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Abstract
Quartz tuning forks are being increasingly employed as sensors in non-contact atomic force microscopy especially in the “qPlus”

design. In this study a new and easily applicable setup has been used to determine the static spring constant at several positions

along the prong of the tuning fork. The results show a significant deviation from values calculated with the beam formula. In order

to understand this discrepancy the complete sensor set-up has been digitally rebuilt and analyzed by using finite element method

simulations. These simulations provide a detailed view of the strain/stress distribution inside the tuning fork. The simulations show

quantitative agreement with the beam formula if the beam origin is shifted to the position of zero stress onset inside the tuning fork

base and torsional effects are also included. We further found significant discrepancies between experimental calibration values and

predictions from the shifted beam formula, which are related to a large variance in tip misalignment during the tuning fork assem-

bling process.
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Introduction
Atomic force microscopy (AFM) allows the imaging of surfaces

with true atomic resolution and the resolution of intra-molec-

ular structures of molecules [1]. Furthermore, the non-contact

AFM (nc-AFM) technique has the capability of quantifying the

interaction forces acting between the probing tip and the sample

site with atomic precision. Recent achievements of this force

spectroscopy method manifest in the identification of the chem-

ical identity of single atoms in an alloy [2] or the measurement

of the force applied during the controlled manipulation of mole-

cules or atoms on a surface [3,4]. nc-AFM experiments at the

atomic scale usually demand well defined environments, such

as ultrahigh vacuum (UHV) and low temperatures (LT). For

these conditions, force sensors based on quartz tuning forks in

the “qPlus” design [5] have been proven to routinely provide

stable operation and sufficient sensitivity to achieve the highest

resolution in nc-AFM experiments. Today, many commercially

available AFMs for UHV and LT conditions are based on

quartz sensors because of their impressive performance and

easy technical implementation.

Common AFM sensors are microfabricated from silicon or

silicon nitride with the tip already integrated. Their spread in

geometric parameters is within a low range and the characteri-

zation of their geometric parameters has been presented exten-

sively by theory and experiments [6-8]. Quartz tuning fork force

sensors in contrast are usually hand-made and even though they

are commercially available, they are far from mass production

and therefore exhibit a large spread of geometric – and thus of

elastic parameters. Especially the precise knowledge of the

sensor stiffness kqPlus is crucial for quantitative interpretation of

force spectroscopy measurements. Early spectroscopy experi-

ments compared relative forces with high accuracy, for which

the absolute stiffness of the sensor was not critical. Latest

measurements of the absolute interaction forces impress by their

force resolution [3,4,9] but suffer from the large error and

spread in the determination of the geometric factors of the

“qPlus” sensors. The stiffness of the force sensor is necessary

for the transformation of the experimental frequency shift data,

Δf, to forces. Consequently, a force measurement can only be as

precise as the determination of each factor in the equation that

links the frequency shift to the tip–sample forces [8,10,11]. To

calculate the force-vs-distance curve from measured frequency

shift-vs-distance data, the inversion of the dependence of the

frequency shift on the tip–sample forces has been derived [11-

14] with high accuracy. All those formulas contain the stiffness

of the sensor kqPlus as prefactor and therefore directly suffer

from an inaccurate determination of the spring constant.

Here we present an experimental procedure that allows for the

direct measurement of the stiffness of a tuning fork sensor in

the “qPlus” design with standard lab equipment. Our results

reveal that a large spread of stiffness exists even in a series of

commercially sold sensors. This finding underpins the urge of

the individual characterization of each sensor. The standard

equation [15] to calculate the stiffness from the geometric

dimensions is the beam formula. Comparison of our experi-

mental results with the formula show large discrepancies up to a

factor of 5. In the next step we use extensive finite element

method (FEM) modeling of the precise geometry of the tuning

fork sensor in order to understand these deviations. The simula-

tions show quantitative agreement with the beam formula if the

beam origin is shifted to the position of zero stress onset inside

the tuning fork base and torsional effects are included as well.

Comparison with experimental spring constant data still show

that the spring constant is overestimated by FEM and beam

formula. This effect is attributed to a small but not negligible

angle between the tip wire axis and the surface normal of the

tuning fork prong.

Results and Discussion
Experiment
The quartz tuning fork, originally used as frequency normal in

wrist watches constitutes the centerpiece of a force sensor in the

“qPlus” design. Figure 1 shows micrographs from scanning

electron microscopy (SEM) of a bare tuning fork (type DS26,

Micro Crystal AG, Switzerland). These tuning forks are micro-

fabricated from piezoelectric quartz, which is electrically

contacted by gold electrodes placed onto the quartz substrate.

The dimensions of the tuning fork can be easily measured by

using SEM images as illustrated in Figure 1a and Figure 1b.

The tuning fork has an overall length of lTF = 3548 μm and a

height of hTF = 651.4 μm at the widest point while the substrate

has a thickness giving the tuning forks width of wTF = 120.8 μm

and a prong thickness of tTF = 207.3 μm. Figure 1c was taken

from a derivative of the same type of tuning fork which differs

only by the absence of notches at the basis compared to the

tuning fork in panels a) and b) (compare arrows in panel a)).

At this point it should be noted that all experiments and

simulations presented here were carried out for both types

(with and without notches). However, no differences were

found in the stiffness of the sensors of the two types and

therefore only one set (without notches) is presented here. In

the “qPlus” design of nc-AFM force sensors, one prong and

the end of the basis are fixed onto a carrier (usually from

Macor) with epoxy glue. This type of fixation breaks the

original quadrupole symmetry, in which both prongs oscillate

around a forceless point that is found within the quartz body

between the prongs. A very sharp tip etched from metal

wire is attached to the end of the free prong, again with epoxy

glue.
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Figure 1: Determination of the geometric dimensions of a quarts tuning fork (Micro Crystal, type DS26 used for “qPlus”-force sensors from SEM
images. (a) Sideview of tuning fork made from quartz with notches (cf. arrows) at the basis. (b) Topview of the tuning fork for measureing its width by
the wafer thickness. (c) Sideview of an alternative geometric layout of DS26-type tuning fork without notches at the basis.

Commonly, spring constants of kqPlus = 1800–2000 N/m are

used for the force transformation. These values are estimated

from the geometric dimensions of the free prong of the tuning

fork and the Young’s modulus of quartz by using the beam

formula according to Equation 1 [16].

(1)

In this equation w and t are the width and thickness of the free

prong, respectively and Equartz is the Young’s modulus of

quartz. The limitations for the validity of this formula are small

deformations leading to only elastic stress/stain inside the

uniform, rectangular cross section of the beam, which consists

of isotropic material and is rigidly fixed at the end. These condi-

tions are not necessarily fulfilled for a real tuning fork sensor.

Since the tip wire is not necessarily placed at the very end of the

prong, ΔL = L − L0 denotes the effective length of the free

beam, i.e., the wire position L along the prong with respect to

the beam origin L0. The comparison with Figure 1a shows that a

certain ambiguity exists in the position of this beam origin L0.

At the beam base the cross-section of the prong broadens before

ending into the rigid basis. We here choose the point before the

broadening as the zero point L0 as it is commonly done in the

nc-AFM literature in order to avoid inaccuracies in later discus-

sions. Inserting our measured values of ΔL1 = 2139 μm,

w = 207.3 μm and t = 120.8 μm into Equation 1 together with

the Young’s modulus of quartz of Equartz = 78.7 GPa results in a

stiffness of the free prong of kqPlus = 1898 N/m. This is within

the range of reported spring constant values kqPlus = N/m [5]

and kqPlus = 2000 N/m [9], while the latter was calculated with a

different Young’s modulus of Equartz = 79.1 GPa to correct for

the non-orthogonal crystallographic cut through the substrate of

the tuning forks.

However, the underlying models of these calculations are barely

in agreement with the actual geometry of real “qPlus” sensors,

in which the force is applied through a metal wire glued onto

the free prong. Therefore, the force application point is defined

by the position of the glue point. Since these sensors are hand-

made it is obvious that the length ΔL cannot be regarded as
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Figure 2: Photograph of the experimental setup. Not shown in the picture is the micrometer screw 1, which pushes or pulls the whole setup towards
or from the scale. The Macor body 3, carrying the tuning fork sensor 4 is fixed to the holder 2. The inset shows a close-up of the tuning fork. The
tuning fork is glued onto a Macor basis as in actual force sensors while the wire tip at the free prong is glued to a glass substrate. Latter transfers the
force to the scale and delivers the mass for also pull the sensor away from the scale.

constant for all sensors. The broadening of the beam towards

the basis and the unknown Young’s modulus of the material

limit the usage of the beam formula for the description of the

tuning fork stiffness. Even influences of the glue, which is used

to fix the tuning fork onto its holder, and the resulting spread in

the individual stiffness of these sensors have recently been

reported [17]. Possible methods to determine the stiffness are

adding some mass to the prong and analyze the change of the

dynamic oscillation [15] or static deflection [17,18] of the

cantilever. Alternatively, the stiffness can be estimated from

thermal excitation [19]. Here we employed a very simple and

easily implementable method to measure the stiffness of the

tuning fork sensors by only using a micrometer screw and a

scale. The setup for such a measurement is shown in Figure 2.

In order to validate this measurement method we assembled a

test sensor similar to the “qPlus” sensor setup. In the same

way as in a “qPlus” sensor, a quartz tuning fork was glued

onto a Macor body, and a tungsten wire with a diameter of

dW-wire = 50 μm was glued onto the free prong. This sensor is

mounted onto a traverse, which can be lowered by a micro-

meter screw (Mitutoyo, type 110-164) with an accuracy of

Δz = 5 μm. Below the moveable traverse, a scale is placed

(KERN & Sohn GmbH, type: KB 120-3) with a mass resolu-

tion of Δm = 1 mg. The force applied to the scale is then calcu-

lated by multiplying the weight with the gravitation constant

g = 9.81 m/s2 resulting in an accuracy of the force measure-

ment of 9.81 μN. The stiffness of the sensor can now be

measured by pushing the sensor onto the scale with the micro-

meter screw while simultaneously measuring the weight

increase on the scale. By lowering the end of the wire into a

fresh droplet of Torr Seal epoxy glue, it can be mechanically

fixed onto a glass substrate resting on the scale (cf. Figure 2,

inset). After the glue is cured out at room temperature, the stiff-
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Table 1: Comparison of the measurement of the stiffness with the calculation using the beam formula for the identical position at the prong.

position (μm) measured spring constant
(“push” experiment) (N/m)

calculated spring constant
(beam formula) (N/m) measured value/calculated value

408 65427 357386 0.18
604 33784 120717 0.27

1062 16150 17799 0.91
1085 6315 20576 0.31
1630 3088 4986 0.62
1653 4135 4719 0.88
1994 2000 2690 0.74
2052 2892 2460 1.18

ness can be measured in both directions, pushing (increasing

mass on scale) or pulling (decreasing mass on scale). Please

note that during a pull-experiment under the present conditions

the relative elongation of the tungsten wire remains lower than

0.1% and is therefore neglected in the further analysis. A refer-

ence experiment was performed with a bare Macor carrier

(without tuning fork) to measure the stiffness of the experi-

mental setup ksetup (mainly the compliance of the scale), which

was in our case ksetup = 5952 N/m. The stiffness of the tuning

fork can then be evaluated by Equation 2 representing a series

of both stiffnesses.

(2)

With the setup described above, the stiffness of the bare tuning

fork was measured as a function of the position of the force

application point, i.e., the tip wire. The diagram in Figure 3

shows data points recorded by pushing at different positions

along the tuning fork prong. The deflection of the tuning fork

rises with increasing the position of micrometer screw, starting

from the point of contact at a position of 20 μm. The stiffness of

the sensor can be evaluated by fitting these data by the solid

lines within an error of less than 1%. The position was deter-

mined from photographs taken through a stereo microscope

during the pushing experiment. The result of the position

dependence is then compared with the values predicted by the

beam formula (Equation 1) while using the effective beam

length ΔL = L − L0 with respect to the force application point L.

Table 1 lists the measured stiffness values as well as the values

calculated from the beam formula. While for long prongs (large

ΔL values), the measurement seems to be roughly within the

range of the calculation, for shorter prongs (small ΔL) a drastic

discrepancy between the measured stiffness and the calculated

value is found (up to a factor of 5 or larger, cf. last column of

Table 1).

Figure 3: Diagram of a “push” experiment to measure the stiffness of
the free prong of a “qPlus” sensor by the slope of the fit to the data
points with an error of approx. 1%. The deflection of the prong starts at
position 20 μm of the micrometer screw. The spring constant had been
calculated in the range of increasing forces. The effective stiffness
increases for decreasing effective prong length, i.e., for tip positions
located further to the beginning of the prong. The stiffness was calcu-
lated from the slope.

In fact, a deviation between the experimental tuning fork stiff-

ness and the beam formula is not unexpected. Previous simula-

tions suggest that the zero point has to be chosen differently as

it is commonly done when using the beam formula [20]. These

findings motivated our detailed analysis of the mechanical

tuning fork properties by FEM using the software Comsol

Multiphysics (V 4.1a). In addition to the measurement of

“custom-made qPlus” sensors, we also measured the spring

constant of “qPlus” sensors from Omicron NanoScience

GmbH, Taunusstein. The result is that even these sensors show

a significantly high spread of kqPlus = 1480–1708 N/m,

which demonstrates the need to calibrate each individual sensor
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that is used for quantitative nc-AFM force spectroscopy

measurements.

FEM simulations
Special care was taken to make the geometric model of the

“qPlus” sensor in the FEM software as realistic as possible,

including gluing points as well as a metal tip. As for the tuning

fork, an isotropic Young’s modulus of Equartz = 78.9 GPa was

used. To obtain a realistic value of the Young’s modulus of the

glue for the FEM simulations, three samples made from

“Torr Seal” were tested in a tensile test sample geometry accor-

dant to DIN EN ISO 527 in a tensile test. Two of the Torr Seal

samples were cured at a temperature of 100 °C resulting in

ETorrSeal = 6500 GPa and 6000 GPa, respectively. The third

sample was cured at room temperature (RT) resulting in

a Young’s modulus ETorrSeal,RT = 4000 GPa. As our custom-

build “qPlus” sensors are cured out in an oven, the value of

ETorrSeal = 6000 GPa was used in our FEM simulations for the

epoxy glue. The geometry of the simulated model is depicted in

Figure 4 in more detail. The sophisticated geometry of different

sub-geometries, is meshed by tetrahedral elements, which allow

a very fine mesh at the boundary lines as well as the boundary

areas between the sub-geometries (in particular at the force

application point from the wire through the glue droplet into the

free prong).

In the next step a force was applied through the vertical axis of

the wire and the displacement of the free prong was analyzed.

Interestingly, a closer look at the stress distribution reveals that

the stress is reaching several hundred microns into the basis of

the tuning fork. Figure 5 shows the stress distribution within the

tuning fork caused by a loading force of Fload = 1–100 mN,

which results in a displacement of the very end of the free prong

of xend = 50 μm. Since the tip was attached to the side of the

tuning fork, as it is also the case in commercial “qPlus” sensors,

the different stress contributions of torsional and normal stress

are color coded as the comparative von Mises stress (σVMSmin).

The color code represents stress values from σVMSmin = 0 N/m2

(red) to maximum values of σVMSmax = 2.5·108 N/m2 (violet).

The area of onset of stress within the basis is marked by the

dashed circle.

This finding suggests that the zero point L0, as origin for the

length of the cantilever, has to be adjusted when calculating the

stiffness of a tuning fork by using the simple beam formula. To

demonstrate this effect we first plot the stiffness of the tuning

fork in Figure 6 using the zero point at the end of the narrow

beam, i.e., L0 = 0 as a reference curve. The logarithmic plot

shows that the spring constant versus beam length curve (gray

curves) does not follow a certain power law, e.g., ΔL−3 as

expected from Equation 1. For direct comparison we also

Figure 4: Image of the geometric model reflecting the geometry of an
actual “qPlus” sensor. The model includes a tip (4) attached to the free
prong with a droplet of epoxy glue, as well as the epoxy glue (3) at the
rim and behind the tuning fork (1) fixing it to the Macor carrier (2). The
sophisticated geometry is meshed with a tetrahedral elements (cf.
inset) to better account for the transition between the individual geom-
etry elements. The material properties were taken from literature, as
for the Young’s modulus of the epoxy glue, tensile experiments were
carried out to determine a realistic value for the crucial connection of
the force application point between the metal tip and the prong.

Figure 5: FEM simulation of von Mises stress. Analysis of the stress
caused by the bending of the free prong. In contrast to the model for
the beam formula, in which a cantilever is fixed at one end, the stress
in the quartz tuning fork reaches beyond the end of the prong far into
the basis of the tuning fork. The origin of the minimal Van Mises stress
is indicated by the dashed circle (see inset).
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Figure 6: Diagram showing the results of the FEM simulation as a
function of the shift of the origin. While for too large or too small
chosen positions of the origin the curves show a non linear behavior,
the a ΔL−3 behavior can be identified in the transition regime for a new
effective origin position of approx. L0 = −250 μm.

plotted the results from the beam formula of Equation 1 as a red

solid line. Motivated by the non-negligible stress reaching into

the tuning fork basis, the results of the FEM simulation are

plotted for different beam origins L0 + ΔL0 reaching into the

base of the tuning fork. The resulting set of curves is plotted in

the diagram of Figure 6, where the new effective origin L0 was

adjusted to a range from 350 μm to −750 μm. Here, in the

transition regime between the two extreme L0 positions, a

linear behavior can be identified at an effective origin of

L0 = −250 μm, which is located “inside” the basis of the tuning

fork with respect to the initial origin at L0 = 0. For the new

origin L0 = −250 μm we find quantitative agreement between

simulations and beam formula for larger tip wire positions

ΔL > 1500 μm, which is the case in conventional “qPlus”

sensors but also indicates that additional care has to be taken

when working with shorter prongs. Only if the tip wire is closer

to the basis, some deviations occur, in which the beam formula

is systematically overestimating the stiffness. Therefore we

conclude that the beam formula can still be used to estimate the

tuning fork prong spring constant, if the beam origin is set to

the new effective position L0 = −250 μm (for the tuning forks

used here) and if the tip wire position is more than 1500 μm

away from the origin.

In the following, the still existing deviation between the FEM

results and the beam formula, is subject to further investi-

gations. Therefore we simplify our experimental and FEM

setup. To eliminate a possible influence caused by the tip, we

carried out two separate measurement series to determine the

spring constant directly by applying a force onto the top of a

tuning fork sensor prong, together with an analogue FEM simu-

lation. The experimental setup and the corresponding results are

displayed by the graph and the photograph in Figure 7. The

graph shows a high agreement between the FEM and experi-

mental results with the beam formula, clearly identifying the tip

as source for the discrepancy discovered in Table 1 and

Figure 6. One reasonable explanation for the occurring discrep-

ancy is the additional torsion induced into the prong by the wire

attached at the side of the free prong.

Figure 7: Comparison between the beam formula, experimental
measurements and FEM simulation with the force directly applied to
the tuning fork prong. The prior introduced origin shift has already
been applied to the beam formula resulting in a higher compliance of
the plot here.

Subsequently we investigate the influence of torsional motion

of the tuning fork prong, which may also play an important role.

While the beam formula only considers normal forces applied

orthogonal to the axis of the prong, in the “qPlus” sensor con-

figuration, the wire-tip is attached at the side causing a torque

around the axis of the beam in addition to the bending of the

prong. To evaluate the influence of the torsion, the simulation

was repeated with the tip positioned at the center of the prong

(indeed some experimentalists attach the wire-tip on the face

side of the free prong to avoid torsion during the AFM-experi-

ments). In our FEM simulations the position was chosen with

the tip on the top of the prong (TOT), allowing us to vary the

position of the force application point, for direct comparison to
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Figure 8: Comparison between tip on side (TOS) and tip on top (TOT)
configurations as possible origin of the deviation between FEM Simula-
tion and Experiment. The deviation was found to be larger in case of
TOT than the contribution of torsion in the TOS configuration.

the results from the tip on side (TOS) configuration, which was

discussed so far. Figure 8 shows the result of the FEM simula-

tion in the two configurations, TOS (blue) and TOT (green).

While for positions at large beam lengths, the deviation between

the two configurations is negligible, in the regime of positions

of short beam length values, a deviation can be noticed. The

contribution caused by the torsion can be calculated analyti-

cally by the following relation [21]:

(3)

in which T is the torsional momentum, Φt is the angle of twist in

radians, L the length at which the force is applied, G the shear

momentum and IT the second momentum of area of the prong.

To calculate the exact influence of the torsion to the overall

spring constant, the tuning fork has to be seen as a system of

two springs (deflection and torsion) connected in series. The red

curve in the diagram shows the result from the simulated TOT-

configuration where the effect of the torsion is corrected with

the above equation. The torsion corrected curve coincides well

with the curve simulated for the TOS configuration of the

“qPlus” sensor. These results also demonstrate that torsion has a

negligible influence at the free end of the prong, since the

torsion spring constant is decreasing linearly whereas the

deflection spring constant decreases with ΔL−3. Only if the tip

is mounted closer to the origin of the tuning fork body, the

torsion has an increasing influence on the overall spring

constant. This influence results in a smaller increase of the

overall spring constant as the torsion spring constant is not

increasing as fast as the deflection spring constant. This effect is

obvious in the area of smaller ΔL-values, in which the TOS

curve shows a recognizably lower spring constant, than the

TOT-curve.

Before we proceed by finally comparing the results of the FEM

calculations and the modified beam formula with the experi-

mental spring constants, we consider one further important

issue related to the hand-made “qPlus” sensor fabrication. Since

the wire is glued on the prong, very often a small tilt of the wire

long axis with respect to the prong surface normal cannot be

excluded. Unfortunately, the torsion caused by the non central

fixation of the tungsten wire is increasing, when the wire is not

perpendicular mounted to the tuning fork. Therefore we

conducted further FEM simulations considering a possible wire

axis tilt, with the results shown in Figure 9. This figure demon-

strates clearly that even a small misalignment of the wire axis

can lead to large deviations of the effective spring constant, in

particular for wire fixation points close to the tuning fork base.

Figure 9: FEM simulation result displaying the influence of a tilted
tungsten wire on the resulting spring constant versus a non tilted wire.
It is obvious that a strongly tilted tip causes an increasing influence of
torsion. Thus during the assembly one should also focus on the angle
between tuning fork and wire trying to keep it as small as possible.

As the final step, Figure 10 now displays the comparison

between the experimental results (black square markers), the

FEM simulations including a small 5° tilt (green triangles) and

the modified beam formula (red line). First we note that the

experimental spring constant results show a considerable

spread, in which almost identical tip positions may still result in

differences of a factor of three in the most extreme cases, while

differences of 50% are typically found. This spread in the indi-
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Figure 10: Comparison of the spring constants from experiment with
FEM simulations and calculations using the beam formula (with the
new origin L0 = −250 μm for both). The experimental values still shows
a deviation from the simulations and calculation respectively. This is
possibly caused by some tilt of the sensor towards the force applica-
tion axis where small angles cannot be completely avoided in the fabri-
cation procedure.

vidual spring constants is most likely due to tip axis misalign-

ment during the “qPlus” fabrication. Even when carefully

assembling the tuning fork sensors under optical microscope

inspection misalignment angles of up to 10° are common. In

fact the spread in spring constants agrees with the range of

misalignment angles considered in Figure 9. Despite this scatter

in the individual data we find overall that there is a decent

agreement between the measured spring constant values and the

FEM results with a 5° tilt included, which is a realistic average

value for careful manual tip fixation procedures. Furthermore,

we can now directly compare how well the origin shifted beam

formula agrees with FEM data and experimental values. Again,

in the regime of large ΔL values (ΔL > 1500 μm) the agreement

between experiment and simulations/beam formula is accept-

able, if the shifted origin method is applied. Please note that the

scatter between the individual experimental data points is larger

than the difference between beam formula and FEM data with

5° tilt angle.

From this section we conclude that using the conventional beam

formula for the calculation of the spring constants of tuning

forks results in a dramatic overestimation of the beam compli-

ance. However, the origin shifted beam formula can be used to

estimate the “qPlus” spring constant for ΔL > 1500 μm. Still in

this case a typical error of about 50% remains, which is mainly

due to angular misalignment effects during the tip wire fixation

to the free prong. For more precise spring constant determin-

ation, as required for quantitative force spectroscopy experi-

ments, individual calibration of the used tuning fork sensors

after the nc-AFM experiment is mandatory.

Conclusion
A simple method for measuring the spring constant of tuning

fork sensors using a micrometer screw and a scale is presented.

The experimental results are compared to the beam formula and

FEM-simulations revealing the limits of the commonly used

models for the determination of “qPlus” sensor stiffness. The

combination of finite element method simulation with experi-

mental measurements allows a comprehensive understanding of

the spring constant behavior alongside the whole length of the

free prong. This knowledge finally opens the opportunity to

adapt the beam formula by shifting the origin of the beam

formula and thus making it a reliable tool for the spring

constant determination in the area around the last millimeter of

the prong. Since the beam formula is calibrated by the present

study, it can be used for the determination of spring constants of

“qPlus” sensors by measuring the effective length between the

force application point at the gluing droplet attaching the wire

to the prong and the shifted coordinate for the zero point of

Δx0 = −250 μm into the basis. This length can either be

measured from SEM images of tuning fork sensors or even

simpler by microscopic photograph. However, the present

study reveals that the stiffness of real sensors can differ

from the simulations due to deviations between the real tuning

fork tip alignment and the ideal FEM model geometry. When-

ever a more precise value of the static spring constant is

required, due to the significantly large spread of the experi-

mental results, the presented method to measure the stiffness

directly can be applied to the sensor after the AFM spec-

troscopy experiment.
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