
Structure of the Membrane Anchor of Pestivirus
Glycoprotein Erns, a Long Tilted Amphipathic Helix
Daniel Aberle1, Claudia Muhle-Goll2, Jochen Bürck3, Moritz Wolf4, Sabine Reißer2, Burkhard Luy2,3,

Wolfgang Wenzel4, Anne S. Ulrich2,3, Gregor Meyers1*

1 Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany, 2 Karlsruhe Institute of Technology, Institut für Organische Chemie, Karlsruhe,
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Abstract

Erns is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon
being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a
membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and
membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD
spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding
and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying
parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within
the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These
findings explain the strong membrane binding of the protein and provide clues to establishing the Erns membrane contact,
processing and secretion.
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Introduction

The genus Pestivirus belongs to the family Flaviviridae, together

with the genera Hepacivirus, Flavivirus and Pegivirus. It represents a

group of economically important animal viruses like classical swine

fever virus (CSFV) and bovine viral diarrhea virus (BVDV) [1].

The economical damage caused by these viruses is not only due to

the acute infection of the animals, but stems also from their ability

to cause persistent infection of the fetus after infection of a

pregnant animal [2,3]. If an infection of the fetus by BVDV is

established, a persistently infected calf is born. This calf often

shows no signs of disease, but sheds huge amounts of infectious

virus particles throughout its whole life, which leads to an efficient

spreading of the virus.

The genome organisation and basic molecular features of

pestiviruses are more similar to the hepacivirus HCV (human

hepatitis C virus) than to the other members of the Flaviviridae. The

positive sense single stranded RNA genome consists of about

12,300 nucleotides and contains one single open reading frame

that codes for a single polyprotein precursor of ,4000 amino acids

[1]. This precursor is co- and posttranslationally processed by

cellular and viral proteases to release the viral proteins. Compared

to the HCV RNA, the pestivirus genome codes for two additional

proteins: the non-structural protein Npro, and the structural

protein Erns [1]. Both proteins interfere with the immune response

of the infected animal and are important for establishing a

persistent infection [4]. The two proteins exert two different

functions. Npro is an autoprotease and leads to the degradation of

IRF3 (interferon regulatory factor 3) in the infected cell via the

proteasome [5,6,7,8,9,10], and it also interferes with IRF7

dependent pathways [11]. This results in the deactivation of the

innate immune response of the infected cell. In contrast, Erns is a

viral glycoprotein that forms disulfide-linked homodimers and can

be found together with the glycoproteins E1 and E2 on the surface

of the enveloped virus particle [3,12,13]. Erns consists of 227

amino acids, has a molecular weight of 42–48 kDa, being heavily

glycosylated except for its C-terminal region [3,14,15]. It is not

only involved in the formation of infectious virus particles, but it is

also secreted from the infected cells, and up to 50 ng/ml of the

protein can be detected in the blood of infected animals [16]. In

addition, Erns has an intrinsic RNase activity, which is very

unusual for an RNA virus protein [17,18,19]. The structure of the

RNase domain of Erns was recently determined, with the finding

that it has a T2-RNase like fold [20] that confirmed data from

sequence analysis studies [18]. T2-RNase represents a very old

and unique RNase family whose members are broadly distributed

in nature, but the functions of these RNases are unknown. The

enzymatic activity of Erns is necessary for its activity as a virulence

factor. It could be shown that the deactivation of the RNase

activity by deletion of one amino acid in the active site of the

protein caused attenuation of the virus in its natural host [21,22].

Interestingly, attenuation was also observed in an RNase

positive virus, in which Erns dimerization was prevented by

mutation of the Cys residue that forms the intermolecular disulfide
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bond in the wt protein [23]. Moreover, an abrogation of the Erns

RNase activity together with a deletion of the Npro coding

sequence prevented the establishment of a persistent BVDV

infection [4]. We and others postulated that the secreted version of

Erns - and not the protein bound to the virus particle - represents

the key player that interferes with the immune system. The

secretion of Erns is controlled by the C-terminal end of the protein.

In previous studies we have determined several parameters in the

C-terminal region of Erns that are necessary for the retention/

secretion of the protein [24,25,26]. The free C-terminus of Erns is

formed upon cleavage of the Erns/E1 precursor protein by the

cellular signal peptidase [27]. This cleavage site is a very unusual

substrate for the signal peptidase, because the characteristic signal

activating this peptidase is normally composed of a transmem-

brane helix followed by a so-called von Heijne sequence [28,29].

The cleavage site between Erns and E1 contains such a von Heijne

sequence, but the Erns C-terminus lacks a transmembrane helix

and contains an amphipathic helix instead. Nevertheless, the C-

terminus of Erns obviously has to fold in a certain conformation

that is accepted as a substrate by the signal peptidase.

The C-terminus of Erns governs not only protein cleavage and

secretion, but it is also important for the membrane binding of the

protein. Sequence analysis predicts a helical fold for the C-

terminus, which would bestow it with a marked amphipathic

character [24,25]. Fig. 1 shows the 2D flat projection of the 3D

structure of the Erns anchor (Lys167 – Ala227) assuming a

continuous a-helical conformation. The hydrophilic and hydro-

phobic faces are maintained throughout the entire length of the

helix, which implies that it could bind flat onto the membrane

surface. This amphipathic structure would explain the membrane

anchoring, but not the action of the signal peptidase, nor the

regulation of secretion. As an alternative arrangement, it has been

recently suggested that the Erns membrane anchor might fold as a

helical hairpin by forming a long ladder of salt bridges between its

N-terminal and C-terminal helical segments, a so-called electro-

static ‘charge zipper’ [30]. The resulting amphiphilic hairpin

would in principle have an appropriate length to span the lipid

bilayer in a transmembrane alignment and could thus serve as a

substrate for the signal peptidase.

To better understand the role of Erns and its mechanism of

membrane anchoring and secretion, we have recently obtained

some initial data on short peptide fragments from this region of the

protein when bound to lipid bilayers [26], but the non-continuous

nature of these sequences precluded any firm interpretation. Here,

we show that the complete C-terminal anchor of Erns indeed

adopts a continuous a-helical fold when bound to the membrane.

In contrast to the simplistic pictures of a surface-bound helix or a

transmembrane hairpin, however, our results show that the Erns C-

terminus is slightly tilted with regard to the membrane surface,

and a substantial stretch of residues is shielded from the aqueous

phase by the hydrophobic environment, while the rest is located at

the water/membrane interphase. This refined model represents

the first example of a viral structural protein that is bound to a

membrane via an amphipathic helix.

Results

Secondary structure of the Erns anchor
In a previous analysis we had examined three overlapping

peptide fragments corresponding to the Erns anchor sequences of

Figure 1. Amphipathic helix model of the Erns membrane anchor. 2D flat projection of the 3D structure of the Erns anchor (Lys167 – Ala227)
assuming a continuous a-helical conformation. Positively charged amino acids are shown in dark blue (Arg, Lys), negatively charged ones in red (Asp,
Glu), and hydrophobic amino acids are colored in yellow (Leu, Val, Ile, Met, Trp, Tyr, Phe, Ala, Cys). Polar amino acids are displayed in light blue (Thr,
Asn, Ser, Gln, His), and the remaining ones (Gly, Pro) in green. The illustration was generated with the in-house software ‘‘Protein Origami’’ (Karlsruhe
Institute of Technology, http://www.ibg.kit.edu/nmr/544.php).
doi:10.1371/journal.ppat.1003973.g001

Author Summary

The Erns protein (envelope protein, RNase, secreted) of
pestiviruses represents one of the most fascinating
proteins in virology. Erns is not only an essential structural
component of the virus particle but also an unspecific
RNase. The latter activity is dispensable for pestivirus
replication but represents a virulence factor involved in the
establishment of lifelong persistent infection. These
functions of Erns are connected with its repressive activity
on the type I interferon response of the infected host
probably depending on secretion of part of the protein
synthesized within the infected cell followed by its
distribution with the blood stream. To understand the
mechanisms leading to an equilibrium between intracel-
lular retention (for production of virus particles) and
secretion (for repression of the innate immune response)
the principles of Erns membrane binding need to be better
understood. The recently published Erns crystal structure,
however, is lacking the relevant carboxyterminal mem-
brane anchor region. We report here structure analyses of
the Erns membrane anchor bound to model membranes.
This work was based on circular dichroism, nuclear
magnetic resonance spectroscopy, and structure simula-
tions, and revealed a new type of membrane anchor for a
surface protein. These data will help to explain the unusual
functions of Erns.

Novel Type of Membrane Anchor in Pestivirus Erns
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CSFV strain Alfort/Tübingen [26] and BVDV strain CP7 (data

not shown). Their CD analysis revealed a strong tendency for the

middle and the C-terminal part of the anchor sequence,

represented by the two corresponding peptides, to fold as a helix.

To verify these results for the entire Erns anchor (Lys167 – Ala227),

we determined the secondary structure of this 61-residue domain

in different environments by CD, as shown in Fig. 2. We first used

a solution of 50% TFE in phosphate buffer (PB) pH 6.5 (Fig. 2 A,

dashed line), which promotes intramolecular hydrogen bonds.

This CD spectrum of the Erns anchor showed an overall helical

fold, and the secondary structure deconvolution revealed a helix

content of 80% for these data (Fig. 2 A, bar diagram). Thus,

almost the complete Erns C-terminus is in principle able to adopt a

helical conformation. To test whether this secondary structure is

also present in pure phosphate buffer (PB), we measured the Erns

anchor in PB pH 6.5 (Fig. 2 A, solid line) and pH 3 (Fig. 2 A,

dotted line). However, the Erns anchor was only partially soluble

at pH 6.5, leading to protein aggregation and turbidity in the

aqueous sample. Therefore, the CD lineshape shows spectral

artefacts caused by absorption flattening and differential scattering

at wavelengths ,215 nm, and the secondary structure analysis

yielded only a very low degree of helix content. At pH 3, on the

other hand, the protein is completely soluble in PB, and the

secondary structure calculation revealed a helix content of about

50%.

To analyse the secondary structure of the Erns anchor in a

membrane-like environment, we first used detergent micelles in

low salt buffer. As the Erns anchor is positively charged we

compared micelles of zwitterionic DPC and negatively charged

SDS. Both systems supported a strong helical folding, and the

secondary structure deconvolution revealed a helical fraction of

over 60% (Fig. 2 A, bar diagram). We then used zwitterionic

DMPC lipid vesicles, and a 1:1 mixture of DMPC with anionic

DMPG. Both systems induced a high degree of helical folding

(,70–80%) (Fig. 2 A, bar diagram), similar to 50% TFE. These

results indicate that the Erns C-terminus has a helix content of up

to 80% in a membrane (-mimicking) environment, and may

therefore be present as a continuous amphipathic helix, as

implicated in Fig. 1.

Orientation of the Erns amphipathic helix relative to the
membrane surface

To examine the orientation of the helical sequence relative to

the membrane surface we used oriented CD (OCD). In

macroscopically oriented membrane samples it is possible to

estimate the tilt angle of a membrane bound helix from the

intensity of the negative band at 208 nm in the OCD spectrum,

which is polarized parallel to the helix axis [31,32,33]. If the helix

adopts an alignment parallel to the membrane surface, as expected

for Erns, the minimum at 208 nm has a stronger intensity than the

minimum around 223 nm. In contrast, a transmembrane helix

that lies perpendicularly to the membrane surface shows no

negative band at 208 nm, or even some positive ellipticity

(Supporting Information Fig. S1). The OCD spectra of the Erns

anchor, recorded in oriented DMPC or DMPC/DMPG (1:1)

(Fig. 2 B), show a pronounced minimum at 208 nm with nearly

the same intensity as the one at 223 nm. A transmembrane

alignment of the Erns anchor, as had been speculated for the Erns/

E1 precursor [30], can thus be excluded for the mature processed

Erns under these conditions. However, because the intensity of the

208 nm minimum is less than the intensity of the 223 nm band,

the helix does not seem to be aligned completely parallel to the

membrane surface. Without taking any minor secondary structure

elements into account (e.g. disordered regions, which have a

minimum at 198 nm), the Erns anchor appears to be slightly tilted

within the membrane.

Orientation of the Erns anchor is independent of
concentration

Many amphipathic helices, especially antimicrobial peptides,

are known to interact with each other in a concentration

dependent manner, which often results in changes in their

membrane alignment. At low concentrations these peptides exhibit

a mostly parallel orientation with regard to the membrane surface,

but at higher concentrations the self-assembly of these molecules

leads to a re-alignment and the formation of a transmembrane

pore [33,34,35,36,37,38]. In the case of Erns, the possibility of self-

assembly via an intermolecular charge zipper had been suggested

[30], or helix-helix interactions via a GxxxG motif might be

conceivable. To test for a putative concentration-dependent

change in the secondary structure (e.g. aggregation or oligomer-

ization) or in the orientation of the helical segment of Erns, we

compared several samples with different lipid/protein ratios. The

CD spectra of all four tested concentrations (P/L ratios) in the

DMPC/DMPG 1:1 lipid mixture were essentially identical

(Fig. 2C). Neither did the OCD spectra at the same ratios of

1:20, 1:50 and 1:100, as displayed in Fig. 2D, show any change in

the alignment of the helical segment. (The OCD sample at 1:200

did not yield a reliable spectrum due to technical problems

resulting from the very low protein concentration.) In summary,

these CD and OCD data demonstrate that the Erns anchor does

not show a concentration-dependent change in its global

secondary structure nor in its orientation in the membrane. Most

importantly, the data recorded here give no indication at all of a

transmembrane alignment at any concentration.

Secondary structure of the far C-terminal region of Erns

The observed peripheral location of the C-terminal part of the

Erns membrane anchor is highly intriguing, because this architec-

ture represents a so far unknown type of substrate for the cellular

signal peptidase, which usually requires a transmembrane helix

upstream of the cleavage site. To investigate the structure of the C-

terminal fragment in more detail, we expressed a truncated

construct named ErnsDN, which represents the far C-terminal 34

amino acids of the anchor sequence (Arg194 – Ala227). To analyse

the secondary structure of this C-terminal Erns anchor fragment

(Fig. 2 E), we used 50% TFE (dashed line), DPC micelles (straight

line), and DMPC vesicles (not shown). Unfortunately, the CD

spectrum of ErnsDN in DMPC vesicles showed scattering artefacts

which lead to an error-prone CD spectrum and prevented an

exact analysis. To allow comparison with the subsequent NMR

analysis, we examined the C-terminal region also in small lipid

bicelles with DHPC/DMPC (4:1) (dotted line). The corresponding

CD spectra of ErnsDN showed a high percentage of helical folding

(,70–90%) in all three systems (Fig. 2 E, bar diagram). This

means that the Erns anchor can fold as a long amphipathic helix

not only in detergent micelles and lipid vesicle suspensions, but

also in bicelles.

The OCD spectrum of the C-terminal fragment in Fig. 2F
shows a less intensive band at 208 nm than the complete Erns

anchor at a P/L ratio of 1:50. This means that either the N-

terminal region of the Erns anchor is less tilted in the membrane

than the C-terminal region, or the N-terminal elongation pulls the

C-terminal region into a more parallel orientation. Importantly,

the band at 208 nm still has a distinct negative signal amplitude,

which excludes the possibility that this region of the Erns anchor

could be inserted into the membrane in a transmembrane

alignment.

Novel Type of Membrane Anchor in Pestivirus Erns
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Figure 2. CD and OCD spectra of the Erns C-terminus and the N-terminally truncated version ErnsDN in different environments. (A)
CD spectra of the Erns membrane anchor (Lys167 – Ala227) in phosphate buffer at pH 6.5 (straight line), at pH 3 (dotted line), or in 50% TFE at pH 6.5
(dashed line). The results of the secondary structure analysis in these environments as well as in detergent micelles and lipoid vesicles are displayed in
the inserted bar graph. The bars represent the mean helix content of the Erns anchor calculated with three secondary structure calculation programs
(CDSSTR, CONTIN-LL and SELCON-3). (B) OCD spectra of the Erns membrane anchor (Lys167 – Ala227) in oriented lipid bilayers composed of DMPC
(straight line), or a mixture of DMPC/DMPG (1:1) (dotted line), each with a protein/lipid ratio of 1:100. The spectra were normalized to the same
intensity at ,220 nm to illustrate the similarity in the lineshapes. (C) CD spectra of the Erns membrane anchor (Lys167 – Ala227) in DMPC/DMPG (1:1)
vesicles, recorded at protein/lipid ratios of 1:20 (straight line), 1:50 (dashed line), 1:100 (dotted line), and 1:200 (dashed-dotted line). (D) OCD spectra
of the Erns membrane anchor (Lys167 – Ala227) in oriented lipid bilayers composed of a mixture of DMPC/DMPG (1:1). The spectra were recorded at
protein/lipid ratios of 1:20 (straight line), 1:50 (dashed line), and 1:100 (dotted line). The spectra were normalized to the same intensity at ,220 nm to
illustrate the similarity in the lineshapes. (E) CD spectra of N-terminally truncated ErnsDN (Arg194 – Ala227) in 50% TFE (dashed line), 10 mM DPC
micelles (straight line), and bicelles composed of DHPC/DMPC (4:1) (dotted line), at a protein/lipid ratio of 1:100. The results of the secondary
structure analysis in these environments are displayed in the inserted bar diagrams. The bars represent the mean helix content of ErnsDN estimated
with three secondary structure calculation programs (CDSSTR, CONTIN-LL and SELCON-3). (F) Comparison of the OCD spectra of the Erns membrane
anchor (Lys167 – Ala227) and the N-terminally truncated ErnsDN (Arg194 – Ala227) in oriented lipid bilayers composed of a mixture of DMPC/DMPG
(1:1) at a protein/lipid ratio of 1:50. The spectra were normalized to the same intensity at ,220 nm to allow for a better comparison of the lineshapes.
doi:10.1371/journal.ppat.1003973.g002
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Detailed NMR structure analysis of the far C-terminal
region of the Erns anchor

Further information on the orientation of the Erns anchor in the

membrane, the positions of individual residues, and the water

accessibility of individual NH groups was obtained from liquid-

state NMR spectroscopy. Although the full-length Erns anchor

yielded good quality 1H15N-HSQC spectra in DHPC/DMPC

bicelles, as well as in DPC and SDS micelles, the corresponding

3D-15N-HSQC-NOESY and TOCSY spectra suffered from line

broadening that impeded sequential assignment (Supporting

Information Figure S2). The stretch Trp203-Gly212 could be

tentatively assigned based on characteristic proton shifts, but the

assignment could only be safely confirmed later by comparison

with the spectra of ErnsDN. Therefore, the detailed NMR analysis

was done for the truncated ErnsDN corresponding to the 34 C-

terminal residues of Erns. Backbone assignment (1H, 15N, 13Ca,
13Cb) was achieved for all residues, except for the first two in

DHPC/DMPC (4:1) bicelles.

We sought to determine whether parts of ErnsDN are protected

from the solvent, by titration with the paramagnetic agent Gd-

DOTA and by dissolution of a lyophilized sample of ErnsDN/

DHPC/DMPC in D2O. Supporting Information Figure S3 shows

that residue protection factors of ErnsDN with Gd DOTA at

0.5 mM are uniform along the entire sequence. D2O exchange

revealed no stably protected residues either (data not shown), given

that already a single exchange event leads to a disappearance of

the signal. Similarly, titration with paramagnetic agents shows a

protection only when the residues are deeply inserted in the

hydrophobic interior of the bicelle [39]. We therefore determined

also the water accessibility of the NH groups with the more

sensitive CLEANEX-PM pulse sequence [40], which measures

proton exchange rates. The CLEANEX pulse sequence applies a

water-selective excitation pulse prior to a chemical exchange

sequence in which magnetization transfer from water protons to
15N-bound exchangeable protons occurs, followed by a 1H15N-

HSQC-type experiment. The chemical exchange efficiency

depends on the accessibility of the 15N-bound proton, and thus

reports on its location in the bicelle or its stable participation in a

hydrogen bond. Here, a single encounter with a water molecule

may already lead to a measurable magnetization, meaning that for

partially solvent-accessible amide protons this method is more

sensitive than the other two, because the protein exchange time is

limited to 100 ms.

The assigned 1H15N-HSQC of ErnsDN is shown in Fig. 3A.

Judging from the nuclear Overhauser effect (NOE) and chemical

shift anisotropy (CSI) patterns (Fig. 4A, middle part), the helix

extends from Leu215 or Glu216, corresponding to 50% helical

content. These findings support the CD data above, that showed a

high degree of helical folding in the same membrane-mimetic

environment (data above). The remaining residues in the C-

terminus show some HN-HN contacts as well as NOEs between

Trp222, Phe223 and Tyr226 (Fig. 4B), which suggests a loop-like

structure, but the quality of the spectra did not yield enough NOEs

for a full 3D structure determination. Nonetheless, the HN-HN

contacts together with the loop-like contacts in the C-terminus

(Fig. 4A, upper part) and the water accessibility measurements

argue in favour of a dynamic loop-like conformation of the far C-

terminus rather than a firmly folded a-helical structure.

A comparison of the 15N-HSQC and the CLEANEX spectra

(Fig. 3B) revealed that only 13 amide protons are engaged in

exchange (i.e. they give cross-peaks in the assigned CLEANEX

spectrum). We may thus conclude that the remaining 20 amide

groups are protected from exchange and are therefore assume a

stable secondary structure within a more hydrophobic environ-

ment characterized by a low dielectric constant. A comparison

with the water-HN NOEs in a 1H15N-NOESY experiment

confirmed our analysis. To obtain the water accessibility of each

NH group, we calculated the normalized proton exchange rate by

dividing the intensity of each CLEANEX peak by the intensity of

the corresponding 1H-15N HSQC peak. Fig. 3C shows that a long

stretch of 15 amino acids in the middle of ErnsDN does not have

any water contact at all and should therefore be protected within

the bicelle. This stretch comprises not only hydrophobic amino

acids, but also contains two Thr, one Arg, two Lys and one Gln.

Most remarkably, the side chains of Gln207 and Trp203, which

are positioned on the edge of the hydrophobic face of the helix, are

not in contact with water either, thus again supporting the model

of an amphiphilic helix that is embedded in and protected by the

membrane. In contrast, the N-terminal region of ErnsDN up to

Leu200 shows a high normalized proton exchange rate that is

characteristic of a water-exposed surface-location. Surprisingly,

most of the C-terminal residues, including the very last amino acid

Ala227, are again shielded from water.
15N-NMR relaxation analysis (Fig. 4A, lower part) suggests

that the residues comprising the helical part are fairly rigid. The

T1, T2 and hetNOE values show a tendency to gradually change

from residue 201 towards the N-terminus and from residue 215 or

216 towards the C-terminus, indicating increasing flexibility

towards the ends. Besides the immediate N-terminus up to residue

196 (in accordance with the lack of data for the first residues), the

last two residues of the C-terminus are highly flexible, which is

evident from their high T2 values and low to negative hetNOEs.

Together with the fact that these two and the preceding residues at

the utmost C-terminal end are protected from contact with water

and show an interconnecting network of NOEs, a picture emerges

where the C-terminus forms a stable but semi-flexible structure

within the bicelle, whereas the N-terminus is unstructured and

exposed on the surface of the bicelle.

Structural influence of the C-terminus
Earlier cell culture studies had reported that the C-terminus of

Erns (BVDV Strain CP7) has a major influence on the retention/

secretion of the protein. The deletion of the last five C-terminal

amino acids (FGAYA) led to a dramatic increase in the amount of

secreted Erns [24]. A recently conducted cell culture experiment of

the Erns protein from CSFV strain Alford/Tübingen showed that

even the loss of the four C-terminal residues (GAYA) has a major

impact on protein secretion. In these experiments the protein

secretion rate increased from below 10% (wt protein) to 35%

(truncated version) (unpublished data). Since the major part of the

membrane binding of the Erns anchor is supposedly contributed by

the central region of the amphipathic helix, we wondered whether

the C-terminus may have any influence on the conformation of the

membrane anchor, thereby modulating its membrane association.

To answer this question, we expressed and analysed yet another,

C-terminally trunctated protein ErnsDNDC, a variant of ErnsDN

lacking the last 6 amino acids (WFGAYA). The assignment of

ErnsDN could be easily transferred to the 1H-15N HSQC spectrum

of this shortened version (Fig. 5A). The corresponding CLEA-

NEX spectrum (Fig. 5B) and the calculated normalized proton

exchange rates (Fig. 5C) indicated that in ErnsDNDC only 8

amino acids located in the middle of the sequence were shielded

from water. In addition, two further amino acids, Thr201 on the

N-terminal side and Lys214 on the C-terminal side of the shielded

sequence showed no water contact.

Comparison of the normalized proton exchange rates of ErnsDN

and ErnsDNDC in Fig. 6A reveals several differences resulting from

the deletion of the 6 C-terminal amino acids. For the N-terminal

Novel Type of Membrane Anchor in Pestivirus Erns
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amino acids, ErnsDN and ErnsDNDC yielded nearly the same values

(except for the peptide bond NH group of Gln195), hence the

conformation and water-exposed location of these residues should

be equivalent in both proteins. However, residues Thr201, Gly212

and Lys213, which in the case of ErnsDN are embedded in the

bicelle, now seem to be located somewhat closer to the lipid/water

interphase in ErnsDNDC, as seen by the small but significant change

in the proton exchange rate. Especially the peptide bond of Trp203

shows a high proton exchange rate in ErnsDNDC and should

therefore in the truncated fragment be located at the membrane

surface where it is exposed to water. Interestingly, the NH side

group of Trp203 did not show a change in its water accessibility

upon truncation, but is still located in a hydrophobic environment.

Most notably, the water accessibility of the C-terminal amino acids

is increased in ErnsDNDC. The peptide NH group of the four C-

terminal amino acids Glu216, Asn217, Lys218 and Ser219 all

exhibit an enhanced proton exchange rate once the last six amino

acids are deleted. Moreover, the Thr202 NH group in ErnsDNDC

shows a proton exchange rate that is comparable to the values

determined for the aforementioned four amino acids. Interestingly,

the side chain NH of Asn217 showed nearly the same low proton

exchange rate in both proteins. This indicates that only the peptide

bond has changed its position in ErnsDNDC whereas the side chain

is still protected from water.

The results of the water accessibility experiments with ErnsDN

and ErnsDNDC are summarized in Fig. 6B. It is obvious that the

deletion of the last six amino acids results in a change in water

accessibility of upstream sequences and increases the number of

NH bonds that are engaged in fast exchange. This occurs

especially in the formerly water shielded central region of the Erns

protein. Interestingly enough, the flanking amino acids Thr201

and Lys214 did not gain direct access to water, but the accessibility

of the peptide NH groups increased at both sides of the formerly

shielded domain upon C-terminal truncation. In both deletion

constructs, there remains a continuous stretch of 8 amino acids

showing no water accessibility, including the side chain of Gln207.

This finding of a discontinuity in the protection pattern at residues

216–219 does not support the picture of a perfectly straight

amphipathic helix in the C-terminal region.

Structural model of the C-terminal region
To elucidate the degree of helicity of membrane-bound Erns by

an independent method, we performed all-atom Monte Carlo

(MC) simulations with an all-atom intramolecular force field [41]

that was recently used to describe the reversible folding of various

proteins [42,43]. To speed up the simulation, we employed an

implicit membrane model with three layers providing discrete

dielectric environments [44]. ErnsDN (Fig. 7B) as well as the entire

Figure 3. Water accessibility measurement of ErnsDN. (A) 15N-HSQC, and (B) CLEANEX spectra of N-terminally truncated ErnsDN (Arg194 –
Ala227) in bicelles composed of DHPC/DMPC (4:1) at a protein/lipid ratio of 1:222. NH cross peaks are labelled with the name of the amino acid in
single letter code and its number according to the full-length Erns protein. The central part of the spectrum in (A) is blown up in the box on the right
for better clarity. The side chain NH groups of Trp203 and 222 are marked as NE1. The Gln207 side chain, together with the side chains of Gln195 and
Asn217 could not be further assigned and are therefore marked as NE2 or ND2. (C) Calculated normalized proton exchange rates of all identified NH
groups in the spectra. The NH groups are labelled as in the NMR spectra.
doi:10.1371/journal.ppat.1003973.g003
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Erns anchor (Fig. 7A) were simulated at temperatures ranging from

220K to 400K, starting from completely helical conformations

that were placed in the proximity of the membrane surface. The

region from Thr172 to Lys220 remained helical, while the N- and

C-terminal regions showed partial unfolding with increasing

temperature (see Supporting Information Fig. S4A). A similar

picture emerged for ErnsDN, as illustrated in Fig. 7B, which

remained helical from Leu200 to Lys214. The last six C-terminal

residues are unfolded for both peptides (Supporting Information

Fig. S4A/C). Both peptides remained bound to the membrane

surface in all simulations, with the hydrophobic residues facing

inward. Moreover, the helix was slightly tilted (Supporting

Information Fig. S5).

The Monte Carlo simulations can give a good prediction of the

local secondary structure of ErnsDN, but the implicit membrane

model is not suitable to gain an impression of the depth of

insertion or of the exact tilt angle of the protein within the

membrane. We therefore conducted all-atom molecular dynamics

(MD) simulations in an explicit lipid bilayer composed of 512

DMPC molecules, in order to obtain further information on the

membrane insertion of ErnsDN (Fig. 7C). The resulting MD model

shows a pronounced helical conformation of ErnsDN and a slightly

tilted orientation in the membrane with an angle of 15u relative to

the membrane surface. The peptide maintained a stable helical

conformation throughout all simulations, but showed a kink

around residue 202 when pulled into the membrane. Besides using

the conventional MD approach of allowing the peptide to

approach the membrane from the aqueous phase, the simulation

in Fig. 7C was started from a position deep within the membrane.

This should be a more relevant physiological starting position,

since at least part of the structure should be located within the

membrane when the C-terminus is generated by signal peptidase

cleavage of the E/E1 precursor. The peptide maintained a stable

helical conformation throughout the simulation, while the

membrane initially bent to compensate for the peptide transloca-

tion when the protein was pulled into the membrane core.

However, after 35 ns of free MD, the peptide was back to its

original position near the membrane surface and assumed its

stable orientation there.

Discussion

Erns represents one of the four known pestiviral structure

proteins. The protein is crucial for the formation of infectious viral

particles and plays a major role also during the infection of cells.

But aside from this elementary function, Erns represents also a

virulence factor of pestiviruses. In this context it is important that

Erns has an intrinsic RNase activity. RNases are only very rarely

found in RNA viruses [45], and to our knowledge the pestivirus

Erns is the only viral structural protein displaying such enzymatic

activity. This RNase activity is crucial for the virulence of the

virus. It could be shown that pestiviruses containing an RNase

Figure 4. Secondary structure prediction of ErnsDN deduced from NMR spectroscopy. (A) The measured HN-NH contact is displayed for
each amino acid of ErnsDN (Arg194 – Ala227) in the upper part of the figure to predict the secondary structure of the region. The CSI (chemical shift
index) of Ca, HN and N determined by triple-resonance experiments for the protein backbone are shown for each amino acid in the middle part of
the figure together with the resulting calculated secondary structure of TALOS (Torsion Angle Likelihood Obtained from Shift and sequence similarity)
for each amino acid. The measured 15N longitudinal (R1) and transversal (R2) relaxation rates are displayed in the lower part of the figure as well as
the heteronuclear NOE (het-NOE). (B) 1H-1H contacts of the C-terminal end of ErnsDN (Arg194 – Ala227) that reveal steric proximity. The identified
protons are labelled by their IUPAC nomenclature and by the corresponding amino acid and numbered according to the full-length Erns protein.
doi:10.1371/journal.ppat.1003973.g004
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negative Erns protein are viable and able to replicate to nearly wild

type virus titers, but are attenuated in their natural hosts [21,22].

Most importantly, the RNase activity is a major factor for

establishing a persistent infection upon transplacental infection of

the fetus in a pregnant host animal [4].

Erns is not only concentrated within the cell at the site of virus

budding, but it is also secreted to some extent from an infected cell

and is thus found in the blood of infected animals [15,16].

According to the working hypotheses put forward so far, the

virulence factor activity of the Erns RNase is supposedly linked

directly to its secretion from infected cells. Accordingly, an analysis

of Erns membrane anchoring and the mechanisms underlying its

partial secretion are of major importance for understanding its

activity. It had been proposed earlier that Erns should be bound to

the host membranes and to the virion via interaction with the E2

protein that contains a typical transmembrane region [46].

Regardless of the question whether an Erns/E2 heterodimer is

formed in all pestiviruses, the results presented here and data

published before [24,25,26] clearly show that the Erns C-terminus

represents an intrinsic membrane anchor per se. The amphiphilic

region serves to attach the protein to lipid bilayers and enables its

intracellular retention in the absence of any other viral protein.

Accordingly, the hypothesis of indirect membrane anchoring of

Erns achieved via interaction with E2 - as put forward by Lazar et

al. [46] - is refuted by the data available now.

The structure of the Erns N-terminal RNase domain was

successfully determined by X-ray crystallography, yielding impor-

tant clues to its enzymatic functions [20]. Unfortunately, the full-

length Erns protein containing its C-terminal membrane anchor

region could not be crystallized, so that structural data on this

functionally important domain are missing. We have therefore

investigated the structure of the C-terminal domain using several

complementary methods. First, we could demonstrate in cell

culture experiments that this domain does indeed serve as the

membrane anchor [24,25]. However, in those experiments the

membrane anchor did not bind to membranes as tightly as a

typical transmembrane helix. Sequence prediction and model

building showed that the Erns membrane anchor could be

Figure 5. Water accessibility measurements of ErnsDNDC. (A) 15N-HSQC, and (B) CLEANEX spectra of ErnsDNDC (Arg194 – Thr221), a 6 amino
acid C-terminal truncated version of ErnsDN, recorded in a bicelle system composed of DHPC/DMPC (4:1) and a protein/lipid ratio of 1:222. The 15N
chemical shift is displayed on the y-axis and the 1H shift is shown on the x-axis. Identified NH groups are marked with the single letter code of the
corresponding amino acids and numbered according to the full-length Erns protein. The central spectrum area in (A) is shown as a blow up in the box
on the right for better clarity. The side chain NH groups of Trp203 and 222 are marked as NE1. The Gln207 side chain, together with the side chains of
Gln195 and Asn217 could not be further assigned and are therefore marked as NE2 or ND2. (C) Calculated normalized proton exchange rates of all
identified NH groups of the spectra. Lys220 and Thr221 could not be assigned unambiguously and therefore are not presented in the figure.
doi:10.1371/journal.ppat.1003973.g005
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structured as a long amphipathic helix. Mutations interfering with

the proposed amphipathic character of the C-terminal region

affected the membrane anchoring as well as the secretion of the

protein [25,26].

Peripheral membrane binding via amphipathic helices is quite

common for both cellular and viral proteins. Cellular amphipathic

helices are typically located at the N-terminus and consist of only

3–4 helical turns. Such proteins are found in the cytoplasm or the

ER and have a broad range of important biological functions. For

example, such structures are used in the cell for measuring

membrane curvature [47], for generating membrane vesicles

[48,49], or for establishing protein-protein interactions [50]. The

amphipathic helices are generally oriented parallel to the

membrane surface and act, in the case of proteins involved in

the budding of membrane vesicles, as a membrane anchor of these

proteins. The local curvature of the membrane involved in vesicle

budding is usually not induced by the amphipathic helix itself, but

e.g. by the bent form of the proteins [49] or by protein-protein

crowding [51].

The considerable length of the Erns amphipathic helix (up to

about 50 amino acids in TFE) is more reminiscent of amphipathic

helices found in another group of proteins, such as cytolytic

Figure 6. Comparison of the proton exchange rates of ErnsDN and ErnsDNDC. (A) Normalized proton exchange rates of ErnsDN (Arg194 –
Ala227) and of ErnsDNDC (Arg194 – Thr221) for all NH groups identified in the spectra (see Fig. 3C and 5C). (B) The amino acid sequences of the Erns

membrane anchor (Erns), the N-terminally truncated protein ErnsDN, and the N- and C-terminally truncated ErnsDNDC are numbered according to the
full-length Erns protein. The amino acids of ErnsDN and ErnsDNDC are displayed in different fonts depending on the value of the proton exchange rate
of the corresponding peptide NH group. NH groups with a proton exchange rate above of 0.5 are shown in bold face, while those with a proton
exchange rate below 0.5 are in standard font. The underlined amino acids were not detected in the CLEANEX spectrum and therefore do not show
any significant proton exchange. Unassigned amino acids in the 15N-HSQC spectrum leading to a general lack of information about their water
accessibility are presented in lower case.
doi:10.1371/journal.ppat.1003973.g006
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Figure 7. Structure simulations. (A) MC simulations in an implicit membrane model. Fraction of per-residue helical content at different simulation
temperatures for Erns, as determined by the probability of finding a helical secondary structure element at the respective position. The value of the
standard deviation is based on five trajectories per temperature. The simulations showed mostly helical conformations for about residues Thr172 to
Lys218, whereas the terminal residues appear mostly disordered. (B) MC simulations in an implicit membrane model. Fraction of per-residue helical
content at different simulation temperatures for ErnsDN, as determined by the probability of finding a helical secondary structure element at the
respective position. The value of the standard deviation is based on five trajectories per temperature. The simulations showed mostly helical
conformations for residues Leu200 to Lys214, whereas the first five N-terminal residues are mostly disordered. With increasing temperature, the
region between Leu215 and Phe223 partially unwinds and exhibits loop conformations followed by the helical C-terminus. (C) MD simulation of
ErnsDN (Arg194 – Ala227) at 72 ns in an explicit DMPC membrane. The protein shows a strong helical fold and lies slightly inclined in the hydrophobic
region of the membrane just beneath the lipid head groups. The peptide was pulled from an equilibrated position in the membrane surface into the
center of the membrane to mimic a more physiological starting position since at least part of the structure should be located within the membrane
when the Erns C-terminus is generated by signal peptidase cleavage of the Erns/E1 precursor. In a free MD simulation following the pulling, the
peptide exhibited a kink around residue 202 (not shown) until 40 ns, then the peptide was back to the original surface bound orientation and full
helicity.
doi:10.1371/journal.ppat.1003973.g007
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peptides. These peptides usually consist of an amphipathic helix

composed of 23–31 amino acids [52]. Melittin, a toxic component

of bee venom, for example, binds to cellular membranes and forms

a membrane pore by oligomerization, which leads to the damage

of the target cell. Similarly, the antimicrobial peptide PGLa is a

straight amphiphilic a-helix, which binds flat to the membrane

surface, whereupon it can start to tilt and eventually assemble

transiently as an oligomeric transmembrane pore [34,36,38]. The

melittin and PGLa helices can be slightly tilted into the membrane

like the Erns anchor [35,37,53], but the Erns anchor most likely

lacks the ability of a concentration depending structural re-

orientation according to our experiments.

Several viral proteins are known to contain short amphipathic

helices, such as the Brome-Mosaic-Virus protein 1a [54], or the

NS3, NS4A, NS-4B and NS-5A proteins of hepatitis C virus

[55,56]. Also for pestiviruses membrane binding of NS5A was

demonstrated to occur via an amphipathic helix similar to the

closely related hepatitis C virus [57]. But all these systems

represent non-structural proteins, and the amphipathic helix is

only used for membrane attachment and oligomerization to build

up the replication complexes on the cytoplasmic membrane

surface [58]. To our knowledge Erns is the only structural viral

protein that is anchored via an amphipathic helix. This

amphipathic helix is unusually long and located in the C-terminal

region. It combines several functions, as it is not only important for

the membrane binding of the protein, but also for the control of its

secretion/retention, its intracellular location [26], and for cleavage

of the glycoprotein Erns/E1precursor by the cellular signal

peptidase [27]. All these different demands have to be supported

by the specific conformation and particular sequence of the Erns C-

terminal region.

Our analyses revealed that the Erns anchor is predominantly

helical when bound to the membrane, but that the stability of the

helix varies considerably over the sequence, with 15 residues

representing a core helix that can be extended towards both sides.

Monte Carlo (MC) simulations support the experimental data, as

they yielded a similar extent of helicity and could identify the

stretch Leu200 – Lys214 as the most stable helical region, in

perfect agreement with CD and NMR data. Both the OCD

analyses and the simulations revealed a slight tilt of the helix with

respect to the membrane surface (Fig. 2F and Supporting

Information Fig. S5, respectively).

Since the MC analyses do not provide information on the

location of the anchor in the membrane, molecular dynamics

(MD) simulations were conducted. The MD analyses also revealed

a helical conformation with a slight tilt. The helix was, embedded

just below the lipid headgroup region of the membrane. Unlike the

other data, the helix in the MD simulations extended virtually over

the complete length of the peptide. Thus, the helix content of this

simulated structure is significantly higher than what was observed

experimentally in the CD, NMR and MC analyses, which had

shown unwinding of the N- and C-terminal residues. This

discrepancy is most likely due to an overestimation of the H-bond

energy in the force field.

As a general consensus of the CD, OCD, NMR, and MC

simulation data, and in part also MD simulation results, at least

part of the helix should be inserted more deeply in the membrane

than the surrounding amino acids. This conclusion is in agreement

with the data obtained by the NMR CLEANEX experiments

showing that the central region of the amphipathic helix does not

exchange the NH protons with water protons. Likewise, the side

chain protons of Trp203 and Gln207 are protected and thus seem

to be located in the hydrophobic interior of the bicelle.

Nonetheless, the immersion within the bicelle is either not very

deep or not perfectly stable, because all residues experience the

influence of the paramagnetic agent gadolinium (Supporting

Information Fig. S3). This ion induces strong relaxation that leads

to a disappearance of the signals within a minimum radius of 5 Å

[59]. The fact that the NMR signals of the full-length Erns anchor

show dynamic exchange most probably with the free unstructured

protein also indicates that the interaction with the membrane-

mimicking bicelles is only of moderate stability.

Interestingly, the N-terminal end of ErnsDN is located on the

bicelle surface or protrudes into the solvent, given its high water

accessibility, while the amino acids of the far C-terminal end are

shielded from water including the last C-terminal residue Ala227.

Together with the observed NOE pattern, this result suggests that

the C-terminal end of the sequence is at least temporarily located

within the membrane, being quite flexible with regard to its

secondary structure, as most clearly seen for Ala227, the very last

C-terminal residue of the protein. Ala227 does not show any water

contact, which argues for a membrane immersed location, but the

relaxation and Het-NOE measurements revealed a flexible

conformation. Any particular stable C-terminal conformation,

such as a putative turn close to the water/lipid interphase was not

reproduced in the MD simulations, possibly due to an overesti-

mation of the helical hydrogen-bonding. However, the MC

simulation revealed a significant probability for a turn-like

structure at the C-terminus (Supporting Information Fig. S4D),

and the same pattern was also revealed by MC simulations of the

full-length Erns anchor (Supporting Information Fig. S4B).

This model is supported by the pronounced influence that the

native Erns C-terminus has on the central helix, as seen from the

increased water accessibility in the truncated construct ErnsDNDC.

This effect was not restricted to the C-terminal region of the

immersed part, but was also seen for residues located upstream at

the N-terminal end of the inserted helix. Thus, the C-terminal end

of the Erns anchor has an effect on the immersion of the whole

inserted segment. On the other hand, the N-terminal region of the

protein did not show such an interesting effect, as all amide groups

had strong water contacts.

The structural model of the Erns C-terminus presented here does

not answer all open questions about the biological mode of action

of the Erns anchor, because it does not allow any conclusions about

the mechanism governing the equilibrium of Erns retention and

secretion. Nevertheless, it gives a first hint on how the interaction

of the protein with the membrane occurs. Although the Erns

protein lacks a transmembrane domain or a GPI anchor, which

are usually responsible for tight membrane association, its

unusually long amphipathic helix confers strong membrane

binding. This anchor is not only attached to the membrane via

the hydrophobic face of the amphiphilic helix, but because of the

tilt part of the helix including its far C-terminal end is inserted into

the membrane. This may facilitate the arrangement of lipids

around the inserted peptide and may lower the free energy of the

system to stabilize the membrane/protein interaction. It thus

appears feasible that the Erns anchor could bind more strongly to

membranes than a typical amphipathic helix on the bilayer

surface, thereby providing the firm membrane association that is

crucial for a viral surface protein. Nevertheless, the membrane

affinity of this anchor is considerably lower than that conferred by

a transmembrane helix [24], which seems to be an important

prerequisite for the observed secretion of Erns. Erns represents the

first membrane protein for which anchoring via an amphipathic

helix is described, and this unusual type of membrane attachment

can be hypothesized to be of functional importance. The structure

adopted by this anchor in a membrane could contribute to the

known equilibrium between retention and secretion by adjusting
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the binding force at an appropriate level. This hypothesis is in

agreement with the observation that C-terminally truncated Erns is

more efficiently secreted [24,26], because the observed increased

water accessibility of the central part of this truncated helix

suggests that this region becomes less deeply immersed and

consequently has a decreased binding affinity. Whether this

proposed decrease of binding (alone) is responsible for increased

secretion of the mutant protein cannot be decided yet. Alterna-

tively, a different orientation of the protein in the membrane could

interfere with the interaction between Erns and other proteins

important for its membrane association. Further investigation is

necessary to answer the question whether other mutations

enhancing secretion [25,26] also alter the immersion and binding

affinity of the helix. In a rather speculative working hypothesis,

one might propose that either a slight truncation of the C-terminus

or its unfolding as a result of (changing the) interaction with a

partner molecule could destabilize lipid binding of the anchor and

lead to secretion. So far, nobody has achieved a detailed analysis of

the primary structure of the secreted protein, and any data

concerning putative interaction partners of the anchor sequence

are missing, so that both possibilities have to be investigated in

future work. For the time being, the present data support a model

that provides strong membrane binding, which, however, can be

modulated by changes affecting the far C-terminal end or the

overall structure of the anchor.

The structure model presented here displays the monomeric

form of the protein but in vivo, a considerable amount of Erns is

found as a homodimer covalently linked via a disulfide bond

between the Cys residues at position 171 of the protein

[23,60,61,62]. Nevertheless, we had no indication of dimer

formation when analyzing the full-length anchor containing

Cys171. The mass spectra of the purified protein did not reveal

the presence of the dimeric form and the NMR analyses proved

furthermore that every nucleus was found in only one defined

surrounding. This observation implies that only one conformation

- whether dimer or monomer - was present in the samples. For a

dimer, this result could only be obtained in the case of ideal

symmetry. Moreover, we conducted NMR analyses on the Erns

anchor both with and without the addition of DTT and were not

able to identify any differences between these spectra (not shown).

Most importantly, the NMR analyses leading to the structural

model were conducted with a C-terminal part of the anchor

lacking Cys171.Fraom biochemical analyses of the Erns protein it is

known that the ability to form dimers is massively weakened when

the disulfide linkage is prevented by mutation of Cys171 [23].

Taken together, these results strongly support the notion that the

Erns anchor or fragments thereof analyzed in our experiments were

monomers. Erns dimerization is important in vivo, however, and the

dimeric form is found in virions, infected cells, and also in the

supernatant of infected cells. Knocking out Erns dimer formation

by mutation of Cys171 doesn’t interfere with virus viability but

leads to virus attenuation in the natural host [23], so dimer

formation plays a role for Erns function. Even though we do not

have any data on the structure of a membrane anchored Erns

dimer, it is tempting to speculate on the structure of such molecule.

We can conclude from the data on a peptide corresponding to the

N-terminal part of the CSFV Alfort/Tübingen Erns membrane

anchor [26], as well as from the crystal structure of residues 1 to

165 of the BVDV NCP7 Erns [20] that Cys171 is located in a

rather flexible region of the protein, linking the enzymatically

active N-terminal domain to the C-terminal membrane anchor.

Hence, contact of the two monomers in this region should not be

sterically hindered. In plane binding of the membrane anchor

helices of both monomers parallel to the bilayer surface according

to our structural model would also not interfere with protein/

protein interaction between the regions containing Cys171. The

angle between the two anchor helices in a two dimensional

projection should be flexible, since there is no reason to postulate

any particular fixed arrangement. Furthermore, as pointed out

above, we have no indication that two or more anchor molecules

could engage in a parallel or antiparallel alignment of the two

amphipathic helices of an Erns dimer. Whether the two regions

around Cys171 of the two monomers form a parallel stem–like

structure or whether they cross each other cannot be answered yet

and also the membrane topology of this contact region is unclear

at the moment. Further experimental work would be necessary to

get an idea of the structure of the Erns membrane anchor in a

dimeric state. One important step towards elucidation of this point

would be to identify residues that are part of the dimerization

interface in the region around Cys171.

The model established here for the Erns C-terminus describes

only the folding of the fully processed protein. However, Erns is not

translated as a single protein but rather as a part of the pestivirus

polyprotein that is posttranslationally cleaved into the different

viral proteins. The N-terminus of Erns is generated upon cleavage

by the cellular signal peptidase [27], which is also responsible for

several other steps of pestivirus polyprotein processing [15]. The

signal peptidase usually cleaves after a so called von Heijne

sequence that is preceded by a transmembrane helix [28,29]. It

has long been puzzling why and how the C-terminal end of Erns

can be generated by signal peptidase, given that this sequence

lacks a transmembrane element [27]. The structural model for the

Erns C-terminus presented here cannot explain this conundrum, as

we found no indication for a transmembrane orientation of the C-

terminal segment. Therefore, the structure of the uncleaved Erns

C-terminus should differ from the final form of the processed C-

terminus to allow the cleavage by the cellular signal peptidase. It

seems likely that the Erns C-terminus adopts an alternative

transient structure during processing, while being tethered to the

membrane via the transmembrane region of the E1 protein that

follows downstream in the polyprotein. This sequence of events

could explain why the cleavage between Erns and E1 is delayed

compared to other polyprotein processing steps [15].

Recently, a new structural motif named ‘‘charge zipper’’ was

identified in the membrane binding domains of various proteins

[30]. The contact between two amphipathic helices is stabilized

through electrostatic interactions between charged amino acids on

the two apposed segments, such that a long ladder of salt bridges is

formed between them, either leading to an intramolecular hairpin,

or resulting in intermolecular oligomerization. Such a charge

zipper motif was also identified in the C-terminal membrane

anchor of Erns. Folding of this region into a helical hairpin would

allow a transmembrane insertion of the anchor, since the charged

amino acids would be shielded within the structure, while

hydrophobic residues would be present on the outer face and

could be easily inserted into the membrane. The resulting

structure could provide a (transient) transmembrane helical

hairpin structure upstream of the Erns/E1 processing site, which

might explain its cleavage by the signal peptidase. After cleavage, a

structural rearrangement of the released Erns C-terminus could

occur, resulting in the identified structure of the mature Erns C-

terminus that allows membrane anchoring of Erns and control of

secretion. This charge zipper hypothesis is highly interesting but

has to be analyzed in detail with further experiments.

The Erns membrane anchor thus combines several very different

functions in a rather short stretch of the sequence. These functions

are important for the life cycle of pestiviruses. They rely on a

specific structure that is probably established through different
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transition states, and which promotes membrane binding and

signal peptidase processing. The final structure of the mature Erns

C-terminus presented here as a model describes for the first time a

new way of anchoring a viral surface protein via an unusually long

amphipathic helix to a membrane. This arrangement represents a

new perception of protein/membrane interaction that might also

be relevant for other peripheral membrane proteins. Importantly,

the structural model of the Erns C-terminus reveals not only a new

possible fold of an amphipathic membrane anchor, but it also

provides new insight into the biochemical requirements of the Erns

protein and paves the way towards a better understanding of the

virulence function of this fascinating system.

Materials and Methods

Construction of plasmids
Plasmid pd29G was used as a starting point for all expression

constructs. It consists of the plasmid pETZ2-1 (kindly provided by

Gunter Stier [63]), which codes for a Z2 domain to enhance the

water solubility of the fusion protein, a C-terminal His-TAG for

protein purification and a N-terminal TEV protease cleavage site

to allow removal of the complete TAG from the desired expression

product. The insertion in pd29G consists of a cDNA coding for

part of the viral polyprotein from BVDV strain CP7 Erns (Lys167 -

Ala227) after four cloning derived amino acids (GAMA). The

cDNA sequence was optimized for the bacterial expression of the

protein. Plasmid pd29G-1, containing the sequence information

for the protein ErnsDN (Arg194 - Ala227), was generated by a

QuikChange (QC) PCR using ‘CCTGTATTTTCAGGGCCGT-

CAGGGGACCGC’ as forward and ‘GCGGTCCCCTGACGG-

CCCTGAAAATACAGG’ as reverse primer. QC PCR was con-

ducted according to the protocol by Strategene (Heidelberg,

Germany). The expression plasmid of ErnsDNDC (Arg194 –

Thr221; plasmid pd29G-1-2) was established from pd29G-1 via

QuikChange mutagenesis with primers ‘GAAAACAAAAGCA-

AAACCTAATAACTCGAGCACCACCACC’ and ‘GGTGGT-

GGTGCTCGAGTTATTAGGTTTTGCTTTTGTTTTC’. The

established constructs were all verified by nucleotide sequencing

with the BigDye terminator cycle sequencing Kit (PE Applied

Biosystems, Weiterstadt, Germany). Sequence analysis and

alignments were done with MultiAlin [64]. Cloning was done

using standard procedures [65].

Expression and purification of proteins
The expression of proteins was done with E.coli strain BL21(DE3)

in standard LB-Medium for the CD measurement, or in minimal

medium containing 15N (15NH4Cl, ISOTEC, Sigma-Aldrich, USA)

and 13C (13C6 D-Glucose, Cambridge Isotope Laboratories, Inc,

USA) for the NMR analysis. 1 l of medium was inoculated with an

overnight culture until the OD600 of the mixture was between 0.05

and 0.1. The bacterial growth at 37uC and 220 rpm was observed

until an OD600 of 0.8 was reached. At this point protein expression

was induced by addition of IPTG (final concentration 0.5 mM). For

expression in minimal medium, 2.5 ml 20% 13C6-Glucose per liter

of culture was added to the medium. The bacteria were incubated at

20uC and 220 rpm and harvested after 3 h. After centrifugation for

10 min at 5000 g and 4uC the bacteria were resuspended in 15 ml

Lysisbuffer [50 mM NaH2PO4 pH 8.0, 300 mM NaCl, 30 mM

Imidazol, Lysozym, 6% TritonX-100, 1 tab. Roche Complete

Protease inhibitor without EDTA (Roche, Mannheim, Germany)]

per liter of minimal medium. After 10 min incubation at room

temperature the bacteria were lysed by three freeze-thaw cycles

performed with liquid nitrogen and warm water and sonification for

6630 sec on ice (Branson Sonifier B15, level 7, cycle 80%). The

insoluble debris was removed by centrifugation (Beckman JA17

rotor, 30 min, 31000 g) at 4uC.

The purification was started with a 5 ml Ni-NTA column

(Protino Ni-NTA Columns, Macherey-Nagel, Germany) on an

FPLC system (LKB GradiFrac, Pharmacia Biotech, Freiburg) with

a flow rate of 3 ml/min. The UV absorbance at 280 nm was

measured with a connected absorbance recorder (LKB Optical

Unit, LKB REC102, Pharmacia Biotech, Freiburg) to identify

protein containing fractions. A step gradient of 50 mM and

100 mM imidazole was used to prevent unspecific protein binding,

and elution was accomplished with 300 mM imidazole. Afterwards,

the protein containing fractions were pooled and ultrafiltrated

(Amicon Ultra-15, Millipore). The retentate was diluted in TEV-

Buffer (Invitrogen, USA) and again ultrafiltrated until the NaCl

concentration was less than 5 mM. The protein concentration was

determined by measuring the absorbance at 280 nm to calculate the

amount of AcTEV-Protease (Invitrogen, USA) that was needed to

cleave off the N-terminal Z2-TAG. It was assumed that 10 U

AcTEV-Protease could cleave 2.16 mg substrate. To prevent

oxidation, the solution was overlayed with CO2 and incubated for

several days at room temperature. Each day a 1 ml sample of the

solution was collected and analyzed to check the cleavage process.

After cleavage was completed, the cleavage products were separated

with a reverse phase HPLC (BT9200 Titan HPLC pump,

Eppendorf, Hamburg) using a C4-Reprosil 300 column (Dr.

Maisch GmbH, Ammerbuch-Entringen, Germany) and a gradient

from 20% to 60% acetonitrile with 0.05% trifluoroacetic acid. The

absorbance at 280 nm was recorded (BT9520 IN UV/Vis detector,

LKB REC101, Pharmacia Biotech, Freiburg) and the eluent was

collected in 2 ml fractions (Foxy Jr., ISCO) and analyzed. Positive

fractions were pooled and lyophilized for several days. Afterwards,

the molecular mass of the protein was measured using a MALDI-

MS (Ultraflex I, Bruker) to determine the achieved isotope labeling,

the purity and the absence of oxidation products.

Circular dichroism (CD) spectroscopy
Phosphate buffer (PB), 2,2,2-trifluoroethanol (TFE) and sodium

dodecyl sulfate (SDS) were obtained from VWR (Darmstadt,

Germany). The detergent n-dodecylphosphocholine (DPC) and the

phospholipids DMPC 1,2-dimyristoyl-sn-glycero-3-phosphatidyl-

choline (DMPC), 1,2-dimyristoyl-sn-glycero-3-phosphatidylgly-

cerol (DMPG) and 1,2-dihexanoyl-sn-glycero-3-phosphatidylcho-

line (DHPC) used for vesicle and bicelle preparation were

purchased from Avanti Polar Lipids (Alabaster, AL, USA). A

weighed amount of lyophilized Erns protein was dissolved in

deionized water for preparing a 50 mM stock solution. SDS and

DPC were used in a concentration of about 10 mM in 10 mM PB

pH 6.5 with a protein/detergent ratio of 1:600. The lipid powders

of DMPC and DMPG were dissolved in 50:50 chloroform/

methanol (v/v) to get lipid stock solutions of ,7 mM. Aliquots of

these stock solutions were mixed in a glass vial and thoroughly

vortexed to obtain the DMPC/DMPG mixture (1:1 molar ratio).

Subsequently, the organic solvent was removed under a gentle

stream of nitrogen, followed by overnight incubation under

vacuum. The DMPC or DMPC/DMPG lipid film that had

formed in the vial was dispersed by the addition of 200 ml PB and

homogenized by vigorous vortexing for 761 min and by 7 freeze-

thaw cycles. Afterwards, small unilamellar vesicles were formed by

sonication of the multilamellar vesicles for 4 min in a strong

ultrasonic bath (UTR 200, Hielscher, Germany). The sonication

procedure was repeated 3 times (with intermittent cooling of the

water in the ultrasonic bath to room temperature with ice, to avoid

overheating the samples). To prepare bicelles, a weighed amount

of DHPC was first dissolved in 10 mM PB by sonification. An
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aliquot of this solution was used to dissolve a weighed amount of

DMPC. Afterwards, the bicelle dispersion was homogenized by

vortexing and freeze-thaw cycles as described above. Due to the

significant technical challenges of examining bicelles in optical

spectroscopy, which are caused by much stronger light dispersion

compared to sonicated small unilamellar vesicles, the protein

concentration of the sample was calculated by the UV-VIS

absorption of a stock solution, from which the corresponding

dilution factor could be determined.

To prepare the samples for CD analysis, an aliquot of the Erns

protein stock solution was added to PB, to a 50:50 mixture of

TFE/PB (v/v), to SDS or DPC micelles, or to the corresponding

lipid dispersions. The final protein concentration in PB, TFE/PB

and in micellar environment was 15 mM. In the lipid vesicle

samples the protein concentration was adjusted in the range from

13–27 mM and the lipid concentration between 0.7–1.8 mM,

resulting in peptide-to-lipid (P/L) ratios of ,1:20, 1:50, 1:100 and

1:200. A 20 mM protein and 2 mM (total) lipid concentration and

a P/L ratio of 1:100 was set up in the bicelle samples by dissolving

the lyophilized ErnsDN protein directly in the bicelle dispersion.

CD spectra were recorded on a J-815 spectropolarimeter (Jasco,

Groß-Umstadt, Germany) in rectangular quartz glass cells of 1-

mm path length (Suprasil; Hellma, Müllheim, Germany) between

260 and 185 nm at 0.1-nm intervals. The temperature was set to

25uC for the peptide solutions in PB, the 50% TFE mixture, and

the micellar solutions, and at 30uC for the vesicle or bicelle

suspensions (i.e., well above the lipid phase transition temperature

of 23uC for DMPC and DMPG) using a water thermostat-

regulated cell holder. Three repeat scans at a scan rate of 10 nm/

min, 8 s response time, and 1 nm bandwidth were averaged for

each sample and for the baseline of the respective peptide-free

sample. After subtracting the baseline spectra from the sample

spectra, CD data were processed with the adaptive smoothing

method in the Jasco Spectra Analysis software. To calculate the

mean residue ellipticities required for quantitative secondary

structure estimation, the concentration of the peptide stock

solutions was determined from the UV absorbance of the

respective peptide at 280 nm. For better comparison of the

spectra of the different samples, the calculated mean residue

ellipticity (MRE) is shown in the graphs.

Secondary structure analyses were performed using the

CDSSTR program [66,67] with the implemented singular value

decomposition (SVD) algorithm; by the CONTIN-LL [68,69]

program, which is based on the ridge regression algorithm; and by

the SELCON-3 [70,71] program, which incorporates the self-

consistent method together with the SVD algorithm to assign

protein secondary structure. The three algorithms are provided by

the DICHROWEB online server [72,73]. The quality of the fit

between experimental and back-calculated spectrum according to

the secondary structure fractions was assessed from the normalized

root mean square deviation (NRMSD), with a value ,0.1

considered as a good fit [72].

Oriented circular dichroism (OCD) spectroscopy
Oriented protein-lipid samples for OCD measurements were

prepared by depositing the proteolipid vesicles (with DMPC and

DMPC/DMPG, as described above) on a planar quartz glass

substrate. Each sample was generated by spotting a 60–80 ml aliquot

of the vesicle sample onto a 20 mm diameter quartz glass plate

(SUPRASIL, Hellma, Jena) as a ,12 mm central circular spot, and

dried under a gentle stream of air. Afterwards, the sample was

rehydrated for 15 h at 30uC and 97% relative humidity in an OCD

sample cell using a reservoir of saturated K2SO4 solution. The in-

house built OCD cell can be integrated in a J-810 spectropolar-

imeter as an accessory, and further details on the OCD sample

preparation and measurements have been described [33,74]. The

thin oriented bilayers formed during hydration of the sample

minimize the possibility of undesired spectral artifacts caused by

linear dichroism or absorption flattening. The OCD spectra were

recorded as an average of 8 scans with a 45u rotation of the cell after

each scan to further reduce spectral artifacts due to linear dichroism

arising from imperfections in the sample, strain in the quartz glass

windows, or imperfect alignment of the window. For OCD

measurements the same data acquisition parameters were used as

in the conventional CD experiments described above. Background

spectra of pure lipid bilayers (without protein) were subtracted from

all OCD spectra. In order to compare the different OCD spectra in

a better way all spectra were normalized to match their ellipticity

around the minimum at ,220 nm.

NMR spectroscopy
The NMR analysis was carried out in a lipid bicelle system with

a total lipid concentration of 200 mM in PBS (50 mM KH2PO4

pH 6.8, 50 mM NaCl), using DHPC and DMPC (Avanti Polar

Lipids, Alabaster, AL, USA) at a ratio of 4:1. For sample

preparation, the weighed amount of DH/MPC was dissolved in

450 ml PBS by vortexing and sonification until the solution was

clear. Afterwards, the required amount of DH/MPC was added

and the mixture was again sonified. Thereafter, 0.5 mmol of the

lyophilized protein and 50 ml D2O were added. After another

round of sonification the insoluble material was removed by

centrifugation for 20 sec. at 320 rcf to get a clear solution. The

protein/lipid ratio obtained by this procedure was 1:222.

NMR experiments were performed on a Bruker Avance I

600 MHz spectrometer with a broadband triple resonance probe,

or on a Bruker Avance III 600 MHz spectrometer with a cryo

probe and a Z-gradient.

The 15N-HSQC and CLEANEX experiments [40], and

titration with Gd 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra-

acetic acid (Gd-DOTA, Sigma-Aldrich) were typically acquired

with 2- 4 scans and a total of 128 increments in the indirect

dimension, between 23 and 50uC. Titration with Gd-DOTA was

performed on 0.5 mM sample of ErnsDN in either DHPC/DMPC

or DPC micelles. A CLEANEX spin-lock field of 4.8 kHz was

applied for a mixing time of 100 ms. 3D 15N-HSQC NOESY and
15N-HSQC-TOCSY experiments were performed at 23uC with a

mixing time of 120 ms (NOESY) and 60 ms (TOCSY). 200–250

increments in the 1H dimension and 55 increments in the 15N

dimension were acquired. A 3D 13C-HMQC NOESY was

acquired in 200 mM deuterated DPC (Avanti Polar Lipids,

Alabaster, AL, USA). 1H 15N 13C triple resonance experiments

(HNCACB, HNCA, CBCA(CO)NH) at 23uC [75] were used to

assign the 1HN, 13C and 15N resonances. 15N longitudinal (R1) and

transversal (R2) relaxation as well as the heteronuclear NOE (het-

NOE) were measured at 27uC. Relaxation delays varied between

10.8 and 3466.8 ms for R1, and 14.4 to 259.2 ms for R2 [76].

One duplicate point was included to test for instabilities. The

heteronuclear NOE was determined as the signal intensity ratio of
1HN/N crosspeaks with and without 1H saturation. All exper-

iments were recorded in an interleaved manner [77]. The water

signal was suppressed with a combination of the water-flip-back

and the WATERGATE scheme in all cases.

Spectra were processed using the nmrPipe software package

[78] and analyzed with NMRView [79]. The normalized proton

exchange rate was calculated by the intensity of the peak in the

CLEANEX spectra divided by the intensity of the correlated peak

in the 15N-HSQC spectra
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Monte Carlo simulations
Using the Monte Carlo simulation package SIMONA [80] we

performed a total of 1.26109 steps, each of which changed a single

dihedral, for both Erns systems in the all-atom AMBER99SB-

ILDN force field [41], in combination with an accurate implicit

description of the solvent and membrane interactions [44].

Starting from an ideal all-helical conformation in the proximity

of the outermost membrane layer, all simulations showed a quick

attachment to the membrane surface. Depending on the

simulation temperature (Erns - 220K, 270K, 320K, 360K, 370K,

380K, 400K; ErnsDN - 300K, 320K, 340K, 360K, 370K, 380K,

400K), the secondary structure varies over the sequence. We

determined the standard deviation for the per-residue secondary

structure information from five distinct populations per temper-

ature, using the secondary structure assignment package DSSP

[81]. For each population we averaged the fraction of secondary

structure elements over every 10,000th step, neglecting the initial

86105 steps to allow for equilibration.

Molecular dynamics simulations of ErnsDN
MD simulations were conducted using the molecular simulation

package GROMACS 4.5.5 [82]. The AMBER99SB-ILDN force

field [41] was used for the peptide, together with the SLIPID force

field for the DMPC bilayer. ErnsDN (Arg194 – Ala227) was

constructed as an ideal helix with an acetylated N-terminus using

the program xleap from the AmberTools package [83]. The

peptide membrane complex was formed during an unrestrained

membrane binding simulation of 10 ns length, by placing the

peptide molecule parallel to a pre-equilibrated lipid bilayer at a

distance of 1.8 nm above the lipid headgroups, at an elevated

temperature of 480 K to speed up insertion. During the binding

simulation, hydrogen bonds within the peptide were restrained to

prevent unfolding. After cooling down, the system was equilibrated

at 303 K with position restraints of 1000 kJ/(mol nm2) on the

peptide for 500 ps. After this, an unrestrained MD simulation of

500 ns length was conducted using a Nose-Hover thermostat [84]

and Parrinello-Rahman barostat [85], with semiisotropic pressure

coupling. A time step of 2 fs was used together with the LINCS

algorithm [86] to constrain bonds involving hydrogen atoms. Long

range electrostatics were treated via PME combined with a 1.4 nm

direct space cutoff for vdW and Coulomb interactions.

For another set of pulling simulations, the GROMACS pull

code was used. The peptide was pulled into the membrane with a

force constant of 10000 kJ/(mol nm2) and a pull rate of 0.2 pm/ps

along the membrane normal for 10 ns. Then, the system with the

peptide in the center of the bilayer was equilibrated for 500 ps

using position restraints of 1000 kJ/(mol nm2) on the peptide.

After that, another unrestrained MD simulation of 75 ns length

was conducted.

Supporting Information

Figure S1 Illustration of the characteristic OCD line shapes of an

a-helical peptide for transmembrane (dotted line), tilted (solid black

line) or parallel (dashed line) orientation with respect to the

membrane surface. Theoretical OCD spectra have been calculated

according to the method described in [87]. If the helix adopts an

alignment parallel to the membrane surface the minimum at 208 nm

has a stronger negative intensity than the minimum at ,225 nm, if

the helix is tilted the intensity of the 208-nm band is lower compared

with the intensity of the 225-nm band, and if the helix is oriented

transmembrane, the 208-nm negative band completely vanishes and

intensity is close to zero or even slightly positive.

(PPTX)

Figure S2 Comparison of 1H15N-HSQC spectra of the full

length Erns anchor (A) and the N-terminally truncated ErnsDN

(Arg194 – Ala227) (B) in DPC micelles. Although the full-length

Erns anchor yielded good quality 1H15N-HSQC spectra, the

corresponding 3D-15N-HSQC-NOESY and 3D-15N-TOCSY

spectra (C) suffered from line broadening that impeded sequential

assignment and showed a lot of empty strips.

(PPTX)

Figure S3 Effect of paramagnetic relaxation enhancement on

the intensity of the peaks in 1H-15N-HSQC spectra of ErnsDN.

0.25 mM Gd-DOTA were added to 0.5 mM ErnsDN in 200 mM

DPC, 20 mM KPI, 50 mM NaCl, pH 6.8 at 26uC. I, I0 -

Intensities in the absence and presence of Gd-DOTA.

(PPTX)

Figure S4 The per-residue amount of structural turn (A, C) and

coil (B,D) elements for each simulation temperature of Erns (A,B)

or ErnsDN (C,D) was determined by the probability of finding the

secondary structure element at the respective sequential position,

averaged over every 10,000th step of distinct Monte Carlo

simulations. The value of the standard deviation is based on five

trajectories per temperature starting from an initially complete

helical structure.

(PPTX)

Figure S5 Calculation of the tilt angle of ErnsDN with respect to

the membrane surface. The tilt angle was determined by initially

guessing the helix axis based on the eigenvector of the peptide’s

inertia tensor, followed by an iterative optimization to find the

optimal helix orientation. For this purpose, only the helical region

spanning from residue Lys200 to Lys214 was considered. At each

temperature, the tilt angle was calculated for five distinct

populations, where every 10,000th snapshot was taken into

account. The plot shows a pronounced tilt angle between 8 and

14 degrees with respect to the membrane surface, where the C-

terminus points away from the membrane.

(PPTX)
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45. Meyers G, Rümenapf T, Ziebuhr J (2011) Viral RNase Involvement in

Strategies of Infection. In: Nicholson AW, editor. Ribonucleases: Springer Berlin

Heidelberg. pp. 135–165.

46. Lazar C, Zitzmann N, Dwek RA, Branza-Nichita N (2003) The pestivirus E(rns)

glycoprotein interacts with E2 in both infected cells and mature virions. Virology
314: 696–705.

47. Cui H, Lyman E, Voth GA (2011) Mechanism of membrane curvature sensing

by amphipathic helix containing proteins. Biophysical journal 100: 1271–1279.

48. Bhatia VK, Madsen KL, Bolinger PY, Kunding A, Hedegard P, et al. (2009)

Amphipathic motifs in BAR domains are essential for membrane curvature
sensing. The EMBO journal 28: 3303–3314.

49. Prinz WA, Hinshaw JE (2009) Membrane-bending proteins. Critical reviews in

biochemistry and molecular biology 44: 278–291.

50. Pednekar D, Wang Y, Fedotova TV, Wojcikiewicz RJ (2011) Clustered

hydrophobic amino acids in amphipathic helices mediate erlin1/2 complex
assembly. Biochemical and biophysical research communications 415: 135–140.

51. Stachowiak JC, Schmid EM, Ryan CJ, Ann HS, Sasaki DY, et al. (2012)

Membrane bending by protein-protein crowding. Nature cell biology 14: 944–
949.

52. Raghuraman H, Chattopadhyay A (2007) Melittin: a membrane-active peptide

with diverse functions. Bioscience reports 27: 189–223.

53. Berneche S, Nina M, Roux B (1998) Molecular dynamics simulation of melittin

in a dimyristoylphosphatidylcholine bilayer membrane. Biophysical journal 75:
1603–1618.

54. Liu L, Westler WM, den Boon JA, Wang X, Diaz A, et al. (2009) An

amphipathic alpha-helix controls multiple roles of brome mosaic virus protein 1a
in RNA replication complex assembly and function. PLoS pathogens 5:

e1000351.

55. Gouttenoire J, Montserret R, Kennel A, Penin F, Moradpour D (2009) An

amphipathic alpha-helix at the C terminus of hepatitis C virus nonstructural

protein 4B mediates membrane association. Journal of virology 83: 11378–
11384.

56. Penin F, Brass V, Appel N, Ramboarina S, Montserret R, et al. (2004) Structure
and function of the membrane anchor domain of hepatitis C virus nonstructural

protein 5A. The Journal of biological chemistry 279: 40835–40843.

57. Moradpour D, Brass V, Penin F (2005) Function follows form: the structure of
the N-terminal domain of HCV NS5A. Hepatology 42: 732–735.

58. Gouttenoire J, Roingeard P, Penin F, Moradpour D (2010) Amphipathic alpha-
helix AH2 is a major determinant for the oligomerization of hepatitis C virus

nonstructural protein 4B. Journal of virology 84: 12529–12537.

59. G O (2010) Protein NMR using paramagnetic ions. Annu Rev Biophys 39: 387–
405.

Novel Type of Membrane Anchor in Pestivirus Erns

PLOS Pathogens | www.plospathogens.org 16 February 2014 | Volume 10 | Issue 2 | e1003973



60. Thiel HJ, Stark R, Weiland E, Rumenapf T, Meyers G (1991) Hog cholera

virus: molecular composition of virions from a pestivirus. Journal of virology 65:
4705–4712.

61. van Gennip HG, Hesselink AT, Moormann RJ, Hulst MM (2005) Dimerization

of glycoprotein E(rns) of classical swine fever virus is not essential for viral
replication and infection. Archives of virology 150: 2271–2286.

62. Langedijk JP, van Veelen PA, Schaaper WM, de Ru AH, Meloen RH, et al.
(2002) A structural model of pestivirus E(rns) based on disulfide bond

connectivity and homology modeling reveals an extremely rare vicinal disulfide.

Journal of virology 76: 10383–10392.
63. Bogomolovas J, Simon B, Sattler M, Stier G (2009) Screening of fusion partners

for high yield expression and purification of bioactive viscotoxins. Protein
expression and purification 64: 16–23.

64. Corpet F (1988) Multiple sequence alignment with hierarchical clustering.
Nucleic acids research 16: 10881–10890.

65. Green MR, Sambrook J (2012) Molecular Cloning: A Laboratory Manual

(Fourth Edition): Cold Spring Harbor Laboratory Press.
66. Sreerama N, Venyaminov SY, Woody RW (2000) Estimation of protein

secondary structure from circular dichroism spectra: inclusion of denatured
proteins with native proteins in the analysis. Analytical biochemistry 287: 243–

251.

67. Johnson WC (1999) Analyzing protein circular dichroism spectra for accurate
secondary structures. Proteins 35: 307–312.

68. van Stokkum IH, Spoelder HJ, Bloemendal M, van Grondelle R, Groen FC
(1990) Estimation of protein secondary structure and error analysis from circular

dichroism spectra. Analytical biochemistry 191: 110–118.
69. Provencher SW, Glockner J (1981) Estimation of globular protein secondary

structure from circular dichroism. Biochemistry 20: 33–37.

70. Sreerama N, Woody RW (1993) A self-consistent method for the analysis of
protein secondary structure from circular dichroism. Analytical biochemistry

209: 32–44.
71. Sreerama N, Venyaminov SY, Woody RW (1999) Estimation of the number of

alpha-helical and beta-strand segments in proteins using circular dichroism

spectroscopy. Protein science : a publication of the Protein Society 8: 370–380.
72. Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein

secondary structure analyses from circular dichroism spectroscopic data. Nucleic
acids research 32: W668–673.

73. Lobley A, Whitmore L, Wallace BA (2002) DICHROWEB: an interactive
website for the analysis of protein secondary structure from circular dichroism

spectra. Bioinformatics 18: 211–212.

74. Windisch D, Hoffmann S, Afonin S, Vollmer S, Benamira S, et al. (2010)

Structural role of the conserved cysteines in the dimerization of the viral

transmembrane oncoprotein E5. Biophysical journal 99: 1764–1772.

75. Blomberg N, Sattler M, Nilges M (1999) 1H, 15N, and 13C resonance

assignment of the PH domain from C. elegans UNC-89. Journal of biomolecular

NMR 15: 269–270.

76. Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, et al.

(1994) Backbone dynamics of a free and phosphopeptide-complexed Src

homology 2 domain studied by 15N NMR relaxation. Biochemistry 33: 5984–

6003.

77. Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by

15N inverse detected heteronuclear NMR spectroscopy: application to

staphylococcal nuclease. Biochemistry 28: 8972–8979.

78. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, et al. (1995) NMRPipe: a

multidimensional spectral processing system based on UNIX pipes. Journal of

biomolecular NMR 6: 277–293.

79. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra

of macromolecules. Methods Mol Biol 278: 313–352.

80. Strunk T, Wolf M, Brieg M, Klenin K, Biewer A, et al. (2012) SIMONA 1.0: an

efficient and versatile framework for stochastic simulations of molecular and

nanoscale systems. Journal of computational chemistry 33: 2602–2613.

81. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern

recognition of hydrogen-bonded and geometrical features. Biopolymers 22:

2577–2637.

82. Berendsen HvdS, D; van Drunen, R. (1995) GROMACS: A message-passing

parallel molecular dynamics implementation. Computer Physics Communica-

tions 91: 43–56.

83. Case DA, Darden TA, Cheatham, III TE, Simmerling CL, Wang J, et al. (2012)

AMBER 12. University of California, San Francisco.
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