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Abstract

Policy makers foster the use of clean, renewable electricity generators. These mainly
decentralized, small units with intermittent output are in conflict with the current
power grid control infrastructure. Demand response, the active participation of the
demand side, is a promising option for efficient and reliable operation of future
power systems. Today, demand response programs focus mainly on large industrial
customers. Yet, the large number of households should also be tapped into demand
response, particularly, since highly flexible loads in residential areas are expected
to increase (e.g., electric vehicles or stationary batteries). Consequently, demand
response potentials need to be addressed and appropriate mechanisms to coordinate
a large number of small flexible units need to leverage. This work concentrates
initially on building appropriate models for demand response analysis and elaborates
an accurate representation of customer reactions in smart grids. The model is then
used to evaluate potentials of two distinct demand response scenarios—direct load
control and price-based incentives.

Under direct load control an aggregator can combine flexible loads and inter-
mittent renewable energy sources into one portfolio to increase load coverage with
renewable generation. A large amount of flexible customers in a portfolio is not
necessarily sufficient to balance load and generation. It turns out that for demand
scheduling electric vehicles and storage heaters are the most promising devices and
on the supply side an equally balanced wind and photovoltaic mix leads to the lowest
procurement costs for the aggregator. Furthermore, direct load control models facil-
itate the determination of key properties for load flexibility. The analysis suggests
that load balancing potentials are mainly influenced by electricity consumption and
shifting distance of a device. Scheduling restrictions have limited effect.
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Owing to the highly distributed nature of residential loads, appropriate coordina-
tion mechanisms are of great importance. While price-based incentive schemes seem
to be a straight-forward approach, their applicability has recently been seen more
pessimistic as they may induce new load peaks in systems with large shares of flexi-
ble loads. The demand and supply model serves to evaluate two desynchronization
approaches for price-based load control—power-based surcharges and group pricing.
In principle, using power-based surcharges is an effective means, but entails some
limitations for real-world applications. Group pricing can achieve promising results
with respect to load synchronization and overall system efficiency while providing a
simple and reliable price signal to the customers.

This work contributes to the energy informatics literature by providing a detailed
model for demand response analysis to gain insights with respect to the key properties
of load flexibility and novel coordination mechanisms for small, distributed loads.
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Chapter 1

Introduction

Greenhouse gas emission targets and the goal to increase independence of fuel im-
ports are main drivers for today’s energy policy decisions. On the international level,
a large number of countries harmonized to reduce greenhouse gas emissions. The
European Union and particularly Germany formulated especially ambitious reduc-
tion goals: In Germany, greenhouse gas emissions shall decrease by at least 80% in
2050 as compared to the 1990 level (BMWi and BMU, 2010). To this end, renewable
energy sources (e.g., wind turbines or photovoltaic panels) are a key factor. In the
sectors with the largest shares of primary energy consumption, electricity and trans-
portation, policy makers put forward the utilization of renewable sources. Utilities
hence face a fundamental structural change.

In the electricity sector the goal is to increase renewable generation as a share of
total consumption from today 25.3% to 80% in 2050 (BMWi, 2014b). An increasing
number of decentralized and intermittent Renewable Energy Sources (RES) conflicts
with the current control infrastructure. The existing power grid is designed to dis-
tribute electricity from large, centralized and constantly generating power plants.
The supply-demand balance is maintained via storage facilities and dispatchable
power plants. In a system with a high share of renewable generation adequate re-
serves for balancing power require high investments in more flexible generation or
major storage capacities. Another, less capital intensive, approach is to allow for an
active participation of the demand side (Strbac, 2008).
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2 Introduction

In the transportation sector the electrification of individual mobility is a crucial
part of the strategy to reduce greenhouse gas emissions. Thus, many countries
promote the use of electric vehicles (IEA, 2013). At the end of 2013 there were
17,094 electric vehicles active in Germany (BMWi, 2014b). To comply with the
emission reduction targets 6m electric vehicles shall be put on the road by 2030
(Federal Government of Germany, 2011). The potential of Electric Vehicles (EVs)
to reduce emissions can only be tapped if charging energy is covered by renewable
generation. Interestingly, the trends in electric power generation and transportation
are interrelated as charging of EVs will interlink these two historically separated
sectors. Increasing loads due to charging will pose additional challenges to the power
system. However, as EVs park most of the time, charging loads are highly shiftable
and thus promising candidates for coordination.

Demand response, the active participation of the demand side, provides an in-
teresting option to achieve more efficient power system operation. Customers in a
Demand Response (DR) program adapt their electricity usage through direct load
control or price-based incentives (Albadi and El-Saadany, 2008). This flexibility al-
lows to adjust electricity consumption in accordance with renewable generation and
supports their integration into the power system. Realizing DR programs requires
Information and Communication Technology (ICT) and thus establishes a smart
grid. This vision for the future power system facilitates data exchange and active
management of demand and distribution grid components (e.g., substations). In ad-
dition to physical grid and ICT infrastructure, the smart grid includes also software
and control systems and allows to create business models on top of the technical
system (Blumsack and Fernandez, 2012).

Today, DR service providers such as Entelios leverage flexibility of large individ-
ual industrial or commercial customers. In contrast, residential areas have small
individual loads. Given the increasing shares of decentralized renewable generation,
aggregating a large number of small customers to tap their flexibility offers also po-
tentials for system balancing (Goebel et al., 2014). Particularly, the adaption of
highly flexible loads, such as EVs or stationary batteries, is expected to increase.
This raises questions concerning DR potentials and appropriate mechanisms to co-
ordinate a large number of small flexible units in residential areas. Furthermore,
appropriate evaluation techniques are required.
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1.1 Evaluating Demand Response Effects

Field trials and living labs are important methods for system experiments. They
provide real-world data on the acceptance and effects of new concepts facilitated
through a smart grid infrastructure. The MeRegio project is one example for the
contributions of field tests. In this project, about 1,000 residential customers received
time varying electricity prices allowing to analyze the willingness to participate in
DR measures and changes in consumption behavior (EnBW, 2012). However, real-
world experiments are expensive, and only a small number of technologies or control
strategies can be evaluated to keep costs within a reasonable limit.

Smart grids facilitate a large number of new concepts for power system operation
or customer services. For a comprehensive analysis a model representation of the
system can be leveraged to study the effects of different alternatives. Using modeling
techniques, reliable experimental results can only be achieved if the relevant charac-
teristics for the decision to be made are adequately reflected (Law, 2011). In their
smart grid research agenda Ramchurn et al. (2012) emphasize that a model-based
analysis of DR effects requires an accurate representation of customer reaction and
power system.

Demand modeling in electricity systems can be performed with different tech-
niques. In the literature bottom-up models are often applied to represent DR be-
havior. By using typical technical characteristics and usage patterns they allow for
detailed and realistic modeling of individual devices. Further, emerging technologies,
such as EVs or stationary batteries, can be integrated to assess their impact on the
system. Yet, highly detailed models are not always desirable as they increase com-
putational complexity and hence may impede large scale simulations. To this end,
a balance between model details and performance has to be struck. This trade-off
becomes even more important when including a representation of the power sys-
tem. Therefore, some studies focus on the generation side. They make use of simple
demand models and employ real-world plant characteristics to create an operation
schedule. Stylized supply models in the way of Grünewald et al. (2015) can reduce
complexity and input data requirements for supply modeling.



4 Introduction

1.2 Scope

Given adequate modeling techniques to analyze DR effects, the question of how to
implement the individual components remains. Therefore, one focus of this study
is to provide an approach for demand and supply modeling which is used to eval-
uate DR potentials and coordination mechanisms. For the demand side, after a
discussion of important model properties, an implementation of bottom-up mod-
els for devices in a residential area is presented. Individual models are provided
for household appliances with temporal flexibility in their operation. Furthermore,
emerging technologies (e.g., EVs and stationary batteries) with increasing penetra-
tion in residential areas and considerable load flexibility are included. On the supply
side a stylized generation model represents a power system with a large share of
intermittent volatile renewable generation and includes variable generation costs of
dispatchable conventional generation.

The demand and supply models are then used to quantify the system benefits an
aggregator can harness by combining flexible loads and volatile renewable generators.
This corresponds to the concept of a Virtual Power Plant (VPP) where various small
actors come together buying and selling electricity as one cluster. The aggregator
can directly control flexible loads in the cluster to increase coverage of loads by
renewable generation. A large amount of flexible customers in the portfolio of an
aggregator is not necessarily enough to balance load and generation (Petersen et al.,
2013). This motivates the first research question:

Research Question 1 – Portfolio Composition. What is the impact of
demand and supply side composition on load balancing?

Flexibility in electricity consumption enables an active participation of the de-
mand side. The Oxford English Dictionary Online (2014) defines flexibility as “[the]
capacity for ready adaption to various purposes or conditions”. This description
emphasizes capacity to adapt and purpose as the two dimensions of flexibility. In
this study load flexibility serves to adapt electricity consumption to the generation
output from volatile RES (purpose). The balancing potential of individual devices
(capacity to adapt) helps to identify the most promising candidates and can guide
efforts for DR programs. To facilitate such an analysis, the influence factors for load
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flexibility have to be identified and quantified. Thus, the second research question
is:

Research Question 2 – Flexibility Characteristics. What are key features
characterizing demand flexibility?

Assuming full information, aggregators applying direct load control will be able to
determine optimal (i.e., minimal costs or emission) schedules for flexible loads. Yet,
standard drawbacks of centralized regimes apply, e.g., security concerns or computa-
tional complexity of large-scale optimization. To mitigate these problems alternative
coordination mechanisms need to be considered.

Price-based load control is another promising approach for the design of DR
programs (Borenstein et al., 2002). However, recent research has been pessimistic
with the applicability of price signals due to the tendency of creating load peaks
(Sioshansi, 2012). This part of the study revisits the price-coordination conundrum
for standard rate designs and introduces additional elements to address the following
research question:

Research Question 3 – Load Desynchronization. How and to what extent
can herding effects of flexible loads be avoided under price-based incentives?

Reducing the over-coordination of flexible loads can help to improve power system
costs. Yet, in a system with a large share of renewable generation a price-based
DR program should incentivize shifting of flexible loads according to RES output.
For this, adaptive retail prices dynamically reflecting grid conditions can in theory
achieve almost optimal results. However, increasing complexity impedes a real-world
application of adaptive prices for retail customers. Dütschke and Paetz (2013) point
out that customer acceptance of DR programs will require simple and reliable price
signals. To facilitate the integration of even higher renewable generation levels,
solutions moderating the disparity between customer acceptance and system needs
are of great interest. This motivates the final research question:

Research Question 4 – Load Coordination. Which coordination mechanisms
are appropriate to balance between customer preferences and system requirements?
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1.3 Major Contributions

The main contribution of this thesis to the research field of energy informatics are
shortly described in the following. An adequate representation of demand behavior
and power system is important for model based DR analysis. To this end, a literature
review provides insights in the trade-off between complexity and adequacy of existing
models. This overview serves as a basis to establish bottom-up models for demand
flexibility of household appliances, stationary batteries and EV charging. For each
model a detailed discussion of demand response characteristics and a formalized
consumption model is provided. On the supply side a stylized power system model
with a large share of renewable generation and conventional generation is applied.

One focus is the evaluation of synergies a demand aggregator can achieve through
direct control of flexible loads to balance volatile renewable generation. A simulation
based analysis indicates that benefits of DR emerge beyond renewable generation
shares covering 50% of total load. For the demand side of the aggregator’s portfolio
the thesis at hand indicates that in a residential area stationary batteries, EVs and
storage heaters are the most promising devices. On the supply side an equally
balanced wind and Photovoltaic (PV) portfolio leads to the lowest procurement
costs for the aggregator. Furthermore, direct load control in residential areas allows
to derive key properties of load flexibility. The evaluations suggest that the capacity
to adapt and thus the potential for load balancing is mainly influenced by electricity
consumption and shifting distance of a device. The restrictions for scheduling are of
less importance.

Coordination of a large number of flexible loads is a key issue for residential DR.
Due to herding effects recent publications have been more skeptical with the appli-
cability of price signals for realizing DR. This thesis revisits price-based coordination
and demonstrates that standard rates are appropriate for coordination in systems
with small shares of flexible loads. In systems with large flexibility they lead to
load synchronization and deteriorate efficiency. This motivates the introduction of
power-based surcharges and group tariffs. While for power-based surcharges some
restrictions for real-world application apply, group tariffs show promising results with
respect to load synchronization and overall system efficiency. The evaluations suggest
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that under uncertainty in renewable generation group pricing is a robust coordination
mechanism which can exploit a large share of DR potentials. Furthermore, group
pricing does not give rise to fairness issues as benefits of customers increase with
their flexibility resolving the cross-subsidies of current flat tariffs. Hence, the results
suggest that in the short and medium term, regulators faced with the integration of
high levels of RES should try to promote dynamic yet reliable price signals in form
of group pricing.

1.4 Structure

To present the modeling approach and to carry out the analysis of the research
questions outlined, the work is structured as follows: Chapter 2 provides an overview
of the central functions of the electric power system. Further, the smart grid vision
for future power system management is sketched and DR benefits and program
designs are discussed.

Chapter 3 describes the simulation framework for the analysis of DR. Initially, the
relevance of modeling for system analysis is discussed and an overview of the power
system functions included in the simulation is given. Subsequently, the bottom-up
models for demand flexibility of household appliances, stationary batteries and EV
charging are introduced. For each model a discussion of basic characteristics, input
data for calibration and a formalized consumption model is provided. Finally, this
chapter analyzes output characteristics of renewable generation and presents the
stylized power system model.

Chapter 4 focuses on the synergies an aggregator achieves by combining vari-
ous residential consumers and intermittent generation units in a portfolio. Apply-
ing direct load control, a central entity can schedule flexible loads to make use of
zero marginal cost renewable generation. After a short overview of centralized opti-
mization approaches in power system analysis, the model formulation and possible
applications are presented. Further, the evaluation scenario is described, and one
example week serves to illustrate the effects of direct load control. Then, the model
is applied to investigate the impact of varying demand and supply side composition
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on the aggregator’s balancing potentials. To this end, flexible loads in the portfolio
are scheduled based on day-ahead forecasts of wind and PV generation.

Residential households can expect some form of incentive payments for the pro-
vision of load flexibility to the aggregator (Albadi and El-Saadany, 2008). In the
second part of this chapter, the value of individual devices for DR is estimated and
serves to identify customers that can benefit from participating in such programs.
The value of individual devices for DR also serves to determine key features charac-
terizing load flexibility and to prioritize flexible loads for DR applications.

Chapter 5 investigates coordination mechanisms for a large number of small flex-
ible loads. The focus is on price-based control. First, a model for price-based load
control and the basic evaluation settings are described. Assuming a power system
with a large share of flexible loads (high EV penetration), an example driven style
is used to analyze key factors causing herding under different standard rate designs,
e.g., Real-Time Pricing (RT). Then, rate design options to reduce load synchroniza-
tion are explored. The stylized generation model is applied for a comprehensive
assessment of different coordination mechanisms.

In this analysis randomized group pricing can be identified as a promising coordi-
nation approach. To get insights for a greater number of real-world power systems,
randomized group pricing is evaluated in a more comprehensive scenario including a
wider set of flexible loads and intermittent generation sources. Furthermore, the im-
pact of uncertainty in renewable generation under price-based control is investigated.
A main focus of this evaluation is the comparison of centralized and decentralized
coordination under uncertainty. Furthermore, the expected electricity bill savings of
residential households and fairness issues of price-based coordination are discussed.

Chapter 6 summarizes the main findings and provides conclusions from the eval-
uations. Finally, further aspects of analysis and a short outlook on future research
topics are addressed.

Some parts of this thesis have been previously published or are the basis for work-
ing papers. The respective publications are referred in the introductory paragraphs
and as a footnote at the corresponding position within each chapter.



Chapter 2

Electric Power System

A reliable and affordable electricity supply is one important prerequisite for eco-
nomic growth and employment. The existing power system successfully achieved
these goals by generating electricity in large and dispatchable plants and using high
voltage transmission lines to supply low voltage distribution grids where end con-
sumers are connected. In the last decade sustainability of electricity supply gained
in importance. Hence, the share of small and intermittent renewable energy sources
steadily increased posing new challenges to retain high reliability and low costs levels.

This chapter describes the central functions of the electric power system to cre-
ate a basic understanding of relevant system components and operational principles
(Section 2.1). These fundamentals of the current system allow to better assess the
impacts of ongoing transformations and arising challenges and help to put the re-
search presented into a system context. Further, in Section 2.2 the concept and
potentials of smart grids—a promising approach to manage ongoing changes and
address arising challenges in the power system—are illustrated. Finally, Section 2.3
discusses the key transformations against the background of this thesis.

This chapter is partly based on own publications. The paragraphs in Section 2.2.3
on centralized and decentralized control are part of the working paper of Flath
and Gottwalt (2014). In the same section the discussion on characteristics of the
commodity electricity has previously been published in our joint work (Flath et al.,
2013).

9



10 Electric Power System

2.1 Fundamentals & Transformations

The power system incorporates all functions for generation, transmission and distri-
bution of electrical energy to meet the load requirements of customers. In comparison
to other goods, electricity has some unique properties. The major difference is that
electric power can not be stored cost-efficiently (Stoft, 2002), and supply has to
match demand all the time. For this reason, the power system functions are highly
dependent on each other. In the following, system structure and the current oper-
ation paradigm are presented. Further, the different functions in the power system
are discussed in more detail.

2.1.1 Structure & Operation Paradigm

The value chain in the power system is given by generation, transmission and dis-
tribution, and consumption. Figure 2.1 provides an overview of the current power
grid structure in Germany based on the functions of the value chain. The figure uses
the four voltage levels for transmission and distribution and lists generation and
consumption components typically assigned to these levels. The extra high voltage
grid serves to connect large dispatchable conventional generation units (e.g., coal,
gas or nuclear power plants) or large renewable energy sources (e.g., offshore wind
power) and to transport their generation to areas with large consumption. On the
high voltage distribution level dispatchable conventional generators and renewable
energy sources (e.g., wind onshore or large PV plants) of medium size are connected.
On the consumption side electricity intensive industries and cities are supplied. The
medium voltage distribution grid connects on the customer side small towns and
industrial or commercial enterprises and on the generation side small conventional
and renewable generators. Low voltage distribution serves residential households
and small commercial businesses. Generation units on this level comprise small dis-
patchable decentralized plants, e.g., Combined Heat and Power Plants (CHPs) or
small renewable energy sources, e.g., rooftop PV systems. Transformers are applied
to transfer electricity between voltage levels.
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Transmission & 
Distribution Generation Consumption 

 Large dispatchable conventional 
plants (coal, gas, nuclear) 
 Large RES (hydro, wind) 

 Medium dispatchable 
conventional plants (coal, gas) 
 Medium RES (hydro, wind, PV) 

 Small dispatchable conventional 
plants (gas) 
 Small RES (hydro, wind, PV, 

biomass) 

 Small dispatchable decentralized 
plants (CHP) 
 Small RES (wind, PV) 

 Electricity intensive industry 
 Cities 

 Industrial and commercial 
enterprises 
 Small towns 

 Households 
 Small commercial 

businesses 

Extra high voltage 
220 or 380 kV 

High voltage 
60-110 kV 

Medium voltage 
6-30 kV 

Low voltage 
230-400 V 

Figure 2.1: Functions of the power system and components on different voltage levels

To guarantee reliability and stability in the power system, generation has to match
consumption at every instance of time. If this critical balance is not accomplished,
system stability is at risk and destruction of equipment or power failures can occur.
The dominant power system operating paradigm is “supply follows demand”. This
means that consumers can always change their load and generators have to adjust
their output accordingly. Currently, on a day-ahead basis a mixture of forecasting
tools, storage facilities (e.g., pumped-storage hydroelectricity), and large, dispatch-
able power plants that increase or decrease their output, achieve a balanced schedule.
On short-term ancillary service providers absorb deviations by providing balancing
power for frequency stability (Stoft, 2002). The interaction of day-ahead schedules
and short-term ancillary services allows electricity generation to match demand and
balance the system.

2.1.2 Generation

Various technologies with large differences in input, operation characteristics, costs
and scalability are available for electricity generation. Given these heterogeneous
options, generation portfolios of countries show large discrepancies. Key drivers for
portfolio composition are costs of technologies and availability of fuel or renewable
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energy sources to reduce import dependencies. For example, Norway has large po-
tentials for renewable generation and supplies 99.7% of its electricity consumption
by hydro stations.1 In contrast, France decided in the 1970s to reduce dependency
from fuel imports and promoted the construction of nuclear plants. Today, more
than 75% of the country’s electricity is supplied by this power source. The world’s
largest electricity consumer, China, has to supply a rapidly growing economy. To en-
able a stable and affordable electricity supply in such a dynamic environment China
installed and still is constructing ample coal generation capacities. In 2012 more
than 75% of electricity production originated from coal. In comparison, Germany
has a more diverse generation portfolio where electricity is mainly generated from
coal (45.6%), nuclear (15.8%), gas (12.3%) and different renewable energy sources
(23%). A more comprehensive overview of the electricity generation per source and
the installed capacities in Germany is given in Figure 2.2. Despite the heterogeneous
fuel shares, one common characteristic among the generation portfolios of countries
can be identified. Historically large generation units have been installed to achieve
economies of scale and reduce costs in power generation (Stoft, 2002).

In the past, in Germany, but in a similar fashion also in other countries of the
Organization for Economic Co-operation and Development (OECD), a state-owned
regulated monopolist integrated all functions along the value chain of the power sys-
tem. After the liberalization of the electricity market started (in Europe triggered
by the European Parliament and Council of the European Union, 1996) free market
access for all participants on generation and consumption side has been allowed. The
generation portfolios with large conventional units required major investments due
to size and long economic life time of the plants. Hence, restructuring of the Ger-
man electricity sector resulted in an establishment of four big generation companies
(RWE, E.ON, Vattenfall, EnBW). Despite the increase of renewable energy sources,
these four companies are still possessing a dominant position and account for about
73% of total installed capacities (BNetzA, 2014).

For an operational schedule of the generation system plants are used in order of
increasing marginal costs of generation (Schweppe et al., 1988). This merit order

1Generation shares per country in this paragraph are based on data of the International Energy
Agency (IEA, 2014).
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Figure 2.2: Development of installed capacity and electricity generation per year for dif-
ferent energy sources in Germany (Data source: BMWi, 2014a)

dispatch is shown in the left panel of Figure 2.3. The balance between demand and
supply is achieved by scheduling generation capacity to meet the forecasted electricity
demand. In addition to generation dispatch, the merit order curve determines the
market price of electricity at the intersection of demand and supply.2 The merit order
approach ensures that demand is served by the available generators with the lowest
costs. Clearly, this leads to different utilization levels of plants. Nuclear and coal
power plants can be classified as base load generation. With low variable generation
costs they are often scheduled, and there are limited incentives for ramping up and
down. In contrast, so-called peaking plants (e.g., gas) have higher generation costs
and operate only at peak consumption hours. Thus, they frequently vary their output
level and achieve rather low utilization.

In the German electricity generation portfolio a large structural change is ongo-
ing as importance of renewable energy sources is constantly growing. The left panel
of Figure 2.2 depicts this development over the last almost 20 years. Starting in
1995 with installed wind and PV generation of 1.1GW in a system with a total
generation capacity of 124GW this value increased to 63.9GW at the end of 2012
in a system with 184.4GW generation capacity (BMWi, 2014a). In future, increas-
ing renewable generation capacities can be expected to comply with the renewable
generation targets of the federal government. In a power system with such large
shares of renewable sources the economics of existing conventional generation plants

2This section only gives a general idea of generation dispatching. For a more detailed description
of the electricity market in Germany see, for example, Ockenfels et al. (2008).
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Figure 2.3: Traditional merit order curve of electricity generation and the impact of re-
newable energy sources (Figure adapted from Flath, 2013b)

are affected. The supply from low marginal cost renewable generators shifts the
merit order curve to the right and reduces electricity wholesale prices. This merit
order effect of renewable energy sources is described by Sensfuss et al. (2008) and
is illustrated in the right panel of Figure 2.3. Hence, lower wholesale prices reduce
the revenues of conventional generation plants. Simultaneously, renewable energy
sources more often replace conventional plants and reduce their utilization levels.

Installed generation capacities of renewable energy sources increase to a much
larger extent as their share on total generation per year (see Figure 2.2). Given the
stochastic generation profile for wind and PV, low availability levels often emerge
and can explain the delta between capacity and generation shares. Balancing in such
a system with a large amount of volatile renewable generation requires a technolog-
ical mix of base- and peak-load plants. Particularly, more flexible ramping capacity
is required to cope with rapid changes in renewable generation output. Yet, decreas-
ing wholesale market prices and utilization levels largely reduce the attractiveness of
flexible power plants and impede investments in new capacities (Traber and Kemfert,
2011). Discussions on measures to foster investments in fast ramping capacities in-
clude, for example, a more integrated market design remunerating capacity provision
and energy supply (Vries, 2007).
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2.1.3 Transmission & Distribution

Locational decisions of large and centralized power plants have been influenced by
availability of fuel and cooling water, accessibility or risk factors. The extra high
voltage level serves to transport generation of these plants to areas with large con-
sumption. The three voltage levels of the distribution grid supply customers of
different size and link smaller conventional and renewable generations units to the
system. Figure 2.1 depicts the different voltage levels and the connected consumers
and generators. Electricity grids require high investment in infrastructure similar to
other network industries and are seen as natural monopolies (Filippini, 1998). De-
spite the liberalization process in the power system, transmission and distribution
remain a regulated sector. In Germany firms act as Transmission System Oper-
ators (TSOs) or Distribution System Operators (DSOs) for certain areas under a
government-granted monopoly. In their area system operators are responsible for
stability and reliability. Therefore, their main tasks are management, maintenance
and expansion of the power grid. Further, TSOs provide ancillary services for the
interconnected transmission system including, for example, frequency or voltage con-
trol (Schwab, 2012). The companies Tennet TSO, 50Hertz Transmission, Amprion
and TransnetBW are the four TSOs in Germany. Altogether they are responsible
for almost 35,000 km of extra high voltage lines. More than 800 companies act as
distribution grid operators supervising 1.7 million km of power circuits and supply-
ing more than 48 million end customers. Table 2.1 summarizes some basic numbers
to give an impression of the power system size in Germany.

System operators have to incorporate high security margins when designing the
system to cope with unusual worst case events. On transmission and high voltage
distribution levels N-1 redundancy ensures high robustness. In such a system cru-
cial components have at least one backup, and the failure of one asset (e.g., line,
transformer or generator) does not threaten overall system stability. Costs of trans-
mission and distribution grids are typically allocated to end customers according to
their total consumption (e.g., Germany) or the selected power rating (e.g., France).

The high shares of renewable energy sources pose significant challenges to trans-
mission and distribution grid infrastructure. Increasing generation on distribution
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Table 2.1: Data on power grid structure in Germany (Source: BNetzA, 2014)

TSO DSO
Number of companies 4 806
Total circuit length [km] 43,841 1,753,290
Circuit length per voltage level

Extra high (220/380 kV) 34,780 490
High (60-110 kV) 61 95,364
Medium (6-30 kV) 0 507,953
Low (230-400 V) 0 1,149,973

Total number of customers 649 48,769,032
Number of customers per sector

Industry & commercial 509 3,046,244
Residential households 140 45,722,788

grid level might invert traditional power flow from high to low voltage grid levels.
Therefore, DSOs have to invest in new grid capacities or apply more intelligent man-
agement options in future. For Germany the total volume of required distribution
grid investments is estimated by more than 25 billion euro until 2030 (dena, 2012).
Despite the decentralized generation of renewable sources, investments in transmis-
sion capacities are needed to couple new areas with large generation and consumption
centers. In Germany, large on- and offshore wind farms emerge in the northern part
and have to be connected to the industrial centers in the south. According to the
four TSOs, investments of more than 20 billion euro are required during the next
ten years (Feix et al., 2014).

2.1.4 Consumption

In Germany electricity accounts for about 21% of total final energy consumption and
thus ranks third after crude oil and natural gas (AGEB, 2014). Figure 2.4 shows the
share of different sectors on electricity consumption. It can be observed that total
electricity consumption was continuously increasing but started to decline after 2010
approximating today the 2005 level. The largest consumption shares can be allotted
to the sectors industry and residential households.
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For an appropriate procurement of electricity utilities estimate demand by apply-
ing standardized load profiles for small customers (households, agriculture, etc.).
Large industry customers with yearly consumption exceeding 100,000 kWh are
equipped with measurement technology, and load curves in 15-minute resolution
are retrieved. Utilities can improve electricity procurement by estimating future en-
ergy demands based on these historical time series. Traditionally, demand is largely
unresponsive due to missing incentive schemes and the lack of enabling technologies.
Today, only large commercial and industrial customers face demand charges based
on their maximum load level giving some stimulus to reduce peak consumption. An-
other example for flexible loads is given in the German household sector where a
ripple control signal is applied to desynchronize operation of storage heaters.
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Figure 2.4: Development of total final electricity consumption per sector in Germany (Data
source: BDEW, 2014)

Efforts to promote smart grids have put forward both development of technical so-
lutions to enable an active demand side as well as concepts to manage flexible loads.
These developments pave the way to overcome the supply follows demand paradigm
and enable an active and more efficient contribution of demand and generation to
system stability (Strbac, 2008). Industrial customers exhibit large load flexibility po-
tentials, and aggregators such as Entelios3 or Comverge4 offer already today demand
response services to exploit them. Load flexibility potentials in residential household
consumption often lie idle. Given the increasing shares of renewable sources and

3http://entelios.de/industrie/
4http://www.comverge.com/home/demand-response/

http://entelios.de/industrie/
http://www.comverge.com/home/demand-response/
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the associated need for adaptive generation or demand, future grid control proce-
dures should also tap flexible loads of smaller customers. Moreover, load flexibility
in residential areas can be expected to increase with higher penetrations of EVs or
stationary batteries.

2.2 Smart Grid

The ongoing changes towards a supply based on renewable generation units call for
adaptions in the traditional operation schemes of the power system to retain high
reliability and low cost levels in future. To this end, today’s “blind” and manual
operation along with the electromechanical components have to be transformed into
a smart grid (Ipakchi and Albuyeh, 2009). The European Union (EU) definition
of smart grids emphasizes the overall goals for a reliable and affordable electricity
supply EU Commission Task Force for Smart Grids (2010):

“A smart grid is an electricity network that can cost efficiently integrate
the behavior and actions of all users connected to it—generators, con-
sumers and those that do both—in order to ensure economically efficient,
sustainable power system with low losses and high levels of quality and
security of supply and safety. [...] A smart grid employs innovative
products and services together with intelligent monitoring, control, com-
munication, and self-healing technologies [...].”

The vision of the smart grid requires a fundamental re-engineering of the current
system. This technical dimension is highlighted by the U.S. Department of Energy
(2003):

“A fully automated power delivery network that monitors and controls
every customer and node, ensuring a two-way flow of electricity and in-
formation between the power plant and the appliance, and all points in
between. Its distributed intelligence, coupled with broadband communica-
tions and automated control systems, enables real-time market transac-
tions and seamless interfaces among people, buildings, industrial plants,
generation facilities, and the electric network.”
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Realizing a smart grid requires infrastructure enhancements. Power system com-
ponents have to be equipped with sensors and controllers to monitor and alter op-
eration conditions. Furthermore, modern information and communication technolo-
gies are needed to enable data exchange and handling. The potentials of a smart
grid infrastructure can only be exploited by appropriate software to manage the vast
amount of data. Moreover, applications integrating the heterogeneous components to
improve system control and to offer new services to customers are required (Varaiya
et al., 2011). Particularly distribution grids, where at present hardly any status
information or control options exist, will be heavily affected by this transformation.

In the following, a short overview of currently discussed key components and
concepts of a future smart grid is provided. Then, DR is discussed in more detail and
potential benefits for the system and design options for DR programs are presented.
DR and Demand Side Management (DSM) are used as synonyms within this thesis.5

2.2.1 Challenges

A smart grid allows for an active integration of various small and distributed actors
into the operation of the power system. This vision for power system operation
gives rise to new challenges for algorithms and mechanisms that can deal with a
large number of these very heterogeneous actors. Furthermore, they must be able to
operate in an environment with significant levels of uncertainty and dynamism and
guarantee reliability and security of the control and communication infrastructure
(Ramchurn et al., 2012; Goebel et al., 2014). One of the major advances of a smart
grid is the possible transition from the supply following load paradigm into a system
with both sides playing an active role. Multiple ideas to organize actors and improve
power system operation are currently under discussion. A common characteristic
among all ideas is flexibility in generation and, even more important, in consumption
of electricity. Based on components and concepts of Ramchurn et al. (2012) a brief
overview of this discussion is presented in the following:

5DSM sometimes describes a portfolio of measures to improve the energy system at the consump-
tion side (Palensky and Dietrich, 2011). Yet, more recent smart grid publications use the term
DSM to describe mechanisms for redistribution of loads.
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Electric Vehicles EVs are important to reduce carbon emissions in transportation.
Their high energy needs place a considerable amount of additional load to the
power system and require sophisticated coordination mechanisms to distribute
their charging activity. Yet, long parking times result in a high temporal
flexibility of charging loads which can make EVs a key resource in a smart
grid.

Virtual power plants To cope with the large number of actors in a smart grid they
can be bundled to expose synergies between them. Generators and consumers
can come together forming an virtual power plant with the objective to sell or
buy electricity as an aggregate.

Energy prosumers On individual household level the widespread adoption of renew-
able energy sources and building automation systems will lead to prosumers
(households producing and consuming electricity). Those households can be
part of virtual power plants or act directly on electricity or flexibility markets.

Self-healing networks More detailed information on grid level and the availability
of prosumers or virtual power plants pave the way for active management
techniques on distribution grid level and allow to build self-healing mechanisms,
e.g., voltage correction via transformers or controlled EV charging.

Demand Response The active coordination of flexible loads can offer sizable control
potential and help to improve power system efficiency by flattening peak loads
or integrating renewable energy sources. As DR is also in the focus of this
thesis, DR benefits and design of programs for its implementation are presented
in more detail in the remainder of this section.

2.2.2 Benefits of Demand Response

Demand response can improve power system efficiency along all functions of the value
chain (Strbac, 2008). On the generation side DR can reduce security requirements
of generation capacity and facilitate demand and supply balancing with volatile
RES. For transmission and distribution grids DR improves investments and operation
efficiency. Customers require appropriate incentives to participate in DR programs



Smart Grid 21

(Blumsack and Fernandez, 2012). Thus, utilities have to—at least partially—pass
welfare gains due to increasing efficiency to their customers.

The fundamental functions generation, transmission, distribution and consump-
tion serve to structure the discussion of DR benefits identified by existing scientific
publications. In accordance with the focus of this thesis, the overview emphasizes
DR for demand and supply balancing in residential areas. As DR is a highly pop-
ular topic and affects different research communities, only selected publications are
presented.

Generation

Various researchers engage in the estimation of supply side effects of residential
DR by either looking at peak shaving or demand and supply balancing. Lower
peaks lead to less fluctuations in consumption. Hence, they reduce the required
system generation capacity and result in a higher utilization of existing plants. The
work of Ramchurn et al. (2011), Kishore and Snyder (2010) and Costanzo et al.
(2011) analyze peak shaving potentials of residential DR under different control
regimes. Reduced load peaks influence also supply based emissions. Changes in
base load and peaking plants utilization result in a modified fuel mix and emission
level (Sioshansi, 2012). The effect (increase or decrease) in emissions depends on the
scheduled generation units.

A growing branch of research is looking into demand and supply balancing via
flexible loads in a system with volatile renewable sources (Aghaei and Alizadeh,
2013). The basic effect of DR in such a system is depicted in Figure 2.5. In the ab-
sence of renewable energy sources, generation costs and scheduled capacity are given
at the intersection of demand (D) and supply (S) marked by point A. Availability
of renewable sources gives rise to the previously described merit order effect and
thus a shift of the supply curve (S ′) decreases marginal generation costs (B). Yet,
a flat pricing regime does not provide incentives for consumers to adapt electricity
demand and despite lower costs demand remains at a constant level. DR allows for
adaption in consumption and facilitates a more efficient electricity generation. Under
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DR electricity demand is elastic6 (D′), and in a power system with a large share of
renewable generation electricity consumption can be shifted according to the avail-
ability of their output level. In times with low renewable generation (S) demand can
be reduced avoiding utilization of high cost capacities (A→ A′). In contrast, when
a large amount of renewable generation is available (S ′) demand increases making
use of low cost electricity (B → B′).
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Figure 2.5: Effect of renewable generation (RES) and demand response (DR) on dispatched
capacity and marginal costs of electricity

Among others, Vandael et al. (2011), Lopes et al. (2009) or Subramanian et al.
(2012) try to assess effects of flexible loads to balance demand and supply in the
presence of a large renewable generation shares. In different settings they investigate
real-time scheduling of EV charging loads and analyze remaining load imbalances.
Tushar et al. (2014) model and control operation of home appliances and charging of
EVs to maximize the use of local renewable generation. Their objective is to reduce
imported electricity in a microgrid.

Transmission

For a TSO flexible demand can serve to provide ancillary services. Due to the large
temporal flexibility in charging and their large loads, EVs are a promising device
for such a service. Hence, various researchers investigate the potential of EVs for
regulating power (Andersson et al., 2010; Sortomme and El-Sharkawi, 2012; Vandael

6See Kirschen et al. (2000) for an in-depth treatise on the concept of demand elasticity applied to
the commodity electricity.
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et al., 2013). Stadler et al. (2009) focus on the provision of short term balancing
power by residential cooling devices.

Distribution

One main area of research covers the assessment of demand flexibility potentials
in distribution grids. Among others, Clement-Nyns et al. (2011) and Lopes et al.
(2009) show how EVs can support a distribution grid in terms of voltage control and
congestion management. Reductions of peak load and losses in the power system
are addressed, for example, by Sortomme et al. (2011) and Acha et al. (2010).

Consumption

Customers participating in DR programs can expect incentive payments or lower
electricity bills due to reduced consumption in peak periods (Jazayeri et al., 2005).
Yet, the economic viability of DSM for residential households is limited (Gottwalt
et al., 2011). They might also benefit from system wide effects like an overall elec-
tricity price reduction, better reliability in supply or improved market performance
(Albadi and El-Saadany, 2008).

2.2.3 Design of Demand Response Programs

Various options exist to implement DR programs for customers. Albadi and El-
Saadany (2008) provide a basic categorization and distinguish between incentive-
and price-based regimes. Under classical incentive-based programs customers re-
ceive more favorable contract conditions (e.g., a bill credit or lower base fee) and
cede load control to the system operator or an intermediary, such as an energy re-
tailer or demand response aggregator. This corresponds to a setting of centralized
load control. Price-based programs emphasize a decentralized decision paradigm by
applying dynamic pricing to incentivize changes of customer behavior (Borenstein
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et al., 2002).7 Subsequently, these two decision paradigms are presented in more
detail.

Centralized Control

In centralized control schemes a designated entity, typically referred to as “aggre-
gator” or “load controller”, schedules the operation of flexible loads (Subramanian
et al., 2013). Assuming full information, such a central operator will be able to
determine an optimal (i.e., minimal costs or emissions) dispatch schedule for the
loads. At the same time, standard drawbacks of centralized regimes apply, e.g., se-
curity and privacy concerns, computational complexity of large-scale optimization
or incentive compatibility problems may arise. To mitigate some of these problems,
several authors propose hierarchical schemes where load subgroups are controlled by
a local aggregator, e.g., on the distribution grid level (Callaway and Hiskens, 2011).

Decentralized Control

In contrast, decentralized control regimes show lower computation and communi-
cation requirements. Furthermore, they maintain customer incentives and respect
privacy concerns (Vandael et al., 2011). The implementation of price-based DR
will require some form of dynamic pricing, e.g., Time-Of-Use (TOU) pricing, Crit-
ical Peak Pricing (CPP), or RT pricing. The seminal work addressing electricity
pricing and demand response is due to Schweppe et al. (1988). They present a
framework to establish an energy market place and propose that electricity should
be treated as a commodity taking into account its time- and space-varying values
and costs. Efficiency gains in the electricity system along these two dimensions have
been demonstrated for time-based (Newsham and Bowker, 2010) and spatial pricing
schemes (Dupont et al., 2014).

The temporal component of electricity pricing reflects the market price of gen-
eration. The merit order schedules power plants according to their marginal costs

7The introductory text and the paragraph on centralized control in this subsection are currently
part of our working paper Flath and Gottwalt (2014). The discussion on decentralized control
combines parts of our papers Flath and Gottwalt (2014) and Flath et al. (2013).
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of production. As renewable energy sources have almost zero variable costs, they
displace expensive peaking plants. Thus, availability of renewable generation results
in a lower market clearing price.

Cost of transmission and distribution grids are the drivers behind spatial price
differences. Considering all operational constrains of the system leads to nodal pric-
ing. Under this regime each point where electricity is generated or consumed has
a distinct price (Bohn et al., 1984; Eßer-Frey, 2012). This large number of nodal
prices might be too complex for end customers. An alternative which reduces this
complexity is given by zonal pricing. Here, the price within one area of the grid
changes according to the local system state.

2.3 Development Path

The traditional power system with large and dispatchable centralized power sta-
tions, long transmission lines and a distribution system for power delivery to static
end consumers is currently evolving to a new approach (Ipakchi and Albuyeh, 2009).
The main driver behind this transformation is the aim to reduce greenhouse gas
emissions and the political promotion of renewable energy sources. Their decentral-
ized and volatile generation conflicts with the current power grid control paradigm
and requires a rethinking of system management. The smart grid vision with tech-
nologies to monitor and alter system conditions and new applications for improved
operation will play a crucial role in the future. A smart grid helps to overcome the
load following paradigm and allows for an active participation of the demand side.
One key factor is the understanding of complexities and the emergent behavior of a
smart grid incorporating a large number of small and distributed agents to guarantee
high reliability of electricity supply. In the same line, this thesis puts the demand
side in the center and investigates potentials and coordination mechanisms of flexible
loads in residential areas.





Chapter 3

Smart Grid Modeling

Following the previous part on power system basics and transformations, this chap-
ter provides a simulation framework for the analysis of flexible loads in a future
smart grid. On the demand side representative models for the flexibility in elec-
tricity consumption of household appliances, stationary batteries and EV charging
are developed. These models allow to generate realistic consumption profiles and to
represent DR behavior. On the supply side a stylized generation model is presented
to evaluate effects of flexible loads in the power system. The simulation framework
is used to analyze DR effects in the remainder of the thesis.

Section 3.1 discusses different ways to study a system and the relevance of model-
ing for system analysis. Further, an overview of the power system functions included
in the simulation framework is given. In Section 3.2 existing approaches for modeling
electricity consumption of residential populations are reviewed. After that, using a
bottom-up approach models for demand flexibility of household appliances, station-
ary batteries and EV charging are introduced (Sections 3.3 to 3.5). For each flexible
load type a discussion of basic characteristics, the applied input data to calibrate the
model and a formalized consumption model are given. For the supply side a short
overview of existing models is presented in Section 3.6. Section 3.7 complements the
supply side description by an analysis of renewable generation output characteristics
and by the introduction of the stylized power system model.

27
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The material in this chapter was partially discussed in own publications:

• Some parts of Section 3.3.1 and 3.3.2 origin in Gottwalt et al. (2011).

• Input data in Section 3.5.1 and the simple model in 3.5.3 for EV charging are
based on the joint work of Flath et al. (2013).

• The stylized power system in Section 3.7.2 is part of a working paper which
has been submitted for publication (Flath and Gottwalt, 2014).

3.1 Power System Analysis

There are two general ways to study a system, either by performing experiments
with the actual system or by experiments with a model of the system. Both ways
lead to a better understanding of the dependencies between system components and
the behavior of the system under new conditions. Evaluating system changes by
extending the system physically is the most desirable way, as “there is no question if
the study is valid” (Law, 2011). Such real-world system extensions are often costly,
and hence system models are a more viable alternative for analysis. Challenges
related to the introduction of DR are investigated via real-world system tests and
modeling. Both ways to study a system are discussed in the following. Then, an
overview of the components included in the simulation framework to study residential
DR is given.

3.1.1 System Experiments

DR experiments with the actual system are mainly employed in form of field trials
and living labs. In field trials limited aspects of a new technology or a service can
be tested in a real-life environment (Ballon et al., 2005). An example for such a
field trial in Germany provides the research project MeRegio1 where about 1,000
residential customers received dynamic tariffs. Within this project the willingness
to participate in DR measures and the changes in electricity consumption due to

1http://www.meregio.de/

http://www.meregio.de/
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dynamic tariffs have been evaluated. Furthermore, about 250 residential households
have been equipped with controllable fridges to investigate DR potentials for the
integration of decentralized energy sources (EnBW, 2012). Field tests provide im-
portant real-world data on the effects of introducing DR programs (e.g., customer
acceptance or technological viability), but they can incorporate only a small number
of new technologies and control strategies at the same time to keep costs within
reasonable limits.

Living labs are a human-centric method for creation and validation of new ICT
solutions. In a real-life experimentation environment the needs of users and the
interests of other relevant stakeholders can be integrated right at the start of the
innovation process (Bergvall-Kareborn et al., 2009). In Europe user-centric research
with living labs or similar concepts has recently become popular (Eriksson et al.,
2005). Two examples for living labs focusing on DR research are the Energy Smart
Home Lab at the KIT Karlsruhe Institute of Technology2 and the House of Living
Labs at the FZI Research Center for Information Technology3. Both labs represent
a small apartment and are equipped with smart appliances for (automated) load
control, an EV, a PV system, a CHP with a thermal storage and a human-machine
interface (Becker et al., 2012). In the Energy Smart Home Lab test residents expe-
rience DR technologies and load control regimes during experimental living phases
of several weeks or months. In these living periods the behavior of the residents and
their acceptance of different elements of DR programs can be evaluated (Paetz et al.,
2013). The apartment at the House of Living Labs serves as a platform to integrate
interests of users and relevant stakeholders to realize DR services, e.g., component
manufacturers (Becker, 2014). At the same time, both living labs provide a test bed
for concepts to integrate heterogeneous communication protocols of various devices
into one system and show the technological viability of a smart home (Allerding
et al., 2010). In general, living labs allow to integrate users in the innovation process
for an appropriate design of products and services and enable to show the feasibility
of a broad range of new technologies and control strategies for DR. Due to high costs
for living labs only a very small number of customers can be evaluated in the real-life
environment and overall power system effects cannot be analyzed.

2http://meregiomobil.forschung.kit.edu
3http://www.fzi.de/forschung/fzi-house-of-living-labs/

http://meregiomobil.forschung.kit.edu
http://www.fzi.de/forschung/fzi-house-of-living-labs/
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3.1.2 System Modeling

Field trials and living labs make major contributions in the development of innovative
and user-friendly DR solutions. However, high costs limit the number of scenarios
that can be investigated. To analyze more comprehensive settings, a simulation
model as a representation of the system can be built and used to study system wide
effects (Hirsch et al., 2010). Yet, simulation experiments are artificial as they are
based on computer models (Harrison et al., 2007). For reliable experimental results it
is important that the model adequately reflects the relevant system characteristics for
the decisions to be made (Law, 2011). Furthermore, the model’s input parameters
should be grounded on empirical data. This way, a simulation can be a valuable
research tool to explore the consequences of new concepts in a smart grid and guide
costly research activities with the real-system.

In the smart grid research agenda of Ramchurn et al. (2012) a representation of
demand behavior and power system is identified as relevant for model based DR
analysis. Thus, models for electricity consumption and generation have been formu-
lated and implemented in this thesis. Limitations in transmission and distribution
grids are neglected, due to three practical reasons: Firstly, an integrated grid model
drastically increases computational time of a population model. Secondly, data for
realistic grid modeling is difficult to obtain. Finally, distribution grids are very het-
erogeneous. This assumption is in line with most recent non-engineering smart grid
publications investigating DR potentials of customer populations (Shinwari et al.,
2012; Tushar et al., 2014). However, grid constraints pose important restrictions to
guarantee a reliable power supply (Ipakchi and Albuyeh, 2009), e.g., with increasing
EV charging demand overloads in the distribution grid might occur more frequently.
Pecas Lopes et al. (2009) show in a simple setting how demand and supply balancing
can be integrated into a power grid model. For future work, Nolden et al. (2013)
give different options how distribution or transmission network constraints can be
considered in techno-economic power system models. Figure 3.1 shows the basic
functions of the power system and confines the components on demand and supply
side implemented.
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Figure 3.1: Basic functions of the power system and components implemented in the sim-
ulation framework

On the consumption side DR potentials are available in all sectors. Due to their
high overall loads, customers in the sectors industry and commercial exhibit signifi-
cant load flexibility. These potentials are already tapped today by demand aggrega-
tors. At the same time, individual customers in these sectors largely differ in total
consumption and flexibility characteristics (Winter, 2014). For a simulation based
study heterogeneity in consumption units requires detailed modeling on individual
level impeding an efficient analysis on larger scale. Currently residential households
show only limited economic viability for DR (Gottwalt et al., 2011). However, fu-
ture system operation should also account for additional flexibility resources so far
untapped. Here, the sectors household and transportation can provide interesting
options. Particularly, the increasing share of EVs results in large additional electric-
ity consumption in residential areas.

For an impact analysis of DR, an adequate representation of the power system is
required. As noted before, on the supply side various electricity generation options
are in use. The focus of this work is to evaluate DR potentials for the integration
of intermittent renewable sources. Thus, the supply side comprises PV and wind
generation units. Flexible loads should ideally be scheduled to maximize utiliza-
tion from intermittent sources. In other terms, residual load which needs to be
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covered through additional conventional generation should be minimized. In line
with existing research on DR a stylized power system model is applied to represent
conventional generation (Sioshansi, 2012; Grünewald et al., 2015). For the sake of
simplicity, small and decentralized dispatchable sources (e.g., combined heat and
power plants) are not included in the model. Supply aggregators (e.g., Lichtblick4)
tap potentials to control such distributed units already today. Models for demand
(residential appliances, stationary batteries and EVs) and supply side (dispatchable
conventional generation) are presented in more detail in the remainder of this section.

3.2 Scope of Demand Models

Creating a model with characteristics as close as possible to real-world leads to re-
liable results on emergent system behavior and can improve settings for field trials
and living labs. Residential demand in a smart grid is formed of various small actors.
Specifying these actors on micro level with a high degree of detail increases compu-
tational complexity. This problem especially has to be addressed for an analysis of
system effects where a large number of actors has to be considered.

To balance between model complexity and adequacy, Flath (2013b) proposes a
framework to structure the modeling process of smart grid customers using model
size and scope, static customer and demand response characteristics and model adap-
tivity over time (see Figure 3.2). Along this structure the residential demand models
are elaborated in the following. In this section, a discussion of basic demand mod-
eling techniques is provided and the size and scope of existing DR investigations is
mapped to the customer model characteristics giving insights in the trade-off between
complexity and adequacy. After that, the static load and demand response charac-
teristics of the models for household appliances, stationary batteries and electric
vehicles are presented. Model adaptivity over time, the forth step of the modeling
process, is out of scope.

4http://www.lichtblick.de/geschaeftskunden/schwarm-energie/schwarm-produkte/
zuhausekraftwerke/

http://www.lichtblick.de/geschaeftskunden/schwarm-energie/schwarm-produkte/zuhausekraftwerke/
http://www.lichtblick.de/geschaeftskunden/schwarm-energie/schwarm-produkte/zuhausekraftwerke/


Scope of Demand Models 33

Model Size  
and Scope 

Model 
Adaptivity  
over Time 

Demand 
Response 

Characteristics 

Static 
Customer 

Characteristics 

Figure 3.2: Structured customer modeling (based on Flath, 2013b)

3.2.1 Techniques for Demand Modeling

Two categories of modeling techniques for residential household electricity consump-
tion can be identified in literature: top-down and bottom-up approaches. In the
following these two approaches are shortly described. A more detailed discussion of
top-down and bottom-up models and also various examples of existing models are
presented by Swan and Ugursal (2009) or Grandjean et al. (2012).

Top-down approaches consider energy consumption of a sector as a whole and
trace consumption back to characteristics of the sector. Commonly used variables
for these models are economic indicators, weather conditions or estimations of de-
vice ownership. Based on projections for these variables long-term changes in energy
needs are estimated and can guide the planning of grid resources (e.g., supply re-
quirements). Due to their simplicity, scalability and the widely available aggregated
data, top-down models will continue to play an important role for system analy-
sis. They can be applied, for example, to forecast future supply requirements with
increasing energy efficiency in residential household appliances. Top-down models
can also be used for high-level analysis of future technologies, e.g., penetration rates
of photovoltaic systems. However, they lack in estimating potential impacts of new
technologies on system level (Swan and Ugursal, 2009). Furthermore, top-down mod-
els analyze a sector as a whole and are therefore less applicable for smaller customer
populations in a decentralized power system.

Bottom-up models use data on a level below the entire sector and create load
profiles on device or household level and then project these results to represent
a region. Existing bottom-up approaches largely vary in their level of detail and
input data. Input data often includes consumption and technical characteristics of
appliances, climate properties or human behavior, but can also encompass a broad
range of other variables. Bottom-up approaches facilitate a residential demand model
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with a high level of detail. Hence, such models permit to evaluate impacts of new
technologies, for example, electric vehicles and allow to assess different DR schemes.
However, with an increasing level of detail two disadvantages arise with bottom-
up models. Firstly, the computational complexity of the model increases and might
impede simulations of large appliance or household populations (Griffith et al., 2008).
Secondly, statistical input data might not be available in the required resolution and
model assumptions become somehow arbitrary.

Overall it can be stated that for the evaluation of demand flexibility bottom-up
approaches allow detailed modeling and enable integration of new technologies. In
order to reduce complexity and data input requirements, it might be reasonable to
abstract from some real-world characteristics. Here, existing bottom-up models can
provide some guidance.

3.2.2 Models for Residential Demand Response

Several research publications focus on bottom-up models for residential electricity
demand. They identify important characteristics for realistic artificial load profiles.
Walker and Pokoski (1985) present one of the first residential load models. They
integrate residential behavior to the components connected to the power system at a
particular time and create realistic load profiles for two homes in the United States.
Capasso et al. (1994) base their detailed behavioral model of the household residents
on data from a time use survey.5 Furthermore, they use available data on appliances,
e.g., penetration levels or power demand, to create appliance profiles for households.
Then, they summarize the household load curves to estimate load in an Italian resi-
dential area. Similar bottom-up approaches are provided by Widén and Wäckelgård
(2010) and Richardson et al. (2010). These models also use time use and appliance
data as inputs and generate load patterns for domestic electricity demand in Swe-
den, respective the United Kingdom. Some of these models discuss DR as a possible
application, however, none is applied to evaluate such effects. Nevertheless, these
comprehensive models establish presence of residents and consumption statistics to

5A time use survey measures the amount of time people spend during various activities, e.g.,
preparing meals, laundry or watching TV.
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describe residential behavior and properties of individual appliances as important
characteristics for detailed bottom-up residential load models.

More recently, different aspects of residential DR have been investigated by elec-
trical engineers and energy economists. Driven by the individual research objectives,
the applied bottom-up models in these investigations vary largely in their level of
detail and the required input data. Without claiming to be complete, Table 3.1
provides an overview of existing models created for residential DR assessment. The
table includes main properties of the detailed bottom-up models complemented by
thermal needs and the number of flexible appliances and possible future devices for
residential DR (static customer characteristics). Combining these features with the
model size (population, horizon and DR devices) and scope (coordination approach
and objective), the table allows to identify important characteristics and motivate
reasonable assumptions for reducing model complexity.

The table illustrates that researchers investigating single residential households
tend to apply more detailed models with various flexible appliances, future devices
and amplified use of statistical input data. Furthermore, evaluations for single house-
hold models are typically executed for simulation horizons above one month. In
addition, DR models evaluating large populations with one million or more house-
holds can be identified. Here, researchers use very simple models, a small number
of appliances and simulate only short periods. Similar to this thesis, most publica-
tions investigate a local or regional population between 50 and 5,000 households. To
handle complexity these models even out between simulation horizon, the number
of flexible appliances, and the input data applied. The work at hand incorporates a
large set of flexible devices for a residential area and simulates a rather long period
(12 weeks). For model calibration the standard input data is considered.
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Table 3.1: Overview on residential demand response models in literature
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d Allerding (2014) Home energy management for appliances and local generators

via evolutionary algorithm to increase self-consumption or re-
duce electricity bill.

1 1 yr. 7 CHP 3 3 3 3

Scott et al.
(2013)

Control of residential loads under dynamic pricing and uncer-
tainty in prices, weather and occupant behavior. Use of online
stochastic algorithms to assess electricity bill savings.

1 1 mo. 6 BAT
EV

3 3 3 3
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n

Gottwalt et al.
(2011)

Generation and validation of residential load profiles. Applica-
tion of dynamic pricing to shift appliance operations estimating
electricity bill reductions and effects on peak load.

1,000 1 yr. 7 3 3 3

Huang et al.
(2011)

Micro level household model which can be applied to study
policies affecting appliance set. Economic evaluation of PHEV
charging competitiveness under different pricing schemes.

US-
CA

1 day 0 PHEV 3 3

Kamper (2010) Fridges, freezers and CHP plants are grouped in a pool and
build a peer-to-peer network. Neighbors exchange information
to reach a balanced load schedule in the pool.

1,001 1 day 2 CHP 3 3

Kishore and
Snyder (2010)

Distributed scheduling mechanism for dishwasher, dryer and
water heater to reduce peak demand of residential homes.

50 5
days

3 3
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Ramchurn et al.
(2011)

Decentralized DR mechanism based on variable electricity
prices for dryer, washing machine and thermal load to eval-
uate effects on peak demand and carbon emissions.

5,000 ∼ 3
mo.

3 3 3 3

Shinwari et al.
(2012)

Decentralized control of dryer, washing machine and EVs via
starting time probabilities for peak shaving and valley filling.

1,000 1 day 3 EV 3

Stadler et al.
(2009)

Direct control and indirect load control of fridge operation to
provide short-term balancing power in a region.

5,000 1 day 2 3 3

Tushar et al.
(2014)

Direct control of washing machine, dishwasher, dryer, battery
and EVs and decentralized control of EV charging to use local
wind and PV generation.

200 1 day 3 EV 3

Fe
de
ra
lp

op
ul
at
io
n Guo et al.

(2008)
Self-adaptive approach for load control of air-conditioning to
reduce energy consumption while retaining a stable comfort
level.

1m 3
days

1 3 3

van den Briel
et al. (2013)

Distributed approach for scheduling of washing machine, dish-
washer and dryer operation based on probabilities for start
times to achieve a given ideal load.

2.5m 1 day 3 EV 3



38 Smart Grid Modeling

3.3 Household Appliance Model

Existing bottom-up models show how scientists calibrate models to fit their research
objectives. Based on their design decisions, distinct properties of residential house-
hold load models are discussed and a configuration for such a model is given in the
following. Further, demand response characteristics of household appliances and a
formalized consumption model are presented.

3.3.1 Static Load Characteristics

In a bottom-up model household appliances are represented individually. As mod-
eling of single appliances requires detailed input data, only appliances suitable for
DR are integrated in the simulation framework. The set of flexible appliances rep-
resents about 52% of total residential load. For the remaining share of household
electricity consumption, so called base load, industry standard load profiles describ-
ing consumption over time are applied. The input data used to calibrate appliances
in the load model and the approach to calculate base load are described in more
detail subsequently.6

Input Data Requirements

To calibrate the appliance models data of different degree of detail is used. Four
categories of input data can be identified (see Section 3.2.2): presence of residents,
consumption statistics, appliance properties, and thermal needs. Presence of resi-
dents is important as it effects usage of various appliances (e.g., lighting or dish-
washer). However, integrating presence leads to inter-dependencies of appliance us-
age on household level and increases model complexity. Models of load populations
mainly avoid this complexity and do not include presence. For such models a valid
representation of system wide load is important and dependencies of appliance runs
on a single household level can be neglected. To derive runtimes of appliance popu-
lations often consumption statistics on average appliance usage are applied. By this,

6 The sources for input parameters to calibrate the household appliance model origin from our
paper Gottwalt et al. (2011).
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valid load profiles for a population can be generated, but investigations on individual
household level are not possible. Appliance properties are used by all publications as
input data for load models and include, for example, penetration level, power con-
sumption and operation duration. Thermal requirements of households only need to
be considered, if Heating, Ventilation or Air-Conditioning (HVAC) is integrated in
the model (Ramchurn et al., 2011; Guo et al., 2008). Most of the existing models do
not include HVAC appliances.

Input Data Applied

Following Widén and Wäckelgård (2010), three steps for the determination of load
profiles of a household population can be identified. Firstly, the number of appliances
within the population has to be calculated. Applying penetration levels of appliances
as probability of availability creates a set of appliances for the population. Secondly,
the number of operations or runs of an appliance has to be determined by :

Average energy consumption per household · Consumption share appliance
Energy per run · Appliance penetration level (3.1)

Yearly electricity consumption of a German household is about 3,100 kWh
(BDEW Bundesverband der Energie- und Wasserwirtschaft e.V., 2013), respective
daily consumption 8.5 kWh. Data to calculate the number of operations or runs per
appliance is shown in Table 3.2. The usage of storage space heating varies between
seasons and equals 1 in winter, 0.25 in transition and 0 in summer. Due to lack in
data, operation of the remaining appliances does not vary between seasons.

The third step, determining the consumption times of appliance runs is the most
critical factor. Storage space heating systems, storage water heaters, fridges and
freezers are modeled independent of customer activity (Widén and Wäckelgård,
2010). The first two appliances in this list are usually operated at off-peak periods
and distribution grid operators set activation times at night (Stamminger, 2009). For
the residential load model without DR it is assumed that staring times are equally
distributed between 0 am to 5 am and appliances run in one continuous stretch.
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Table 3.2: Input parameters for calibration of the household appliance models
Appliance Penetration

level
Consumption
share

Energy per
run [kWh]

Cycle
duration [min]

Refrigerator 0.997a 0.09b 0.024d 15c

Freezer 0.505a 0.07b 0.035d 15c

Storage water heater 0.08d 0.133d 16.0 c 240c

Space heating 0.04d 0.131d 32.0c 240c

Dishwasher 0.673a 0.037b 1.206a 105a

Washing machine 0.945a 0.036b 0.888a 105a

Dryer 0.391a 0.024b 2.485a 105a

Sources: aStatistisches Bundesamt (2013), bBürger (2009), cStamminger (2009),
dOwn calculations based on Bürger (2009) and Stamminger (2009)

Fridge and freezer operate frequently to keep temperature in a defined range. In the
load model one day is divided into intervals, with one active cycle per interval. For
the intervals a length of 45 minutes is assumed. Within the intervals the cycles are
equally distributed.

Runs of washing machine, dishwasher and tumble dryer are based on customer ac-
tivity. To determine starting times for these appliances hourly starting probabilities
are applied, which are based on the typical usage of these appliances (Stamminger,
2009). Hourly probability values for the operation starts are shown in Figure 3.3.
Reasonably, dryer operation shows a delay of approximately three hours as compared
to the washing machine. Note that starting probabilities for all appliances do not
vary with day type, as there are no reliable statistics available.

Washing machine Dryer Dishwasher
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Figure 3.3: Hourly starting probabilities based on typical usage patterns (Data Source:
Stamminger, 2009)
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For the base load in the household population standard load profiles are applied.
The Federal Association of Energy and Water Industries (BDEW) in Germany pro-
vides this profile, called H0, in a 15minute resolution for the average electricity
consumption of a norm German household. To consider the load of the individual
modeled appliances values of the standard load profile are scaled to 48% of their
original value. The profile differs between three season (summer, winter, transi-
tion time) and three day types (Saturday, Sunday and working day) (Fünfgeld and
Tiedemann, 2001). Figure 3.4 depicts the H0 standard load profiles for an average
household with a yearly consumption of 3,100 kWh and the base load applied for the
static household demand.
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Figure 3.4: Standard load profiles (H0) for average German households and base load
for different day types in the transition time (Data Source: http://www.vsg-
netz.de/vsgnetz/Stromnetz/Lastprofilverfahren.php)

3.3.2 Demand Response Characteristics

Residential households can be equipped with various different appliances. In a semi-
nal work Schweppe et al. (1989) provide a taxonomy for load flexibility of household
appliances and characterize appliances as using “electricity to provide a service to
the customer”. For DR the usage of electricity has to be changed. Hence, they iden-
tify three basic options for realizing DR which are reschedule timing of appliance
usage, rescheduling of service and usage to different times, and to reduce service and
usage. Table 3.3 shows some examples of household appliances for these options.
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Suitability of household appliances for shifting can be evaluated according to the
effect (utility or disutility) of DR on customer’s convenience. Thus, the effects of
DR on the service is used to categorize household appliances in different degrees of
automation for operation control. The table indicates suitability of the most relevant
household appliances for DR using the characteristics: load during operation, oper-
ation frequency, shifting distance, and customer convenience of shifting. Latter is
also in use to determine the degree of automation applied for DR. Subsequently, the
three control options (automatic, semi-automatic and not-controllable) are described
and the effects of DR on the service level of appliances is sketched.7 A more detailed
description of electricity usage and service characteristics of controllable appliances
is, for example, presented by Soares et al. (2014).

Table 3.3: Characteristics of household appliances for DR (H-High, M-Moderate and L-
Low) and load control in the model. Own elaboration based on the classifications
of Schweppe et al. (1989) and Seebach et al. (2009).

Basic DR
options

Appliance Load Operation
frequency

Shifting
distance

Customer
conven.

Load control
in model

Reschedule
usage

Fridge L H L H Automatic
Freezer L H L H Automatic
Stor. water heater H M H H Automatic
Stor. space heater H M H H Automatic
Air conditioning H M H M None

Reschedule
service
& usage

Dishwasher M L M M Semi-auto
Washing machine M L M M Semi-auto
Tumble dryer M L M M Semi-auto
Stove & oven H M L L None
Vacuum cleaner M L L L None

Reduce
service

Lighting L M L L None
Television L M L L None

Automatic Control

Appliances that are categorized as automatic control possess a natural thermal stor-
age and do not work continuously. This way, electricity usage and service provision
can be decoupled. Customers do not interact with an individual operation of these

7This description is an adapted and extended version of our paper Gottwalt et al. (2011).
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appliances8 and within constraints they can be controlled automatically without no-
ticeable differences in utility for household members (Kamper, 2010). Appliances
comprised by this category in the DR model are storage water heaters, storage space
heaters, refrigerators, and freezers.

On household level both storage heaters are large individual loads, and they are
the only appliances in use for residential DR today. Via radio or ripple control
distribution grid operators transmit consumption intervals to storage water or stor-
age space heating systems. In these intervals the appliances can turn automatically
to refill their storage. Grid operators determine groups of storage appliances and
transmit intervals on group level to desynchronize these large loads (Hastings, 1980).
Typically, consumption intervals in Germany range from 10 pm to 6 am9 as these are
times with low overall electricity consumption. For future DR the consumption lim-
itation to night hours might not be appropriate, as in a power system with volatile
renewable sources consumption should take place in hours of high generation. In the
residential DR model presented, it is therefore assumed that storage heating appli-
ances can be activated during the entire day. Furthermore, the refill operation of the
storage does not have to take place in a continuous stretch and can be interrupted.
With a daily refill of the storage household members will not experience a loss in
comfort.

Refrigerator and freezer are appliances with small loads. What makes it interest-
ing to use them for load shifting is their frequent operation and the suitability for
automated load control without being noticeable for household members. Refrig-
erators and freezers cycle frequently to keep the inner temperature in a predefined
interval and to prevent food quality of being harmed. In literature the interval to
delay or postpone cooling cycles varies from 30 to 60min (Stadler et al., 2009). In the
residential DR model a cooling cycle of refrigerator or freezer lasts for 15minutes.
For load shifting it is assumed, that they have to operate once every 45minutes
for not exceeding the temperature threshold resulting in a maximum idle time of
60minutes.

8Note that consumers might change basic parameters, e.g., target temperature of a fridge.
9https://www.stadtwerke-muenster.de/privatkunden/strom/alle-stromprodukte/

nachtspeicher/detailinfos.html

https://www.stadtwerke-muenster.de/privatkunden/strom/alle-stromprodukte/nachtspeicher/detailinfos.html
https://www.stadtwerke-muenster.de/privatkunden/strom/alle-stromprodukte/nachtspeicher/detailinfos.html
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Semi-Automatic Control

Operation of washing machine, dishwasher, and tumble dryer can be started au-
tomatically, but interaction with the consumer is needed before, for example, a
dishwasher must be loaded. Due to the required consumer interaction, control for
these appliances will be denoted as semi-automatically. To introduce flexibility in
the operation of these appliances it is assumed that consumers set appliances into
a ready mode (after loading them) and determine the latest feasible finishing time.
The operation can then automatically be started within the time constraints defined
by the customers. The approach of setting a latest finishing time is in line with
existing literature on residential DR (Becker et al., 2012). In this work the loading
time is assumed to equal the original starting time derived from the hourly start-
ing probabilities. DR for washing machine, dishwasher and tumble dryer requires
rescheduling of service and usage, but as customers can set the latest finishing times
their preferences can be considered and it is assumed that the service level is not
reduced. In the residential DR model finishing times are randomly selected on an
operational basis taking values of 3, 5 or 10 hours.

Not-Controllable

Most household appliances are categorized as not-controllable for the demand model.
Some of them might be appropriate for shifting. For example air-conditioners posses
a thermal storage to decouple electricity usage and service provision. But, as air-
conditioning only has a small share on total electricity consumption in Germany
potential for DR is limited and these appliances are not included in the model.
However, air-conditioning might offer interesting potentials for residential DR in
other countries (Gils, 2014) and for commercial buildings in Germany (Klobasa,
2009).

DR integration of other household appliances decreases customer comfort. For
a stove or vacuum cleaner DR participation requires rescheduling of service and
usage. Lighting or television can only provide flexibility by reduction of usage and
service level. An ICT supported DR for these appliances is not possible. Due to the
reduction in customer comfort, they are not included in the model.
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3.3.3 Consumption Model

In this work a regional power system which consists of a set of H ∈ N households
is investigated over a time horizon of T ∈ N time slots. Households are indexed
h ∈ [H], where [H] = {1, . . . , H}. Time slots are indexed t ∈ [T ]. Let M be the set
of different home appliances available for the households and, let Mh be the set of
home appliances for household h, with Mh ⊆M for all h ∈ [H].

In the following, M is split up into three disjoint appliance subsets with simi-
lar characteristics in order to generate load profiles for a population of residential
households and to analyze DR flexibility of these appliances:

• The first subset A ⊆ M , A = {aj : j ∈ [A]}, where A ∈ N includes automat-
ically controlled appliances with large loads and maximum one run per day.
Runs of appliances in this subset can be shifted and interrupted for DR, for
example, a single run of a storage water heater.

• The second subset B ⊆ M , B = {bj : j ∈ [B]}, where B ∈ N, comprises
automatically controlled appliances with small loads and frequent runs during
one day. Runs of appliances in subset B only last for one time slot, for example,
a single operation of a refrigerator.

• The latter C ⊆ M , C = {cj : j ∈ [C]}, where C ∈ N, consists of semi-
automatically controlled appliances operating only few times a week. Runs
of appliances in this subset have fixed consumption profiles and cannot be
interrupted, for example, usage of a washing machine.

Description Group A

For an automatically controlled appliance a ∈ A the simulation horizon T is divided
by the number of runs Ca ∈ N into intervals of equal length La = T

Ca
. sa ∈ NCa

and ea ∈ NCa are vectors defining the start and end of a flexibility interval, where
sa + La − 1 = ea and sia and eia are indexing the i-th element of the vector. Each
appliance is modeled as a tuple a = (ρa, δa, Xa, Ca, sa, ea) where ρa ∈ R+ is the
consumption of an active appliance a, δa ∈ N is the duration of one run and the
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vector Xa = (x1
a, . . . , x

T
a ) with xta ∈ {0, 1} describes in which time slots t ∈ [T ] an

appliance is active (xta = 1) or inactive (xta = 0). The duration of a run is defined to
be the active time in one interval:

∀i ∈ [Ca] :
ei

a∑
t=si

a

xta = δa. (3.2)

For DR runs of appliances in group A can be shifted and interrupted and thus within
each flexibility interval the vector Xa has the shape 0p11r10p21r20p3 . . . 1rk0pk+1 where∑k

1 rl +∑k+1
1 pl = La and ∑k

1 rl = δa. The number of interruptions of one run in an
interval is determined by k − 1. Energy consumption lta by appliance a in time slot
t is given by:

lta = xtaρa. (3.3)

Description Group B

For frequently operated appliances b ∈ B the simulation horizon T is also divided
by the number of runs Cb ∈ N into intervals of equal length Lb = T

Cb
. sb ∈ NCb and

eb ∈ NCb are the corresponding vectors defining the start and end of an interval,
where sb + Lb − 1 = eb and sib and eib are indexing the i-th element of the vector.
In contrast to group A, the start of the first interval s1

b is randomly selected in
[1, Lb].10 The length of the last interval sCb

b is thus given by Lb − s1
b . A run of

appliances in group B lasts only for one slot. Each appliance is modeled as a tuple
b = (ρb, Xb, Cb, sb, eb) where ρb ∈ R+ is the consumption of an active appliance b,
and the vector Xb = (x1

b , . . . , x
T
b ) with xtb ∈ {0, 1} defines activation times of an

appliance b. For DR runs of appliances in group B are flexible within the respective
interval [sib, eib] and runs once in every interval:

∀i ∈ [Cb] :
ei

b∑
t=si

b

xtb = 1. (3.4)

10This prevents identical intervals for all fridges and avoids load synchronization.
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Consumption ltb for one appliance b in one time slot t is given by:

ltb = xtbρb. (3.5)

Description Group C

For a semi-automatically controlled appliance c ∈ C let Rc = {r1, . . . , rNc} be the
set of runs during the simulation horizon T with Nc ∈ N. Each run r ∈ Rc is
represented by a tuple r = (δr, Xr, Pr) where δr ∈ N is the duration of run r, the
vector Xr = (x1

r, . . . , x
T
r ) with xtr ∈ {0, 1} indicates the start of a run (xtr = 1), and

Pr is a vector defining the power consumption profile. A power profile is described
by:

Pr = (ρ1
r, . . . , ρ

δr
r ), (3.6)

where ρτr ∈ R+ is the power consumption in the τ -th period from start of the opera-
tion 1 ≤ τ ≤ δr. It is assumed that each run starts only once during the simulation
horizon T :

T∑
t=1

xtr = 1. (3.7)

For DR let tsr be the time where an appliance is set into a ready mode and tlr be
the last allowed start time set by household residents. The start of run r has to be
scheduled in the flexibility interval [tsr, tlr]:

tlr∑
t=tsr

xtr = 1. (3.8)

The consumption ltr of run r in slot t is given by:

ltr =
t∑

k=1

(
xkr · Pr (t+ 1− k)

)
(3.9)

where

Pr(τ) =


ρτr , τ ∈ {1, . . . , δr}

0, otherwise.
(3.10)
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Total Population Consumption

Total consumption of flexible appliances LtFH for all households in time slot t is given
by:

LtFH =
∑
a∈A

lta +
∑
b∈B

ltb +
∑
c∈C

∑
r∈Rc

ltr. (3.11)

Let bt ∈ R+ denote the static consumption of all households in time slot t. Then
total consumption LtHH is defined as:

LtHH = LtFH + bt. (3.12)

3.4 Stationary Battery Model

For a smart grid stationary batteries are interesting components. They offer high
flexibility as load control does not affect customer convenience and they are available
at all times. Thus, various promising opportunities for electricity storage in station-
ary batteries can be identified including wholesale energy or power quality services,
or their usage for the integration of intermittent renewable sources. In the latter
application, stationary batteries allow to decouple generation and consumption as
they store electricity in periods with excess generation and provide electricity at low
generation periods. Distribution of stationary batteries is currently increasing in
residential areas. For practical use, they are principally promoted with the aim to
improve self-consumption or autarky rates of a household’s PV installation (Müller,
2014). Researchers focus on the performance of storage technologies trying to reduce
production costs and to improve durability and efficiency of batteries (Dunn et al.,
2011). In addition, they assess potentials of stationary batteries for different appli-
cations, e.g., energy arbitrage (Ahlert and van Dinther, 2009; Graves et al., 1999). In
the following, basic parameters to configure a stationary battery model are presented
and operation strategies to control charging and discharging are discussed. Further,
a formalized model is described to integrate stationary batteries into the simulation
framework.
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3.4.1 Static Load & Demand Response Characteristics

Stationary batteries hold electricity for later use. A load pattern for stationary
batteries can only be generated by applying at least a simple rule-based control of
charging and discharging based on local generation availability. A separate discus-
sion of static customer and demand response characteristics to derive a customer
model can not reasonably be applied for stationary batteries. Thus, in the following
the foundation for a stationary battery model is provided by identifying relevant
technical parameters and discussing operation strategies for charging and discharg-
ing.

Stationary Battery Specification

In literature models for battery storage systems largely differ in the level of technical
details applied. Kwan and Maly (1995) provide an example for a detailed technical
model incorporating interdependencies of battery parameters. For instance, they
include battery voltage fluctuations as a function of the charge state. Ahlert and
van Dinther (2009) abstract from these interdependencies and use empirical values
as input. The large number of parameters for different parts of the storage system in
their model requires an extensive sensitivity analysis for verification. A classic model
formulating battery storage scheduling as a linear program is given by Daryanian
et al. (1989). Various other researchers apply this model as a basis for optimal
scheduling models of flexible loads, e.g., for EV charging (Sioshansi et al., 2010; Flath
et al., 2013). Based on Daryanian’s model battery storage capacity, and maximum
charging and discharging power can be identified as relevant technical parameters
to specify stationary batteries. Table 3.4 depicts exemplary configurations of these
parameters for stationary battery storage systems currently for sale. For the model
in this thesis a virtual battery similar to the BPT-S 5 Hybrid is assumed with 7 kWh
capacity and 4 kW charging and discharging power.
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Table 3.4: Exemplary configurations of stationary battery storage systems currently for
sale (October 2014). Data based on manufacturer information and own calcu-
lations.

Model Battery
Capacity
[kWh]

Charging
Power
[kW]

Discharging
Power
[kW]

Battery type

SENEC.Home G2 8 3 2.5 Lead-oxide (liquid)
E3/DC E4 13.8 4.0 4.0 Lithium-ion
BPT-S 5 Hybrid 6.6 3.75 3.75 Lithium-ion
SunPac 2.0 11.6 2.7 2.7 Lead-acid (gel)
KNUBIX Knut 3.3 5.5 1.6 5.4 Li-iron phosphate
ASD future ON 300 6 1.3 3.5 Li-iron phosphate
Average 8.5 2.7 3.6

Operation Strategies

Generating load patterns of stationary batteries requires an operation strategy to
schedule charging and discharging. For residential households battery system so-
lutions are readily available for sale. These systems often use a simple rule-based
control to increase self-consumption of electricity from on-site available renewable
sources by charging the battery storage when excess PV generation is available and
supplying consumption in later periods.11 More advanced home automation systems
furthermore control operation of household appliances and incorporate battery stor-
age in an integrated energy management for increasing levels of self-consumption or
energy autarky.12

Scheduling of battery storage based on system wide incentives or direct control
to make system services available are mainly addressed in research. Such investiga-
tions include for example the exploitation of arbitrage opportunities on spot markets
(Ahlert and van Dinther, 2009; van de Ven et al., 2013). Yet, market-ready solu-
tions to schedule battery storage based on system control signals start to emerge.
One example is the provision of ancillary services by controlling various small, dis-
tributed stationary batteries, thus, also showing the applicability of advanced control

11http://eqoo.ewe.de/#funktionsweise
12http://www.sma.de/home-systems/solaranlage-smart.html

http://eqoo.ewe.de/#funktionsweise
http://www.sma.de/home-systems/solaranlage-smart.html
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strategies for dispersed units.13 Under a static load regime, i.e., in the absence of
incentives or advanced strategies, simple rule-based control schemes could be applied
to schedule batteries (Kessler et al., 2015). For instance, to increase utilization of
renewable generation a signal might transmit charging or discharging intervals in
periods of high or respectively low renewable generation. However, in the work at
hand it is assumed that batteries are not in use under a static load regime.

3.4.2 Consumption Model

To integrate stationary batteries in the residential DR simulation framework, a for-
malized charging schedule model is elaborated, hence, enabling to assess advanced
control strategies and exploiting their flexibility to improve power system efficiency.
The formulation presented follows the classic linear model for energy storage of
Daryanian et al. (1989).

To analyze storage technologies in the residential DR model S ∈ N stationary
batteries are integrated. In line with the household appliances described, they are
investigated over the time horizon T and decisions are discretized using 15-minute
intervals. Further, a constant charging power is assumed. The set of stationary
batteries is given by S = {sj : j ∈ [S]}. For one stationary battery s the maximum
capacity is denoted by bs and the maximum charging and discharging power by φs,
respectively φ

s
. Charging or discharging decisions of stationary batteries can be

represented as vectors Φs = (φ1
s, . . . , φ

T
s ), with φts ∈ [φ

s
, φs]. The battery state-of-

charge (SOC) is tracked via the vector Ψs = (ψ1
s , . . . , ψ

T
s ), with ψts ∈ [0, 1] indicating

the share of battery capacity. Thus, each stationary battery can be described by a
tuple s = (Φs, φs, φs,Ψs, bs). Charging or discharging of stationary batteries can be
scheduled over the course of the simulation horizon:

ψtsbs = ψt−1
s bs + φts. (3.13)

A value of ψ0
s = 0.3 is assumed for the initial SOC of stationary batteries. Further-

more, to avoid simulation artifacts and guarantee equal charging and discharging

13http://www.senec-ies.com/econamic_grid/

http://www.senec-ies.com/econamic_grid/
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amounts over the simulation period initial SOC ψ0
s and terminal SOC ψTs are set to

the same level:

ψ0
s = ψTs . (3.14)

Total Population Consumption

Consumption or supply for all stationary batteries LtS in time t is given by:

LtS =
∑
s∈S

φts. (3.15)

Another technical aspect in the operation of batteries are losses at various compo-
nents of a storage system, e.g., rectifier, inverter or storage efficiency. Efficiency
for up-to-date storage systems achieves values of more than 90%. Due to this high
efficiency and to reduce model complexity a loss-free charging and discharging with
efficiency ηs = 1 is assumed. This assumption is in line with Daryanian et al. (1989).
A detailed discussion of extensions for a more realistic charging model including
battery wear is provided with the description of EV charging in Section 3.5.3.

3.5 Electric Vehicle Model

The energy required for the average annual driving distance in Germany14 roughly
equals the electricity consumption of a single person residential household. At the
same time, vehicles are driving only short periods of the day and ICT-based systems
can schedule charging during long parking hours. Thus, charging loads of electric
vehicles are both large and flexible. In addition, the market shares of EVs are
expected to increase and their charging activities will heavily effect load and DR
potentials of residential areas. Researchers from various disciplines aim to estimate
charging loads and evaluate options for charging coordination (Lopes et al., 2009;
Sioshansi et al., 2010; Schuller, 2014). Due to the limited availability of EVs, one
14 Average driving distance per household in 2012 was about 12,700 km per year (Data Source:

Statistisches Bundesamt, 2014).
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cannot readily obtain data to validate synthetic charging models. Appropriate EV
models constitute the base for an integration of charging loads into a residential
DR model. In the following, model properties and configuration including demand
response characteristics of EVs are given. Moreover, a formalized model for EV
charging is elaborated and a discussion on relevance of individual model features is
provided.

3.5.1 Static Load Characterization

The overview on existing DRmodels identifies average usage and properties of devices
as key drivers for valid synthetic load profiles. Following literature, e.g., Clement-
Nyns et al. (2010), Sioshansi (2012), or Flath et al. (2013) a simple bottom-up EV
model to comply with these requirements can be created by evaluating empirical
driving profiles using technical EV and charging system specifications. Given the
limited availability of EVs, data on real usage cannot be obtained and models are
built on empirical driving profiles of conventional vehicles with internal combustion
engines. Specifications of EVs (battery size, consumption) and charging system
(charging power, efficiency) can be built on real-world systems. Finally, to derive
EV charging patterns a charging strategy is needed.15

Driving Behavior

Driving profiles for EVs are extracted from the German Mobility Panel (Zumkeller
et al., 2010). In this study a representative sample of about 1,000 German house-
holds continuously report their mobility behavior during one week of the year. For
every trip the mobility data set includes information about the means of transporta-
tion, distance traveled, and starting and end time in a 15-minute time resolution.
Furthermore, socio-economic data, e.g., household size, gender, age and profession
of the household residents is collected. For the simulation all trips made by Internal
Combustion Engine (ICE) vehicles are extracted to derive driving profiles and then
1,000 driving profiles from the employee group are selected.

15 This section is an extended version of the model description in our paper Flath et al. (2013).
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For this thesis the panel data is limited to the sociodemographic group of full-time
employees. Employees have a large share in the German population and show the
highest driving distances (see Table 3.5). Due to the high investment compared to
ICE vehicles, EVs can be expected to be used by persons with higher driving needs
(Plötz et al., 2013). Furthermore, due to the regular patterns EVs can be ideally
used for trips to work. The German Mobility Panel also includes information about
the purpose of each trip, i.e, if someone is on the way back home. Out of these trip
purposes charging locations for EVs can be derived.

Table 3.5: Driving distances for different professions (Source: Schuller, 2014)

25% Quan. Median Mean 75% Quan. Share in
[km/week] Population

Employees 84.0 184.6 225.1 322.2 0.32
Part-Time Employees 48.8 97.5 120.9 158.5 0.11
Retired 61.4 121.3 159.2 209.5 0.34
Unemployed 34.0 77.2 113.8 144.2 0.10

EV Specification

For a model of EV charging both electricity consumption and battery capacity are
relevant characteristics. The former, allows to calculate electricity consumption due
to driving. The latter, is crucial for the flexibility of charging. In combination they
determine the maximum range of an EV. Table 3.6 depicts specifications of EVs
currently for sale. For the model the average values of these EVs are applied and a
30 kWh battery and a consumption of 0.15 kWh/km are assumed.16 This corresponds
to a maximum range of 200 km.

Low energy density of batteries limits the range of EVs and causes “range anxi-
ety”. A larger battery increases driving range, but also curb weight and electricity
consumption per km (Flath, 2013b). Along with high battery costs low energy den-
sity is the main hurdle for the large-scale adaption of EVs. Currently most car

16Car manufacturers apply the New European Driving Cycle to assess consumption of electric
vehicles. Peripherals, such as cooling or heating, are not in included in this test procedure and
increase consumption of EVs.
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Table 3.6: Technical data of current EVs for sale (September 2014)

Model Curb
Weight
[kg]

Battery
Capacity
[kWh]

Electricity
Consumption
[kWh/km]

Range
[km]

Battery
type

BMW i3 1,195 18.8 0.129 145 Li-ion
BYD e6 2,380 61.4 0.217 300 Iron

phospahte
Mitsubishi i-MiEV 1,185 16 0.135 150 Li-ion
Nissan Leaf 1,520 24 0.150 160 Li-ion
Renault Kangoo Z.E. 1,410 22 0.129 170 Li-ion
Renault Zoe 1,503 22 0.146 150 Li-ion
Tesla Model S 2,100 60 0.180 335 Li-ion
VW e-Golf 1,585 24.2 0.127 160 Li-ion
VW e-up! 1,214 18.7 0.117 140 Li-ion
Average 1,566 29.7 0.148 190

manufacturers apply lithium-ion batteries for EVs (see Table 3.6). Energy density
of next generation lithium ion batteries is expected to largely increase and overcome
“range anxiety” (Pollet et al., 2012). In medium term only lithium-ion batteries are
expected to best fit requirements on specific energy, cycle life and costs. However,
other alternatives might attain lower costs in the long run (Gerssen-Gondelach and
Faaij, 2012).

Charging system

The International Electrotechnical Commission (IEC) standard 61851-1 specifies a
set of modes for EV charging. Based on theses modes IEC standard 62196 defines
plugs, sockets and cables for charging of EVs. A short overview of the four different
charging modes is given in Table 3.7. As the focus within this thesis is on the analysis
of residential DR potentials, a maximum charging power of 11 kW corresponding to
the connection power of a typical German household is assumed. This results in a
duration of about 165minutes for a full charge of a battery with 30 kWh capacity.

Various researchers investigate potentials of Vehicle-to-Grid (V2G) concepts
where EVs are capable of feeding electricity back (Kempton and Tomić, 2005; Lund
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Table 3.7: Charging modes specified in IEC 61851-1

Charging mode Phases Max. current Max. voltage Max. power
Mode 1 (AC) 1 16 A 230 V 3.7 kW

3 16 A 230 V 11 kW
Mode 2 (AC) 1 32 A 230 V 7.4 kW

3 32 A 230 V 22 kW
Mode 3 (AC) 3 63 A 400 V 44 kW
Mode 4 (DC) - 400 A 1,000 V 400 kW

and Kempton, 2008; Mültin, 2014). Providing V2G services to the power grid might
decrease lifetime of the vehicle battery. Due to the crucial role of battery costs for
a large-scale EV roll-out V2G is not considered in this theses. However, advances
in battery technology or increasing revenues for flexibility in the power system can
make V2G an interesting option. Then, the proposed model can easily be extended
to incorporate V2G (see Schuller et al., 2014).

Simple Charging Strategy

A central decision for evaluating aggregate load and power system effects of EV
charging is how to model charging decisions of individual vehicles. Under a static
load regime, i.e., in the absence of incentives, it is assumed that EV owners maximize
a vehicle’s range at any given time. Thus, EVs charge whenever possible choosing
the maximum power available. This As Fast As Possible Charging Strategy (AFAP)
approach is the simplest strategy as it does not require additional information, such
as future trips or electricity prices.

3.5.2 Demand Response Characteristics

A large scale EV roll-out will drastically influence DR potentials of residential house-
holds. Compared to the shiftable household appliances discussed before EVs have
a high electricity consumption, are very flexible as they are idle over 95% of a day,
and have large storage capabilities (Kempton and Letendre, 1997). For a basic es-
timation of flexibility in EV charging empirical German mobility data are applied.
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A detailed description of the empirical mobility data is provided in Section 3.5.1.
Figure 3.5 depicts boxplots for the parking and charging durations at three typical
locations for parking of EVs. It is assumed that EVs charge between trips to the
full battery capacity using the maximum power (simple charging). The individual
charge requests of EVs are expressed in hours while applying a fixed charging power
of 11 kWh. Thus, enabling the comparison of charging and parking duration. One
can clearly see that charging to a full battery between trips takes usually less than
half an hour and can be preformed at all locations. For parking long idle times can
be observed at the work and especially the home location offering large flexibility
potentials to schedule charging. Thus, in the following it is assumed that charging
is possible at the locations home and work.
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Figure 3.5: Parking and charging duration for different locations

Furthermore, with large storage capabilities of EVs it can be argued that (fully)
charging a battery between trips is not always required. Figure 3.6 depicts the
cumulative distribution for the maximum number of trips and days a fully charged
battery lasts.17 Obviously, a large share of EVs does not have to be charged on a
daily basis. EVs offer also inter-day flexibility as few charging times over the course
of a week are sufficient to cover driving needs. As the simple charging strategy
is completely static and cannot be influenced by external signals (e.g., dynamic
electricity rate, congestion or renewable generation signals), flexibility in EV charging

17For the preparation of the figure the starting day of the weekly driving profiles is randomly
selected.
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cannot be employed. Alternative charging strategies can largely improve on this
base-line approach with respect to power system efficiency and charging costs.
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Figure 3.6: Accumulated EV shares for number of trips and days till charging has to take
place.

3.5.3 Consumption Model

To integrate EV loads in the simulation framework, a notion of EV charging is
presented. This notion allows to formalize the simple charging strategy (AFAP) and
builds the basis to evaluate smart charging strategies for EVs by exploiting their
flexibility potentials for DR. The consumption model for EVs is an extended version
of the battery storage model, as they additionally require a consumption vector
based on trips and locational information. However, in this study electric vehicles
are not able to feed electricity back to the grid and their charging vector can take on
only positive values. The presented formulation is in line with existing work on EV
charging, e.g., Sioshansi et al. (2010) and Schuller et al. (2014).18 The formalized
model is complemented by a discussion of user interests, battery wear, and technical
characteristics of the charging process as possible model extensions to accomplish
more realistic charging behavior.

18 The formal EV model and the charging strategies in this subsection are adapted from our paper
Flath et al. (2013).
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Electric Vehicle Model

To analyze effects of future consumption technologies a fleet with V ∈ N electric
vehicles is integrated into the residential DR model and investigated over the time
horizon T . The set of EVs is given by V = {vj : j ∈ [V ]} . To match the temporal
resolution of the residential DR model and the driving profiles, the charging process
is discretized using 15minute segments and a constant charging power is assumed.
For the 11 kW case this translates to a maximum charge amount of φv = 2.75 kWh
per time slot. For each EV v the empirical driving profiles of the German Mobility
Panel provide a consumption vector Γv = (γ1

v , . . . , γ
T
v ) specifying the driving energy

requirement (kWh) in time slot t (distance from driving profile times electricity con-
sumption of 0.15 kWh/km). In addition, the empirical profiles provide information
about a vehicle’s location, specifying possible charging locations given by a vector
Av = (a1

v, . . . , a
T
v ) with atv ∈ {0, 1} describing in which time slots a vehicle v is

connected to the grid and able to charge (atv = 1). Charging of EVs can be repre-
sented as charging vectors Φv = (φ1

v, . . . , φ
T
v ). Since EVs can only be charged when

connected to the grid, the vector Av governs the current charging capacity and the
following φt domains obtain:

φtv ∈ [0, atvφv]. (3.16)

The maximum battery capacity is given by bv and assumed to equal 30 kWh. The
battery State-Of-Charge (SOC) is tracked via the vector Ψv = (ψ1

v , . . . , ψ
T
v ), where

ψtv ∈ [0, 1] represents the share of the battery capacity. Thus, each vehicle can be
described by a tuple v = (Γv, Av,Φv, φv,Ψv, bv). Given these properties and an ap-
propriate objective, e.g., charging cost minimization, a charging strategy determines
individual charging amounts Φv.

Simple Charging The simplest behavior of EVs is to charge whenever possible
with the maximum charging amount available (AFAP). The charging amount under
AFAP in one time slot is given by

φtv = min
{
φva

t
v, bv − ψtvbv

}
. (3.17)
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Smart Charging A charging program characterizes the charging amounts φtv per
vehicle and time slot. Irrespective the objective, a valid charge program needs to
schedule charging of EVs over the course of the simulation horizon to meeting the
trip requirements of the driving profiles:

ψtvbv = ψt−1
v bv + φtv − γtv. (3.18)

Objectives for scheduling EV charging might include, for example, a reduction of
emissions, charging costs or grid utilization. To avoid simulation artifacts initial
SOC ψ0

v and terminal SOC ψTv are set to the same level:

ψ0
v = ψTv . (3.19)

Condition 3.19 prevents the optimization from fully discharging the battery at the
end of the optimization horizon. A value of ψ0

v = 0.3 is assumed for the initial SOC
of EVs.

Total Population Consumption

Consumption for all electric vehicles LtV in time slot t is given by:

LtV =
∑
v∈V

φtv. (3.20)

Model Extensions

Such a simple smart EV charging model allows to identify potentials of distinct
coordination approaches for EV charging by aligning mobility requirements, technical
specifications, and charging activity. Yet, the model facilitates maximal flexibility
for charging of EVs and might lead to an overestimation of benefits in the power
system and cost savings potentials of the user. Consideration of user interests (e.g.,
spontaneous trip range or battery wear), and technical details of the charging process
might be of interest to improve model adequacy.
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User Interests Scheduling of EV charging, as presented in the smart charging
model, can exhibit discharging to low SOC levels, e.g., to exploit cheap electricity
prices at later times. Such SOC trajectories are unwanted by EV users, as they
prohibit spontaneous trips. To avoid this undesired behavior, ideally, vehicles start
charging if the SOC drops below a certain threshold level ψ. According to Flath et al.
(2012), adding an additional constraint to the model can trigger charging below a
SOC threshold level (for all v ∈ V and t ∈ [T ]):

φtv ≥ atv φv
ψ − ψtv
ψ

. (3.21)

Charging activity triggered by Condition 3.21 varies with the spread of the current
SOC and the specified minimum battery level. Thus, higher charging power is applied
for lower SOC levels reflecting the urgency of charging. At the same time, this
formulation retains linear program properties facilitating an efficient calculation of
the model. Within this thesis a value of ψ = 0.3 is assumed for the SOC threshold
level. See Flath et al. (2012) for a more intensive discussion and a sensitivity analysis
of SOC thresholds.

For EVs the battery is the sole on-board power source. Thermal heating and
cooling requirements have to be covered by the battery resulting in lower range for
driving and additional battery wear. Battery usage for cooling and heating can be
reduced via preconditioning of EV cabin or battery before a trip using power from the
electricity grid. Barnitt et al. (2010) estimate a 10minute period for preconditioning
with average power of 3 kW for cooling and 4 kW for heating. Looking at the still
prevailing barrier range anxiety poses for EV adoption, preconditioning might be
interesting to face range anxiety and reduce battery wear. Yet, the energy needs for
preconditioning correspond to about 2% of the average battery capacity of current
EVs. For new generation of batteries with even higher capacity and increased life
time the moderate importance of preconditioning for EV range can be expected to
decrease. Therefore, it is not included in the EV charging model.

Battery Wear Battery technology is crucial for the large-scale role out of EVs.
Batteries are costly and due to missing experiences on wear and life expectancies
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might circumvent EV purchases. Some car manufacturers take the risk of battery
wear and offer a leasing model19 or guarantee life time and minimum range20. Charg-
ing also effects battery lifetime and could be considered for a more realistic model of
charging flexibility to minimize wear of lithium-ion batteries. Charge rate and SOC
are the main drivers for battery wear (Han et al., 2014). Due to the low C-rates21

for the IEC charging modes (C-rates between 0.12 and 0.73) the impact of SOC on
battery wear is dominating and effects of the charge rate can be neglected (Bashash
et al., 2011).

Most lithium-ion batteries suffer stress at high and low SOC levels (Han et al.,
2014). Bashash et al. (2011) present an EV charging model integrating the impact
of SOC on battery health. Their approach allows to exploit the full battery capacity
as it balances between energy costs and battery wear. However, it requires a detailed
and complex lithium-ion battery model and multi-objective optimization. To retain
linearity of the optimization programs an action some EV manufacturers undertake
to prolong battery life time can be came back to. They limit the available charge
and discharge level of the battery (Marra et al., 2010). Such a model with restricted
battery capacity can establish a lower benchmark for charging flexibility and vehicle
range.

Technical Characteristics The basic model disregards technical characteristics
of EV charging and assumes a linear increase of the SOC based on charging power.
In reality, EV battery charging is performed with constant current only until the
maximum cell voltage is reached. Then, fully charging the battery takes place with
constant voltage, resulting in a non-linear increase of the SOC. Switching from con-
stant current to constant voltage within the charging process appears at the max-
imum cell voltage, i.e., at high SOC levels. Thus, a limit on the available battery
capacity also avoids the constant voltage phase during charging, keeping the EV
model linear (Marra et al., 2012).

19http://www.renault.de/renault-modellpalette/ze-elektrofahrzeuge/zoe/zoe/
preise-und-technische-daten/

20http://www.teslamotors.com/de_DE/models/design
21capacity-normalized charging speed (battery capacity

1h )

http://www.renault.de/renault-modellpalette/ze-elektrofahrzeuge/zoe/zoe/preise-und-technische-daten/
http://www.renault.de/renault-modellpalette/ze-elektrofahrzeuge/zoe/zoe/preise-und-technische-daten/
http://www.teslamotors.com/de_DE/models/design
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Another technical aspect are losses in the charging process. Losses scale quadrat-
ically in charging current (Ploss = I2R). Hence, there is a trade-off between charging
speed and charging efficiency. However, internal resistance of modern EV batteries
is very low. Amoroso and Cappuccino (2012), report a limited decline in charging
efficiency for C-rates below 1.0 with efficiency ranging from 0.99 at 0.1C to 0.91 at
1.0C. The applied charging power of 11 kW results in a C-rate of 0.37. Due to this
very low C-rate, in the EV model a loss-free charging process with efficiency ηv = 1
is assumed.

3.6 Scope of Supply Models

The demand models previously described represent DR behavior of residential cus-
tomers. Yet, to assess the impact of DR in the power system a representation of the
supply side is required. For such a supply model the trade-off between complexity
and adequacy arises once again. Existing generation models can provide some guid-
ance to balance these contrary requirements. In the following, a brief overview of
supply side representations in scientific literature is given.

Several researchers completely neglect the supply side and apply basic load pa-
rameters to assess DR effects. Typically the focus in these publications is on peak
load reduction. For evaluation load duration curves (Ramchurn et al., 2011) or
peak-to-average ratio (Shinwari et al., 2012) are used. Others deploy comprehen-
sive supply models integrating real-world plant configurations. In the work of van
Vliet et al. (2010) plant capacities and generation costs establish a merit order to
dispatch generation units. Sioshansi (2012) formulates a unit commitment problem
to determine the least-cost schedule of generation units in one region.

In another stream of research stylized supply side models are used to evaluate
optimized operation strategies of dispatchable units for improving integration of
intermittent renewable generation. Varaiya et al. (2011) establish a generation model
focusing on adequacy of generation to meet load requirements. Hooshmand et al.
(2013) provide a dispatch model incorporating constraints for plant characteristics
and distribution grid capacity.
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Investigations with a focus on DR for the integration of renewable energy sources
show a broad range of detail in supply side representation. The most basic ap-
proaches assume static output time series of intermittent generators and schedule
flexible loads to fit these profiles. To evaluate the improvements in power system
efficiency utilization levels of renewable generation (Subramanian et al., 2012), de-
viation between load and generation (van den Briel et al., 2013) or imbalance costs
(Vandael et al., 2011) are considered. A stylized supply side model is provided by
Grünewald et al. (2015). They assume a merit order stack with different classes
of generation units (e.g., intermittent renewable generation or baseload plants) to
derive costs of electricity generation under different retail price regimes. Göransson
et al. (2010) and Wang et al. (2011) employ real-world plant configurations to assess
effects of flexible loads, e.g., Plug-in Hybrid Electric Vehicles (PHEVs), in a power
system with high wind shares. Such comprehensive supply side models enable to
evaluate the effects of DR on costs and emissions in a regional power system. Yet,
to calibrate generation units they require detailed real-world data on power plant
characteristics.

3.7 Supply Model

This section describes a reference power system for the evaluation of DR effects.
To retain a clear focus on load flexibility potentials and coordination mechanisms,
it is abstracted from a comprehensive supply side model and a stylized power sys-
tem is used. Acknowledging the potentials of residential DR for the integration of
renewable generation, a reference power system with a high wind and PV share is
assumed. In this system renewable energy sources supply residential load of house-
holds, stationary batteries and EVs. Load exceeding renewable generation (residual
load) needs to be supplied by dispatchable conventional units. Empirical wind and
PV generation data are scaled to match the total consumption.22 In the following,
these empirical output profiles are characterized and the accuracy of available wind
and PV generation forecasts is discussed. Further, the stylized power system, which
enables to evaluate DR effects on the supply side, is presented in more detail.

22Modeling of generation output provides another option to integrate intermittent renewable
sources in the supply model. For wind such a model is provided, for example, by Keles (2013).
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3.7.1 Renewable Generation Input Data

Renewable generation and day-ahead forecast data employed covers wind and PV
time series from German TSOs in 15-minute resolution. Wind data is obtained from
the balancing zone of 50Hertz23 and PV data from Transnet BW24. Missing data
points are estimated using linear interpolation of available adjacent values. The
subsequent analysis of the empirical generation and forecast data helps to better
understand the challenges renewable generators might pose in the power system.

Generation Characteristics

During the last years major renewable generation capacities have been installed.
In the two balancing zones serving as data sources at the end of 2013 13.5 GW
wind (50 Hertz) and 4.7GW PV (Transnet BW) have been installed. Electricity
generation of wind and PV is directly affected by the current weather conditions.
Thus, the resulting output of both sources is highly volatile as shown in Figure 3.7.
The boxplots for the hourly values are based on empirical generation data of the
two balancing zones for the years 2012 and 2013. To facilitate a clear presentation
outliers are not depicted in the boxplots. Despite the influence of clouds and sunshine
periods, PV generation follows some basic patterns with a peak about noon. Yet,
the uncertainty rests in the height of the daily amplitude which can vary to a great
extent between days. In contrast, wind generation does not show a pronounced
pattern. Only a small drop during the morning hours and a slight increase in the
night hours can be observed.

Table 3.8 gives an overview of basic summary statistics and output variations
for the empirical wind and PV data. Looking at the median values the intermittent
characteristics in PV and wind output can be observed. During half of the time slots
no or only limited renewable output is available. Meanwhile, in the peak generation
hours up to 3.7GW PV and 13.5GW wind power is provided. In addition, the table
shows rapid changes in output levels for PV and wind, thus, emphasizing their high
short term volatility. In the two balancing zones PV generation can vary by up

23http://www.50hertz.com/de/Netzkennzahlen.htm
24http://www.transnetbw.de/de/kennzahlen

http://www.50hertz.com/de/Netzkennzahlen.htm
http://www.transnetbw.de/de/kennzahlen
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Figure 3.7: Variation of generation output per hour

to 0.8GW in 15-minutes and by 0.9GW in one hour. Wind output changes up to
1.4GW in 15-minutes and up to 1.9GW in one hour.

Table 3.8: Summary statistics and output variation within 15-minutes and one hour for
PV and wind data (all values in [GW])

Summary statistics Output variation

Year Cap* Max Mean Median SD Up15 Down15 Up1h Down1h

PV 2012 4.1 3.7 0.5 0 0.8 0.3 -0.4 0.7 -0.9
2013 4.7 3.7 0.5 0 0.9 0.4 -0.8 0.9 -0.9

Wind 2012 12.4 10.2 2.1 1.5 2.1 1.0 -0.9 1.9 -1.7
2013 13.5 11.1 2.1 1.4 2.1 1.4 -0.9 1.8 -1.9

*Generation capacity installed at the end of the year

The average monthly output (see Figure 3.8) shows seasonal variations for both
generation technologies. PV achieves higher output during summer and the lowest
levels during winter months. Longer day periods in summer provide an explanation
for higher PV generation in summer. In contrast, wind turbines have the highest
generation output in winter. Moreover, large differences in generation output be-
tween different years can be observed in the figure. Overall, the short and long
term variations in wind and PV generation call for large reserves of dispatchable
generation units to guarantee system stability.25 To reduce reserve requirements res-
idential DR is a promising option to facilitate the integration of renewable sources
and maintain balance between demand and supply on short term. Obviously, flexible
residential loads do not allow to address seasonal or yearly variations in renewable
25A more detailed investigation on effects and costs of intermittent generation in a power system

is provided by Skea et al. (2007).
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generation output and should be complemented by long term storage such as power
to gas (Schuller et al., 2015).
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Figure 3.8: Monthly PV generation for the Transnet BW and wind generation for the
50Hertz balancing area for 2012 and 2013

Accuracy of Generation Forecasts

Forecasts of renewable generation allow to schedule flexible loads and other gener-
ation units in advance. The accuracy of these forecasts is important to decrease
deviations from the original schedule and thus reduce requirements for real-time
adaption (Klobasa, 2009). TSOs in Germany use forecasts for wind and PV genera-
tion on a day-ahead basis in their balancing area. This data is publicly available and
within this thesis applied to represent renewable generation forecasts. Figure 3.9
depicts forecast and generation data for one example week of the two intermittent
generation technologies. In the figure it can be observed that PV forecasts match the
general output pattern and only small deviations in the morning and afternoon hours
take place. Yet, the height of the daily PV amplitude around noon is often missed by
predictions. The right panel of the figure shows that overall wind prediction meets
the real generation very well. In comparison to PV, forecasts for wind deviate to a
smaller extent from real generation, but deviations take place more frequently.

These findings are supported by the density plots in Figure 3.10. To create this
figure data on forecast errors are normalized by the installed generation capacity and
PV night hours without generation are excluded. Positive values indicate situations
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Figure 3.9: PV and wind forecast and generation for one example week

in which realized generation exceeds the forecast output level. For PV good predic-
tions and large deviations occur more frequently as compared to wind generation.
Wind predictions more often show deviations of medium size.
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Figure 3.10: Normalized forecast error for PV and wind generation for 2013

3.7.2 Stylized Power System

For the impact analysis of residential DR a power system with a large share of
volatile renewable generation GRES is assumed.26 For this purpose wind and PV
generation are rescaled to match the total consumption during the simulation period.
This way the volatile characteristics of intermittent generation are represented by

26The description of the stylized power system and the conventional generation model in this
section are also used in our working paper Flath and Gottwalt (2014).
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empirical inputs. Due to the scaling the main property of the empirical data for the
simulation is the relative variation bandwidth. Today, some regional power systems
already show high shares of volatile renewable generation. One real-world example
for such a power system would be Western Denmark where wind turbines make a
large amount of the installed power generation capacity (Göransson and Johnsson,
2009).

The residential load in the system comprises fixed household base load27 b and
flexible loads of household appliances LFH and electric vehicles LV . Stationary
batteries can either supply or consume electricity. Their load is denoted by LS. In
the presence of inflexible base load b, GRES − b is the net renewable generation,
where positive values indicate renewable generation available for flexible loads (see
Figure 3.11 for one example week). Note that net renewable generation can also take
negative values.
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Figure 3.11: Base load (b), renewable generation (GRES) and net renewable generation
(GRES − b) for one example week

Typically generators in the power system are dispatched in order of increasing
marginal generation costs (Stoft, 2002). Thus, from an economic perspective it is
optimal to first use electricity from renewable sources, as their marginal costs of
generation are very low. In a power system with a large share of volatile renewable
generation, flexible load should ideally be scheduled such that the residual load L′,
which needs to be covered through costly conventional generation GC , is minimized.
Residual load is defined by L′ = b + LFH + LS + LV − GRES. To avoid dispatch
of expensive generators and to reduce required generation capacity in the system
residual load should be evenly distributed.
27Based on the standardized household load profiles from the German utility association.
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Conventional Generation Model

Cost-aware coordination of flexible loads entails two sub-objectives: (i) reducing
total conventional generation usage (energy) and (ii) limiting instantaneous peaks of
residual (power).28 For DR evaluation these dimensions are considered isolated for
a high-level assessment of the coordination properties and in a more comprehensive,
integrated way based on a dispatch model with an embedded generation cost function
C(L′). To this end, a stepwise increasing linear function which mimics the merit
order curve is applied (Sensfuss et al., 2008).29

The power system model is formulated as a linear program minimizing variable
costs of conventional generation. For all simulation times t ∈ [T ] the following
objective function is obtained:

min
∑
t

C
(
Gt
C

)
(3.22)

The balance between generation and demand is ensured through the following con-
straint:

∀t ∈ [T ] : Gt
C +Gt

RES − LtFH − LtS − LtV − bt ≥ 0. (3.23)

It requires the total generation from renewable and conventional generators to cover
total electricity demand in each time slot. In a system with a large share of renewable
energy sources generation output might exceed load and available storage potential.
For such situations curtailment of renewable output is an option to guarantee sys-
tem stability. Thus, in-line with Varaiya et al. (2011) the balancing constraint only
requires generation adequacy (generation ≥ demand) instead of strict equality re-
flecting the shedding potential of renewable generators.

Model extensions

In economics the term non-convexity is applied to describe a market with discrete
choices (Scarf, 1994). The electric power market is a prominent example for such

28Clearly, the two are directly connected as total generation is the integral over instantaneous load.
29Breakpoints of the piecewise linear function are assumed every 40 kW. At each breakpoint the

slope (i.e., variable costs) increases by 2.5 monetary units.
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a market. Non-convexities arise from the operation properties of generators, e.g.,
start-up and shut-down costs as well as minimum output requirements . The lumpi-
ness of the costs in the electric power market can largely influence the operation of
conventional generators (O’Neill et al., 2005). For example, Sioshansi et al. (2010)
show that exogenously specified electricity rates can properly signal the marginal
cost of generation, but do not convey non-convex start-up costs of generators. To
retain a clear focus on the load coordination aspect and to avoid further assump-
tions, this work abstracts from further constraints like ramping or grid/ substation
capacity. However, these can be easily embedded in the stylized dispatch model (see,
e.g., Hooshmand et al., 2013).





Chapter 4

Flexibility of Residential Loads

This chapter focuses on the potential of incentive based DR programs in a residen-
tial area to support the integration of renewable generation. The analysis builds
on the demand and supply model presented in the previous chapter. Combining
flexible loads and volatile RES in one portfolio allows to harness synergies. A des-
ignated entity typically referred to as “aggregator” or “load controller” can directly
schedule these flexible loads to increase coverage of demand by renewable generation
and reduce requirements for additional conventional generation. Under direct load
control the aggregator centrally creates a schedule for the flexible loads. Thus, the
evaluation establishes an upper benchmark.

In the first part, this chapter provides decision support for aggregators on dif-
ferent levels. For operational control of flexible loads the importance of information
availability (forecast quality, lookahead times) for scheduling is analyzed. A large
amount of flexible loads in the portfolio of an aggregator might not be enough to
balance load and generation. Thus, to establish some guidelines for the portfolio
composition of an aggregator the impact of customer (tactical level) and renewable
generation (strategic level) variations is investigated.

Residential households can expect some form of incentive payments for the pro-
vision of load flexibility to the aggregator (Albadi and El-Saadany, 2008). In the
second part of this chapter, the value of individual devices for DR is estimated and
serves to identify customers that can benefit from participating in such programs.
The value of individual devices for DR also serves to identify key features character-
izing load flexibility and to prioritize flexible loads for DR applications.

73
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Section 4.1 provides a short overview of centralized optimization approaches in
power system analysis with a focus on demand response. Section 4.2 describes a
model to assess effects of direct load control and sketches possible applications. A
base evaluation scenario is described in Section 4.3. Subsequently, one example
week illustrates the effects of direct load control for flexible loads (Section 4.4).
Section 4.5 investigates how information availability and portfolio composition affects
load balancing potentials of flexible demand. Section 4.6 takes a closer look at the
opportunities of DR for residential customers and identifies potential winners and
losers. In addition, key dimensions of flexibility are determined. Finally, Section 4.7
concludes and summarizes the main implications of this chapter.

The integrated optimization model employed extends the joint work from
Gottwalt et al. (2013) by including flexible residential household appliances.

4.1 Related Work

Optimization in the power system has a long history in dispatching of generation
resources. In the unit commitment problem the system operator determines the
least-cost scheduling of generation units to meet electricity demand. Long-term unit
commitment problems for entire regions can lead to high computing times. Thus,
various approaches for generation scheduling are applied, e.g., mixed integer pro-
gramming (Li and Shahidehpour, 2005) or particle swarm optimization (del Valle
et al., 2008). A bibliographical survey on methods to solve unit commitment prob-
lems is provided by Padhy (2004).

Recently, flexible residential demand has been integrated in these models to assess
the effects on costs and green house gas emissions in traditional power systems
(Sioshansi et al., 2010; van Vliet et al., 2010). A unit commitment model to assess
cost reductions via flexible residential demand in a future power system with high
shares of fluctuating RES is provided by Göransson et al. (2010) and Wang et al.
(2011). Most researchers neglect household appliances in their studies and focus on
exemplary use of EV charging as these loads are large and flexible.
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To avoid the complexity of centralized optimization on the system level, several
researchers apply hierarchical coordination procedures. To this end, they split the
general optimization problem into several smaller subsets controlled by local entities
(Li et al., 2012). On the local level aggregators schedule flexible demand—often
with the objective to reduce peaks or reduce power quality problems. In addition,
the local aggregators receive signals from superordinated controllers, e.g., to prevent
stability threats (Galus et al., 2012) or to facilitate load balancing on higher grid
levels (Vandael et al., 2011).

Furthermore, centralized load control is applied to study potentials of flexible
residential demand for specific system parts. The maximization of distribution grid
losses is a case in point (Clement et al., 2009; Acha et al., 2010). Direct control of
EV fleets or HVAC pools for power system regulation is another scenario considered
(Andersson et al., 2010; Caramanis and Foster, 2009; Sullivan et al., 2013). Tushar
et al. (2014) investigate the control of residential demand to increase electricity
autarky of a community. They schedule residential loads and EV charging trying to
minimize electricity imports for a community with a high share of RES.

4.2 Direct Load Control Model

Household appliances, EVs, and stationary batteries are incorporated in the demand
model. This comprehensive approach allows a broad assessment of various DR po-
tentials to support the integration of volatile and uncertain renewable energy sources.
The centralized control model and the simulation process are described in more de-
tail in this section. Furthermore, concrete application scenarios of such a model are
discussed.

4.2.1 Formalized Description

Integrated optimization of device scheduling and generation dispatch can be formu-
lated as a mixed-integer linear program. Decision variables, objective function and
constraints of this formulation are described in the following. For a more detailed
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description of the individual models, it is referred to the Sections 3.3.3, 3.4.2, and
3.5.3 for the demand side and to Section 3.7.2 for the supply side.1

Decision Variables

The goal of the optimization model is to schedule household appliances, EV charging,
and battery storage for all simulation times t ∈ [T ] such that the maximum amount of
electricity for their operation is provided from renewable sources. Optimal runtimes
for household appliances are characterized by the binary variables xta for appliances
a ∈ A, xtb for appliances b ∈ B and xtr for run r ∈ Rc of appliance c ∈ C. An
optimal charging program characterizes the charging or discharging amount φts for a
stationary battery s ∈ S and the charging amount φtv for an electric vehicle v ∈ V
for each time slot. As stationary batteries can feed electricity back to the grid,
the charging or discharging amount is restricted to the interval φts ∈ [φ

s
, φs]. In

contrast, for EV charging only positive charging amounts are possible φtv ∈ [0, atvφv].
Remember that atv indicates the available charging capacity at the vehicle’s location
for a time slot. Whenever consumption exceeds supply from renewable sources,
conventional generation has to be used. On the supply side the continuous decision
variable is Gt

C for the energy that needs to be delivered by conventional generation.

Objective Function

The objective of the integrated device scheduling and generation dispatch model2 is
the minimization of variable generation costs cv(Gt

C) while ensuring power system
and device constraints:

min
x,φ,GC

T∑
t=1

cv
(
Gt
C

)

with (x, φ,GC) ∈ B× R× R+.

1 A basic version of the integrated optimization model focusing on EVs as flexible load has been
presented in the joint work of Gottwalt et al. (2013).

2See Code B.1 in the Appendix for an ILOG OPL example specification of the optimization
problem using a semi-automatically controlled appliance.
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Constraints

To ensure the feasibility of the decision variables several constraints apply. A valid
solution requires total generation from conventional plants (Gt

C) and from renewable
energy sources (Gt

RES) to match the electricity demand of households, stationary
batteries and EVs in any time slot. Bear in mind that the consumption of an active
household appliance a ∈ A and b ∈ B is denoted by ρ. Thus, the following equation
guarantees demand coverage:

Gt
C +Gt

RES −
∑
a∈A

xtaρa −
∑
b∈B

xtbρb

−
∑
c∈C

∑
r∈Rc

t∑
k=1

(
xkr · Pr (t+ 1− k)

)
−
∑
s∈S

φts −
∑
v∈V

φtv − bt ≥ 0. (4.1)

For the ease of reading the definitions of the flexible devices are repeated in the
following. The simulation horizon T is divided in Ca ∈ N intervals for appliances
a ∈ A and the number of activation slots per operation or appliance has to be
specified to prevent the optimization from curtailing run durations. Condition 3.2
ensures that runs of these appliances fit the required duration δa in each flexibility
interval [sia, eia]:

∀i ∈ [Ca] :
ei

a∑
t=si

a

xta = δa. (3.2 revisited)

Similar, for appliances b ∈ B the simulation horizon T is divided into Cb intervals
and Condition 3.4 ensures activation of each operation i ∈ Cb in the corresponding
flexibility interval [sib, eib]:

∀i ∈ [Cb] :
ei

b∑
t=si

b

xtb = 1. (3.4 revisited)

Condition 3.8 ensures the start of a run r ∈ Rc of appliance c ∈ C in the flexibility
interval [tsr, tlr]:

tlr∑
t=tsr

xtr = 1. (3.8 revisited)
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For the same appliance type Pr = (ρ1
r, . . . , ρ

δr
r ) defines the consumption profile and

the load of an operation is given by:

Pr(τ) =


ρτr , τ ∈ {1, . . . , δr}

0, otherwise.
(3.10 revisited)

For a stationary battery s ∈ S the SOC (ψts) at time t is determined by the battery
level in t− 1 and the charging or discharging (φts) amounts:

ψtsbs = ψt−1
s bs + φts. (3.13 revisited)

In addition, a terminal battery level ψTs has to be specified to prevent optimization
from completely discharging the battery towards the end of the time horizon:

ψ0
s = ψTs . (3.14 revisited)

In a similar fashion Constraints 3.18 and 3.19 capture EV charging. The former
ensures continuity of the battery level (ψtv) of each vehicle over time by linking
charging amounts (φtv), driving consumption (γtv), and the battery level in t− 1:

ψtvbv = ψt−1
v bv + φtv − γtv. (3.18 revisited)

The latter constraint specifies initial and terminal SOC which typically are set to a
common level:

ψ0
v = ψTv . (3.19 revisited)

4.2.2 Solution Procedure & Workflow

For the analysis of DR potentials two basic simulation configurations are applied.
First, full information on appliance and charging flexibility, renewable generation
output, and power system characteristics is assumed. The left panel of Figure 4.1
depicts the simulation flow for the integrated optimal scheduling and Conventional
Generation (CG) dispatch model under full information. Historic Renewable Ge-
neation (RG) time series are used as input.
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Figure 4.1: Overview of simulation flow for direct load control (with and without uncer-
tainty in renewable generation output)

In the second configuration renewable generation output is not exactly known
in advance and the simulation requires an additional step (see right panel of the
figure). For this purpose, the integrated model is executed with forecasts of renewable
generation to build the schedule of appliance operations and EV charging. Then, the
supply model is executed again using the real renewable generation output and the
schedule determined under generation forecasts to dispatch conventional generation
and to estimate system costs.

To be able to efficiently evaluate power system effects of flexible residential de-
mand in a variety of scenarios an approach integrating JAVA for data handling (input
and output) and problem modeling, IBM ILOG CPLEX 12.5 for optimization runs,
and the statistical software R for visualization and analysis of the output data is
used.

4.2.3 Performance

The software package CPLEX is used to solve the integrated model and schedule
consumption of devices and dispatch generation. Computational complexity is con-
sidered as a standard drawback of centralized regimes and may impede solving large-



80 Flexibility of Residential Loads

scale problems. Runtime for a single optimization of the integrated model is driven
by the optimization horizon, the population size, and the set of flexible appliances
that are scheduled. For scheduling of flexible appliances, EVs and battery storage
the optimization horizon ideally should be chosen between one day and one week.
Shorter horizons require adaptions of the JAVA model implementation to avoid end
of horizon effects. Longer optimization horizons do not provide much new insights
but lead to increasing runtimes.

The impact of optimization horizon and population size as well as the set of flex-
ible appliances on simulation runtime is shown in Table 4.1.3 The table includes the
number of problem variables and constraints, which drive runtime for the distinct
problem sizes. Runtime estimations presented in the table are based on five repli-
cations of the simulation. It can be observed that the number of problem variables
and constraints increase linear in the population size. The non-linear increase for a
larger optimization horizon is due to the modeling approach for appliances in group
C. For these appliances the number of runs r and the length of the vector Xr which
indicates the start of a run both go up with a larger optimization horizon.

A schedule for the full set of flexible devices of 10,000 households including EVs
and stationary batteries over a horizon of one day can be calculated in about 350
seconds. The same population size for a weekly optimization horizon has about 43
million constraints and becomes computationally intractable due to memory require-
ments.4 Thus, simulations for larger populations can only be conducted by reducing
the number of flexible appliances, with the current mixed-integer formulation, the
applied solver and the hardware in use. A smaller set of flexible appliances, e.g.,
only storage space and water heaters, enables optimization of a day or a week for
100,000 households.

Note, that for all optimization runs in this thesis an optimality tolerance of 1%
is used. This gap reduces runtime for daily optimization by 20% and for weekly
optimization by 90% meanwhile quality of the solution is only slightly affected.5

3Simulations are performed on an Intel(R) Core(TM) i5-3470 CPU with 8 GB RAM operating on
Windows 7 Professional 64 Bit.

4A rough estimation for the lower bound of memory use in CPLEX is given by one gigabyte per
million constraints for integer programs.

5 CPLEX calculates a high-quality solution and proves the optimality of that solution. A high-



Direct Load Control Model 81

Table 4.1: Average simulation runtimes, number of problem variables and number of con-
straints for various optimization scenarios of dircet load control

Optimization horizon

Day Week

Pop.
size

Flexible
Appliances

Avg. run-
time [s]

Variables
[×103]

Constr.
[×103]

Avg. run-
time [s]

Variables
[×103]

Constr.
[×103]

10 Full set 0.5 3.0 3.0 1.2 55.1 53.5
100 Full set 0.7 29.1 23.4 11.0 489.9 550.0
1,000 Full set 11.1 284.1 225.3 341.5 4,824 4,410
10,000 Full set 344.2 2,838 2,246 Out of memory 42,900*

100,000 Stor. heater 85.0 1,152 8.1 716.0 8,067 88.0
*Estimated number of constraints

4.2.4 Model Applications

The integrated model allows to assess balancing potentials of flexible loads under
direct load control. Given the large number of applications facilitated by such a
model, suitable evaluation scenarios have to be chosen. The model can be applied
to analyze overall effects in a future power system with a large share of renewable
generation and flexible loads in the style of Göransson et al. (2010). This typically
requires an extrapolation of the results of a small representative population to system
level (see Ramchurn et al., 2011 or Kamper, 2010). The supply side representation
facilitates an analysis of variable generation costs in the power system using a merit-
order based cost function. For a power system analysis dispatch of individual plants
might be of interest, e.g., integration of a comprehensive unit commitment model.

The idea of a load aggregator, which bundles the capacities of various households,
is another possible analysis scenario for a centralized control regime. Such an ag-
gregator has to supply its customers. For this purpose the central entity must buy
electricity on the power market or contract generators (Schuller, 2014). An electric
utility acting in an environment with priority feed-in of renewable generation is an
example for such an aggregator. Here, demand flexibility offers the potential to
make use of available renewable generation and to avoid contracting of additional
generation capacities in peak hours.

quality solution often can be found in a fraction of the time required to prove the optimum.
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Finally, a microgrid of a small residential municipality is an interesting scenario
for centralized control of residential household loads (Tushar et al., 2014). Such a
community has a fixed installed capacity of volatile renewable energy sources (i.e.,
wind turbines and PV panels) and electricity demand of the municipal households
is flexible. A central entity schedules these loads to utilize wind and PV generation
reducing additional electricity required and thus minimizes the costs of electricity
supply for the households. A microgrid scenario calls for the usage of local PV
and wind generation data as for a small municipality forecasts are less accurate as
compared to an entire region.

4.3 Model Setup

The previous section described a formal integrated load scheduling and dispatch
model. In this section, parameter specifications for instantiating the base scenario of
the model are given which is then applied to analyze balancing potentials of flexible
demand for a load aggregator. Further, the generation of static load scenarios for
comparison and the data evaluation approach are described. An overview of all
demand and supply side parameters characterizing the base scenario is provided in
Appendix B.

Demand Side – Device Shares and Population Size

The base evaluation scenario follows Kamper (2010) and simulates a population of
1,000 households. An EV share of 16% is assumed which corresponds to the 6M
EV target of the Federal Government of Germany (2011) for 2030. For decentralized
battery storage the capacity prediction of Schlick et al. (2012) is extrapolated to 2030
resulting in a 2.5% penetration level for the base scenario. For larger populations
simulation runtime for the full set of flexible appliances increases and renders an
evaluation of different scenarios and sensitivities computationally intractable.



Model Setup 83

Supply Side – Generation Portfolio and Simulation Horizon

For the base scenario a generation portfolio with a 50–50 mix of PV and wind is
assumed. Historical renewable generation time series are scaled to match energy
demand of EVs and households over the simulation period. Consequently, with fully
flexible devices demand could be covered completely by PV and wind.

Electricity output of renewable generators differs largely between weeks (see Sec-
tion 3.7.1). To incorporate these variations of generation output a reasonable assess-
ment of flexible load potentials for the integration of PV and wind has to be based
on a simulation horizon of several weeks. Analyzing flexible demand potentials over
an entire year allows to capture seasonal differences in generation patterns. Again,
optimization runtime is the limiting factor when determining the number of simu-
lated weeks. As flexible residential loads are not capable to capture seasonal load
variations, for the analysis the simulation is executed over twelve weeks. Over this
horizon low and high wind and PV generation weeks can be covered, while simulation
runtime remains manageable.

Simulation Flow – Solution Procedure Static Load

In addition to a central control regime, a static load scenario with uncontrolled
appliances and EV charging is considered to assess efficiency gains due to flexible
residential demand. In the absence of load control, it is assumed that EV charg-
ing activity is only governed by drivers’ individual preferences. Hence, the simple
strategy (AFAP) is applied to determine charging of the EVs. As a reminder, under
an AFAP regime drivers maximize their EV’s range by charging whenever possible
with the maximum charging power available. Under a static load regime, i.e., in
the absence of incentives or advanced strategies, it is assumed that batteries are
not in use. In the uncontrolled scenario, first, appliance and EV loads have to be
determined. Then, the supply side model is applied to derive conventional genera-
tion requirements supplying residential load and EV charging that are not covered
by generation from renewable sources. Figure 4.2 illustrates the simulation flow for
static demand in the absence of load control.
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Figure 4.2: Overview of simulation flow for static demand

Output Data Analysis – Sampling

A simulation is a computer-based statistical sampling experiment. Consequently,
appropriate techniques to analyze the output data are required (Law, 2011). The
simulation of residential electricity demand uses random samples from probability
distributions as starting points of appliance operations. Thus, a single simulation
run only reflects a particular realization of these random variables. Results for a
single realization may therefore deviate from the true characteristics due to input
variance. Evaluations of the centralized control regime require repeated simulations
to avoid erroneous inferences on the system.

Often mean and error bars of the weekly variable generation costs are reported
for analysis. Mean costs for each of the 12 simulated weeks w ∈ [W ] are averaged
over the number of simulation runs r ∈ [R]:

C
v

W = 1
R

R∑
r=1

1
W

W∑
w=1

cv(Gr,w
C ), (4.2)

where Cv
W is the point estimate of the weekly mean variable generation costs of

R independent simulation runs. Error bars show the standard error of the weekly
variable generation costs indicating the variations between weeks. The standard
error (SE) is calculated as:

SECv
W

= 1√
W

√√√√√ 1
W

W∑
w=1

(
1
R

R∑
r=1

cv(Gr,w
C )− Cv

W

)2

. (4.3)

The number of required simulation runs can be determined following the guide-
lines for the analysis of terminating, stochastic simulations by Law (2011). For a
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detailed description of this procedure and the assessment of replications required
for the residential demand model see Appendix C. In the following, if not indicated
differently, evaluations are conducted based on five replications of each simulation
scenario. This results in an average runtime for the base scenario over 12 weeks of
approximately 1.3 hours for an optimization horizon of one day and 4.7 hours for
optimization of one week. Note that model extensions (e.g., uncertainty in renew-
able generation or storage valuation for EVs and stationary batteries) and scenario
variations increase runtime for daily optimization up to 6 hours for one simulation
run of 12 weeks.

4.4 Optimal Scheduling of Residential Load

The following analysis is based on the assumption that on the operational level
an aggregator can directly control residential appliances. A one week optimization
horizon has been chosen.6 This section illustrates the aggregate effects of direct
control on load and generation. Further, the behavior of flexible residential loads is
illustrated and described in more detail.

4.4.1 Demand & Supply Behavior

The results with static household loads and uncoordinated charging are presented to
illustrate the benefits of demand flexibility of residential loads. In the upper part of
Figure 4.3 one example week of static load (Static) is illustrated in the right panel and
the corresponding renewable and conventional generation in the left panel. Base load
shows typical patterns according to the standardized load profiles. Load of flexible
household appliances hardly differ between weeks due to the large population. Given
the repetition of weekly driving profiles, EV load remains identical over all weeks for
uncoordinated charging.

6This choice is driven by previous work on EV charging where typically an optimal charging
problem as a linear program is formulated with full information over one week (Flath et al.,
2013; Schuller et al., 2014).
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The aggregate load curve shows distinct morning and evening peaks. In these
peaks EV charging loads ad to a high base load and the usage of other—potentially—
flexible appliances. At weekends the morning peak appears some hours later as
compared to work days. In the renewable generation pattern high midday PV peaks
can be observed. Beyond these peaks conventional generation is required at almost all
times. In this example week 60.6% of the static load can be supplied by wind and PV
generation. To cover the highest peak load in the evenings maximum conventional
generation requirements exceed 420 kW.
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Figure 4.3: Illustration of load and generation behavior

The ability to compensate fluctuations of renewable power supply is demonstrated
in the bottom right panel. Applying direct load control, household loads can be
scheduled in times with high output of renewable sources. Conventional generation
requirements can be reduced as depicted in the bottom left panel. For the example
week 83.9% of the household appliance and EV charging load can be covered by
renewable sources and conventional generation peaks are reduce to 160.9 kW.
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4.4.2 Flexible Demand Behavior

A more detailed view on the effects of controlling flexible demand is provided in
Figure 4.4 by comparing consumption of static appliances and load under opti-
mal scheduling. For ease of exposition some loads are merged to form appliance
groups: The “Cooling”’ group comprises fridge and freezer, “Semi-auto” the appli-
ances washing machine, dishwasher, and dryer, and “Storage” covers storage water
and space heaters. EVs and stationary batteries (“Battery”) are considered indi-
vidually in the analysis. Exemplary load profiles on individual device level are pro-
vided in Appendix D. Furthermore, the figure includes the net renewable generation
(GRES − LB). In the static scenario two peaks in the daily load patterns appear.
During night load of storage space and water heaters accumulates, in the evening
EV charging ads to the existing peak of household (base) load. During work days
EV charging takes place predominantly in the morning and evening after trips to or
from work. At weekends, vehicles are more randomly pursued and charging activity
is spread out. Under static load regimes load coverage through renewable energy
sources occurs only if load and generation patterns match by coincidence (e.g., early
Wednesday morning in Figure 4.4).

Under the optimal strategy load peaks occur in times of sufficient renewable gener-
ation. This way, renewable generation usage is maximized and required conventional
generation reduced. Figure 4.4 shows that storage water and space heater opera-
tions are shifted from night to PV peaks at noon. If only moderate PV generation is
available (see Friday and Sunday), their load is distributed to avoid load concentra-
tions and thus large conventional generation capacities. The periodic cycling of some
appliances, particularly cooling, is an artifact of the optimization, which schedules
all operations of one type in the same slot. Charging load of EVs is scheduled to
the weekly generation peaks. Given their inter-day flexibility EVs are interesting
for scheduling and can largely improve load coverage by renewable energy sources.
Stationary batteries are integrated for optimal schedule. In Figure 4.4 it can be seen
that they have a small effect. They store electricity at the end of periods with high
availability of renewable generation and discharge at the beginning of low generation
periods. Further, battery storages supply electricity in short periods of residual load
concentrations. In a power system such a near-term provision of electricity can help
to optimize ramping of power plants.
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Figure 4.4: Detailed illustration of load behavior and net renewable generation

4.5 Decision Support for Demand Aggregators

Flexible loads affect different decision levels of an aggregator. On the operational
level flexible devices can be controlled to achieve an improved balancing of demand
and supply in the portfolio (Vandael et al., 2011). Efficiency of balancing is largely
influenced by forecast quality and optimization lookahead. However, a large amount
of flexible consumers is not necessarily enough to guarantee load balancing and thus
the composition of the portfolio is important (Petersen et al., 2013). The potential of
balancing based on flexible loads largely depends on the right combination of inter-
mittent generation and flexible consumers in the portfolio. Thus, customer portfolio
decisions on a tactical level are important to achieve improved load balancing as well
as long term strategic investment decisions in renewable energy sources to determine
the composition of the generation portfolio.

For an analysis of balancing potentials the assumption of full information over an
entire week is hardly appropriate. In the following, model adaptions to enable day-
ahead balancing with limited information are discussed. Then, the base scenario of
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the integrated model is applied to assess the cost reduction potentials flexible demand
can provide for an aggregator on operation level. Further, effects of different demand
(tactical) and supply (strategic) compositions in portfolios on load coverage through
renewable sources are analyzed.

4.5.1 Information Availability

The analysis of optimal scheduling under full information has only limited practical
relevance (Flath et al., 2013). To facilitate a more realistic day-ahead balancing,
model alterations that enable daily optimization are presented. Particularly, the
EV charging and battery storage models call for an adaption to retain intra-day
flexibility. Furthermore, the integration of uncertainty in PV and wind generation
is illustrated and its effects are discussed. The results from the weekly optimization
provide an upper bound for the alternative settings.

Daily Optimization

Reducing the optimization horizon to enable day-ahead balancing is simple for the
residential household appliances. The representations of fridge, freezer, storage water
heater, and storage space heater do not require any changes. To introduce flexibil-
ity in the operation of dishwasher, washing machines, and dryers a latest feasible
finishing time is randomly selected. For some operations this finishing time might
pass the end of a day. In these situations the flexibility interval for semi-automatic
appliances is cut and their operation has to finish at that day. Hence, shifting to
night hours of the following day is not possible and DR potentials of these appliances
might be slightly underestimated.

EVs and stationary batteries possess inter-day flexibility. Requiring the same
level for initial and terminal SOC (see Conditions 3.14 and 3.19 ) impedes this
flexibility for daily optimization horizons. However, with a shorter horizon the need
to store energy at times of excess generation for a future purpose may be even
more important. Therefore, following Scott et al. (2013) a value for the left-over
electricity θ at the end of the optimization horizon is introduced. The resulting
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objective function including storage valuation is given by

min
GC ,x,φ

T∑
t=1

cv
(
Gt
C

)
− θv

∑
v∈V

bvψ
T
v − θs

∑
s∈S

bsψ
T
s . (4.4)

For the storage value an arbitrary low number is chosen (θ = 0.01). This, incen-
tives charging in hours with excess electricity from renewable energy sources with
zero variable costs. At the same time, this low storage value avoids charging from
conventional generation for EVs and enables discharging from stationary batteries
in times of excess load.

With the reduced optimization horizon some trips might become infeasible, e.g.,
an EV user departing early in the morning for a long trip. Particularly, in periods
of low renewable generation EVs postpone charging. The resulting low SOC levels
increase the number of infeasible profiles. Thus, shorter optimization horizons call
for a minimum SOC constraint to prevent infeasible EV profiles (see Equation 3.21).
Figure 4.5 shows weekly SOC trajectories of 10 EVs for different optimization hori-
zons as well as the impact of the integrated storage valuation. The figure depicts the
same example week as before with a generation peak on Wednesday (see Figure 4.3).
For an optimization horizon of one week EV charging takes place in renewable gener-
ation peaks especially on Wednesday. Initial and terminal SOC levels are identical.

The mid panel depicts the reduced flexibility in charging when the same initial
and terminal SOCs are applied for single day optimization. In this setting charging
takes place at the daily generation peaks. Yet, inter-day flexibility is lost and high
generation days during the week can not be fully utilized. Storage valuation allows
to recapture flexibility in EV charging. In the example week EVs can exploit the
renewable generation peak on Wednesday and fully charge their batteries (see right
panel of the figure). At times when less renewable generation is available (Friday
to Saturday), EVs only charge when needed for a trip resulting in lower SOC lev-
els. In low generation periods also the effect of the minimum SOC constraint can
be observed. Despite low availability of renewable generation, one EV charges its
battery on Friday to reach the minimum SOC share of 0.3. Concurrently, it can
be observed that EVs start with full batteries due to excess renewable generation
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Figure 4.5: SOC level evolution for different optimization horizons

the week before. Thus, storage valuation retains inter-day flexibility but also allows
inter-week flexibility of EV charging.

Uncertainty

For day-ahead scheduling of residential devices renewable generation is not exactly
known in advance. Yet, day-ahead forecasts for PV and wind output are available
and can be integrated into the simulation. Obviously, uncertainty in PV and wind
generation leads to higher costs for the aggregator as generation tracking will be less
precise and the usage of conventional generation increases. The example week in
Figure 4.6 depicts how uncertainty increases the usage of conventional generation.
With high renewable generation, e.g., midday PV peaks, forecast errors do not af-
fect conventional generation needs as the residential loads can not make use of the
available generation. A different situation arises during hours with low generation of
renewable energy sources, such as Friday noon. Here, load is scheduled to make use
of the forecasted renewable generation. Nevertheless, the real generation is much
lower and residential load largely exceeds renewable generation. A more detailed
analysis of decreasing system efficiency due to uncertainty is given in the following
section.
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Figure 4.6: Effect of uncertainty in renewable generation

4.5.2 Operational Level

On the operational level an aggregator can control household appliances, EV charging
and stationary batteries to achieve a more efficient matching of demand and supply.
The potentials of direct load control for day-ahead balancing on the operational level
are analyzed in the following. To this end, a system with centralized load control
is compared to one with static demand. Under direct load control two different
optimization horizons, uncertainty in renewable generation, and the effect of the
storage valuation constraint are investigated. Remember the two sub-objectives for
a cost-aware coordination of flexible loads which entail reducing total conventional
generation usage and peaks of residual load. The two components are first analyzed
individually. Subsequently, variable generation costs serve to integrate these two
dimensions.

Table 4.2 shows maximum residential loads, capacity requirements for conven-
tional generation, and load coverage by renewable generation under different scenar-
ios. Starting with the uncoordinated scenario (Static) the table includes direct load
control for optimization horizons of one week (OPT Week) and one day (OPT Day)
with full knowledge of renewable generation and the same levels for initial and ter-
minal SOCs for EVs and stationary batteries. Furthermore, storage valuation (OPT
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Day Storage Value) and uncertainty in future renewable generation (OPT Day Un-
certainty) for daily optimization are shown. Maximum values and quantiles in the
table represent the worst cases. Load coverage through renewable generation is the
estimated mean value over all runs.

Table 4.2: Load peaks, maximum conventional generation (CG) requirements and average
load coverage through renewable generation

Load peak CG Load coverage
Max Quantile Max Quantile Average

Scenario [kW] [99.5%] [kW] [99.5%] [share]
Static 705 86.3 682 31.7 0.63
OPT Week 1234 86.3 320 15.2 0.82
OPT Day 1006 86.3 360 18 0.79
OPT Day Storage Value 1170 86.7 360 15.6 0.82
OPT Day Uncertainty 1086 86.7 536 18 0.79

The load concentration results indicate that centralized control increases maxi-
mum load values. Without load control household appliances and EV charging loads
are randomly distributed and their aggregated load does not show high concentra-
tions. In contrast, the static demand scenario shows higher capacity requirements
for conventional generation. Without coordination, demand will match generation
from volatile sources only by chance. If load does not match generation, high con-
ventional capacity requirements can be the consequence. Under a direct load control
regime devices can be scheduled in hours of high renewable generation without any
costs.7 Thus, load control can reduce conventional generation capacity requirements
by almost 50%. Weekly optimization under full information establishes minimum
values for conventional generation capacity. Yet, under uncertainty in renewable
generation conventional generation capacity required remains at a high level similar
to uncoordinated charging. At times where a high renewable generation output is
predicted, also, a large amount of load might be scheduled. If high predictions for
renewable generation do not materialize, the schedule with deliberately concentrated
loads has to be supplied by conventional generation (Figure 4.6 provides an example

7Note that grid capacity constraints are not included in the model and might put additional limi-
tations on load concentrations in scheduling. However, such constraints can easily be integrated
in the dispatch model.
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for this effect). Looking at the conventional generation quantiles reveals that high
capacity needs for the uncertainty scenario only occur in very few times as the 99.5%
quantile has a similar level compared to the remaining scenarios with load control.
This observation indicates that high forecast errors do not occur often.

Looking at the amount of renewable generation utilized it can be seen that without
DR only 63.2% of the load can be covered by available wind and PV generation.
This value is about 17% lower than the load coverage under optimal scheduling.
Reducing the optimization horizon with fixed initial and terminal SOCs for EVs and
stationary batteries comes along with less load coverage. Storage valuation gains
back the intra-day flexibility and increases the coverage level again. Even under
uncertainty the storage valuation feature in the model leads to a high load coverage
level.

The stylized power system model reflects both variable generation costs and ca-
pacity costs. To this end, the model includes costs for total amounts but also penal-
izes high values of conventional generation. In Figure 4.7 variable generation costs
are depicted. Costs are normalized to the static scenario without DR. Irrespec-
tive the model specifications, direct load control greatly reduces variable generation
costs as compared to a system with uncontrolled residential household loads. At first
glance this large costs decrease might be astonishing looking at the lower increase in
load coverage by renewable energy sources. However, variable generation costs en-
tail total amount and peaks of conventional generation. High maximum conventional
generation requirements and also the high 99.5% quantile shown in Table 4.2 support
the conclusion that conventional generation peaks are the cost drivers. Looking at
the error bars it can be observed that load control also reduces weekly variance in
variable generation costs. Still, between individual weeks large cost differences can
be observed.

Looking at the scenarios with load control, obviously, the lowest costs are achieved
with the optimization horizon of one week. With a shorter horizon the same initial
and terminal SOC for EVs and stationary batteries impedes inter-day flexibility
and increases costs. Taking into account the value of left-over electricity at the
end of the optimization horizon costs can almost be reduced to the level of the full
week optimization. Therefore, Objective Function 4.4 including storage valuation is
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Figure 4.7: Variable generation costs for different settings

applied for subsequent evaluations and the Constraints 3.14 and 3.19 setting initial
and terminal SOC to a common level are dropped.

Uncertainty in renewable generation results in the highest costs among the cen-
tralized control scenarios. Compared to the daily optimization with full knowledge
costs increase in average about 7%.

4.5.3 Tactical and Strategic Level

In the medium term an aggregator can decide on the portfolio of flexible customers
(tactical) and in the long term on the portfolio of intermittent generation (strategic).
Demand and supply portfolio composition largely influences balancing potentials.
On the demand side drivers for these potentials are appliance types available for
load control and the adoption level of these appliances in the population. On the
supply side the main drivers are installed capacity and type of intermittent sources
(wind or PV). The following evaluation shows the effects of the drivers on demand
and supply side on load coverage through renewable generation and conventional
generation requirements. In addition, variable generation costs are analyzed to assess
overall system efficiency.
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Tactical - Availability of Flexible Demand

On the demand side devices for load control and their availability in the portfolio
are the main sources of the flexibility available to an aggregator. To evaluate load
coverage through renewable generation for the potentially flexible devices in a resi-
dential area they are investigated separately and only one device group is assumed
to be controllable for this analysis.

Results for the simulations of direct load control under uncertainty are shown
in Figure 4.8a. Scheduling of cooling appliances, such as refrigerators and freezers,
does not improve the load coverage by renewable generation as compared to the
static scenario and the coverage level remains constant at 63.3%. The small flexi-
bility interval of fridge and freezer impedes a shift to high RES generation hours. A
marginal increase can be observed for the semi-automatically controlled appliances.
Direct load control of dishwashers, washing machines, and dryers results in an av-
erage coverage level of 64.4%. Despite their small availability in the base scenario
stationary batteries lead to load coverage through renewable generation of 65.1%.
The highest improvements can be reached through control of stationary batteries,
EVs, and storage heaters. Weekly variations of load coverage have a similar range
for all device groups.
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Figure 4.8: Average load coverage through renewable generation for different demand sce-
narios

Apparently, the penetration level of the devices largely influences the potentials
of each group. As stationary batteries, EVs, and storage heaters have the largest
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contribution for increasing the load coverage by electricity from renewable energy
sources, these appliances are selected for an analysis in more detail. Figure 4.8b
depicts the load coverage results for different penetration levels of these appliances.
At a penetration of zero only base load, cooling, and semi-automatically controlled
appliances are included and DR is not applied. Based on this scenario, subsequently,
the availability of batteries, EVs or storage heaters is increased. In the absence of
load control storage heaters are distributed during night hours and a decrease of load
coverage by renewable generation can be observed even for low penetration levels.
In contrast, EV charging is spread over the whole day and can make use of PV
generation. Thus, higher EV shares result only in a slight decrease of load coverage
by renewable generation.

Under load control even small shares of batteries, EVs or storage heaters can
improve load coverage. The latter have a high daily consumption and are modeled
as completely flexible within one day, thus, explaining the steep increase of load
coverage for low penetrations. Yet, above 10% penetration only marginal improve-
ments can be achieved with storage heaters as daily operation patterns limit their
flexibility. In the work at hand stationary batteries are much smaller units. Due to
their ability to feed electricity back to the grid and their inter-day flexibility, they
outperform storage heaters at penetration levels above 10%. EVs show a similar
behavior as stationary batteries but due to reduced availability and missing ability
of feeding-back they perform somewhat worse.

For an analysis of the conventional generation requirements duration curves for
residual load of one example simulation run are depicted in Figure 4.9. Remember
that residual load describes residential demand exceeding renewable generation. It
can be observed that control of cooling and semi-automatically controllable appli-
ances hardly changes residual load. Stationary batteries can decrease residual load
in some hours but at the low availability levels do not affect the maximum load
value. In addition to their potentials for increasing load coverage through renewable
generation, EVs and storage heaters also reduce the maximum residual load and thus
the required conventional generation capacity.
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Figure 4.9: Residual load duration curves for different demand scenarios (Simulation hori-
zon T = 8064 slots)

Strategic - Installed Renewable Generation Capacity

In the base scenario a power system with a high installed capacity of intermittent
renewable energy sources is assumed. To this end, empirical wind and PV generation
data is scaled to match total consumption of the demand side over the simulation
period. Clearly, the installed capacity of wind and PV has a large influence on
the load share covered through renewable generation. For a better understanding of
renewable generation capacities, wind and PV data is scaled to match different levels
of total demand. Thus, they are representing generation portfolios with different
shares of wind and PV installations.

The left panel of Figure 4.10 shows the average weekly coverage of load through
renewable generation for portfolios with different wind and PV capacities. If the
installed generation capacity is small, control of flexible demand does not increase
coverage. When the capacity of renewable sources could theoretically cover 25% of
total load, direct load control starts to improve load coverage slightly above the static
scenario. At higher generation capacities, the benefits of load control become more
pronounced as the gap between controlled and uncontrolled load widens. However,
if installed capacity increases further the gains of load control start to diminish.
Uncertainty in the output of wind and PV reduces load coverage. The gap between
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load control under full information and uncertainty is also increasing in the installed
capacity.
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(b) Variation of weekly load coverage

Figure 4.10: Load share covered for different levels of renewable generation capacity

Output of renewable generators largely differs between weeks. The simulation re-
sults show that at a capacity which could cover 75% of the system load weekly load
coverage ranges from 54.5% up to 82.9%. For the maximum capacity analyzed the
variation in weekly coverage ranges from 75.9% to 99%. The right panel of Figure
4.10 illustrates variations of weekly load coverage for different levels of renewable
generation capacities using the standard error. With a low installed capacity indi-
vidual weeks do not show a great variation of load coverage. When the benefits of
load control emerge, the weekly differences also become more apparent.

For an analysis of the conventional generation requirements duration curves for
residual load of one example simulation run are depicted in Figure 4.11. The load
duration curves show that an increasing renewable generation capacity reduces the
number of hours in which conventional generation is required. Furthermore, it can
be observed that load control can often reduce residual load levels. Under full in-
formation the shape of the residual load with load control, allows to identify the
steps of the variable generation cost function. If possible, the optimization avoids
to schedule load beyond breakpoints of the piecewise linear function. This results in
residual load being concentrated below breakpoints. Uncertainty smooths out these
load concentrations.
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Figure 4.11: Residual load duration curves for different installed renewable generation ca-
pacities (Simulation horizon T = 8064 slots)

In the absence of load control increasing renewable generation capacity does
hardly influence the maximum residual load level. Thus, maximum conventional
generation capacity requirements remain at a high level. Load control under full
information greatly reduces maximum load values already at low installed renew-
able generation capacities. With higher capacities the maximum values can only
be reduced slightly more. Under uncertainty the load duration curve with direct
load control has a similar shape as under full information. However, looking at the
maximum residual load values a gap between load control under full information and
uncertainty can be observed. This gap increases with larger renewable capacities.
In the right panel the maximum residual load under uncertainty even passes the
static scenario. With higher renewable capacities also the forecast errors augments.
Devices scheduled in such an erroneous forecasted generation hour can lead to large
residual loads.

Strategic - Share of Intermittent Sources

So far an equally balanced generation portfolio of wind and PV has been analyzed.
Yet, the different output profiles of wind and PV call for an assessment of varying
shares of the two generation types in the portfolio. The left panel of Figure 4.12
illustrates load coverage through renewable generation for various portfolio mixes of
intermittent sources. A wind share of zero corresponds here to a PV-only portfolio.



Decision Support for Demand Aggregators 101

For both, coordinated and uncoordinated load, a PV portfolio has a lower load
coverage than a wind-only portfolio. A mixed portfolio improves load coverage by
renewable generation. Considering the volatile output in pure PV or wind portfolios,
high generation hours cannot be exploited effectively, while in a mixed portfolio
the two sources complement each other. Under load control the best coverage can
be reached with equally mixed PV and wind. In a regime without load control a
wind dominated portfolio leads to improved load coverage. This is not surprising
as PV generation is concentrated during few hours while, wind generation is more
distributed over the day. Thus, uncontrolled load of the residential area is more
often matched by coincidence. This also means that DR offers the largest benefits
in PV portfolios.

The intermittent characteristic of renewable generation influence their ability to
cover load. In the simulation wind as sole generation source achieves weekly coverage
from 42.3% to 78%, for a PV portfolio the range is 45% to 73%. The right panel of
Figure 4.12 illustrates the variation of weekly load coverage for different renewable
generation capacity levels using the standard error. It can be observed that a wind
portfolio leads to a higher coverage by renewable energy sources as a PV portfolio;
but, wind shows larger weekly variations.

●

●

● ● ●

●

●

0.4

0.5

0.6

0.7

0.8

0.9

0.00 0.25 0.50 0.75 1.00
Wind share 

S
ha

re

●Static OPT Day OPT Day Unc.

(a) Average load coverage

●
●

●
●

●

●

●

0.00

0.01

0.02

0.03

0.04

0.00 0.25 0.50 0.75 1.00
Wind share 

S
ta

nd
ar

d 
er

ro
r

● OPT Day Unc.

(b) Variation of weekly load coverage

Figure 4.12: Load share covered for different shares of wind and PV in the portfolio

The duration curves in Figure 4.13 show the highest number of slots without
any residual load for an equal mix of wind and PV. For a portfolio dominated
by either source conventional generation is more often required. Again, the large
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residual load reduction due to DR in a PV portfolio is visible. With increasing wind
shares these benefits decline. Further, the figure shows that without load control
maximum residual load is hardly influenced by wind and PV shares. The three
portfolios included in the figure have very similar maximum values for static demand.
Under full information, centralized load control can greatly decrease peaks and thus
reduce required conventional generation capacity. Similar to the static scenario,
the maximum residual load remains fairly constant over the three portfolio mixes.
Yet, under uncertainty larger maximum values occur in a PV dominated portfolio.
Due to the higher forecast errors for PV generation, this portfolio requires the same
conventional generation capacity as uncontrolled load (see Figure 3.9). In such an
unfavorable situation, load is scheduled to make use of a PV peak. Nevertheless,
real generation is much lower and largely exceeds PV generation. In a wind portfolio
the maximum value declines and reaches almost the level of optimization under full
information.
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Figure 4.13: Residual load duration curves for different wind and PV shares (Simulation
horizon T = 8064 slots)

For a comprehensive assessment of demand and supply side sensitivities for an
aggregator the analysis has to be extended beyond load coverage through renewable
generation and the effects on the overall system have to be looked at.
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Overview - Variable Generation Costs

In order to analyze the impact of flexible residential load on the aggregate system
for different demand and supply settings, the stylized power system model is used.
The application of this model allows to report variable generation costs integrating
both, total usage and peaks of conventional generation. Figure 4.14 illustrates the
variable generation costs for the demand and supply settings described before. All
values are normalized to the base scenario without load control. Instantly, the cost
decline due to load control can be seen in all three panels. Uncertainty in renewable
generation slightly increases costs as compared to load control under full information.
On the demand side larger loads such as batteries, EVs and storage heaters can be
identified as the most promising options for load control in the applied portfolio (see
left panel). Cooling and semi-automatically controlled appliances have fairly low
impact on variable generation costs. High renewable generation capacities decrease
variable generation costs, though, when a share of 0.75 of total load can be covered
by renewable generation cost reduction starts to flatten(middle panel).8 In the right
panel it can be observed that a balanced portfolio results in the lowest variable
generation costs. The more one source is dominating the portfolio the higher costs
become.
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Figure 4.14: Variable generation costs for various supply and demand settings

8Due to initial investments benefits of addition renewable generation capacities diminish for higher
renewable generation capacities.
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4.6 Opportunities for Residential Households

Scheduling of flexible loads minimizes the costs for additional generation required.
Improved system efficiency can be passed on to residential households and lower
their electricity expenses. However, there are instant winners and losers among
customers when introducing DR (Faruqui, 2010). For providing flexibility to the
aggregator residential households should receive some form of incentive payments
(Albadi and El-Saadany, 2008). Flexible customers can expect a higher compensa-
tion and thus lower electricity costs compared to customers with no or low flexibility.
In the following, the demand and supply model is applied to estimate the value of
individual devices for DR. On this basis customers benefiting from DR programs can
be identified. Then, the results on household appliances are used to determine the
key dimensions of flexibility in a smart grid and to prioritize flexible loads for DR
applications.

4.6.1 Demand Response Winners

An integrated scheduling of all appliances under full information is executed to
identify customers profiting from demand response. Then, variable generation cost
changes between static and responsive demand are calculated and mapped to the
operation of devices.

Figure 4.15a depicts the share of variable generation cost reductions for the known
device groups applying the integrated optimization. It can be observed that cooling
appliances despite their high availability hardly contribute to system efficiency. EVs
and particularly storage heaters show the highest cost reduction potentials in the
population. Interestingly, stationary batteries and semi-automatically controlled
appliances have almost the same reduction potential. Stationary batteries can be
classified as more flexible as washing machines, dishwashers and dryers, but in the
population batteries have a much smaller share. DR benefits for individual household
customers depend on their appliance set. Thus, to identify demand response winners
among household customers reductions by individual appliances have to be looked
at.
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Figure 4.15: Share on variable generation cost reductions

Figure 4.15b includes the average reduction share per device of a group. Three ob-
servations can be made in this figure. First, a dishwasher, washing machine or dryer
(Group “Semi-auto”) provides only marginal potentials for cost reductions in the
system and so for the customer to lower his or her electricity bill. Second, schedul-
ing one stationary battery contributes more than a semi-automatically controlled
appliance or an EV. Finally, storage heaters show the largest potential. This leads
to the conclusion that residential customers can benefit more from demand response
when their set of devices includes the EVs, stationary batteries, or storage heaters
which contribute in a larger amount to the variable generation cost savings. Note
that due to overall improved system efficiency even customers with low flexibility
might be better off under general adaption of demand response programs.

Devices showing both, high cost reduction shares in the population and on in-
dividual level are the most promising for load control. The former indicates cost
reduction potential in the system for an aggregator or utility. The latter facilitates
incentive payments to enable customer participation in a DR program.

4.6.2 Key Characteristics of Flexible Demand

Given the share of individual appliances on variable generation cost reductions, it
remains an open question what the drivers are that influence the performance of a
device with respect to demand response. This first gives rise to the question what
characterizes load flexibility and thus the capacity to adapt of a device?
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Petersen et al. (2013) provide a taxonomy for modeling flexibility in smart grids.
They describe flexible systems focusing on their constraints: power capacity, energy
capacity, energy level at a specific deadline and minimum runtime. They introduce
the term quality of flexibility to describe the restrictions (constraints) of a device.
However, they state that “better quality means less restricted, not necessarily more
flexible”. The reason for this differentiation is that the flexibility of a device is
determined by the constraints and by the specific parameter values of a device. To
illustrate this distinction devices of the residential household model can provide an
example. Cooling devices are only power and energy constrained. Due to this low
number of restrictions they have a high quality of flexibility. EVs are more restricted
as they require an additional constraint to reach a certain energy level at a deadline.
Yet, controlling large EV loads reduces system costs to a greater extent than control
of fridges or freezers.

In the modeling chapter load, operation frequency and shifting distance have
been applied to describe relevant technical characteristics of an appliance for DR
(see Table 3.3). These appliance specific parameters combined with the quality of
flexibility specify DR flexibility of a device. Given these characteristics, the question
arises what is the key driver for load flexibility?

To assess the impact of the different flexibility characteristics, Figure 4.16 com-
bines quality (of flexibility), shifting distance, and weekly consumption9 and maps
them on the average savings provided through the devices. Not surprisingly, the
largest cost reductions correspond with a high quality (of flexibility), a high con-
sumption and a large shifting distance as shown by the storage heating appliances.
Stationary batteries have lower cost reduction potentials due to their lower con-
sumption.10 EVs have a similar weekly consumption as stationary batteries but a
slightly lower shifting distance and a lower quality of flexibility. The importance of
shifting distance and consumption for load flexibility can be identified by comparing
storage heaters and cooling devices. Both have the same quality of flexibility, but a
storage heater can reduce variable generation costs to a much larger extend due to
its high electricity consumption and shifting distance. Based on these observations

9To facilitate a graphical illustration load during operation and operation frequency are summa-
rized to weekly consumption.

10For stationary batteries consumption is calculated as the average weekly charging amount.
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it can be seen that the quality of flexibility describing the restrictions of a device is
dominated by shifting distance and energy consumption. The latter are the drivers
for the capacity to adapt of a device.
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Figure 4.16: Quality of flexibility, shifting distance and consumption determine flexibility
and cost reduction potentials of a device

4.7 Discussion

Demand response is a promising approach to facilitate an efficient integration of
volatile renewable sources into the power grid. Due to the high costs of real-world
experiments, simulations are an important tool to investigate system effects of DR.
This chapter presented an integrated demand scheduling and generation dispatch
model to estimate DR potentials of direct load control. The model is applied to
estimate reductions in variable generation costs in a system with a large share of
renewable generation where an aggregator can control loads of various small devices
in a residential area.

Load control affects decisions of an aggregator on the operational, tactical and
strategic level. The analysis on operational level shows that direct load control
can increase load coverage through wind and PV generation and reduce variable
generation costs by more than 50%. Maximum conventional generation requirements
can hardly be reduced if uncertainty is considered. This illustrates the need for
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improved forecasts or real-time adaption of (some) loads to improve the capacity
credit11 of renewable generation (Skea et al., 2007).

An aggregator can decide on demand and supply composition in the portfolio. For
demand portfolio planing (tactical level) the results show that batteries, EVs, and
storage heaters are the most promising devices for DR in a residential area. In the
analysis presented cooling appliances hardly contribute to system efficiency. Yet,
for balancing short term fluctuations a large number of refrigerators and freezers
might be well suited (Stadler et al., 2009; Kamper, 2010). On a strategic level
it is shown that benefits from load control start to emerge beyond a renewable
generation share of 50% on total load. This is in line with the recent analysis of
the International Energy Agency (2014). At lower renewable generation capacities
DR can hardly improve load coverage with renewable generation and thus system
efficiency. With respect to the generation mix in the portfolio two observations can
be made. The analysis firstly shows that the highest load coverage through renewable
sources can be achieved with a balanced portfolio of wind and PV, secondly, that
maximum conventional generation requirements decrease with wind share in the
portfolio. Thus, indicating a higher forecast error for PV generation.

Furthermore, the contribution to variable generation cost reduction of devices is
assessed. In this analysis EVs, stationary batteries, and storage heaters are identified
as the most promising devices. They feature cost reduction potentials in the system
for the aggregator or utility and on individual appliance level they enable incentive
payments for customers to participate in a DR program. Finally, characteristics to
describe flexibility of devices have been listed. Cost saving potentials of individual
appliances for DR serve to identify the key properties for load flexibility. The evalu-
ation results suggest that consumption and shifting distance may be more important
than the quality of flexibility (i.e., restrictions for scheduling).

4.7.1 Limitations

For the analysis load is scheduled based on a generation forecast and then system
costs are evaluated using the realized output of the renewable sources. Utilization of
11Conventional generation capacity that an intermittent generator can replace.
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a more sophisticated technique to handle uncertainty may further increase system
efficiency. Such techniques can include a limit on the utilization of the predicted
generation output to reduce uncovered loads in case of forecast errors. Another
option might be to use renewable generation data to assess the dependence of the
forecast error on the predicted output level. Then, devices can be scheduled based
on samples for the renewable output using, for example, a consensus algorithm (Bent
et al., 2012).

Further, power system efficiency gains under a centralized control regime are
based on full information of device usage for the following day. Unquestionably,
these are benchmark results for DR potentials of residential households. However,
for some appliances the full information assumption does not seem farfetched, e.g.,
for storage water and space heaters home energy management systems can estimate
the required electricity consumption based on storage temperature level, ambient
temperature prediction and presence of the household members (Allerding, 2014).
Yet, for semi-automatically controlled appliances or EVs full knowledge of future
usage on a daily horizon is not appropriate. Thus, the integration of demand side
uncertainty offers interesting opportunities for future research.12

Balancing of demand and supply in a power system with high shares of volatile
generation is the example employed in this thesis. This is an important step to bet-
ter understand opportunities and risks of flexible residential demand, but is at the
same time a oversimplification of the system. The underlying physical power grid
may pose additional constraints on DR. Therefore, a power flow analysis incorporat-
ing losses, line utilization, voltage, and transformer utilization is necessary. A more
comprehensive assessment of efficiency and greenhouse gas emissions in the power
system could be achieved by incorporating a unit commitment model with detailed
data on plant costs and characteristics (Sioshansi and Denholm, 2010; Grünewald
et al., 2015). Moreover, some assumptions may warrant closer attention to ensure
robust results. The present model considers various flexible devices on the demand
side. For the sake of simplicity only one representative example configuration per
device is integrated. An analysis of heterogeneous device types and of the key pa-

12Living labs with real inhabitants and equipped with energy management systems are a promising
candidate to elicit these questions.



110 Flexibility of Residential Loads

rameters influencing demand response potentials of devices may help to obtain more
robust simulation results. For example, EV flexibility potential is influenced by the
availability of charging spots and charging power. Further, in a future smart grid
additional technologies might be available for control on the demand side (e.g., heat
pump or air conditioning) but also on the supply side (e.g., combined heat and
power) of a residential area and should be included in a generalized model.

4.7.2 Future Opportunities

There are various possible extensions or modifications of the model used for esti-
mating system efficiency of residential DR. My model is currently only appropriate
for day-ahead balancing of demand and supply. One alternative could be to extend
the day-ahead offline optimization to an online setting with frequent re-optimization
for real-time adaptions of the load schedule. By this, reducing the gap between
scheduling under full information and uncertainty in renewable generation as fre-
quent re-scheduling of the devices allows an adaption on improved forecasts. The
work of Subramanian et al. (2013) or Bent et al. (2012) offer first insights to such
real-time scheduling for EVs. It would be interesting to investigate the performance
and efficiency heuristic optimization approaches can achieve for scheduling loads
of a residential household population. By applying heuristic optimization larger
populations may be investigated, simultaneously, more frequent re-optimization for
real-time scheduling is possible due to the reduced optimization runtime.

So far, the analysis covers generation differences between distinct weeks and shows
the benefits of residential demand for inter- and intra-day flexibility. A simulation
horizon of one year enables incorporation of seasonal variations of supply and de-
mand. This way, requirements for long term storage or conventional generation
capacities could be estimated giving a more comprehensive assessment of the power
system efficiency. Further, applying the model to represent a microgrid of a small
residential municipality could be an interesting scenario for centralized control of
household loads. This requires a calibration of the model using local data on wind
and PV generation.



Discussion 111

Finally, the simulation presented is limited to German households and their
typical appliances. In many countries penetration rates for cooling and semi-
automatically controlled appliances are comparable to Germany, but other countries
have very different penetration levels for some devices. In contrast to Germany,
Australia, the US, or southern European countries show high penetration levels of
promising storage heaters. Other devices have not been included in the model (e.g.,
air conditioning) due to their low share in German residential households. Similar
to storage heaters air conditioning involves thermal storage and posses flexible oper-
ation times. Thus, they offer large potentials in countries with higher availability of
air conditioning in the residential sector. It might therefore be interesting to evaluate
benefits of flexible load in countries with different appliance sets in residential areas.





Chapter 5

Coordination of Residential Loads

A detailed demand and supply model not only improves the ability to analyze flexible
load and renewable generation portfolios, it also enables the design and evaluation
of appropriate load coordination mechanisms. Dynamic retail electricity rates are a
promising option to incentivize changes of customer behavior and improve system
efficiency (Borenstein et al., 2002). This holds in particular for households equipped
with smart meters and behavioral response of residents. However, for automated
DR researchers have been pessimistic with respect to the coordination capabilities of
price signals due to the tendency of creating herding or load synchronization effects
(Gottwalt et al., 2011; Sioshansi, 2012). Ramchurn et al. (2012) note that [Real-
time pricing] “can create unexpected peaks in demand, when all individuals respond
to a signal in the same way, and inadvertently synchronize with others”. They
conclude that “demand-side management technologies that simply rely on reacting
to control or price signals will not be enough”. This calls for adaptive customer prices
dynamically reflecting current grid conditions in the spirit of optimal spot pricing
(Schweppe et al., 1988). At the same time, Dütschke and Paetz (2013) point out
that customer acceptance will require simple and reliable pricing schemes.

This chapter investigates coordination mechanisms for a large number of small
flexible loads in residential areas with a focus on price-based control. To retain a
clear focus on coordination, the first part of this chapter uses a simple model with
EVs instantiating flexible loads and wind generation as renewable source. Standard
rate designs are applied to reproduce load synchronization and analyze the influence
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of flexible demand shares in the system and different rate characteristics. Further, to
address the disparity between customer preferences (stable and reliable price signals)
and system requirements (effective load coordination), rate design options to reduce
synchronization under exogenously specified electricity rates are explored thereby
improving efficiency in a power system with a high share of renewable sources. Ex-
emplary rates and load curves illustrate the load desynchronization approaches power
surcharges and group pricing. Then, the stylized generation model is applied for a
comprehensive assessment of different coordination mechanisms. To better under-
stand the application of the load desynchronization approaches, they are investigated
in more detail to provide design guidelines for implementation.

In the second part of this chapter group pricing is analyzed in a more general
simulation setting to derive insights for a greater number of real-world power sys-
tems. To this end, the full set of flexible appliances of the bottom-up demand model
and two intermittent renewable generation sources (wind and PV) are integrated.
Furthermore, the impact of uncertainty in renewable generation under price-based
control is investigated. A main focus of this analysis is the comparison of central-
ized and decentralized coordination under uncertainty. Finally, expected savings of
residential household appliances and fairness issues of group pricing are discussed.

The remainder of this Chapter is structured as follows. Section 5.1 provides an
overview of prior research on price based DR. In Section 5.2 the model for indirect
load control using dynamic electricity pricing is described and Section 5.3 gives the
basic settings for the two evaluation scenarios applied. Subsequently, the availability
of flexibility in the system and key factors for load synchronization under different
standard rate designs (real-time, time-of-use and high-low-pricing) are analyzed in
Section 5.4. In Section 5.5 design elements (power surcharges, randomized group
rates) to reduce load clustering effects are discussed and a sensitivity analysis to
identify important parameters for rate design is presented. Moreover, to get a more
comprehensive assessment of the proposed pricing schemes variable power system
costs are evaluated. In Section 5.6 group pricing is analyzed in more detail. There-
fore, a comprehensive model is applied and the level of available information is re-
duced. Moreover, system effects of centralized and decentralized control regimes are
evaluated. Section 5.7 presents the impacts of dynamic pricing on retail customers
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and discusses fairness aspects. Finally, Section 5.8 concludes, critically discusses the
main implications and presents an outlook for future research.

Core parts of this chapter have been submitted for publication. Namely the
Sections 5.1, 5.4.2, and parts of 5.5, 5.7.2 and 5.8 are the basis for the working paper
of Flath and Gottwalt (2014).

5.1 Related Work

Decentralized decision regimes have lower computation and communication require-
ments and can better retain customer incentives and privacy concerns as compared
to centralized decision schemes (Vandael et al., 2011).1 Due to the distributed na-
ture of a decentralized control paradigm, a large scale application requires a careful
analysis of the emergent system behavior (Ramchurn et al., 2011). Open-loop and
closed-loop are two basic principles for decentralized load control. Figure 5.1 sketches
the decision making schemes for these two principles. Open-loop control requires un-
derstanding of the system to compute appropriate control signals. For closed-loop
control the controlled variable is observed and a feedback loop allows adaption of
the signal.
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Control Signals 

Open-loop control 

System Load 

Direct Control 

Closed-loop control 

Electric Utility 

Customer 

Local Load 
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System Load 

Direct Control Fe
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Figure 5.1: Open-loop and closed-loop decision making schemes

1This section is incorporated in our working paper Flath and Gottwalt (2014).
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5.1.1 Open-loop control

Most commonly, open-loop control in residential DR is instantiated using price-
based coordination. This requires some form of dynamic pricing, e.g., TOU pricing,
CPP, or RT pricing. Electric utilities carried out various dynamic pricing studies
showing that customers are responsive to changes in electricity prices (Faruqui and
Palmer, 2012). Grünewald et al. (2015) show that behavioral responses to TOU
tariffs reduces overall power system costs in scenarios with high levels of renewable
generation. Yet, for automated demand response recent research has been more
pessimistic with respect to the benefits of posted price signals due to the tendency of
load synchronization (Gottwalt et al., 2011). Furthermore, price-based coordination
approaches (TOU, RT) fail to reflect non-convexities of system costs which further
decreases their efficiency (Sioshansi, 2012). Other researchers refer to the over-
coordination phenomenon as “rebound peaks“ (LeMay et al., 2008; Mishra et al.,
2013; Muratori et al., 2014).

5.1.2 Closed-loop Control

Another stream of literature investigates the potential of closed-loop decision mak-
ing schemes such as market-based or bilateral exchange-based allocation of energy.
Mohsenian-Rad et al. (2010) analytically show that such an approach will yield an ef-
ficient allocation in a general setting. Using learning agents, Ramchurn et al. (2011)
demonstrate that a feedback loop in an RT pricing regime will achieve efficient de-
central coordination. Gan et al. (2013) propose an iterative charging control for
flexible loads (e.g., EVs) with the aim of filling demand valleys. Based on tenta-
tive charging decisions of the EVs the utility adapts electricity prices. Flath et al.
(2013) also apply EVs to represent flexible loads in the system. In their work deci-
sions are taken sequentially and thus after the charging decision of an EV dynamic
prices are updated according to the new system state. Several authors propose an
iterative approach where the electric utility adapts a control signal till a stopping
criterion or an equilibrium is reached. The general sequence is as follows: The elec-
tric utility generates and broadcasts a control signal to customers. Customers adapt
consumption of their shiftable load accordingly and send the changed consumption



Indirect Load Control Model 117

profile to the utility. The changed profiles are then used to adapt the control signal
(Waraich et al., 2013; Wang and de Groot, 2010; Chen et al., 2011; Mohsenian-Rad
and Leon-Garcia, 2010).

While these closed-loop approaches may in theory guarantee almost optimal re-
sults, a real-world application for retail customers is difficult to implement as it
would require forward market activity and expose customers to quantity risk (Bitar
and Low, 2012). Consequently, typical RT pricing schemes are posted price schemes
where customers receive a fluctuating yet reliable price signal.2

5.2 Indirect Load Control Model

Decentralized decision regimes are promising alternatives to centralized control.
However, decentralized control paradigms require a detailed analysis of emergent
system behavior. The bottom-up residential demand model from Chapter 3 pro-
vides a basis to analyze system effects of decentralized coordination mechanisms.
Subsequently, an indirect load control model as an instance of decentralized coordi-
nation is described. Such a model allows for an evaluation of open- and closed-loop
pricing schemes. Further, the simulation process is explained and the computational
requirements of a centralized and decentralized control are compared.

5.2.1 Formal Description

Instantiating residential DR using price based coordination leads to a linear cost
minimization program, where runs of household appliances, charging of EVs and
stationary batteries are scheduled such that the electricity costs are minimized. In
contrast to the integrated device scheduling and generation dispatch model for direct
load control, scheduling decisions for indirect load control are taken on device level.
Thus, after receiving a retail electricity rate p = [p1, . . . , pT ] devices individually
optimize their execution times by minimizing electricity costs over a time horizon
T ∈ N. In the following, objective functions and constraints for indirect load control

2For the sake of clarity, in the following open loop fluctuating prices are referred to as “real-time-
pricing”, and closed-loop prices as “adaptive pricing”.
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on device level are presented. For the ease of reading the constraints of the individual
appliances are repeated in the following. A detailed description of the devices is
provided in Section 3.3.3, for stationary batteries in Section 3.4.2 and for EVs in
Section 3.5.3.

Automatically controlled appliances with large loads, e.g., storage water and space
heaters are included in set A. The consumption of an active household appliance is
denoted by ρa and δa is the duration of one run. For appliance a ∈ A the simulation
horizon T is divided in Ca ∈ N intervals. For DR runs of appliances are flexible
within the respective interval [sia, eia] and the runtimes with minimal costs (xta = 1)
are selected:

min
x

T∑
t=1

pt ·
(
xtaρa

)
(5.1)

subject to:

∀i ∈ [Ca] :
ei

a∑
t=si

a

xta = δa. (3.2 revisited)

The set B includes automatically controlled appliances with small loads and fre-
quent operation during one day, i.e., refrigerators and freezers. For these appliances
the time horizon T is divided in Cb intervals and runs are flexible within the respec-
tive interval [sib, eib]. For decentralized load control the operating times (xtb = 1) of
appliance b ∈ B per interval are selected by:

min
x

T∑
t=1

pt ·
(
xtbρb

)
(5.2)

subject to:

∀i ∈ [Cb] :
ei

b∑
t=si

b

xtb = 1. (3.4 revisited)
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Semi-automatically controlled appliances, i.e., washing machine, dishwasher and
dryer are comprised in appliance set C. For a run r ∈ Rc of these appliances Pr =
(ρ1
r, . . . , ρ

δr
r ) defines the consumption profile. The starting time (xtc = 1) of one run

of appliance c ∈ C in the flexibility interval [tsr, tlr] under indirect load control is
determined by:

min
x

T∑
t=1

pt ·
t∑

k=1

(
xkr · Pr (t+ 1− k)

)
(5.3)

subject to:
tlr∑
t=tsr

xtr = 1, (3.8 revisited)

Pr(τ) =


ρτr , τ ∈ {1, . . . , δr}

0, otherwise.
(3.10 revisited)

The former constraint ensures that each run r starts in the corresponding interval
and the latter specifies the load of one run.

The cost-minimizing charging and discharging amounts (φs) for a stationary bat-
tery s ∈ S are determined by the means of the following linear optimization problem:

min
φ

T∑
t=1

pt · φts (5.4)

subject to:

ψtsbs = ψt−1
s bs + φts, (3.13 revisited)

ψ0
s = ψTs , (3.14 revisited)

where the first constraint guarantees continuity of battery level (ψs) and the sec-
ond avoids discharging at the end of the optimization horizon. Stationary batteries
can feed electricity back to the grid. Thus, with charging in low price hours and
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discharging in high price hours batteries can achieve revenues. Due to the loss free
charging process all stationary batteries simultaneously either charge or discharge in
every step. To avoid frequent battery activity threatening power system efficiency
the vector As = (a1

s, . . . , a
T
s ) with ats ∈ {0, 1} is introduced to govern availability

of battery charging and discharging under price-based control and the following φs
domains obtain:

φts ∈ [atsφs, a
t
sφs], where ats =


1 if pt < p or pt > p,

0 otherwise.
(5.5)

Maximum discharging and charging power are denoted by φ
s
, respectively φs. The

thresholds p for charging and p for discharging can be adapted to control battery ac-
tivity in order to improve power system efficiency. To determine reasonable threshold
levels some basic statistical information of the electricity prices (e.g., distributional
properties) is required. For the ease of exposition, population-wide price thresholds
specified as quantiles of the simulation period’s price distributions are assumed.

For charging amounts (φv) of an EV v ∈ V the following optimization problem is
obtained:

min
φ

T∑
t=1

pt · φtv (5.6)

ψtvbv = ψt−1
v bv + φtv − γtv, (3.18 revisited)

ψ0
v = ψTv , (3.19 revisited)

where the former constraint ensures continuity of the battery level (ψv). The
latter requires equal levels for initial (σ0

v) and terminal (σTv ) battery levels to avoid
complete discharging at the end of the optimization horizon. Charging capacity φv
for EVs is limited in the interval [0, φv].
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5.2.2 Solution Procedure

Under indirect load control retail electricity rates are assumed to reflect the gen-
eration of RES and low retail prices correspond with high availability of renewable
output. The rates are updated weekly and published in advance. This leads to a two
step simulation approach for decentralized load control (open-loop) where first, re-
tail electricity rates are calculated and transmitted to the residential devices which
individually optimize their operation schedule. Then, the power system model is
executed using the device schedule and the RES generation as input data to de-
termine the conventional generation (CG) dispatch serving the residual load not
covered by renewable generation. Figure 5.2 shows the simulation flow for decentral
decision-making via indirect load control. To integrate uncertainty in renewable en-
ergy sources retail electricity rates can be built on a forecast of renewable generation.
Closed-loop control requires an additional feedback loop for adapting the electricity
rates after the scheduling decision of a device.
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Device Usage 
Optimization 

Electricity Rate 

Closed- loop 
feedback 

Rate design 

Input data 
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Figure 5.2: Overview of simulation flow for indirect load control

5.2.3 Performance

To determine cost minimal operation times, the device implementations of the direct
load control model can easily be adapted. Optimization horizon, population size and
the set of flexible appliances remain the main influence factors for runtime. Table
5.1 shows the effect of these three parameters and includes a comparison of average
simulation runtimes between centralized and decentralized load control. EV and
battery shares are constant for all populations and runtime estimations presented in
the figure are based on five replications of the simulation.
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Average runtimes for centralized and decentralized control are very similar for
small population sizes. For larger populations the increasing computational complex-
ity of centralized regimes becomes obvious. Decentralized control largely improves
runtime for weekly optimization beyond a population size of 1,000 households and for
daily optimization beyond 10,000 households. For the full set of flexible devices cen-
tralized control for 10,000 households over one week is computationally intractable.
However, under decentralized control a load schedule for this setting can be calcu-
lated in about 600 seconds. Further, decentralized control allows to create operation
schedules for large populations with 100,000 households but a small set of flexible ap-
pliances, e.g., storage space and water heaters in a fraction of the time as compared
to centralized control.

Table 5.1: Average simulation runtimes for various calibrations of centralized and decen-
tralized control

Optimization horizon

Day Week

Pop. Flexible Centralized Decentralized Centralized Decentralized
size Appliances Average runtime [s] Average runtime [s]

10 Full set 0.5 0.2 1.2 1.1
100 Full set 0.7 1.2 11.0 6.7
1,000 Full set 10.8 13.0 341.5 65.1
10,000 Full set 344.2 103.8 Out of memory 615.7

100,000 Stor. heater 85.0 0.5 716.0 4.0

5.3 Model Setup

The indirect load control model is a possible instance to realize a decentralized
control regime. After the introduction of a formal description, in this section two
model setups are specified to evaluate price-based coordination mechanisms. These
setups serve to explore rate design options for indirect load control aiming to reduce
load synchronization and improve efficiency in a power system with a high share of
renewable generation.
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Despite the performance drawback of centralized control for large scale applica-
tion, it can establish an optimal benchmark for alternative coordination mechanisms
(Ramchurn et al., 2011; van den Briel et al., 2013). In order to facilitate bench-
marking of decentralized control mechanisms, runtimes of the direct load control
model limit population sizes. The simulation horizon covers 12 week discretized on
15-minute intervals. To focus on coordination mechanisms, it is instrumental to re-
duce complexity of the model and apply a simple evaluation scenario with a single
flexible load type. Therefore, electric vehicle charging is a prime candidate which
often serves as a representation for flexible loads (Blumsack and Fernandez, 2012;
Andersen et al., 2009). EVs are ideal for DR as they are large and flexible loads.
Thus, for analyzing basic rates and design elements a simplified model representing
a residential area with 900 static residential households each equipped with an EV is
assumed (simple scenario). In this system flexible EV charging accounts for 35% of
total electricity consumption. Further, a supply portfolio with wind as sole renew-
able source is deployed. As the EV model is built on real driving profiles, stochastic
influence on the demand side is ruled out. For deterministic EV charging evaluations
are based on a single simulation run.

After establishing an understanding of price-based load coordination using the
simplified model, group pricing is evaluated in a more comprehensive scenario to de-
rive insights for a greater number of real-world power systems. Therefore, the base
scenario defined in the previous chapter is applied using the demand model with the
full set of flexible devices and a mixed generation portfolio. As a reminder, in the
base scenario a population of 1,000 households with 16% EV and 2.5% stationary
battery penetration is simulated. Flexible loads comprise household appliances in-
cluding washing machine, dishwasher, dryer, refrigerator, freezer, and storage water
and space heater but also the emerging technologies electric vehicles and stationary
batteries. On the supply side an equally weighted mix of PV and wind is assumed
for the generation portfolio. The full specification of the base scenario is given in
Table B.1.
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5.4 Price-based Control of Residential Load

While price-based incentive schemes seem to be a straight-forward form for decentral
coordination in smart grids, their applicability for automated DR has been seen more
critical as they may induce new load peaks due to herding effects. Initially, these
results are revisited by analyzing system efficiency under posted pricing schemes.
Therefore, the simple scenario is utilized and vehicle charging serves as representation
of flexible loads. This approach serves to assess system costs under posted pricing
schemes for different shares of flexible demand in the system. Then, standard rate
designs (real-time, time-of-use and high-low pricing) are applied to reproduce the
well-known herding effects and to identify key factors causing load synchronization.

5.4.1 System Costs for Different Flexible Demand Shares

Load synchronization or herding appears as a large number of devices operate at the
same time. Thus, one driver for the extent of load synchronization is the number
of flexible units in a system. For this analysis flexible loads are instantiated with
EVs. Further, two different charging strategies for the EVs are used. Under a
flat electricity tariff EVs perform AFAP charging. Smart charging facilitates a cost
minimal charging program using RT pricing as incentive. This RT tariff directly
reflects the difference between current renewable generation and base load that is
p ∼ Gt

RES −LtB. In Figure 5.3 variable generation costs for different EV penetration
levels under the two charging strategies are shown. The scenario without EVs in the
system serves as a reference where generation costs are normalized to.

In line with the results of Sioshansi (2012) it can be be observed that for low pen-
etration of flexible load posted real-time prices decrease variable generation costs.
The decreasing variable generation costs show that real-time prices properly signal
the marginal cost of electricity generation. Yet, with EV penetration level slightly
above 20% real-time pricing increases costs as compared to a flat tariff. If a fairly
low number of flexible units reacts to the same incentive, load synchronization starts
to degrade system efficiency and thus increase variable generation costs. At a pen-
etration of 100% EV charging doubles variable generation costs under a flat tariff.
Under RT pricing generation costs increase by more than 12 times.
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Figure 5.3: Variable generation costs for different shares of flexible loads

5.4.2 Load Patterns Under Basic Rate Structures

In a power system with a large share of flexible loads, herding might threaten system
efficiency. In the following, the well-known load synchronization under basic elec-
tricity rates is reproduced to identify key factors causing herding and thus providing
a starting point for desynchronization approaches. Therefore, an EV penetration
of 100% is assumed resulting in a large share of flexible loads in the system and
thus stressing load synchronization under the basic rates. For each pricing scheme,
the aggregate EV charging load, the net renewable generation and the cumulative
conventional generation employed for one example week are shown. The numerical
results are obtained using the scenario described in Section 5.3.3

Flat Electricity Tariff

The left panel of Figure 5.4 depicts the aggregate charging loads of a fleet of EVs
under a flat tariff, i.e., following the AFAP charging strategy. Under this strategy
EVs charge whenever possible with the maximum charging amount available. Thus,
AFAP charging only depends on the availability and technical specification of the
charging infrastructure and on the driving behavior including (i.e., trip timing and
distances). It can be observed, that charging loads are evenly distributed and spikes
can largely be avoided. Under a flat tariff there is no incentive to shift EV charging

3The analyses presented subsequently contain parts of our working paper Flath and Gottwalt
(2014).
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activity. Hence, charging often takes place in times with no or very limited renewable
generation available. Consequently, in many situations conventional generation is
needed while in others available renewable generation remains unused.

Real-Time Pricing

Under RT pricing, the retail price reflects the delta between renewable generation
and base load (p ∼ Gt

RES −LtB). This rate structure is illustrated in the upper right
panel of Figure 5.4 for one example week. If EV owners base their charging decision
on this ex-ante specified tariff, a high concentration of EV loads can be observed
(see lower part of Figure 5.4). Such herding effects are in line with results from
prior research on the effects of price-based coordination in retail electricity markets.
At the same time, concentrated EV charging—in this example scenario—greatly
exceeds available renewable generation and requires a large amount of conventional
generation. It is evident from the figures, that over-coordination occurs because of
the presence of distinct time slots with minimal costs to which the flexible loads will
respond in a common manner.

Time-of-Use Pricing

Time-of-use (TOU) electricity tariffs can mitigate the load spikes observed under
RT pricing as they constrain the rate structure to a limited number of intervals with
the same price level (rate zone) and this way remove individual low prices. Previous
contributions identify load peaks also for price-based load control with TOU prices
(e.g., Ramchurn et al., 2011). TOU tariffs are created such that the price levels and
length of the rate zones minimize the deviation from the RT price presented before.
To this end, a rate design model based on mixed-integer optimization (Flath, 2013a)
is applied and the total number of rate zones is fixed at fourteen (approximately two
rate zones per day). The resulting TOU tariff is depicted in the upper left part of
Figure 5.5. TOU rates indeed reduce the over-coordination phenomenon compared to
RT pricing regimes. The lower part of the figure shows that EV charging load is more
distributed and maximum load levels are reduced. However, still distinct new load
peaks can clearly be identified at the end or beginning of intervals with low prices.
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Figure 5.4: Rate structure, cumulative conventional generation (CG) and EV charging load
for a flat tariff and real-time pricing

One reason for the load clustering at the boundaries of the lowest price intervals
is due to the optimization’s tie-breaking procedure between intervals with identical
prices. Furthermore, under TOU rates EV charging exceeds available renewable
generation and conventional generation requirements remain at a high level.

The results from TOU pricing indicate that less pronounced minimum price levels
do indeed reduce load peaks. The TOU tariff can be further simplified by limiting
it to only two price levels. For this tariff a low price is assumed when available
wind generation is above a threshold level and a high price in all other times. The
resulting high-low price for the example week is depicted in the upper right part
of Figure 5.5. The lower part of the right panel in the Figure shows the charging
load for EVs under such a tariff. Under High-Low Pricing (HL) vehicle charging is
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more distributed and peaks are reduced compared to the TOU tariff. Smaller peaks
remain at the boundaries of the low price intervals.
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Figure 5.5: Rate structure, cumulative conventional generation (CG) and EV charging load
for time-of-use and high-low pricing

5.5 Load Desynchronization

With a fairly low number of flexible units, basic rate structures can cause peak loads
and renewable generation often remains unused. A load aggregator coordinating
flexible residential demand using one of these rates cannot expect to reduce variable
generation costs. This section develops additional design elements (power surcharges,
randomized group rates) to reduce load synchronization. Exemplary figures illustrate
rate structures and charging loads and guide the discussion of desynchronization
approaches.
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In addition, the rate modifications should allow to exploit available renewable
generation under exogenously specified retail electricity rates and thus enable a more
efficient price-based control of flexible residential load. To this end, a more extensive
simulation of different coordination approaches is provided and load distribution and
variable generation costs are reported for a 12 week simulation period. Finally, the
load desynchronization approaches are investigated in more detail to provide design
guidelines for implementation.

5.5.1 Different Approaches

Under TOU and HL rates load is clustered at the borders of low price intervals. To
avoid this clustering a power-based surcharge on top of the basic electricity rates is
introduced. Another reason for over-coordination is the common manner in which all
EVs respond to the same tariff. Thus, individualization of electricity rates is proposed
and charging behavior under group rates is evaluated. Further, a benchmark case of
adaptive closed-loop pricing is also considered for comparison.4

Power-based Surcharge

A key reason for load clustering is the bang-bang structure of charging decisions
(i.e., charge at full power or do not charge) under energy-only pricing for individual
vehicles. If several EVs charge at full speed at the same time load synchronization
occurs. To obtain intermediate charging levels and to incentivize a more spread-out
charging behavior, a (very small) power-based price surcharge ψp can be introduced.
In this thesis a quadratic formulation of the objective function for individual EV
charging optimization is applied:

min
φv

T∑
t=1

ptφtv + ψp(φtv)2 (5.7)

Combined with RT pricing, very small charging power costs can not change the
ranking of the prices as the absolute distances in electricity prices dominate the

4This section is an adapted version of our working paper Flath and Gottwalt (2014).
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cost term. A higher surcharge value spreads out charging behavior but dilutes the
incentives of RT pricing. Hence, a power-based surcharge is applied for TOU and
HL pricing only.

The left panel of Figure 5.6 depicts the EV charging load under TOU pricing with
a power-based surcharge (TOU-P). For this analysis, the surcharge takes the value
ψp = 1.0. Higher charging power levels are now costly. Consequently, customers
still aim to charge in low cost TOU zones but distribute their charging demand
more evenly. This way, load spikes can largely be reduced compared to standard
TOU pricing. The power-based surcharge improves the coverage of load by avail-
able renewable generation since load spikes and excess charging in hours with high
generation from renewable sources are reduced. A power-based surcharge leads to
more evenly distributed load. However, load is still mainly concentrated in the three
minimum price intervals. The absolute distance of the price levels impedes shifting
into other potentially desirable times for EV charging.

For high-low pricing with a power surcharge (HL-P), a more spread-out charging
behavior can be observed as well (see right panel of Figure 5.6). The power-surcharge
mitigates peaks at the boundaries of the low price intervals. Due to the fact that only
two price levels exist, many hours have the same low price level and EV charging
is more evenly distributed. Peaks are largely reduced as compared to RT and TOU
pricing and approach the levels of flat pricing. Furthermore, the need for conventional
generation decreases as well.

Randomized Group Pricing

The results from power-based surcharges show that modifications of the basic rate
can greatly decrease peak load. Individualization of retail rates is another possibil-
ity to reduce load synchronization. To this end, Muratori (2014) proposes the idea
of “Multi-TOU" where distinct tariff signals are distributed to a limited number of
consumer pools. In the work at hand this approach is generalized in the form of
Group Pricing (GR) which allows greater differentiation up to personal pricing. Un-
der this price regime customers are assigned to groups and all members of one group
receive the same electricity rate. The idea of group pricing extends today’s control
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Figure 5.6: Rate structure, cumulative conventional generation (CG) and EV charging load
for time-of-use and high-low pricing with power surcharge

of storage heaters in residential households.5 For an electric utility the application
of group pricing requires three basic decisions: (i) determine the number of different
groups, (ii) assign customers to groups and (iii) specify a rate for each group.

In the following, various group sizes (i) are investigated. In the limit a group
consists of a single customer which corresponds to fully individualized electricity
rates. With respect to (ii), groups of equal size are applied and EVs are randomly
allocated to the groups.6

5Grid operators determine groups of storage appliances and transmit via ripple control operation
intervals on group level to desynchronize these large loads Hastings (1980).

6Alternative group formation methods (e.g., best fit on total load) did not lead to substantially
different results.
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Recent research contributions have put forward the application of randomization
to mitigate over-coordination problems in decentralized power system. For exam-
ple, Shinwari et al. (2012) assign operation probabilities for shiftable loads to local
control agents. Probabilities for starting shiftable loads are high in hours with low
non-shiftable load in the system. Van den Briel et al. (2013) extend this approach by
determining operation probabilities based on the non-shiftable loads. They present
three options to calculate these adapted operation probabilities. Kishore and Snyder
(2010) apply a stochastic admission control scheme from the telecommunications sec-
tor to avoid simultaneous load occurrences. In a similar fashion, Gong et al. (2012)
demonstrate that randomized charging for electric vehicles can reduce transformer
wear. While these approaches illustrate the power of randomness to break the prob-
lem of price-induced over-coordination of loads, they do not characterize appropriate
incentive structures that induce truthful behavior of system participants. Following
this line of thought randomization is applied to create group-specific rates (iii): Ran-
dom group prices (rt) are determined by adding noise (εt) to an underlying RT rate,

rt = pt + εt. (5.8)

A truncated normal distribution is applied for the noise with εt ∼
N T (0, σ,−pt,∞;x). The standard deviation σ reflects how different the group-
specific price vectors should be. The truncation on the support [−pt,∞[ avoids
negative retail electricity prices. The density function of the truncated normal dis-
tribution with support [−pt,∞[ is given by:

φ
(
0, σ,−pt,∞;x

)
=


0 if x ≤ −pt

φ(0,σ2;x)
Φ(0,σ2;∞)−Φ(0,σ2;−pt) if x > −pt.

(5.9)

Figure 5.7 depicts the aggregate EV load for 20 groups and two different standard
deviation levels for tariff randomization, σ ∈ {1, 4}. Remember that the EV fleet
consists of 900 vehicles, which corresponds to 45 vehicles per group. Looking at
aggregate EV charging load, it can be seen that for a randomization level of σ = 1
charging takes place mainly in three intervals during the week. Hence, EV charging
load achieves similar synchronization as compared to RT pricing and greatly exceeds
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available renewable generation. Consequently, conventional generation requirements
remain at a high level only slightly below RT pricing. More promising results can be
achieved with a randomization level of σ = 4. Here, total load is more distributed
and renewable generation can be exploited. Thus, coordination with respect to both
goals (peak load reduction and load coverage) is improved. A low standard deviation
for generation of group prices is not able to adequately change the ranking of prices
and prevent over-coordination.
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Figure 5.7: Rate structure, cumulative conventional generation (CG) and EV charging load
for 20 groups with two randomization levels

Group pricing reduces over-coordination and at the same time induces load-
shifting to hours with net availability of renewable generation. More groups, i.e.,
fewer EVs per group, may also reduce system peaks. In Section 5.5.5 the effects
of randomization and group size on load synchronization and load covered through
electricity from renewable sources is discussed in more detail.



134 Coordination of Residential Loads

Closed-loop Adaptive Prices

In contrast to the above described pre-specified price regimes, closed-loop price sig-
nals are adapted in response to customer actions (Mohsenian-Rad et al., 2010). This
facilitates more efficient load coordination yet burdens customers with unreliable
price signals and introduces complexity into market communication for billing and
transaction verification. Therefore, closed-loop adaptive pricing (Adapt) is consid-
ered only as a theoretic benchmark to compare novel open-loop control schemes
against. It is assumed that EVs sequentially make their charging decisions for one
week. The net renewable generation is the base for determining a customer’s rate
offering and is adapted after each charging decision. Thus, each EV receives a unique
tariff determined by the net RES generation and the charging decisions of previous
vehicles. The upper part of Figure 5.8 depicts prices faced by different customers.
The first EV receives the basic RT price. Due to lower net generation availability,
prices for subsequent customers increase during the times where charging already
has been scheduled. Consequently, customers acting later will face rate structures
where the price valleys have been filled.
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Figure 5.8: Example rates, cumulative conventional generation (CG) and EV charging load
for closed-loop control
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Frequent tariff actualization signals RES availability to the vehicles such that
under adaptive prices aggregate charging load perfectly follows the shape of the net
wind generation (lower panel of Figure 5.8) and undesired load concentrations are
completely ruled out. Conventional generation is only required when it is absolutely
necessary, e.g., if inflexible base load exceeds available renewable generation.

5.5.2 Generator Capacity and Output

So far an example driven-style for the discussion of various price-based control mech-
anisms has been employed. For a more extensive analysis and to facilitate compar-
ison of different coordination mechanisms total conventional generation, capacity
requirements for conventional generation, and the maximum EV charging load are
analyzed (see Table 5.2).7 Numbers in the table origin from a 12 week simulation of
the simple scenario with flexible EV charging and wind as volatile renewable source.
Naïve charging (Flat) serves as a basis and the values in the table are normalized
accordingly. In addition to the rates presented, a direct control scenario is evaluated
where charging is scheduled centrally as an optimal benchmark (OPT).

The closed-loop control scheme with an adaptive tariff (Adapt) avoids load syn-
chronization and requires the same conventional generation capacity as the bench-
mark scenario (OPT). Results for maximum EV charging in Table 5.2 are in line with
the observations described before. RT and TOU tariffs lead to over-coordination for
flexible EV charging load which can almost entirely be avoided by applying the
modifications of the basic rates. In the table EV charging peaks depict the load
synchronization under different coordination mechanisms.

In terms of the power system, concentration of EV charging requires high and
costly electricity generation capacity. Under power surcharges for high-low (HL-P)
and time-of-use (TOU-P) rates lower conventional generation capacities are required.
The performance of group pricing largely depends on the number of groups and
the standard deviation values. The scenario with 100 groups and a noise level of
σ = 3 (GR 100-SD3) reduces the required conventional generation capacity to a
great extent as compared to the basic rates. Interestingly, while uncoordinated

7This section is an amended version of our working paper Flath and Gottwalt (2014).
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charging (Flat) shows the lowest synchronization level it does not show the lowest
capacity for conventional generation as charging will sometimes occur in the absence
of renewable generation.

Table 5.2: Normalized values for maximum EV charging, capacity requirements for con-
ventional generation (CG) and total conventional generation amount

Max. EV CG Total CG
Scenario charging capacity usage

Benchmark
OPT 1.49 0.489 0.602
Adapt 1.9 0.489 0.603

Group Pricing
GR900-SD5 3.86 0.978 0.666
GR100-SD4 5.46 1.76 0.679
GR100-SD3 6.44 2.45 0.697
GR20-SD3 7.57 3.42 0.748

Power Surcharge
TOU-P 4.77 2.33 0.737
HL-P 6.02 3.75 0.69

Basic Rates
Flat 1 1 1
TOU 9 4.65 0.834
HL 9.64 6.22 0.822
RT 13.1 8.39 1.02

The total amount of conventional generation indicates the overall usage of avail-
able renewable generation. Under a flat tariff (AFAP charging) load is distributed.
Yet, the total amount of conventional generation is almost doubled as compared to
the optimal scheduling and second highest across all scenarios. EVs cannot exploit
high generation and charging frequently requires additional conventional generation
in times with low renewable generation availability. Thus, a large value for total
conventional generation indicates a low overall coverage of load through electricity
available from renewable sources. Low cost renewable generation is not exploited
and costly conventional generation is required to supply charging requirements at
other times. Naïve or simple charging avoids load synchronization, though unused
flexibility potentials decrease system efficiency.
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Table 5.2 also depicts that over-coordination not only leads to system peaks but
also deteriorates load coverage as RT pricing requires even higher conventional gen-
eration amounts than naïve charging. Due to the concentration of EV loads to few
times, charging largely exceeds renewable generation. Simultaneously, other hours
with slightly less renewable generation are completely neglected under RT pricing.
Power-based surcharges and randomized group pricing reduce the conventional gen-
eration amount to two thirds of naïve charging. The results in the table show that
the modifications in retail electricity rates not only decrease EV charging peaks and
the required power generation capacity, but at the same time decrease the total
output of conventional generation.

5.5.3 Aggregate System Costs

For a comprehensive assessment of the retail electricity rates and their modifications
the analysis is extended beyond conventional generation usage and load synchro-
nization and the effects on the overall power system are evaluated.8 The model
of the stylized power system penalizes both total amount and high concentrations
of conventional generation. Figure 5.9 shows mean values and standard errors for
the weekly variable generation costs. Costs are again normalized to uncoordinated
charging (Flat). In the left panel all scenarios are depicted. For RT, TOU and HL
pricing weekly costs are mostly higher than AFAP charging under a flat tariff.

As described before, the charging activity in the scenarios RT and TOU is con-
centrated in only a few hours during the week and hence induces new load peaks
and increases variable generation costs. Note that under TOU pricing less total
conventional generation than under a flat tariff is required (see Table 5.2). Yet, a
TOU rate results in higher overall variable system costs due to increased costs in
peak hours. These results confirm Sioshansi’s findings (Sioshansi, 2012). The HL
rate is characterized by a high number of hours with the same, low price. Hence,
EV charging load is more evenly distributed. Still, all vehicles receive the same tariff
and load concentrations at the boundaries of low price intervals increase variable

8A slightly adapted version of this chapter is also part of our working paper Flath and Gottwalt
(2014).



138 Coordination of Residential Loads

generation costs. At the same time the HL rate only has low prices in hours of above
threshold renewable generation availability, leaving low generation hours unused.
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Figure 5.9: Normalized variable generation costs for different coordination mechanisms

To increase system efficiency, a meaningful coordination approach must at least
outperform uncontrolled charging. Figure 5.9 shows that all suggested modifications
for retail electricity rates reduce variable system costs below the costs of AFAP
charging (Flat). The application of the two rates with a power-based surcharge (see
TOU-P and HL-P), decreases variable generation costs by about 50% compared to
the respective basic rate. For the TOU-P rate the smaller number of low price hours
and the gap between price levels impede EV charging to be more distributed. Thus,
load from EV charging can be flattened via power surcharges, but still remains
fairly concentrated in a limited number of hours resulting in costly conventional
generation requirements. Therefore, the TOU-P rate encounters higher variable
generation costs as the HL-P regime. Also surcharge-based coordination exhibits
large fluctuations as signified by the large error bars. Group pricing further decreases
variable generation costs as it reduces load peaks while retaining the ability to use
available renewable generation. The performance of group pricing largely depends on
the number of groups and the randomization level of the tariff. While a simple group
pricing scheme (GR20-SD3) performs only slightly better than uncontrolled charging,
individual pricing (GR900-SD5) can almost achieve the optimal benchmark level.
Hence, confirming on system level the potentials an individualization of electricity
rates via randomized group pricing might provide.
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5.5.4 Mechanics of Coordination Approaches

Given the large differences in variable generation costs, an insight in the inner work-
ings of the different coordination approaches is provided. To this end, variable
generation costs and charging shares are mapped to the distribution of wind out-
put. By showing the emergent behavior under different retail rates and the optimal
benchmark of central control, typical coordination failures can be identified. Figure
5.10 provides these shares for the known scenarios. The y-axis shows classes for the
renewable generation output levels.

For the integrated scheduling and dispatch scenario (OPT), it can be observed
that about 20% of total EV charging takes place in the 12.5% slots (in the figure
class 87.5% to 100%) with the highest wind generation. Overall a large share of total
charging takes place in hours with high renewable generation, meanwhile, only minor
variable costs accumulate here. EV charging activity in low generation hours is due
to missing flexibility. The high variable cost share in the 25% quantile of renewable
generation output is due to conventional generation dispatch for supplying base load.
For the uncontrolled scenario (Flat) charging shares are almost evenly distributed
among the renewable generation quantiles. Variable costs for uncontrolled charging
are similarly distributed as for the optimal benchmark. The higher total generation
costs can be explained by the distribution of charging load: for flat pricing only a
small share of charging takes place in the high generation quantiles leaving the free
of charge available renewable generation unused.

It can easily be seen that RT and TOU pricing tend to over-coordination as they
accumulate a large share of EV charging in high generation hours. According to the
charging distribution for the optimal benchmark a considerable amount of charging
activity can take place in times with medium renewable generation output (see classes
37.5% to 75% in the figure) with a minor increase in variable costs. RT and TOU
schemes mostly omit charging in these times. Hence, the load concentrations for RT
and TOU pricing are costly due to the unused renewable generation and due to the
increasing variable costs in hours with load synchronization.

The simplest basic rate with only two price levels (HL) is able to reduce load
concentration in the times with highest renewable generation (class 87.5% to 100%)
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Figure 5.10: Charging shares and variable cost shares for different classes of renewable
generation output levels

and spreads charging load more evenly. Under a power-based surcharge (HL-P)
hardly any changes in charging shares compared to a sole HL scheme can be seen.
Yet, the share of variable costs in the classes 65.5% to 87.5% is greatly reduced.
The observation that the power-surcharge mitigates load peaks at the boundaries of
low price intervals explain this cost reduction (see Figure 5.6).

Interestingly, for all depicted randomized group pricing regimes a very similar
distribution of charging loads can be observed. The only visible change is a slight
decrease of charging load in the highest quantile. At the same time, variable cost
shares in high generation hours largely decrease with more groups and higher stan-
dard deviation values. Comparing the costs in the class with the highest renewable
generation output for the four group pricing scenarios reveals this observation. It
can be concluded that group pricing achieves variable generation cost reduction by
load desynchronization in the highest renewable generation hours.

Overall, modified open-loop coordination via group pricing and power-based sur-
charges can reduce variable generation costs in two directions. Firstly, modified rates
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reduce load synchronization and thus costly peaks of conventional generation. Sec-
ondly, they increase overall load coverage with RES by reducing the extreme reliance
on times of high renewable generation.

5.5.5 Design Guidelines

Power-based surcharges and group pricing achieve promising results with respect to
over-coordination, load coverage and variable generation costs. To better understand
their application in practice, they are investigated in more detail to provide design
guidelines for implementation. Hence, for electricity rates with power-based charges
the effects of different surcharge values and for randomized group pricing noise levels
and the number of groups are analyzed.

Power-based Surcharge

Clearly, the choice of ψp is central for the effectiveness of power-based surcharges.
Figure 5.11 illustrates aggregate charging loads for three different surcharge values,
ψp ∈ {0.1, 1, 10}. Reducing the surcharge value to ψp = 0.1 does not affect distri-
bution of charging. This can be observed in the left and mid panel of the figure
which depict similar charging loads. Both surcharge values distribute load in the
same TOU steps and are too small to incentivize charging in hours with higher retail
prices.

This can be achieved by a higher surcharge level which shifts the aggregate charg-
ing load to other TOU price intervals and reduces load concentration. The right panel
of the figure shows the aggregate charging load for ψp = 10 . However, the high sur-
charge dilutes the TOU incentives indicating renewable generation availability. In
the example week, this results in EV charging activity even at times with negative
net renewable generation (Tuesday and Friday before noon).

While in principle an effective means for load desynchronization, a power-based
surcharge entails some limitations for real-world application. Many electric appli-
ances must run in one continuous stretch and cannot adapt their power consump-
tion as they have a fixed load profile. Yet, they still exhibit large temporal flexibility
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Figure 5.11: EV charging load under a TOU regime for three surcharge values

with respect to start time selection. For these loads, the introduction of power-based
surcharges cannot mitigate load clustering. Alternatively, rational customers with
various appliances would schedule the complete load in their portfolio avoiding the
simultaneous operation of appliances. Furthermore, load-based surcharges can in-
duce inefficiencies as they penalize individual consumption in uncongested situations
(Bohn, 1982).

Randomized Group Pricing

For the efficacy of group pricing the randomization level and the number of groups
are the key parameters.9 Figure 5.12 depicts the 97.5% load quantiles over a 12 week
simulation period for varying noise values and group sizes.10 Load concentrations
are decreasing in both, the number of groups and the noise level applied for creating
randomized electricity rates. Given greater randomization, group rates will be less
homogeneous which reduces load concentration. Similarly, more groups reduce the
number of vehicles reacting to a specific rate. Interestingly, most of the peak load
reduction potential can already be achieved with 50 groups.

9This part is also included in the working paper Flath and Gottwalt (2014).
10Note that randomized group pricing again leads to a stochastic simulation and results for this

pricing regime are averaged over five simulation runs.
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Figure 5.12: Effects of noise level for randomized rates and the number of groups on ag-
gregate charging load (97.5% quantiles)

Figure 5.13 depicts the average weekly conventional generation requirements over
the simulation period. An interdependency between the number of groups and the
rate randomization level can be observed: With a single group conventional gener-
ation usage is increasing in the rate randomization level. In this case, the random
component dilutes the information on renewable generation availability, resulting
in the same load concentrations as under RT pricing while ignoring availability of
renewable generation. However, when moving to a larger number of groups some ran-
domization is necessary to tap into the desynchronization potential of group pricing.
For a smaller number of groups a low randomization level is optimal, else the infor-
mation on available renewable generation will again be too diluted. For an increasing
number of groups, conventional generation can only be further reduced if a stronger
rate randomization (larger σ) is applied: Group rates become more distinct and co-
ordination improves. Over a large number of groups the “average rate" will reflect
the original RT price and the desired generation availability signal is retained. Well-
chosen group pricing can hence ensure both a high coverage of loads by renewable
generation while avoiding excessive load synchronization.
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Figure 5.13: Effects of noise level for randomized rates and number of groups on conven-
tional generation needs

5.6 Sensitivities of Group Pricing

Acknowledging the potentials of randomized group pricing an analysis for a more
general model setting is carried out to derive insights for a greater number of real-
world power systems . Therefore, the base scenario of the residential demand model
with the full set of flexible devices is applied. As a reminder, the base scenario com-
prises 1,000 households, 160 EVs and 25 stationary batteries (see Table B.1 for the
full specification). On the supply side another fluctuating decentralized renewable
energy source (i.e., PV) is integrated as a basis for the retail rates . Due to the
limitations of power-based surcharges for appliances with fixed load profiles, rates
with surcharges are not included in this analysis.

Furthermore, this section focuses on the effect of reduced information availability
as the evaluation under full information for one week has only limited practical
relevance. Similar to the assessment of direct load control in the previous chapter,
the indirect load control model is adapted to include day-ahead update of residential
rates and uncertainty in renewable generation. Finally, the costs of decentralized
coordination are discussed comparing group pricing (decentralized) and direct load
control (centralized).
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5.6.1 Generalized Evaluation Scenario

As mentioned before, for the application of group pricing three basic design decision
have to be made. Hence, it is assumed that the number of groups (i) corresponds to
the number of devices in the residential area and each group consists of one device
(ii).11 The rate for each group is determined by adding noise to the underlying RT
rate (iii). For the standard deviation specifying the truncated normal distribution a
value of σ = 2 is chosen. This low randomization level is due to the reduced system
load. The base scenario has lower total system load as the simple model with 900
EVs and thus less renewable generation output. For the mapping of net renewable
generation to retail rates less generation output reduces distances between price steps
and a smaller randomization level achieves an appropriate desynchronization.

Figure 5.14 depicts mean values and standard errors for the weekly variable costs
for group pricing in a residential area. As a reference also a flat tariff, RT pricing and
the optimal benchmark under full information are depicted. Costs are normalized
to the unresponsive load scenario under a flat tariff. In the figure it can be observed
that RT pricing still results in the highest variable generation costs. In contrast to
the previous analyses, RT pricing improves and performs only slightly worse than a
flat tariff. This is even more surprising when considering the large share of flexible
loads in the system. One reason for this improvement are the limitations in shifting
distances of household appliances. EV charging can be scheduled over the course of
the entire optimization week concentrating load in few times. The lower temporal
flexibility of appliances often impedes shifting to the weekly price minima and thus
avoids extreme peaks. However, to a smaller extent load synchronization still occurs.
Group pricing greatly reduces variable generation costs as compared to a flat tariff. It
effectively reduces synchronization and incentivizes shifting to make use of available
renewable generation also in this more generalized evaluation setting.

11A large number of groups has shown the highest desynchronization potential. Pooling of devices
to form groups on household or neighborhood level are other options for grouping.
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Figure 5.14: Normalized variable generation costs for the comprehensive model

5.6.2 Information Availability

To facilitate a more realistic day-ahead balancing, model alterations that enable daily
update of electricity rates are presented. A reduction of the optimization horizon
requires the application of a value for the left-over electricity θ for EVs and stationary
batteries to retain inter-day flexibility (see Section 4.5.1). The resulting objective
function for an individual stationary battery s is given by:

min
φs

T∑
t=1

pt · φts − θsφTs . (5.10)

Under direct load control a storage value triggers charging only in hours with
excess renewable generation. In contrast, price-based open-loop control requires a
more careful analysis for the selection of an appropriate storage value. Each in-
dividual battery maximizes the revenue from charging and discharging under the
respective price regime. To determine a meaningful value for the left-over electricity,
distributional properties of the electricity prices are helpful. For stationary batteries
population-wide price thresholds specified as quantiles of the simulation periods’s
price distribution are assumed. In addition, the availability parameter (as) to con-
trol charging and discharging activity influences the behavior of stationary batteries.
For the availability quantiles of the price distribution are also used. Table 5.3 depicts
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the quantile levels that are applied for storage valuation and charging and discharg-
ing activity of stationary batteries under RT pricing and group pricing. The more
restrictive thresholds for RT pricing reduce activity of stationary batteries and thus
prevent load synchronization for this device. A sensitivity analysis which motivates
the selection of the quantile values is provided in Appendix E.

Table 5.3: Quantile levels for storage valuation and charging and discharging activity of
stationary batteries

Price Regime Storage valuation Charging threshold Discharging threshold
(θs) (p) (p)

RT 0.1 0.1 0.9
Group 0.2 0.2 0.8

For an individual electric vehicle the objective function including storage valuation
is given by:

min
φv

T∑
t=1

pt · φtv − θvφTv . (5.11)

Similar to the stationary battery model, price quantiles are applied to determine
valuation of the left-over electricity. For an individual EV the storage value has to
balance between average SOC level and charging costs. For example, a high stor-
age value results in high average SOC levels, at the same time a full battery might
impede charging in low cost hours. Ideally, this price threshold is determined for
each EV reflecting the driver’s individual preferences. For the sake of simplicity, a
population-wide storage valuation θv as a quantile of the simulation’s price distri-
bution is assumed. These values are fixed at the 0.1 quantile for RT pricing and
at the 0.05 quantile for randomized group pricing. A sensitivity analysis of differ-
ent quantile levels for left-over electricity valuation of EV charging is provided in
Appendix E.

The storage valuation allows for daily optimization horizons and thus the inte-
gration of PV and wind forecasts for rate design. Figure 5.15 shows mean values
and standard errors of the weekly variable generation costs for different optimization
horizons and uncertainty in renewable generation. In addition to RT and group pric-
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ing, centralized control (OPT) and a static load scenario (Flat) are included. Latter
serves as a reference where all variable generation costs are normalized to.

By comparing daily and weekly optimization horizons under full information in
the left panel of the figure, it can be observed that a larger horizon slightly re-
duces variable generation costs for group pricing and the full information benchmark.
However, for RT pricing weekly optimization increases variable generation costs. In
this setting the devices with intra-day flexibility (i.e., EV and stationary batteries)
often exploit daily price minima and reduce load concentration at the weekly min-
ima. Daily optimization facilitates the application of renewable generation forecasts
for rate design. The right panel of the figure shows that uncertainty in renewable
generation deteriorates system efficiency under all coordination mechanisms. Yet,
generation cost increase to a smaller extent for group pricing as compared to RT
pricing.
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Figure 5.15: Normalized variable generation costs for different optimization horizons and
uncertainty in renewable generation

For a better understanding of cost drivers residual load duration curves of one
example simulation run are shown in Figure 5.16 for different optimization horizons
and the effect of uncertainty in renewable generation. Overall, the most striking
observation in the figure is the large reduction in peak load under group pricing as
compared to RT pricing. This effective desynchronization of randomized pricing is
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not only visible in the peak value of residual load, but also for other slots with high
loads. Meanwhile, for randomized pricing the load duration curve very well matches
the optimal benchmark an increasing gap can be observed for the load duration curve
of RT pricing for the 1,000 highest load slots. Thus, capacity requirements and total
amount of conventional generation are at a low level for randomized group pricing.

Week Day

● ●

0.0

0.5

1.0

1.5

2.0

2.5

0 2000 4000 0 2000 4000
Slots per simulation horizon

R
es

di
ua

l l
oa

d 
[M

W
]

● OPT GR RT

(a) Optimization horizon

Full information Uncertainty

●

●

0.0

0.5

1.0

1.5

2.0

2.5

0 2000 4000 0 2000 4000
Slots per simulation horizon

R
es

di
ua

l l
oa

d 
[M

W
]

● OPT GR RT

(b) Renewable generation uncertainty

Figure 5.16: Residual load duration curves (Simulation horizon T = 8064 slots)

The left panel of Figure 5.16 shows slightly reduced residual load peak for a
shorter optimization horizon under RT pricing. Thus, supporting the conclusion
that a reduction in the weekly peak load is one factor for the decrease in variable
generation costs considering a shorter optimization horizon.

In the right panel of the figure it can be observed that uncertainty in renewable
generation increases maximum residual load and consequently, conventional genera-
tion capacity requirements. The largest impact of uncertainty can be observed under
RT pricing. High availability of renewable generation results in low retail rates and
thus in a large synchronization of load. If generation in a period with load concen-
tration is below the predicted level, large residual load values arise. Hence, load
desynchronization also reduces the impact of uncertainty on residual load. This can
be observed for group pricing, where the maximum residual load values under full
information and uncertainty in renewable generation are very similar.
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5.6.3 Costs of Decentralization

Decentralized decision regimes have lower computation and communication require-
ments and can retain customer privacy concerns compared to centralized control
regimes. However, even when decentralized control regimes can improve power sys-
tem operation they can not match the efficiency of centralized load control. In the
following, the focus is put on the comparison of centralized (OPT) and decentralized
(GR) control mechanisms from the previous evaluation. Therefore, variable genera-
tion costs and load duration curves for both control paradigms are analyzed to gain
more insights in the costs of decentralized load control.

Figure 5.17a shows mean values and standard errors for the weekly variable gener-
ation costs of centralized (OPT) and decentralized control regimes (GR). The static
load scenario (Flat) serves as a reference where variable generation costs are normal-
ized to. Centralized control under full information establishes an upper benchmark
for the potentials of flexible loads reducing variable generation costs to 29% of the
cost level under a flat tariff. Group pricing is able to exploit a large fraction of
these cost savings reaching in average 38% of the costs in the static scenario. Under
uncertainty centralized control achieves less precise tracking of renewable generation
and variable generation costs increase (36%). Randomized group pricing is more ro-
bust under uncertainty and results only in a small cost increase (42%). Thus, it can
be observed that under uncertainty the gap between centralized and decentralized
control regimes decreases.

The residual load curves in Figure 5.17b show in more detail the effects of optimal
scheduling and group pricing when renewable generation forecasts are applied. Un-
der full information centralized control exactly tracks the net renewable generation
and if possible avoids scheduling beyond breakpoints of the piecewise linear function.
The shape of the residual load, allows to identify the steps of the variable generation
cost function. Uncertainty impedes precise renewable generation tracking and mis-
matches between realized generation and load schedule increases maximum residual
load. For randomized group pricing fairly low changes in the load duration curve
emerge and only a marginal increase in some residual load values can be observed.
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Figure 5.17: Comparison of centralized (OPT) and decentralized (GR) control

5.7 Opportunities for Residential Households

To attain the benefits of dynamic rates customers do not necessarily have to be price
responsive (Faruqui, 2010). For some residential households electricity generation
can meet low price hours by chance and they will see a reduction in their bill before
they adjust their consumption pattern. Flexible customers with the ability to adapt
electricity consumption can achieve higher savings. However, as some (unflexible)
customers encounter an increase in their electricity bill dynamic pricing often has
to face the unfairness argument possibly posing a hurdle for its introduction. For
randomized group pricing the perception of unfairness might be even more present.
Subsequently, expected electricity bill savings of residential households due to flexible
loads are analyzed and the fairness of dynamic electricity prices is discussed.

5.7.1 Electricity Bill Savings

Figure 5.18 depicts costs per kWh (left) and average weekly electricity costs per
device (right) under RT and group pricing.12 Data for this figure is obtained by exe-
cuting a 12 week simulation of the indirect load control model with the base scenario.
The price level of the flat tariff corresponds to the mean value of the RT rate. In the

12 Consumption costs of devices are illustrated as line charts to simplify the comparison between
pricing regimes.
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model electricity rates are created based on the availability of renewable generation
and do not reflect retail electricity prices of German households. Electricity rates
for residential customers in Germany comprise cost factors in addition to electricity
provision, e.g., service fees for metering and billing (Ilg, 2014). Cost values in the
subsequent analysis allow to compare effects of distinct price regimes. However, they
do not represent electricity bill savings a household can expect.

EVs and storage heaters have large temporal flexibility for load shifting and often
operate at hours with the lowest prices. As can be seen in the left panel of the
figure they achieve low average costs per kWh. At the same time EVs and storage
heaters are large loads and reach the highest reductions in electricity costs per de-
vice. Cooling and semi-automatically shiftable household appliances possess lower
temporal flexibility. Consequently, they can realize only a small reduction in the
per kWh costs. Due to their low consumption also weekly costs per appliance can
only marginally be reduced. Stationary batteries generate revenues for residential
households by charging in low price hours and discharging in high price hours.

Randomized group pricing achieves slightly lower costs per kWh and per appliance
as compared to an RT rate. Group rates are determined by adding noise on the un-
derlying RT rate. Flexible appliances can make use of these reduced prices. Despite
similar costs per kWh the weekly revenues for stationary batteries largely increase
under randomized group pricing. Load desynchronization under group rates allows
a more frequent operation of stationary batteries without threatening power sys-
tem efficiency. The more frequent charging and discharging activity leads to higher
revenues per battery. Note that the spread of dynamic rates largely influences the
economics of price-based load control (Gottwalt et al., 2011). Electricity cost savings
for flexible devices and revenues for stationary batteries increase with higher spreads
in a tariff.

The figure shows that customers with large and flexible appliances clearly ben-
efit from dynamic pricing and can reduce their electricity costs. Yet, residential
customers with unflexible loads might face a higher electricity bill as their static
consumption coincides with high price hours. In particular, low-income customers
with little load for shifting might be negatively affected resulting in a perception of
unfairness for dynamic pricing (Faruqui, 2010). For randomized group pricing the
perception of unfairness might be even more present.
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Figure 5.18: Cost reduction of flexible loads under RT pricing and randomized group pric-
ing

5.7.2 Fairness of Dynamic Pricing

For a discussion of fairness aspects when introducing dynamic pricing the charging
costs of EVs are analyzed in more detail.13 EVs are ideal load for this analysis as
the application of real-world driving profiles creates a heterogeneous fleet allowing
to characterize key factors of demand response winners. Figure 5.19 illustrates the
mean weekly charging costs and the standard error under RT pricing and randomized
group pricing for the 160 EVs of the base scenario. Not surprisingly all EVs can
reduce their charging costs as compared to a flat tariff fixed at the average value
of the RT pricing rate (17.2 c/kWh). Under randomized group pricing EVs achieve
lower average charging costs as compared to an RT rate. For both pricing regimes a
broad range of average charging costs among the EVs can be observed.

To identify the key factors behind these cost differences, Figure 5.20 maps the
average charging costs against the coefficient of variation.14 Moreover, the size of the
points represents the flexibility in EV charging calculated as ratio of charging amount
per week to the number of periods where charging is possible. Large points indicate
higher flexibility for charging. For both pricing regimes it can be observed that
lower average charging costs can be reached by EVs with a higher flexibility. At the
13This section extends parts of our working paper Flath and Gottwalt (2014).
14Normalized measure for the variability of a frequency distribution. It is defined as the ratio

between standard deviation and the mean.
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Figure 5.19: Average charging costs and standard error per vehicle under RT pricing and
randomized group pricing

same time these EVs have a larger variation in their weekly costs. Under randomized
group pricing flexible customers are able to achieve lower charging costs as compared
to RT pricing. Hence, flexibility returns are even more pronounced. Note that due
to the randomization on the short term one group of flexible customers might face
higher rates, but on the long term the average price per kWh will approximate for
all groups.
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Figure 5.20: Average charging costs, coefficient of variation and charging flexibility of EVs
(size of points) under RT pricing and randomized group pricing

Politics are one reason for the slow adaption of dynamic pricing as the state aims
to “protect retail customers from the vagaries of competitive markets” (Hirst, 2001).
A common argument is that dynamic pricing might increase electricity bills of low
income customers. In this discussion Faruqui (2010) argues that the “presumption of
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unfairness in dynamic prices rests on an assumption of fairness in today’s tariffs”. A
flat tariff with a constant price level creates a cross-subsidy between unflexible and
flexible customers. Dynamic pricing achieves an improved coupling between costs
and prices and reduces cross-subsidies inherent in flat rates. DR increases the number
of winners under a dynamic pricing scheme and as shown by Figure 5.20 electricity
costs decrease with customer’s flexibility. Since group pricing avoids herding and
increases load coverage, it results in a more efficient system operation and thus
allows for lower average retail prices for all customers. Therefore, also inflexible
customers might benefit from price-based demand response. For RT pricing this
reasoning only holds for a small share of flexible loads in the system, where power
system efficiency is improved. For a large share of flexible loads degrading system
efficiency can increase retail prices. Hence, only the most flexible customers might
be better off and a large share of residential customers might encounter an increasing
electricity bill.

Low-income customers in general have a smaller set of appliances and thus might
not be part of the most flexible customers. Nevertheless, in a field test they showed
a high responsiveness to DR incentives (Wolak, 2010). These price responsive low-
income customers can also expect at least moderate benefits from group rates. If
still some low income customers might face a higher electricity bill, increasing system
efficiency creates potentials for transfer payments.

5.8 Discussion

Recent research has been somewhat pessimistic concerning the potentials of price-
based coordination for DR due to the occurrence of load synchronization effects.15

This chapter presented an indirect load control model to explore DR effects under
different electricity rates. Using EV charging as an example it can be shown that
standard RT pricing, typically a posted price scheme with fluctuating but reliable
price levels, improves power system efficiency merely in the presence of minor pene-
tration levels of flexible loads.

15The discussion comprises some parts of our working paper Flath and Gottwalt (2014).
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Starting from regular RT and TOU pricing approaches, it is argued that modifi-
cations of these rates can reduce load synchronization effects even in a system with a
high share of flexible loads. This motivates the introduction of rate desynchronization
approaches. First, a power-based surcharge that induces more distributed charging
behavior is presented. Furthermore, individualization of residential electricity rates
is proposed and implemented in form of group tariffs. For group pricing a three step
approach for implementation is established: (i) determine the number of different
groups, (ii) assign customers to groups, and (iii) specify a rate for each group. Using
an example driven-style it is shown that the rate modifications can greatly reduce
over-coordination of flexible loads and conventional generation requirements.

For a comprehensive assessment of the retail rates and their modifications the
analysis is extended and the stylized power system model penalizing both total
amount and high concentrations of conventional generation is applied. Results indi-
cate that these rate modifications successfully help to decrease variable generation
costs. They reduce load synchronization and thus costly peaks of conventional gen-
eration and increase overall load coverage with RES by limiting the extreme reliance
on times of high renewable generation.

To better understand the application of the desynchronization approaches, a more
detailed analysis to determine design guidelines for implementation is provided. The
power-based surcharge is in principle an effective means. However, if the surcharge
level is too high the price incentive indicating renewable generation availability is di-
luted and system efficiency decreases. Furthermore, a power-based surcharge entails
some limitations for real-world application as temporal flexibility of electric appli-
ances with a fixed load profile can not be exploited. Moreover, power surcharges
might induce inefficiencies when individual consumption is penalized in uncongested
situations. For the performance of group pricing the randomization level and the
number of groups are the most important influence factors. The simulation results
indicate that for smaller number of groups a low randomization level is optimal, else
the information on available renewable generation will be too diluted. For an increas-
ing number of groups, conventional generation can only be reduced if a stronger rate
randomization is applied: Rates of groups become more diverse and coordination
improves.
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Given the potentials of group pricing, a more generalized evaluation setting is
applied including a mixed renewable generation portfolio (PV and wind) and the full
set of flexible residential devices. This analysis shows that the randomization level
for group pricing depends on the underlying price structure and that the temporal
flexibility of devices is a crucial driver for load peaks. With respect to the availability
of information, the simulation results indicate that a reduced optimization horizon
has only marginal impact on system efficiency. In addition, it can be observed that
under uncertainty in renewable generation system efficiency for group pricing only
slightly deteriorates.

For electric utilities centralized control is attractive due to the reliable behavior
of each individual unit. Yet, scalability and privacy issues may impede large appli-
cations. The analyses reveal that decentralized control instantiated via RT pricing
deteriorates system efficiency and performs worse than unresponsive load under a
flat tariff. In contrast, group pricing achieves large reductions in variable genera-
tion costs and the theoretical cost reduction potentials established by the optimal
benchmark can be exploited to a great extent. Uncertainty in renewable generation
deteriorates system efficiency of centralized and decentralized regimes. Yet, random-
ized group pricing is more robust under uncertainty and the gap between centralized
and decentralized control shrinks.

Finally, the focus of the evaluation has been put on the opportunities of price-
based load control for residential households. Here, large and flexible devices (i.e.,
EVs, storage heaters and stationary batteries) have been demonstrated to provide
the largest benefits. Further, results suggest that group pricing does not give rise
to fairness issues compared to standard real-time pricing or a flat tariff. Under
group pricing benefits of customers increase with their flexibility bearing down the
prevailing cross-subsidies of flat rates. Moreover, improving overall system efficiency
can lead to lower system costs and allows lower average retail electricity rates for all
customers.
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5.8.1 Limitations

The presented coordination approaches have limitations which are discussed in this
section. For the simulations retail electricity rates are built on a renewable genera-
tion forecast and transmitted to the residential devices which individually optimize
their operation schedule. However, in a smart grid an electric utility might rather
send signals to a building management system than to individual appliances. Such
a management system might obey objectives beyond sole cost minimization of de-
vice operation, e.g., maximum usage of self-generated electricity. Also additional
decentralized energy resources (e.g., combined heat and power plants) and storage
systems (e.g., water storage tanks) are likely to be available in modern buildings.
Thus, coupling thermal and electrical energy generation offers broad flexibility for
in-house optimization of energy usage (Mauser et al., 2014). Building management
systems maximizing usage of self-generated electricity and controlling a wide set of
generation and storage technologies in one household can influence the system effects
of price-based load control.

Further, electricity cost savings for residential devices are based on artificial elec-
tricity rates which reflect the available renewable generation. Undeniable, these
savings are a snap-shot driven by the underlying retail rates. Hence, the cost num-
bers allow to compare the performance of residential devices under dynamic pricing
and to identify characteristics of promising devices. However, the absolute cost val-
ues have low explanatory power. Applying attributes of current spot prices and
additionally integrating fees and taxes can help to get a more realistic estimation of
saving potentials for devices. Another option might be to vary the characteristics of
electricity rates (e.g., volatility or price level) to get deeper insights into the effects
of rate structures on the economics of dynamic pricing for individual households.

Similar to the limitations of direct load control (see Section 4.7.1) an oversim-
plified system is employed for the evaluations presented. Therefore, the discussed
model extensions on demand and supply side can also improve generalization of re-
sults for price-based DR. Especially physical grid constraints may pose additional
limitations for the adoption of group pricing. Dauer et al. (2014) present a case
study for the application of group pricing in an exemplary local distribution grid. In
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a simple scenario they illustrate that group pricing can desynchronize load on a local
level and avoid load cut-off by the system operator to prevent transformer or line
overloads. Yet, to ensure robust results a more comprehensive analysis of different
distribution grid structures is required in future. To adhere local grid constraints
it might be required to combine group pricing with other mechanisms, e.g., revenue
management approaches to allocate transformer capacity (Flath et al., 2012).

5.8.2 Future Opportunities

The analysis of price-based load control gives rise to subsequent research questions.
The proposed rate modifications reduce variable generation costs, however, to achieve
a fully reliable balancing a tariff based control would have to be combined with other
control options (Heussen et al., 2012). For this purpose, e.g., direct control of large
industry loads can complement a flexible residential load portfolio.

On the consumption side, the flexibility of a device is independent of the price
level. It would be interesting to connect this flexibility with the savings a customer
can realize by price-based operation scheduling. Further, research needs to focus
on eliciting load shifting potentials and customer preferences of residential house-
holds in future field studies. Based on such richer data sets, bottom-up household
models can be validated and enhanced using real-world experiences for parameter
calibration. Moreover, participation constraints on behalf of the customers can re-
duce the effectiveness of coordination mechanisms and result in supplementary costs
(e.g., contracting). This could be addressed by using mechanism design principles
or considering varying participation levels.

With a broad set of flexible devices, group composition for randomized prices
might become important as customers can be segmented according to their energy
needs or the flexibility they provide. Thus, an advanced group pricing procedure
might improve system performance. Extending customer segmentation by a load
flow analysis can further improve understanding of spatial distribution of flexible
customers on power system stability and guide customer segmentation according to
the grid structure.
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In analogy to the direct load control, a yearly simulation horizon to integrate
seasonal variations in household demand and renewable generation patterns renders
more general conclusions just as an expansion of the device set and penetration levels
to typical values of other countries (see Section 4.7.2).



Chapter 6

Conclusion

This thesis focuses on the effects of an active demand side in the operation of future
power systems. Therefore, an appropriate modeling approach for demand flexibil-
ity and generation provision is developed. The model is then applied to assess DR
potentials of direct load control under incentive-based programs and to analyze dif-
ferent coordination mechanisms for a more efficient operation of the power system.
The discussion sections for flexibility potential of residential loads (Section 4.7) and
for the coordination mechanisms (Section 5.8) list limitations and opportunities for
future research. This conclusion summarizes main implications from the previous
chapters and thus provides a consolidated overview of the key findings addressing
the research questions put forward in Chapter 1. Finally, an outlook on the most
important challenges for future work and open questions to enable the smart grid
vision is provided.

6.1 Summary

The promotion of renewable energy sources leads to fundamental transformations
in the electricity sector. In such a power system an active participation of the
demand side is a promising approach to improve load balancing. Flexible loads
in residential areas are mainly untapped today. ICT technologies in a smart grid
facilitate coordination of a large number of these small loads offering potentials for
balancing in a system with a large share of renewable generation.
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Chapter 2 provides an overview of the main functions along the traditional elec-
tricity value chain (generation, transmission, distribution, and consumption) and
summarizes ongoing transformations and future challenges in system management.
Moreover, it describes the idea of a smart grid for future system operation and
depicts the benefits of flexible loads.

Given the importance of an accurate representation of customer reaction and
power system for an assessment of DR effects, Chapter 3 introduces a simulation
framework comprising demand and supply components. Using a structured approach
for customer modeling, the bottom-up models for demand flexibility of household
appliances, stationary batteries and EV charging are described. For each model a
discussion of its basic properties, input data for calibration, demand response charac-
teristics, and a formalized consumption model are provided. Suitability of household
appliances for shifting are assessed according to the effect of DR on customer’s con-
venience. Fridge, freezer, and storage water and space heaters possess a natural
thermal storage. Electricity usage and service provision can be decoupled and they
can be controlled automatically without noticeable differences in utility for house-
hold members. Operation of washing machine, dishwasher, and tumble dryer can be
started automatically, but require interaction with users. Residents set them into a
ready mode and specify a flexibility interval in which an operation can then start au-
tomatically. Other household appliances are not-controllable in the demand model.
Either they are not suitable for shifting or are of limited importance in Germany.

Moreover, this chapter analyzes the main output characteristics of renewable
generators emphasizing their short term volatility by illustrating rapid changes in
output levels for PV and wind. However, this analysis also shows seasonal or yearly
variations in renewable generation output which can not be addressed via residential
DR. Furthermore, the stylized power system model with a large share of renewable
generation and additional conventional generation capacities is described.

Residential households in a DR program adapt their electricity consumption
through direct load control or price-based incentives (Albadi and El-Saadany, 2008).
Chapter 4 focuses on the synergies an aggregator achieves through directly control-
ling flexible loads to balance volatile renewable generation. The active participation
of loads affects decisions of the aggregator on different levels. Dispatching of flexible
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loads (operational level) can greatly increase load coverage by renewable generation.
Yet, day-ahead scheduling based on renewable generation forecasts gives rise to hours
with high uncovered loads. This calls for improved forecasts of renewable genera-
tion or shorter optimization horizons with more frequent rescheduling of loads. For
demand planning in the portfolio (tactical level) the simulations demonstrate that
batteries, EVs, and storage heaters are the most promising residential devices for bal-
ancing. Aggregators with the need for demand flexibility should aim for contracting
these devices. In the long run an aggregator decides on investments in renewable
generation capacities (strategic level). The analysis of different wind and PV capac-
ities in the portfolio indicates that benefits of DR arise beyond renewable generation
shares covering 50% of total load. Below this level hardly any improvements can
be achieved through DR. With respect to the supply mix, an equally balanced wind
and PV portfolio leads to the lowest procurement costs for the aggregator.

For providing flexibility to an aggregator residential households receive incentive
payments. More flexible customers can expect higher compensations. Mapping
the variable generation costs to individual appliances indicates that EVs, stationary
batteries, and storage heaters have the largest cost reduction potentials. Residential
households with such a device can benefit most from participating in DR programs.
Furthermore, devices in a residential area allow to derive key features characterizing
demand flexibility. The evaluation on device level suggests that the capacity to
adapt—in this study the potential for load balancing— is mainly driven by electricity
consumption and shifting distance of a device. The restrictions for scheduling are of
minor importance.

In Chapter 5 different coordination mechanisms for controlling a large number
of small flexible loads are investigated. Particularly, price-based coordination is in
the center of attention. The results show that under automated demand response
basic open-loop rates (e.g., RT or TOU pricing) are appropriate for coordinating
small shares of flexible loads. In systems with large flexibility they lead to herding
effects and deteriorate efficiency. This motivates the introduction of two approaches
to mitigate the over-coordination phenomenon. Firstly, a power-based surcharge
is presented which induces a more distributed charging behavior. Secondly, group
tariffs are proposed to achieve an individualization of residential electricity rates.
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Under this price regime customers are assigned to groups and all members of one
group receive the same rate. The analyses demonstrate the improvements in power
system operation for both approaches. They reduce load synchronization and thus
costly peaks of conventional generation and increase overall load coverage with re-
newable generation. However, a more detailed investigation shows some limitations
for real-world application of power-based surcharges, e.g., they penalize in uncon-
gested situations and are not appropriate for devices with a fixed load profile.

The promising results of group pricing are confirmed in an ample simulation
setting including a broad range of flexible devices. To create the group-specific prices,
noise is added to an underlying RT rate. For the implementation of group prices
the simulation results show noise level and number of groups as the most important
influence factors. Higher noise levels are required for an increasing number of groups
and larger spreads in the underlying RT rate. Furthermore, the evaluations indicate
that under uncertainty in renewable generation group pricing is rather robust and can
exploit a large share of DR potentials established by an optimal benchmark. Thus,
instantiating decentralized control with group pricing demonstrates rather low cost
of decentralization. Moreover, the simulation results suggest that group pricing does
not give rise to fairness issues as benefits of customers increase with their flexibility
resolving the cross-subsidies of current flat tariffs.

Reforming electricity pricing is an important task for regulators faced with the
integration of high levels of RES.1 While adaptive prices may achieve higher coordi-
nation efficiency than open-loop posted prices, they may lack of customer acceptance
and their implementation may tend to failure (Dütschke and Paetz, 2013). Hence,
closed-loop adaptive pricing remains a somewhat distant vision in retail markets. In
the short and medium term, regulators should hence try to promote dynamic yet
reliable price signals. Group pricing as presented in this section extends today’s
control of storage heaters in residential households, where grid operators determine
groups of storage appliances and transmit intervals on group level to desynchronize
these large loads (Hastings, 1980). Smart grid technologies facilitate easy and ef-
fective grouping of customers. Hence, such a scheme provides a promising control

1The paragraphs on policy recommendations for reforming electricity prices and the example
application of randomization are also part of our working paper Flath and Gottwalt (2014).
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option in retail electricity markets. Furthermore, adapting group pricing would not
expose customers to price nor quantity risk and at the same time energy suppliers
would retain the possibility of coordinating flexible loads.

An example for a successful application of randomization is given by the recent
practice of “opaque selling” (Fay, 2008). Here, an intermediary offers a generic
product (e.g., “4-star-hotel in Rome”) to a customer. The concrete realization, e.g.,
Hilton vs. Marriot vs. Intercontinental) is not published at the time of sale. The
introduction of randomness allows higher capacity utilization and profitability for
providers. On the other hand, customers can make a bargain.

6.2 Outlook

The electricity sector in Germany and other countries is undergoing fundamental
changes. Increasing shares of renewable energy sources conflict with the existing
power grid control infrastructure posing challenges to system operation. ICT in-
frastructure for observing and controlling power system components together with
a software layer enabling novel applications and business cases pave the way for a
new vision of power system operation—the smart grid. Such a future system con-
sists of a large number of different actors with the ability to actively participate in
system operation. To this end, multiple ideas to organize and control these actors
are discussed. This thesis puts the focus on two different concepts. Firstly, direct
load control of flexible loads by an aggregator to balance renewable generation in one
portfolio is analyzed. Secondly, price-based demand response programs are revisited
to illustrate limitations and provide novel solutions.

The smart grid affects various research disciplines and gives rise to a great number
of challenges. A selection of open questions on the way to a smart grid is given sub-
sequently. A future smart grid will be composed of heterogeneous components and
organizational concepts: Building automation systems combine devices on customer
level and create prosumers that can be an active part of the grid. Virtual power
plants bundle generators and consumers to sell or buy electricity as an aggregate.
Demand response can offer control potentials by the active coordination of flexi-
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ble loads. An interesting opportunity for future research is the interaction of these
different concepts to organize smart grid actors. Combining virtual power plants,
demand response, prosumers, and other concepts might greatly improve efficiency of
power system operation.

Additionally, the integration of the underlying physical power grid in future anal-
ysis is important to better understand opportunities and risks of a smart grid. For
example, local distribution grid constraints might prohibit an electric vehicle to com-
ply with its commitments to provide operating reserve in a vehicle pool. Therefore,
a power flow analysis incorporating losses, line utilization, voltage, and transformer
utilization is required to address interdependencies between different organizational
concepts in the smart grid and to identify limitations due to infrastructure. Load
flexibility offers considerable potentials for demand and supply balancing in a system
with a large share of intermittent renewable generation. However, this only holds
for short term variations in renewable generation output. Seasonal characteristics of
wind and PV can lead to large over- and undersupply in some weeks or month. In
such a power system load flexibility should be complemented by long term storages,
e.g., power to gas or compressed air.

In addition to technical aspects, other impact factors are of importance to realize
the smart grid vision. Economic incentives guide potential smart grid actors and
will after all decide on their participation. The investment in ICT infrastructure
can facilitate a broad range of smart grid applications. Yet, revenues from a single
application today hardly covers these initial investments and (temporary) regulatory
support to attract capital expenditure might be required.

A crucial role in the transformation to a smart grid comes up to the individual
citizens. A large number of individuals investing in small generators enabled the
high share of renewable generation for electricity provision in Germany. Similar,
participation of citizens and thus customer acceptance of technical and economical
solutions is key to integrate decentralized generation units and flexible loads in a
smart grid.
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Appendix A

List of Abbreviations

AFAP As Fast As Possible Charging Strategy
BDEW Federal Association of Energy and Water Indus-

tries
CG Conventional Generation
CHP Combined Heat and Power Plant
CPP Critical Peak Pricing
DR Demand Response
DSM Demand Side Management
DSO Distribution System Operator
EU European Union
EV Electric Vehicle
GR Group Pricing
HL High-Low Pricing
HVAC Heating, Ventilation or Air-Conditioning
ICE Internal Combustion Engine
ICT Information and Communication Technology
IEC International Electrotechnical Commission
OECD Organization for Economic Co-operation and De-

velopment
PHEV Plug-in Hybrid Electric Vehicle
PV Photovoltaic
RES Renewable Energy Sources
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186 List of Abbreviations

RG Renewable Geneation
RT Real-Time Pricing
SOC State-Of-Charge
TOU Time-Of-Use
TSO Transmission System Operator
V2G Vehicle-to-Grid
VPP Virtual Power Plant



Appendix B

Centralized Control Model

Table B.1: Base case specification

Parameter Base Case Unit

Si
m
u-

la
tio

n Number of weeks 12
Optimization horizon 672 15-min. steps
Number of Runs 5

D
em

an
d
sid

e

Number of households 1,000 households
Number of EVs 160 vehicles
EV battery capacity 30 [kWh]
Charging power EV 11 [kW]
Vehicle consumption 0.15 [kWh/km]
EV initial SOC = end SOC 30 [%]
Charging possible Home&Work
Stat. battery capacity 7 [kWh]
BAT charging/discharge power 4 [kW]
BAT initial SOC = end SOC 30 [%]

Su
pp

ly
sid

e Scale renewable generation 100 % of demand
PV share on RES 50 [%]
Wind share on RES 50 [%]
CG capacity 4,000 [kW]
Variable generation costs step size 40 [kW]
Cost increase per step 2.5 [Monetary unit]

187



188 Centralized Control Model

Listing B.1: ILOG OPL optimization program for centralized scheduling of semi-
automatically controlled appliances

/∗Parameters∗/
int NbPeriods = ...;
range Periods = 1..NbPeriods;
int NbGenerationSteps = ...;
float NetResGeneration[Periods]=...;
float maxConventionalGeneration = ...;
float slope[1..NbGenerationSteps+1] = ...;
float breakpoint[1..NbGenerationSteps] = ...;
int NbDurationSemiAuto = ...;
range DurationSemiAuto = 1..NbDurationSemiAuto;
int NbRunsSemiAuto = ...;
range RunsSemiAuto = 1..NbRunsSemiAuto;
float ProfileSemiAuto[DurationSemiAuto]=...;
float StartIntervalSemiAuto[RunsSemiAuto][Periods]=...;

/∗Decision variables∗/
dvar int OptimalStartSemiAuto[RunsSemiAuto][Periods] in 0..1;
dvar float+ CG[Periods];

/∗Objective function∗/
minimize
sum(t in Periods )(piecewise(i in 1..NbGenerationSteps)
{slope[i] −> breakpoint[i];slope[NbGenerationSteps+1]} CG[t];

subject to {
/∗Power system constraints∗/
forall(t in Periods)
ctConventionalGenerationCapacity:
CG[t]<=maxConventionalGeneration;
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forall(t in Periods)
ctNonNegativeCG:
CG[t]>=0;

forall(t in DurationSemiAuto)
ctSystemBalanceBeginningHorizon:
CG[t] + NetResGeneration[t]
− sum(r in RunsSemiAuto, i in 1..t)
(OptimalStartSemiAuto[r][t+1−i] ∗ ProfileSemiAuto[i]))>=0;

forall(t in DurationSemiAuto..NbPeriods)
ctSystemBalance:
CG[t] + NetResGeneration[t]
− sum(r in RunsSemiAuto, d in DurationSemiAuto)
(OptimalStartSemiAuto[r][t+1−d] ∗ ProfileSemiAuto[d]))>=0;

/∗Device constraints∗/
forall(r in RunsSemiAuto)
ctStartSemiAuto:
sum(t in Periods)OptimalStartSemiAuto[r][t]>=1;

forall(r in RunsSemiAuto)
ctStartSemiAuto2:
sum(t in Periods)OptimalStartSemiAuto[r][t]<=1;

forall(r in RunsSemiAuto, t in Periods)
ctStartOperationInFlexibilityInterval:
OptimalStartSemiAuto[r][t] <= StartIntervalSemiAuto[r][t];
};





Appendix C

Output Data Analysis for
Stochastic Simulation

A seminal work addressing simulation modeling and analysis is due to Law (2011).
For the output data analysis of stochastic simulations he posits a sequential proce-
dure to estimate the number of replications required for meaningful results. As a
basis for this procedure, subsequently, it is shown how to derive a point estimation
and a confidence interval for the mean of stochastic simulation output. Further,
Law’s procedure to derive the number of replications is explained and employed for
the residential household model. This section contains an aggregate of Law’s remarks
and an application of his procedure on the presented model.

Estimating Means

For a terminating stochastic simulation let Xj be a random variable from making
j = 1, 2, . . . , n simulation runs. Realizations Xj for runs are not the same as they
use different samples from the input probability distributions for running the simu-
lation. Law (2011) states that the two realizations of the random variables Xj are
independent and identically distributed. The independency across runs is the key
for the output data analysis he provides. An approximate 100(1 − α) percent with
0 < α < 1 confidence interval for the point estimate of the mean µ = E(X) of n
independent replications of the simulation is given by:
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X(n)± tn−1,1−α/2

√
S2(n)
n

, (C.1)

where X(n) and S2(n) are the sample mean and variance and α.

Approximate Confidence Interval

The confidence interval is called approximate since the correctness depends on the
assumption that the Xj’s are normally distributed which will be rarely satisfied in
practice. However, for experiments where the precision of the confidence interval is
not “overwhelmingly important”, the proposed estimation of sample mean and con-
fidence interval brings acceptable results. Only with Xj’s that are highly nonnormal
and a very small number of replications n, the coverage of the calculated confidence
interval may be low. In the work at hand the estimation of variable conventional
generation costs is the major objective. Figure C.1 shows the histogram for this
costs based on 1,000 replications of a population with 1,000 residential households
for static household load (Static) and centralized load control (OPT).
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Figure C.1: Histograms and normal distribution for the estimated mean variable generation
cots (n = 1, 000) of one day

The sample skewness is 0.18 for the static scenario, respectively 0.06 for the
centralized load control, thus close to the non-skewed normal distribution. Hence,
for the variable conventional generation costs the assumption of normality seems not
to be farfetched.
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Precision of Mean

To estimate the mean µ = E(X) with a specified error a number n of simulation
replications is required. The relative error γ of the estimate X is given by |X −
µ|/|µ| = γ. As µ is estimated by X the relative error is γ′ = γ/(1− γ) rather than
the desired γ. To obtain an estimate of µ with a relative error γ′ and a confidence
level of 100(1− α) percent with 0 < α < 1 the following procedure of Law (2011) is
applied:

1. Make n0 ≥ 2 initial replications of the simulation and set n = no.

2. Compute X(n) and δ(n, α) for the random variables Xj with j = 1, 2, . . . , n,
where the confidence-interval half-length is defined by:

δ(n, α) = tn−1,1−α/2

√
S2(n)/n. (C.2)

3. If δ(n, α)/|X(n)| ≤ γ′, stop and use X(n) as the point estimate for µ. Else,
make another simulation run, replace n by n+ 1, and go to step 2.

As a result the interval I(α, γ) = [X(n)+δ(n, α), X(n)−δ(n, α)] is an approximate
100(1 − α) percent confidence interval for µ with the desired precision γ. In other
words, for 100 independent 95 percent confidence intervals calculated with Law’s
procedure (each interval based on n replications) in about five cases the relative
error is expected to be greater than γ′.

In the household load simulation the estimation of variable conventional gener-
ation costs is one major objective. Figure C.2 shows the effect of the number of
simulation replications on the relative error (precision) of the estimated mean costs.
The values have been obtained by following Law’s sequential procedure performing
an additional simulation run for each iteration. In the figure it can be observed
that already a limited number of replications n results in a low relative error. For a
one day simulation of 1,000 households with n = 5 replications the relative error is
3%, respectively about 1.5% for a simulation horizon of one week. Thus, increasing
the simulation horizon and estimating the mean on more observations reduces the
relative error. Two main aspects for the high precision with limited replications can
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be identified. First, in the residential household model merely starting times of ap-
pliances are random variables. Further, with a population size of 1,000 households
effects of stochastic inputs are averaged out.
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Figure C.2: Effect of number of replications on the relative error

Note that only the residential household model uses probability distributions.
Considering deterministic EVs and stationary batteries further decreases the impact
of stochastic inputs on the estimation of variable generation costs. Law recommends
making at least three to five replications of a stochastic simulation to achieve valid
estimations of the evaluation parameters. Due to the limited impact of stochastic
inputs and the resulting low relative errors, parameter estimations in this thesis are
based on five replications of the stochastic residential household model.



Appendix D

Load Profiles on Device Level
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Figure D.1: Load for uncontrolled (Static) and controlled (OPT) devices over one week
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Figure D.2: Load for uncontrolled (Static) and controlled (OPT) devices over one day



Appendix E

EV and Stationary Battery
Calibration
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Figure E.1: Normalized variable generation costs for different storage values under RT
pricing (for stationary batteries also price quantiles to govern charging (p) and
discharging (1-p) activity are depicted)
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Figure E.2: Normalized variable generation costs for different randomization levels and
storage values under group pricing (for stationary batteries also price quantiles
to govern charging (p) and discharging (1-p) activity are depicted)
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