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Abstract
The Quadrature Method of Moments (QMoM) is applied to a one-dimensional test case for sedimentation of
raindrops. Comparison of the results with a reference spectral method exhibits discrepancies (“step patterns”)
that must be considered as modeling artifacts. As the QMoM has been demonstrated to be effective and
accurate in various contexts, the origin of these artifacts is investigated and found to be related to the transport
of the quadrature abscissas. Further test cases are considered to examine the influence of different initial
conditions on the development of the modeling artifacts. The study shows that these artifacts are inherent to
the application of QMoM in pure sedimentation context.
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1 Introduction

The spatio-temporal development of particulate matter
in terms of size distributions is generally described by
a balance equation comprising all relevant processes
and mechanisms as transport, phase changes as well as
nucleation, mutual collisions, aggregation, breakup and
more. This equation, having its roots in the well-known
Boltzmann transport theorem (Pitaevskii and Lifshitz,
1981), is named in technical applications the popula-
tion balance equation (PBE) (Ramkrishna, 2000) and
is known in meteorological issues as spectral balance
equation (SBE) (Pruppacher and Klett, 1997). This
equation, which in the following will be referred to as
PBE and SBE synonymously, is strictly non-linear and
contains – if collisional interactions (in the widest sense)
are considered – integral terms with mostly complex in-
tegrands, as well as integral limits, such that its solution
is in general only possible numerically.

The most detailed method to numerically solve PBE
or SBE, respectively, is to discretize the size range of
particles and consequently its corresponding particle
size distribution (PSD) function in large a number of
bins, for which the rate equations are integrated in space
and time. But note that in cloud microphysical appli-
cations the size range of particles (cloud droplets, rain-
drops, ice crystals, graupel, hail) span several orders of
magnitudes, such that also the numerical solution can
be very complex and costly. Nevertheless, several at-
tempts were successful to numerically compute the so-
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lution of SBE reliably in great detail and with great ac-
curacy and have been applied in so-called cloud mod-
els, see e.g. Berry and Reinhardt (1974); Khain and
Sednev (1996). The drawback of this method is that –
just because of the high costs – its application in, e.g.,
numerical weather prediction (NWP) models for simu-
lating the evolution of clouds and precipitation is out of
scope.

Therefore meteorologists have developed methods to
overcome this drawback in that not the particle size dis-
tributions have been predicted, but only some moments
of them (see below). And at this point the idea of the
priority program METSTRÖM (meteorology and fluid
mechanics) sponsored by the German Science Founda-
tion (Deutsche Forschungsgemeinschaft, DFG) comes
into play, namely to bring together scientists from sev-
eral disciplines dealing with same problems. Problems
of the kind described above are also faced by hydro-
dynamicists and engineers as, e.g., polydisperse flows
in multi-phase reactors, spray vaporization, combustion
processes or solid particle sedimentation. The common
problem that is tackled in this paper by hydrodynami-
cists and meteorologists in a joint effort is the numerical
calculation of a single process captured by the PBE: pure
gravitational sedimentation of differently sized cloud
droplets and raindrops resulting eventually in a rain
event at ground.

It should be anticipated that also in calculating this
simple mechanism a number of problems arises. But be-
fore we start with the investigation the different meth-
ods applied by hydrodynamicists and meteorologists are
briefly presented. Both have developed and applied what
is called the Method of Moments (MoM).

© 2014 The authors
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1. For many years meteorologists have circumvented
the problem of the expensive detailed solution of
SBE by deriving rate equations for certain moments
of the PSD as for example see Kessler (1969);
Milbrandt and Yau (2005); Seifert and Beheng
(2006). These moments, whose definitions are given
in section 2, are the number density, the mass density
(mostly named liquid water content) and, if a third
moment is desirable or necessary, the radar reflectiv-
ity. The choice of these moments is guided by the
consideration of the possibility to compare their cal-
culated values with observations/measurements. A
set of prognostic equations for these moments in in-
tegral form can in general be formulated. Their solu-
tion, however, usually cannot be done without sev-
eral simplifications and assumptions, which render
this procedure problematic. Indeed, a severe draw-
back is the closure problem, as integration of SBE
sometimes requires moments, whose degree is dif-
ferent from those for which equations are available.
This problem can be solved by the assumption of
specific master functions for the PSD; hence we also
speak of Presumed function Method of Moments or
PMoM.
The application of such PMoMs in NWP models
reduces the computational costs largely such that
these equations are already used in test versions of
operational weather forecast systems (Seifert et al.,
2012).

2. Simultaneously hydrodynamicists have developed
other types of moment methods. The number of mo-
ments to be considered is variable, typically at most
six moments are considered. The solution method
Quadrature Method of Moments or QMoM (Mc-
Graw, 1997) is based on the application of spe-
cific numerical quadrature formulae as, e.g. Gaus-
sian, with which the moments’ integrals are ap-
proximated. It is interesting to note that while this
method has been successfully applied to various
fields (e.g. Acher et al., 2013), the first idea on
QMoM stemmed from a problem of aerosol dynam-
ics, a special part of cloud microphysics. A severe
challenge of QMoM is - besides also suffering from
a closure problem – that some conditions (see below
in subsection 2.2) can occasionally lead to the un-
realizability of the set of moments, i.e. for a set of
moments there exists no PSD (cf. Hankel-Hadamard
positivity, Handy et al., 1988). A further develop-
ment of QMoM is the Direct Quadrature Method of
Moments (DQMoM) by Marchisio and Fox (2005),
which circumvents the unrealizability problem. The
attractive feature of both methods, also for meteoro-
logical applications, is ostensibly their low computa-
tional demand with simultaneous accuracy, which is
checked here. Further details on the MoMs are given
in section 2.2 and 2.3 of the main text.

The topic of this study is to assess the ability of
two moments methods to accurately describe the pure

sedimentation of cloud droplet and raindrops in a one-
dimensional geometry, i.e. with a so-called rainshaft
model. The motivation comes from results of a com-
panion paper by Ziemer et al. (2014), wherein the same
setup has been chosen as in this study and step pat-
terns in the numerical results of the vertical profiles of
moments of cloud parameters have been observed. This
feature can be traced back to the application of various
MoMs methods, as the usage of the detailed calculation
by means of a numerical solution of the spectral balance
kinetic equation (SBE) does not show this artifact.

The paper is organized as follows. In section 2 the
basic equations, especially the sedimentation equation
in one-dimension and the quadrature methods are pre-
sented. First applications are shown in section 3 com-
paring the results of the moments methods with that of
considering the detailed solution of SBE for the one-
dimensional geometry, i.e. the rainshaft. These results
are supplemented by an in-depth discussion of artifacts
appearing. In order to explain the artifacts, in section 4
different influencing factors are investigated and thor-
oughly discussed: the influences of the initial shape of
the PSD, of the non-homogeneous abscissas and of the
spatial discontinuities. Section 5 concludes this study.

2 The model and the Quadrature
Methods of Moments

2.1 Basic equations

In this article, we will concentrate on the single process
of sedimentation of drops and use the same set up as in
the companion paper by Ziemer et al. (2014). The PBE
for the PSD fD reduces for the spatially one-dimensional
pure sedimentation problem to

∂ fD(D,z, t)
∂ t

− ∂VT (D,z, t) fD(D,z, t)
∂ z

= 0, (2.1)

where D is the drop diameter, t is the time, z is the height,
and VT is the downward directed fall velocity; we use
for VT the model of a drop falling in quescient air under
the balance of forces. VT increases with drop size, and a
widely used analytic fit VT (D) is (see Kessler, 1969):

VT (D) = α
(

D
Dv

)β
, (2.2)

where α , Dv and β are constants (α = 13ms−1, β =
0.5, Dv = 10−2 m). The size-dependency of the particle
velocity is known as poly-celerity (Dems et al., 2012).

Defining the moment of order k as

M(k)(z, t) =
∫ ∞

D=0
Dk fD(D,z, t)dD, (2.3)

multiplication of the PBE by Dk (k ≥ 0), and integration
over the diameter range, yields the Moment Transport



Meteorol. Z., 23, 2014 G. Jasor et al.: Modeling artifacts in the simulation of the sedimentation of raindrops with a QMoM 371

Equation (MTE):

∂M(k)(z, t)
∂ t

− ∂U (k)(z, t)M(k)(z, t)
∂ z

= 0. (2.4)

Here U (k) is the velocity with which the k-th moment is
transported. The following equation gives the definition
of U (k) and its dependency on the moments, when using
equation (2.2):

U (k)(z, t) =
1

M(k)(z, t)

∫ +∞

0
VT (D)Dk fD(D,z, t)dD

=
α

Dv
β

M(k+β)(z, t)

M(k)(z, t)
. (2.5)

Note that, for the sake of brevity, we will not explicitly
indicate the height and time dependency in the follow-
ing.

Equation (2.5) makes explicit a so-called closure
problem, which does not arise in the spectral formu-
lation. This closure problem originates from the poly-
celerity (size-dependency). Indeed, all moment veloci-
ties U (k) would be equal to VT , if the latter were in-
dependent of the diameter. On the other hand, if ve-
locity depends on the diameter (as it is the case here),
that is VT = VT (D), each moment is transported with a
different velocity. Now, when only moments are con-
sidered, we distinguish between those moments M(k),
which are transported according to equation (2.4) and
are called “prognostic”, and any other moments (which
are called “diagnostic”), such as e.g., M(k+β). Informa-
tion is required about this moment to evaluate U (k) and
thus to forecast M(k) from equation (2.4). Several ap-
proaches exist as closure assumption. As a first example
we mention the widely used Presumed function Method
of Moments (PMoM), which basically consists in as-
suming a given analytical form for the PSD, which al-
lows for calculating analytically any unknown moments
(Clark, 1974; Beheng, 1994; Seifert and Beheng,
2006; Ziemer et al., 2014; Dems et al., 2012). Further
examples, and these will be used here, are the Quadra-
ture Method of Moments (QMoM) and its derived ver-
sion, the Direct Quadrature Method of Moments (DQ-
MoM), which achieve closure thanks to the Gaussian
Quadrature. Note that, in case equation (2.1) has source
terms (to model population dynamics as breakup or co-
alescence for example), closure has to be achieved also
for resulting source terms in the MTE.

2.2 QMoM

The Quadrature Method of Moments (QMoM), as in-
troduced by McGraw (1997), is based on the Gaussian
quadrature. The Nq-points Gaussian quadrature consists
in an approximation of the integral of the product of
a distribution function f (x) with internal coordinate x
and an arbitrary function ϕ(x) (provided this integral is
well defined) by a weighted sum of evaluations of this

ϕ-function at given values:

∫ ∞

0
ϕ(x) f (x)dx �

Nq

∑
i=1

ϕ(ξi)wi, (2.6)

The approximation is exact for polynomial functions
of degree 2Nq − 1 or less. The so-called weights are
denoted by wi. The so-called abscissas ξi are the values
of x at which the function is evaluated and are denoted
so that ξ1 < ξ2 < ξ3 < .. . .

Applying the Gaussian quadrature to M(k), we obtain

M(k) =
Nq

∑
i=1

ξi
kwi (2.7)

and can thus solve the closure problem resulting from
poly-celerity, as we are able to estimate M(k+β) as:

M(k+β) =
Nq

∑
i=1

ξi
k+β wi. (2.8)

Note that for the integrated form of the PBE, any term
involving an integral over the diameter range and involv-
ing the PSD, can be estimated the same way (in particu-
lar potential source terms).

QMoM can be seen as the use of Nq δ -functions
(Dirac) to represent the PSD with a coarsely discretized
internal coordinate D, whose nodes would correspond
to the abscissas. Despite the coarse resolution, QMoM
can achieve high accuracy, because it places the abscis-
sas and calculates the respective weights in an optimal
manner in order to fit the moment series. See for illus-
tration Fig. 1, which shows in the left part several PSDs
fD(D) and in the right part a selected PSD along with
the abscissas ξi and weights wi for Nq = 3.

The main issue is then to be able to determine the cor-
responding abscissas and weights. According to Gor-
don (1968), this can be done by using the so-called
Product-Difference Algorithm (PDA). Out of the first
2Nq moments (M(0) to M(2Nq−1)), one can determine Nq
abscissas and Nq weights by constructing a symmetric
matrix and solving an eigenvalue problem, where the ab-
scissas are the eigenvalues of this matrix and the weights
proportional to the first component of the corresponding
eigenvectors. Some alternatives to the PDA have been
considered to determine the abscissas and weights (for
example in John and Thein, 2012), but we will not dis-
cuss them here.

QMoM has the advantage of dealing with a system
of 2Nq equations, whereas a spectral formulation often
involves more than hundred classes in order to guaran-
tee a smooth resolution of the PSD and independence
of discretization. It has been demonstrated (Marchisio
et al., 2003) that choosing Nq to be equal to 3 provides
good results and a good tradeoff to computational costs,
which means that we will need to transport the first
six moments of the PSD. The computational costs are
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Figure 1: Illustration of drop size distributions (PSD) and the concept of QMOM. Left: Influence of the variation of the shape parameter γ
of a Γ-Distribution from equation (3.1) for fixed number density N and liquid water content L. Right: Relationship between Γ-Distribution
with γ = 5 and the abscissas ξi weights wi, that are the heights of the bars, according to QMOM.

thereby drastically reduced. Moreover, no assumption is
necessary for the analytical form of the PSD. Notwith-
standing those advantages, an important feature (which
is common to other MoMs) is that the transport of the
moments possibly leads to the well known problem of
moments (also “unrealizability of moments”), when no
PSD can be found that matches a given set of moments
(Curto and Fialkow, 1991; Shohat and Tamarkin,
1943). This issue can make it impossible to carry on the
simulation (cf. Wright Jr, 2007). This problem is even
of greater importance if one considers that the PDA is
prone to be sensitive to numerical discrepancies (John
and Thein, 2012). Some criteria exist in order to assess
the realizability of a set of moments (especially the so-
called Hankel-Hadamard Determinants, Handy et al.,
1988). Fortunately, the criterion of realizability is always
fulfilled in our simulations. The diligent reader should
note that in a general context, unrealizability events can
be enhanced by a high number of prognostic moments
(more degrees of freedom for the set of moments), by
effects on the population dynamics such as coalescence
or breakup, or by different transport velocities for the
moments due to poly-celerity (size-dependency).

In the present case of pure non-linear advection equa-
tions, the resolution is quite straightforward (e.g. with a
first order upwind scheme). Hence, our test cases should
not a priori fall in the range of problematic configura-
tions.

2.3 DQMoM

In order to circumvent the underlying limits of the
QMoM (in particular unrealizability of the set of mo-
ments and the use of the PDA) an alternative approach
has been proposed by Marchisio and Fox (2005):
the Direct Quadrature Method of Moments (DQMoM).
While for the QMoM the abscissas and weights are ob-
tained from the transported moments, in this approach,
the basic idea is to transport directly the abscissas and

the weights (and thus eventually reconstruct the mo-
ments from them). As the derivation of the transport
equations for the abscissas and the weights is based on
the MTE, the two methods are essentially equivalent.
The transport equations for abscissas and weights are
given by:

∂wi

∂ t
− ∂VT (ξi)wi

∂ z
= 0 (2.9a)

∂ζi

∂ t
− ∂VT (ξi)ζi

∂ z
= 0 (2.9b)

with ζi = ξiwi, i ∈ {1,2,3} and VT (ξi) given by equa-
tion (2.2) as:

VT (ξi) = α
(

ξi

Dv

)β
. (2.10)

Each weight wi and weighted abscissa ζi is therefore
transported with a characteristic velocity VT (ξi), which
is the terminal fall velocity of a particle of diame-
ter ξi. Further details on the derivation of transport equa-
tions for the weights and the abscissas (which directly
stems from Marchisio and Fox, 2005), are given in ap-
pendix A.

The same closure approach as in QMoM (Gaussian
quadrature) is then applied to estimate the diagnosed
values.

Compared to QMoM, we obtain a set of equations
of similar complexity for the pure sedimentation con-
text. Nevertheless in a more general scope, the DQMoM
involves additional source terms, which have to be de-
termined through the resolution of a linear system. This
linear system can be seen as the counterpart of the PDA
in the QMoM approach and might not be straightforward
to derive and solve in a general scope. These constraints
should guide one in the choice of the preferred approach.
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3 Reference study case: one
dimensional pure sedimentation of
water drops

3.1 Presentation of the reference study case

In this section, we present the reference test case, which
makes explicit the main issue of this article, that is the
appearance of modeling artifacts in the simulation of
sedimentation. The model consists in a one dimensional
configuration with an initial homogeneous cloud con-
fined between two heights (namely 8250 m and 9750 m).
Only sedimentation is taken as relevant for the evolu-
tion of drop distributions. The geometric configuration
is similar to the so-called rainshaft model (Seifert and
Beheng, 2001), but without coagulation.

We consider the space domain to be 10000 m high
(discretized with Np = 1601 points and intervals Δz =
6.25m apart); the large domain is chosen not because
of cloud physical relevance, but by reason of illustration
of the evolution of the relevant properties in time. The
numerical solution of the transport equations is done by
using an explicit first-order upwind scheme (Patankar,
1980), with a time step Δt = 0.2s (meaning CFL num-
bers less than 0.3 for all methods). The PSD is initialized
everywhere with a Γ-distribution such that:

fD(D,z,0) = n0
Dγ−1e−D/λ

Γ(γ)λ γ (3.1)

where n0, γ and λ are the given parameters of the Γ-
distribution (n0 = 1.2×104 m−3, γ = 1 and λ = 2.367×
10−4 m). Those values depict a liquid water content L
of 5 × 10−4 kgm−3, a total number density N = n0 of
1.2×104 m−3 and are the values considered in one of the
test cases presented in the companion paper by Ziemer
et al. (2014). Further information on the setup can be
found in Mukhopadhyay et al. (2012); Ziemer and
Wacker (2012); Ziemer et al. (2014).

One important issue is the initialization of the pop-
ulation outside the cloud. Indeed, this region is void of
particles, but the moments (and therefore the PSD) can-
not be taken exactly equal to zero to prevent MTE of
the form “0 = 0” in the solution algorithm. Since there
is no physical guideline for the choice of those values
outside the cloud, we initialize the fields in a straight-
forward way and assume the same distribution as inside
the cloud, but reducing the parameter n0 (actually M(0))
in equation (3.1) by multiplication with a scale factor
(10−8), so that it becomes negligible. This choice has,
however, considerable effects on the simulation, as will
be discussed later. Finally, as upper boundary condition
we adopt the Dirichlet conditions and fix here the ini-
tial values outside the cloud, that is no drops enters the
domain. The lower boundary is open for the outflux of
condensate.

For the spectral reference model, the diameter range
is discretized into 500 classes of non-equal lengths

ΔDk = Dk1/2 − Dk−1/2, the spectral number density
within an interval ΔDk around Dk is given by

ND(Dk) =

∫
D∈ΔDk

fD(D)dD � fD(Dk)ΔDk. (3.2)

The distribution ND(Dk) or, skipping the arbitrary index
k, ND(D) is proportional to the respective diameter in-
terval. ND(D) and fD(D) provide different spectral mea-
sures for the same drop ensemble.

The evolution of our model system will be discussed
in terms of the three moments M(0), M(3) and M(6). They
are of particular relevance in cloud physics, as they are
related to the total number density (N = M(0)), the liquid
water content (L = M(3)ρwπ/6 with ρw: bulk density
of liquid water) and the radar reflectivity (Z = M(6)).
In QMoM M(0), M(3) are prognostic moments, whereas
M(6) is the first diagnosed one. Figure 2 shows the
temporal evolution of the vertical profiles of these three
moments, as well as the corresponding abscissas ξi and
weights wi. The results for the QMoM and the DQMoM
(which are almost identical) are plotted in comparison
with the results of a spectral formulation. The quantities
of interest are depicted on the x-axis and the height on
the y-axis. For the spectral results, the abscissas ξi and
the weights wi are reconstructed from the moments with
the PDA.

In Fig. 3, we present the temporal evolution of the
spectral number density ND(D) at different heights,
namely 5000, 7000 and 9000 m, which were chosen
such that the last one is within the cloud layer at initial
conditions and the others below it. We compare these
results to the abscissas ξi and weights wi at the same
heights. In the Figure, the diameter is depicted on the
x-axis, while the left and right y-axes represent ND and
the corresponding weights wi, respectively. Note that the
abscissas ξi for the spectral method are indicated on the
bottom x-axis and those for QMoM on the upper one.

3.2 Discussions

The general features of the vertical profiles of the mo-
ments are correctly reproduced by the QMoM (first three
columns in Fig. 2). Indeed, the different moments de-
scend with their moment velocities (U (k), cf. eq. (2.5)),
the higher the order of the moment, the faster it pro-
gresses downwards. This is due to the fact that the higher
the order of the moment, the more it is determined by the
biggest drops, which fall faster than the smaller ones.

All moment-profiles in Fig. 2 show “step”-patterns
already after 400 s. The pattern becomes more pro-
nounced with time and eventually leads to the forma-
tion of a second maximum, as can be seen for M(3) al-
ready after 800 s at around 5000 m. The occurrence of
such steps was also noted by Ziemer et al. (2014), see
their Fig. 1 for N(t,z) and L(t,z), and as an outcome
the multi-peaked surface precipitation in their Fig. 2.
These features neither have a counterpart in the mo-
ment profiles from the spectral model, nor can they be
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Figure 2: Reference study case: Time evolution of the vertical profiles of the moments M(0), M(3), M(6) (M(0) = N is total number density,
M(3) = L(π/6ρw)

−1 is proportional to liquid water content, M(6) = Z is radar reflectivity), abscissas ξi and weights wi. The quantities are
given for model times t = 0, 400, 800, 1200 s. Solid line: QMoM. Dashed line: DQMoM (mainly overlapping QMoM). Dotted line: spectral
method (reference). First, second and third couple of abscissa and weight are plotted in blue, green and red, respectively.
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Figure 3: Reference study case: time evolution of spectral number density ND(D) from spectral model (red dotted line, left ordinate) at
9000 m, 7000 m and 5000 m and corresponding abscissas ξi and weights wi (right ordinate) for spectral model (green) and QMoM (blue).
The abscissas ξi for the spectral model (green) are specified on the bottom diameter axis, and for QMoM (blue) on the top axis. For clarity,
the ordinate is capped in some subfigures.
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explained physically. Hence they have to been consid-
ered as modeling artifacts of the QMoMs. The sole anal-
ysis of the profiles of the moments is not sufficient to
understand the occurrence of these artifacts.

A closer look is therefore taken at the profiles of
the abscissas and the weights (see two last columns in
Fig. 2). It can be seen that the initial conditions imply
a vertically homogeneous profile for the abscissas ξi,
that is to say “constant” over the height (as opposed to
constant in time or stationary). Indeed, the positions of
the abscissas ξi depend on the shape of the initial PSD
and since the latter is assumed to be the same (apart from
the scaling factor) over the height at initial conditions,
the abscissas should be homogeneous initially. However,
the QMoM results show that the profiles of the abscissas
are stationary, while they change in both space and time
for the spectral formulation. Specifically, the spectral
model abscissas ξi increase with time at the bottom of
the cloud, as the population is more and more composed
of the largest drops for this region. The opposite effect
occurs at the upper boundary of the cloud, where only
the smallest drops are present. We hence see a major
difference in the way the spectral and the QMoM model
depict the evolution of the abscissas, notably at the cloud
boundaries.

This significant difference gives a clue to the origin
of the steps in the profiles mentioned above. An expla-
nation for this behavior may be developed by inspection
of the transport equations of the weights and abscissas
in the DQMoM context (equations (2.9)). If we consider
the abscissas ξi as homogeneous (which holds in this ref-
erence case) and inject this in (2.9b), it can be written:

0 =
∂ζi

∂ t
− ∂VT (ξi)ζi

∂ z

= wi
∂ξi

∂ t
+ξi

(
∂wi

∂ t
− ∂VT (ξi)wi

∂ z

)
︸ ︷︷ ︸

=0 cf. (2.9a)

−VT (ξi)wi
∂ξi

∂ z︸︷︷︸
⇒0

.

(3.3)
If ξi is independent of z in the initial state, it follows that
∂ξi/∂ t = 0, and ξi will be independent of height forever.
In this case, we deduce that the shape of the profiles
of the moments over the height is only determined by
the shape of the vertical profiles of the weights (as
the moments are the sum of the weights multiplied by
ξi

k). Most important, each weight wi is transported with
its own constant velocity VT (ξi), whereby VT (ξ1) <
VT (ξ2) < VT (ξ3), such that the ranges of noteworthy
weight-values separate. This is nicely seen in Fig. 2 for
the first and second weights around 7000 m after 800 s.
This segregation of the weights results into the “step”
structure for the moments. Note that the effect appears at
different heights depending on the order of the moment,
as the weighting coefficient is different in the sum of the
ξi

kwi.
Knowing the velocity VT (ξi) with which each weight

is transported, one is able to determine the time after

which step patterns are expected to be visible. In our
case, if HT is the thickness of the cloud at initial condi-
tions (here 1500 m), the instant ti j when the two weights
wi and w j (1 ≤ i < j ≤ 3) are split apart entirely can be
expressed as:

ti j =
HT Dv

β

α(ξ j
β −ξi

β )
. (3.4)

Considering that the initial values for the abscissas of
the reference test case are ξ1 = 9.8417× 10−5 m, ξ2 =
5.4307 × 10−4 m and ξ3 = 1.4889 × 10−3 m, we find
t12 � 862s, t13 � 402s and t23 � 755s. This situation
is seen in Fig. 2. After 800 s, the weights 1 and 2 are
indeed about to split, and after 1200 s they have fully
separated. Although weight 3 is very low, one sees that
the weights w1 and w3 have nearly (fully) separated after
400 s (800 s), and that after 800 s w2 and w3 have just
completely separated; the latter case results in a local
minimum for the third moment. Moreover, a lower value
for t13 than for the two other split times is in line with
the fact that the two corresponding abscissas ξ1 and ξ3
are furthest from each other and therefore maximize the
denominator in equation (3.4).

In Mukhopadhyay et al. (2012), the profiles of the
moments do not exhibit strong step patterns, as it is
the case in the present article. We offer the following
explanations for the absence of clearly visible artifacts:
firstly, the numerical scheme used for the discretization
of the transport equation in the former work (i.e. Lax-
Friedrich scheme) is known to be more diffusive than
the upwind scheme used in the present work, secondly
the space grid used by Mukhopadhyay et al. (2012)
is coarser than the one presented here and finally, the
cloud top being placed only at a height of 4000 m, we
argue in line with (3.4) that the profiles of the weights
overlap during their shorter simulation time as compared
to our case, resulting in less visible artifacts. Note that in
the present work, the space intervals were chosen such
that the grid is fine enough to depict correctly the sharp
discontinuities in the vertical profiles of the moments
(or the weights). The coarser the grid is taken the more
“rounded” these profiles become.

We now have a closer look at the evolution of the
abscissas as predicted by the spectral model, given in
Fig. 3. For the height level of 9000 m, that is within
the initial cloud layer, the abscissas evolve towards the
smaller diameters with time, as the population is dom-
inated by the smallest drops, since the larger ones have
settled rapidly. For the height levels 7000 m and 5000 m,
that is below the initial cloud layer, the abscissas first
move from their initial positions towards the bigger di-
ameters, as the biggest drops reach the corresponding
height, then migrate towards smaller diameters when the
biggest drops have passed and the smaller ones arrive.
These features cannot be depicted by the QMoM in this
case with ξi constant both in space and time, since it is
limited to changing the values of the weights wi.
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Table 1: Influence of initial shape of the PSD: split times ti j according variation of the shape parameter γ of a Γ-distribution. Model
conditions as used in Subsection 4.1 with N = 3×103 m−3 and L = 5×10−4 kgm−3.

γ [-] ξ1 [m] ξ2 [m] ξ3 [m] t12 [s] t13 [s] t23 [s]

1 1.5623×10−4 8.6208×10−4 2.3635×10−3 684 319 599
4 2.9640×10−4 7.3581×10−4 1.4595×10−3 1164 550 1042
5 3.2124×10−4 7.2578×10−4 1.3653×10−3 1280 606 1153
8 3.7273×10−4 7.1022×10−4 1.2024×10−3 1571 751 1438

10 3.9625×10−4 7.0489×10−4 1.1396×10−3 1737 833 1601
12 4.1483×10−4 7.0129×10−4 1.0942×10−3 1887 908 1749
15 4.3664×10−4 6.9766×10−4 1.0449×10−3 2091 1009 1952

To sum up the findings from the reference case, we
see that the initially homogeneous profiles of the ab-
scissas result in a steady state ξi-profile in the QMOM-
model. Therefore we should anticipate obvious devia-
tions in the evolution of the moments, as indeed have
been seen in Fig. 2. This raises the issue to modify the
initial setup with regard to the selected shape of the ini-
tial PSD, non homogeneous abscissas and the vertical
transition at the cloud boundaries. In the next section, we
present three test cases designed to characterize the im-
pact of each of these features on the modeling artifacts
identified in the QMoM results. Each of these cases is
independently designed in order to show the correspond-
ing feature most clearly.

4 Test cases: impact of the initial
conditions on the modeling artifacts

4.1 Influence of the initial shape of the PSD

In the first test case the initial shape of the PSD is
changed. Again a Γ-function is assumed, but now the
shape parameter γ in equation (3.1), which was set γ = 1
in Section 3, varies between 1 and 15. With increasing γ ,
the PSD describes a narrower spectrum (Fig. 1); like-
wise, the abscissas will be located at different points.
The total number density N (i.e. M(0)) is now set to
3 × 103 m−3 and the liquid water content L (and thus
M(3)) is set as before. Without limiting the relevance of
the study, this choice results in comparable time scales
between the results for the different values of γ consid-
ered and allows for a faster development of the relevant
effects (the results are therefore considered only up to
800 s). With the three pieces of information N, L and γ ,
the three parameters are calculated. The values of the
abscissas and the weights for γ = 5 are sketched in the
right part of Fig. 1. The temporal evolution of the pro-
files of M(0), M(3) and M(6) for the QMoM are presented
in Fig. 4, and the derived split times ti j (cf. eq. (3.4)) are
listed in Table 1.

Figure 4 reveals that the shape of the PSD at initial
conditions has a significant impact on the evolution of
the vertical profiles of the moments. With increasing γ ,
(i) shift of the various moments becomes more alike

and the signals stay more compactly, and (ii) the steps
and the segregation effect become weaker. If γ is large
(e.g., 12 or 15) the system is less prone to generate
noticeable artifacts than in case of smaller values at
the same time. The case γ = 1, corresponding to an
exponential distribution, appears to be the most critical.
Building on the analysis in the previous section, this
behavior may be explained as follows: with increasing
γ (cf. Fig. 1) the spectrum becomes narrower, hence
the corresponding abscissas ξi are closer to each other
and the differences in the transport velocities for the
weights (given by eq. (2.10)) are smaller. This must lead
to weaker segregation effects than in the reference case
with γ = 1.

This behavior is confirmed by the analysis of the split
times ti j (Table 1). For all the γ considered here, the
largest split time (corresponding therefore to the time
where all weights are separated) is t12 and this value
increases as the shape parameter γ becomes larger, such
that segregation occurs first for γ = 1 at t13 = 319s,
which is only about one third of the value for γ = 15.
In fact, we see in Fig. 4 in the latter case, a compact
signal of moments without any steps.

This case study shows that a broad PSD is prone
to the formation of steps and segregation effects, while
for a narrow PSD the occurrence of the artifacts is
retarded and for a monodisperse spectrum prevented.
This result is in line with the arguments developed in
section 3. Although it is tempting to choose a very
narrow spectrum, it is not typical for natural raindrops.

4.2 Influence of non-homogeneous abscissas

The second test case differs from the reference case
insofar as the initial profiles of the abscissas are forced to
vary over altitude (the abscissas would otherwise remain
constant, see eq. (3.3)).

Hence, within the cloud, a polynomial dependency
on the height is assumed for each abscissa. From the
abscissas profiles, the corresponding moments are de-
rived, out of which the parameters of a Γ-distribution
(eq. (3.1)) can be reconstructed for every point of the
space domain. This Γ-distribution acts as initial condi-
tion for the spectral model, and the moments are given
as input to the QMoM. The process for the design of
the initial conditions is explained in further details in
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Figure 4: Influence of the initial shape of the PSD: Time evolution of the vertical profile of M(0), M(3), M(6) for QMoM and different
Γ-distributions, as in Figure 2, but for N = 3×103 m−3 and L = 5×10−4 kgm−3. The different shape parameters match those of Fig. 1, left
part.

appendix B. As the emphasis is put on the variation of
the abscissas over the height, the physical relevance of
the moment values has not been meticulously taken into
consideration. Nevertheless, the corresponding values of
the number density and the liquid water content are of
same magnitude as in the previous test cases. This is the
reason why only the vertical profile of M(3) is presented
here along with the profiles of the abscissas and the
weights. The results are shown in Fig. 5 for the QMoM
and the DQMoM together with the spectral formulation
as reference.

The first important issue raised by the inspection of
the abscissas and the weights is the inability of QMoM
or DQMoM, in comparison to the spectral model, to de-
pict correctly the evolution of the abscissas near dis-
continuities (and to some extent those of the weights
and the moments). Considering the abscissa e.g., ξ3 in
Fig. 5, we see after 100 s that its profile near the cloud

top has not much changed since t = 0s for the QMoM
and DQMoM, and we have everywhere a smooth line.
For the spectral model, however, ξ3 has considerably de-
creased near cloud top and increased near the cloud bot-
tom at around 7000 m. This behavior becomes more pro-
nounced with time as seen after 400 s or 800 s. As such
differences near the cloud boundaries between the spec-
tral results and the QMoM results (also for DQMoM)
have been also observed for the reference test case (see
section 3.2), we deduce that these differences cannot be
considered as a consequence of homogeneous abscissas.
A possible explanation could be provided by the strong
gradients in the profiles of the abscissas and the weights
(also the moments), as mentioned by Wright Jr (2007):
this hypothesis will be considered and discussed in the
next section.

The second main issue deals with the differences
between QMoM and DQMoM, although both methods
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Figure 5: Influence of the initial non-homogeneous abscissas: Time evolution of the vertical profile of M(3), abscissas ξi and weights wi.
Solid line: QMoM. Dashed line: DQMoM. Dotted line: spectral method (reference). First, second and third couple of abscissa and weight
are plotted in blue, green and red, respectively.

are considered equivalent (see subsections 2.2 and 2.3).
Looking at Fig. 5 after 400 s, the profiles of the abscis-
sas ξ3 close to cloud top differ, and the QMoM-result is
closer than the DQMoM-result to the reference solution.
The situation is similar close to the cloud base. In order
to understand this difference, we have to bear in mind

that the DQMoM transports directly the abscissas, while
they are reconstructed by the Product-Difference Algo-
rithm (PDA) in the QMoM. This reconstruction pro-
cess, coupled with numerical differences, allow for de-
viations, which may amplify with time.
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The third issue concerns the QMoM and two abscis-
sas ξi and ξ j which approach each other in the course of
time, such as seen in Fig. 5 at t = 400s for (i) ξ2 and ξ3
near 8500 m and for (ii) ξ1 and ξ2 near 6000 m, and even
more distinctly at t = 800s for (i) near 7000 m and for
(ii) near 5000 m. When applying the PDA, two abscis-
sas approaching each other means that two eigenvalues
of the matrix constructed in the PDA are almost equal
(recall that the abscissas are the eigenvalues of this ma-
trix). From a numerical point of view, such a problem
is known to be difficult to solve, so that these eigenval-
ues can be actually found as being equal. In this case,
this eigenvalue has two distinct corresponding eigenvec-
tors so that the weights (again, first component of these
eigenvectors) cannot be unambiguously affected to one
of the two equal abscissas. For instance, if we consider
ξ1 and ξ2 to become equal, there is no unique way to say
which of the two corresponding weights is w1 or w2. The
possibility for the weights to be interchanged results into
the formation of spikes in their profiles, as can be seen in
Fig. 5 after 400 s around 8500 m for w2 and w3 and even
more distinctly after 800 s around 7000 m for w2 and w3
and around 5000 m for w1 and w2. This coincides with
the locations, where corresponding abscissas are almost
equal. Notwithstanding, this effect does not affect the
profile of the moments, as the latter are obtained through
the summation of the weights (with some power of the
abscissas as weighting coefficient).

4.3 Influence of sharp gradients in the initial
moment profiles

In the third test case, the main idea is to investigate
whether spatial discontinuities for the moments at the
boundaries of the cloud have an impact on the forma-
tion of the modeling artifacts, as seen in section 3.2. We
now assume a smooth initial profile for the moments in
order to avoid singular behavior with a smooth transi-
tion into a cloud free region (see the initial profile of
M(3) in Fig. 6). At cloud top, a discontinuity in the mo-
ments is kept, however, of smaller amplitude than in the
reference case. As for the second test case, the physical
relevance of this configuration is insignificant. Further
details on the numerical set up are given in appendix C.
The evolution of the third moment, the vertical profiles
of the abscissas, and the weights are shown in Fig. 6
for both QMoMs with the spectral method as reference.
This configuration results in smooth, but height depen-
dent initial profiles of the abscissas.

Figure 6 shows that for the reference solution, sharp
gradients develop in the profiles of the abscissas near
cloud top. Again, these gradients are better depicted by
the QMoM than by the DQMoM, as seen in the prece-
dent section. Nevertheless, both QMoM and DQMoM
models are unable to reflect the spatial structure of the
profile of the abscissas in the lower part of the model
domain. In addition, similarly to the previous test case,
we see in the profiles of the weights some spikes pattern,
for which the explanation is given in subsection 4.2.

This test case shows that the smooth initial condition
with a broader cloud domain than in the previous cases,
gives better agreement between the profiles of the mo-
ments from the QMoMs and the spectral model. It turns
out beneficially that it takes much longer time (com-
pared to test case 2) until the weights separate and seg-
regation effects emerge. Still, the precursor of the seg-
regation is seen in the profile of M(3) after 800 s in the
lower model domain.

4.4 Discussions

We have seen the occurrence of the segregation effects
in the reference case (Fig. 2) and in the first test case
(Fig. 4). They could be interpreted in the case of the
homogeneous and thus constant abscissas by the strong
dependency of the transport velocities of the weights
VT (ξi) on ξi, which is a consequence of the diameter de-
pendency of the sedimentation velocity of a drop VT (D),
eq.(2.2). However, these segregation effects are also no-
ticeable in the two other test cases (Figs 5 and 6), show-
ing that a variation of the abscissas does not avoid this
problem. Even though the abscissas vary with height,
they still are quite distinct, so that the transport velocities
for each weight are different and finally lead to the seg-
regation effects. This signifies that, as long as the trans-
port velocities for the abscissas differ from each other,
the segregation of the weights cannot be avoided and is
therefore inherent to the QMoM and DQMoM. This ar-
tifact is independent of a height dependency of the ab-
scissas, yet its outcome is more pronounced for initially
homogeneous, hence stationary, ξi.

Still the question remains, why QMoM and DQMoM
simulations are so strongly affected, while the spec-
tral solution shows nothing of that kind. The QMoM
and DQMoM with Nq = 3, hence three abscissas and
weights, bear resemblance to a spectral model with only
three size classes (instead of 500 as in the reference
model). If we consider a spectral formulation with very
few classes, the transport velocities VT (D) for each class
are different, so that in the pure sedimentation case, such
segregation effects between the classes should be ex-
pected, resulting in modeling artifacts of the same na-
ture as the step patterns exhibited in the present article.
In this case, we expect the characteristic splitting times
in the moments to be described as in equation (3.4), but
replacing the values of the abscissas by the correspond-
ing diameters of the considered classes. On the other
hand, taking more abscissas and weights into account
(i.e. Nq > 3) and thus more prognostic moments results
into more “steps”, which however need more time until
they can be observed explicitly. Indeed, assuming that a
greater Nq implies abscissas closer to each other, so that

(ξ β
j − ξ β

i ) in eq. (3.4) decreases and the splitting times
ti j are therefore longer. This means that in the limit case
where a very large number of moments is considered,
such that the QMoM methods converge to the spectral
one, the splitting times become arbitrarily long.
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Figure 6: Influence of sharp gradients in the initial vertical distribution of the moments, weights, and abscissas at the cloud limits: Time
evolution of the vertical profile of M(3), abscissas ξi and weights wi. Solid line: QMoM. Dashed line: DQMoM. Dotted line: spectral method
(reference). First, second and third couple of abscissa and weight are plotted in blue, green and red, respectively.

A common feature to all the test cases presented in
this work is that the abscissas ξi and weights wi obtained
from the spectral results (reference), therefore consid-
ered as the best values, are very different from the ab-
scissas and weights provided by both QMoMs (see no-
tably ξi in Figs 2, 3, 5 and 6). The reason for these dif-
ferences are hypothesized in the case of homogeneous

abscissas, but none of the test cases could provide a solid
explanation why the differences in a general case are
so significant. Further investigation is needed to explain
this behavior inherent to the application of QMoMs to
the modeling of pure sedimentation of raindrops and, in
this way, broaden the knowledge around these QMoM
methods.
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To sum up, the investigation of the three test cases
presented reveals the incapability of both types of
QMoM to depict reasonably the profiles of the abscis-
sas and the weights given by the reference solution;
therefore they simulate the evolution of the moments
only modestly. Moreover, the segregation effects for the
weights restrict the reliability of the QMoMs to rela-
tively small sedimentation times. These effects can also
lead to unrealizable sets of moments at late sedimenta-
tion times, although it is not the case in the results pre-
sented in this work. In that case, correction methods for
the sets of moments might have to be considered (see for
example McGraw (2012)).

However, as demonstrated by Mukhopadhyay et al.
(2012) (for which the segregation effects were presum-
ably reduced by a more diffusive numerical scheme for
solving the MTE) and by Ziemer et al. (2014) (where
QMoM minimizes a quantitative error norm, even if the
PMoM considered in this work only consider two prog-
nostic moments as opposed to six for QMoM), both
QMoMs remain relevant for modeling the temporal evo-
lution of the moments. The test cases investigated here
make explicit the influence of the initial conditions on
the modeling artifacts. But they also point out the fact
that these methods rely on the evolution of the moments
of the PSD and not on the PSD itself, meaning that the
actual PSD neither can be reconstructed nor is required.

5 Conclusions

The one dimensional sedimentation reference test case
(rainshaft model) presented in this article raises the
problem of modeling artifacts inherent to the Quadra-
ture Method of Moment (QMoM). This test case ex-
hibits segregation effects for the weights of the quadra-
ture, which lead to the formation of “step profiles” for
the moments. The several other test cases confirm that
different initial transport velocities for the weights or
the moments lead to the fact that, after some time, the
abscissas and weights profiles for the QMoMs do not
correspond anymore to the ones obtained from the spec-
tral results. Hence it is concluded that the modeling arti-
facts are inherent to the method and turn out particularly
pronounced during simulation of the sedimentation of
drops.

To our knowledge such artifacts have not been re-
ported in other fields of application of the QMoM. We
suppose that this could be explained by the diffusive
or strong mixing effects induced by the turbulent flow
transporting the particles, as commonly seen in engi-
neering applications. Indeed this would result in less
differences in the transport velocities for the weights
and thus rarer events of separation of regions where
the values of the weights are noteworthy. Additionally,
the fact that either the particles or the moments are of-
ten considered to have the same transport velocity in
engineering simulations means that segregation effects
may be mostly avoided in these cases. Furthermore, the

time scales involved in engineering systems are gener-
ally shorter, such that the segregation effects leading to
the modeling artifacts exhibited in this work would not
have the time to become visible.
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A Transport equations for the weights
and abscissas in DQMoM

In their work, Marchisio and Fox (2005) assume a
PSD f̂ being the weighted sum of Dirac functions (in
agreement with the closure approach for the Gaussian
Quadrature), that is:

f̂ (D) =
Nq

∑
i=1

δ (D−ξi)wi. (A.1)

Here, for the same reasons as mentioned for the QMoM
(see subsection 2.2), it is assumed Nq = 3, but the nota-
tion Nq will be kept in the following to save generality.
After substitution of f̂ into the SBE (2.1) and with the
help of derivatives of Dirac functions and the product
rule, the SBE is rewritten as:

Nq

∑
i=1

[
δ (D−ξi)+δ ′(D−ξi)ξi

][∂wi

∂ t
− ∂VT (ξi)wi

∂ z

]
︸ ︷︷ ︸

ai

−
Nq

∑
i=1

[
δ ′(D−ξi)

][∂ζi

∂ t
− ∂VT (ξi)ζi

∂ z

]
︸ ︷︷ ︸

bi

= 0, (A.2)

where ζi, i ∈ {1, . . . ,Nq}, the so-called weighted abscis-
sas, are defined as:

ζi = ξiwi. (A.3)

Note that δ ′ is here an abuse of notation of the derivative
of the Dirac function in the mathematical context of
distributions. The source terms ai and bi for the transport
equations for the weighted abscissas ζi = ξiwi and the
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weights wi can be extracted from (A.2) and defined,
respectively:

∂wi

∂ t
− ∂VT (ξi)wi

∂ z
=ai

∂ζi

∂ t
− ∂VT (ξi)ζi

∂ z
=bi,

(A.4)

with VT (ξi) given by equation (2.10). Note that the char-
acteristic transport velocities in DQMoM context are
therefore transport velocities of abscissas (that is char-
acteristic velocities of drops), while in QMoM context,
they are moment velocities, that is integrated means of
the velocities of drops (see equation (2.4)). The transport
equations for the weighted abscissas and the weights can
therefore be seen as a “spectral equivalent” of the MTE
for QMoM.

Relying on the properties of the Dirac function:
∫ ∞

0
Dkδ (D−ξi)dD =ξi

k

∫ ∞

0
Dkδ ′(D−ξi)dD =− kξi

k−1,
(A.5)

equation (A.2) is moment transformed for each k in
{0, . . . ,2Nq − 1} in order to determine the source terms
functions of (A.4). Hence:

(1− k)
Nq

∑
i=1

ξi
kai + k

Nq

∑
i=1

ξi
k−1bi = 0. (A.6)

This system can be rewritten in a matrix form Aσ = 0
with σ =

[
a1, . . . ,aNq ,b1, . . . ,bNq

]T
. As the matrix A is

non singular we have σ = 0 and therefore all source
terms of the transport equations for the abscissas and the
weights are equal to zero, as shown in (2.9).

We refer to the section 3 of Marchisio and Fox
(2005) for further details on the derivation of the equa-
tions. Note that in a general formulation, where source
terms are considered in the PBE (2.1) (e.g. for coagu-
lation or breakup), source terms also arise in (A.6) (the
same ones as those mentioned for the MTE at the end
of subsection 2.1) and therefore σ becomes nonzero,
meaning a necessary inversion of the matrix A. This ma-
trix inversion can be seen as the counterpart of the PDA
in the context of QMoM.

B Initial conditions for test case in
subsection 4.2

In this appendix, we derive the values of the vertical pro-
files for the starting conditions of the test case presented
in section 4.2. This is done in three steps.

1. We first consider a configuration analogous to the
reference test case (see section 3.1) with the abscis-
sas and weights corresponding to a Γ-distribution

(cf. eq. (3.1)) for which n0 = 3 × 103 m−3, γ = 4
and λ = 1.38 × 10−4 m (that is to say N = 3 ×
103 m−3 and L = 4.9538×10−4 kgm−3 as in Subsec-
tion 4.1). The corresponding values for the abscis-
sas and weights (computed with the PDA) are de-
noted Ai and Wi, respectively: A1 = 2.9549×10−4 m,
A2 = 7.3354 × 10−4 m, A3 = 1.450 × 10−3 m, W1 =
1.4182×103 m−3, W2 = 1.4756×103 m−3 and W3 =
1.0619× 102 m−3. The PSD outside the cloud is as-
sumed to be the same as inside the cloud, but with a
scaling factor (10−8) for n0.

2. In order to dispose of homogeneous profiles for
the abscissas, we define three polynomial vertical
profiles for the abscissas within the cloud (i.e. for
8250m < z < 9750m):

ξ̂1(z) = A1 +
A1

2

(
z−9000

750
−1

)(
z−9000

750
+1

)

(B.1a)

ξ̂2(z) = A2 +A2

(
z−9000

750
−1

)(
z−9000

750
− 1

3

)

·
(

z−9000
750

+
1
3

)(
z−9000

750
+1

)

(B.1b)

ξ̂3(z) = A3 −
A3

2

(
z−9000

750
−1

)(
z−9000

750

)

·
(

z−9000
750

+1

)

(B.1c)

such that the abscissas are continuous over the height
at the cloud boundaries. As for the weights, they are
kept unchanged. Following equation (2.7), we obtain
the corresponding moments:

M̂(k) =
3

∑
i=1

ξ̂ k
i (z)wi. (B.2)

3. As the configuration must be comparable with a
spectral method, we reconstruct a Γ-distribution from
the three first moments obtained (that is M̂(0), M̂(1)

and M̂(2)), such that the parameters of this recon-
structed PSD (cf eq. (3.1)) are given by:

n̂0(z) = M̂(0) (B.3a)

γ̂(z) =
M̂(1) 2

M̂(0)M̂(2)− M̂(1) 2 (B.3b)

λ̂ (z) =
M̂(0)M̂(2)− M̂(1) 2

M̂(0)M̂(1)
. (B.3c)

This reconstructed PSD is finally given as input to the
spectral model, its moments (derived analytically) as
input for the QMoM and its abscissas and weights
(computed with the PDA) as input to the DQMoM.
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Note that, because of the construction and recon-
struction processes, the series of moments of the de-
signed Γ-distribution (eq. (B.3)) differs from the mo-
ments at the second stage (eq. (B.1)), as only the first
three moments are reconstructed exactly. This results
in discrepancies in the vertical profiles of the abscis-
sas, which therefore are not equal to the one constructed
in the first step, but also in the vertical profiles of the
weights which are not homogeneous anymore.

C Initial conditions for test case in
subsection 4.3

This appendix gives the numerical values for the ver-
tical profiles for the initial conditions of the test case
presented in section 4.3. Once again, we start the design
of the set up considering a PSD analogous to the refer-
ence test case (see eq. (3.1)), that is a Γ-distribution, for
which the parameters are n0r = 3×103 m−3, γr = 1 and
λr = 3.7575× 10−4 m (that is to say Nr = 3× 103 m−3

and Lr = 5×10−4 kgm−3 as in Subsection 4.1). In order
to impose the vertical dependency of the moments (espe-
cially the smooth transition from the cloud to the cloud
free regions), we scale M(0)

r (which is equal to Nr) and
M(3)

r with a Gaussian function over the height. More-
over, to avoid homogeneous abscissas, M(0)

r is scaled
with an extra function depending on the height so that:

M̂(0)(z) = Nr

(
Ca

z+ ztop

2ztop

)3

exp

(
−(z− zmax)

2

Aa

)

(C.1a)

M̂(3)(z) = M(3)
r exp

(
−(z− zmax)

2

Aa

)
. (C.1b)

ztop is the upper limit of the computational domain, that
is 10000 m. The parameters zmax and Aa are related to
the shape of the Gaussian function: zmax = 7000 m is
the height where M̂(3) reaches its maximum and Aa =
106/ ln(10) m2 is proportional to the variance of the
Gaussian function and thus express the thickness of the
cloud. Finally Ca = 3 is an amplification factor for the
scaling of M̂0.

Considering γ̂ = γr = 1 everywhere, the parameters
of the corresponding Γ-distribution at each height are
given by:

n̂0(z) = Nr

(
Ca

z+ ztop

2ztop

)3

exp

(
−(z− zmax)

2

Aa

)
(C.2a)

λ̂ (z) =
(

2ztop

Ca(z+ ztop)

)
3

√
M(3)

r

Nr

Γ(γr)

Γ(γr +3)
. (C.2b)

In a final step, we truncate the vertical profile at the
height z∗ = 9000 m to represent the discontinuity at the

upper cloud boundary. For heights above this limit (i.e.
for z∗ ≤ z ≤ ztop) we have:

n̂0(z) = 10−8n̂0(z
∗) (C.3a)

λ̂ (z) = λ̂ (z∗). (C.3b)

Note that the parameters related to the vertical distri-
bution were chosen arbitrarily to obtain a configuration
comparable with the reference study case.
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