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Abstract In surgical procedures, robots can accurately 
position and orient surgical instruments. Intraoperatively, 
external sensors can localize the instrument and compute 
the targeting movement of the robot, based on the 
transformation between the coordinate frame of the robot 
and the sensor. 
This paper addresses the assessment of the robustness of 
an iterative targeting algorithm in perturbed conditions. 
Numerical simulations and experiments (with a robot 
with seven degrees of freedom and an optical tracking 
system) were performed for computing the maximum 
error of the rotational part of the calibration matrix, 
which allows for convergence, as well as the number of 
required iterations. 
The algorithm converges up to 50 degrees of error within 
a large working space. 
The study confirms the clinical relevance of the method 
because it can be applied on commercially available 
robots without modifying the internal controller, thus 
improving the targeting accuracy and meeting surgical 
accuracy requirements. 

Keywords Robotic Surgery, Iterative Targeting, 
Neurosurgery 

 
1. Introduction 
 
Robotic assistants can increase the accuracy and 
repeatability of an intervention [1], for instance, when 
positioning surgical tools on target poses (i.e. targeting), 
defined by medical images during preoperative 
planning. When multiple probe insertions are required, 
such as in neurosurgery (deep brain stimulation or 
stereoelectroencephalography (SEEG)), or in prostate 
brachytherapy, robotic targeting allows one to avoid 
manoeuvres involving the stereotactic frame [2] and to 
avoid using fixed grid-based trajectories (e.g., in SEEG or 
prostate brachytherapy). 
 
Targeting accuracy requirements depend on the clinical 
application. Furthermore, it is necessary to distinguish 
between the technical and the clinical accuracy achieved. 
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The technical accuracy of frame-based stereotactic 
procedures is about 0.05 mm, while frameless stereotaxy 
has a technical accuracy of lower than 0.5 mm. In both 
cases, the accuracy achieved in clinical practice is far 
worse than the level of technical accuracy. 
 
In neurosurgical keyhole procedures [7], where access to 
the brain is via an entry point of about 5 mm in diameter, 
the clinical positioning accuracy of straight probes at the 
entry point has to be below 1 mm [8]. The same targeting 
accuracy is required in ear, nose and throat interventions 
[9], where robotic drilling guides can be used to perform 
cochleostomy [10]. In Table 1, the technical and clinical 
accuracy values of commercially available robotic 
systems are reported. 
 

Robot Clinical accuracy Technical accuracy
SpineAssist 1 mm [6] 0.1 mm [5] 
Neuromate 0.82 mm to 2.9 mm 

[21] 
-- 

Robodoc 1 mm [11] -- 
Cyberknife 1.1 mm [13] -- 
SABiR -- 0.4 mm [31] 
Pathfinder 1 mm [32] 0.5 mm to 2.7 mm 

[21], [22] 
MAKOplasty 3° [12] -- 
Rosa -- 0.90 mm ± 0.3 mm 

(specs) 
 

Table 1. Surgical robot accuracy 
 
In image-guided robotic surgical procedures, as for all 
image-guided procedures, a registration defines the 
geometrical transformation between the preoperative 
plan and the intraoperative environment in which the 
task is defined. The ROBODOC® system (Curexo 
Technology Corporation, Fremont, Canada) [11] and the 
MAKOplasty® (MAKO Surgical Corp, Fort Lauderdale, 
USA) [12], used in orthopaedic procedures, are both 
registered to the intraoperative environment by touching 
pins screwed in the bones, visible in preoperative CT 
images. This positions the robot’s tool centre point (TCP) 
on the pin’s tip. Intraoperative X-ray images are used for 
the target registration in the Cyberknife® system (Accuray 
Inc., Sunnyvale, California, USA) [13], which is used for 
radiosurgery procedures. Similarly, the Neuromate® 
system (Renishaw Ltd., UK), used to position electrodes 
in the brain for stereo-electroencephalography (SEEG), is 
registered to the intraoperative target (the patient’s head) 
using intraoperative fluoroscopic images. Surface 
matching techniques are used for the registration of the 
intraoperative scenario with the preoperative world, 
using, for example, the ROSA (Medtech, France) system. 
A calibration procedure estimates the transformation 
between the coordinate frame (CF) of the surgical tool 
attached to the robot’s end effector (EE) (e.g., the probe or 
the cutting guide) and the TCP itself. If an external 
sensor, e.g., an optical localizer, is used, the calibration 

procedure estimates the geometrical transformation 
between its CF and the robot’s CF. Such calibration [14] 
can be performed with closed form solutions [15] or with 
iterative optimization approaches [16–18]. In robotic 
surgery, external sensors can also allow the definition of 
the task in the robot’s coordinate frame and can also 
check the accuracy of the task during its execution. 
External position sensors can also be used for iteratively 
correcting the pose of the robot when deviations between 
the actual and the planned pose are detected [19, 20]. 
They can also be used to register the intraoperative reality 
on the preoperative images [29], thus allowing the 
surgical tool’s navigation and enabling compensation for 
patient motion in several medical applications. Such 
deviations happen because serial robots have low 
absolute accuracy due to the fact that robots’ models are 
inaccurate [21, 22], but also because the calibration 
between the robot’s space and the measurement system is 
affected by errors [18]. Moreover, external sensors in the 
operating room can be used to detect and compensate for 
possible motion during the intervention [23] or during 
trans-cranial magnetic stimulation in order to maintain 
the stimulating probe on the planned pose [24, 25]. 
 
Previously, we presented a closed-loop iterative 
algorithm for positioning and orienting a surgical tool in 
minimally invasive neurosurgery by using a multi-robot 
cell and an optical localization system as external sensor. 
This was intended to increase the targeting accuracy and 
to simplify the patient-robot registration procedure [20, 
26]. The robot’s task was defined in the optical CF and the 
robots automatically aligned the surgical probe to the 
target pose. Residual error transformations were 
iteratively corrected using a scaling factor. The targeting 
accuracy was experimentally computed in a 
neurosurgical mock-up scenario. The final targeting 
accuracy can be of the same order of magnitude as the 
external sensor, independent of the calibration accuracy, 
only by adopting iterative targeting. The aim of this 
paper is to provide simulated and experimental evidence 
of the robustness of iterative targeting convergence, with 
respect to perturbations in the calibration matrices, to 
robot pose and to the targeted point for a robot-aided 
keyhole neurosurgical procedure, such as brain biopsy or 
electrode placement. 
 
2. Targeting convergence analysis 
 
An iterative algorithm is used for compensating for 
targeting errors. Its robustness is understood to be the 
ability of such an algorithm to converge when starting 
from a perturbed initial condition and using perturbed data. 
 
In a robot manipulator, the base CF (CFBase) identifies the 
robot’s internal reference frame and the TCP CF (CFTCP) 
identifies the reference frame of free extremity. External 
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localization sensors (e.g., cameras, fluoroscopic images 
and localization systems [27]) can be used to track the 
robot’s links. The transformation matrices � and �, which 
relate to the position and orientation of the markers 
attached to the last link dynamic reference frame (DRF) 
with respect to the robot’s CFTCP, can be estimated with a 
“hand-eye” calibration procedure [14]. The procedure 
used in this paper is described in [18] and involves 
minimization techniques in order to solve the matrix 
system 
 
 � ∙ � � � ∙ � (1)
 
in which the � and � matrices are the calibration 
matrices, � is the robot pose (forward kinematics) and 
� � G�� ∙ T (Figure 1) is the transformation from the last 
link DRF and the robot base DRF, where G and T are the 
robot base and the robot tool poses in the localizer 
reference frame, respectively. 
 
The surgical tools connected to the robot’s last link (and 
to the actual robot’s EE) are also calibrated with respect to 
the markers on the robot [20]. In the following, we 
assume that the CF of the surgical tool and the CF of the 
markers attached to the robot’s last link are coincident. 
 

 

Figure 1. Targeting scenario; the tracking system (bottom left) 
localizes the tool and the target to the world (CF) 
 

 

Figure 2. CFs and transformations: ‘World’ is the CF of the 
external sensor, ‘Target’ is the desired pose to be reached and 
‘Tool*’ is the estimated CF of the tool; the arrows represent the 
geometrical transformations, j represents the time index and the 
variable marked with * are the ones obtained by estimation 
procedures. 

Unknown transformations are: 
• R�∗: the transformation between the CFTool∗ and the 

CFTarget; 
• X: actual transformation from the CFTool to the 

CFTCP [14]; 
• X�: estimated transformation from the CFTool∗ to the 

CFTCP (calibration matrix) [14]. 
 
The relationship between	X� and	X is: 
 
 �� � ��� ∙ � (2)
 
where � is the error transformation due to the calibration 
inaccuracy. In order to align the estimated tool pose 
(CFTool∗) with the tool target pose (CFTarget), the robot 
pose has to change from B� to B��� according to the 
estimated C� transformation 
 
 B��� � B� ∙ C� (3)  
 
where C� is: 
 
 C� � X ∙ R� ∙ X�� (4)  
 
that is approximated with C��, computed as: 
 
 C�� � X� ∙ R� ∙ X��� (5)  
 
in which X is approximated with X�. From this point on, 
B���� � B� ∙ C�� (approximating	B���) is consequently 
computed as: 
 

 
B���� � B� ∙ X� ∙ R� ∙ X���

� B� ∙ X�� ∙ N ∙ R� ∙ N�� ∙ X (6)  

 
Targeting iterations are therefore needed to bring the tool 
CF to the tool target pose. Iterations are stopped when R� 
translation and rotation components are both below a 
predetermined threshold value, chosen according to the 
application’s requirements (1 mm in this instance) [4]. 
 
The targeting algorithm brings the surgical tool into the 
target pose T, with the robot in the initial pose B� (Figure 
2). When the transformations N and R� are pure 
translations, convergence is reached within one iteration: 
 
 ����� � �� ∙ ��� ∙ 	�� ∙ � � ���� (7)
 
When, instead, the transformation N is a not-nil rotation, 
the targeting iterates until the residual error 
transformation R� is below a predefined threshold. 
 
Targeting is iteratively performed, correcting the robot’s 
EE pose in the Cartesian space; this is done by measuring 
the position reached by the tool after the movement is 
performed and by calculating the correction from the 
error with respect to the desired pose. This is performed 
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after the programmed movement of the robot. The rather 
long time required for robot movement, sensing and error 
correction allows for the neglect of the robot’s dynamics. 
 
3. Methods 
 
Numerical simulations and laboratory experiments were 
performed to assess the targeting convergence with 
respect to the calibration error and the robot’s initial pose. 
The robot’s initial pose (the rotation and translation 
components of B�, B�θ and B�d respectively1), the target 
pose (the rotation and translation components of T, T� 
and T� respectively) and the calibration matrix were 
perturbed, as reported in Table 2. The calibration matrix X 
was multiplied by an error matrix N�. N� represents all 
the errors in the robot calibration chain which can be due 
to encoders, the external measurement system or 
calibration estimation inaccuracies. 
 
The rotation component of the transformation matrices 
(N�, B�θ and T�) were rotations about the trisectrix of the 
first octant. The translation components of the 
transformation matrices, B�d and T�, were along a vector 
obtained by rotating the x axis by 30° around the y axis 
and rotating the resulting vector by 30° around the x axis. 
The ranges and steps of variation are reported in Table 2. 
 

Data Range Step 
(simulation) 

Step 
(experiments) 

�� (0 to 60)° 0.25 10° 
��
� (0 to 60)° 1° 6° 

��
d (0 to 150) mm 1 mm 15 mm 

�θ (0 to 60)° 1° 6° 
�d (0 to 150) mm 1 mm 15 mm 

 

Table 2. Ranges of variation 
 
The following parameters, which represent the metric of 
robustness, were estimated: 

1. �MAX
� , which is the maximum angular component of 

�� which allows convergence as a function of ��θ, ��d, 
�� and ��; 

2. # iterations: the number of iterations for targeting, 
varying between ��, ��θ, ��d, �� and ��. At �MAX

� , 
the correlation between the number of iterations and 
the variations of �� and � were computed using the 
Pearson correlation coefficient (� � ����). The 
relationship between the number of iterations and 
the value of the �� component was fitted using an 
exponential function. 

                                                                 
1 The transformation matrix A has six degrees of freedom (DoFs): 
three coordinates �, � and �, defined as ��, �� and ��, 
respectively, in addition to three rotation angles ��, �� and �� 
around the three axis. The norm of the translation component 
(displacement) is �d � ���� � ��� � ���. The angle of rotation is 
the angular component �� of the quaternion � extracted from the 
rotation sub-matrix of � and is �� � � � �arctan2 � ��

‖��‖
��� 

In order to analyze the convergence of the targeting over 
a wide range of the perturbing parameters, numerical 
simulations were performed (MATLAB® R2012a, The 
MathWorks, Natick, Massachusetts, USA). X was 
assumed to be a � � � identity matrix. This allows 
rewriting eq. (6) as follows: 
 
 ����� � �� � � � ��� � ��� (8)
 
The selected threshold of R�, as the minimum positioning 
resolution, is 0.8 mm for the translation component and 
0.05° for the rotation component, which allows for the 
satisfaction of neurosurgical applications’ requirements 
[26]. The maximum number of permitted iterations was 
100 and no measurement noise was added during the 
simulation. 
 
The convergence performances of the algorithm were also 
experimentally tested using a KUKA 4+ lightweight robot 
(LWR) (KUKA Laboratories, Augsburg, Germany) with 
seven degrees of freedom (DoFs)[28] and the OptoTrack 
Certus optical tracking system (NDI, Ontario, Canada), 
with 0.15 mm stated accuracy, as external sensor. In 15 
trials, the median technical accuracy for the robot, 
achieved while reaching a target fixed in space, was 1.18 
mm (with 0.91 mm and 1.44 mm as first and third 
quartiles) and 0.95° (with 0.93° and 0.98° as first and third 
quartiles) for the translation and rotation components, 
respectively. 
 
Two sensors (dynamic reference frames), each composed 
of four active markers, were attached to the robot’s last 
link (end effector) and to the robot base. The robot and 
the tracking system reference frame were calibrated [14] 
and the X transformation estimated (X�). 
 
The robot’s target positions were varied as reported in 
Table 2 and the iterative algorithm convergence was 
assessed. 
 
The selected threshold of R�, as the minimum positioning 
resolution, is 0.8 mm for the translation component and 
0.05° for the rotation component. The maximum number 
of permitted iterations was 100.  
 
4. Results 
 
The maximum angular component of N which allows 
convergence, NMAX

� , turned out to be independent of the 
B� and T variations. In simulations, the NMAX

�  result was 
around 55° in the case of B�� , 54.25° in the case of B�d and 
around 57.5° in the case of T variations (both angular and 
translation components). In experimental conditions, the 
NMAX
�  result was 50° in the case of B� and T variations. 

The convergence extended up until T� � ���, since for 
T� � ��� the markers were not visible from the external 
sensor. 
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Figure 3. Number of iterations required for targeting 
convergence in simulation (dashed line) with N� � 5��5° and in 
experimental conditions (solid line, median and percentiles are 
also reported) with N� � 50°. 
 

 
Figure 4. Maximum number of targeting iterations required as a 
function of N�, evaluated for all the possible B� and T variations. 
The lines are the exponential fitting of the data; the dashed lines 
are simulation results while solid lines are experimental results 
(with median and quartiles values). 
 
In Figure 3, the number of targeting iterations is shown, 
as a function of B� and T, with N� � NMAX

� , which is 
higher in the simulation than in the experiments. In 
simulations, the number of iterations is independent of B� 
and T and is around 65 in case of B� variations and 95 in 
case of T� variations. In the set-up described in § 3.2, 
when Td is greater than 40 mm, the algorithm does not 
converge within 100 iterations. In experiments, the 
number of required iterations is approximately 40 and is 
independent from B� and T variations. Convergence is 
achieved in about 80 iterations. 

Figure 4 shows the maximum number of targeting 
iterations required as a function of N�, evaluated for all 
the possible B� and T variations. N� was varied until 
NMAX
� , i.e., 50°. As shown, the number of iterations 

increases exponentially in both testing conditions. Figure 
4 further confirms the results shown in Figure 3: 
convergence was achieved in a finite number of 
iterations, until N� was around 55° in simulations and 50° 
in the case of experimental conditions.  
 
5. Discussion 
 
In keyhole procedures for neurosurgery, the accuracy of 
the positioning of the tool is crucial for the outcome of the 
procedure and the time required for the positioning of the 
tool is negligible. In those procedures, access to the brain 
is via to a small hole, causing a reduced loss of 
cerebrospinal fluid and reduced brain shift, minimizing 
the target’s displacement. In keyhole surgery, where a 
straight tool (e.g., a probe) has to be accurately 
positioned, as defined in the preoperative plan, serial and 
parallel robots can be used. For example, neurosurgical 
interventions, such as deep brain stimulation or SEEG, 
require a targeting accuracy below 1.1 mm. 
Unfortunately, the accuracy of serial robots is limited due 
to possible manufacturing inaccuracies and to intrinsic 
system compliance issues. The reported accuracy values 
of serial robots are in the range of 0.5 mm to 4.4 mm [21, 
22], while parallel robots’ working space is reduced. The 
combined use of an accurate external sensor in robotic 
surgery is helpful because its positional accuracy, i.e., the 
accuracy of the measurement of the position and 
orientation of rigid bodies in space, is higher than the 
robot’s accuracy. This allows for the measurement of 
discrepancies with respect to the desired pose. 
 
The aim of this paper is to find a measurable perturbation 
in terms of calibration errors that allow us to define the 
robustness of the iterative targeting [20] with regard to 
such perturbation. Calibration inaccuracies can be due to 
noise in the measurement system or to robot inaccuracies. 
Previous work [17, 18] showed that hand-eye calibration 
errors are in the range of 0.06 mm for translation values 
and 0.03 rad for rotation values, which are two orders of 
magnitude less than the NMAX

�  we computed. 
Independent of calibration, the targeting accuracy has to 
be less than 1 mm at the target point. We provided 
simulated and experimental evidence of convergence of 
the iterative robotic targeting algorithm for image-guided 
robotic surgery, with respect to perturbations of the 
calibrated transformation matrices between the robot and 
the external sensors, while varying the initial poses of 
both the instruments and the robot. The convergence of 
our iterative targeting provides assurance that the 
obtained accuracy is lower than the selected thresholds 
(0.8 mm and 0.05°) thus satisfying technical requirements 
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for neurosurgery. In our study, the selected convergence 
threshold is higher than that of the tracking system used 
in the experiments (3.2). Furthermore, it is of the same 
order of magnitude as the most accurate commercially 
available tracking systems. Moreover, that value was 
selected because it is of same order of magnitude as 
stereotactic frames (whose positioning accuracy can be 
influenced by the manual adjustments of the frame). It 
can also be lowered according to the technical accuracy of 
the external sensor used. The robotic positioning systems 
presented in the literature make it possible to achieve a 
targeting accuracy in clinical trials which is not better 
than the one selected in this work. For example, the 
ROBODOC® system allowed the positioning of the bone 
cutting guide with 1 mm error [11] and the Cyberknife® 
system allowed the orientation of the beam with 1.1 mm 
error [13]. The Neuromate® system allowed the 
performance of brain biopsies with 0.86 (± 0.32) mm 
accuracy [30]. The parallel robot presented in [31] was 
able to achieve 0.4 mm accuracy via kinematic calibration, 
which was obtained using an optical localizer and the 
targeting procedure with a closed-loop controller. 
 
We simulated a calibration error which is two orders of 
magnitude greater than the calibration errors usually 
reported. We tested the convergence robustness. 
Simulations allowed for the testing convergence in a way 
that extensively explored the parameter space (B, T, N), 
more extensively than was possible with the experiments. 
It has to be acknowledged that we did not simulate any 
measurement noise. The targeting accuracy, 
experimentally computed in the same conditions, 
nonetheless satisfies the requirements for relevant 
interventions.  
 
In our setup, the tool to be aligned to the target pose was 
considered to be coincident with the CF tracked by the 
external monitoring system. In the experiments, only the 
calibration rotation error was considered, since 
translations are corrected in a single iteration step. Also, 
the robot’s initial pose (B�) and the tool’s target pose (T) 
were varied in range. This is compatible with operating 
room constraints, both in simulation and in experimental 
conditions. We showed that targeting convergence was 
reached independently from B� and T, for errors in the 
calibration matrix of up to 60° in the simulation and 
around 50° under experimental conditions. When the 
NMAX
�  calibration matrix is multiplied, the number of 

iterations required to converge is almost independent of 
B� and T, both in simulations and experimental 
conditions (Figure 2a). In experimental conditions, fewer 
iterations are needed to reach the target since the NMAX

�  
value used was slightly inferior (50° instead of 60°). 
Finally, there is an exponential increase in the number of 
iterations when the N matrix rotation component is 
varied, both in simulation and in experimental conditions 

(Figure 2b). For calibration errors of the same amplitude 
of the ones reported in the literature, the number of 
requested iterations is approximately 10, which is 
compatible with the neurosurgical intervention time. In 
fact, in each iteration the robot’s movement takes about 
three seconds, which is a small amount of time for the 
overall process to reach the target compared to the total 
duration of the intervention, which is several hours. 
 
For the experimental evaluation, we used a KUKA LWR, 
whose basic accuracy does not satisfy the surgical 
requirements. This robot features torque sensors in each 
joint, which increase the safety of the device, enabling it 
to detect collisions while making the structure more 
flexible than that of a classic industrial serial robot. It has 
a redundant kinematic structure, which enables the 
possibility of avoiding obstacles while keeping the end 
effector in its pose. This increases the space in which the 
robot can work with dexterity, making it more suitable 
for a crowded environment such as the operating room. 
The algorithm we present can also be integrated with 
other environmental sensors for automatic collision 
avoidance and with a graphical user interface to simulate 
the robot’s movements. This makes it possible to check 
for possible collisions before the real execution of the 
movement. 
 
During keyhole neurosurgery, robot and target poses 
could change, e.g., during SEEG procedures, in which up 
to 18 electrodes are implanted in the brain, generally in a 
single hemisphere. We have showed that, irrespective of 
the target pose, the robot can reach the target with the 
required accuracy, provided there is a clear line of sight 
between the markers attached on the end effector and the 
optical tracker (otherwise the robot is stopped). We also 
showed that convergence is robust with respect to 
angular error in the calibration matrix (� � ���). The 
proposed approach is clinically relevant since it allows 
for the accurate positioning of the surgical instruments in 
the planned pose without modifying the robot controller, 
which is not accessible in commercially available devices. 
The final targeting accuracy achieved is that used by the 
external sensor. 
 
Future work will be directed towards increasing the 
safety of the system so that the chosen path towards the 
target is clear of obstacles. Performance analysis of 
electrodes’ positioning during SEEG in a real operating 
environment will also be carried out. 
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