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Abstract
We present diagrammatic transport theory including self-consistent nonlinear
enhancement and dissipation in the multiple scattering regime. Our model of
Vollhardt–Wölfle transport of photons is fit-parameter-free and raises the claim
that the results hold up to the closest packed volume of randomly arranged ZnO
Mie scatterers. We find that a symmetry breaking caused by dissipative effects
through the lossy underlying silicon (SI) substrate leads to qualitatively different
physics of coherence and lasing in granular amplifying media. According to our
results, confined and extended random laser modes and their laser thresholds can
be clearly attributed to unbroken and broken spatial symmetry. The diameters
and emission profiles of the modes, as well as their thresholds and the positional-
dependent degree of coherence, can be checked experimentally.
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1. Introduction

After two decades of random laser research [1–6] these systems are still highly fascinating. The
involved rich physics and also possible applications [7, 8] in systems that, at first glance, appear
to be just ‘dust powder’ have started to reveal more and more fascinating details. Absolutely
essential for the fundamental behavior of a random laser is the spatial extension of random
lasing modes. If the lasing spots are strongly confined, the random laser is actually operated as a
collection of single-mode lasers where the modes do not overlap in space [9, 10]. On the other
hand, the random laser can exhibit another type of mode which covers the whole ensemble
showing significantly different emission characteristics and a higher laser threshold.
Additionally all these properties are derived without a confining external resonator and the
modes seem to be due only to transport through disordered granular media and amplification.
The experimental finding that spatially confined and extended laser modes can actually co-exist
in the same region of strongly scattering nano-crystalline powders [11, 12] has been completely
counterintuitive. Nevertheless an ab initio description for coherent emitting modes in diffusive,
weakly or strongly localizing systems could not yet be given for this phenomenon. In this paper
we derive, by means of quantum field diagrammatical photon transport incorporating several
loss channels, spatially confined and extended random laser modes which may co-exist. It is
proven that the experimentally observed mode types in different gain regimes can be explained
in a single framework of transport renormalized by dissipation. Dissipation processes are not
only frequency selective with respect to the absorption and transmission properties of the
substrate, they can be further influenced by the dispersity of the powder, and they are coupled to
the nonlinear enhancement. We show that the emission statistics, the coherence and the
threshold of random laser modes are severely changing due to symmetry breaking of photonic
transport by dissipation. However we find that modes with strong losses also arrive at a laser
threshold. This result can be checked by measuring the extent and the degree of coherence of
random laser modes relying on non-symmetric boundaries.

2. Light in granular matter

In non-linear granular systems of low filling fraction, photonic transport obeys the well known
diffusion equation, whereas in densely packed random media coherent transport sets in which is
foremost seen in a deviation from the exponential decay of diffusive light intensity, or the long-
time tail. Fancy effects such as coherent backscattering (CBS), a factor of two of light intensity
in the exact backscattering direction, can be observed. Diagrammatic transport of light intensity,
which treats light propagation as well defined paths of photons (see figure 1), can describe these
observations. A photon (green line) is scattered by active particles, or possible spheres. This
means that it is absorbed by a particle and excites the electronic structure of the material as well
as the internal geometrical resonance, Rayleigh-scattering or Mie-scattering. During the (re-)
emission process, the frequency conversion and decoherence processes of the electronic sub-
structure can lead to frequency changes. The exact time reversal procedure is denoted in red.
Both photons, the forward propagator and the time reversal procedure can interfere. A perfect
interference or correlation of the propagator and time-reversal procedure is represented in
diagrammatics by the most crossed diagram, the Cooperon [13, 14]. Cooperons again may
suffer destructive influences at the sample boundaries. If photons leak out or if their frequency
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is absorbed, the symmetry is broken. Absorption processes anywhere in the setup can be
efficiently used to tune light transport in random systems as well as in waveguides [15].

Lasing in granular media is often described in terms of random cavities [16] modes or
quasi-(leaky) modes [17]. These modes are by definition coherent and therefore obey
Poissonian statistics. They have been estimated to form artificial but random cavities which are
determined by the local scatterer arrangement. This scenario is of course possible, but
fundamentally different from what we describe in this letter.

We investigate with the diagrammatic ansatz random lasing in nanocrystalline ZnO
samples embedded in small depressions etched in a Si waver. A similar experimental setup can
be found in [11]. It has been found that at the first laser threshold a spatially confined mode
starts to lase symmetrically in space. With increasing pump strength, a rising number of modes
of this type may be found strongly localized at several spatial positions. Increasing the
excitation power further, a second laser threshold for a different lasing frequency of another
type of mode is found. The diameter of this mode is large compared to the others; it may even
cover the whole sample. The physics of both modes is fundamentally different and we will see
that the extended mode arises in principle only in response to a symmetry breaking caused by
locally occurring dissipation at the boundaries (see figure 1).

3. Coherent photon transport

We use a diagrammatic field theory ansatz for light in a diffusive system including
interferences, the Vollhardt–Wölfle theory of photons [18, 19], which has proven to be rigorous
for signatures of Anderson localization in non-linear random media [20]. Vollhardt–Wölfle

Figure 1. Schematic setup of ZnO nano grains embedded in a SI-waver. The spheres’
diameter is =d nm260 . The samples’ size is assumed to be μ μ× ++m m20.0 40.0 .
The non-quadratic size is assumed to show the symmetry breaking due to a high aspect
ratio and lossy SI boundary. The sample extent is μm4.0 in the third dimension. The
volume filling is 50%. Far below the laser threshold the permittivity of ZnO is given by

ϵ =Re 4.0164s . Red and green paths represent counter-propagating, time reversal, photons
coupled in non-linear response of ZnO and the complex Mie resonance of the wave.
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ansatz precisely means that the modes we derive here are in their information value not
restricted to the coherence of the wave, but that they additionally describe the coherence of
transported light intensity and itʼs decay. As already outlined the difference in the diameters
cannot be explained solely by the increase of the pump power or the dispersity of the powder
alone. Only when investigating frequency dependent dissipation varying in space, the
absorption of photons by the crystal substrate at the boundaries does in fact yield the difference
of the diameters. Loss initially suppresses a large number of modes which only eventually
arrive at their lasing threshold for significantly higher pump strengths when the intrinsic
nonlinear gain yields a balanced process. Strictly speaking, several spatially and spectrally
distinctive loss channels within the ZnO sample and the Si crystal substrate [21] lead to the
coexistence of both types of modes; the extended mode overall loses more intensity. It seems at
first sight that the principle itself is reprising at another intensity scale which is induced by
further degrees of freedom, but the study of the correlation length with respect to the position in
the granular matter will clearly bring forward that symmetry breaking due to loss causes
fundamental differences. One could even imagine tuning the powderʼs parameters in such a way
that a stepwise access to different loss mechanisms could be possible and the random laser
therefore could be controlled by the ensemble size, the surface, the type of substrate etc.

Theoretically the non-linearity is actually being established by doubly nested self-
consistent computing. In the following a description for correlation and coherence of light in
terms of wave and particle is explained. The photon density response, the four-point correlator,
is derived from Bethe–Salpeter equation (BS) for photons,
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The numbering marks independent positions within space, while the dashes denote the
self-consistency of the diagram. All interference effects are considered by means of the
irreducible vertex γ which includes most crossed diagrams (Cooperons) yielding memory
effects as well as retardation, and it finally causes second order coherent emission of random
lasers. From BS a Boltzmann equation is derived which yields two independent equations,
namely the continuity and the current density relation. Local energy conservation is guaranteed
by means of a Ward identity (WI). The sample is modeled by a system which is large
(infinitely) sized in one direction but finite otherwise. The Fourier transform in the infinite
direction x of equation (2), and use of the expression for the single particle Greenʼs function

ϵ ω Σ= − − ω −G c q[ ( ) | | ]b q
2 2 1, leads to the kinetic equation for the correlator Φ with spatial

dependencies due to the additional loss channels at the boundaries of the finite y-direction,
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Δ = −G G GR A, p, ′p and ″p are momenta. The scattererʼs geometric properties are
represented within the Schwinger–Dyson (SD) equation = +G G G TG0 0 which leads to the
solution for the Greenʼs function GR and GA of the electromagnetic field, i.e. the light wave.
Extended amplifying Mie spheres [22] as scattering centers [23] are represented by the self-
consistent complex valued scattering matrices T leading to the self-energy Σ, which is derived
in the independent scatterer approximation here. The ZnO scattererʼs initial permittivity is given
by ϵ =Re 4.0164s , while the imaginary part ϵIm s, the microscopic gain, is derived self-
consistently in what follows, yielding saturation effects. The background medium is air ϵb = 1.
The photon density emitted from the amplifying Mie particles is derived by means of coupling
to a rate equation system. It is therefore self-consistently connected to nonlinear gain and the
dielectric function ϵ ϵ ϵ= +L NL. The latter finally yields nonlinear feedback in both
electromagnetic wave transport (SD frame) and intensity transport (BS frame).

Dissipation processes at the boundaries severely influence the Greenʼs functions, formalism.
It is well known that Greenʼs functions, intended to describe the transport of photons in the
random laser on the one hand but being a description of microcanonical ensembles on the other
hand, have to obey time reversal invariance. However within grand canonical (open) ensembles
of random lasers the entropy is increased by photonic intensity transport processes which
nevertheless obey time reversal symmetry for the propagation of the electromagnetic wave in
between the active scatterers. This aspect of dissipation and disorder guarantees the completeness
of the ab initio description of the propagating light intensity by the four-point correlator
Φ Φ Φ= +ϵϵ ϵA B J here given in terms of the momenta: Φϵϵ equals the energy density and Φ ϵJ

equals the energy current, while A and B are pre-factor terms derived in [18]. Starting with the
renormalized scattering mean free path ls, the framework yields all relevant transport lengths and
includes all interference effects. The modal behavior, the core of the random laser, is described
efficiently by the determination of the correlation length ξ with respect to various spatially
dependent loss channels. The coexistence of strongly confined and extended modes can be
consistently explained. BS is solved in a sophisticated regime of real space and momentum with
respect to the high aspect ratio of the random laser sample, and the description for the energy
density Φ Ωϵϵ Q( , ) is derived, with regard to energy conservation, as follows:
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2
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Here the numerator ωN basically represents the local density of photonic modes LDOS
which is sensitive to amplification and absorption of the electromagnetic wave. Q is the center
of mass momentum of the propagator denoted in Wigner coordinates, the index denotes the
Fourier partner. Ω is the center of mass frequency and D is the self-consistently derived
diffusion constant. c1, c2 are coefficients explained in [18].
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The equation for the energy density Φ, equation (4), represents a new result describing the
propagation of photons within a finite sample. This is in contrast to previous work where the
results were derived solely in momentum space for infinite sized systems. Here we follow
methodologically the systematically outlined transport scheme in [18] but we additionally take
into account the spatial dependence as denoted in equation (3) and displayed in figure 1: the
sample shall be homogeneously pumped from above. Diffusive transport, especially
interferences, occur preferentially on long paths in-plane of the large scaled random laser
sample. The physics of most crossed diagrams therefore significantly dominates the coherence
properties: dissipation and losses due to spontaneous emission and non-radiative decay are
basically homogeneous, however at the sampleʼs edges the situation changes qualitatively.
Here transport is inhibited and photons are absorbed within the SI substrate. This
frequency selective dissipation severely affects the spectrum of lasing modes and their
diameters. All these channels are represented within the pole of equation (4) resulting in
separate dissipative length scales ζ due to homogeneous losses (figure 2(b)), and χd due to gain
and absorption that go along with photonic transport and the open or strongly absorbing SI

Figure 2. Computed lasing mode diameters and intensity distribution (color bar).
Samples parameters can be found in figure 1. Results are shown for homogeneous 2
photon pumping λ = 355 nm (bulk ZnO bandedge). (a) Comparison of the intensity
profile through the mode center for the symmetric confined mode (green) and the
extended mode (blue lines, taken along x- and y-direction) at threshold. Vertical lines
represent the decay to e1 compared to the modes maximum intensity. Both modes are
spectrally separated as explained in the text. Corresponding laser dynamics are shown in
figure 4. (b) Confined mode, unbroken symmetry. Emission energy is eV3.23 , the
transport mean free path ls = 499.2 nm. (c) Extended mode, broken symmetry. Emission
energy eV3.21 , ls = 501.57 nm. The color gradient denotes the absolute amount of
coherently emitted lasing intensity with its spatial dependency.
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boundaries (see figure 2(c)). The full dissipative influence on coherent propagating photons and
wave is found within the renormalized so -called mass term of the diffusion equation:

ξ χ Φ Ω ζ= − − ∂ + +ϵϵ
− − −( )iD iD c Q c iD( , ) . (5)d Y

2 2
1

2
2

2

By solving the non-classical diffusion equation (5) the coefficients c1 and c2 are self-
consistently derived, and we arrive the spatial distribution of energy density:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥Φ

χ ζ
Φ− ∂

∂
=

−
+ +ϵϵ ϵϵ

Y D

D D1
ASE. (6)

d

2

2 2 2

The non-linear self-consistent microscopic random laser gain γ n21 2 (see next section)
incorporates the influences of both length scales χd and ζ,

χ ζ
γ

−
+ =D D

n , (7)
d
2 2 21 2

and therefore represents the physical properties of the random laser samples within the
absorptive SI waver. γ21 is the transition rate of stimulated emission and n2 equals the self-
consistent occupation of the upper laser level (see next section). The abbreviation ASE on the
right of equation (6) represents all transport terms yielding amplified spontaneous emission.

4. Lasing and threshold behavior

Our diagrammatic transport approach as such is successful in explaining both strong and
Anderson localization. We focus now on the implementation of a realistic semi-conductor ZnO
which is able to perform a laser transition. In order to describe lasing action, the electronic
dynamics have to be accounted for [24]. A popular way to do so is to consider an electronic
system consisting of four energy levels and write down coupled equations for the occupation
numbers of the individual energy levels (see figure 3). The resulting laser rate equations are
given as

Figure 3. Schematic representation of the implemented 4-level laser rate equations. The
electronic transitions (dashed lines) are due to 2-photon excitation γp, spontaneous
decay γsp, non-radiative decay γnr, stimulated emission (pink line) γst and the transitions
γ32 and γ10 which are necessary to derive a threshold behavior. The spontaneous emitted
photon is not displayed here in the interest of clarity.
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In the above equation (8), γP is the external pump rate, −n0 3 are electronic populations of
the levels respectively, τij are the states’ lifetimes γ=

τ ij
1

ij
, τnr is the non-radiative decay time, τsp

represents the spontaneous decay time and τ21 is the time scale of the lasing transition. The term
−n t n t n t[ ( ) ( )] ( )Ph2 1 marks the inversion of the occupation numbers of level 1 and 2

proportional to the number of stimulated emitted photons nph. The spatial coordinates are
suppressed in equation (8) for clarity of presentation.

The last and likeliest most crucial step is to couple the electron dynamics to the
propagating photonic energy density. This is achieved by identifying the growth of the photonic
energy density with a corresponding population inversion in the laser rate equation. The system
is also solved dependent on time and the typical threshold behavior of the stimulated emitted
photon number density is derived which matches the experiment for both lasing modes,
confined as well as extended (see figure 4). Assuming ns5.0 pulses the self-consistent laser
threshold of the confined mode is derived to be ∼ −MW cm2.4 2 while that of the extended mode
is derived to be ∼ −MW cm3.7 2.

Figure 4. Laser dynamics and thresholds derived by the solution of the coupled system
of mesoscopic transport and semiclassical time dependent laser rate equations taking
into account energy conservation. Extended and confined modes ( eV3.21 and eV3.23 ,
see figure 2) are suffering different types of loss by means of transport and absorption,
as well as spontaneous emission and nonradiative decay. The extended modes suffer in
sum more, and therefore arrive at their laser thresholds for significantly higher pump
intensities.
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5. Results and discussion

Numerical calculations of self-consistent photonic transport theory and random lasing lead to a
variety of directly measurable quantities. Above all we mention that in disordered amplifying
and constrained samples like the Si-confined ZnO powder here, the gain is clearly influenced by
the boundary and consequently dependent on the position of measurement. This result leads to a
locally changing refractive index which is an important point and has to be emphasized. It is a
qualitative difference from previously existing self-consistent theories. The symmetry of
mesoscopic transport is broken by the boundary condition, and the frequency dependent
absorption in silicon leads to two qualitatively differing mode types. Strong confinement of a
mode is in principle only possible when the symmetry in some dimension is unbroken.

A different situation leads inevitably to extended modes with diverse coherence properties.
The computed correlation lengths ξ and intensity distributions of both types of modes can be
found in figure 2. The correlation length is a measure for the mode size, which can be observed
in the experiment.

In our calculations homogeneous dissipation for both mode types determined by the
surface properties of the disordered sample is assumed to be less than 10% of the loss value
through the same area of boundary. The boundaries are as such symmetric and determined by
the underlying SI crystal substrate. The k-dependent absorption of SI can be found in [21]. The
symmetric mode figure 2(b) suffers only homogeneous loss, is strongly confined due to self-
consistent photon propagation throughout the system and obeys the dissipation induced length
ζ. The stationary state diameter (derived at the decay of 1/e) in this case is × l2.2 s. Definitely
fundamentally differently behaves the extended mode caused by spatial symmetry breaking
(figure 2(c)), which consequently also results in a partial break of the time-reversal symmetry.
The mode therefore obeys the dissipative length scale χd. Both lengths are deduced within
equation 4. The denominator carries an inherent differential with respect to the limited
dimension due to the broken symmetry through loss. With respect to the finite dimension,
extended modes cover the whole extent of the sample. These modes are elliptically shaped, and
the correlation length at the interface to the substrate is by far reduced when compared to the
center.

A comparison of emitted intensity in spatial resolution figure 2(a) clearly shows that the
extended laser mode obeys different laws than the confined mode does. The difference is
obvious when comparing both profiles, the resticted y-dimension (blue dashed graph) and the
wide x-dimension (solid lines). The aspect ratio is clearly of fundamental importance even
though both directions are by far longer than the scattering mean -free path which is in both
cases about =l nm500s (for details see caption of figure 2). ls is very short due to high self-
consistent non-linearities. These non-linearities lead to a significantly different refractive index
for pumped material compared to a result derived by CBS far below the threshold. The behavior
can be explained in our model of coherent intensity propagation, which differs from the so-
called quasi-mode model. In contrast to quasi-modes, which are deduced from a diagrammatic
single particle picture of the electromagnetic wave, our results go much further. The correlation
length ξ can be interpreted as a measure of the mode in the correlated two particle picture, i.e.
the coherence of the wave and simultaneously the coherent transport of intensity. The
interference contributions (Cooperons) suffer from dissipation, meaning the symmetry break in-
plane especially reduces interference effects. Consequently the degree of coherence of
transported intensity depicted in figure 2(b) is—apart from all spatial effects—below and at the
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threshold much higher than in the situation of broken symmetry displayed in figure 2(c). This
transport inherent coherence leads to a stronger accumulation of intensity but even more to
higher non-linear gain. What this means is that the almost unlimited development of the
Cooperon drives the system very fast to the lasing transition, which as such guarantees energy
conservation in stationary state. In other words, Lethokovs bomb argument is avoided because
the system prefers to lase.

In the case of extended modes, the situation changes. Cooperons are inhibited in their
development due to the loss of the boundaries. Finally, it can be deduced that extended modes are
preferentially built up by incoherent contributions and the accumulated intensity is locally
renormalized by the loss through the boundary. In both cases Cooperon contributions remain the
coherent stimulation process of emission. This positional distribution of the modes’ coherent
intensities are displayed in the color coding of figure 2(b) and (c). Corresponding laser thresholds
to both mode types can be compared in figure 4. It can be clearly seen that the confined mode
(green) reaches the threshold by far lower pumping intensity γp than the extended mode (blue)
does. It is noted that this approach is in principle also usable to spatially overlapping as well as
spectrally coupled laser switches [25] with an even more sophisticated mode coupling.

6. Conclusion

The solution of a complicated statistical behavior such as that of random lasing in granular
disordered matter demonstrates the power of the Vollhardt–Wölfle transport theory of photons,
which is coupled to laser rate equations self-consistently. The correlation length for the intensity
at the laser transition derived by diagrammatic transport theory describes the modes’ shapes and
diameters and it includes the conditions of spatially uniform as well as time-reversal symmetry
breaking losses. Engineering highly frequency -selective substrates is an efficient tuning
mechanism for spectrally very close modes which arise at different thresholds and arrive at
completely different shapes and diameters due to the breaking of the spatial symmetry.
Confined modes exist due to unbroken spatial symmetry, while extended modes arise due to
spatially non-uniform position-dependent losses and non-linearities. The conception of the
mode we derive in this work is fundamentally different from the quasi-mode picture, which is a
single-particle picture result. Our theory defines the lasing modes as correlations between
scattered photons. The results presented here for lasing mode diameters are inseparable from the
two-particle picture and they are a measure of coherent transported intensity in granular
amplifying media at the laser threshold. A breaking of positional symmetry leads both to the
formation of extended modes and also to their pinning. It has to be pointed out that the aspect
ratio of the sample is relevant for the modes’ shapes, even though the samples are by far larger
in every extent than the scattering mean -free path. Additionally a symmetry break due to loss
leads to significantly differing lasing threshold behavior, varying gain and gain-saturation
dynamics. We hope that these results stimulate further research, theoretically and
experimentally, on the modal behavior of random lasers.
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