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Abstract: Satellite measurements of the spatiotemporal distributions of atmospheric CO2 

concentrations are a key component for better understanding global carbon cycle 

characteristics. Currently, several satellite instruments such as the Greenhouse gases 

Observing SATellite (GOSAT), SCanning Imaging Absorption Spectrometer for 

Atmospheric CHartographY (SCIAMACHY), and Orbiting Carbon Observatory-2 can be 

used to measure CO2 column-averaged dry air mole fractions. However, because of cloud 

effects, a single satellite can only provide limited CO2 data, resulting in significant 

uncertainty in the characterization of the spatiotemporal distribution of atmospheric CO2 

concentrations. In this study, a new physical data fusion technique is proposed to combine 

the GOSAT and SCIAMACHY measurements. On the basis of the fused dataset, a  

gap-filling method developed by modeling the spatial correlation structures of CO2 

concentrations is presented with the goal of generating global land CO2 distribution maps 

with high spatiotemporal resolution. The results show that, compared with the single 

satellite dataset (i.e., GOSAT or SCIAMACHY), the global spatial coverage of the fused 

dataset is significantly increased (reaching up to approximately 20%), and the temporal 
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resolution is improved by two or three times. The spatial coverage and monthly variations of 

the generated global CO2 distributions are also investigated. Comparisons with  

ground-based Total Carbon Column Observing Network (TCCON) measurements reveal that 

CO2 distributions based on the gap-filling method show good agreement with TCCON 

records despite some biases. These results demonstrate that the fused dataset as well as the 

gap-filling method are rather effective to generate global CO2 distribution with high 

accuracies and high spatiotemporal resolution. 

Keywords: CO2; GOSAT; SCIAMACHY; Fused data 

 

1. Introduction 

Atmospheric carbon dioxide (CO2) is the most important anthropogenic greenhouse gas, and since 

the industrial revolution, the CO2 concentration in the Earth’s atmosphere has increased significantly 

from 280 to 379 ppm in 2005 [1]. Currently, global warming caused by atmospheric CO2 has attracted 

the attention of scientists around the world. Predicting and mitigating climate change due to increased 

CO2 depends on the accurate quantification of distribution and variability for CO2 sources and sinks, 

which have been derived from atmospheric CO2 concentration measurements by using inverse  

modeling [2–4]. For this purpose, globally distributed measurements of atmospheric CO2 

concentrations with high accuracy and precision as well as high measurement density are required. In 

fact, the utility of CO2 concentrations has been demonstrated in most carbon cycle-related studies. For 

example, Rayner and O’Brien [5] demonstrated that global column-averaged CO2 concentrations 

(precision ≤1%) can help to reduce the uncertainties in regional CO2 source and sink estimates. 

Alkhaled et al. [3] indicated that using atmospheric CO2 concentration data has the potential to improve 

the scientific understanding of regional carbon cycle processes and budgets. 

Existing ground-based CO2 monitoring networks provide accurate measurements of atmospheric 

CO2 concentration. However, these CO2 measurements are very sparse to understand and capture the 

global distribution of carbon sources and sinks [3,6]. Effectively grasping the global CO2 distribution 

with high spatiotemporal resolution has been a long-standing problem. Satellites provide the potential 

to derive CO2 column-averaged dry air mole fractions (XCO2) accurately with high spatiotemporal 

resolutions on global scale. To date, the Orbiting Carbon Observatory-2 (OCO-2) [7], the Greenhouse 

gases Observing SATellite (GOSAT) [8], and the SCanning Imaging Absorption Spectrometer for 

Atmospheric CHartographY (SCIAMACHY) [9] are the only three satellite instruments that can 

retrieve XCO2 with significant sensitivity in the boundary layer [10]. 

Although these satellites have been used to measure global XCO2 concentrations, because of cloud 

contamination and limitations due to the instrument observation modes (e.g., GOSAT observes in 

lattice points), the available data points for retrieved XCO2 from any single satellite are very limited [3,11].  

For instance, Morino et al. [12] showed that only approximately 10% of the GOSAT data can be 

used for the retrieval of XCO2 because of cloud contamination. The limited satellite observations restrict 

the generation of level 3 (L3) XCO2 maps with high spatiotemporal resolution when only a single  

satellite-based XCO2 dataset is considered. Considering the weakness of single satellites, Wang et al. [13] 
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proposed a physical fusing algorithm to generate a continuous spatiotemporal CO2 dataset. However, in 

certain regions, even after combining GOSAT with SCIAMACHY retrievals at time scales of up to a 

few months, some gaps remain, thereby influencing the analysis of global and regional spatiotemporal 

characteristics of XCO2 concentrations. Fortunately, researchers have recently suggested gap-filling 

methods based on the Kriging method to generate full-coverage global maps (L3 data products) using 

single satellite products. For example, Hammerling et al. [6,14] adopted a statistical mapping approach 

to create full-coverage maps (L3 data products) from GOSAT XCO2 observations. The National 

Institute for Environmental Studies (NIES) GOSAT Project generates GOSAT L3 data products by 

interpolating and extrapolating the GOSAT level 2 (L2) XCO2 products using ordinary Kriging [15]. 

Liu et al. [16] and Tomasada et al. [17] also exploited methods to produce the spatial distribution of CO2 

concentrations. Creating L3 data products is one way to obtain new carbon cycle information [6]. 

Hammerling et al. [6] indicated that these L3 XCO2 products are not intended for direct use in 

inversion studies but can be used to make direct and independent comparisons with existing carbon 

flux and atmospheric transport models. Such comparison studies could be used to verify and track 

reported CO2 emissions [6]. 

Nevertheless, the fact is that these single satellite-based strategies could not ensure sufficient data 

for stable semivariogram estimation during Kriging interpolation because the number of valid data 

points is limited for a single satellite [13,18], which may cause large uncertainties. Rather than using 

L2 XCO2 from a single dataset (e.g., GOSAT), as performed in existing literature, fusing available CO2 

measurements derived from various space-based data would facilitate the generation of highly reliable 

full coverage (L3) maps with high spatiotemporal resolution. Wang et al. [13] proved that the spatial 

coverage of the fused data is wider than that of a single satellite. Thus, using fused data to generate a 

global land full-coverage map of XCO2 distribution based on the Kriging approach is a better choice. 

The overall objective of this study is to develop a global land gap-filling method and generate a 

CO2 L3 map with high spatiotemporal resolution by using the new combined CO2 dataset within  

1° × 1° grids. The remainder of this paper is as follows. Section 2 describes the data used in this study. 

Section 3 introduces the fused algorithm and gap-filling methods based on ordinary Kriging. The results 

of the spatial variability analysis are presented in Section 4. In this section, comparison between single 

dataset-based prediction and that of fused-dataset-based prediction as well as the interpolated 

predictions versus ground-based measurements are investigated. Our conclusions are presented 

in Section 5. 

2. Data 

GOSAT was successfully launched on 23 January 2009 [19]. It is the first space-based sensor 

designed to measure CO2 and CH4 accurately with improved sensitivity and spatial resolution [8,20]. 

GOSAT’s onboard instrument, i.e., the Thermal And Near infrared Sensor for carbon Observation 

(TANSO), has two sensors: a Fourier Transform Spectrometer (FTS) and a Cloud and Aerosol Imager 

(CAI) [19]. TANSO-FTS mainly observes sunlight reflected from the Earth’s surface and light emitted 

from the atmosphere and the surface, and measures the amounts of greenhouse gases [19,20]. It has 

three narrow bands in the short-wave infrared region (i.e., 0.76, 1.6, and 2.0 µm) and a wide thermal 

infrared band (i.e., 5.5–14.3 µm) with spectral and spatial resolutions of 0.2 cm−1 and 10.5 km, 
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respectively [20]. TANSO-CAI monitors the clouds and aerosols within the TANSO-FTS’s field of 

view [20]. Currently, five different CO2 retrieval algorithms are released from GOSAT. These are 

ACOS [21], NIES v02.xx [22], NIES PPDF-D [23], UOL FP [24], and RemoteC [25]. 

SCIAMACHY is a spectrometer that measures reflected, scattered, and transmitted solar radiation 

in the spectral region of 214–2380 nm at moderate spectral resolution [26,27]. It was onboard the 

Environmental Satellite (ENVISAT) [28]; however, contact with ENVISAT was lost in April 2012 [29]. 

The primary objective of SCIAMACHY was to monitor trace gases in the troposphere and stratosphere. 

NASA’s OCO-2 launched in July 2014 will soon be providing approximately 100,000 high-quality 

daily measurements of CO2 concentrations from around the globe [7]. Currently, no XCO2 data is 

publicly available from OCO-2. 

In this study, version 2.9 of the GOSAT Atmospheric CO2 Observations from Space (ACOS) 

XCO2 L2 data and version v02.00.08 of the SCIAMACHY Bremen optimal estimation (BESD) L2 

data [30] are employed. ACOS v2.9 rather than ACOS v3.3 is used because ACOS v3.3 is still being 

evaluated and some deficiencies exist in this version [31]. BESD v02.00.08 is the newest algorithm 

and latest version from IUP Bremen. The fused data used in our study are obtained by combining the 

XCO2 retrievals of ACOS with those of BESD. The detailed fusing algorithm is described in the 

following section. 

In addition, CO2 data of Carbon Tracker (CT), which is a data assimilation system built by the 

National Oceanic and Atmospheric Administration’s Earth System Research Laboratory, USA [32],  

are taken as a reference profile in the fusing algorithm. The Total Carbon Column Observing Network 

(TCCON, http://tccon.ipac.caltech.edu/) XCO2 data, which are ground-based Fourier transform 

spectrometer measurements [33], are used for comparison with the interpolated results. In this study, 

Lamont (USA, 36.60°N, 97.49°W), Park Falls (USA, 45.94°N, 90.27°W), and Garmisch (Germany, 

47.48°N, 11.06°E) sites located in the Northern Hemisphere, and Wollongong (Australia, 34.41°S, 

150.88°E) site located in the Southern Hemisphere, are used. 

3. Method 

3.1. Fusing CO2 Measurements from GOSAT and SCIAMACHY 

Considering the current availability of multiple XCO2 datasets from space, combining these 

measurements is a promising way to obtain more data points within a certain time compared with any 

single satellite-based dataset. Both GOSAT and SCIAMACHY can provide XCO2 information, and we 

can consider combining these two XCO2 datasets to generate a new dataset at high spatiotemporal 

resolution. However, these two datasets cannot be combined directly because of differences in 

sampling methods, overpass times, averaging kernels, and the a priori CO2 profile involved during 

retrievals [34]. Therefore, a necessary adjustment is performed to adjust the two observations for a 

common a priori profile (i.e., the newly generated fused profile). Wang et al. [13] employed the CT CO2 

profiles (2° × 3°) to assist data fusion. They indicated that a priori CO2 profile of both the ACOS and 

BESD are first interpolated or extrapolated to the level of the CT CO2 profile according to their 

pressure layers. After interpolation, the a priori CO2 profiles for both ACOS and BESD have the same 

dimension as the CT profile. Then equation (1) can be used to adjust these two XCO2 data to a unified 
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level. In this study, a new CO2 profile database with 1° × 1° resolution is used by integrating the CO2 

profiles of CT, ACOS, BESD, and NIES v02.xx products. Thus, the adjustment equation can be 

expressed as follows [13]: 

2_ 2_ CT ( )( )T
adj ret aXCO XCO h I a X X= + − −  (1)

In the above equation, XCO2_adj refers to the adjusted XCO2 for ACOS or BESD, XCO2_ret is the 

retrieved XCO2 of ACOS or BESD, h denotes a pressure weighting function, a is the column 

averaging kernel of ACOS or BESD, I is an identity matrix, and XCT and Xa are the newly generated 

fused CO2 profile and the corresponding a priori CO2 profile for ACOS or BESD, respectively; Here, 

the unit of XCO2_adj, XCO2_ret, and CO2 profile is ppm. 

In view of different spatial samplings, to account for retrieval uncertainties, the XCO2 data with fine 

spatial scale are aggregated to a new value according to the uncertainty weight of individual XCO2 

retrievals to suit the relatively coarse scale during fusion [11]. The detailed “aggregated” method can be 

found in [13]. In addition, the time difference between these two datasets is also considered by 

interpolating the newly generated fused profile (1° × 1°) data at a reference time (taking BESD overpass 

time as a reference). 

On the basis of the steps described above, the globe is divided into numerous 1° × 1° 

latitude/longitude grid boxes (180 × 360 in total). For each grid, all CO2 observations located within 

that grid are averaged as the fused value weighted by the individual XCO2 retrieval accuracy. 

3.2. Gap-Filling Method for the Fused Data 

In this study, a gap-filling method based on the ordinary Kriging [6,15] technique is applied to map 

global land full-coverage XCO2 distribution by using fused ACOS and BESD data. This gap-filling 

method employs the spatial correlation of CO2 observations between different locations. The spatial 

correlation structure of the CO2 observations is derived using a semivariogram. Then, the derived 

spatial correlation structure and CO2 observations are used to estimate XCO2 values. The XCO2 values 

are predicted within global 1° × 1° grids. The detailed process is described in the following. 

First, abnormal XCO2 data points should be screened as they may have significant impact on the 

interpolation results when no other nearby data point exists [15]. In this study, skewness and kurtosis is 

calculated to filter these extreme values that make the L2 data distribution differ from normal 

distribution. Our threshold number for skewness is 0.01 and that for kurtosis is 5. By using these two 

measures, the screening process is performed, and the detailed screening process is similar to that 

adopted by the NIES GOSAT Project [15]. 

Second, calculating and analyzing experimental semivariograms is indispensable to quantify spatial 

variability between CO2 observations; this can be calculated by the following equation [16]: 
( )

2

1

1
( ) [ ( ) ( )]

2 ( )

N h

i i
i

h Z X Z X h
N h

γ
=

= − +
×   (2)

whereγ(h) denotes the experimental semivariogram, Z(Xi) is the XCO2 value at Xi, Xi and Xi + h are 

the spatial locations on the earth’s surface, N(h) is the number of sample pairs separated by h, and h is 

the spatial distance between sample pairs of Xi and Xi + h, which is calculated by [15,17]: 
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1cos (sin sin cos cos cos( ))i j i j i jh r φ φ φ φ λ λ−= × + −  (3)

where r is the Earth’s radius and ߔ	and ߣ	are the latitude and longitude of location Xi respectively. 

Next, to quantify the spatial correlation structure between the pairs of XCO2 measurements, it is 

crucial to choose a theoretical semivariogram model. In this study, depending on the feature of the 

spatial variability of CO2 observations, an exponential semivariogram model with a nugget effect 

component was selected to model the XCO2 spatial variability [18]. 

( ) (1 exp( / ))h N C h Rγ = + × − −  (4)

where N is the nugget effect component, C is the sill value, and R is the range value [18].  

These three model parameters, which fit the experimental semivariogram, are estimated by a nonlinear 

least-square method. 

The subsequent prediction step is an ordinary Kriging approach. A distinct feature of Kriging is that 

an observation is not only weighted as a function of its distance to the prediction location but also as  

a function of its location relative to those of other observations [6]. Following the algorithm of 

GOSAT L3 products [15], the spatial correlation structure for each location is estimated by using local 

Kriging within a certain search range according to the property of a semivariogram (i.e., the farther the 

distance, the lesser the observation points contribute). Here, the search range of observation points 

adopts a moving ellipse similar to the method used by GOSAT L3 products [15]; however, the actual 

ellipse radii used were half that of the GOSAT L3 products. The detailed ellipse radii are listed 

in Table 1. 

The XCO2 at each grid point x0 is subsequently predicted by the following equation [17]: 

*
0

1

( ) ( )
n

i i
i

Z X Z X
=

=ω  (5)

Where Z*(X0) refers to predicted XCO2, n is the number of observation points, and Z(Xi) is the value of 

the variable Z at Xi.	࣓	 in (5) is calculated by the following equation [17]: 

1
1 10

0 1

1 T

T

−
− −

−

 −= +  Γ 

1 Γ γ
ω Γ γ Γ 1

1 1
 (6)

where ߛ = )ߛ ଵܺ − ܺ)⋯ߛ(ܺ − ܺ)்] and ડ = )ߛ} ܺ − ܺ)}. 
Another significant characteristic of Kriging is that it can quantify the uncertainties in the predicted 

value [15]. The mean square prediction error can be calculated by the following equation [15]: 
1 2

2 1 0
0 0 0 1

( 1)
( )σ

−
−

−

−= −
T

T
T

X
γ Γ 1

γ Γ γ
1 Γ 1

 (7)

In the interpolation processes, because of the differences between experimental semivariograms, the 

distribution tendency of global CO2 concentrations varies significantly between land and sea [15]. 

Therefore, in our study, the experiments are restricted to global land areas. 
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Table 1. Search range used in the interpolated processes (unit: km). 

Season Month Latitude Range Long Radii of Ellipse Short Radii of Ellipse 

Winter 12, 1, 2 

90 to 65 550 600 
65 to 30 1250 900 

30 to −10 1000 600 
−10 to −30 1100 550 
−30 to −60 800 900 
−60 to −90 900 1200 

Spring 3, 4, 5 

90 to 60 550 700 
60 to 30 1550 1000 
30 to −0 1000 750 
0 to −30 750 500 
−30 to −65 400 650 
−65 to −90 900 500 

Summer 6, 7, 8 

90 to 65 550 650 
65 to 30 1100 750 
30 to 15 800 600 

15 to −30 1200 800 
−30 to −70 800 650 
−70 to −90 800 550 

Autumn 9, 10, 11 

90 to 65 600 800 
65 to 35 1200 750 
35 to 10 900 600 

10 to −30 1000 600 
−30 to −70 900 600 
−70 to −90 800 500 

4. Results and Discussion 

4.1. Global Spatial Distribution of XCO2 for Fused ACOS and BESD Data 

In this study, as an example, the monthly averaged XCO2 data for October 2010 are used to 

investigate the global spatial coverage of the fused ACOS and BESD data. The fused data performed at 

other months are similar to that of October 2010. For better visualization, all data are aggregated in  

2° × 2° bins by averaging data points for every grid cell in October 2010. 

As shown in Figure 1, the XCO2 measurements from ACOS are distributed over both land and 

ocean areas. The XCO2 data points from BESD are restricted to land regions because of the low  

signal-to-noise ratio over the ocean. Although the data points from ACOS are slightly wider than those 

from BESD, both ACOS and BESD show poor global coverage. These results agree with those 

presented in the study conducted by Wang et al. [11]. 

From Figure 1, we can see that, on a global scale, the spatial distribution of the fused data is more 

extensive compared to that of other single-satellite data. We also investigated the global land coverage 

percentage for fused, ACOS, and BESD data (Figure 2) within 1° × 1° grids. Figure 2 shows that the 

global land spatial coverage of the fused data can reach up to 20.04% for time periods up to 30 days.  

For 30 days, the average global coverage of ACOS and BESD within 1° × 1° grids is approximately 
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8.86% and 14.60%, respectively. The global land spatial coverage of the fused data reached up to 

15.57% within 15 days and 13.03% within 10 days. These results illustrate the overwhelming 

advantages of using fused data for both space and time scales. Although the fused data generate a 

wider global coverage, there are still some gaps in some regions. In this case, a proper gap-filling 

method is required to generate a continuous full-coverage map. To address this, an ordinary Kriging 

interpolation approach based on the three datasets (i.e., fused, ACOS, and BESD) was attempted and is 

described in the next section. 

Figure 1. Spatial coverage of XCO2 monthly average in 2° × 2° bins: (A) Fused data for 

October 2010; (B) ACOS data for October 2010; and (C) BESD data for October 2010. 
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Figure 2. Global land coverage percentage of XCO2 products for ACOS, BESD, and fused 

data within 1° × 1° grids for October 2010. 

 

4.2. Estimating and Modeling Experimental Semivariograms of ACOS, BESD, and Fused XCO2 Data 

In practice, initially a semivariogram model should be designated to fit a semivariogram obtained 

from actual observed data [15]. Semivariogram models include Gaussian, spherical, exponential, linear, 

and power models. After many tests, it turned out that the exponential semivariograms can fit the 

characteristics of the actually observed data more accurately than other semivariogram models for all 

three CO2 datasets (i.e., fused, ACOS, and BESD). Therefore, here, the exponential semivariogram 

model with a nugget effect component is selected. The experimental semivariograms and fitted results 

of fused, ACOS, and BESD data for October 2010 are shown in Figure 3. 

In this study, on the basis of the relative distance, all semivariograms derived from CO2 

observations are classified on a 100 km scale. The experimental semivariograms, which are denoted as 

blue dots in Figure 3, represent the average value of the semivariograms for each classification. 

As shown by Figure 3, there are significant spatial correlations within these CO2 datasets, although 

the spatial correlation becomes weaker as the distance increases. Evidently, a potential advantage of 

the fused data is that it can ensure more data points for stable semivariogram estimation. 

Figure 3. The experimental semivariograms and their fitting results for October 2010:  

(A) Fused CO2; (B) ACOS; and (C) BESD. 
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Figure 3. Cont. 

 

 

4.3. Comparison of the Interpolated Map of the Fused CO2 with that of Single Satellite CO2 

In this study, the ordinary Kriging method is used to fill in the gap of global land CO2 distributions 

for the fused and two single satellite datasets. A feature of this gap-filling method is that each 

predicted value has an associated uncertainty, which reflects the number of observations surrounding 

an estimation location and the spatial variability in the XCO2 field [14]. The predicted values with their 

associated uncertainties are used to implement comparisons between the fused data and the two single 

satellite observations. Figure 4 shows an example of the comparison of predicted results for these three 

datasets in October 2010. 

Global standard deviation for interpolated XCO2 products (ACOS, BESD, and fused) in April, July, 

and October 2010 was also investigated and compared (Table 2). It can be seen from Table 2 that the 

interpolated fused data show the smallest mean standard deviation and the minimum value. 

As shown in Figure 4, although the spatial coverage of the interpolated ACOS shows a similar trend 

with that of the interpolated fused data, it shows a small gap in the south of Central America relative 

to the fused data. From the corresponding uncertainties of ACOS, we also see that the gaps exist in the 

north of Southern America. Therefore, the spatial coverage of the interpolated fused data is somewhat 

wider over the global land region compared to the interpolated CO2 value of single satellite products.  
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In particular, interpolated values of the fused data show lower uncertainties than those of the  

two satellites. 

Figure 4. Comparison of the spatial distribution of the Kriging predictions and associated 

standard deviations: (A) Interpolated fused CO2 data; (B) Standard deviation in (A);  

(C) Interpolated ACOS CO2 data; (D) Standard deviation in (B); (E) Interpolated BESD 

CO2 data; and (F) Standard deviation in (E). 

These results indicate that our fused CO2 products are more effective for generating global  

full-coverage CO2 concentrations based on the ordinary Kriging method. In addition, with regard to the 

predictions, the spatial coverage over land in the Southern Hemisphere, e.g., southern Africa and 

southern South America, is relatively good for each of the three datasets. The predicted uncertainties 

are also low for these regions. However, for the interpolated results of the fused, ACOS, and BESD 

data, regions with relatively weak constraint exist in high northern latitudes, e.g., northern Canada, 

Greenland, and northern Russia. This is thought to be due to limited data points. At the same time, it can 

be seen from Figure 4 that, in eastern Africa and the northeast part of South America, high uncertainties 

also exist in the fused, ACOS, and BESD product, which may also be due to limited data points. 
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Table 2. Basic global standard deviation statistics for interpolated XCO2 products in April, 

July, and October 2010. Unit: ppm. 

Month Data Mean Max Min 

4 
ACOS 1.85 2.75 1.70 
BESD 2.34 3.80 2.04 
Fused 1.76 3.31 1.49 

7 
ACOS 1.89 2.90 1.82 
BESD 2.37 3.83 2.05 
Fused 1.80 3.14 1.66 

10 
ACOS 1.84 3.05 1.71 
BESD 2.17 3.45 1.84 
Fused 1.61 3.07 1.29 

Furthermore, we can see from Figure 4 that the interpolated fused results are similar to those of 

ACOS in the northern part of North America and the Eurasian area. This is because the fused data 

points are primarily from ACOS observation points, and limited BESD data points are available in 

these regions. 

Overall, the fused CO2 data based on the ordinary Kriging is more helpful to map the global land 

CO2 distribution at high spatiotemporal resolution, and in the following section, we further investigate 

monthly variability for the interpolated fused data. 

4.4. Monthly Variability for Predicting the Fused Data 

In this study, monthly global land distributions of the predicted CO2 with the associated 

uncertainties are presented for April, July, September, and December 2010. As shown in Figure 5, the 

number of predicted CO2 values decreases slightly in April and December for the Northern 

Hemisphere. In addition, poor coverage is found in the high northern latitudes for April and December, 

which is probably due to solar zenith angle restrictions and limited valid observations in these  

regions [14]. 

Furthermore, the monthly variations are captured well in the prediction maps of the fused data, 

especially in the Northern Hemisphere with relatively higher CO2 values in April and lower CO2 

values in September, thus reflecting the effect of the atmospheric CO2 seasonal cycle. The cause of 

these significant seasonal variations in CO2 concentration in the Northern Hemisphere has been 

analyzed by many researchers. They have indicated that, in the Northern Hemisphere, XCO2 values are 

higher in spring because of coal combustion as well as strong respiration of plants and soil, and XCO2 

values are lower in autumn because of strong photosynthesis activity. For example, Liu et al. [16] 

proposed that smoke and dust from coal combustion is a main reason for higher XCO2 concentration in 

winter and spring. Bai et al. [35] stated that significant seasonal variations of CO2 in the Northern 

Hemisphere were closely related to human activities and green vegetation. Wang et al. [11] also found 

that seasonal cycles exist in the retrieved XCO2 concentrations from satellites in the Northern 

Hemisphere and that there are no significant seasonal variations in the Southern Hemisphere. From 

Figure 4, we can also see that there is no noticeable seasonal variation in the Southern Hemisphere, 

particularly for Australia and the southern part of South America. 
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Figure 5. Monthly mean maps of the predicted fused data with associated standard 

deviation (gridded in 2° × 2° bins): (A) Predicted fused data for April 2010; (B) Associated 

standard deviation for the predicted value (April 2010); (C) Predicted fused data for July 

2010; (D) Associated standard deviation for the predicted value (July 2010); (E) Predicted 

fused data for September 2010; (F) Associated standard deviation for the predicted value 

(September 2010); (G) Predicted fused data for December 2010; and (H) Associated 

standard deviation for the predicted value (December 2010). 
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4.5. Comparison of Kriging Interpolation Results with Total Carbon Column Observing Network 

(TCCON) Measurements 

To investigate the effectiveness of the interpolation result based on the fused dataset, ground-based 

measurements are compared with the predictions for monthly mean values in 2010. The ground 

measurements taken between 10 a.m. and 2 p.m. are used to calculate monthly averaged values to 

match the overpass time of the satellites involving GOSAT and SCIAMACHY. Monthly means 

typically comprise n ≈ 100–1000 individual measurements for TCCON and typically n ≈ 25 data for 

fused Kriging. 

From Figure 6 it can be seen that the monthly average predicted CO2 data in 2010 are in good 

agreement with those of the TCCON sites on the whole, especially in the Lamont site located in the 

Northern Hemisphere. However, the monthly average predicted CO2 data are lower than those of the 

TCCON sites by 0.5% in the Lamont site, which may stem from underestimated observation values; 

these biases were also found by Wunch et al. [36]. At the same time, there are also some differences 

between the interpolated fused results and site data in some months for the Wollongong site. This is 

probably due to the lower number of data points from this site [36] for these months, which could 

result in inaccurate interpolated values. Note that the seasonal variations of the predicted and  

ground-based CO2 data in Lamont, with higher values in spring and winter and lower values in autumn, 

are also sufficiently evident. However, this tendency is not found at the Wollongong site located in the 

Southern Hemisphere. 

Figure 6. Error bars are pure statistical uncertainties of the monthly means (±3 

sigma/sqrt(n) for TCCON site and fused Kriging data within ±2.5° in 2010; for TCCON 

sites, the monthly data between 10 am and 2 pm are averaged according to the overpass 

time of two satellites being combined. (A) Lamont site in 2010; (B) Park Falls site in 2010; 

(C) Garmisch site in 2010; and (D) Wollongong site in 2010. 
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Figure 6. Cont. 

 

 

5. Conclusions 

In this study, a physical fusion and gap-filling method was proposed to map global land CO2 

distribution by combining GOSAT with SCIAMACHY data at high spatiotemporal resolution. 

Initially, spatial coverage of the monthly averaged CO2 in October 2010 was investigated for the fused, 

GOSAT, and SCIAMACHY data products. At the same time, the global land coverage percentage was 

compared among the fused, ACOS, and BESD datasets. The comparison results show that the global 

land spatial coverage of the fused data could reach up to 20.04% within 30 days, while the average 

global coverage of ACOS and BESD was approximately 8.86% and 14.60%, respectively. However, 

the global land spatial coverage percentage of the fused data within 15 days and 10 days reached up to 

15.57% and 13.03%, respectively. Compared to ACOS or BESD, the fused data showed two or three 

times higher temporal resolution. These results indicate that the fused dataset is very effective for 

mapping the global distribution of XCO2 concentration in either space or time scales. Based on this, 

the global land spatial correlation structure was evaluated and modeled using an exponential 

semivariogram model with a nugget effect component for fused, ACOS, and BESD CO2 databases for 

October 2010. Subsequently, gap-filling maps of these CO2 datasets with associated uncertainties were 

constructed on the basis of ordinary Kriging interpolation. The interpolated results imply that the 

interpolated fused data have the lowest standard deviation (mean value: 1.61 ppm and minimum value: 

1.29 ppm) among these three databases and the largest spatial coverage. The monthly variations of the 

predictions for the fused data were also investigated. The results show that the monthly variations are 

relatively noticeable with higher values in April and December and lower values in July and 

September in the Northern Hemisphere, which is coincident with the CO2 seasonal cycle. 

In addition, the interpolated monthly averaged fused data were compared with data from the TCCON 

Lamont, Park Falls and Garmisch sites in the Northern Hemisphere and the Wollongong site in the 

Southern Hemisphere. The result revealed that the interpolated fused data is in good agreement with the 
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TCCON sites on the whole. Furthermore, the seasonal cycle of the monthly averaged predicted fused data 

are also consistent with the TCCON measurements. These findings prove that predicted XCO2 based on the 

fused dataset and gap-filling method is very useful to map global full-coverage XCO2 distribution. 

OCO-2 was launched in June 2014, and its data is still not available publicly. Once its data is 

released publicly, we will incorporate it and then generate improved fused XCO2 datasets. In the 

current fusion of the proposed method, we only use the CO2 profile of CT and Satellite (including 

GOSAT and SCIAMACHY); a new ground-based CO2 profile and other Satellite CO2 profiles, such as 

OCO-2, will be further considered to improve our method in the future. Considering the generality of our 

strategies shown in this study, they can be easily adapted to process other trace gases. 
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