From the i.i.d. fading property, it
follows that E[hi,nmh∗

j,uv] = 0 unless i = j, n = u, and m = v.

2When Hi is time-varying and space-time coding is across multiple channel realiza-
tions, technique from [98] can be used to achieve also temporal diversity. Such
extensions are outside the scope of this paper.
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• ci,τ ∈ C
Mk is a vector consisting of the space-time coded symbols of

the i-th BS sent from the Sk ≤ Mk active Tx antennas in slot τ and

received with average signal strength
√

Pk
Sk

‖xi‖−αk/2. It is assumed

that E
[
ci,τcHj,τ

]
= 0Mk

for all i 6= j, where 0Mk
is an Mk×Mk zero

matrix. It is reasonable to assume also that E[ci,τ ] = [0, . . . , 0]T and
E[ci,τcHi,τ ] = Pk

Sk
‖xi‖−αkdiag(vi,τ ), where diag(vi,τ ) is a diagonal

matrix with entries vi,τ . The latter assumption follows from the
balanced-power property of the considered OSTBCs.

• nτ ∈ C
N is a vector describing the Rx noise with independent

CN(0, σ2) entries.

Upon receiving all Lℓ code symbols corresponding to one codeword, the
typical user stacks the vectors r1, . . . , rLℓ to form the new vector

r̄ =






Ho co,1
...

Ho co,Lℓ




+

K∑

k=1

∑

xi∈Φo
k

īi +






n1

...
nLℓ




 , (3.4)

where

īi =






Hi ci,1
...

Hi ci,Lℓ




 (3.5)

is the interference signal from the i-th BS received over the entire codeword
period, i.e., īi ∈ C

NLℓ . With CSI-Rx, r̄ is linearly combined to form a
final decision variable. Two types of MRC are considered, which differ
in the amount of required CSI-Rx. More specifically, IB-MRC requires
knowledge of Ho, while IA-MRC requires knowledge of Ho and of the
interference-plus-noise power at all Rx antennas.

It is known that the performance of diversity-combining schemes is in-
fluenced by the second-order properties of the interference, as reported
for instance in [52, 54, 55] for the ad hoc network model with slotted
Aloha. In the following, these prior works are extended by analyzing the
second-order statistics of the interference in MIMO HCNs.
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3.4 Second-Order Statistics of HCN

Interference

The performance of diversity combining is fundamentally limited by the
nature of the channel observed by the receiver. More specifically, the
variability of the reception quality on the one hand and the degree of its
correlation across Rx antennas on the other hand, dictate how much can
be gained by such techniques. Clearly, if the reception quality fluctuates
considerably and independently across Rx antennas, large gains can be
expected. If, in contrast, the channel quality remains constant or does
not vary across Rx antennas, little to no gains can be expected.

From (3.3) it is evident that the resulting per-antenna reception quality is
not only affected by the fading on the desired link but also by interference.
Being a dynamic quantity, the latter contributes to the overall correlation
structure and to the variability of the reception quality with its own
statistical properties. Compared to the influence from the desired channel,
this contribution is yet relatively unexplored, particularly within the
context of HCNs. This motivates to take a closer look at the second-order
characteristics of the interference experienced at the typical user.

Let hi,n = [hi,n1, . . . , hi,nMk
] be the n-th row of Hi. Then, the interference

in slot τ (the time index τ is dropped in the following) measured at the
n-th Rx antenna, averaged over the code symbols {ci} in one frame, is

In = E{ci}










K∑

k=1

∑

xi∈Φo
k

hi,nci









K∑

k=1

∑

xi∈Φo
k

hi,nci





H





(a)
=

K∑

k=1

∑

xi∈Φo
k

hi,n E
[
cic

H
i

]
hHi,n

(b)
=

K∑

k=1

∑

xi∈Φo
k

Pk
Sk‖xi‖αk

hi,ndiag(vi)h
H
i,n

=

K∑

k=1

∑

xi∈Φo
k

Pk
Sk‖xi‖αk

‖hi,n(Sk)‖2
F =

K∑

k=1

In,k, (3.6)

where (a) follows from the independence between the {ci} across BSs and
(b) follows from the correlation properties of the {ci}.
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3.4.1 Interference Variance

Combining (3.6) and (3.3), one can see that the dynamic part not be-
longing to the fading on the desired channel is In + σ2. Since this term
is essentially a function of the long-term received useful power Pℓy−αℓ

through the cell association rule, it is reasonable to consider the normal-
ized version (In + σ2)/(Pℓy

−αℓ) , I′n. The normalized interference I′n can
be intuitively understood as the interference-to-average-signal ratio at Rx
antenna n. Given that the serving BS is at distance y and belongs to tier
ℓ, the corresponding conditional variance seen by the typical user is

Varℓ,y [I′n]
(a)
=

y2αℓ

P 2
ℓ

K∑

k=1

Varℓ,y [In,k]

(b)
= 2πy2αℓ

K∑

k=1

P̂ 2
kλk

E[‖hn(Sk)‖4
F ]

S2
k

∫ ∞

dk

r−2αk+1 dr

(c)
= π

K∑

k=1

λkP̂
2/αk
k

αk − 1

(

1 +
1

Sk

)

y2/α̂k , (3.7)

where (a) follows from the fact Var[z + c] = Var[z] and from the inde-
pendence of the {In,k} across tiers, (b) follows from the Campbell-Mecke
theorem, see Theorem A.2, and from the radius dk of the exclusion ball
for the k-th tier due to the cell association rule, and (c) follows from
Lemma A.3.

The expression in (3.7) reflects the variance of the normalized interference
for a specific user location relative to the network. Thus, one still needs
to de-condition on y and on the associated tier ℓ, which can be done
using Lemma 3.1. To obtain a more tractable expression that reveals
the underlying trend, equal path loss exponents and the same number
of active Tx antennas across tiers are assumed next, i.e., αk = α and
Sk = S ∀k ∈ K. The normalized interference variance experienced at the
typical user then becomes

Var [I′n] =

K∑

ℓ=1

2πλℓ

∫ ∞

0

yVarℓ,y [I′n] exp

(

−πy2
K∑

k=1

λkP̂
2/α
k

)

dy

=
1 + 1

S

α− 1
. (3.8)

68



3.4 Second-Order Statistics of HCN Interference

The following observations can be made from (3.8):

• Interestingly, the variance of the normalized interference at the
typical user neither depends on the number of tiers K, nor on their
parameters {Pk} and {λk} when αk = α and Sk = S ∀k ∈ K. This
result is consistent with [89,90], where the invariance of the coverage
probability with respect to the number/parameters of the tiers was
shown for equal {αk} and absence of Rx noise.

• In line with the intuition, the variance of the normalized interference
increases when α becomes smaller as the interference contribution
from far-off BSs then carries more weight. Conversely, for large α
the interference is dominated by only a few close-by BSs, thereby
reducing the variance. For typical α in HCNs around α = 3.7 [99],
the variance is 0.74 when S = 1.

• With the same path loss law ‖ · ‖−α, the interference variance in
Aloha-based ad hoc networks diverges [38], as interfering transmit-
ters can be arbitrarily close to the receiver in this case. Although
this result is due to the singularity of the path loss law and has no
physical relevance, it suggests that the interference variance in HCNs
tends to be smaller than in Aloha-based ad hoc networks. This,
in turn, means that IA diversity combining will generally perform
lower in HCNs. This will be discussed further in Section 3.6.3.

• The interference variance decays with the number of active Tx an-
tennas S. This is because adding more Tx antennas while reducing
the per-antenna Tx power by S smoothes out the channel fluctu-
ations. This effect is also referred to as channel-hardening [100].
Hence, for large S one expects IA diversity-combining schemes to
perform similar to IB diversity-combining schemes due to a smaller
interference variability. In the limit S → ∞, the variance of the
normalized interference becomes 1

α−1 .

3.4.2 Interference Correlation across Rx Antennas

In order to study the interference correlation across Rx antennas, the
covariance of the normalized interference, conditioned on the serving tier
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ℓ and serving BS distance y, is first needed. It can be obtained as

Covℓ,y [I′u, I
′
v]

(a)
=

y2αℓ

P 2
ℓ

K∑

k=1

Covℓ,y [Iu,k, Iv,k]

(b)
= 2πy2αℓ

K∑

k=1

P̂ 2
kλk

E[‖hu(Sk)‖2
F ]2

S2
k

∫ ∞

dk

r−2αk+1 dr

(c)
= π

K∑

k=1

λkP̂
2/αk
k

αk − 1
y2/α̂k , (3.9)

where (a) follows from Cov[z1 + c, z2 + c] = Cov[z1, z2] and from the
independence of the {In,k} across tiers, (b) follows from the Campbell-
Mecke theorem, see Theorem A.2, and from hn being independent across
n, and (c) follows from Lemma A.3. With (3.7) and (3.9), the conditional
correlation coefficient becomes

ρℓ,y =
Covℓ,y [I′u, I

′
v]

Varℓ,y [I′n]
=

Covℓ,y [Iu, Iv]

Varℓ,y [In]

Sk=S
=

S

1 + S
. (3.10)

The following observations can be made from (3.10):

• The correlation coefficient ρℓ,y has the same form as the temporal

correlation coefficient in Aloha-based ad hoc networks, which was
derived in [38, Lem. 5.13]. Temporal correlation with fixed set of
active interferers and spatial correlation across Rx antennas are
mathematically the same, since in both cases fading varies while
the interferer locations remain fixed.

• As expected, adding more Tx antennas increases the interference
correlation across Rx antennas, since the channel fluctuations then
undergo an averaging effect. For S = 1, one has ρℓ,y = 1/2. In the
limit S → ∞, the correlation of the normalized interference becomes
maximal, i.e., ρℓ,y = 1. Similar to the above comment on normalized
interference variance for large S, IA diversity-combining schemes are
expected to have a similar performance as IB diversity-combining
schemes in this regime.

• ρℓ,y is independent of the tier with which the typical user associates
and from the distance to the serving BS if the number of active Tx
antennas is equal across tiers (Sk = S ∀k ∈ K). In this case, ρℓ,y is
independent of K, {Pk}, {λk}, and, in contrast to the interference
variance, also of the path loss exponents {αk}.
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3.5 Coverage Probability Analysis

Remark 3.1 (Feasibility of interference estimation). When the set of

active Tx antennas of interfering BSs changes in every slot τ , In varies

between every slot of the codeword. This is the case when Sk < Mk. Such

rapid variations over τ are imperceptible to CSI estimation since the latter

is usually designed to track channel-fading variations, which happen on a

larger time scale. However, when full-rate OSTBCs are used (rk = 1 for

all k ∈ K), In is identical across τ , since all Sk = Mk Tx antennas are

always active. In that case, the receiver can obtain knowledge of In + σ2

with acceptable complexity, e.g., after decoding and removing the pilot

symbols sent by the serving BS [86] or by using techniques from [87,88].

3.5 Coverage Probability Analysis

This section analyzes the downlink performance at the typical user for
both IB-MRC and IA-MRC. As explained in Remark 3.1, IA-MRC is
practical only for full-rate OSTBCs (rk = 1 ∀k ∈ K). A common way for
studying the performance of diversity-combining schemes is to analyze
the distribution of the post-combiner SINR. The specific form of post-
combiner SINR depends on the considered scheme and will be developed
in Sections 3.5.1 and 3.5.2 for the two considered MRC types.

The performance analysis will focus on the coverage probability Pc as
the performance metric, which was already introduced in Definition 2.1
in Chapter 2. The coverage probability Pc can be interpreted as the
complementary CDF of the post-combiner SINR at the typical user or,
alternatively, as the average fraction of users in the HCN covered by a
post-combiner SINR no less than some threshold T > 0.

3.5.1 MIMO Diversity with IB-MRC

A useful feature of OSTBCs is that the MIMO channel (3.4) can be
reduced to parallel SISO channels [21]. At the typical user, knowing Ho,
this is achieved by the linear combination

N∑

n=1

Mℓ∑

m=1

h∗
o,nmAH

nmr̄ + ho,nmBT
nmr̄∗, (3.11)
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where Anm and Bnm are the NLℓ×Sℓ dispersion matrices describing the
OSTBC employed in the serving tier, see [17,101] for further details. The
resulting equivalent channel model allows treating the detection of each of
the Sℓ information symbols encoded in the current codeword separately.
The post-combiner SINR at the decoder can then be expressed as

SINRΣ(ℓ, y) =

Pℓ
Sℓy

αℓ
‖Ho‖2

F
∑K
k=1

∑

xi∈Φo
k

Ii,eqv + σ2
, (3.12)

where Ii,eqv is the interference from the i-th BS in the equivalent channel
model. Ii,eqv is statistically the same for all Sℓ symbols. Thus, focusing
on an arbitrary symbol, i.e., considering a single arbitrary column of
Anm, Bnm, say anm, bnm, the interference Ii,eqv is

Ii,eqv = Var{ci}

[ N∑

n=1

Mℓ∑

m=1

h∗
o,nm

‖Ho‖F
aHnm īi +

ho,nm

‖Ho‖F
bTnm ī∗

i

]

. (3.13)

The Rx noise statistics remain unaffected by the linear combination
in (3.11) [21, 101]. However, the distribution of Ii,eqv is more involved,
particularly due to its dependence on Ho. This was already observed in
[50] for a similar MIMO network model, where it was shown that ignoring
this dependence and assuming Ii,eqv to be Gamma distributed yields a
valid approximation. Following the same approach, one can thus assume
Ii,eqv ≃ Pk

Sk‖xi‖αk ‖Hi(Sk)‖2
F with Ii,eqv being independent of Ho, which

can be viewed as effectively ignoring the effect of the receiver processing
on the interference. The following two facts support this approximation:

• It can be shown that the above Gamma approximation is moment
matching irrespective of the realization of Ho, i.e., EHi

[Ii,eqv] =
Pk

Sk‖xi‖αk EHi
[‖Hi(Sk)‖2

F ] = Pk
‖xi‖αk in (3.13).

• If Mk = 1, it follows from [96] that the above approximation is
exact. In this case Ii,eqv is also truly independent of Ho.

Lemma 3.2 (Interference Laplace transform). Consider the interference

field I =
∑K
k=1

∑

xi∈Φo
k

Pk
Sk‖xi‖αk ‖Hi(Sk)‖2

F . Its Laplace transform is

LI(s) = exp

(

− π

K∑

k=1

λkd
2
k

[

2F1

(

− 2
αk
, Sk, 1 − 2

αk
; − sPk

Skd
αk
k

)

− 1
])

.(3.14)

Proof: See Section 3.8.1.
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3.5 Coverage Probability Analysis

Equipped with Lemma 3.2, one can now derive the coverage probability
for IB-MRC.

Theorem 3.1 (Coverage probability for IB-MRC). The coverage proba-

bility PIB
c for IB-MRC in the described setting is given by

PIB
c = 2π

K∑

ℓ=1

NMℓ−1∑

m=0

(−1)mλℓ
m!

∫ ∞

0

y
dm

dsm

[

exp

(

− sSℓT

SNR(ℓ, y)

−π
K∑

k=1

λkP̂
2/αk
k y2/α̂k

2F1

(

− 2
αk
, Sk, 1 − 2

αk
; − sT

Ŝk

)
)]

s=1

dy, (3.15)

where SNR(ℓ, y) , Pℓ y
−αℓ/σ2 and Ŝk , Sk/Sℓ.

Proof: See Section 3.8.2.

The Gaussian hypergeometric function 2F1(·, ·, ·; ·) can be given in terms of
elementary functions for certain αk [66]. For instance, 2F1

(
1,− 1

2 ,
1
2 ; −u

)
=

1 +
√
u arctan

√
u if αk = 4. For general αk > 2, (3.15) can be easily

evaluated using standard numerical software programs.

The derivative dm/dsm in (3.15) can be calculated using Faà di Bruno’s
formula for higher-order derivatives of composite functions [66], i.e.,
with an inner and outer function. While the outer function of the inte-
grand is simple due to the exp-term, the inner function, more specifically

2F1(−2/αk, Sk, 1−2/αk; −sT/Ŝk), is more involved. With [66], its deriva-
tive is obtained as

dm

dsm

[

2F1

(

− 2
αk
, Sk, 1 − 2

αk
; − sT

Ŝk

)]

s=1

=

(

− T

Ŝk

)m −2 Γ(Sk +m)

αk(m− 2
αk

) Γ(Sk)

×2F1

(

− 2
αk

+m,Sk +m, 1 − 2
αk

+m; − T
Ŝk

)

. (3.16)

In dense deployments, the performance is typically limited by interference
rather than by Rx noise [19], which yields σ2 = 0 ⇔ 1/SNR(ℓ, y) = 0

for all ℓ, y. In addition, the path loss exponent usually does not vary
significantly across tiers in practice with typical values around αk ≈ 3.7

[99]. When in addition the number of Tx antennas is also equal across
tiers, the following corollary applies.
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Corollary 3.1 (Special case). In the absence of Rx noise (σ2 = 0) and

with equal path loss exponents (αk = α ∀k ∈ K) and number of Tx

antennas (Mk = M , Sk = S ∀k ∈ K), PIB
c simplifies to

PIB
c =

NM−1∑

m=0

(−1)m

m!

dm

dsm

[

1

2F1

(
− 2
α , S, 1 − 2

α ; −sT
)

]

s=1

. (3.17)

The coverage probability in (3.17) neither depends on the BS densities
{λk} and powers {Pk}, nor on the number of tiers K, which is consistent
with the literature, see for instance [90]. Note that the first term m = 0

in (3.17) corresponds to the coverage probability for the SISO case [89].

3.5.2 MIMO Diversity with IA-MRC

It is now assumed that Mk ≤ 2 ∀k ∈ K, meaning that BSs now use full-
rate OSTBCs (either no space-time coding or Alamouti scheme). This
ensures that the receiver can estimate the interference-plus-noise power
at each Rx antenna with acceptable complexity once within the current
block/frame, see Remark 3.1. Note that, in theory, Mk > 2 is also possible
though not practical as the estimation would then have to be performed in
each slot τ in the presence of the desired code symbols co,τ to be decoded.
When Mk ≤ 2, one has Sk = Mk ∀k ∈ K, meaning that either Alamouti
space-time coding (Mk = 2) or no space-time coding (Mk = 1) is used in
tier k. In both cases, the interference at each Rx antenna, given by (3.6),
then remains constant for the entire duration of the desired codeword.
In the following, the current per-antenna interference-plus-noise power
In + σ2 at each Rx antenna is assumed to be known to the receiver in
addition to Ho. Interference is still treated as white noise.

In IA-MRC, the phase-corrected and channel-weighted received signals
are normalized by the interference-plus-noise power experienced at each
Rx antenna, thereby following the original MRC approach from [12]. The
receiver hence performs the linear combination

N∑

n=1

Mℓ∑

m=1

h∗
o,nm

In + σ2
AH
nmr̄ +

ho,nm

In + σ2
BT
nmr̄∗, (3.18)
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3.5 Coverage Probability Analysis

yielding the equivalent channel model for IA-MRC. Similarly as in Sec-
tion 3.5.1, one can focus again on an arbitrary symbol and therefore con-
sider an arbitrary column anm, bnm of Anm, Bnm. The post-combiner
SINR for IA-MRC can then be expressed as

SINRΣ(ℓ, y) =

Pℓ
Mℓ y

αℓ

(
∑N
n=1

‖ho,n‖2
F

In+σ2

)2

∑K
k=1

∑

xi∈Φo
k

Ii,eqv +
∑N
n=1

‖ho,n‖2
F
σ2

(In+σ2)2

, (3.19)

where now Ii,eqv is

Ii,eqv = Var{ci}

[
N∑

n=1

Mℓ∑

m=1

h∗
o,nm

In + σ2
aHnm īi +

ho,nm

In + σ2
bTnm ī∗

i

]

. (3.20)

By (3.4), one has Eci
[̄iīiHi ] = Pk

Mk‖xi‖αk
(
‖hi,n‖2

F INLℓ + Ri

)
, where Ri =

diag(H̃i, . . . , H̃i) is a block diagonal matrix with the N×N square matrix
H̃i on the diagonal. The entries of H̃i are

(H̃i)pq =

{

hi,ph
H
i,q, p 6= q (3.21a)

0, p = q. (3.21b)

Note that, in contrast to INLℓ , Ri has non-zero off-diagonal matrix
entries. Invoking the orthogonality properties of the {Anm}, {Bnm},
i.e., AH

nmAuv + BT
uvB

∗
nm = δnuδmvINLℓ and AH

nmBuv + BT
uvA

∗
nm = 0Lℓ ,

1 ≤ n, u ≤ N and 1 ≤ m, v ≤ Mℓ, where δij = 1 if i = j and zero
otherwise, and exploiting the mathematical structure of Eci [̄iīi

H
i ], (3.20)

can be computed following the same approach as in [101, Sec. 2.2.3] as

Ii,eqv =
Pk

Mk‖xi‖αk
N∑

n=1

‖ho,n‖2
F

‖hi,n‖2
F

(In + σ2)2
+

Zi,n

(In + σ2)2
. (3.22)

In (3.22), Zi,n describes the part resulting from Ri having non-zero off-
diagonal matrix entries. From (3.21), it can be inferred that Zi,n depends
on the channel phases of Hi. Since hi,nm ∼ CN(0, 1), it can be shown
that E∠Hi [Ri] = 0, which implies E∠Hi [Zi,n] = 0 irrespective of Ho,
indicating that the effect of Zi,n vanishes “in the long run”. To obtain a
more tractable expression, the {Zi,n} in (3.22) are hence ignored. With
this simplification and after some algebraic manipulations, (3.19) then
becomes

SINRΣ(ℓ, y) =
Pℓ

Mℓ yαℓ

N∑

n=1

‖ho,n‖2
F

In + σ2
. (3.23)
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Remark 3.2 (SINRΣ approximation). It follows by Jensen’s inequality

[81] that

E∠H1,∠H2,... [SINRΣ(ℓ, y)] ≥ Pℓ
Mℓ yαℓ

N∑

n=1

‖ho,n‖2
F

In + σ2
, (3.24)

where SINRΣ(ℓ, y) on the left-hand side corresponds to the exact post-

combiner SINR from (3.19). Hence, (3.23) provides a lower bound to the

phase-averaged exact post-combiner SINR. The resulting error when (3.23)
is used to approximate the exact post-combiner SINR is negligibly small,

as confirmed by simulations in Section 3.6 and discussed in Appendix B.

Although the {hi,n} in (3.23) are mutually independent, the {In} are
correlated across Rx antennas due to the common locations of interfering
BSs. More specifically, the expression in (3.23) is a sum of correlated
random variables exhibiting a complicated correlation structure. This
renders the computation of the coverage probability for IA-MRC for
general N challenging. In practical systems, however, the number of
antennas in mobile devices is limited due to space/complexity limitations,
thereby often not exceeding N = 2. This special case is addressed next.

Theorem 3.2 (Coverage probability for dual-antenna IA-MRC). The

coverage probability PIA
c for dual-antenna IA-MRC in the described setting

is

PIA
c = 2π

K∑

ℓ=1

Mℓ−1∑

m=0

(−1)m+Mℓλℓ
m! Γ(Mℓ)

∫ ∞

0

∫ ∞

0

yz−1

× ∂m+Mℓ

∂sm ∂tMℓ

[

exp

(

− Mℓ

SNRℓ(y)

(
s (T − z)+ + tz

)
)

× exp

(

− π

K∑

k=1

λkP̂
2/αk
k y2/α̂k

×
[

1 + Ψ
(
s (T−z)+

M̂k
, tz
M̂k

,Mk, αk

)])
]

s=1
t=1

dy dz, (3.25)

for 1 ≤ Mk ≤ 2 and N = 2, where M̂k , Mk/Mℓ and Ψ(·, ·, ·, ·) is given

by (3.45) in Section 3.8.3.

Proof: See Section 3.8.3
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3.5 Coverage Probability Analysis

The function Ψ(·, ·, ·, ·) in (3.25) can be given in terms of Gaussian
hypergeometric functions 2F1(·, ·, ·; ·), which can be further simplified in
some cases, refer to the comment after Theorem 3.1 in Section 3.5.1. This
fact will be used in Section 3.6.3.

Compared to PIB
c in (3.15), PIA

c is more involved due to the mathematical
form of (3.23), which translates into the convolution-type integral over z.
Nevertheless, the expression in (3.25) can be evaluated with acceptable
complexity using semi-analytical tools, see Chapter 2 for an example.
Besides, (3.25) covers the general case and the expression can be further
simplified in certain specific cases as discussed next. The counterpart to
Corollary 3.1 is given next.

Corollary 3.2 (Special case). In the absence of Rx noise (σ2 = 0),

and with equal path loss exponents (αk = α ∀k ∈ K) and number of Tx

antennas (Mk = M ≤ 2 ∀k ∈ K), PIA
c reduces to

PIA
c =

M−1∑

m=0

(−1)m+M

m! Γ(M)

∫ ∞

0

z−1

× ∂m+M

∂sm ∂tM

[
1

1 + Ψ (s (T − z)+, tz,M, α)

]

s=1
t=1

dz. (3.26)

The expression in (3.26) is less complicated than (3.25). When the
threshold T is not large, the Ψ (s (T − z)+, tz,M, α) term can be further
simplified as shown next.

Corollary 3.3 (Small-T approximation). For small T , the approximation

1 + Ψ
(
s (T−z)+

M̂k
, tz
M̂k

,Mk, αk

)

≃ 2F1

(

− 2
αk
,Mk, 1 − 2

αk
; − s (T−z)++tz

M̂k

)

.

(3.27)

becomes tight.

The right-hand side of (3.27) may be easier to evaluate than the original
expression in certain cases since the Gaussian hypergeometric function
is available in most numerical software programs. Moreover, its higher-
order derivatives with respect to both s and t appearing in (3.25) can
be evaluated fairly easily following the same procedure as in (3.16) for
differentiating composite functions.
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Table 3.2: System Parameters used for Numerical Examples

Parameter Tier 1 Tier 2 Tier 3

BS density λk 4 BS/km2 16 BS/km2 40 BS/km2

BS power Pk 46 dBm 30 dBm 24 dBm

BS Tx antennas Mk 4 2 (Alamouti) 1 (no OSTBC)

Path loss exponent αk 3.76 3.67 3.5

3.6 Discussion

In this section, the theoretical results developed in the prior sections
are leveraged to study the performance of MIMO diversity in HCNs
through numerical examples. Besides, the approximations introduced
in Section 3.5.1 and Section 3.5.2 are verified by numerical simulations.
Unless stated otherwise, a three-tier (K = 3) HCN with the typical tier-
specific system parameters given in Table 3.2 is assumed, see [99]. The
dispersion matrices {Anm}, {Bnm} are chosen from [96, Sec. 2.2.3].

3.6.1 Multi-Tier & MIMO: IB-MRC vs. IA-MRC

First, the performance of IB-MRC in a typical HCN scenario with the
parameters shown in Table 3.2 is considered. The (4, 4, 3/4)-OSTBC
from [97, 7.4.10] is chosen for tier one. Fig. 3.2 shows the coverage
probability PIB

c versus the SINR threshold T for IB-MRC and different
number of Rx antennas N . It can be seen that the theoretical expressions
perfectly match the simulation results, thereby validating the Gamma
approximation explained in Section 3.5.1. As expected, increasing N

improves PIB
c since the typical user enjoys a larger array/diversity gain. For

practical target coverage probabilities, i.e. around 80% of covered users,
the horizontal gap between the PIB

c curves is roughly 2.5 dB. Fig. 3.3 shows
the coverage probability PIA

c for IA-MRC. Here, the interference-limited
case (σ2 = 0) is considered with equal path loss exponents (αk = 3.7

∀k ∈ K) and the same number of Tx antennas Mk = 2 ∀k ∈ K. Again,
simulation results and theoretical expressions are fairly close over the
entire range of T , thus justifying the approximation made in Section 3.5.2,
see Remark 3.2. It can be further observed that, for IA-MRC, doubling N
yields a gain of around 3.6 dB for the same target coverage probability.
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Next, the performance of IB-MRC and IA-MRC is compared for the same
scenario, i.e., σ2 = 0, αk = 3.7 and Mk = M ∀k ∈ K. In Fig. 3.4, the
relative coverage probability gain of IA-MRC over IB-MRC, which is
defined as ∆IA-IB

Pc
, PIA

c /PIB
c −1, is shown for M = 1, 2 Tx antennas. This

relative gain is somewhat disappointingly small (< 2% in this example).
In fact, IA-MRC becomes even less favorable when adding more Tx
antennas. This is due to the fact that adding more Tx antennas effectively
smoothes out the fading on the interfering channels, which renders the
interference increasingly similar across Rx antennas. This trend was
already predicted in Section 3.4, where the second-order statistics of the
interference were analyzed. Thus, with almost equal interference levels
across Rx antennas, the performance of IB-MRC and IA-MRC becomes
similar due to less interference diversity. In conclusion, the additional,
though not overwhelming, complexity of IA-MRC must hence be traded-
off against an insignificant improvement relative to IB-MRC; with Tx
diversity, IB-MRC may then be the better choice in MIMO HCNs.

3.6.2 Multi-Tier & MISO: Effect of OSTBC

As can be inferred from (3.15) in Theorem 3.1, Tx diversity increases the
number of diversity paths on the one hand, while it affects the interference
statistics on the other. Next, this trade-off is studied by focusing on
OSTBC Tx diversity in a MISO setting (N = 1) with different Tx antenna
configurations. To capture the net gain of OSTBC one has to account
for the rate loss resulting from code rates rℓ < 1 when being associated
with the ℓ-th tier. This can be done by introducing a tier-specific SINR
threshold T ⇒ Tℓ in (3.25) with Tℓ , (1 + T )1/rℓ − 1, assuming the
Shannon capacity formula rℓ log2(1 + Tℓ) [102]. The latter adaptation
makes sure that the same amount of information is transmitted in every
OSTBC word of length Lℓ. Fig. 3.5 shows that the MISO coverage
probability increases only slightly with the number of Tx antennas in the
low SINR regime. For target SINRs larger than a few dB, Tx diversity
is not beneficial. In fact, for OSTBCs with rates rk < 1, e.g., Mk = 4

∀k ∈ K, Tx diversity even reduces the coverage probability in this regime
due to the aforementioned rate loss. This is in line with prior findings
for the single-user case [16] and single-tier cellular networks [92], where
little to no gains of OSTBC-based Tx diversity with more than two Tx
antennas were reported at reasonable operating points.
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3.6.3 Multi-Tier & SIMO: Gain of MRC over SISO

From an information-theoretic viewpoint, Rx diversity with MRC is more
appealing than Tx diversity with space-time coding as the latter incurs
a power penalty [19]. The potential gains of Rx diversity with MRC in
HCNs, however, are yet not well-understood due to their dependence on
many system parameters. While in Section 3.6.1 the relative performance
of IB-MRC and IA-MRC was studied, the gains provided solely by MRC
Rx diversity (Mk = 1 ∀k ∈ K) over SISO transmission are analyzed next.
Focus is again on the interference-limited regime (σ2 = 0) with equal
path loss exponents across tiers (αk = α ∀k ∈ K) and N = 2. In this
case, one obtains the expressions

PIB
c =

1

2F1

(
− 2
α , 1, 1 − 2

α ; −T
) +

d
ds

[

2F1

(
− 2
α , 1, 1 − 2

α ; −sT
)]

s=1

2F1

(
− 2
α , 1, 1 − 2

α ; −T
)2

︸ ︷︷ ︸

, GIB(α,T )

(3.28)

for IB-MRC and

PIA
c =

1

2F1

(
− 2
α , 1, 1 − 2

α ; −T
) +

∫ T

0

d
dt [A(T − z, tz, α)]t=1

zA(T − z, z, α)2
dz

︸ ︷︷ ︸

, GIA(α,T )

. (3.29)

for IA-MRC, where A(·, ·, ·) , 1 + Ψ(·, ·, 1, ·) is

A(a1, a2, q) =
a1

a1 − a1
2F1

(

− 2
q , 1, 1 − 2

q ; −a1

)

− a2

a1 − a2
2F1

(

− 2
q , 1, 1 − 2

q ; −a2

)

. (3.30)

Remark 3.3. The first terms in (3.28) and (3.29) correspond to the

SISO coverage probability [89]

PSISO
c =

1

2F1

(
− 2
α , 1, 1 − 2

α ; −T
) . (3.31)

This, in turn, means that GIB(α, T ) in (3.28) and GIA(α, T ) in (3.29)
quantify the absolute coverage probability increase of dual-antenna IB-

MRC and IA-MRC, respectively, over SISO transmission in HCNs.

The derivative inside GIB(α, T ) and GIA(α, T ) can be computed using
(3.16). As a result of Remark 3.3, GIB(α, T ) and GIA(α, T ) are identified
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as the characteristic terms for analyzing the performance of dual-antenna
MRC relative to SISO transmission. This relative gain can be defined as
∆IB-MRC-SISO

Pc
, PIB

c /PSISO
c −1 = GIB(α, T ) 2F1(−2/α, 1, 1 − 2/α; −T ) and

∆IA-MRC-SISO
Pc

, PIA
c /PSISO

c −1 = GIA(α, T ) 2F1(−2/α, 1, 1 − 2/α; −T ) for
IB-MRC and IA-MRC, respectively.

Figure 3.6 shows the relative coverage probability gain ∆IB-MRC-SISO
Pc

versus α and T . The relative gain monotonically decreases with α and
monotonically increases with T . Interestingly, ∆IB-MRC-SISO

Pc
saturates

at large T , although in the corresponding interference-free case the rel-
ative gain of MRC over SISO grows unboundedly in T [19, 7.2.4]. For
typical values 3 < α < 5 and T > −6 dB, the relative gain of IB-MRC
is between 12%–66%. Fig. 3.7 illustrates the additional relative gain
∆IA-MRC-SISO

Pc
− ∆IB-MRC-SISO

Pc
when switching from IB-MRC to IA-MRC.

In line with Fig. 3.4, IB-MRC already harvests most of the gains over
SISO transmission as the additional improvement of IA-MRC does not
exceed 3% in this example. Nevertheless, the largest additional improve-
ment for realistic path loss exponents around α = 4 lies entirely in the
practical regime −5 < T < 10 dB.

3.6.4 Effect of Spatial Interference Correlation

As explained in the beginning of this chapter and in Section 3.4, in-
terference correlation across Rx antennas influences the performance
of IA-MRC. Mathematically, this can be seen by noting that the post-
combiner SINR in (3.23) is a sum of correlated random variables. The
difficulty of characterizing the coverage probability for general N is due
to the complicated correlation structure inherent to this sum, see Sec-
tion 3.5.2. To increase mathematical tractability, two simpler correlation
models are thus typically used in the literature: 1) NC model, and 2) FC
model. Using the results from Section 3.5.2, the validity of these models
for IA-MRC will be discussed next.

No-Correlation Model

A commonly made assumption to maintain analytical tractability is to
assume that the {In} in (3.23) are uncorrelated, i.e., the locations of
interfering BSs in In originate from separate independent point processes
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for each Rx antenna n. Under this assumption, the following coverage
probability PIA

c,NC for the NC model can be obtained.

Proposition 3.1 (Coverage Probability PIA
c,NC). The coverage probability

PIA
c,NC for dual-antenna IA-MRC in the NC model is given by (3.25) with

1 + Ψ(·, ·, ·, ·) replaced by

2F1

(

− 2
αk
,Mk, 1 − 2

αk
; − s

M̂k
(T − z)+

)

+2F1

(

− 2
αk
,Mk, 1 − 2

αk
; − t

M̂k
z
)

− 1. (3.32)

Proof: See Section 3.8.4.

By comparing the mathematical form of the expression in (3.32) with
1 + Ψ(·, ·, ·, ·) in (3.25), the influence of spatial interference correlation
becomes apparent: in (3.32) the first two terms result in a product of
PDFs of the form fSINR1

(T − z)fSINR2
(z) inside the integral over z, which

corresponds to the well-known convolution-type integral for sums of
independent random variables [80, Sec. V.4]. Note that by looking at
1 + Ψ(·, ·, ·, ·), it becomes clear that no such product form can be obtained
for the joint PDF of SINR1 and SINR2 due to the interference correlation
across Rx antennas.

Full-Correlation Model

Another frequently used approach in the literature to simplify the analysis
is to assume that the {In} are fully correlated, i.e., the fading gains hi,n
yield the same realization across n for all xi ∈ Φo. Under this assumption,
the corresponding coverage probability PIA

c,FC for the FC model can be
derived for arbitrary N as shown next.

Proposition 3.2 (Coverage probability PIA
c,FC). The coverage probability

PIA
c,FC for N -antenna IA-MRC in the FC model is the same as for IB-MRC,

see (3.15) in Theorem 3.1.

Proof: See Section 3.8.5.

Figure 3.8 shows the relative coverage probability deviation for the two
simpler correlation models for Mk = 1, 2 ∀k ∈ K. The relative deviation
is defined as δNC

Pc
, PIA

c,NC/P
IA
c −1 (δFC

Pc
, PIA

c,FC/P
IA
c −1) for the respective
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correlation models. First, it can be seen that both models reflect the true
performance at small T . For T > 0 dB, the NC model yields a significantly
optimistic performance prediction (3% < δNC

Pc
< 8%), depending on the

number of Tx antennas. In contrast, the FC model slightly underestimates
the true performance (δFC

Pc
< 2%). In line with the intuition, adding a

second Tx antenna increases δNC
Pc

due to the smaller interference variance
and larger interference correlation across Rx antennas, see Section 3.4.
Consequently, δFC

Pc
decreases in this case. The smaller deviation for the

FC model was already reported in Chapter 2 for Aloha-based ad hoc

networks and is reconfirmed in this chapter for HCNs. Fig. 3.9 illustrates
the outage probability (1 − Pc) for the exact, NC, and FC model for
Mk = 1, 2 ∀k ∈ K. It can be seen that the simpler correlation models
preserve the true diversity order for dual-antenna IA-MRC. Interestingly,
the diversity order due to IA-MRC (equal to N) remains unaffected
by the interference correlation across Rx antennas. This is in sharp
contrast to the ad hoc network model considered in Chapter 2, where the
NC model fails to recover the true diversity behavior, see Section 2.5.2.
This difference results from the fact that, unlike in HCNs, interfering
transmitters may be significantly closer to the receiver than the desired
transmitter in ad hoc networks, thereby imprinting a different law to the
interference statistics compared to in HCNs. As expected, the diversity
order of IA-MRC for M = 2 and N = 2 is NM = 4.

In conclusion, the FC model offers a tight approximation to the perfor-
mance of IA-MRC in HCNs, particularly when BSs employ multiple Tx
antennas. This result is congruent with the prior observation that the
performance gap between IA-MRC and IB-MRC is not significant and
further decreases with the number of Tx antennas.

3.6.5 Comparison with IA Selection Combining

Complexity constraints may sometimes prohibit the use of MRC and
allow only for simpler combining schemes. Importantly, while hardware
requirements of combining schemes are independent of the communication
environment, their performance obviously is not. To properly balance
performance-complexity trade-offs, it is hence important to compare the
performance of MRC to other combining schemes using a realistic model.
In the following, such a comparison is conducted for the example of
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IA-SC, which is a widespread scheme with lower complexity compared
to MRC. A similar comparison can be found in Chapter 2 for wireless
ad hoc networks. Focus will be on the case Mk = 1 ∀k ∈ K, while an
extension to Mk > 1 is deferred to possible future work. The following
result is a generalization of [55] and gives the coverage probability for
IA-SC with Rx noise in HCNs.

Theorem 3.3 (Coverage probability PSC
c ). The coverage probability PSC

c

for N-antenna IA-SC in the described setting with Mk = 1 ∀k ∈ K is

given by

PSC
c = 2π

K∑

ℓ=1

N∑

n=1

(
N

n

)

(−1)n+1λℓ

∫ ∞

0

y exp

(

− nT

SNR(ℓ, y)

−π
K∑

k=1

λkP̂
2/αk
k y2/α̂k

2F1

(

− 2
αk
, n, 1 − 2

αk
; −T

)
)

dy. (3.33)

Proof: See Section 3.8.6.

Without Rx noise and with equal path loss exponents across tiers, (3.33)
can be further simplified as shown next.

Corollary 3.4 (Special case). In the absence of Rx noise (σ2 = 0) and

with equal path loss exponents (αk = α ∀k ∈ K), (3.33) simplifies to

PSC
c =

N∑

n=1

(−1)n+1
(
N
n

)

2F1

(
− 2
α , n, 1 − 2

α ; −T
) . (3.34)

Remark 3.4 (Comment on Corollary 3.4). Corollary 3.4 coincides with

the result in [103, Corollary 2] for IA-SC over multiple resource blocks

without Rx noise in single-tier (K = 1) cellular networks. Thus, Corol-

lary 3.4, and especially Theorem 3.3, represent a generalization of the

results from [103] for HCNs.

Figure 3.10 shows the relative coverage probability gain of MRC over IA-
SC for N = 2, 4. The relative gain is defined as ∆IB-MRC-SC

Pc
, PIB

c /PSC
c −1

for IB-MRC and ∆IA-MRC-SC
Pc

, PIA
c /PSC

c − 1 for IA-MRC. The result
for IA-MRC with N = 4 was obtained by numerical simulations as
Theorem 3.2 and Corollary 3.2 treat only the case N = 2. As expected,
MRC outperforms IA-SC, particularly at large T . However, for practical T
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around a few dB (which corresponds to between 70-80% covered users), the
gap is less than 10% for N = 2. Here, the additional complexity associated
with MRC may not be justified as IA-SC achieves similar performance.
Nevertheless, adding more Rx antennas increases the relative performance
(about 25% for N = 4 at practical T ). Note that, in sharp contrast to
the interference-free case (dotted line in Fig. 3.10), the relative gain of
MRC over IA-SC saturates at large T due to the effect of correlated
interference.

3.7 Summary

A stochastic model for analyzing the performance of downlink MIMO
diversity with OSTBC and MRC in HCNs was developed using tools
from stochastic geometry. It was shown that adding more Tx antennas
at the BSs increases the coverage probability on the one hand, while it
impacts the relative performance of IB-MRC and IA-MRC on the other
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hand. One important design insight that arises from the analysis is that
IA-MRC is less favorable than IB-MRC when multiple Tx antennas are
used. Another key insight is that the FC model provides a reasonably
tight approximation for IA-MRC; this could enable the analysis of more
sophisticated MIMO techniques, which may be hopeless when considering
the exact correlation structure.

3.8 Proofs

3.8.1 Proof of Lemma 3.2

The result is obtained by noting that

E



exp



−s
K∑

k=1

∑

xi∈Φo
k

Pk
Sk‖xi‖αk

‖Hi(Sk)‖2
F









(a)
=

K∏

k=1

E




∏

xi∈Φo
k

L‖Hi(Sk)‖2
F

(
sPk

Sk‖xi‖αk
)




(b)
=

K∏

k=1

E




∏

xi∈Φo
k

(

1 +
sPk

Sk‖xi‖αk
)−Sk





(c)
= exp

{

−π
K∑

k=1

λk

∫ ∞

dk

2r

(

1 −
(

1 + sPk
Skr

αk

)−Sk
)

dr

}

, (3.35)

where (a) follows from the independence of the {Φok} across k and from the
independence of the {‖Hi(Sk)‖2

F } across i, (b) follows from the Laplace
transform of the Erlang distributed ‖Hi(Sk)‖2

F , see Lemma A.2, and (c)
follows from the PGFL for PPPs, see Theorem A.3.

3.8.2 Proof of Theorem 3.1

Applying the law of total probability and making use of Lemma 3.1, the
coverage probability PIB

c of IB-MRC can be written as

PIB
c =

K∑

ℓ=1

Aℓ

∫ ∞

0

fy,ℓ(y)P (SINRΣ(ℓ, y) ≥ T ) dy, (3.36)
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where P (SINRΣ(ℓ, y) ≥ T ) can be seen as the conditional PIB
c given ℓ, y.

With Lemma A.3, the conditional PIB
c can be rewritten as

P (SINRΣ(ℓ, y) ≥ T ) = P



‖Ho‖2
F ≥ SℓT

Pℓy−αℓ





K∑

k=1

∑

xi∈Φo
k

Ii,eqv + σ2









(a)
=

NMℓ−1∑

m=0

(−1)m

m!
EY

[
(−1)mYme−Y

]

(b)
=

NMℓ−1∑

m=0

(−1)m

m!

dm

dsm

[

LY(s)
]

s=1
, (3.37)

where in (a) Y , SℓT
Pℓy

−αℓ
(
∑K
k=1

∑

xi∈Φo
k

Ii,eqv+σ2) has been defined and (b)
follows from the differentiation rule for Laplace transforms [80, Sec. XIII.2].
With Lemma 3.2, LY(s) can be obtained as

LY(s) = exp

(

− sSℓT

SNR(ℓ, y)
− π

K∑

k=1

λkP̂
2/αk
k y2/α̂k

×
[

2F1

(

− 2
αk
, Sk, 1 − 2

αk
; − sT

Ŝk

)

− 1
])

, (3.38)

where SNR(ℓ, y) , Pℓy
−αℓ/σ2 is the average SNR and Ŝk , Sk/Sℓ. Sub-

stituting (3.38) back into (3.37) and de-conditioning on y and ℓ yields
the result.

3.8.3 Proof of Theorem 3.2

Following the same approach as in the proof of Theorem 3.1, the coverage
probability PIA

c of IA-MRC can be written as

PIA
c =

K∑

ℓ=1

Aℓ

∫ ∞

0

fy,ℓ(y)P (SINRΣ(ℓ, y) ≥ T ) dy. (3.39)

After conditioning on Φo, P (SINR(ℓ, y) ≥ T ) can be expressed as

EΦo

[

P(SINR1 ≥ T − SINR2|Φo)
]

= EΦo

[∫ ∞

0

P(SINR1 ≥ T − z|Φo) fSINR2|Φo(z) dz

]

, (3.40)
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where

SINRn ,
Pℓ

Mℓyαℓ
‖ho,n‖2

F

In + σ2
. (3.41)

was defined as the per-antenna conditional SINRn for short-hand notation.
Applying the same steps as in (3.37), P(SINR1 ≥ T − z|Φo) inside the
integral in (3.40) can be obtained as

Mℓ−1∑

m=0

(−1)m

m!

dm

dsm

[

exp

(

−sMℓ(T − z)+

SNR(ℓ, y)

)

×
K∏

k=1

∏

xi∈Φo
k

(

1 +
s (T − z)+P̂ky

αℓ

M̂k‖xi‖αk

)−Mk
]

s=1

, (3.42)

where the fact that the {‖hi,1‖2
F } are Erlang distributed with Laplace

transform given by Lemma A.2 was used. Similarly, one has

fSINR2|Φo(z) =
d

dw

[

P (SINR2 ≤ w|Φo)
]

w=z

=
(−1)Mℓ

z Γ(Mℓ)

dMℓ

dtMℓ

[

exp

(

− tMℓz

SNR(ℓ, y)

)

×
K∏

k=1

∏

xi∈Φo
k

(

1 +
tzP̂ky

αℓ

M̂k‖xi‖αk

)−Mk
]

t=1

. (3.43)

By Fubini’s theorem [81], the expectation EΦo can be moved inside the
integral over z in (3.40). By Leibniz integration rule for infinite integrals
[66], the differentiations dm/dsm in (3.42) and dMℓ/dtMℓ in (3.43) can
be moved outside EΦo . Since the {Φok} are independent, one then has

E





K∏

k=1

∏

xi∈Φo
k

(

1 +
s (T − z)+P̂ky

αℓ

M̂k‖xi‖αk

)−Mk
(

1 +
tzP̂ky

αℓ

M̂k‖xi‖αk

)−Mk




= exp

{

−π
K∑

k=1

λkP̂
2/αk
k y2/α̂kΨ

(
s

M̂k

(T − z)+,
tz

M̂k

,Mk, αk

)}

, (3.44)

where M̂k , Mk/Mℓ and

Ψ (a1, a2, p, q) =

∫ ∞

1

1 −
[(

1 +
a1

uq/2

)(

1 +
a2

uq/2

)]−p
du. (3.45)

Combining (3.39) – (3.44) yields the result.
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3.8 Proofs

3.8.4 Proof of Proposition 3.1

Recall that in the NC model the interferer locations originate from
different point processes, say Φo and Φo′, for each of the two Rx antennas.
Then, (3.44) decomposes to

EΦo





K∏

k=1

∏

xi∈Φo
k

(

1 +
s (T − z)+P̂ky

αℓ

M̂k‖xi‖αk

)−Mk




×EΦo′





K∏

k=1

∏

xi∈Φo
k

(

1 +
tzP̂ky

αℓ

M̂k‖xi‖αk

)−Mk




(a)
= exp

(

− π
K∑

k=1

λkP̂
2/αk
k y2/α̂k

×
[

2F1

(

− 2
αk
,Mk, 1 − 2

αk
; − s

M̂k
(T − z)+

)

− 1

+ 2F1

(

− 2
αk
,Mk, 1 − 2

αk
; − tz

M̂k

)

− 1
]
)

, (3.46)

where (a) follows from Lemma 3.2.

3.8.5 Proof of Proposition 3.2

Since hi,u ≡ hi,v for all u, v ∈ {1, . . . , N} and xi ∈ Φo, it follows that
Iu ≡ Iv for all u, v ∈ {1, . . . , N}. Then, the post-combiner SINR expression
for IA-MRC in (3.23) collapses to the corresponding expression in (3.12)
for IB-MRC.

3.8.6 Proof of Theorem 3.3

By [55, Eq. (8)], PSC
c can be expressed as

PSC
c =

N∑

n=1

(−1)n+1

(
N

n

)

Pn, (3.47)

where Pn , P(SINR1 > T, . . . , SINRn > T ) is the joint success probability,
i.e., the probability of the per-antenna SINR being greater than T at
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n Rx antennas simultaneously. Invoking Lemma 3.1 and following the
same line of thoughts as in [54, Appendix A], the conditional Pn(ℓ, y)

(conditioned on tier ℓ and serving BS distance y) can be written as

Pn(ℓ, y)
(a)
= EΦo

[
n∏

q=1

P

(

|ho,q|2 > Tyα

Pℓ
(Iq + σ2)|Φo

)
]

(b)
= exp

(

− nT

SNR(ℓ, y)

) K∏

k=1

E




∏

xi∈Φo
k

(

1 + T
yαℓ P̂k
‖xi‖αk

)−n

 , (3.48)

where (a) follows from the independence of the {ho,q} across Rx antennas
and (b) follows from the independence of the interfering channel gains
{hi,q} and from the independence of the {Φo

k} across tiers. Applying
Lemma 3.2 to (3.48) and de-conditioning on ℓ and y yields the result.
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4

Diversity Combining

Beyond

Multi-Antenna

Receivers

Chapter 2 and Chapter 3 focused on diversity combining in multi-antenna
systems, which use the additional spatial degrees-of-freedom to provide
diversity. In general, diversity can be obtained in various ways, see
[20, Chap. 5] for an overview, and is not limited to multi-antenna systems.
In this chapter, two popular approaches for providing diversity in single-
antenna systems are considered and their performance under interference
correlation is studied. In Section 4.1, cooperative diversity using relay
communication is examined, while frequency-diversity reception in HCNs
is treated in Section 4.2. This chapter is based on [T6–T8].

4.1 Cooperative Diversity in Wireless Networks

In spite of steadily increasing data rate demands, cooperative diversity—
and most saliently, cooperative relaying—has become a viable solution to
increase reliability and/or throughput. The concept of relaying is found
for instance in 3GPP Rel-10 for LTE 4G networks [104]. Its performance
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4 Diversity Combining Beyond Multi-Antenna Receivers

in the absence of interference has been a research topic of great interest
since the seminal work by [105] in 1979 and is now fairly well-understood.
This, however, is not true for the interference-limited case, where outage
can be due to adverse fading states and strong interference. Analyzing
cooperative relaying under the additional influence of interference is diffi-
cult. This is because interference depends on the geometry of interfering
transmitters, which can be highly dynamic due to heterogeneous deploy-
ments, limited site-planning, and mobility, thereby letting interference
appear effectively random to a given receiver. Furthermore, interference
can be spatially correlated across the cooperating nodes, which may affect
the diversity behavior of cooperative relaying. A better understanding
of cooperative relaying in the presence of random interference is hence
mandatory. Compared to the interference-free case, there exist only a few
works that take into account the effect of random interference, see for
instance [56,106,107]. This section complements earlier work by focusing
on the diversity order of cooperative relaying under interference.

The diversity order metric [108] is a commonly used tool to quantify
the performance of diversity schemes. As explained in Section 2.5.2 in
Chapter 2 and in [54], applying the diversity order metric to a multi-user
scenario with interference is not straightforward and different formulations
exist. Yet another possible formulation will be introduced and discussed
here. This formulation may be more suitable for wireless ad hoc networks
as it takes the spatial resource—being considered as the critical resource
in interference-limited networks—into account. Equipped with this new
metric, the diversity behavior of cooperative relaying in the presence of
random interference is then studied and the effect of spatial interference
correlation and fading on the system performance is analyzed.

Contributions and Outcomes:

• The outage probability for a fixed source-relay-destination configu-
ration employing SDF in the presence of a Poisson field of interferers
is derived.

• The Spatial Diversity Order (SDO) metric is introduced, which
quantifies the diversity behavior in interference-limited networks
taking into account the spatial resource by controlling the density
of simultaneously active transmitters.
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• In the considered relay scenario, the SDO is equal to one (no
diversity order gain) irrespective of the type of fading distribution,
which is mainly due to the inability of the relay to counteract the
interference experienced by the destination in the Multiple Access
Channel (MAC) phase (Tx diversity).

• In the Broadcast (BC) phase (Rx diversity), the SDO depends on
the amount of both fading and spatial interference correlation. In
the absence of fading, there is a hard transition between an SDO
of either one or two (maximal for one relay), depending on the
system parametrization. This suggests that SIMO systems with
spatially-distributed Rx antennas are, in principle, able to recover
the diversity order gains known for the interference-free case.

4.1.1 System Model

A three-node configuration consisting of a source located at xS, a des-
tination located at xD and a half-duplex relay located at xR on R

2 is
considered. The locations xS, xD and xR are arbitrary but fixed. Hence,
the destination can be placed at the origin without loss of generality
(xD = o ∈ R

2). The total available transmission time for conveying a
packet from the source to the destination is divided into two consecutive
time slots over which the cooperative transmission takes place. Selec-
tion decode-and-forward (SDF) [108] is used as the relay protocol. In
SDF, the source broadcasts a packet in the first time slot, while the
destination buffers the received packet and the relay tries to decode the
packet. Depending on whether the relay was able to correctly decode the
packet, either the relay or the source then re-transmits the packet to the
destination in the second time slot. Finally, the destination appropriately
combines the two copies prior to decoding the packet. The term selection

indicates that either the relay or the source is selected to transmit to the
destination in the second time slot, which recovers the dimension loss of
conventional decode-and-forward whenever the relay fails to decode the
packet. This, however, requires a reliable 1-bit feedback from the relay
to the source node.

As the three-node configuration is part of a multi-user environment,
it will suffer from interference created by other transmitters. In one
snapshot, the locations of these interfering transmitters are assumed to
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Interferer

Source

Relay

Destination

Figure 4.1: Illustration of the considered cooperative scenario with ran-
domly located interfering transmitters distributed according
to a PPP.

follow a stationary planar PPP Φ with density λ, see Definition A.3. As
already discussed in the preceding chapters, the PPP model is commonly
accepted for capturing dynamic interference in various kinds wireless
networks, see for instance [42,109]. All transmitted signals are subject to
distance-dependent path loss. The power path loss between two locations
x1, x2 ∈ R

2 is given by the path loss function ‖x1 − x2‖α, where α > 2

denotes the path loss exponent.

In addition to path loss, the signals undergo channel fading, meaning that
the interference power (hereafter, simply interference) from interferer i to
the destination and relay are subject to the fading gains gi,D and gi,R,
respectively. Similarly, for the channels between the source, relay, and
destination, the fading gains gS,R, gS,D, and gR,D are introduced. Inde-
pendent frequency-flat Rayleigh fading is assumed, which yields a valid
model for rich scattering None-Line-of-Sight (NLoS) environments. Thus,
gi,j follows a unit-mean exponential distribution for all i ∈ N ∪ {S,R}
and j ∈ {R,D}. In Section 4.1.3, the Rayleigh fading assumption will be
dropped and the pure path loss model will be considered instead. The
fading gains gi,j are assumed constant for the duration of the cooperative
transmission, i.e., over the two time slots used by SDF. Furthermore, relay
and destination are assumed to have perfect CSI-Rx. The considered
scenario is illustrated in Fig. 4.1 and the notation used in Section 4.1 is
shown in Table 4.1.
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4.1 Cooperative Diversity in Wireless Networks

Table 4.1: Notation used in Section 4.1

Notation Description

Φ; λ Set of (random) interferer locations modeled as PPP;

spatial density of interferers

xS; xR; xD Location of source; relay; destination on R
2; xD = o

α Path loss exponent

gi,j Power fading gain from transmitter i ∈ N ∪ {S, R} to

receiver j ∈ {R, D}

IR; ID Current interference (power) at relay; at destination

SIRSRD; SIRSD Post-combiner SIR at destination with relay; without

SIRR SIR at relay

T SIR threshold

Pc Success probability

λd Spatial diversity order

The effect of Rx noise is ignored and focus is put on the interference-
limited regime. All nodes are assumed to transmit with the same fixed
Tx power, which can be set equal to one without loss of generality. The
sum interference experienced at the relay and destination within the two
time slots can then be expressed as

IR ,
∑

xi∈Φ

gi,R‖xi − xR‖−α (4.1)

ID ,
∑

xi∈Φ

gi,D‖xi‖−α. (4.2)

It the first time slot, both the relay and destination overhear the source’s
transmission, while the relay then tries to decode the packet. The Signal-
to-Interference Ratio (SIR) at the relay is given by

SIRSR =
gS,R‖xS − xR‖−α

IR
. (4.3)

Given that the relay was able to decode the packet sent by the source,
it then forwards the re-encoded version to the destination in the second
time slot. At the destination, the two copies of the packet are combined
using MRC, which yields the post-combiner SIR

SIRSRD =
gS,D‖xS‖−α + gR,D‖xR‖−α

ID
. (4.4)
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In case the relay fails to decode the packet sent by the source, the source
re-transmits it in the second time slot, resulting in the post-combiner
SIR

SIRSD =
2gS,D‖xS‖−α

ID
. (4.5)

4.1.2 Outage Analysis

Since strong interference and/or adverse fading states may lead to an
outage of the cooperative transmission, a reasonable performance metric is
the success probability Pc, which was already introduced in Definition 2.1.
Recall that the outage probability is defined as 1 − Pc.

Following the same approach as in [108], the success probability for SDF
can be decomposed as

Pc = 1 − P (SIRSD < T, SIRSR < T )
︸ ︷︷ ︸

, qBC

−P (SIRSRD < T, SIRSR ≥ T )
︸ ︷︷ ︸

, qMAC

, (4.6)

where qBC and qMAC are the outage probability in the BC phase and
MAC phase, respectively. Analyzing these two expressions separately will
turn out to be advantageous in the subsequent analysis.

Proposition 4.1 (Outage probability with Rayleigh fading). Let ‖xS‖ 6=
‖xR‖. The BC and MAC outage probabilities are given by

qBC = 1 − exp

(

−λΩ

[

0,
T‖xS‖α

2rα

])

− exp

(

−λΩ

[
T‖xS − xR‖α

(r2 + x2
R − 2rxR cosφ)

α
2

, 0

])

+ exp

(

−λΩ

[
T‖xS − xR‖α

(r2 + x2
R − 2rxR cosφ)

α
2

,
T‖xS‖α

2rα

])

(4.7)

and

qMAC = exp

(

−λΩ

[
T‖xS − xR‖α

(r2 + x2
R − 2rxR cosφ)α/2

, 0

])

− ‖xR‖α
‖xR‖α − ‖xS‖α exp

(

−λΩ

[
T‖xS − xR‖α

(r2 + x2
R − 2rxR cosφ)

α
2

,
T‖xS‖α
rα

])

+
‖xS‖α

‖xR‖α − ‖xS‖α exp

(

−λΩ

[
T‖xS − xR‖α

(r2 + x2
R − 2rxR cosφ)

α
2

,
T‖xR‖α
rα

])

,

(4.8)
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where

Ω[f, g] ,

∫ ∞

0

∫ π

0

2r

(

1 − 1

(1 + f(r, φ))(1 + g(r))

)

dφdr. (4.9)

Proof: See Section 4.3.1.

Remark 4.1. The outage probability for the special case ‖xS‖ = ‖xR‖
can be obtained using a similar approach, e.g., as in Chapter 2 and

[107], however, with no additional insights. Note that in this case,

gS,D‖xS‖−α + gR,D‖xR‖−α is Erlang distributed with shape equal to two

and rate ‖xS‖α = ‖xR‖α.

Diversity Order Analysis

As discussed in the beginning of Section 4.1, characterizing the diversity
order in the multi-user scenario is not straightforward. A novel formula-
tion for the diversity order that is based on controlling the spatial density
of simultaneously transmitting nodes is therefore proposed next.

Definition 4.1 (Spatial diversity order). The SDO is defined as

dλ , lim
λ→0

log 1 − Pc

log λ
. (4.10)

The subscript “λ” in dλ emphasizes that the spatial density of concurrent
transmissions is used as the scaling parameter. The SDO is a suitable
metric for characterizing the diversity order in interference-limited wireless
networks if one wants to take into account the spatial resource—which
is considered the critical resource wireless networks with spatial reuse.
Besides, the SDO has some practical relevance: medium access protocols
such as Aloha (spatial reuse with predefined medium access probability)
and Carrier Sense Multiple Access (CSMA) (spatial inhibition of active
transmitters) control the density of simultaneous transmissions as well.
As an application example, consider the baseline scenario, where the
source communicates with the destination without help of the relay. The
corresponding success probability is given by (2.33) with y = ‖xS‖. In
this case the SDO can be shown to yield dλ = 1, which is intuitive since
direct transmission cannot provide any diversity order gain.

101



4 Diversity Combining Beyond Multi-Antenna Receivers

The following Lemma will be helpful in the later diversity analysis.

Lemma 4.1. Let w(t) =
∑ξ
k=0 ak (1 − e−tzk), where t ≥ 0 and ak, zk ∈

R for all k = 0, . . . , ξ < ∞. Then, w(t) ∝ t as t → 0 if and only if
∑ξ
k=0 akzk 6= 0.

Proof: See Section 4.3.2.

With Lemma 4.1, the SDO of SDF can now be computed.

Theorem 4.1 (SDO of SDF with Rayleigh fading). The SDO of SDF

for exponentially distributed fading gains (Rayleigh fading) is dλ = 1.

Proof: See Section 4.3.3.

Theorem 4.1 states that there is no gain in terms of SDO by relaying
the packet sent by the source. This somewhat disappointing result is in
contrast to the interference-free case, where SDF is known to provide a
diversity order gain [108]. The reason for this result is that, although the
relay can lead to an array gain at the destination in the MAC phase, it
cannot reduce the interference level at the destination just by forwarding
the packet. Hence, outages due to strong interference may still occur,
leading to the diversity bottleneck qMAC ∝ λ as λ → 0.

On the other hand, spatial correlation of the interference renders the BC
phase not as effective as in the interference-free case, yielding qBC ∝ λ

as λ → 0; more specifically, if the destination is in outage in the first
time slot, then it is (more or less) likely that the relay is in outage as
well, since the interference is correlated over space. This observation
suggests that increasing the relay-destination distance reduces the spatial
interference correlation across these two nodes, however, it turns out that
the asymptotic slope of qBC does not change, i.e., qBC ∝ λ as λ → 0. It
is important to note, though, that the fading distribution co-determines
the spatial interference correlation properties, and that abandoning the
Rayleigh fading assumption may indeed change the SDO at least in the
BC phase.3 This will be verified in Section 4.1.3, where the Rayleigh
fading assumption is dropped and the SDO in the BC phase is revisited.

3Obviously, assuming a different fading distribution does not change the SDO in
the MAC phase due to the inability of the relay to reduce interference at the
destination node as explained before.
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Source Relay Destination

Figure 4.2: Line configuration of the cooperative three-node network

Optimal Relay Position

Theorem 4.1 and the ensuing discussion give rise to the question about the
optimal relay location. Using Proposition 4.1, the optimal relay location
optimizing Pc can be found by maximizing (4.6) over xR given xS. For
this purpose, the relay is assumed to be located on a line connecting the
source and the destination, see Fig. 4.2.

Figure 4.3 shows the optimal relay position relative to the position of the
destination for different path loss exponents α. The relative position is
obtained as ‖xS −xR‖/‖xS‖, since xD = o. It can be seen that it is strictly
better to place the relay closer to the destination for reasonable path loss
exponents around α = 4, in particular for small outage probabilities on
the order of 10−3 to 10−2, which corresponds to λ = 10−6 (solid line). For
practically non-relevant large outage probabilities on the order of 10−1,
which corresponds to λ = 10−3 (dashed line), this observation is weaker
as the optimal relay position is now closer to the half-line. In conclusion,
these observations suggest that there is a slight trend for outage-optimal
SDF in the sense that Rx diversity is more beneficial than Tx diversity.
The intuition behind this result is that the ability to boost the received
power through the relay-destination link outweighs the reliability loss of
the source-relay link.

4.1.3 Diversity Analysis in BC Phase without Fading

The main conclusion of Section 4.1.2 was that SDF under interference
cannot provide a diversity order gain, mainly because of the relay not
being capable to counteract the interference problem at the destination
in the MAC phase. Obviously, this fact does not change when assuming a
different fading distribution. In contrast, the SDO associated with the BC
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Figure 4.3: Optimal relay position relative to source-destination dis-
tance, i.e., ‖xS − xR‖/‖xS‖, versus α. Line configuration
assumed. Parameters: ‖xS‖ = 10 and T = 4.

phase may depend on the amount of fading, since fading co-determines
the spatial interference correlation. Recall that the Rayleigh fading model
applies to rich scattering NLoS environments. On the other extreme,
the pure path loss model applies to scenarios with negligible scattering
and a dominant Line-of-Sight (LoS) path. Since the SDO analysis in
Section 4.1.2 focused on the Rayleigh fading model, it is reasonable to
redo the analysis now assuming the other extreme, namely the pure path
loss model. In the pure path loss model, the fading gains are no longer
random and now become gi,j ≡ 1 for all i ∈ N ∪ {S,R} and j ∈ {R,D}.
Clearly, with unit fading gains, the spatial interference correlation now
depends exclusively on the spatial distribution of nodes in the network.

The BC phase can be viewed as a distributed SIMO system, where the des-
tination has two spatially separated Rx antennas connected through some
high-capacity link. The distributed-SIMO concept is found for instance
in cellular networks with Radio Remote Heads (RRHs) or Coordinated
Multi-Point (CoMP) with joint-processing in the uplink [110,111].
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As already discussed in Section 2.4.2, the dominant-interferer bounding
technique from [42] yields a remarkably tight approximation for the
outage probability in the asymptotic regime λ → 0. The following result
exploits this fact and gives the SDO under the pure path loss model.

Theorem 4.2 (Outage probability and SDO in BC phase without fading).
Define the two (dominant-interferer) regions AR , b(xR, T

1/α‖xS −xR‖),

AD , b(o, (T2 )1/α‖xS‖), and their intersection ARD , AR ∩ AD. Then,

qBC for SDF under the pure path loss model becomes

qBC ∼
{
λ|ARD|, |ARD| 6= 0 (4.11a)

λ2|AR| |AD|, |ARD| = 0, (4.11b)

as λ → 0. The SDO in the BC phase is

dλ =

{

1, ‖xR − o‖ ≤ T 1/α‖xS − xR‖ + (T2 )1/α‖xS‖ (4.12a)

2, otherwise. (4.12b)

Proof: See Section 4.3.4.

As can be seen by (4.11) and (4.12), the intersection ARD of the two
regions AR and AD plays a crucial role for the SDO: if |ARD| = 0, i.e.,
there is no overlapping of the individual dominant-interferer regions AR

and AD, the interference across the relay and the destination becomes
uncorrelated as λ → 0, thus yielding dλ = 2. Note that qBC in (4.11b)
scales with T 4/α, which is consistent with the diversity order results
obtained in Section 2.5.2. It is interesting to note that, by looking at
(4.12), there exists a hard transition from dλ = 1 to dλ = 2 in the pure
path loss model, which depends only on the geometrical distance between
the relay and destination node. Under a more general fading model, e.g.,
Nakagami-m, which captures the continuum between Rayleigh and no
fading, one may thus conjecture that the smoothness of the transition
will further depend on the amount of fading.

The theoretical result from Theorem 4.2 is shown in Fig. 4.4, along with
simulation results validating the analysis. In particular, it can be seen that
the dominant-interferer bounding technique yields a tight approximation
to the true qBC in the small outage probability regime. As expected, the
slope of qBC does not change (dλ = 1) until the relay-destination distance
becomes sufficiently large such that the respective dominant-interferer
regions do not overlap (|ARD| = 0 ⇒ dλ = 2). In this example, the
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Figure 4.4: Outage probability qBC versus λ for relay locations xR =

(5, 0), (10, 0), (15, 0). Parameters: xS = (18, 0), α = 4,
T = 0.25.

relay-destination distance has to be at least ‖xR − o‖ = 13.72 for the
dominant-interferer regions AR and AD to be disjoint, which can be
verified by the inequality in (4.12a). Note that the radii of these regions
and hence, of their intersection ARD are proportional to T 1/α. This
suggests that small target SIRs, e.g., as in direct-sequence Code Division
Multiple Access (CDMA) ad hoc networks [112,113], are desirable from
the viewpoint of the SDO in distributed Rx diversity systems.

4.1.4 Summary

The analysis showed that, although spatially separated, nodes may ex-
perience correlated interference due to common locations of interfering
transmitters. In this sense, interference correlation is not limited to a few
centimeters across Rx antennas, but it propagates through the space sur-
mounting meters. This obviously affects the performance of cooperative
diversity schemes; the diversity order in a simple one-relay SDF scenario
with Rayleigh fading cannot exceed that of a conventional transmission
between two single-antenna nodes. However, the picture changes when
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4.1 Cooperative Diversity in Wireless Networks

considering an Rx diversity system with an error-free relay-destination
link. In this case, a diversity order increase is achievable in the absence of
channel fading. This is because in the asymptotic regime, outage events
are dominated by interfering transmitters within the so-called dominant-
interferer regions around the relay and the destination; if these regions
are disjoint, the diversity order is two (maximal for single-relay case). For
small SIR thresholds T , the interferer regions become disjoint already for
small separations between the relay and destination. This suggests that
signaling schemes that operate at low effective SIR thresholds T , e.g.,
direct-sequence CDMA, are more desirable when optimizing the diversity
order of cooperative Rx diversity systems.

107



4 Diversity Combining Beyond Multi-Antenna Receivers

4.2 Frequency Diversity in Heterogeneous

Cellular Networks

Flexible segmentation and resource allocation of potentially large trans-
mission bandwidths is a prominent feature of 4G cellular networks, and
is considered no less important for 5th Generation (5G) cellular networks
[5]. In LTE, for instance, it is possible to assign non-contiguous spectrum
to certain users using Distributed Virtual Resource Blocks (DVRBs) [86].
Carrier aggregation [114], on the other side, allows users to operate on
much larger bandwidths. Such techniques offer frequency diversity as the
different parts of the allocated spectrum usually undergo independent
fading. Besides, analyzing cellular networks has become increasingly
complex, particularly due to their heterogeneity caused by the massive
deployment of small cells within macro coverage areas. Existing works
that analyze the performance of such HCNs, e.g., [115], mostly assume
that users are served on purely coherent resources. Consequently, these
works do not capture non-contiguous spectrum allocation nor allocations
larger than the coherence bandwidth, and hence they cannot capture the
effect of frequency diversity. But analyzing this effect is challenging since
the experienced interference is usually correlated across different parts of
the allocated spectrum due to the common locations of interfering BSs.
This type of correlation was considered in [116], where the ergodic rate
with carrier aggregation was studied. To obtain a better understand-
ing of frequency diversity in HCNs, one has to look at the probability
distribution of the rate, which is the main focus of this section.

Contributions and Outcomes:

• A tractable while realistic model for a generic K-tier HCN with
frequency diversity is developed and the rate distribution for a
typical user in the downlink under frequency diversity and spatial
interference correlation is studied. The BS locations are modeled
by a PPP and a two-block independent-fading model is assumed
for capturing the basic effect of frequency diversity.

• The results indicate that, depending on the degree of spectrum
diversification, rate gains of 40–90% are obtained in a typical three-
tier HCN scenario.
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Table 4.2: Notation used in Section 4.2

Notation Description

Φk; λk PPP describing the BS locations in tier k; average

density of BSs in tier k; Φ , ∪K
k=1 Φk

Pk BS transmit power in tier k

αk Path loss exponent in tier k

gi,m Power fading gain from BS i to typical user in band m

σ2 Rx noise power, AWGN variance

Bm; Bm Resource subset m; Bm = |Bm|

Im,k Interference (power) from tier k in band m

SNR(ℓ, y) Mean SNR from a serving ℓ-th tier BS at distance y

SINRm(ℓ, y) SINR in band m from a serving ℓ-th tier BS at distance y

SINRm SINR in band m

R; Rm Data rate at typical user; in band m

R Data rate threshold

Pc,R Rate coverage probability P(R > R)

BS xo uses a total of Btot (frequency) resources for serving the typical
user.4 It is reasonable to assume that channel fading on each resource
is frequency-flat. Yet some resources may experience a different fading
realization than others, e.g., if Btot exceeds the coherence bandwidth or
if the allocation is non-contiguous, see Fig. 4.5. To capture this effect
while maintaining analytical tractability, the following two-block fading
model is assumed.

Two-block independent-fading model: The set of resources allocated
to the typical user is partitioned into two subsets B1 and B2 such that (i)
all resources falling into one subset experience the same fading realization,
(ii) while the fading is considered independent across the two subsets. For
a given BS located at xi operating on any resource from B1 (B2), the
corresponding signal is thus received at the typical user under a common
fading gain gi,1 (gi,2). By assumption (ii) gi,1 and gi,2 are statistically
independent. For instance, in time domain only, this corresponds to the
well-known block-fading model [19], and information would be aggregated

4The analysis does not change when considering time-frequency resources.
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over two time slots, each with an independent channel realization. See
Fig. 4.5 for an illustration.

The fading gains {gi,m} are assumed to be i.i.d. following a unit-mean
exponential distribution (Rayleigh fading). Let B1 and B2 be the car-
dinality of B1 and B2, respectively. Hence, Btot = B1 +B2 is the total
number of resources assigned to the typical user. Note that the frequently
used case of fully coherent resources can be recovered by setting either
B1 or B2 equal to zero.

It will be useful in the later analysis to know the probability that a user
associates with the ℓ-th tier as well as the conditional PDF of the distance
to the serving BS. Both are given by Lemma 3.1 in Chapter 3.

4.2.2 Rate Coverage Probability Analysis

The (instantaneous) rate offered to the typical user depends on B1, B2

one the one hand, and on the SINRs experienced on the corresponding
resources on the other hand. Given that the typical user associates with
an ℓ-th-tier BS at distance y, the resulting SINRm on any resource from
set Bm is

SINRm(ℓ, y) ,
go,m Pℓ y

−αℓ
∑K
k=1 Ik,m + σ2

, (4.13)

where Ik,m ,
∑

xi∈Φo
k

gi,mPk‖xi‖−αk is the other-cell interference treated

as white noise and σ2 is the Rx noise power, i.e., AWGN variance.
Assuming communication close to the Shannon capacity [102], the total
rate conveyed to the typical user can then be expressed as

R , R1 + R2 =

2∑

m=1

Bm log2 (1 + SINRm) , (4.14)

where Rm denotes the product of link spectral efficiency corresponding to
a channel realization from the subset Bm and the number of resources
corresponding to the subset Bm. The expression in (4.14) is a reasonable
measure of rate if strong channel coding is employed [76,77]; alternatively,
a coding/modulation-specific gap to Shannon capacity can be included
in the analysis, see [117] for further details.
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Although the individual Rm in (4.14) comprise only statistically indepen-
dent quantities, they exhibit a complicated correlation structure across
the different bands: while the interfering channels {gi,m} have a de-
correlation effect on the interference signals, the common locations of
interfering BSs result in correlated interference across the different bands.
Hence, R is a sum of correlated random variables. As a counterpart to
the success/coverage probability for SINR, see Definition 2.1, the rate
coverage probability is introduced next.

Definition 4.2 (Rate coverage probability). The rate coverage probability

is defined as

Pc,R , P (R ≥ R) (4.15)

for a target rate R > 0.

The superscript “R” in Pc,R is used to avoid confusion with the SINR-based
coverage probability Pc introduced in Definition 2.1. Again, Pc,R can be
interpreted as the complementary distribution of R at the typical user
or as the average fraction of users inside the HCN covered by a rate
no less than R, given the stationarity of the {Φk}. The following result
characterizes Pc,R under frequency diversity in HCNs.

Theorem 4.3 (Rate coverage probability). The rate coverage probability

for the typical user in the described setting is given by

Pc,R = −2π

K∑

ℓ=1

λℓ

∫ ∞

0

∫ ∞

0

y exp

(

− β(z)

SNR(ℓ, y)

)
d

dw

[

exp

(

− γ(w)

SNR(ℓ, y)

−π
K∑

k=1

λkP̂
2/αk
k y2/α̂k

(

1 + F [β(z), γ(w), αk]
)
)]

w=z

dy dz, (4.16)

where SNR(ℓ, y) , Pℓy
−αℓ/σ2, β(z) , 2(R−z)+/B1 − 1, γ(w) , 2w/B2 − 1,

and F[a, b, c] is given in (4.36).

Proof: See Section 4.3.5.

As can be seen in (4.16), Theorem 4.3 is given as a double integral, which
can be solved fairly easily using standard numerical software. The rate
coverage probability result for purely coherent resources from [115] can
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be recovered by setting B1 or B2 equal to zero. The computational
complexity can be further reduced as discussed next.

Due to the exponential form of the integrand, the expression inside the
exponent in (4.16) is the relevant part regarding the d/dw operation.

Remark 4.2. The differentiation dF[β(z), γ(w), αk]/dw at w = z can

be calculated as
[

d

dw
F[β(z), γ(w), αk]

]

w=z

=
β(z) 2z/B2 log 2

B2(β(z) − γ(z))2

[

Ψ(β(z), αk) −
(

1 − γ(z)

β(z)

)
2/αk

1 + γ(z)−1

−
(

1 +
2

αk

(

1 − γ(z)

β(z)

))

Ψ(γ(z), αk)

]

, (4.17)

where Ψ(p, q) is given by (4.37).

It is possible to express Ψ(p, q) in terms of the Gaussian hypergeometric
function, i.e., Ψ(p, q) = 2πp2/q csc(2π/q)/q − 2F1(1, 2/q, 1 + 2/q; −1/p).
With [66,68] 2F1(·, ·, ·; ·) can in some cases be expressed through elementary
functions, for instance when αk = 4,

F[β(z), γ(w), 4] =
β(z)3/2 arctan

√

β(z)

β(z) − γ(w)
− γ(w)3/2 arctan

√

γ(w)

β(z) − γ(w)
.(4.18)

Furthermore, HCNs are typically interference-limited due to dense de-
ployments in crowded areas. In this case interference dominates Rx noise
and one can set σ2 = 0. If, in addition, the path loss law does not
differ significantly across tiers, then the coverage probability result from
Theorem 4.3 reduces to the following single-integral form.

Corollary 4.1 (No Rx noise, equal path loss exponent). In the absence

of Rx noise (σ2 = 0) and with equal path loss exponents (αk = α ∀k ∈ K),

(4.16) simplifies to

Pc,R = −
∫ ∞

0

d

dw

[
1

F [β(z), γ(w), α]

]

w=z

dz. (4.19)
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Table 4.3: Tier-Specific Parameters used for Numerical Examples

Parameter Tier 1 Tier 2 Tier 3

BS density λk 4 BS/km2 16 BS/km2 40 BS/km2

BS power Pk 46 dBm 30 dBm 24 dBm

Path loss αk 3.76 3.67 3.5

4.2.3 Discussion

In this section, the theoretical results are used to discuss the effect of
frequency diversity under spatial interference correlation. A typical three-
tier scenario (K = 3) with macro, pico, and femto BSs is assumed similarly
as in Section 3.6, see Table 4.3. The number of total resources assigned
to the typical user is set to Btot = 49 × 180 kHz, which is comparable
to 7 resource blocks assuming the LTE standard [86]. Rx noise is set to
σ2 = −104 dBm.

Effect of spectrum diversification: Fig. 4.6 shows the rate coverage
probability Pc,R for η = [0; 0.1; 0.2; 0.5], where η , B1/Btot is the fraction
of total resources spanned by B1. First, it can be seen that the theoretical
results perfectly match the simulation results, which were obtained by
averaging over 105 network realizations. Furthermore, the coverage
probability increases as more diverse spectrum is occupied, with the
maximum increase attained at η = 0.5 (equal split between B1 and B2).
This so-called frequency-diversity gain is exploited in non-contiguous
resource allocation, e.g., DVRB allocation in LTE [86]. Fig. 4.7 shows the
rate gain relative to η = 0 , η0 for different Pc,R and η > 0. The relative
gain is defined as ∆η-η0

R , R(Pc,R, η)/R(Pc,R, η0) − 1. For typical values of
Pc,R, e.g., around 90% of covered users, the rate gain ranges from roughly
40% for η = 0.1 to 90% for η = 0.5. For very low Pc,R, frequency diversity
becomes less favorable.

Effect of spatial interference correlation: Recall that assuming
purely coherent resources yields a pessimistic performance prediction for
systems with non-contiguous resource allocation or large transmission
bandwidths, see Fig. 4.7. In contrast, assuming that the {SINRm} in
(4.14) are independent across m, e.g., for analytical tractability, yields
an optimistic prediction as the correlation of the {Ik,m} across bands
due to common locations of interfering BSs is ignored. For this case, a
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Figure 4.6: Rate coverage probability Pc,R for different η. Marks repre-
sent simulation results.

✵�✁✂ ✵�✄ ✵�✄✂ ✵�☎ ✵�☎✂ ✵�✆ ✵�✆✂
✵

✶

✷

✸

✹

✂

✁

✄

✵

✂✵

✶✵✵

✶✂✵

✷✵✵

❘❛✝❡ ✞

✟
✥✠
✡
☛☞
✌✍
✎

❘❡✏❛✝✑✒❡ ❘❛✝❡ ✓❛✑✔ ✕
✖
✗✘
☞☛
✙
✖
✕
✘
☞✖
✚
✘
☛✛
✥✜
✎

❘❛✝❡ ✢✣✒❡✤❛✦❡ ✧✤✣♦❛♦✑✏✑✝✐

Figure 4.7: Rate R and relative rate gain ∆η-η0

R
for different target Pc,R

and η > 0.

115



4 Diversity Combining Beyond Multi-Antenna Receivers

0.65 0.7 0.75 0.8 0.85 0.9 0.95
2.5

3

3.5

4

4.5

5

5.5

6

6.5

R
e

la
ti
v
e

 R
a

te
 C

o
ve

ra
g

e
 D

e
v
ia

ti
o

n
 [

%
]

Rate Coverage Probability

Figure 4.8: Relative rate deviation δNC
R

when interference correlation is
ignored for different Pc,R and η > 0.

corresponding expression for Pc,R can be obtained using the same approach
as in the proof of Proposition 3.1, see Section 3.8.4, i.e., decomposing
the expectation in (4.34) into the product of two expectations over
independent point sets Φo

k and Φo′
k for every tier k. In this case, one

obtains the modified expression F[a, b, c] = Ψ(a, c) + Ψ(b, c).

Equipped with Theorem 4.3, the impact of interference correlation across
bands on the system performance can now be studied by comparing the
exact Pc,R to the case when interference correlation is ignored. Fig. 4.8
shows the relative rate deviation, defined as δNC

R , RNC(Pc,R)/R(Pc,R)−1,
when ignoring correlation. It can be seen that, depending on the degree
of diversification, the rate is overestimated by 3–6%. For η = 0.5 and
Pc,R = 0.9 for instance, the absolute rate difference is 129 kbit/s.

4.2.4 Summary

A tractable while realistic stochastic model for analyzing frequency diver-
sity, e.g., using non-contingeous or large spectrum allocations, in downlink
HCNs was developed. Assuming a two-block independent-fading model,
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the rate coverage probability was derived, taking into account the inter-
ference correlation across the different parts of the allocated spectrum
due to common locations of interfering BSs. Several practical insights
followed from the theoretical results, which show that system design
should factor in the interference correlation in order to not overestimate
or underestimate the gains of frequency diversity.

4.3 Proofs

4.3.1 Proof of Proposition 4.1

The expression in (4.6) is first conditioned on Φ, yielding

1 − Pc

(a)
= EΦ

[

P

(

gS,D <
T ID

‖xS‖−α

∣
∣
∣
∣
Φ

)

P

(

gS,R <
T IR

‖xS − xR‖−α

∣
∣
∣
∣
Φ

)]

+EΦ

[

P

(
gS,D

‖xS‖α +
gR,D

‖xR‖α < T ID

∣
∣
∣
∣
Φ

)

P

(

gS,R ≥ T IR

‖xS − xR‖−α

∣
∣
∣
∣
Φ

)]

(b)
= EΦ







1 −
∏

xi∈Φ

1

1 + T ‖xS‖α
‖xi‖α







1 −
∏

xi∈Φ

1

1 + T ‖xS−xR‖α
‖xi−xR‖α









+
‖xS‖α

‖xR‖α − ‖xS‖αEΦ




∏

xi∈Φ

1

1 + T ‖xR‖α
‖xi‖α

1

1 + T ‖xS−xR‖α
‖xi−xR‖α





− ‖xR‖α
‖xR‖α − ‖xS‖αEΦ




∏

xi∈Φ

1

1 + T ‖xS‖α
‖xi‖α

1

1 + T ‖xS−xR‖α
‖xi−xR‖α



 , (4.20)

where (a) follows from the independence of the fading gains gS,D, gS,R, gR,D

and from the linearity property of the expectation, and (b) follows from the
i.i.d. exponential fading assumption, see Definition A.1 and Lemma A.2,
and from the complementary CDF of z , gS,D‖xS‖−α + gR,D‖xR‖−α,
which can be obtained using [80, Sec. V.4] as

P (z > z) =
‖xS‖α exp (−z‖xR‖α)

‖xR‖α − ‖xS‖α − ‖xR‖α exp (−z‖xS‖α)

‖xR‖α − ‖xS‖α . (4.21)

Invoking the PGFL for PPPs in (4.20), see Theorem A.3, and switching
to polar coordinates yields the result.
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4.3.2 Proof of Lemma 4.1

Using the power series e−tz =
∑∞
ℓ=0

(−tz)ℓ

ℓ! , w(t) can be rewritten as

w(t) = t

ξ
∑

k=0

akzk − t2

2

ξ
∑

k=0

akz
2
k + . . . . (4.22)

To obtain linear scaling in t,
∑ξ
k=0 akzk must be non-zero.

4.3.3 Proof of Theorem 4.1

Expressing the exp-terms in (4.7) and (4.8) as a power series yields

1 − Pc = λ

(

−Ω

[
T‖xS − xR‖α

(r2 + x2
R − 2rxR cosφ)α/2

,
T‖xS‖α

2rα

]

Ω

[

0,
T‖xS‖α

2rα

]

+ Ω

[
T‖xS − xR‖α

(r2 + x2
R − 2rxR cosφ)α/2

, 0

])

+λ

(

−Ω

[
T‖xS − xR‖α

(r2 + x2
R − 2rxR cosφ)α/2

, 0

]

+
‖xR‖α

‖xR‖α − ‖xS‖αΩ

[
T‖xS − xR‖α

(r2 + x2
R − 2rxR cosφ)

α
2

,
T‖xS‖α
rα

]

− ‖xS‖α
‖xR‖α − ‖xS‖αΩ

[
T‖xS − xR‖α

(r2 + x2
R − 2rxR cosφ)

α
2

,
T‖xR‖α
rα

])

+R(λ), (4.23)

where R(λ) contains all higher-order terms in λ and Ω[·, ·] is given in
(4.9). By Lemma 4.1, the linear term of 1 − Pc must be non-vanishing for
Theorem 4.1 to hold. Thus, one needs to prove that the linear term is
non-zero, for which strictly positiveness of the expressions inside the two
parentheses in (4.23) is a sufficient condition. Focusing on the sufficient
condition, (4.23) is rewritten by combining all three integrals represented
by Ω[·, ·] into a single one for each of the two parentheses. This is allowed
by the linearity property of integrals. Then, the resulting two integrals
are strictly positive if their integrands are strictly positive. Thus, after
some algebraic manipulations, it has to be checked if

1 +

(

1 +
T‖xS − xR‖α

(r2 + x2
R − 2rxR cosφ)α/2

)−1(

1 +
T‖xS‖α

2rα

)−1

−
(

1 +
T‖xS‖α

2rα

)−1

−
(

1 +
T‖xS − xR‖α

(r2 + x2
R − 2rxR cosφ)α/2

)−1

> 0 (4.24)
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for the qBC-part and

‖xS‖α
‖xR‖α − ‖xS‖α

(

1 +
T‖xS‖α
rα

)

− ‖xR‖α
‖xR‖α − ‖xS‖α

(

1 +
T‖xR‖α
rα

)

+

(

1 +
T‖xS‖α
rα

)(

1 +
T‖xR‖α
rα

)

> 0 (4.25)

for the qMAC-part. It can be readily shown that the left-hand side of
(4.24) is strictly positive for all r ∈ R+ and φ ∈ [0, 2π) and bounded
distances. Similarly, the left-hand side of (4.25) is strictly positive for all
r ∈ R

2 and bounded distances. Thus, this implies that the linear term of
1 − Pc in (4.23) is strictly positive as well. The same holds also for the
case ‖xR‖ = ‖xS‖ by letting ‖xR‖ → ‖xS‖ in (4.25), which is allowed by
the dominated convergence theorem [66].

4.3.4 Proof of Theorem 4.2

The dominant-interferer sets for the relay and destination are

Φdom,R ,

{

xi ∈ Φ :
‖xS − xR‖−α

‖xi − xR‖−α < T

}

(4.26)

Φdom,D ,

{

xi ∈ Φ :
‖xS‖−α

‖xi‖−α <
T

2

}

(4.27)

and

Φdom,RD , {xi ∈ Φdom,R ∩ Φdom,D} . (4.28)

The sets Φdom,R and Φdom,D correspond to the regions AR and AD around
the relay and the destination, respectively, where the joint occurrence
of interfering transmitters in both regions already leads to an outage,
irrespective of the interference contribution from far-off transmitters.
From (4.26) and (4.27), it follows that AR = b

(
xR, T

1/α‖xS − xR‖
)

and
AD = b

(
o, ( 1

2T )1/α‖xS‖
)
. Then, as λ → 0, the outage probability qBC

can be tightly lower bounded as

qBC & P (Φ(AR) ∩ Φ(AD) 6= ∅)
(a)
= P (Φ(ARD) 6= ∅) + P (Φ(AR \AD) 6= ∅)P (Φ(AD \AR) 6= ∅)

= 1 − exp (−λ |ARD|) + (1 − exp (−λ |AR \AD|))
× (1 − exp (−λ |AD \AR|))

(b)∼ λ |ARD| + λ2|AR \AD| |AD \AR|, (4.29)
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4 Diversity Combining Beyond Multi-Antenna Receivers

where (a) follows from the independence property of the PPP, see Defini-
tion A.2 (ii), and (b) follows from 1 − e−z ∼ z for small z.

4.3.5 Proof of Theorem 4.3

Using the law of total probability and Lemma 3.1, (4.15) can be written
as

Pc =
K∑

ℓ=1

Aℓ

∫ ∞

0

fy,ℓ(y)P(R(ℓ, y) ≥ R) dy, (4.30)

where R(ℓ, y) = R1(ℓ, y) + R2(ℓ, y) is the rate offered to the typical user,
conditioned on being served by a BS of tier k at distance y. After
conditioning P(R(ℓ, y) ≥ R) on Φo to remove the dependency between
R1(ℓ, y) and R2(ℓ, y), this term can be written as

P(R(ℓ, y) ≥ R) = EΦo

[

P(R1(ℓ, y) ≥ R− R2(ℓ, y) | Φo)
]

= EΦo

[∫ ∞

0

P(R1(ℓ, y) ≥ R− z | Φo) fR2(ℓ,y) | Φo(z) dz

]

.

(4.31)

The first term inside the integral in (4.31) can be written as

P(R1(ℓ, y) ≥ R− z|Φo)
(a)
= P (SINR1(ℓ, y) ≥ β(z) | Φo)

= P

(

go,1 ≥ β(z)

Pℓy−αℓ

(
K∑

k=1

Ik,1 + σ2

)∣
∣
∣
∣
∣
Φo

)

(b)
= exp

(

− β(z)

SNR(ℓ, y)

) K∏

k=1

∏

xi∈Φo
k

Egi,1

[

exp

(

−β(z)
P̂ky

αℓgi,1

‖xi‖αk

)]

(c)
= exp

(

− β(z)

SNR(ℓ, y)

) K∏

k=1

∏

xi∈Φo
k

1

1 + β(z) P̂ky
αℓ

‖xi‖αk
, (4.32)

where (a) follows from the substitutions β(z) , 2(R−z)+/B1 − 1 and
SNR(ℓ, y) , Pℓy

−αℓ/σ2, (b) follows from evaluating the probability with
respect to go,1 and noting that all remaining fading gains are i.i.d. across
all BSs, and (c) is obtained using Lemma A.2. Using the same approach,
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the conditional PDF fR2(ℓ,y)|Φo(z) inside the integral in (4.31) can be
obtained as

fR2(ℓ,y)|Φo(z)

=
d

dw

[

P (R2(ℓ, y) ≤ w)
]

w=z

= − d

dw



exp

(

− γ(w)

SNR(ℓ, y)

) K∏

k=1

∏

xi∈Φo
k

1

1 + γ(w) P̂ky
αℓ

‖xi‖αk





w=z

, (4.33)

where γ(w) , 2w/B2 − 1. Now observe that the expectation EΦo can be
moved inside the integral over z in (4.31) by Fubini’s theorem [81]. By
Leibniz integration rule for infinite integrals [66], the derivative d/dw

in (4.33) can be moved outside the expectation EΦo . Exploiting the fact
that the {Φk} are mutually independent, (4.31) can hence be rewritten
as

P(R(ℓ, y) ≥ R) = −
∫ ∞

0

exp

(

− β(z)

SNR(ℓ, y)

)
d

dw

[

exp

(

− γ(w)

SNR(ℓ, y)

)

×
K∏

k=1

EΦo
k

[
∏

xi∈Φo
k

1

1 + β(z) P̂ky
αℓ

‖xi‖αk

1

1 + γ(w) P̂ky
αℓ

‖xi‖αk

]]

w=z

dz. (4.34)

After invoking the PGFL for PPPs, see Theorem A.3, expanding 1
1+β(z)...

1
1+γ(w)... using partial-fraction decomposition, and further algebraic ma-
nipulations, the second line in (4.34) becomes

exp

(

−π
K∑

k=1

λkP̂
2/αk
k y2/α̂kF[β(z), γ(w), αk]

)

, (4.35)

where the functional F[a, b, c] is defined as

F[a, b, c] ,
aΨ(a, c)

a− b
− bΨ(b, c)

a− b
, (4.36)

and

Ψ(p, q) ,

∫ ∞

1

p

p+ tq/2
dt. (4.37)

Combining (4.30), (4.31) and (4.34)–(4.37) yields the result.
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5

Conclusion

Interference correlation across Rx branches due to common locations of
interferers has a detrimental effect on diversity schemes. As discussed in
this thesis, analyzing this effect is challenging due to the mathematical na-
ture of the underlying problem resulting from the complicated correlation
structure of the interference. A clearer view on this effect would how-
ever help assessing the performance of diversity schemes more accurately
and allow for balancing performance-complexity trade-offs more properly.
This thesis addressed this challenge by developing stochastic models that
enable a mathematical analysis using tools from stochastic geometry. The
models, which are tailored to the essential characteristics of wireless ad

hoc networks and HCNs, are fairly realistic while still tractable. Focus
was put on multi-antenna receivers with MRC, in particular IA-MRC, as
the considered diversity-combining scheme, since this scheme is widely
used though its performance under interference correlation is not well un-
derstood. Generally speaking, this thesis spans two areas of contribution.
First, theoretical expressions for key performance metrics were derived,
which releases system designers from the necessity of founding decisions
exclusively on non-intuitive results obtained from time-consuming simu-
lations. Second, using the theoretical framework many practical design
guidelines for diversity combining under interference correlation were
obtained and discussed.
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5.1 Summary

5.1 Summary

The findings obtained in Chapter 2 showed that the performance of
IA-MRC may be strongly affected by interference correlation in SIMO
wireless ad hoc networks. Ignoring this type of correlation significantly
overestimates the true diversity that can be exploited and hence, the
performance is overestimated as well. In particular, in the case of weak
channel fluctuations and/or strong path loss, interference correlation
should not be ignored. For the same case, assuming full interference
correlation across Rx antennas yields a reasonably close performance
characterization for IA-MRC. Moreover, it was mathematically shown
that in the limiting case, when channel fluctuations on the interfering
links due to fading vanish, IA-MRC and IB-MRC are equivalent in terms
of post-combiner SINR. This result suggests that IB-MRC may be more
favorable than IA-MRC when fading is not severe given the smaller
complexity of IB-MRC. A comparison with IA-SC and MMSE combining
showed that the path loss law matters for the relative performances and
should therefore be taken into account when comparing the performance-
complexity trade-offs of different diversity-combining schemes.

Some of the above findings extend to downlink HCNs as well, which were
treated in detail in Chapter 3. In contrast to wireless ad hoc networks,
however, HCNs exhibit a cell-association mechanism and typically have
multi-antenna BSs, which leads to distinct interference statistics also
discussed in this chapter. With OSTBC-based Tx diversity using multiple
Tx antennas, the gain of IA-MRC over IB-MRC becomes less pronounced.
The reason is that Tx diversity reduces the fluctuations on the interfering
channels and hence, it increases the interference correlation across Rx
antennas. Thus, similarly to the SIMO case with weak fading, IB-MRC
may be the better choice in systems with Tx diversity.

While the first two chapters mainly focused on MRC in multi-antenna
receivers, Chapter 4 looked at the influence of interference correlation
on other forms of diversity schemes. One example, which was studied
in Section 4.1, is cooperative relaying, where a relay assists a source
node in conveying information to the destination. In such a setting, the
interference experienced at the relay and destination is correlated, which
disperses the diversity order gains known for the interference-free case.
However, in the absence of fading and with a perfect relay-destination
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link, a diversity order gain can be obtained if the relay and destination
are sufficiently apart. This suggests that only distributed Rx-diversity
systems are desirable from a diversity order perspective in the presence
of interference, albeit cooperative relaying can still improve performance
in terms of outage probability compared to non-cooperative transmis-
sions. Frequency diversity is another form of diversity exploitation and
is commonly used in cellular systems with flexible resource allocation.
In Section 4.2, the data rate offered to a user under frequency diversity
in a HCN was studied. It was shown that the gains from this type of
diversity suffer from interference correlation across the allocated spectrum.
Depending on the degree of spectrum diversification, ignoring this type of
correlation may yield a significantly optimistic performance prediction.

5.2 Outlook

This thesis focused on the widely-used PPP to model the locations
of transmitters. Other and more sophisticated point processes that are
capable of modeling also repulsion and/or clustering between transmitters
could be considered as well. For instance, in wireless ad hoc networks,
more complex geometries of interferers around a given receiver arising
from, e.g., CSMA, can be incorporated using a Poisson-Hardcore mixture
model [118–120]. Besides, very recent work presented new models based
on determinantal point processes for characterizing the spatial distribution
of BSs in cellular systems more accurately [121,122]. Although the main
insights and performance trends obtained in this thesis are not expected
to change when considering other point processes, such extensions may be
useful when performance nuances and hard numbers becomes of interest,
though at the cost of loosing mathematical tractability. Since for IA-
MRC, theoretical results for only the dual-antenna case were obtained,
another promising research direction could be to find a possibly different
approach that allows a performance characterization for the general case
with N > 2 Rx antennas. The same holds for the two-block fading model
in Section 4.2 for the analysis of frequency-diversity reception in HCNs.
Here, an extension to a more general N -block fading model could be of
interest.

Given the challenging nature of the underlying mathematical problem,
practical impairments such as fading correlation or imperfect CSI were
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5.2 Outlook

left aside throughout this thesis. Fading correlation due to, e.g., subopti-
mal antenna-array design, would certainly contribute to the interference
correlation across Rx antennas, thereby further reducing the gains of IA
diversity-combing schemes over their IB counterparts. Complementing
this work by incorporating such practical aspects in the model could
further contribute to a better understanding of diversity combining in
wireless networks with interference.

Chapters 2 and 3 focused on relatively simple open-loop diversity schemes
for different MIMO settings. Going beyond open-loop MIMO diversity
and developing models for more sophisticated (closed-loop) multi-antenna
schemes could be of strong interest as well. Some recent work in this
direction using stochastic geometry tools are [94, 95]. In particular,
comparing the performance of such more powerful multi-antenna schemes
under realistic assumptions, e.g., unreliable CSI-Tx and/or imperfect
interference-channel estimation in interference-canceling receivers, to
the ones considered in this thesis, could help balancing performance-
complexity trade-offs and/or finding optimal switching points between
different multi-antenna schemes.
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A

Selected Topics on

Probability Theory

and Stochastic

Geometry

This appendix reviews some probability theory and stochastic geometry
concepts of special relevance to this work. The interested reader is referred
to the references accompanying this appendix for further discussions.

Probability Theory

Let (Ω,F, P ) be a probability space with set Ω describing the possible
“outcomes” of the underlying experiment, the σ-algebra F on Ω describing
the set of “events”, and P being a probability measure defined on F. A
real-valued random variable z is a measurable function on the sample
space Ω to R, i.e., z : (Ω,F) 7→ (R,B), where B is the Borel σ-algebra
on R. The probability of observing a certain event B ∈ B through the
random variable z is then given by

P(z ∈ B) , P
(
z−1(B)

)
= P ({ω ∈ Ω | z(ω) ∈ B}) for all B ∈ B. (A.1)
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Here, P(z ∈ ·) is the induced probability measure associated with the
random variable z. The CDF is a special case of P(z ∈ ·) and is defined
as Fz(z) , P(z ≤ z) for z ∈ R. The corresponding PDF fz(z) is defined
by the relation Fz(z2) − Fz(z1) =

∫ z2

z1
fz(z) dz. The reader is referred to

[81,123] for further details.

Definition A.1 (Gamma, Erlang, and Exponential Distribution [80]).
Let a, b > 0. A non-negative random variable z with PDF

fz(z) =
ba

Γ(a)
za−1e−bz, z ≥ 0, (A.2)

is called

• Gamma distributed,

• Erlang distributed if a ∈ N,

• exponentially distributed if a = 1.

The CDF of z is given by

Fz(z) =
γ(a, bz)

Γ(a)

a∈N
= 1 − e−bz

a−1∑

i=0

(bz)i

i!
, (A.3)

where γ(ν, x) ,
∫ x

0
tν−1e−νt dt is the lower incomplete Gamma function.

The parameters a and b are the shape and rate of the Gamma distribution,
respectively.

Lemma A.1 (p-th moment of a Gamma random variable). The p-th

moment of a Gamma distributed random variable z with shape a and rate

b is given by

E [zp] =
Γ(a+ p)

bp Γ(a)
, p > −a. (A.4)

The distribution of a non-negative random variable z can be entirely
characterized by its Laplace transform Lz(s) , E[exp(−sz)] for s ≥ 0.
The case when z is Gamma distributed is of special interest in this
thesis.
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Lemma A.2 (Laplace transform of a Gamma random variable). Let z be

Gamma distributed with shape a and rate b. Then, the Laplace transform

of z is given by

Lz(s) =
(

1 +
s

b

)−a
, s ≥ 0. (A.5)

Let {zk} be a finite collection of independent Gamma distributed random
variables, each with shape ak and rate bk = b ∀k. By Lemma A.2, it then
follows that

∑

k zk is again Gamma distributed with shape
∑

k ak and
rate b.

The squared Frobenius norm of a matrix X ∈ C
U×V is given by ‖X‖2

F =
∑U
u=1

∑V
v=1 |xuv|2. The following Lemma, characterizes the distribution

of ‖X‖2
F with circular-symmetric complex Gaussian entries.

Lemma A.3 (Gaussian matrices). Let X(u) ∈ C
v×w have u ≤ vw

CN(0, 1) distributed entries and vw − u zeros. Then, ‖X(u)‖2
F is Erlang

distributed with shape u and rate 1.

The next result is useful when computing fractional moments of random
variables for which their Laplace transform is known.

Lemma A.4 (Fractional moments of a non-negative random variable
[124]). Let z be a non-negative random variable with PDF fz(z) and

Laplace transform Lz(s). Then, the p-th moment of z satisfies

E [zp] =







p

Γ(1 − p)

∫ ∞

0

1 − Lz(s)

s1+p
ds, 0 < p < 1, (A.6)

1

Γ(−p)

∫ ∞

0

Lz(s)

s1+p
ds, p < 0. (A.7)

Stochastic Geometry

The following section presents a concise introduction to the theory of
point processes based on the monographs [34, 35, 49]. Emphasis is put on
the PPP and its properties, which are of main interest in this thesis.

Let again (Ω,F, P ) be a probability space. Define a measurable space
(M,M), where M is a set of sequences ϕ = {xi} of points in R

d and
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M is the smallest σ-algebra on M to make all mappings ϕ 7→ ϕ(B)

measurable for bounded Borel sets B ⊂ R
d. Here, ϕ(·) is the point

counting formulation of the sequence ϕ, i.e., ϕ(B) ,
∑

xi∈ϕ 1(xi ∈ B).
The sequences ϕ are assumed to satisfy the following conditions:

(i) they are locally finite, i.e., ϕ(B) < ∞ for each bounded B ⊂ R
d.

(ii) they are simple, i.e., xi 6= xj if i 6= j.

Then, a point process Φ is a measurable mapping from the space (Ω,F) to
the space of sequences (M,M), i.e., Φ : (Ω,F) 7→ (M,M). The distribution
of Φ on M is defined as P(Φ ∈ A) = P

(
Φ−1(A)

)
= P ({ω ∈ Ω | Φ(ω) ∈ A})

for all A ∈ M. Note that Φ can be seen as a random closed set Φ = {xi},
or as a random counting measure Φ(B) ,

∑

xi∈Φ 1(xi ∈ B) for bounded
Borel sets B ⊂ R

d. This thesis focuses on the former notion.

Definition A.2 (PPP [34,35,49]). A point process Φ on R
d is called a

PPP with intensity measure Λ if

(i) the number of points falling into any bounded Borel set B ⊂ R
d is

Poisson distributed with mean Λ(B), i.e.,

P (Φ(B) = k) =
Λ(B)k

k!
exp (−Λ(B)) . (A.8)

(ii) the number of points falling into mutually disjoints Borel sets Bn ⊂
R
d are independent random variables, i.e.,

P

(
⋂

n

{Φ(Bn) = kn}
)

=
∏

n

P (Φ(Bn) = kn) . (A.9)

The intensity measure Λ satisfies the relation Λ(B) =
∫

B
λ(x) dx, where

λ(x) is called the intensity (function) of the PPP Φ. Note that E[Φ(B)] =

Λ(B). This thesis will be mainly concerned with stationary PPPs, which
are introduced next.

Definition A.3 (Stationary PPP [34]). A PPP Φ is stationary if P(Φr ∈
A) = P(Φ ∈ A), for all A ∈ M, where Φr = {xi + r} and all r ∈ R

d.

For a PPP defined on R
d, stationarity is equivalent to homogeneity, in

which case the intensity function becomes location-invariant, i.e., λ(x) = λ

∀x ∈ R
d and hence, Λ(B) = λ

∫

B
dx = λ|B| for all Borel sets B ⊂ R

d.
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The PPP has a number of interesting properties, of which two are of
particular interest in this thesis.

Lemma A.5 (Independent thinning [35]). Let Φ be a PPP with intensity

measure Λ. Independently retaining each point x of Φ with probability

p(x) yields another PPP with intensity measure Λ(B) =
∫

B
λ(x)p(x) dx.

Lemma A.6 (Independent superposition [35]). Let {Φk} be a finite

collection of independent PPPs on the same space with intensity functions

{λk}. Then, the superposition ∪kΦk yields another PPP with intensity

function λ(x) =
∑

k λk(x).

In some cases, the distribution of Φ, conditioned on a given point at
x ∈ R

d without counting it, will be of interest. To make the notion of
conditional probability work also for point processes, one has to resort to
the reduced Palm distribution P

!
x of Φ. Here, P!

x(·) may be viewed as the
conditional probability P

(
Φ \ {x} ∈ · |x ∈ R

d
)
. The following striking

result specializes this concept to PPPs.

Theorem A.1 (Slivnyak’s Theorem [34]). Let Φ be a PPP. Then,

P
!
x(A) = P (Φ ∈ A) (A.10)

holds for all A ∈ M and x ∈ R
d.

The intuition behind Theorem A.1 is that the presence of a particular
point at x does not affect the statistics of the remaining points. This
result is in line with property (ii) in Definition A.2.

Taking expectations over sums and products of functions of Φ is another
frequently recurring task in this thesis. The following results provide the
required tools for this purpose.

Theorem A.2 (Campbell-Mecke Theorem for PPPs [34, 49]). Let Φ

be a PPP with intensity measure Λ and let f(x, ϕ) be any non-negative

measurable function on R
d × M. Then,

E

[
∑

xi∈Φ

f (xi,Φ \ {xi})

]

=

∫

Rd

E [f(x,Φ)]λ(x) dx. (A.11)

Note that Theorem A.2 can be stated for general point processes, see for
instance [49].
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Theorem A.3 (PGFL for PPPs [34,49]). Let Φ be a PPP with intensity

measure Λ and let v(x) be any non-negative measurable function on R
d.

Then,

E

[
∏

xi∈Φ

v(xi)

]

= exp

(

−
∫

Rd

(1 − v(x))λ(x) dx

)

. (A.12)

Note that by Slivnyak’s theorem, see Theorem A.1, the right-hand side
of (A.12) holds for the conditional PGFL as well, see for instance [49].
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B

Post-Combiner SINR

for IA-MRC

In this appendix, the post-combiner SINR for IA-MRC is derived based
on the system model introduced in Section 2.3. The derivation covers the
1 ×N SIMO case. A corresponding expression for the MIMO case with
additional Tx diversity can be found in Chapter 3.

For a given realization of interferer locations ϕ = {xi} and channel fading
gains {go,n} and {gi,n}, the interference-plus-noise corrupted time-discrete
baseband signal at the n-th Rx antenna can be expressed as

rn = ho,nso + yα/2
∑

xi∈ϕ

hi,n
‖xi‖α/2

si + wn, (B.1)

where so ∈ C is the desired signal, si ∈ C is the signal transmitted by the
i-th interferer, and wn ∼ CN(0, 1/SNR) is the Rx noise, which is assumed
AWGN. The fading gains ho,n follow the relation ho,n ,

√
go,ne

jθo,n ,
where θo,n ∈ [−π, π) is the phase of ho,n. Similarly, hi,n ,

√
gi,ne

jθi,n

with θi,n ∈ [−π, π).

Furthermore, within the duration of one transmission slot, the following
assumptions are reasonable:

i) E[si] = 0 and E[|si|2] = 1 ∀i ∈ N ∪ {o}, e.g., Phase Shift Keying
(PSK).

ii) E[sis
∗
k] = 0 ∀i 6= k, i, k ∈ N ∪ {o}, i.e., transmitted symbols are

independent across transmitters.
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iii) E[wnw∗
m] = 0 ∀m,n ∈ {1, . . . , N}. Furthermore, E [wns∗

i ] = 0 ∀i ∈
N ∪ {o}.

Since the receiver is assumed to be interference-aware, it knows not only
the instantaneous fading gains {ho,n}, but also the current interference-
plus-noise signal variance (or equivalently, interference-plus-noise power)
in one block/frame at Rx antenna n, which is given by

Var{si},wn

[

yα/2
∑

xi∈ϕ

hi,n
‖xi‖α/2

si + wn

]

= E{si},wn





∣
∣
∣
∣
∣
yα/2

∑

xi∈ϕ

hi,n
‖xi‖α/2

si + wn

∣
∣
∣
∣
∣

2




= yα
∑

xi∈ϕ

gi,n
‖xi‖α

E[|si|2] + yα
∑

xi,xk∈ϕ
i 6=k

hi,nh
∗
k,nE[sis

∗
k]

‖xi‖α/2 ‖xk‖α/2

+yα/22ℜ
{
∑

xi∈ϕ

hi,n
‖xi‖α/2

E[siw
∗
n]

}

+ E
[
|wn|2

]

= yα
∞∑

i=1

gi,n
‖xi‖α

︸ ︷︷ ︸

, In

+
1

SNR
, (B.2)

where the steps in (B.2) follow from i) – iii) above. Estimating the
interference-plus-noise power In + 1

SNR
can be realized, e.g., using tech-

niques similar to those proposed in [87,88].

Recall that interference is treated as white noise. Under this assumption,
the post-combiner SINR is maximized by IA-MRC. According to [12],
the MRC weight an for the n-th Rx antenna is then chosen as an =

h∗
o,n/(In + SNR−1). The post-combiner SINR then becomes

SINRΣ =
E
[
|so|2

]
∣
∣
∣
∑N
n=1 anho,n

∣
∣
∣

2

Var

[

∑N
n=1 an

(

yα/2
∑

xi∈ϕ

hi,n
‖xi‖α/2 si + wn

)] . (B.3)

The numerator in (B.3) can be computed as

E
[
|so|2

]

∣
∣
∣
∣
∣

N∑

n=1

anho,n

∣
∣
∣
∣
∣

2

=

(
N∑

n=1

go,n
In + SNR−1

)2

. (B.4)

133



B Post-Combiner SINR for IA-MRC

Define i′n =
∑

xi∈ϕ hi,n‖xi‖−α/2si for short-hand notation. The denomi-
nator in (B.3) then becomes

Var{si},{wn}

[
N∑

n=1

an

(

yα/2i′n + wn

)
]

=

N∑

n=1

Var{si},{wn}
[

an

(

yα/2i′n + wn

)]

+

N∑

n,m=1
n 6=m

Cov{si},{wn}
[

an

(

yα/2i′n + wn

)

, am

(

yα/2i′m + wm

) ]

(a)
=

N∑

n=1

|an|2(In + SNR−1) + yα
N∑

n,m=1
n<m

∑

xi∈ϕ
2ℜ
{

ana
∗
m

hi,nh
∗
i,m

‖xi‖α
}

︸ ︷︷ ︸

, Zi,nm

=

N∑

n=1

go,n
In + SNR−1 + yα

N∑

n,m=1
n<m

∑

xi∈ϕ
Zi,nm, (B.5)

where (a) follows from the same line of reasoning as in (B.2). Inserting
(B.4) and (B.5) into (B.3) yields

SINRΣ =

∑N
n=1

go,n
In+SNR−1

1 +
yα
∑N

n,m=1,n<m

∑

xi∈ϕ
Zi,nm

∑N

n=1

go,n

In+SNR−1

. (B.6)

Unfortunately, the mathematical structure in (B.6) is difficult to work with
directly due to the covariance terms {Zi,nm}. However, in NLoS environ-
ments with rich scattering, e.g., Rayleigh fading, the channel phases {θi,n}
can be assumed independent across Rx antennas, i.e., Cov[θi,n, θi,m] = 0

∀m,n ∈ {1, . . . , N} and i ∈ N ∪ {o}. When the fading channel has a
dominant LoS path plus some medium-strong reflections (Nakagami with
m > 1), this assumption is still reasonable as long as mobility causes the
transmitter-receiver geometry to change frequently, see [20, Sec. 7.2.1]. In
this case, one has Cov [θi,n, θi,m] = 0 ∀n,m ∈ {1, . . . , N} and i ∈ N∪ {o}
and it is easy to verify that the latter then implies Eθi,n,θi,m [Zi,nm] = 0

∀n,m ∈ {1, . . . , N} and i ∈ N ∪ {o}. This means that, if one would
average over the channel phases {θi,n}, the covariance terms {Zi,nm}
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Figure B.1: Simulated complementary CDF of exact and approximate
SINRΣ for different number of Rx antennas N . Parameters:
λ = 10−3, α = 3.5, y = 10, SNR = 7 dB.

vanish. It is therefore reasonable to ignore the covariance terms and
approximate the true post-combiner SINR by the simplified expression

SINRΣ =

N∑

n=1

go,n
In + SNR−1 . (B.7)

Obviously, (B.7) is analytically more tractable than (B.6). By Jensen’s
inequality [81],

E{θi,n} [SINRΣ] = E{θi,n}








∑N
n=1

go,n
In+SNR−1

1 +
yα
∑N

n,m=1,n<m
Zi,nm

∑N

n=1

go,n

In+SNR−1








≥
∑N
n=1

go,n
In+SNR−1

1 +
yα
∑N

n,m=1,n<m
E[Zi,nm]

∑N

n=1

go,n

In+SNR−1

=

N∑

n=1

go,n
In + SNR−1 , (B.8)
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B Post-Combiner SINR for IA-MRC

which means that the simple expression in (B.7) tends to underestimate
the true post-combiner SINR. The resulting approximation error, however,
is barely noticeable as illustrated in Fig. B.1 through detailed simulations
assuming the ad hoc network model from Chapter 2. The approximation
is verified for HCNs with MIMO diversity in Chapter 3.
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Acronyms,

Abbreviations,

and Notation

Acronyms

3GPP 3rd Generation Partnership Project
4G 4th Generation
5G 5th Generation
ASEP Average Symbol Error Probability
AWGN Additive White Gaussian Noise
BC Broadcast
BS Base Station
CDF Cumulative Distribution Function
CDMA Code Division Multiple Access
CoMP Coordinated Multi-Point
CSI Channel State Information
CSMA Carrier Sense Multiple Access
D2D Device-to-Device
DVRB Distributed Virtual Resource Block
FC Full Correlation
FDD Frequency Division Duplexing
HCN Heterogeneous Cellular Network
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Abbreviations

IA Interference-Aware
IB Interference-Blind
IEEE Institute of Electrical and Electronics Engineers
IRC Interference Rejection Combining
LoS Line-of-Sight
LTE Long Term Evolution
MAC Multiple Access Channel
MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output
MMSE Minimum Mean Square Error
MRC Maximal-Ratio Combining
MTC Machine-Type Communications
NC No Correlation
NLoS None-Line-of-Sight
OFDM Orthogonal Frequency Division Multiplexing
OSTBC Orthogonal Space-Time Blockcode
PDF Probability Density Function
PGFL Probability Generating Functional
PPP Poisson Point Process
PSK Phase Shift Keying
RRH Radio Remote Head
SC Selection Combining
SDF Selection Decode-and-Forward
SDO Spatial Diversity Order
SFBC Space-Frequency Blockcode
SIMO Single-Input Multiple-Output
SINR Signal-to-Interference-plus-Noise Ratio
SIR Signal-to-Interference Ratio
SISO Single-Input Single-Output
SNR Signal-to-Noise Ratio

Abbreviations

e.g. exempli gratia
i.e. id est
i.i.d. independent and identically distributed
Rx Receive
Tx Transmit
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Notation

Notation

In this thesis, random variables are expressed in sans-serif font (z) and
their realizations in italic font (z). Vectors are denoted by lower-case
bold symbols (z) and matrices by upper-case bold symbols (Z).

| · | Volume of ·
‖·‖ Euclidean norm of ·
‖·‖F Frobenius norm of ·
(·)+ max {0, ·}
ZH ; zH Hermitian transpose of Z; of z
ZT ; zT Transpose of Z; of z
B(·, ·) Beta function
b(x, r) Ball with radius r centered at x
Cov[z1, z1] Covariance between z1 and z2

csc(·) Cosecant, i.e., csc(·) = 1/ sin(·)
∆A-B
C Relative gain of scheme A over scheme B in terms of C

δA
C Relative C-deviation between model A and exact model
δij δij = 1 if i = j and zero otherwise
diag(·) Diagonal matrix with diagonal entries ·
E[z] Expected value of z

fz(·) Probability density function of z

Fz(·) Cumulative distribution function of z

2F1(·, ·, ·; ·) Gaussian hypergeometric function

2F1(·, ·, ·; ·) Regularized Gaussian hypergeometric function
Γ(·) Gamma function
Γ(a, z) Upper incomplete Gamma function
γ(a, z) Lower incomplete Gamma function
IN Identity matrix of dimension N ×N

Lz(s) Laplace transform E[e−sz] of z

o Origin of the plane R
2

P(·) Probability of event ·
Tn(·) Chebyshev polynomial of degree n
U(·, ·, ·) Confluent hypergeometric function (Kummer’s U -function)
Var[z] Variance of z

0N Zero matrix of dimension N ×N
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