KIT | KIT-Bibliothek | Impressum | Datenschutz

Methods of learning discriminative features for automated visual inspection. Technical Report IES-2014-09

Richter, Matthias

Abstract:

At the present day, automation of visual inspection tasks is a typical engineering problem. Experts design the physical aspects of the system and devise classification algorithms based on a small sample of the material to be inspected. Much of this work is devoted to finding suitable features to discriminate wanted from unwanted material. In this report, we explore methods to automatically learn object descriptors from a suitably large sample. We focus on two types of descriptors: (a) global descriptors, which represent the object as a whole and (b) local descriptors, which focus on topical features. Apart from freeing the engineers to attend to other tasks, these methods allow non-experts to operate and reuse visual inspection systems, e.g. to inspect a different product than originally intended.


Volltext §
DOI: 10.5445/KSP/1000047712
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2015
Sprache Englisch
Identifikator ISBN: 978-3-7315-0401-6
ISSN: 1863-6489
urn:nbn:de:swb:90-486983
KITopen-ID: 1000048698
Erschienen in Proceedings of the 2014 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory. Ed.: J. Beyerer
Verlag KIT Scientific Publishing
Seiten 103-113
Serie Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe ; 20
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page