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Preface

In 2014, the annual joint workshop of the Fraunhofer Institute of Optronics, Sys-

tem Technologies and Image Exploitation (IOSB) and the Vision and Fusion Labo-

ratory (IES) of the Institute for Anthropomatics, Karlsruhe Institute of Technology

(KIT) has again been hosted by the town of Triberg-Nussbach in Germany.

For a week from July, 20 to 26 the PhD students of the both institutions delivered

extended reports on the status of their research and participated in thorough discus-

sions on topics ranging from computer vision and world modeling to data fusion

and human-machine interaction. Most results and ideas presented at the workshop

are collected in this book in the form of detailed technical reports. This volume

provides a comprehensive and up-to-date overview of the research program of the

IES Laboratory and the Fraunhofer IOSB.

The editors thank Miriam Ruf, Julius Pfrommer and other organizers for their ef-

forts resulting in a pleasant and inspiring atmosphere throughout the week. We

would also like to thank the doctoral students for writing and reviewing the techni-

cal reports as well as for responding to the comments and the suggestions of their

colleagues.

Prof. Dr.-Ing. Jürgen Beyerer
Alexey Pak, PhD
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Automated Microscopy
an overview driven by application

Peter Frühberger

Vision and Fusion Laboratory

Institute for Anthropomatics

Karlsruhe Institute of Technology (KIT), Germany

fruehberger@kit.edu

Technical Report IES-2014-01

Abstract: In this report, the task of automating microscopic inspection tech-
niques in an industrial environment is considered. Approaches are presented,
that adapt these techniques for quality assurance (QA) while focusing on in-
tegration into already existing industrial processes. The specific limitations
of microscopic image acquisition, such as an extremely narrow depth of field,
exhibit particular challenges for operating microscopes in an automated way.
This image acquisition is the basis of an industrial scale image analysis with
decent quality. A subset of possible solutions to selected requirements are dis-
cussed. This report suggests novel ways of exploiting microscopic measure-
ments while using multi-sensor fusion as an example to construct a model
for 3D estimation by combining 2.5D measurement data and pre-acquired
ground-truth a priori data.

1 Introduction

Microscopes are used in a wide field of applications. They are utilized for an-

alyzing medical and biological samples on the one hand, but are also used for

industrial quality assurance on the other hand. Microscopic inspection is mostly

a manual task done by experts, trained for this specific task. Quality assurance is

an important production step when producing technical goods like electronic com-

ponents. It is obviously clear that in-process quality assurance, while keeping a

decent production speed, cannot be done by manual usage of microscopes, rather

an automated inspection needs to be implemented.
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This work uses off the shelf microscopes, that are controlled automatically while

using established components out of the automation industry and automated pro-

duction. The work is also focusing on the possibilities of integration, hardware and

software wise, to combine microscopic analysis with established industrial camera

systems in already existing processes. As image processing techniques need to

be adapted to microscopic dimensions to compensate a limited depth of view or

depth of focus, specific methods are selected. Those methods are needed in order

to stitch lateral adjacent images or to reconstruct 3D models out of images that

were acquired by a 2D sensor.

The latter approach opens up a second interesting field when working with dif-

ferent microscopes. When computing 3D images out of 2D sensor data, previous

knowledge, e.g. ground-truth knowledge can be used in order to build up the con-

straints of this underlying model. Combining the altitude information of a 3D

scanning device with 2D sensor data at hand into a model based image processing

approach is to be considered as a multi-sensor data fusion.

2 Task oriented quality assurance

There is a wide range of industrial applications that need microscopic inspection.

The requirements therefore are quite different. On the one hand, it is common

practice to only inspect specific, selected goods manually. Those goods are picked

randomly or depending on characteristic numbers that are deduced from the indus-

trial process itself. An example for random detailed inspection is the functional

check of mass produced surface mounted devices (SMD) for inexpensive compo-

nents. Here the resulting good is rather cheap, the production steps are simple and

therefore a 100% inspection would not return the investment. In contrast when

producing high quality goods, component suppliers need to guarantee a certain

number of defect free working units in order to ensure a continuous production.

For this purpose, fast inspection techniques that keep pace with the production are

needed. The component of choice therefore are industrial cameras. Those devices

can inspect a large field of view when equipped with suitable optics. But indus-

trial cameras have limited application domains. On the one hand, there is a limit

of the number of pixels available for such sensors and on the other hand, when

choosing optics for very detailed lateral resolutions, the field of view will get a

lot smaller, which requires the lateral stitching of parallel or consecutive acquired

images, as seen in section 2.2. Especially this latter task motivates the combina-

tion of industrial camera systems with microscopes. Those devices are equipped

with components like moving tables or a movable z-axis to compensate a limited

depth of view and also a limited depth of field by combining multiple acquired
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images. An example of board inspection with such a combined setup is given in

section 2.3.

The limited depth of view can be compensated by acquiring an image stack of dif-

ferent focused images and creating a synthetically enhanced image by estimating

the contrast of each input image, which is shown in section 2.1.

2.1 Using 2D focus series to obtain 3D information

When using large magnification, the resulting depth of view is decreasing. When

acquiring an image stack by moving the microscope’s z-axis, the contrast infor-

mation of each single image can be used to create a synthetically enhanced im-

age [FKB14]. This estimation - not necessarily being based on a physical model

- tries to select specific regions on the image that are in focus. Under ideal condi-

tions, the chosen contrast measure produces high values for those focused regions

while returning low values for the remaining ones. In the following approach, a

simple contrast measure that is based on an estimated local variance σ̂(x, y) is

used. It is normalized over the rectangular region cr(w, h). A low pass filter (LP)

is used to estimate the mean value μ̂ of an image region R with height h and width

w. It is defined as follows:

μ̂(x, y) = LP{R(x, y)}
σ̂(x, y) =

√
LP{(R(x, y)− μ̂(x, y))2}

cr(w, h) =
1

h · w ·
h∑

x=0

w∑
y=0

σ(x, y)

Special emphasize is given to the depth map in figure 2.1(d), that can be used for

estimating the relative height differences between the local maxima of the focus

measure. This information is useful when a rough height estimation is needed.

Depending on the applied focus measure, an accuracy in the lower micrometer

range is easily possible as demonstrated in commercial products like the Alicona

InfiniteFocus, as shown on figure 3.3.

2.2 Image stitching of microscope images

Stitching of microscope images can become a complex task, especially when the

real size of one image pixel gets more detailed (higher resolution) than the accu-

racy of the positioning stage. This is easily the case for large magnification. Then,

invariant features of the image, like edges or other dominant features, need to be
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(a) (b)

(c) (d)

Figure 2.1: An image stack (a) is analyzed and the contrast measure of each image

is determined (b). Afterwards this information is used to create a synthetically

enhanced image (c). The largest contrast per pixel is stored in a depth map (d),

which is used as the second input to generate the enhanced image.

used to estimate a useful stitching result. As the depth of focus is getting very low

with large magnification as seen in the previous section 2.1, it is often necessary to

perform the feature based image stitching on synthetically enhanced images. As

the physical relationship of microscope camera to the moving table only changes

into one direction, while assuming the camera is parallel to the positioning stage,

only a simple translation vector needs to be estimated. This knowledge can be

reused as expert knowledge when adding the next image to the stitched series.

Figure 2.2 illustrates a possible process that stitches in column direction first and

later assembles those images row by row. As the region of interest (ROI) of the

inspected specimen might be unaligned to the acquired images, e.g. the specimen’s

ROI might have a certain bias. Great care is needed to crop the resulting stitched

images to make a useful composition row by row in the second step. In practice,

that means a consecutive image adds not only new content in either column or row

direction but also a combination of both, this misalignment needs to be compen-

sated. In the above example a cross-correlation coefficient was used to estimate

this compensation.
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Figure 2.2: Input images are assembled together by stitching them column wise

first and afterwards combining the resulting rows.

2.3 Combining established camera inspection techniques with
microscope measurement

In this example, industrial camera inspection is combined with microscope inspec-
tion, both setups are therefore integrated into an industrial QA process. The indus-
trial camera is used to acquire an overview image and performing a completeness
check by applying a correlation based pattern matching method as shown in equa-
tion (2.1). A pattern represented by w(x, y) is moved over an image f(x, y) while
constantly evaluating the before mentioned cross correlation coefficient γ(x, y). f̄
and w̄ represent the average value of f and w depending on the pattern dimensions
and position. The position of the maximum value γmax corresponds to the best
matching location pγmax

= (xmax, ymax):

γ(x, y) =

∑
s

∑
t

[w(s, t)− w̄]
∑
s

∑
t

[
f(x+ s, y + t)− f̄(x+ s, y + t)

]
√∑

s

∑
t

[w(s, t)− w̄]2
∑
s

∑
t

[
f(x+ s, y + t)− f̄(x+ s, y + t)

]2 (2.1)

γmax = max
x,y

γ(x, y)

pγmax
= argmax

x,y
γ(x, y)

γmax itself can be used as a quality criterion for the matching result, which can

be utilized for a completeness check. If the resulting value γmax is less than a
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Figure 2.3: Example Setup: An industrial robot (center) cares for the spec-

imen handling between industrial camera (left), specimen buffer (middle) and

microscope (right).

certain threshold, it is assumed, that the pattern is missing on the acquired overview

image [GW08].

The hardware setup includes an industrial robot which features six axis and is ad-

ditionally equipped with a pneumatic parallel gripper attached to its 6th axis. This

robot is used for transporting the technical goods between an industrial camera and

a motorized stage attached to a microscope. Figure 2.3 shows this experimental

setup, which consists of the industrial robot, an industrial camera, the microscope

and a magazine which simulates a production buffer.

The industrial QA process is simulated by running an endless loop of the following

tasks:

• The industrial robot takes a sample si out of the magazine and puts it under

the industrial camera inspection system

• The industrial camera acquires an overview image to perform a complete-

ness check. Coordinates of the ROI are stored and forwarded to the

controller of the global inspection system.

• The robot transfers the specimen to the microscope, which is then perform-

ing a detailed analysis of the previously selected regions
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(a) (b)

(c) (d)

Figure 2.4: Camera inspection is unable to detect the defects in (a) and (c), while

the microscopy inspection with its larger lateral resolution can detect those easily

(b) and in the detail of C10 in (d).

• The specimen is transferred back into the magazine and the next sample si+1

is processed

For a detailed analysis of the previously computed ROIs, the industrial camera’s

overview image needs to be calibrated to the positioning stage of the microscope.

A solution by estimating an affine transformation is shown in [FSB15]. Figure 2.4

illustrates that the camera inspection can only be used as an indicator when clas-

sifying in detail. Especially, smaller chips, represented by too few pixels are

misidentified. It is shown though that an existing camera inspection system can

be extended by a microscope inspection system.

3 Model based 3D estimation of dirt particles

The methods described in the previous section are used to create the basis for

a model based estimation of 2D and later 3D dirt particles by implementing re-

quirements VDA 19 Part 2 recommends [dA14]. VDA 19 Part 2 is a nonbinding

recommendation concerning the technical cleanliness of functional relevant parts
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(a) (b) (c) (d)

Figure 3.1: Microscope image of a dirt particle (a) and its segmentation from

background (b). The outline was produced with an edge detector (c). That result

was pruned to yield slim borders (d).

in automobile industry. Among others, the maximum lateral distance (diameter) of

a particle and the particle’s height is of important value. The depth map introduced

in section 2.1 will be used to estimate an average height of such a particle. Addi-

tionally the fourier-descriptors are used to build a model for the particle’s outline,

which is needed to determine the region covered by that particle.

3.1 Using fourier descriptors to describe
the base area of a particle

The algorithm to extract the outline of such a particle consists of three steps:

1. Segmentation of the particle from the background 3.1(b).

2. Estimation of the outline 3.1(c).

3. Pruning of the outline to get an outline of 1px width 3.1(d).

In our application the first step is simple, because the particle background is in

general of very bright color value and therefore the particles are shaping up nicely.

A threshold applied on the grayscale image is sufficient to complete this task. The

boundary is estimated with an edge detector like Sobel, Prewitt, Hewitt or oth-

ers [GW08]. The last step is necessary to compute an outline that is unambiguous

for later comparison with other particles and also minimal concerning the contour.

The outline can be represented by a list of points, starting with a user defined

first point. Algorithms in literature often use the centroid of an outline in order to

estimate the Centroid Contour Distance Curve (CCDC) [Pav78]. After selecting

the starting point, the next point pi on the outline with a minimal distance to the
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(a) (b) (c) (d) (e)

Figure 3.2: Inverse transformation with varying number of p coefficients used.

From left to right: p = 2, 10, 20, 50.

previous point pi−1 is processed. This action is repeated until all points pj on

the boundary have been added to the point sequence s(k) = [x(k), y(k)], k =
0, 1, 2, . . . ,K − 1. Each point can now be treated as a complex number with

s(k) = x(k) + iy(k), which enables us to describe those 2D points in 1D space

[GW08]. The complex fourier descriptors a(u) are computed by:

a(u) =

K−1∑
k=0

s(k) exp

(−i2πuk

K

)
.

s(k) can be restored by applying the inverse fourier transform as follows:

s(k) =
1

K

K−1∑
u=0

a(u) exp

(
i2πuk

K

)
.

The number of coefficients can be reduced when computing the inverse fourier

transformation, which cuts higher frequencies and while keeping the lower

descriptors a more global shape of the original boundary is yielded:

ŝ(k) =
1

P

P−1∑
u=0

a(u) exp

(
i2πuk

P

)
, P ≤ K. (3.1)

Furthermore, the fourier descriptor holds the possibility to describe an outline in a

compact form. When reducing the number of descriptors as seen in equation (3.1),

a more general shape of the outline is deduced after the inverse transformation was

applied, as shown in figure (3.2). This is beneficial, not only for a generalization,

but also when building a classifier to discriminate several classes of particles.
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(a) (b)

Figure 3.3: 3D Reconstruction with an Alicona InfinitFocus measurement sensor.

2D image (a) and 3D reconstruction (b).

3.2 Combining lateral information with
estimated height information

With the help of a depth map, as seen in section 2.1 a relative height value, which is

representing the amount the z-axis was moved, for every pixel of the original spec-

imen is given. The outline description by fourier descriptors serves to construct a

bitmask, which is multiplied by the depth map. The result is used to compute the

volume Vp of a particle p by iterating over the masked depth map M with the lat-

eral dimensions w × h. As the area A of a squared shaped pixel is already known

from the microscope’s internal calibration, the computation consists of the follow-

ing block shaped discrete summation steps, when assuming convex and completely

filled particles:

Vp(w, h) = A ·
h∑

i=0

w∑
j=0

M(i, j).

This 2.5D information can also be obtained from state of the art 3D sensors as seen

in figure 3.3. In order to find a robust model when optimizing the chosen focus

measurement, those established sensors can be used as a ground-truth to support

the introduced model. This approach can be seen as multi-sensor fusion. In prac-

tice it is difficult to measure the very same spot with two different microscopes,

because the specimen handling needs to be exact within the range of a few microm-

eters. The ground-truth is also of high value when too few height measurements

of a given particle exist, as it yields the opportunity to introduce a model based

height estimation approach.



Automated Microscopy - an Overview Driven by Application 11

4 Conclusion

This technical report motivated specific scenarios when widespread image acqui-

sition sensors, represented by industrial cameras, need to be enhanced with mi-

croscopy. Quality Assurance is an important task in nowadays production cycles.

Especially, the first part of this report presents methods, already known from in-

dustrial image processing, which can be transferred to a microscopic level. The

second part of this paper describes a simple model, which is used to reconstruct 3D

information out of 2D sensor data on the one hand and also to estimate the volume

of dirt particles within the background of VDA 19. Further evaluation steps in-

clude the comparison of those results with ground-truth measurements acquired by

widely accepted sensors, like whitelight interferometers or confocal microscopes.
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Abstract: This report addresses the task of searching for faces in large video
datasets. Despite vast progress in the field, face recognition remains a chal-
lenge for uncontrolled large scale applications like searching for persons in
surveillance footage or internet videos. While current productive systems
focus on the best shot approach, where only one representative frame from a
given face track is selected, thus sacrificing recognition performance, systems
achieving state-of-the-art recognition performance, like the recently pub-
lished DeepFace [TYRW14], ignore recognition speed, which makes them
impractical for large scale applications. We suggest a set of measures to ad-
dress the problem. First, considering the feature location allows collecting the
extracted features in according sets. Secondly, the inverted index approach,
which became popular in the area of image retrieval, is applied to these fea-
ture sets. A face track is thus described by a set of local indexed visual words
which enables a fast search. In this way, all information from a face track
is collected which allows better recognition performance than best shot ap-
proaches and the inverted index permits constantly high recognition speeds.
Evaluation on a dataset of several thousand videos shows the validity of the
proposed approach.

1 Introduction

Besides the obviously vast collections of video portals like YouTube, large

amounts of video footage are also present in surveillance scenarios or the increas-

ing number of TV-channels. Finding specific persons in the data is a still existing

challenge. For example, in the context of forensic analysis of surveillance footage,

a typical challenge is to find all appearances of a specific person, probably a crim-

inal, in the given data for crime reconstruction. Another example might be to find

all YouTube videos containing a specific celebrity. While the latter situation offers
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further clues like video tags or titles, the former situation requires a solely image

based analysis. In this contribution, we focus on a pure video based solution by

analyzing the video content, thus covering all scenarios. The easiest way to iden-

tify persons in video data is by their face. The first necessary steps before face

recognition are face detection, alignment and tracking. Because this is a whole

field of research itself, we assume that a solution to these steps is available. The

focus lies on comparing and matching the extracted face tracks to a given query.

A high recognition speed combined with a decent recognition performance is

achieved by a set of measures. First, collecting all local image features of a face

track in a single feature set allows the application of classical image retrieval meth-

ods. Secondly, the recognition accuracy is enhanced by using the location of the

image features and asserting that only features from the same location will be com-

pared. Thirdly, the inverted index approach, which became popular in the area of

image retrieval, is applied to that feature set. A face track is thus described by a set

of indexed visual words and for each word a reference to this track is stored in the

database index. Searching the database for a given person requires only an index

lookup for the respective visual words of the face track. Because the index data

structure can be pre-computed for database lookups, query time is low. Evaluation

on two public datasets containing several thousand videos shows the validity of

the proposed approach. This work addresses two areas of video face recognition:

Face track description. The usual way to build a face track descriptor from video

data is a two step strategy. In the first step, each frame is represented by a

frame descriptor. There is a large variety of descriptors available from im-

age based face recognition: gray scale intensity, Eigenfaces [TP91], Fisher-

faces [BHK97], LBP [AHP06], Gabor [ZJN07] to name only a few. In the

second step, a track descriptor is derived from the sequence of frame de-

scriptors, for example by taking the mean over all frames on image [JB08],

feature [HLT14, OWS13] or decision level [TBS12, WL13]. Further options

include modeling the space of the frames by a linear model [CT10, YFM98],

a manifold [AC09b, LHYK03] or performing a pairwise comparison of

all [WHM11], randomly selected [TYRW14] or the best-shot [WHM11]

frame descriptors and searching for the closest match. Pairwise compari-

son takes considerable time for larger numbers of involved frames, influ-

enced by track length and percentage of selected frames. In the case of

the currently best performing video based face recognition algorithm Deep-

Face [TYRW14], which compares randomly sampled frames, simulations

with the reported feature dimensions and frame numbers indicate matching

speeds of only 500 track to track comparisons per second, which is insuffi-

cient for large scale applications. Promising methods with respect to match-

ing speed are the ones using small track descriptors and fast comparison
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strategies. Namely these are the mutual subspace method (MSM) [YFM98]

and the best-shot approach. Especially the best-shot approach where the best

frame according to some criterion (e.g. most frontal pose or least blurred), is

used to represent the whole track, is widely used in time critical applications.

Instead of the frame based strategy, we follow the suggestions of a few

recently proposed approaches, which use a local feature based represen-

tation [LHL+13, PSVZ14]. Local features are collected over all frames

and put together into one feature set. We propose to use this feature

set as the base of a bag of visual words descriptor with an inverted in-

dex [SZ03], which enables the construction of large databases and perform-

ing fast queries. One advantage of the bag of visual words descriptor is

its independence of the track length, making comparison tasks independent

thereof.

Spatial feature information. Augmenting the local features by the respective

image coordinates proved useful for face recognition tasks [LHL+13,

PSVZ14]. In the previous contributions, augmentation is performed by con-

catenation of the feature vector and the 2D image coordinate vector. Instead

of a concatenation, we propose a different way to use spatial information,

constructing a separate feature set for each of a few fixed feature locations.

2 Frame features

As argued before, instead of using descriptors based on whole frames, a different

strategy is applied as illustrated by figure 2.1. For comparison, the conventional

frame based method is shown at the top, which uses a face descriptor dj for each

frame j, built by the concatenation of several local features vectors fi,j , where

i denotes the feature location. The final track descriptor is derived from the se-

quence (d1 , ... , dn) of all n frame descriptors. The feature based track description

is shown at the bottom. In this case the face descriptor d′j is only a mathematical

utility, but has no meaning by itself. Basically, all local features fi,j are combined

to one feature set, which is used as track descriptor t′. There are three advantages

for this method: First, the dimension D′ of the vectors in t′ is lower than that of the

vectors in t, because t′ consists of feature vectors fi,j instead of frame descriptors

d. Technically speaking, D = k2 ·D′ when splitting each face image into a grid of

k × k regions. Thus, further processing can be performed faster, because basically

all matching approaches scale at least linearly with D′. Secondly, this representa-

tion ignores temporal information. While loosing information is generally a bad

idea, it is the opposite in this case, because temporal information includes no clues



16 Christian Herrmann

 

frame 1 

fr
a
m

e 
b
a
se

d
 

fe
a
tu

re
 b

a
se

d
 

1 2 3 

4 5 6 

7 8 9 

frame 
descriptor  

 

1 2 3 

4 5 6 

7 8 9 

frame  frame 
descriptor  

 … 

track 
descriptor  

 

 …  

1 2 3 

4 5 6 

7 8 9 

1 2 3 

4 5 6 

7 8 9 

… 

Figure 2.1: Illustration of the conventional frame based track description method

(top) and the applied feature set based one (bottom). Local features are denoted

by fi,j .

about a persons identity. For example, the fact that the head rotates in the face

track includes no information about who is rotating his head. Thirdly, the feature

based representation is widely used in object or image retrieval tasks, which means

according approaches can be applied to face retrieval too.

We employ local binary patterns (LBP) [AHP06] as local features and combine

several scales by summation of the LBP histograms [Her13] in each local region.

Each face image is split into a grid of k × k regions, where the region center

denotes the location of the local feature. The LBP histogram is built over all LBP

patterns inside of a local region. All in all, the proposed strategy results in a set S
of L = k2n local features for a track with n frames.

3 Bag of words and inverted index

Generally speaking, a retrieval scenario involves a database of N objects and a

query object Q. The task is to find all matching objects to the query object in

the database. When targeting large scale retrieval applications, the inverted index

method is a well-known approach. Basically, this includes three steps, shown also

by figure 3.1:

Description of objects with visual words. Each object, in our case each face

track, is described by a set of predefined visual words. Possible visual words

are defined by a codebook (dictionary) which is constructed by clustering all
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word   object 
bent 2 
red 1 

round 1,3 
yellow 2 

object  1 2 3 
round x x 

red x 
yellow x 

bent x 

describe objects with 
words   

inverted index, 
includes the 

relevant objects for 
each word  

search in 
database, build 

ranking by 
number of hits 

query: 

red, round 

object  hits 
1 2 
3 1 
2 0 

dataset: 

Figure 3.1: Illustration of the inverted index approach with a basic example using

images of fruit instead of face tracks and regular words instead of visual ones.

the object features of the database in K classes and using the cluster centers

C1 , ... , CK as visual words. In this way, the codebook consists of domain

specific visual words. For each object, the feature set S from the previous

section is computed and the matching words are found by assigning each

feature to the nearest visual word. The set of occurring words represents the

object.

Building an inverted index for the whole database of objects. To avoid linear

search for the best matches in the database, an inverted index is used. This

means an index with the visual words from the codebook is constructed and

for each visual word a list of objects including this word is maintained.

Database query by indexed search for the visual words of the query object.
Performing a search for a query object first requires to find the visual words

for the query object. Then, for each visual word of the query object the

matching database objects are looked up in the index. Finally, counting the

number of hits for the matching database objects results in a ranking. Note

that in large scale applications it is common that a significant part of the

database objects has no hits at all.

Using the inverted index strategy without adaptation has a serious drawback. Be-

cause all visual features are put together into a single feature set, their location in

the face is lost. While this behavior is usually desired in image retrieval, because

it guarantees invariance to rotation, scaling and shifting, it is counterproductive

in face retrieval. Face detections are always aligned, thus they have a known and

fixed rotation, scaling and are shifted equally. In this way, the feature location is

meaningful in contradiction to image retrieval and it can be used to improve the

results. Because the nose is always in the middle, eyes at the top, mouth at the
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Figure 3.2: Comparison of basic (top) and proposed (bottom) strategy. Illustration

shows a query process for a small sample database whose face tracks are called a,

b, c and d.

bottom and so on, comparing features from different locations is unnecessary. It

has no meaning if the nose of one person shows the same feature as the eye of

another one. Thus, instead of using one single index for all features, we suggest

to use separate local indices as shown by figure 3.2 at the bottom. Each feature

location in the grid, is handled individually and results are combined at the end by

accumulating the hit counts from the different index searches.

Practical issues: The inverted index method includes to basic problems where fast

algorithms are necessary. First, the clustering of a large dataset to build the index

and secondly, the nearest neighbor search to assign the corresponding visual word

to a feature. The VLFeat library [VF08] is used in both cases because it uses

efficient algorithms based on KD-trees.

4 Experiments

To show the benefits of the proposed method, evaluation is performed on the

largest publicly available datasets YouTube Faces Database (YTF) [WHM11] and

Face in Action Database (FiA) [GLLC05]. While YTF is an in the wild dataset
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with 3,425 face videos originating from YouTube containing celebrities, FiA data

was recorded in the lab in a controlled environment with fixed camera posi-

tions and predefined head movements resulting in 3,110 face videos (only indoor

sequences are used).

4.1 Experimental setup

The retrieval evaluation protocol is a 10 fold strategy: the dataset is divided into

10 splits and each one will be used one after another as query split, while the

remaining 9 splits build the database. Each track in a query split is used to query

the database, which results, over all 10 splits, in M queries, where M is the dataset

size.

Performance is measured by the average precision a for each query and over-

all given by the mean average precision map. The average precision measures

a the quality of the resulting ranking for a query by the recall r and precision

p. The recall r = TP
TP+FN denotes the percentage of the number of retrieved

correct matches TP and the number of all possible correct matches TP + FN
in a database. TP , FP and FN are notations from classification tasks, mean-

ing true positives, false positives and false negatives. In this way, the preci-

sion p = TP
TP+FP denotes the ratio of correct hits in the returned query. Let

r(k) denote the recall for retrieval results consisting of the ranks 1 to k and

p(k) the respective precision. Then the average precision for one ranking is

given by a =
∑K

k=1 Δr(k) · p(k), which is a weighted average of the precision

over all ranks. Finally, the mean average precision is the mean over all queries:

map = 1
M

∑M
m=1 am. The map ranges between 0 and 1, where a value of 1

signals a perfect result with all the correct matches at the top of the ranking.

Significant pairwise differences between measured values are determined by a ran-

domization test [SAC07], using an α-level of 0.05, which corresponds to a confi-

dence of about 2 standard deviations. In comparison to simply giving the mean and

standard deviation, it has the advantage to statistically exploit the large number of

queries which are performed in this experimental setup. Thus, it is more accurate

in showing significant differences between retrieval algorithms.

In contrast to a simple verification protocol, where 10-fold cross-validation pro-

vides only a shallow statistical base for proving significant differences between

approaches, the retrieval protocol offers M samples. In consequence, significant

pairwise differences between measured values are determined by a randomiza-

tion test [SAC07], using an α-level of 0.05, which corresponds to a confidence

of about 2 standard deviations. In comparison to reporting only the mean and

standard deviation, it has the advantage to statistically exploit the large number of
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Case Algorithm K̄ Feature
Local

indices map rand. test tq in s tm in s

1 inv. index 64000 LBP no 0.013 0.062 4.50 ·103

2 inv. index 64000 LBP yes 0.052 1 0.050 0.51 ·103

3 inv. index 64000 Intensity yes 0.046 5 0.037 0.86 ·103

4 inv. index 64000 LBP yes 0.052 3,5 0.050 0.51 ·103

5 inv. index 64000 LDP yes 0.022 0.087 0.52 ·103

6 inv. index 64000 LBP yes 0.052 0.050 0.51 ·103

7 inv. index 128000 LBP yes 0.058 6 0.067 0.91 ·103

8 inv. index 256000 LBP yes 0.061 6,7 0.116 1.78 ·103

9 inv. index 512000 LBP yes 0.067 6,7,8 0.123 3.66 ·103

Table 4.1: Evaluation of different features and parameters. Randomization test

column denotes case numbers which yielded significantly worse results.

queries which are performed in this experimental setup. Thus, it is more accurate

in showing significant differences between retrieval algorithms.

4.2 Parameters

In the first set of experiments, parameter variations for the proposed method are

evaluated on the YTF dataset and results are shown in table 4.1. Besides the map
and the respective randomization tests, the mean time tq for one query and the

database construction time tm are given.

Local indices. Using a separate local index for each spatial feature location en-

hances the retrieval results significantly (case 2). Thus, mixing together

different features causes confusion in the recognition process and the sep-

aration solves this issue. For fair comparison between the baseline global

inverted index and the local inverted indices, the sum K̄ of the respective

dictionary sizes is given. For the baseline (case 1) this means K̄ = K is the

size of the single dictionary, while in the case of local indices each dictio-

nary has the size of K = K̄
k2 , where k2 is the number of local regions as in

section 2.

Feature. Comparison to different features, namely raw pixel intensities (case 4)

and local directional patterns (LDP) [JKC10], indicates that the proposed

usage of LBP from section 2 is justified. k = 4 local regions are used in all

cases because it has proved to be the best subdivision for resolutions on this

level [Her13].
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Index size. Retrieval results get better with an increasing index size (cases 6-9).

Further increases are prevented by the limited memory of our test system.

Thus for the further experiments in the next section we use the setting from

case 9.

4.3 Comparison

As already stated in the introduction, only few face recognition approaches are

capable of fast matching for large scale face retrieval. Thus the number of possible

baseline approaches remains limited for comparison. Namely, we employ MSM,

pairwise-frame matching (NN) and best-shot on the same LBP features. The final

results are shown in table 4.2 for evaluation on YTF, FiA and the combination

of both datasets. Although, NN shows clearly the highest map, it requires heavy

computational work which is impractical for real applications. MSM and best-

shot decrease the mean query time tq significantly, however, both are a trade-off

between speed and accuracy. The proposed inverted index method manages to

break this trade-off in certain limits. While results for YTF fall in between the

results of the best-shot and MSM method, they are significantly better for FiA.

Comparing the results of the best-shot method with the inverted index results from

the previous section (table 4.1, case 7) indicates that the proposed method has a

better recognition performance per time ratio than the best-shot method. Finally,

the combination of both datasets clearly shows the advantage of the inverted index

method: the mean query times remains constant and independent of database size,

thus making it the fastest retrieval method for larger datasets. The reason is the

avoidance of a linear search in the database. Thus, increasing the database size by

a combination of both datasets has only minor influences on the query time for the

inverted index compared to the baseline approaches, where the query time roughly

doubles with the doubled dataset size.

5 Conclusion

A face retrieval method based on local features and an inverted index is proposed.

By using a separate local index for each spatial feature location instead of only

one global index, the recognition accuracy for the inverted index approach can

be increased significantly. In this way, the widely used best-shot method is out-

performed while showing smaller query times for large scale problems. The key

benefit of the proposed system is that its query time is independent of the database

size, which promises an increasing advance with growing datasets.



22 Christian Herrmann

map query time tq in s

No. Method YTF FiA comb. YTF FiA comb.

1 NN 0.1452 0.3514 0.2554 12.31 10.37 30.51

2 MSM 0.0844 0.2373 0.1703 0.281 0.150 0.428

3 best shot 0.056 0.147 0.103 0.074 0.069 0.134

4 inv. index 0.0673 0.2972 0.1832 0.123 0.103 0.114

Table 4.2: Evaluation results on YTF and FiA public datasets, as well as a com-

bination of both. Superscripts indicate results of randomization test: a method is

significantly better than the one indicated by the superscript, including every worse

one.
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Abstract: In this work various applications of wavelet filter banks for eval-
uation of different classification problems in image processing are presented.
For the evaluation a new method for designing bi-orthogonal wavelet-filter-
banks is introduced. By this method the most dominant stretchings of all
defects from the same class are first determined. After that the filter bank is
designed to have the same lengths as these stretchings. On the other hand the
filter is also designed to match the curve shape of the defect. In this way the
bi-orthogonal wavelet filter bank can better match the defects which therefore
enhances classification rate. A comparison with classification results based
on other standard wavelet families as well as non-wavelet methods was also
performed.

1 Introduction

The disadvantage of using classical wavelet families in image processing is that

these wavelet families were not optimized exactly for this image processing prob-

lem and therefore the classification or detection results may fall short of expecta-

tions. As a solution for this problem two different optimization methods for de-

signing wavelet filter bank are introduced in this paper. The first method optimizes

an M -channel bi-orthogonal wavelet filter bank (MCFB) on the profile of the de-

fect. One of the limitations of traditional wavelet filter banks is that the sampling

factors are integers and this restricts the adaptation of filter lengths to different

feature’s stretchings. To overcome this obstacle the wavelet filter banks can be

designed to have rational sampling factors, keeping the wavelet properties of the

filter bank as well. The second method presented in this paper is the optimization

of these rational wavelet filter banks (RWFB). For better classification and for im-

proved detection rates the optimized wavelet filter bank must be in possession of
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two properties: on the one hand it should contain the profile of the feature class

as mentioned in the first method, on the other hand it should also match the most

dominant stretchings of the feature. To evaluate the designing methods MCFB and

RWFB the data from surface measurement by different image processing problems

were applied. These data were acquired in the first case from deflectometry mea-

surement of specular surfaces with the goal to be classified and in the second case

from metal surfaces with the contaminations to be detected.

2 Optimization Methods for Wavelet Filter Banks

2.1 M -Channel Optimized Wavelet Filter Banks

The optimization method MCFB presented in [Le14] is briefly summarized here.

The goal of this optimization is to design an M -channel filter bank ht (t =
0, . . . ,M − 1), where the channels ht are bi-orthogonal to each other and besides

that the filter bank should have the characteristic of defect, which need be detected

or classified. A one-dimensional profile hF of the defect to be detected is there-

fore firstly extracted. The first (M − 1) channels of the filter bank are designed to

have the same curve as this profile, meanwhile the last channel is constructed to

be on one hand as different from the defect profile as possible, on the other hand

bi-orthogonal with the other channels. In this way by filtering with the defect, the

first (M − 1) channels give strong impulse responses.

2.1.1 Optimizing the filter bank channel to match the defect profile

In the first step the object class to be detected on the surface was extracted, so that

a typical curve can be presented. Based on this curve, a profile filter hF could be

designed, which has impulse responses with the same course as the defect to rep-

resent the defect. The first (M − 1) channels of the M -channel filter bank receive

the same profile as the filter hF of the defect classes. The filter hM−1 should be

bi-orthogonal to other filters in the filter bank as well as different from the object

profile. A quality criterion Q is defined as the Euclidean distance between the

profile filter hF of the defect class CF and the filter to be constructed hM−1:

Q = ‖hF − hM−1‖2.

By maximizing the quality criterion Q, the filter hM−1 will be optimized to be as

different from the given defect class as possible.
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2.1.2 Bi-orthogonal criteria for filter bank design

For an M -channel filter bank consisting of (M − 1) filters ht (t = 0, . . . ,M − 2),

a filter hM−1, which is bi-orthogonal to all ht, is to be constructed. Using an

M -channel filter bank, an analyzed signal will be perfectly reconstructed from its

wavelet coefficients, if the determinant ΔP (z) of the polyphase-matrix P (z) of

the filters ht (t = 0, ..,M − 1) consists of only a single term z−n0 [Gre96]. P (z)
has the form:

Pij(z) = z−jHij(z
M ).

Here Hij(z
M ) is the j-th polyphase component of the i-th filter [Vet86]. Its

determinant ΔP (z) can be calculated as:

ΔP (z) = c0z
−M M−1

2 + . . .+ cN−Mz−[MN−M M+1
2 ], (2.1)

with the constants cm, m = 0, . . . , N − M . Due to the condition for perfect

reconstruction above, all the constants cj in (2.1) except one need to be set to zero,

so that the determinant ΔP (z) contains only a single term. The constants cj are

weighted sums of coefficients of the filter hM−1 to be constructed:

cj =
N−1∑
n=0

amnhM−1(n).

The construction of hM−1 can thus be considered as optimizing the quality cri-

terion Q under the constraint that the condition for PR is fulfilled. As a linear

system, the set of (N − M) equations cj
!
= 0, which contain the filter coeffi-

cients hM−1(n), (n = 0, . . . , N − 1), is optimized with respect to Q. In order to

solve this optimization problem a Lagrange function with Lagrange multiplier λ
is defined as:

L(hM−1,λ) =
1

2
Q− λT [AhM−1 − 0].

The optimum can be found by solving the derivation equations:

∇hM−1,λL(hM−1,λ)
!
= 0.

This way, we define the coefficients of filter hM−1, which are bi-orthogonal to

given filters ht (t = 0, ...,M − 2). Using the approach described above, a typical

curve of each defect class is at first extracted and then used to create a representa-

tive filter. Figure 2.1 shows the impulse response of a dent filter with length 8 as

well as its associated bi-orthogonal wavelet filter.
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(a) dent filter (b) bi-orthogonal dent filter

Figure 2.1: Impulse responses of a dent filter.

2.2 Rational Wavelet Filter Bank

Due to the rational sampling factor a RWFB has the benefit in comparison with

other wavelet filter banks that the filter length can be scaled more easily to other

desired lengths. In the literature there are many different approaches for designing

rational wavelet filter banks [BS09a], [Blu98], ... For our work the method pre-

sented by Nguyen [NN13] was chosen, because it allows not only more freedom by

choosing sampling factors, it can also construct bi-orthogonal wavelet filter bank,

which is important for designing filter coefficients. Figure 2.2 shows a typical

bi-orthogonal rational wavelet filter bank designed with this method.

Figure 2.2: A Rational Wavelet Filter Bank

The rational wavelet filter bank can be transformed into an equivalent non-rational

uniform filter bank. This transform delivers the possibility to construct a ratio-

nal wavelet filter bank with perfect reconstruction, which is normally only valid

for non-rational uniform filter banks. Mathematically, a wavelet filter bank with

perfect reconstruction also allows bi-orthogonality. As long as the z-Transform

HLP (z) and HHP (z) of hLP and hHP can be decomposed into:

HLP (z) =

p0−1∑
n=0

zMnHn(z
p0) and
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HHP (z) =

p1−1∑
n=0

zMnHn+p0
(zp1),

the rational filter bank is equivalent with an M-channel filter bank

H0, H1, ..., Hp0+p1−1 [NN13]. This means that, we can transpose a rational

wavelet filter bank with sampling factor (p0/M) and (p1/M) into a uniform M -

channel wavelet filter bank. Based on the uniform filter bank, the conditions for

perfect reconstruction, which are also valid for the equivalent rational wavelet filter

bank, can be constructed.

2.2.1 Determining dominant defect stretchings

To optimize the rational wavelet filter bank, the most dominant defect stretchings

are determined in the first step. Various conventional detecting methods in image

processing can be used to determine the defect sizes. Based on these results we can

find out, which stretching sizes are most dominant, for example with the help of a

size histogram as shown in Figure 2.3. The optimization target is now converted

into designing a rational filter bank with filter lengths as the dominant sizes.

Figure 2.3: Size histogram of class pimple

This process can be summarized as in Figure 2.4.

2.2.2 Optimized bi-orthogonal rational Wavelet Filter Banks

The designing of bi-orthogonal rational wavelet filter banks in this work is done

in two steps: designing the low pass filter hLP and designing the band pass fil-

ter hHP with condition of perfect reconstruction for the filter bank. Before the

filter bank is designed, a feature filter hF is constructed for each defect class as

presented in Section 2.1.1.
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Figure 2.4: Process for determining sampling factors

In the first step the filter hLP is constructed with the help of the optimization

function f0(hLP ):

f0(hLP ) = hT
LP (P P0

+ P S0
)hLP ,

where P P0
and P S0

are real symmetric positive semi-definite matrices described

in [WN99] to optimize the pass band and stop band of hLP . The function f0(hLP )
can be optimized with the constraint:

g0 : ‖hLP − hF ‖2 > ε0.

The constraint warranties that the filter hLP will own a different curve compared

to the feature filter hF .

After this step the coefficients of the filter hLP are given and can be used in the

next step, where the filter hHP is optimized. Similar to the optimization function

f0(hLP ) in the first step, a function f1(hHP ) can be constructed as:

f1(hHP ) = hT
HP (P P1

+ P S1
)hHP ,
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where P P1 and P S1 are the pass band and stop band of hHP respectively.

Moreover hHP should have the same curve as the feature filter hF :

g1 : ‖hHP − hF ‖2 < ε1.

Furthermore the filter hLP should be bi-orthogonal to hHP . As described in Sec-

tion 2.2, it is possible to transform the given rational filter bank into an equiva-

lent uniform M -channel filter and the condition for perfect reconstruction can be

built based on this filter bank. The rational wavelet filter bank of hLP and hHP

with sampling factors (p0/M) and (p1/M) have polyphase components hi of the

M -channel filter bank as:

hi[n] =

{
hLP [i+ np0] for i = 0, ..., p0 − 1,

hHP [i− np0 + np1] for i = p0, ...,M − 1.
(2.2)

Due to the condition for perfect reconstruction in Section 2.1.2, all the constants

cm in (2.1) except one need to be set to zero. cm consist of coefficients of hi,

which are also coefficients of hLP and hHP as in (2.2), and hence can be used

as constraints for designing hHP . The filter hHP can therefore be optimized by

minimizing the function f1(hHP ) with the constraints cm
!
= 0 (for all cm except

one) and g1.

Together with the sampling factors p0, p1 and M found in Section 2.2.1 hLP and

hHP build a rational wavelet filter bank as in Figure 2.2, which can be used for

analyzing data. Coming back to the example of class pimple in Figure 2.3 it can be

seen that the three most dominant sizes are 6, 7 and 11. Based on this knowledge

and the optimization method in Section 2.2.2 a RWFB can be constructed. In

Figure 2.5 we can find the result of the optimized filter bank. The left figure shows

the optimized pimple filter, while the right one shows the pimple filter after the

first transformation with the sampling factor. It’s obvious that the right figure still

has the same profile as the pimple filter and the filter’s length is 11, which is one

of the three most dominant sizes.

Figure 2.5: Impulse response of pimple matched filter.
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3 Applications

After a filter bank was built with the help of optimization methods MCFB or

RWFB, a wavelet packet tree is created, the nodes of this tree can be considered as

features for classification purpose. To classify a point (x, y) on the surface S, a set

of nodes at the same point dk(x, y) are chosen to create a feature vector d. Based

on the idea presented in [ZLGH12], a suitable classifier can be set up. The param-

eters μi and σi are considered as mean and standard deviation of each coefficient

on the class Ci for all selected nodes in a feature vector d. The Bayes’ theorem

defines the probability p for vector d belonging to class Ci as:

p(μi,σi|d) = p(d|μi,σi)p(μi,σi)

p(d)
.

The distribution of coefficients can be considered as Laplace [ZLGH12]. The

likelihood for class Ci can therefore be modelled as the product of a univariate

Laplace distribution:

p(d|μi,σi) =
∏
k

1

σi,k

√
2π

exp(−1

2

|dk − μi,k|
σ2
i,k

).

For each class Ci the parameters μi and σi are learned with a training set.

The presented designing methods MCFB and RWFB were applied on different

problems in the image processing. The first application should classify the recon-

struction measured data from deflectometry. Due to that fact that the reconstructed

data are not always available, the method was also applied to registration mea-

sured data. As described in [Le14] among the standard wavelet families, the filter

bank with Bi-orthogonal spline wavelets presented by Cohen [CDF06] seems to be

best appropriate for detection and classification purpose of dent and pimple. This

wavelet family was used here again as a reference for our optimized wavelet filter

banks.

Table 3.1 shows the classification results by applying different methods. Mean-

while by the reconstructed data all methods could deliver relatively good results

(about 99% by the class dent and 96% by the class pimple), by registration mea-

sured data the method RWFB showed its advantage compared to other methods

with up to 99.4% by the class dent as well as 92.8% by the class pimple. In addi-

tion it can also be seen that by RWFB the classification rates got better with more

number of chosen dominant sizes t.

Another application of the presented methods is the detection of contaminations on

metal surfaces. Visible textures on the surface, which are caused by manufacturing
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Accuracy
recon. data regis. data
dent pimple dent pimple

Matched Filter 98.2% 96.0% 60.3% 66.3%
Bi-orthogonal spline wavelet 3.5 96.8% 94.9% 58.5% 56.2%

Method Matched dent pimple dent pimple
MCFB Cd 99.7% 96.4% 97.9% 80.5%
MCFB Cp 99.7% 96.5% 82.7% 65.1%
RWFB Cp, t = 1 99.7% 96.3% 99.0% 81.1%
RWFB Cp, t = 2 99.6% 96.3% 99.3% 90.3%
RWFB Cp, t = 3 99.3% 95.8% 99.4% 92.8%

Table 3.1: Comparison of the classification accuracy using different wavelet filter

banks for our classification method, the classes dent Cd and pimple Cp.

and which complicate the detection, are present. The contaminations appear on the

surfaces in form of black stains as in Figure 3.1. In this case the black stains were

considered as feature for the detection purpose. A rational wavelet filter bank was

built on this feature to classify data of the metal surfaces. Other methods in image

processing were applied for comparison. In Table 3.2 the detection results using

the presented wavelet filter bank designing methods MCFB and RWFB as well as

other methods (Thresholding and bi-orthogonal spline wavelet 3.5) can be found.

The detection results show that the filter bank of RWFB, with an accuracy up to

96%, worked better than the filter bank of MCFB (with 84.5%) and other methods.

Figure 3.1: Textured metal surface with contaminations (left) and detected

contamination (right).
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Accuracy
Thresholding 70.2%
Bi-orthogonal spline wavelet 3.5 68.4%

MCFB Cs 84.5%
RWFB Cs, t = 1 94.5%
RWFB Cs, t = 2 95.2%
RWFB Cs, t = 3 96.4%

Table 3.2: Accuracy using different wavelet filter banks for classification of the

class stain Cs.

4 Conclusion

In this paper two different designing methods for wavelet filter banks were intro-

duced. By the first method MCFB the filter bank was optimized on the profile of

defect. The second method RWFB optimized the filter bank not only on the profile

of defect but also on the most dominant stretchings of defect. Both optimization

methods were evaluated with two task within the image processing: measured

data from deflectometry and stain on metal surfaces. With better classification

and detection rates the new methods proved their advantage over other traditional

methods. Among the two methods the RWFB was superior to proposed MCFB
method.

This work was part of a project financed by the Baden-Württemberg Stiftung.



Wavelet Methods for Classification of Surface Data 35

[Li09] T.-S. Li. Applying wavelets transform, rough set theory and support vector machine for

copper clad laminate defects classification. Expert Systems with Applications, 36:5822–

5829, 2009.

[NN13] S.T.N. Nguyen and B.W.-H. Ng. Bi-orthogonal rational discrete wavelet transform with

multiple regularity orders and application experiments. Signal Processing, 93(11):3014

– 3026, 2013.

[Vet86] M. Vetterli. Filter banks allowing perfect reconstruction. Signal Processing, 10(3):219–

244, 1986.

[WN99] Y. Wisutmethangoon and T. Q. Nguyen. A method for design of mth-band filters. IEEE
Trans. Signal Processing, 47(6):1669–1678, 1999.

[ZLGH12] M. Ziebarth, T.-T. Le, T. Greiner, and M. Heizmann. Inspektion spiegelnder
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Abstract: Various industries, e. g., manufacturers of optical components or
medical equipment, use components made out of transparent materials to craft
devices for high-precision applications. As this involves the need for fulfilling
high quality assurances, any kind of defect like enclosed air bubbles, contam-
inants or cracks, has to be reliably detected. Much effort has been spent and
is currently spent into developing methods suitable for visually inspecting
transparent objects. In contrast to opaque objects, transparent materials pose
various challenging problems, as any light ray involved in the inspection pro-
cess can be reflected and refracted by the investigated sample, complicating
the design of the setup and of the method used for the inspection. On the one
hand, this report gives an introduction to the specific physical properties of in-
terest of transparent objects. On the other hand, it provides an overview over
existing methods used for capturing these properties and describes sketches
of some novel inspection approaches.

1 Introduction

The inspection of transparent objects is very important for various industries. For

example, windshields and headlight glasses of automobiles have to be checked for

cracks or impurities which might impair the sight of the driver or cause instabil-

ities. In food industry, glass bottles or other food containers have to be checked

for being impermeable and free from contaminants. Besides, plastic lenses used

for laser-supported eye surgery have to be inspected to ensure certain quality re-

quirements. Furthermore, optical elements themselves, as they are used in opti-

cal instruments, have to be inspected, in order to check whether they meet their

specifications.
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In contrast to transparent objects, there exist various methods suitable for inspect-

ing opaque or specular objects. This report introduces the characteristic opti-

cal properties of transparent objects, discusses possible defects related to these

properties and covers the corresponding challenges of inspection. Besides, rough

sketches of some novel inspection approaches are presented.

2 Properties of Transparent Objects

As for any object, the properties of transparent objects can be divided into the two

groups of optical properties and 3D geometry, which are presented in the following

two sections.

2.1 3D Geometry

The 3D geometry of a transparent object refers to its outer shape. Depending on

the object on hand and on the visual inspection task, the complete reconstruction of

the object is required or differences between the test object and a reference object,

e. g., defects, have to detected. For example, glass or plastic lenses used for optical

imaging only produce the desired images if their 3D geometry exactly matches the

specifications, which is why a complete reconstruction of their outer shape would

be necessary for their inspection.

Common methods used for visually obtaining the geometry of opaque objects are

based on triangulation, optical path lengths or intensity measurements. However,

most of these methods cannot be directly applied to transparent objects, as most of

the incident light is transmitted and nearly no light is reflected.

Triangulation approaches usually rely on the calculation of a missing side of the

triangle consisting of a (laser) light source, the illuminated spot on the test object

and the sensor observing the test object [Nol07]. The missing side is mostly the

distance of the sensor and the current measurement spot on the test object. As the

surface of a transparent object shows barely no reflections and transmits most of

the incident light, there is no clearly visible illuminated spot that can be seen by

the sensor. As this is also the case for any pattern projection or Moire method,

triangulation is not suitable for obtaining the 3D geometry of transparent objects.

Methods based on measuring the length of the optical path of light (LIDAR

[Cam02], interferometry [Har92], shearography [SY03], holography [Kre05]),

which is sent to the object and which is observed after being reflected, also re-

quire the test object to reflect a certain amount of the incident light, which is why

they are not suitable for transparent objects either.
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In contrast, methods based on capturing the intensity of light transmitted by trans-

parent objects might be suitable for obtaining the object’s 3D geometry. One of

these methods – the shape from silhouette approach – is described in section 3.1.

However, it has yet not been used to acquire the 3D shape of transparent objects.

Therefore, a simple but novel approach using shape from silhouette is presented in

4.1.

2.2 Optical Properties

Furthermore, also optical properties might be of interest. These include the re-

fraction index and the color of the test object. Depending on the requirements

of the actual application, the color of the transparent object, i. e., light of which

wavelengths is absorbed or transmitted by the object can be determined by observ-

ing the light transmitted by the test object with a color camera or with a spectrally

resolving sensor [Cha03]. As the visual appearance and the optical effects of trans-

parent objects are mainly caused by light being deflected during transmission, the

spatial distribution of the refraction index is of special importance.

Refraction occurs if light passes the boundary between two adjacent media with

different refraction indices n1 and n2. If the angle of incidence of the incident

light ray in medium 1 is denoted by θ1 with respect to the normal of the boundary

layer and if θ2 is the corresponding angle of the emitted light ray in medium 2,

Snell’s law of refraction holds:

n1 sin θ1 = n2 sin θ2 .

The effect of refraction is illustrated in Fig. 2.1. If it is θ1 = 0◦, it holds θ2 = 0◦.

For exact calculations, the refraction index has to be considered as a function of

the light’s wavelength λ:

n = n(λ) .

This dependency is called dispersion. If the material of the transparent object

is inhomogeneous, the refraction index might even be a function of the position

x ∈ R
3:

n = n(λ,x) .

The refraction index can be measured, e. g., by means of the Schlieren imaging

method described in Sect. 3.2.

Material defects affecting the refraction index can result in serious consequences:

for example, small enclosed air bubbles or contaminants inside a transparent plas-

tic lens used for a laser-supported eye surgery might cause the laser to be directed

into the wrong direction and therefore to harm the patient. Such defects can be
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Incident light

refracted
light

Figure 2.1: Snell’s law of refraction.

detected as local inhomogeneities of the refraction index or as sources of scattered

light if illuminated in dark field.

3 Existing Methods

In this section, two existing methods for inspecting transparent objects are pre-

sented. Besides their basic principle, also the drawbacks of the methods will be

mentioned.

3.1 Shape from Silhouette

Shape from silhouette is a method which is able to approximate the 3D shape of

opaque objects by combining views of its silhouette captured out of different pro-

jection directions [TCM+02]. To simplify matters, only two dimensions will be

considered for explaining the approach. Figure 3.1 illustrates the setup for captur-

ing an object’s silhouette out of a single projection direction. As the light source

is placed in the focal point of the lens L1, the object is illuminated with parallel

light, so that the object’s silhouette is visible on the sensor. The setup is now ro-

tated around the object in order to capture silhouettes out of multiple perspectives.

As the rotation angles are known and the illumination is calibrated with respect to

the sensor, the path of the two rays which are just ‘touching’ the borders of the

object can be reconstructed and the rectangular area between these two rays can

be intersected with the other rectangles corresponding to the different projection

directions. By this means, a step-wise approximation of the outer shape of the
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Bright region

Bright region

Dark region =

Figure 3.1: Visualization of the optical setup used for shape from silhouette. A

light source LS is placed in the focal point of the lens L1, so that only parallel light

reaches the investigated object. As the object is opaque, its silhouette correspond-

ing to the current projection direction is imaged to the sensor and appears as a dark

region.

investigated object can be obtained (see Figure 3.2). The more projections direc-

tions are used the more exact the resulting approximation will be. As rectangles

are convex geometric objects, an intersection of two rectangles will always result

in another convex object [Cop98]. This is why – theoretically – shape from silhou-

ette can only achieve a perfect reconstruction of convex objects and any concave

structures on the surface of the investigated objects will never be contained in the

reconstruction (see Figure 3.2).

In the three-dimensional case, the single two-dimensional projections are poly-

gons, which do not necessarily have to be convex. The results of the correspond-

ing intersections can be arbitrary polyhedra that do not have any inner structures

like cavities. Unfortunately, the intersection of three-dimensional polyhedra is

very complex and computationally expensive. Besides, as it is presented here,

shape from silhouette gives much better results for opaque objects than for trans-

parent objects, as only the contours of transparent objects would be visible as

slightly darker structures on the sensor. In Sect. 4.1, an approach is proposed

which possibly resolves this drawback.
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LS

LS

LS

LL

L

Figure 3.2: The setup shown in Fig. 3.1 is used for multiple projection directions.

For every configuration, the two rays touching the object are colored blue. The

red polygon, which is the intersection of the rectangular areas between the pairs of

rays, presents a convex approximation of the shape of the investigated object.

3.2 Schlieren Imaging

As mentioned above, light rays do not follow a straight line when passing a trans-

parent object with varying refraction index. As this effect can be measured, in-

formation about the refraction index can be gained [Sch95]. In order to obtain an

intensity image representing the deflection of the rays, a so-called schlieren stop

can be used, which is placed asymmetrically into the optical path. By this means,

the deflection of the light rays results in a varying intensity on the image sensor.

Figure 3.3 shows the principal setup used for schlieren imaging. The setup is sen-

sitive for changes of the refraction index perpendicular to the edge of the schlieren

stop. In order to obtain information about different directions of the gradient of the

refraction index, images with different configurations of the schlieren stop have to

be captured or a color wheel can be placed in the focal point of L2, which allows

a color encoding of the deflection direction.

Another variant of schlieren imaging uses a certain ‘4D’ background illumination,

which utilizes micro lenses in order to achieve a color encoding of the spatial

position of each illuminating element and of the outgoing direction. By this means,

the test object can be placed just in front of this background and common consumer

cameras can be used to obtain a qualitative schlieren image [WRH11].
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Figure 3.3: Principle of schlieren imaging. The light of the light source LS is col-

limated by L1 and illuminates the investigated transparent object. The collimated

light is focused by the lens L2. A schlieren stop SS is located in the focal point of

L2, ideally halving the luminance if no test object is present. Light rays deflected

upwards (downwards) by the test object are able to pass the schlieren stop (are

blocked) and result in high (low) values output by the sensor. The resulting inten-

sity images are called ‘schlieren’. By means of the lenses L2 and L3, a focused

imaging of the object onto the sensor is realized.

As already mentioned, a single configuration of the original schlieren setup only

allows to obtain information about the components of the refraction index distribu-

tion, which are perpendicular to the edge of the schlieren stop. Section 4.2 outlines

a novel approach which could possibly resolve this drawback.

4 Novel Approaches

In this section, two novel ideas are presented, which extend the methods shape

from silhouette and schlieren imaging to better suit transparent objects.

4.1 Shape from Silhouette for Transparent Objects

As discussed in Sect. 3.1, the shape from silhouette method is not directly suit-

able for obtaining the outer shape of transparent objects. The problem is, that the
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inspected object should be opaque, so that its silhouette is represented by a thor-

ough, dark region on the image sensor. The contrast with which the contour of a

transparent object would be visible, might be low, resulting in inaccurate silhouette

measurements.

Figure 4.1 shows the sketch of a setup which could possibly be used to capture

the single silhouette projections of transparent objects. The original setup from

Fig. 3.1 is extended by another lens and a telecentric stop which is placed in this

lens’ focal point. By this means, only rays running parallel to the optical axis be-

tween the two lenses are able to pass the telecentric stop and to reach the image

sensor. Any ray running through the transparent object will be refracted when en-

tering or leaving the object or when traversing inner structures of the object, so that

it will not be parallel to optical axis anymore and will be blocked by the telecentric

stop. The image formed on the sensor should show the silhouette of the object cor-

responding to the configured projection direction. By utilizing this setup, the shape

from silhouette method (Sect. 3.1) should be applicable to transparent objects as

well as to opaque objects. However, there still are some transparent objects which

could be problematic for this method, e. g., a transparent cuboid which is arranged

so that its sides are exactly parallel or perpendicular to the optical axis resulting in

no refraction of some of the rays and therefore in an unusable sensor image. But

as this case is very unlikely and as objects are rotated during the inspection, the

approach could still be successful for such object classes.

4.2 Variable Stop Schlieren Imaging

As mentioned in Sect. 3.2, the schlieren method can be used to visualize the refrac-

tion index of transparent objects as intensity images. However, the method is only

sensitive for refraction index gradients perpendicular to the edge of the schlieren

stop as it is aligned in the current setup.
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Bright region

Bright region

Dark region

Figure 4.1: A setup allowing to apply shape from silhouette to transparent objects.

The setup from Fig. 3.1 is extended by an additional lens L2 and a telecentric stop

which is placed in the focal point of L2. By this means, only rays parallel to the

optical axis are able to reach the sensor and any ray coming in contact with the

transparent object and getting refracted will be blocked by the telecentric stop.

By using a highly variable and controllable schlieren stop and by acquiring an im-

age series whose images correspond to the configurations of the schlieren stop,

the refraction index field could possibly be sampled. Figure 4.2 illustrates a pos-

sible setup. Here, a so-called digital micromirror device (DMD) is used to realize

the variable schlieren stop. A DMD is a rectangular array of for example 2 · 106
mirrors having a size of about 10μm · 10μm [Ins15]. Every single mirror can be

electrically tilted by several discrete angles with a frequency of 400 MHz. By this

means, the single elements can be turned ‘on’ or ‘off’, i. e., they can be set to di-

rect the light in the correct direction towards L3 or out of the optical system. Thus,

the DMD can be used to realize various stop configurations and a series of images

containing information about the refraction index gradients in the corresponding

direction can be acquired.

5 Conclusion

This report introduced the physical basics regarding the visual inspection of trans-

parent objects and the associated challenges. The suitability of existing visual in-

spection methods for the inspection of transparent objects has been discussed and
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Figure 4.2: Principle of schlieren imaging realizing a variable schlieren stop. The

figure has to be considered as an extension of the part right from the lens L2 in Fig-

ure 3.3. To simplify matters, the deflected rays are neglected. Here, a beam splitter

is placed in the optical path beyond the lens L2. After being reflected by the beam

splitter, the light reaches a digital micromirror device (DMD), which replaces the

schlieren stop of the original setup. This DMD is controlled by a computer to re-

alize different schlieren stop configurations S1, S2, . . . , SN at different points of

time t1, t2, . . . , tN . The sensor is triggered to acquire images I1, I2, . . . , IN at the

respective points of time ti.

two novel ideas have been presented: on the one hand, an image acquisition setup

has been proposed, which possibly allows the application of shape from silhouette

to transparent objects and on the other hand, an expansion of the schlieren method

has been presented, which utilizes a variable schlieren stop in order to gain more

information about the investigated object.

Now, these approaches need to be physically realized and evaluated by means of

theoretically well-grounded experiments.
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Abstract: Ellipsometry is a proven method for measuring layer thicknesses
of flat, specularly reflective surfaces from the angstrom up to the micrometer
range. At the Fraunhofer IOSB a new measuring system has been developed
which allows the application of imaging ellipsometry on curved surfaces. The
light beam is reflected twice off the sample surface, hence the ellipsometry
measurements change but they are directly related to the measurements of
conventional single wavelength ellipsomety. Several problems arise when in-
terpreting the ellipsometry measurements from the new measurement system,
like unknown angle of incidence, few measurements per pixel and often un-
known materials. In this article these problems are identified and some steps
are proposed to be able to apply imaging ellipsometry on curved surfaces
for special applications. Currently, the focus remains on isotropic samples
consisting of a single layer on a substrate.

1 Introduction

In many production processes for e.g. semiconductors, optical components, pho-

tonics, automobile parts but also household appliances, thin film coatings are

used to obtain the desired functionality of the product. Ellipsometry is a non-

destructive, contact-free, optical measurement technique which is widely used for

material characterization and thickness measurement of thin films. Material char-

acterization is performed with spectroscopic ellipsometry, where measurements at

different wavelengths are acquired. One restriction of ellipsometry is, that the sur-

face under study has to be partially reflective and the layers must not be opaque.

The principal configuration of an ellipsometer is explained in Section 4. The light

source and the detector must be adjusted in such a way according to the surface
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normal, that the reflection condition holds. This implies that only flat surfaces can

be examined because at every change in inclination the sensor and detector have

to be repositioned. For point sensors there exist extensions for small inclinations

of the surface normal [NR02, FGS+95]. Additionally, the field of view of actual

imaging ellipsometers is very small (less than 2.5 cm in diameter). Hence, imaging

ellipsometry is usually used in conjunction with microscopy.

The new and patented ellipsometry measurement system developed at the Fraun-

hofer IOSB [Fra] overcomes these drawbacks by taking advantage of the retrore-

flection. The light source and the detector are combined into a transceiver and the

reflection condition is automatically fulfilled as shown in Section 5. The usage of

a laser scanner avoids the depth of field problem inherent to imaging ellipsometry

and the field of view of actual imaging ellipsometers is also drastically extended

by the use of a 20 cm wide laser line. This opens up the possibility to measure

thin films on curved surfaces with ellipsometry such as coatings on automobile

parts, metal rolls or painted plastic parts. In these applications the variation of the

layer thickness over the sample surface is of interest while the number of layers

is usually low. There is often little knowledge about the materials used in these

applications, in contrast to classical applications of ellipsometry, e.g. semicon-

ductor industry, where the detected materials are known very well. Additionally,

although measurements can be acquired on curved surfaces, the angle of incidence

is unknown - in contrast to the classical ellipsometry approach. This requires that

either a CAD model of the inspected part is available or the topography is measured

with supplemental 3D sensors.

As a model-based approach, ellipsometry cannot be used to measure the layer

thicknesses directly without some sort of knowledge about the number of layers or

the optical properties of the materials. The model to be determined consists of a

layer stack with specific materials and layer thicknesses. Before analyzing a sam-

ple with the new ellipsometry scanner, the first step is to measure the optical prop-

erties and the number of layers with spectroscopic ellipsometry at a fixed location

on the sample. This is done so, because spectroscopic ellipsometry provides more

measurements as is the case with the monochromatic (red) laser scanner. Hence, it

is more likely to derive the correct model. This is especially in our use cases im-

portant, where there is usually little knowledge about the materials of the sample.

To further increase the confidence in the model parameters, variable angle spectro-

scopic ellipsomety (VASE) is applied by acquiring spectroscopic measurements at

different angles of incidence. Section 6 of this article addresses the problem of

obtaining a model from VASE measurements of an isotropic sample consisting of

a single layer on a substrate. Instead of using real VASE measurements, they are

simulated using an existing ellipsometry software (DeltaPsi2) to generate ground

truth data from a known model.
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The fitting of the model parameters is achieved via a nonlinear optimization. Given

a known model, the ellipsometric parameters are computed and compared with the

measured values (i.e. simulated values). The model is then successively updated

and improved until the stopping condition is satisfied. One part of the optimization

algorithm is the computation of the ellipsometric parameters from a given model.

Section 2 addresses some theoretical aspects of polarized light and polarization

change due to reflection. In Section 3 an algorithm for computing the ellipsometric

parameters for the reflection at an arbitrary layer stack is explained.

After determining the number of layers, the materials and the layer thicknesses

with VASE at a specific point on the surface, the variation of the layer thickness

over the sample surface can be measured with the ellipsometry scanner. To be able

to apply methods from classical ellipsometry to fit the model parameters to mea-

surements obtained with the ellipsometry scanner, the measurements from both

ellipsometry systems have to be compared. A relationship between these mea-

surements is presented in Section 5 and occurring model-fitting ambiguities are

discussed.

2 Polarization of light

Light is an electromagnetic wave, which can be regarded as a homogenous plane

wave for describing the polarization state of light. The direction and magnitude

of the electric and magnetic field vector alternate as the light propagates through

space. In the further analysis only the electric field vector is used. Let E(z, t)
denote the electric field vector at position z and time t. Polarized light is in the

general case elliptically polarized. In this case the electric field vector moves along

the curve of an ellipse in the xy-plane as it propagates through space in z direction

as shown in Figure 2.1. The polarization state of light can be decomposed into two

orthogonal states. The figure shows the decomposition of an elliptically polarized

light wave into two linear polarized light waves while the vibration planes are the

xz- and the yz-plane. The electric field vectors Ex(z, t) and Ey(z, t) can be either

expressed as real-valued functions E(z, t) = A · cos(kzz−ωt+ϕ) or as complex

ones E(t) = A · exp(i(kzz − ωt + ϕ)), whereas kz is the circular wavenumber,

ω the angular frequency, A the amplitude and ϕ the initial phase. The complex

notation will be used in the following sections.
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Figure 2.1: Decomposition of an elliptically polarized light wave by two linearly

polarized waves.

3 Reflection

The reflection and refraction of light at a flat boundary surface of two isotropic the-

oretically semi-infinite materials is determined by the Fresnel equations [TM99].

These formulas describe the change of the amplitude and phase of the electric field

vector of the incident and reflected light ray resulting from the reflection or refrac-

tion. As mentioned in the previous section, light with an arbitrary polarization

state can be decomposed into two orthogonal linearly polarized light rays. If the

vibration planes are parallel (p-polarization) and perpendicular (s-polarization) to

the plane of incidence, the change in amplitude and phase can be computed sep-

arately for the two polarization states. The plane of incidence is being spanned

by the direction vector of the incident light ray and the surface normal. Let the

complex values Es
i , E

p
i denote the amplitude and phase of the incident light ray

for the s- and p-polarization and let Es
r, E

p
r denote the amplitude and phase of the

reflected ray. The reflection coefficients are defined by:

rp12 =
Ep

r

Ep
i

, rs12 =
Es

r

Es
i

.

The vectors of the electric fields of the incident and reflected ray are depicted

in Figure 3.1 for the p- and s-polarization. Let θ1 be the angle of incidence in

medium 1 and θ2 the angle of refraction in medium 2. The refractive index n and

the extinction coefficient k of a material can be expressed as the complex refractive

index n = n− ik. Let n1, n2 denote the complex refractive index of the medium 1

and medium 2, respectively. The reflection coefficients can be computed with the
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Medium 1

Medium 2

Incident ray

Refracted ray

Re ected ray

Figure 3.1: Reflection and refraction of light at a flat boundary surface.

help of the Fresnel equations:

rp12 =
n2 cos θ1 − n1 cos θ2
n2 cos θ1 + n1 cos θ2

,

rs12 =
n1 cos θ1 − n2 cos θ2
n1 cos θ1 + n2 cos θ2

.

(3.1)

θ2 can be computed using Snell’s law:

n1 sin θ1 = n2 sin θ2. (3.2)

Because transmission ellipsometry used at transparent objects is not a subject of

this article, the Fresnel equations for the refracted rays are omitted.

When there is a layer between the two semi-infinite media with flat parallel bound-

ary surfaces, the light beam is reflected or refracted at the two interfaces as shown

in Figure 3.2. The phase of a partial beam which is refracted from medium 2 into

medium 1 after one or multiple reflections depends on the thickness d, the number

of reflections that occurred and the complex refractive indices n1, n2, n3. All these

partial beams superimpose and by summing an infinite geometric series we obtain

the following formula for the two reflection coefficients:

rp123 =
rp12 + rp23e

−i2β

1 + rp12r
p
23e

−i2β
,

rs123 =
rs12 + rs23e

−i2β

1 + rs12r
s
23e

−i2β
,

(3.3)
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Medium 1

Medium 2

Medium 3

Incident ray Re ected ray

Refracted ray

Figure 3.2: Because of the presence of a layer, the polarization state of the output

beam is composed of partial beams reflected at both interfaces.

where

β = 2π

(
d

λ

)
n2 cos θ2.

One simple method of computing the total reflection coefficient for an arbitrary

number of layers is to use Equation (3.3) recursively [TM99]. As seen in Figure 3.2

the effect of the layer on the polarization state of an incident beam can be treated as

if there was only a substrate with no layer by using the total reflection coefficients.

With Equation (3.3) it is possible to successively add a layer on top to get the total

reflection coefficients of the whole stack:

rpj...n =
rpj,j+1 + rpj+1...ne

−i2β

1 + rpj,j+1r
p
j+1...ne

−i2β
,

rsj...n =
rsj,j+1 + rsj+1...ne

−i2β

1 + rsj,j+1r
s
j+1...ne

−i2β
,

(3.4)

where

β = 2π

(
dj+1

λ

)
nj+1 cos θj+1
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and dj is the thickness of layer j and θj the angle of incidence of a beam inside

layer j. rpj,j+1, r
s
j,j+1 is defined as in Equation (3.1). It is worth to note that

Equation (3.1), (3.2), (3.3), (3.4) are not only valid for real refractive indices but

also for complex ones (except of n1) [TM99]. The sin and cos functions can be

extended to the complex domain through Euler’s formula:

sinx =
expix − exp−ix

2i
, cosx =

expix +exp−ix

2
.

For the computation of the complex angle of refraction using Equation (3.2), the

arcsin function for the complex domain is needed. The arcsin function can be

extended to the complex domain through the complex logarithm:

arcsin(x) = −i ln
(
i x+

√
1− x2

)
.

4 Spectroscopic Ellipsometry

In spectroscopic reflectometry the thickness of a layer is computed by measuring

the interference spectrum of a light beam reflected off a sample surface - usually at

normal incidence. When the sample consists of one or multiple layers, the partial

beams are reflected at each interface. These reflected partial beams superimpose

which results in an interference spectrum dependent on the optical properties and

the thicknesses of the layers. At normal incidence the s- and p-polarization cannot

be determined and at a non-depolarizing, isotropic sample, the polarization state

of the incident light is preserved. In contrast to reflectometry, in ellipsometry the

change of the polarization state resulting from the reflection is measured while the

angle of incidence θ is usually near the Brewster angle.

An ellipsometer consists of a light source, a detector and optical elements like lin-

ear polarizers and retarders or quarter-wave plates also called compensators which

can be rotated [TM99]. These are used to generate a polarization state at the in-

put beam or to measure the polarization state of the output beam. The principal

configuration of an ellipsometer is depicted in Figure 4.1. The angle φ denotes

the rotation of the sensor coordinate system with respect to the plane of incidence.

With a fixed analyzer and a rotating compensator at the output beam, the polar-

ization state of the reflected light can be detected by measuring at four azimuthal

angles [BPLF12] of the compensator. With spectroscopic ellipsometry, measure-

ments are acquired for every wavelength. The spectrum used for the simulations

in 6.1 corresponds to the spectrum of the SmartSE ellipsometer from Horiba and

ranges from 400− 1000 nm.
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Figure 4.1: Ellipsometer configuration with rotating compensators.

4.1 Ellipsometry parameters Psi and Delta

Two important ellipsometry parameters usually used for model fitting are Ψ and

Δ which can be expressed as the complex value ρ. Ψ describe the change in

the amplitude quotient and Δ the change in the phase difference of two orthogo-

nal linearly polarized waves. Because the coordinate system of the ellipsometer

is adjusted according to the plane of incidence (φ = 0), the two linearly polar-

ized waves correspond to the s- and p-polarization. The ellipsometric parameters

Ψ,Δ are then related to the reflection coefficients by the fundamental equation of

ellipsometry [TM99]:

ρ := tanΨeiΔ =
rp

rs
. (4.1)

With Ψ and Δ, the optical properties of a substrate can directly be determined.

A substrate is a thick bulk material where no back-side reflection occurs. Let

n1 be the complex refractive index of the ambient and n2 the complex refractive

index of the substrate. In Figure 4.2 for fixed refractive indices n and variable

extinction coefficients k the corresponding Ψ,Δ trajectories are shown. For k = 0
the trajectory begins at Δ ∈ {0◦, 180◦} when there is no total internal reflection

and ends at Ψ = 45◦,Δ = 180◦ for k → ∞. As can be seen, there is a one-to-one

correspondence between n, k and Ψ,Δ if θ1 is fixed. The complex refractive index

n2 can be computed from Ψ,Δ by [TM99]:

n2 = n1 tan θ1

√
1− 4ρ sin2 θ1

(ρ+ 1)2
. (4.2)



Thickness Measurement of Thin Films 57

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

140

160

180

n=0.4

n=0.8

n=0.9n=1.0n=1.2n=1.4n=1.7

n=2.0 n=2.8 n=4.0 n=6.0 k→ ∞

Ψ

Δ

Figure 4.2: Ψ and Δ for different n, k at θ = 60◦ and λ = 635 nm.

When there is a layer on the surface, the situation is more complicated. As can be

seen in Equation (3.3) the total reflection coefficients are periodic in thickness d for

a transparent film. In this case the refractive index is real n2 = n2. Additionally,

n2 > 1 for nearly all natural materials in the visible wavelength range. For a

given (real-valued) angle of incidence θ1 = θ1, θ2 and β are also real according to

Equation (3.2) if air is assumed as the ambient n1 = 1. This results into a periodic

function of the total reflection coefficient in the thickness d. The period has the

same order of magnitude as the wavelength which is below 1 μm when using a

red laser. To be able to detect thicknesses in the μm-range, either λ has to be

varied, as is the case with spectroscopic ellipsometry, or θ1, as is the case with the

ellipsometry scanner. This leads to an unambiguity of the thickness d because the

period dp is a function of λ and θ1 [TM99]:

dp =
λ

2
√
n2
2 − n2

1 sin
2 θ1

.

Many fitting procedures in ellipsometry assume that the sample under study con-

sists of multiple parallel layers. Even in cases when the surface is rough or the

surface boundaries are not sharp due to interlayer diffusion, these effects can be

modeled by supplemental layers. With these approximations, the sample under

study has a given number of layers with parallel boundaries and different com-

plex refractive indices for each layer. Hence, the ellipsometric parameters can be

computed for any model with isotropic materials by using Equation (3.4) and (4.1).
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(a) (b)

Figure 5.1: Scheme of the beam path with retroreflection (a) and an image of the

ellipsometry scanner (b).

5 Ellipsometry scanner with retroreflection

One difference of the developed ellipsometry scanner to actual spectroscopic ellip-

someters is that the polarization state as well as the wavelength of the input beam is

fixed. A circularly polarized laser beam is emitted out of the transceiver, reflected

off the surface of a moving object and hitting the retroreflector. Because of the

retroreflection the beam takes the same light path back into the transceiver with a

second reflection at the surface (see Figure 5.1). The use of a retroreflector ensures

that the emitted light can be detected even for high deviations of the surface nor-

mal, in contrast to the classical ellipsometry configuration. In the transceiver the

polarization state is analyzed. In this way, four polarization images are acquired

with the azimuthal angles 0◦, 90◦, 45◦ and 135◦ of a linear polarizer.

5.1 Influence of Retroreflection on Psi and Delta

In this section the measurements acquired with an usual ellipsometer are com-

pared to those acquired in a configuration with a retroreflector. It is assumed that

the retroreflector does not change the polarization state. There are theoretical in-

dications for that because of the symmetry of the micro glass beads on the surface
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of the retroreflector. Nevertheless, an experimental examination of possible depo-

larization effects or anisotropy remains to be performed. Because of the retrore-

flection it cannot be done with an usual ellipsometer. If the polarization state is not

changed by the retroreflector, the following relation holds for the measurements

from a conventional ellipsometer Ψ,Δ and those obtained with a retroreflector

and a double reflection at the sample surface Ψ′,Δ′ [NH14]:

tanΨ′ = tan2 Ψ,

Δ′ = 2Δ,

ρ′ = ρ2.

With the actual prototype the measurement of Ψ′ is possible in the full interval

[0◦, 90◦] but Δ′ can be only be measured in the interval [0◦, 180◦]. Therefore, Ψ
can be recalculated from Ψ′ but Δ can only be determined in the interval [0◦, 90◦].
The question is which impact this restriction has on the detectable layer thick-

nesses and optical constants. The trajectory of Ψ,Δ for a layer on a substrate

with fixed refractive indices and variable thicknesses is shown in Figure 5.2(a).

As can be seen, with an exception at the singular point, it is possible to compute

the refractive index and the layer thickness simultaneously from Ψ,Δ when the

periodicity is ignored. This uniqueness will not be given anymore, if the measure-

ments are captured with the ellipsometry scanner as seen in Figure 5.2(b). For ev-

ery Ψ′,Δ′ there are two combinations of refractive indices and thicknesses which

correspond to the same measurement. As mentioned before, we can determine Δ′

only in the interval [0◦, 180◦]. Compared to an ellipsometer which can determine

Δ in the whole range, the number of ambiguous solutions in the configuration

with a retroreflector is four times higher. Additionally, because the geometry of

the surface is unknown there are two more unknown variables θ, φ which have to

be determined for each pixel, whereas θ is the angle of incidence and φ the ro-

tation of the sensor coordinate system with respect to the plane of incidence (see

Figure 4.1). If the refractive index of the surface is known and constant on the

surface, the thickness and the angle of incidence can be determined as shown in

Figure 5.3(a) but it is not possible to also determine φ. Therefore, either multiple

independent measurements e.g. under different angles of incidence have to be ac-

quired and registered or an additional sensor providing topography data has to be

used.

6 Fitting of model parameters

Compared to the number of measurements, usually, only a few parameters are fit-

ted in spectroscopic ellipsometry. These could be the parameters of a predefined
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(a) (b)

Figure 5.2: Ψ,Δ trajectory for films with variable thickness and different refrac-

tive indices (a). Ψ′,Δ′ for the same models measured in the configuration with a

retroreflector (b).

(a) (b)

Figure 5.3: Ψ,Δ trajectory for films with variable thickness and different angles

of incidence (a). Ψ′,Δ′ for the same models measured in the configuration with a

retroreflector (b).
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oscillator model for the dielectric function, the fraction of known materials for

an unknown material modeled by an EMA model or the thickness of roughness

layers [TM99]. A problem of this classical approach is, that the materials of the

samples of interest are often unknown for our use cases, hence no specific os-

cillator model can be assumed. One method to overcome this problem is to use

point-by-point calculations. When a non-depolarizing, isotropic substrate with-

out a film is present, the refractive index n and the extinction coefficient k can

be directly computed from the ellipsometric parameters Ψ(λ) and Δ(λ) by Equa-

tion (4.2). When there are one or multiple layers on the substrate, the complex

refractive indices of the multiple layers cannot be computed from Ψ(λ) and Δ(λ)
because there are more unknowns than measurements. With VASE this problem

does not occur anymore, because we can capture an arbitrary number of measure-

ments at different (known) angles of incidence, although the acquired measure-

ments are not necessarily independent. With the ellipsometry software DeltaPsi2

it is possible to compute the complex refractive index by point-by-point calcu-

lations for one material but all other model parameters have to be known. It is

neither possible to fit the layer thickness and the refractive index with a point-by-

point calculation nor to fit the refractive indices of multiple layers at once. When

there is little knowledge about the materials the sample consists of, this function-

ality is needed. Therefore, an own software framework to provide more flexible

computations with VASE measurements is implemented in MATLAB. Like other

ellipsometry software frameworks it contains of the following functionalities:

• Computation of Ψ,Δ in a simulation step for a given model consisting of a

layer stack with given thicknesses and optical material constants.

• Computation of the goodness of fit as the mean square error (MSE) of the

measured ΨM ,ΔM and predicted values ΨP ,ΔP .

• Updating the model until the goodness of fit reaches a predefined threshold.

The MSE is computed by:

MSE =
1

#wavelengts

∑
λ

(ΨM (λ)−ΨP (λ))
2 +mod(ΔM (λ)−ΔP (λ), 2π)

2.

For obtaining the complex refractive index of the substrate, no fitting is needed,

because Equation (4.2) can be used to compute the refractive index analytically.

For obtaining the complex refractive index of the layer for a given thickness, a

nonlinear optimization has to be performed. The algorithm used for the nonlinear

optimization is differential evolution 1.

1Available at http://www.mathworks.com/matlabcentral/fileexchange/18593-differential-evolution
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The optical properties of a coated surface with unknown material are determined

by first computing the optical properties of the substrate and then fitting the optical

properties of the layer. This is an adequate procedure because it is often possible

to take an uncoated and a coated sample out of the manufacturing process. Be-

cause the layer thickness is also unknown, it must be fitted. One possibility is to fit

all model parameters in a high dimensional space at once, which would result in

unnecessary function calls of the objective function because of the independence

of the refractive indices for different wavelengths. Instead, the fitting of the thick-

ness is implemented as a wrapper around the fitting of the material properties. The

wrapper algorithm iterates over thickness values obtained on a coarse grid within

the search interval and calls the optimization function for fitting the material prop-

erties for given layer thickness. Then, the wrapper algorithm iteratively performs

a refinement of the grid while minimizing the search interval of the thickness. The

center of new search interval is set at the best thickness value found in the last

iteration.

6.1 Numerical Experiment

The first step in testing the accuracy of the proposed fitting algorithm is to com-

pute VASE spectrum measurements from a ground truth model by employing the

DeltaPsi2 software and trying to fit the model parameters with the implemented

software framework from the simulated measurements. For a classical use case in

ellipsometry, a film of silicon dioxide SiO2 on crystalline silicon c-Si, measure-

ments for the wavelength range from 440 nm to 1000 nm and for varying angle

of incidence from 45◦ to 80◦ were generated. The dispersion formulas for SiO2

and c-Si were taken out of the material database which is part of the DeltaPsi2

software. Two layer thicknesses were analyzed, a 100 nm thick and a 1000 nm
thick SiO2 layer.

After the optical properties of the substrate are computed from the measurements,

the refractive index n2 of a 100 nm thick SiO2 layer is fitted. Because the thickness

is small, there are not many oscillations of Ψ,Δ when n2 varies, hence there is a

low number of local minima, which results in a good fit (MSE=0.0002). The

fit for the refractive index is shown in Figure 6.1(a), while the ground truth is

blue and the fitted values are green. In Figure 6.1(b) the MSE is shown as a heat

map when the refractive index varies (λ = 620 nm). Two local minima exist at

n2 = 1.46− 0i and at n2 = 1− 2i. When a film of 1000 nm is present, the fit is

not good (MSE=288.1) because the algorithm often ends up in local minima which

is visible at the outliers in Figure 6.2(a). At k = 0 it is also visible that the MSE
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(a) (b)

Figure 6.1: In (a) the fitting result of the refractive index of a 100 nm thick film is

shown. In (b) a heat map of the MSE for n2 is depicted (λ = 620 nm).

(a) (b)

Figure 6.2: In (a) the fitting result of the refractive index of a 1000 nm thick film

is shown. In (b) a heat map of the MSE for n2 is depicted (λ = 620 nm).

oscillates (see Figure 6.2(b)) which results in many local minima and complicates

the fitting procedure.

The result of the layer thickness obtained with the wrapper algorithm is shown in

Figure 6.3. For every thickness value set by the wrapper algorithm in each itera-

tion, the corresponding MSE value computed by the differential evolution fitting

algorithm is shown in the figure. If the layer thickness is 100 nm, the fitted thick-

ness with the wrapper algorithm is 100.1 nm (MSE=0.021). If it is 1000 nm, the

fitted thickness is 1001 nm (MSE=81.1). In both cases it seems that the function
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(a) (b)

Figure 6.3: Fitting results of the wrapper optimization algorithm for a 100 nm (a)

and a 1000 nm (b) thick layer.

for fitting the optical material properties often ended up in local minima because

of the high variance of the MSE for similar thickness values.

7 Summary and Outlook

In this article, several problems arising in the context of applying ellipsometry on

curved surfaces and possible applications were discussed. The main focus lies on

samples with one or two layers which are up to several μm thick. An optimiza-

tion technique was proposed to determine the optical constants via VASE. In a

simulation the thickness as well as the optical constants could be determined for

a 100 nm or a 1000 nm thick layer. Because of many oscillations of the objec-

tive function at thick layers, the fitting often ends up in a local minimum. Further

analysis needs to be performed, to verify if the envelope of the oscillations could

be used to localize the region of the global optimum. Because the dimension of

the search space is quite low it is probably possible to improve the fitting to find

the global optimum. If the estimation of the optical properties could be improved,

the next step would be to check if the optical constants of the two layers could be

fitted simultaneously without a separate measurement of the substrate.

Some problems related to point-by-point calculations could be avoided using B-

splines to represent the dielectric function. This is a compromise between the

usage of dispersion models and point-by-point calculations. Dispersion models

are physically correct but unpractical to use with unknown materials because the

oscillator type and starting parameters have to be chosen. Dielectric functions
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obtained by point-by-point calculations are prone to sensor noise, possess discon-

tinuities, and neglect the Kramers-Kronig consistency. In [JH08] the usage of

Kramers-Kronig consistent basis functions based on B-Splines is proposed. This

could be used in the fitting procedure to avoid the mentioned problems resulting

from point-by-point calculations.
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Abstract: In the common approach to the generic camera calibration (GCC),
one uses dense ray coding (with e.g. active grids displayed on an LCD screen)
in order to find the ray origin and direction for each camera pixel indepen-
dently. While applicable to many types of imaging sensors, the GCC fails to
describe the local differential properties of ray bundles that are important in
e.g. studying the geometry of infinitesimal scene changes via optical flow. In
this report, we investigate the alternative approach to the GCC where the cam-
era ray origins and directions are assumed to be differentiable functions of the
sensor position. In particular, we present a novel calibration technique based
on finite element method that unites the ray update and bundle adjustment
stages of the common GCC and accommodates arbitrary anisotropic coding
uncertainties and non-planar coding surfaces. The accuracy and the stabil-
ity of the resulting smooth generic camera calibration (sGCC) algorithm are
verified based on some non-trivial synthetic examples.

1 Introduction

The geometric camera model is a mapping (u, v) → {�oc, �rc} that assigns to each

sensor pixel with cooridnates (u, v) a three-dimensional ray that originates in point

�oc and is directed along the vector �rc (both defined in the local camera’s system of

coordinates). It is assumed that any point on that ray projects to the same pixel1.

The simplest model that is widely adopted in computer graphics and in computer

vision is a pinhole camera. It assumes a single projection center �oc for all pixels

and some parameterization of �rc(u, v) which in the simplest case is linear:

�oc(u, v) = (0, 0, 0)T , �rc(u, v) = (a1u+ a2v, a3u+ a4v, 1)
T . (1.1)

1 In this report we ignore any finite sharpness effects.
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The coefficients a1, ..., a4 may describe the “anisotropic magnification” and the

“skewness” of the camera. (From here on, we assume that the center of the sensor

is at (u, v) = (0, 0).) Note that provided the coefficients a1, ..., a4 and the extrin-

sic camera parameters, one can easily find the inverse mapping that determines a

sensor projection for any given 3D point.

When high-precision results are needed and/or when complex cameras and lenses

are used, the linear pinhole model becomes too inaccurate and leads to systematic

errors both in image generation and exploitation. One possible way to fix Eq. (1.1)

is to introduce a few higher-order polynomial corrections into the second equation.

The calibration for the linear model as well as for the model with a few cor-

rection terms can be performed with the convenient algorithm developed by

Zhang [Zha00] that is implemented e.g. in the OpenCV library [Bra00]. One

needs only a few images of a flat static textured pattern (such as a checkerboard)

taken from at least three different camera poses. The algorithm uses a sparse sub-

set of features recognizable in all images (e.g. corners) in order to determine the

camera poses and the model parameters.

However, even the corrected pinole model cannot accurately describe cameras with

multiple projection centers or those with a wide-angle (> 180◦) field of view. It is

also insufficiently accurate for the metrological tasks where more higher-order cor-

rections need to be compensated for, than what is allowed by a fixed-order model.

The more accurate model-independent technique of the generic camera calibration

(GCC) [SR03, RSL05] attempts to produce a large look-up table with two vectors

{�oc[i], �rc[i]} per each camera pixel i. This model allows one to describe different

visual sensors, including arbitrary multi-camera or catadioptric systems; it is also

used in precision metrology (see e.g. [RLBB14] and references therein).

Unfortunately, the look-up table concept is notoriously inconvenient for the solu-

tion of the inverse problem. Indeed, given a 3D point, one needs to search the

entire table for the “respective” pixel that minimizes the re-projection error. The

lack of the neighborhood information for each pixel also complicates the analy-

sis of the 3D motion that results in small image displacements over the sensor.

Since the pixel coordinates u and v are not explicitly used, the derivatives such

as ∂�oc/∂u cannot be evaluated efficiently. Even if all pixels in some neighbor-

hood have been found, the independent processing of camera pixels in the GCC

algorithm leads to uncorrelated noise in �oc[i] and �rc[i] that necessitates the use of

higher-order schemes to evaluate the partial derivatives numerically.

In practical implementation, the GCC requires a dense map of correspondences

that cannot be obtained with static patterns. Instead, one uses active screens that

project coding patterns in synchronization with the camera. For each camera pose,

the screen displays a series of patterns and the camera records images so that the
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Sensor region Ω

(u, v)

�o(u, v)

�r(u, v)

�h(u, v)

Σ(u, v)

Coding screen

Figure 2.1: Geometry of camera calibration with active coding screen

3D position of the screen pixel that projects to a camera pixel can be decoded from

the unique series of the recorded values.

In this report we present the formulation of the variation of the GCC that we call

smooth GCC (sGCC) that uses the same input data as the regular GCC in order

to recover the smooth functions �oc(u, v) and �rc(u, v) that alleviate the problems

outlined above.

2 Single ray consistency metric

In the calibration setup shown in Fig. 2.1 we consider one camera ray that hits

the known arbitrary active coding surface. The global and the camera frames are

related via translation vector �t and the rotation matrix R (six parameter in total). In

the camera’s own frame, the ray origin is �oc(u, v) and its direction is �rc(u, v) where

(u, v) ∈ Ω denote the corresponding sensor position within the limits of some

region Ω. For the purpose of further discussion we assume that the coordinates u
and v are continuous and that the derivatives of �oc(u, v) and �rc(u, v) are finite in

every point inside Ω.

The respective coding point �h(u, v) on the screen can only be determined with

some finite accuracy. Typically, if a flat LCD screen is used, the lateral uncertainty

is not much better than its pixel size. The depth, however, is usually known more

accurately (it may e.g. be due to the non-planarity of the screen and the refraction

of light in the glass). We thus may only establish the position of the coding point

up to some uncertainty ellisoid around �h characterized by the covariance matrix

Σ(u, v). The latter is either known a priori or can be determined directly from the

coding data and the photometric parameters of the camera [FPT12].

The agreement of the calibrated camera ray with the decoded screen position must

be characterized with respect to this ellipsoid. Combining all the pieces together,
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we suggest the following scalar ray consistency metric:

Δ = min
α

(
�o+ α�r − �h

)T

· Σ−1 ·
(
�o+ α�r − �h

)
, (2.1)

where the ray origin and the direction in global frame are given by �o = �t+ R · �oc
and �r = R · �rc and we suppressed the arguments (u, v) everywhere for brevity.

The minimum in Eq. (2.1) can be found in closed form. Indeed, every symmetric

positive-definite matrix Σ can be decomposed as Σ−1 = ΛT · Λ, and we find

Δ = �δ T · �δ with �δ = �o ′ − �r ′
(
�r ′T · �o ′)
(�r ′T · �r ′)

(2.2)

where �o ′ = Λ ·
(
�o− �h

)
and �r ′ = Λ · �r.

In particular, if Λ = I , then the metric of Eq. (2.2) is equivalent to the common

Euclidean distance between the line and the point �h in 3D.

It shoud be noted that the ray definition above is not unique. Indeed, any change

�oc → �oc+α�rc or �rc → β�rc for any α and β results in the identical imaging geom-

etry and leaves Δ invariant. Such trivial freedom can be removed by introducing

two additional constraints which in general may depend on the camera type. In

what follows, we limit ourselves with single-sensor cameras whose field of view

is less than 180◦. In this case, one can use the following simple constraints:

(�oc(u, v))3 = 0 and (�rc(u, v))3 = 1 ∀(u, v) ∈ Ω. (2.3)

3 Calibration as optimization problem

The ideal calibration means that Δ(u, v) vanishes over the entire sensor. Indeed, if

the decoded data are available for three or more camera poses and we neglect the

inter-pixel correlations, the regular GCC may determine �oc(ui, vi) and �rc(ui, vi)
for all sensor pixels i = 1, ..., N without any relation to the decoding error Σ(u, v).
However, the independently found origins and directions will likely contain high-

frequency noise that may mask any real differential behaviour of these functions.

Instead, in the suggested sGCC framework we attempt to find smooth functions

�oc(u, v) and �rc(u, v) that minimize the discrepancy Δ(u, v) integrated over the
sensor. The smoothness of these functions is defined a priori and provides the sep-

aration between the variations perceived as noise and those assumed to be instrinsic

features of the camera.
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The practical implementation is formulated in terms of the finite element method

(FEM) as follows. First, we search for the calibration functions as linear com-

binations of smooth kernels ψi(u, v), i = 1, ..., P . Their “size” and smoothness

control the properties of the solution. The noise in Δ is filtered out by the con-

volution with some smooth probe functions φk(u, v), k = 1, ...,M . The entire

problem then is discretized. For a single camera pose, we have:

�oc

(
u, v|�C

)
=

P∑
i=1

(
c
(o1)
i ψi(u, v), c

(o2)
i ψi(u, v), c

(o3)
i ψi(u, v)

)T

, (3.1)

�rc

(
u, v|�C

)
=

P∑
i=1

(
c
(r1)
i ψi(u, v), c

(r2)
i ψi(u, v), c

(r3)
i ψi(u, v)

)T

,

�C∗ = argmin�C

{
M∑
k=1

‖ �Dk‖2
}
, �Dk =

∫
Ω

φk(u, v) �δ
(
u, v|�C

)
du dv,

where �δ
(
u, v|�C

)
is defined in Eq. 2.2 (trivially adapted for the given camera

ray parameterization), �C =
(
�c (o1),�c (o2),�c (o3),�c (r1),�c (r2),�c (r3),�t, �θ

)T

is the

vector of concatenated model parameters, including the camera translation �t and

the three Euler angles �θ that determine the camera rotation matrix R.

Per se, Eq. (3.1) does not lead to a unique solution. First, as in the regular GCC,

one needs data from several independent camera poses. The respective changes to

the metric are straightforward, each pose adding six parameters to �C and 3M terms

to the sum under argmin. Second, we need to enforce the uniqueness conditions

Eq. (2.3). Finally, we must fix the camera position and the orientation with respect

to the view rays. We again resort to the simplest suitable conditions:

�oc(0, 0) = (0, 0, 0)T , �rc(0, 0) = (0, 0, 1)T , and
∂(�rc)2
∂u

(0, 0) = 0.

This fixes all six degrees of freedom of the camera in its own frame with respect

to the ray bundle near the central pixel (0, 0).

Due to the linearity of �oc and �rc with respect to the coefficients �c (oi) and �c (ri),

all these constraints can be succintly represented in matrix form as A · �C = �b. We

thus recognize Eq. (3.1) as a constrained non-linear least squares problem which

can be efficiently solved by iterative methods.

For the practical implementation, we chose to define the kernel functions ψi and

probe functions φk as the uniform cubic B-splines with control points on a regular
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Figure 3.1: Ground truth calibration functions �o GT
c (u, v) and �r GT

c (u, v), actual

camera poses and a selection of decoded screen points (black spots represent the

uncertainty ellipsoids exaggerated by a factor of ten).

rectangular mesh in (u, v)-space. In order to solve to the optimization problem,

we used the levmar library [Lou04].

With such choices, the dimensionality of the problem is controlled by the mesh

dimensions. For instance, a mesh of 4 × 4 finite elements has 49 basic func-

tions, which for three poses translates to 312 parameters in �C. After accounting

for the linear constraints, 209 independent degrees of freedom are left, with the

least squares solution to be found in 441-dimensional space (all components of
�δ are considered separately). Such problem can only be efficiently solved if the

respective Jacobian matrix is known. Fortunately, all components of Eq. (3.1) are

known analytically and the respective derivatives ∂ �Dk/∂(�C)j can be easily found

manually or using the automated differentiation techniques.

4 Numerical experiment

In order to verify the feasibility and the correctness of the sGCC algorithm, we

have carried out the following synthetic experiment. For some pre-defined non-

trivial functions �o GT
c (u, v) and �r GT

c (u, v) and the three camera poses (Fig. 3.1)
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log10 λi

i

Figure 4.1: The optimization metric

during the run, k is the iteration. The

green line corresponds to the direct fit

of splines to the ground truth functions.

Figure 4.2: The largest eigenvalues of

the covariance matrix estimated during

the optimization.

we have performed the camera calibration using a 4×4 mesh in a window (u, v) ∈
Ω = [−0.4, 0.4]2. The typical distance from the camera to the screen was 4 units,

the typical variation of �oc was 10−3 units, and the �rc was a smooth perturbation of

order 10−3 units on top of a linear pinhole camera.

In order to initialize the numerical optimization, we assumed that the results of a

simpler calibration (e.g., with the Zhang’s method) were available. In particular,

we initialize the intrinsic parameters with some perfect pinhole model, and choose

the starting camera positions to deviate by about 0.1 units from the actual points.

The starting camera orientations we also inaccurate by about 0.1 radians.

The 40 optimization iterations took about twenty minutes on a laptop (Intel Core

i7 CPU, one thread). The optimization converged relatively fast (in about 25 iter-

ations), the corresponding change in the optimization metric of Eq. (3.1) is shown

in Fig. 4.1. It is remarkable that the found optimum provides a three orders of

magnitude smaller metric value than the best fit of splines directly to the ground

truth functions (the respective value denoted by the green line in Fig. 4.1).

The resulting accuracy of the intrinsic calibration functions �o ∗
c and �r ∗

c is of the

order of 10−6 to 10−4 units (Fig. 4.3). The final camera position accuracy is about

10−4 units, and the error in its orientation is of the order of 10−6 radians.

In order to study the shape of the optimization function near the optimum, we

also computed a few largest eigenvalues of the covariance matrix estimated by

levmar (Fig. 4.2). The lack of large “steps” in the magnitudes of eigenvalues can

be considered the sign of the “uniqueness” of the found solution.
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Figure 4.3: Reconstruction errors in calibration functions

Of course, one synthetic experiment is not a decisive argument for the method, and

a more elaborate investigation is necessary. We consider the present results en-

couraging and expect similar behaviour in further synthetic and real experiments.

5 Summary

In this report we suggested a novel model-independent camera calibration algo-

rithm (sGCC) suitable for the precision simulation and computer vision applica-

tions. We presented the theoretical background and the first numerical results char-

acterizing the FEM-based implementation of the method for “traditional” cameras.

In a synthetic experiment, the method has been able to reproduce a non-trivial in-

trinsic geometry of a camera together with its extrinsic parameters. The achieved

re-projection error is 1000 times smaller than that when the calibrated functions

are directly fitted to the ground truth. The solution is shown to be numerically

stable and non-ambiguous.
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The present report does not specify how exactly the sGCC simplifies the inverse

(projection) problem. We note here that based on the sGCC results, it is possible

to find the locally “best fitting” pinhole camera. Due to the differentiability of

the calibration functions, this can be done in closed form (the details are to be

presented in further publications). Iteratively projecting the point to those local

pihnole cameras, one can find the projection pixel with an any accuracy.

In the future we plan to study the robustness of the sGCC with respect to noise

and determine the applicability limits of the technique. We also plan to develop

a practical calibration toolbox and study the real and simulated cameras under

various conditions in order to compare sGCC against the existing methods.
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Abstract: The Max-Sum algorithm, an instance of the Generalized Dis-
tributive Law family, is known to solve Distributed Constraint Optimiza-
tion Problems (DCOP) where the summed utility functions of interacting
agents are maximized. However, Max-Sum relies on available communi-
cation channels between all agents that partake in a utility function. We
present a generalization of Max-Sum that solves DCOP exactly in situations
where the communication network layout does not match the agents’ utility
inter-dependencies.

1 Introduction

In Distributed Constraint Optimization (DCOP), a set of agents (each represented

by a variable that represents his action, choosen from a finite domain) coordinates

their actions in order to maximize the summed utility the agents experience. In

this work we built upon the well-known Max-Sum algorithm, a member of the

Generalized Distributive Law (GDL) family of message passing schemes [AM00]

[KFL01]. Max-Sum is widely used for DCOP [PF05] [KV06], however, message-

passing with Max-Sum is only guaranteed to converge to a maximum assignment

if the utility inter-dependencies of the agents form a tree-graph. Here, we present a

generalization of Max-Sum that can infer the exact max-marginals in deterministic

time on DCOP instances where

1. not all (inter-dependent) agents can exchange messages, but the communi-

cation graph is still connected

2. agent inter-dependencies form loops.
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Existing DCOP algorithms can be roughly classified into search based [MSTY05],

local-search based [MTB+04] and inference based [PF05] methods. Our approach

falls into the inference based class of algorithms. It is different from DCOP

in settings where communication is limited/expensive [FRPJ08] [PGCMRA11]

as we constrain the the availability of communication channels and not only the

throughput. It also differs from exact and approximate inference on junction trees

for DCOP [BM10] [VRAC11]. Our method requires no graph triangulation and

grouping of agents into a tree-like hypergraph. Instead, we cut communication

links between interacting agents until the remaining graph forms a tree. The mes-

sages exchanged between agents are adapted, so that local utility information is

propagated within the relevant portions of the graph only. This leads to a very

natural handling of situations where the communication topology ist constrained.

The paper is organized as follows. We give an overview on the original Max-

Sum algorithm in Section 2. In Section 3, we introduce Max-Sum with Remote

Neighbours. The performance of our approach is evaluated on an example scenario

in Section 4. The paper concludes in Section 5 with a discussion of the results and

some pointers for future research.

2 The Max-Sum Algorithm

Let V be a set of variables i ∈ V , each defined on a finite domain Xi. The

goal is to maximize some function f where X =
∏

i∈V Xi, f : X → R−∞.

The codomain R−∞ = R ∪ {−∞} makes complex constraints easier to handle

algorithmically. That is, if x is constrained to lie in some set X̃ ⊂ X , we define

∀x /∈ X̃ , f(x) = −∞ and keep the cartesian product of the variable domains

Xi as the domain of f . This leads to the same maximum solution, provided that

supx∈X̃ f(x) > −∞. The trivial approach to enumerate all possible solutions

x∗ = argmax
x∈X

f(x)

obviously scales exponentially in the number of variables and must fail even for

modest problem sizes. Instead, we exploit the structure of the specific f at hand.

Assume that f is a sum of functions ψα, called factors, each of which depends

only on a subset of the variables α ∈ 2V . The set of all factors is A ⊂ 2V :

f(x) =
∑
α∈A

ψα(xα), xα ∈
∏
i∈α

Xi, ∀i ∈ α, (xα)i = xi
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x1

ψ1

ψ12

x2

ψ13

x3

Figure 2.1: Example factor graph corresponding to f(x1, x2, x3) = ψ1(x1) +
ψ12(x1, x2) + ψ13(x1, x3). By convention, variable nodes are represented as

circles and factor nodes as squares.

This decomposition of f can be represented as a bipartite undirected factor-graph
G = (V,A,E). See [KFL01] and Fig. 2.1 for an example of a factor graph.

Edges (i, α) indicate that the factor ψα depends on the variable i. Even though G
is undirected, let E contain a pair of directed edges e = (e, e) for every factor-

variable relationship to denote directed communication when it occurs. W.l.o.g.,

assume G to be connected. If that is not the case, G is made up of independent

subgraphs Gk = (Vk, Ak, Ek). Since there are no edges (i, α) between subgraphs

with i ∈ Vk, α ∈ Ak′ for k �= k′, optimizing f reduces to solving

x∗
k = argmax

xk∈Xk

∑
α∈Ak

ψα(xα), Xk =
∏
i∈Vk

Xi

independently for each subgraph k, to which the techniques for connected graphs

apply.

The Max-Sum algorithm is an instance of the Generalized Distributive Law (GDL)

family of algorithms used for solving inference problems that can be stated in

terms of a factor graph [KFL01]. GDL is defined on commutative semirings. Max-

Sum, according to the problem statement in the beginning of this section, assumes

the specific ring (+, 0,max,−∞), taking + as the operator for combining fac-
torisations and max as the operator for the marginalisation of variables with their

respective identity element. Other commutative semirings are widely used as well,

e.g. for probabilistic reasoning, but are not discussed here.

Max-Sum relies on communication channels between the variable and factor nodes

over which they exchange message-functions m : Xi → R−∞ where the variable

i is either the sending or the receiving variable node1. Variable nodes i send mes-

sages to the factor nodes in their neighborhoud N(i) = {α : (i, α) ∈ E} and

1Here, they represent a mapping from a discrete domain to a scalar value which can be trivially

encoded as a table for communication.
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factor nodes send messages to the i ∈ α. Further, assume discrete time periods t
in which every node exchanges messages with all of its neighbours. Often times

the messages are initialized to zero in t0. Other initializations may have better

convergence properties, but are not discussed here.

mt0
i→α(xi) = mt0

α→i(xi) = 0

mt
i→α(xi) = κ+

∑
β∈N(i)\{α}

mt−1
β→i(xi)

mt
α→i(xi) = κ+ max

xα\{i}

[
ψα(xα) +

∑
j∈α\{i}

mt−1
j→α(xj)

]
(2.1a)

Maximizing over xα\{i} in (2.1a) should be read as maximizing over xα ∈∏
l∈α Xl, (xα)i = xi where the component of xα related to variable i is fixed

to xi. When summing over j ∈ α \ {i}, we denote the component of xα related

to variable j as xj . The normalisation constant κ is selected for every message so

that the message-function is zero for the first element in the domain of the message.

The normalisation is required for convergence in loopy graphs, even though it does

not guarantee convergence. Otherwise, the values of the exchanged messages can

grow or diminish undefinitely. Note that the normalisation does not change the

assignments selected during maximization since all choices are over- or underesti-

mated by the same amount. Normalisation does however prevent the computation

of the true marginals at the nodes with local information only.

If G is a tree-like factor graph without loops, the exchanged messages converge

after completing a forwards/backwards schedule. This schedule says that nodes

can only send messages to a neighbour if they have received messages from all

other neighbours. Consequently, the schedule starts at the leaf nodes, propagates

throughout the tree and ends when all leaf nodes have received a message them-

selves. Then, the sum of the messages that a variable node i has received is the

max-marginal of i on the original function f (up to normalization hat will not

change the max assignment computed via the max-marginal). For a proof of this,

see Proposition 2 for the proposed Max-Sum with Remote Neighbours, of which,

by Proposition 3, the original Max-Sum algorithm is a special case. In loopy

graphs, a forward/backwards schedule obviously cannot work. Instead, nodes can

send messages asynchronously at any time. For example, every node sends in

every period t a message to every neighbour. Randomized schedules are also com-

monly used in distributed settings. There are no guarantuees for convergence on

loopy graph. But if Max-Sum converges, then its solution is a local minima of the

Bethe free energy [YFW05] and therefore often useful in practice.
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3 Max-Sum with Remote Neighbours

Let G = (V,A,E) be a loopy factor graph. We remove edges until G′ =
(V,A,E′) with E′ ⊂ E forms a tree-graph but is still connected. Now, some

factors in A depend on a variable to which they have no edge in the graph. We

call these the remote neighbours of the factor. The set of both direct and remote

neighbours of a factor node is Ñ(α) and Ñ(i) for a variable node. In settings

where variables represent agents and their utilities, it is natural to have factors

that depend on the choices of several agents, but with a utility that is “local” to

a single agent. In that case, we split the relevant factor α ∈ A into αi, such

that ψα(xα) =
∑

i∈α ψαi(xα). The superscript denotes the variable to which

the split factor has a direct connection in the graph. See Fig. 3.1 for example

transformations.

Recall that there is a pair of directed edges e ∈ E′ for all neighborhood relations

in G′. Since G′ is a tree-graph, removing any edge would divide the tree into two

independent subgraphs. We denote the subgraph that is implicitly “on the side”

of the sending node e as G′
e. Since remote neighbours can only be reached by re-

laying messages over multiple hops, the rules by which variables are marginalized

out in the messages need to be adapted. For this, we introduce extended messages

m̃e = 〈Ṽe, (ce,i, |Ñ(i)|)i∈Ṽe
, m̄e〉 .

The time-index is omitted for extended messages since Max-Sum with Remote

Neighbours is intended only for a forwards/backwards pass schedule on tree-

graphs. Messages are only sent once a message has been received from neighbours

but the target-node in questions (see also Sec. 2). The set Ṽe is the union of (a)

the variables in the subgraph G′
e with a (remote or direct) neighbour not in G′

e and

(b) the variables not in G′
e that are in the domain of a factor in G′

e. We denote

the variable nodes not contained in Ve with Ve = V \ Ve and similarly for factor

nodes.

Ṽ a
e = {i ∈ Ve : Ñ(i) ∩Ae �= ∅}

Ṽ b
e = {i ∈ Ve : Ñ(i) ∩Ae �= ∅}
Ṽe = Ṽ a

e ∪ Ṽ b
e

(3.1)

For messages in the inverse direction, Ṽe→e = Ṽe→e. This follows directly from

(3.1) by replacing the sets Ve and Ae with their complement.

The integer ce,i counts how many nodes related to i (neighbours of i and i itself)

are contained in the sending subgraph G′
e. This value is updated locally before
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Figure 3.1: The loopy factor graph in (a) transforms into the factor tree-graph with

remote neighbours (b) where x1 and ψ14 are their respective remote neighbour.

The transformed factor graph in (c) contains a split factor. The transformed graph

gives results for variable assignments equivalent to the graph in (a) if ψ14(x14) =
ψ141(x14) + ψ144(x14).

sending a message me.

ce,i = �i∈Ñ(e) + �e=i +
∑

k∈N(e)\{e}
ck→e,i (3.2)

Implicitly, ce,i = 0 if it is not defined in the message me. The indicator function

� evaluates to one if the supplied condition is true and zero otherwise. Note that

(3.2) is formulated both for sending variable nodes and sending factor nodes.

Proposition 1 A variable i is contained in Ṽe if and only if 0 < ce,i < |Ñ(i)|+1.

PROOF. Since G′
e is a tree-graph and only factors in Ñ(i) and the variable node i

itself can add to (3.2), ce,i is bounded with ce,i ∈ {0, . . . , |Ñ(i)| + 1}. Firstly, if

ce,i = 0, then neither is i ∈ Ve, nor is there a factor α, such that α ∈ Ae ∩ Ñ(i)
as any of these conditions would have increased ce,i in (3.2). It follows from (3.1)

that i /∈ Ṽe. The inverse argument proceeds analogously. Secondly, assume that

i ∈ Ṽe and ce,i = |Ñ(i)|+ 1. If i ∈ Ṽ a
e , then ce,i < |Ñ(i)|+ 1 since at least one

neighbour factor α ∈ Ñ(i) is not contained in Ae and has not contributed to (3.2).

If i ∈ Ṽ b
e , then ce,i < |Ñ(i)| + 1 with a similar argument. This contradicts the

assumption. Lastly, let ce,i such that 0 < ce,i < |Ñ(i)|+1. If i is contained in Ve,

then Ñ(i) ∩ Ae is nonempty as ce,i would equal |Ñ(i)| + 1 otherwise. If i is not

contained in Ve, then Ñ(i) ∩ Ae is nonempty as ce,i would equal zero otherwise.

It follows from the exhaustion of cases that i ∈ Ṽe ⇔ 0 < ce,i < |Ñ(i)|+ 1. �
Together with the ce,i, the number of i’s (direct and remote) neighbours |Ñ(i)| is

contained in m̃e. Thus, extended messages can be constructed with information
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received via extended messages from neighbour nodes and locally available infor-

mation. The difference to the original Max-Sum is that the domain Xe =
∏

i∈Ṽe
Xi

of the message function m̄e may be comprised of multiple variables. Let the ex-
tended domain of any (factor or variable) node ν be Xν+ =

∏
i∈ν+ Xi, ν

+ = {i :
∃k ∈ N(ν), i ∈ Ṽk→ν}. The value of every m̄e(xe) is computed by taking the

maximum over all y ∈ Xe+ : ∀i ∈ Ṽe, yi = (xe)i by taking the sum of the relevant

messages (from all direct neighbours but the target e) and the local factor ψe on

the variable assignment y. If e is a variable node, of course ψe evaluates to zero.

m̄e(xe) = max
xe+\Ṽe

[
ψe(xe) +

∑
g=(k→e),
k∈N(e)\e

m̄g(xg)
]

(3.3)

Proposition 2 Let G′ be a factor tree-graph with remote neighbours represent-
ing a function f . After completing a forwards/backwards schedule, the extended
messages exchanged on G′ have converged and the max-marginal of the variable
i ∈ V on f can be computed as

f∗
i (xi) = max

y∈X ,
yi=xi

f(y) = max
xi+\{i}

∑
g=(k→i),
k∈N(i)

m̄g(xg) .

PROOF. Messages m̃e on a tree-graph do not depend on any information from

messages sent by the (currently) receiving node e. Therefore, after the for-

wards/backwards schedule has completed, every updated message m̃e according

to (3.3) is identical to the message that has last been sent over e.

Next, we show that the value of a message function m̄e(xe) for a given xe equals

the summed factor-values in the sending subgraph Ve where all variables in Ṽe

are assigned according to xe and the variables in Ve without (remote) neighbours

outside of Ge are assigned to maximize the sum of factors in Ge.

m̄e(xe) = max
x∈XVe∪Ṽe

,

∀i∈Ṽe,xi=(xe)i

∑
α∈Ae

ψα(xα)

Note that Ve ∪ Ṽe =
⋃

α∈Ae
Ñ(α) contains all variables that are the (remote)

neighbour of any factor in Ae. Recall that variables i are max-marginalized out

during the message construction (3.3) only if i ∈ Ve \ Ṽe, i.e. if no factor outside of

Ge is a (remote) neighbour of i. That means the distributive law on the Max-Sum

commutative semiring can be applied [AM00]. For example:

max
x1,x2

[
ψ1(x1) + ψ12(x1, x2)

]
= max

x1

[
ψ(x1) + max

x2

ψ(x1, x2)
]
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The argument is applied recursively until the leaf nodes are reached, for which it

holds trivially.

Now, assume that variable i has received messages m̃α→i from all neighbours α ∈
N(i). For every selected xi ∈ Xi we then have locally available information on

the maximum summed factor-values that can be achieved in the subgraphs behind

all outgoing edges, i.e. the entire graph. �

Proposition 3 On a tree-like factor graph G without remote neighbours, the
message functions m̄ exchanged in Max-Sum with Remote Factors are equal
to the corresponding messages m of the original Max-Sum algorithm up to
normalization.

PROOF. For this, we show that the domain of the extended messages exchanged

between any factor α and variable i is Xi and therefore Ṽi→α = Ṽα→i = {i}. If

the sending node is the variable node i, then Ṽ a
i→α = {i} since no other variable

in Vi→α has a neighbour in Vi→α. Also, Ṽ b
i→α = ∅ since no variable node in

Vi→α has a neighbouring factor in Vi→α. This follows directly from G being a

tree-graph. Similar arguments hold for messages from α to i. Since the domain of

the exchanged messages on G is identical, it is easy to see that (2.1) and (3.3) are

equivalent when κ = 0 (normalization is not required for convergence on trees).

Since the message functions sent from the leaf nodes do not depend on received

messages, they are identical for Max-Sum and Max-Sum with Remote Neighbours

and consequently all m̄e = me. �

4 Evaluation

This section presents the results of a simple scenario that compares the pro-

posed algorithm in comparison with loopy messsage passing. The algorithm

implementation and the scenario example can be accessed online at https:
//github.com/jpfr/pygmalion.

The scenario consists of eight variables, each with a finite, nominal scale of size 5,

and eight factors linking the variables to form two connected circles according to

Fig. 4.1. The factor functions ψα map each element in their domain to a scalar that

was randomly sampled from the uniform distribution on [0, 1] during instantiation.

The goal is then to find the variable assignment that maximizes the sum of all

factors. For Max-Sum with Remote Factors, we removed two edges so that the

transformed graph forms a connected tree as can be seen in Fig. 4.1. The size of

the scenario is such that brute-force search (in 58 possible solutions) can still be

applied to verify the results.

https://github.com/jpfr/pygmalion
https://github.com/jpfr/pygmalion
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Figure 4.1: The factor graph with remote factors in the example scenario. Dashed

edges have been removed for Max-Sum with Remote Factors. The remaining

edges are annotated with the domain of the message-functions m̄e that are passed

over it.
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Figure 4.2: Performance of loopy Max-Sum message passing on 10 instances of

the scenario. The instances that have not converged after 600 messages show a

recurring pattern that is repeated indefinitely.

Figure 4.2 shows the result of Max-Sum on the loopy graph. At every time t
all nodes send message to all of their neighbours if these messages are different

from the preceding ones. The variable assignments after every message exchange

were computed by taking the (running) max-marginal of each variable nodes and

maximizing it locally. It can be seen, that inference with Max-Sum can be quite

irratic and does not converge in all scenario instances.
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By contrast, Max-Sum with Remote Neighbours takes only 30 messages (one

forwards/backwards schedule) to infer the maximum solution for all scenario in-

stances. The average message size increase compared to Max-Sum is less than 5,

i.e. the domain size of the variables that were made remote neighbours. Figure 4.2

also shows the domain of the message-functions m̄e passed over the edges. Note

how the domain-size increase due to a missing edge is loop-local and does not spill

over into the adjacent loop. This is an indicator that Max-Sum with Remote Neigh-

bours will perform well for many important applications. Extensive benchmarks

and comparison with other DCOP approaches are currently being developed.

5 Conclusion

In this paper, we introduced Max-Sum with Remote Neighbours, a method for the

exact inference of maximum utility solutions in distributed constraint optimization

settings. This method generalizes the original Max-Sum, that is widely used for

DCOP applications, and makes it applicable to settings where the agent commu-

nication is constraints and the communication graph does not match the agents

utility inter-dependencies. The only requirement for our method is that the com-

munication graph is still connected. The performance of Max-Sum with Remote

Neighbours was evaluated on an example scenario. We also applied our method on

loopy graphs where some communication links were cut in order to form a tree-

graph. Here, it showed superior performance compared to applying the original

Max-Sum on loopy graphs, as is often done in practice. It is an open question

which links to remove to minimize the inference complexity. Here, we suspect

a rich connection to the large body of work dealing with the decomposition of

graphs into junction trees with a minimized tree-width.
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Abstract: In the context of face modeling, probably the most well-known
approach to represent 3D faces is the 3D Morphable Model (3DMM). When
3DMM is fitted to a 2D image, the shape as well as the texture and illumina-
tion parameters are simultaneously estimated. However, if real facial texture
is needed, texture extraction from the 2D image is necessary. This paper
addresses the problems in texture extraction of a single image caused by self-
occlusion. Unlike common approaches that leverage the symmetric property
of the face by mirroring the visible facial part, which is sensitive to inhomoge-
neous illumination, this work first generates a virtual texture map for the skin
area iteratively by averaging the color of neighbored vertices. Although this
step creates unrealistic, overly smoothed texture, illumination stays constant
between the real and virtual texture. In the second pass, the mirrored texture is
gradually blended with the real or generated texture according to the visibility.
This scheme ensures a gentle handling of illumination and yet yields realistic
texture. Because the blending area only relates to non-informative area, main
facial features still have unique appearance in different face halves. Evalu-
ation results reveal realistic rendering in novel poses robust to challenging
illumination conditions and small registration errors.

1 Introduction

Facial analysis has attracted increasing attention in the computer vision and pattern

recognition community despite decades of research and application. 3D face mod-

eling has been widely used and proven to be effective in face recognition [BV03]

and animation [BBPV03]. Probably the most well-known approach to represent

3D faces is the 3D Morphable Model (3DMM) proposed by Blanz and Vetter
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[BV99]. Separate linear subspaces for shape and texture are learned by Principal

Component Analysis (PCA) for a compact representation of the respective varia-

tions. When 3DMM is fitted to a 2D image, not only the shape coefficients, but also

the texture and illumination parameters are simultaneously estimated, resulting in

a huge parameter space.

The complete 3DMM fitting takes account of the learned PCA texture model and

Phong illumination to minimize the fitting error of shape and appearance. To ad-

dress the efficiency problem, a series of optimization efforts are made to allow

for faster convergence [RV03] and larger convexity basin to avoid local minima

[RV05] by introducing more image features (e.g., specular highlight and edge con-

straint) than just pixel intensity. These methods can reconstruct the texture param-

eters including the occluded facial part according to the 3DMM dataset and the

estimated illumination at the cost of computational time, making these algorithms

inappropriate for online applications. From another perspective, when artificially

rendered texture is not desired, e.g., for forensic analysis, facial texture extraction

from the 2D image is necessary.

As an alternative that is tailored to the above requirements, dependency on the

facial appearance in the fitting can be completely abandoned and the 3D shape

can be inferred solely based on a few dozens of sparse 2D feature points, allow-

ing for real-time reconstruction. In the approach of Blanz et al. [BMVS04], using

several manually annotated 2D feature points, the complete 3D shape and camera

projection are reconstructed in closed-form by least squares fitting. Prior knowl-

edge from the 3DMM dataset is utilized to solve this otherwise ill-posed problem.

Since the texture is yet to be extracted from the image afterwards, the color values

of the image are mapped to the vertices on the 3D model. However, the complex

geometry of human faces results in self-occluded facial regions even for a frontal

pose.

To alleviate the self-occlusion problem after texture extraction, a posterior step to

estimate the global 3DMM texture parameters by assuming photometric invariance

[AS10] is still applicable. For real texture extraction, Blanz et al. [BMVS04] re-

flect the visible part to fill the missing color values. At places where both parts are

occluded, the average texture of 3DMM is applied. The strict constraints of con-

stant skin and illumination can impose severe artifacts on the occluded textured

face model. Similarly, the 3/4 profile face (±45°) is regarded as the most rep-

resentative pose for texture extraction by Roy-Chowdhury et al. [RCCG05] and

the mirroring approach is employed for occlusion handling. On the other hand,

Jiang et al. [JHY+05] interpolate the blank area by averaging the intensity of the

connected vertices. Because the algorithm only accepts frontal faces, the smearing

effect introduced by interpolation only appears near the neck and ears, which is
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not crucial to the overall visual quality. Combining multiple images from different

viewpoints yields more realistic results than interpolation [PHL+98]. Although the

seamless blending constraint is carefully designed to handle inhomogeneous illu-

mination, only results of studio face images in controlled environment are shown

[PHL+98, ZCS06].

This paper addresses the possible problems in texture extraction and proposes a

straightforward solution to generate realistic facial texture for self-occluded re-

gions. This approach assumes the 3D shape of the face is already recovered. After

registering the shape back to the 2D image, small displacements caused by the lim-

ited 3DMM subspace are dealt with by triangulation and warping. To overcome

the self-occlusion problem, unlike the above mentioned approaches in the litera-

ture, which either is sensitive to illumination or generates interpolation artifacts,

in this work, we combine the advantages of both approaches. The “bad” half of

the face is first determined. Starting from the cheek near the nose area, a virtual

texture map for the homogeneous area is created iteratively by averaging the color

of neighboring visible vertices until the whole face is filled artificially. Although

this step creates unrealistic, overly smoothed texture, illumination stays constant

between the real and virtual texture. In the second pass, the mirrored texture is

gradually blended with increasing weight. At places where the original vertices

are visible, the real texture is used, otherwise, the generated texture is taken for

blending. This scheme ensures a gentle handling of illumination and yet yields

realistic texture. Because the blending area only relates to non-informative area,

main facial features, i.e., eyes and mouth, still have unique appearance in different

face halves, which is proven to be crucial to face recognition [LSCM03]. The ef-

fectiveness of our approach is evaluated on several “in the wild” images and videos

containing diverse pose and illumination variations.

The remainder of this paper is organized as follows. A brief introduction to 3DMM

and efficient fitting using 2D feature landmarks is given in §2 and §3 respectively.

The procedure of the proposed facial texture extraction framework is discussed in

detail in §4. The qualitative results are demonstrated in §5. Finally, we conclude

our work in §6.

2 3D Morphable Model

The 3D Morphable Model, introduced by Blanz and Vetter [BV99], is a class-

specific model to describe 3D objects, especially human faces. 3DMM is com-

posed of 3D geometry and texture constructed from 3D laser scans of human

heads. After preprocessing to fill the holes from laser scans, the dense set
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with a fixed size of p vertices is put into full point-to-point correspondence

by optical flow, so that morphing between faces is possible. As an example,

the first shape and texture entry corresponds to the tip of the nose across all

3D faces in Fig. 2.1(a). The shape is represented in a vectorized form s =
{x1, y1, z1, x2, y2, z2, . . . , xp, yp, zp} ∈ R

3p. Different from its sibling Active

Appearance Model (AAM) [CET98], where the texture is defined as the 2D image

inside the convex hull of the feature points, the 3D texture is modeled on each

of the p vertices as t = {r1, g1, b1, r2, g2, b2, . . . , rp, gp, bp} ∈ R
3p. By apply-

ing PCA on all face scans, the shape and texture can be expressed as a convex

combination of mean vectors s̄ and t̄ and the eigenvectors

s = s̄+ S diag(σ)α, t = t̄+T diag(τ )β.

The columns of matrices S ∈ R
3p×m and T ∈ R

3p×m are m eigenvectors and σ ∈
R

m and τ ∈ R
m are the eigenvalues of the shape and texture respectively. Thus,

given the registered 3D scans, 3DMM is mathematically represented as the set

{s̄,S,σ, t̄,T, τ} and a novel face can be described using the 3DMM coefficients

{α,β} inside the spanned subspace of the training data.

Due to the heavy workload for acquiring, processing and annotating 3D data, there

are few public 3DMM datasets available. In this work, we utilize the Basel Face

Model (BFM) from Paysan et al. within the group of Prof. Vetter [PKA+09], who

is the originator of 3DMM [BV99]. In BFM, besides the usual trained 3DMM

parameters {s̄,S,σ, t̄,T, τ}, a manually annotated mask to separate the area of

the two eyes, the nose, the mouth and the rest skin region is also included, which

is highlighted in Fig. 2.1(b). We make full use of this segmentation mask in our

texture extraction method in §4.

3 3D Shape Reconstruction

3D shape reconstruction based on only a few 2D feature points offers a computa-

tionally efficient alternative compared to the complete 3DMM fitting with regard

to the albedo, illumination and other image features. Blanz et al. [BMVS04] pro-

pose a non-iterative solution to recover the non-rigid shape deformation and the

rigid motion simultaneously. For a set of f � p sparse facial landmarks, the 2D

coordinates on the image plane y ∈ R
2f can be expressed as a linear combination

of the projected 3D shape variations of the 3DMM. Assuming that the measure-

ments are subject to uncorrelated Gaussian noise, the error function of 2D and 3D

projection is equivalent to

ε = ||Qc− y||2 + η||c||2
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(a) (b)

Figure 2.1: (a) The same shape and texture entries correspond to the same vertex

on the face mesh (e.g., tip of the nose in the example) (b) Mask with the four

segments (i.e., eyes, nose, mouth and the rest) and the manually annotated 66

feature landmarks on the BFM dataset

in Bayesian Maximum a Posteriori (MAP) formulation, where Q combines the

PCA eigenvectors of 3DMM, the known 3D-2D mapping and the projection, while

c contains the 3DMM shape coefficients α. Blanz et al. [BMVS04] linearize the

rotation, scaling and translation in the form of extra eigenvectors and shape coef-

ficients, which are attached to Q and c respectively. In this way, a straightforward

closed-form solution

c = (Q	Q+ ηI)†Q	y

in ridge regression is made possible and an initial pose estimation is not necessary.

The 2D sparse feature points are either manually annotated or localized by face

alignment methods. Faggian et al. [FPS06] first integrate a generative person-

specific AAM to localize the 2D coordinates of the feature landmarks to re-

construct the 3D dense face shape automatically. We build on our previous

work [QMSB14], where the inconsistent 2D AAM and 3DMM landmark posi-

tion emerging in the self-occluded area is addressed and 3D face reconstruction

robust to pose changes for both static images and videos is proposed. The 66-point

AAM landmarks are mapped to the BFM mesh as the prior 3D-2D correspondence

for the automatic process. Fig. 2.1(b) illustrates the feature point scheme used in

this paper. The reader is referred to [BMVS04, QMSB14] for details.
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(a) (b) (c)

Figure 4.1: (a) An example input image (b) 2D landmarks (c) Projection of the

3D landmarks from the reconstructed 3D dense shape on the warped image

4 Texture Extraction

After 3D shape reconstruction in §3, the 3DMM shape coefficients α as well as

the pose are recovered. Since the texture parameters β are not available compared

to complete 3DMM fitting, we extract the texture from the image directly. All

interim stages for generating realistic texture under non-frontal poses are detailed

in this section. As a graphical example, the George Clooney image downloaded

from the Internet1 in Fig. 4.1(a) is reconstructed step by step.

4.1 Extraction of Visible Texture

Existing 3D face reconstruction methods mostly focus on the quality of recon-

structed shape and do not elaborate on the texture extraction stage, which is only

roughly mentioned within a few words, e.g., “the color values of the image are

mapped as a texture on the surface” [BMVS04] or “the 2D image is directly

mapped to the 3D geometry” [JHY+05]. However, we find that it is nontrivial

to generate realistic texture for 3D models. To start from scratch, there are several

problems to be solved. The first one is the limitation of the linear 3DMM subspace.

A 3DMM is usually trained with a few hundred 3D face scans, e.g., 100 for the

original work [BV99], 200 for BFM [PKA+09], hence, the spanned PCA subspace

has only a limited power to describe novel faces. As a result, the reconstructed 3D

shape cannot always fit the 2D image perfectly. The deviation can be measured at

the aligned 2D landmarks and the projected 3D correspondence. In Figs. 4.1(b)

1http://img.timeinc.net/time/photoessays/2007/george_clooney/
george_clooney_01.jpg

http://img.timeinc.net/time/photoessays/2007/george_clooney/george_clooney_01.jpg
http://img.timeinc.net/time/photoessays/2007/george_clooney/george_clooney_01.jpg
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(a) (b) (c) (d)

Figure 4.2: Steps of texture extraction and generation: (a) Visible texture after

extraction (b) Texture after erasing vertices near the visible boundary (c) Filled

texture with interpolation (d) Initial texture for iterative blending

and 4.1(c), the lower points of the nose and the left face contour are slightly dif-

ferent. To compensate the small offset, auxiliary points are added around the face

to perform Delaunay triangulation and subsequently piecewise warping. Thanks

to the dense 3D registration for shape and pose, only little correction is needed,

hence, we are free of the unnatural visual affect by warping sparse AAM meshes

[GES09]. The result is demonstrated in Fig. 4.1(c).

On account of the large number of vertices, it is common that multiple vertices are

projected to the same image pixel. Visibility detection thus determines to which

vertex or vertices the color value of the certain image pixel should be assigned.

One choice is to use the z-buffer algorithm [PHL+98]. After rendering the 3D

shape with the recovered pose parameters, the depth map of the scene is generated

by comparing the depth of each vertex. Only the ones closest to the camera are set

to visible. Alternatively, we utilize a simple and efficient hidden point detection

algorithm by Katz et al. [KTB07]. Occlusion is determined with the vertices alone

without the knowledge of surface and normal, etc. Afterwards, the color values

on the visible vertices are extracted with non-uniform interpolation. The result in

Fig. 4.2(a) shows few errors and outliers.

4.2 Inference of Occluded Texture

Existing research is already aware of the self-occlusion problem of the AAM land-

marks for 3D shape reconstruction [QMSB14, LLP+12]. However, to the best of

our knowledge, no prior work is dedicated to generating natural texture for the hid-

den facial area. To make better understanding of our approach, we first introduce a

few useful operations. In order to infer the missing texture iteratively, we need to
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find out the invisible vertices that are adjacent to the visible ones. Formally, given

a set of visible and occluded vertices {V,V} and a set of edges E in the 3D mesh,

these candidates are defined as

V⊕ = {v|v ∈ V ∧ ∃v′ ∈ V : (v, v′) ∈ E}. (4.1)

On the contrary, the set of vertices to be removed are denoted as

V� = {v|v ∈ V ∧ ∃v′ ∈ V : (v, v′) ∈ E}. (4.2)

To interpolate a hidden vertex v ∈ V, its color value g(v) is the average color of

the adjacent visible vertices

g(v) =

∑
v′∈Ω g(v′)
|Ω| , where Ω = {v′|v′ ∈ V ∧ (v, v′) ∈ E}. (4.3)

Back to Fig. 4.2(a), the boundary texture near the occluded region shows some

smearing effect. Comparison with the localized 2D landmarks in Fig. 4.1(b) sug-

gest that the landmark noise and the nearly perpendicular normal direction in this

area make the mapped texture prone to quality degradation. Therefore, the bound-

ary region of the “bad” half of face is eliminated by a sequence of removal oper-

ations applied to the vertex set V� in Eq. (4.2). Note that we preserve the facial

features, i.e., eyes, nose and mouth, by applying the BFM segmentation mask (see

Fig. 2.1(b)) and only clear the skin texture, yielding Fig. 4.2(b).

Some approaches leverage the symmetric property of the face by just mirroring the

visible part of the face and provide some good-looking results on well illuminated

images [BMVS04, RCCG05]. Obviously, the example image Fig. 4.3(c) highlights

two drawbacks of this simple strategy. First, even minor illumination difference

between the mirrored parts will result in severe inhomogeneous intensity and poor

visual effect. On the other hand, some facial regions, e.g., between the chin and

neck, are often invisible in both face halves. To deal with these problems, a virtual

texture map is first generated by filling the missing color values by iteratively

interpolating V⊕ according to Eqs. (4.1) and (4.3). As can be seen in Fig. 4.2(c),

although the filled texture is overly smoothed and lacks high-frequency details, the

illumination remains constant.

In the final stage, this virtual texture map is blended with the mirrored visible half

of face. The basic principle of blending is to maximize the usage of the “good” half

of the face while keeping the unique features, e.g., the left and right eye, distin-

guishable. For this purpose, again the BFM segmentation mask (see Fig. 2.1(b))

offers an effective way to preserve only the best and most important facial tex-

ture. An example texture before the fusion process is given in Fig. 4.2(d). Starting
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(a) (b) (c) (d)

Figure 4.3: Final result of the proposed method for Fig. 4.1(a) in (a) frontal view

and (b) novel view compared to (c) texture mirroring and (d) interpolation

from this initial map, texture of new vertices selected by Eq. (4.1) are fused in an

iterative manner with increasing weight

g(v) = λ(i)gmirror(v) + (1− λ(i))ginterpolation(v), where λ(i) = min{ i

N
, 1}.

i ∈ N denotes the iteration counter and N is the length of the blending process.

The final result in Figs. 4.3(a) and 4.3(b) demonstrates that both smooth illumina-

tion transition and texture details even the beard are well preserved. The simple

mirroring approach in Fig. 4.3(c) lacks a texture region under the ear, which is also

invisible in the original face half. Moreover, abrupt texture transition and artifacts

caused by registration error further degrade the visual quality. Fig. 4.3(d) looks

overly smoothed and shows smearing artifact. A boundary of different intensity

can be seen, indicating the opposite paths of the iterative interpolation process

from the dark region in ear and the middle.

5 Experiments

In this section, the proposed texture extraction approach is compared with the base-

line methods on the static Labeled Face Parts in the Wild (LFPW) image dataset

[BJKK11] and the YouTube Celebrities video dataset [KKPR08].

LFPW is a relatively new face image dataset for testing face alignment algorithms

with annotated landmarks. The images are downloaded from the Internet and con-

tain large variations in pose, illumination, etc. As our example in the previous

sections, BFM is utilized as our 3DMM for reconstruction. Because of the lack

of diverse expressions when capturing BFM, only images that have approximately
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Table 5.1: Comparison of the proposed work against baseline methods with regard

to illumination consistency and details of the extracted texture

Mirroring Interpolation Proposed work

Illumination consistency − + +
Texture details + − +

neutral expressions are chosen in this experiment. In Fig. 5.1, the frontal view

and a novel view of the 3D faces show very realistic texture. Even the originally

occluded region is very naturally “hallucinated”. Especially, the skin texture of

second image is of high resolution, which is transferred and blended from the vis-

ible area. No sign of transition between the authentic and the mirrored texture is

visible. Furthermore, the shadow on the face contour is neatly neutralized. Simi-

larly, the challenging light casted on the right face half in the third image is well

taken care of, too. Contrarily, the mirroring approach is very sensible to the light-

ing difference between the two face halves. A hard boundary line is seen in most

examples. For the interpolation-based method, only overly smoothed texture with-

out any useful details is generated, which is only applicable to fill small blank areas

[JHY+05]. Last but not least, the dark or color stripes near the face contour are er-

roneously extracted from the background, which is inevitable for vertices of nearly

perpendicular normal direction in the case of minimal landmark localization error.

Our approach that first removes this region before generating virtual texture (see

Fig. 4.2(b)) is proven to be quite effective.

Another qualitative evaluation on the YouTube Celebrities video dataset

[KKPR08] is performed and the results are illustrated in Fig. 5.2. The dataset

is composed of short interviews and TV shows of celebrities and contains low-

resolution faces and typical video artifacts. Nevertheless, the well-known facial

characteristics of these celebrities are still clearly recognizable in the person-

specific 3D models. We summarize the advantages of the proposed approach over

the baseline methods in Tab. 5.1.

6 Conclusions

The problem of single image real texture mapping for 3D face models is addressed

in this paper. A general extraction workflow for visible texture is first introduced.

As the main contribution of this work, a novel iterative blending scheme to draw

the advantages of the conventional mirroring and interpolation methods for the oc-

cluded face area is proposed, which generates detailed and realistic facial texture
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Figure 5.1: Experimental results of the proposed method in frontal (2nd row) and

novel view (3rd row) compared to texture mirroring (4th row) and interpolation

(5th row) on the LFPW dataset [BJKK11]
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Figure 5.2: Experimental results of the proposed method in frontal (2nd row) and

novel view (3rd row) on the YouTube Celebrities dataset [KKPR08]

with smooth illumination transition. The effectiveness of the framework is justi-

fied on the publicly available “in the wild” images and video data in challenging

uncontrolled pose and illumination conditions. An extended algorithm to fuse im-

ages of multiple views with careful registration and constraints [PHL+98] can be

done as future work.
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Abstract: At the present day, automation of visual inspection tasks is a typ-
ical engineering problem. Experts design the physical aspects of the system
and devise classification algorithms based on a small sample of the material to
be inspected. Much of this work is devoted to finding suitable features to dis-
criminate wanted from unwanted material. In this report, we explore methods
to automatically learn object descriptors from a suitably large sample. We
focus on two types of descriptors: (a) global descriptors, which represent the
object as a whole and (b) local descriptors, which focus on topical features.
Apart from freeing the engineers to attend to other tasks, these methods allow
non-experts to operate and reuse visual inspection systems, e.g. to inspect a
different product than originally intended.

1 Introduction

Automated visual inspection is becoming more and more prevalent in many in-

dustries, from detection of precious ores and minerals in mining to quality in-

spection of food. Novel, improved sensors make even more application areas ac-

cessible, and the increasing speed of visual inspection systems allows previously

unseen throughputs. That development as well as decreasing costs of the hardware

components raises the demand even further.

One might think that it would be possible to acquire complete off-the-shelve so-

lutions. While that is true to some degree, adapting existing systems to specific

products still remains a complicated endeavour. In many cases there are best prac-

tices to approach the design of the physical aspects of the machine (i.e. material

transport, lighting and image acquisition, etc.) that require moderate effort to adapt
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to a given problem. The major engineering bottleneck resides in establishing the

classification stage. An expert identifies discriminative features by analyzing a rel-

atively small sample of wanted and unwanted material and then devises algorithms

to extract these features from an image. This lengthy process is typically driven

by trial-and-error and requires extensive experience on part of the expert.

There are approaches to “widen” this bottleneck by utilizing machine learning

techniques. Here, low level-features such as hue-histograms, Gabor filter re-

sponses and Fourier shape descriptors are extracted from the images and fed into

generic classification algorithms like support vector machines, random forests and

artificial neural networks. For encompassing reviews of these methods, see the

works of Malamas et al. [MPZ+03], who investigate these approaches in visual

inspection in general, and Du and Sun [DS06], who focus their attention to the

application to food in particular.

However, these methods are rarely applied in practice. The main reasons are that

they require far too much time to compute the features and that the black box

nature of the machine learning algorithms prevents users to understand how the

visual inspection system derives a decision [BCGS+09].

Additionally, we argue that such an approach misses the original question: What

features are characteristic of the material and relevant to the visual inspection prob-

lem? In this report, we try to answer this question by answering another: How can

one learn discriminative feature transformations from a suitably large sample of

wanted and unwanted material?

1.1 Related Work

There seem to be surprisingly few researchers also concerned with this topic. In

an early work, Duffy et al. propose to detect burn marks on filters by record-

ing color histograms of images containing defects and images that show intact

filters [DCL00]. These histograms are fused into a “true target’ histogram that

characterizes the burn marks. Defects are then detected by back-projection and

thresholding the resulting image. In a follow-up study, Bergasa, Duffy et al. use

the same approach, but model only non-defective color using a Gaussian mixture

model of the joint red and green color distribution [BDLM00].

Zhang et al. use a similar method to grade date maturity [ZLTL14]. In training,

they collect the RG-color histograms of date samples of different maturity grades

and compute a back-projection table that maps RG-tuples to a ripeness level. In
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this table, missing values are filled in by linear interpolation between the neighbor-

ing entries, so that every possible color is represented. In testing, fruits are graded

by determining the mean gray value in the back-projected image.

Similarly, Li et al. grade the ripeness of tomato fruits by determining dominant

colors in images of fruits of different maturity grades [LCG09]. Their method is

relatively involved and requires multiple color space conversions and a specialized

clustering algorithm. Finally, they define several ripeness classes and compute

characteristic histograms of dominant colors in these classes. Unseen tomatoes

are classified by comparing the histogram of dominant colors to the ones learned

in the training phase.

While all these approaches are concerned with a particular application in mind,

Richter and Beyerer propose a method suitable for a wider range of prod-

ucts [RB14]. Similar to Duffy et al. they collect color histograms of the material

under inspection and compute a mapping to a semantic attribute in a four step pro-

cess. Unlike the other approaches, their approach requires a separate classifier that

uses the attribute-images to classify objects.

All these methods focus on color as sorting criterion. Therefore, defects that are

characterized by a change of texture or shape are undetectable. In the next section,

we propose two methods that are able to capture all aspects of object appearance:

color, texture and shape.

2 Methods

Feature descriptors can be divided into two groups: global descriptors and local

descriptors. The former summarize the object appearance: “The apple is green

with a few brown spots”. The latter focus on topical features: “There is a small

round brown spot near the stem of the apple”. Both types of descriptors are ap-

plicable in different scenarios. Judging the overall appearance of an object calls

for usage of global descriptors, e.g. when grading the surface of tiles or when as-

sessing the ripeness of a fruit. Local descriptors, on the other hand, are applicable

when searching for localized defects, for example detection of fungal infection on

grains or localization of scratches on surfaces.

In this section, we present approaches to learn either type of descriptor. The first

method is based on the bag of visual words (BOV) framework, while the latter

utilizes cascades of random ferns.
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Figure 2.1: Outline of the BOV method: Given a vocabulary of visual words,

objects (images) can be characterized by a statistic of the visual words appearing

in the image. Note that spatial information is not considered.

2.1 Global Descriptors

Originally introduced by Csurka et al. in the context of image categoriza-

tion [CDF+04], the bag of visual words model has been applied in many domains

such as content based retrieval, face recognition and action classification. The de-

scriptors have many advantages: they are compact, invariant to object scale and

rotation and are highly discriminative.

The main idea is to consider images to be documents that are composed of visual
words. As with text documents, some of the words carry more information than

others, that is some words are characteristic of certain objects or concepts, while

others may be found in many different images. The task of image categorization

can then be approached by constructing a dictionary of discriminative keywords

and describing images by determining which words appear in them. This idea is

outlined in Figure 2.1. It is formalized in the following.

2.1.1 Vocabulary

Starting from a collection of input images Ii, i = 1, . . . , N , a large set of local

low level, D-dimensional feature descriptors xti, t = 1, . . . , Ti (e.g. SIFT) are ex-

tracted from each image. Here, Ti denotes the number of features extracted from
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Figure 2.2: Example of hard assignment in two dimensions. Each feature (crosses)

is related to the closest of the ten visual words (stars).

Ii and may vary from image to image. Each xti can be interpreted as an “inflec-

tion” of a visual word. Visual words correspond to clusters in the feature space.

Therefore, keywords can be determined using cluster-analysis. Although other

approaches are conceivable, most BOV implementations use a simple K-means

clustering or Gaussian mixture models (GMM) with a fixed number of clusters.

Csurka et al. noted that the exact number of visual words does have a negligible

impact on the classification performance [CDF+04]. A common approach is to

repeat the cluster analysis with varying K and keep the clustering that best fits the

data.

2.1.2 Descriptors

Now that the vocabulary is determined, the descriptor m for an image I is chosen

to represent some statistic over the visual words that appear in I. Csurka et al.

proposed hard assignment [CDF+04]: The D-dimensional low level features xt,

extracted from I, are assigned to the nearest cluster center (see Fig. 2.2). Each

entry mk in the descriptor m represents the fraction of features falling into the

Voronoi-region around the cluster center μk,

mk =
1

T

∣∣∣{xt

∣∣ argmin
μ

‖xt − μ‖ = μk

}∣∣∣.
The resulting K-dimensional descriptor represents a simple count statistic of vi-

sual words, but does not provide any further information over the “inflection” of
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the words, i.e. the location of the features in relation to the cluster center. Fisher

vectors, introduced by Perronnin et al. [PD07], provide an alternative encoding

that enriches the descriptor by first-order statistics of the feature distribution.

The key idea is to assume that the xti are generated by a Gaussian mixture,

p(x|λ) =
K∑

k=1

ωkg(x|μk,Σk),

where λ = (ωk,μk,Σk)
K
k=1 contains the GMM’s parameters and g(x|μ,Σ) is

a Gaussian with mean μ and diagonal covariance matrix Σ. The parameters of

the GMM are determined using expectation maximisation. Using the occurrence

probabilities

γkt =
ωkg(xt|μk,Σk)∑K
j=1 ωjg(xt|μj ,Σj)

,

the (2KD)-dimensional descriptor (D is the dimension of the feature space) is

built as m =
(
u	
1 , . . . ,u

	
K ,v	

1 , . . . ,v
	
K

)	
, where

uk =
1

N
√
ωk

T∑
t=1

γktΣ
− 1

2

k (xt − μk), and

vk =
1

N
√
2ωk

T∑
t=1

γkt

[
(xt − μk)

	
Σ

− 1
2

k (xt − μk)− 1
]
.

2.1.3 Application in Visual Inspection

The fundamental requirements of automated visual inspection are quite different

from other computer vision tasks such as image categorization. In some sense it

is less difficult, since the environmental conditions – lighting, background, etc.

– are tightly controlled. On the other hand, it is more difficult than other tasks:

high throughput demands very short processing times. This prohibits usage of

long processing pipelines and computation of complex feature descriptors such as

SIFT. This suggests to divert from the usual path in two aspects: Dense sampling

and usage of primitive feature descriptors.

In dense sampling, we consider every foreground-pixel (u, v) of an object as key-

point where to extract the low level local feature descriptors. This has the benefit

of skipping an interest point detection stage (thereby saving processing time), but

is only feasible if the objects are relatively small and the descriptors themselves are

inexpensive to compute. Hence, we use primitive features that require only very
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little processing time. In particular, the most basic descriptor is the color of a pixel,

xt = I(ut, vt). Since K-means and GMM, like many other algorithms for clus-

ter analysis, rely on measuring distances, the color space may have a significant

impact on the discriminative ability of the object descriptor. To include other fea-

tures, a D-channel local descriptor is constructed as xt = (x1t, . . . , xDt)
	

, where

each xdt encodes a different feature-type. For example, x1t to x3t could cor-

respond to the RGB values at the pixel (ut, vt). Texture is encoded e.g. using

gradient magnitude, xdt = |∇I(ut, vt)|, rotation invariant uniform local binary

patterns [OPM02] or center-symmetric local binary patterns [HPS06]. Finally, the

shape of an object can be represented using the distance transform.

2.2 Local Descriptors

As BOV describes the object appearance as a whole, it does not provide informa-

tion about the location of a defect. As a result, the method is unsuitable in situa-

tions where position is the major discriminative feature. In this section, we propose

a novel method to learn descriptors that are able to describe such situations.

Similar to BOV, the descriptor is a collection of local features. However, instead

of vectorial feature descriptors, we use very simple and weak binary features

fn = 1
[
φn,1(pn,1)− φn,2(pn,2) < τn

]
, (2.1)

where τn is a feature-specific threshold, φ(p) extracts some scalar features at the

pixel at p = (u, v) and 1[x] is the indicator function that is 1 if x is true and 0
otherwise. Note that neither necessarily pn,1 �= pn,2, nor φn,1 = φn,2, which al-

lows local features that evaluate the same pixel and features that compare different

types of features.

The scalar features φ(p) are used to encode different aspects of the object and

may be arbitrarily constructed. The only requirement is that the difference

(φ(p)− φ(q)) is meaningful, that is φ should not extract some coding-scheme

like LBP. However, as computation time is limited, simple extraction methods

similar as the ones used in the BOV approach should be used. The hue or satura-

tion at the location p can be used to represent the color of the object. Texture can

be encoded using gray-value and gradient magnitude. Shape can again be encoded

using the distance transform or the fraction of foreground-pixels in a region around

p. Similarly, the color and texture features can also be taken as the mean or other

statistic in a region around p. Finally, we suggest to normalize each feature to a

value in [0, 1]. This ensures that the different channels are comparable.

To achieve invariance to rotation and scale, we index pixels relative to a local

coordinate system (see Fig. 2.3): Given the center c, major axis b1 and minor
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c
b1

b2 p

q

Figure 2.3: Local feature primitives comparing two locations in the image. Each

feature is the difference of two descriptors extracted at two locations p and q in

the object image. Invariance to rotation and scale is achieved by indexing relative

to the object center c and the major and minor axes b1 and b2.

axis b2 of an object, the object indexed coordinates x = (λ, μ) are transformed to

global coordinates as p = c+ λb1 + μb2.

2.2.1 Feature Selection

The definition of these features leaves the question how to to learn discriminative

descriptors. For this purpose, we adapt the random fern approach presented by

Özuysal et al. [OCLF10]. A random fern Fm can be thought of as a collection

of S binary features fi ∈ {0, 1}, which divide the feature space into 2S disjoint

regions Rs. Similar to decision and regression trees each Rs is associated with

an output. In [OCLF10] the output of a single fern is a probability estimate p̂(c|f)
that an object belongs to class c given the observations f . The features in each fern

are randomly selected. In this report, we propose to instead select the best from a

pool of feature candidates.

Given a set of N training samples, we randomly sample K local coordinates

x ∈ [−1, 1]2. Given L different feature extraction methods φ(l), this produces a

pool of (LK)2 feature candidates. The best S features are selected in an iter-

ative scheme, where in each round the feature combination that maximizes the

correlation to an output value ỹ (see Algorithm 2.1),

�(φi−φk, ỹ) =

∑N
n=1

(
φ
(n)
i − φi − φ

(n)
k + φk

)(
ỹ(n) − ỹ

)
√(∑N

n=1

(
φ
(n)
i − φi − φ

(n)
k + φk

)2
)(∑N

n=1

(
ỹ(n) − ỹ

)2
) .
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For the sake of brevity we abuse notation and write φ
(n)
i to denote the i-th com-

bination of local coordinate and feature extraction method extracted from the n-th

training sample, and φi to denote the empirical mean over the samples (like-

wise for ỹ). The threshold τn (see eq. (2.1)) is randomly selected in order to be

more robust towards non-representative training sets. Finally, the binary feature

fn = 1[φi − φk < τn] is constructed and both φi and φk are removed from the

pool of candidates. This process is continued until S features are selected.

The resulting random ferns are very fast to compute, but unable to reliably classify

unknown objects. However, the combination of multiple ferns was proven to be a

reliable classifier [OCLF10].

2.2.2 Fern Boosting

In the original paper, Özuysal et al. combined many random ferns in a semi-

naive Bayesian method. However, since we are interested in a minimal number

of ferns to keep the computational costs low, we propose to construct a cascade

FM (x) =
∑M

m=1 Fm(x) of random ferns using gradient boosting [Fri00]. Follow-

ing Friedman, we adapt L2 TreeBoost to employ random ferns instead of regres-

sion trees as weak classifiers. The modifications are straightforward, producing

Algorithm 2.1.

Given the cascade FM (x), class membership probability estimates are derived as

p̂(y = 1|x) = 1

1 + exp (−2FM (x))
and

p̂(y = −1|x) = 1

1 + exp (2FM (x))
.

Objects are classified according to

ŷ(x) = 2 · 1[c− p̂(y = 1|x) > c+ p̂(y = −1|x)]− 1,

where c− and c+ are the costs of predicting y = −1 and y = 1 respectively when

the true class is y = 1 resp. y = −1.

3 Conclusion

In this technical report, we proposed two methods of learning discriminative fea-

tures for automated visual inspection from a sample of wanted and unwanted ma-

terials. The first method uses the bag of visual words framework to derive global
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Algorithm 2.1 L2 FernBost

Require: Number of iterations M , training set {x(n), y(n)}Nn=1 with y(n) = ±1

F0(x) =
1

2
log

1 + y

1− y

for m = 1, . . . ,M do

ỹ(n) =
2yi

1 + exp
(
2y(n)Fm−1(x(n))

) for n = 1, . . . , N

{Rms}2S1 = random-fern({x(n), ỹ(n)}Nn=1) with S features

γms =

∑
x(n)∈Rms

ỹ(n)∑
x(n)∈Rms

|ỹ(n)|(2− |ỹ(n)|) for s = 1, . . . , 2S

Fm(x) = Fm−1(x) +
∑2S

s=1 γms1[x ∈ Rms]

end for

object descriptors that are invariant to both scale and rotation. The second method

combines feature extraction and classification by learning a cascade of random

ferns using gradient boosting. The features are sensitive to the defect’s location and

invariant to object scale and rotation due to the use of a local coordinate system.

Both methods allow to encode all major aspects of object appearance: color tex-

ture and shape. Both methods use very primitive underlying features such as the

color of a pixel. Since they require only simple operations (sums, products and

comparisons), both methods are very fast in operation. This comes at the cost of a

lengthy (but automated) training phase.

In the future, we plan to evaluate both methods in different scenarios. The BOV

approach is suited when the whole object appearance is of interest, e.g. in grading

the ripeness of fruits. The cascade of random ferns will be evaluated on problems

where the location of a defect is a major clue, for example in the detection of

fungal infections in grains.
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Abstract: Research is being conducted in the field of texture analysis for
many years. In this process a wide variety of methods have been developed
for analyzing and describing the various structural and statistical textures. For
the complicated mixed case of structural-statistical textures only few methods
exist which allow a general evaluation. One way to describe this texture type
is to produce a deviation from a structural texture with the help of distortions
and gray value differences. Inspired by the communication technology, this
can be done with the help of frequency or amplitude modulations. In this
report, an evaluation option for each type of modulation will be presented.
Occurring geometric distortions can be described for example with the help
of image warping algorithms. In this context, the retrieval of characteristic
points of the texture primitive, i.e. recurrent points that are easy to detect,
is an important and also challenging task. The detection of irregularities of
the gray values over the entire texture can be achieved with the help of a
image pre-processing method called homogenization. Thus, the combination
of the two methods - image warping and homogenization - allows a complete
description of the frequency and amplitude modulation of structural textures
and provides a new way for the analysis of structural-statistical textures.

1 Introduction

Textures are all around us in everyday life. Whether it is the pattern of a carpet, the

wood grain of a table or the nature of our clothing. Because almost each object has

a texture it is beside the color and the shape one of the most important visual prop-

erties of an object. Thus, it is clear that the assessment of the texture represents also
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an important part of quality control, e.g. for industrial production. Although the

term texture is commonly known, there is no generally accepted definition. Gen-

erally, textures can be described as two-dimensionl distinct structures with certain

deterministic or statistical regularities. Depending on how much knowledge about

the texture exists, basically three types of texture can be distinguished with no

strict boundaries between the three types. Structural textures are characterized by

a texture primitive that is repeated according to a fixed local arrangement scheme.

In the area of structural-statistical textures the texture primitve and the arrange-

ment scheme are both subject to stochastic fluctuations until finally in the area of

statistical textures no more primitives can be identified.

Depending on which type of texture is present, there are different methods of anal-

ysis [HSD73, Har79, WH89, MJ92, RH99, GP03, Bey11]. These standard eval-

uation methods describe purely the structural or statistical properties of a texture.

Only very few methods exist that attempt to describe the combined structural-

statistical textures. In previous work [Hav96, Vog12, Vog13] these textures are de-

scribed by amplitude or frequency modulation as known from the communication

technology [Kam11]. A variation of the gray value corresponds to an amplitude

modulation (AM) and the changes in the shape of the primitive or the arrange-

ment scheme corresponds to a frequency modulation (FM). The determination of

the appropriate modulation is achieved by consideration of the frequency spec-

trum [Hav96] or by a phase locked loop [Vog12, Vog13]. In this report, alternative

ways to establish the parameters of the amplitude and the frequency modulation are

presented. These enable the demodulation with homogenization (Section 2) and

image warping (Section 3) and allow a complete analysis of structural-statistical

textures.

2 Description of the Amplitude Modulation
with Homogenization

The variation of the gray value and thus the AM can be obtained with the help

of methods from image enhancement. A method exactly for this application is

called homogenization, which is used to compensate illumination inhomogeneities

in images.
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Figure 2.1: AM Demodulation with homogenization of the 2nd degree [Bey11].

g(x): gray value at position x, σ̂(x), μ̂(x) : estimated local contrast and mean,

ŝ(x): adjusted texture (with mean value zero), DFT: discrete Fourier transform,

γ(x): adjusted texture containing the constants σ0 and μ0 for the conversion into

a displayable grayscale image.

2.1 Homogenization for Image Pre-Processing

For the homogenization basically two models can be distinguished, depending on

the degree of detail:

1. Degree: g(x) = t(x) + b(x)
2. Degree: g(x) = σ(x) · t(x) + μ(x)

Thereby x = (x1, x2) describes a point in the two-dimensional space. Both models

include a locally fast variable part, the desired texture t(x), and a locally slowly

variable part of inhomogeneities containing the desired AM b(x). Below the 2nd

degree model is used to describe the AM. Thus, the locally slowly variable AM

is split into a local contrast σ(x) and a local mean μ(x). Compared to the 1st

degree model, where a simple low pass filtering is sufficient for demodulation, the

demodulation of the 2nd degree model is much more complex. In Fig. 2.1 the

procedure for estimating the parameters is explained in a diagram. Using high

and low pass filtering, the local contrast and the local mean of the AM can be

determined and thus the adjusted texture ŝ(x) obtained [Bey11].
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(a) (b)

(c) (d)

Figure 2.2: Example for the demodulation of an amplitude modulated texture by

homogenization. (a) modulated chess board pattern, (b) real artificial AM, (c)

adjusted texture and (d) AM determined from σ̂(x) of the homogenization.

2.2 Results

Fig. 2.2 shows an example of demodulating an amplitude modulated texture, in

this case a chess board pattern (Fig. 2.2(a)). The artificially applied AM (Fig.

2.2(b)) can be obtained with the help of the σ̂(x) and μ̂(x) parameters of the ho-

mogenization from the modulated texture (Fig. 2.2(d)). In the resulting adjusted

texture (Fig. 2.2(c)) only possible frequency modulations remain, which are dis-

cussed in the following Section 3. In most instances the information about the real

AM of a modulated texture doesn’t exist. For this reason the assessment of the

quality of the estimation of the AM is limited to a visual comparison, as shown in

Fig. 2.2.
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3 Description of the Frequency Modulation
with Image Warping

As described in the introduction, the FM of textures can be described as changes

in the shape of the primitive or the arrangement scheme. One method that allows

a description of the changes from a structural texture to a frequency modulated

texture and thus an assessment of the changes in the structural arrangement scheme

is image warping, which is commonly used in image editing.

3.1 Image Warping Basics

Image warping is a transformation that influences the geometrical characteristics

of an image. Ideally, the intensity of the warped image I ′ at the position q = (x, y)
corresponds to the intensity of the original image I at the corresponding position

p = (u, v), so that q = f(p). It means that I ′(q) = I(p) or I ′(f(p)) = I(p).
For the consideration of the FM, the frequency modulated or distorted texture is

assumed as the warped image I ′, which is the original image I arisen by a displace-

ment field f(·) from the structural texture. In the application of image warping,

global (affine, perspective, bilinear, polynomial, ...) and local transformation, e.g.

piecewise affine transformations, can be distinguished [GM98]. Local transforms

are especially interesting for the application FM, because local changes should be

considered. For this purpose the image is divided into several smaller sub-images

and subsequently transformed separately affine. There are different methods to

ensure this division into sub-images. For example by defining point sets followed

by a connection to a network, which is called mesh warping or by defining lines

that affect a particular image region at the transformation, which is called field
morphing or featured based warping [Wol98].

3.2 Image Warping Algorithm for Frequency Modulation

For the assessment of the frequency modulation, the mesh warping principle is

used, because it allows an easy describtion of local changes. For this, it is neces-

sary to detect distinctive points of the basic primitive at first. In the next step, the

corresponding points between the ideal structural and the distorted texture must be

detected over the entire texture to subsequently generate from this set of points a

grid and to specify the piecewise affine transformations. The principle of assign-

ment of corresponding points is illustrated in Fig. 3.1 on the distortion of a chess

board pattern. The detection of feature points can be done by known methods such
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Figure 3.1: Example for the allocation of corresponding points between the ideal

structural (I , left) and distorted (I ′, right) texture.

as Harris/Shi-Tomasi corner detector, SIFT, SURF, FAST, BRIEF or ORB [ML12].

The network, which should be obtained from the feature points can be created with

triangles for example using the Delaunay triangulation [LS80]. The summary of

each piecewise affine transformations ultimately leads to the displacement field for

the description of the FM.

3.3 Upcoming Problems Using Image Warping Algorithm

Several problems may occur in the procedure desribed in Section 3.2. On the one

hand, in the search for feature points, points may be lost or new points appear due

to the distortions occuring in the modulated texture. This leads to a loss of corre-

sponding points, thus to incorrect assignments and to an erroneous displacement

field. Also in the net mesh generation using the Delaunay triangulation, different

formations of the net meshes can occur because of the changing distances be-

tween the feature points due to the distortions. This leads to different net meshes

when comparing the ideal structural and the distorted texture, thus again to incor-

rect assignments and an erroneous displacement field. These problems could be

solved for example with more robust methods, which exploit neighborhood rela-

tions. Therefore, in the basic texture primitve certain points should be retrieved,

which have a fixed geometric relationship to each other. This would also create

a unique mesh generation. Distortions leading to disappearing feature points or

completely unrecognizable primitves, can not be covered by any improvement of

the process.
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Figure 4.1: Complete system for AM-FM demodulation of structural-statistical

textures. g(x): amplitude and frequency modulated texture, σ̂(x), μ̂(x): pa-

rameters of the AM, t(x): purely frequency modulated texture, f(·): displace-

ment/deformation field.

the gray value or the variation of the basic primitive or the arrangement scheme

can be considered as amplitude or frequency modulation.

For the two types of modulation, respectively, two methods for demodulation were

presented. Parameters for amplitude modulation could be exported out of the ho-

mogenization of the modulated texture. The frequency modulation can be de-

scribed using the image warping approach. However, it has been postulated that

some problems hamper the accurate determination of the displacement field. These

known problems must be brought under control in future work. The determina-

tion of the frequnecy modulation may alternatively be achieved with the help of a

two-dimensional expanded Fourier series (2D-EFR), as described in [Vog13].

Overall, this can be seen as an approach to allow a complete analysis of structural-

statistical texture (Fig. 4.1) in further work.

4 Conclusion

This report deals with the description of structural-statistical textures using the

modulation approach of communications technology. Therefore, the variation of
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Abstract: Today, measurement methods like deflectometry allow accurate
measurements of specular surfaces. The measurement methods are often
more precise than human vision. If the aim is to inspect surfaces for de-
fects that would disturb humans, so called aesthetic defects, it is important
to understand the connection between the measurement method and human
vision. This problem is addressed in this report. In contrast to matte surfaces,
there are different influencing factors for the perception of specular surfaces.
We are proposing a model which introduces a lower bound for the visibility of
defects on specular surfaces. This means that defects smaller than this bound
cannot be identified by an average human observer.

1 Introduction

The automated visual inspection of specular surfaces is a practical problem with

many applications. Today, there are methods known to get precise measurements

of specular surfaces, ranging from small glossy mobile devices up to large lac-

quered automobile bodies. One way to acquire the surface shape is a measurement

method called deflectometry, which can be used for specular to partially specu-

lar surfaces. It has the advantage of being especially sensitive to changes in the

surface gradient. This corresponds to the human perception of specular surfaces.

When surfaces which have to “look good” are inspected, all defects visible to a

human under defined conditions should be detected. Therefore the defects are de-

fined by some aesthetical measure, which depends on the human visual system,

surface properties and a typical environment. In this paper we propose such an

approach to quantify the visibility of aesthetic defects. For this purpose we define

thresholds for the visibility of defects on specular surfaces. Defects smaller than

these quantifications are invisible for an average human observer.
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2 Related Work

Some work was done to automatically assess specular surfaces as humans would

do. First of all, Hsakou [Hsa06] uses deflectometry and makes use of the sur-

face curvature for assessment, as it correlates to human visual inspection. Addi-

tional decision criteria like location, area, amplitude and density are identified by

comparing automated with manual inspections. Finally, tolerance thresholds for

combinations of the identified criteria are chosen assisted by an inspector.

The detection, classification and evaluation of surface defects is a rather gen-

eral task with many applications and accordingly a lot of studies exist in this

field. The studied applications range from the evaluation of auto-body pan-

els [And09, Fer13], assessing scratch damages in bulk materials and coatings

[HWP03], scratch visibility on polymers [RSW+03, JBH+10, LBS+11] and

defects on machined and painted surfaces [PK06].

3 Derivation of the model

In this section we derive the model which connects the influencing factors with the

minimum defect sizes visible for a human observer.

3.1 Resolution on the surface

Given the variables angular resolution θ, incident angle on the surface α and the

viewing distance to the surface d we want to determine the resolution on the

surface a as shown in Fig. 3.1:

a

sin(θ)
=

d′

sin(α′)
, (3.1)

α′ = α− θ

2
, (3.2)

d′

sin(α)
=

d

sin(180− α− θ
2 )

.
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θ/2

d′ d

α α′

a

Figure 3.1: Lateral resolution on the surface.

Using the symmetry of the sine function sin(180− x) = sin(x) we get

d′ =
d sin(α)

sin(α+ θ
2 )

. (3.3)

Inserting (3.2) and (3.3) in (3.1) we obtain

a =
d sin(θ) sin(α)

sin(α− θ
2 ) sin(α+ θ

2 )
. (3.4)

Using the sinus law sin(x) sin(y) = 1
2 (cos(x−y)−cos(x+y)) and the asymmetry

of the cosine function cos(x) = cos(−x) (3.4) can be simplified to

a = 2d
sin(θ) sin(α)

cos(θ)− cos(2α)
. (3.5)

In the special case of α = 90 (3.5) simplifies to

a = 2d
sin(θ)

cos(θ) + 1

= 2d tan(
θ

2
).
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Figure 3.2: Angular resolution caused by resolution on the screen.

3.2 Resolution on the screen

Similar to section 3.1 in (3.5) and using the variables angular resolution θ, incident

angle on the screen β and the viewing distance from the observer over the surface

to the screen d+ h we determine the resolution on the screen b as in Fig. 3.2:

b = 2(d+ h)
sin(θ) sin(β)

cos(θ)− cos(2β)
. (3.6)

In the special case of β = 90 (3.6) simplifies to

b = 2(d+ h) tan(
θ

2
).

3.3 Deflection on the screen

Similar to the previous sections 3.1 and 3.2 as in (3.5) and (3.6) and using the vari-

ables surface normal change Δφ, incident angle on the screen β and the distance

from the surface to the screen h we determine the deflection of the viewing rays

on the screen c as in Fig. 3.3:

c = 2h
sin(Δφ) sin(β)

cos(Δφ)− cos(2β)
. (3.7)
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Δφ/2
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Figure 3.3: Deflection on the screen caused by change of the surface normal.

In the special case of β = 90 (3.7) simplifies to

c = 2h tan(Δφ).

3.4 Defect model triangle

Assuming a triangular shaped defect as in Fig. 3.4, we need the variable Δφ for

the triangle gradient and at for the lateral extend of the defect to obtain the defect

depth t

at =
t

tan(Δφ
2 )

. (3.8)

3.5 Deviation

A defect on the surface is visible if two conditions are met. At first the observer

has to be able to resolve the defect on the surface a = at using (3.5) and (3.8),

which leads to

2d
sin(θ) sin(α)

cos(θ)− cos(2α)
=

t

tan(Δφ
2 )

. (3.9)

In the special case of α = β = 90 (3.9) simplifies to
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Figure 3.4: Triangular defect model causes deflection of viewing rays.

2d tan(
θ

2
) = 2h tan(Δφ). (3.10)

The second condition is that the deflection has to be resolved on the screen b = c
using (3.6) and (3.7)

2(d+ h)
sin(θ) sin(β)

cos(θ)− cos(2β)
= 2h

sin(Δφ) sin(β)

cos(Δφ)− cos(2β)
. (3.11)

In the special case of α = β = 90 (3.11) simplifies to

2(d+ h) tan(
θ

2
) = 2h tan(Δφ),

which leads to

Δφ = arctan(
d+ h

h
tan(

θ

2
)). (3.12)

Inserting (3.12) into (3.10) we get

2(d+ h) tan(
θ

2
) =

t
d+h
h tan( θ2 )
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and hence

t = 2(d+ h)
d

h
tan2(

θ

2
).

As it can be observed that the angle Δφ is nearly 0, we can approximate

tan(Δφ) ≈ Δφ, so analogue to (3.12) we can write Δφ without assuming

α = β = 90 as

Δφ =
2 sin2(β)(d+ h) sin(θ)

(d+ h) sin(θ)− h cos(2β) + h cos(θ)
. (3.13)

Inserting (3.13) into (3.5) and using the triangle defect model from (3.8) we get

t = −
2d sin(α) sin(θ) tan

(
sin2(β)(d+h) sin(θ)

(d+h) sin(θ)−h cos(2β)+h cos(θ)

)
cos(2α)− cos(θ)

. (3.14)

The proposed model (3.14) gives the lower bound for the visibility of a defect on

a specular surface. For the defect we assume a triangular shape (3.8) that deflects

one viewing ray on a screen. With an appropriate pattern this deflection can be

resolved. Furthermore the defect itself has to be large enough to be resolved on

the surface, as given in (3.5).

4 Results & Discussion

Before evaluating the model derived above, it is necessary to define the viewing

capabilities of an average human observer and a typical surrounding. We describe

the viewing capability with the angular resolution of the human eye and assume

an observer with the average visual acuity of θ = 1
60

◦
[PPBS08]. The visual

acuity describes the spatial resolution of the human eye, especially the ability to

discriminate between two separate points. Furthermore as typical environment for

the observation we have chosen a car dealership with viewing distances ranging

from dmin = 30
100m to dmax = 2m and screen distances ranging from hmin = 1m

to dmax = 10m. The screen has to show patterns that allow the detection of very

small deflections of viewing rays.

As a first result, Figure 4.1 shows the minimal visible width by evaluating (3.5)

with α = 90. Figure 4.2 shows the minimal visible height by evaluating (3.14)

with α = β = 90 and Figure 4.3 shows the minimal visible height by evaluat-

ing (3.14) with minimal viewing distance dmin and maximal screen distance hmax.
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Figure 4.1: Minimal visible defect width at with respect to viewing distance d for

several incident angles on the surface α.

Looking at (3.14) it can be seen that for minimal viewing distance dmin and max-

imal screen distance hmax the smallest defects are visible. Under these optimal

viewing conditions, a defect may be as small as 87μm in lateral extend, 0.01 steep-

ness and 32nm in height. One drawback of the model is that the lateral extend and

steepness of the defect are linked. Thus defects with the same height have a larger

gradient when their lateral extend is smaller, which does not correspond to the in-

tuition that small changes in height are better visible when the defect has a large

extend. Another drawback is that we only look at the first derivative of the surface,

which is responsible for the deviation of single viewing rays. Usually humans are

used to observe distortions of known patterns, which corresponds to the second

derivative of the surface. Also it results in reducing the capabilities of the human

eye to just one value, the visual acuity. Areal pattern resolution capabilties are

ignored.

5 Conclusion

We proposed a model to estimate lower bounds for the visibility of defects on

specular surfaces. Therefore a perfect specularity, a triangle shaped defect and an

optimal pattern on the screen were assumed. The benefit of the model is that the

visibility is attributed to known quantities such as the visual acuity of the human



Defect perception thresholds on specular surfaces 131

Figure 4.2: Minimal visible defect height with respect to viewing distance d and

screen distance h and incident angles on the surface and the screen of α = β = 90.

Figure 4.3: Minimal visible defect height with respect to incident viewing angle

α and screen angle β and for minimal viewing distance d and maximal screen

distance h.
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eye, observation angles and distances. Assuming an average acuity under optimal

viewing conditions the model gives very small lower boundaries for the visibility

of defects. The lower bounds obtained with this model are very small, but as the

model makes some artificial worst case assumptions such as a perfect specular

surface and a perfect pattern, the results should get more practical as more realistic

assumptions are included in the model.
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