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Zusammenfassung 
Die vorliegende Arbeit erkundet das technische Potential einer neuen Plattform 

für hochintegrierte Optik. Diese Plattform kombiniert ausgewählte organische 

Materialien mit optischen, integrierten Schaltungen der Silizium-Photonik zu 

silizium-organischen Hybrid-Bauteilen (SOH) mit außergewöhnlichen Eigen-

schaften, d.h. Eigenschaften, welche Silizium allein nicht besitzt. Es werden 

Schlüsselkomponenten wie Laser und Modulatoren konzipiert, mit CMOS-

basierten Technologien1 hergestellt und charakterisiert. Dabei werden einzig-

artige Vorteile und praxisrelevante Eigenschaften der SOH-Bauteile identifiziert 

und schließlich mit Blick auf entsprechende Anwendungsszenarien 

demonstriert. 

Die Miniaturisierung in der Elektronik durch die Entwicklung der auf 

Silizium beruhenden CMOS-Technologie hat entscheidend zur Bildung der 

heutigen Informationsgesellschaft beigetragen. Unsere Gesellschaft ist auf die 

Verarbeitung und auch den Transport von großen Datenmengen angewiesen. 

Nur durch die immer effizientere Nutzung von Ressourcen wie Energie und 

Rohstoffen lässt sich diese Entwicklung auch weiterführen [1]. Insbesondere die 

Infrastruktur des Internets, aber auch Analysemethoden und Sensorik, welche 

immer umfangreichere Daten liefern sollen, lassen sich mit Hilfe optischer 

Methoden weiter verbessern.  

Für den Ausbau des Internets ist es einerseits wichtig, die Kapazität der 

optischen Langstreckenübertragungswege durch z.B. die Verwendung von 

komplexen Modulationsformaten und spektral effizienten Multiplexverfahren 

auszubauen. Andererseits ist es erforderlich, den Energieverbrauch der Daten-

zentren zu verringern. Dies betrifft nicht nur die Datenspeicher und 

Prozessoren, sondern insbesondere auch den Transport von Daten innerhalb der 

Datenzentren selbst [2]. Der Flaschenhals in der Informationsverarbeitung ist 

oftmals die Kommunikation zwischen den Servern. Die Umstellung auf 

optische Verbindungen ist bereits in vollem Gange. Allerdings verlangen 

Verbindungslängen von z.T. mehr als 300 m und der Bedarf nach höherer 

                                                 
1 Engl. complementary metal oxide semiconductor, Halbleiterprozesse zur Fabrikation von 

gleichnamigen Halbleiterbauelementen in integrierten elektrischen Schaltkreisen für 
Computer und andere Geräte. 
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Bandbreite nach Alternativen zu bereits verwendeten optischen Systemen mit 

direkt modulierten, vertikal emittierenden Lasern (engl. vertical surface 

emitting laser, VCSEL).  Die Entscheidung von Google oder Facebook, ihre 

Server-Farmen an kalten Orten mit kostengünstiger Energieversorgung zur Be-

wältigung des Kühlproblems zu bauen, unterstreicht die Feststellung, dass ein 

Wachstum der Internetinfrastruktur nur mit deutlicher Verbesserung der Ener-

gieeffizienz möglich ist. Wenn es gelänge, die notwendigen elektronischen 

integrierten Schaltkreise (engl. integrated circuit, IC) und die photonischen 

integrierten Schaltkreise (engl. photonic integrated circuit, PIC) mit ein und 

derselben Plattform in räumlicher Nachbarschaft, vielleicht sogar auf demselben 

Substrat unterzubringen, dann ließen sich Kosten und Energieverbrauch ver-

ringern. Gesucht wird eine Plattform, welche gemessen an den Kosten, aber 

auch an innovativer Funktionalität, Licht genauso selbstverständlich auf 

winzigen Chips kontrollierbar macht, wie man es von elektrischen Signalen in 

der Elektronik gewöhnt ist. 

In diesem noch offenen Technologierennen sind besonderes jene 

Plattformen interessant, welche eine gewisse Universalität, d.h. ein Offenheit 

für verschiedene Anwendungsbereiche mitbringen. Gleichzeitig muss die 

Produktion in den Stückzahlen so skalierbar sein, dass die resultierenden 

Produkte möglichst vielen Menschen zugute kommen können. Ein Favorit in 

diesem Wettbewerb ist der Ansatz der Silizium-Photonik, d.h. das Bestreben, 

optische Strukturen mit Silizium als Grundmaterial zu realisieren. Es liegt auf 

der Hand, dass die bereits existierende, enorm weit entwickelte Infrastruktur der 

CMOS-Technologie zu diesem Zweck genutzt werden könnte. In der Tat sind 

bereits viele große Unternehmen mit Erfahrung in der CMOS-Technologie, wie 

z.B. Intel, IBM, Samsung und weitere, im Begriff, die Silizium-Photonik zur 

Marktreife zu entwickeln. Die Verwendung von Silicon-On-Insulator-Wafern 

(SOI) verspricht eine hohe Dichte optischer Komponenten. Gleichzeitig ver-

sucht man mit dieser Technologie, die Kompatibilität in der Herstellung von 

photonischen, integrierten Schalkreisen mit den etablierten Fabrikations-

prozessen der Elektronik nach überschaubaren Anpassungen zu wahren. Dieser 

Ansatz wird in der SOI-Plattform verfolgt. Es erweist sich als praktisch, dass 

Silizium für infrarotes Licht, also auch für Wellenlängen der optischen 

Telekommunikation, transparent ist und einen sehr hohen Brechungsindex 

aufweist. Das bedeutet, dass das Licht durch Silizium-Strukturen sehr eng 
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geführt werden kann und sich daher höchste Integrationsdichten erreichen 

lassen. 

Auch wenn Silizium viele vorteilhafte Eigenschaften besitzt, so fehlen 

gewisse physikalische Effekte, die wichtige Anwendungsbereiche erschließen 

würden. Zu nennen ist z.B. eine optische Nichtlinearität zweiter Ordnung ((2)-

Nichtlinearität). Der lineare elektro-optische (Pockels-)Effekt beispielsweise 

wird zur Zeit in vielen kommerziellen Modulatoren für die Langstrecken-

kommunikation genutzt. Außerdem ist es schwer, einen Laser auf Silizium zu 

realisieren, da das Material ein indirekter Halbleiter ist, stimulierte Emission 

daher zusätzlicher Phononen bedarf und folglich ein sehr unwahrscheinlicher 

Prozess ist. Die oben genannten Unternehmen und auch die Mehrzahl von 

Forschungseinrichtungen untersuchen Alternativen, welche auf der Integration 

von geeigneten anorganischen Materialien wie III-V-Halbleiter auf Silizium 

basieren. 

Organische Materialien stellen eine weitere Materialklasse dar, welche 

fehlende Fähigkeiten des Siliziums ausgleichen kann. Die Integration von 

organischen Materialien mit Silizium führt zu silizium-organischen Hybrid-

Bauteilen (SOH) auf der sogenannten SOH-Plattform. Tatsächlich ist der 

Freiraum und das Potential, ein passendes, organisches Material zu finden, nur 

begrenzt durch den erforderlichen Materialentwicklungsaufwand, welcher die 

Gewährleistung der Langzeitstabilität mit einschließt. Die Integration des 

organischen Materials wird oftmals durch eine einfache Rotationsbeschichtung 

(spin coating) gelöst, welche eine organische Deckschicht auf dem Silizium-

Chip mit direktem Kontakt zu den betreffenden Wellenleitersektionen liefert. 

Die Evaluierung des Potentials der SOH-Plattform ist Aufgabe der 

vorliegenden Arbeit. Mit der Herstellung und Charakterisierung von Prototypen 

wird der Nachweis der Praktikabilität des SOH-Ansatzes für ausgewählte An-

wendungen erbracht.  

Kapitel 1 beschreibt den Stand der Technik und gibt einen knappen 

Überblick über gegenwärtige Plattformen für PICs. 

Kapitel 2 vermittelt einen Überblick über den theoretischen und technischen 

Hintergrund. Dazu zählt eine Zusammenfassung der wichtigsten, relevanten 

Eigenschaften von Silizium.  
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Vier verschiedene Si-Wellenleitertypen auf einer isolierenden, dielektrischen 

Unterlage (SOI) werden vorgestellt: (a) Der gewöhnliche Streifenwellenleiter 

mit rechteckigem Profil. (b) Der Rippenwellenleiter in einer Ausführung, die 

besonders niedrige Propagationsverluste verspricht und daher genutzt wird, um 

Licht über größere Distanzen auf dem Chip zu führen. (c) Für die Herstellung 

aktiver Bauteile ist eine starke Interaktion des Lichts mit einem (hier: 

organischen) Deckmaterial gewünscht. Ein Schlitzwellenleiter (engl. slot wave-

guide) liefert diese Eigenschaft. (d) Um Schlitzwellenleiter elektrisch ansteuern 

zu können, werden sie über einen dünnen Streifen (Sockel) aus Silizium mit 

weiter entfernt liegenden Metallelektroden kontaktiert. Ein Mindestabstand 

zwischen Metall und optischem Wellenleiter ist unabdingbar, um eine Dämpf-

ung des Lichtes durch das Metall zu vermeiden. Dieser Wellenleitertyp nennt 

sich streifen¬belasteter Wellenleiter (engl. strip-loaded slot waveguide, deutsch 

auch Sockel-Wellenleiter). 

Die optischen Verluste in Siliziumwellenleitern stammen nur zu einem 

kleinen Teil aus der Absorption im Material (das gilt für intrinsisches Material 

oder im Fall schwacher Dotierung). Der größere Dämpfungsanteil resultiert aus 

Lichtstreuung an den fabrikationsbedingt rauhen Seitenwänden. In Zusammen-

arbeit mit der finnischen Gruppe um Seppo Honkanen wurde gezeigt, dass sich 

diese Streuverluste durch dünne Schichten verringern2 lassen, die Atomlage für 

Atomlage aufgebracht werden (engl. atomic layer deposition, ALD) und eine 

hohen Brechungsindex aufweisen. 

Weiter werden in Kapitel 2 zur Vorbereitung der Diskussion eines SOH-

Laser-Prototypen verschiedene Farbstoffe vorgestellt, die sich zur Einbettung in 

organische Materialien eignen. Ferner werden der Plasmadispersionseffekt 

sowie der lineare elektro-optische Effekt diskutiert. Einige grundlegende 

Fragestellungen beim Design von SOH-Modulatoren in Wanderwellen-

Konfiguration werden erläutert. Schließlich werden übliche Modulations-

formate für die optische digitale Kommunikation kurz vorgestellt. 

Die folgenden Kapitel 3 und 4 beschreiben die konkrete Umsetzung der 

vorgestellten Konzepte in Form von Prototypen, um dadurch grundsätzliche 

                                                 
2 Im Anwendungsfall von nur mit Luft bedeckten Wellenleitern; z.B. für die Detektion von 

ausgewählten Molekülsorten mittels spezifischer Rezeptormoleküle am Wellenleiter. 
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Fragen zur Funktionalität der SOH-Plattform zu klären: Wie lässt sich Licht in 

SOH-Bauteilen erzeugen? Wie lassen sich mit SOH-Bauteilen elektrische 

Signale zu optischen Signalen konvertieren? Diese Ergebnisse werden in zwei 

gesonderten Abschnitten SOH-Technologie zur Erzeugung und zur Modulation 

von Licht am Ende dieser Zusammenfassung diskutiert. 

Kapitel 5 vergleicht SOH Modulatoren mit entsprechenden Bauteilen, die 

auf anderen Plattformen realisiert wurden. Dabei zeigte es sich, dass Modu-

latoren basierend auf dem Plasmaeffekt nicht nur Datenströme bis zu 35 Gbit/s 

einem optischen Träger aufmodulieren können, sondern dass beim Einstrahlen 

eines optischen Signals mit 35 Gbit/s dasselbe Bauteil auch als photo-

elektrischer Wandler fungiert und wie eine  Photodiode optische On-off-Signale 

detektieren kann. Bemerkenswert ist dabei, dass die Bandlücken-Energie von 

Silizium größer ist als die Energie der einfallen Photonen. Als Ursache für 

diesen photo-elektrischen Effekt werden Defektzustände aufgrund des Dotier-

vorgangs vermutet. Da die Empfindlichkeit dieses Photodetektors nicht den 

üblichen Anforderungen entspricht, wird er wohl nicht als Detektor in 

empfindlichen Empfängern verwendet werden. Allerdings könnte ein solcher 

Detektor als Monitor dienen, wie z.B. beim Abstimmen des Arbeitspunktes 

eines Mach-Zehnder-Modulators (MZM) oder eines IQ-Modulators.  

Verglichen werden die SOH-Modulatoren ferner mit Modulatoren auf der 

GaAs-Plattform. Die Untersuchungen fanden im Rahmen einer Industrie-

kooperation (u²t Photonics UK) bei Datenraten bis zu 150 Gbit/s statt. 

In einer kurzen Zusammenfassung werden die Hauptmerkmale der ver-

schiedenen Plattformen aufgelistet. Nach unseren Untersuchungen haben GaAs-

Modulatoren gegenüber SOH- und SOI-Modulatoren gewisse Vorteile, was Ein-

fügedämpfung, Bandbreite und Flexibilität bei der Wahl der Modulations-

formate angeht. Andererseits machen Stärken der SOH-Modulatoren bei der 

Fertigung mit etablierten CMOS-Prozessen ihren Einsatz in bestimmten An-

wendungsgebieten wahrscheinlich. Insbesondere der wesentlich kleinere Form-

faktor und das Potential für sehr geringere Treiberspannungen können helfen, 

den Energieverbrauch zu senken.  

Kapitel 6 schließt diese Arbeit mit einem kurzen Ausblick über die künftige 

Entwicklung der SOH-Plattform ab. Die SOH-Technologie ermöglicht hoch-

integrierte photonische Schaltkreise für die Datenübertragung. Dabei können 
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zahlreiche Komponenten parallel integriert werden und unterstützen daher auf 

natürliche Weise die verschiedensten Multiplexverfahren. Hierfür können Kon-

zepte, welche sich bereits in Systemexperimenten mit diskreten Komponenten 

bewährt hatten, auf die Besonderheiten photonischer Schaltkreise angepasst 

werden. Als Beispiel sei das OFDM-Verfahren (engl. orthogonal frequency 

division multiplexing) genannt. Es ermöglicht die Nutzung von spektral 

besonders dicht benachbarten optischen Trägern zur Datenübertragung mit 

hohen aggregierten Datenraten.  

Zu Kapitel 3: SOH-Technologie zur Erzeugung von Licht wird am Beispiel 

eines SOH Lasers vorgestellt. Siliziumstrukturen wie Streifen- oder Schlitz-

wellenleiter bilden die Grundlage für den Resonator. Ein Deckmaterial, welches 

aus einem Laserfarbstoff-Polymer-Verbund besteht, wird durch optisches 

Pumpen bei einer Wellenlänge von 1064 nm zu stimulierter Emission bei einer 

Wellenlänge von 1310 nm angeregt. Die Wiederholrate des Pump-Pulses beträgt 

13.7 Hz. In der Folge wird erstmalig ein im Infraroten emittierender SOH-Laser 

demonstriert, der Pulsspitzenleistungen von 1 W an der Austrittsfacette des 

Lasers auf dem Chip aufweist. Davon können bis zu 365 mW in eine Faser 

eingekoppelt werden. Zum Vergleich: Die größten Emissionsleistungen anderer, 

auf der Integration anorganischer Materialien beruhender Laser auf Silizium 

liegen gegenwärtig bei weniger als 50 mW an der Laseraustrittsfläche auf dem 

Chip.  

Die bemerkenswert hohe Spitzenleistung genügt für nichtlineare 

Anwendungen auf dem Siliziumchip. Der Pulsbetrieb des Lasers ist ins-

besondere für Anwendungen wie (möglicherweise nichtlineare) Spektros-kopie 

für chemische Analysen kein Nachteil. Es gibt zahlreiche weitere Laser-

farbstoffe, welche zur Erzeugung anderer interessanter IR-Wellenlängen führen, 

wenn der optische Resonator geeignet dimensioniert wird. Auch wenn von 

Laserfarbstoffen allgemein nicht die gleiche Langzeitstabilität wie von Halb-

leiterlasern erwartet werden kann (mangelnde Photostabilität), so stellten wir in 

unseren Untersuchungen fest, dass der hier verwendete Farbstoff (IR 26) sich 

über Wochen intensiver Messungen stabil im Vergleich zu anderen Farbstoffen 

gezeigt hat. Außerdem ist die Herstellung dieser Laser potentiell sehr kosten-

günstig (von der Pumplichtquelle einmal abgesehen). Anwendungen, die die 
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einmalige Verwendung und anschließende Entsorgung eines Analysechips3 

voraussetzen, können so um eine der wichtigsten Schlüsselkomponenten 

erweitert werden. 

Eine attraktive, zukünftige Anwendung wäre die Herstellung von 

Spektrometern in ressourcenschonender (miniaturisierter) Form als Wegwerf-

produkt in der Art von Blutzucker-Messstreifen. Dies könnte es jedem Haushalt 

ermöglichen, sich z.B. über Schadstoffe in Lebensmitteln zu informieren und 

dadurch eine verbesserte industrielle Produktion zu erzwingen. 

Zu Kapitel 4: SOH Technologie zur Modulation von Licht wird vorgestellt. 

Die Wahl des organischen Deckmaterials entscheidet über mögliche An-

wendungsszenarien. Es werden Modulatoren mit organischen Kristallen sowie 

mit Chromophoren in einer Polymermatrix konzipiert, hergestellt (teilweise mit 

externen Kooperationspartnern) und charakterisiert.  

In dieser Arbeit wird erstmalig ein für hohe Datenraten (12.5 Gbit/s) ge-

eigneter SOH-Mach-Zehnder Modulator demonstriert, in welchem das Deck-

material aus der Klasse der organischen Kristalle mit einer nennenswerten (2)-

Nichtlinearität stammt. Auch wenn die Modulationsempfindlichkeit soweit nur 

der eines durchschnittlichen Plasma-Effekt-Modulators entspricht, so zeigt 

dieser Versuch doch folgendes: (a) Es ist möglich, organische Kristalle auf 

Siliziumchips mit CMOS-artigem Aufbau zu integrieren, d.h. Hochfrequenz-

elektroden und ein elektro-optischer Kristall können mit stark führenden 

Wellenleitern kombiniert werden. (b) Die (2)-Nichtlinearität steht auch für 

andere Anwendungen, wie z.B. für die Erzeugung von THz-Wellen oder für 

parameterische Verstärkung zur Verfügung. Als weiterer Vorteil zählt, dass im 

Wellenleiter geführtes Licht viel höhere Intensitäten erreicht, als es in einer 

Freistrahlkonfiguration über längere Strecken möglich ist. Dies ist mit ent-

sprechenden Vorteilen für die Effizienz verbunden. (c) Potentiell kann eine 

ganze Matrix von Hochgeschwindigkeitsmodulatoren parallel arbeiten, was für 

Multiplex-Anwendungen von Bedeutung ist. (d) Je nach Kristall könnte sich die 

Temperaturstabilität eines solchen SOH Modulators auf z.B. 250°C erhöhen. 

Die Langzeitstabilität ist durch die stabile Kristallstruktur ohnehin gesichert. 

                                                 
3 Wie z.B. beim Labor-auf-dem-Chip (engl. lab-on-chip ). Eine Reinigung dieser Chips wäre 

unwirtschaftlich. 
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Unter Verwendung von Chromophoren in einer Polymermatrix4 wurde 

erstmalig ein SOH-Modulator für komplexe Modulationsformate demonstriert. 

Die Bitfehlerwahrscheinlichkeit (engl. bit-error-ratio, BER) des durch diesen 

IQ-Modulator generierten Datenstroms übertraf zum Zeitpunkt der Veröffent-

lichung die BER von nicht-resonanten Plasma-Effekt-Modulatoren. So konnte 

eine QPSK-Modulation bei 28 GBd, d.h. bei 56 Gbit/s, ohne Vorverzerrung 

oder Entzerrung gezeigt werden (bei einer Bitfehlerwahrscheinlichkeit von 

4.5×10-4, also unterhalb der Standardgrenze für Vorwärtsfehlerkorrektur5). Mit 

einem Entzerrer lässt sich die Vorwärtsfehlerkorrektur sogar einsparen. In einem 

weiteren Experiment wurden Daten bei 28 GBd im 16QAM Format generiert, 

das entspricht 112 Gbit/s. Eine Vorverzerrung war ausreichend, um mit der Bit-

fehlerwahrscheinlichkeit von 1.2×10-3 unterhalb der Standardgrenze für Vor-

wärtsfehlerkorrektur zu bleiben. Die Einfügedämpfung ist im Demonstrator 

relativ hoch und muss gegenwärtig mit einem optischen Verstärker ausgeglichen 

werden. Wegen dieses zusätzlichen Aufwands lässt der gegenwärtige Entwick-

lungsstand diesen SOH-Modulator eher für Langstreckenkommunikation mit 

kohärentem Empfang als geeignet erscheinen. Neuere nichtlineare Polymere 

würden auf den gleichen Si-Strukturen einen Einsatz der Modulatoren in Daten-

zentren interessant machen, da sich diese Modulatoren mit extrem kleinen 

Spannungen und somit bei geringem Energieverbrauch betreiben lassen. 

Obwohl eine Integration von elektronischen und optischen Komponenten 

auf dem gleichen Chip Vorteile verspricht, ist die Kompatibilität mit CMOS-

Prozessen noch nicht gewährleistet (ohne das Aufbringen der organischen 

Deckschicht zu berücksichtigen). In naher Zukunft werden der elektronische 

und der optische Teil des Chips wahrscheinlich auf getrennten Substraten 

realisiert und in hybrider Integration vereinigt. Für die zu erwartenden Stück-

zahlen ist eine elektrische Treiberschaltung, die in Silizium-Germanium-

Technologie (SiGe) hergestellt wird, vermutlich wesentlich kostengünstiger. 

Außerdem kann diese Technologie größere Spannungen bei höheren Fre-

quenzen liefern, was Sender mit größerer Datenkapazität ermöglicht. Ein SOH-

                                                 
4 Chromophore in Polymermatrix. Das hier verwendete, kommerziell erhältliche Material 

wird bereits in Polymermodulatoren von GigOptix Inc. eingesetzt.  

5 Vorwärtsfehlerkorrektur (engl. forward error correction, FEC). Mit dieser Methode lässt 
sich ein hinreichend fehlerarmer Kanal gewährleisten. 
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Modulator kann direkt von einem SiGe-Schaltkreis getrieben werden, wie im 

Rahmen einer Industriekooperation mit GigOptix Inc. demonstriert wurde. Der 

SiGe-Treiber liefert ein Signal mit einer Amplitude von 0.3 V, was zum Betrieb 

eines SOH-Mach-Zehnder Modulators bei 12.5 Gbit/s und geringer Bit-

fehlerwahrscheinlichkeit genügt. 

 





 

Preface 
Silicon photonics promises to duplicate the spectacular development and 

resulting progress from miniaturization of electronics to very dense integration. 

Silicon photonics is expected to bring the advantages of integration and scaling 

to optics. 

The transition from bulky electronic circuits in highly integrated circuits 

(IC) has enabled today’s information society. Making devices such as the 

personal computer and smart phones accessible to the public for interconnecting 

individuals, changed the way of social interactions and of conducting business. 

The continuation of this development can be sustained only through an ever 

more efficient use of resources such as energy and raw materials. If not, this 

information society might stop evolving. A look back into history offers the dire 

picture of civilizations that lose their momentum. To transport the exponentially 

increasing amount of data, but also to more efficiently derive more and more 

information (keywords: chemical/biological sensors, lab-on-chip), optical 

methods promise to deliver spectacular progress. 

By switching to optical solutions (e.g., by using optical fibers instead of 

coaxial cables, or by using optical sensors) a first leap of progress was already 

made. Following the lead of electronics, a second giant leap in optics is 

imminent: Miniaturization of optical components in form of photonic integrated 

circuits (PIC) will help to save power. Miniaturization promises large gain in 

functionality and a general increase in capabilities of each PIC by massive 

parallelization. To make this happen, a technological platform is required, 

where photons can be controlled as easily and naturally on-chip as we control 

charges in microelectronics. 

A number of platforms compete to make this vision reality. They have to 

prove their universality for use in many applications scenarios at a reasonable 

cost per piece. In addition, the scalability to mass production has to be shown, 

so that more than just a few people benefit from this innovation. Given the 

experience in CMOS technology (complementary metal oxide semiconductor) 

for reliable production with sufficient yield, and the vast infrastructure in place, 

it is a straightforward idea to attempt adapting this infrastructure for PICs. And 

indeed, many companies including Intel, IBM, Samsung, Luxtera, Kotura, 
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Lightwire and others are investing heavily to develop the so-called silicon pho-

photonics platform. More precisely, special silicon-on-insulator (SOI) wafers 

are used to create waveguides (WG) with strong light confinement, while 

maintaining compatibility to existing CMOS processes with minor adaptations. 

Silicon is transparent at IR, especially at telecommunications wavelengths. In 

addition, silicon features a large refractive index enabling very dense optical 

integration. Silicon photonics offers the prospect of integrating optical 

functionality right next to electronics on the same chip. 

In spite of the many advantages of Si, some currently popular physical 

effects are missing. For instance, the linear electro-optical effect is used almost 

exclusively for modulation in long-haul communications today. Moreover, it is 

notoriously hard to achieve lasing on silicon due to its indirect bandgap. The 

companies mentioned above and many research institutions investigate the 

hybrid integration of other, inorganic materials on silicon to make a laser, and 

they contend with the plasma dispersion effect of silicon for modulators. This 

platform is referred to as SOI platform. 

In this thesis we explore a very similar, scalable, yet distinctively different 

platform. Instead of using inorganic materials for a hybrid integration 

technique, we choose from the vast range of organic materials. These can be 

engineered to exhibit the desired properties. This so-called silicon-organic 

hybrid (SOH) platform combines organic materials with silicon photonic  

structures. 

To evaluate the potential of the SOH platform, prototypes of key 

components (SOH lasers, SOH modulators) are conceptualized, designed, 

fabricated (also “fabless”), post-processed and characterized. Only the part of 

post-processing and the subsequent steps differ from the usual SOI platform. An 

organic cladding is deposited with a proven method, e.g., by spin-coating as 

used throughout most CMOS processes. The cladding is left to cover the entire 

wafer. The SOH devices’ specific advantages and shortcomings are identified. 

With regard to the corresponding applications, the added value of organic 

claddings is demonstrated. 

Chapter 1 gives an overview of the state of the art, including a summary of 

selected, currently available platforms for integrated optics. 
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Chapter 2 summarizes the theoretical and technological background, espe-

cially with respect to CMOS compatibility. The relevant properties of Si are 

listed, useful waveguide types are introduced, and loss and light interaction 

characteristics are discussed. The gain medium for the SOH laser, the linear 

electro-optic materials used to make SOH modulators and the employed 

modulation formats are explained.  

Chapter 3 focuses on the realization of an SOH laser based on dye 

molecules as a gain medium. 

Chapter 4 presents the results about achieving electro-optic (EO) 

modulation with the linear electro-optic effect from two different classes of 

materials: organic crystals and chromophores hosted in a polymer matrix. 

Successful integration and advanced modulation capability is demonstrated. A 

platform for making modulators would be incomplete without a concept of how 

to integrate the necessary electric driver circuits. The long-term goal is to use 

integrated CMOS drivers, probably on the same chip as the photonic structures. 

However, a short-term solution seems to demand a currently more cost-

efficient, lower volume production (as long as consumer products are not 

specifically targeted). Within an industry cooperation we identified drivers 

made with the SiGe platform to be ideally suited to the SOH devices. This 

suitability is demonstrated. 

Chapter 5 shows benchmarking measurements of modulators fabricated on 

the SOI platform (using the plasma dispersion effect), and on the GaAs 

platform. A short comparison of the platforms is given, pointing out the use of 

SOH modulators for very low energy consumption applications, for long-haul 

communication, and for frequency comb line generation. 

Chapter 6 concludes this work with a short outlook on using the specific 

advantages of the SOH platform. 





 

Achievements of the Present Work 
In this thesis we study the potential of the silicon-organic hybrid (SOH) 

platform for integrated optics. The unique properties of selected organic 

materials are added to the basic silicon devices. We investigate the feasibility of 

this approach by making prototypes of key components in form of photonic 

integrated circuits (PIC): SOH lasers and SOH modulators are designed, 

fabricated (partly together with external partners), post-processed, and 

characterized. Application scenarios are identified and demonstrated in proof-

of-principle experiments. A concise overview of the main achievements 

follows. 

Technology Platform Development 
Waveguide loss reduction 

The insertion loss of photonic structures is important. In cooperation with the 

Finnish research group of Honkanen et al., we investigated loss reduction for 

waveguides (WG) by using atomic layer deposition (ALD) to smoothen the 

rough sidewalls of the WGs, which cause strong light scattering. Coating silicon 

strip and slot WGs with a 50 nm amorphous titanium dioxide (TiO2) film 

reduces losses down to (2 ± 1) dB/cm and (7 ± 2) dB/cm, respectively, at a 

wavelength of 1.55 μm. 

CMOS metal stack for SOH applications 

On the one hand, SOH devices rely on the strong interaction of light in the 

organic material with the light guided by an optical WG. On the other hand, a 

metal stack similar to the one used in CMOS technology is necessary to make 

electrical lines in a safe distance above the optical WG layer for avoiding 

additional light attenuation. Hence also the optical WGs are covered with layers 

made of glass, silicon nitride, or silicon carbide. In cooperation with Bogaerts et 

al. from IMEC in Belgium, a procedure for the opening the metal stack layers 

down to the optical WGs has been developed for depositing the organic 

material. The resulting prototypes of high-speed SOH modulators were 

characterized thereby demonstrating the feasibility of the process. 
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Integration of organic crystals on silicon 

Organic crystals possess formidable properties, but their integration on silicon is 

a challenge, especially on a topography as uneven as a CMOS metal stack with 

trenches down to the optical WGs. In cooperation with Jazbinsek et al. from 

Rainbow Photonics in Switzerland, numerous deposition methods have been 

tested. The resulting prototypes were characterized and a suitable method for 

growth was selected. Successful deposition was proven by using the linear 

electro-optic effect of the crystals to show electro-optic modulation. While 

Rainbow Photonics is currently using bulk organic crystals for THz wave 

generation, the integration of the same crystals on silicon promises more 

efficient emitters: Within an SOH WG the pump light can be spatially confined 

to smaller regions for achieving much higher intensities at lower power. 

Demonstrations 
SOH Laser 

For the first time an SOH laser has been demonstrated. The device works at 

room temperature, is optically pumped, uses the dye IR 26 in a polymer matrix 

as a gain medium, and emits at a wavelength of 1310 nm. The emission pulse 

peak power of 1 W at the output facet of the WG is one order of magnitude 

larger than reported for other lasers on silicon. 

High-speed organic crystal modulator 

For the first time a high-speed modulator using organic crystals on a CMOS 

metal stack was demonstrated at 12.5 Gbit/s. This result followed from the 

development of organic crystal deposition for the SOH platform, 

SOH IQ modulator 

For the first time an SOH modulator for complex modulation formats was 

demonstrated at 112 Gbit/s using the 16QAM format. This makes it the 

modulator with the highest data rate for single-polarization and single carrier 

transmission with a bit error ratio (BER) below the hard decision (HD) forward 

error correction (FEC) limit. The measured BER is less than 1.2×10-3. 
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SiGe driver for SOH modulator operation 

The SOH modulators require a driver for supplying an electrical signal. To 

reduce the energy consumption of the system, external electrical amplifiers have 

to be avoided. The compatibility of SiGe drivers (which can be produced more 

economically at lower volume than CMOS drivers) with SOH MZMs has been 

proven experimentally. The utilized SiGe chip accepts electronic input signals 

with powers as low as 20 dBm at 12.5 Gbit/s, and generates an output signal 

with 0.3 V amplitude at 50  (0 dBm). This suffices to drive an SOH modulator 

with on-off-keying (OOK) to generate an optical signal with a quality factor 

Q² corresponding to 11.7 dB. Here, the SiGe chip acts as a signal regenerator 

and signal amplifier only, but additional logical functions could be implemented 

as well. 

Benchmarking with GaAs modulators 

The evaluation of the SOH platform requires a minimum of familiarization with 

its closest competitors. In cooperation with O’Keefe from u2t Photonics UK and 

others, we characterized a GaAs IQ modulator prototype at 25 GBd. Using the 

32QAM format at 125 Gbit/s, a BER below the HD limit for FEC was achieved. 

For a 64QAM format a data rate of 150 Gbit/s was realized with a BER below 

the software decision (SD) FEC limit. This is the first demonstration of an IQ 

modulator for advanced modulations formats, which has been fabricated on the 

GaAs platform. 

Benchmarking with SOI plasma-effect modulators 

In cooperation with Yu et al. from Ghent University, Belgium, we measured a 

plasma-effect Mach-Zehnder modulator (MZM, free-carrier plasma dispersion 

effect) at 35 Gbit/s using on-off keying (OOK) with a BER below the HD  

FEC threshold. 

Photonic Integrated Circuit Designs 
Silicon photonic chips are the workhorse for all research in silicon photonics, 

e.g., research on applied physical effects, on new modulation formats, and on 

demonstrations of new cladding materials leading to ultra-low energy 

consumption of modulators or switches. The chip’s design (creation of mask 

layout) presented a tangible contribution to our group’s success. The following 

masks for deep UV lithography have been designed: 
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Mask E-DESIGN 

For the purpose of providing test samples for material absorption, and for the 

study of waveguide losses related to scattering dependent on waveguide width. 

Mask SOFI 2 

For the purpose of using a CMOS metal stack for making electrodes for SOH 

phase modulators (PM), MZMs, and IQ modulators [J2], [J4], [J7], [C1], [C2], 

[C5], [C6] for optical filter structures implemented as delay interferometers, for 

waveguides designed to make optical parametric amplifiers with quasi-phase 

matching, for liquid-crystal phase shifter test structures, and for packaging 

investigations. 

Mask SOFI 2.5 

For the purpose of making packaging tests, for validating arrayed waveguide 

gratings (AWG) for advanced filtering (designs provided by IMEC), for 

photonic wire-bonding test structures, for SOH lasers, and for ultra-short liquid-

crystal phase shifters. 

Mask SOFI 3 

For the purpose of testing SOH PMs, MZMs, IQ modulators, SOH comb line 

generators, integrated OFDM SOH transmitters, OFDM receiver filter 

structures, for high-speed packet switching, for liquid-crystal phase shifter test 

structures, and for packaging tests. 

Mask MISTRAL-NOGATE I and III, MISTRAL-TOPGATE 

For the purpose of testing SOH PMs, MZMs and IQ modulators from e-beam-

based lithography. [J5], [J7] 



    

1 Introduction – Integration Increases Performance 
Photonic integration promises more efficient devices. With similar or even more 

elaborate functionality as discrete optical components, integrated devices are 

expected to consume less energy, to require much less space, and to need 

smaller amounts of raw materials for production. Common examples include 

integrated lasers, arrayed waveguide gratings (AWG) as optical filters, or entire 

spectrometers as a lab-on-a-chip which consume less analyte and processing 

chemicals. 

Photonic scaling means that a large number of components with different 

or identical functionality can be integrated and interconnected on the same chip. 

Integrated optics will follow the path of electronics. The transistor radio was 

already introduced in 1954. Going beyond single transistors by employing 

integrated circuits (IC) enabled the revolution in computing. The development 

from Intel’s processor 4004 containing 2300 transistors in 1971, to today’s 

processors and graphic cards with more than 1 billion transistors serves as a 

development template from discrete optics to integrated nano-photonic6 ICs. 

1.1 Available Platforms for Photonic Integration 
Discrete optical components are often made of glasses or materials chosen for a 

very specific purpose, such as LiNbO3 for modulators, III-V semiconductors for 

lasers, liquid crystals with some substrate for displays, or metals as coatings for 

gratings in filters. Integrating many hard-to-process materials on the same chip 

is a challenge. In the following, a number of platforms are discussed: 

The silica-on-silicon platform 

WGs are made of SiO2, which only provides a low refractive index contrast7 of 

0.01...0.1n  . That allows for a mode diameter of around 8 µm for the guided 

light, and hence imposes a lower limit of bend radii to around 5 mm. While this 

platform offers low optical loss and easy packaging, devices cannot be 

integrated very densely. Furthermore it takes significant effort to integrate 

                                                 
6 Optical waveguides with sub-micrometer width. 

7 Waveguiding by total internal reflection needs a higher refractive index for the core than for 
the surrounding cladding. 
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functionality beyond simple waveguiding. This is usually accomplished by 

manually inserting discrete components made of other materials, e.g., LiNbO3 

or polymers. 

III-V compound semiconductors  

Compounds such as GaAs, InP, offer a range of very interesting properties, as 

the bandgap and conductivity can be easily engineered. 

The indium phosphide (InP) platform [3] shows an index contrast of 

0.2...0.5n   for optical WGs. The mode diameter of around 2 µm implies a 

lower limit of the bend radius to 0.5 mm. Currently, this platform successfully 

entered the long-haul market, where dense wavelength division multiplexing 

(DWDM) is of interest, in spite of small wafer sizes (2…4”). Yield and 

integrated functionality from lasers, high-speed modulators [4], AWGs and 

high-speed detectors make a very convincing business case. 

The gallium arsenide (GaAs) platform employs larger wafers (6”) than the 

InP platform. A mature infrastructure for making power amplifiers in cell 

phones and monolithic microwave integrated circuits (MMIC) is in place. 

However, there are no lasers or detectors commercially available in GaAs at 

1550 nm, and the typical modulator length of 3 cm is comparatively large. 

Silicon-photonic circuits 

Silicon-photonic circuits are in most cases intended for CMOS compatible 

fabrication, in order to make use of the CMOS industry’s large infrastructure  

and expertise. 

The silicon-on-insulator (SOI) platform features a very large index contrast 

of 1.0 ... 2.5n   for typical claddings. The mode diameter can be around 

0.4 µm which places the lower limit for bends at radii around just 5 µm. Also 

modulators [5] can be made short with a length of 0.5 …3 mm (in non-resonant 

configuration). To make lasers or detectors, additional materials are integrated. 

The hybrid integration of inorganic materials is often referred to as being part of 

the SOI platform. For instance, integrating germanium (approach of Intel, IBM, 

and many others) shows promise to serve for high-speed detectors [6] and also 

to make lasers [7] on silicon. 

The silicon-organic hybrid (SOH) platform is based on the SOI platform, 

but integrates missing functionalities of silicon by incorporating organic 
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materials [C12], [8]. Given a virtually unlimited choice of organic materials and 

engineering possibilities, the unique properties of materials of the organic world 

of chemistry can be added to these silicon-based PICs. This is the platform 

under investigation in this thesis. 

Silicon-on-sapphire (SOS) is another modification of the SOI platform, but 

avoids buried silicon oxide as insulator. Instead, sapphire is used to obtain a 

good transparency even for longer wavelengths than are usable with SOI, 

making it a very interesting candidate for mid-IR applications. 

In spite of the challenge to make lasers or detectors for IR light on silicon, a 

business case is forming for the silicon platform. It uses much larger wafers 

than all other platforms (diameter 8 in…12 in). This is important, because 

hundreds of processing steps need to be performed for each wafer. Dense 

integration allows devices with small footprint (10 000 times smaller as 

compared to the silica-on-silicon platform). Provided that integration of 

additional functionality succeeds, the silicon platform is expected to offer a cost 

advantage for large production volumes when compared to the other platforms. 

The silicon platform might also be the only scalable platform to make 

affordable consumer products.  

1.2 Employing CMOS-Based Silicon Photonic Processes 
Adhering to CMOS process standards achieves compatibility with the CMOS 

infrastructure, and this comes with additional benefits. A lesson to be learned 

from the integrated electronics industry is that the risks related to fabrication 

can be minimized by using the foundry model. Activities like design, 

packaging, quality control, and marketing are separated from the fabrication, 

which is outsourced to a foundry8 – another company which focuses solely on 

fabrication for multiple clients. Thus, the foundry can flexibly react to market 

demands. 

For those interested to make highly complex and powerful PICs, additional 

advantages can be found: A project manager will value the volume scalability 

and reliability of production from a foundry. This considerably reduces risks 
                                                 
8 Examples of CMOS foundries: GlobalFoundries, freescale, tsmc (Taiwan semiconductor 

manufacturing company). For research purposes: imec in Belgium, CEA Leti in France, 
IME in Singapore. 
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and cost compared to an in-house production. A product engineer can rely on 

the extensive design specifications a foundry has to supply, and he can count on 

sufficient fabrication yield. In a research setting, a PhD candidate can make a 

PIC design and concentrate on the scientific aspects, while an experienced fab-

fabrication facility8 takes care of the routine work of structuring the SOI wafers. 

For silicon photonic processes, only a large commercial demand would 

enforce common standards that are required before any large CMOS foundry 

will start implementing the inevitable adaptations of its processes to make PICs. 

The fact that significant industry interest has already formed around the 

processing of silicon for photonic purposes leads to a preference of materials. 

These materials include:  

- Crystalline silicon  

(c-Si, provided as wafer, adjustable electronic properties), 

- Poly-crystalline silicon  

(poly-Si, from deposition, adjustable electronic properties), 

- Amorphous silicon  

(a-Si, from deposition, limited choice of electronic properties, unstable). 

- Silicon nitride  

(Si3N4, from deposition, limited choice of electronic properties, excellent 

low loss for light propagation [9]), 

Each of these materials and their combinations can be used for making photonic 

integrated circuits on silicon substrates. Multiple layers could be deposited and 

allow making even more complex circuits, i.e., a 3D silicon photonic stack 

(multiple layers, each with optical waveguides). In this work we limit our study 

to crystalline silicon. For benchmarking also GaAs is investigated.  

1.3 Light Generation Using the SOI Platform 
An on-chip light source could contribute to or enable a number of applications, 

such as data communication for optical interconnects, or even intra-chip 

communication (e.g., clock signal distribution). In addition, some biomedical or 

sensing applications (e.g., measuring the concentration of an analyte) also 
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require a light source. In short, on-chip sources are obviously of use for any op-

optically integrated device, especially to reduce coupling efforts9 of light.  

An overview of lasing on silicon is given by Liang and Bowers [10]. We 

concentrate here on laser emission at IR wavelengths, although there are other 

interesting ways to obtain light emission, e.g., by third harmonic generation 

using photonic crystals [11]. Also, light emitting diodes using photonic crystals 

of silicon, which are electrically pumped, have been fabricated and obtain low-

power (4 pW) narrow emission lines at a wavelength of 1515 nm at room 

temperature [12]. Optically active defects were introduced in Si by treating it 

with hydrogen plasma.  

To make a silicon laser, several different approaches can be distinguished: 

Raman lasers 

Silicon lasers using the Raman effect need an optical pump. A recent overview 

is given by R. Baets in [13]. The first continuous wave (cw) Raman laser [14] 

still required hundreds of mW of pump light for laser emission of up to 10 mW. 

A lower threshold of 20 mW was shown in [15] for lasing from a ring cavity. 

This laser can deliver up to 50 mW of output power. 

Recently, a continuous wave (cw) micrometer-scale Raman silicon laser 

(less than 10 µm  2 µm footprint) based on a photonic crystal cavity an having 

a microwatt threshold was demonstrated [16]. At a wavelength of 1428 nm the 

pump light generates laser light at 1543 nm.  

Given the low pump threshold, multiples of these lasers could be optically 

pumped on-chip from a single external laser, which would be distributed exactly 

where needed on-chip [13]. 

Epitaxially grown lasers on silicon 

To use a material with a more favorable bandgap than Si, other suitable lasing 

materials could be epitaxially grown directly on silicon. However, the lattice 

mismatch between Si and semiconductors such as Ge and InP disturbs the 

                                                 
9 For instance pump light can be coupled once to the chip to optically pump an array of on-

chip lasers made for different wavelengths. Otherwise providing light with multiple, but 
separated wavelengths would require coupling light of each wavelength separately or using 
optical filters for multiplexing and de-multiplexing. 
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crystalline growth. Michel et al. overcame this issue and realized the first opti-

optically pumped germanium-on-silicon laser [17]. Later on, they built an 

electrically pumped Ge laser [18]. The latter device emits at room temperature a 

multimoded beam with 1 mW of output power. The gain spectrum is rather wide 

(up to 200 nm), and laser lines at 1576 nm, 1622 nm and 1656 nm have been 

demonstrated. This type of silicon laser has a very small footprint and shows 

promise for applications ranging from short distance chip-to-chip 

communication to even intra-chip communication. Note that Ge integrated on 

SOI by the same research group has also been used to make high-speed photo 

detectors. 

Hybrid silicon lasers 

The InP platform allows fabricating efficient lasers with high yield. Flip-chip 

bonding of already validated InP laser diodes directly on silicon wafers is a 

most cumbersome process due to alignment and yield issues.  

An unstructured InP stack can be bonded to the silicon wafer before it is 

structured. This can be done wafer-to-wafer, or because of yield issues die-to-

wafer, using molecular bonding, or adhesive bonding. In demonstrated 

prototypes the resonator is realized in the silicon layer, while the gain is 

contributed by the InP stack, either by evanescent coupling or by actually 

guiding the light in the InP stack. Fang et al. demonstrated a distributed 

feedback silicon evanescent laser [19]. The highest reported output power of 

such a III-V-Si hybrid laser is 29 mW [20]. This type of laser is mostly 

advertised for data communication applications. 

In this thesis we explore the potential of using organic materials, dye 

molecules in particular, to create a high peak power laser using the silicon-

organic hybrid (SOH) approach. Especially applications in spectroscopy and 

sensing can make use of a high light intensity, either to exploit a nonlinear 

property, e.g., of an analyte, or simply to allow measurements of strongly 

absorbing substances. Investigating lasing from dye molecules can also be seen 

as an intermediate step, prior to testing other gain materials including quantum 

dots (with the potential for electrical pumping) and erbium-doped materials in 

similar silicon structures. 
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1.4 Data Communication Using the SOI Platform 
The information society relies on the further development of the internet. There 

is a demand for: 1. Continued exponential growth [1] of transportation capacity. 

2. The continued growth of data centers for services, such as enabled by  

cloud computing. 

To demand 1: A further increase of capacity is required in networks, which 

constitute [21] the internet at various scales:  

(a) The optical wide area network (WAN, which bridges distances of 

hundreds to thousands of kilometers including the global backbone, and 

other long-haul networks) is currently in a transition to higher data rates 

from 40 Gbit/s to 100 Gbit/s per optical subcarrier. While symbol rates 

are limited by the electronic driving circuits, the bitrates increase due to 

the choice of advanced modulation formats. In addition, multiplexing 

techniques, such as dense wavelength division multiplexing (DWDM), 

are used. A transition to even higher spectral efficiency seems inevitable. 

Nyquist-WDM or OFDM (orthogonal frequency division multiplexing) 

can deliver higher spectral efficiencies [22]. This case demands for PICs 

with integrated modulators that support advanced modulation formats, 

filter structures such as arrayed waveguide gratings (AWG), and delay 

interferometer cascades. 

(b) Also the capacity of the optical metropolitan-area network (MAN) has to 

grow. This includes the metro core (typical circumference of 

100…200 km), and metro access networks (typical circumference of 

30…60 km). These are often implemented as ring networks, using 

DWDM or coarse WDM, although with fewer channels than in a WAN.  

(c) The access network, i.e., the network connecting the subscriber to the 

metro access network, still uses twisted-pair copper lines in many cases 

(e.g., DSL in Germany). Most recently (August 2013), Alcatel-Lucent 

demonstrated the current limits for such copper lines [23]: Using the 

G.fast transmission standard, and a special technique called vectoring for 

cancelling noise from crosstalk, a data rate of 1.1 Gbit/s can be achieved 

over 70 m of good quality cable, and 0.5 Gbit/s over 100 m for 

unshielded cable. To generate the noise cancelation signals, this 
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technology comes at the cost of increased demands for digital processing 

which in turn increases energy consumption. The alternative is to 

connect subscribers directly with optical lines, which is called fiber-to-

the-home (FTTH). This can be realized for example as a passive optical 

network (PON). Access networks require large piece numbers while 

placing challenging demands on cost and thus present another use case 

for inte-grated optics. 

To demand 2, continued internet growth also depends on its data centers: 

These already take dimensions larger than warehouses and are preferably placed 

in regions with cooler climate and cheap energy supply. The communication 

between servers in such a data center requires data transport over tens to 

hundreds of meters at highest data rates. Optical methods are well suited for this 

task, but the optical interconnects (server-to-server connections) have to be 

particularly small and energy efficient because of space and cost constraints [2]. 

This makes another use case for PICs.  

In this thesis we concentrate on one key component to address the demands 

mentioned above, namely on silicon modulators in a non-resonant 

configuration, to later allow their use independently of wavelength. Current 

modulators fabricated on the SOI platform reach data rates up to 50 Gbit/s [24] 

using on-off keying (OOK, a modulation format for direct detection, see 0). 

SOH modulators may compete [25] with these devices in terms of bandwidth.  

Using higher order modulation formats, the data rate can be increased to 

112 Gbit/s, as shown by P. Dong using an SOI-modulator. This data rate can be 

even doubled, when using polarization multiplexing [26]. The SOH modulator 

demonstration at 112 Gbit/s as reported in Section 4.2 uses an organic cladding 

of chromophores hosted in a polymer matrix and features superior modulation 

sensitivity, compared to the device of P. Dong, resulting in better performance 

in terms of the resulting bit-error ratio (BER). The targeted application scenario 

for this modulator targets are long-haul networks. 

Another type of SOH modulator is discussed in section 4.1 and uses organic 

crystals as a cladding. This is a proof-of-principle experiment for the employed 

material class. However, showing high-speed modulation of 12.5 Gbit/s proves 

that the material is integrated well enough to enable a range of other application 

otherwise not available on the SOI platform. 



    

2 Theoretical and Technological Background 
This chapter covers the theoretical background for this thesis, namely: The 

propagation of electromagnetic waves, and how to harness control of these 

waves to enable or to avoid their interaction by properly shaping SOI 

waveguides from CMOS-based fabrication technology. A specific example for 

such an interaction is discussed for stimulated light emission with SOH 

structures, and another example is presented which employs the interaction of 

an optical and a radio-frequency (RF) wave to obtain modulation of light. An 

overview about the used modulation and multiplexing techniques is given. 

Many design decisions and challenges of this work are driven by technological 

constraints.  

2.1 Fundamentals 
The propagation of electromagnetic (EM) waves has been extensively studied 

for more than a century. In spite of the complexity of real devices due to their 

geometry and number of (even nonlinear) materials involved, the origin of the 

behavior of EM fields propagating in these devices can be partly understood 

analytically. To introduce the symbols used in this work, a number of 

fundamental relations are restated here. Vectors and matrices are printed in  

bold letters. 

Time t and the spatial coordinate r = xex + yey + zez (unit vectors ei spanning 

a Cartesian coordinate system) are used to describe the following quantities: 

The electric field vector ( , )tr , the magnetic field vector ( , )tr , the electric 

flux density ( , )tr , the magnetic flux density ( , )tr , the electric current 

density ( , )tr , the electric charge density ( , )t r  are all real-valued. The 

permittivity of vacuum 0 and the permeability of vacuum 0µ are constants and 

defined in Appendix C.1. 
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2.1.1 Maxwell’s Equations 
Maxwell’s equations (p. 6 in [27]) can be written as 

 
( , )

( , )
t

t
t


  


r

r
 , (2.1) 

 
( , )

( , ) ( , )
t

t t
t


  


r

r r
  , (2.2) 

 ( , ) ( )t   r r , (2.3) 

 ( , ) 0t r . (2.4) 

We assume in this subsection that there are no free charges, no free currents, 

and consider a nonmagnetic material. It follows that 

        00  ,     , 0  ,      , ,t t µ t   r r r r   . (2.5) 

The real valued polarization density (in short polarization) ( , )tr  is implicitly 

defined using  

 0( , ) ( , ) ( , )t t t r r r   . (2.6) 

Following p. 71 in [28] one can take the curl of Eq. (2.1), uses Eq.(2.2) and Eq. 

(2.6), (c is the velocity of light in vacuum, 2
0 0c µ  ) and can derive the most 

general form of the wave equation in nonlinear optics 

 
2 2

2 2
0

1 1
( , ) ( , ) ( , )

² ²
t t t

c t c t
 

   
 

r r r   . (2.7) 

Assuming additionally that the medium is isotropic and homogenous, 

( ) 0  E , the wave equation for the electric field reads 

 
2 2

2
2 2

0

1 1
( , ) ( , ) ( , )

² ²
t t t

c t c t
 

  
 

r r r   . (2.8) 

It is possible to split ( , )tr  into a linear and a nonlinear part,  

 (1) (NL)( , ) ( , ) ( , )t t t r r r   . (2.9) 



Fundamentals 11 
 

2.1.2 Linear Polarization 
Let us assume for the moment that the material is also lossless, and that its 

polarization is entirely linear. Then Eq. (2.6) can be written using the material 

dependent dielectric permittivity r  as 

 0( , ) ( , )rt t r r  . (2.10) 

In this case, Eq. (2.8) can be written in a simpler form in Fourier space (Helm-

holtz equation, for the Fourier transform see Appendix A.2) using the angular 

frequency  : 

 2 2
0 0( , ) ( , ) 0rµ      r r   . (2.11) 

The solutions of this equation are plane waves, which can be found with a 

separation ansatz [29] in the time domain. In this ansatz, the rapidly changing 

spatial (in propagation direction z) and temporal (dependent on t) contributions 

are written separately from an amplitude factor A(z,t) (which is thus assumed to 

be only slowly varying) and a factor to describe the transverse field distribution. 

Here, we consider a group of plane waves with propagation in z direction 

having a central frequency c . The normalized (such that the guided wave 

power will be |A(z,t)|2/2) electric, respectively magnetic field distributions in the 

transverse (to the propagation direction) plane depend on the waveguide’s cross 

section and are denoted with 

    t c t c, ,  and , , .x y x y E H  (2.12) 

The propagation constant   containing the effective refractive index effn  is  

 c
effn

c

   (2.13) 

The solutions to the Helmholtz equation for linearly polarized light are made of 

analytic functions of the form 

        c t c

Amplitude factor, Propagator term,Rapidly varying Transverse (index t) 
slowly varying in rapidly varyingin time distribution
time along of electric field

( , ) , exp j , , exp j

z

t A z t t x y z   E r E  , (2.14) 

        c t c

Amplitude factor, Propagator term,Rapidly varying Transverse (index t) 
slowly varying in rapidly varyingin time distribution
time along of magnetic field

( , ) , exp j , , exp j

z

t A z t t x y z   H r H  . (2.15) 
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Applying the Fourier transform (see Appendix A.2 for definition) to the slowly 

varying envelope and the other time-dependent term gives 

       c cF , exp j ,A z t t A z    . (2.16) 

The transverse functions are assumed to depend neither on t nor  , 

 
   
   

t c t c

t c t c

, , , ,

, , , ,

x y x y

x y x y

 

 





E E

H H



 . (2.17) 

The resulting solution functions are complex and written as 

        c c t c, , , , exp jA z x y z        E r E  , (2.18) 

        c c t c, , , , exp jA z x y z        H r H  . (2.19) 

The real valued physical quantities ( , )tr  and ( , )tr  can be found by just 

taking the real part (c.c. denotes the complex conjugate) of the found solutions  

       t c c

1
( , ) , , , exp j j c.c.

2
t A z t x y t z    r E , (2.20) 

       t c c

1
( , ) , , , exp j j c.c.

2
t A z t x y t z    r H . (2.21) 

The wave impedance NZ  of the medium is the ratio of the electric and magnetic 

field, and defined as 

 0
N

0 r

Z

 

 . (2.22) 

2.1.3 Nonlinear Polarization 
Returning to the general case which includes nonlinear polarization, it is 

convenient to limit all following considerations to assuming that the electric and 

magnetic fields can be written as a superposition of narrowband analytic 

functions centered at angular frequencies 1 2, ,...   in Eqs. (2.14) and (2.15), 

      1 1 2 2, , ,        E r E r E r     (2.23) 

Looking at the polarization in Fourier space allows a more intuitive 

understanding of the nonlinear interaction between the light and medium. The 

polarization in the transverse plane is also written as t c( , )P r  from here on. It 
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depends on the susceptibility of the medium, which is usually complex to also 

describe the optical loss. We assume from here on (in this section) that all 

relevant optical frequencies are far from any resonance in the medium. For 

linear, isotropic media, using the Fourier transform (see Appendix A.2 for defi-

nition), the linear polarization, see Eqs. (2.9) and (2.10), can be written for the 

transverse components as 

 (1) (1)
t c 0 t c( , , ) ( , , )x y x y   P E  . (2.24) 

The second-order term of the polarization, which describes the linear electro-

optic effect (also called Pockels effect), can be written [28] with  , , ,i j k x y  

as 

 (2) (2)
,t c 0 c c ,t ,t c

,

( , , ) 2 ( : 0, ) ( , ,0) ( , , )i ijk k j
j k

P x y E x y E x y         . (2.25) 

This expression for the polarization (2)
t c( , , )x y P  allows the quantification of 

the interaction of a static electric field t ( , ,0)x yE  and a light field t c( , , )x y E  

existing in the same medium with the nonlinear susceptibility (2)
c c( :0, )ijk   .  

2.2 Waveguiding Structures on SOI 
We focus on devices, more specifically photonic integrated circuits (PIC), 

which can be realized using the CMOS fabrication infrastructure. Fundamental 

building blocks are required to achieve modulation / switching, or light 

emission, and to realize passive routing of light and RF signals, coupling of 

light from and to the device. 

2.2.1 Silicon Properties and Silicon-Organic Hybrid Approach 
Looking at fundamental physical properties, the advantageous and 

disadvantageous properties of using crystalline Si as a base to build photonic 

waveguides (WG) and a number of (mostly) passive structures are explored in 

this section. 

The electrical properties of silicon arise from its nature as a group IV 

semiconducting material. The conductivity of crystalline silicon can be 

controlled by simply implanting ions of groups III or V. The introduction of 

these dopants into the crystalline silicon creates free carriers, but also little 

defects in the crystal structure, with consequences for the optical properties.  
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Another, notably dynamic way to manipulate the conductivity of silicon is 

to influence the carrier density with electric fields, for instance applied using an 

external voltage source. A well know example is the field effect transistor 

(FET), often implemented as metal-oxide-semiconductor field effect transistor 

(MOSFET). Applying a voltage (with correct polarity) between the so-called 

gate electrode and the body (often connected to the source electrode) creates an 

electric field. This causes an accumulation of carriers between source and drain 

electrodes. This leads to the formation of a channel, such that a current can flow 

between source and drain. Note that due to the insulation of the gate with a 

dielectric (often an oxide), this current is controlled by a voltage and does not 

necessitate a current (beyond charging the gate-body capacitance) in contrast to 

bipolar junction transistors. 

Transparency in the range of infrared (IR) wavelengths is a great advantage 

of silicon. Absorption is low in the most commonly used spectral transmission 

windows of telecommunication. These so called bands start at a wavelength of 

1260 nm (O band, chosen for zero dispersion in standard single mode fiber). 

There are furthermore the bands E, S, C (chosen for low absorption and because 

erbium-doped fiber amplifiers (EDFA) are available for amplification), L, U 

(ending at 1675 nm). The high refractive index of 3.5 in the C band provides for 

high confinement of light to silicon waveguides (WG) when surrounded by 

standard materials (such as air, silicon oxide SiO2). A high confinement means 

the light follows more closely the shape of the waveguide, which makes tighter 

bends possible. Hence the material is attractive to make PICs, because very 

dense integration is feasible. This is of advantage for making devices with low 

footprint, but also because a high intensity of light can be easily realized, as 

needed for applications in nonlinear optics. 

Crystalline silicon has a bandgap of 1.1 eV, which explains the high 

absorption observed for wavelengths below 1.15 µm. For light propagating a 

distance l in silicon with a measured attenuation coefficient meas the fraction of 

its intensity after propagation Ilight(l) and the intensity before I0, light is  

  light 0, light meas( ) expI l I l  . (2.26) 

Changing the number of free carriers by injection or depletion causes 

changes in the refractive index n and absorption at the same time, which is 

called the free carrier plasma dispersion effect. To quantify the change in 
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transparency of silicon Soref  one can therefore refer to a model proposed by 

Soref [30], [31] based on the classical Drude model. It describes the power 

attenuation coefficient in silicon dependent on the change of concentration of 

electron density Ne and hole density Nh (ranging between 17 20 310 10 cm ) 

due to implants using the constants 22 2
e 8.5 10 cmC    and 22 2

h 6.0 10 cmC   . 

 Soref e e h hC N C N      (2.27) 

The refractive index change Sorefn  is related to the change in absorption by the 

Kramers-Kronig relation [28], and contains an empirical correction, 

 22 3 18 3 0.8
Soref e h8.8 10 cm 8.5 10 (cm )n N N         . (2.28) 

Using an empirical model from Vardanyan et al. [32] promises better accuracy 

of the power attenuation coefficient, for n-type (valid for 1.15 6 µm   ) 
3 2

n, Vard 18e
1 3

10 (1.207 11.70 48.39 34.81) 
cm cm µm µm µm

N   
 

     
        

     
, (2.29) 

and p-type silicon (valid for 1.15 8 µm   ) 
3 2

p, Vard 19h
1 3

10 ( 2.485 65.54 120.11 122.2) 
cm cm µm µm µm

N   
 

     
         

     
.(2.30) 

However, both Soref and Vardanyan do not differentiate between free carriers 

created from impurity ionization and from injected free carriers. As 

Alloatti [33] pointed out, creating a charge accumulation layer can be the 

preferred approach when an increase in conductivity is desired, while an 

increase in optical losses has to be shunned. Injected charges cause less optical 

loss than free carriers from implanted ions, which represent a defect in the 

crystal structure. An application of this idea to optoelectronic devices, 

modulators in particular, has led to the patent applications [P1, P2]. 

The indirect nature of the bandgap of Si prevents the construction of lasers 

using bulk c-Si. The nonlinear optical properties of c-Si are determined by its 

crystal structure. As for any centro-symmetric bulk crystal, the nonlinear 

susceptibility contribution of (2)  and higher even orders is negligible. 

However, crystalline silicon has a significant real and imaginary (3)
susceptibility.  



16  Theoretical and Technological Background 
 

 

A number of applications require properties not available in silicon to ena-

ble light emission or (2) related effects. To circumvent the limits of silicon, 

other materials can be combined with the PIC. Especially the class of organic 

materials offers a practically unlimited choice of substances and compounds 

with unique properties.  

Silicon-organic hybrid (SOH) devices, which combine silicon and organic 

materials, can be constructed [8] by integrating selected organic materials with 

silicon. Examples for the functionality achieved with organic materials on 

silicon devices include: 

- A strong (2) -susceptibility, discussed in section 2.4.2, to make a silicon 

high speed modulator. 

- A strong (3) susceptibility for optical de-multiplexing [34]. 

- The capability for stimulated emission, discussed in Section 2.3, to make 

a silicon laser. 

2.2.2 SOI Waveguides 
To control light and determine its propagation in PICs, the geometry of silicon 

and its surrounding materials is discussed here. It is of great practical value to 

find WG structures, which have similar Eigen-solutions (modes) of Maxwell’s 

equations (for optical frequencies) at their input and output ports. By assuring 

that light is guided in the ground mode at those ports, building blocks can be 

defined, enabling a modular construction of the PIC. If the modes at the ports 

between some components do not match, mode converters have to be used. 

A standard structure is an optical strip WG, see Fig. 2.1(a), which is: 

- translation invariant in propagation direction (z) of the light,  

- made of a rectangular cross section  of c-Si (n = 3.5 at a wavelength of 

1.55 µm, dimensions in the order of the intended wavelength, often at a 

width of 500 nm and height of 220 nm), 

- surrounded by a material with lower refractive index, like SiO2 (n = 1.5 at 

a wavelength of 1.55 µm) or with polymer cladding (n = 1.7 in 

Fig. 2.1(a)). 
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To find the modes for this high index contrast WG ( 2n  ), we use CST 

Microwave Studio or COMSOL to numerically solve Maxwell’s equations and 

obtain the electric field distribution, see Fig. 2.1(b). Pure transverse electric TE 

and transverse magnetic TM modes are not to be found in strongly guiding strip 

waveguides. Instead hybrid modes are called (quasi-) TE modes (have a 

dominant electric field Ex component) and (quasi-) TM modes (have a dominant 

electric field Ey component). 

 

Fig. 2.1: Cross sections of optical waveguides (WG). The upper row shows the refractive 
index. The maximum height of the silicon part is 220 nm. The lower row shows the 
distribution of the electric field (the dominant Ex-component) for the quasi TE-mode. (a,b) 
Strip WG, (c,d) rib WG with 150 nm high Si strips on both sides of the rib, which has a 
width of 700 nm, (e,f) slot WG with 120 nm slot width, and (g,h) striploaded slot WG 
with 50 nm high silicon strips and 120 nm slot width. 

To maintain compatibility with CMOS-based processes, so-called silicon-

on-insulator (SOI) c-Si wafers are used here. These are manufactured to have a 

750 µm thick crystalline silicon substrate, with a 2 µm thick oxide layer on 

which a 220 nm thick crystalline silicon layer can be structured to result in 

silicon waveguides. The ratios between WG height, width and SiO2 layer 

thickness is chosen to avoid leaking of light into the substrate, when guided in a 

WG. This layer stack is by no means the only option available to make silicon 

photonic WGs, but a very common one, which allows for relatively small WGs 

(order of wavelength) and hence dense integration.  

Waveguide geometries can be adapted for different purposes. Depending on 

the intended application, different WGs can be realized. For special purposes, 

i.e. dispersion engineering, periodic structures are made. Some reach a 

periodicity with a unit cell length below the wavelength intended to decrease 

the group velocity over several orders of magnitude to enhance the interaction 
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of the light with the structure, discussed as photonic crystals for instance 

by [35].  

Here, we discuss z-translation invariant (in propagation direction) 

waveguide cross sections. To enable a purpose-oriented description of the 

modes of these structures, a number of useful definitions are given: 

The effective refractive index neff for a waveguide or its propagation 

constant  need to be determined numerically for the waveguide profiles 

presented below and depends on the angular frequency  of the light. 

The interaction of the light in a WG with a given region (modal overlap 

integral with a given region) of the waveguide can be quantified with the 

interaction factor [36]. The same coordinate system as introduced in Fig. 2.1 is 

used. The refractive index of the region of interest (integration domain of the 

numerator integral), is described by nreg. Z0 is the vacuum impedance, ez the unit 

vector in z-direction. The symbol * denotes the complex conjugate. Here, the 

interaction factor  , also sometimes called confinement factor, is defined as 

 

 
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2reg
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  





E

E H e



  . (2.31) 

The integration domain of the denominator integral is the entire waveguide 
cross section. A large interaction factor for a certain WG region means that a 
respectively large amount of light is guided in this WG region. The interaction 
factor allows for a convenient linear approximation of the effect of changing the 

refractive index regn of a material/part of a WG on the resulting change of 

effective refractive index effn  of the WG.  

 eff regn n   (2.32) 

Dependent on the application it can be useful to integrate only over the effective 

components of the electric field  t c, ,x y E  in the numerator. For instance, if 

only the x-component is relevant for an interaction, then  t c, , xx y  E e  is 

integrated. In this case, the field interaction factor Ex for the x-component of 

the electric field is 
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The change of refractive index can be calculated similar to Eq. (2.32). 

 eff regExn n    (2.34) 

For effects depending linearly on intensity, a description of the light 

distribution by the effective mode cross section effA  is useful, which is defined 

here [29] as 
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A smaller effective mode cross section means that the amount of light guided in 

this region is more concentrated, i.e., the intensity is higher, which can be of 

advantage in a number of nonlinear applications. 

Another measure proposed to describe the spatial extent in x-direction of 

the TE-mode for a region of a WG is the mode field diameter (MFD). Similar to 

a common method to derive the MFD of a beam, we calculate it as a second 

moment width along x-direction, for a definition of moments see Appendix A.2. 

The difference to the common definition is that we only consider part of the 

cross section, i.e. a particular region. The purpose is to derive an effective width 

for the part of light which is guided in that region. To calculate it, we need the 

first moment x , which will be zero as we only consider WGs which are 

symmetric in the y-z-plane. 
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The effective mode field diameter is defined here as 
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A large MFD means a larger extension of the mode in the considered region 

along x-direction.  

While the maximum height of the c-Si part of WGs is fixed to 220 nm by 

the employed wafers in this work, a number of geometrically different WG 

cross sections can be considered: (a) to transport light efficiently over long 

distances on the chip and (b) to allow efficient interaction of the light with the 

material, while maintaining compatibility to CMOS fabrication processes at the 

same time.  

Efficient on-chip long distance travel of light  

The strip waveguide presented above presents the standard solution to guide 

light between different functional components on a PIC. Its fundamental mode 

can be converted to the fundamental modes of other waveguide cross sections, 

e.g. by adiabatic tapers. A typical width of 450…500 nm is chosen to make tight 

bends (radius of 5 µm, [37]) without needing to change the WG’s width. An 

example of its electric field distribution (dominant x-component) is presented in 

Fig. 2.1(b). However, in this figure it becomes apparent that the intensity of 

light at the sidewalls of the Si strip is relatively high, which will result in 

scattering and thus propagation loss of typically 2…3 dB/cm (for WGs from 

DUV). Recently, the rib waveguide shown in Fig. 2.1(c) has been proposed and 

demonstrated [38] to exhibit lowest loss of 0.7 dB/cm. Its large rib width of 

700 nm, and even larger Si slab (the Si strip on both sides with a height of 

150 nm) width of 3 µm confines the light to the largest part in the Si WG itself. 

Crucially, the area of the sidewalls next to the rib is strongly reduced, see 

Fig. 2.1(d), thus scattering minimized. 

Efficient on-chip light-material interaction  

In addition to the strip WG presented above, waveguides which maximize the 

interaction of light with the cladding are of interest for a number of 

applications, especially if the properties of an organic cladding are to be 
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exploited using the SOH approach. The confinement of light to a strip wave-

waveguide can be reduced by decreasing its width, which reduces the effective 

refractive index and thus increases the overlap with the cladding. A lower limit 

of this solution is imposed by the substrate in close proximity, which will cause 

leaking of light from WGs with too small widths. The slot waveguide depicted 

in Fig. 2.1(e) increases the interaction of light with the cladding. It consists of 

two narrow strips, also called Si rails, which are placed parallel and close to 

each other. The components of the electric displacement field  ,tr  normal to 

the interface are continuous across the interface of cladding and silicon, 

    Si Clad, ,t t  n r n r  . (2.38) 

This leads to a strong enhancement of the Ex-component of the electric field in 

the slot, see Fig. 2.1(f), and thus to strong interaction of the guided light with 

the cladding material. By adding Si strips of low height (e.g. 45…70 nm) to the 

rails, as depicted in Fig. 2.1(g), a strip-loaded slot waveguide (also called socket 

waveguide) is created. The confinement of light in the cladding remains high, 

Fig. 2.1(h). By doping the strips, an electrical contact can be established from 

the rails to the other end of the Si strip. At this end metal electrodes can be 

placed, without risking an attenuation of the guided light by the metal.  

A standard concern is to achieve low-loss propagation. Losses are caused in 

part by absorption in the bulk crystal, Eq. (2.27), caused in part by surface 

states [39], but primarily caused by scattering on non-ideally smooth material 

interfaces [36]. While the surface of an SOI wafer comes close to be atomically 

flat, the roughness of WG sidewalls is mostly determined by the fabrication 

methods. Especially the lithographic definition of waveguides is a major issue, 

because the roughness of the chromium mask is eventually transferred to the 

silicon WG’s sidewalls by a dry etching. The amount of scattering strongly 

depends on the dimensions of surface roughness [36] and also on the refractive 

index contrast at the material interface. If a lithographic resist pattern is well 

defined, smoother waveguide sidewalls with less scattering losses will result. 

This is the case when using e-beam lithography compared to deep UV 

lithography (at a wavelength of 193 nm). The latter nevertheless presents the 

only viable option for mass production.  

For silicon WGs with air cladding, such as of interest for bio-sensing 

applications, it has been suggested and demonstrated in a collaboration with 
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Honkanen et al. [J13], [J12] that an additional material layer between Si and air 

can reduce losses. A deposition technique called atomic layer deposition (ALD) 

is employed. It creates precise, smooth, ultra-thin layers (several tens of nm 

thick coating) of TiO2. As shown in the next figure, variations on the silicon 

surface will not be completely transferred to new layers grown with TiO2, but 

will be gradually lost with increasing thickness. The refractive index of TiO2 is 

n = 2.27 at a wavelength of 1.55 µm. That means the original material interface 

Si-air is substituted with two interfaces, Si-TiO2 (same roughness as Si-air, but 

reduced index contrast) and TiO2-air (strongly reduced roughness compared to 

Si-air, slightly weaker index contrast). As a result scattering losses are reduced. 

 

Fig. 2.2: Simulation TiO2 grown by atomic layer deposition (ALD) on a rough Si surface. 
Darkest grey depicts the Si with a surface roughness which is exponentially distributed 
(correlation length is 15 nm) and has an effective (RMS) roughness of RMS = 5 nm. The 
deposition of 10 nm thick layers of TiO2 shows that the resulting effective roughness is 
reduced of each layer. Image source: Fig. 1 in [J13], ©OSA 2011. 

Anisotropic wet etching presents another method to correct for 

imperfections of the lithographic mask and is discussed by Palmer et al. [C25]. 

This method relies on the different etch velocities for different Si crystal planes, 

as the name suggests. On the one hand, exposing crystal planes provides 

atomically flat surfaces (up to a limited spatial extend), i.e. reduces scattering to 

a minimum. On the other hand, any structure which is to be produced with this 

method has to have its WG sidewalls aligned according to the crystal planes. 

This significantly restricts the possible shapes to form photonic structures and 

requires further effort to develop building blocks compatible to anisotropic wet 

etching. 
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2.2.3 SOI Standard Structures 
Numerous combinations of the waveguide types presented in the preceding 

section can form a PIC. More functionality is provided by standard structures 

discussed here.  

Coupling light to and from the chip can be done by utilizing inverted10 

tapers to increase the mode field diameter of the light guided from the Si chip to 

a small-core fiber (mode field diameter e.g. 3 µm). Another approach suited for 

prototyping and used throughout this work is based on grating couplers, i.e. 

Bragg gratings defined by shallow trenches on top of a wide strip waveguide to 

diffract light from the WG into a standard single mode fiber (SSMF, mode field 

diameter 10 µm). Typical losses are 3…5 dB/coupler [40]. The use of p-Si over-

claddings can significantly reduce the losses further. 

Transitions from strip to slot and strip-loaded slot waveguides have been 

designed, fabricated and characterized by Palmer et al. [J8]. In essence: an 

adiabatic transformation from the quasi TE mode of the strip is made to the TE 

mode of the slot waveguide, in such a way that both rails remain electrically 

insulated. 

Mach-Zehnder Interferometers (MZI) can be used to make spectral filters or 
a conversion of electrical signals into optical signals. The MZI is constructed in 
this work by combing waveguides with multi-mode interference couplers 
(MMI) (directional couplers present another option to make splitters and 
combiners, as demonstrated elsewhere [41]). Here, we consider an MZI with a 
delay   in one arm and two phase shifters 1  and 2 , one in each arm, as 

shown in the next figure. All optical parts are depicted in blue. It is assumed that 
the polarization of the light remains unaffected by the device, i.e., no 
polarization dependent effects are considered here, because the MZMs are 
operated with quasi-TE modes all the time. The phase shifters are operated by 
applying an effective voltage S,effV between the ground-signal-ground (GSG) 

electrodes. All electrical parts are depicted in orange or red. The particular 
implementation of the phase shifter and its response to a voltage is defined later. 

                                                 
10 Inverted tapers are made from strip WGs, where the width (and ideally also height) of the 

Si strip is tapered down towards the end of the WG, such that the light coming from the 
PIC is less and less confined to the Si strip and the mode field diameter is growing. Light 
can propagate on the same structure in the other direction as well. 
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Here we only assume the resulting phase shifts as linear functions  1 S,effV  and 

 2 S,effV .  

 

Fig. 2.3: Delay interferometer (DI) composed of 2 multi-mode interference couplers 
(MMI), a delay line introducing  and a phase shifters in both arms. The signals a1,…,a4 
are sent into the respective ports, while the signals b1,…,b4 will then come out at the 
respective ports. During operation electric fields Ein1,in2 are sent into the left MMI and the 
fields Eout1,out2  result. 

Optical-to-optical scattering matrix SOO 

We first consider the optical behavior of this device in a four port model. The 

reaction of the device on optical input signals a=(a1,…,a4)
T (normalized wave 

amplitudes, such that 
2

a represents the incoming optical power) at each port can 

be described using a four-port optical-to-optical scattering matrix SOO. One can 

describe the optical output signals b=(b1,…,b4)
T (normalized wave amplitudes, 

such that 
2

b represents the outgoing optical power) at each port using  

 

1 1
11,OO 14,OO

2 2
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3 3
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4 4

,  ,  
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S S
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               
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b S a


  


 (2.39) 

to be 

 OOb S a . (2.40) 

For example, light could enter as a1 at the first port and if there is no other 

signal present, one could easily predict the outputs at each port b1,…,b4 from the 

first column of the scattering matrix. Here, we decide to use only the ports 1 and 

2 for input. We further assume a loss-less and reflection-less device.  
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Hence, we only need the elements S21,OO, S41, OO, S23, OO, S43, OO to form a new 

transfer matrix OO,MZIS , 

  
21,OO 23,OO

OO,MZI
41,OO 43,OO

S S

S S

 
  
 

S . (2.41) 

This transfer matrix can be used to calculate the electric fields out1E , out2E in the 

frequency domain at the output from the given input in1E , in2E , also in the 

frequency domain. 
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   (2.42) 

The time delay calls for a description in the time domain ( denotes a 

component-wise convolution) 
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 
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In this formalism, the transfer matrix of the differently delayed arms is 
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The transfer matrix of the phase shifter11 in each arm is 

  1

2

exp(j ) 0

0 exp(j )




 
  
 

Φ . (2.45) 

The transfer matrices of the 2-by-2 MMIs (3 dB splitters/combiner) can be 

written as 

  1 2

1 j 1 j1 1
,  

j 1 j 12 2

   
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   
M M . (2.46) 

  

                                                 
11 For example, applying a phase shift to an electric field as in Eq. (2.14) results in 

     out in 1, , exp jE z t E z t 
 

                     c 1 c 1exp j exp j exp jt z t z          . 
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The product of all transfer matrices gives the total matrix for the MZI: 

  
 
 

 
 

 
 

out1 in1 in1
MZI,OO 2 1

out2 in2 in2

E t E t E t

E t E t E t

     
        

     
S M ΦDM  (2.47) 
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Using the Fourier transform this convolution can be written as a product in 

frequency space, as in Eq. (2.42) with 

1 2 1 2
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S . (2.49) 

Some special cases can be considered. From the previous equation the 

frequency responses for the device 1( )h  , 2 ( )h   in case of the input at port 1 

can be extracted. 
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 (2.50) 

Using an identity in Eq. (7.3) from the Appendix 1( )h  and the respective scat-

tering matrix element of SOO can be written as 
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Note the dependence on frequency. Correspondingly, 2 ( )h   is 
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Hence, the absolute square of the frequency responses for both output ports are 
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The time delay of the light propagating in the elongated arm can be easily 
derived using the group velocity g g/c n   or the group refractive index gn , 

which in turn is supplied by numerical simulations of the rib waveguide cross 

section around the center wavelength c. 

 

c

g c c c

d ( )
( ) ( )

d

n
n n

 

  




   (2.54) 

Electrical-to-electrical scattering matrix SEE 

Now we consider the electrical behavior of this device in a two port model. The 

reaction of the device on electrical input signals c=(c1, c2)
T (normalized wave 

amplitudes, such that 
2

c  represents the incoming electrical power) at each port 

can be described using a two-port electrical-to-electrical scattering matrix SOO. 

One can describe the electrical output signals d=(d1,d2)
T (normalized wave 

amplitudes, such that 
2

d  represents the outgoing electrical power) at each port 

using  

 
11,EE 12,EE1 1

EE
21,EE 22,EE2 2

,  ,  
S Sd c

S Sd c

    
      
    

d S c  (2.55) 

to be 

 EEd S c  (2.56) 

The scattering matrix elements are dependent on the RF frequency RF . The 

element  21,EE RFS   represents the transmission which can be measured at the 

electrical port 2 after sending in a signal at the electrical port 1. The element 

 11,EE RFS   represents reflections of incoming signals at port 1.  

Electrical-to-optical scattering matrix SEO 

Assuming a1 is a non-zero constant and a1, a1, a1 are all zero, the reaction of the 

device on the electrical input signal c1 (normalized amplitude, such that 
2

1c

represents the incoming electrical power) at the electrical port 1 can be 

described using a three port model with an electrical-to-optical scattering matrix 

SEO. One can derive the optical output signals bEO = (b2,b4)
T (normalized 

amplitudes, such that 
2

EOb  represents the outgoing optical power) at the optical 

ports 2, 4 using  



28  Theoretical and Technological Background 
 

 

 21,EO2
EO EO 1

4 41,EO

,  ,  
Sb

c
b S

  
         

b S  (2.57) 

to be 

 EO 1 EOcb S . (2.58) 

The scattering matrix element 21,EOS  allows calculating the optical response of 

an MZI at the optical port 2 for an electrical input signal at the electrical input 
port 1. In general, a response dependent on the RF frequency can be expected, 

i.e., one can write  21,EO RFS  . 

Optical-to-electrical scattering matrix SOE 

In case of a detector, a change in light intensity (corresponding to amplitude a1) 

at the optical input port 1 will result in an electrical output of amplitude d2 at the 

electrical port 2. This response can be quantified with the detector responsivity 

RD using the elementary charge e, the quantum efficiency QE  and the energy of 

the incident photons   (  is the reduced Planck constant, see Appendix) as  

  D QE 21,OE QE and hence .
e e

R S  
 

 
 

 (2.59) 

Mach-Zehnder Modulators and IQ Modulators [42] can be built using MZIs 

with fast phase shifters. We first consider an MZI as in Fig. 2.3, but without the 

delay ( 0  ). This is called a Mach-Zehnder modulator (MZM).  

If both phase shifters are driven to provide the same phase shift, i.e.,

1 2     and 1 2 0   then Eqs. (2.51) and (2.52) can be simplified to  

  1,push-push 2,push-push( ) 0 and ( ) exp jh h     . (2.60) 

A pure phase modulation at port 2 results (which can be equally obtained at port 

4, if phase difference of  is chosen). This mode of operation is called push-

push operation. 

Alternatively, if both phase shifters are driven with signals of opposite sign, i.e., 

1 2      and 1 2 0   , a pure amplitude modulation results at port 2. 

This mode of operation is called push-pull operation around the minimum 

transmission point, see also Fig. 2.4. 

    1,push-pull 2,push-pull( ) sin  and ( ) cosh h        (2.61) 
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An additional difference of /2 between both phase shifters results in an op-

erating point called quadrature point, around which intensity modulation can be 

done. 

 

Fig. 2.4: Transfer functions for field h 2,push-pull ( )  (in blue) and intensity 
 | h 2,push-pull ( ) |² (in red) of MZM in push-pull operation. An operation at the minimum 
transmission point results in amplitude modulation, while the quadrature point is suited for 
intensity modulation. 

 IQ modulators can be built by nesting two MZMs in a large MZI, as shown 

in the Fig. 2.5(a). The so-called in-phase path I joins the splitter as it is, while 

the other arm accumulates an additional phase difference of /2 (either by a 

slight detour, or by another phase shifter, not shown here). This second arm is 

called the quadrature-phase path Q.  

 

Fig. 2.5: Schematic depiction of IQ modulator and operation principle. (a) Two Mach-
Zehnder modulators (MZM) are placed in a Mach-Zehnder interferometer (MZI). Both 
MZM are operated in push-pull mode at their minimum transmission point. Hence, each 
MZM for itself performs a pure amplitude modulation. An cw electric field Ein is split by a 
3-dB splitter (1x2 MMI) at the input of the IQ modulator and each part modulated by an 
MZM. The upper arm joins a 3-dB combiner (1x2 MMI). The lower arm joins this 
combiner as well, but is phase-shifted by /2 before. (b) Thus the resulting output field 
with amplitude Eout is the superposition of the I and Q fields, as depicted in the 
constellation diagram (also called IQ-diagram). Any point in this constellation diagram 
can be reached by choosing the right amplitudes at the MZMs. 

To calculate the transfer function it is assumed that the I-path MZM and the 

Q-path MZM are operated in push-pull mode ( I,1 I,2 I     , Q,1 Q,2 Q     ) 
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at their minimum transmission operating point. The transfer function of each 

MZM we write as 

    I I Q Q( ) sin  and ( ) sinh h      . (2.62) 

The transfer function of the IQ modulator (using 12 MMIs) for the electric 

field is  
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That means any input complex field will experience an amplitude modulation of 

the real and respectively imaginary part. Any point in a constellation diagram 

can be reached by choosing the right amplitudes at the MZMs, see Fig. 2.5(b). 

During detection, it will depend on a reference phase, which part of the signal is 

to be projected on the real axis and therefore measured. Both, I and Q part of 

the signal have to be measured separately.  

2.3 Stimulated Emission on SOI 
Making silicon lasers is a formidable challenge due to silicon’s indirect 

bandgap. A number of hybrid integration schemes using inorganic materials is 

pursued elsewhere [20], [43]. In this work, we investigate the suitability of 

integrating a cladding of dye molecules on silicon waveguides to make a laser  

on silicon.  

Looking at lasers realized outside the domain of integrated optics, dye 

lasers once were the technology of choice to reach high peak powers, but came 

out of fashion, due to a number of issues. This section follows closely the 

arguments summarized in [44] and will serve to explain the physical 

background of the merits and demerits of dye lasers. 

2.3.1  General Dye Properties 
Dye molecules usually strongly interact with light of certain wavelengths (they 

have a color), an interaction which is determined by their chromophores. This 

part of the dye molecules is often a conjugated pi-bond system, i.e. these 
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organic molecules12 have large, distributed orbitals (encompassing many carbon 

atoms). These orbitals can easily be designed to enable electronic transitions at 

the desired frequencies, by changing the length/structure of the conjugated pi 

bond system or influencing it with other molecular groups. Besides showing 

tunable absorption properties, a subset constituted of laser dyes is also suited for 

stimulated emission.  

From a historical point of view, classical liquid dye lasers have been 

investigated at least since 1966, mainly because of their widely tunable 

emission wavelength range and the possibility to go to another wavelength 

range by switching the gain medium, which in its liquid form is easy to 

exchange. Even a mixture of dyes can be made, to further increase the available 

emission wavelength range without the need of effecting a gain medium 

change. The fact that dyes are contained in a liquid solution also simplified 

variations of the concentration to adjust absorption and emission, or replacing a 

damaged gain medium. 

A major disadvantage is rooted in the chemical stability of the dyes. Pump 

light in some instances can destroy molecules by supplying activation energy to 

start undesired chemical reactions. This is also known as bleaching (loss of 

color because of chromophore destruction), due to its limited photo-chemical 

stability. Dye laser operation required in some cases a frequent replacement of 

the dye solution. In addition, continuous wave (cw) emission is hard to achieve, 

which can be explained with a typical, simplified energy level diagram, as 

depicted in the next figure [45]. 

The simplified energy level diagram comprises two manifolds of electronic 

states due to the conjugated pi-bond system. So called singlet states S0 (ground 

state), S1, in which the considered electron system has total spin of 0, and triplet 

states T1, T2, in which the total spin is 1, see p. 4 in [46]. The electronic levels 

are broadened by vibrational states of the molecule, with energy differences 

much smaller than for electronic states. In addition, there are rotational states, 

causing an even finer energy level splitting. The set of vibrational and rotational 

states is very dense and extends each electronic level into a quasi-continuous 

                                                 
12 Organic molecules are molecules that contain carbon. Carbides, carbonates, carbon oxides, 

cyanides and carbon allotropes (diamond, graphene, etc.) are considered as inorganic com-
pounds. 
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band. When looking at an ensemble of dye molecules, even in thermal equilib-

equilibrium not all electrons are in the vibrational, rotational ground state. The 

probability to find an electron in a certain state by can be modeled with the 

Boltzmann distribution. 

 

Fig. 2.6: Typical, simplified energy level diagram of a dye molecule. Solid lines denote 
transitions involving photons. In radiative transitions a photon is emitted. Perforated lines 
denote non-radiative transitions. Absorption of pump light (blue), fast relaxation within 
vibrational and rotational states of S1, possibility for stimulated emission (red), and 
relaxation within vibrational and rotational states of S0 form a 4-level lasing system. 
However, intersystem crossings from singlet (S1) state to triplet state (T1) occur with small 
probability, despite being spin-forbidden. Also the crossing back into the singlet state is an 
event with low probability. Meanwhile triplet absorption can take place. Over time, this 
reduces the overall occurrence of stimulated emission from S1 and is a major reason why 
cw operation of dye lasers is hard to achieve. 

The transitions between the states occur with very different probabilities. 

One can assign a lifetime (inverse of the probability to make this transition 

within a second) to each transition, such that some transitions are called fast, in 

the case of a high probability for the transition to take place, or slow in the other 

case. A transition between electronic states is most probable, when the overlap 

between both wave functions is highest, i.e. often with contribution of 

vibrational and rotational states. For incident light of a wavelength 

corresponding to the energy denoted by the transition in blue in Fig. 2.6, an 

electron can be excited into S1 with some vibrational and rotational energy. 

There, a fast, non-radiative decay within S1 will occur, before a photon might be 

emitted (red line) when going from S1 to S0, again into some vibration and 



Stimulated Emission on SOI 33 
 

rotational state above the absolute ground state. This transition can be stimulat-

stimulated or spontaneous, the latter case being called fluorescence. It follows a 

fast relaxation to the ground state. This makes a four-level system, suited for 

lasing.  

However, triplet states provide for non-radiative pathways and therefore 

strongly impact efficiency. An electron has to flip its spin in order to cross from 

the manifold of singlet states to the triplet state. This makes transitions between 

triplet and singlet states unlikely, and is called inter system crossing (ISC). 

Nevertheless, perturbations and collisions of molecules cause significant ISC 

rates. Molecules which go into triplet states cannot contribute to stimulated 

emission. Also, the transition from the triplet state back to the singlet is not very 

probable. The molecule therefore remains for some time in the triplet state, and 

is not available to contribute to lasing during that time. This is the main obstacle 

for cw operation of dye lasers. Triplet state absorption only leads to non-

radiative relaxation and further increases the time the molecule stays in the 

triplet state.  

To conquer this problem, triplet quenching methods, which accelerate the 

transition from T1 into S0, have been developed. For instance, an additional 

chemical agent can be introduced into the dye solution. This agent promotes 

transitions from T1 to S0 by collisions with dye molecules. In liquid laser dye 

solutions this is frequently done, for solid state dye lasers this might be less 

effective. Another method is to operate a dye laser at low repetition rate and 

simply wait for a complete return of the ensemble into S0 or exchange 

participating molecules rapidly by making a fast flowing stream of dye 

molecules through the gain region of the laser. 

Besides, triplet states are often more chemically reactive, which results in 

the transformation to another type of molecule, which cannot contribute to 

stimulated emission. 

2.3.2  Lasing from Dyes 
The described 4-level system exhibits homogenous broadening, meaning all 

molecules with an inverted population can contribute to stimulated emission at a 

certain wavelength within the resulting fluorescence spectrum. Vibrational and 

rotational states cause a relatively wide band. Consequently, this laser system is 
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widely tunable (typical fluorescence linewidth 50…100 nm), and shows high 

gain. However, the short lifetime (a few ns) for a radiative transition from S1 to 

S0 also means that pump intensities have to be rather large in order to achieve 

sufficient inversion, see chapter 5 in [47]. 

Looking at the energy diagram, it also becomes apparent, that the pump 

photon energy is larger than the energy per emitted photon, because some 

excitation energy is lost during thermal relaxation in vibrational and rotational 

states. This so called Stokes shift significantly separates the peak of the 

absorption spectrum from the peak of the red-shifted emission spectrum around 

50 nm for many dyes and enables efficient optical pumping. 

Most dye lasers operate in the visible spectrum. The limit for shorter 

emission wavelengths is mainly determined by the photo stability of the dyes 

under the influence the pump light. At longer wavelengths a reduction of 

fluorescence quantum yield can often be observed, because more non-radiative 

transitions occur via thermal phonons from S1 to S0, simply because S1 is much 

closer to S0. These additional non-radiative pathways are limiting the choice of 

dyes beyond 1 µm and lead to low conversion efficiencies [48]. An 

advantageous side effect is that, also the lifetime of the transition from S1 to S0 

is shortened. Hence ISC is less frequent, which improves the dye stability. 

However, for longer emission wavelengths, there is another mechanism 

which negatively impacts the stability, because the lowest triplet state is closer 

to the ground state. Therefore it is more easily thermally populated, giving rise 

to chemical reactions and also reducing the fraction of excitable molecules. As a 

consequence, dyes with emission wavelength longer than 1.7 µm are very rare, 

according to [49]. 

2.3.3  Dyes on SOI Wafers 
Any laser on silicon has to emit at a wavelength at which silicon is transparent, 

if silicon photonic structures such as arrayed waveguide gratings (AWGs), slot 

waveguides (light-matter interaction), filters, etc. are to be used. In [50], light 

emission using an organic cladding and silicon grating-based mirrors has been 

achieved for the first time on an SOI wafer, although at a wavelength of 

625 nm. Choosing the right gain material decides the emission wavelength. Our 
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work has been inspired by [51], who build the first IR solid state dye laser using 

polymer waveguides.  

We use the same dye called IR26 [52], sum formula C40H30Cl2O4S2, named 

4-(7-(2-phenyl-4H-1-benzothiopyran-4-ylidene)-4-chloro-3,5-trimethylene-

1,3,5-heptatrienyl)-2-phenyl-1-benzothiopyrylium perchlorate, which is 

depicted in the next figure. 

 

Fig. 2.7: Structure of dye IR26. Image source: Manufacturer Exciton Inc. [53] 

Despite the often reported bleaching, IR26 has been developed especially for 

high photo stability at a pump wavelength of 1064 nm, the one we are also 

going to use.  

Making integrated dye lasers on silicon reduces their cost immensely and 

enables their use in scenarios based on disposable chips. Their often criticized 

stability does not matter in this case, which is why dyes perfectly fit a number 

of applications in PICs made with SOI technology. 

2.4 Electro-Optic Modulation on SOI 
Modulating light with an electrical signal is useful in a range of applications. 

This work primarily focuses on application scenarios for SOH technology. This 

section serves to communicate the essential background for understanding the 

design of SOH modulators and the physical foundation. To put the 

accomplishments of SOH modulators in perspective, this section also contains a 

short summary about the underlying effects of pn-modulators on SOI. This 

allows for benchmarking of modulators fabricated on different platforms with 

respect to selected aspects. 

Here, we only consider phase modulators, as these are the fundamental 

building blocks to make PICs even when using more complex modulation 

techniques. An amplitude modulation can easily be achieved by combining two 

phase modulators in a Mach-Zehnder interferometer. 
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Any phase shift   will originate from a forced variation of the effective re-

fractive index effn of the waveguide and depends on its length l and the 

wavelength  of the guided light, 

 eff

2
n l




   . (2.64) 

The obvious question to be answered in the next two subsections is: How to 

induce a change of the effective refractive index of the waveguide? 

2.4.1  Plasma Effect in SOI Structures 
A frequently used mechanism to obtain modulation of light on SOI without the 

need for fabrication processes beyond the most established one from CMOS-

fabrication based silicon photonics processes is the plasma effect. 

Silicon’s properties have been discussed in section 2.2.1 and the plasma 

dispersion effect introduced. To apply this effect to achieve modulation, a pn or 

pin-junction is created right in the center of a rib waveguide, see Fig. 2.8. When 

applying a voltage at the metal electrodes, the doped silicon at each side of the 

rip acts as a conductor. In this way, charges can be injected or depleted in the pn 

respectively pin junction. According to the model of Soref, see Eqs. (2.27) and 

(2.28), the equations are given here again for convenience, 

 22 2 22 2
Soref e h8.5 10 cm 6.0 10 cmN N         , (2.65) 

 22 3 18 3 0.8
Soref e h8.8 10 cm 8.5 10 (cm )n N N         , (2.66) 

an applied voltage will cause a change of the refractive index, with a marginal 

change in absorption. This makes this device a phase modulator. Applying an 

additional reverse bias allows faster operation, because the carriers are swept 

out, which avoids the speed limit otherwise set by their recombination time. 

Note that the depletion zone width changes during modulation, especially as 

many devices are modulated with voltages close to the reverse bias. 
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(a)     (b)  

Fig. 2.8: Schematic view of a pin-modulator based on a rib waveguide on the SOI 
platform (a), and its doping scheme in top view (b). Color codes: buried oxide in yellow, 
metal electrodes in green, undoped silicon in grey, p-doped silicon in bluish colors, n-
doped silicon in reddish colors. When applying a voltage at the metal electrodes, the 
doped silicon at each side of the rip acts as a conductor. In this way charges can be 
injected or depleted in the pn respectively pin junction, which is in the center of the rib 
waveguide. Light is guided along this rib. Changing the free carrier concentration changes 
the refractive index and therefore induces a phase shift. To reduce the attenuation of light 
by the doped silicon, it has been doped less (P,N) in the vicinity of the WG, than close to 
the metal electrodes (P++, N++). Image source: [J10] 

2.4.2  Linear Electro-Optic Effect in SOH Structures 
Using the linear-electro optic effect (Pockels effect) serves to induce a linear, 

pure phase shift with an external voltage. Widely used LiNbO3 modulators 

employ this very effect in optical communications. These modulators are made 

of crystals with a (2)-nonlinearity. The same effect shall be used for modulators 

created with the SOH fabrication platform. By reducing the size of the devices, 

it is expected that similar electric fields can be achieved with much lower 

voltages. This improves the energy efficiency of these modulators. The aim is to 

make electrical amplifiers expendable when using SOH modulators.  

Following p. 28 of [54] and rewriting Eq. (2.6), we can express the dis-

placement field with the electric field E = (Ex, Ey, Ez) and the inverse of the die-

lectric permeability matrix ,r ij , the impermeability matrix ij , with 

 , , ,i j x y z  as 

 i ij j
j

E D . (2.67) 

Assuming a lossless material, the matrix ,r ij is symmetric and real, and so is ij , 

i.e., it can be reduced to six components. For the practical cases considered in 

this work it is sufficient to consider only the diagonal elements , ,xx yy zz   . To 

quantify the change of the impermeability ii  and the change of the related 
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refractive index 2(1/ )ii in   for an applied electric field we use the electro-

optic coefficients rij 

 
2

1
ii ij j

ji

r E
n

      
 

 . (2.68) 

We assume the external field is applied in direction ej. Then the refractive index 

can be written (using the approximation from Appendix Eq. (7.2)) as 

 31 1 1

2i i i i ij j
ii ii ii ij j

n n n n r E
r E  

    
  

 . (2.69) 

The change of the refractive index by small electric fields can be written in a 

linear approximation: 

 31

2i i ij jn n r E  . (2.70) 

Remarkably any change is proportional to the 3rd power of the index of 

refraction. Hence a common figure of merit (FOM, here defined to include the 

unit m/V) to compare different EO materials is  

 ( 2)

3FOM = i ijn r


. (2.71) 

The change in phase of quasi-TE-moded light at wavelength   of  for an 

electric field xE  applied in x-direction in a waveguide of length l containing a 

(2)-nonlinear material with refractive index xn and interaction factor Ex can 

then be approximated using Eq. (2.34) as 

 3
eff

2 2 1

2Ex x xx xn l l n r E
 
 

    . (2.72) 

Materials Showing the Linear Electro-Optic Effect 

We are using claddings from two distinct material configurations: Nonlinear 

organic crystals and nonlinear chromophores in a polymer matrix. The latter is 

sometimes also abbreviated and referred to as poled polymers, alluding to the 

method of creation of their (2)-nonlinearity. The refractive index is not the same 

for all directions. The next figure shows a coordinate system x,y,z in which the 

refractive index is indicated as an ellipsoid, such that one can determine which 

component of the E-field is subject to which refractive index. Note that the 

optical axis, also called the dielectrical axis, is defined as that axis, for which 
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there is no birefringence. The refractive indices nx=n1, ny=n2, nz=n3, are experi-

experienced by light with the electric field E in x,y,z direction, respectively. If 

indices are different for all directions then the material is called biaxial, if two 

refractive indices are the same the material is referred to as uniaxial, and if all 

are the same the material is isotropic. 

While some materials such as LiNbO3 and also poled polymers used in this 

work belong to the class of uniaxial materials, the organic crystal used here is 

biaxial. The crystal is orthorhombic. That means that its crystallographic axes 

a,b,c are parallel (respectively) to the axes x,y,z in the Cartesian coordinate 

system depicted in the next figure. Nevertheless, the unit cell’s edge lengths are 

all different. The optical axis is not the same as the polar axis (crystallographic 

c axis). 

 

Fig. 2.9: Index ellipsoid with optical axis q marked in red. For light propagating in the 
direction of the optical axis, the experienced refractive index is the same for all 
polarizations. This means any two vectors, which are perpendicular to each other, 
perpendicular to the axis q and which are part of the index ellipsoid must have the same 
length (D1 = D2). In the case of an orthorhombic crystal, the crystallographic axes a,b,c 
are respectively parallel to the x,y,z axes. If refractive indices n1, n2, n3 are all different and 
the material is called biaxial. If exactly two refractive indices are equal the material is 
called uniaxial and the index ellipsoid is also referred to as an indicatrix. If all refractive 
indices are equal, the material is called isotropic. Image source: Mojca Jazbinsek, 
Rainbow Photonics AG. 
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Organic Crystals as listed in the next table have been shown to exhibit a (2)-

nonlinearity.  

Integrating organic crystals on SOI allows using the EO effect for 

modulation. For applications the FOM and melting temperature are most 

important and determine the usefulness of organic crystals over other organic 

materials. However, practical questions on how to actually integrate these 

crystals on SOI limited any experimental activity to DC or AC measurements in 

the past. 

Material  
Chemical 
structure 

Melting 
temp. 
(ºC) 

Stability 
at 

melting 

Electro-optic 
coeff. r 

Electro-optic 
figure-of-
merit n3r 

DAST 
256 No (only 

short 
time) 

48 pm/V 
 

480 pm/V 

DSTMS 
258 No (only 

short 
time) 

48 pm/V 
 

480 pm/V 

OH1 

 

212 Yes 46 pm/V 
 

470 pm/V 

OH2 

 

242 Yes n.m. 
(expected  

> 60 pm/V) 

n.m. 
(expected  

> 600 pm/V) 

DAN 
 

166 Yes 13 pm/V 
(@ 633 nm) 

50 pm/V 

BNA 
 

102 Yes n.m.  
24 pm/V 

calculated 
from d33 

n.m. 
135 pm/V 

 

DAT2 
235 Yes 8 pm/V 30 pm/V 

Table 2-1: List of organic crystals with (2)-nonlinearity. If a material is not stable at 
melting temperature then the material will decompose (chemical reaction) already at 
temperatures around or below the melting temperature. Not measured quantities are 
marked as n.m. Table source: Personal communication with Mojca Jazbinsek, Rainbow 
Photonics AG. 
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Due to the periodicity in repetition of a unit cell of an arrangement of 

chemically bound atoms in crystals one can identify three crystallographic 

directions, a, b, c. When growing a crystal, the energy for bonding atoms (and 

hence the probability to attach them to an already grown (seed crystal) differs 

according to the location of neighboring, bound atoms. Thus differently oriented 

planes emerge, which are determined by the speed of their growth. When 

growing a crystal in a thin film, as done in this work, the growth speed of a 

plane matters, because those planes which grow fastest will eventually form the 

thin film.  

 
A number of growth rules, illustrated in the next figure, can be observed: 

- The crystallographic axis b is always perpendicular to the thin film. 

- Hence the thinnest distance is in direction of b, which means the 

directions of the crystallographic axes a, c are fixed with respect to the 

seed crystal.  

- When intending to apply an electric field across a waveguide and along 

the polar axis c of the material (to make use of the r33 coefficient to 

obtain an EO effect), the crystal has to be grown with its direction a in 

parallel to the WG axis. 

 

Fig. 2.10: Schematic view of thin film growth or organic crystals. x,y,z coordinate system 
for waveguide orientation, shown in black. The a,b,c coordinate system denotes the 
crystallographic axes of the organic crystal, shown in green. Its growth is confined to 
make a thin film in y direction. Crystallographic axis b will align to y during growth. The 
crystal plan normal to the crystallographic axis a growth fastest. If the direction of an 
applied, external electric field (red) coincides with the crystallographic axis c the (usually) 
largest linear electro-optic coefficient can be used, e.g., to obtain a phase modulation. 

In this work, successful deposition of the organic crystal BNA on SOI 

waveguides is shown, and proven by making high-speed data modulation.  
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Chromophores Hosted in a Polymer Matrix present another material option for 

obtaining the Pockels effect. Chromophores have a conjugated pi-bond system. 

By choosing molecules, which are especially easy to polarize (molecular 

hyperpolarizability [55]) and for which this occurs within an asymmetric 

potential, materials with the possibility for a high macroscopic (2)-nonlinearity 

can  

be created.  

To transform the microscopic hyperpolarizability into an EO effect 

accessible at the macroscopic scale, a number of further conditions have to be 

met: The molecules have to be aligned along the same direction and with the 

same orientation. One way to reach this goal is hosting the chromophores in a 

polymer matrix. To change the initial random orientation, the material needs to 

be heated close to its glass transition temperature allowing the rotation of 

molecules. A temporally constant external electric field is applied which exerts 

a force on each molecule and thus aligning it. If the temperature is reduced to 

operating conditions the molecules are frozen in their new positions and a 

macroscopic, permanent uniaxial nonlinearity results, even without any external 

field.  For that procedure to work, the material has to be non-conductive.  

A high refractive index is of advantage for the FOM, as are photo stability 

and a high glass transition temperature. It has been found that molecule end 

groups also significantly influence the final arrangement of the molecules, due 

to interaction between the chromophores. This interaction is of particular 

influence, when the amount of polymer is reduced or the host matrix even 

completely avoided.  

The most stable chromophores used in this work are in the commercial 

material M3 from GigOptix Inc. (specified as r33 = 70 pm/V). The best 

nonlinearity reached in-house is r33 = 190 pm/V with DLD164. An overview 

about other interesting materials is given in [56]. 

Note that these materials are specifically designed for EO modulation. 

Investigating them in SOI structures with strip-loaded slot WGS is of particular 

advantage, as break-through currents during poling are naturally limited by the 

resistance of the thin silicon slabs. A break through therefore remains local, and 

will not be supplied with enough electrical power to heat up and destroy the 

material beyond that point. 
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In Summary, it can be said that both cladding options, organic crystals and 

chromophores aligned by poling, have their specific advantages and 

disadvantages. Organic crystals promise stability at high temperatures, strong 

light intensity. Their single crystalline growth on SOI wafers requires further 

process development. 

In contrast, chromophores hosted in a polymer matrix currently deliver 

higher (2)-nonlinearities at reliable fabrication yield from a well-mastered 

poling process. This poling has to be done for every waveguide and varies in 

efficiency. Polymer based modulators are thought to be less stable during long-

term operation at elevated temperatures, despite Telecordia certification of 

devices with selected materials.  

2.5 SOH Travelling Wave Modulator 
The propagation of the optical wave and the RF signal as well as their 

interaction need to be controlled. To optimally use the capabilities of nonlinear 

organic claddings for SOH modulators, strip-loaded slot WGs are used, as 

introduced in Subsection 2.2.2.  

We first describe the modulator properties which are in focus for any 

application. A model is made for the modulator’s frequency response according 

to the proposed implementation. This model is subsequently refined, as required 

by different limiting effects, which are discussed one by one. Design 

conclusions are drawn from this model also taking technical constraints into 

account. 

2.5.1  Modulator Properties 
The following list of properties is used to optimize modulators (any modulator, 

not just SOH modulators). A balance has to be found for a number of target 

properties, as some of these require trade-offs. Among the most application 

relevant properties are: 

- RF-bandwidth (BW) of the modulator depends on its frequency response, 

which is deciding the modulators maximum operating speed (e.g. symbol 

rate). There is no point in optimizing a modulator for bandwidth much 

beyond the bandwidth of available electronic drivers for digital 

applications.  
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- -voltage, the voltage needed to induce a -phase shift,   . This 

property is most relevant, because a modulator needs driving electronics. 

Reducing the required voltage reduces the demands for the electronics 

and the energy consumption. Note that the power of a signal scales with 

the square of the used voltage. Hence a design goal must be to keep the 

-voltage small. 

- Insertion loss (IL), i.e., the fraction of light lost in the device, which also 
strongly impacts the optical signal-to-noise ratio (OSNR) and thus the 
quality of the channel/subchannel.  

- Extinction ratio (ER). When using interferometric structures such as 
MZIs to make MZMs or IQ modulators, loss in each arm has to be well 
controlled to achieve a good contrast between constructive and 
destructive interference in order to differentiate between different 
symbols. The extinction ratio DCER  can be measured for an MZI without 

modulation by comparing the optical output power in case of maximum 
transmission out, maxP  and minimum transmission out, minP  (apply the 

corresponding DC bias voltages) by adjusting the bias points accordingly. 

 out, max
DC

out, min

ER
P

P
  (2.73) 

The ER during modulation, which naturally depends on the applied 

voltage compared to the -voltage, is defined for a 2-level intensity 

modulation (on-off-keying, OOK) as the ratio of the optical power at the 

high level (“1”) out, highP  and low level (“0”) out, lowP .  

 out, high
MOD

out, low

ER
P

P
  (2.74) 

The optical power during modulation can for instance be measured with 

an optical digital communication analyzer (DCA). 

- Linearity of the phase shift as a function of electrical drive voltage. This 

property becomes relevant when using advanced modulation formats. 

This is assured in principle by the Pockels effect for SOH modulators. 

In addition, practical considerations impose further constraints, such as the 

desire for wavelength transparency, i.e. being able to use the modulator for a 

large range of different wavelengths, maybe even at the same time (frequency 
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comb line generation, pulse carving, etc.). This work therefore concentrates on 

an optically non-resonant design by employing Mach-Zehnder interferometers 

(MZI), which combine phase modulators.  

2.5.2  Modulator Modeling 
The modeling of the phase modulator section in this work follows closely the 

procedure of Witzens et al. [57] and [J14]; in a slightly modified way to take a 

more advanced CMOS metal stack into account [58].  

The length of around 1 mm of a modulator is in the same order of 

magnitude as the shortest contributing RF wavelength corresponding to an RF 

frequency of 30 GHz. Hence the propagation of the RF wave along the same 

interaction area as the optical signal should be optimized in a travelling wave 

(TW) approach. 

Implementation of an RF travelling wave modulator  

The previously introduced strip-loaded slot waveguide guarantees a high 

overlap between optical quasi TE-mode (dominant electrical field component in 

x-direction) and electrical field right in the slot of the WG. Both electrical fields 

are depicted in Fig. 2.11(a,b). The strip-loaded slot WG determines the light 

propagation, its doped Si slabs allow bringing an electrical signal to the Si rails, 

but the actual RF wave needs a waveguide of its own in a travelling  

wave design.  

 

Fig. 2.11: Cross sections of strip-loaded slot WG and the SOH travelling wave MZM 
modulator. (a) Dominant Ex-component of the optical quasi TE mode. (b) Dominant Ex-
component of the applied RF field assuming well-conducting Si slabs. Note that both E- 
fields (optical and RF) are strong within the slot of the WG, i.e., exactly where the 
nonlinear material is placed. (c) Schematic cross section the SOH travelling wave MZM 
modulator, covered with nonlinear material. 
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We use a coplanar waveguide (CPW) in ground-signal-ground (GSG) elec-

trode configuration. The complex propagation constant   of the RF wave in this 

CPW can be written as the sum of the real-valued propagation constant RF  and 

a real-valued attenuation term RF,amp :  

 RF,amp RFj     (2.75) 

This RF WG can supply two strip-loaded slot WG-based phase modulators. The 

electrodes are made of copper, which is chosen for its high conductivity, and are 

connected with tungsten vias to doped Si slabs, as illustrated in Fig. 2.11(c).  

The Eq. (2.72) is repeated here. 

 3
eff

2 2 1

2Ex x xx xn l l n r E
 
 

    . (2.76) 

Assuming a parallel plate capacitor-like electric field in the slot ,PM slot/xE V w  

the -voltage (  )  ,PMV f  for one phase modulator at low RF frequencies 

(DC case) can be expressed as ,PM at DCV  

 slot
,PM at DC 3

Ex x xx

w
V

l n r





. (2.77) 

The proper selection of the type of RF WG is driven by the intended 

application of the modulator. Combining two phase modulators in an MZI 

allows making a Mach-Zehnder modulator (MZM), which in turn enables 

amplitude modulation. Operating a MZM in push-pull mode (as done with all 

MZMs used in this work) means creating a positive phase shift with the same 

magnitude in one arm and a negative phase shift in the other by just applying a 

voltage at the signal electrode. The entire structure is filled with a highly 

efficient (2)-nonlinear material. The (2)-nonlinearity must have the same 

orientation in both slots. Thus, this MZM only needs half the voltage to go from 

minimum to maximum transmission (make an advance of  in its transfer 

function, see Fig. 2.4). 

    ,MZM ,PM

1

2
V f V f  . (2.78) 

To describe the modulator’s RF performance we refer to its EO frequency 

response  21,EO RFS  . Using the Pockels effect means that any change of 

voltage (small signal) applied across the slot is converted linearly to a change in 
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power of the MZM, when biased at the quadrature point. As the Pockels effect 
is not dependent on the RF frequency (denoted as f from hereon, RF 2 f  ), 

the bandwidth of the modulator is assumed to be determined by the traveling 
wave electrode design13. Neglecting any reflections of the propagating RF 

wave, we define the contribution of the traveling wave electrodes  21,VS f  to 

the overall frequency response of the modulator  21,EO RFS   as the ratio of the 

voltage  RF , MZM ( )V f V f  applied at the GSG electrodes input and the 

effective voltage slot ,PM at DCV V  actually applied across the slot (factor ½, 

because the MZM is in push-pull operation, see Eq. (2.78)).  

      
slot

3
slot

21,V 21,EO
RF , MZM

1

2 ( )
Ex x xx

w
V l n r

S f S f
V f V f




   . (2.79) 

Design trade-off 

Ideally the refractive index xn  of the nonlinear cladding would be chosen to 

balance the FOM (improving with 3
xn ) and the interaction factor Ex (decreasing 

with higher n) of light in the slot. However, the choice of this cladding is 
currently determined by availability and reliability of the material.  

Design trade-off 

The confinement of light to the slot (and thus the achievable phase shift) 

improves when reducing the slot width wslot. However, scattering losses increase 

strongly for smaller widths, due to fabrication induced roughness of the WG 

sidewalls. In this work we therefore had to choose slots with a width  

of 120…140 nm.  

The numerical field analysis to find the modes of the optical signal, and 

to investigate the propagation of the RF wave, was carried out with the help of 

the CST Microwave Studio software package. It is nevertheless instructive to 

look at an equivalent circuit model [59] of the SOH modulator in order to 

understand the performance of the device. 
                                                 
13 Nevertheless for some materials, such as chromophores in a polymer matrix, a low-

frequency dependence (< 1 GHz, not part of the Pockels effect) of the effective refractive 
index on the applied voltage has been observed, which is neglected in the considerations 
presented here. 
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Equivalent circuit model approach 

The modeling has to address the following four issues: 

- Walk-off between optical and electrical wave 

- RC limitation of the strip-loaded slot 

- Impedance mismatch 

- Travelling wave losses 

We start from a very rough model, a resistance-capacitance (RC) element, and 

extend it to a transmission line based model to understand the behavior of the 

modulator. While basic circuit theory cannot model the RF behavior of the 

devices (the line length is larger than the RF wavelength), transmission line 

theory allows modeling the device as a series of infinitesimally short lumped 

elements, i.e., differential elements (marked with ´). A more detailed analysis is 

given by Witzens et al. [57]. To include the influence of a CMOS metal stack 

we adapt the equivalent circuit model proposed by Hui et al. in [58]. 

2.5.3  Walk-Off Between Optical and Electrical Wave 
For optimal modulation the optical and electrical wave should travel at the same 
speed. The group velocity of light14  and the group velocity15 of the RF signal 
are to be compared. Using CST Microwave Studio or COMSOL the effective 
group refractive index of the strip-loaded slot WG was determined to be 
ng, opt = 3.1 and the group effective refractive index of the RF wave at 
40 ± 10 GHz is ng, RF = 2.7 (nRF = 3.0). Considering the typical length of the 
modulator of 0.5…1.5 mm, the walk-off effect is thus neglected when modeling 
the overall modulator behavior. 

2.5.4  RC Limitation of the Strip-Loaded Slot 
While the RF signal travels along the coplanar waveguide (CPW), it is brought 
to the slots with the help of W-vias and the conductive silicon slabs. In fact, the 
tungsten vias are much more conductive than the Si slabs (which are thin 

                                                 
14 Considering for instance intensity modulation, information is to be encoded to make light 

pulses, which travel with group velocity. 

15 The refractive index change of the nonlinear cladding follows the RF voltage, which is 
dependent on the group velocity of the RF signal. 
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strips), such that only the slab’s resistance is modeled (denoted with 1
SiG ) in the 

following consideration. The slot itself can be modeled as a capacitor with Cslot 
which needs to be charged via the ohmic resistance of the silicon strips (see 
Fig. 2.12(a), consider only the slot capacitance and Si slab resistance). This se-
ries connection of resistance and capacitance has an RC constant.  

Charging and discharging the slot takes time, characterized by the time 
constant   with corresponding 3 dB bandwidth RCf , which can limit the 

modulation speed: 

 Si slot
RC

slot Si

 and 
2

G C
f

C G



  . (2.80) 

 

Fig. 2.12: Equivalent circuit modeling the slot capacitance Cslot and Si slab conductance 
GSi as a lumped element. (a) Cross section of the SOH MZM, with RC elements marked. 
The conductance of the left and right slab of each WG has been merged into one symbol 
GSi. A DC voltage VGate can be applied to the substrate to create an electron accumulation 
layer (similar to the channel in a FET) to increase the conductivity in the Si slabs 
connecting the CPW with the Si rails on both sides of the slot. (b) Equivalent circuit of the 
RC lumped element. 

Design choice 

The capacitance could be reduced by making the slot wider. However, this 

approach would result in a larger -voltage, see Eq. (2.77), and is therefore dis-

regarded. Note that the slot capacitance is fixed by the geometry in SOH  

modulators. 

Design trade-off 

The implant concentration of the Si slabs could be increased to reduce their 

resistance. However, according to Eq. (2.27) this would also increase insertion 

loss. We use the lowest possible doping to reach a reasonable bandwidth. The 
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trade-off between IL and BW is not further discussed, as fabrication is not pre-

predictable enough (e.g., the doping profile, and resulting conductivity; the 

influence of surface states). We therefore rely on the observation in [J14] and 

use the solution proposed in the patents [P1], [P2]. A positive voltage VGate can 

be applied to the substrate, see Fig. 2.12(a), which creates an electron accumu-

lation layer (very similar to the channel in a FET) in the Si slabs. This accumu-

lation layer makes the Si slabs more conductive without introducing excessive 

optical losses. The advantage of carriers introduced this way over obtaining free 

carriers from implanting ions is discussed in more detail in [33]. 

The resulting RC time constant and the corresponding 3 dB bandwidth can 

be calculated. We measured the capacitance of a typical SOH phase modulator 

(C´slot = 400 fF/mm, measurement provided by R. Palmer, W. Heni), and the 

resistance over the entire structure (of a device, in which the slot was not 

created and is “filled” with Si). Fig. 2.13(a) depicts the resistance vs. the applied 

gate voltage. Fig. 2.13(b) shows the resulting 3 dB frequency fRC.  

 

Fig. 2.13: Measured resistance of SOH phase modulator vs. DC voltage VGate applied to 
the substrate for two devices from the same wafer. The measurements represented in blue 
will be used further, as they match later results. The measurements depicted in red are 
included to indicate problems at fabrication. (a) Measured differential resistance, assumed 
to originate almost entirely from the Si slabs. (b) Measurements expressed as conductance. 
(c) Resulting RC constant calculated from measured Cslot.  

Assuming such a lumped equivalent circuit, the frequency response is  

    
slot

21,V 1
RF

1

1 j2

V
S f

V f fG C  


. (2.81) 
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The resulting -voltage of the MZM can be written: 

 
( 2) ( 2)

2slot
, MZM RC3

reg , reg

1
( ) 1 ( / )

2 xxx

w
V f f f

l n r
 


 


 (2.82) 

Relying on the previous measurements, the -voltage’s dependence on 

frequency is shown in Fig. 2.14. 

 

Fig. 2.14: (a) Calculated frequency dependence of -voltage (normalized to 1 V at DC) 
and of the resulting (b) S21,V parameter. Blue, red, black curves depict a  fRC of 7.5 GHz 
(measurement with contact resistance, VGate = 0 V), 10 GHz (measurement without contact 
resistance, VGate = 0 V) and 21 GHz (VGate = 200 V), respectively.  

2.5.5 Impedance Mismatch 
An impedance mismatch between the circuit which generates the electrical 

drive signal (generator) having an impedance Zgen and the SOH modulator with 

a characteristic impedance Z0 will lead to a reflection of the incoming electrical 

signal. This reflection is to be avoided for efficiency reasons, and also to avoid 

“echoes” of the data stream. Another reflection to avoid can occur at the 

interface of the electrical output of the modulator and its termination. The SOH 

modulator is usually terminated with a 50  load, called impedance Zload.  

The reflection between device and load can be calculated (voltage ratio of 

the reflected rV  and incident wave iV ) as an amplitude reflection factor  

 r load 0
load

i load 0

V Z Z

V Z Z


  


. (2.83) 
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Fig. 2.15: Equivalent circuit representing the concatenation of driver circuit (generator) 
with impedance Zgen, SOH modulator with impedance Z0, and terminating load with 
impedance Zload. The device with load has an input impedance Zin. 

To also determine the reflection between loaded modulator and the signal 

generator, the input impedance inZ  of the modulator (length l, real valued 

propagation constant RF ) with load is first calculated as  

 
 
 

load 0 RF
0

0 load RF

j tan

j tanin

Z Z l
Z Z

Z Z l








. (2.84) 

Thus the amplitude reflection factor of the terminated device can be written as 

 in gen
term.dev

gen in

Z Z

Z Z


 


. (2.85) 

When employing on-chip drivers, these can certainly be designed for an 

impedance other than the standard line impedance of 50 . In this work 

external drivers have been used. In order to avoid reflections and wasting 

electrical signal energy, the SOH modulators have been designed to reach an 

impedance of around 50 . For that, the widths of the CPW electrodes and their 

spacing have been optimized using CST Microwave Studio. The experimentally 

derived characteristic impedance (absolute value) of a typical SOH MZM is 

shown in the next figure. Its impedance is sufficiently close to the standard line 

impedance, except for lower frequencies, which is an advantage for the overall 

frequency response, as it compensates in part the characteristic of the RC 

element. 
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Fig. 2.16: Absolute characteristic line impedance of a typical MZM SOH modulator, 
measured with a small RF signal in the quadrature operating point.   

Design trade-off 

The spacing between CPW electrodes g and the width wS of the signal electrode 

could be further reduced to match the device’s impedance better to the standard 

line impedance. However, their current dimensions are already close to limits 

imposed by the CMOS fabrication processes, and could therefore not be further 

optimized. 

2.5.6 Travelling Wave Losses 
Microwave losses depend on the frequency of the travelling wave. The skin 

effect is a major contributor for CPWs and can be quantified with the skin depth 

for good conductors ( is the absolute magnetic permeability of the conductor, 

  its conductivity) such as copper using (p. 19 in [27]) 

 skin

1

f


 
 . (2.86) 

For thick electrodes the attenuation of the guided RF wave is inversely 

proportional to the skin depth, because the effective cross section used for 

conduction is reduced with increasing frequency. In our implementation the 

thickness of the Cu electrodes is fixed by the CMOS based fabrication process 

at 0.5 µm. The skin depth for Cu at 10 GHz is 0.65 µm.  

The higher the frequency, the higher is the propagation loss, which can be 

characterized with a power attenuation constant  P f .  

 
     RF

P RF

d

d

P f
f P f

z
   (2.87) 
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This results in an effective length effl [57]. The description of the effect of effl  

with a power attenuation constant on the -voltage (amplitude) requires the fac-
factor ½ in Eq. (2.88). 

  eff P

0

exp( / 2) d
l

l f z z   (2.88) 

The -voltage of the modulator is inversely proportional to the effective length. 
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Measured RF losses of a typical 1 mm long SOH modulator are shown in 

Fig. 2.17. The frequency dependence of the power attenuation coefficient ap-

pears to be of almost linear nature (with an offset of 1 dB/mm).  

 

Fig. 2.17: Propagation losses expressed as power attenuation coefficient of a typical SOH 
modulator with grounded substrate. Image source: Courtesy of R. Palmer, KIT. As P is 
part of an exponent to calculate the attenuation, expressing the attenuation in dB/mm 
means a multiplication of P with 4.344, i.e., reading the vertical axis of this plot gives 
directly the attenuation in dB/mm. 

To understand the frequency response of the SOH modulator, and in 

particular the RC limitation and RF propagation losses, a more detailed model is 

needed. Witzens et al. [57]  model the SOH modulator with a transmission line 

(TL). For this, an infinitesimal short lumped-element circuit with differential 

elements series resistance R´, series inductance L´, shunt capacitance C´, and 

shunt conductance G´ are defined. 

 
0 0 0 0

´d  , = ´d  , = ´d  ,  = ´d  
l l l l

C C z G G z R R z L L z      (2.90) 

Fig. 2.18(a) shows a revised model including the shunt capacitance C´metal 
of the CPW. Moreover, the series resistance TL´R  and series inductance TL´L of 
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the TL complete the infinitesimal short lumped-element circuit shown in 
Fig. 2.18(b). For calculations the series RC connection is transformed into a 
parallel RC connection in Fig. 2.18(c) using the definition of the quality factor  

SQ  of a series RC connection,  

 S 1

1

´ ´
Q

G C  , (2.91) 

  1 2 1
TL S Si Si2 2 2

Si slot

1 1
´ 1 ´ 1 ´

2 ´ ´
G Q Z G

G C
 



 
    

 
, (2.92) 

 
 

slot slot
TL metal metal2

S
2 2 2

Si slot

2 ´ 2 ´
´ ´ ´

11 1
´ ´

C C
C C C

Q
G C





   
 

. (2.93) 

 

 

Fig. 2.18: Equivalent circuit model with the slot capacitance C´slot and Si slab conductance 
G´Si in a transmission line. (a) Equivalent circuit components corresponding to the cross 
section are shown. (b) The RF wave is modeled with a series of infinitesimal short 
lumped-element circuits, as shown here. The transmission line (TL) experiences a series 
resistance RTL and series inductance L´TL, as well as a shunt capacitance C´metal and the RC 
elements of the strip-loaded slot WG. (c) To apply the telegrapher’s equations, the circuit 
of (b) is transformed to this standard form with only on shunt capacitance C´TL and one 
shunt conductance G´TL. 
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The characteristic impedance of a transmission line is derived from the Telegra-

Telegrapher’s equations and is in general 

 0

´ j ´

´ j ´

R L
Z

G C








. (2.94) 

Using this equation and assuming the CPW’s series resistance can be neglected, 

because the CPW is made of Cu, the characteristic impedance to the equivalent 

circuit in Fig. 2.12(c) is 
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. (2.95) 

The complex propagation constant of a transmission line is in general 

   amp RFj ´ j ´ ´ j ´R L G C         . (2.96) 

For a low-loss line, amp  can be approximated (p. 79 in [27]) as 
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The last expression is only exact in the absence of losses and should be a real 
quantity. Witzens et al. [57] obtain a relation for the transmission losses. The 
amplitude attenuation coefficient amp  for the equivalent circuit in  

Fig. 2.12(c) is: 
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Witzens et al. [57] argue that it is useful to normalize these losses with 1
0Z  , 

because V²/Z0 
 is the power transported over the transmission line.  



SOH Travelling Wave Modulator 57 
 

The resulting power attenuation coefficient can be written with a constant 

Wia  (which contains a factor of 2 for amplitude to power conversion, Z0 is elim-

eliminated; this constant is assumed to be not dependent on frequency) and the 
bandwidth RCf  as  

 
2

P Wi 2

RC

1

f
a

f
f


 

  
 

 . (2.100) 

Based on the model of the power attenuation coefficient by Witzens et al. [57] 
and assuming an RC-limited BW of 10 GHz,  the attenuation affects the 
frequency response of the modulator, as shown in Fig. 2.19. To plot these 
curves, the constant Wia  is chosen such that the attenuation corresponds to 

(1, 3, 7) dB/mm at 40 GHz, respectively plotted in blue, red and black. Note 
that beyond 10 GHz, the attenuation change reduces, because the RC element 
ceases to contribute to the attenuation; i.e., the slot capacitance is hardly  
loaded anymore. 

 

Fig. 2.19: Frequency dependence of power attenuation coefficient, effective length and the 
contribution to the modulator’s response; according to the transmission line based model 
of [57]. The blue, red and black curves correspond to an attenuation of (1, 3, 7) dB/mm at 
40 GHz, respectively. (a) Frequency dependence of the power attenuation coefficient P of 
the RF wave, assuming an RC-limited BW of 10 GHz. (b) Frequency dependence of the 
related effective length leff. (c) The resulting absolute value of the EO S21,V frequency 
response. 

Combining the RC-limit and the transmission loss related frequency 

dependence gives a model for the frequency response of the EO SOH 

modulator. It is compared to the measurement of the EO frequency response of 

a 1.5 mm long device presented in section 4.2. The next figure shows this com-
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parison. The measurement deviates from the predicted behavior for frequencies 

larger than 10 GHz.  

 

Fig. 2.20: Simulated (blue, red, black curves) and measured (magenta) frequency response 
of a 1.5 mm long EO SOH modulator. Frequency dependence of the attenuation of the RF 
wave according to the transmission line based model of [57], assuming an RC-limited BW 
of 10 GHz. Frequency dependence of the related effective length and the resulting 
absolute value of the EO S21 parameter. The blue, red and black curves correspond to an 
attenuation of (1, 3, 7) dB/mm at 40 GHz, respectively. 

The deviation from the proposed model might be explained with a mix of 

various contributions of: (a) The substrate which has a low, but significant 

conductivity will cause attenuation because of induced currents and could be 

substituted with a high resistivity wafer and/or thicker buried oxide. (b) As 

described in [57] the RF wave propagates mostly in the CPW. However, there 

are also longitudinal currents propagating in the doped Si slabs. (c) To be able 

to use CMOS fabrication techniques and a complex stack of layers, there are 

many unavoidable planarization steps (chemical mechanical polishing) during 

fabrication to keep the top surface of the wafer planar. For reproducibility of the 

polishing process independent of the mask layout, the average density of 

structures in some layers needs to be the same for every mask. That is why a 

technique called tiling is employed. Wherever there is an unused area, e.g. in 

the Cu layer, thousands of little metal tiles with a certain spacing are placed, 

which will interact weakly with the propagating wave. Nevertheless, these tiles 

are going to introduce additional loss for higher frequencies. (d) Cross talk is 

avoided by using sufficient spacing between modulators. 
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Fig. 2.21: Extended equivalent circuit model adapted from Yu et al. [58]. The following 
additional components are added: Capacitances related to the tungsten vias (GSG), the 
cladding (GSG), the buried oxide (BOX)(GSG), the substrate (S to substrate), taking a 
limited, additional conductance of the substrate into account.  (a) Equivalent circuit 
components corresponding to the cross section are shown. (b) The RF wave is modeled 
with a series of infinitesimal long lumped-element circuits, as shown here.  

Design conclusion 

The limited bandwidth of the devices is mainly due to the RC limit. To further 

improve the BW of the devices, either the Si slabs have to be higher doped or a 

gate voltage has to be applied to create a better conductive electron 

accumulation layer. 

The equivalent circuit model proposed by Witzens et al. can be extended 

according to Yu et al. [58], taking further elements into account, as shown in 

Fig. 2.21. 

The influence of (a) the length l of the modulator, (b) the Si slab sheet 

conductivity16 n,Si  and (c) slot width wslot on the RF power attenuation 

coefficient can be studied and discussed in detail with this equivalent circuit. 

                                                 

16 The sheet conductivity is given in units of k/sq., where sq. means square, but is dimen-
sionless and equal to 1. 
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The power attenuation coefficient is plotted with respect to n,Si  and wslot in 

Fig. 2.22. 

 

Fig. 2.22: Influence of Si slab sheet conductivity and slot width on the attenuation P of 
the RF wave, as simulated with the extended equivalent circuit model adapted from Yu et 
al. [58]. (a) The sheet conductivity of the Si slabs is varied  (blue curve corresponds to 
measured resistance, i.e. 2.5 k/sq., red curve 1.25 k/sq., blue curve 20 k/sq.). (b) The 
slot width wslot is varied (blue curve 140 nm, red curve 100 nm, black curve 160 nm). 

The resulting frequency response for the modulator of these parameter 

variations is shown in the next figure. Increasing the conductivity of the Si slabs 

well beyond the measured value appears to increase the model correlation with 

the measurements. The model for the frequency response obviously deviates 

from the measured frequency response, if all known measured values are 

inserted. It cannot be used to predict the absolute frequency response, but 

served well to study the influence of geometric and material parameters. 

 

Fig. 2.23: Influence of selected parameters on the frequency response of an SOH MZM of 
1.5 mm length, as simulated with the extended equivalent circuit model adapted from Yu 
et al. [58]. The measured response is plotted in magenta. (a) The sheet conductivity of the 
Si slabs is varied  (blue curve corresponds to measured resistance, i.e. 2.5 k/sq., red 
curve 1.25 k/sq., blue curve 20 k/sq.). (b) The length l is varied for reference (blue 
curve 1.5 mm, red curve 2 mm, black curve 1 mm). (c) The slot width wslot is varied (blue 
curve 140 nm, red curve 100 nm, black curve 160 nm). 
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2.6 Modulation and Multiplexing Techniques 
For digital data transmission over optical links a number of steps are necessary 

to electronically encode the data into symbols. These can be converted with an 

EO modulator to the optical domain for transmission over some distance before 

the optical signal is finally converted back to the electronic domain with a 

photodetector, to be sampled and decoded. Often, some pulse carving and/or 

filtering can be done in both the optical and the electrical domain. In this work, 

only the electrical-to-optical conversion is discussed (the EO modulator in the 

transmitter), and to a lesser extend the optical-to-electrical conversion (the 

optical part of the receiver).  

Depending on the EO modulator (only called modulator from hereon), 

different properties of an incoming, optical carrier, here assumed to be a 

continuous wave (cw) carrier such as for example polarization, frequency, 

spatial mode and its complex amplitude can be controlled over time. The 

essential condition is that after modulation with any specific symbol, the light is 

in a state which can be distinguished from the states of all other symbols. It is a 

matter of choice how a bit stream is mapped to symbols and modulated onto an 

optical carrier and how an aggregation of bit streams is bundled to be 

multiplexed. For instance the polarization of a linearly polarized cw light can be 

modulated, or another property of two cw sources is modulated independently 

first, before a polarization multiplexing is done. Here, we select to modulate the 

complex amplitude of the light and do not consider multiplexing in frequency.  

The decision about which modulation or multiplexing scheme is used is 

often driven by considerations about energy consumption and spectral 

efficiency. 
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2.6.1 Complex Amplitude Modulation 
For a carrier of frequency fc , expressed with the complex amplitude A or real 
valued amplitudes I & Q, the normalized electric field norm ( )E t  (absolute value 

normalized to be 1 when I,Q are 1, or -1) can be written as 

 norm c c c( ) exp( j2 ) cos(2 ) jsin (2 )E t A f t I f t Q f t     . (2.101) 

A plot of the real-valued amplitudes Q vs. I is called a constellation diagram. 

- A pure binary amplitude modulation between an on and an off state is 

called on-off-keying (OOK).  

- A modulation of the complex amplitude with 

 s s, 0 with I Q m m  and 2
sm m  is called m-ary quadrature 

modulation (mQAM), i.e., there are m different symbols.  

- A special case of mQAM is the modulation of the complex amplitude 

with  , 1,1I Q  , which is called quadrature phase shift keying (QPSK), 

because all symbols / states of light / constellation points could also be 

reached by just manipulating the phase of a cw carrier.  

2.6.2 Complex Amplitude Demodulation 
Depending on the modulation format, different detection schemes can be 

employed. 

Direct detection 

In this scheme, a photodiode serves to translate the incident power Pe of light 
into an electrical current PDi  which is proportional to the optical field intensity, 

and the responsivity (see Eq. (2.59)) with quantum efficiency QE , elementary 

charge e, energy of a photon   or hf  (h is the Planck constant, f the frequency 
of the light), 

 2
PD e

e
i P E

hf
  . (2.102) 

When comparing the frequency response of MZMs for direct detection, it is 

useful to employ the 3 dB bandwidth (BW). A variation in voltage  RFV f  

applied to the modulator operated at quadrature point delivers a variation in 
optical output power outP  (which is proportional to PDi ). The 3 dB BW is 

defined as the frequency at which only half the RF power (which is proportional 



Modulation and Multiplexing Techniques 63 
 

to 2
PDi ) at the photodiode is generated at this frequency compared to the RF 

power at the photodiode at a reference frequency near 0 Hz (or the lowest 
relevant frequency used for modulation). In [60] this is defined as the electro-

optic responsivity  MZM,dBR f of an MZM as 

    
out

MZM,dB 10
RF

1V
20log

1W

P
R f

V f

 
  

 
. (2.103) 

Coherent reception 

To obtain the complete information of the complex amplitude of a signal, it can 

be compared to a local reference signal, a so called local oscillator (LO). This is 

called homodyne detection if the LO is locked in phase and frequency to the 

carrier, intradyne detection if the LO is not locked but still within the signal 

bandwidth, and heterodyne reception if the LO is not anymore within the signal 

bandwidth.  

The reception can be done (homodyne, intradyne detection) by splitting the 

signal ES and also the LO ELO superposing both in two different settings (with a 

phase difference of 90°) using MMIs as shown in the next figure.  

 

Fig. 2.24: Coherent receiver implemented using MMIs (depicted as rectangles, which split 
and combine optical WGs). Black lines denote optical WGs, red marks electric lines. 
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After the MMIs the electric fields can be written as 
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 

 

, (2.104) 

which eventually results in electric currents proportional to the intensities 

 
          
          

*
I 1 2 S LO

*
Q 3 4 S LO

2 ,

2 .

I t I t I t E t E t

I t I t I t E t E t

   

   
 (2.105) 

Hence this detection scheme can be used to make a very linear transmission 

system employing MZMs or IQ modulators for advanced modulation formats, 

because of the linearity of the RF-to-optical up-conversion (MZM operated at 

minimum transmission point) and because of the linearity of the optical-to-RF 

down-conversion (received RF power is proportional to the voltage applied at 

the MZM).  

As a consequence, when comparing the frequency response of modulators 

for coherent reception, it is useful to employ the 6 dB BW (using Eq. (2.103)), 

defined as the frequency at which a voltage applied to the modulator only 

delivers half the RF power at the output of the balanced photodiodes. 

Despite the extra hardware requirements necessary for coherent detection, 

advanced modulation formats such as 16QAM are gaining interest, because of 

their spectral efficiency and because they can be used to realize transmission of 

higher bit rates at reasonable symbol rates (reasonable with respect to the 

driving electronics). 



    

3 Light Emission with SOH Devices 
This chapter presents the first demonstration of an SOH laser at infrared wave-

lengths. This chapter was submitted to a scientific journal [J1] (© for reprints 

will be transferred to this journal) and is printed here in its draft version. 
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Silicon photonics enables large-scale photonic-electronic integration by 

leveraging highly developed fabrication processes from the microelectronics 

industry. However, while a rich portfolio of devices has already been 

demonstrated on the silicon platform, on-chip light sources still remain a key 

challenge since the indirect bandgap of the material inhibits efficient photon 

emission and thus impedes lasing. Here we demonstrate a novel class of 

infrared lasers that can be fabricated on the silicon-on-insulator (SOI) 

integration platform. The lasers are based on the silicon-organic hybrid (SOH) 

integration concept and combine nanophotonic SOI waveguides with dye-doped 

organic cladding materials that provide optical gain. We demonstrate pulsed 

room-temperature lasing with on-chip peak output powers of up to 1.1 W at a 

wavelength of 1310 nm. The SOH approach enables efficient mass-production 

of silicon photonic light sources emitting in the near infrared (NIR) and offers 

the possibility of tuning the emission wavelength over a wide range by proper 

choice of dye materials and resonator geometry. 



66  Light Emission with SOH Devices 
 

 

3.1 Introduction 
Silicon photonics allows the fabrication of nanophotonic devices with 

commercial CMOS facilities and is therefore a highly attractive platform for 

large-scale photonic integration [61]–[63]. However, while a wide variety of 

silicon-based optical and electro-optical devices has been demonstrated over the 

last years [10], efficient on-chip light sources still represent a challenge [43] due 

to the indirect bandgap of silicon. Previously reported all-silicon light sources 

rely on stimulated Raman scattering as a gain mechanism [15], [16], but these 

devices require either strong pump lasers in combination with reverse-biased p-

i-n-junctions or provide only limited output power in the microwatt range. 

Hybrid approaches, in which silicon is combined with direct-bandgap III-V 

compound semiconductors, allow for electrically pumped amplifiers [64] and 

lasers [65], [66], but fabrication requires sophisticated and technologically 

challenging die-to-wafer bonding processes or advanced technology for the 

direct growth of III-V quantum dots [67] on silicon. Regarding monolithic 

integration of light sources on silicon, an electrically pumped continuous-wave 

(cw) germanium-on-silicon laser has been demonstrated by using a combination 

of tensile strain and n-doping of the germanium to invoke direct-bandgap 

transitions in thin germanium layers that are grown on silicon substrates [18]. 

More recently, lasing has been shown without introducing mechanical strain by 

using a germanium-tin alloy [68] on silicon. However, fabrication of such 

devices still requires advanced crystal growth techniques. As an alternative, 

combinations of erbium-doped active cladding materials and SOI waveguides 

have been proposed [69], [70] and experimentally investigated [71], [72]. 

However, erbium features a rather small emission cross section and hence small 

gain. As a consequence, lasing in integrated erbium-clad devices has so far only 

been demonstrated for low-loss silicon nitride waveguides [73], but not for high 

index-contrast SOI waveguides.  Regarding peak output power, even the most 

outstanding silicon-based lasers are currently limited to approximately a 

hundred milliwatts or less [67], [74], [75]. 

In this work, we demonstrate that lasing can be achieved by combining 

standard silicon-on-insulator (SOI) waveguides with dye-doped organic 

cladding materials. This concept of silicon-organic hybrid (SOH) integration is 

particularly well suited for flexible and low-cost mass-production of silicon 
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photonic light sources emitting in the near infrared (NIR). In a proof-of-

principle experiment, we demonstrate pulsed lasing at room temperature with 

peak output powers of up to 1.1 W at a wavelength of 1310 nm. Gain is 

provided by an NIR dye that was previously demonstrated to enable lasing in 

plastic waveguides [51]. More general, exploiting the virtually unlimited variety 

of organic optical cladding materials, SOH integration allows to complement 

silicon photonics with novel functionalities while still preserving the strengths 

of highly standardized CMOS processing [J6]. Our proof-of-principle 

demonstration of SOH light sources complements recent work on SOH 

integration, comprising high-speed all-optical signal processing [34], broadband 

electro-optic modulators [76], [77] and highly efficient low-power phase 

shifters [78]. 

3.2 Results 

3.2.1 Concept and Fabrication of Silicon-Organic Hybrid Lasers 
The basic idea of an SOH laser is illustrated in Fig. 3.1(a). The devices consist 

of SOI waveguides, which are terminated at both ends with Bragg 

reflectors [79] and which are covered by a fluorescent organic cladding material 

suitable for stimulated emission when optically pumped. For efficient light 

emission, the interaction of the guided optical mode with the active cladding 

must be maximized. This can be accomplished by using a narrow silicon strip 

waveguide, for which a large fraction of the guided mode reaches into the 

cladding, Fig. 3.1(b). Alternatively, a slot waveguide can be used, which con-

sists of two closely spaced silicon rails, Fig. 3.1(c). In both cases, the dominant 

horizontal electric field component (Ex) of a quasi-TE mode experiences strong 

field discontinuities at the high-index-contrast sidewalls. For the slot wave-

guide, this leads to an especially pronounced field enhancement within the 

slot [80], and hence to a strong interaction with the active cladding. 
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Fig. 3.1: Silicon-organic hybrid (SOH) laser: (a) Light is guided by silicon-on-insulator 
(SOI) strip or slot waveguides consisting of thin silicon nanowires (width wstrip = 
150…500 nm, height hWG = 200…350 nm) that are optically isolated from the silicon 
substrate by a thick oxide (hSiO2   2 µm). Optical gain is provided by a fluorescent 
organic cladding material, hclad  (500±50) nm, which entirely covers the strip or fills the 
slot (wrail  100 … 200 nm, wslot  50 … 200 nm). The optical pump is either launched 
from above or injected into the waveguide at one of the facets. Bragg reflectors can be 
used to provide wavelength-selective optical feedback. Interaction of the guided light 
with the active cladding is maximized by the design of the waveguides. (b) Dominant 
electric field component (Ex) of the fundamental quasi-TE mode for a narrow strip 
waveguide (color coding: lighter colors for higher magnitude). A large fraction of the 
guided mode propagates in the cladding. (c)  Dominant electric field component (Ex) of 
the fundamental quasi-TE mode for a slot waveguide consisting of two tightly spaced 
silicon rails. Discontinuities of the dominant horizontal electric field component lead to 
a strong field enhancement within the slot region and hence to a strong interaction with 
the active cladding.  

We prove the viability of the concept by investigating a simple test 

structure. To this end, strip and slot waveguides of 4.8 mm length were 

fabricated using a state-of-the-art SOI CMOS-based process [81]. The 

waveguides are embedded into a solid active cladding consisting of a 

poly(methyl methacrylate) (PMMA) matrix doped with 1 wt.% of the 

commercially available dye IR-26 [51], [52] having a maximum fluorescence at 

1150 nm, see Supplementary Fig. 3.6. The cladding is deposited in a single 

post-processing step using standard spin-coating techniques. Scanning electron 

microscope (SEM) images of coated and uncoated samples can be found in 

Supplementary Fig. 3.7, showing that the PMMA cladding fills the slot com-

pletely without forming any voids. To enable laser operation in a wide wave-

length range, we omit the wavelength-selective Bragg reflectors shown in 
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Fig. 3.1 and exploit spurious back reflection from cleaved waveguide facets and 

on-chip grating coupler (GC) structures, see Fig. 3.2(a) and (b). For the cleaved 

facets, power reflection factors of 4…8 % are estimated. Light emission from 

the cleaved facets is coupled to lensed standard single-mode fibers (SMF). For 

coarse alignment of the fibers, we use 1550 nm light coupled to the SOH 

waveguide via the GC.  The GC is optimized for operation at a wavelength of 

1550 nm and exhibit spurious back-reflection when operated at the laser 

emission wavelength of 1310 nm. This reflection amounts to a few percent and 

is comparable to that of the cleaved facet. A more detailed description of device 

fabrication can be found in Section 3.4.1. 

Lasing could be demonstrated despite the comparatively low quality of the 

Fabry-Perot laser resonator, underlining the high potential of using dye-doped 

active claddings as gain media. In the experiment, the devices are pumped from 

above by a free-space line-focus beam using a pulsed laser with a wavelength of 

1064 nm, a pulse duration of 0.9 ns (full width at half maximum, FWHM), and 

a pulse energy of up to 1.2 mJ at a repetition rate of 13.7 Hz. The experimental 

setup is explained in more detail in Section 3.4.2, which is followed by an esti-

mation of the pump light absorbed in the active region of the lasers.  

3.2.2 Characterization and Experimental Proof of Lasing 
We measured the laser output power in the SMF as a function of the pump 

power for both the strip and the slot waveguide, Fig. 3.2(c) and (d). In both cas-

es, a clear threshold can be observed at a launched average pump power of ap-

proximately 2.3 mW for the strip, and approximately 1.3 mW for the slot wave-

guide. The absorbed peak power at threshold in the vicinity of the waveguide 

can be roughly estimated to be 38 W for the strip, and 24 W for the slot wave-

guide, taking into account specific parameters of the individual waveguides, see 

Sections 3.4.2, 3.4.3 and 3.5.1 for more details.  

The existence of the threshold indicates laser emission. The measured 

threshold level is in reasonable agreement with theory, see Section 3.4.5 for a 

more detailed discussion of the resonator properties and the associated laser 

emission characteristics. To rule out any laser look-alikes, we investigate further 

criteria formulated by Samuel et al. [82]. Below threshold, only amplified 

spontaneous emission (ASE) is to be seen, which increases exponentially with 

the pump power, see Insets of Fig. 3.2(c) and (d). 
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Fig. 3.2: Experimental proof of lasing in silicon-organic hybrid (SOH) strip and slot 
waveguides. The cladding consists of the commercially available dye IR26 [51] dispersed 
in a PMMA matrix. Cavity mirrors are formed by one cleaved waveguide facet and a 
grating coupler (GC). The GC is designed for coupling 1550 nm-light from an optical 
fiber to the strip and exhibits substantial back-reflection at the laser emission wavelength 
of 1310 nm. In both cases, the cavities are approximately 4.8 mm long. The laser output 
power is measured in a lensed single-mode fiber (lensed SMF) that collects light from the 
waveguide facet. (a) Strip waveguide consisting of a 450 µm long GC section and a 
4.3 mm long strip section (waveguide height hWG  220 nm, width wstrip  210 nm). (b) 
Slot waveguide comprising a 450 µm long GC section, a 235 µm long access strip 
waveguide, a 300 µm long strip-to-slot transition, and a 3.8 mm long slot waveguide 
section (rail width wrail  180 nm, slot width wslot  215 nm). (c) Peak output power Ppk, out 
(all polarizations) in lensed SMF vs. illuminating average pump power Pavg, in for the strip-
waveguide cavity. A clear pump power threshold of Pavg, th = 2.3 mW can be observed. The 
measured incident average pump power (bottom scale) Pavg, in is used to calculate the 
absorbed pulse peak power (top scale) Ppk,in, taking into account the specific parameters of 
the waveguide, see Sections 3.4.4, 3.5.1. The peak pump power was determined with a 
relative standard error of  14 %; for the peak power of the emitted pulse the relative 
standard error is  10 %, see Sections 3.4.3, 3.4.4.  P1 and P2 denote the pump powers for 
which the spectra in Subfigure (e) are recorded. (d) Peak output power Ppk, out  in SMF vs. 
incident average pump power Pavg, in for the slot waveguide cavity. A threshold pump 
power Pavg, th = 1.3 mW is found, which corresponds to 60 % of the threshold for the strip 
waveguide.  P1 and P2 denote the pump powers for which the spectra in Subfigure (f) are 
recorded. (e) Emission spectra below (amplified spontaneous emission, ASE, magenta) 
and above threshold (blue) for the strip waveguide cavity. The spectrum is given in 
arbitrary units of the spectral pulse peak power density S recorded with a resolution 
bandwidth (RBW) of 5 nm (inset with logarithmic scale). Above threshold, the emission 
spectrum narrows considerably. (f) Emission spectra below (ASE, green) and above 
threshold (red) for the slot waveguide cavity (inset with logarithmic scale). The RBW 
amounts to 5 nm. Also here, the emission spectrum narrows considerably above threshold. 

Above threshold, the output power increases linearly with the pump power. 

For very high pump powers, the laser power saturates. The saturation is 

attributed to absorption bleaching at the pump wavelength and to pump-induced 

free carrier absorption (FCA) in the SOI waveguide, see Section 3.4.6 for a 

more detailed discussion of optically induced losses.  

Moreover, we investigate the emission spectra from the strip and slot 

waveguides below and above threshold, see Fig. 3.2(e) and (f). Broadband am-

plified spontaneous emission (ASE) can be observed for operation below 

threshold, see Insets of Fig. 3.2(e) and (f) (logarithmic scale). When pumped 
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above threshold, the emission spectrum narrows considerably. In Fig. 3.2(e) 

and (f), the observed linewidth appears slightly larger than the resolution 

bandwidth of the spectrometer (RBW = 5 nm). We attribute this to a multitude 

of different longitudinal cavity modes which oscillate simultaneously at every 

pump pulse, see Section 3.5.2 and Supplementary Fig. 3.8 for a more detailed 

description.  

Above threshold, the optical output of slot waveguides and of narrow strip 

waveguides is laterally single-mode, which can be inferred from the observation 

that there is a single well-defined optimum spot when coupling to a lensed SMF. 

For strip waveguides, lasing in higher-order lateral modes can be observed for 

waveguide widths of approximately 300 nm or more as reported in more detail 

in the next Section. For the devices shown in Fig. 3.2, the emitted light is pre-

dominantly polarized in the horizontal direction as is expected for lasing of the 

quasi-TE mode. The polarization extinction ratio (ER) is about 8 dB for both 

devices in Fig. 3.2. To confirm that the dye is indeed responsible for lasing, we 

prepared reference samples without dye in the PMMA cladding. These samples 

do not show noticeable light emission. Moreover, without the silicon waveguide 

but with dye in the cladding, only spontaneous emission is observed. These 

findings exclude any laser lookalikes and confirm the working principle of the 

SOH laser concept. 

3.2.3 Influence of Waveguide Geometry 
Regarding the influence of waveguide geometry on the performance of the SOH 

lasers, we find that lasing with high output powers can be achieved within a 

wide range of waveguide dimensions and that the output power is clearly 

related to the overlap of the guided mode with the active cladding. The 

geometry-dependent output power levels of different waveguide geometries are 

shown in Fig. 3.3. For the strip waveguide, we vary the width, Fig. 3.3(a), 

whereas for the slot waveguide, the rail width is fixed to 170 nm and the slot 

width is varied, Fig. 3.3(b). The length of the active section amounts to 4 mm 

for all devices. As before, the resonator is formed by back-reflection from a 

cleaved waveguide facet and from a grating coupler operated far from its design 

wavelength of 1550 nm. The experimental setup is the same as before and 

described in Section 3.4.2. The average pump power is fixed to 5 mW. 
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The colored areas of each bar represents the respective contribution of 

quasi-TE (blue) and quasi-TM polarization (green) to the total output power. 

For the strip waveguide, the laser power is largest when the strip width is 

smallest, i.e., when the light extends far into the active cladding. The second 

maximum at wstrip = 375 nm is due to lasing not only of the fundamental mode, 

but also of the next higher-order quasi-TE10 mode, which also strongly interacts 

with the cladding. The polarization extinction ratio (ER) reaches a maximum of 

(18±2) dB for the narrowest strip waveguides we investigated. 

In Fig. 3.3(b), we consider slot waveguides and vary the slot width while 

keeping the rail width at a constant value of 170 nm. The TE mode dominates 

laser emission, since interaction with the cladding is enhanced by the electric-

field discontinuities at the high-index-contrast sidewalls of the slot, as can be 

seen by comparing the field interaction factors [35] Γclad, TE  and Γclad, TM for the 

two polarizations, see Table 3-1 and Section 3.5.1. Moreover, the emitted laser 

power increases with slot width. This is to be expected since larger slot widths 

lead to both larger field interaction factors of the guided mode within the active 

cladding and to a larger volume in which dye molecules can interact with the 

guided mode. For very large slot widths, the slot mode is only weakly guided 

and leaks into the high-index silicon substrate. As a consequence, the output 

power does not increase further. The polarization ER remains nearly constant 

and reaches a maximum of (8±2) dB for a slot width of 140 nm. For wider and 

narrower slots, the ER slightly is slightly smaller.  

The optimum choice of the waveguide geometry depends on the desired 

balance between output power and polarization extinction ratio: High power 

output and a moderate ER when using slot waveguides have to be compared to 

about half the output power and a high polarization ER obtained from narrow 

strip waveguides. Using state-of-the-art CMOS fabrication, waveguide 

dimensions can be reproduced with tolerances of significantly less than 10 nm, 

which does not influence output power or polarization ER of the SOH lasers to 

a significant degree. SOH device performance can hence be expected to be 

resilient against fabrication inaccuracies. 
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Fig. 3.3: Geometry-dependent peak output power Ppk, out coupled into a lensed single-mode 
fiber for strip and slot waveguides. The resonator relies on back-reflection from one 
cleaved waveguide facet and from a grating coupler operated far from its design 
wavelength of 1550 nm. Quasi-TE and quasi-TM polarizations are measured separately. 
The average incident pump power is 5 mW for all samples. In the bar diagram, the 
differently colored areas represent the contributions of the quasi-TE and the quasi-TM 
polarization to the total output power; the total bar height corresponds to the total 
emission. Insets: Dominant electric field magnitudes of the fundamental quasi-TE modes. 
(a) Strip waveguide cavity. The laser power is largest when the strip width is smallest, i.e., 
when the guided light extends far into the cladding. The secondary maximum at 375 nm is 
due to lasing of the next higher-order mode (quasi-TE10), which also has a strong overlap 
with the active cladding, but is not guided for smaller strip widths. (b) Slot waveguide 
cavity. An increase of the slot width leads to an increase of the field confinement in the 
cladding and to an expansion of the region in which the active dye interacts with the 
optical mode. As a consequence, the lasing power increases with slot width. For large slot 
widths, the fundamental mode is only weakly guided, and the laser power does not 
increase further. The rail width has less influence (not shown) and is fixed at 170 nm. 

3.2.4 Dynamic Emission Behavior 
The achievable peak output power of the SOH lasers is remarkable: For an SOH 

slot waveguide with cleaved facets on both sides, we measured peak output 

powers of up to 365 mW in the attached SMF, see Fig. 3.4(a), (b). The fiber-

chip coupling losses are estimated to be (5 ± 1) dB, which leads to peak powers 

of (30.3 ± 1.0) dBm at the output facet, i.e., 1.1 W that could be coupled to an 

on-chip nanophotonic SOI waveguide. This is the highest peak power emitted 

from a silicon-based laser with on-chip cavity so far. A more detailed discussion 

of the estimation of emission power can be found in Section 3.4.3. 

The time-dependent emission of the slot-waveguide laser is depicted in 

Fig. 3.4(c) for both polarizations, recorded at an average pump power of 5 mW. 

We observe laser emission into both the quasi-TE and quasi-TM mode,  
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Fig. 3.4: Lasing in a silicon-organic hybrid (SOH) slot waveguide. In this experiment, 
cavity mirrors are formed by cleaved waveguide facets on both ends. The cavity length is 
3.8 mm, the waveguide height amounts to 220 nm, and for the rail and the slot width, 
values of wrail = (160±15) nm and wslot = (180±15) nm were found. (a) Schematic top view 
of the slot waveguide. (b) Peak output power in the lensed SMF for quasi-TE and quasi-
TM mode vs. incident average pump power. The absorbed pump peak power is estimated 
from the measured incident average pump power, see Section 3.4.4. Inset: Zoom-in of 
pulse peak power at low pump powers, demonstrating sharp thresholds for both TE and 
TM mode. (c) Temporal shape of the pump pulse at an average power of 5 mW (green) 
and of the corresponding emission pulses (TE, blue; TM, red). The shape of the pump 
pulse was measured by averaging over 16 pulses, and normalizing to a peak value of 1. 
Likewise, the emission pulses were measured in the SMF and averaged over 16 pulses. In 
the plot, the peak of the TE emission has been normalized to 1, and the TM emission is 
plotted at the same scale. The exact delay between pump and emission is unknown. The 
peak pump power was determined with a relative standard error of  14 %; for the peak 
power of the emitted pulse the relative standard error is  10 %, see Sections 3.4.3, 3.4.4. 

which we attribute to local gain depletion: For large slot widths, the TE and TM 

modes occupy different cross-sectional domains of the active cladding, see 

insets in Fig. 3.4(b), and lasing may therefore occur simultaneously in  

both polarizations. 

Since the overlap of the quasi-TE slot mode with the active cladding is 

larger than that of the TM mode, the TE mode experiences higher gain hence 

dominates lasing with a polarization extinction ratio of 9 dB. The TE and TM 

emission spectra are similar – see Supplementary Fig. 3.8 and Section 3.5.2 for 

a more detailed discussion.  

Regarding the pulse shapes, we find that the mean FWHM duration of 

emission amounts to 0.6 ns, which is shorter than the pump pulse FWHM of 

0.9 ns. Moreover, the emission pulse features an asymmetric shape and is 
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delayed with respect to the pump pulse. The delay is attributed to the fact that 

laser emission can only set in once the pump intensity exceeds the threshold 

level. Note that the relative timing of pump pulse and emission pulses is subject 

to uncertainties of approximately ±100 ps due to different propagation delays in 

the fiber-based measurement setup, see Section 3.4.6 for more details. There-

fore, the instantaneous pump power at the onset of laser emission cannot be di-

rectly associated with the threshold pump power level identified in Fig. 3.4(b). 

The asymmetric shape of the emission pulse might be caused by nonlinear ab-

sorption and subsequent relaxation processes in the active cladding. This aspect 

requires further investigation. 

3.3 Discussion 
SOH lasers have the potential to cover a broad range of different emission 

wavelengths between 1.1 µm to 1.6 µm by using suitable dye materials [83], 

[84]. Due to the high output power, the devices may even be used for exploiting 

nonlinear optic effects in nanophotonic waveguides. The SOH lasers are 

remarkably robust: We tested them repeatedly over several weeks without 

observing significant performance degradation in our experiments. This is in 

good agreement with previous observations, which have shown that photo 

bleaching of this dye can be neglected at our pump wavelength [51].  

The devices presented in this paper are first-generation prototypes with 

considerable room for improvement. In particular, lasing threshold and 

linewidth of optical emission can be reduced by using optimized Bragg 

reflectors or ring resonators for optical feedback. Moreover, according to our 

study of the laser dynamics, we expect that better efficiency and lower threshold 

can be achieved by avoiding free-carrier absorption as an important loss 

mechanism of the cavity. To this end, one might consider dyes that allow for 

pumping wavelengths above the absorption edge of silicon [84]. Moreover, the 

pump efficiency can be improved considerably by guiding the pump light along 

the SOI waveguide to concentrate it in the active zone. This could be achieved 

by using an additional polymer waveguide around the SOI waveguide. High 

duty cycles or continuous-wave emission are in general difficult to achieve in 

dye lasers due to triplet-state excitation and subsequent photo-induced 

degeneration. This deficiency could be overcome by doping the matrix material 

with triplet-state quenching or triplet-trapping species of molecules [85], by 
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using optofluidic concepts [86] or by choosing other gain materials such as lan-

lanthanide ions or colloidal quantum dots [87], [88] that might even be suited 

for direct electrical pumping [89].  

Nevertheless, even without continuous-wave operation, SOH lasers enable 

greatly simplified one-step fabrication processes for realizing thousands of light 

sources directly integrated into silicon photonic circuitry. Such light sources 

lend themselves to, e.g., a wide range of applications in biosensing [90], where 

pulsed operation with low duty cycles is sufficient, where cost-efficient mass 

fabrication is essential to enable disposable chips for one-time use, and where 

pump efficiency is secondary. Moreover, the high peak power of the SOH lasers 

might open interesting opportunities in nonlinear infrared spectroscopy. Further 

investigation of the dynamics, optimization of the active cladding, and the use 

of better resonators should help enlarging the application range. 

We therefore believe that the present approach will be the basis for a novel 

class of silicon photonic on-chip sources that stand out due to their high peak 

output power and ease of fabrication.  

3.4 Methods 

3.4.1 Fabrication of Silicon-Organic Hybrid Lasers 
Waveguides were fabricated on silicon-on-insulator (SOI) wafers from SOITEC 

using a CMOS pilot line based on 193 nm deep-ultra-violet lithography [81]. 

All waveguides have a height of hWG = 220 nm and are optically isolated from 

the silicon substrate by a buried oxide (SiO2) layer of thickness hSiO2 = 2 µm. 

The gain medium is deposited on the silicon waveguides in a single post-

processing step by spin-coating. The active organic cladding consists of a 

poly(methyl methacrylate) (PMMA) matrix which is doped with 1 weight 

percent (wt.%) of the commercially available dye IR-26 [51]. The final 

thickness of the cladding amounts to hclad  (500±50) nm. The measured 

absorption and fluorescence spectra of a liquid dye solution are depicted [52] in 

Supplementary Fig. 3.6, exhibiting a fluorescence emission peak at 1130 nm. 

When dispersed in a solid, extended waveguide structure, the emission peak of 

IR26 shifts to approximately 1300 nm due to self-absorption along the 

waveguide in the overlap region of the emission and the absorption spectra [91]. 
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This is in good agreement with the laser emission wavelength observed in 

Ref. [51].  

3.4.2 Experimental Demonstration of Laser Emission 
The experimental setup is depicted in Fig. 3.5. The SOH devices are pumped 

from top by a pulsed laser at a wavelength of 1064 nm with a duty cycle of 

approximately pt = 1.23 × 10-8. The full width at half the maximum (FWHM) of 

the pump pulse amounts to 0.9 ns, the repetition frequency is 13.7 Hz. The 

incident pump power is controlled by adjusting the angle of a half-wave plate in 

front of a polarizing beam splitter (PBS). The pump light is polarized in a 

direction perpendicular to the waveguide axis and focused on the waveguide 

under test using a cylindrical lens (CL), see Fig. 3.5(a).  

To measure emission from the SOH device, a lensed single-mode fiber 

(SMF) is placed near the facet, denoted as ‘Fiber 2’ in Fig. 3.5(a). The fiber col-

lects the emitted light with an estimated coupling loss of approximately 

 5 1 dB . By coupling an auxiliary light beam at 1550 nm through the on-chip 

grating coupler to the SOH waveguide using a second fiber (Fiber 1), we can 

facilitate the alignment of the lensed Fiber 2 with respect to the waveguide 

facet. Polarization-maintaining fibers are used throughout the setup. Fiber 2 is 

aligned such that the quasi-TE and quasi-TM emission of the SOH laser is 

coupled to the slow and the fast axis of the PM fiber, respectively.  

To characterize the laser emission, we use two different detection paths in 

our setup: A “high-sensitivity detection” path, corresponding to the upper part in 

Fig. 3.5(b), and a “fast detection” path, represented by the lower part in 

Fig. 3.5(b).  

The high-sensitivity path allows to measure input-output power 

characteristics and spectral properties of the laser emission. To this end, we use 

a monochromator and a highly sensitive photodetector with a large dynamic 

range, followed by an electrical low-pass filter for noise reduction and a 

standard oscilloscope, see Fig. 3.5(b). The oscilloscope is triggered by the emis-

sion of the pump laser and averages over 16 subsequent pulses. Due to the elec-

trical low-pass filter and the bandwidth limitations of both the photodetector 

and the oscilloscope, the recorded electrical pulse is strongly widened compared 

to its optical counterpart. However, the peak of the recorded electrical pulse still 
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remains proportional to the received optical power. This setup allows measuring 

the wavelength-resolved emission spectrum. For high output powers, an 

attenuator (not shown) was inserted in front of the photodiode. 

 

Fig. 3.5: Measurement setup. (a) Pump light at 1064 nm is focused on the SOH waveguide 
using a cylindrical lens. Pump power is adjusted by sending the linearly polarized light 
from the pump laser through a half-wave plate and a polarizing beam splitter (PBS). Fiber 
1 (cleaved SMF illuminating a grating coupler) is used only to facilitate coarse alignment 
of fiber 2 (lensed SMF) by using 1550 nm light. (b) Emission from the SOH laser is 
collected by the lensed fiber (fiber 2), which is connected to different detector setups by an 
optical switch. The upper path is used for high-sensitivity detection. It contains a 
monochromator and a slow but highly sensitive photodetector (PD) to record weak 
fluorescence. The sensitive PD has a low bandwidth, and a consecutive electrical low-pass 
filter is used to further suppress noise. The lower “fast-detection” path is used for time- 
and polarization-resolved measurements. It is equipped with fast PDs. Residual pump 
power is blocked by an optical long-pass filter. 

Time-resolved measurements are made with the fast-detection path: An 

optical long-pass filter blocks spurious pump light that might be scattered into 

the lensed fiber. A polarization beam splitter (PBS) separates the two 

polarization states for individual detection. Light pulses with a duration in the 

(sub-)ns-range are detected with fast photodiodes (NewFocus 25 GHz model 

1434, NewFocus 45 GHz model 1014). A high-speed oscilloscope (Tektronix 

DPO 70804B, 8 GHz bandwidth, 25 GSa/s) is used to record time-resolved 

traces. The traces displayed in Fig. 3.4(c) have been obtained by averaging over 

16 subsequent pulses. We find an average pump pulse duration of 0.9 ns 

FWHM with a standard error of 0.13 ns (15 %). Note that the cut-off 

wavelength λcut = 1260 nm of the fiber is above the wavelength of the pump 

light. Thus the pump pulse shape is likely influenced by modal dispersion. 
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The durations of the emitted SOH laser pulses are shorter than that of the 

pump pulse. For quasi-TE polarization, the mean FWHM duration amounts to 

0.6 ns with a standard error of  0.06 ns (10 %).  

3.4.3 Estimation of Emission Power Levels 
For high output powers above the lasing threshold, the peak power levels in the 

output fiber were measured using the fast detection path of the setup depicted in 

Fig. 3.5, taking into account the responsivity of the fast photodiode and the op-

tical and electrical losses of the various components. To obtain a lower bounda-

ry for the on-chip power levels, we assume that the total fiber-chip coupling 

losses are as low as 5 dB (factor 3.2). This value was estimated from reference 

measurements at 1550 nm; the actual losses at 1310 nm may be slightly higher. 

The coupling factor also includes losses of 6% due to reflection from the wave-

guide facet. A measured SOH laser peak power of 365 mW in the SMF hence 

corresponds to a power of at least 365 mW  3.2  0.94 = 1.1 W which is cou-

pled out from the waveguide facet and which could be used in an on-chip de-

vice that is connected to the SOH laser.  

To estimate the variation of the measured emission power, the high-speed 

detection path depicted in Fig. 3.5(b) is used. We record subsequent emission 

pulses from a SOH slot waveguide similar to the waveguide depicted in 

Fig. 3.4(a), pumped well above threshold. A relative standard error of the pulse 

peak power of at most 10 % is measured. 

For spectrally resolved measurements or for small power levels below the 

laser threshold, we use the high-sensitivity detection path of our setup. The peak 

power levels of the deformed pulses in the high-sensitivity path are calibrated 

by comparison to the corresponding peaks of the true pulse shapes in the fast 

detection path using medium power levels that can reliably be detected in  

both paths. 

3.4.4 Estimation of Pump Power Levels 
While the total average pump power is directly accessible by measurement, the 
absorbed peak pump power needs to be estimated based on further assumptions. 
The elliptical Gaussian pump spot features a major axis of 8 mm and a minor 
axis of 0.3 mm, both defined by the FWHM of the intensity on the chip surface. 
This is much larger than the active region of the SOH waveguide, i.e., the 
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region in which pumped dye molecules interact with lasing waveguide mode. 
Considering the example of the device depicted in Fig. 3.4, the length lact, region = 
3.8 mm of the active region is defined by the length of the slot waveguide 
section, and the width is estimated using the TE mode field diameter 
MFDx = 0.77 µm in the lateral direction. The fraction of light that overlaps with 
the active zone is estimated by integrating the two-dimensional Gaussian 
distribution over the rectangle of MFDx and waveguide length in the (x,z)-plane. 
This integral amounts to pxz = 0.0027. To estimate the fraction py of pump light 
absorbed in the active cladding, we need to determine the corresponding 
absorption coefficient. From a direct transmission measurement using a 1.1 µm-
thick IR26 dye-doped polymer layer on glass with the same dye concentration 
as the cladding material, the absorption cross section of the dispersed dye 

molecules is found to be 16 2
p 1.7 10 cm   . This is in fair agreement with the 

value 16 2
p 5 10 cm    measured in a solution of the dye in 1,2-

dichloroethane [92]. The thickness of the cladding hclad = (500 ± 50) nm has 

been measured using a profilometer. Using 16 2
p 1.7 10 cm    and a dye 

molecule concentration of 19 310 cmN  , a value of 

 p clady 1 exp 0.08Nhp     is found. The dye molecule density is derived 

from the measured mass ratio before mixing the PMMA matrix with the IR26 
dyes. The total percentage of pump light absorbed in the active region is 
therefore pxyz = pxz × py = 0.022 %. Using the measured pump pulse shape and 
the duty cycle, we find a ratio of average pump power to peak pump power of 

8
avg/peak 1.23 10p   , which leads to a ratio of average incident pump power to 

absorbed peak pump power of p = pavg/peak / pxyz = 5.6 × 10-5. This ratio is used 
to relate the top and the bottom power scales in Fig. 3.4 (b). Consequently, the 
average incident threshold pump power of 1.8 mW leads to an estimate of the 
absorbed peak pump power of 32 W. The same method was used to relate the 
top and bottom power scales in Fig. 3.2(c) and (d); the corresponding ratios of 
average incident power to absorbed peak power are listed in Table 3-1. To esti-
mate the variation of the measured pump power, a fraction of the pump pulse is 
coupled to a fiber and fed to a high-speed photo diode. From the measurements 
we find that the standard error of the pump is at most 14 %. 

3.4.5 Resonator Characteristics and Threshold Pump Power  
The measured threshold pump powers of the SOH lasers are in reasonable 

agreement with the losses of the cavities. This is demonstrated by analyzing the 
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round-trip losses of a Fabry-Perot resonator with two cleaved facets as used in 

Fig. 3.4, and by relating them to the material gain of the active cladding.   

The resonator round-trip losses are estimated by measuring the Fabry-Perot 

fringes in the transmission spectrum of the resonator and by evaluating the 

fringe contrast, see Section 3.5.3 for a more detailed discussion. For TE polari-

zation, we find a contrast ratio C of approximately 0.5 dB between the transmis-

sion maxima and the adjacent minima, see Supplementary Fig. 3.9. According 

to Section 3.5.3, this corresponds to a total round-trip loss of 30.8 dB, calculat-

ed using 10 log10(a
2R2) , where R denotes the power reflection factor at each 

facet and where a is the single-pass power transmission factor in the 3.8 mm-

long waveguide. This result is in good agreement with a bottom-up considera-

tion: We use a finite-element solver [93] to calculate the back-reflection R from 

the cleaved facet of an SOH waveguide, leading to a value of 6 % (−12.2 dB), 

see Table 3-1. Given the resonator length of l = 3.8 mm and the total round-trip 

loss of 30.8 dB, we hence estimate a propagation loss of approximately 

0.9 dB/mm for the slot waveguide. This is in accordance with typically meas-

ured propagation losses of slot waveguides [94] which are of the order of 

1 dB/mm.  

At threshold, the round-trip losses of the resonator must be compensated by 

the round-trip amplification. For TE polarization, this requires a waveguide gain 

 TE ln /g aR l    corresponding to 4.1 dB/mm, where Γclad, TE = 0.78 denotes 

the field interaction factor of the guided mode with the active cladding, see 

Section 3.5.1 for more details. Laser emission in the dye cladding is governed 

by a transition that has a radiative lifetime [92] of the order of 14 ns and a 

fluorescence quantum efficiency  ranging from 0.02% to 0.1%, see Refs. [92], 

[95]. The effective lifetime of the excited state hence amounts to  ≈ 3…14 ps, 

thus much shorter than the durations of the pump and emission pulses. For 

estimating the pump intensity Ithresh at threshold, we may hence use steady-state 

approximations of the rate equations as described in Ref. [96] and Section 3.5.3.  

This results in the relation  

 TE
thres

p TE e TEp

hc g

N
I

g   
 
    

 . (3.1) 
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where λp = 1064 nm is the pump wavelength, 16 2
p 1.7 10 cm    denotes the 

measured absorption cross section at this wavelength, N denotes the volume 
density of dye molecules, τ  = 14.4 ns is the excited-state lifetime, 

σe = 0.5×10−16  cm2 is the emission cross-section [92], and   is the fluorescence 

quantum efficiency with typical values ranging from 0.02% to 0.1%, see Refs. 
[92], [95], as specified for a liquid solution of the dye molecules. 

When applied to the TE emission of the device depicted in Fig. 3.4, the pre-

vious equation leads to theoretically estimated threshold peak pump intensities 

ranging from 1.9 MW/cm2 to 9.5 MW/cm2. This is in reasonable with agree-

ment our experimental estimation of the threshold peak pump intensity of 

13.7 MW/cm2. This estimation is based on the launched average threshold 

pump power of approximately 1.8 mW, the overlap pxz = 0.0027 of the active 

area with the Gaussian pump spot in the (x,z)-plane, the pump duty cycle of 

approximately pt = 1.23 × 10-8, and the area of the active zone having a length 

of l = 3.8 mm and a width of MFDx = 0.77 µm.  

The deviation between the measured and the predicted the peak pump 

intensity is attributed to large uncertainties of the quantum efficiency  . 

Previously published figures range from 0.02% to 0.1% and were measured in 

liquid dye solutions, see Refs. [92], [95], whereas we use the dyes in a solid 

polymer matrix. The measured 13.7 MW/cm2 for the peak pump intensity can 

be reproduced when assuming a quantum efficiency of   = 0.014 %, which is 

comparable to the values obtained for liquid dye solutions. In addition, it turns 

out that free-carrier absorption may additionally increase the cavity losses, see 

Section 3.4.6. This would explain the fact that the experimentally measured 

threshold is slightly larger than the theoretically predicted value and lead to 

quantum efficiencies that are even closer to previously published values. 

For TM polarization, the measured contrast of the Fabry-Perot fringes is 

comparable to that for TE polarization. Both polarizations hence experience 

similar cavity losses. Fig. 3.4(b) shows a slightly increased threshold pump 

power of the TM compared to the TE mode is attributed to a reduced field 

interaction factor of Γclad, TM = 0.42 in the cladding compared to Γclad,TE = 0.78. 

Moreover, the TM mode experiences higher FCA than the TE mode due to a 

stronger field interaction with the silicon waveguide core, see Section 3.4.6.  
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3.4.6 Optically Induced Losses and Dynamical Behavior 
The dynamical behavior of the laser emission is depicted in Fig. 3.4(c). In this 

figure, the relative timing of the pump pulse and the emission pulses is subject 

to uncertainties: The various traces for the pump pulse, the TE emission and the 

TM emission were measured by an oscilloscope and a photodetector connected 

to the chip by standard single-mode fibers (G.652). For measuring the TE and 

the TM emission pulse, light was collected from the same fiber facet, and we 

may assume that both pulse trains experience the same propagation delay in the 

fiber. This is different for the pump - for measuring the pump pulse trace, we 

first had to remove the long-pass filter that was used to suppress residual pump 

light before it reaches the detector. We then moved the lensed fiber (Fiber 2 in 

Fig. 3.5) laterally to collect a small portion of 1064 nm pump light scattered 

from the surface of the chip. The group delay of the pump pulses from the fiber 

tip to the detector is slightly different than that of the emission pulses since the 

optical setup had to be changed slightly and since the optical fiber is operated 

below its single-mode cutoff wavelength of 1260 nm. This leads to higher-order 

mode propagation and hence to further uncertainties of the group delay. The 

overall uncertainty in relative timing between the pump and the emission pulses 

is estimated to be ±100 ps. 

We also investigate the dynamics of intra-cavity losses at the emission 

wavelength of 1310 nm. The influence of two-photon absorption (TPA) of the 

emitted light and TPA-induced free-carrier absorption (FCA) can be neglected, 

see Section 3.5.4. As the only relevant loss mechanism, we identify FCA in-

duced by direct absorption of 1064 nm pump light in the silicon waveguide 

core: During the pump pulse, free carriers accumulate within the core of the 

silicon waveguide, thereby leading to absorption and considerably increasing 

the optical losses of the resonator also at the emission wavelength.   

For a rough quantitative estimate, we assume a linear absorption coefficient 

of 10 cm-1 for the 1064 nm pump light in the silicon waveguide core [32]. 

During pumping, photons absorbed in the waveguide create pairs of free 

carriers with an effective lifetime [94] in the order of 1 ns. Similarly to the 

considerations made for the active region of the SOH laser, the fraction of pump 

light that overlaps with the silicon waveguide is estimated to be pxz, Si = 0.0011, 

and the fraction of pump light absorbed in the 220 nm high silicon waveguide 
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core is estimated to py, Si = 0.00022. Using these values, the free-carrier density 

would reach 6.6 × 1017 cm-3 for an average pump power of 1.8 mW 

corresponding to the threshold of the laser depicted in Fig. 3.4. For this carrier 

density, an empirical model [32] allows us to roughly estimate an upper limit of 

the FCA-related propagation loss of approximately 5 dB/mm in the silicon core 

at the end of the pump pulse. Additional losses of this magnitude may 

significantly reduce the quality of the optical resonator during pumping and lead 

to an increased threshold. This is consistent with the observation that the 

experimentally measured threshold is slightly larger than the theoretically 

predicted value. We expect that in future devices, FCA can be mitigated by 

pumping at infrared wavelengths, which are not absorbed in the SOI waveguide 

core, or by using reverse-biased p-i-n structures that remove free carriers from 

the silicon core of the waveguides[15]. That would allow to considerably reduce 

threshold pump powers and to increase the slope efficiencies of the devices. 

3.4.7 Summary of Resonator and Laser Characteristics  
For the quantitative estimations in this paper, various waveguide and resonator 

parameters are used. These parameters are summarized in Table 3-1 along with 

threshold and emission power levels of the respective devices. The values are 

obtained either from experiments or from numerical simulations, e.g., for the 

case of the field confinement factor, effective area [97] and mode field diameter. 

The underlying mathematical relations are given in Section 3.5.1.  
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Property 
Fig. 3.2(a) 

Strip waveguide 
Fig. 3.2(b) 

Slot waveguide 
Fig. 3.4 

Slot waveguide 

Height hWG = 220 nm, hclad  (500±50) nm 

Width wstrip  210 nm wrail  180 nm 
wslot  215 nm 

wrail = (160±15) nm
wslot = (180±15) nm 

Length lcomplete  = 4.8 mm 
lact. region = 4.3 mm 

lcomplete  = 4.8 mm 
lact. region = 3.8 mm 

lcomplete  = 3.8 mm 
lact. region = 3.8 mm 

Optical feedback grating coupler + 
cleaved facet 

grating coupler + 
cleaved facet 

two cleaved facets 

Effective refractive  
index (simulation) 

neff = 1.71 neff = 1.67 neff = 1.61 

Facet power  
reflectivity 

for TE-mode  
(simulation) 

8% 
-10.8 dB 

6% 
-12.2 dB 

6% 
-12.2 dB 

Facet power  
reflectivity 

for TM-mode  
(simulation) 

5% 

-12.6 dB 

5% 

-13.0 dB 

4% 

-13.6 dB 

Propagation loss  
at 1310 nm 

(12±5) dB/cm (9±2) dB/cm 

Confinement factor 
(simulation) 

Γclad, TE   0.64 
Γclad, TM  0.42 
ΓSi, TE     0.29 
ΓSi, TM    0.34 

Γclad, TE   0.76 
Γclad, TM  0.54 
ΓSi, TE     0.17 
ΓSi, TM    0.29 

Γclad, TE   0.78 
Γclad, TM  0.42 
ΓSi, TE     0.12 
ΓSi, TM     0.26 

Effective mode cross-
section for third-order 

nonlinearities  
(simulation for TE-mode) 

Aeff, clad = 0.15 µm2 

Aeff, Si   = 0.15 µm2 
Aeff, clad = 0.20 µm2  
Aeff, Si   = 0.89 µm2

Aeff, cladd = 0.19 µm2 

Aeff, Si    = 1.56 µm2 

Mode field diameter in 
x-direction (simulation 

for TE-mode) 

MFDx = 0.66 µm MFDx = 0.79 µm MFDx = 0.77 µm 

Ratio of average  
incident power to  

absorbed peak power 

pavg/peak / pxyz =  
6.0 × 10-5 

pavg/peak / pxyz =  
5.5 × 10-5 

pavg/peak / pxyz =  
5.6 × 10-5 
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Property 
Fig. 3.2(a) 

Strip waveguide 
Fig. 3.2(b) 

Slot waveguide 
Fig. 3.4 

Slot waveguide 

Launched average 
threshold pump power 

2.3 mW 1.3 mW 1.8 mW 

Absorbed peak threshold 
power 

38 W 24 W 32 W 

Laser emission peak 
power, at a wavelength 

of 1310 nm 

150 mW  
(in SMF) 

 

270 mW  
(in SMF) 

 

365 mW (in SMF) 

1.1 W  
(output facet) 

1.2 W  
(in resonator) 

Table 3-1: Waveguide properties, resonator parameters, and laser performance overview. 
All parameters refer to quasi-TE modes at a wavelength of 1310 nm, unless stated 
otherwise. The slot waveguides turn out to have a larger confinement of light to the 
cladding than the strip waveguides.  This leads to a better interaction of the guided mode 
with the active cladding. The resonators in Fig. 3.2 include wide silicon waveguides 
sections. These sections consist of the grating couplers (GC) and access waveguides or 
transitions, in which the laser light is tightly confined to the Si waveguide core and hence 
only a very minor part interacts with the active cladding. Consequently, only the narrow 
strip section or the slot section contribute to lasing and are regarded as part of the active 
region. Therefore, the device lengths lcomplete and the lengths lact. region  of the active region 
are stated separately. 
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3.5 Supplementary Information 

 

Supplementary Fig. 3.6: Absorption and fluorescence spectra of the organic dye IR-
26 [52], dissolved in 1,2-dichloroethane. The exact shapes of these spectra depend on the 
host material. Due to self-absorption in the cladding of the silicon waveguides, the 
emission peak is shifted towards 1300 nm compared to the depicted fluorescence spectrum 
in solution. In our experiment, the material is pumped at a wavelength of 1.064 µm, thus 
close to the wavelength of maximum absorption of 1080 nm. Image reproduced from [52]. 

Buried Oxide

PMMA

200nm

Si Rails

Filled Slot

100nm

(a) (b)

 

Supplementary Fig. 3.7: Scanning electron microscope (SEM) images of fabricated slot-
waveguide samples. The structures are nominally identical to the one used for the SOH 
laser in Fig. 3.4.  (a) Cleaved facet of an SOI slot waveguide after removing the PMMA 
cladding. (b) Cross-sectional view of a SOH slot waveguide coated by an undoped PMMA 
cladding. The figure was obtained by focused ion beam (FIB) milling and scanning 
electron microscopy. The cladding was deposited by spin coating and fills the slot 
completely without forming any voids. 
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Supplementary Fig. 3.8: High-resolution laser emission spectra in TE and TM polarization 
derived from the slot-waveguide laser that was also used in Fig. 3.2. Fiber-chip coupling 
has been re-optimized for each polarization-resolved measurement. We use an optical 
spectrum analyzer operated at a hold time of 170 ms for each spectral point. As a 
consequence, at least two pulses at a repetition rate of 13.7 Hz are recorded at each 
wavelength. (a) Overview spectrum at a resolution bandwidth (RBW) of 2 nm. (b) Scan 
with 0.2 nm resolution revealing a multitude of underlying narrowband spectral lines, 
which we attribute to longitudinal cavity modes. Repeated scans show peaks at positions 
that are indistinguishable from scan to scan within the measurement accuracy. We 
conclude that the same set of longitudinal modes starts lasing simultaneously in each pulse 
and contributes to the overall output power. (c)  Scan with 0.05 nm resolution. A single 
emission peak of one longitudinal mode exhibits a linewidth of around 0.2 nm. We 
attribute this to chirp-induced spectral broadening due intra-cavity free-carrier dynamics 
induced by absorption of 1064 nm pump light in the silicon waveguide cores.   

 

Supplementary Fig. 3.9: Close-up of a transmission spectrum of a slot waveguide with 
cleaved facets, measured at TE polarization. The free spectral range corresponds to a 
Fabry-Perot cavity of 3.75 mm with a group refractive index of 2.1. The contrast of the 
fringes of 0.5 dB corresponds to a roundtrip loss of 30.8 dB. 

 

  



90  Light Emission with SOH Devices 
 

 

3.5.1 Waveguide Properties 
The observed output power of the slot-waveguide laser, Fig. 3.2(d), is larger 

than the output power of the strip waveguide, Fig. 3.2(c), and the lasing thresh-

old is also lower for the slot waveguide. To understand this behavior, not only 

the resonator but also the available gain has to be considered. The available gain 

and dynamic loss depend on the distribution of light in the waveguide cross-

section. The overlap of the guided light with the active organic cladding can be 

quantified by means of the field interaction factor given by [98] 
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In this relation, the refractive index of the active polymer cladding (reg, 

integration region of the numerator integral) is denoted as nreg, Z0 is the vacuum 

wave impedance, ez the unit vector in z-direction, and  t ,x yE  and  t ,x yH  

denote the electric and magnetic mode fields in the transverse (x,y)-plane. The 

integration domain of the numerator integral corresponds to the active cladding 

of the waveguide, whereas the denominator extends over entire waveguide cross 

section. When calculating the field interaction to the active cladding region 

according Eq. (3.2), we find that the slot waveguide of Fig. 3.2(b) exhibits an 

interaction factor Γclad, TE  0.76 that is slightly larger than the value obtained for 

the strip waveguide Γclad, TE  0.64 in Fig. 3.2(a) for the cladding, see Table 3-1 

in Section 3.4.7.  

For nonlinear optical effects such as two-photon absorption, the 

concentration of light within a certain part of the waveguide, e.g., the silicon 

waveguide core, must be quantified. This is usually done by means of the 

effective area of third-order nonlinear interaction. The effective area for 

interaction with a certain cross-sectional region (reg) of the waveguide is given 

by [99] 
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For the strip waveguide, we find that the effective area of third-order non-

nonlinear interaction in the silicon core amounts to Aeff, Si, strip = 0.15 µm2 and is 

much smaller than its slot-waveguide counterpart, Aeff, Si, slot = 0.89 µm2. Hence, 

for the same power of guided light, any non-linear effects in the waveguide core 

such as two-photon absorption will be much stronger in the strip waveguide 

than in the slot waveguide as discussed in Section 3.5.4.  

For describing the spatial extent of the gain region of an active SOH 

waveguide, we use the second-moment width MFDx = D4, i.e., four times the 

second central moment along the x-direction,   
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Note that the first moment is zero, because the waveguides and the magnitude 
of the resulting electric mode fields are symmetric with respect to the (y,z)-
plane. The mode field diameter is MFDx = 0.66 µm (MFDx = 0.79 µm) for the 
strip (slot) waveguide in Fig. 3.2, see Table 3-1. Hence we may expect the 
number of excited dye molecules available for stimulated emission to be 
slightly larger for the slot waveguide than for the strip waveguide.  

3.5.2 High-Resolution Spectra 
To explain the comparatively large bandwidth of laser emission in Fig. 3.2, we 

have investigated the emission spectrum at higher resolutions of 2 nm, 0.2 nm, 

and 0.05 nm, see Supplementary Fig. 3.8(a) to (c). We investigated both TE and 

TM polarization. The hold time of the optical spectrum analyzer at each 

measurement point amounts to 170 ms, and is chosen such that at least two 

emission pulses at a repetition rate of 13.7 Hz are recorded. We find that the 

spectra consist of a multitude of narrowband spectral lines, which we attribute 

to different longitudinal modes of the cavity that exhibit laser emission 

simultaneously in each cycle. The positions of these emission peaks are 

reproducible when measuring the spectrum repeatedly. A zoom-in of a single 

emission peak is depicted in Supplementary Fig. 3.8(c), exhibiting a FWHM 

linewidth of 0.1 … 0.2 nm. This linewidth is much larger than the 0.003 nm 

FWHM expected for an unchirped pulse of 1 ns duration. We attribute the 
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excess spectral bandwidth to a strong chirp, induced by free-carrier dynamics of 

the cavity which originate from absorption of 1064 nm pump light in the silicon 

waveguide cores and which lead to a strong change of the cavity refractive 

index during pulse emission. The fact that both the TE and the TM emission 

exhibit spectral narrowing above threshold is another strong indication for laser 

emission into both modes. A striking similarity of the TE and TM spectra is 

observed at highest resolution, Supplementary Fig. 3.8(c). We consider this as 

an indication that the TE and TM modes are coupled: TE starts lasing at lower 

pump powers, and a small portion of the TE light will couple to the TM mode 

and act as a seed for lasing.   

3.5.3 Resonator Loss and Pump Threshold 
Estimation of resonator losses 

For a Fabry-Perot resonator, the phase shift δ accumulated during one round trip 

can be calculated according to  

 
2

2 en l

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 , (3.5) 

with ne denoting the effective refractive index in the waveguide of length l and 

 being the vacuum wavelength. The transmission through the resonator 

depends on the incident wavelength and the resonator parameters. Let R denote 

the facet power reflectivity and a the single-pass power transmission factor. The 

wavelength-dependent power transmission T of the Fabry-Perot resonator can 

then be written as  
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From this relation, we can derive an expression for the fringe contrast C, i.e., 

the ratio of the power transmission maxima and the adjacent minima, similar as 

for the Hakki-Paoli method [100] 
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The fringe contrast C is obtained from a high-resolution transmission 

spectrum of the resonator, see, e.g., see Supplementary Fig. 3.9. Solving 

Eq. (3.7) for the single-pass power transmission factor aR of the Fabry Perot 
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resonator, we obtain -15.4 dB when evaluating 10 log(aR) for the slot 

waveguide presented in Fig. 3.4. This corresponds to a 30.8 dB round-trip loss. 

We can also determine the coefficient of finesse F of the resonator using the 

relation  
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For the slot waveguide presented in Fig. 3.4, the coefficient of finesse is 0.12. 

Calculation of pump threshold 

Assuming a quasi-four-level system and neglecting the triplet states, the 

simplified rate equation can be written as [96] 
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In this equation, the volume density of dye molecules in the ground state 

(level 0) is denoted by N0, whereas N1 denotes the volume density of dye 

molecules in the excited level (level 1). The total density of dye molecules is 

1 0N NN  . The wavelength and the intensity of the emitted light are given by 

e  and Ie, respectively, and p  and Ip denote the corresponding quantities for the 

pump light. Plank’s constant is denoted as h and the velocity of light as c. The 

quantity τ is the decay time associated with radiative transitions from the 

excited state to the ground state, and   is the fluorescence quantum yield. The 

emission cross section is denoted as σe, the absorption cross section at the 

emission frequency is called σa and the absorption at the pump frequency is σp. 

For 1 wt% dye in polymer, the total volume density of dye molecules 

amounts to N = 1  1019 cm-3. For the excited state transition lifetime and the 

emission cross section at 1310 nm we use values from literature [101], 

τ = 14.4 ns and σe = 0.5  10-16 cm2. Reabsorption at the emission wavelength 

can be neglected, σa = 0. The absorption cross section σp at the pump 

wavelength λp of 1064 nm was obtained from a transmission measurement of a 

dye-doped polymer film on a glass substrate and amounts to σp = 1.7·10-16 cm2. 

 For 0.1%  , the decay of excited states is governed by the time 

constant 14ps  . This is much shorter than the duration of the 0.9 ns pump 

pulse, and we may hence consider the steady-state behavior of Eq. (3.9) to esti-
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mate the threshold intensity. Assuming further that the emission intensity Ie is 

still zero at threshold, the density of excited state molecules is obtained from 

Eq. (3.9), 

 p p
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N I
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At this density, the single-pass gain must compensate the single-pass losses in 

the resonator, thus  clad ln /eN g aR l     , where clad denotes the field 

interaction factor as defined in Eq. (3.2). The threshold pump intensity is thus 

obtained to  
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For the slot waveguide depicted in Fig. 3.4, we experimentally determine a 

launched peak pump threshold intensity of Ip,thresh = 13.7 MW/cm². This 

estimation is based on the launched average threshold pump power of 

approximately 1.8 mW, the overlap pxz = 0.0027 of the active area with the 

Gaussian pump spot in the (x,z)-plane, the pump duty cycle of approximately 

pt = 1.23 × 10-8, and the area of the active zone having a length of l = 3.8 mm 

and a width of MFDx = 0.77 µm. Using these parameters, the experimentally 

determined peak pump threshold intensity of Ip,thresh = 13.7 MW/cm² can be 

reproduced by Eq. (3.11) if we assume a quantum efficiency of 0.014 %. This 

value is close to published quantum efficiencies ranging from 0.02% to 0.1%. 

The remaining deviations are attributed to the fact that the references refer to a 

liquid solution of the dye molecules rather than to a solid polymer matrix as 

used in our experiments. Moreover, free-carrier absorption contributes 

additional cavity loss and leads to an increase of the pump threshold, see Sec-

tion 3.4.6. 

3.5.4 Optically Induced Nonlinear Losses  
Losses for light propagating in silicon at the emission wavelength of 

e 1300 nm   comprise linear waveguide losses, two-photon absorption (TPA), 

and absorption by free carriers that are generated as a result of TPA. The 

associated decay of intensity I along the propagation direction z can be 

approximated by a first-order differential equation [102], 
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In this relation lin  denotes the linear propagation loss in the SOI waveguide, 

TPA 0.74cm/GW   denotes the TPA coefficient of bulk silicon [103], and FCA 
is the coefficient of TPA-induced FCA [102], 
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where eff, Si  denotes the effective free-carrier lifetime  in the silicon waveguide 

core and amounts to eff, Si 1ns  [104]. Note that this lifetime is much shorter 

than the carrier lifetime in bulk silicon due to increased recombination rates at 

the etched waveguide surfaces. 

For an exemplary estimation of the influence of two-photon absorption of 

1310 nm emission, we consider the slot waveguide of Fig. 3.4 and assume an 

emitted laser peak power of facet 1.1WP  just outside the facet. The actual power 

inside the laser resonator is even higher due to the 6 %  power reflectivity of the 

facet and is estimated to be approximately 1.2 W. Only a part of the light is 

guided in the silicon waveguide core with an effective mode cross section of
2

eff, Si 1.56µmA  , see Table 3-1. To estimate an upper boundary for the TPA 

losses, we calculate the intensity assuming that all power is distributed 

homogenously over this area. This leads to an intensity estimate of 
2

1310nm 0.077GW/cmI  , resulting in a TPA-induced loss contribution of 

0.03 dB/mm for this specific power level. Compared to linear losses in the 

waveguide of 0.9 dB/mm, TPA is thus negligible as a direct loss mechanism in 

our case. This leads to 23 3 -2
FCA from TPA 2.5 10 m W   , which is the TPA-induced 

FCA coefficient, and thus to a loss contribution of less than 0.06 dB/mm at peak 

of the emitted laser pulse. The contribution of TPA-induced FCA to waveguide 

losses can hence also be safely neglected. In contrast to that, FCA induced by 

direct absorption of the 1064 nm pump light turns out to be a relevant effect. 

[End of Paper] 



    



    

4 Modulation with SOH Devices 
In this part of the thesis, we report on characterization results for SOH 

modulators using claddings from two different material classes. A scenario for 

combining SOH modulators with electronic driver circuits is discussed. The 

SOH platform is shown to be suited to implement modulators. 

4.1 MZM Modulator Based on Organic Crystals 
This chapter has been published IEEE Photonics Journal [J2], © 2014 IEEE. 

Reprinted with permission from all authors. 
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Electro-Optic Organic Crystal Silicon High-Speed Modulator 
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Silicon waveguides can be functionalized with an organic (2)-nonlinear 

cladding. This complements silicon photonics with the electro-optic (EO) effect 

originating from the cladding and enables functionalities such as pure phase 

modulation, parametric amplification, or THz-wave generation. Claddings 

based on a polymer matrix containing chromophores have been introduced and 

their strong (2)-nonlinearity has already been used to demonstrate ultra-low 

power consuming modulators. However, these silicon-organic hybrid (SOH) 

devices inherit not only the advantageous properties. Said polymer claddings 

require an alignment procedure called poling and must be operated well below 

their glass transition temperature. This excludes some applications. In contrast, 
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claddings made from organic crystals come with a different set of properties. In 

particular there is no need for poling. This new class of claddings also promises 

a stronger resilience to high temperatures, better long-term stability and photo-

chemical stability. We report on the deposition of an organic crystal cladding of 

BNA (N-benzyl-2-methyl-4-nitroaniline) on silicon-on-insulator (SOI) 

waveguides, which have a CMOS-like metal stack on top. Adhering to such an 

architecture, which preserves the principal advantage of using CMOS-based 

silicon photonic fabrication processes, permits the first demonstration of high-

speed modulation at 12.5 Gbit/s in this material class, which proves the 

availability of the EO effect from BNA on SOI also for other applications. 

4.1.1 Introduction  
The telecommunications industry heavily relies on modulators based on the (2) 

linear electro-optic (EO) effect. Modulators exploiting this effect are popular 

because they allow for reliable phase and amplitude encoding of the most 

intricate modulation formats [105] in any desirable pulse shape [106] and up to 

highest speed. The general requirements on such modulators are demanding. 

They should offer lowest drive voltages (V) on a small footprint. They should 

be mass producible, and offer reliable operation under any common 

environmental condition.  

State-of-the art modulators are based on LiNbO3 and meet the above criteria 

– except that they have a fairly large footprint. They have recently been 

challenged by integrated GaAs modulators [C5] that are more compact. 

However, industry is interested in silicon photonics as a platform for integrated 

optics. Making silicon based devices allows resorting to an extensive 

infrastructure and fabrication experience from the CMOS electronics industry 

with lithographic resolution for a feature size down to 22 nm. Furthermore, one 

potentially could fabricate devices more economically. In spite of the many 

advantages of silicon, this crystalline material does not possess a (2)-

nonlinearity due to its centro-symmetric structure. There are other options to 

construct phase modulators with silicon waveguides, e.g. by using the plasma 

dispersion effect in silicon [24], [107], [108]. For many applications this 

presents a simple and effective solution. However, the plasma dispersion effect 

is inherently related to the plasma absorption effect. Thus, due to the absorption, 
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it can be challenging to precisely access particular points in complex QAM con-

constellation diagrams without pre-distortion of the electrical driving signal.  

In addition, new applications based on optical parametric amplification, 
second harmonic generation for frequency conversion, or mid-IR applications 

can be implemented using a (2) nonlinearity [109]. The Kerr effect based on a 

(3) nonlinearity may be used instead of a (2)-nonlinearity in some cases. Yet, 

(3) nonlinearities typically require significantly higher threshold powers [J11]. 

To obtain a (2)-nonlinear effect in silicon, strain has been applied, thereby 
breaking the lattice symmetry [110]–[112]. However, larger nonlinearities can 
be achieved by employing nonlinear organic materials on the silicon platform. 
By exploiting the EO effect from chromophores hosted in polymers [35], [113], 
this so-called silicon-organic hybrid (SOH) approach [8] has already been 
demonstrated for 40 Gbit/s high-speed phase modulation [J14], or 112 Gbit/s 
IQ modulation using a 16QAM [J4] format. Modulators based on chromophores 

can excel with very low V voltages, resulting in ultra-low power 
modulators [J5]. Unfortunately, the approach with chromophores hosted in 
polymers has issues on its own. First, operation is limited to be well below the 
glass transition temperature of the organic material. Second, these devices 
require an additional fabrication step, in which the chromophore molecules need 
to be aligned by an external electrical field at each modulator at elevated 
temperatures. This step is commonly referred to as poling of the nonlinear 
material and presents an additional effort, especially when producing arrays of 
modulators in dense photonic integrated circuits (PIC) [114].  

The disadvantages due to the use of chromophores hosted in polymers can 

be overcome by substituting them with a new class of (2)-nonlinear materials 

based on organic crystals. Organic crystals are particularly attractive, as one can 

choose from a large variety. Organic crystals can be designed to have high 

melting temperatures and good photo-chemical stability. Therefore they can 

withstand harsh conditions. No poling procedure is needed. Some of these 

crystals are already commercialized for THz-wave generation when irradiated 

by high-power laser pulses with femtosecond to nanosecond duration [115]. 

However, special methods have to be developed in order to envelop sub-

micrometer silicon waveguide structures with a solid crystal. A low-speed phase 

shifter made of organic single crystals has been demonstrated [116].  Other 

successful demonstrations include the testing of a horizontally slotted silicon 
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waveguide filled with such an organic crystal [117], or a tunable organic-crystal 

micro resonator [118].  

In this paper, we demonstrate high-speed EO intensity modulation at 

12.5 Gbit/s in a Mach-Zehnder modulator (MZM) employing an organic crystal. 

We use BNA [119] as a source for the linear electro-optic effect, describe the 

growth of this organic crystal on silicon waveguides, and quantify the resulting 

(2)-nonlinearity. Fabrication has been done with metal electrode stacks similar 

to those of standard CMOS electronic circuits in order to maintain CMOS 

compatibility before the deposition of organic material. Growing an organic 

crystal on such a silicon photonic chip surface is of particular importance as the 

CMOS stack permits crossings between optical waveguides and electrical 

transmission lines. The modulation speed is not limited by the crystal itself, but 

rather by the electrical transmission line. 

4.1.2 SOH Concept Employing Organic Crystals 
The structure of an SOH phase-shifter and the MZI configuration used to 
achieve intensity modulation is depicted in Fig. 4.1. An organic cladding mate-
rial is placed to cover an optical waveguide such that the organic material inter-
acts with the optical field of the SOI waveguide (WG). A particular strong over-
lap [J6] of the guided light with the organic cladding is obtained with the so-
called strip-loaded slot WG structure shown in Fig. 4.1(a). In this structure the 
optical field is enhanced in the slot as the refractive index is lower in the slot 
than in the silicon rails, see Fig. 4.1(b). The confinement of light to the organic 
material is best for a quasi-TE mode, where the dominant electric field 
component is in x-direction, i.e., parallel to the substrate plane, Fig. 4.1(b). To 

induce a phase-shift by means of the (2)-nonlinear effect, an RF voltage must 
be applied across the slot, Fig. 4.1(c), for controlling the refractive index of the 
cladding. Switching is fast, if the strip-loads and rails are sufficiently doped in 
order to guarantee a good conductivity and therefore allow a fast charging and 
discharging of the slot capacitance. However, excessive doping leads to 
excessive optical losses. The two silicon rails are electrically connected by the 
silicon strip-loads to metal electrodes far away from the optical field in the slot, 

Fig. 4.1(d). The (2)-nonlinear refractive index change is most efficient, if the 

largest organic cladding’s diagonal (2)-tensor element (green arrows in 
Fig. 4.1(a)) is aligned along the x-axis perpendicularly to the slot sidewalls and 
thereby in the direction of the modulating RF field Ex,RF (red arrows). In a bulk 
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material with EO coefficient r and a plane wave (wavelength ) one then can 

expect a phase shift in the order   3
,RFxLn rE      for a device of length L 

in a homogeneous material with refractive index n and a confinement    of the 
optical mode in the slot. The product n3r is used as an EO figure of merit 
(FOM) to describe the ability of an EO material to shift the phase of an optical 
wave upon application of a modulating voltage. 

For intensity modulation the phase-shifters are typically arranged in the two 

arms of an MZI, Fig. 4.1(d). The phase shift in each arm is controlled by the 

ground-signal-ground electrodes of a coplanar transmission line [120], [121]. 

Since the electro-optic material is arranged along one direction only, the optical 

fields in the two arms experience phase shifts in opposite direction when they 

are operated with the GSG electrodes. This is called push-pull operation mode 

of the MZM. 

 

Fig. 4.1: SOH phase shifter waveguide (WG) with organic crystal cladding and its use in a 
Mach-Zehnder modulator (MZM). (a) Cross section of strip-loaded slot WG to be used 
with light in quasi-TE mode. Strongest diagonal (2)-tensor element of organic crystal 
cladding (polar axis indicated by green arrows) in the direction of the applied RF field (red 
arrows). (b) Cross section of color-coded dominant x-component |Ex| of the optical E-field 
in quasi-TE mode in the strip-loaded slot WG. (c) Electrical RF field in x-direction (red 
arrows in subfigures). (d) Mach-Zehnder interferometer modulator (MZM) with optical 
waveguides in blue, electrical connections in red, ground-signal-ground electrodes (GSG) 
of coplanar transmission line in yellow. In each arm of the interferometer a phase 
modulator section is inserted. It consists of a strip-loaded slot WG. Note that the organic 
crystal has the same orientation in both arms, such that an electrical field applied to the 
central signal electrode (S) will introduce opposite phase shifts. This mode of operation is 
called “push-pull” and allows pure amplitude or intensity modulation without any phase 
modulation. 
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To apply an organic EO cladding we have two choices:  

1. One may apply polymers which host chromophores [J7], [J14]. This 

is frequently done because of the large electro-optic coefficient r and 

resulting large FOM. However, the chromophores need a one-time 

alignment (“poling”) in order to develop a macroscopic EO effect. 

Also, there might be an issue when using the polymers at elevated 

temperatures, because the chromophores might slowly lose alignment 

even before the polymer’s glass transition temperature is reached.  

2. In contrast, the material class comprising organic EO crystals offers 

the advantage that the chromophores composing these crystals keep 

their alignment as determined by the crystal structure up to the crystal 

melting temperature (provided the molecules remain chemically 

stable). Hence, using materials from the class of organic crystals 

promises long-term stability even at elevated temperatures and high 

illumination intensities due to their superior photo-chemical  

stability [122]. 

An overview of available materials of this class is given in [123], p. 163. 

in [124]. A few examples are listed here for reference: Stilbazolium salt crystals 

like DAST (4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate) with 

n3r = 480 pm/V melting at 256 °C [125], DAPSH (trans-4-dimethylamino-N-

phenyl-stilbazolium hexafluorophosphate) with n3r > 500 pm/V, and DSTMS 

(4-N,N-dimethylamino-4’-N’-methyl-stilbazolium 2,4,6-trimethylbenzene-

sulfonate) with n3r = 480 pm/V melting at 258°C [126]. However, DAST, 

DAPSH and DSTMS are not stable at melting temperatures, so only solution 

growth is possible [123]. Furthermore, configurationally locked polyene 

molecular crystals have been developed [109], which are stable upon melting, 

which makes melt growth possible. These materials deliver similarly high 

effective nonlinearities. Examples are OH1 (2-(3-(4-hydroxystyryl)-5,5-

dimethylcyclo-hex-2-enylidene)malononitrile) n3r = 470 pm/V melting at 

212 °C, or OH2 with an expected FOM of n3r >600 pm/V melting at 242 °C.  

Here, we use an organic crystal made from BNA [119]. It has a high 

diagonal nonlinear optical coefficient d333 = 234 pm/V at 1064 nm [119] and a 

relatively low melting temperature of 105 °C. Nevertheless, we chose BNA for 

our proof-of-principle experiments, because it was easy to grow due to the low 
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melting point and its reasonable wetting properties on a CMOS-structured  

silicon chip.  

4.1.3 SOH Device Fabrication and Experiments 
Mach-Zehnder modulators with SOH waveguides comprising the organic BNA 

crystal as a cladding and standard CMOS metal stack electrodes have been 

fabricated. After structuring the SOI wafer, we cover the SOI WGs with a thin 

film of the organic crystal BNA and open areas for electrical contacting to 

supply the modulating voltage. To verify and quantify the resulting EO effect, 

we use the modulator to encode data on an optical carrier.  

Fabrication of an SOH Modulator 

In Fig. 4.2 the cross section of an MZM consisting of two strip-loaded slot WGs 

is shown, in our implementation with a CMOS-like metal stack. The organic 

crystal BNA fills the WG slots. Other chips from the same wafer have been 

used before to make EO modulators based on EO-active chromophores hosted 

in a polymer [J4]. 

The fabrication of the passive part follows Ref. [J4]: SOI wafers (SOITEC) 

with a WG layer (220 nm high) on a buried oxide (Box, 2 µm thick) are 

processed employing 193 nm deep UV lithography at IMEC. Slot WGs 

(wSlot = 125 nm, wRail = 220 nm, hRail = 220 nm) with attached n-doped silicon 

striploads (hStripload = 50 nm, arsenic doping with a nominal concentration of 

3×1017 cm-3) are etched into the WG layer. Standard strip and rib WGs for low-

loss access waveguides [38] and standard grating couplers [40] are structured by 

dry etching 70 nm of Si. 

The copper electrodes (coplanar RF transmission lines guiding the electrical 

modulating wave) and the strip-loaded slot WG (guiding the light) are 

connected by conducting tungsten-filled (W) vias and a silicide film 

(surrounded by highly doped silicon with a concentration of nominally 

1×1020 cm-3). Dielectric layers of mostly SiO2 and Si3N4 support the Cu 

electrodes and fix the distance between Cu electrode and BOx to dCu-

BOx = 1.1 µm. This metal stack could be extended with additional standard 

layers, e. g., making aluminum pads for packaging. However, in our case we 

end the stack with a thin layer of SiC to protect Cu from air. The slot WGs are 

1.5 mm long and terminated at each end with a transition from the slot WG to 
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standard strip WGs using low-loss converters [J8]. Multi-mode interference 

(MMI) couplers split the input field and combine the fields in the two 

interferometer arms. 

The trenches to expose the slots are opened by dry and wet etching of the 

dielectric layers, which are then filled with BNA that in turn is covered with a 

layer of polyvinyl alcohol (PVA).  

 

Fig. 4.2: Cross section of MZM employing an organic crystal (not drawn to scale). Two 
phase modulator sections are displayed consisting of strip-loaded slot WGs, which are 
filled with a nonlinear organic BNA cladding. The silicon rails are connected to ground-
signal-ground electrodes of a coplanar transmission line through the Si strip-loads, a 
silicide layer and tungsten vias. This electrode arrangement allows crossings of optical 
WGs and electrical transmission lines. This architecture corresponds to the metal stack 
technology well known from the CMOS platform. 

Deposition of Organic Crystal BNA 

In integrated optics, there are various possibilities to fabricate claddings of 

organic single-crystal structures [123], [127]. In the past, bulk crystals of DAST 

have been grown and placed on top of silicon waveguides [125]. For this an 

elaborated polishing procedure is required, and obtaining a good optical contact 

between a crystal and an SOI chip surface is a challenge. Moreover, the 

thickness of the crystal might be inconvenient when attempting to contact 

modulation electrodes. Another method relies on growing single-crystalline thin 

films of various crystals such as DAST and DSTMS from a solution between 

glass plates. However, transferring the thin films to the chip implies the risk of 

fractures. Thus, for processing a full wafer, on-chip crystal growth seems to be 
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the only viable option. For chips with very smooth topography, single-

crystalline films of OH1 have been successfully grown directly from solutions 

on SOI chips [123], which takes several weeks. The most versatile technique, 

however, is to fabricate organic single-crystalline films by using melt growth. 

Using this approach, thin organic single-crystalline wires with a thickness down 

to 25 nm have already been grown on glass [128], and also more complex 

waveguiding structures such as microring resonators were fabricated [118].  

Here we opt for direct, on-chip growth of BNA from the melt. This 

approach is not impeded by the rugged surface (due to the CMOS metal stack), 

shows reasonably large growth rates (hours), and provides a high-purity crystal. 

The crystalline symmetry of BNA is orthorhombic mm2. Its melting 

temperature is relatively low, about 105 °C, which is the limiting temperature 

for post-processing possibilities. BNA thin films always grow along the ac 

crystallographic plane with the fastest growth along the a direction, i. e., normal 

to the polar axis c [117], which we confirmed by polarized second-harmonic 

generation experiments. Therefore, when we manage to induce the growth of 

BNA crystals along the WG direction, its largest (2)-tensor element (2)
333 

coincides with the Ex-field of the quasi-TE mode in the slot WGs. 

We employ the following procedure to grow BNA films:  

(1) Place a flat glass plate (a 200 µm thick borosilicate glass wafer) covering the 

target area on the Si chip. Deposit the BNA as powder on one side 

perpendicularly to the phase modulator sections of the WGs as shown in 

Fig. 4.3(a).  

(2) In vacuum, heat the whole sample up to 120°C, well above the melting 

temperature of BNA to decrease the viscosity of liquid BNA. The capillary 

effect between SOI chip and glass plate pulls the liquid BNA below the glass 

plate, see Fig. 4.3(b). The wetting properties for BNA on both SOI and glass are 

sufficient to obtain a nice capillary flow. In case of other materials special 

surface treatment might be necessary. The vacuum helps to prevent voids when 

filling.  

(3) After a few minutes, the melt is distributed homogeneously below the glass 

plate. Then the vacuum is replaced by nitrogen at normal atmospheric pressure, 

and the sample is quickly cooled down to room temperature. This leads to fast 
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crystallization of BNA. However, the resulting film is polycrystalline due to its 

fast growth well below the melting temperature.  

(4) To get the same single-crystal orientation in all the phase modulator 

sections, a controlled crystallization is necessary. By heating the entire chip 

covered with polycrystalline BNA to just below the melting temperature 

(100 °C) and by keeping one side at a fixed temperature above the melting point 

(105°C), the polycrystal melts again, but only at the “hot” side.  

(5) When removing the additional, one-sided heat source, the temperature of the 

“hot” side reduces back to 100°C. Starting with a random orientation at the 

“cold” side, the crystal then grows along its fastest growth direction which is 

oriented towards the formerly “hot” side, Fig. 4.3(c). Note that spontaneous nu-

cleation of BNA does not occur at this temperature unless cooled down well 

below the melt temperature, as done in step (3). Hence it is assured that the film 

only starts growing from the “cold” top (seed) area.  

(6) To access the RF electrodes the glass plate is removed as shown in 

Fig. 4.3(d), and the entire chip is spin-coated with polyvinyl alcohol (PVA) to 

reduce scattering from potential crystal fractures induced by removal of the 

glass plate. 

The direction of the optical axis of the BNA crystal was determined with a 

reflection microscope by placing and rotating the sample between crossed 

polarizers, thereby measuring the crystal’s birefringence. In different deposition 

attempts we achieved a crystalline orientation deviating from the optimal 

direction of the polar axis by  = 10°…40°. Additional growth-guiding trenches 

on chip or in the auxiliary glass plate could optimize the orientation further (for 

well-defined micro-sized channels the growth direction aligns perfectly [117], 

[118], [128]). We manually removed the organic crystal locally for contacting 

the electrodes with RF probes. In practice, lithographic processes [116] for 

structuring organic crystals will be preferred. 
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Fig. 4.3: Deposition method for growth of an organic single crystal thin film on top of 
strip-loaded slot WGs. Upper row: Cross-section of one phase modulator section as in 
Fig. 4.2. Subfigures (a)…(d) show various stages of the deposition process. BNA (green 
shading) covers the chip and fills the slot beneath an auxiliary glass plate (grey shading). 
Lower row: Tow view of chip (light grey shading) with auxiliary glass plate on top (grey 
shading). BNA (green shading) fills the space above the chip and below the auxiliary glass 
plate. The deposition starts by putting BNA powder at one edge of the auxiliary glass 
plate. More precisely: (a) A vacuum is maintained between glass plate and chip. (b) 
Applying heat melts the BNA powder, which is drawn into the gap between glass plate 
and chip due to the capillary effect. Polycrystalline BNA forms after a fast cool-down 
process. No macroscopic (2)-nonlinearity is to be seen. Green arrows indicate the random 
orientation of the polar axis of the polycrystalline domains. (c) Region of applied BNA 
power is heated to a fixed temperature of 100 °C close to but below the melting point 
(“cold” side). An additional local heat source increases the temperature of the opposite 
(“hot“) side to a temperature of 105 °C, which is above the melting point. When removing 
the additional local heat source, the temperature of the hot side is reducing back to 100 °C. 
Beginning with a random orientation at the cold side, a single crystal then grows along the 
fastest growth direction which is oriented towards the formerly hot side. (d) After removal 
of the auxiliary glass plate, a PVA cover is spin-coated to fill any cracks in the BNA for 
reducing scattering in the WGs. 
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4.1.4 SOH Modulator for Data Generation  
The viability of the EO modulation concept and successful deposition of BNA 

is demonstrated in an experiment. Fig. 4.4(a) depicts the setup. A 12.5 Gbit/s 

electrical data signal with a non-return-to-zero pseudo-random binary sequence 

(PRBS) of length 2311 is generated and amplified to nominally Vpp = 8 V. RF 

probes bring this signal to the SOH MZM and terminate the electrodes with an 

off-chip resistor of 50 Ω. Two bias-Ts allow adding a DC voltage for adjusting 

the MZM to its quadrature operating point for intensity modulation. Light with 

a wavelength of 1538 nm from a tunable laser source (TLS) is amplified in an 

erbium-doped fiber amplifier (EDFA) to a power of 18 dBm, and coupled via a 

grating coupler (GC) to the MZM. The resulting on-off keyed (OOK) optical 

signal is collected at the output GC, amplified, filtered, and received with a 

digital communication analyzer (DCA).  

In this first generation chip we measured relatively high fiber-to-fiber 

losses. Potential loss sources have been identified. They are as follows:  

(1) Coupling losses of about 5 dB for each GC. In a commercial 

implementation more effort would be made to improve this loss. More elaborate 

GCs exhibit losses of 1.6 dB per coupler [129]. Inverted tapers for butt coupling 

of external fibers were demonstrated to have a loss of 0.7 dB [130].  

(2) Losses of about 5 dB/cm in the 7 mm long access WGs, which have 

bends and strip-to-ridge waveguide transitions. Further we have losses of about 

1.5 dB in strip waveguides by scattering due to WG sidewall roughness and by 

absorption due to the crossing metal electrodes.  

(3) Excess loss of about 1 dB for each of the two MMIs adds to the splitting 

loss of 3 dB.  

(4) Loss of about 1 dB in each of the two strip-to-slot transitions.  

(5) Loss in the phase modulator section of about 16 dB. A reduction of 

losses seems to be relatively straight-forward for all issues observed in (1)-(4), 

so that device insertion loss effectively is only limited by the loss in the phase 

modulator section. The slot WG sidewall roughness could be improved by using 

atomic layer deposition [J13], which at the same time could enhance the wetting 

properties for organic crystal growth. 
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Further, variations in the fabrication process have led to an imbalance of the 
loss in both arms of the MZM. An extinction ratio of more than 6 dB was 
measured with modulation, as can be seen from the eye diagram Fig. 4.4(b). 
The 3 dB-bandwidth of the MZM was measured to be about 7 GHz. It is limited 
by the RC constant of the structure and RF wave propagation losses [J4]. The 

V-voltage at DC is around 8 V leading to a VL product of 12 Vmm. This 
corresponds to a figure of merit (FOM) for the EO coefficient of n3r = 31 pm/V. 
Evaluation of the open eye diagram in Fig. 4.4(b) of the received optical signal 
indicates a signal quality Q² of 14 dB, which translates into a bit error ratio 

(BER) of 3×107. From the nonlinear coefficients d333, d311 and refractive indices 
reported in [22] and using the same model as in [28] we estimate the EO 
coefficients of the organic crystal BNA to be r33 = 24 pm/V and r13~r51 to be 
negligible. The expected material’s FOM should be in the order of 

n3
3r33 = 135 pm/V. Taking the measured crystal misalignment of  = 34° of the 

device under test into account, we would expect a FOM of 

n3
r33 cos3 = 67 pm/V. However, with a value of 31 pm/V we only find a value 

that is about half of the expected nonlinearity. 

 

Fig. 4.4: Experimental setup for demonstrating the EO effect of a hybridly integrated 
organic crystal. Optical on-chip connections are in blue, electrical connections are drawn 
in red. (a) CW light from a tunable laser source (TLS) is amplified by an erbium-doped 
fiber amplifier (EDFA), polarization-controlled (PC), and coupled by a grating coupler 
(GC) to one input of a multimode interference (MMI) coupler. The MMI maps the light 
onto the two arms of the Mach-Zehnder interferometer modulator with phase modulators 
in its arms as discussed in Fig. 4.2. Another MMI recombines the fields. This light is 
coupled back to a fiber by means of a GC and guided to the receiver. The receiver consists 
of an EDFA, a filter and a digital communication analyzer (DCA). A pseudo-random 
binary sequence (PRBS) is amplified, and passed through a bias-T for adjusting the MZM 
to the quadrature operating point. Ground-signal-ground (GSG) electrodes excite an 
electrical traveling wave, which modulates the incoming light, which is evaluated in the 
receiver. (b) Eye diagram of the received optical signal at 12.5 Gbit/s. A quality factor Q² 
corresponding to 14 dB evaluates to a bit error ratio (BER) of 3×10-7. 
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As a reason for this discrepancy, we suspect either imperfect filling of the 

slot WG (as the wet-etch step might have partly under-etched the WG and thus 

might have produced voids with imperfect crystal growth), or an overestimation 

of the original material’s EO coefficient. 

4.1.5 Conclusions  
We demonstrated data modulation at 12.5 Gbit/s using an organic crystal of 

BNA integrated on SOI strip-loaded slot waveguides in a Mach-Zehnder 

modulator configuration. We showed that an important class of claddings, 

namely organic EO crystals, is compatible with the CMOS-typical metal stack 

used for traveling wave electrodes. Compared to frequently investigated, 

polymer-based EO claddings, our technique represents a viable alternative for 

fabricating high-speed modulators for advanced modulation formats. Organic 

EO crystal claddings pave the way for silicon-organic hybrid modulators with 

higher operating temperatures and better overall stability. This allows running 

the devices at larger optical input powers. Due to the strong light confinement, 

exceptionally large intensities can easily be reached, which might turn out to be 

useful not only for modulators but also for efficient THz-wave generation and 

for parametric amplification. 

[End of Paper] 
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4.2 IQ Modulator Based on Chromophores in a Polymer  
This chapter has been published in Optics Express [J4]. © OSA 2013. 

[Start of Paper, Opt. Express, vol. 21, no. 11, pp. 13219–13227, Jun. 2013] 
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Advanced modulation formats call for suitable IQ modulators. Using the 

silicon-on-insulator (SOI) platform we exploit the linear electro-optic effect by 

functionalizing a photonic integrated circuit with an organic (2)-nonlinear 

cladding. We demonstrate that this silicon-organic hybrid (SOH) technology 

allows the fabrication of IQ modulators for generating 16QAM signals with 

data rates up to 112 Gbit/s. To the best of our knowledge, this is the highest 

single-polarization data rate achieved so far with a silicon-integrated modulator. 

We found an energy consumption of 640 fJ/bit. 

4.2.1 Introduction  
Modulators that can reliably access any point within a constellation diagram are 

needed to encode signals with advanced modulation formats. The realization of 

these key components as photonic integrated circuits (PIC) on the silicon-on-

insulator (SOI) platform holds promise for low power consumption, low cost 
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and high volume production. Currently, LiNbO3-based modulators are used for 

the most part. Exploiting the established infrastructure from scalable CMOS 

technology a new generation of silicon photonic devices emerges and is likely 

to substitute LiNbO3, especially when arrays of modulators will be needed.  

CMOS process compatibility for fabrication is essential to further silicon 

photonic modulators. A common approach is to confine the production of SOI 

modulators to a few simple steps such as silicon etching, doping & annealing, 

deposition of dielectric layers and metal electrodes. And indeed, the most 

common silicon modulators that are based on a pin or pn junction within a 

silicon ridge waveguide rely on these CMOS process steps. In these modulators 

free-carrier dispersion is employed by injecting [131] or depleting [108] 

carriers. This gives control over the phase of light, but also changes the 

absorption, which makes arbitrary waveform generation intricate. So far, 

numerous silicon modulators using this principle have been demonstrated in 

resonant configurations [132]–[135]. Also non-resonant designs [J10] were 

published showing an attractive bandwidth for on-off-keying (OOK) at data 

rates up to 50 Gbit/s [24]. While an increase in modulation bandwidth seems 

certainly possible [J14], bandwidth limitations in electronics would favor 

advanced modulation formats with reduced symbol rates. That means going to 

complex modulation formats like quadrature-phase shift keying (QPSK) as 

shown at 28 GBd in [136] to transmit 56 Gbit/s in a single polarization is a 

more advanced way to increase the bit-rate. In addition, polarization 

multiplexing can be added to further double the bit-rate. In the aforementioned 

publication [136] it has recently been shown how polarization multiplexing can 

be realized on-chip.  

CMOS compatibility also sets limits to the available voltages. In light of 

rather high reverse bias and RF voltages reported for high-speed 

implementations (with respect to achievable phase shifts in silicon) it is 

advisable to also consider the linear electro-optic (Pockels) effect. The linear 

electro-optic effect can be found in strained silicon [111], [137]. Alternatively, 

the very common technique of spin-coating can be used to add an electro-optic, 

(2)-nonlinear organic cover layer on the modulator waveguide [138], [35], 

[139], [140] in order to create a silicon-organic hybrid (SOH) device. Applying 

a voltage then results in an instantaneous, pure phase shift, exactly as in 

LiNbO3. This is an advantage over free-carrier based plasma effect modulation, 
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where phase and amplitude modulation are linked. The free choice of cover ma-

material brings the potential to reduce currently reported voltage-length-

products for high-speed modulation to 3.8 Vmm (at 10 Gbit/s) [J5] or even 

lower for future advanced nonlinear organic materials, while pn-modulators so 

far show VL ≥ 10 Vmm [141] (8.5 Vmm at 40 Gbit/s for a resonant 

structure [142]). The SOH approach combines the advantages of silicon (fabless 

development, fabrication infrastructure, scalability to high volume production) 

with the strong (2)-nonlinearity of an organic material.  

In this paper we demonstrate the first IQ modulator for advanced 

modulation formats on the SOI-platform which is suited to transmit multilevel 

phase and amplitude encoded signals in the C-band. By applying the SOH 

concept, our approach with pure phase modulators in an interferometer structure 

gives us the freedom to choose any constellation, and enables arbitrary signal 

generation. Because of its relevance in applications, we decided for a 16QAM 

format for demonstrating the so far highest single-carrier single-polarization 

data rate of 112 Gbit/s on the silicon-platform. We further show error free 

generation and reception of a QPSK signal at 56 Gbit/s. 

4.2.2 Structure of the Silicon-Organic Hybrid IQ Modulator 
The IQ modulator is constructed by nesting two Mach-Zehnder modulators 

(MZMs) as shown in Fig. 4.1(a). These single-drive modulators are operated in 

push-pull mode at minimum transmission point, such that the resulting 

amplitude modulation of each provides the in-phase (I) and quadrature-(Q) 

phase component, when both MZMs are made to interfere with a phase shift of 

/2.  

To explain the SOH modulator concept a cross section of one MZM is 

presented in a simplified manner in Fig. 4.1(b). Light propagates in the two slot 

waveguides (WG) shown in blue. They constitute the arms of the MZM and are 

filled with the nonlinear material. The large index contrast between Si of 

nSi = 3.48 and the nonlinear polymer npoly = 1.7 causes an enhancement of the 

electrical field of the optical quasi-TE wave inside the slot, see Fig. 4.1(c). 

When a voltage is applied to the Si rails, it creates a strong electric field across 

the slot, see Fig. 4.1(d). Thus a large and therefore efficient overlap is obtained 

between the electrical and optical mode. By attaching thin Si striploads to the 

optical WG an electrical connection is made to an RF coplanar waveguide 
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(CPW), realized in a ground-signal-ground (GSG) configuration devised to 

have a 50  impedance close to the RF source (similar to [57]). The active 

molecules (chromophores) of the nonlinear material are aligned during 

fabrication by applying a poling voltage (depicted in green) from one ground 

electrode to the next, which results in an orientation of the (2) -nonlinearity in 

both slots (green arrows) that is asymmetric with respect to the signal electrode 

(S). Thus in operation, when an RF signal on the S-electrode is applied, it will 

cause a positive phase shift in one arm and a negative one in the other, i.e., 

result in push-pull operation. Thus the MZM can deliver a pure amplitude 

modulation. 

 

Fig. 4.1: IQ modulator based on the SOH concept. (a) Topview of the IQ modulator with 
nested Mach-Zehnder modulators (MZM), displaying optical waveguides (WG) in blue 
and electrical lines in orange. (b) Cross section of an SOH MZM, showing two silicon 
striploaded slot WGs, which act as phase shifters. They are filled and covered with a 
nonlinear cladding (not shown for clarity). The coplanar RF transmission line (GSG, 
ground-signal-ground) is impedance matched to the driving signal generator. The RF 
voltage at the S-electrode creates oppositely directed electric slot fields (red arrows). 
During the fabrication process, the (2)-nonlinearity is created by applying a poling voltage 
between both RF ground (G) electrodes at an elevated temperature. This aligns (poles) the 
active cladding molecules in a direction indicated by green arrows. In combination with 
the poled cladding, the modulating RF voltage leads to opposite phase shifts in both 
interferometer arms. (c) Color-coded dominant x-component |Ex| of the optical electrical 
field in the slot WG cross section. (d) Modulating electrical RF field. Both fields are 
strongly confined to the slot, resulting in high modulation efficiency.  

Our implementation of the MZM is depicted as a detailed cross section in 

Fig. 4.2. We start at IMEC with an SOI wafer (SOITEC). It has a 220 nm high 

waveguide (WG) layer on a 2 µm thick buried oxide (BOX). Using 193 nm 
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deep UV lithography slot WGs (wSlot = 140 nm, wRail = 220 nm, hRail = 220 nm) 

with n-doped silicon striploads (hStripload = 50 nm, As-doping with nominally 

3×1017 cm-3) are etched into the WG layer. Furthermore dry etching is employed 

to remove 70 nm of Si for standard grating couplers [40] and standard strip and 

rib WGs for low loss access waveguides [38].  

 

 

Fig. 4.2: Detailed cross section of MZM as implemented, showing two phase modulators 
with striploaded slot WGs, filled with nonlinear cladding; not to scale. Rails are connected 
to ground-signal-ground electrodes by tungsten vias, a silicide layer and the Si striploads. 
This electrode arrangement allows crossings of optical WGs and electrical transmission 
lines. Furthermore, it corresponds to the first part of standard metal stacks as known from 
CMOS technology. 

A silicide film (surrounded by highly doped silicon with nominally 

1×1020 cm-3) connects through tungsten-filled (W) vias to the copper electrodes 

of the RF transmission line. Using this CMOS-like metal stack a conducting 

connection between the RF transmission lines (guiding the electrical modulating 

wave) and the rails (guiding the optical field) is established. It allows crossings 

of optical WGs with electrical transmission lines, where the surrounding 

dielectric layers of mostly SiO2 and Si3N4 fix the distance to dCu-BOX = 1.1 µm. 

This metal stack is ready to be extended with additional standard layers, e.g. to 

make aluminum pads for packaging. We finished this metal stack with a thin 

layer of SiC to protect the Cu from air for this proof-of-principle device.  

To transform the 1.5 mm long slot WGs into active modulator sections, 

trenches are etched into the dielectric layers to expose the slot WGs by a 

combination of dry and wet etching. A commercially available and reliable 
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[143] electro-optic polymer is spin-coated. This material (named M3 by the 

supplier GigOptix Inc. [114]) contains chromophores and is the very same 

material used in Telecordia certified polymer modulators of the same 

manufacturer. It is poled [144] inside the slot WG (alignment of the 

chromophores) by applying a DC voltage at elevated temperature to create the 

(2)-nonlinearity in the same way as in [J14].  

The MZMs further consist of multi-mode interference (MMI) couplers. A 

transition from the slot WG to standard strip WGs is achieved by using a low-

loss converter as described in [J8]. These single-drive modulators are in turn 

nested within one large MZ interferometer with a path length imbalance of 

40 µm. The I and Q path are operated each in push-pull with ground-signal-

ground (GSG) electrodes, such that their operation points can be set by applying 

a bias voltage along with the RF signal. The phase difference between I- and Q-

component can be controlled by changing the operation wavelength in this 

proof-of-principle PIC.  

4.2.3 Demonstrations 
The performance of the IQ modulator is determined by the properties of its 

nested MZMs. The electro-optic small signal frequency response S21 of one 

MZM which is operated at its quadrature point is shown in Fig. 4.3. The 

45 GHz RF probes were not de-embedded. The modulated light output power is 

detected with a photodiode. The raw frequency response of |S21| is recorded with 

a vector network analyzer (VNA). When switching off the optical carrier, a 

noise floor from the optical detector is seen. The blue curves result from a 

moving average applied to the measured data (red dots). The inset shows a blow 

up of the averaged frequency response in the low-frequency region. The 

receiver’s equalizer (red curve) compensates the overall frequency response 

(magenta curve). The gray vertical line at 0.9 GHz marks the reference for 

normalizing the response function. The horizontal grey lines mark the -3 dB 

and -6 dB deviations from this reference point. The uncompensated -3 dB 

limiting frequency is 6.8 GHz, the -6 dB limit is 21 GHz. 

This curve is atypical for a modulator insofar as the response drops sharply 

in a frequency range up to 1.7 GHz, see inset. Comparable curves were reported 

in Ref. [J14] for a silicon modulator with a very similar EO polymer (M1) from 

GigOptix. The skin effect becomes more pronounced for higher frequencies; 
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hence the RF loss increases strongly with frequency, especially for our relative-

relatively thin electrodes. A 3 dB bandwidth of 6.8 GHz results for this 

modulator. For higher frequencies the response flattens resulting in a 6 dB 

bandwidth of 21 GHz. The region with the sharp sensitivity increase toward 

lower frequencies does not significantly affect the transmission quality as 

demonstrated in our experiments. Line coding and forward error correction tend 

to avoid the lower spectral regions anyway. Instead of equalizing at the receiver 

(red curve in Fig. 4.3) as used for QPSK, we used a pre-emphasis for 16QAM 

in the transmitter. We keep the pre-emphasis filter length short, which means 

that it can be implemented as a lookup table in the transmitter driver electronics, 

which is available anyway for generating multi-level signals for higher order 

modulation formats. 

 

Fig. 4.3: Electro-optic frequency response S21 of our MZM (including the RF probes). 
The modulator is driven with a small-signal sinusoidal at the quadrature operating point. 
The modulated light output power is detected with a photodiode. The raw frequency 
response is recorded with a vector network analyzer (VNA). When switching off the 
optical carrier, a noise floor from the optical detector is seen. The blue curves result from a 
moving average applied to the measured data (red dots). The inset shows a blow up of the 
averaged frequency response in the low-frequency region. The receiver’s equalizer (red 
curve) compensates the overall frequency response (magenta curve). The gray vertical line 
at 0.9 GHz marks the beginning of the frequency range which is of interest for data 
transmission (PRBS length 231-1). This frequency was chosen for normalizing the 
response function. The horizontal grey lines mark the -3 dB and -6 dB deviations from this 
reference point. The uncompensated -3 dB limiting frequency is 6.8 GHz, the -6 dB limit 
is 21 GHz. 

  



118  Modulation with SOH Devices 
 

 

To test data transmission with the SOH IQ modulator, two random signals 

with a pseudo-random binary sequence (PRBS) of length 211-1 have been 

created with an electrical arbitrary waveform generator (AWG) [145] at a 

symbol rate of 28 GBd (symbol duration is Ts = 35.7 ps). Our PRBS length was 

limited, but in [J7] we checked that a PRBS length of 231-1 applied to a 

comparable modulator structure led to comparable bit-error ratios (BER). After 

amplification to a peak-to-peak driving voltage of 5 V and having added bias 

voltages ( πV = 2 V at DC) of 0 V to 4 V (MZMs set to minimum transmission 

point), the electrical signal is fed via RF probes to the chip and connected to 

off-chip 50 Ω terminations, as shown in Fig. 4.4. Light at 1545 nm is coupled 

with grating couplers (GC, >10 dB for both couplers), and modulated in 

amplitude and phase. Before reception with an optical modulation analyzer 

(OMA) for error detection, the modulated light is amplified, filtered and 

attenuated as needed. The same setup is also employed to investigate the 

dependence of BER on the optical signal-to-noise ratio (OSNR) measured with 

an optical spectrum analyzer (OSA) while adding noise using an amplified 

spontaneous emission (ASE) source. 

The device shows an extinction ratio of  >26 dB. The measured overall 

optical insertion loss of 30 dB is high. However, we did not optimize all 

components for lowest loss. Our optical loss is composed of: (a) Coupling loss, 

which amounts to more than 10 dB for both grating couplers. Better grating 

couplers (with higher fabrication effort) promise coupling losses of 1.6 dB per 

coupler. (b) Loss in 7 mm long access WGs including bends and strip-to-ridge 

transitions (order of magnitude 5 dB/cm) by scattering (rough WG sidewalls) 

and absorption (WG partially located underneath metal).  

The access WG could have been shortened to 1 mm, but the excess length 

facilitated our experiments. (c) Concatenation of four MMIs. (d) Strip-to-slot 

transitions, each contributing 1 dB loss due to fabricating tolerances. (e) Phase 

modulator section is estimated to have a loss of 10.5 dB. Optimizing (a)(d) 

would reduce the loss essentially to the loss of the phase modulator section. 

We summarize the basic devices properties: The active modulator section is 

1.5 mm long, contributes 10.5 dB optical loss, has a πV  of 2 V at DC, and 

exhibits a 3 dB (6 dB) bandwidth of 6.8 GHz (21 GHz). The extinction ratio is 

larger than 26 dB. 
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Fig. 4.4: Experimental setup with photonic integrated circuit (PIC) under test. In blue: 
Schematic SOI chip configuration with nested MZMs using MMIs, and with grating 
couplers (GC) to couple light at 1545 nm with cleaved standard single mode fibers 
(SSMF). In orange: Electric coplanar waveguides in ground-signal-ground (GSG) 
configuration contacted with RF probes to operate MZMs in push-pull mode. In red: Off-
chip electrical components to supply the PRBS signal (electrical arbitrary waveform 
generator, AWG, electrical amplifier), bias-Ts (DC sources not shown) and termination. In 
black: Off-chip fiber based devices for characterization, including a tunable laser source 
(TLS), a polarization controller (PC), filters, erbium doped fiber amplifiers (EDFA), 
variable attenuator (VOA) and ASE source for OSNR tests. 

QPSK, one of the most common formats used in coherent transmission 

systems is serving us as a benchmark. We can generate QPSK with the SOH 

modulators at a state-of-the-art symbol rate of 28 GBd, see Fig. 4.5. For the first 

time on the silicon platform we report, without relying on additional signal 

processing (such as pre-emphasis or equalization), a bit-error ratio (BER) of  

4.5×10-4 for QPSK, i.e. well below the hard decision forward error correction 

threshold of 3×10-3. The error vector magnitude (EVM, maximum 

normalization), a common measure for complex signals (directly related to the 

BER [146], [147]), is 24.9 % in this experiment. This measure provides a 

convenient tool for comparison with other, more advanced modulation formats, 

as used later. The imbalance between the I and Q path amounts to a factor of 1.3 

and is due to unequal poling and imperfect adjustment of the operating points. 

By a careful adjustment of the I and Q voltages this imbalance can be 

compensated, and we did so for 16QAM. 
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Fig. 4.5: QPSK generation at 56 Gbit/s with an IQ SOH modulator without using signal 
pre-emphasis, and detected without equalization. (a) Constellation and (b) in-phase and (c) 
quadrature-phase eye diagram. The BER is 4.5×10-4, and the EVM is 24.9 % and thus well 
below the FEC error correction limit.  

Generation of error free QPSK with equalization (19 taps, 1 per symbol) is 

reported next, see Fig. 4.6, for the first time on the SOI platform at 28 GBd, also 

for direct comparison with [136] using the same equalizer length to reach 

56 Gbit/s (the highest data rate reported on one channel and polarization). The 

EVM is 14.2 % and mostly due to the path imbalance. No errors could be found 

over minutes. The BER is plotted over OSNR showing direct BER 

measurements and EVM measurements translated to BER. This modulator is 

5.5 dB from the theoretical limit of QPSK at a BER of 3×10-3. It is conceivable 

that equalization could be integrated on-chip along with driver electronics, as 

one can save on forward error correction efforts in this case. 

 

Fig. 4.6: QPSK generation at 56 Gbit/s with an IQ SOH modulator; detected using 
equalization with 19-taps as in [136]. Error free operation is measured and displayed in (a) 
constellation and (b, c) eye diagrams. The BER is shown in (d) in dependence of the 
OSNR at 25 GBd and 28 GBd. Measurements of the EVM are translated to BER and 
depicted.  
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16QAM is an advanced modulation format requiring complete control of ampli-

amplitude and phase of the modulated signal. Using an 8-tap pre-emphasis, also 

correcting the IQ imbalance, the same modulator as above was used to generate 

an optical 16QAM signal at 28 GBd, i.e., 112 Gbit/s. This is currently the 

highest data rate on a single channel and polarization generated on the SOI 

platform, while still remaining below the FEC limit with a BER of 1.2×10-3, an 

EVM of 10.3 %, without any equalization at the receiver, see Fig. 4.7. 

 

Fig. 4.7: Generation of 16QAM on a single channel and polarization at 112 Gbit/s with an 
IQ SOH modulator using pre-emphasis. (a) Constellation and (b, c) eye diagrams as 
observed when employing an 8-tap (1 tap per symbol) pre-emphasis at the transmitter, and 
no equalization at the receiver. The BER is 1.2×10-3, and the EVM is 10.3 %. 

4.2.4 Discussion and Conclusion 
Advanced modulation formats not only bring higher spectral efficiency, but also 

a reduction of energy consumption of the modulator for a given driving voltage. 

Assuming a 50 Ω termination and a measured driving voltage of Vpp = 5 V (pre-

emphasis reduces the effective voltage further, which is included in this 

estimation) we follow the recipe by [148] and find an energy consumption of 

640 fJ/bit. Further improvements are to be expected when better nonlinear 

cladding materials are found [149] and, supposing driver electronics can be 

closely integrated, if the modulator’s impedance can be designed to allow lower 

drive powers. Considering that an 8-tap pre-emphasis could be most easily 

implemented as a lookup table in the same electronics which generate the multi-

level signal there is no demand for extra effort such as equalization. 

This demonstration proves the potential of SOH modulators to compete 

with LiNbO3 in its core domain of advanced modulation formats, and holds the 

promise for a reduction of cost, energy consumption, and size, in particular 

when making multichannel arrays. This extends the application range of silicon 

modulators further into long haul and access networks, which have been shown 
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to strongly rely on ever more advanced modulation formats [22], while contend-

contending with symbol rates in a very similar range as the one used in this 

experiment. 

[End of Paper] 
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4.3 SiGe-Based Driver Circuit for SOH Modulators 
It is important to consider electronic drivers for the SOH modulators for their 

deployment. While the production of electronic circuits on the same chip as the 

photonic structures is a long-term target, the compatibility of the fabrication 

processes is currently a major issue. Making separate chips with CMOS-based 

driver circuits is possible. However, mask costs for a dedicated driver design 

are much higher for a CMOS process than for making drivers with the SiGe 

platform, as indicated in a discussion with GigOptix.  

SiGe-based drivers are favored for a (comparatively) low production 

volume. This is assumed to be reasonable for a market entry of SOH 

modulators, e.g., for long-haul applications. These applications require 

production volumes much lower than typical for consumer products. Here, we 

investigate the compatibility of SiGe drivers with SOH modulators with respect 

to the drive amplitude and the data rate (bandwidth).  

Since SOH modulators have been shown to be useful at very low drive 

voltages, a commercial driver of GigOptix is mounted on a board customized 

(output impedance close to 50 ) to drive an SOH MZM of 1 mm length. The 

driver accepts electronic input signals with -20 dBm (50  input, OOK signal), 

which alternatively could have come for instance directly from a photo detector. 

An electronic signal regeneration is performed and a 0 dBm (measured at an 

impedance of 50 ) output signal is sent directly, without an additional 

electrical amplifier, to the SOH modulator (a bias-T serves to set the operation 

point of the MZM to its quadrature point). The MZM is terminated with a 50  

load and driven at 12.5 GBd. A gate voltage of 100…300V (as described in 

Fig. 2.12) is applied. The -voltages is ca. 0.8 V for the employed MZM. The 

modulator’s insertion loss is roughly 25 dB. Below, a wide open eye diagram is 

displayed. EO modulation is demonstrated at high quality, i.e., a squared quality 

factor Q² corresponding to 11.7 dB, which corresponds to a bit-error-ratio 

(BER) of around 6×10-5, Eq. (7.10). Apart from packaging issues this proves the 

viability of using SiGe circuits to operate SOH modulators. Instead of 

performing simple signal regeneration, also other functionality could have been 

implemented in the SiGe circuit.  
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 (a) (b)  

Fig. 4.8: SOH MZM driven by SiGe driver circuit at 12.5 Gbit/s. Eye diagrams depicted 
with time on horizontal axis at 20 ps/div. (a) Electrical output with vertical axis at 
100 mV/div of SiGe driver before being directly applied to the SOH MZM. (b) Received 
optical signal after SOH modulation, as recorded by a photodetector at 500µV/div. The 
squared quality factor Q² of the EO modulation corresponds to 11.7 dB. 
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5 Modulation with Benchmarking Devices 
Benchmarking was done to understand the advantages of the SOH platform 

with respect to other platforms suited for the photonic integration of 

modulators. In this part of the thesis, we report on characterization results for 

SOI modulators using the plasma effect [J9], and modulators made on the GaAs 

platform [C5], [J3]. 

5.1 Plasma-Effect Based Device on Standard SOI Platform 
This chapter has been published at the conference CLEO 2012 in San Jose, 

[C16]. © OSA 2012. The device under characterization was built as a 

modulator. We found that it can also be used for detection, i.e., a differential 

electrical current can be measured for incident, intensity modulated light. Other 

reports about defect-mediated sub-band-gap photo detection can be found in the 

literature, e.g., in [150]. This effect was further investigated in [J9].  

[Start of Paper, CLEO 2012, p. CTu1A.1] 
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Light modulation and detection within a single SOI waveguide is demonstrated 

at 1550 nm. Multi-functional device concepts allow simplified transceiver 

systems and save processing steps, thereby increasing yield and reducing costs.  
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5.1.1  Introduction 
Waveguide-based photo detectors and modulators are key components for 

highly integrated photonic circuits. Silicon Photonics is particularly appealing, 

because of the prospect to produce chips with existing CMOS infrastructure. 

Modulators [5] usually rely on free-carrier dispersion in all-silicon structures, 

whereas detectors either exploit defect states [151] or require deposition of 

Germanium [6] on silicon substrates. Uniting both functions on the same chip 

requires substantial processing effort and results in a decrease of yield. 

In this paper, we demonstrate for the first time that a single device can be 

used to modulate and detect broadband communication signals with data rates 

of 35 Gbit/s. The device was fabricated using only the most common and 

reliable CMOS processes: Silicon dry etching and ion implantation. This 

significantly reduces the number of processing steps and allows for less 

complex fabrication runs with lower risk.  

5.1.2  Device Design and Fabrication 
Phase modulation is achieved by using carrier-depletion in a 3 mm long ridge 

waveguide which was doped symmetrically with P and N (both 2E18 cm-3, 

boron and phosphorus) dopants and annealed at 1075 °C for 10 s. The layout is 

shown in Fig. 5.1. Waveguides are defined on a standard p-doped SOI wafer 

(1E15 cm-3) with 2 µm buried oxide layer. Processing was performed in a 

standard CMOS line with 193 nm optical lithography. We start with a 220 nm 

high Si layer, use 70 nm dry-etch to define the ridge waveguides (500 nm 

width) together with shallow-etch grating couplers. 500 nm wide strip 

waveguides are then realized by fully etching the device layer around the phase 

modulation sections. Pt/Au coplanar waveguide electrodes were realized in 

Ground-Signal-Ground configuration (widths: 6 µm signal, ca. 100 µm ground, 

3.5µm gap, pads larger but not shown). The electrodes are deposited on a BCB 

layer to enable crossing of optical waveguides and touch down only at strongly 

doped (silicide) P++ and N++ regions. These are connected by 400 nm wide 

and 1 µm long arms to the P-N-doped ridge waveguide. The doping was 

optimized for modulator applications. 
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Fig. 5.1: Proposed and realized Mach-Zehnder Interferometer (MZI) on SOI, 
incorporating grating couplers (GC), multi-mode interference couplers (MMI), carrier-
depletion ridge waveguides. The profile is depicted in the inset. WG 1 and WG 2 are 
identical; WG 1 was used for detection and modulation experiments. Vision: Use WG 1 
for modulation, WG 2 for detection, e.g. for half-duplex transceiver or instant signal 
processing by using WG 2 to monitor and feedback to WG 1 (also packet or bitwise). 

The operation principle of detection of sub-bandgap light in Si has been shown 

and explained by Knights et al. [152], relying on Si+ implants to introduce 

defects associated with sub-bandgap states and P, N dopants (phosphorus, 

boron). Detection without Si+ implants but weaker performance was shown by 

Zhao et al. [153]. Hence we use the same waveguide designed for phase 

modulation to detect light, suspecting incomplete annealing of P, N dopants to 

leave defects. In this first demonstration the focus has been on optimizing the 

quality of the modulator operation. In the future when more elaborated designs 

and electronics can be directly cointegrated on-chip, some disadvantageous 

detector performances may be optimized (e.g. the dark current could be made 

smaller, responsivity increased).  

An imbalanced (40 µm) Mach-Zehnder Interferometer (MZI) configuration 

with multi-mode interference couplers (MMIs) was coupled to fibers via grating 

couplers (GCs, coupling loss 5 dB), see Fig. 5.1. The device allows for ampli-

tude modulation and works over a wide wavelength range. We use only one arm 

to subsequently show modulation and detection, because of insufficient space to 

contact both coplanar electrical waveguides at the same time. However more 

functionality can be envisioned for this device: Imagine arm 1 of the MZI con-

nected to driver electronics for modulation, arm 2 permanently attached to the 

receiver electronics on-chip. While such a device can act as a half-duplex trans-

ceiver, also signal monitoring and feedback for immediate signal processing are 

conceivable. Operating WG 2 at the same bias as WG 1 gives the best modula-
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tion extinction ratio, while a higher bias on WG 2 could be temporally used to 

increase receiver bandwidth and analyze the incoming signal. 

5.1.3  Modulator and Detector Performance 
Driving arm 1 at 5.7 V reverse bias with a non-return-to-zero (NRZ) pseudo 

random bit sequence (PRBS) of length 27-1 gives an on-off-keying (OOK) 

signal. The data stream is analyzed with a pre-amplified receiver, Digital-

Communication-Analyzer (DCA) and Bit-Error-Probability Tester (BERT) and 

produces open eye diagrams shown in Fig. 5.2a. This proves error-free opera-

tion (BER < 2E-10) at 35 Gbit/s.  

The detector’s reverse bias is set to 7.3 V, close to the breakthrough voltage 

causing a dark current of 34 µA. Variation of the optical power at 14 dBm (in 

WG 1) gives a responsivity of 0.03 A/W. Using a signal created with a Lithium-

Niobate (LN) modulator at 35 Gbit/s send at 14 dBm into WG1, a BER below 

2E-6 is measured, well below the threshold for 2nd-generation forward-error 

correction (FEC), see Fig. 5.2b.  Measurements of reverse bias current vs. opti-

cal input power (not shown here) exclude two-photon absorption as physical 

effect to explain sub-bandgap detection.  

 

Fig. 5.2: Performance characterization around 1550 nm by data transmission of a PRBS 
(27-1) using NRZ OOK. (a) BER and open eye diagrams for modulation with SOI chip 
(reverse biased at 5.7 V) using commercial receiver. (b) BER and open eye diagrams for 
detection with SOI chip (reverse biased at 7.1 V) of optical signal (generated with LN 
modulator) using electronic amplifier. 

5.1.4  Conclusion  
Highspeed modulation or detection in the same SOI waveguide from fabrication 

relying only on dry etching and ion implantation has been demonstrated for the 
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first time, allowing for multiple-purpose devices, e.g. instant signal processing 

with less effort. The striking extend to which silicon can be used for sub-

bandgap light detection without dedicated fabrication steps is revealed, which 

allows for saving costs but also implicates for other detection concepts on SOI 

(e.g. plasmonics) to consider the influence on responsivity from silicon itself. 

[End of Paper] 
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5.2 Electro-Optic Effect-Based Device on GaAs Platform 
This chapter was published at OFC 2013 in Anaheim, USA [C5]. © OSA 2013. 

[Start of Paper, OFC 2013, p. PDP5C.4] 
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We report on the first experimental demonstration of a GaAs modulator suited 

for complex IQ modulation formats. Data rates of up to 150 Gbit/s are 

generated using QPSK, 16-QAM, 32-QAM and 64-QAM on a single carrier and 

polarization.  

5.2.1 Introduction 
The deployment of advanced modulation formats in next-generation optical 

transport network systems (OTN) has been the key driver for increasing spectral 

efficiency and scaling network capacity [154]. In this context, service providers 
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are currently upgrading or transforming existing interfaces to scalable and effi-

efficient digital optical platforms featuring high-bandwidth photonic integrated 

circuits (PIC) [155]. The path to channel rates of 100 Gbit/s and beyond 

involves modules that employ high-speed IQ modulators that feature high 

integration density, low driving voltages and low-cost fabrication.  

So far LiNbO3 IQ modulators have been widely exploited in high-speed 

communication modules due to the strong electro-optic effect and high speed 

operation. Data rates of more than 100 Gbit/s were achieved with quadrature 

phase-shift keying (QPSK) and various quadrature amplitude modulation 

(QAM) formats [156]. However, while footprint is one of the key parameters 

and newer, smaller modules are currently being considered and standardized, 

LiNbO3 devices exhibit a relatively large chip size. As an alternative, compact 

InP modulators can be used, enabling, e.g., dual-polarization-(DP-)QPSK 

transmission at symbol rates of 28 GBd [157]. However, although InP has the 

potential to meet the form factor requirements, cost and yield pose challenges 

for commercialization, as fabrication relies on 2-inch InP wafers. GaAs, in 

contrast, is a mature technology widely used for monolithic integration of 

microwave integrated circuits on large-area 6-inch wafers. The material system 

offers high electron mobility, low-loss semi-insulating substrates, operation and 

cost-efficient foundry-based fabrication. In addition, GaAs lends itself to 

integration of photonic devices such as passive waveguides, photo detectors and 

lasers. GaAs addresses the demands of next-generation OTN interfaces. 

Nevertheless, while GaAs technology is also suited for monolithic integration of 

low loss high-speed Mach-Zehnder electro-optic modulators [158], IQ 

modulators have not yet been shown. 

In this paper we report on the first experimental demonstration of an IQ 

modulator exploiting the linear electro-optic effect in GaAs. Using 64-QAM at 

a symbol rate of 25 GBd we achieve a data rate of 150 Gbit/s. This is to the best 

of our knowledge the first time that GaAs modulators are used for coherent 

communication with higher-order modulation formats resulting in the highest 

data rate demonstrated with such devices so far. We further evaluate the 

performance of the device for a variety of application-relevant modulation 

formats such as QPSK, 16-QAM, 32-QAM, and 64-QAM. 
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5.2.2 GaAs Modulator 
The GaAs modulators were produced using u2t Photonics’ foundry-based fabri-

fabrication processes. Six-inch semi-insulating GaAs wafers are used in the 

processing of the modulators. The epi-layers are grown by molecular beam 

epitaxy (MBE). Standard i-line steppers are used for photolithography to define 

optical waveguides and electrodes. The basic structure of the IQ modulator is 

depicted in Fig. 5.3a. It consists of two high-speed MZI modulators, taking 

equal optical inputs from a splitter, and outputting to a recombiner via phase-

shift electrodes.  The configuration may be considered as an outer ‘parent’ 

interferometer comprising two inner ‘child’ MZI units. The two RF drives are 

independent, ideally, with no crosstalk. The IQ modulator includes optimized 

deep-ridge to shallow-rib transitions, shallow-rib S-bends, deep-ridge corners 

and U-bends, and many other features designed for low loss and high extinction 

ratio. The design is tolerant to process variation and maintains its performance 

over a wide range of geometric parameters. The MZIs are based on Y-branch 

optical splitters and combiners to achieve high extinction ratio (ER) and 

broadband operation resulting in devices with improved temperature stability, 

reliable sinusoidal transfer functions and highly reproducible device 

performance [158]. The tested IQ chip comprises the child and parent phase-

control electrodes, recombiners and monitor taps.  

 

Fig. 5.3: Fabricated GaAs IQ modulator. (a) Schematic layout of two child Mach-Zehnder 
modulators (in yellow), which deliver the in-phase (I) and quadrature-phase (Q) 
modulation, respectively, and are nested in a parent Mach-Zehnder interferometer (MZI).  
Lensed polarization maintaining fibers were used to couple the light to and from the chip. 
Operating point adjustments of the child MZMs are done by adding a bias voltage to the 
RF probes. Dedicated phase shifters are used to set the angle of I and Q modulation in the 
parent MZI. (b) Picture of the device under test in characterization setup.  
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With 30 mm long RF electrodes, Vπ is below 3V; nevertheless, the modula-

tion bandwidth is typically larger than 30 GHz owing to the low-loss coplanar 

waveguide (CPW) configuration and excellent velocity matching. To demon-

strate the raw performance of the chip, single IQ modulator chips were mounted 

on a brass carrier and the CPW lines were terminated with a bonded off-chip 

resistor. 

5.2.3 Experimental Setup 
The experimental setup is depicted in Fig. 5.4: The electrical driving signal was 

generated by two Virtex-5 FPGA-boards connected each to a Micram DAC25, 

functioning as an arbitrary waveform generator (AWG) [145]. The analog 

electrical signal was amplified by two SHF electrical amplifiers to a peak-to-

peak voltage of 2.5 Vpp. This signal was coupled to the CPW by a RF probe. 

The operating points of the inner MZIs were set by applying a bias to the RF 

electrodes. The substrate-voltage and parent-bias were applied by tungsten 

needles.  

 

Fig. 5.4: Experimental Setup: Two Virtex5-FPGA-boards each linked to a Micram 
DAC25 are used as an arbitrary waveform generator providing the signal. The outputs for 
the I- and Q-arm are amplified before being coupled to the chip by a picoprobe. An ECL 
serves as optical source and is coupled to the chip by a tapered fiber. The modulated signal 
is amplified by an EDFA and received by an OMA. Light of the original ECL is used as 
LO to avoid frequency offset. An OSA was attached to a 10 dB-coupler right after the out-
coupling tapered fiber. 

Light was coupled to and from the device by using polarization-maintaining 

lensed fibers. The device is operated at a wavelength of 1539.4 nm and an input 

power of 7 dBm. The insertion loss is better than 18 dB, including coupling 

losses inherent to the test setup. The modulator itself has an insertion loss of 

approximately 8 dB. After the device the optical signal was amplified by an 

erbium doped fiber amplifier (EDFA) and fed to an Agilent N4391A optical 

modulation analyzer (OMA) for coherent detection and signal quality 
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evaluation. The transmitter laser was used as a local oscillator (LO) in the 

OMA. 

5.2.4 Experimental Results 
The experimental results are depicted in Fig. 5.5. The back-to-back characteri-
zation was performed at the best OSNR we could achieve (> 25 dB) and using 
equalization with 55 taps at the receiver (1 tap per symbol). For 32-QAM and 
64-QAM an 8-tap (1 tap per symbol) pre-emphasis was employed as well. Con-
stellation diagrams of QPSK (a), 16-QAM (b), 32-QAM (c) and 64-QAM (d) 
are depicted with a histogram of 51200 points per plot. The error vector magni-
tude (EVM, maximum normalization) was determined to be 6.1 %, 7.1 %, 
6.3 % and 6.9 %, respectively. Error-free QPSK generation is proven, bit error-
ratios for 16-QAM and 32-QAM are well below hard-decision threshold limits 
for forward-error correction (FEC). The measured EVM for 64-QAM translates 
to a BER which indicates that data transmission and reception using a software-
decision threshold should be possible. 

 

Fig. 5.5: Constellation diagrams generated with GaAs IQ modulator. Bit-error ratios 
(BER) have been measured and in part calculated from EVM [146], [147]. Subfigures 
show (a) QPSK, (b) 16-QAM, (c) 32-QAM and (d) 64-QAM respectively. For QPSK the 
EVM is determined to be 6.1%. No bit errors were found over minutes. For 16-QAM, an 
EVM of 7.0% is measured and also no bit errors could be found within a recording time of 
125 µs (BER < 8·10-8). For 32-QAM, the EVM is 6.3%. For 64-QAM the EVM is 6.9%. 
Except for 64-QAM all bit-error ratios lie well below the level of 2nd generation hard-
decision forward error correction (FEC) limits [159], while 64-QAM would have to rely 
on a soft-decision FEC. 

5.2.5 Conclusion 
We have experimentally demonstrated a high-speed GaAs IQ-modulator. The 
device was operated at a symbol rate of 25 GBd using various higher-order 
modulation formats such as QPSK, 16-QAM, 32-QAM and 64-QAM. This 
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leads to data rates of up to 150 Gbit/s. To our knowledge this is the first time 
that complex modulation was demonstrated in a GaAs-based IQ-modulator. 

[End of Paper] 

5.3 Summary 
Measurements have been made with: 

- SOH modulators with chromophores hosted in a polymer matrix,  

- SOH modulators with organic crystals,  

- SOI pn-modulators, and  

- GaAs modulators. 

Experience and reports are available for  

- LiNbO3 modulators, and 

- InP based modulators [3]. 

Combining the observations and experience from the measurements and 

reported modulator performance, a very rough comparison of modulators from 

different platforms is attempted. Note that the importance of many parameters 

depends strongly on the intended application. Also, Si modulators have not yet 

reached the maturity of their counterparts in LiNbO3, InP or GaAs, which have 

a head start. Hence we present our perception and simply estimate the near-term 

potential of each technology. 

Table 5-1 presents an overview of our opinion on the different platforms. 

Some observations are discussed in detail in the following: GaAs and LiNbO3 

show the highest modulation quality and may be the best choice when 

integration functionality, space and energy consumption are of secondary 

interest. InP has a business case when integration functionality is desired and 

on-chip lasers with high yield are required, as in the case with DWDM 

networks. 

Hybrid integration of germanium (for detection), and III-V dies (to make 

lasers) is possible with SOI plasma-effect-based modulators. This is interesting 

for optical interconnects, i.e., in cases where volume and cost per unit count 

most. 
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SOH modulators provide good modulation quality with no nearby physical 

limit preventing further amelioration and excellent, low drive voltages. The use 

of organic materials in the SOH platform has to be investigated for reliability. 

Telecordia certification (a reliability certification) has been obtained for 

packaged polymer modulators (waveguides are completely made from 

polymers) using the optically nonlinear material M3 of GigOptix. The very 

same material has been used to make SOH modulators in this work and it is 

conceivable that they could show the same reliability as polymer modulators 

when packaged. In the short-term, the best selling point for SOH modulators is 

their very low -voltage which enables modulators with an energy consumption 

down to 1.6 fJ/bit [C2], at 12.5 Gbit/s, which is impressive compared to pn-

modulators with the current record at 200 fJ/bit at 20 Gbit/s [160]. The low -

voltage can also be exploited in frequency comb line generation, which requires 

to drive modulators at multiples of the -voltage at high frequencies. By 

designing the SOH device with a length of 0.5 µm or less, it can be driven as a 

lumped element and part of the low -voltage can be traded for higher 

bandwidth. This makes modulators with exceptionally large bandwidth possible 

[C7]. High-bandwidth and low -voltage modulators are of interest in analog 

applications, like microwave photonics to enable the optical processing of 

electronic signals, e.g. for phased-array radar systems [161]. 
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Parameter Si 

(organic 

hybrid) 

Si 

(plasma 

effect) 

GaAs InP LiNbO3 Impact on 

customer 

value and 

cost of 

ownership 

Relative  
size  

1 mm 3 mm 3 cm 2 mm
[3] 

8 cm high 

Bias  
stability  

 
drift at 
low freq., 
suspected 
to be a 
result of 
moving 
ions 

O ++ + O low 

VL 0.5 Vmm 10 Vmm 90 Vmm 15 Vmm 90 Vmm high 

ER (DC) 25 dB less than 
25 dB 

25 dB less than 
25 dB 

25 dB high 

Modulation 
formats 

16QAM QPSK
(16QAM)

64QAM 16QAM 64QAM medium

Integration 
functionality 

++ ++ + ++   high 

Linearity17 + 
Pockels 
effect, 
low 
frequency 
issues 

 
Plasma 
effect, 
depletion 
zone 
variation 

++
Pockels 
effect 

O
quantum-
confined 
Stark effect 
(QCSE) 

+
Pockels 
effect, low 
frequency 
issues 

medium

Wavelength 
range 

+ + + O
wavelength 
dependence 
of QCSE 

+ high 

Vol. scaling + 
foundries 
available 

+ 
foundries 
available 

+
foundries 
available 

   medium

Wafer size 8”…12” 8”…12” 6” 2”…4” n.a.  

Table 5-1: List of estimated figures for modulator performance of different platforms. 

 

                                                 
17 The linearity is defined as the dependence of an induced phase shift vs. applied voltage. 





    

6 Conclusions 
The demonstrations made in this work illustrate the main advantages of the sili-

con-organic hybrid (SOH) platform. The silicon part of the photonic integrated 

circuits (PIC) is made with fabrication techniques known from the well-

established CMOS industry. Making organic claddings in a post-processing step 

allows building on this CMOS fabrication infrastructure. The organic claddings 

can deliver properties which are not available otherwise from silicon-on-

insulator (SOI) waveguides. SOH modulators based on nonlinear chromophores 

hosted in polymers have been demonstrated using advanced modulation formats 

at 112 Gbit/s. In contrast to other platforms, which are limited to a certain set of 

materials, one can further develop the organic materials, and can proceed be-

yond mere optimization. This enables the creation of disruptive devices. For 

instance, by having demonstrated an SOH modulator based on organic crystals 

in this work, we advocate a new material class for making high-speed modula-

tors on SOI. The organic crystals also lend themselves to applications such as 

THz-wave generation. The performance of SOH modulators has been briefly 

compared to the cases of SOI plasma-effect modulators and GaAs modulators. 

SOH modulators show promise for applications requiring ultra-low energy con-

sumption, or compatibility with low-voltage driving circuits. Ordinarily em-

ployed electrical amplifiers are thus made obsolete, as demonstrated by directly 

driving an SOH modulator with a SiGe circuit. Generation of light has been 

achieved using the SOH platform by making an optically pumped on-chip SOH 

laser. This laser exceeds the state of the art by an order of magnitude in terms of 

emission pulse peak power. The SOH platform offers the prospect to make this 

kind of laser mass-producible.  

In conclusion we find that the SOH platform is destined to improve data 

communication, especially when the platform’s potential for parallelization will 

be realized. For instance, multiplexing several data sub-channels by employing 

OFDM could be realized in a very compact form. The required sub-components 

for the PIC such as comb line generators, modulators and optical Fourier 

transform are already all available. Beyond this domain, applications in the 

fields of metrology, life-sciences and microwave photonics could profit from 

the SOH platform. 





    

Appendix A:  Supplementary Information 

A.1 Useful Relations 
 The following relation is known for a vector E, which depends on the spatial 

coordinate r: 
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The following relation for small x with ,x a is useful: 
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A useful identity for ,a b  is 

  1 j j j j
exp( j ) exp( j ) exp cos

2 2 2

a b a b
a b

         
   

. (7.3) 

A.2 Definitions 
The Fourier transform used in this thesis is defined as 
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First and second moments can be calculated for a density function ( )f x . The 

first moment is 

 ( )dx xf x x 


. (7.5) 

The second central moment is 
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The complementary error function is 
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The Gaussian beam has the normalized field distribution  Ef x  

  E 22
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d exp d 1
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. (7.6) 

Its beam radius r  is defined at the 1/e fraction of the peak field value as 

2nd,E2r  , and hence the diameter is 1/ ,E 2nd,E2 2 2eD r   . 

The corresponding normalized intensity distribution  If x  can be written  

  I 22
2nd,I2nd,I

1 ²
d exp d 1

22

x
f x x x
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 
   

 
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 

. (7.7) 

The standard variation of both distributions are then related as 2nd,I 2nd,E2 
and a new diameter 4D   at the 1/e² fraction of the peak intensity value can be 

defined as  

 24 2nd,I 2nd,E 1/ ,E1/ ,I
4 2 2 2ee

D D D r       . (7.8) 

The new diameter 4D   is twice the radius of the Gaussian beam. As 2
2nd,I  is 

also the second moment of the Gaussian intensity distribution, this is called its 

second moment width, which is identically with the usual definition of the 

Gaussian beam waist. This second moment width can also be calculated for a 

distribution which is not Gaussian using the second central moment definition 

of Eq. (7.5). Hence, it is often used to compare non-Gaussian beams with 

Gaussian beams. 

Quality Metrics for Optical Signals 

Besides counting errors in sufficient numbers to derive the bit-error-ratio (BER) 

of a communication link, other metrics can be employed to estimate the quality 

of the link. An overview about the most commonly used methods is presented 

in [42], [162].  

Using a (an optical) digital communication analyzer (DCA) which samples 

a repetitive optical signal, one can obtain an eye diagram (a histogram of 

samples over the symbol duration, for an example see Fig. 4.4(b)). In case of 

direct detection as used for OOK, one can obtain the quality factor 

corresponding to Q² from this eye diagram, by looking at the distribution of the 

detector voltage into the levels of “1” and “0”. The quantity Q² approximately 
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equals the electrical signal-to-noise power ratio, provided that no inter-symbol 

interference is present, ones and zeros are uniformly distributed, the first 

moment of a “0” is 0, the second moments fulfill the conditions 
2 2

,"1" ,"0"1 / 2V V    and  2 2 2 2
,"1" ,"1" ,"0" ,"1"/ 2 1.5V V V V      . The quantity Q² is 

then close to the ratio of the difference of the first moments of the detector 

voltage ( "1"V , "0"V , which are proportional to the light intensity) and the sum of 

the second moments (square root) of the detector voltage ( ,"1"V , ,"0"V ). 
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It can be shown that the BER can be estimated from the quality factor, using the 

complementary error function (see definition above), as 
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In case of coherent detection, the so-called error vector magnitude (EVM) 

can be used as a quality metric for quadratic m-ary QAM signals [146], [147]. 

The underlying idea is to look at the ith received complex amplitude r, iE  and 

compare it with the originally transmitted amplitude t, iE  in a constellation 

diagram, in order to obtain the deviation err, iE from a perfect transmission:  

 err, r, t, i i i E E E  (7.11) 

By performing this measurement NS times, the variance 2
err  is given, which can 

also be written as root mean square deviation err . By dividing this quantity 

with the absolute, maximum transmitted amplitude t, maxE , a normalization is 

performed. The resulting quantity is called maxEVM (in maximum notation) 
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A factor k can be defined using the averaged (over the power of the used 

symbols) absolute amplitude t, aE  as 
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For different modulation formats t, aE  differs, hence: 

 2

QPSK 16QAM 32QAM 64QAM

1 9 / 5 17 /10 7 / 3k
. (7.14) 

According to [146] the EVM corresponds to a certain BER, assuming additive 
white Gaussian noise, and non-data-aided reception. 
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Appendix C:  Glossary 

C.1 List of Symbols 

Constants 

c = 3.0×108 m/s Velocity of light in vacuum 

e = 1.6×10-19 C Elementary charge  

0 = 8.9×10-12 F/m Permittivity of vacuum 

0µ = 12.6×10-7 H/m Permeability of vacuum 

  = 1.1×10-34 Js Reduced Planck constant 

h = 6.6×10-34 Js Planck constant 

Greek Symbols 

amp , RF,amp  Attenuation coefficient (amplitude notation, real part of 

complex propagation constant) 

meas Attenuation coefficient (power), as measured 

Soref  Attenuation coefficient (power) according to Soref 

n, Vard  Attenuation coefficient (power) according to Vardanyan 

for n-doped silicon 

p, Vard  Attenuation coefficient (power) according to Vardanyan 

for p-doped silicon 

P  Attenuation coefficient (power) 

  (Common) propagation constant (imaginary part of com-

plex propagation constant) 

skin  Skin depth 

  Interaction factor 

load  Amplitude reflection factor for reflection between device 

and load 

gen  Amplitude reflection factor for reflection between gener-

ator and unloaded (unterminated) device 
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term.dev  Amplitude reflection factor for reflection between gener-

ator and terminated device 

  Complex propagation constant 

r  Material dependent dielectric permittivity 

rε  Permittivity matrix  

QE  Quantum efficiency of a photodiode 

η  Impermeability matrix 

  Optical wavelength  

c Center wavelength 

RMS   Effective (RMS, root mean square) roughness of a sur-

face 

  Conductivity 

a  Absorption cross section 

( , )t r  Electric charge density 

Φ  Transfer matrix of a phase shifter 

, ,m n    Phase shift in a Mach-Zehnder modulator, delay interfer-

ometer 

  Time constant 

I Q,   Phase difference in the in-phase (I) or quadrature phase 

(Q) Mach-Zehnder modulator of an IQ-modulator 

  Angular frequency 

c  Angular central frequency 

RF  Angular frequency of RF wave 

(2)  Optical nonlinearity of second order 

(3)  Optical nonlinearity of third order 
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Latin Symbols 

a=(a1,…,a4)
T Normalized wave amplitude, such that 

2
a represents the 

incoming optical power 

a Crystallographic axis a 

Wia  Constant collecting frequency independent terms in trav-

elling wave model of Witzens et al. 

A(z,t) Amplitude factor of optical wave 

effA  Effective mode cross section 

A  Amplitude of an optical carrier or of a signal 

b=(b1,…,b4)
T  Normalized wave amplitude, such that 

2
b represents the 

outgoing optical power 

b Crystallographic axis b 

BER  Bit error probability or bit error ratio 

( , )tr  Magnetic flux density 

C Capacitance 

c=(c1, c2)
T Normalized wave amplitude, such that 

2
c represents the 

incoming electrical power 

c Crystallographic axis c 

d=(d1,d2)
T Normalized wave amplitude, such that 

2
d represents the 

outgoing electrical power 

( , )tr  Electric flux density 

D  Transfer matrix for a delay 

( , )tr  Electric field vector 

 t c, ,x y E  Electric field distribution in the transverse (to the propa-

gation direction) plane 

norm( )E t  Normalized electric field of optical carrier from complex 

amplitude modulation 

RCf  3 dB bandwidth corresponding to an RC constant 

EVM  Error vector magnitude 
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maxEVM  EVM normalized to the maximum electric field in the 

constellation 

f  Frequency 

G Conductance 

( )h   Frequency response 

( , )tr  Magnetic field vector 

 t c, ,x y H  Magnetic field distribution in the transverse (to the prop-

agation direction) plane 

Ilight(l) Intensity of light after propagation of length l in medium 

I0, light  Intensity of light before propagation in medium 

I(t) Intensity of light 

I  In-phase component of a signal 

PDi  Generated electrical current in a photo detector 

( , )tr  Electric current density 

l,L Device length (unit m) 

effl   Effective device length 

L Inductance (unit Henry, H)  

no general relation to length L 

1 2,  M M  Transfer matrices of 2-by-2 MMIs (3 dB split-

ters/combiner) 

n  Normal vector (normal to a surface, context dependent) 

n  Refractive index 

effn  Effective refractive index 

gn  Group refractive index 

Ne Electron density 

Nh Hole density 

N Density of molecules 
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OSNR  Optical signal-to-noise ratio with fixed reference band-

width of 0.1 nm. Signal power related to the unpolarized 

ASE power for this fixed reference bandwidth 

( , )tr  Polarization density (in short polarization) 

Pt = (Px, Py) Transverse polarization  

outP  Optical output power 

pt Duty cycle 

Q  Quadrature phase component of a signal 

2Q  Quality factor squared  

r Spatial coordinate 

rij Electro-optic coefficient, i,j in {1,2,3} or in case of this 

work {x,y,z} 

RD Photo detector responsivity 

R Resistance 

SOO  Optical-to-optical scattering matrix  

SEE  Electrical-to-electrical scattering matrix  

SEO  Electrical-to-optical (electro-optic) scattering matrix  

 21,EO RFS   Element of matrix SEO in row 2, column 1; this is the EO 

transfer function 

 21,VS f  Transfer function contribution of the traveling wave elec-

trodes to the overall electro-optic frequency response 

 21,EOS f  of an SOH modulator  

SOE  Optical-to-electrical scattering matrix  

Si Energy state of a molecule: ith singlet state 

T  Temperature 

Ti Energy state of a molecule: ith triplet state 

t  Time 

  Time delay 

V Voltage 
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S,effV  Effective voltage S,effV at source  

V  -voltage 

VGate Gate voltage (applied between SOI wafer substrate and 

optical Si WGs) 

Vpp AC voltage measured peak-to-peak 

w Width 

Z0 Characteristic impedance 

Zgen Generator impedance 

Zload Load impedance 

NZ  Wave impedance of the medium 
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C.2 Acronyms 
16QAM 16ary quadrature amplitude modulation 

64QAM  64ary quadrature amplitude modulation 

ADC Analog-to-digital converter 

ALD Atomic layer deposition 

ASE Amplified spontaneous emissions 

ASK Amplitude shift keying 

AWG Arrayed waveguide grating 

AWGN Additive white Gaussian noise 

BER Bit error ratio 

BERT Bit error tester 

BNA N-benzyl-2-methyl-4-nitroaniline, organic material, 

which can be grown as a crystal 

BOX Buried oxide (oxide layer in SOI wafer) 

BPSK Binary phase shift keying 

BW Bandwidth 

CL Cylindrical lens 

CMOS Complementary metal oxide semiconductor 

CPW Coplanar waveguide 

cw Continuous wave 

DAC Digital-to-analog converter 

DCA Digital communications analyzer - Agilent Oscilloscope 

DI Delay interferometer 

DPSK Differential phase shift keying 

DQPSK Differential quadrature phase shift keying 

DSP Digital signal processing 

DWDM Dense wavelength division multiplexing 

ECL External cavity laser 
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EDFA Erbium doped fiber amplifier 

EM Electromagnetic 

EO Electro-optic 

ER Extinction ratio 

EVM  Error vector magnitude 

FCA Free-carrier absorption 

FEC Forward error correction 

FOM Figure of merit 

FPGA Field programmable gate array 

FSR Free spectral range of a filter 

FTTH Fiber-to-the-home 

FWHM Full-width half-maximum 

GC Grating coupler 

GSG Ground-signal-ground 

IC Integrated circuits 

IL Insertion loss 

InP Indium phosphide 

IQ modulator Modulator for complex modulation 

IR26 Organic dye 

ISC Inter system crossing 

ISI Intersymbol interference 

ITU International Telecommunication Union 

IR Infrared 

LO Local oscillator 

M1, M3 Optically nonlinear chromophores in polymer matrix, 

produced by GigOptix 

MAN Metropolitan-area network 
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MBE Molecular beam epitaxy 

MFD Mode field diameter 

MLL Mode-locked laser 

MMI Multi-mode interference coupler 

MMIC Monolithic microwave integrated circuits 

MOSFET Metal-oxide-semiconductor field effect transistor 

MUX Multiplexer 

MZI Mach-Zehnder interferometer 

MZM Mach-Zehnder modulator 

NRZ Non-return to zero 

OFDM Orthogonal frequency division multiplexing 

OMA Agilent optical modulation analyzer N4391A 

OOK On-off-keying 

OTN Optical transport network 

OSA Optical spectrum analyzer 

OSNR Optical signal to noise ratio 

PBS Polarization beam splitter 

PD Photo detector 

PIC Photonic integrated circuits 

PM Phase modulator 

PRBS Pseudo random bit sequence 

PSK Phase shift keying 

PVA Polyvinyl alcohol 

QAM Quadrature amplitude modulation 

QPSK Quadrature phase shift keying 

RBW Resolution bandwidth 

RC Resistance-capacitance 
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RF Radio frequency 

Rx Receiver 

SNR Signal to noise ratio 

SMF Single mode fiber 

SOI Silicon-on-insulator 

SOH Silicon-organic hybrid 

SOS Silicon-on-sapphire 

SPA Single-photon absorption 

SSMF Standard single mode fiber 

TE Transverse electric 

TL Transmission line 

TM Transverse magnetic 

TPA Two-photon absorption 

TW Travelling wave 

Tx Transmitter 

RMS Root mean square 

WAN Wide area network 

WDM Wavelength division multiplexing 

WG Waveguide 
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Silicon photonics promises to duplicate the spectacular development and 
resulting progress from miniaturization of electronics to very dense inte-
gration based on CMOS technology. Silicon photonics is expected to 
bring the advantages of integration and scaling to optics, and thereby to 
revolutionize information technology and also other fields such as sens-
ing. In spite of the many advantages of using silicon as a base material, 
some currently popular physical effects are missing. For instance, the lin-
ear electro-optical effect is not available in unstrained single-crystalline 
silicon. This effect though is employed almost exclusively for modulation 
in long-haul communications today. Moreover, it is notoriously hard to 
achieve lasing on silicon due to its indirect bandgap. We study the poten-
tial of the silicon-organic hybrid (SOH) platform for integrated optics. 
The unique properties of selected organic materials are added to silicon 
devices made with CMOS-based processes. We investigate the feasibility 
of this approach by making prototypes of key components in form of 
photonic integrated circuits: SOH lasers and SOH modulators are 
designed, fabricated (partly together with external partners), post-pro-
cessed, and characterized. Application scenarios are identified and dem-
onstrated in proof-of-principle experiments. 
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