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Abstract. The prediction of climate on time scales of years to

decades is attracting the interest of both climate researchers

and stakeholders. The German Ministry for Education and

Research (BMBF) has launched a major research programme

on decadal climate prediction called MiKlip (Mittelfristige

Klimaprognosen, Decadal Climate Prediction) in order to in-

vestigate the prediction potential of global and regional cli-

mate models (RCMs). In this paper we describe a regional

predictive hindcast ensemble, its validation, and the added

value of regional downscaling. Global predictions are ob-

tained from an ensemble of simulations by the MPI-ESM-LR

model (baseline 0 runs), which were downscaled for Europe

using the COSMO-CLM regional model. Decadal hindcasts

were produced for the 5 decades starting in 1961 until 2001.

Observations were taken from the E-OBS data set. To iden-

tify decadal variability and predictability, we removed the

long-term mean, as well as the long-term linear trend from

the data. We split the resulting anomaly time series into two

parts, the first including lead times of 1–5 years, reflecting

the skill which originates mainly from the initialisation, and

the second including lead times from 6–10 years, which are

more related to the representation of low frequency climate

variability and the effects of external forcing. We investigated

temperature averages and precipitation sums for the summer

and winter half-year. Skill assessment was based on correla-

tion coefficient and reliability. We found that regional down-

scaling preserves, but mostly does not improve the skill and

the reliability of the global predictions for summer half-year

temperature anomalies. In contrast, regionalisation improves

global decadal predictions of half-year precipitation sums in

most parts of Europe. The added value results from an in-

creased predictive skill on grid-point basis together with an

improvement of the ensemble spread, i.e. the reliability.

1 Introduction

Interest in longer-term climate predictions in the range

of about 10 years is growing. Such predictions, as op-

posed to projections that do not take into account the in-

fluence of initial conditions, would be very useful for all

branches of public life and for planning purposes, e.g. in

agriculture, energy management, hydrology, and health. In

the sense of seamless predictions (Palmer et al., 2008),

a decadal prediction system would well complement ex-

isting short range systems, as well as seasonal predic-

tions provided by ECMWF (http://www.ecmwf.int/products/

changes/system4/) and CPC (http://www.cpc.ncep.noaa.gov/

products/predictions/90day/), for instance. Decadal climate

predictions present a major scientific challenge. It is not

known yet to what extent useful predictions are possible

in terms of lead time, geographical position, spatial resolu-

tion, meteorological variables, and statistics such as means

or extremes. There is, however, widespread agreement about

the necessary requirements for such predictions to be suc-

cessful: (i) coupled ocean-atmosphere models are likely the

most effective means for making global climate predictions

(and projections); (ii) predictability lies mainly in the slow

components of the climate system, i.e. oceans, sea ice, soil

(Chikamoto et al., 2014), and atmospheric processes such as
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the quasi-biennial oscillation (QBO) (Scaife et al., 2014b)

and the North Atlantic oscillation (NAO) (Scaife et al.,

2014a). Skilful modelling and good initialisation of these

components is essential (Keenlyside et al., 2008); (iii) pre-

dictability must come from the large-scale processes and in-

teractions, such as those of the Atlantic multidecadal oscilla-

tion (AMO), El Niño–Southern Oscillation (ENSO), QBO,

and NAO, which must be captured by the global mod-

els; (iv) assuming the models capture the effects of exter-

nal forcing (especially concentration changes of greenhouse

gases), prediction means, essentially, prediction of long-term

(decadal) internal variability. Since both deterministic and

stochastic processes contribute to internal variability, ensem-

bles of simulations are required. The effects of initialisation

have been discussed by Keenlyside et al. (2008), Pohlmann

et al. (2009), Müller et al. (2012), Smith et al. (2012), García-

Serrano et al. (2013), and Doblas-Reyes et al. (2013).

For regional scale applications, the information provided

by global models is much too coarse, so that regional down-

scaling to resolutions in the order of 10 km will be necessary.

For climate projections and climate assessment, this has been

shown to yield added value (Feldmann et al., 2013; Wagner

et al., 2013; Berg et al., 2013; Trail et al., 2013). Whether

such added value can also be found in regionally downscaled

predictions is presently an open question and one of the aims

of this study. Another open question is what metrics should

be used to measure the skill of predictions, and what met-

rics are useful for applications. Whereas science is inter-

ested in variability and ensemble metrics (Goddard et al.,

2013; Gangstøet al., 2013), practitioners require either cat-

egorical (e.g. above/below climatology) or statistical infor-

mation, such as return values, frequency, and duration of ex-

tremes with high spatial resolution (Dool, 2007; Berg et al.,

2013). The German Ministry for Education and Research

(BMBF) has launched a major programme called MiK-

lip (Mittelfristige Klimaprognosen, Decadal Climate Predic-

tion, http://www.fona-miklip.de/en/index.php) with the aim

to establish an operational decadal climate prediction system

for Europe, based on the MPI-ESM-LR global model sys-

tem (Stevens et al., 2013) and the regional climate models

(RCMs) COSMO-CLM (Doms and Schättler, 2002; Rockel

et al., 2008; Panitz et al., 2013) and REMO (Jacob, 2001) for

regional downscaling. The project consists of five modules

assessing the different aspects of predictability described

above: initialisation, relevant processes, regionalisation, val-

idation, and synthesis. The skill of the predictions will be

assessed from an ensemble of decadal hindcasts, which are

compared to observations mainly of temperature and precip-

itation.

This paper describes the regional predictive hindcast en-

semble and its validation and discusses the added value of

regional downscaling with COSMO-CLM. Section 2 briefly

describes the set-up of the MPI-ESM-LR simulations and

gives an overview over the set-up of the COSMO-CLM sim-

ulations, the construction of the ensemble, and the data used

for validation. Section 3 describes detrending and debiasing,

and the validation framework, including the basic set of met-

rics used. In Sect. 4 we present results and ensemble statistics

for Europe. A summary, conclusions, and a brief outlook are

given in Sect. 5.

2 Experimental design – construction of the regional

decadal ensemble

The aim of MiKlip is to develop a decadal prediction sys-

tem in several development stages. A first phase has been

established with a so called “baseline ensemble” of decadal

predictions. It encompasses the global decadal simulations

performed with the MPI-ESM (Stevens et al., 2013) accord-

ing to the CMIP5 protocol (Hurrell et al., 2011). The atmo-

spheric resolution is T63 (1.86◦) horizontally with 47 ver-

tical levels up to 0.1 hPa in the vertical. The resolution of

the ocean component is 1.5◦ on average. The ocean is ini-

tialised by applying the temperature and salinity anomalies

from an ocean-only simulation forced by NCAR/NCEP re-

analysis, as described in Matei et al. (2012). A global ensem-

ble is generated from perturbations of the initial atmospheric

states with 1-day time lag. The hindcast periods start annu-

ally from 1961 to 2012. The ensemble size is 10 members

every 5 years (starting dates 1 January 1961, 1966, 1971, and

so on) and three members with a starting date 1 January of

the in-between years. More details and first results from the

global ensemble can be found in Müller et al. (2012). This

global baseline ensemble is used as a starting point for the

downscaling exercise described here. For our regional en-

semble, a larger ensemble for a given starting date was pre-

ferred to a higher number of starting dates with a smaller en-

semble, since this is a first step to analyse the spread and reli-

ability of the regional ensemble with respect to the global en-

semble. The number of starting dates will be increased in the

next development stage. On the other hand, a model climatol-

ogy for the whole period 1961–2010 is necessary to calculate

the model anomalies. Therefore, all 10 available realisations

of the MPI-ESM-LR 10 year hindcasts for five starting dates

(1 January of the years 1961, 1971, 1981, 1991, 2001) were

downscaled covering the whole 50 year period. Europe was

selected for the regional downscaling.

Two RCMs – namely COSMO-CLM (Consortium for

small-scale modelling in climate mode, CCLM hereafter,

Doms and Schättler, 2002) and REMO (Jacob, 2001) have

been tested. The common simulation domain is chosen ac-

cording to the CORDEX-EU specifications (Jacob et al.,

2013; Giorgi et al., 2009) with a grid resolution of 0.22◦ and

a rotated pole at −162◦ longitude and 39.25◦ latitude. The

model configuration uses 40 vertical levels. This paper refers

only to the simulations with CCLM; the CCLM and REMO

simulations will be combined in a later project phase. CCLM

is used in the same model version as for CORDEX (cf. Panitz

et al., 2013).
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All initial and boundary conditions are obtained from the

driving model except for the soil. The soil is a compartment

of the earth system with long memory and exhibits a consid-

erable spatial heterogeneity, which cannot be fully captured

by the global climate model. Therefore, CCLM is initialised

using the following strategy. A long-term CCLM reference

simulation covering the whole hindcast period is performed

forced by reanalysis data. This simulation starts in 1959 us-

ing ERA40 (Uppala et al., 2005) as initial and boundary con-

ditions. The first 2 years are used as spin-up. From 1979 un-

til 2010 ERA Interim-forcing (Dee et al., 2011) is applied.

At the transition date (1 January 1979), the atmospheric and

ocean boundary forcing is switched from ERA40 to ERA

Interim, but the soil fields are kept from the ERA40 forced

simulation. Additional tests for the first years after the tran-

sition from ERA40 to ERA Interim showed only small dis-

crepancies: less than 0.2◦ C deviation in the European annual

mean temperature in the first year (1979), and < 0.1◦ C after

1980. Therefore, no special treatment for the transition phase

has been applied. The initial soil conditions for the CCLM

hindcast simulations are then obtained at the respective start-

ing date from this long-term reference simulation. Although

there could be some residual drift if the soil moisture clima-

tology under MPI-ESM-LR forcing differs from that under

ERA analysis forcing, this approach at least provides a rea-

sonable estimation of the soil moisture initial mean state and

anomalies.

To evaluate the model performance, E-OBS v8.0 clima-

tology (Haylock et al., 2008) for near-surface temperature

and precipitation was used. E-OBS is a gridded observational

data set and available in daily resolution from 1 January 1950

until 31 December 2012. It comprises the variables precipita-

tion, temperature, and sea level pressure in Europe at 25 km

over land and is based on ECA&D (European Climate As-

sessment & Dataset; http://eca.knmi.nl/).

3 Data pre-processing and skill metrics

3.1 Data pre-processing

In order to assess the predictive potential of decadal hind-

casts in terms of skill (Goddard et al., 2013) and reliabil-

ity (Corti et al., 2012), the data pre-processing and metrics

to be used must be determined. Different approaches can

be found in the literature: Bellucci et al. (2013) analyses

both anomalies including the long-term trends and anoma-

lies, where the long-term trend has been removed; Goddard

et al. (2013) and Müller et al. (2012) use anomalies including

the long-term trend, but compare initialised forecasts with

uninitialised projections. Following Latif et al. (2010), and

partly Bellucci et al., 2013, we decided to extract decadal

variability from the time series by removing the long-term

means and trends, thus avoiding the problem of interpreting

a mixture of long-term and decadal changes.

Another question is about the best practice of removing

the long-term trend, which could be non-linear. This problem

was assessed by van Oldenborgh et al. (2012), who applied

different trend definitions, such as global CO2 data as the

regressor, modelled and observed global temperatures, and

simple linear regression. They found that the “. . . fluctuations

in the forecasts and observations are so much larger than

the non-linearities in the trend . . . ” that the “. . . exact defi-

nition of the trend does not affect the results”. Finally, they

decided to use the global CO2 data to describe the trend be-

cause of physical reasoning. Furthermore, van Oldenborgh

et al. (2012) used the global data to detrend on grid point ba-

sis and stated that the global trend also described a large part

of the data on the regional scale. In contrast, due to small

trends and large variability, van Oldenborgh et al. (2012) did

not remove the trends for precipitation and rather analysed

the hindcast skill of the un-modified data. However, we are

explicitly interested in regional differences and the different

seasons (summer/winter). Based on climate projections, the

Intergovernmental Panel on Climate Change (IPCC; Chris-

tensen et al., 2007) found: (i) annual temperatures in Europe

are likely to increase more than the global mean, (ii) northern

Europe will experience a larger warming in winter and south-

ern Europe in summer, and (iii) annual precipitation will be

increased in northern Europe, whereas a decrease in south-

ern Europe will be likely observed. Due to the fact that the

response to greenhouse gas forcing depends on the region

and season, we decided to remove the long-term trend on

grid point basis using simple linear regression. This proce-

dure additionally assures zero-mean residuals on grid basis.

We applied the regression to both temperature and precip-

itation. More sophisticated approaches of de-trending exist,

e.g. the Empirical Mode Decomposition (EMD) method (Wu

et al., 2007), and could be a valuable alternative.

To illustrate the problems associated with decadal variabil-

ity, an E-OBS anomaly time series of summer half-year pre-

cipitation sums at a grid point in Germany is shown in Fig. 1.

The detrended and unfiltered anomalies are shown as a

thin line. The summer to summer variability (thin line) is

high, and these high frequency fluctuations are unlikely to be

predictable using decadal model initialisations. On the other

hand, the low pass filtered data (thick line) appear more likely

to be predictable by decadal predictions.

Spatial smoothing of the data is beneficial in skill as-

sessment due to reduction of grid-scale noise (Räisänen and

Ylhäisi, 2011). Goddard et al. (2013) advocate a 5◦ lati-

tude× 5◦ longitude spatial smoothing for precipitation and

a 10◦ latitude× 10◦ longitude smoothing for temperature,

which is not appropriate for the regionalisation purpose.

They also present analyses on different time scales, i.e. year

1, years 2–5, years 6–9 and years 2–9, to discuss the effect

of different lead times and temporal averaging. In contrast

to Goddard et al. (2013), whose data sets start annually, we

are limited to five starting dates in the first regional ensem-

ble generation, as explained above, and, therefore, have a
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Figure 1. Summer half-year observational (E-OBS) precipitation

anomalies at a single grid point in western Germany (circles con-

nected with a thin line). The long term mean and trend have been

removed by a linear regression. A moving average filter of 5 years

is applied to illustrate variability on multi-year time scales (green

line).

much smaller data sample available. As a compromise, we

decided to split the data into two parts, one with lead times

1–5 years and the other with lead times 6–10 years. The first

data set can be considered as representing the skill which

mainly originates from the initialisation, while the second

data set is more related to the representation of slow vary-

ing climate components. Note that for each prediction hori-

zon, lead times are not averaged, as suggested in Goddard

et al. (2013), but are considered together successively, yield-

ing 25 data points for each part of the time series.

Since we are interested in the regional scale, we will anal-

yse the data at their original 25 km resolution without spatial

smoothing. For comparison of the global model with the re-

gional model, we will interpolate the global MPI-ESM-LR

data to the 25 km grid.

To summarise, our pre-processing consists of (i) aggregat-

ing half-year precipitation sums and temperature averages,

(ii) removing long-term means and trends, and (iii) splitting

the data into two parts: the first with lead times 1–5 years and

the second with lead times 6–10 years.

3.2 Metrics

The following metrics will be used to characterise the CCLM

and MPI-ESM-LR ensembles vs. observations and to iden-

tify the potential added value:

– Skill:

To quantify the predictive skill of the CCLM and MPI-

ESM-LR ensembles against observations we will use

the Pearson correlation coefficient ρ applied to anoma-

lies (also known as ACC (anomaly correlation coeffi-

cient); Bellucci et al., 2013). If we denote the anomaly

ensemble mean at a specific location i as mt,i and

the corresponding observed anomalies as ot,i , where

t = 1, . . .,N represents the time index withN = 25 data

points (semi-annual means 1961–2010, 5 lead years),

the correlation coefficient is given by

ρi =
1/N ·

∑
tmt,i · ot,i

σmi · σoi
. (1)

We have estimated the statistical significance of the

correlation coefficient on grid point basis with the test

statistic:

t =
ρ√

(1− ρ2)/Neff

(2)

on a t distribution withNeff (two-sided) degrees of free-

dom. Due to serial autocorrelations the effective number

of degrees of freedom is reduced. Therefore, we account

for autocorrelations according to Wilks (2011):

Neff =N ·
1−φ

1+φ
, (3)

where φ is the autocorrelation at lag 1 of [mt,i · ot,i].

Due to the temporal gaps in the data we used the Dis-

crete Autocorrelation Function developed by Edelson

and Krolik (1988). Although only lag 1 is considered

explicitly, further autocorrelations at higher lags are also

considered implicitly, since the correction approach is

based on autoregressive processes of order 1 (AR[1])

(Thiebaux and Zwiers, 1984; Mieruch et al., 2014),

whose autocorrelation function decreases exponentially,

thus considering also higher lags than 1. For uncorre-

lated data, the statistical significance on the 10% level

for 25 data points is achieved by a correlation coef-

ficient of |ρ| ≥ 0.33. Only in few cases we will ob-

serve correlations fulfilling the significance criterion,

taking into account serial autocorrelations (indicated as

stippling in the respective figures). Mostly we observe

“non-significant” correlations between the model data

and the observations. Such results are difficult to inter-

pret in the sense of statistical hypothesis testing. For in-

stance, von Storch and Zwiers (2013) claim that “. . . a

statistical null hypothesis may not be a well-posed prob-

lem . . . ” and “Even if statistical testing were completely

appropriate, the dependency of the power of statistical

tests on the sample size n remains a limitation on inter-

pretation”. We therefore follow von Storch and Zwiers

(2013) who proposed “. . . a simple descriptive approach

for characterising the information in an ensemble . . . ”.

This means a hypothesis test will be performed, but we

will not completely rely on the significance, especially

because we are dealing with small sample sizes (25) on

grid pixel basis and the power of the test is question-

able. Thus, if we observe weak positive correlations for

Europe between model and observations in 90 % of the

Geosci. Model Dev., 7, 2983–2999, 2014 www.geosci-model-dev.net/7/2983/2014/
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Figure 2. Snapshot from our time series showing the “added value” of downscaling, based on real data.

grid pixels, we believe that there is a certain relation-

ship, even if it is not significant on a single grid pixel

basis.

– Reliability:

Concerning the reliability of an ensemble forecast we

follow Weigel et al. (2009) who define reliability as a

measure of “how consistent the forecast probabilities

are with the relative frequencies of the observed out-

comes” (cf. also Mason, 2008) and give the following

definition:

RELi =

RMSE(µt,i,xt,i)−

√〈
σ 2
i,ens

〉
t

RMSE(µt,i,xt,i)
, (4)

where the index i indicates a single grid point and t is

the time index. According to this definition, and to in-

terpret the results correctly, Weigel et al. (2009) explain

that a normally distributed ensemble is reliable if, and

only if, the root mean square error (RMSE) between

the ensemble mean and the observations is identical to

the time-mean ensemble spread

√〈
σ 2

ens

〉
. Temperatures

easily fulfil the normality assumption and even half-

year precipitation sums are quite normally distributed,

due to the central limit theorem. The ensemble is called

underconfident (REL< 0) if RMSE(µ,x) <

√〈
σ 2

ens

〉
; it

is called overconfident (REL> 0) if RMSE(µ,x) >√〈
σ 2

ens

〉
, and calibrated (REL= 0) if RMSE(µ,x)=√〈

σ 2
ens

〉
. Loosely speaking, reliability measures if the

ensemble spread covers the model errors. Underconfi-

dence is generally considered less harmful than over-

confidence, as long as the forecasts/hindcasts have sim-

ilar predictive skill. To test the reliability on statistical

significance we used a two-sided F-test with the null hy-

pothesis H0 :MSE(µ,x)=
〈
σ 2

ens

〉
, that the mean square

error is similar to the ensemble spread. The test statistic

is given by

F =
MSE(µ,x)〈

σ 2
ens

〉 if MSE(µ,x) >
〈
σ 2

ens

〉
and (5)

F =

〈
σ 2

ens

〉
MSE(µ,x)

if MSE(µ,x) <
〈
σ 2

ens

〉
(6)

and evaluated on an F distribution with NMSE
eff =N

σ
eff

degrees of freedom (based on the original (N −1)= 24

data points) according to Eq. (3). The autocorrelations

at lag 1 are estimated using the Discrete Autocorrela-

tion Function on the time series (for each grid pixel) of

the (µt,i − xt,i)
2 and σ 2

ens,t . It turned out that the null

hypothesis cannot be rejected on the 10 % level as long

as REL lies approximately in the range of ±0.2. Cases

where we have to accept the null hypothesis, i.e. the

model is “reliable”, will be indicated by stippling in the

respective figures.

4 Decadal variability assessment

4.1 An example

We illustrate the idea of added value using a typical time

series from 1961 to 1965 at a grid point (8.125◦ longitude

and 51.325◦ latitude) in Germany shown in the left panel of

Fig. 2.

The black time series in Fig. 2 are the E-OBS summer pre-

cipitation sums, the red data are the MPI-ESM-LR simula-

tions and the blue data are the CCLM hindcasts. Large-scale

decadal predictability is inherited from the global model to

the regional one: if there is no predictability in the global

model, there will be no predictability in the regional model.

We expect that due to the higher resolution and better rep-

resentation of small-scale processes, the regional model will

be closer to the observations. The left panel of Fig. 2 shows

that the regional model uses the already skillful global simu-

lations to move a bit closer to the observation, which results

www.geosci-model-dev.net/7/2983/2014/ Geosci. Model Dev., 7, 2983–2999, 2014
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Figure 3. Left: Summer half-year precipitation sums of E-OBS (lilac) and CCLM ensemble mean (orange) at a location in Germany for lead

years 1–5. The correlation coefficient is 0.39. The grey shaded area depicts the CCLM ensemble spread, i.e. the standard deviation over the

ensemble. Right: Same location but for MPI-ESM-LR ensemble mean (orange). The correlation coefficient is 0.18.

in a slightly better correlation between the regional model

and observations (0.66) than for the global model (0.47).

The ensemble spread of the global model is too small and

is indicated by the reliability of 0.27. Due to the downscal-

ing, the spread is increased (reliability is −0.2) and thus ac-

counts better for the uncertainties. Additionally, the concept

of reliability is schematically shown in the right panel of

Fig. 2. The black line depicts the E-OBS observations and

the MPI-ESM-LR (red) and CCLM (blue) data are repre-

sented by Gaussians, with the respective RMSE as mean and

the ensemble spread as standard deviation. Again, it can be

seen that due to the downscaling, the hindcast moves slightly

closer to the observation and simultaneously the spread is

increased, yielding a higher probability for the E-OBS out-

come.

Thus, the “added value” which we expect from the down-

scaling is an increase of skill together with an improvement

of the ensemble spread. This requirement is not trivial: en-

semble recalibration techniques, such as the CCR (Climate

Conserving Recalibration, Weigel et al., 2009), are able to

increase the ensemble spread, but at the cost of a loss in cor-

relation.

Clear signals of such an “added value” of the downscaling

can be observed for summer precipitation for lead years 1–5,

as shown in Fig. 3.

The left panel of Fig. 3 shows yearly E-OBS data in lilac

and the CCLM ensemble mean anomalies in orange. Addi-

tionally, the CCLM ensemble spread, i.e. the standard devi-

ation over the ensemble for each time step, is shown as the

grey shaded area. Due to the decadal initialisation of CCLM

in 1961, 1971, 1981, 1991, and 2001, we have separated the

decades from each other and show the lead years 1–5. The

correlation coefficient is 0.39. The right panel shows MPI-

ESM-LR data at the same location. The correlation between

MPI-ESM-LR and E-OBS is 0.18. We observe a clear im-

provement of the correlation using CCLM, which arises from

moving closer to the observations and, hence, also better de-

scription of the low frequency variability. Concerning the re-

liability, it can clearly be seen that the CCLM spread (left) is

much larger than the MPI-ESM-LR spread (right) and cov-

ers the observations in most cases. This indicates that sin-

gle CCLM ensemble members show very similar variability

to the observations, whereas single MPI-ESM-LR ensemble

members are overconfident. It appears that, due to the region-

alisation, we are able to increase the predictive skill, i.e. the

correlation and simultaneously the ensemble spread. How-

ever, it is worth to recall that when there is no skill in MPI-

ESM-LR, there is no skill in CCLM.

Another aspect relates to the long-term performance of the

models. The long-term means and trends of our regional sim-

ulations belong (by definition) not to the quantities, which

vary on decadal time scales; hence, they are not the subject of

our assessment of decadal predictability. The long-term per-

formance of the initialised predictions is, in principle, similar

to the long-term performance of the projections (Feldmann

et al., 2013; Wagner et al., 2013; Berg et al., 2013; Trail et al.,

2013).

4.2 Summer precipitation

4.2.1 Skill and reliability: years 1–5

Figure 4 shows the correlation coefficient and the reliability

for Europe of summer precipitation sums for lead years 1–5.

The top left panel of Fig. 4 presents the correlation between

CCLM and E-OBS and the top right panel shows the correla-

tions between MPI-ESM-LR and E-OBS. The bottom panels

of Fig. 4 display the respective reliabilities. The stippling in-

dicates results, significant at the 10 % level.

To judge the decadal predictability, both correlation and

reliability should be evaluated together. In large parts of Eu-

rope we observe an increase in correlation between the re-

gional CCLM model and E-OBS, with respect to the MPI-

ESM-LR. This comprises the British Isles, the Benelux re-

gion, the northern part of France, Germany, Poland, the
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Figure 4. Summer half-year precipitation anomaly sums for lead years 1–5 from 1961 to 2010. The top panels show the correlation coefficient

between E-OBS observations and CCLM (left) and MPI-ESM-LR (right). The bottom panels show the reliability of the CCLM (left) and

MPI-ESM-LR (right) ensembles with respect to the E-OBS observations. Stippling indicates results, significant at the 10 % level.

Figure 5. CCLM summer precipitation for lead years 1–5 in north-

ern Spain at the border to Portugal.

Czech Republic, and Austria, as well as Scandinavia. There

seems to be a small loss in skill over France, the Mediter-

ranean region and more or less skill preservation in east-

ern Europe. However, there are also regions with negative

skill, e.g. in Portugal and northern Spain. A negative anomaly

correlation at the Iberian Peninsula has also been found by

Bellucci et al. (2013) for a multi-model ensemble. Figure 5

shows a time series in northern Spain at the border to Portu-

gal.

Here, a correlation of −0.59 has been computed and it is

clearly seen how the time series evolve in different directions.

The quite strong correlation indicates that opposed dynamics

are probably not by chance, but rather they are systematic.

The reason for such behaviour cannot be explained within

the scope of this study.

In summary, we can say that downscaling is, in general,

beneficial and the CCLM can add value to the global driving

data.

Regarding reliability, shown in the bottom panels of Fig. 4,

the regional model clearly improves the results. Based on a

significance test on a grid basis, it is evident that good val-

ues of the reliability for the CCLM and MPI-ESM-LR hind-

casts lie approximately within ±0.2, which is indicated by

stippling in the respective figures. However, a reliability of

−0.2 is preferable to a reliability of +0.2 (as long as both

have the same skill), since underconfident (negative REL)
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Figure 6. Summer half-year precipitation anomaly sums for lead years 6–10 from 1961 to 2010. The top panels show the correlation

coefficient between E-OBS observations and CCLM (left) and MPI-ESM-LR (right). The bottom panels show the reliability of the CCLM

(left) and MPI-ESM-LR (right) ensembles with respect to the E-OBS observations. Stippling indicates results, significant at the 10 % level.

ensembles better account for uncertainties, and overconfident

ensembles (positive REL) tend toward incorrect predictions.

The MPI-ESM-LR (bottom right panel of Fig. 4) shows too

much overconfidence and cannot reproduce the uncertainties

reliably. Thus we can state an added value of the regionalisa-

tion in the sense explained in Sect. 4.1, namely the increase

of predictive skill and simultaneously improving the ensem-

ble spread.

4.2.2 Skill and reliability: years 6–10

Figure 6 shows the correlation coefficient and the reliability

for Europe of summer precipitation sums for lead years 6–10.

The top left panel of Fig. 6 presents the correlation between

CCLM and E-OBS and the top right panel shows the correla-

tions between MPI-ESM-LR and E-OBS. The bottom panels

of Fig. 6 display the respective reliabilities. The stippling in-

dicates results, significant at the 10 % level.

The decadal predictions of lead years 6-10 are not so

strongly influenced by the initialisation at the beginning of

the decades. Of higher importance is if the model was able to

capture low frequency modes such as NAO or AMO. Inter-

esting cases of positive and negative correlations are found,

where the CCLM in general shows slightly higher correla-

tions, at least the preservation of skill. In eastern Europe for

example we have skill observed in lead years 1–5 and also in

years 6–10. Thus it seems that the initialisation at the begin-

ning of the decade is beneficial and also longer term climate

signals could be reproduced. In Central Europe, a good skill

in lead years 1–5 turns into a relative strong anti-correlation

in lead years 6–10. Here we speculate that the initialisation

is advantageous, but after about 5 years the model (MPI-

ESM-LR) undergoes a kind of phase shift. Contrastingly, in

South Europe (especially Iberian Peninsula) the lead years

1–5 showed negative correlations and for lead years 6–10

we have observed a positive skill. Thus, it seems that the

model initially moves into the wrong (phase shifted) direc-

tion and after about 5 years it is able to swing into the cor-

rect phase of low frequency climate signals. As mentioned

above, the reason for such a behaviour cannot be explained

within this study. One possible cause could be explained by

a beat, whereas the model exhibits a slightly different fre-

quency than the real frequency of e.g. NAO or AMO.

The reliability, shown in Fig. 6 (bottom panels) is much

improved by the downscaling and together with the skill im-
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Figure 7. Winter half-year precipitation anomaly sums for lead years 1–5 from 1961 to 2010. The top panels show the correlation coefficient

between E-OBS observations and CCLM (left) and MPI-ESM-LR (right). The bottom panels show the reliability of the CCLM (left) and

MPI-ESM-LR (right) ensembles with respect to the E-OBS observations. Stippling indicates results, significant at the 10 % level.

provement (preservation) constitutes again the added value

of dynamical downscaling global decadal predictions.

4.3 Winter precipitation

4.3.1 Skill and reliability: years 1-5

Figure 7 shows the correlation coefficient and the reliability

for Europe of winter precipitation sums for lead years 1–5.

The top left panel of Fig. 7 presents the correlation between

CCLM and E-OBS and the top right panel shows the correla-

tions between MPI-ESM-LR and E-OBS. The bottom panels

of Fig. 7 display the respective reliabilities. The stippling in-

dicates results, significant at the 10 % level.

Positive predictive skill is in principle only found in

southern Europe, i.e. Iberian Peninsula, Italy and South-East

Europe. Similar to the results from the analysis of sum-

mer precipitation, downscaling slightly increases the corre-

lation, e.g. at the Iberian Peninsula. This amplification pro-

cess works also for negative correlations. For instance in

central Germany, the MPI-ESM-LR yields weak negative

correlations. The regional model amplifies the correlations

and achieves even the 10 % significance level. As discussed

above the reason for strong negative correlations is up to now

unclear.

The reliability of the regional model is mainly improved

compared to the global model, but slightly to underconfident

in parts of southern Europe.

4.3.2 Skill and reliability: years 6–10

Figure 8 shows the correlation coefficient and the reliability

for Europe of winter precipitation sums for lead years 6–10.

The top left panel of Fig. 8 presents the correlation between

CCLM and E-OBS and the top right panel shows the correla-

tions between MPI-ESM-LR and E-OBS. The bottom panels

of Fig. 8 display the respective reliabilities. The stippling in-

dicates results, significant at the 10 % level.

The results for winter precipitation for lead years 6–10 are

very similar to the finding at the beginning of the decade.

However, the correlations are slightly weaker in the second

half of the decade and the reliability is comparable. Again

downscaling improves the reliability especially in southern

Europe.
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Figure 8. Winter half-year precipitation anomaly sums for lead years 6–10 from 1961 to 2010. The top panels show the correlation coefficient

between E-OBS observations and CCLM (left) and MPI-ESM-LR (right). The bottom panels show the reliability of the CCLM (left) and

MPI-ESM-LR (right) ensembles with respect to the E-OBS observations. Stippling indicates results, significant at the 10 % level.

4.4 Summer temperatures

4.4.1 Skill and reliability: years 1-5

Figure 9 shows the correlation coefficient and the reliability

for Europe of summer temperature anomaly means for lead

years 1–5. The top left panel of Fig. 9 presents the correlation

between CCLM and E-OBS and the top right panel shows the

correlations between MPI-ESM-LR and E-OBS. The bottom

panels of Fig. 9 display the respective reliabilities. The stip-

pling indicates results, significant at the 10 % level.

Most regions of Europe show similar positive correlations

in both the MPI-ESM-LR and CCLM models. The corre-

lations are mostly non-significant at the 10 % level on grid

pixel basis. However, according to von Storch and Zwiers

(2013), hypothesis testing on model ensembles has to be

interpreted carefully. The standard interpretation of non-

significant correlations would be that the observed correla-

tions are more or less found by chance. Inspecting the pos-

itive correlations covering almost all of Europe (top panels

of Fig. 9), it is hard to believe that such patterns are a fortu-

nate coincidence. Thus, in spite of the weak correlations, the

small sample population on grid basis, as well as serial and

spatial autocorrelations, there seems to be some decadal pre-

dictive skill in the model. Although evidence for this state-

ment is not provided, a look into a typical time series may

yield more confidence. Figure 10 shows CCLM summer tem-

perature anomalies from a grid point near Exeter in southern

England. The left panel shows the lead times of 1–5 years

and typical weak correlations are found.

The right panel depicts only the lead times of years 1–

2, where it can be seen that in 4 out of 5 decades (1961,

1971, 1991, 2001), the CCLM model evolves in the cor-

rect direction during the first 2 years. It seems plausible that

we observe higher skill at the very beginning of the decade,

shortly after the initialisation. Despite non-significant results,

according to the hypothesis test, there appears to be predic-

tive skill in the models. However, due to the small sample

size, a definitive conclusion cannot be made.

Regarding the potential added value of the regional model,

downscaling appears not to be beneficial for summer tem-

perature anomalies. This is likely due to half-year tempera-

ture anomalies that cannot be attributed to a small-scale pro-

cess and, hence, regionalisation only preserves the skill, and

does not improve it. A half-year temperature anomaly in a
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Figure 9. Summer half-year temperature anomaly means for lead years 1–5 from 1961 to 2010. The top panels show the correlation coeffi-

cient between E-OBS observations and CCLM (left) and MPI-ESM-LR (right). The bottom panels show the reliability of the CCLM (left)

and MPI-ESM-LR (right) ensembles with respect to the E-OBS observations. Stippling indicates results, significant at the 10 % level.

Figure 10. Summer temperatures at a grid point near Exeter in South England. Left: Lead years 1–5. Right: Lead years 1–2.

200× 200 km box does not differ distinctively to a tempera-

ture anomaly in a 25× 25 km box.

In addition, the reliability patterns (bottom panels of

Fig. 9) show similarities between MPI-ESM-LR and CCLM

with values within ±0.2. This is also indicated by the

stippling denoting no significant difference between the

MSE(model, observations) and the model spread on the 10 %

level.

4.4.2 Skill and reliability: years 6–10

Figure 11 shows the correlation coefficient and the reliability

for Europe of summer temperature anomalies for lead years

6–10. The top left panel of Fig. 11 presents the correlation

between CCLM and E-OBS and the top right panel shows

the correlations between MPI-ESM-LR and E-OBS. The bot-
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Figure 11. Summer half-year temperature anomaly means for lead years 6–10 from 1961 to 2010. The top panels show the correlation

coefficient between E-OBS observations and CCLM (left) and MPI-ESM-LR (right). The bottom panels show the reliability of the CCLM

(left) and MPI-ESM-LR (right) ensembles with respect to the E-OBS observations. Stippling indicates results, significant at the 10 % level.

Figure 12. Summer temperature anomalies in South-East Poland. Shown are lead years 6–10.

tom panels of Fig. 11 display the respective reliabilities. The

stippling indicates results, significant at the 10 % level.

As can be seen, there is a large similarity between the cor-

relations of the global and the regional model, thus the pre-

dictive skill could be preserved but not improved. A strong

significant (on grid pixel basis) skill is observed in eastern

Europe. Figure 12 shows time series from South-East Poland.

It can be seen that there is a left residual trend in the E-

OBS anomalies (lilac). The period 1961–1970 was recorded

with higher temperatures than normal, and therefore poten-

tially influence the linear trend estimations strongly during

the 1961–2010 time period.

However, this residual trend accounts only for a minor part

of the observed predictive skill. This is demonstrated well in

the right panel of Fig. 12, which shows the MPI-ESM-LR

results. The residual trend is minimal, but in most decades
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Figure 13. Winter half-year temperature anomaly means for lead years 1–5 from 1961 to 2010. The top panels show the correlation coefficient

between E-OBS observations and CCLM (left) and MPI-ESM-LR (right). The bottom panels show the reliability of the CCLM (left) and

MPI-ESM-LR (right) ensembles with respect to the E-OBS observations. Stippling indicates results, significant at the 10 % level.

the year-to-year variations are reproduced with weaker am-

plitude due to the ensemble mean.

The reliabilities of the MPI-ESM-LR and the CCLM are

comparable in a satisfactory region within ±0.2.

4.5 Winter temperatures

4.5.1 Skill and reliability: years 1–5

Figure 13 shows the correlation coefficient and the reliabil-

ity for Europe of winter temperature anomaly means for lead

years 1–5. The top left panel of Fig. 13 presents the corre-

lation between CCLM and E-OBS and the top right panel

shows the correlations between MPI-ESM-LR and E-OBS.

The bottom panels of Fig. 13 display the respective reliabil-

ities. The stippling indicates results, significant at the 10 %

level.

Again, the correlation pattern for winter temperature

anomalies of MPI-ESM-LR and CCLM are very similar.

Nevertheless, we found regions where the skill is slightly

larger for CCLM, e.g. at the northern coast of Norway and

where it is slightly smaller, e.g. in South-East Europe. In

general, we have mostly a preservation but no improvement

of skill. The correlations are generally weak, but stronger

in the south in contrast to the summer temperatures, where

the correlations are larger in the north. The reliability is also

comparable between MPI-ESM-LR and CCLM, but it ap-

pears downscaling worsens the reliability slightly. The rea-

son is not a smaller spread, but a slightly larger RMSE, which

yields slightly more overconfident results.

4.5.2 Skill and reliability: years 6–10

Figure 14 shows the correlation coefficient and the reliability

for Europe of winter temperature anomalies for lead years 6–

10. The top left panel of Fig. 14 presents the correlation be-

tween CCLM and E-OBS and the top right panel shows the

correlations between MPI-ESM-LR and E-OBS. The bottom

panels of Fig. 14 display the respective reliabilities. The stip-

pling indicates results, significant at the 10 % level.

The correlations of winter temperatures of lead years 6–10

are stronger than for lead years 1–5, which seems to be coun-

terintuitive. A possible cause could be, as speculated above,

the global model generates a slightly different low frequency

variability than the observations, resulting in being slightly

out of phase at the beginning of the decade and later within
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Figure 14. Winter half-year temperature anomaly means for lead years 6–10 from 1961 to 2010. The top panels show the correlation

coefficient between E-OBS observations and CCLM (left) and MPI-ESM-LR (right). The bottom panels show the reliability of the CCLM

(left) and MPI-ESM-LR (right) ensembles with respect to the E-OBS observations. Stippling indicates results, significant at the 10 % level.

phase at the end of the decade. However, definitive conclu-

sions are not within the scope of this study.

With regards to reliability, both models are slightly over-

confident. A small loss in correlation of the CCLM yields to

a slightly larger RMSE for CCLM and to a small increase of

the values of the reliability.

5 Summary and conclusions

In this study we have analysed regional climate predictions

downscaled from global decadal hindcasts using a regional

model. We generated a 10 member ensemble of climate

simulations (1961–2010) with the regional model CCLM at

25 km resolution, driven by decadal predictions of the global

model MPI-ESM-LR. These model runs have been initialised

every 10 years from 1961 to 2001. Decadal variability of

detrended anomalies of summer and winter precipitation, as

well as of summer and winter temperatures, in Europe were

compared with observations and results of the global model

in order to identify a possible added value of regionalisation.

We define the added value of the regional model as an in-

crease of predictive skill and a simultaneous improvement of

the reliability. To quantify the predictability we used the cor-

relation coefficient to measure the skill and the RMSE and

ensemble spread to characterise reliability (cf. Sect. 3.2).

Predictive skill, covering almost all of Europe, has been

found for summer temperature anomalies at lead years 1–

5. This skill has been induced by the global MPI-ESM-LR

model and could be preserved, but mostly not improved, by

regionalisation. This could be due to the well-known fact that

spatial patterns of mean temperature anomalies are quite ho-

mogeneous and, therefore, are already well captured at the

resolution of the global model so there is little room for im-

provement due to downscaling. The reliability of summer

temperature anomalies is good for both models, which is a

typical feature of an ensemble with a low signal-to-noise ra-

tio. A possible option to increase the skill could be an in-

crease in the ensemble size (Scaife et al., 2014a).

This situation is similar for lead years 6–10. Here, a good

skill is observed in eastern Europe, Italy, and the Iberian

Peninsula, which clearly originates in the MPI-ESM-LR. The

reason for this skill is likely due to low frequency processes

associated with large-scale phenomena, such as NAO and

AMO, captured by the global model.
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The reliability is quite satisfactory for both models and

the predictability could be preserved but not improved by the

downscaling due to reasons already mentioned above.

The predictive skill for European temperatures in winter is,

in general, smaller than in summer. However, the correlation

at lead years 6–10 is better than at lead years 1–5, which is

counterintuitive. As speculated, slightly different representa-

tions of low frequency variability between the global model

and observations could be a possible explanation.

A clear added value could be achieved by downscaling

half-year precipitation sums with the regional model CCLM.

Especially in summer, the regionalisation yields an increase

in the predictive skill, while simultaneously improving the

reliability. This is true for lead years 1–5 and lead years 6–

10. The reason for the added value is the better represen-

tation of small-scale precipitation features by the regional

model. However, the precipitation predictive skill over Eu-

rope shows a complex pattern, where positive and negative

correlations have been found. The negative correlations orig-

inate in the global model and have been transferred to the

regional scale. We speculated on several possible explana-

tions, which could be the basis for further analysis, such as

the beat frequencies and a possible problem of the zonal rep-

resentation in MPI-ESM-LR.

The advantage of regionalisation for winter precipitation

is slightly smaller. The positive predictive skill seems to be

constrained to southern Europe, where an increase in skill is

observed at the Iberian Peninsula for lead years 1–5. The pre-

dictive skill for lead years 6–10 is very weak for both models.

The reliability of the hindcasts is improved by the downscal-

ing with CCLM for all lead years and especially advanta-

geous in mountainous regions.

Thus, dynamical downscaling is a valuable approach to

improve decadal predictions of precipitation on finer spatial

scales. The reason for the improvement of the predictability

of precipitation is most likely that summer precipitation is

a small-scale process and the dynamics of precipitation fea-

tures, such as convection, are much better represented by the

regional model as compared to the global model.

We have presented a first analysis of the possibilities and

limitations of regional decadal predictions for Europe and

shown that added value in terms of the metrics used could be

achieved by regionalisation. However, a range of open ques-

tions remain: e.g. the negative correlations with observations

in Central Europe; which metrics to use, e.g. terciles, contin-

gency tables; the size of the region under study; which statis-

tics to consider: practitioners might be more interested in the

prediction of extremes like heavy precipitation, droughts, or

heat waves. We will consider the prediction of extremes in

a further study and expect added value through regionali-

sation. We also plan to study the effect of finer resolution

(below 10km). Further development stages within the MiK-

lip project include the production and finalisation of an im-

proved regional ensemble system based on a new ocean ini-

tialisation of the global model (e.g. Matei et al., 2012). Fur-

ther opportunities for enhanced skill arise from combining

the CCLM and REMO results to an extended multi-RCM

ensemble. Additionally, an ensemble with resolution 0.44◦

has been produced employing annual starting dates to anal-

yse lead time dependencies.
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