Engineering Graph Clustering
Algorithms

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Fakultat fur Informatik
des Karlsruher Instituts fiir Technologie (KIT)

genehmigte

Dissertation

von

Andrea Kappes

aus Schwabisch Hall

Tag der mindlichen Prifung: 28. April 2015

Erster Gutachter: Prof. Dr. Dorothea Wagner

Zweiter Gutachter: Prof. Dr. Ulrik Brandes




DOI: 10.5445/IR/1000049269


simianer
Schreibmaschinentext
DOI: 10.5445/IR/1000049269

simianer
Schreibmaschinentext

simianer
Schreibmaschinentext

simianer
Schreibmaschinentext


Acknowledgments

First of all, I would like to thank my advisor Dorothea Wagner for giving me the possibil-
ity to work in her group. Among many things, I am especially grateful for her patience,
encouragement, and support during the last year, making it possible for me to finish my
dissertation after my son was born.

My work as a PhD student would have been much more cumbersome and boring without
all of my former and current colleagues. In particular, I would like to thank all coauthors
of my publications for the good discussions and fruitful cooperation. Special thanks
go to Robert Gorke for introducing me to the concepts behind graph clustering and
teaching me how to write scientific texts. A big thank-you goes to Tanja Hartmann,
Andreas Gemsa, and Markus Volker for proof-reading parts of this thesis and giving
valuable feedback. Furthermore, I would like to thank Lilian Beckert, Elke Sauer, Bernd
Giesinger and Rolf Kolmel for their friendly help with administrative tasks and technical
issues, Ulrik Brandes for willingly taking over the task to review this thesis, and David
Bader for giving me the opportunity to visit his group at Georgia Tech.

Finally, T would like to thank everyone that supported and encouraged me outside the
office, especially my parents and my husband André. It is still a mystery to me how
André managed to find time to proof-read parts of this thesis somewhere in between
changing diapers and cooking delicious meals to keep me well-nourished in the last
phase of the write-up. Last but not least, thanks are due to my son Johann who always
managed to brighten me up with his smiles and who reminded me from time to time
what life is all about.

iii






Deutsche Zusammenfassung

Netzwerke im Sinne von Objekten, die in Beziehung zueinander stehen, sind allge-
genwartig. Paradebeispiele sind soziale Netzwerke, die Beziehungen zwischen Individuen
modellieren, seien es Freundschaftsbeziehungen in Online-Communities wie Facebook
oder Google+ oder personliche Netzwerke, die Freunde, Arbeitskollegen oder Familien-
angehorige verbinden. Aber auch in vielen anderen Zusammenhéngen treten Netzwerke
auf: Produkte koénnen miteinander gekauft werden, Proteine miteinander interagieren
oder wissenschaftliche Publikationen andere Artikel zitieren, um nur einige Beispiele zu
nennen. In vielen Bereichen kommt dabei dem Begriff einer dicht vernetzten Gruppe eine
semantisch beachtenswerte Bedeutung zu. In den oben genannten Netzwerken kénnen
solche Gruppen Freundeskreisen, Gruppen &dhnlicher Produkte, funktionellen Gruppen
von Proteinen oder Wissenschaftsbereichen entsprechen.

Auf einer abstrakten Ebene werden Netzwerke als Graphen modelliert und dicht vernetz-
te Gruppen Cluster genannt. Grob gesprochen liegt dem Begriff Cluster zugrunde, dass
der damit verbundene Teilgraph viele Kanten enthélt und es gleichzeitig wenige Kanten
gibt, die Knoten im Cluster mit dem restlichen Graphen verbinden. Da dieses Paradig-
ma vergleichsweise vage ist, existieren verschiedene Formalisierungen, die versuchen, die
Giite einer Clusterung zu quantifizieren.

In der vorliegenden Arbeit werden im Wesentlichen zwei verschiedene Ansétze betrach-
tet. Der erste bemisst Clusterungen anhand der der Diinne der durch die Cluster in-
duzierten Schnitte, wiahrend der zweite Ansatz sich mit der Optimierung des Mafles
Surprise [5] beschéftigt.

Schnittbasiertes Clustern. Eines der grundlegenden Probleme der Algorithmik ist
die Bestimmung eines minimales Schnittes in einem Graphen, das heift, einer Zerlegung
des Graphen in zwei Teile, die mit einer minimalen Anzahl Kanten verbunden sind. Ein
naiver Algorithmus zum Clustern von Graphen koénnte dies benutzen, um den Graphen
iterativ anhand von minimalen Schnitten zu zerlegen, so dass moglichst wenige Kanten
getrennt werden. In der Praxis erweisen sich minimale Schnitte jedoch als problematisch,
da diese oftmals nur einen oder weniger Knoten vom Rest des Graphen trennen. Des-
halb empfehlen sich fiir Algorithmen zum Clustern von Graphen Mafle, die die Grofle
der einzelnen Teile miteinbeziehen, wie die conductance, expansion oder density eines
Schnittes. Aufbauend auf diesen Schnittmaflen konnen konkrete Separiertheitsmafle de-
finiert werden, die bemessen, wie gut die einzelnen Cluster voneinander getrennt sind;
dies bringt allerdings mehrere Freiheitsgrade mit sich.

Im ersten Teil der Arbeit werden systematisch alle moglichen Kombinationen dieser
Freiheitsgrade untersucht, was zu einer Familie von Maflen fiir die Separiertheit von
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Clustern fithrt. Wir betrachten das generische Problem, die Separiertheit der Cluster zu
optimieren und gleichzeitig eine Giitegarantie an die Dichte der einzelnen Cluster nicht
zu unterschreiten. Dazu wird eine agglomerative Heuristik fiir distanzbasiertes Clustern
betrachtet [204], die in jedem Schritt zwei Cluster mit minimaler Distanz vereinigt und
untersucht, inwieweit sich effiziente Algorithmen fiir diese Heuristik auf das Clustern
von Graphen iibertragen lassen. Um diese Frage zu beantworten, werden Eigenschaften
identifiziert, die das dabei verwendete Giitemaf erfiillen muss und die betrachteten Mafle
im Hinblick auf diese Eigenschaften klassifiziert.

Die Intuition hinter dem betrachteten Optimierungsproblem ist, dass die schnittbasier-
ten Mafle grofle Cluster bevorzugen, die nur durch wenige Kanten verbunden sind, wo-
hingegen Garantien an die Dichte leichter durch die Erzeugung vieler kleiner Cluster
zu erfiillen sind. Fiir alle vorgeschlagenen Mafle wird untersucht, ob diese Intuition zu-
treffend ist, indem tiberpriift wird, ob bei der Verwendung agglomerativer Heuristiken
lokale Optima auftreten kénnen.

Diese theoretischen Betrachtungen werden durch eine umfassende, empirische Studie
ergénzt. Ein Vergleich der erwédhnten Heuristik mit einer zweiten Heuristik, die im We-
sentlichen auf dem Verschieben von Knoten und Teilmengen von Knoten zwischen Clus-
tern basiert, zeigt, dass die letztere oft zu besserer Qualitat fithrt. Im zweiten Teil der
Experimente wird untersucht, wie sich die Wahl der verwendeten Mafle fiir die Sepa-
riertheit von Clustern und die Dichte der einzelnen Cluster auf die Anzahl der Cluster,
die Clustergroflenverteilung und das Verhalten in Hinblick auf synthetische Daten mit
einer eingepflanzten Clusterstruktur auswirkt.

Surprise. FEinen anderen Ansatz zum Clustern von Graphen liefern Clustermafe, die
auf einem Nullmodell basieren. Die Idee ist hierbei, zu einem gegebenen Graphen und ei-
ner gegebenen Clusterung einen Zufallsgraphen auf derselben Knotenmenge zu betrach-
ten, der einige Eigenschaften des Ausgangsgraphen beibehélt. Nun wird die tatsdchliche
Anzahl der Kanten innerhalb von Clustern mit demselben Wert auf dem Zufallsgraphen
verglichen. Ist dieser Wert wesentlich hoher, als zu erwarten wire, ist die Clusterung gut
an den Graphen angepasst. Ein Clustermaf}, das auf diesem Prinzip basiert und das von
einer Reihe oft benutzter Algorithmen optimiert wird, ist die Modularity einer Cluste-
rung [173]. Ein verwandtes, relativ neues Maf ist Surprise, das die Wahrscheinlichkeit
minimiert, dass mindestens so viele Kanten zuféllig innerhalb von Clustern erzeugt wer-
den wie tatsdchlich beobachtet werden. Experimentelle Studien [5, 7, 8] liefern Indizien
dafiir, dass dieses Mafl einige der in letzter Zeit aufgekommenen Kritikpunkte an Mo-
dularity wie den Hang zu {iberméflig groflen Clustern in grofien Graphen nicht zu teilen
scheint.

Der zweite Teil der Arbeit widmet sich sowohl der Komplexitit des Problems, eine Clus-
terung mit optimaler Surprise zu finden als auch praktischen Algorithmen, um dieses
Problem zu 16sen. Aufbauend auf der Beobachtung, dass Optimallésungen beziiglich Sur-
prise immer Pareto-optimal beziiglich der Maximierung der Anzahl der Kanten und der
Minimierung der Anzahl der Knotenpaare innerhalb von Clustern ist, wird gezeigt, dass
das assoziierte Entscheidungsproblem N P-vollstéindig ist, Optimallésungen in Graphen
mit konstanter Baumbreite jedoch mit polynomieller Laufzeit gefunden werden kénnen.
Aus praktischer Sicht werden Methoden vorgeschlagen, die eine optimale Losung auf
kleinen Instanzen mit Hilfe von ganzzahligen linearen Programmen berechnen, sowie
Algorithmen betrachtet, die heuristisch gute Losungen fiir grole Graphen finden. Beide
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Ansitze werden experimentell evaluiert und mit einer bereits bestehenden Metaheuris-
tik [9] verglichen. Zusétzlich wird ein neues Clustermafl abgeleitet und diskutiert, das
Eigenschaften von Modularity und Surprise miteinander kombiniert.

Generierung von Testinstanzen. Wie bei allen algorithmischen Fragestellungen
stellt sich bei der Evaluierung von Algorithmen zum Clustern von Graphen die Frage
nach geeigneten Testinstanzen. Um die praktische Anwendbarkeit eines Algorithmus zu
belegen, eignen sich hierzu in erster Linie Echtweltdaten aus verschiedenen Anwendungs-
bereichen. Es gibt jedoch auch eine Reihe von Griinden, die fiir die (zusétzliche) Verwen-
dung von synthetischen Graphen sprechen. Synthetische Graphen kénnen iiblicherweise
in jeder beliebigen Grofie generiert werden, was hilfreich in Verbindung mit Skalier-
barkeitsstudien ist. Weiterhin erméglichen es Graphgeneratoren, einen Algorithmus auf
einer groflen Menge von Graphen mit #dhnlichen Eigenschaften zu testen, was die zu
starke Fokussierung und Anpassung auf wenige Testinstanzen verhindert. Bei der Eva-
luation von Algorithmen zum Clustern von Graphen bieten synthetische Daten dariiber
hinaus die Moglichkeit, dem Graphen bereits bei der Erzeugung eine Clusterstruktur
einzupflanzen, die im Anschluss zur qualitativen Auswertung benutzt werden kann.

Gorke und Staudt [104] schlagen einen Generator vor, der dynamische Zufallsgraphen
mit einer eingebauten Clusterstruktur erzeugt, die sich ihrerseits iiber die Zeit &ndert;
dieser kann dazu benutzt werden, Algorithmen zum Clustern dynamischer Graphen [117]
zu evaluieren. Im letzten Teil dieser Arbeit wird eine verbesserte Implementierung des
Generators beschrieben, die zum einen die Laufzeit und zum anderen den Speicherver-
brauch senkt, was die Generierung groflerer Testdaten ermdglicht.
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Chapter 1

Introduction

When people hear the term network, they often associate it with the concept of a so-
cial network, both referring to online networks as Facebook or Google+ and the more
traditional type of social networks consisting of individuals and their personal acquain-
tances, family, and friends. Other examples for networks that are observable in every
day life include computer networks that are build for sharing content or computational
resources, and road networks. However, networks occur also in many other contexts;
for example, biologists study networks of protein-protein interaction, of metabolites and
their biochemical reactions, and of food webs modeling predator-prey relationships [128].

All these networks have in common that they consist of objects or actors, together with
associations between them. In a mathematical context, networks are often modeled as
graphs, consisting of a set of vertices representing the objects and a set of edges rep-
resenting the associations. Groups in these networks, in the sense of sets of vertices
that are connected to each other above the ordinary, often come with a meaning. For
example, groups in social networks may correspond to circles of friends or people that
share common interests, whereas groups in protein-protein interaction and metabolic
networks often correspond to functional units [128]. Such groups are commonly referred
to as either clusters or communities, depending on the field of application. Accord-
ingly, methods that detect clusters, given the underlying graph, are usually called graph
clustering or community detection algorithms.

In this general form, clustering algorithms can be applied in diverse disciplines; for ex-
ample, in computational biology, clusters in the above mentioned metabolic networks
can be used to annotate uncharacterized proteins. Other less well-known applications
of graph clustering include clustering as a preprocessing step in graph drawing algo-
rithms [165], speeding up routing in Mobile Ad hoc Networks (MANETS) [123], and
recommendation systems [200].

Algorithms classifying data have a long history [125]. What distinguishes graph clus-
tering from most of the earlier literature is primarily the type of input. While classical
approaches are mainly concerned with clustering attributed data that can be represented
by points in multi-dimensional space, graph clustering approaches only consider the as-
sociations between objects, which do not have to be metric; often, the only information
is if two objects are related or not, which corresponds to the concept of an unweighted
graph. Although this distinction might seem technical, graph clustering or community
detection has grown into an independent field in the course of the last twenty years.

1



2 Chapter 1 Introduction

Giving a comprehensive overview of the plenitude of existing graph clustering algorithms
is beyond the scope of this thesis. We will discuss related work in the particular chapters
and refer to the surveys of Fortunato [83] and Schaeffer [192] for more information. In
spite of this abundance of different methods, most of them are implicitly or explicitly
based on the intuitive idea that there should be many edges within clusters and only few
between them, which is sometimes referred to as the intracluster density vs. intercluster
sparsity paradigm. As this paradigm is rather vague, there are different measures that
try to capture the goodness of a clustering, probably the most popular of them being
the modularity of a clustering [173].

1.1 Overview

Since modularity is not without criticism (cf. Section 2.3), the main part of this thesis
is devoted to two alternative approaches, together with algorithms optimizing them. In
the first part, we consider a family of measures based on the sparsity of the cuts induced
by the individual clusters, together with constraints on the density of the individual
clusters. In the second part, we investigate the recently suggested measure surprise [15],
which is based on a similar idea as modularity, but leads to smaller clusters and a less
uniform cluster size distribution in practice. In the following, we give an overview on
the structure of this thesis and briefly summarize the main contributions.

Chapter 2: Fundamentals

This chapter introduces notation and concepts that are needed throughout this thesis.
Besides briefly reviewing topics related to basic graph theory and the complexity of
algorithms, we state more precisely what we mean by clustering a graph and discuss the
measure modularity.

Chapter 3: Agglomerative Algorithms for Graph Clustering

Independent of any particular clustering measure, we review two basic metaheuristics
that have been used in the literature to optimize objective functions in the context of
graph clustering The first one is based on greedily merging clusters, whereas the second
moves vertices between clusters on several levels of abstraction of the graph. We discuss
similarities of the former with the classical approach of SAHN clustering [204] used in
data mining applications, and exemplify how running times for both approaches can
be estimated in the case of modularity clustering. In the course of this discussion, we
derive a weak lower bound on the worst case complexity of the Louvain method [32].
We conclude the chapter by an overview on agglomerative graph clustering algorithms
from the literature.

Chapter 4: Density-Constrained Graph Clustering

One of the fundamental algorithmic problems in graph theory is the computation of a
minimum edge cut in a graph. A naive clustering algorithm might use this to recursively
split the graph according to the partition induced by a minimum cut. In practice, mini-
mum cuts are problematic, as they often separate one or few vertices from the remainder
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of the graph, which leads to clustering with a very skew cluster size distribution. Hence,
measures that take the size of the two parts into account, like the expansion, conduc-
tance, or density or a cut, are usually more appropriate. All of these cut measures
have been coined before in the context of clustering [79, 115, 130]; however, using them
to construct concrete measures to evaluate whole clusterings leaves several degrees of
freedom.

In this chapter, we explore all combinations of these degrees of freedom to system-
atically assemble a set of concrete measures for intercluster sparsity, which are based
on the sparsity of the cuts induced by the clusters. To derive a family of optimiza-
tion problems from these, we consider the problem of optimizing intercluster sparsity
while retaining guarantees on the intracluster density of the clustering, which we term
DENSITY-CONSTRAINED CLUSTERING (DCC). The intuition behind this formalization
is that intercluster sparsity measures strive towards coarse clusterings, whereas intra-
cluster density favors small clusters. We investigate whether this intuition is correct by
determining whether each of the proposed measures might lead to local optima when
used in the context of agglomerative algorithms. In the second part, we identify proper-
ties of intercluster sparsity and intracluster density measures that render the application
of efficient algorithms for SAHN clustering to DCC possible, and obtain an almost com-
plete classification of the proposed measures with respect to these properties. Part of
this chapter is based on joint work with Robert Gérke and Dorothea Wagner [101, 102].

Chapter 5: Experiments on Density-Constrained Graph Clustering

We complement the theoretical considerations in Chapter 4 with a comprehensive ex-
perimental evaluation. A comparison of the metaheuristics based on moving vertices
and merging clusters on real-world instances shows that the former often leads to better
quality in the context of DCC, while being fast in practice. We further validate the ap-
propriateness of this metaheuristic by comparing the quality of the resulting clusterings
to general clustering algorithms from the literature with respect to the objective of DCC.
In the second part, we investigate to what extent the choice of intercluster sparsity and
intracluster density measure influences the number of clusters, the cluster size distribu-
tion, and the ability to reconstruct a hidden clustering in synthetic benchmark data.
This chapter is based on joint work with Robert Gorke and Dorothea Wagner [96, 103].

Chapter 6: Surprise - Complexity and Exact Solutions

An orthogonal view on graph clustering is represented by clustering measures that are
based on a null model. The idea behind these is to compare the observed number of
edges within clusters, which we call intracluster edges, to the number of intracluster
edges in a random graph G that inherits some of the properties of the original graph G’.
If the number of intracluster edges is substantially larger than expected, this indicates
that the clustering is well adapted to the actual link structure in the graph. The recently
proposed measure surprise quantifies the probability that G’ contains at least as many
intracluster edges as G. Experimental studies [5, 7, 8] suggest that surprise works well
with respect to synthetic benchmarks, and does not suffer to the same extent from
modularity’s inclination to produce overly large clusters when applied to large sparse
networks.
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In this chapter, we take first steps towards a theoretical analysis of surprise. We ob-
serve that optimal solutions with respect to surprise are Pareto optimal with respect
to maximizing the number of intracluster edges and minimizing the number of vertex
pairs within clusters. This bicriteria view can be exploited to show that the associated
decision problem is N'P-complete in general, but allows for polynomial time algorithms
in graphs of bounded tree width. From a more practical point of view, we propose and
evaluate methods that compute optimum solutions on small instances using a sequence
of integer linear programs. Furthermore, we discuss a novel clustering measure that can
be seen as a compromise between modularity and surprise. Part of this chapter is based
on joint work with Tobias Fleck and Dorothea Wagner [81, 82].

Chapter 7: Agglomerative Algorithms for Surprise Optimization

As the exact methods from Chapter 6 are infeasible on large instances, there is still need
for heuristic algorithms that find clusterings of good surprise efficiently. We propose to
exploit the bicriteria view introduced in Chapter 6 and optimize a weighted sum of the
number of intracluster pairs and edges, using a sequence of different weight parameters.
An experimental evaluation of the existing metaheuristic SurpriseMe [9] shows that the
quality of its results is implicitly due to the fact that it integrates the weighted sum
method, although with a different motivation in mind. We take this as a starting point
to further engineer this approach, both with respect to quality and running time.

Chapter 8: An Efficient Dynamic Generator for Clustered Random
Graphs

The selection of suitable test instances is one of the core challenges when evaluating
algorithms. To prove the practical applicability of algorithms, it is common practice
to use real world data from different fields of application. There is however a list of
reasons that speak in favor of the (additional) use of synthetic data. Synthetic graphs
can usually be generated in any possible size, which is helpful in scalability studies. Fur-
thermore, testing an algorithm on a large set of graphs with similar properties allows for
a certain degree of significance. When evaluating graph clustering algorithms, synthetic
data additionally allow for the incorporation of a hidden cluster structure that can be
subsequently used in a qualitative evaluation.

Gorke and Staudt [104] propose a generator for dynamic random graphs with a hidden
reference clustering that itself changes over time. We describe an enhanced implementa-
tion of this generator, which differs in the data structures used and therefore allows for
faster practical and worst case running times, as well as linear space requirements. This
chapter is based on joint work with Robert Gorke, Roland Kluge, Christian Staudt, and
Dorothea Wagner [97, 98]; part of the related work section will appear in our survey on
dynamic graph clustering [117].

Chapter 9: Conclusion

This chapter contains a summary of the main insights obtained in this thesis. We briefly
discuss similarities between the two main approaches to graph clustering we considered,
in the light of the bicriteria view introduced in Chapter 6, and close with a short outlook.



Chapter 2

Fundamentals

In this chapter, we introduce some notation, definitions, and concepts that are used
throughout this thesis. In the first part, we review basic concepts from graph theory.
Readers familiar with this topic may safely skip this part and only use it as reference in
case some of the terms and symbols we use are unclear. In the second part, we clarify
what we mean by clustering a graph and introduce some clustering specific notation.
We then introduce the quality measure modularity, as it is one of the most popular
approaches to graph clustering and will occur as example or reference in most of the fol-
lowing chapters. We proceed by recapitulating terms in connection with the complexity
of algorithms, and conclude this chapter with some definitions we need that do not fit in
any of the preceding categories. As a quick way to recall the abbreviations we introduce
in this chapter, we refer to the nomenclature. The definitions we give make frequent use
of the following basic notation on sets and subsets.

Sets and Binomial Coefficients. Let S be a set of objects. We denote by (‘Z) the

set of all k-element subsets of S. In particular, (g) is the set of all (unordered) pairs
of objects in S. To ease notation, we will allow binomial coefficients (Z) for all n and
k € No. If k > n, (}) = 0 by definition.

2.1 Graphs

This section contains basic definitions from graph theory. We orient ourselves at the
notation of two standard books on network analysis [36, 64]; these provide also a good
reference for further information on concepts related to graphs or networks.

Basic Definitions. A finite graph G = (V, E) is a tuple consisting of a set V of vertices
(nodes) and a set E of edges linking or connecting pairs of vertices. The two vertices
connected by an edge e are called its endvertices, and we say that u and v are incident to
e. The vertex set and edge set of a graph G are denoted by V(G) and E(G), respectively.
Unless otherwise stated, we denote by n := |V| and by m := |E| the number of vertices
and edges in G, respectively. We sometimes also use the abbreviation p := (g) for
the number of unordered vertex pairs in (G. Graphs can be undirected or directed. In
undirected graphs, edges are undirected, i.e., the order of the endvertices of an edge is
immaterial. An undirected edge linking two vertices u and v € V' is denoted by {u,v}.
In directed graphs, edges are directed, i.e., each edge has a source and a target verter.

5
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A directed edge with source u and target v is represented by an ordered pair (u,v). In
both undirected and directed graphs, we may allow the edge set F to contain the same
edge more than once, i.e., E can be a multiset. If an edge occurs several times in F, the
copies of that edge are called parallel edges. Furthermore, in some cases we may abuse
notation and allow edges of the form {v,v} or (v,v) linking a vertex with itself; such
edges are called loops. A graph is simple if it does not contain loops or parallel edges.
An (edge) weighted graph is an ordered triple (V, E,w) such that (V, E) is a directed or
undirected graph and w: E — D a mapping from the set of edges to some domain D,
usually Z or Q. For most purposes, an unweighted graph G = (V, E) is equivalent to a
weighted graph with unit edge weights w(e) =1 for all e € E. Unless otherwise stated,
we will only consider undirected, unweighted, finite and simple graphs in this thesis,

Adjacency, Subgraphs and Cliques. If two vertices are connected by an edge, they
are adjacent and we call them neighbors. For a vertex v, we denote by N (v) the set of
its neighbors, the neighborhood of v. Its cardinality |N(v)| is called the degree d, of v.
A graph G' = (V' F’) is a subgraph of G = (V, E) if V! C V and E' C E. If E’ contains
all edges between vertices in V', G’ is called the subgraph induced by V'. The subgraph
induced by V' in G is denoted by G[V']. If E = (‘2/), the undirected graph G = (V, E)
is called complete. A subgraph that is complete is called a clique. A maximal clique
G' = (V' F’) is a clique that cannot be further expanded, i.e., a clique such that there
is no vertex v € V' \ V' that is connected to all vertices in V’. In contrast to that, a
mazximum clique is a clique with maximum cardinality in G.

Paths and Cycles. A walk from zg to x in a graph G = (V, E) is an alternating
sequence g, €1, T1, €2, X2, ..., Tk_1, €k, T Of vertices and edges, where ¢; = {z;_1,2;} in
the undirected case and e; = (z;_1, ;) in the directed case. The vertex z; is called the
successor of x;_1 and k the length of the path. A path is a walk where e; # e; for 7 # j;
it is simple, if x; # x; for i # j. A path with xg = ;, that contains at least two edges is
a cycle. In an undirected, unweighted graph, the distance between two vertices u and v
is the minimum length of any path connecting them.

Connectivity. An undirected graph is connected if any two of its vertices are linked by a
path. A maximal connected subgraph of a graph G = (V, E), i.e., a connected subgraph
G' = (V',E’) such that there are no edges in E linking vertices in V' to vertices in
V \ V', is called a connected component of G. An (edge) cut is a partition (S, S) of V
into two non-empty subsets S and S’; sometimes, cuts are also identified with the set
of edges crossing the cut, i.e., the set of edges {u,v} such that u € S and v € §’. A
(vertex) separator is a set S of vertices such that the subgraph induced by V' \ S is not
connected. If vertices u and v are contained in different connected components of this
subgraph, S is called a (vertex) separator of u and v. It is a minimum vertex separator
if it has minimum cardinality among all vertex separators of v and v.

Forests and Trees. An undirected graph that does not contain any cycles is called a
forest. If it is additionally connected, we call it a tree. The term leaves refers to vertices
of degree 1 in a tree. Sometimes it is convenient to mark a special vertex in a tree T’
and call it its root; in this case, T' is a rooted tree. In a rooted tree, we can think of the
vertices ordered at several levels according to their distance to the root. The number
of this levels minus 1 is called the height of T'; equivalently, we can define the height as
the maximum distance between a leaf and the root. For a vertex v in a tree rooted at
r, the subtree rooted at v consists of the set of vertices u such that v is contained in the
(unique) shortest path from r to u. A binary tree is a rooted tree such that every vertex
v is either a leaf or it is connected to exactly two vertices in the subtree rooted at v.
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Complement Graph and Contraction. For a given graph G its complement graph G
is defined as G = (V =V, E = (‘2/) \ E). The pairs of vertices in E are called non-edges
of G and m := |E|. We will sometimes use the expression that a graph is modified by
contracting a subset C' of vertices. By this, we mean that we replace the vertices in C' by
a single vertex, their supernode v. We connect a vertex v in V' \ C' with v iff there is an
edge in the original graph connecting u with a vertex w € C'. Depending on the specific
context, the modified graph may also contain some summarized information about the
original graph; for example, edge weights might reflect the number of edges between the
subsets of vertices represented by its incident supernodes in the original graph, or vertex
weights the number of represented vertices.

Treewidth. Treewidth is a property of graphs that has been introduced by Robertson
and Seymour [183] in the 1980’s. It generalizes the definition of trees in the sense that
trees are the only graphs that have a minimum treewidth of 1. Treewidth has been since
then frequently occurred in the literature on graph theory [34]. On the one hand, graphs
of small treewidth can be iteratively decomposed into smaller graphs using small vertex
separators, which allows for the application of dynamic programming algorithms based
on this decomposition. On the other hand, several well-known classes of graphs, as
for example series parallel graphs, exhibit small treewidth, such that these algorithms
are applicable. We will briefly encounter treewidth in Chapter 6 and therefore give
its definition here; for a more thorough introduction to treewidth and to algorithms for
graphs with bounded treewidth, we recommend the book by Klocks [137] and the survey
by Bodlaender and Koster [34]. For the definition of treewidth, we need the concept of
tree decompositions.

Definition 2.1. A tree decomposition of a graph G = (V, E) is a pair (T'= (I, F),{X; |
1el }), where T is a tree and each node ¢ € I has associated to it a subset of vertices
X; CV, called the bag of 7, such that

1. Each vertex belongs to at least one bag: (J;,c; Xi = V.

2. For all edges, there is a bag containing both its endpoints, i.e., for all {v,w} € E
there is an ¢ € I with v, w € Xj.

3. For all vertices v € V, the set of nodes {i € I | v € X;} induces a subtree of T

The width of a tree decomposition (T = (I, F),{X; | i € I}) is maxjer |X;| — 1. The
treewidth of a graph G is the minimum width over all tree decompositions of G. Graphs
with treewidth at most k are called partial k-trees.

2.2  Clusterings

As introduced in Chapter 1, from a high level point of view, clusters are sets of vertices
such that their induced subgraph contains many edges. A clustering is a set of clusters.
Mathematically, the concrete definition of a clustering is ambiguous and may refer to
either disjoint, overlapping, or fuzzy clusterings. The first definition requires the clusters
to form a partition of the vertex set, while the second allows clusters to overlap. Clusters
in fuzzy (or soft) clusterings may also overlap; additionally, each vertex maintains for
each of its containing clusters a weight indicating to which extent the vertex the belongs
to the cluster. These concepts are illustrated in Figure 2.1.
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(a) Disjoint (b) Overlapping (¢) Fuzzy

FI1GURE 2.1: Different types of clusterings

Although overlapping [62] and fuzzy [229] graph clustering algorithms have been consid-
ered in the literature, most of the approaches find disjoint clusters [83]; in this thesis, we
restrict ourselves to this case. In the following, we will introduce some notation concern-
ing clusters that we will frequently use throughout all of the chapters. We tried to use
standard definitions whenever possible, but, to increase readability, we also introduce
some special notation in connection with merging clusters or moving vertices between
clusters.

Clustering and Cluster. We define a clustering C = {C1,...,Cy} of an undirected
graph G = (V, E) as a partitioning of V into clusters, i.e., C1U...UC =V and for all
C; # Cj € C, C;NCj = . Mathematically speaking, a cluster is not more than a subset
of V. There is however usually a subtle undertone when we refer to a subset as a cluster,
as this often means that the cluster adheres to the intracluster density vs. intercluster
sparsity paradigm introduced in Chapter 1. We will furthermore often identify a cluster
with the subgraph induced by its vertices. For a vertex v, C(v) denotes the cluster
containing v. An edge {u,v} is called intracluster edge, if C(u) = C(v), otherwise it
is an intercluster edge. If |C| = 1, C is called the all clustering, and if |C| = |V, it is
called the singleton clustering. In both cases, we say that C is trivial. A clustering C
is a refinement of a clustering D, if any cluster in D is a union of clusters in C. C is a
proper refinement of D, if additionally C # D. If not defined otherwise, the variable k
will always refer to the number of clusters in C.

Properties of Clusters. If C is a cluster, we denote by nc := |C| the number of
vertices it contains. If no = 1, C is called a singleton. The volume vo of C' is defined
as the sum of the vertex degrees in C, v¢ := ) .~ d,. In contrast to that, the degree
dc of C indicates the number of clusters B # C such that there exists an edge {u,v}
with C(u) = C and C(v) = B. In this case, B is called a neighbor of C. The set of
intracluster edges within C, i.e., the edges in the subgraph induced by C' is denoted by
E(C). Its cardinality |E(C)| is abbreviated by ec. Moreover, we denote by pc := (")
the number of unordered vertex pairs within C. The total number of intracluster edges
with respect to C is then denoted by i.(C) := >~ ¢ ec and the total number of vertex
pairs within clusters by i,(C) := > e pe. Similarly, z.(C) := m — i.(C) denotes the
number of intercluster edges and z,(C) := (}) — ip(C) the number of intercluster pairs
in C. If the clustering is clear from the context, we will sometimes omit C and just write
ip, ic and z.. For two clusters A and B, e p = [{{u,v} € E |u € A,v € B}| is the
number of edges between A and B. Using this, the number of intercluster edges incident
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to C' can be written as z¢ 1= ecy\¢- €C = ’(V(zc)) \ E(C)| is the number of intracluster

non-edges of C.

Merge and Move Notation. A large part of this thesis is devoted to greedy algorithms
for graph clustering based on merging clusters and on moving vertices between clusters.
For this reason, we introduce some specific notation to increase the readability of the
associated equations. Let C be a clustering. Then, for A # B € C, we call {A, B} a
merge and abbreviate AB := AUB. We call C4 gy := C\{A, B}U{AB} the result of this
merge. To increase readability, we sometimes use C4 p instead of Cyy py. Furthermore,
the clustering that results from moving vertex v to cluster D, i.e. (C\{C(v), D})U{C(v)\
v, D U{v}}, is abbreviated by C,—p.

2.3 Modularity

Similarly to the variety of conceptually different graph clustering algorithms in the
literature, the question how to measure the goodness of a given clustering is answered
ambiguously, leading to different clustering measures. A clustering measure is a function
that maps clusterings to rational numbers, thereby assessing the quality of a clustering.

In the course of this thesis, we will encounter three different approaches: the clustering
measures modularity and surprise and a family of clustering measures derived from the
density of the different clusters and the sparsity of the cuts induced by the clustering.
In this section, we will only define modularity, as it is the most popular measure in
the recent literature on graph clustering and will occur in examples or as a reference
throughout this thesis. Definitions of the latter two approaches can be found in Chapter 4
and Chapter 6.

Modularity builds upon the index coverage, which measures the fraction of edges con-
tained within clusters. The coverage cov(C) of a given clustering C of a graph G is hence
given by

covg(C) = e,
ceC

To compute the modularity of a given clustering C on a graph G = (V, E), we compare
the coverage of C in G with the coverage of C in a random graph G’ = (V, E’) on the
same set of vertices. The distribution of G’ arises from an imaginary random process
which first removes all edges from GG and then redistributes them randomly in the graph,
such that the expected degree of each vertex in G’ equals its degree in G. In G’, it may
happen that we draw the same vertex pair or vertex more than once, which may lead
both to the existence of parallel edges and loops. This random process is usually referred
to as the configuration null model. A more detailed description, including comprehensive
examples, can be found in Section 2.3 of [94]. Modularity is now defined as the difference
between the coverage of C in G and its expected coverage in G’, which leads to the
following term:

2
e v

mod(C) = covg(C) — E [cove (C)] = Z &« _ Z 4%
ceC m ceC m
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Modularity can be generalized to weighted [172] and directed [14, 147] graphs, to over-
lapping or fuzzy clusterings [174, 198], and to a local scenario, where the goal is to
evaluate single clusters [50, 52, 158]. For our purposes, the generalization to weighted
graphs is of interest, as we will encounter weighted graphs in the context of multilevel
algorithms, where we will contract subsets of vertices to supernodes. If edge weights
in the contracted graph always summarize the number of underlying edges in the orig-
inal graph and each supernode has a self loop weighted by the number of edges in the
subgraph induced by the vertices it represents, the weighted modularity of a clustering
on the contracted graph always equals the modularity of the induced clustering on the
original graph. Hence, optimizing the modularity in these aggregate graphs implicitly
optimizes modularity in the original graph. Let the weight w(v) of a vertex v be defined

as
wlv) = {E{u,v}eE ol v)), i fu,0) ¢ B
Z{u,v}eE,u;év w<{u7 U}> +2- w({v, U})7 if {U7 U} S

With that, the modularity of edge weighted graphs can be expressed as

2
mod(C Leen@e) ) 5 (Euecw®)”
Cze; >ecpw(e) Cze; 4(Xepwle)’

One of the main points of criticism in connection with modularity is its resolution
limit [84]. This refers usually to the property of modularity that for a connected graph
with a certain number of edges, the number of clusters in an optimal clustering is limited
by a term which grows with the square of the number of edges in the graph. In other
words, the size of the clusters grows with the graph size, which is not desirable in a
range of applications. Ways to deal with this include the examination of finer, interme-
diate clusterings that occur as local maxima during agglomeration [32], the application
of a preprocessing step which assigns suitable weights to the edges of an unweighted
graph [28], clustering the subgraphs induced by these large clusters [84, 190], or the
introduction of a parameter weighing the two terms in the modularity equation against
each other, which leads to multiresolution modularity [182]. Multiresolution methods
using a fixed weight parameter do not circumvent the resolution limit [141]; a possi-
ble remedy is to choose the parameter depending on the graph size [212]. Van Traag
et al. [212] give a more rigorous definition of what they mean by resolution-limit-free
by investigating whether clustering a subgraph induced by several clusters in an op-
timal clustering with respect to a measure yields the same clusters as in the original
graph. We will briefly refer to the resolution limit in the context of surprise optimiza-
tion (Chapter 6) and the optimization of intercluster sparsity measures in the presence
of constraints on the intracluster density of a clustering (Chapter 5). In both cases,
it is possible to obtain smaller clusters as with a modularity based approach, but the
methods are not resolution-limit-free in this strong sense.

2.4 Algorithms and Complexity

This section briefly reviews fundamental complexity classes and the standard cost model
to express the complexity of algorithms. For a more thorough introduction to the topic,
we refer to the textbook of Garey and Johnson [88].
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Decision Problems, P and NP. A decision problem I1 = (Dyy, Y11) consists of a set
Dy of instances together with a subset Yy of yes-instances. The elements of Dy \ Yy are
called no-instances. A polynomial time algorithm for II is an algorithm A such that its
running time on any instance I in Dr is bounded by a polynomial in the size of I, and
the algorithm decides if I is a yes-instance. The class P consists of all decision problems
IT such that a deterministic polynomial time algorithm for IT exists. Furthermore, NP
denotes the set of decision problems that allow for a non deterministic polynomial time
algorithm to solve them. Informally, this means that a problem is in NP if there is a
deterministic, polynomial time algorithm A4 such that there is for any yes-instance I a
proof such that A can verify that I is indeed a yes-instance. Obviously, P C N'P. If
NP is a subset of P is still an open problem, but it is widely believed that P # NP.

NPC. A polynomial transformation from a decision problem IT; = (Dry,, Y1, ) to another
decision problem IIy = (Dr,, Y1,) is a deterministic polynomial time algorithm that
transforms any instance I in Dy, to an instance I’ in Dy, such that I € Yy, if and only
if I' € Yr,. We say that II; o Il if there exists a polynomial transformation from II;
to Il,. In this case, II5 is in a sense “at least as difficult to solve” as I, as II; can be
solved in polynomial time if there is a polynomial time algorithm for IlIo. We say that
a decision problem II is N"P-complete, if II € AP and for every problem II' € NP, it
holds that II’ oc II. The set of all N"P-complete decision problems is denoted by NPC.
In practice, it suffices to show that IT' o II for a single decision problem II’ that is known
to be N'P-complete, as o is transitive. There is a large list of problems known to be in
NPC (cf. for example [88]), derived from Cook’s theorem [57] stating that the decision
problem SAT is N'P-complete.

Optimization Problems. A (combinatorial) optimization problem II = (Z, f,m,g €
{min, max}) consists of a set of instances I, a function f which maps any instance
I € T to a set of feasible solutions, a measure m, which maps any feasible solution to
a real number, and a goal function g which signifies if we aim to minimize or maximize
the measure. Given an instance, the goal is then to find a feasible solution minimizing
(maximizing) m. A concept very similar to polynomial transformations can be applied to
show that some optimization problems are “hard to solve”, called Turing reductions. A
Turing reduction from a problem IT" € NP to an optimization problem II is a polynomial
time deterministic algorithm that is able to solve IT" with the help of an (imaginary)
black box solver (the oracle module) that can be used to compute solutions for II in
constant time. If a Turing reduction from II’ to II exists, we say that II' ocp II. If for
any, I’ € NP, it holds that II' o<z II, II is called N"P-hard.

Big O Notation. To describe the asymptotic growth of functions, we will frequently
make use of the big O notation. Let f and g be two functions from N to a subset of the
real numbers, usually to N. We say that f € O(g(x)) iff there exist positive constants
C and zg such that for all x > xg, we have f(z) < Cg(z). Similarly, f € o(g) iff for all
C > 0 there exists a positive constant xg such that for all x > ¢, we have f(z) < Cg(x).
If f € O(g), we say that g € Q(f). Similarly, g € w(f) iff f € o(g). If f € O(9) N Q(g),
we say that f € O(g).

Assumptions on Time Complexity. Although the above definitions of the classes P
and NP depend on the computation model of Turing machines, it is well established to
measure the complexity of algorithms with respect to a random access machine (RAM)
that allows for the addition, subtraction, multiplication and division of integer numbers
in one unit of time (cf. for example the model in [17]). This is often called the uniform
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cost model. Note that the restriction to integer numbers is not a large impediment, as we
may represent rational numbers by tuples consisting of the numerator and denominator
and emulate all basic operations by a constant number of integer operations on a RAM.
Although the uniform cost model is widely used, it is probably not equivalent to Turing
machines in the sense that problems that are polynomially solvable on a RAM with
uniform costs are polynomially solvable on a Turing machine. The problem is that
recursive multiplication can lead to very high numbers, such that a Turing machine
cannot process them in polynomial time. There are three ways to circumvent this
problem [17]: we can either restrict the basic operations of the RAM to additions and
subtractions, make sure that all numbers occurring during the algorithm have at most
a logarithmic number of bits, or use a logarithmic cost model instead of the uniform
one. In the latter model, the costs of basic integer operations are proportional to the
length of the involved numbers in bits. Unless otherwise noted, we will always use the
uniform cost model to assess the time complexity of algorithms and make sure that
the occurring numbers are “small enough”. An exception is in Chapter 6 in connection
with the clustering measure surprise, where the associated numbers can be exponentially
large in the size of the input. There, we will briefly switch to the logarithmic cost model
to justify that the decision problem associated with surprise optimization is in NP.
In Chapter 8, we will additionally assume that we can compute logarithms and draw
random numbers between 0 and M, where M is polynomial in the size of the input, in
constant time.

To assess the asymptotic time complexity of graph algorithms, we will always assume
that graphs are stored in adjacency lists. More precise, we assume that we can iterate
over the incident edges of a given vertex v in time linear in d,. In contrast to that,
deciding if two given vertices u and v are connected is in min{d,, d, }, unlike for adjacency
matrices. In practice, we use arrays instead of lists.

2.5 Miscellaneous

Convex and Concave Functions. Let f: R — R be a function. We say that f is
convez, if for all z1, 29 € R? and for all t € [0, 1], we have

fltzr + (1 —t)ae) < tf(z1) + (1 —1t)f(x2)

It is called strictly convex if for all 21 # zo € R? and all ¢ € (0, 1), it is

[+ (1= t)ae) < tf(z1) + (1 —1t)f(z2)
A function f is called (strictly) concave if —f is (strictly) convex.

Markov Chains. We will briefly encounter Markov chains in Chapter 8 and therefore
review some basic definitions here; a more comprehensive introduction to Markov chains
can be found for example in the book of Behrends [25]. A Markov chain is a pair
M = (S, P), where S is a finite set of states and P a row stochastic matrix containing
transition probabilities between the states. C' C S is closed if for alli € C and j € S\ C
the transition probability from ¢ to j is 0. M is irreducible, if there is no proper closed
subset of S. We call a distribution vector w stationary if w is a left eigenvector of P.
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Pareto Optimality. The concept of Pareto optimality is usually attributed to a book of
Pareto [176] from the 19th century. It is crucial to the task of multicriteria optimization.
We will briefly touch this subject in Chapter 6 and Chapter 7 and therefore give a formal
definition of Pareto optimality, as this term is used ambiguously in the literature [69].
For an introduction and an overview of approaches to multicriteria optimization, we
refer to the textbook of Ehrgott [69]. We first need the notion of componentwise order
on RP.

Definition 2.2. Let = (z1,...,2p) and y = (y1,...,¥p) denote two points in RP. We
say that x < gy iff &; < y; forall 1 <¢ <p. If z; <y, forall 1 <i <p, we say that = < y.

In the following definition, we consider multicriteria problems where the aim is to min-
imize all objective functions; this definition can be modified to maximization problems
in a straightforward way.

Definition 2.3. Let X be a set of objects and f1,...,f,: X = R a set of objective
functions. We say that x € X is Pareto optimal, if there is no y # = € X such

that (fl(y), e fp(y)) < (fl(x), ... ,fp(:):)). If x is Pareto optimal, (fl(x), ce fp(m))
is called a nondominated point. Similarly, x is called weakly Pareto optimal, if there

isnoy # x € X such that (f1(y),...,/p(y)) < (fi(®),...,fp(z)). In this case,
(f1(2),..., fp(z)) is called a weakly nondominated point.

In our setting, the set X will correspond to the set of possible clusterings of a graph,
and the functions f1,..., f, to properties of the clustering as the number of intracluster
edges or vertex pairs.






Chapter 3

Agglomerative Algorithms for
Graph Clustering

A large part of this thesis is devoted to agglomerative graph clustering with different ob-
jective functions (cf. Chapter 4, Chapter 5 and Chapter 7). In this section, we will first
discuss what distinguishes agglomerative clustering algorithms from other approaches
and introduce some basic concepts. We will then proceed by identifying similarities
between traditional SAHN clustering algorithms from the field of data mining as for
example single linkage [203] and merge-based graph clustering algorithms that greedily
optimize an objective function. In Chapter 4, we will exploit this connection by de-
scribing under which circumstances efficient SAHN algorithms can be applied to graph
clustering in order to optimize different objective functions.

Another generic greedy clustering algorithm is based on a combination of vertex moves
and the aggregation of clusters. Special instantiations of this and the merge-based
greedy algorithm optimizing modularity lead to the well-known graph clustering algo-
rithms commonly known as CNM [53] and the Louvain method [32]. In Section 3.3, we
will discuss efficient implementations of these instantiations and give upper and lower
bounds on their worst-case complexity. Most arguments in this section can be trans-
ferred to other objective functions. We will conclude with a comprehensive overview on
agglomerative clustering approaches used in the literature, with a special focus on graph
clustering algorithms.

3.1 Agglomerative and Divisive Clustering Algorithms

Methods for partitioning objects into disjoint clusters based on their similarity can be
roughly divided into agglomerative, divisive and flat approaches. Divisive algorithms
start with the all clustering and recursively split the clusters into smaller ones until
some criterion as for example a desired number of clusters is met. The goal of the
splitting process is to divide the objects into two groups, such that the objects in each of
the groups are more similar to each other than to the objects in the other group. In the
context of graph clustering, this usually translates into the identification of sparse cuts
in the corresponding subgraphs [16, 115, 130, 160, 199]. Figure 3.1 gives a sketch of this
approach. Early examples of divisive graph clustering algorithms include for example

15
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FIGURE 3.1: Sketch of a divisive clustering algorithm
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FIGURE 3.2: Sketch of an agglomerative clustering algorithm

the algorithm by Hartuv and Shamir [118] that iteratively splits the clusters according
to a minimal cut within the cluster until each cluster fulfills some density requirement.
Another example is the edge-centrality based algorithm by Newman and Girvan [173]
that successively removes edges with high betweenness values and interprets the resulting
connected components as clusters.

In contrast to that, agglomerative algorithms usually start with the singleton clustering.
In the context of graph clustering, objects correspond to vertices and small subsets of
densely connected clusters are successively merged to form larger clusters until some
requirement is met or until all vertices belong to the same cluster. Figure 3.2 (a) shows
an example of how an agglomerative graph clustering algorithm might proceed.

The third category refers to algorithms which fall in neither category but partition the
objects directly into a set of clusters. Well-known methods in this category are for
example a wide range of spectral algorithms [48, 115, 199, 207, 219] or Lloyd’s algorithm
for k-means clustering [154] in the context of clustering data in a metric space. Both of
these take the number of clusters as input. Other examples are exact algorithms that
solve an optimization problem in the context of clustering as the approach discussed
in Section 6 that uses a sequence of linear programs to find optimal clusterings with
respect to the measure surprise.

Dendrogram. There are two different points of view on agglomerative clustering.
Either one is interested in all intermediate results of the clustering process or only in a
single clustering that has some specific features. Examples of such features are a given
number of clusters or the property to be the clustering in the hierarchy that is best with
respect to some objective function. The latter point of view is often reflected by the
stopping criterion. In the former case, one is usually interested in the whole dendrogram
describing the agglomerative process. The term dendrogram refers to the storage of a
sequence of merge operations in a data structure or a graphical representation thereof.
Figure 3.2(b) shows a graphical representation of the merge operations in Figure 3.2(a)
including the last merge that is depicted in gray. In this case, exactly two clusters are
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Algorithm 1: SAHN CLUSTERING
Input : set of objects O, pairwise dissimilarities d(o;,0;) for all 0;,0; € O
Output: Dendrogram L as list of merge operations
L+
while |O| > 1 do

a,b < arg min {d(a,b)}

{ab}e(3)

n < new object representing a and b

Append (a,b,n) to L

O+ O\ {a,b} U{n}

forall o € O\ {n} do

| Compute d(o, n)

return L

merged in each step, hence, the merging procedure can be depicted by a binary tree. The
leaves of the dendrogram correspond to the vertices in the graph. For each merge of two
clusters A and B, a new vertex is introduced representing the union AU B and connected
to the vertices representing A and B. Moreover, the height in which the vertex is drawn
reflects the order of the merge operations. Dendrograms are also well defined if the
agglomerative process is aborted; in this case, the dendrogram is a binary forest where
each tree induces a cluster. In the example, this corresponds to the subgraph induced
by the black vertices. Obviously, divisive clustering algorithms can also be represented
by a dendrogram. If the splitting of clusters is stopped before the singleton clustering is
reached, then the leaves of the dendrogram do not correspond to vertices in the graph
but to clusters thereof.

3.2 Generic Description of Agglomerative Algorithms

Traditional agglomerative or hierarchical algorithms that work with pairwise distances
between objects usually merge two clusters in each step and do not employ a stopping
criterion, which results in a dendrogram that can be represented as a binary tree. These
algorithms are often subsumed under the acronym SAHN (sequential, agglomerative,
hierarchical, nonoverlapping) [204]. Algorithm 1 shows the pseudocode of a generic
SAHN algorithm based on the description by Miillner [166]. The input is a set of
objects together with dissimilarity or distance values associated with each pair of objects.
Usually, the assumption is that distances are positive and symmetric but do not have to
fulfill the triangle inequality, hence, do not necessarily define a metric. The algorithm
iteratively identifies the pair of objects @ and b with minimum distance and replaces
a and b with a single object representing them. This new object n can be thought of
as an inner vertex of the dendrogram. After that, distances between the new object
and all other objects are computed. Here, the implicit assumption is always that the
new distance d(o,n) solely depends on some easy to maintain properties of the clusters
corresponding to n and o and the old distances d(o0, a) and d(o,b). For example, distance
updates in the classical variants single [203], complete, average, weighted, Ward [221],
centroid and median linkage discussed by Miillner [166] can be carried out by only
considering the number of objects in each cluster and the old distances associated with
the clusters that are to be merged.
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Algorithm 2: GENERIC GREEDY MERGE
Input : graph G = (V, E), function objective to maximize
Output: clustering C of V
C « singletons;
A« {{A,B} € (g) | objective(Cy 4 py) > objective(C) };
while |C| > 1 and A # () do

{A",B'} + arg {A%%EA{objective(C{AVB})} ;

C + C{A/,B’};
A+ {{A,B} € (g) | objective(Cy4, p}) > objective(C) };

return C;

Closely related to SAHN algorithms, but with a slightly different focus, are greedy merge
algorithms that are based on a global objective function and try to find good solutions
by always greedily merging the two clusters that cause the highest gain in the objective.
Pseudocode of a generic greedy merge algorithm can be found in Algorithm 2; here,
Cia,By denotes the clustering that results from merging clusters A and B in clustering
C. As our focus is on graph clustering, we stated the algorithm in terms of graphs. It
is however straightforward to replace vertices by objects, which makes the similarity to
SAHN algorithms more apparent. This generic view based on an objective function goes
back to Ward [221], who first considers this general method and then exemplifies its
usage by minimizing the total within-cluster variance. Contrary to the way we stated
generic greedy agglomeration, he assumes, in the tradition of SAHN algorithms, that
the best value of the objective function is obtained by the singleton clustering. Instead
of realizing the best improvement in each step, the algorithm instead selects the pair
of clusters whose merge deteriorates the objective the least. This results in no evident
stopping criterion, which is why the output of the algorithm is always the complete
dendrogram.

The total within-cluster variance is a good example for an objective function where the
greedy merge algorithm is equivalent to SAHN clustering, as the deterioration of the
objective function can be interpreted as the distance between the associated clusters. If
two clusters A and B are merged, the distance between A U B and K only depends on
some easy to maintain properties of A, B and K; furthermore, all remaining distances
stay untouched. Hence, the algorithm fulfills the key requirements of a SAHN algorithm.
On the other hand, for some SAHN algorithms it is easy to identify an objective function
that is implicitly optimized. For example, single linkage [203] clustering is connected
to maximizing the minimum distance between two objects in distinct clusters, whereas
complete linkage [60] greedily minimizes the maximal distance between objects in the
same cluster. For some objective functions, it is however not evident if the improvement
in the objective function can be stated in terms of a distance function satisfying the
requirements for a SAHN algorithm. In Chapter 4, we will discuss global graph clustering
measures based on sparse cuts in this light, which translates into statements of how
efficient the associated greedy merge algorithms can be implemented.

Another widely used local search approach is primarily based on moving vertices greed-
ily between clusters. Early and well known examples of clustering techniques based
on swapping vertices between clusters from the context of graph partitioning are the
Kernighan-Lin [134] and KL/FM heuristic [77]. A generic local search procedure based
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Algorithm 3: GENERIC LocAL MoOVING (GLM)
Input : graph G = (V, E), clustering Cinit of G, function objective to maximize
Output: clustering C of G
C < Cinit
repeat
forall v € V do
L N «+ arg max {objective(Cy—c)}
Cecu{}

if objective(C,—_,n) > objective(C) then move(v, N)

until no more changes
return C

Algorithm 4: GENERIC GREEDY VERTEX MOVING
Input : graph G = (V, E), function objective to maximize
Output: clustering Cy of V'
GO~ G, h«0
repeat

C" <~ GLM(G", Singletons(G"), objective)

Gh*1 « contract(G",C")

h< h+1
until no more real contractions

while h > 0 do
h+h-1
C" « project(Ch*t, G)
(C" «— GLM(G",C", objective)); /* optional modification */

return C°

on optimizing an objective function can be formalized as in Algorithm 3. Here, C,_, ;v de-
notes the clustering that results from moving vertex v to cluster N in clustering C. The
algorithm starts with an arbitrary clustering; if local moving is used as a self-contained
clustering algorithm, this is usually the singleton clustering. One round of the algorithm
consists in considering the vertices in an arbitrary order and always moving the current
vertex to a cluster that yields the best improvement with respect to the objective func-
tion, if such a cluster exists. This can include the decision to isolate a vertex, i.e., to
create a new cluster only containing this vertex. The algorithm performs several rounds,
until no further vertex moves can improve the objective.

Usually, this procedure gets quickly trapped into local optima of the objective function,
which leads to clusters of small size that are still far away from the optimal solution.
This is why the procedure is often embedded into a multilevel scheme that successively
contracts the resulting clusters to higher level graphs yielding a coarser view on the
data. Algorithm 4 shows a generic description of such an algorithm. The advantage of
this approach is that vertex moves on higher levels correspond to moving whole subsets
of vertices in the original graph, which increases the local search neighborhood and
is therefore less prone to local optima. Note that the benefit of move operations for
the objective function on higher levels is always evaluated with respect to the benefit of
moving the associated subset of vertices in the original graph. Often, this can be achieved
by introducing vertex or edge weights when contracting the preliminary clusters. As an
example, weighing edges with the number of edges between the associated clusters,
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FIGURE 3.3: Sketch of Multilevel Approach

including loops signifying the number of intracluster edges in the individual clusters,
and using the weighted version of modularity (cf. Section 2.3) suffices in the context of
modularity optimization.

The coarsening procedure ends when a local minimum is obtained, i.e., as soon as the
local moving procedure yields the singleton clustering at a certain level. In a second
phase, the clustering from the highest level is iteratively projected to the lower levels,
which means that vertices at level h are grouped together if and only if their correspond-
ing representatives at level h + 1 are in the same cluster. After projection, an optional
step is to further refine the clustering at level h by looking for improving vertex moves.
This is promising, as the clustering at level i is now coarser than before and hence not
necessarily a local optimum on this level. Figure 3.3 illustrates the whole multilevel
approach graphically.

Compared to GENERIC GREEDY MERGE, this algorithm is often faster in practice, as
for many objectives, one round of the local moving procedure can be performed in linear
time and it converges after few rounds. In the next section, we will exemplarily discuss
how both algorithms can be implemented in the context of modularity maximization.
Chapter 4 and Chapter 5 contain both theoretical and experimental results on these
algorithms in the context of optimizing cut based measures for intercluster sparsity
in the presence of constraints on the intracluster density of the resulting clustering.
Similarly, in Chapter 7, we build upon GLM to derive efficient algorithms that optimize
the measure surprise.

3.3 Running Time Considerations

In this section, we will exemplify how GENERIC GREEDY MERGE and GENERIC GREEDY
VERTEX MOVING can be implemented in the context of modularity maximization. For
simplicity, we only consider the unweighted case. Except for the upper bound on the
number of iterations of GENERIC GREEDY VERTEX MOVING, all results translate to edge
weighted graphs in a straightforward way. This special instantiation leads to two well-
known and often used algorithms commonly referred to as CNM [53] and the Louvain
method [32]. Although the latter has been already proposed in 2008 and there has been a
substantial amount of work on modularity maximization since, it is still one of the state-
of-the-art algorithms for this problem, especially in the case of huge complex networks
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where it is known to be extremely fast while still producing high-quality clusterings.
The original Louvain method does not use the (optional) possibility to further improve
the clustering by the LOCAL MOVING procedure in the second phase of the algorithm.
This modification has been considered by Rotta and Noack among other possibilities in
a multilevel framework for modularity maximization [189].

3.3.1 Greedy Merge (CNM)
Recalling the definition of modularity from Section 2.3, the improvement in modularity
that results from merging the clusters A and B in clustering C can be expressed as

€A,B  204UB
m 4m?

mod(Cya,py) — mod(C) =

If we interpret this as the similarity between A and B and assume that the algorithm
maintains cluster volumes and the number of edges between clusters, each similarity
update after a merge operation can be performed in constant time. Furthermore, if we
merge clusters A and B, we only have to compute the similarities between the resulting
cluster AU B and all other clusters, leaving the remaining values untouched. Hence, if
we ignore the mainly technical difference that we are dealing with similarities instead of
distances, CNM fits into the framework of SAHN algorithms'.

For general SAHN algorithms, Day and Edelsbrunner [59] propose a generic algorithm
that stores for each cluster the distances to all other clusters in a priority queue. The two
clusters A and B within minimum distance (or in our case, associated with the largest
improvement in the objective function) can be found by querying the priority queue of
each vertex for the corresponding neighbor with minimum distance, which results in a
running time of O(n) if the priority queues are implemented as, for example, binary
heaps. After that, the entries associated with the no longer existing clusters A and B
have to be deleted from the priority queues of the other clusters, which can be bounded
from above by O(nlogn). In a final step, the new distances of AU B are calculated
and stored in the priority queues, again resulting in O(nlogn) running time. As the
number of clusters decreases by one in each step, the algorithm terminates after at most
n iterations, yielding a total running time in O(n?logn). A downside of this approach
is that it needs O(n?) memory, which might be inappropriate in scenarios where the
distances could be easily computed on demand without explicitly storing them. This
applies for example to Euclidean distances of points in RY.

In the context of graph clustering algorithms, the algorithm by Day and Edelsbrunner
can often be slightly adapted such that it only needs space that is linear in the size of
the graph and yields better running times in practice. This is especially beneficial if the
number of edges is considerably smaller than n?, which holds for a wide range of typical
application data.

From the above expression for the improvement of modularity when merging two clusters,
it is immediate that merging clusters that are not connected by at least one edge can
never improve modularity. Hence, it is unnecessary to maintain values associated with
unconnected clusters in the priority queues, as the algorithm terminates before they

Note that the improvement in modularity when merging two clusters can be both negative and
positive; although we said that, usually, distances in SAHN clustering algorithms are supposed to be
positive, this does not pose a problem for any of the SAHN algorithms we consider.
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become relevant. Clauset et al. [53] hence propose to only store values associated with
connected clusters and furthermore, to use another priority queue to store the maximum
values of each of the priority queues associated with the clusters. Furthermore, the
entries of each priority queue are additionally stored in a binary search tree, which allows
the algorithm to find, delete and update arbitrary values in the queue in logarithmic
time. While this is clearly more memory efficient and has the potential to speed up the
running time on sparse graphs, it can also be shown that this algorithm has a better
worst case running time in case the dendrogram is well balanced, i.e., in case the height
of the associated binary tree is small. Before giving a short justification of this analysis,
we would like to point out that this nested heap structure can be circumvented by a
simpler approach without losing efficiency. In this approach, the current cluster graph
is always stored in memory, i.e., a graph where the vertices correspond to the clusters
currently existing in the graph and edges exist between linked clusters; edge weights
reflect the number of edges between the clusters. If, for example, the graph is stored
in an adjacency list such that the neighbors of each cluster are sorted according to
increasing cluster indices, the new adjacencies of the cluster A U B can be computed in
O(ds+dp) by merging the lists of A and B. Each edge in an undirected graph is stored
twice in the adjacency list; if each entry stores a pointer to the other representative
of the edge, invalid entries in the other lists can be efficiently deleted. To find the
maximum value associated with each edge, the whole set of edges is additionally stored
in a priority queue. Hence, the bottleneck of the algorithm is the update of the binary
heap after each merge; as we have to update O(da + dp) values, each iteration takes
O((da + dp) - logn) time.

Clauset et al. [53] give an alternative upper bound on the total number of priority queue
operations as follows. Let us denote the set of cluster pairs that are merged during the
execution of the algorithm by M. Each of the clusters considered in the merging process
corresponds to a vertex D in the associated dendrogram D. As each of these vertices
participates at most once in a merge, the total number of priority queue operations can
be bounded from above by

Z [da +dp] < ZdDS ZUD

{A,BYeM DeD DeD

For simplicity, let us assume that the merging process is complete, i.e., we can consider
D as a binary tree rooted at the vertex that corresponds to the all clustering.? We
can now sort the vertices of D into levels corresponding to a breadth first search from
the root. The clusters in each of the levels are pairwise non-overlapping, hence, the
total volume of the clusters on each level is exactly 2m. Thus, if d is the height of the
dendrogram interpreted as a rooted tree, the total number of priority queue operations
can be bounded above by O(m-d), resulting in a total running time of O(m-dlogn). In
the best case, this is in @(n(log n)2), but if the dendrogram is unbalanced, the resulting
upper bound is worse than the trivial O(n?logn) bound. Wakita and Tsurumi [220]
observed that the CNM algorithm sometimes produces very unbalanced dendrograms
which makes the algorithm slow in practice. They propose to skew the values in the
priority queue in favor of pairs of clusters of similar size, which leads to better efficiency
without sacrificing quality. Similar studies have been conducted by Danon et al. [58]
and Rotta and Noack [189]. Rotta and Noack additionally consider a modification of
the generic greedy merge algorithm called multistep joining proposed by Schuetz and

2If this is not the case, we can just virtually complete the dendrogram in an arbitrary fashion and
then apply the following analysis.
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FIGURE 3.4: Sketch of SAHN implementation of Eppstein [70] based on a quadtree.
The yellow entries correspond to distances that have to be recomputed when C; is
changed.

Caflisch [193] that computes a small set of disjoint merge operations with high benefit
with respect to modularity and merges them concurrently in each step. Similar to the
modification of the values in the priority queue, this causes the algorithm to grow clusters
in different parts of the graph concurrently, which has a positive influence on the height
of the dendrogram.

Another possibility to implement general SAHN algorithms is proposed by Eppstein [70].
The crucial ingredient in this approach is a quadtree that replaces the priority queue
as a means of efficiently maintaining the pair of clusters with minimum distance, see
Figure 3.4. Level 0 of the tree always maintains the current distance matrix between
the clusters (or objects, in terms of Algorithm 1). Level ¢ + 1 contains one entry for
each square of size 4 in level ¢ that equals the minimum of the associated distances in
level i. Thus, level logy([n]) contains one entry, which equals the minimum distance
between any pair of clusters. If the distances involving one cluster are changed, this
affects exactly one row and column on each of the levels; in the example in Figure 3.4,
these are marked yellow. It can be easily seen that the total number of these values is
in O(n). Hence, if we assume that the new distances can be computed in constant time,
all updates can be performed in time linear in the number of objects n. Merging two
clusters A and B can now be realized by deleting the rows and columns corresponding
to A and B and adding a new row and column to store the distances to the cluster
resulting from the merge. Hence, the total number of updates needed is linear, which
leads to a total running time in O(n?) for n merge operations.

As mentioned above, CNM can be interpreted as a SAHN algorithm and hence, the idea
of Eppstein [70] can be used to implement it with O(n?) time and space complexity,
compared to O(n?logn) time in the worst case and linear space for the heap based
approach. To the best of our knowledge, alternative SAHN algorithms for modularity
based clustering have not yet been considered. However, as there are faster and more
accurate algorithms for modularity maximization available by now, this is probably of
little practical interest, at least in the standard scenario where the goal is to obtain one
clustering of a static graph with high quality with respect to modularity.

3.3.2 Greedy Vertex Moving (Louvain)

To assess the running time of the Louvain method, i.e., GENERIC GREEDY VERTEX
MOoVING with modularity as objective, we first consider the complexity of one round of
the GENERIC LOoCAL MOVING algorithm. Similar to the gain when joining two clusters,
the improvement in modularity when moving a vertex v from its current cluster A to
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cluster B can be easily calculated as

_ EB{u} ~ EAhL) [va\ (o} — vB] - deg(v)

mod(Cy—p) — mod(C) - 52

If A is considerably larger than B, it is possible that moving v to B increases modularity
even if v is not linked with any vertex in B. It can however easily be seen that in this
case isolating v has an even greater benefit with respect to modularity. As above, when
computing the best cluster for a vertex, it is sufficient to consider all clusters it is linked
with and, additionally, the possibility to isolate it.

In contrast to the implementation of the CNM algorithm, we do not contract clusters
during the local moving procedure but always work on the original graph. For each
vertex, we store the id id(v) of the cluster it currently belongs to. These values are
initialized such that id(v;) = ¢ in the beginning. In the rare case that a vertex becomes
isolated, we assign to it the id of a cluster that is currently empty, thus guaranteeing
that all ids remain in [1, n]. Furthermore, we have to maintain the volume of each cluster
during the execution of the algorithm.

To decide where to move a vertex v, we have to determine the number of edges linking
it to every neighboring cluster. This can be done efficiently in time O(deg(v)) by using
a simple trick similar to bucket sort. At the beginning of the algorithm we initialize a
vector W of size n with zeros at each position. For each neighbor of v, we increment
Wi] by one. If W[i] was zero before, we additionally store 7 in a list L of neighboring
clusters (see Figure 3.5). Now, the best neighboring cluster can be determined by going
through L and considering the corresponding entry in W. In the end, we have to reset
all values of neighbors to zero in W in order to be able to reuse W for the next vertex.
Altogether, in one round of the algorithm, we iterate over the neighbors of all vertices,
thereby considering each edge twice; this leads to a total running time in O(m + n).
This approach has for example been taken in the very fast implementation by Blondel
et al. [32].

After local moving has converged on some level, we contract the resulting clusters to
obtain a higher level graph where edge weights represent the number of edges linking the
clusters that are represented by the incident vertices. For that, we can first construct for
each non-empty cluster C in the graph a list containing its vertices by using for example
bucket sort. The number of edges linking C' with every other cluster and therefore all
of its adjacencies can now be determined by iterating over all edges incident to clusters
in v and using the above trick. Hence, contraction is also easily possible in linear time.

An asymptotic upper bound on the total running time of the algorithm is thus given by
O(r-(n+m)), where r is the total number of rounds spent by the local moving procedure.
To the best of our knowledge, the best upper bound known for r for unweighted graphs is
the trivial bound derived by the observation that the objective gain associated with any
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FIGURE 3.6: Graph family where the Louvain method needs 2(n) rounds, if vertices
are considered in the order indicated by the indices. The clustering shows the interme-
diate clustering obtained after one round of local moving, starting from the singleton
clustering. The number of vertices n in the graph is assumed to be odd.

performed move equals mod(C,_.5) — mod(C) = a/(2m?) for some a € Z*. Hence, as
the modularity of any clustering is in [—1/2,1] (cf. [35]) and modularity improves by at
least 1/(2m?) in each step, the algorithm performs at most O(m?) moves in total, which
results in a total of O(m?) rounds in the worst case. In degenerate cases, (n) rounds
can be necessary, if we assume a worst case order in which the vertices are considered.
An example for this is the graph family illustrated in Figure 3.6.

Proposition 3.1. For the graph family depicted in Figure 3.6, the number of rounds
performed by the Louvain algorithm on the lowest level of the hierarchy is in Q(n).

Proof. We first recall that the Louvain algorithm never moves vertices to clusters they
are not linked with; thus, we do not have to consider this possibility when determining
the best move for each vertex. We will show that, as long as the cluster of vertex 3 is
small enough, exactly one vertex joins this cluster in each round of the algorithm. We
have m = 2n — 3 and hence, the improvement of moving a vertex v from cluster A to
cluster B can be expressed as

= =6

CB.{v} ~ CA} o} | [VA\ (v} — vB] - deg(v)
2n —3 8n2 — 24n + 18

If a > 0, § is constant and n is large enough, this value is larger than 0, which means
that the associated move always improves modularity.

In the first step, we justify why the clustering after the first round of local moving is
the one illustrated in Figure 3.6. Vertex 1 has two neighboring clusters {2} and {3},
both of which share one edge with vertex 1. As the volume of {2} is smaller than the
volume of {3}, moving vertex 1 to {2} is always more beneficial than moving it to {3}.
Furthermore, as both volumes are constant, this move improves modularity for large n.
Hence, vertex 1 is moved to {2}. With similar arguments, it can be seen that vertex
2 does not change its cluster membership. If n is large enough, moving vertex 3 to
{1,2} yields an improvement of 2n2_3 - SHQEZZS 75> Which is both larger than zero and
the improvement 2n1_3 — 8n237323 5 of moving it to {4}. Moving vertex 3 to any other
neighboring cluster is even worse, hence, it is moved to {1,2}. With similar arguments
as we applied for vertex 1 and vertex 2, it can be seen that vertex 4 moves to {5} and
vertex 5 does not change cluster membership. The same applies to the vertices 6 to
n — 1. Vertex n is moved from {n — 1,n} to cluster {1,2,3} if n is large enough, as
the associated improvement - 3nt3 __ ig larger than 0. This yields the claimed

2n—3  8n?—24n+18
clustering after the first round.
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We now prove by induction that for each i € {2,...,|{5n]}, exactly one vertex move
occurs in round ¢, the move of vertex n — i + 1 to the cluster D containing vertex 3.
Hence, the Louvain algorithm performs at least L%nj rounds on the lowest level of the
hierarchy and the statement of the proposition follows.

Let ¢« = 2. We already know that the initial clustering looks like the one depicted in
Figure 3.6. Analogous to the arguments used in the first round, it can be verified that
the vertices 1,...,n — 2 do not change their cluster membership, vertex n — 1 moves to
D, and vertex n remains in D.

For ¢ > 2, it can be easily seen that vertex 1 and vertex 2 do not get isolated from D,
as otherwise the rightmost vertex on the lower path that is contained in D would not
have been moved to D in the previous round.

For vertex 3, we claim that if we would first isolate it, moving it back to cluster D is
always at least as good as moving it to another cluster or leaving it isolated, which is
equivalent to the statement that it remains in D. Let k be the number of vertices in D
on the path. The improvement in modularity when moving vertex 3 back to D can be
expressed as

k _(n—l)'(Bk—l)_k I 3n—3 N n—1
2n—3  8n2—24n+18 2n—3 8n? —24n+18 8n? — 24n + 18
—_—
>0 for large n >0 for large n

Hence, moving vertex 3 to D always improves modularity and, as the improvement
increases with & and no cluster on the path contains more vertices than D \ {3}, the
claim follows.

It is not hard to see that vertex 4 to vertex n — ¢ remain in their cluster, as essentially
nothing has changed for them since the previous round. For vertex n —i+ 1 we have to
distinguish two cases, either it is contained in a cluster of size 2 or currently isolated.

In the first case, it does not become isolated, otherwise it would have been already
isolated in the previous round. Hence, it either stays in its cluster or is moved to cluster
D. The improvement of the latter with respect to modularity can be expressed as

1 3-B—(n—14+3k-1)] 1 3n+ 9k — 15

2n_3+ 8n2 — 24n + 18 2n—3 8n2—24n+18
Itiskzi—i—lﬁ%n#—l and hence

1 3n+9k — 15 S 1 3.9n —6

n—3 8n2—24n+18 " 2n—3 8nZ — 24n + 18

>0 for large n

It follows that vertex n — ¢ + 1 is moved to cluster D.

If vertex n — i+ 1 is currently isolated, moving it to the cluster of vertex n — i improves
modularity if n is large enough, as « is larger than 0 and 3 is constant. It remains to
show that modularity increases even further if vertex n —i+ 1 is moved from the cluster
of vertex n — ¢ to D; this is completely analogous to the first case.

It is not hard to verify that the vertices n — i + 2 to n do not get isolated, as otherwise
moving vertex n — ¢ + 1 to D would have decreased modularity. In summary, the only
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vertex move that occurred was the move of vertex n — i 4+ 1 to D, which concludes the
induction step and shows the proposition. ]

In summary, one round of the Louvain algorithm is linear in the size of the current level
of the hierarchy, which is at most the size of the input graph. For unweighted graphs,
we further gave a lower bound of Q(n) and a trivial upper bound of O(m?) on the total
number of rounds that are executed. There is still a very large gap between these bounds
and other scenarios might be interesting as well. Up to now, we assumed a fixed vertex
ordering; a simple modification of Louvain that has also been considered by its authors
is to visit the vertices in a random order in each iteration, which raises the question of
average time complexity over all possible orderings. Furthermore, the upper bound on
the number of rounds only holds for unweighted graphs, whereas we do not know of any
subexponential bound if edges are weighted.

From the theoretical point of view, this leaves some interesting open problems. From the
practical point of view, the lower bound on the number of rounds needed in the worst
case is very far away from the actual number of rounds observed on real world instances.
For example, on the graph uk-20023, which is a webgraph with over 18 million vertices
and 216 million edges, the algorithm converges after only 59 rounds. This makes the
algorithm very fast and therefore popular in practice; as a heuristic to further decrease
the running time, it is possible to set a limit on the number of rounds without sacrificing
too much quality [32].

3.4 Related Work

The application of hierarchical clustering algorithms dates back to the 1950’s, when
Sneath proposed to apply single linkage clustering in the context of identifying taxonomic
groups of bacteria [203]. Single linkage is a simple SAHN algorithm where in each
step, the minimum distance between two objects in distinct clusters is computed and
the corresponding clusters are linked. Since then, a lot of work has been invested in
developing more efficient algorithms for general SAHN clustering or designed for specific
distance update schemes [11, 26, 45, 59, 60, 70, 105, 221, 127, 133, 139, 143, 166, 167, 169,
185, 201]. We will describe the most general of these algorithms in detail in Section 4.4.3
and discuss their applicability in the context of graph clustering based on intracluster
density and intercluster sparsity measures.

For the special case of single linkage, Ross and Gower [105] observe that it is possible
to first construct a minimum spanning tree of the objects and then to iteratively merge
clusters that are linked by the edges of the spanning tree ordered by increasing weight.
Rohlf [185] proposes a modification of this approach that does not compute the full
spanning tree but enough information to create the correct dendrogram in O(n?) time
and in linear space. In Miillner’s experiments, this variant turns out to be very fast in
practice. Another algorithm with the same guarantees for single linkage is the SLINK
algorithm by Sibson [201]. A similar algorithm exists for complete linkage [60]. A
systematic overview on early work on SAHN algorithms can be found in the books
of Jain and Dubes [125] and Anderberg [11], the related work discussed by Day and
Edelsbrunner [59] and the survey by Murthag [168].

3http://www.cc.gatech.edu/dimacs10/archive/clustering.shtml
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It is worth to remark that in the context of vector quantization, a special SAHN linkage
scheme minimizing the average distance of vertices to the centroid of their cluster is
known as pairwise nearest neighbor clustering (PNN) [71, 197]. Frénti et al. consider
fast algorithms to implement this linkage scheme exactly [85] and approximately [86].
The former is more or less equivalent to Anderberg’s general SAHN algorithm based on
a list of nearest neighbors for each cluster [11]. Another approximate PNN algorithm is
described by Equitz [71].

A well-known clustering algorithm that includes a SAHN algorithm as one step of the
clustering procedure is BIRCH [234]. CURE [110] is another clustering algorithm for
points in k-dimensional space that can be seen as a compromise between centroid and
single linkage. It is based on a variant of Anderberg’s algorithm that uses a k-d tree
for nearest neighbor queries whenever these are necessary. ROCK [111] can be seen as
a graph clustering algorithm, although it aims to cluster attributed data. In a prepro-
cessing phase, a threshold graph is built where edges link objects that are “sufficiently
similar”. Then, the similarity of two objects is defined as their number of common neigh-
bors. Roughly speaking, the aim of the main clustering procedure is now to maximize
the overall similarity of objects in the same cluster. The objects are then clustered using
a similarity measure based on this global objective with the help of a SAHN algorithm
using a hierarchy of binary heaps. Similarlyy, CHAMELEON [131] is a graph based clus-
tering algorithm that applies hierarchical clustering in the second phase to obtain the
final clustering. In the first phase, a k nearest neighbor graph is built for the objects,
i.e., edges between each object and its k closest neighbors are created. Then, a graph
partitioning algorithm is used to partition the objects into many small preclusters. In
the second phase, a SAHN algorithm that uses a custom distance function taking both
the graph structure and the distances between the original objects into account is ap-
plied to cluster the preclusters. The globally closest pair is here maintained in a binary
heap. An alternative second phase consists in iteratively merging all pairs of clusters
whose distance is below a certain threshold.

In the context of graph clustering, Fortunato [83] gives an overview on similarity mea-
sures between the vertices of a graph. Commonly used measures include similarities
based on the number of common neighbors [43, 222] or the commute time between the
vertices in a random walk [228] and related concepts. He points out, that in principle
any similarity measure for vertices could be used with any non-metric linkage scheme as
an algorithm for graph clustering. This approach has for example be taken by Harel and
Koren, who use distance measures based on random walks [116]. Carrasco et al. [46] use
a modified version of single linkage to cluster vertices of a bipartite advertiser-keyword
graph based on the similarity of their neighborhoods. Hopcroft et al. [121] combine sim-
ilarities of vertices in citation networks derived from the set of commonly cited articles
with an agglomerative algorithm similar to centroid linkage. Donetti and Munoz [67]
first project the vertices in k-dimensional space based on the eigenvectors of the Lapla-
cian. In the second step, they use single and complete linkage to cluster the resulting
points, but restrict merging operations to clusters that are connected in the original
graph. The final clustering is then chosen as the clustering with maximum modularity
in the dendrogram. A well-known hierarchical graph clustering algorithm is the CNM
algorithm by Clauset et al. [53] that greedily optimizes modularity. We have described
this algorithm in detail in Section 3.3.1. Several modifications of this algorithm exist,
either targeted at decreasing the running time or improving the quality of the resulting
clustering [68, 189, 208, 220]. Gorke et al. [95] consider null model based graph cluster-
ing objectives inspired by modularity that are based on a different tradeoff between the
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actual and expected number of intracluster edges in a graph. In contrast to modularity,
there is no obvious way to fit the GENERIC GREEDY MERGE algorithm greedily opti-
mizing these measures into the framework of SAHN algorithms. Using a data structure
that maintains the convex hull of a fully dynamic point set P and that allows for quick
tangent queries, they show that it is nonetheless possible to achieve a worst case running
time of O(n?logn) for the merging procedure.

Local search algorithms for clustering and partitioning problems based on vertex moves
abound. Many of them apply a multilevel scheme in which the graph is first coarsened
by the iterative contraction of small subclusters and then optionally partitioned by a po-
tentially expensive algorithm on the resulting smaller graph. In the following refinement
phase, the contractions of the coarsening phase are iteratively undone and the clustering
is further improved on each level using different heuristics. In this scheme, vertex moves
are most often used in the refinement phase, as they allow for fine grained modifica-
tions of the clusters and are usually very cheap. Early refinement techniques based on
vertex moves from the field of graph partitioning include the Kernighan-Lin [134] and
KL/FM heuristic [77]. For more information on the use of multilevel algorithms for
graph partitioning, we refer to the recent overview article of Bulug et al. [42].

Clustering algorithms also often rely on iteratively improving the current clustering by
moving single objects between the clusters. A very well-known algorithm for k-means
clustering is for example Lloyd’s two phase algorithm [154] that greedily minimizes the
within-cluster sum of squares of a clustering. One of these phases can be seen as an
instantiation of GENERIC LOCAL MOVING, with the difference that the input is a set of
points instead of a graph.

In the context of modularity-based graph clustering, refining a clustering based on greedy
vertex moves has been first proposed by Schuetz and Caflisch [193]. In Section 3.3.2, we
already discussed the Louvain algorithm [32], which uses greedy vertex moves for the
coarsening phase in a multilevel scheme and therefore fits the description of GENERIC
GREEDY VERTEX MOVING. Inspired by algorithms for graph partitioning, Rotta and
Noack [189] evaluate different possibilities for the coarsening and refinement phase in a
general multilevel scheme optimizing modularity. The different variants considered for
the coarsening phase depend on greedily moving or merging clusters based on join priori-
tizes, which are variants of the modularity increase that basically skew the merge process
in favor of balanced dendrograms, similar to the idea of Wakita and Tsurumi [220]. They
further consider a vertex moving procedure that is based on always performing the glob-
ally best vertex move instead of considering all vertices in rounds; in their experiments,
this variation turns out to be far slower while yielding worse quality. In terms of local
search heuristics [120], GENERIC LOCAL MOVING can be seen as a hill-climbing algo-
rithm in which the neighborhood of a clustering is defined by vertex moves. Among
other local search metaheuristics applied to modularity based clustering is simulated
annealing [112, 161], which leads to good quality but higher running times.

Karypis et al. [132] first use a variation of group average linkage to obtain an initial
clustering. In a following multilevel scheme, this clustering is further improved by first
coarsening the graph contracting matchings subject to the constraint that each con-
tracted edge links vertices in the same cluster. In the refinement phase, greedy vertex
moving with different objective functions is used to improve the clustering on all levels
of the resulting hierarchy. Similarly, Conan-Guez and Rossi [55] use a coarsening phase
based on merging clusters such that an expansion based objective function is greedily
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optimized. In the refinement phase, they further improve this objective functions by
greedy vertex moves on a selection of the levels. Dhillon et al. [63] aim at optimiz-
ing different cut based objective functions for graph clustering in their tool Graclus.
Similar to many algorithms for graph partitioning, they use a base clustering®* phase be-
tween coarsening and refinement. The idea is to stop the coarsening procedure at some
point to perform a more expensive algorithm on the significantly smaller graph after
the contractions. Graclus uses spectral clustering for this step. The coarsening phase
contracts matchings with high weight, where weight corresponds to the improvement
in the objective function used. Weighted kernel k-means is used for refinement on all
levels.

“In terms of graph partitioning, this corresponds to the initial partitioning phase.



Chapter 4

Density-Constrained Graph
Clustering

The guiding intuition in the field of graph clustering is “intracluster density vs. inter-
cluster sparsity”. Mathematical formalizations thereof abound, most of which, however,
incorporate both aspects into a single criterion, which then serves as a quality measure
for graph clusterings. However, balance between the two aspects is a fine line. Treat-
ing them separately offers possibilities to individually adapt the tradeoff between them:
High intracluster density typically corresponds to finer and low intercluster density to
coarser clusterings. While the recent literature on graph clustering has mainly been
focusing on large data sets and on single criteria such as Modularity [173], Kannan et
al. [129] propose to minimize the cut between clusters, subject to a guaranteed conduc-
tance within them and show that this approach avoids the drawbacks of many simpler
measures. This stepping stone in bicriterial graph clustering inspired Flake et al. [79],
who gave an algorithm with provable, but interdependent bounds on both intra- and a
variant of intercluster expansion. Brandes et al. [38] were the first to use a notion of
intercluster conductance to experimentally evaluate clustering algorithms.

A range of well-known measures for quantifying the sparsity of a cut exist, many of which
are indisputable. Among these are conductance [129], expansion and density, all of which
suggest the adaption to measuring clustering with respect to both aspects. However, not
all of them have so far been coined and used. We systematically collect such measures
and set our main focus on scrutinizing their behavior in the light of the question which
combinations of intracluster density and intercluster sparsity measure enable efficient
greedy agglomeration (cf. Algorithm 2 in Chapter 3), putting aside other algorithmic
approaches [83].

Outline. We start by defining different intercluster sparsity and intracluster density
measures; the former are based on the sparsity of the associated cut and the latter on
the density of the induced subgraphs. In Section 4.2, we formally define the generic
problem DENSITY-CONSTRAINED CLUSTERING, which aims at optimizing intercluster
sparsity while retaining guarantees on the intracluster density of the resulting cluster-
ing, followed by a discussion of related approaches from the literature. Furthermore,
we discuss traits of intracluster density and intercluster sparsity measures that aim at
capturing our intuition that the former strives towards fine and the latter towards coarse
clusterings, and prove or disprove these traits for each established measure. This yields

31



32 Chapter 4 Density-Constrained Graph Clustering

qualitative insights into their behavior with respect to greedy agglomeration. We pro-
ceed by reviewing efficient SAHN algorithms from the literature and identify for each
of these algorithms key properties of objective functions and constraints that are suf-
ficient in order to apply them to implement greedy agglomeration. Section 4.4.4 and
Section 4.4.5 then contain an almost complete classification of the proposed measures
with respect to these properties.

Systematic experiments evaluating how well these measures conform to human intuition
and how well the proposed algorithms discover existing clusterings are beyond the scope
of this chapter. To some extent, these questions are covered in the experiments in
Chapter 5.

4.1 Quality Measures for Clusterings

The bicriteria measures we construct and use in this work build upon the conductance,
expansion and density of cuts in the graph. Each of these formalizes a varied view of the
paradigm of graph clustering and can be cast into either measures for intracluster density
or for intercluster sparsity. The conductance of a cut (S,T) measures the bottleneck
between S and T, defined as

€s,T

conductance(S,T) = min{vs, o1}
min{vg, vp

Ezpansion substitutes volume by cardinality:

€s,T

eXpanSion(S, T) = m

The density of a cut is defined as

€sT

density(S,T) = o
snrt

In the following, we describe how these criteria translate into concrete measures that
can be used to assess the quality of a whole clustering.

4.1.1 Intercluster measures

For intercluster measures, we distinguish two ways of measuring cuts: between pairs
of clusters (pairwise), or cutting off a cluster (isolating). Isolated measures assess how
well a cluster is separated from the remainder of the graph and pairwise measures how
well the clusters are separated from each other. For an illustration, see Figure 4.1 (a)
and (b). The isolated view yields a sparsity value for each of the clusters, defined by
the cut induced by the cluster. In contrast to that, the pairwise view considers cuts
between pairs of clusters in the subgraph induced by their union; in total, this yields
(Igl) values for the clustering C. To have these quantities express the quality of an entire
clustering, we can either construct a worst-case measure by considering the minimum
or mazimum of the cut values of the whole clustering or an average measure, which
builds upon the average of the cut values. In addition to that, density lends itself to
the natural idea of adding up all values before normalization. In terms of graph cuts,
we can think of this measure as the density of the k-way cut induced by the clustering.
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(a) isolated view (b) pairwise view (c) global view

FIGURE 4.1: Illustration for different ways to use cut-based measures to evaluate the
intercluster sparsity of a clustering.

TABLE 4.1: Density and counting
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We call this the global point of view (see Figure 4.1 (c)). A simple global alternative to
global intercluster density is to count the total number of intercluster edges.

Thus, in accordance with the above discussion, we define the twelve intercluster sparsity
measures resulting from the isolated and pairwise view listed in Tables 4.1 and 4.2, plus
the two measures with a global nature: gxd and nxe (cf. Table 4.1). Given a clustering,
all of these measures can be efficiently evaluated. Adhering to our abbreviations, we
denote individual clusters’ contributions by

: rc . Tc . T
ixd(C) := ————,ixc(C) ;= ————, and ixe(C) := —
© neny\c ©) min{vc, UV\C} ) min{ng, ”V\C}
Analogously,
pxd({4, B}) = — pxc({4, B}) = °A,B and pxe({4, B}) := A.B

nang’ min{va,vg}’ min{na,npg}

In the special case that C is the all clustering, i.e., C only contains one cluster, we
define all these values to be 0, which corresponds to the optimum. Any other choice is
counterintuitive on trivial examples such as a clique.
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TABLE 4.2: Intercluster measures based on conductance and expansion
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4.1.2 Intracluster measures

Intracluster density measures quantify how well the vertices within a cluster are inter-
connected. A natural way to extend the notion of sparse cuts to the (inner) density
of the individual clusters is to compute the conductance, expansion or density of the
subgraph induced by the cluster. In this context, the conductance, expansion or density
of a graph is defined as the minimum value over all possible cuts of the graph. However,
the very evaluation of both the conductance and the expansion of a graph is N'P-hard
[148, 202]; the same holds for the sparsest cut problem as formalized in [163], which gen-
eralizes the problem of finding a cut of minimum density to graphs with edge weights.
While there are many ways to deal with this, it generally discourages the use of these
functions as intracluster measures.!

Density can also be used in another way by defining the density of a graph as the number
of edges divided by the maximum possible number of edges, which equals the number of
vertex pairs in the graph. We refer to the density of a cluster in the sense of the density
of the subgraph induced by it as

2ec

N = e -1

As in the case of isolated measures for intercluster sparsity, this yields as many density
values as clusters; taking the minimum of these values leads to minimum intracluster
density, whereas the average corresponds to average intracluster density. Similar to
intercluster density, we can also take a more global view and regard the density of
the whole clustering as the number of intracluster edges divided by the total number
of vertex pairs that are contained in the same cluster. This yields global intracluster
density. In the degenerate case that a cluster C only contains one vertex, we define its
intracluster density to be maximal, i.e., id(C) := 1.

Note that a bottom-up approach cannot take advantage of the approximation results used in [129].
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4.1.3 Qualitative Observations

While all proposed intra- and intercluster measures are based on the same intuition, there
are fundamental differences in the way they assess particular clusterings. One important
point is whether balanced clusterings, i.e., homogeneous cluster sizes, are rewarded or
penalized. As an example aid, as an intracluster measure, has a tendency to favor
unbalanced clusterings, as singletons yield optimum values and it is easy to compensate
the existence of a large cluster with poor intracluster density with an appropriate number
of singletons. In contrast to that, mid rewards balanced clusterings, as clusters that are
larger than the average are more likely to have low intracluster density and thus to be
the qualitative bottleneck. Gid ranges somewhere between these extremes. Using the
number of intercluster edges to measure intercluster quality clearly favors unbalanced
clusterings, as cutting off small portions of the vertex set from the remainder of the
graph usually cuts far fewer edges than partitioning the graphs in two blocks of roughly
equal size. To some extent this effect can be compensated by combining nxe with an
appropriate intracluster measure.

In the context of intercluster measures, another interesting aspect is how vertices that
are only loosely connected to the remainder of the graph are handled. For example,
singletons with degree one have a low intercluster density of 1/(|V| — 1) but maximum
intercluster conductance of one. Thus, algorithms minimizing intercluster conductance
are prone to put “outsiders” in the clusters of their neighbors, while algorithms mini-
mizing intercluster density will tend to consider these vertices as singletons. Both views
can be motivated, depending on the desiderata: If a vertex is linked to just a single
vertex of a larger group, it can be hardly considered as an integral part of this group
and should thus be treated separately. On the other hand, this vertex has no links to
other groups and thus, from its point of view, it clearly has a strong affiliation to the
group of its neighbor.

4.2 Problem Statement and Complexity

In the following we narrow down the myriad formalizations for combining intra- and
intercluster quality and state the problem we focus on. Not only do these two aspects
capture different properties of a clustering, they even tend to oppose each other: Fine
clusterings easily achieve high intracluster density but poor intercluster quality, while the
converse is true for coarse clusterings. In the light of a bottom-up strategy, intercluster
sparsity aspires a coarse clustering and starts out poorly, which suggests using it as
the driving objective function. By contrast, intracluster density starts out with the
optimum value, which suggests it as a suitable constraint. We thus formalize our problem
statement as follows, an exemplary instance and its solution are given in Figure 4.2.

Problem 1 (DENSITY-CONSTRAINED CLUSTERING (DCC)). Given a graph G = (V, E),
among all clusterings with an intracluster density of no less than «, find a clustering C
with optimum intercluster quality.

Note that this problem definition is parameterized in the sense that each combination
of intra- and intercluster quality function can be used to derive a concrete optimization
problem in the context of DENSITY-CONSTRAINED CLUSTERING. If we consider all 14
measures for intercluster quality and the three measures for intracluster density defined
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Ground-Truth Group 1 Ground-Truth Group 2

FIGURE 4.2: Zachary’s karate club [232] represents a social network and is traditionally
used for a test of feasibility in the graph clustering literature. Groups represent the split
of the network in reality, fill colors depict the optimal solution to our problem statement
using nxe constrained by mid with o = 0.25. Reviewing an optimal solution (see
Appendix A) helps judging the measure’s usefulness independently of an algorithmic
approach. For comparison, border colors indicate a Modularity-optimal clustering [173].
By contrast, aid yields the all clustering with the exception of one singleton vertex (12),
pointing out its undesirable tendency to allow degenerately imbalanced clusterings.

above, this leads to a family of 42 optimization problems. An exhaustive study of
hardness results for all combinations of intra- and intercluster measures is beyond the
scope of this thesis. We derive NP-hardness exemplarily for DENSITY-CONSTRAINED
CLUSTERING combining mid, aid or gid with nxe and conjecture NP-hardness for all
remaining combinations. We use that, if we set a = 1, the decision variant of our
problem is equivalent to the following problem.

Problem 2 (CLUSTER DELETION). Giwen a graph G = (V, E) and a parameter r € N,
is there a subset E' C E with |E'| < r such that the connected components in G' =
(V,E\ E') are cliques?

This problem is similar to both the classic problem PARTITION INTO CLIQUES [88],
which instead minimizes the number of cliques and the edge-maximizing variant of the
KCr-PACKING PROBLEM [49], which differs in that it only allows cliques with bounded
size. Shamir et al. [196] show that there is some constant € > 0 such that it is N P-hard
to approximate CLUSTER DELETION to within a factor of 1 + ¢; for an independent
proof of the weaker statement that a problem equivalent to CLUSTER DELETION is N P-
complete, see also our technical report [102]. As CLUSTER DELETION is a special case
of the problem we are interested in, we get the following corollary.

Corollary 4.1. There is some constant € > 0 such that it is NP-hard to approximate
DENSITY-CONSTRAINED CLUSTERING combining mid, aid or gid with nxe to within a
factor of 1 + €.

4.3 Related Work

The first part of this section deals with clustering based on dense subgraphs, whereas
the second part is devoted to algorithms based on sparse cuts.
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4.3.1 Dense Clusters

Although all notions of good clusterings are implicitly or explicitly based on the assump-
tion that clusters are dense subgraphs in the sense that the corresponding vertices are
connected by many edges, the precise definition of what a good cluster is varies among
the literature. A common property of all established definitions of dense clusters is that
isolated cliques, that is, cliques whose vertices are not connected to the remainder of the
graph, are considered as perfect clusters in some sense.

Local definitions of clusters usually only depend on the subgraph induced by the cluster
and, possibly, its connections to the other vertices. Early definitions of communities
include the definition as mazimum cliques in the graph [157]. Although this might seem
appealing at first glance, this criterion is usually considered as too strict and relaxations
of this concept are used. One possibility to do this is based on the observation that
the diameter of cliques is always 1. The notions of n-clique [3, 156], n-clan and n-
club [164] relax this property in the sense that they consider communities as subgraphs
with diameter at most n, where n is “small”.?

Closer to our definition of clusters as dense subgraphs are relaxations of cliques with
respect to the number of neighbors a vertex must have in its community. Roughly, these
relaxations can be classified in two categories. The first category considers communities
that have the property that each vertex within the induced subgraph has a minimum
number of neighbors inside the community. If this number k is constant and only maxi-
mal subgraphs with respect to this property are considered, one retrieves the definition
of a k-core [194]. Similarly, a k-plez [195] is a maximal subgraph with the property that
each vertex is connected to all but at most k vertices within the subgraph. Rather than
requiring the degree of each vertex to be larger than a constant, Matsuda et al. [162]
define a subgraph to be p-quasi complete if each of its vertices is connected to at least a
pth fraction of the vertices within the subgraph. In the data mining community, p-quasi
complete subgraphs are also known as quasi-cliques [153, 178, 233].

Another possibility to relax the constraint on the within-cluster degree is to require
that the average degree of each vertex in the cluster is above a certain threshold. If
the minimum threshold on the average within-cluster degree of the vertices is set to be
an « fraction of the number of possible neighbors within the cluster, one retrieves our
definition of a cluster with density at most «, understood as the density of the induced
subgraph. Clusters that are dense in this respect are also sometimes referred to as
quasi-cliques [2, 40]. Hartuv and Shamir’s [118] definition of a highly connected subgraph
equals the definition of a cluster of density at least 1/2. Brunato et al. [40] unify both
variants of quasi-cliques by requiring that both the minimum within-cluster degree of
each vertex is higher than a threshold A and the average within-cluster degree is higher
than another parameter v, with v > A.

Complexity and Enumeration Algorithms. Finding large dense subgraphs with
respect to one of the definitions above or similar ones is a well-known problem that has
been considered frequently in the literature, often in the context of clustering biological
data. Usually, the corresponding decision problems are A/P-complete, starting with the
classical problem CLIQUE that asks if a graph contains a clique of a given size [88].
Another example is the problem considered by Holzapfel et al. [119], which consists

2In contrast to the definition of n-clan and n-club, n-cliques also take into account paths running
through vertices outside the community.
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in deciding whether a given graph contains a subgraph of size k£ such that each of its
vertices has an average within-cluster degree of v(k) for some function 7. They show
that the problem is AP-complete for v = 2 + Q(1/k'~¢) and polynomially solvable for
v =24 O(1/k). Feige et al. [76] give an approximation algorithm for the problem of
finding a subgraph of size k& with a maximum number of edges. Abello et al. [2] and
Brunato et al. [40] use local search algorithms to find a large quasi-clique in a given
graph. As these algorithms are randomized and are therefore able to find different
quasi-cliques with different random seeds, they can be also used to find sets of quasi-
cliques. Similarly, Bu et al. [41] identify quasi-cliques in protein interaction networks
and evaluate their usefulness in the prediction of protein functionality. Other studies
focus on the enumeration of all maximum quasi-cliques in a graph [153, 214] or across
a set of different graphs [178, 233] using branching combined with different techniques
to prune the search space. Matsuda et al. [162] address the problem of covering a given
graph with a minimum number of quasi-cliques and propose a greedy algorithm for this
problem. All of these approaches differ from DENSITY-CONSTRAINED CLUSTERING in
that they either find sets of overlapping dense clusters or single clusters instead of a
partition of the vertex set.

Partitioning Algorithms. Basu et al. [21] consider the problem to partition the graph
into a minimum number of quasi-cliques and propose a greedy algorithm for this problem.
In contrast to DENSITY-CONSTRAINED CLUSTERING, the number of edges linking the
resulting clusters is not taken into account. Hartuv and Shamir [118] partition the graph
into highly connected components, i.e., quasi-cliques in the sense that each vertex must
be linked to at least half the vertices in its cluster. For that purpose, they iteratively
split clusters that violate this constraints according to a minimum cut in the cluster.
Hiiffner et al. [122] formalize this as the optimization problem to minimize the number
of edges cut by a clustering under the constraint that each cluster is a highly connected
component. They show that this problem is NP-hard and evaluate exact and heuristic
algorithms for it, both with respect to the number of edges cut and the usefulness in
classifying proteins. This can be considered as a special case of DENSITY-CONSTRAINED
CLUSTERING combining mid with nxe, except for the difference that the minimum within-
cluster vertex degree must be larger than a certain threshold instead of the average degree
within each cluster.

Dengraph and SCAN. Other density-based graph clustering algorithms include DEN-
GRAPH [73] and SCAN [226]. The term density is here derived from the common base
algorithm [72] that is used to identify dense regions in metric space. This intuition of
density is quite different from our definition of a cluster as a dense subgraph and there
is no apparent lower bound on the density of the resulting clusters in this sense.

4.3.2 Clustering based on sparse cuts

Terminology. Before reviewing some of the vast literature on sparse cuts in the context
of clustering problems, we would like to spend a few words on terminology. In Section 4.5,
we adopted the terms expansion and conductance that have been used for example by
Kannan et al. [130] and many other authors. We chose the word density for the variant
that normalizes the number of cut edges by the product of the sizes of the two cut
sides as it is very close to the definition of the density of a cluster as the density of
the induced subgraph. This corresponds to the definition of intercluster density used by
Fortunato [83] in the context of graph clustering.
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Due to the fact that these measures were proposed and rediscovered in different com-
munities and application contexts, they are also known under different names that are
often ambiguous. Lang and Rao [146] state that expansion is also known as quotient cut,
whereas for example Spielman and Teng use the term ratio cut for the same objective.
The minimal expansion of any cut in the graph is often called the Cheeger constant or
isoperimetric number of the graph. Hagen and Kahng [115] and Chan et al. [48] use the
name ratio cut not for expansion but for our definition of the density of a cut. Mat-
ula and Shahroki [163] use the term density for a generalization of density that takes
demands into account® and call the associated optimization problem the sparsest cut
problem.

Cut-based Clustering Measures. A common way to use conductance as a measure
to evaluate the intercluster sparsity of a whole clustering is the following definition,
which is often called normalized cut or Ncut [63, 219]:

Ncut(C) = Z fene
cec ¢

This definition is equivalent to our notion of average isolated intercluster conductance in
case the volume of each cluster is smaller than half the total vertex degree in the graph
and the number of clusters is fixed. A similar generalization of expansion to whole
clusterings is known as ratio cut [63, 219] or RCut. Interestingly, the ratio cut value of
a clustering consisting of two clusters is equivalent to the density of the associated cut
as defined in Section 4.1:

RCut({A4, B}) = 48 A8, _CAB
na ng nAg-Np

Approximating Sparse Cuts. There has been a substantial amount of research on
approximation algorithms for the problem of finding sparse cuts. For example, Arora
et al. [16] give O(y/logn) approximation algorithms for both the expansion and the
conductance of a graph. As can be seen by the above conversion relating RCut to
density, the density of a cut is bounded below by 1/n times its expansion, and bounded
above by 2/n times its expansion. Hence, this also yields an O(y/logn) approximation
algorithm for the problem of finding a cut of minimum density. For more information
on approximation results, we refer to the related work mentioned by Madry [160].

Spectral Clustering. A very common approach to graph clustering, especially in
the field of image segmentation, is the use of spectral clustering. Spectral clustering
partitions the graph using the eigenvectors corresponding to the largest eigenvalues of
some variant of the Laplacian matrix associated with the graph [219]. A very good
explanation of the relation between spectral clustering and sparse graph cuts is given
by von Luxburg [219]. Early examples of spectral algorithms explicitly designed to find
sparse cuts include the spectral heuristic by Hagen and Kahng [115], which intends to
find a cut of low density. This algorithm has been modified to k-way clustering by
Chan et al. [48]. Shi and Malik’s [199] spectral algorithm is designed to find cuts that
are sparse with respect to the normalized cut objective. A detailed review on the vast
literature on spectral clustering is beyond the scope of this chapter. A good overview

3This means that the term ns - n7 in the denominator of density is replaced by >
where D(s,t) is called the demand between s and ¢ and can be arbitrarily chosen.

D(s,t),

seS,teT
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on earlier work in this context can be found in the article by Spielman and Teng [207],
whereas von Luxburg [219] discusses some more recent articles.

Approximate Clustering Algorithms. Kannan et al. [130] show that the spectral
algorithm of Shi and Malik yields a clustering with a conductance of at most v2 - OPT,
where OPT is the minimum conductance over all cuts in the graph. They use this
algorithm to analyze the performance of recursive spectral clustering in the context
of the bicriterial problem minimizing both the minimum conductance of cuts within
clusters and the number of edges cut by the clustering. Another variant of iterative
conductance cutting they consider replaces spectral clustering with an approximation
algorithm for conductance by Leighton and Rao [148]. Cheng et al. [51] propose to use
the spectral variant of iterative conductance cutting to obtain a hierarchy of clusters
or, in terms of the description in Chapter 3, a dendrogram of the data. For many
objective functions like k-means or min-diameter, a good clustering can now be found
in the second phase by computing the optimum clustering respecting the dendrogram
efficiently. Geometric MST Clustering [37] first embeds the vertices in Euclidean space
using the eigenvectors associated with the largest eigenvalues of the normalized adjacency
matrix and uses the resulting distances to weigh the edges of the graph. Then, a weighted
minimum spanning tree 1" is computed according to these edge weights. In the last step,
a clustering is chosen according to some quality function among all clusterings that
result from deleting the k heaviest edges in T', for 0 < k < n — 1. Flake et al. [79] use
properties of minimum cut trees [93] to obtain a clustering algorithm with guarantees on
both intra- and intercluster quality: The intracluster expansion of the resulting clusters,
as defined by Kannan et al. [130], is larger than an input parameter « and each cluster C
satisfies z¢/|V'\C| < a. Louis and Makarychev [155] consider the sparsest k-partitioning
problem, which generalizes the problem of splitting a graph into & clusters such that the
maximum intercluster conductance or expansion is minimized. They give a bicriteria
approximation algorithm that finds a clustering with at least (1 — €) - k clusters whose
conductance or expansion is at most O(v/logn -logk) times the optimum, using an
SDP-relaxation.

Refinement Algorithms. The Max Flow Quotient Cut Improvement (MQI) algorithm
by Lang and Rao [146] takes as input an arbitrary cut and returns a cut of lower conduc-
tance or expansion whose smaller side is contained in the smaller side of the original cut,
if such a cut exists. The algorithm finds this cut by solving a flow problem in a modified
graph. A combination of the graph partitioner Metis with MQI compares favorably to
spectral algorithms in their experiments. Carrasco et al. [46] use the same approach to
obtain a complete dendrogram of advertiser-keyword graphs. In their experiments, clus-
terings chosen from the dendrogram with few clusters show good behavior with respect
to additional meta information on the data. Wei and Cheng [225] use a modification of
the heuristic by Fiduccia and Mattheyses [77], which has been applied very successfully
in the context of graph partitioning, to find a cut of low density.

Agglomerative and Multilevel Algorithms. Conan-Guez and Rossi [55] use a cri-
terion similar to average isolated intercluster expansion in a greedy merge algorithm
following the implementation of Miillner [166]. In contrast to our definition of interclus-
ter expansion, the numerator of the quantity for each cluster is not equal to the number
of edges leaving the cluster but the number of edges within the cluster; the goal is hence
to maximize this measure. In a second phase, the resulting clustering is refined by a
multilevel scheme based on greedy vertex moves, as described in Chapter 3. Karypis
et al. [132] use essentially the same objective in the refinement phase of a multilevel
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Algorithm 5: GREEDY MERGE DCC(GM)

Input : graph G = (V, E), intracluster density measure i, intercluster sparsity
measure x, «
Output: clustering C of G
C < singletons
A« {{A,B} € (3) | i(Ciapy) > o and 2(Cya,py) < 2(C)}
while |C| > 1 and A # () do
M ¢ arg min {z(Car)}

C + CM
A« {{A,B} € (5) |i(Ciap)) = aand 2(Cra py) < 2(C)}

return C

algorithm. A second variant of this algorithm uses our definition of global intercluster
density in the refinement phase. In the contraction phase of their algorithm, a SAHN
algorithm is applied that uses as similarity measure between two clusters A and B the
following function f(A, B) that depends on an input parameter 6:

€A,B

(na+ng)? —nf —nf

f(A,B) =

For 6 = 2, this is similar to our definition of average or maximum pairwise intercluster
density; however, it can be easily seen that f is not equivalent to greedily maximizing
either of these measures. Dhillon et al. [63] consider the problem to minimize the sum of
the intercluster expansion or conductance of all clusters subject to the constraint that
the clustering contains exactly k clusters. In the coarsening phase of their multilevel
algorithm, they compute greedy matchings based on the pairwise conductance or ex-
pansion of the cut separating the clusters represented by the vertices. The subsequent
refinement phase is based on greedily moving vertices according to the objective function
used.

4.4 Generic Greedy Agglomeration

In this section, we discuss greedy agglomeration algorithms that try to optimize an
objective function in the presence of constraints on the feasibility of a clustering. In our
context, the objective function will be one of our measures for intercluster sparsity, and
the feasibility of a clustering depends on its intracluster density, i.e., we are interested in
agglomerative greedy algorithms for DCC. The general structure of such an algorithm
is given in Algorithm 5. It follows the generic scheme of Algorithm 2 discussed in
Chapter 3 with intercluster sparsity as objective function except for the restriction to
merge operations that lead to feasible clusterings, i.e., clusterings with an intracluster
density larger than a given threshold «. We will identify key properties of intracluster
density and intercluster sparsity measures that affect the efficiency and quality of greedy
agglomeration and classify the measures proposed in Section 4.1 with respect to these
properties.
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4.4.1 Properties of Intercluster Sparsity and Intracluster Density Mea-
sures

This section aims to give a high-level overview on the properties of intercluster sparsity
and intracluster density measures we define in this chapter; formal definitions and a
classification of the measures we proposed in Section 4.1 with respect to these can be
found in Section 4.4.2, Section 4.4.3, Section 4.4.4 and Section 4.4.5.

The first two properties are related to the nature of the resulting clusterings; they
yield qualitative insights in the behavior of different measures in the context of greedy
agglomeration, as well as insights into the measures themselves. The first property tries
to formalize our intuition that intercluster sparsity strives towards coarse clusterings and
therefore effectively drives greedy agglomeration. The second property relates to the
question whether a particular intracluster measure favors fine clusterings and therefore
does not impose an additional impediment to agglomeration. Informally, this translates
to the following definitions.

e unbounded merge behavior: Informally, an intercluster sparsity function x exhibits
unbounded merge behavior, if a greedy agglomeration algorithm that uses it as
objective function and does not constrain the set of feasible merges always finds
an improving merge, until it reaches the all clustering.

e merge consistent: An intracluster density measure i is merge consistent, if for any
density threshold «, any clustering C and any refinement D of C that are both
feasible, there is a sequence of merge operations transforming D into C such that
all intermediate clusterings are feasible as well.

The second set of properties are relevant if we aim for efficient implementations of Al-
gorithm 5. As already mentioned in Chapter 3, greedy merge algorithms are closely
related to SAHN algorithms which are used to find groups of similar objects. In Sec-
tion 4.4.3, we will review some algorithms that implement SAHN clustering and dis-
cuss how these algorithms can be adapted to the clustering of graphs in the context of
DENSITY-CONSTRAINED CLUSTERING. It turns out that the applicability of the different
algorithms depends on the following properties of the objective functions and constraints
used in combination with Algorithm 5. More information on their relation to SAHN al-
gorithms can be found in Section 4.4.3, thereby clarifying the different possibilities to
implement greedy algorithms for particular instantiations of DENSITY-CONSTRAINED
CLUSTERING.

e cfficiently comparable: An intercluster sparsity measure is efficiently comparable
if the comparison of the benefit of merge operations in Algorithm 5 can be carried
out in constant time.

o cfficiently decidable: An intracluster density measure is efficiently decidable if the
feasibility of a merge operation in Algorithm 5 can be decided in constant time.

e [ocal: Roughly speaking, an intercluster sparsity measure x is local if the benefit
two merge operations have with respect to x can be compared without considering
the remainder of the clustering. This admits for example the efficient maintenance
of a set of possible merges in a priority queue.
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TABLE 4.3: Summary of the properties of all intercluster measures

5
<5}
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Sy S w g %
measure abbr. | 5 8 & ¥ § £
number of intercluster edges nxe Y Y Y Y Y N
global intercluster density gxd Y Y N N Y N
max. is. intercluster density mxd [ Y Y Y Y N N
avg. is. intercluster density aixd N Y Y Y N ?
max. pw. intercluster density mpxd | Y 7?7 N N N N
avg. pw. intercluster density apxd | N 7?2 N N N N
max. is. intercluster conductance mixc |Y Y Y Y N 7?7
avg. is. intercluster conductance aixc Y Y Y Y N 7
max. pw. intercluster conductance mpxc | N ? N N N N
avg. pw. intercluster conductance apxc |N ? N N N N
max. is. intercluster expansion mxe | Y Y Y Y N 7?7
avg. is. intercluster expansion aixe Y Y Y Y N ?
max. pw. intercluster expansion mpxe | N 7?7 N N N N
avg. pw. intercluster expansion apxe | N 7?2 N N N N

TABLE 4.4: Summary of the properties of all intracluster measures

measure abbr. | efficiently merge context
decidable | consistent | insensitive
minimum intracluster density | mid Y Y Y
global intracluster density gid Y Y N
average intracluster density aid Y N N

e context insensitive: Similarly to the property locality in the context of intercluster
sparsity, context insensitivity tries to formalize the notion if the feasibility of a
merge can be decided locally, without considering the remainder of the clustering.

e enforces connected merges: Informally, an intercluster sparsity measure x enforces
connected merges if the merge with the largest benefit with respect to x does not
consist of unconnected clusters, i.e., Algorithm 5 only has to consider cluster pairs

that are connected by at least one edge.

e reducible: Roughly speaking, an intercluster measure x is reducible, if merging
cluster AU B with another cluster C' is never better than merging A or B with C.

An overview on the properties of all measures for intracluster density and intercluster
sparsity introduced in Section 4.1 can be found in Table 4.3 and Table 4.4.
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4.4.2 Merge Behavior

In this section, we give formal definitions of the properties properties unbounded and
context insensitive and classify the intercluster sparsity and intracluster density measures
from Section 4.1 with respect to these properties.

Merge Behavior of Intercluster Measures

Definition 4.2. An intercluster sparsity measure x has unbounded merge behavior, if
for any clustering C with at least two clusters, there exist clusters A # B € C such that

z(Ca,B) < z(C).

We elucidate the merge behavior of each proposed intercluster measure, either by proving
its unboundedness or by giving a graph together with a clustering that constitutes a local
minimum. All proofs for unboundedness are constructive in that they point out how to
find a non-increasing merge.

We start with the simple measures nxe, the number of intercluster edges in a clustering.
Obviously, nxe can never increase when two clusters are merged and thus has unbounded
merge behavior.

Observation 1. Nxe has unbounded merge behavior.

Most of the remaining proofs for unboundedness are based on the following simple
observations on the results of adding the numerator and denominator of two fractions
separately.

Observation 2. Given N;, D; € Zg such that D; > 0, let N = Zi-“:l N; and D =
Zle D;. Then, exactly one of the following cases holds:

N N
D

1. There exist £,s € {1,...,k} with D (strictly larger/smaller)
S

N.
2. Foralli€ {1,...,k}, itis = =

Bt S

Dy

N
D, D (complete equality)

Proof. We rewrite % as a convex combination of its contributors j3; := %:
1

kN .
5225:1]\71':2@':1@'171‘:21151. Z D,
D D D 4 i)

Since Zle D; = D, this is indeed a convex combination. Thus, if not all §; are equal

to %, we have % € (min*_, g, maxle Be), which immediately yields the claim. O

This immediately yields the following observations.

Observation 3. Let a,b,c,d >0 and § < §

(i) Then, ‘blifl > 7.
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(5ra)

numerator
numerator
numerator

(279

\J
\J

denominator denominator denominator

(a) Observ. 2 (b) Observ. 3(i) (c) Observ. 3(ii)

F1GURE 4.3: Illustration for the geometric interpretation of Observation 2 and Obser-
vation 3. For a,b,c,d > 0, § can be interpreted as the slope of the vector (Z) and Zj_;
as the slope of (Z) + (2) Now, Observation 2 corresponds to the fact that the slope
of the sum of a set of vectors is always within the range of the slopes of the individual
vectors (a) and Observation 3 can be illustrated by the effect of adding or subtracting

vectors with a higher slope (see (b) and (c)).

(ii) Ifb > d, 4= <

SalS]

Proof. (i) Follows directly from Observation 2.

(ii) Itis § = % and hence, with Observation 2, §=7 <

SEIS]

O]

The above observations also have a geometric interpretation illustrated in Figure 4.3.
The idea is to interpret the numerator and denominator of fractions as the coordinates
of a two dimensional vector. Summing up the numerators and denominators of two
fractions separately and computing the resulting fraction corresponds to determining
the slope of the sum of the two vectors associated with the initial fractions.

Recall that gxd is defined as %:A;‘B#. Observation 2 tells us that there exists at
A#Bec MAB

least one pair of clusters (C, D) such that —<2- > gxd(C). In terms of gxd, merging

ncnp

ZA#£BeCCAB

2 A#Bec MANB
contributor nec;ﬁj . By Observation 3(ii), we get gxd(Cic,py) < gxd(C), a non-increase.
This yields the following corollary.

the clusters C' and D is equivalent to “vectorially subtracting” from e

Corollary 4.3. Gxd has unbounded merge behavior.

Proposition 4.4. Mixc has unbounded merge behavior.

Proof. We focus on the worst cluster B = arg maxcec ixc(C') (which need not be unique),
and distinguish three cases by the volume vp of B. In each case we will either construc-
tively show that a non-increasing merge is possible or show that the absence of such a
possibility leads to a contradiction. Note that it suffices to identify two clusters C' and
D that satisfy ixc(C' U D) < ixc(B) = mixc(C), as we are only interested in the cluster
with maximum intercluster conductance and merging two clusters does not affect the
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conductance of the remaining clusters. Without loss of generality we may assume that
IC| > 3.

v > m: We express [ := ixc(B) as the “vectorial sum” of other clusters’ contributions:

. Zc;éB €c,B
2m — vp >_c4B VC

8=

eAB

By Observation 2, there must either exist a cluster A in C with > 3, or we have

for all C' # B: QSCB = . Since ixc(C) > eSCB for all C' # B € C, the former case yields
ixc(A) > B, contradicting our choice of B; for the same reason, the latter case either also
yields such a cluster A, or we have for all C' # B : ixc(C) = . But then merging any

. . P _ Tc+xp—2ec,D + 3 .
C,D # B is non-increasing: ixc(CU D) = oD < f}gJ:]g. By Observation 2,
this is exactly 5 = mixc(C).

vp <m and for all C # B : vp +vc > m: For an arbitrary merge {C, B}, it is

ixc(BUC) = T+ ¢ — 20,8 DD#B,C €D,BUC
2m — v — Vo ZD;ﬁB,C vp

Hence, by the above arguments, there must either exist a cluster A with ixc(A) >
ixc(C'U B), or we have for all D # C,B : ixc(D) = ixc(C U B). In either case merge
{C, B} is non-increasing.

vp < m and there exists A # B such that vqa + v < m: Merging A and B yields

: _ zatrp—2ea B TA+TR . TA g __
ixc(AU B) = =" < SAE. Since $4 < £B = f, by Observation 3(i) we can

see that f}AiiB < B = mixc(C); hence, merging A and B does not increase mixc. O

Proposition 4.5. Aixc has unbounded merge behavior.

Proof. Let C be an arbitrary clustering and  := aixc(C). We have to show that there
exists a merge that does not increase the objective function. For clusters C, D € C with
vo +vp < m, we will use that, by Observation 2, merging them yields

ro +xp — 2ec,p < To + Tp
ve + vp ~ vc +vp

ixc(CUD) = < max{ixc(C),ixc(D)} (4.1)

We divide the clusters of an arbitrary clustering D into “bad” and “good” clusters,
depending on f: Bp = {B € D | ixc(B) > } and Gp = {H € D | ixc(H) < j},
respectively. Now we can link the quality of D with £ as follows:

D] -aixe(D) = D[ B+ > pep, (xc(B) = B) = X peg, (B — ixe(H))

-~

=bp *=gD

It follows directly that aixc(D) < 8 = aixc(C) iff bp < gp. Hence, it remains to find
two clusters By # By in C such that bC{B By < 9C(n, By If there exist By # Bs €
Be with v, +vp, < m, G¢ (B1,By) = Ge and hence 9C 5, 5y = 9C- Without loss of
generality, let us assume that |xc(Bl) ixc(Bz). As explamed above, it is ixc(B1UBg) <
max{ixc(By), ixc(Bg)}. Hence, merging B; and Bj reduces be by

iXC(Bl) + iXC(BQ) — 20 — iXC(Bl U BQ) + 6= iXC(Bl) — iXC(Bl U BQ) + iXC(BQ) — B3>0,

>0 >0
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which implies that aixc(Cyp, p,}) < aixc(C). Therefore, assume that for all By # By €
Bec : vp, +vp, > m. We distinguish five cases according to |Be|:

|Be| > 4 : Since ) e vc = 2m, there must exist By, By with vp, + v, < m, which
contradicts our assumption.

|Bc| = 3: We sort Be by ixc(B;) > ixc(Bz) > ixc(Bs). Merging By and By yields

T B1UB> _ ZC?ﬁBl,Bz €B1UB,,C < ZC;l'fBl,Bz xre

iXC(Bl U Bg) = = =~
ZC;&Bl,Bg vc ZC;&Bl,BQ vco ZC;&BLBQ vc

Among the set of clusters not containing By and Bs, Bj is the cluster with the high-
est isolated intercluster conductance, as all other clusters belong to Ge. Hence, with
Observation 2, it follows that

x
ixc(By U By) < 201818, °C < ixc(Bs).

"~ D.04B,,B, VC

Therefore, the merge {Bj, B2} reduces be, leaving Ge untouched, which yields an im-
proving merge.

|Bc| =2 : Analogous to case |B¢| = 3, by defining Bs as a cluster in G¢ with maximum
isolated intercluster conductance, we can see that ixc(B; U Bs) < ixc(Bs) < S.

|Be| = 1: If, for some H € Ge we have ixc(BU H) < 3, the merge {B, H} does not
increase aixc, as after the merge the isolated intercluster conductance of every cluster is
at most § = aixc(C); thus, assume that

VH € Ge :ixc(BUH) > 5. (%)

If, for some H € G¢ we have vp + vy > m, we can use the same arguments as in the
case |B¢| = 3, replacing By by B, By by H and Bs by the cluster in G¢ having the
highest isolated intercluster conductance to see that ixc(B U H) < 3, which contradicts
(). Hence, vg + vy < m for all H € G¢. For a merge {B, H}, we denote by Ay(H) :=
xp/vB—xpun/vBUH the change of b¢, and the change of g¢ by Ay(H) := B—xg/vy; the
crucial observation is that any merge {B, H } for which Ay(H) > Ay4(H) holds, improves
aixc; but such a merge must exist:

(e +1)p =224 3 Ty S (22, A o 57 (T 2o

v v v v v
= Hege H Hege H B Hege X B
-y (&H+@_M) <y (@+@_w3—2em+xﬂ)
v v v - v v UB + v
Heg, \VH B B Heg, \VH B B+ vy

-~

=ixc(BUH)

To see the second inequality, observe the following: By (%) ixc(B U H) > /8 and since
H € Ge, ixc(H) < 8. Hence £ = ixc(H) < ixc(B U H) and Observation 2 yields that

VH

rp —2ep gty < TB~ 2ep.H
UB + vy - B '

ixc(BU H) =



48 Chapter 4 Density-Constrained Graph Clustering

Since we have only |G¢| summands, at least one summand exceeds 3. More precise,
there exists Hy € G¢ such that

THy | B _TB 2ep H, + TH,
VUH, UB vB + VH,

> B

=TBUH, /UBUHO

It follows that Ay(Hp) > Ay(Hop).

|Be| = 0: It is ixe(C) = B for all C € C. Let Cy,Cy € C be the two clusters with
the smallest volume. If vo, + ve, < m, again, Observation 2 yields that ixc(C; U Cy) <
max{ixc(C1),ixc(Ca)} = B. Otherwise, |C| < 3 and as we assumed that |C| > 3, |C| = 3.
Hence, ixc(Cy U C3) equals the isolated intercluster conductance of the third cluster,
which is 8. In both cases, aixc(Ce,.c,) < B. O

A careful inspection of the proofs of Proposition 4.4 and Proposition 4.5 reveals, that
if we substitute any occurrence of volume v by the size no of a cluster and always
distinguish by nc > n/2 instead of vg > m, the conclusions remain correct, but translate
the results from conductance to expansion. We summarize this result in the following
corollary on the measures mixe and aixe:

Corollary 4.6. Mixe and aixe have unbounded merge behavior.
Proposition 4.7. Mixd has unbounded merge behavior.
Proof. For a worst cluster B = arg maxcec ixd(C) (which need not be unique) with

ixd(B) = mixd(C) =: 8, we show how to find a non-increasing merge. Merging any
cluster C' with B yields

o +xB —2ecB
nc(n —ng) +ng(n—ng) —2neng -’

ixd(C'UB) =

which is the “vectorial addition” of ixd(C), ixd(B) and the correction k¢ = 2255;53 CIf
we find a cluster A such that k4 > ixd(B), by Observation 3 (ii), it is

TR — 2eaAB
ng(n —np) —2nanp

=a<p

and, by Observation 2, ixd(AU B) < max{ixd(C),a} < /3. Hence, merging A and B does
not increase mixd. To see that such a cluster A must exist, we decompose

2ec
ixd(B) = 2oppleon
into such corrections k¢; the claim now follows from Observation 2. O

Proposition 4.8. Mpxd has unbounded merge behavior.

Proof. Let {A, B} = argmaxysea pxd(M). If we merge A and B, one of the pairs with
maximum pairwise intercluster density is not present in the clustering any more. The
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(a) mpxc, mpxe (b) apxd, apxc, apxe (c) aixd (edges are summarized)

FIGURE 4.4: These instances illustrate bounded merge behavior. Given clustering C
(gray), no further merge is non-increasing for the measures pointed out.

following inequality shows that the merge {A, B} also cannot cause new, worse values
pxd({A U B, C}), which shows that it does not increase mixd(C):

€AUBC _ _€AC +ep.c
naAuBNC nanc + npnc
< max{pxd({A4, C}),pd({B, C})} < pxd({A, BY)

For all C # AUB :pxd({AU B,C}) =

O]

We have now seen that the basic measures nxe, gxd, as well as the isolating measures
of conductance and of expansion mixc, mixe, aixc, aixe and the maximum measures of
density mixd, mpxd exhibit unbounded merge behavior. From our set of fourteen ob-
jective functions, the remaining six do not have unbounded merge behavior, but can
instead get stuck in local minima, such that no further merge is non-increasing. Thus,
even without a constraint, the all clustering cannot be reached. In Figure 4.4 we give
specific instances which are local minima of mpxc and mpxe (a), apxd, apxc and apxe (b),
and of aixd (c¢). The common intuition for average measures is that a merge must not
reduce the number of beneficial clusters (or pairs thereof) too dearly. As an example,
we discuss the counterexample in Figure (b) for the pairwise measures. Here, a clique of
size six is surrounded by four satellites such that the satellites are not connected among
each other, but fully connected to the clique. In the context of average pairwise mea-
sures, we therefore have four very bad contributors (clique with satellite) and four very
good contributors (satellite with satellite). As expected, merging satellite with satellite
increases all measures. Somehow unexpected, merging a satellite with the clique has
the same effect, although the resulting cluster is again a clique. The reason for that is
that the number of good pairwise cuts is reduced by three, whereas the number of bad
cuts just decreases by one. One might argue that in this example the satellites have
less connections than the vertices in the clique and it is therefore justified to leave them
unclustered. However, the actual density of the cluster in the middle does not matter
for intercluster measures, hence replacing the clique by a less dense subgraph does not
change anything.

Mpxc and mpxe are prone to local minima near balanced clusterings. Roughly speaking,
this is due to the case distinction in the denominator of their base measures ruining
arguments analogous to those in Proposition 4.8 for mpxd. As an example, Figure (a)
shows three clusters with pairwise expansion of 1/3. If we merge any two clusters, the
expansion of the resulting cut does not count the number of vertices in the merged
cluster in the denominator anymore, but the number of vertices in the other cluster,
leading to an expansion of 2/3.

Corollary 4.9. Mpxc, mpxe, apxd, apxc, apxe, and aixd have bounded merge behavior.
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Merge Behavior of Intracluster Measures

Definition 4.10. An intracluster measure is merge consistent, if for any clustering D
that is feasible with respect to the density constraint and any feasible refinement C of
D, there is a sequence of feasible merge operations that transforms C into D.

This directly implies that each feasible clustering can possibly be reached by Algorithm 5,
provided that the objective function chooses the right merge in each step.

Lemma 4.11. Given density «, a clustering C and a subset D C C with |D| > 2 such
that for all D € D we have id(D) > a. If U = Jpep D is feasible, i.e., id(U) > a, then
there exist A # B € D such that id(AU B) > «a.

Proof. Assume to the contrary that all merges of clusters in D are infeasible, i.e., the
density of the resulting cluster is less than «. From this, it follows directly that for all
A BeD,itisesup < a- ("AQUB). Furthermore, the intracluster edges (pairs) in AU B
can be decomposed into intracluster edges (pairs) of A and B and edges (pairs) linking
both clusters. Hence,

B 2 (ABye(D) (") . 2 {A,Bye (D) CAUB B >iaBye(D)eatentean
Z{A,B}e(g’) (nAQUB) Z{A,B}e(ij) (nA2UB) Z{AB}E(E) (n;)+(n23)+”A”B

Note that the number of intracluster edges (pairs) of each cluster appears exactly |D|—1
times in the above sum. If we use this and the fact that the number of intracluster edges
(pairs) in U can be decomposed as above, we get

2iapye(n)eatesteas e+ acn(D] —2) - ea

Yiame) (9)+(F) tnans — (3) + Xacp(DI-2)- ()

At this point, we can use that the density of U as well as the density of each cluster in
D is at least a:

v+ Yaen(Dl=2)ea _ a- () + Cuep(IDl—2) o ()
() + Zaco(P1=2-(5) = (¥) + Zaen(P-2)- ()

In summary, we have proven that o > « if the assumption holds, leading to a contra-
diction. ]

=«

Note that this result can be directly transferred to mid, since this constraint classifies
each merge individually, unlike aid and gid.

Corollary 4.12. Mid is merge consistent.

For gid and aid the contributions of other unrelated clusters matter, a fact, which has
further consequences on computational complexity, as discussed in the next section.
However, for gid, it is possible to use the following Lemma.

Lemma 4.13. Given a parameter «, two clusterings C and C' with gid(C) > a and
gid(C') > « such that C is a (proper) refinement of C'. Then, there exists a pair of
clusters A and B in C such that C4 g is a refinement of C' with gid(Ca ) > a.
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FIGURE 4.5: Example showing that aid is not merge consistent. If the constraint
aid > 0.73 is used, the blue, dotted merge is not allowed whereas merging all clusters
indicated by the red, dashed line is feasible. Fat lines indicate aggregated edges between
clusters.

Proof. Let Dq,...,D, denote the clusters in C’ that contain more than one cluster in C
and D := {Dy,...,D,} the set of the corresponding subsets of clusters in C. The global
intracluster density of C’ can be written as a vectorial sum of the densities of the clusters
in C and the density of the pairwise cuts between clusters in the same set D;:

Yocecec 2 pep D\ €4,B
gid(C') = cec D;eD Z4{A,B}e(%)

Ycec (5) + Xpien Z{A,B}G(Dgi) nanp

Among all pairs of clusters in C that belong to a common set in D, let A’, B’ be the
pair such that the associated cut has maximum density, i.e. e4r p//(nanps) is maximal.
Assume that this merge is not feasible, i.e.,

dcecec tean
Ycec () +namp

<

As C is feasible, it follows that eqr p//(nanp) < a and with Observation 2 it can be
seen that the global density of the cuts of the remaining pairs of clusters contained in a
common set, i.e. the vectorial sum of their contribution to gid(C’), is also less than a.
Hence, including these pairs in the vectorial sum cannot increase the global intracluster
density to a value of at least a, which contradicts Equation (4.2). O

Iterative application of Lemma 4.13 yields the following corollary.

Corollary 4.14. Gid is merge consistent.

In contrast to that, aid is not merge consistent, as the example in Figure 4.5 illustrates.
Similar to some proofs in the preceding section, the idea behind this counterexample is
that besides their density, the actual number of bad contributors matters. In the original
clustering, we have four clusters with a density of 2/3, mutually separated by cuts of
density 1/2, and one cluster with an optimal density of 1. Merging only two clusters in
the left part leads to a new cluster with worse density while not reducing the number
of bad contributors enough. In contrast to that, merging all clusters leads to a cluster
with even worse quality, but this is compensated by the stronger influence of the cluster
to the right, so that the average density over all clusters is feasible again.

Corollary 4.15. Aid is not merge consistent.
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TABLE 4.5: Sufficient conditions for implementing variants of GREEDY MERGE DCC

g
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o) © =) 2 =i o5}
= s & 2|% &
8 = 2 © % "g +
worst case dd. ; - = : g
algorithm running time sz;)ace 5 § $ & 1% 8
STRAIGHTFORWARD O(n?) o(1) v - - - - Y-
STRAIGHTFORWARD SPARSE O(nm) o(1) Vv v<£ - |V -
NEAREST NEIGHBOR LIST O(n?) on) |v v v - - |V V
NEAREST NEIGHBOR LIST SPARSE | O(nm) O(n) vV vV - VY
Heap O(n?logn) om>) | v v v - -1V V
HEAP SPARSE O(mdlogn) | O(m) | vV v v v - |V V
QUADTREE O(n?) om* | v v v - -V V
CONGA LINE O(n®log®n) on) | v v v - - |V V
NEAREST NEIGHBOR CHAINING O(n?) omn) |v v v - VIV V

4.4.3 Transferring SAHN Algorithms to DCC

In this section, we will review some basic algorithmic approaches to implement SAHN
clustering (cf. Algorithm 1 in Chapter 3). Some of these have been already discussed
in Section 3.3.1 in the context of modularity based graph clustering. For each of these
approaches, we will scrutinize under which circumstances they can be transferred to
GREEDY MERGE DCC. More specific, we discuss what properties the intercluster spar-
sity and intracluster density measure have to fulfill such that these algorithms can be
used to implement Algorithm 5. Table 4.5 summarizes the insights from this discussion.

When we speak of the running time and space requirement of each algorithm, we assume
that we always maintain the current cluster graph as an adjacency list in main memory,
as described in Section 3.3.1 in the context of modularity based clustering. The weight of
the edges in the cluster graph corresponds to the number of edges between the associated
clusters in the original graph. Additionally, each vertex in the cluster graph stores
the number of vertices nc, the volume ve and the number of intracluster edges ec
of the cluster C' it represents. As justified in Section 3.3.1, the cluster graph can be
maintained in O(n?) time during the whole agglomeration process, which incurs no
additional overhead as the fastest of the algorithms described below have a worst case
complexity in O(n?). We further assume that the informations from the cluster graph
can be retrieved in constant time. Technically, this not entirely correct as retrieving the
weight of an edge in an adjacency list entails parsing the edge list of an incident vertex.
It can however be verified that all algorithms access this information locally in the sense
that all neighbors of a cluster are evaluated at the same time, which leads to amortized
constant time for each neighbor.

Straightforward. Probably the first generic view on hierarchical clustering indepen-
dent from any particular distance update schemes dates back to the article of Ward [221]
from 1963. Technically speaking, his description does not fit into the context of SAHN
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clustering as he does not speak of objects with pairwise distances but considers hierar-
chical clustering as a means to greedily optimize an objective function while producing a
complete dendrogram. Hence, what he describes corresponds to the GENERIC GREEDY
MERGE algorithm introduced in Chapter 3. In line with the traditional distance-based
view on SAHN algorithms, he assumes that the objective function is optimal for the sin-
gleton clustering and in each step, the merge that decreases the objective function the
least is executed. As an example he considers the total within-cluster variance, which is
often referred to as Ward’s criterion [166], but he also briefly discusses the use of other
objective functions. Furthermore, he describes a straightforward generic implementa-
tion of GENERIC GREEDY MERGE determining the best merge in each iteration by a
linear scan over all pairs of clusters, which leads to a running time in O(n?) for the most
common objective functions, which we term STRAIGHTFORWARD.

It is easy to see that this bound on the running time applies to GREEDY MERGE DCC if
we can in constant time both decide the feasibility of a merge and compute the inter-
cluster sparsity of the resulting clustering. The former property can be cast into the
following definition.

Definition 4.16. An intracluster density measure i is efficiently decidable, if for each
threshold o > 0 and for each clustering C with ¢(C) > « containing a merge M, i(Cas) > «
can be decided in constant time using the information from the cluster graph and other
easy to maintain properties of the clustering?.

Unfortunately, in the context of DENSITY-CONSTRAINED CLUSTERING, the value of a
clustering after a merge is hard to determine for some notions of intercluster sparsity.
Especially in combination with maximum isolated measures, it is not clear how to ef-
ficiently update the current objective if we merge clusters A and B and one of these
clusters corresponds to a cut with maximum density, expansion or conductance. As we
will see in Section 4.4.5, it is however possible to use a relation <; ¢ to order the merge
operations which can be evaluated in constant time. The intuition is to require that
<z c almost behaves like ordering the set of merges by their benefit for the objective
function, but permits clever tie-breaking.

Definition 4.17. An intercluster sparsity measure x is efficiently comparable, if for each
clustering C there exists a relation <, ¢ on (g) X (g) such that for My, Ms, Mg € (g), it
holds that

My <gc My or My <,c M totality
My <;c¢ My and My <, ¢ Mz = My <,c M3 transitivity
My <ic My = 2(Crr,) < z(Chsy) consistency with x

and further M; <, M> can be decided in constant time from the information in the
cluster graph and other easy to maintain properties of the clustering.

In summary, to achieve O(n?) running time for STRAIGHTFORWARD, it suffices that i is
efficiently decidable and x efficiently comparable.

Miillner [166] implements this algorithm in the context of SAHN clustering as a baseline
which can be used to assess the improvement obtained by enhanced algorithms. Recall

4For gid, this will be the total number of intracluster edges and intracluster pairs and for aid the
number of clusters and the current intracluster density value.
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that the implicit assumption in [166] is that the distances of a newly merged cluster
A U B to another cluster C only depend on the size of A, B and C and their pairwise
distances. In each iteration, the set of all pairs of clusters is fully traversed, distances
are recalculated in case the pair involves the newly merged cluster, and the pair with
minimum distance is selected and merged, which can be done in O(n) if the old distances
and the size of each cluster are maintained by the algorithm. Hence, for SAHN algo-
rithms according to the update scheme from Miillner, the naive implementation always
has a running time in O(n?).

In the context of graph clustering, a simple modification of this algorithm is interesting,
where in each iteration, only pairs of clusters are considered that are linked by at least
one edge. As we have O(n) iterations and in each iteration, at most m pairs of clusters
are connected, this leads to a total running time in O(mn). We call this modification
STRAIGHTFORWARD SPARSE. Again, it is easy to see that this modification leads to a
correct dendrogram if the intercluster sparsity measure fulfills the following requirement.

Definition 4.18. An intercluster sparsity measure x enforces connected merges if for
any pair of clusters C' # D € C with ecp = 0 and x(C) — z(Cic,py) > 0 (ie., an
improving, disconnected merge), there exist clusters A # B € C such that eq g > 0 and
z(Cio,py) > 2(Cra,By) (i-e., a better, connected merge).

Nearest Neighbor List. Anderberg [11] discusses a modification of the naive imple-
mentation called NEAREST NEIGHBOR LiST, where each object or cluster always stores
its closest neighbor. When two clusters A and B are merged, the distances of the result-
ing cluster to all other clusters has to be computed and it has to be checked if AUB is the
closest neighbor of some other clusters. Furthermore, for each cluster C' that had A or B
as closest neighbor before, the closest neighbor has to be recomputed from scratch. This
leads to a worst case running time in O(n?®) and a best case running time in O(n?) for
SAHN algorithms following the update scheme described by Miillner. The main benefit
of this algorithm compared to competing approaches with better runtime guarantees is
that it only needs memory that is linear in the current number of clusters. Furthermore,
it is very easy to implement and has little constant overhead. Miillner [166] proposes
two modifications of Anderberg’s approach in order to make it more efficient in practice.
The first modification is to store the nearest neighbors of all vertices in a priority queue
in order to find the minimum in each iteration faster than by the linear search of the base
algorithm. Second, if A was the closest neighbor of some cluster C' prior to merging A
and B and d(A,C) < d(AU B, (), the algorithm sets an invalid flag for the correspond-
ing entry in the queue but uses as key the old distance d(A, C). This is guaranteed to be
a lower bound on the distance to the actual closest neighbor. Whenever an invalid entry
is detected as the minimum of the queue, the closest neighbor of the represented cluster
is recomputed from scratch and the key of the entry is updated. The latter heuristic
has also been applied by Cardinal and Eppstein [45] and by Kaukoranta et al. [133] in
the context of vector quantization. Miillner’s experiments confirm that this modified
algorithm compares very well to alternative SAHN algorithms [166] and to widely used
library implementations [167] with respect to centroid and median linkage. Kriege et
al. [139] propose a heuristic modification of Miillner’s algorithm that works for metric
distance functions by using approximate nearest neighbor queries.

NEAREST NEIGHBOR LIST builds upon the property of SAHN algorithms that the dis-
tance between two clusters never changes if some of the remaining clusters are merged.
Hence, the closest neighbor of a cluster only has to be recalculated if the previously
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closest neighbor disappears by a merge and the new cluster has a larger distance than
the old closest neighbor. The same property guarantees that the priority queue used
by Miillner to store all nearest neighbors always yields a pair of clusters with minimum
distance.

If we want to apply Anderberg’s algorithm to implement GREEDY MERGE DCC, the
intercluster sparsity measure x has to fulfill certain requirements. Intuitively, x should
allow us to decide, without knowledge about the remainder of the clustering, which of
two given merges is more beneficial to it. If the benefit exclusively depends on the par-
ticipating clusters, as for nxe alone, this is immediate. However, as above, for maximum
isolated measures, a merge can be non-improving at some point of the algorithm and
then become improving again. As in the definition of efficient comparability, we make
use of a relation <, that serves as a comparator, but this time, the relation is indepen-
dent from the remainder of the clustering. To serve as a comparator in a priority queue,
<. should closely resemble a total preorder on the set of all possible merges.® Informally,
we call an objective function local, if it admits such a relation. More formally, we make
the following definition. Let us denote by M the set of all possible merges, i.e., the set
of all unordered pairs of subsets of V.

Definition 4.19. An intercluster sparsity measure x is local, if there exists a relation
<z on M x M such that for any clustering C and for all My, My, M3 in M with M; U
M U M3 C C, the following holds:

My <, My or My <, M; ~ totality
My <, My and My <, M3 — My <, Msj transitivity
My <, M = z(Crr,) < z(Chry) consistency with x

If My <, M> can additionally be decided in constant time using the information from
the cluster graph and other easy to maintain properties of the clustering, = is called
efficiently locally comparable.

It is not hard to see that if x is efficiently locally comparable, it is also efficiently
comparable, as we can substitute <, for <, ¢ for any clustering C.

Using constraints potentially impedes quick agglomeration, as we do not only have to
determine the merge that improves the objective function the most, but have to restrict
ourselves to the set of feasible merges. If the feasibility of a merge is independent of the
remainder of the clustering, this does not incur a penalty with respect to running time.
More formally, the intracluster measure used should exhibit the following property.

Definition 4.20. An intracluster measure ¢ is context insensitive, if for each merge M
and each threshold value «, either all clusterings C with #(C) > a and M C C fulfill
i(Cpr) > « or none of them. If i does not have this property, we call it context sensitive.

Together with the locality of the objective function, context insensitivity ensures that
the closest feasible neighbor for each cluster only changes if the previous closest feasible
neighbor is one of the clusters that are merged in the current iteration or the new clos-
est neighbor corresponds to their union. In Miillner’s modification, for each cluster that
has no feasible neighbor, no entry has to be stored in the priority queue. Altogether,

®We do not need proper totality, as we never have to compare pairs of merges that cannot coexist in
a clustering, e.g., because the clusters considered intersect.
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Anderberg’s algorithm can be applied to GREEDY MERGE DCC if the intercluster spar-
sity measure x is local and the intracluster density measure ¢ context insensitive. If
furthermore x is efficiently locally comparable and ¢ efficiently decidable, it has a worst
case running time in O(n3). In case z enforces connected merges, in the worst case,
every cluster has to update its closest neighbor by considering all clusters linked with
it, leading to a total running time in O(nm) for all iterations. We call this modification
NEAREST NEIGHBOR LIST SPARSE.

Heap and Quadtree. Day and Edelsbrunner [59] describe the straightforward ap-
proach to store the distances in one binary heap per vertex, which leads to a worst
case running time in O(n?logn). Independently, Kurita [143] proposes a very similar
approach replacing the n binary heaps by one single heap storing all distances. Epp-
stein [70] replaces the binary heap by a quadtree, which yields the best algorithm for
general SAHN linkage schemes with respect to worst case running time; it runs in O(n?).
Both algorithms work for arbitrary distance functions and have been discussed in de-
tail in Section 3.3.1 in the context of modularity maximization. The downside of these
algorithms is that they require space that is quadratic in the number of objects to be
clustered. However, in case the distance function is explicitly given and cannot be com-
puted on demand, the size of the input is in ©(n?) anyhow and not much is lost. Some
instantiations of SAHN allow for a reduced memory complexity, as for example it is
known in advance that some cluster pairs will never be merged.

It is not hard to see that both the heap and quadtree based algorithms can be applied to
GREEDY MERGE DCC if the intercluster sparsity measure z is local and the intracluster
density measure ¢ context insensitive. If x is furthermore efficiently locally comparable
and i efficiently decidable, this leads to a running time in O(n?logn) for the heap based
variants and in O(n?) for the approach based on a quadtree. Similar to Miillner’s variant
of the NEAREST NEIGHBOR LIST algorithm, if x enforces connected merges, it suffices to
maintain only cluster pairs that are connected by at least one edge in the heap, reducing
the space requirement to O(n + m). As explained in Section 3.3.1 in the context of
modularity maximization, an alternative runtime analysis then yields a running time in
O(mdlogn), where d is the height of the dendrogram. In case the dendrogram is well
balanced, this bound is better than the trivial upper bound. We call this variant HEAP
SPARSE. It might be possible to exploit the fact that the objective enforces connected
merges also in combination with the quadtree based approach; as this is non trivial, we
leave it out of consideration.

Conga Line and variants. Eppstein [70] further describes a data structure that only
needs O(n) space and can be used to find the closest pair of a set of n objects in
O(n) time. He shows that deletions can be handled in O(nlog®n) and insertions in
O(nlogn) amortized time, yielding a time complexity in O(n?log?n) for general SAHN
algorithms. The idea behind this data structure is to maintain a linear number of edges
distributed over a logarithmic number of graphs over the set of objects. At any time, it
is guaranteed that one of these edges corresponds to a globally closest pair of objects.
The resulting SAHN algorithm CONGA LINE and two slightly modified version with
worse worst case complexity but better practical running time compete well with other
SAHN algorithms in an experimental evaluation [70]. A follow-up work by Cardinal and
Eppstein [45] includes another heuristic modification of conga line that is based on lazy
deletion, similar to the modifications of Anderberg’s algorithm.

To give more details, the data structure used in CONGA LINE consists of a partition of
the set of objects into a logarithmic number of subsets together with a set of directed
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paths associated with each subset. For each of these sets S, exactly one path is initially
constructed such that every second vertex has to be an object in S and the successor
of an object is always its closest neighbor adhering to this restriction. Object deletions
and insertions result in the deletion of some edges on this path, therefore splitting the
path in several subpaths, and the creation of new and merging of old subsets. Hereby,
the invariant that one of the edges in the remaining paths corresponds to a globally
closest pair of subsets always remains valid. Eppstein states that with this data struc-
ture, bottom-up clustering methods in which clusters are represented as objects and
the distances between clusters can be computed in constant time can be performed in
time O(n%log?n) and space O(n) [70]. Similar to other SAHN algorithms, the algorithm
relies on the property that the distance between two clusters is independent from the
remainder of the clustering. However, as for the NEAREST NEIGHBOR LIST approach, it
is sufficient that the closest feasible neighbor of a cluster remains the same if it does not
involve the clusters merged in the current iteration. In the context of GREEDY MERGE
DCC, this is guaranteed if x is local and ¢ context insensitive. To achieve the running
time above, again, x must be efficiently locally comparable and i efficiently decidable.
Compared to HEAP SPARSE, which also needs only linear additional space, the worst
case running time of CONGA LINE is slightly worse, but the objective does not have to
enforce connected moves.

Nearest Neighbor Chaining. Besides algorithms for general SAHN linkage schemes,
there exists a plethora of algorithms that can either be used for distance functions
fulfilling certain requirements [26, 127, 169] or are bound to a single distance function
or linkage scheme [60, 105, 185, 201]. An elegant algorithm that is still fairly general is
the nearest-neighbor chain algorithm developed and implemented by Benzécri [26] and
Juan [127]. The algorithm iteratively builds a path of clusters such that the cluster
at the ¢ + 1-th position is the closest neighbor of the cluster at position ¢. As soon as
a circle of size 2 is found, i.e., the clusters at positions ¢ and 7 + 1 are mutual closest
neighbors, these clusters are merged and deleted from the path and the process continues
from position i — 1. The algorithm is described in detail by Murthag [169], who also
states that the algorithm is correct as long as the distance function d has the reducibility
property, i.e.,

d(A, B) < min{d(A, C),d(B,C)} = min{d(4,C),d(B,C)} < d(AU B,C)}.

Miillner observes that the structure of the resulting dendrogram interpreted as a binary
tree is correct, but the order of merges may differ from the output of other SAHN
algorithms. This can be easily solved by a postprocessing step, which orders all merge
operations according to increasing distances. He also remarks that in the most general
setting for SAHN algorithms, where the new distances are allowed to depend arbitrarily
on the old distances involving the merged clusters, it is further required that the distance
d(AU B,C U D) is independent of whether A and B or C and D are merged first. The
same observation has been made previously by Gronau and Moran [107].

The worst case complexity of this algorithm is in O(n?) [169] and it is easy to see that
the additional space to maintain the list of nearest neighbors is in O(n). It is hence the
fastest of the algorithms described in this section that only needs linear space.

Again, we can transfer the requirements of this method to obtain a concrete algorithm
implementing GREEDY MERGE DCC. The idea behind the above reducibility property

5This usually holds, as the distance only depends on some properties of the clusters themselves.
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is that merging the closest pair of clusters A and B does not change the closest neighbor
D # A, B of a cluster C. A look at Miillner’s correctness proof [166] of the NEAREST
NEIGHBOR CHAIN algorithm reveals that this is indeed all that is required. In the context
of GENERIC AGGLOMERATION WITH CONSTRAINTS, this translates to the following
property7:

Definition 4.21. An objective function f on clusterings is reducible, if it is efficiently
locally comparable and the relation <, from Definition 4.19 satisfies the following prop-
erty. Let A, B, C, D be mutually disjoint subsets of V and {4, B} <, {A,C} <, {B,C}.
Then,

{D,C} <, {A,C}={D,C} <, {AUB,C}.

In summary, NEAREST NEIGHBOR CHAINING is correct and has a running time in
O(n?), if z is efficiently locally comparable and reducible and i is efficiently decidable
and context insensitive.

4.4.4 Properties of Intracluster Measures

In this section, we classify all intracluster density measures from Section 4.1 with respect
to their impact on the running time of GREEDY MERGE DCC, i.e., with respect to the
question whether they are context insensitive and efficiently decidable.

Context Insensitivity

As discussed above, using constraints potentially impedes quick agglomeration, as it does
not suffice to determine the merge that improves the objective function the most. The
good news is that if we use mid as a constraint, the feasibility of a merge only depends
on the density of the merged cluster, which is clearly independent of the remainder of
the clustering. This leads to the following simple corollary.

Corollary 4.22. Mid is context insensitive.

In contrast to mid, gid and aid are context sensitive, as the status of a merge can change
from allowed to disallowed and back again. In Figure 4.6(a), starting from the gray
clustering, merging the path to the left is not allowed if the constraint gid(C) > 0.7
is used. If singletons C' and D are merged, this is allowed again, as the number of
intracluster pairs increases.

Figure 4.6 shows a similar example for aid, which we are going to explain in more detail.
Suppose that we use nxe as objective function, aid as constraint and an appropriate value
of a. Starting with singletons, let us begin with a merge that yields cluster A. Merging A
and B will decrease aid, any further decrease in the number of clusters will worsen this ef-
fect. Suppose we reach clustering C (gray), we even have aid(C4,5}) < aid(Cic,py,14,8}),
as two “bad” clusters are summarized into a single one, which mildly lifts aid. Thus,
if we set « to the average of these two values, the merge {A, B} is infeasible in C but
as soon as the merge {C, D} is performed, regains feasibility. Obviously, it again loses
feasibility as soon as we continue merging other singletons.

Corollary 4.23. Gid and aid are context sensitive.

"Requiring that {A4,C} <, {A U B} seems more straightforward but is not suitable in our context;
according to our definition of locality, these two merges do not have to be comparable.
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FIGURE 4.6: Counterexamples showing that gid and aid are context sensitive. (a) If
constraint gid > 0.7 is used, merging A and B in the gray base clustering is infeasible,
but feasible after merging C' and D. (b) If constraint aid > 0.945 is used, merging A
and B in the gray base clustering is infeasible, but feasible after merging C' and D.

Efficient Decidability

To justify why all our notions of intracluster density are efficiently decidable, we have
to show how the feasibility of a merge can be decided in constant time. Starting from
a feasible clustering, using mid, the clustering remains feasible after merging clusters A
and B if and only if id(A U B) > «. Hence, mid is efficiently decidable as id(A U B) can
be easily computed with the information from the cluster graph:

ea+ep+ean

("2"")

id(AU B) =

For gid, we additionally keep track of the total number of intracluster edges i.(C) :=
> cec ec and the total number of intracluster pairs i,(C) := Y e (). With that, we
can easily compute the intracluster density of the clustering after the merge and thereby
its feasibility by

. _ie(C)+ean
gld(CA’B) - ip(C) +n4-np

Finally, the new value aid(C4,g) can be computed by the following equation if we always
keep track of the current value aid(C):

) IC| . 1 ea+eptean €A ]
d(Cap) = ——— -aid(C : B A
W) = ey O e | T T )
—_————
—id(AUB) —id(A)  =id(B)

Corollary 4.24. Mid, gid and aid are efficiently decidable.

4.4.5 Properties of Intercluster Measures
Locality and Efficient Comparability

In this section, we will state sufficient conditions for both non-locality (Lemma 4.25) and
locality (Lemmata 4.27, 4.29), thereby clarifying locality for all our objective functions.
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(e) apxe, apxc

FIGURE 4.7: Locality counterexamples: The base clustering consists of the gray clus-
ters. In (a), (¢), and (e), if the blue, dashed merge is performed, merge {C, D} is
better, if the red, dotted merge is performed, {A, B} is better. In (b) and (d), in the
base clustering, {C, D} is better than {A, B}; if the red, dotted merge is performed,
the opposite holds.

Lemma 4.25. Let x be an intercluster sparsity measure. If there exists a graph with two
clusterings C and D both containing two merges My and My such that x(Cpr,) < z(Chs,)
and x(Dar,) > x(Dar,), then  is not local.

Proof. Assume z is local, let <, be a relation on M x M satisfying the definition of
locality. From x(Cpr,) < 2(Cay,) it follows that My <, M; does not hold and x(Dyy, ) >
x(Dpy,) implies that M; <; My does not hold. This means that M; and Ms are not
comparable, contradicting the assumption on <. O

For mpxd, apxd, mpxc, mpxe and gxd, Figure 4.7 shows examples where the assumption
of Lemma 4.25 holds, which implies that these measures are not local. The rough idea
behind the examples in Figures 4.7(a)-4.7(c) is that the pairwise intercluster quality
between two clusters can be improved or deteriorated by merging one of the partners
with a third cluster. Figure 4.7(d) exploits that merging large clusters becomes more
attractive if the global intercluster density is low. An instance proving the nonlocality
of apxe and apxc is given in Figure 4.7(e).

Corollary 4.26. Mpxd, apxd, mpxc, apxc, mpxe, apxe and gxd are not local.

For nxe, it is easy to see that choosing <, such that {A, B} <, {C,D} is given by
ea,B > ec,p satisfies the definition of locality. The remaining objectives follow the
isolated view on graph clusters and can be split into maximum and average measures.
We start by a general lemma about maximum isolated measures.

Lemma 4.27. Let x be an intercluster sparsity measure such that x(C) can be expressed
as x(C) = max 2(C), with ' (C) solely depending on C. Then, x is local.
€

Proof. We prove the claim constructively by defining a relation <, and showing that it
fulfills the required properties of the definition of locality.

Let C be a clustering and D = {Ds,...,Dr} C C. We define L(D) := (2/(D;,) >
...>a/(D;,)) to be the non-increasing sequence of values of the D; € D. Let <; be the
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lexicographical order on sequences of rational numbers. The first observation we make is
that for arbitrary merges M; and Ma C C, L(Cpr,) <¢ L(Car,) implies z(Cpar,) < z(Cas,).
Since the lexicographical order on sequences of rational numbers is a partial order, <,
is transitive and reflexive. If we can find an equivalent relation <, on M x M, i.e., a
relation such that My <, My iff L(Cpr,) <¢ L(Chr,), independent of C \ (M; U My), this
yields the locality of z.

The crucial idea is to consider just that part of L(C) which changes if either of the two
merges M; = {A, B} and My = {C, D} is performed. The affected entries of L(C) are
{2/(A),2'(B),2'(C),2'(D)}. Performing M; replaces these by {z/(AUB),2'(C),2'(D)},
and performing My replaces them by {2/(A),2'(B),2'(C U D)}. Since the remain-
ing part of the sequence, L(C \ {2/(A),2'(B),2'(C),2'(D)}), remains unchanged in ei-
ther case, it suffices to compare the two replacements L({z'(AU B),2/(C),2/(D)}) and
L({z'(A),2'(B),2/(CUD)}) instead of L(Cps,) and L(Cpz,). Thus, if we define <, such
that {4, B} <, {C,D} iff L({z'(AUB),2/(C),2'(D)}) <, L{z/(CUD),2'(A),2'(B)}),
<. is a relation that satisfies the definition of locality. O

Corollary 4.28. Mixd, mixc and mixe are local.

A similar lemma gives us the locality of average isolated measures.

Lemma 4.29. Let x be an intercluster sparsity measure such that x(C) can be expressed
as z(C) = \%I Yocee @' (C), with ' (C) solely depending on C. Then, x is local.

Proof. Let C be an arbitrary clustering containing four clusters A, B, C' and D. Since
2(Cap) - (IC] = 1) = [C| - (C) — a'(A) — 2'(B) + 2’ (AU B),
z(Ca,B) < z(Cc,p) is equivalent to

2 (AUB) —2'(A) —2/(B) <2/(CUD) - 2/(C) — 2/(D)

=ka B :=kc,p

As for each cluster, x’ is independent of the remainder of C, this inequality shows that
<s:= {({A,B},{C,D}) | kap < kc,p} is a preorder on M x M such that {A, B} <,
{C, D} implies 2(Ca,g) < z(Cc,p). Thus, z is local. O

Corollary 4.30. Aixd, aixc and aixe are local.

We have now proven or disproven the locality of all intercluster measures (for a summary
see Tab. 4.3). Note that all proofs of locality are constructive in that they induce
comparators which can for example be used to efficiently maintain the set of all possible
merges considered by Alg. 5 in a priority queue. For the maximum functions, triples
of real numbers can be used as keys, with comparators as described in the proof of
Lemma 4.27. When using averages, it suffices to store the values k4 p defined in the
proof of Lemma 4.29. Similar to the arguments in Section 4.4.4, it can be verified
that the expansion, conductance and density of two clusters A and B and their union
AU B can be computed in constant time using the information maintained in the cluster
graph. Hence, all keys can be computed and compared in constant time, which yields
the following corollary.
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Corollary 4.31. Mixd, mixc, mixe, aixd, aixc, aixe and nxe are efficiently locally com-
parable.

As discussed in Section 4.4.3, this automatically entails that these measures are also
efficiently comparable. Global intercluster density is not local, it is however efficiently
decidable by the following simple argument. If we maintain the total number of inter-
cluster edges nxe(C) and intercluster pairs 2, (C) := >_ 4 gec Nanp during the algorithm,
the intercluster sparsity of the clustering after merging clusters A and B can be easily
computed by

nxe(C) —ea.B

gxd(Can) = zp(C) —nanp

Corollary 4.32. Gxd is efficiently comparable.

In contrast to that, using pairwise intercluster sparsity measures complicates the task to
efficiently compare merge operations. Roughly speaking, merging two clusters A and B
removes the contribution of O(n) pairwise cuts from the objective and inserts O(n) new
cuts between AUB and the remaining clusters. With the information stored in the cluster
graph, the value of each of these cuts can be determined in constant time, which leads
to a time complexity in O(n) for the computation of the new objective and hence for the
comparison of two merge operations. With this naive approach, STRAIGHTFORWARD
has a time complexity in O(n?). We do not see a way to circumvent this problem,
but have no formal proof that pairwise intercluster sparsity measures are not efficiently
comparable. Hence, we leave the status of the remaining measures with respect to
efficient comparability open.

Disconnected Merges

Whenever no single edge links two clusters, intuitively, merging them should not be
beneficial to the clustering, or at least, such a merge should not be the best option. In
the light of our bicriterial approach, an objective function which does encourage such
a disconnected merge is naturally opposed by the separate mechanism of a constraint
on the intracluster density. Superficially, this resolves the issue for non-degenerate in-
stances; however, a more accurate assertion is algorithmically relevant: If we can rule
out disconnected merges, this translates to algorithms that are more time and space effi-
cient (cf. Section 4.4.3). In the following, we answer the question whether our objective
functions enforce connected merges. In fact, only nxe and gxd have this property (see
Tab. 4.3). Both measures never benefit at all from disconnected merges: The former
does not change, and the latter even deteriorates. The circumstances under which all
other measures potentially encourage disconnected merges are intuitively illustrated in
Figure 4.8. If most clusters are reasonable, merging two clusters with a particularly ill
contribution to the measure can be the best option (Figure 4.8(a)). For all pairwise
measures, this is immediate, and it is also not hard to see for all average measures, as,
roughly speaking, the number of bad contributors decreases. While the above argu-
ments fail for mixc, mixe and mixd, a disconnected merge of a bad cluster with a very
good one can be the best option for them (see Figure 4.8(b) and Figure 4.8(c)). Note
that it is always possible to artificially restrict the set of allowed merges to connected
ones, yielding a modified greedy algorithm; we chose this approach in the experiments
in Chapter 5. We summarize our observations in the following corollary.
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(a) apxc, apxe, apxd, aixc, aixe, aixd, mpxc, (b) mixc, mixe
mpxe, mpxd

FIGURE 4.8: Given the gray clusterings, disconnected merges (red, dotted) yield the
highest improvement for the objective functions pointed out. Thus, all objective func-
tions, except nxe and gxd, potentially favor disconnected merges.

Corollary 4.33. Of the intercluster sparsity measures introduced in Section 4.1.1, only
nxe and gxd enforce connected merges.

Reducibility

By definition, intercluster sparsity measures that are not local cannot be reducible, leav-
ing nxe, mixd, mixc, mixe, aixd, aixc, and mixe as potential candidates for reducibility.
Unlike locality, we will not obtain a complete classification of these measures with re-
spect to reducibility, but show that some of them are not reducible and shortly discuss
why constructing counterexamples for some of the remaining measures turns out to be

difficult.

Similarly to locality, we start with a simple lemma giving sufficient conditions for nonre-
ducibility that can be used to construct counterexamples.

Lemma 4.34. Let x be an intercluster sparsity measure. If there exists a graph with a
clustering C containing clusters A, B,C and D such that x(Ca.p) < z(Ca,c) < z(Cp,c),
2(Cp,c) < x(Cac), and x((Ca,B)p ) > ©((Ca,B) gup. ) then T is not irreducible.

Proof. Assume <, is a relation satisfying the properties from Definition 4.19. The
consistency of <, with x immediately yields that <, does not fulfill the requirements of
Definition 4.21. O

We start with a simple counterexample showing that nxe is not reducible (cf. Fig-
ure 4.9(a)). Clearly, merging A and B removes more intercluster edges than merging A
and C and merging A and C is better than merging A and B. In the original clustering,
D is strictly the best merge partner of C, as it shares the most edges with C'. However,
if A and B are merged, merging A U B with C is strictly better than merging D with
C. Thus, Lemma 4.34 tells us that nxe is not reducible.

The counterexample for mixd in Figure 4.9(b) is slightly more complicated. It is con-
structed such that both merging A and C' and merging B and C produce a cluster that
is worse than the current maximum value. In contrast to that, merging D and C' leaves
the objective function unchanged as the current worst contributor A stays untouched.
However, if we first merge clusters A and B, the resulting cluster is much better than
both A and B. This is why merging A U B with the new worst contributor C' is now
able to reduce its value by a larger amount than merging C with D.
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(a) nxe (b) mixd

FIGURE 4.9: Examples showing that nxe and mixd are not reducible. Heavier edges
between the clusters summarize the number of edges between them.

Constructing a similar example for mixc and mixe turns out to be more difficult, as
Observation 2 tells us that A U B can be worse than A and B only if ng + ng > n/2
or v4 +vp > m, respectively. Hence, to use a similar idea as above, it is necessary
to exploit this border case repeatedly. We can even show that every counterexample
for these measures using Lemma 4.34 has to depend on the case distinction in the
denominator.

Observation 4. Let x be an intercluster sparsity measure such that x(C) can be ex-
pressed as x(C) = max 2/(C), with 2’ (C) solely depending on C such that for all A, B € C,
€

/(AU B) < max{a’(A), 2’ (B)}. Then, x cannot fulfill the conditions in Lemma 4.34.

Proof. Let us assume that x fulfills the conditions in Lemma 4.34. From ZL‘((C A,B) D,C) >
x((CA,B)AuB,C), it follows that

max{z' (AU B),z'(DUC)} > max{z'(AUBUC),2'(D)}.

As, by assumption, 2/(DUC) < 2/(D), we see that 2/(AU B) must be strictly larger than
2'(D), which in turn implies that 2/(A) > 2/(D). On the other hand, from z(Cp ) <
z(Ca,c), it follows that max{z'(D U C),2'(4)} < max{z'(AUC),2'(D)}. Again, by
assumption, 2/ (AUC) < 2/(A) and hence 2/(D) > 2/(A), which leads to a contradiction.

O

We therefore leave the reducibility of mixe and mixc, as well as the reducibility of all
average isolated measures open. The following corollary summarizes the results from
this section.

Corollary 4.35. Nxe and mixd are not reducible.

4.5 Concluding Remarks

Established measures for graph cuts lend themselves well for precisely expressing desider-
ata on graph clusterings. With a focus on finding graph clusterings that feature guar-
anteed intra- and high intercluster quality, we revived this approach and systematically
formalized bicriteria quality measures based on the expansion, conductance and density
of the cuts induced by the clusters.
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The classification of these measures with respect to their behavior in the context of
greedy agglomeration yields conditions that permit the use of efficient algorithms for
SAHN clustering, incorporating constraints on the intracluster density of the clustering.
Beyond the concrete question which combinations of intercluster sparsity and intra-
cluster density measures render the use of SAHN clustering algorithms possible, this
classification is interesting for two reasons. First, the use of greedy agglomeration as a
straightforward and conceptually easy heuristic to solve variants of clustering and parti-
tioning problems suggests itself; a well-known example is the CPM algorithm [53], which
proved to be the first practical algorithm for modularity based clustering. The identifi-
cation of key properties of objective functions and constraints summarized in Table 4.5
is independent of the measures considered in this chapter and can therefore be used as
a guideline to obtain efficient implementations of greedy agglomeration algorithms for
other problems in the context of graph clustering and graph partitioning. Second, some
of these properties, especially locality and the question whether an intercluster spar-
sity measure enforces connected merges yield also qualitative insights into the measures
themselves and might prove useful in other context, e.g., for the computation of optimal
solutions.

We furthermore showed that most definitions of intercluster sparsity and intracluster
density do not suffer from local minima in the context of greedy agglomeration, which
confirms our intuition that the former strive towards coarse and the latter towards
fine clusterings. Interestingly, although measures building upon the cut between pairs of
clusters seem most suitable for agglomerative algorithms at first glance, most of them are
prone to local minima, as well as the intuitive definition of intracluster density averaging
the density of all clusters. Note that the properties unbounded and merge consistent
carry over to other local search approaches that include the possibility to merge clusters,
as for example the multilevel algorithm building upon vertex moves that is considered
in Chapter 5. An overview of the classification of the considered measures with respect
to these properties can be found in Table 4.3 and Table 4.4. As a small example,
we illustrate the outcome of greedy agglomeration combining guaranteed intracluster
density with high average isolated intercluster conductance on the email network of our
department in Figure 4.10.

An experimental evaluation of density-constrained graph clustering and the adaption
to local greedy optimization is subject to Chapter 5. Although the complexity of the
problems considered in this chapter probably does not permit obtaining optimal solu-
tions for large instances with good theoretical time bounds, it would be nonetheless
interesting to compute optimal solutions for small graphs to investigate the influence
the different measures have on the resulting clustering. An obvious approach for that
is the use of sophisticated solvers for linear programming, as for example CPLEX [1]
or gurobi [114]. Appendix A contains building blocks that can in principle be used to
model all instantiations of DENSITY-CONSTRAINED CLUSTERING. Some of these how-
ever require prohibitively large sets of variables and constraints, which is why we did not
use them in a systematic study; an example of an optimal clustering computed with this
approach is contained in Figure 4.2. To obtain optimal solutions for interesting graph
sizes, it is necessary to use other ideas, probably tailored to particular combinations of
intercluster sparsity and intracluster density measures. A promising approach for this
might be the use of column generation algorithms [10, 126, 122].
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FIGURE 4.10: This graph is a three-month snapshot of the email traffic at KIT’s CS
department, groups represent chairs, which serve as a ground truth (vertices are scaled
by degree, n = 472, m = 2845). We ran Alg.5 using mid with o = 0.25 and aixc to
arrive at the color-clustering. Border colors indicate a Modularity-based clustering [53].



Chapter 5

Experiments on
Density-Constrained Graph
Clustering

In Chapter 4, we systematically assembled a range of self-evident intracluster density
and intercluster sparsity measures for clusterings, where the latter are based on conduc-
tance, expansion and density of the cuts induced by the clusters. We further formally
stated the problem DENSITY-CONSTRAINED CLUSTERING (DCC), where the objective
is to optimize intercluster sparsity with the constraint that the intracluster density must
exceed a given threshold. As optimal polynomial-time algorithms for DCC are unknown,
we investigated how different combinations of intercluster sparsity and intracluster den-
sity measure influence the efficiency of a greedy optimization strategy based on cluster
merging. However, little is known about its qualitative behavior in practical scenarios,
and an experimental evaluation of DCC is still missing. To some extent, this chapter
aims at closing this gap.

Contribution. In this chapter, we provide a comprehensive study of the practical
behavior of greedy graph clustering heuristics driven by cut-based objectives and con-
strained by intracluster density. We give evidence that, in general, greedy algorithms
based on local vertex moves lead to better quality than the corresponding merge-based
algorithm. We then compare the move-based algorithm to a set of reference algorithms
from the literature, both with respect to the objective of DCC and their ability to recon-
struct planted partitions in a family of synthetic graphs. We find that the greedy move
algorithm compares favorably to most reference algorithms in the context of DCC, while
a comparison with the modularity-based algorithm shows that optimizing modularity
implicitly yields good results for some variants of DCC. Our main aim is however the
comparison of the clusterings that can be found by optimizing different instantiations
of DCC. Experiments with planted partition graphs suggest that certain combinations
of inter- and intracluster measures are effective in finding the hidden clustering, while
others clearly fail. Together with observations about the number of identified clusters
and the skewness of the cluster size distribution, this yields valuable insights about the
behavior of the respective intra- and intercluster density measures.

67
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Algorithm 6: GREEDY VERTEX MovING DCC (GVM)
Input : graph G = (V, E), inter, intra, «
Output: clustering Cy of G
G+ G,h+0
repeat
C" < LM(G", Singletons(G"), intra, inter, a); G"*1 < contract(G",C")
h<h+1
until no more nontrivial contractions
while h > 0 do
h+<h-1
C" < project(Ch*!,G")
| C" < LM(G",C",inter, intra, a)

return C°

To keep the number of different configurations managable, we limit ourselves to the
evaluation of global and isolated intercluster sparsity measures here, dropping the no-
tions of pairwise intercluster density, conductance, and expansion'; we deem these less
interesting due to their counterintuitive behavior in some cases and the fact that they
are prone to local minima. On the other hand, although it does not quite fit into our
classification, we abuse modularity as an intercluster sparsity measure here and include
experiments optimizing modularity under constraints on the intracluster density; this
yields yet another instance of DCC.

5.1 Greedy Vertex Moving for Density-Constrained Graph
Clustering

In Chapter 3, we already discussed a generic greedy algorithm based on moving ver-
tices between clusters, which we termed GENERIC LOCAL MOVING (cf. Algorithm 3
in Section 3.2). Similar to the adaption of GENERIC GREEDY MERGE to DENSITY-
CONSTRAINED CLUSTERING that yielded GREEDY MERGE DCC(GM), adapting the
metaheuristic GENERIC LOCAL MOVING to our problem statement yields GREEDY VER-
TEX MovING DCC (GVM) as stated in Algorithm 6.

Its key ingredient is a subprocedure LM that greedily improves intercluster sparsity by
letting vertices move to neighboring clusters (Algorithm 7). In contrast to GENERIC
GREEDY VERTEX MOVING, we restrict vertex moves to feasible mowves, i.e., moves that
lead to clusterings that adher to our density constraint. Note that we include here
the optional refinement phase that potentially improves the objective by further vertex
moves when projecting the clustering resulting from the coarsening phase to lower levels.

As discussed in Chapter 3, GENERIC GREEDY VERTEX MOVING is closely related to
multi-level algorithms in the context of graph partitioning and has previously been used
for modularity-based clustering without constraints [32, 189]. We further discussed
that in the case of modularity, moving a vertex to a cluster that contains none of
its neighbors never improves the objective. Hence, it suffices to consider neighboring
clusters. Together with the observation that the change in modularity can be determined

To be consistent with Chapter 4, we keep however the i in the abbreviations, although we do not
distinguish between pairwise and isolated measures here.
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Algorithm 7: LocaL Moving (LM)
Input : graph G = (V, E), clustering Cini; of G, inter, intra, «
Output: clustering C of G
C < Cinit
repeat
forall v € V do
A+—{C € C |intra(Cyc) > and |E(v,C)| >0}
N « arg Cénjg{}{mter(cvﬁc)}

if inter(C,—n) < inter(C) then move(v, N)

until no more changes
return C

in constant time for each move if the volume of the individual clusters and the number
of edges between clusters is maintained, this yields a running time in O(m) for each
round in LM.

5.1.1 Comparing Moves Efficiently

For the following arguments, let us assume that we always maintain the volume, size and
the number of outgoing edges of each cluster during the moving procedure. In addition
to that, recall that we can determine the number of edges that link v with each of its
neighboring clusters in O(d,), leading to amortized constant time for each neighbor,
as we again consider all neighboring clusters at once (cf. Section 3.3.2). Furthermore,
we only consider the lowest level in the hierarchy, i.e., vertex moves in the original
graph; it is not hard to see that everything carries over to the aggregated graphs on
higher levels in a straightforward way by taking vertex and edge weights, as well as
loops into account. Analoguous to the discussion in Section 4.4.4, where we showed that
all considered intracluster density measures are efficiently decidable, the feasibility of a
clustering with respect to mid, gid and aid after moving a vertex to another cluster can
be decided in constant time using this information and other easy to maintain properties
of the clustering. Furthermore, it is not hard to see that the change in the number of
intercluster edges after a move operation, and therefore the resulting value of nxe can
be determined in constant time. For gxd, if we maintain nxe and the current number of
intercluster pairs x,(C) throughout the algorithm, the value of gxd after moving a vertex
v to cluster N can be computed as:

nxe(C) — efu}c()\{v} + €}, N
2p(C) = ney +1+nn

ng (Cv—>N) =

Regarding measures based on expansion, it is not hard to see that the expansion of C(v)
without v can be expressed as

Te() = v + €qu} ev)\{v}
min{nc —1,n —nc + 1}’

xe(C(v) \ {v}) =
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A similar expression yields the expansion xe(N U {v}) of the cut associated with v’s new
cluster. Using this, we can update the current value of aixe as follows:

aixe(Cy,N) = % “[IC] - aixe(C) + xe(C(v) \ {v}) +xe(N U{v}) — xe(C(v)) — xe(N)],

where r = |C| if both C(v)\{v} and N are non-empty, r = |C|—1if C(v)\{v} is empty and
r =|C| +1if N is empty. Hence, aixe can be updated efficiently when moving vertices
between clusters. It is not hard to see that the above equations carry over to aixc and
aixd. In summary, the benefit of moving a vertex to another cluster can be computed
in constant time for nxe, gxd, aixe, aixc and aixd and therefore, its new cluster can be
determined in O(n). By contrast, similar to the algorithm based on greedy merging, the
maximum measures mixd, mixc and mixe are expensive to maintain.

5.1.2 Dealing with Maximum Measures

Another issue with a direct application of GVM to maximum-based measures is that
iteratively traversing the whole vertex set is inefficient if only very few vertex moves
potentially decrease the cut of the cluster with the currently worst value. Even worse,
if this cluster is not unique, it is likely that the search gets stuck in a local minimum,
as vertex moves generally can only improve the value for one of these clusters, not for
all of them simultaneously. If we try to prevent this by allowing vertex moves that
are not strictly improving, we somehow have to ensure that the algorithm terminates
after a finite number of operations. We handle this in a similar way as proposed in
Chapter 4 for GM by greedily optimizing the lexicographical order of the intercluster
sparsity values of all the clusters. Let C = {C1,...,Ci} and L(C) := (f(Ch), ..., f(Ck))
be the sequence of these values with decreasing intercluster density, i.e. f(C;) > f(Cit1)
for i € {1,...,k — 1}. Recall that we defined a clustering C to be L-better than C’ if
L(C) is lexicographically less than L(C'). We now determine for each vertex the set of
clusterings that can be reached by moving it. If one of these clusterings is L-better than
the current clustering, the move that results in the L-best sequence is performed. As we
strictly improve the lexicographical order in each step, termination is guaranteed. This
means that we greedily optimize the maximum value but are also allowed to improve the
intercluster sparsity of clusters more locally, yielding better efficiency and the possibility
to escape local minima.

Using the following observation, it can be seen that, for any vertex v, any two clusterings
resulting from either leaving v untouched or from moving v to a different (or new) cluster
can be L-compared in constant time.

Observation 5. For three distinct clusters C', A and B in C and v € C it holds that:

(i) Cusa is L-better than C < {C'\ {v}, AU{v}} is L-better than {C, A}
(it) Cya is L-better than Cy_,p < {AU{v}, B} is L-better than {B U {v}, A}

If the volume, size and number of out-going edges of the clusters A, B and C are
maintained by the algorithm, the density/conductance/expansion of C, A, B, C\{v}, AU
{v} and BU{v} can be determined in constant time. Hence, the conditions on the right-
hand side can be evaluated in constant time. If we compare clusterings with respect to
this lexicographical ordering instead of by the value of inter in Algorithm 7, this can be
used to determine the best move for a vertex efficiently.
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Ch

(a) mixd, mixe (b) mixc

(c) aixc, aixe, aixd

FIGURE 5.1: Examples illustrating that most measures considered do not enforce con-
nected moves. Given the clusterings indicated by the gray areas, among all moves
involving v, moving v to cluster C yields the largest decrease in the objective function.

5.1.3 Connected Moves

Until now, we justified why for all measures considered, the best feasible move for a
vertex can be determined in O(n) operations. Similar to the discussion of the algorithm
based on greedy merging, if it suffices to consider neighboring clusters, the algorithm is
more efficient. More specifically, as discussed in the case of modularity optimization in
Section 3.3.2, each round of the algorithm can be performed in linear time. This raises
again the question whether the measures we consider enforce connected moves.

It is immediate that moving a vertex to a cluster it is not linked to can never decrease
the number of intercluster edges (nxe). The equivalent does not hold for gxd. However,
the following equation shows that isolating a vertex is always better than moving it to
a cluster it is not linked with. Therefore, we never have to consider non-neighboring
clusters when minimizing gxd. Let v € V, A := C(v) \ {v} and B € C such that
efv}, = 0, then:

=0
—
220,051e(S) €CinCs T efhA 20, 05e(S) €CiCs T efn),A ~ Efu)B

<
2cnone@ GllGHIHIAL 3o, opye(9) IClICs + Al = |B]
>0

gxd(Cyqy) = = gxd(Cy—B)

For all other intercluster density measures, moving vertices to clusters that contain none
of their neighbors may be necessary, as can be seen in the examples in Figure 5.1. Thus,
as might be expected, the list of measures enforcing connected moves is the same as the
one enforcing connected merges.

From a practical point of view, we can argue that configurations like the above counterex-
amples are only expected in degenerate cases. Furthermore, the impact on efficiency on
sparse graphs is large if we consider all possible clusters instead of only neighboring ones.
As unconnected clusters are not desirable in the context of graph clustering anyway and
we observed no negative impact on the quality, we chose to restrict the set of feasible
moves to neighboring clusters, both for GM and GVM. Together with the possibility to
compare different moves in constant time, we get a time complexity of O(m) for each
round of the local move procedure for each of the combinations considered. As with the
modularity based version (cf. Section 3.3.2), we do not know of any good upper bound
on the number of rounds. It can however be verified that the value of any clustering
with respect to the considered intercluster sparsity measures is larger than 0 and at most
n. Furthermore, the improvement when moving a vertex can be bounded below by 1/p,
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l graph ‘ n ‘ m H graph ‘ n ‘ m ‘
karate(N) 34 78 || netscience(N) 1589 2742
dolphins(N) 62 159 || power(N) 4941 6594
lesmis(N) 77 | 254 || hep-th(N) 8361 | 15751
polbooks(N) 105 441 || PGPgiantcompo(A) | 10680 | 24316
adjnoun(N) 112 425 || astro-ph(N) 16706 | 121251
football(N) 115 616 || cond-mat(N) 16726 47594
jazz(A) 198 | 2742 || as-22july06(N) 22963 | 48436
celegansneural(N) 297 | 2148 || cond-mat-2003(N) 31163 | 120029
celegans_metabolic(A) 453 | 2039 || cond-mat-2005(N) 40421 | 175693
polblogs(N) 1490 | 16718

TABLE 5.1: List of the real world test instances ordered by increasing number of
vertices. These are taken from the webpages of Arenas(A) [12] and Newman(N) [170]
and are often used to compare clustering algorithms.

where p is a polynomial in n, which yields a very weak but polynomial upper bound
on the number of rounds. However, it turns out that in practice, only few rounds are
needed until the algorithm converges.

5.2 Experimental Comparison of Algorithms

This section empirically evaluates GVM and GM with respect to their ability to optimize
DCC, and with respect to the uniformity of the resulting cluster size distribution.

5.2.1 Qualitative Comparison of Greedy Merge and Greedy Vertex
Moving

Our first experiments address the question which flavor of greedy algorithm is better
suited for DCC. As test instances, we used all graphs listed in Table 5.1 with less
than 1000 vertices; these are real-world networks taken from the websites of Mark New-
man [170] and Alex Arenas [12]. For all proposed combinations of measures, Figure 5.2
shows the difference of the intercluster density obtained by using GVM and GM, nor-
malized by the sum of these values. With the exception of mod, a value below 0 indicates
that GVM yields better results than GM and vice versa. In contrast to more straightfor-
ward alternatives as plotting the ratio of x obtained with GVM and GM, this measure
is only undefined if both values are 0; this only happens for the experiments including
the instances zachary and jazz in combination with o = 0.1. Moreover, the values are
distributed more evenly to the plotting area.

For modularity, the median of these values is always greater than zero, confirming that
local moving yields better results, regardless of the choice and strength of the constraint.
In combination with gid and mid, this similarly holds for all other objectives in a large
majority of parameter settings, except for nxe. Note that, in contrast to modularity,
we aim to minimize these measures and therefore a value below zero means that GVM
attains better results. For nxe, the outcome depends on the value of a.

In combination with aid, the outcome is less clear, the results for nxe are significantly
better when using GM instead of GVM. This can be explained by the observation that
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FIGURE 5.2: Qualitative comparison of GVM and GM in combination with different
combinations of intercluster measure z, intracluster measure ¢ and threshold «. For
each configuration, the distribution of (x(GVMLa,x) — ;v(GMZ-’a’x))/(x(GVMi,a’z) +
x(GMzam)) with respect to the test set described in Section 5.2.1 is shown. The box-
whisker plots use the default settings of R [180]. The thick line represents the median of
the data, the upper and lower bound of the box represent the upper and lower quartiles.
The dots represent outliers, i.e., values that deviate by more than 1.5 times the inner
quartile range from the median. The whiskers represent the maximum and minimum
of the remaining values.
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aid happily allows (and thereby encourages) unbalanced clusterings, as bad intracluster
density values of large clusters can easily be compensated by a set of small and dense
clusters. Consequently, optimal solutions for this configuration typically consist of one
huge cluster and one or several singleton vertices with low degree. As GM has a tendency
to grow one cluster without changing other parts of the clustering, low-degree vertices
are likely to be unclustered in the resulting clustering. In contrast to that, GVM assigns
these vertices to their anchor vertices in the first pass and, for nxe, will never isolate them
again, which leads to worse results for this configuration. A more detailed evaluation of
the skewness of the cluster size distribution produced by GM and GVM can be found
in Section 5.2.3.

As degenerately unbalanced clusterings are usually not intuitive, we deem aid less suit-
able in the context of graph clustering. Disregarding aid for these reasons, in the vast
majority of configurations, GVM outperforms GM.

5.2.2 Evaluating Balancedness using the Gini Coefficient

To gain further insights into the behavior of the two

greedy algorithms, we additionally evaluate the bal- 1.00

ancedness of the clusterings they produce in terms of

the Gini coefficient [90] of the resulting cluster size dis- 0.757 perfect equality
tribution. The Gini coefficient is a measure of inequal- | . |

ity that originates from economics and is a common A

index to assess the inequality of the distribution of in- .25 R

come or wealth. It is based on the Lorenz-curve of a Lorenz-curve
sample X, which is a piecewise linear function that de- 0.00

I I I
scribes the proportion of the distribution assumed by 000 025 0.50 0.7 1.00

the bottom x% of the values in X. Figure 5.3 shows FIGURE 5.3: Lorenz-

the Lorenz-curve of a small artificial example, the sam- curve (example).

ple X = {3,4,7,10}. The smallest sample value is 3,

which is 1/8 of the total sum of all values; hence, the Lorenz-curve includes the point
(1/4,1/8). The next point is (1/2,7/24), as the two smallest values add up to 7, which
is 7/24 of the total sum, and so on. The Gini coefficient is defined as twice the area
between the Lorenz-curve and the line of perfect equality (A); it assumes values between
0 and 1. Intuitively, the larger the Gini coefficient, the skewer the distribution of val-

ues. To evaluate how balanced a clustering C = {C1,...,C} is, we determine the Gini
coefficient of its cluster size distribution. More precisely, we interpret cluster sizes as
sample values, i.e., Gini(C) = Gini({|C4|,...,|Ck|})-

The Gini coeflicient shows some peculiarities when the number of clusters is very small.
For example, clusterings consisting of only two clusters cannot have a Gini coefficient
larger than 0.5. On the other hand, clusterings that are perfectly balanced, i.e., in which
each cluster has the same size, always have a Gini coefficient of 0, independent of the
number of clusters. Another positive aspect is that the absolute values do not depend
on the size of the graph. Furthermore, if vertices are moved from a larger to a smaller
cluster, the Gini coefficient always decreases, no matter what the remaining clustering
looks like; this seems to be a very desirable property when evaluating the balancedness
of clusterings.
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FIGURE 5.4: Gini coefficient, clusterings produced by using GVM and GM with con-
straints on gid.

Many objectives for graph clustering, including conductance or modularity, are implicitly
based on a tradeoff between balancedness and the number of edges cut by the clustering.
However, enforcing rigid balance constraints as in the context of graph partitioning [31]
is usually considered as too strict; in contrast, there are several studies on real world
networks that indicate cluster sizes following a power law distribution [13, 53, 175]. Our
aim in comparing the Gini coefficient of the clusterings produced by GM and GVM is
not to judge these clusterings with respect to their quality, but to gain some indication
on the question which algorithm is better suited for particular objective functions or
applications.

5.2.3 Cluster Size Distribution with GM and GVM

Figure 5.4 shows the mean Gini coefficient of the clusterings obtained by using GVM
and GM with constraints on gid. Gini plots for the other intracluster density measures
can be found in Appendix B.1. In general, the clusters produced by GVM are more
balanced, especially for low values of a.

A possible explanation for this fact is the tendency of GM to grow the clusters one by one,
as, especially in the early stages of the algorithm, the benefit of decreasing the number of
intercluster edges often outweighs negative effects on the balancedness of the clustering.
Balancedness, in turn, becomes more and more important as soon as the clusters grow
to a certain size. This can cause the first clusters that start growing to become very
large, which results in an especially skewed cluster size distribution. Of course, this
effect depends on the objective function; in the context of modularity maximization,
it empirically has a great impact on the quality of the resulting clustering and can be
mitigated by modifying the objective in favor of balance [220]. In contrast to that,
the round-based local moving scheme of GVM naturally favors balanced clusterings, as
clusters start to grow simultaneously in all parts of the graph. As already mentioned
in Section 5.2.1, this might be a reason for the observation that GM often yields better
results in combination with nxe and aid, as both of them are more or less oblivious to
the skewness of the cluster size distribution.

At first glance, the comparably low values of the Gini-coefficient obtained by both al-
gorithms in combination with aid and low values of a seem to contradict our statement
that these clusterings are degenerately unbalanced. This can be explained by the un-
intuitive behavior of the Gini coefficient when the sample size is very small; as already
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FIGURE 5.5: Effectiveness of different objective functions, one plot per intercluster
measure, i.e., evaluated measure (see supertitles). In each plot, ranks for different
intercluster density measures as objectives in the GVM-algorithm (indicated by the
label of the x axis) using gid as constraint are shown. More precisely, an intercluster
measure x obtains rank k with respect to another intercluster measure y, if optimizing
x leads to a clustering with the k-best value of y.

mentioned, clusterings containing just two clusters, which are generated frequently with
aid and a < 0.5, cannot have Gini coefficients larger than 0.5, even if they are maximally
unbalanced.

5.2.4 Effectiveness of Different Objective Functions

As discussed in Section 5.2.1, GVM most often yields better quality than GM. For
tackling DCC in the following experiments, we thus solely use GVM, putting aside the
algorithm based on greedy merging. The next question we pose is, if each of the inter-
cluster density measures is effective in optimizing itself when used as inter in GVM. To
answer this question, we conducted the following experiment on all graphs listed in Table
5.1. In the following, let GVM; o, denote GVM incorporating the constraint i(C) > «
and the objective z(C). For each setup of DCC, i.e. intracluster measure i, intercluster
measure z and o € {0.0,0.1,...,1.0}, we ranked the clusterings obtained by GVM; 4 4
by their performance with respect to x, using all possible objectives y for GVM. Figure
5.5 shows the distribution of these ranks over all configurations involving gid, grouped
by x. The outcome of this experiment is less clear than what might be expected—none
of the intercluster measures, not even modularity, scores the best quality with respect to
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itself in all configurations. Nonetheless, in general, each objective optimizes itself quite
well, except for nxe which is clearly dominated by gxd.

These observations also hold for mid, while for aid, the outcome is even less clear, as can
be seen in Figures B.3, B.4 in Appendix B.2.

5.2.5 Reference Algorithms

For a more comprehensive assessment of GVM as a means to address DCC, we use the
following reference algorithms:

e Iterative Conductance Cutting (ICC) [129]: This top-down algorithm iteratively
splits the input graph into two subgraphs based on a cut with low conductance.
The process stops when the conductance of the cut exceeds a given threshold,
which we set to 0.4 in our experiments.

e Markov-Clustering (MCL) [215]: Emulating a random walk, the matrix of tran-
sition probabilities is alternately taken to the power of e and renormalized after
taking each entry to the power of r, where e and r are input parameters. In
our experiments, we set 7 and e to 2; this equals the default settings in the im-
plementation of van Dongen and the parameter settings used in [37]. According
to van Dongen, it is necessary to add (weighted) self loops to each vertex in the
graph to prevent the result to reflect the bipartite characteristics of the input
graph [216]. In the implementation used in the preliminary version [103], this is
done by modifying the random walk matrix of the graph such that each entry
on the diagonal receives a constant probability of 0.01 and the other entries are
rescaled such that the matrix remains stochastic. Here, we use the exact imple-
mentation provided by van Dongen, which uses the following strategy. Each vertex
receives an (unweighted) self loop prior to constructing the random walk matrix.
As the two weight assignment schemes are not equivalent, the experimental results
differ slightly from [103].

o Geometric MST Clustering (GMC) [37]: First, a spectral embedding of the graph
in d-dimensional space is built. Then the algorithm constructs a Euclidean mini-
mum spanning tree and successively deletes the heaviest edge. This defines a se-
quence of forests whose connected components induce a set of clusterings. Among
these clusterings, the one with the best value according to some given objective
function is chosen.

o Multi-Level Modularity (ML-MOD) [189]: This is the GVM-algorithm based solely
on modularity without using any constraint. This algorithm has been shown to
perform very well in the context of modularity optimization [189].

5.2.6 Comparison Based on Intracluster Density Found by Reference
Algorithms

ICC, MCL and ML-MOD do not incorporate constraints on the intracluster density of
the resulting clustering. Nonetheless, it is still possible to evaluate them with respect
to those variants of DCC, where « is set to the intracluster density found by these
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algorithms. In other words, given the same constraint a reference algorithm A implicitly
adheres to, how well does GVM compare to A wrt. DCC?

We first ran ICC, MCL and ML-MOD on all test instances in Table 5.1 and recorded
the intracluster density values of the resulting clusterings. Then, for each reference
algorithm A, constraint i, recorded corresponding intracluster density a and objective
x, we compare the clustering obtained by GVM; , , to the clustering of A with respect
to z. For GMC the experiments slightly differ as GMC requires an objective function.
We filled this degree of freedom by choosing f(C) = i(C) —x(C) as the objective function
for the experiments using ¢ as intracluster and z as intercluster density measure. This
seemed to be the fairest way of comparison and in almost all cases led to non-trivial
clusterings. More specific, trivial clusterings only occurred in combination with aixc and
mixc and are the reason for the increased number of ties in these scenarios.

Table 5.2 shows the percentage of graphs where the greedy algorithm for x compares
favorably. More detailed, Figure 5.6 shows the difference in « obtained with GVM and
with the reference algorithm, normalized by the sum of these values. As we aim to
minimize intercluster density, a value below zero indicates that the greedy algorithm
yields better results than the reference algorithm and vice versa. Again, this measure is
only undefined if both values are 0; in this rare case, we exclude the instance from the
plot. Compared to ICC and MCL, GVM clearly yields better results. For GMC, GVM
yields the same or better intercluster density in the majority of configurations, except for
the combination of mixc with constraints on the average intracluster density. This can
be explained by the fact that aid does not punish unbalancedness and GMC naturally
leads to very unbalanced clusterings in most instances. The outcome of the comparison
with the modularity-based algorithm is less clear. For aid, GVM performs better, which
is not surprising as modularity strongly discourages unbalanced clusterings. For mid,
GVM still beats ML-MOD in the majority of configurations, while for gid, this only holds
for slightly less than half of the configurations. Furthermore, it is worth mentioning
that especially for aixd and aixe there are instances where modularity minimizes these
functions far better than the respective greedy algorithms. Altogether, the comparison
with ICC, MCL and GMC suggests that GVM effectively addresses DCC, while the
comparison with ML-MOD shows that optimizing modularity is similarly effective in
minimizing cut-based intercluster sparsity measures.

TABLE 5.2: Comparison of GVM and reference algorithms. The first entry represents
the percentage of graphs where GVM compares favorably, i.e., yields strictly better
intercluster density than the reference algorithm. The second entry denotes the per-
centage of graphs where GVM and the reference algorithm yield the same intercluster
density.

gid mid aid
ICC MCL MOD GMC | ICC MCL MOD GMC | ICC MCL MOD GMC
nxe 84/5 68/11 16/5 63/0 | 89/5 74/5 63/0 74/0 | 95/5 100/0 100/0 63/0
gxd 84/5 95/0 42/0 100/0| 95/5 100/0 84/0 100/0| 95/5 100/0 100/0 84/0
aixd | 84/5 95/0 42/0 100/0| 89/5 89/0 37/0 95/0 | 95/5 95/0 100/0 84/0
aixc | 84/5 95/0 21/0 53/26| 95/5 89/0 79/0 42/32| 95/5 84/0 100/0 63/0
aixe | 84/5 84/0 42/0 89/0 | 89/5 79/0 42/0 95/0 | 95/5 89/0 95/0 95/0
mixd | 84/5 79/0 53/0 84/0 | 89/5 84/0 74/0 89/0 | 89/5 95/0 89/0 74/0
mixc | 89/5 89/0 42/0 37/32| 89/5 89/0 63/0 37/37| 89/5 84/0 84/0 21/16
mixe | 89/5 79/0 58/0 89/0 | 84/5 79/0 47/5 79/0 | 95/5 79/0 89/5 63/5
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FIGURE 5.6: Comparison to reference algorithm A € {ICC, MCL, MOD, GMC}. For
each configuration of intracluster measure 7 and intercluster measure z, the distribution

of ((GVM; a,2) —2(A))/(#(GVM; q,2) +x(A)) with respect to the graphs in Table 5.1

is shown. « is set to the corresponding value of 7 in the clustering produced by .A.
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5.2.7 Implementation and Running Times

The algorithms ICC, GMC and GM are implemented in Java 1.6.0_22 using the graph li-
brary yFiles [231]. GVM (also incorporating ML-MOD as a special case) is implemented
in C++ using version 1.42 of the Boost Graph Library? and compiled with gcc 4.5.2
with optimization level 4. For MCL, we used the highly optimized software provided by
van Dongen?, version 12-135. The focus of this evaluation is on the quality of the re-
sulting clusterings, not on running times. However, to get a rough impression about the
latter, clustering cond-mat-2005 on a 2.1 GHz AMD Opteron processor 6172 takes about
6 hours with ICC, 5 minutes with GMC, 46 seconds with MCL, and 3 to 15 seconds
with GVM, depending on the parameter setting. The version of GVM corresponding
to ML-MOD takes about 3.5 seconds. With our prototype implementation (not imple-
menting any of the efficient SAHN algorithms from Chapter 4) of GM, clustering the
much smaller celegans_metabolic takes over 2 minutes.

5.3 Comparison of Density and Sparsity Measures

To compare the different objective functions qualitatively, we evaluated how well the
corresponding GVM-algorithms are able to reconstruct planted partitions in random
graphs. As a comparison, we also give the results obtained by ML-MOD. Due to higher
running times and large numbers of experiments, we omit a comparison with ICC, MCL
and GMC.

5.3.1 Random Graphs

We use an adapted Erdés-Rényi-model, where, starting from a given reference partition,
the probability that vertices in the same set (in different sets) are connected equals
Pin (Pout). The number of vertices (n) and clusters (k) as well as the skewness of the
distribution of cluster sizes (/) of the planted partition are input parameters. Setting
B to 1.0 corresponds to uniform cluster sizes, values below and above 1 cause this
distribution to be skewed, for more details see Chapter 8 and the technical report by
Gorke and Staudt [104]. As configurations, we fixed n = 10000 and chose p;, and pous
such that the average number of intracluster (intercluster) edges a vertex is incident
to equals 5 (3). To determine the reference partition, we used all combinations of
k € {10,100,300} and S € {0.3,1.0,2.0}. For each configuration, we generated 100
instances and always averaged over the obtained values.

5.3.2 Distance Measures

To compare the clusterings obtained with the different algorithms to the reference clus-
tering, we use the following graph-based distance measures taken from [61]:

e Graph-based Rand Index (Ry): Let C; and Cy be clusterings and ejq (eg) the
number of edges which are intracluster (intercluster) wrt. both C; and Ce. Then,
Rg(Cl,Cg) =1- (611 + 600)/m.

http://www.boost .org/
3http://micans.org/mcl/
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e [Editing Set Difference (ESD): For a clustering C, its editing set F¢ is the set
of edges requiring insertion or removal such that the clusters in C form disjoint

cliques. Then, for clusterings C; and Cs, their editing set difference is defined as
ESD(Cl,CQ) =1- |Fc1 N F(32|/|F'c1 @] FC2|-

5.3.3 Parameters and Evaluation

As an exhaustive parameter search for all configurations would be far too expensive, we
always set a to 75 percent of the expected global intra-cluster density pi,. We deemed
taking the actual value of py, too strict, as, especially for mid, even the reference cluster-
ing of the generator most likely does not meet this constraint. The previous experiments
indicate that there are configurations where particular objective functions used in GVM
do not score the best results with respect to themselves. As our goal was to compare
good clusterings with respect to different combinations of ¢ and x, independent of arti-
facts of GVM, we chose the following approach: For a combination ¢, o, x, we evaluated
the clustering that, among all results obtained with GVM using ¢ > « as constraint,
is best with respect to x (as opposed to simply evaluating GVM; 4 ;). Furthermore,
preliminary experiments confirmed that constraining aid leads to very unintuitive and
unbalanced clusterings, which is reflected in the fact that the corresponding versions of
DCC are far less effective in finding the hidden clustering. For this reason, we excluded
aid in the discussion of the results.

5.3.4 Results on Planted Partition Graphs

Figure 5.7 and Figure 5.8 show the results for selected configurations, the results for the
whole set of experiments can be found in Appendix B.3. In the first plot of Figure 5.7
it can be seen that, in general, the clusterings that are ranked best with respect to mod,
nxe and gxd are most similar to the reference.

Constraining modularity by mid improves its results. This especially holds for the exper-
iments with high skewness (8 = 2) and k£ = 300. In these experiments, modularity finds
far less clusters than expected, partially due to its known resolution limit [84], which
can be circumvented by steering the coarseness of the clustering by constraining the in-
tracluster density. Another interesting fact is that ESD punishes the coarse clustering
obtained by pure modularity far more than R,.

aixe and especially aixd identify many clusters. Another striking observation is that
the average number of clusters in clusterings found by aixd and aixe, indicated by the
green x-marks, is much higher than the average number of clusters in the reference.
This especially stems from the experiments with few clusters. In the configuration with
B8 =1 and k = 10, it can also be seen that these measures differ the more, the coarser
the expected clustering gets. This is not unexpected, as the denominator of aixd grows
more slowly with the number of vertices in the cluster than the denominator of aixe,
meaning that aixd is less eager to produce very large clusters. Additionally, in Chapter 4
it was proven that with the exception of aixd, all inter-cluster measures considered here
can always be ameliorated by merging two existing clusters (unboundedness), which is
also a hint that aixd is less likely to produce coarse clusterings than the other measures.
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Distance to Reference by RG (B in {0.3, 1.0, 2.0}, k in {10, 100, 300})
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FIGURE 5.7: Distance to reference clustering (boxplots, left-hand y-axis) and number
of clusters discovered in planted partition graphs (green x-marks, right-hand y-axis),

different configurations
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Gini Coefficient, beta in {0.3, 1.0, 2.0}, k in {10, 100, 300}
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FIGURE 5.8: Gini coefficient of cluster size distribution, different configurations.

aixe and especially aixd favor unbalanced clusterings. This holds for a number of con-
figurations with & = 10 or k£ = 100, and is also clearly visible in the plot showing a
summary of all configurations (see Figure 5.8). This does not hold for their worst-case
counterparts mixe and mixc.

mixc yields significantly worse results in some configurations. In our preliminary pa-
per [103], we conjectured that, for configurations with fine reference clusterings, this can
be explained by unbalanced clusterings. The corresponding plot for the Gini coefficient
for the experiments with £ = 300 and 8 = 1 reveals that this is not the case. In con-
trast to that, clusterings obtained by optimizing mixc are more balanced than the ones
obtained by other measures in some configurations, especially in the experiments with
B8 = 0.3 and k£ = 10. Interestingly, this leads to a very high distance to the reference
clustering. By contrast, the intercluster expansion or density of such clusters is usually
very low. Note that this effect seems to be a lot weaker when averaging the values with
aixc.
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(a) mixe (b) mod (c) aixd

FIGURE 5.9: Network of frequent associations between 62 dolphins in a community
living of Doubtful Sound, New Zealand [159]. The clusterings displayed are obtained by
optimizing the measures (a) mixe, (b) mod and (c) aixd with GVM under the restriction
gid > 0.2.

Intra- and intercluster measures both influence the skewness of the resulting cluster
size distribution. This influence depends strongly on the structure of the input graph.
Roughly, with the exception of aid, the choice of the intercluster measure seems to have
more influence on the balance, while in total, clusterings obtained by constraining mid
are slightly more balanced than the ones obtained by constraining gid.

5.3.5 Selected clusterings on small example network.

Figure 5.9 demonstrates the differences between intercluster measures on a small network
reflecting social interaction of a group of 62 dolphins [159]. As we did not want to
introduce an artificial bias towards a particular clustering, the (force-directed) layout
of the vertices does not use any information about the clustering. With the restriction
gid > 0.2, aixd dominates nxe, gxd and mixd in the sense that the clustering obtained
by optimizing aixd with GVM yields less intercluster edges and lower values of gxd and
mixd than the corresponding clusterings obtained by optimizing these measures directly.
Similarly, mixe dominates aixc and mixc, while aixc dominates aixe. Due to this and to
retain visual clarity, we only give the clusterings obtained by aixd, mixe and mod. aixc is
omitted because the respective clustering is very similar to the one obtained with mixe,
they only differ in the assignment of few vertices connecting the upper with the lower
part.

Compared to mixe, the clustering obtained by mod introduces two new clusters that
consist of the vertices connecting the left and the right part. The main difference between
these clusterings and the one obtained by aixd is the assignment of the nine vertices at



Chapter 5 Experiments on Density-Constrained Graph Clustering 85

the bottom that are only sparsely connected to the remainder of the graph; mixe and
mod assign them to the only clusters they are connected with while aixd essentially leaves
them unclustered. Overall, all clusterings are rather similar in the sense that only few
vertices are treated differently, all of them either connecting the two parts or being only
loosely connected to the network; a human observer might argue in favor of any of the
clusterings considered, as the group affiliation of these vertices seems ambiguous.

The reason why nxe, gxd and mixd are dominated by aixd is that the respective versions
of GVM merge the sparsely connected vertices at the bottom with their anchor vertices
in an early stage of the algorithm. Isolating these vertices later on is not possible, as
this would decrease the respective objective function, although isolating these vertices
and moving one of the vertices in the middle to the respective cluster would be feasible
and improve the objective function.

5.4 Concluding Remarks

This chapter contains an experimental evaluation of algorithms optimizing the objective
of DENSITY-CONSTRAINED CLUSTERING (DCC). We first evaluated two greedy heuris-
tics, vertex moving and cluster merging, against each other and against algorithms
from the literature. Vertex moving proved reliably superior to cluster merging and, in
many cases, beats the results of the reference algorithms. Our results also show that a
well-known modularity-based algorithm implicitly addresses DCC quite well, revealing
similarities between cut-based intercluster sparsity measures and modularity. In the
second part, we addressed the question whether different combinations of intracluster
density and intercluster sparsity measures are suitable to guide algorithms in recovering
planted partitions in random graphs. The results suggest that minimizing the average
intercluster expansion or density of the clusters overestimates the number of clusters
if the expected clustering is coarse, while maximum intercluster conductance fails to
recognize the hidden clustering in a variety of configurations. Interestingly, for some
cut measures, the choice of averaging values over all clusters or using the corresponding
worst-case counterpart highly affects the nature of the resulting clustering. Additionally,
it can be seen that the known resolution limit for modularity can be circumvented if the
coarseness of the clustering is controlled by an additional constraint on the intracluster
density of the clustering. Similar to other clustering measures involving an additional
parameter that steers the coarseness of the resulting clustering, it is still open how to
select the parameter « in case there is no prior knowledge on the expected density of
the clusters.

Although all measures of intracluster density and intercluster sparsity we evaluated are
based on the same paradigm, different combinations lead to different results with respect
to characteristics like the skewness of the cluster size distribution or the treatment of
satellites. Therefore, depending on the application, it is worthwhile identifying desirable
features of the clustering and to choose a concrete optimization problem accordingly.






Chapter 6

Surprise - Complexity and Exact
Solutions

In this chapter, we will turn our attention from the cut-based view back to clustering
measures based on null models. This line of research recently gained a lot of popularity,
the most prominent objective function in this context being the modularity of a cluster-
ing [173]. Roughly speaking, the idea behind this approach is to compare the number
of edges within the same cluster to its expected value in a random graph that inherits
some properties of the graph given as input (cf. Section 2.3).

In a wider sense, the measure called surprise that has recently been suggested as an
alternative to modularity is also based on a null model, although, compared to modu-
larity and its modifications [83], it uses a different tradeoff between the observed and
expected number of edges within clusters. Surprise is used as a quality function in the
tools UVCLUSTER and Jerarca to analyze protein interaction data [15, 4]. The au-
thors’ main arguments for using surprise instead of modularity is that it exhibits better
behavior with respect to synthetic benchmarks and, empirically, it does not suffer to
the same extent from the resolution limit of modularity [84], i.e., the tendency to merge
small natural communities into larger ones [5, 7, 8]. However, these results are hard to
assess, since a metaheuristic [9] is used instead of directly optimizing the measure. It
chooses among a set of clusterings produced by general clustering algorithms the one
that is best with respect to surprise. We will describe this metaheuristic in detail in
Chapter 7, which is concerned with a heuristic algorithm for surprise maximization.

In this chapter, we take first steps towards a theoretical analysis of surprise. We show
that the problem of finding a clustering with optimal surprise is AP-hard in general
and polynomially solvable on graphs with bounded tree width. Moreover, we formulate
surprise as a bicriteria problem, which allows to find provably optimal solutions for small
instances by solving a small number of integer linear programs. We further derive an
objective function called SMod, which can be seen as a compromise between surprise
and modularity, and illustrate its features on some small example instances.

87
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6.1 Definition and Basic Properties

Let C be a clustering of a graph G = (V, E) with i, intracluster edges. Among all
graphs labeled! with vertex set V and exactly m edges, we draw a graph G uniformly at
random. The surprise S(C) of this clustering is then the probability that G has at least i
intracluster edges with respect to C. The lower this probability, the more surprising it is
to observe that many intracluster edges within GG, and hence, the better the clustering.
The above process corresponds to an urn model with i,(C) white and p — i,(C) black
balls from which we draw m balls without replacement. The probability to draw at least
i white balls then follows a hypergeometric distribution, which leads to the following
definition?; the lower S(C), the better the clustering:

() G

= M)

Basic Properties. For a fixed graph, the value of S only depends on two variables, 4,
and .. To ease notation, we will use the term S(iy, i.) for the value of a clustering with
1p intracluster pairs and ¢, intracluster edges. The urn model view yields some simple
properties that lead to a better understanding of how surprise behaves, and that are
heavily used in the NP-hardness proof.

Lemma 6.1. Let ic, ip, p and m be given by a clustering, i.e., 0 < i, <ip <p, ie <M
and m — i, < p—1i,. Then, the following statements hold:

(i) S(ipic+ 1) < S(ip,ic).
(ii) Ific > 0, then S(ip — 1,ic) < S(ip,ic).

(111) If p — i, > m — i, then S(ip + 1,ic + 1) < S(ip,ic).

Proof. Statement (i) is obvious. Similarly, statement (ii) is not hard to see if we recall
that S(ip, — 1,4.) corresponds to the probability to draw at least i, white balls after
replacing one white ball with a black one.

For statement (iii), we show that the number k; of m-element subsets of the set of
all balls containing at least i, white balls is larger than the number ko of m-element
subsets containing at least i, + 1 white balls after painting one black ball b white.
Any subset A that contributes to ko also contributes to ki, as at most one ball in A
got painted white. On the other hand, every m-element subset not containing b that
contains exactly 7. white balls contributes to k1, but not to ko. As there are at least i,
white balls, and p — i, > m — i, implies that there are at least m — i, + 1 black balls,
there is at least one subset with these properties. Hence ki > ko, which is equivalent to
S(ip+1,ic + 1) < S(ip, de). O

!This means, we consider graphs that are isomorphic to each other but differ in the con-
crete associations between vertices as two different graphs. For example, two graphs Gi =
({v1,v2,v3}, {{v1,v2}, {v2,v3}}) and G2 = ({v1,v2,vs}, {{v1,vs}, {vs,v2}}) are not identical, although
they both represent a path of length 2.

2This is the definition used in the original version [15]; later on, it was replaced by maximizing
—log,, S(C), which is equivalent with respect to optimum solutions.
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In other words, the value of surprise improves the more edges and the less vertex pairs
within clusters exist. Moreover, part (iii) shows that if we increase the number of
intracluster edges such that the number of intracluster non-edges, i.e., vertex pairs within
clusters that are not linked by an edge, does not increase, this leads to a clustering
with strictly smaller surprise. This immediately yields some basic properties of optimal
clusterings with respect to surprise. Part (i) of the following proposition is interesting
as it shows that optimal clusterings always fulfill the assumptions of Lemma 6.1(ii)-(iii).

Proposition 6.2. Let G = (V, E) be a graph that has at least one edge and that is not
a clique and C be an optimal clustering of G with respect to surprise. Then,

(1) ic(C) > 0 and p —ip(C) > m — i.(C)
(i) 1 <|C| < |V]
(11i) C contains at least as many intracluster edges as any clustering C' of G into cliques.

(iv) Any cluster in C induces a connected subgraph.

Proof. (i): If i.(C) = 0, it can easily be seen that S(C) = 1. This similarly holds
if p—i,(C) = m —i.(C), as p — ip(C) is the number of black balls in the urn and the
statement that at least i, of the drawn balls are white is equivalent to the statement that
at most m — i.(C) of them are black. On the other hand, let us consider a clustering C’
where each cluster contains one vertex, except for one cluster that contains two vertices
linked by an edge e. As m < p, there is at least one labeled graph on V with m edges
that does not contain e.

(ii): If |IC| =1, p—ip(C) = 0 =m —i.(C) and if |C| = |V, i(C) = 0. The statement now
follows from (i).

(iii): Let us assume that i.(C) < i.(C’). Lemma 6.1(ii) can be used to show that S(C) =
S(ip(C),ie(C)) > S(ie(C), ic(C)) and from Lemma 6.1(iii), it follows that S (ic(C), ic(C)) >
S(ie(C),i.(C")) = S(C).

(iv): Follows from Lemma 6.1(ii) and the fact that splitting a disconnected cluster into
its connected components decreases the number of intracluster pairs and does not affect
the number of intracluster edges. O

Bicriteria View. From Lemma 6.1, it follows that an optimal solution with respect
to surprise is Pareto optimal with respect to (maximizing) i, and (minimizing) i,. In-
terestingly, this also holds for a simplification of modularity whose null model does not
take vertex degrees into account and that was briefly considered by Reichardt and Born-
holdt [181, 182], although the tradeoff between the two objectives is different. Hence,
an optimal clustering can be found by solving the following optimization problem for all
0 < k < m and choosing the solution that optimizes surprise.

Problem 1 (minlP). Given a graph G and an integer k > 0, find a clustering C with
ie(C) = k, if there exists one, such that i,(C) is minimal.

The problem minIP closely resembles the Minimum Average Contamination problem
considered by Li and Tang [151] in the context of information propagation or virus
diffusion.
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Problem 2 (MACP). Given a graph G = (V, E) together with a weight function w: V —
Q>0 on V and a parameter k. Find a clustering C of G such that m —i.(C) = k and

>cee (Zvee w(v))2 is minimal.

In the context of surprise, we are interested in the special case that w(v) = 1 for all
v € V, the unweighted MACP. The following conversion shows that this is equivalent to
minIP with respect to optimal solutions:

o)=Y ITHCI=D _ s e Ly (6.
ceC ceC SN—~—
=const.
Unfortunately, the unweighted MACP and hence minIP is NP-complete even on bipar-
tite graphs [151]. Furthermore, Li and Tang give a proof that a weighted version of this
problem is A'P-complete on planar graphs. In his bachelor thesis, Fleck [80] shows that
this proof is not entirely correct, as it is based on a reduction that does not necessarily
lead to a planar graph. However, Fleck shows how the reduction for the weighted case
can be corrected and further, how it can be modified to also work for the unweighted

MACP. Hence, minIP is N'P-complete as well, if restricted to planar graphs.

Although the connection between surprise and this subproblem does not lead to poly-
nomial time algorithms for surprise optimization, the formulation of minIP does not
involve binomial coefficients and is thus in some aspects easier to handle. For example,
in contrast to surprise, it can be easily cast into an integer linear program. We will use
this in Section 6.4 to compute optimal solutions for small instances.

One might guess from the N'P-completeness of minIP that surprise minimization is also
NP-complete. However, there is no immediate reduction from minIP to the decision
variant of surprise optimization, as the number of intracluster edges in an optimal clus-
tering with respect to surprise is not fixed. In the following section, we will therefore
give a proof for the hardness of finding a clustering with optimal surprise.

Related Work. The problem minIP and the associated problem MACP seem basic
enough to have been previously occurred in the literature. Indeed, there is a couple of
problems in the context of clustering and partitioning that are at least closely related.
Grotschel and Wakabayashi [108, 109] consider the problem to find a clustering of a
complete graph with both positive and negative edge weights, such that the total weight
of the intracluster edges is maximized, which they term the clique partitioning problem
(CPP). They propose a cutting plane algorithm for this problem that can be used to
solve instances of moderate size optimally. CPP is of particular interest, as it subsumes
other well known optimization problems in the context of graph clustering as a special
case. For example, correlation clustering [19] and cluster editing [196] are equivalent to
a special case of CPP with respect to optimal solutions. Furthermore, modularity can
be formalized as a CPP problem [10]. The problem minIP can be seen as a modification
of CPP where all edge weights are uniform and we have the additional constraint that
at least k of a special type of edges (which correspond to the edges in the original
graph) are within clusters. This connection becomes apparent in Section 6.4, where we
consider integer linear programs. For minIP or MACP, we might think of the weight
of a cluster as the squared total sum of the weights of the vertices it contains. Other
partitioning problems arise if we omit the square and just weigh a cluster by the total sum
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of vertex weights. Especially in the case of trees, these problems have been extensively
studied [24, 142, 179]. Ito et al. [124] give a linear time algorithm for a problem in
this context on graphs of bounded tree width. There is no apparent way to translate
these efficient algorithms to our setting. Furthermore, there exist linear algorithms for
graphs with bounded tree width that work for whole classes of partitioning problems.
For example, Voice et al. [218] consider Coalition Structure Generation (CSG), which
seeks a clustering of the graph maximizing the total weight of the clusters. Here, it
is assumed that the weight of each possible cluster is explicitly given, i.e., the input
is a set of objects together with a function that maps each subset to a real number.
CSG is even more general than CPP and clearly contains this problem as a special case.
They show that if the weight function is independent of disconnected members, i.e., the
contribution of a vertex to the weight of its cluster does not depend on the question
whether the cluster contains some of its non-neighbors, a linear time algorithm exists
for graphs of bounded tree width. It is not hard to see that this property does not hold
in our setting. Similarly, there is no obvious way of fitting minIP into the framework of
vertex partitioning problems defined by Telle and Proskurowski [211].

6.2 NP-Completeness

To show the hardness of surprise optimization, we prove NP-completeness for the cor-
responding decision problem:

Problem 3 (SURPRISE DECISION (SD)). Given a graph G and a parameter k > 0,
decide whether there exists a clustering C of G with S(C) < k.

To show that SD is in NP, we have to justify that S(C) can be evaluated in polyno-
mial time on a Turing machine. The size of the largest binomial coefficient involved is
(Zj), which is bounded above by 27" In our standard model of computation, a RAM
with uniform cost model, binomial coefficients of this size can be easily computed in
O(n?m), for example by using a dynamic algorithm which computes the relevant entries
in Pascal’s triangle. Unfortunately, the resulting numbers can have Q(n?) bits, which
is not logarithmic in the size of the input; thus, it is not immediately clear that the
computation can be emulated on a Turing machine in polynomial time. As explained in
Section 2.4, if we switch from the uniform to the logarithmic cost model, the complexity
is equivalent to Turing machines in the sense that every polynomial time algorithm can
be transferred to a polynomial time algorithm on a Turing machine. As this switch only
incurs an extra factor of n? in the running time, the running time is still polynomial and
we get that SD is in N'P. To show N P-completeness, we reduce from EXAcT COVER
BY 3-SETS, which is known to be N'P-complete [88].

Problem 3 (Exact COVER BY 3-SETS (X3C)). Given a set X with |X| = 3q and
collection S of 3-element subsets of X. Does § contain an exact cover for X, i.e., a
subcollection 8" C S such that every x € X occurs in exactly one S € §'?

Let I = (X, M) be an instance of X3C. The reduction is based on the idea of implanting
large disjoint cliques in the transformed instance that correspond to the subsets in M.
The size of these cliques is polynomial in |[M|, but large enough to ensure that they
can neither be split nor merged in a clustering with low surprise. Hence, each of these
cliques induces a cluster. The transformed instance further contains a vertex for each
element in X that is linked with the cliques corresponding to subsets it is contained in.
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The idea is to show that in a clustering
C with low surprise, each of these vertices
is contained in a cluster induced by ex-
actly one subset, and each cluster contains
either three “element vertices” or none,
which induces an exact cover of X.

In the following, we will assume without
loss of generality® that each element of X
belongs to at least one set in M. Hence,
|X| < 3|M|. We construct an instance
I' = (G, k) of SD in the following way. FIGURE 6.1: Illustration for reduction.
Let r := 3|M|. First, we map each set M

in M to an r2-clique C(M) in G. Furthermore, we introduce an |X|-clique to G, where
each of the vertices v(x) in it is associated with an element z in X'. We link v(x) with
each vertex in C'(M), if and only if x is contained in M. Let Vy be the set containing
all vertices corresponding to elements in X, and V) the set of vertices corresponding
to subsets. Figure 6.1 illustrates the reduction, clearly, it is polynomial. In the proof,
we will frequently use the notion for large r, statement A(r) holds. Formally, this is an
abbreviation for the statement that there exists a constant ¢ > 0 such that for all » > ¢,
A(r) is true. Consequently, the reduction only works for instances that are larger than
the maximum of all these constants, which suffices to show that SD is N'P-complete?.

Lemma 6.3. Let C be an optimal clustering of G with respect to S. Then, i.(C) >
2
M- ().

Proof. Follows from Proposition 6.2(iii) and the fact that the clustering whose clusters

are the cliques in V4 and the singletons in Vy is a clustering into cliques with |M] - (T; )
intracluster edges. ]

Next, we give an upper bound on the number of intracluster non-edges, i.e., vertex pairs
within clusters that are not linked by an edge, in an optimal clustering of G. Its (rather
technical) proof makes use of the asymptotic behavior of binomial coefficients and can
be found in Section 6.7.

Lemma 6.4. Let C be an optimal clustering of G with respect to surprise. Then, for
large r, i,(C) —ic(C) < 5.

This can now be used to show that an optimal clustering of G is a clustering into cliques.
We start by showing that the cliques in V4 cannot be split by an optimal clustering.
Lemma 6.5. Let r be sufficiently large and C be an optimal clustering of G with respect
to S. Then, the cliques C(M) in Vg are not split by C.

Proof. Assume that there is at least one clique that is split by C. C induces a partition

of each clique that it splits. We call the subsets of this partition the parts of the clique.

Claim 1: Every clique C(M) contains a part with at least r> — 6 vertices.

30therwise, the instance is trivially non-solvable.
“Smaller instances have constant size and can therefore be trivially solved by a brute-force algorithm.
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before transformation after transformation

FIGURE 6.2: Ilustration for proof of Lemma 6.5

Proof of Claim 1: Assume that there is a clique K where each part has at most r2 — 7
vertices. We can now greedily group the parts in two roughly equal sized regions, such
that the smaller region contains at least 7 vertices and the larger region at least r2/2
vertices. Let us look at the clustering we get by removing the vertices in K from their
clusters and cluster them together. The vertices in K have in total 372 edges to vertices
outside K and we gain at least 7/2-72 new intracluster edges between the regions. Hence,
the number of intracluster edges increases and the number of intracluster non-edges can
only decrease. By Lemma 6.1(iii) and Lemma 6.1(i), it can be seen that this operation
leads to a clustering with better surprise, which contradicts the optimality of C.

Let us now call the parts with size at least r? — 6 large parts and the other parts small
parts.

Claim 2: No two large parts are clustered together.

Proof of Claim 2: Assume that there is a cluster that contains more than one large part.
This cluster induces at least (72 — 6)? intracluster non-edges. For large r, this is larger
than r/2 and Lemma 6.4 tells us that C was not optimal.

A simple counting argument now yields the following corollary.

Corollary: There must exist a large part B contained in a split clique whose cluster
contains at most |B| + 6 vertices in V.

Let B be as in the corollary and A be the set of the vertices that are in the same clique
as B but not in B and C' be the set of vertices that are in the same cluster as B but
not in B. Figure 6.2 illustrates this case. We consider the clustering that we get by
removing the vertices in A and B from their cluster and cluster them together. The
number of vertices in A and C, respectively, is at most 6, and each of these vertices
has at most 3 neighbors in Vy. Hence, we lose at most 36 intracluster edges by this
operation. On the other hand, we gain at least r? — 6 intracluster edges between A and
B, thus, for large r, the number of intracluster edges increases. Again, the number of
intracluster non-edges can only decrease and by Lemma 6.1(iii) and Lemma 6.1(i), we
get that this operation leads to a clustering with better surprise, which contradicts the
optimality of C. O

Lemma 6.6. Let r be large and C be an optimal clustering of G with respect to S. Then,
no two of the cliques in Vaq are contained in the same cluster.
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Proof. A cluster that contains two cliques in V4 induces at least 74 intracluster non-
edges. The statement now follows from Lemma 6.4. O

Lemma 6.7. Let r be large and C an optimal clustering of G with respect to S. Then,
each v(x) in Vy shares a cluster with a clique C(M) such that x € M.

Proof. From Lemma 6.5 and Lemma 6.6 we know that C clusters the vertices in V4
according to the cliques we constructed. Assume that there is a vertex v(x) in Vy that
is not contained in any of the clusters induced by the sets containing x. Since each
element in X is contained in at least one set in M, there exists a clique K in Vi, that
contains 72 neighbors of v(z). As v(x) has at most |X'| — 1 neighbors in its own cluster,
removing it from its cluster and moving it to the cluster of K increases the number of
intracluster edges. On the other hand, z is linked with all vertices in its new cluster and
thus, the number of intracluster non-edges cannot increase. Hence, this operation leads
to a clustering with better surprise, which contradicts the optimality of C. O

Theorem 6.8. For large r, I = (X, M) has a solution if and only if there exists a

. ) - MITZHXY a1 (7)< 2= X
clustering C of G with S(C) <k := (1) - <( (§M|)2€|I)-r‘|2(+2()xl|)/\7 | >
2

Proof. =: Let R be a solution of I. R induces a clustering of GG in the following way:
For each M € M\ R we introduce a cluster Cj; = C(M) and for each M’ € R a
cluster Cpyr = C(M') U {v(z) | x € M'}. As R is an exact cover, this is a partition
C of the vertex set. Itzis p = (|M"T;+|X‘), m = |M|- (T;) +3-M|-r?+ (l;\’) and
ip(C) = ic(C) = M| - () + |X| - 72 4+ |X|. It can be easily verified that S(C) = k.

«<: Let C be an optimal clustering of G with respect to surprise and assume that
S(C) < k. From Lemma 6.5, Lemma 6.6 and Lemma 6.7, we know that, for large r,
we have one cluster for each set M in M that contains C'(M) and each vertex v(z) in
Vy shares a cluster with a clique C(M) such that x € M. In particular, all clusters in

C are cliques and hence (Z:Eg;) = 1. It follows that (?)-k > (P)-S(C) = (» :ife((%))).

This term is strictly decreasing with i.(C) and the above bound is tight for i.(C) =
|IM]- (7;) +]X|-r2+|X| := t. Hence, C contains at least ¢ intracluster edges. The number

of intracluster edges within V)4 is exactly |[M|- (7"22 ) and the number of intracluster edges
linking Vi with Vy is exactly |X|-72. The only quantity we do not know is the number
of intracluster edges within Vy, which we denote by i.(Vx). As i.(C) > t, it follows that
ie(Vy) > |X|. Thus, every vertex in Vy has in average two neighbors in Vy that are
in the same cluster. On the other hand, vertices in Vy can only share a cluster if they
are “assigned” to the same clique C'(M). As the sets in M only contain three elements,
vertices in Vy can only have at most two neighbors in Vy in their cluster. It follows
that C partitions Vy into triangles. Hence, the set of subsets R corresponding to cliques
C(M) whose clusters contain vertices in Vy form an exact cover of X. O]

We now have a reduction from X3C to SD that works for all instances that are larger
than a constant ¢ > 0. Hence, we get the following corollary.

Corollary 6.9. SURPRISE DECISION is N'P-complete.
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6.3 Trees and Bounded Treewidth

To show that an optimal clustering with respect to surprise can be found in polynomial
time if G is a tree, we consider the above defined problem MACP [151]. For the special
case that w(v) equals the degree of v and G is a tree, Dinh and Thai give a dynamic
program, based on partial subtrees, that solves MACP for all 0 < k£ < m simultane-
ously [66]. This yields an O(n%) algorithm for modularity maximization in (unweighted)
trees.

The dynamic program of Dinh and Thai has a straightforward generalization to general
vertex weights, which is polynomial in the case that each vertex has weight 1. A detailed
description of the dynamic program in this special case, together with a runtime analysis,
can be found in the bachelor thesis of Fleck [80] and in our technical report [81].

Theorem 6.10. Let T = (V, E) with n := |V| be an unweighted tree. Then, a surprise
optimal clustering of T can be calculated in O(n®) time.

In the following, we will turn our attention again to the equivalent problem minIP. We
give a polynomial time algorithm for graphs with bounded treewidth, i.e., graphs with
treewidth at most w, where w is assumed to be constant. The dynamic program we use
is similar in spirit to the program in the case of trees. To clarify the presentation, we
will however abandon the idea to consider partial subtrees and will instead make use
of the convenient concept of nice tree decompositions [137]. In the special case of trees,
this dynamic program will add an additional factor of n to the running time; however,
the main purpose of this section is to show that polynomial time algorithms exist.

To distinguish between vertices in the graph we want to cluster and in a tree decomposi-
tion thereof, we will always call the latter nodes instead of vertices. Let us assume in the
following that tree decompositions contain an (arbitrarily chosen) node that we consider
as the root of the tree, such that we can speak in terms of successors and ancestors of
tree nodes.

Definition 6.11. A tree decomposition (T =(I,F),{X;|ie I}) of a graph G is nice,
if each node ¢ € I is of one of the four following types:

1. Leaf: node i is a leaf of T', and |X;| =1
2. Join: node i has exactly two children, say j, and k and X; = X; = X},

3. Introduce: node ¢ has exactly one child, say j, and there is a vertex w € V with
Xj = Xi\ {w}

4. Forget: node ¢ has exactly one child, say j, and there is a vertex w € V with
Xj =X, U {w}

Given a (rooted) tree decomposition T of G, we will furthermore denote the subgraph
of G that is induced by the vertices contained in the bags associated with the nodes
in a subtree T; of T, rooted at a node i, as G*. It is not hard to see that if i is
a join node, the vertices in X; constitute a vertex separator of G* [34]. Hence, the
above node types join, introduce and forget, and the associated subtrees of G look like
the examples in Figure 6.3. Note that we can restrict our considerations to nice tree
decompositions without loss of generality, as these can be easily obtained from arbitrary
tree decompositions of width w by the following lemma.
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FI1GURE 6.3: Illustration of node types in a nice tree decomposition

Lemma 6.12 (Kloks [137], pages 149-150). For constant w, given a tree decomposition
of a graph G of width w and O(n) nodes, where n is the number of vertices of G, one
can find a nice tree decomposition of G of width w and with at most 4n nodes in O(n)
time.

Let 7 be a node in the tree decomposition and P be a partition of X;. Furthermore, let
s be a function that maps every p € P to an integer 0 < s(p) < n. Let C be a clustering
of G' with a intracluster edges such that C, restricted to the vertices in X;, coincides
with P and for each p € P, the cluster containing the vertices in p has size s(p). Then,
we call C eligible with respect to a, P, and s. We now define f*(a, P, s) as the minimum
number of intracluster pairs in any clustering of G* that is eligible with respect to a, P,
and s.

Let r be the root of a tree decomposition of G, P be the set of partitions over X" and S
the set of all possible functions s as defined above. It is now easy to see that the value
of an optimal solution with respect to minIP with parameter k can be computed as

in £ (k. P
ng;glesf( , P, s)

It remains to show how all relevant table entries for the nodes in the tree decomposition
can be computed from the tables of their children. If we can do that, the tables at the
root node can be determined by a dynamic program that considers the nodes in T in
the order given by a post-order traversal of T. We distinguish by the different types of
nodes.

Leaf. It is immediate that if ¢ with X; = {v} is a leaf,

0 a=0,P={{v}},s({v}) =1

oo otherwise

fi(avP,s):{
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Introduce. Let i be an introduce node, j its successor in 7" such that X; \ X; = {w},
P(w) be the part of P containing w and P’ the partition of X; that arises from deleting
w from P(w). We define s’ such that s'(p) = s(p) if p € P and §'(p) = s(p) — 1 if
p = P(w)\ {v}. Let C be an eligible clustering of G* with respect to a, P, and s, and let
C’ denote its restriction to G7. If I denotes the number of neighbors of w inside P(w),
there are exactly a — [ intracluster edges in the subgraph G7. Furthermore, s’ maps each
part of P’ to the number of vertices in the associated clusters in C’. Hence, C’ is eligible
with respect to a — I, P’, and s’. On the other hand, it is easy to see that any eligible
clustering of G7 with respect to a — I, P’ and s’ can be extended to an eligible clustering
of G with respect to a, P and s such that the number of intracluster pairs increases by
s(P(w)) — 1. Hence,

fia,P,s) = fi(a—1,P s+ S(P(w)) -1

Forget. Let i be a forget node and j its successor in T" such that X; \ X; = {w}. Here,
G' is the same as G7 and thus, every clustering of G is a clustering of G’ and vice
versa. Hence, the only difference between the entries associated with ¢ and j is that we
forget which of the components contains w. Let P be a partition of X;. We have to
distinguish two cases: either w is contained in one of the clusters that contain a part in
P or the cluster of w does not contain any vertex in X;. In both cases, we can extend
P to a partition of X; by defining for all p € P a partition PP that arises from P by
substituting p by pU{w} (including the possibility that w is in an extra part, i.e., p = 0).
For the former case, we define sP for a given p € P such that s?(p U {w}) = s(p) and
sP(q) = s(q) for all ¢ # p € P. In the second case, we have to distinguish by the size of
the cluster containing w. For 1 < r < n, let s" be such that s"(p) = s(p) for p € P and
s"({w}) = r. In total, we get

i(a.P. s) = mi in fi(a. PP. P in fi(a. P s"
f ((I, 78) mln{;ﬂellglf (CL, y S )’1gl7'lgnf (CL, ) S )}

Join. The most expensive part will be the computation of the tables associated with
join nodes. Let i be a join node with children j and k and C an eligible clustering of G*
with respect to a, P, and s. C can be decomposed into two clusterings ¢/ and C* of GJ
and G*. If p is a part of P, then, the sum of the number of vertices in the cluster of CJ
containing p and the number of vertices in the cluster of C* containing p equals s(p) +[p|,
as we count the vertices in p twice. Hence, if s/ indicates the size of the clusters in C’
and s* the size of the clusters in C*, s7(p) + s*(p) = s(p) + |p| for all p. Similarly, if [
is the number of intracluster edges between vertices in X;, the number of intracluster
edges a’ in GJ and the number of intracluster edges a* in G* sum up to a +I. On the
other hand, every two clusterings C/ and C* that are eligible with respect to s7, s, a’
and a” such that these parameters adhere to the above equations can be extended to an
eligible clustering of C in a straightforward way. Furthermore, summing up the number
of intracluster pairs in C/ and C* counts the intracluster pairs in X; twice and does not
account for intracluster pairs (vj, vy) such that v; € G7, vy, € G* and vj, v ¢ X;. Hence,

Flapos) = min a2+t P = 3 (1) + X (00D (/00 1)

i <k a4 ak
shemana peP peP
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Theorem 6.13. Given a nice tree decomposition of a graph G of width w containing at
most 4n nodes, a clustering of G that is optimal with respect to surprise can be found in
O(w - n?w*+4) time, for some constant c.

Proof. 1t is not hard to see that the most expensive updates correspond to the tables
associated with join nodes. Given a, P and s, there are at most n*! relevant choices
of s/ and at most m choices for a;; if s/ and o’ are given, this uniquely determines
s® and aF. Hence, the time to compute a table entry of a join node can be bounded
above by O(n%*1.m). If B(k) denotes the number of distinct partitions of a k-element
set, the size of the table for each node in the tree decomposition is bounded above by
B(w+1)-n**1. As we have at most 4n nodes in the tree decomposition, we get a total
running time in O(n - B(w + 1) - n?“*3 . m) for computing all relevant table entries. As
G is a partial k-tree, m is bounded above by wn (cf. page 13 of Kloks [137]) and hence,
this is in O(w - n?**4) for some constant c. As explained above, the optimal solution
of minIP with parameter k£ can then be found by parsing the entries of the root node;
the value of an optimal clustering with respect to surprise is then given by

in S(min f"(k, P,s),t

(Zomy S . P). )
With additional bookkeeping, the above program can be modified such that it not only
computes the value of an optimal clustering, but the clustering itself. O

In summary, as it is possible to construct a tree decomposition of width w in linear time
if G is a partial k-tree [33] and k is constant, there is a polynomial time algorithm that
finds a clustering with optimum surprise in graphs of bounded tree-width. It is not too
hard to see that the above dynamic program can be modified to solve the special case
of MACP where each vertex is weighted with its own degree. As discussed by Dinh and
Thai [66], this translates to a polynomial time algorithm for modularity optimization
for unweighted graphs, which yields the following corollary

Corollary 6.14. There is a polynomial time algorithm that solves modularity optimiza-
tion for unweighted graphs of bounded tree width.

It is needless to say that the constants involved in the above runtime analysis are quite
high and hence, this result is more of theoretical interest instead of yielding a blue print
for an efficient implementation. Hence, in order to obtain optimal solutions for small
instances, the next section describes an approach based on integer linear programming.

6.4 Exact Solutions for General Graphs

In this section, we give an integer linear program for minIP and discuss some variants
of how to use it to get optimal clusterings with respect to surprise.

Integer Linear Program for minIP. The following ILP is very similar to a number
of linear programs used for other objectives in the context of graph clustering and
partitioning, in particular, to one used for modularity maximization [66]. It uses a set
of (g) binary variables X, corresponding to vertex pairs, with the interpretation that
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Xy = 1 iff v and v are in the same cluster. Let Sep(u,v) be a minimum wu-v vertex
separator in G if {u,v} ¢ F or in G’ = (V, E \ {u,v}), otherwise. The objective is to

minimize Z Xuw (6.2)
{uvie(3)

such that

X € {0,1}, {u,v} € < (6.3)

o< o<

)
Xuw + Xpw — Xuw < 1, {u,v} € < >,w € Sep(u,v) (6.4)
Y A=k (6.5)

{uv}eFr

Dinh and Thai consider the symmetric and reflexive relation induced by X and show
that Constraint (6.4) suffices to enforce transitivity in the context of modularity max-
imization [66]. Their proof solely relies on the following argument. For an assignment
of the variables X, that does not violate any constraints, let us consider the graph
G’ induced by the vertex pairs {u,v} with X,, = 1. Now assume that there exists a
connected component in G’ that can be partitioned into two subsets A and B such that
there are no edges in the original graph G between them. Setting X,;, := 0 for all a € A,
b € B never violates any constraints and strictly improves the objective function. It
can be verified that this argument also works in our scenario. Hence, a solution of the
above ILP induces an equivalence relation and therefore a partition of the vertex set.
As Sep(u,v) is not larger than the minimum of the degrees of u and v, we have O(nm)
constraints over O(n?) variables.

Variants. We tested several variants of the approach described in Section 6.1 to decrease
the number of ILPs we have to solve.

e FExact(E): Solve m times the above ILP and choose among the resulting clusterings
the one optimizing surprise.

e Relared(R): We relax Constraint (6.5), more specifically we replace it by

Y X >k (6.6)

{uv}eFE

Lemma 6.1(i) tells us that the surprise of the resulting clustering is at least as
good as the surprise of any clustering with exactly k intracluster edges. Moreover,
by Lemma 6.1(ii), if i, is the value of a solution to the modified ILP, S(ip, k)
is a valid lower bound for the surprise of any clustering with &’ > k intracluster
edges. In order to profit from this, we consider all possible values for the number
of intracluster edges in increasing order and only solve an ILP if the lower bound
is better than the best solution found so far.

e Gap(G): Similarly to the relaxed variant, we replace Constraint (6.5) by (6.6) and
modify (6.2) to

minimize Z Xy — Z Xuw (6.7)

{u,v}e(g) {uv}eE
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TABLE 6.1: Number of linear programs solved and running times in seconds of succes-
sive ILP approach, different strategies.

karate grid6 dolphins lesmis
variant | ILP  t(s) | ILP t(s) | ILP t(s) | ILP  t(s)
Exact 79 51 61 470 | 160 494 | 255 1192
Relaxed | 49 21 42 449 | 107 163 | 176 282
Gap 39 15 37 401 | 91 147 | 112 205

By Lemma 6.1(ii), if g is the objective value and i, the number of intracluster edges
in a solution to the modified ILP, S(k'+g, k') is a valid lower bound for the surprise
of any clustering with ¥ > k intracluster edges. Moreover, by Lemma 6.1(iii), we
know that S(ie+ g, i.) is not larger than the surprise of any clustering with exactly
k intracluster edges. Again, we consider all k in increasing order and try to prune
ILP computations with the lower bound.

Case Study.

Table 6.1 shows an overview of running times and the number of solved ILPs of the
different strategies on some small instances. karate(n = 34,m = 78), dolphins(n =
62, m = 159) and lesmis(n = 77, m = 254) are real world networks from the website
of the 10th DIMACS implementation Challenge® that have been previously used to
evaluate and compare clusterings, whereas grid6é(n = 36, m = 60) is a 2 dimensional
grid graph. We used the C+--interface of gurobi5.1 [114] and computed the surprise
of the resulting clusterings with the help of the GNU Multiple Precision Arithmetic
Library, in order to guarantee optimality. The tests were executed on one core of an
AMD Opteron Processor 2218. The machine is clocked at 2.1 GHz and has 16 GB of
RAM. Running times are averaged over 5 runs.

It can be seen that the gap variant, and, to a smaller extent, the relaxed variant, are able
to prune a large percentage of ILP computations and thus lead to less overall running
time. These running times can be slightly improved by using the heuristic modifications
described and evaluated in the following section.

Heuristics for Linear Programs. We tried the following modifications to further
decrease the running time to compute exact solutions:

e Prune small k (PSK): We first determine the clustering into cliques that maxi-
mizes the number kgart of intracluster edges. This can be done by dropping (6.5),
substituting (6.2) by

maximize Z Xuw (6.8)
{uv}€eE

and setting X, = 0 for all vertex pairs {u, v} not connected by an edge. Proposi-
tion 6.2(iii) then yields that we do not have to consider clusterings with less than
kstart intracluster edges. This is in fact a special case of the gap variant, but as
solving the modified ILP is usually very fast, its usage potentially decreases the
overall running time for all variants.

"http://wuw.cc.gatech.edu/dimacs10/
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TABLE 6.2: Running times in seconds of successive ILP approach, different strategies.

karate grid6 dolphins lesmis
var TF PSK EMI | ILP t(s) | ILP t(s) | ILP t(s) | ILP  t(s)
€ n n n 79 51 61 470 160 497 | 255 1194
e n y n 54 50 43 470 104 489 | 119 1149
€ y n n 79 15 61 689 160 164 | 255 315
e y y n 54 14 43 684 104 152 | 119 272
r n n n 49 21 42 449 107 163 | 176 283
r n n y 49 31 42 2091 | 107 383 | 176 373
r n y n 25 20 25 448 52 158 41 254
r n y y 25 30 25 2091 52 378 41 353
r y n n 78 15 60 1154 | 159 218 | 254 302
r y n y 78 15 60 1698 | 159 537 | 254 354
r y y n 54 15 43 1129 | 104 212 | 119 264
r y y y 54 14 43 1700 | 104 539 | 119 323
g n n n 39 15 37 402 91 147 | 112 206
g n n y 18 18 15 1904 45 131 23 165
g n y n 20 15 20 398 50 143 29 186
g n y y 18 18 15 1896 45 131 23 162
g y n n 73 15 56 1774 | 144 168 | 195 259
g y n y 52 12 38 2224 | 100 110 | 107 221
g y y n 54 14 39 1724 | 103 160 | 112 245
g y y y 52 12 38 2214 | 100 108 | 107 222

e Testing for Feasibility (TF): From the value S of the best current solution, we can
compute for each k the largest i, such that S(i,, k) < S. This can be modeled as
an additional constraint; if this makes the model infeasible, we can safely proceed
to the next k. The downside of this approach is that the lower bounds for the gap
and relaxed variant are updated less often. However, it potentially decreases the
time to solve individual ILPs in case the model is not feasible.

e Enforce many intraedges (EMI): To enforce that the clustering we obtain by the
linear program for the relaxed variant has the most intracluster edges among all
valid clusterings that minimize the number of intracluster pairs, and therefore
yields the best upper bound, we replace (6.2) by

minimize m - D I N (6.9)

fuwre(¥) {uv}er

Similarly, for the gap variant, we replace (6.7) by

minimize m - Yoo X Y X | = D X (6.10)

{u,v}e(g) {u,v}eE {uv}€E

Obviously, this does not make sense for the exact variant.

Table 6.2 shows an overview of running times and the number of solved ILPs of the
different strategies on the test instances from Section 6.4.

In almost all cases, the PSK heuristic is able to decrease the running time slightly.
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TABLE 6.3: Properties of optimal clusterings with respect to surprise. S’ denotes the
surprise as defined by Aldecoa and Marin [5], i.e., S'(C) = —log;, S(C). S, denotes the
clustering with optimum surprise, S, the heuristically found clusterings from [5], if this
information was available, and M, the modularity optimal clustering.

instance ie | ip | S(So) S(So) | S'(Sh) | S| | |Sa| | | M|
karate 29 | 30| 2,02 10" 25.69 | 25.69 | 19| 19 4
gridé 36 | 54290-1072 | 28.54 - 9 - 4
dolphins | 87 | 121 | 9,93-10~7" | 76.00 - 22 - 5
lesmis 165 | 179 | 1,54 - 107184 | 183.81 - | 33 - 6
football | 399 | 458 | 5,65- 107407 | 406,25 -| 15| 15 10

Enforcing many intracluster edges always increased the running time of the relaxed
variant; the average running time for each linear program increases and in none of our
examples it helped to decrease their number. For the gap variant, this modification was
beneficial in most cases. However, for grid6, the running time increased by almost a
factor of five compared to the gap variant without modifications.

Similarly, testing for feasibility is beneficial in combination with the gap and relaxed
variant in about half of the cases, but on grid6, it increases their running time signifi-
cantly.

Overall, the unmodified version of the gap variant was always faster than any version of
the relaxed or exact one. Among the versions of the gap variant, the one that uses only
PSK and the one with all modifications exhibit good overall behavior, while the former
seems to be more robust.

Properties of optimal clusterings. Figure 6.4 illustrates optimal clusterings with
respect to surprise and modularity on the test instances, Table 6.3 summarizes some of
their properties. We also included one slightly larger graph, football(n = 115,m =
613), as it has a known, well-motivated ground truth clustering and has been evaluated
in [5]. The surprise based clusterings contain significantly more and smaller clusters
than the modularity based ones, being refinements of the latter in the case of karate
and lesmis. Another striking observation is that the surprise based clusterings contain
far more singletons, i.e., clusters containing only one vertex with usually low degree;
this can be explained by the fact that surprise does not take vertex degrees into account
and hence, merging low degree vertices into larger clusters causes larger penalties. It
reconstructs the ground-truth clustering of the football graph quite well. This confirms
the observations of Aldecoa and Marin based on heuristically found clusterings [5]; in
fact, we can show that for karate, this clustering was already optimal.

6.5 Combining Surprise and Modularity

Clearly, modularity and surprise build upon the same basic idea, the comparison of the
observed number of intracluster edges in a given graph G and the number of intracluster
edges in a random graph G’ on the same vertex set. However, they differ in two aspects:
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(a) karate (b) dolphins
0O—O0—elto—e—®@
I
0O—0—e+10—o—eo
.
e—e—0+10—e—e
I - ——
e—e—0f+10—e—eo
I
0—0—O011+0—e—8
I
0—0—0++0—e0—e@

(c) gride (d) lesmis

AT

\ X1
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FIGURE 6.4: Optimal clusterings with respect to surprise(colors) and, for (a) to (d),
modularity(grouping). The grouping in (e) represents the ground-truth clustering, i.e.,
the mapping of teams to conferences.
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the choice of the random graph G’ and the tradeoff between the intracluster edges in G
and G’.

In both cases, G’ retains some of the properties of G. In the context of surprise, this is
only the number of edges, whereas the random graph used by modularity additionally
keeps expected vertex degrees. The former leads to a random graph following Gilbert’s
model [89], and the latter yields the configuration null model (cf. Section 2.3). A more
subtle difference arises from the concrete random process that generates G’; in contrast
to the configuration null model, the assumption in Gilbert’s model is that vertices and
edges are drawn without replacement. Hence, the configuration null model allows for
loops and parallel edges, whereas each instantiation of Gilbert’s model is simple. It
is worth mentioning that variants of the configuration model have been proposed that
avoid loops [44, 95] or parallel edges [44]. A drawback of these variants is that they lose
the property that the expected degree of each vertex equals its observed degree in G.

The second distinction between modularity and surprise is that modularity evaluates the
difference between the expected and the observed number of intracluster edges, whereas
surprise seeks to minimize the probability that the number of intracluster edges in G’
exceeds the number of intracluster edges in G. Although these two quantities are closely
related, the corresponding optimum solutions will differ.

These two aspects are orthogonal in the sense that they can be arbitrarily combined.
Combining the tradeoff of modularity with Gilbert’s model as null model yields the
above mentioned objective function® that has been considered by Reichardt and Born-
holdt [181, 182]. To the best of our knowledge, combining the tradeoff of surprise with
the configuration null model has not been considered before, although this idea suggests
itself. In this section, we will derive the formula of the resulting objective function,
which we call SMod, and compare the resulting clusterings to the ones obtained by
optimizing modularity and surprise, using our small example graphs.

Derivation of SMod. The configuration model can be explained by a simple random
process that transforms G into a random graph G’. In a first step, we remove all
edges from G, but remember the degree of each vertex. In a second step, the edges
are redistributed at random. FEach edge draws two endvertices independently, with
replacement, such that vertices are chosen with a probability proportional to their degree.
This means, the probability to draw vertex u is equal to 5%. Hence, as we work with

undirected edges, the probability that the edge links two vertices u and v is Zdy if

2m2 "

u # v, and du’ otherwise. It follows that the total probability that the edge links

4m?
vertices in the same cluster equals

dudy dy,? 1 )

P=_ D ort pm| =gl
ceC {u,v}e(g) ueC cecC

=1,2(C)

SNote that it does not matter here if edges are drawn with or without replacement, as the expected
number of edges between each pair of vertices is m/ (Z) in both cases.
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In total, we draw m edges independently. Thus, the probability that we draw at least
ie(C) edges within clusters follows a cumulative binomial distribution:

w5 (M- £ [(7) (35) (-5) |

1=fle 1=fe

Similarly to surprise, SMod only depends on two properties of C, the number of intr-
acluster edges i, and the total sum of squared volumes i,2. Hence, we can denote the
value of a clustering C with i,2(C) = i,2 and i.(C) = i, by SMod(i,2, i.).

Optimal Solutions. With analogous arguments as we used for Lemma 6.1, the proba-
bilistic view on SMod yields that an optimal clustering with respect to SMod is always
Pareto optimal with respect to (maximizing) i, and (minimizing) 7,2. Note that the same
holds trivially for clusterings that are optimal with respect to modularity; the difference
to SMod is that the number of clusters may differ, i.e., we get clusterings of a different
resolution. This is especially interesting in the light of the resolution limit of modu-
larity (cf. Section 2.3). Although we do not claim that SMod, being a fundamentally
global measure, circumvents the resolution limit in the strong sense, it yields another
well motivated resolution scale in the context of multiresolution modularity [182] that
potentially leads to smaller clusters in practice.

To compute optimal solutions with respect to SMod, we can exploit this bicriteria view
on SMod and optimize i,2 for all possible values of i., similar to the linear programs used
for surprise optimization. Using the same set of variables A}, as above, the objective
1,2 can be easily expressed as

i2C)=> v => (2 Y dudvt+ ) d| = D 2dudiXu+ Y d’

ceC ceC {u,v}e(g) vel {u,v}e(g) veV

Note that using i,2(C) as objective allows for the reduction of transitivity constraints to
vertices in a minimum vertex separator.

We refrain from any engineering steps for SMod and compute optimal solutions similarly
to the relaxed variant above, which stays correct in this modified scenario. Figure 6.5
illustrates clusterings that are optimal with respect to SMod on our small test instances.
For dolphins and lesmis, the clusterings are similar to the clusterings based on modu-
larity, with the difference that some clusters of the latter are split in the clusterings ob-
tained by optimizing SMod. The clusterings obtained for karate are identical, whereas
the clustering of grid6 is identical to the clustering obtained by optimizing surprise. In
all cases, we get at least as many clusters as in the clustering based on modularity; in
contrast to surprise, the cluster sizes are more evenly distributed and all vertices belong
to nontrivial clusters.

6.6 Concluding Remarks

We showed that the problem of finding a clustering of a graph that is optimal with
respect to the measure surprise is NP-hard. The observation that surprise is Pareto
optimal with respect to (maximizing) the number of edges and (minimizing) the number
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FIGURE 6.5: Optimal clusterings with respect to SMod(colors) and modular-
ity(grouping).

of vertex pairs within clusters yields a (polynomial time) dynamic program on graphs
with bounded tree width. Furthermore, it helps to find exact solutions in small, general
graphs via a sequence of ILP computations. The latter can be used to gain insights
into the behavior of surprise, independent of any artifacts stemming from a particular
heuristic. Moreover, optimal solutions are helpful to assess and validate the outcome of
heuristics. Furthermore, we derived a new measure called SMod, which combines the
basic idea behind modularity with the configuration null model used by modularity. On
our test instances, optimizing SMod led to clusterings that are similar to modularity,
but exhibit smaller clusters.

There are several interesting directions for future work. From a theoretic point of view,
a self-evident follow-up question concerns the approximability of surprise maximization.
One possibility is to derive approximation factors from approximate solutions of the
subproblem minIP. Li and Tang [151] show that the equivalent problem MACP is APX-
hard, implying that we most probably cannot build upon a PTAS for minIP. On the
other hand, they give a bicriteria approximation algorithm that finds a clustering whose
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value is at most (1 + ¢) times the optimum and that cuts at most O(1<logn) - k
edges. Due to the nature of the objective function of surprise, it is however unclear
how this result or any other approximation guarantee for minIP translates to an easy to
interpret approximation guarantee for surprise maximization. Another open problem is
to fortify the empirical observation that surprise and SMod lead to smaller clusters by
investigating the asymptotic growth of the cluster sizes in optimal clusterings of graph
families as the ring of cliques considered by Fortunato and Barthelémy [84], grids, or
random graphs.

From a more practical point of view, it would be interesting to further engineer the
linear programs we used in Section 6.4. Preliminary experiments based upon a direct
quadratic formulation of surprise optimization using precomputed values did not achieve
good results. Similarly, a combinatorial branch-and-bound approach branching on the
question whether two vertices are contained in the same cluster and using straightforward
bounds on the number of intracluster edges and pairs turned out to be slower than the
algorithms described in this chapter. Hence, to benefit from such an approach, it is
necessary to find more elaborate bounds or branching rules. Other promising candidates
to replace or enhance the linear program we used to solve minIP are more advanced
cutting plane and column generation algorithms. These turned out to be very successful
with respect to related clustering and partitioning problems [108, 109, 122, 126]; in
particular, the latter approach yields the currently state-of-the art algorithm to find
clusterings with provably optimal modularity [10]. However, there is little hope to
engineer this approach to also work for large instances typically occurring in many fields
of application. Hence, there is a need for fast algorithms that efficiently find clusterings
of good quality. To some extent, we close this gap in the following chapter.

6.7 Proof of Lemma 6.4

The proof of Lemma 6.4 is based on the following two observations on the asymptotic
behavior of binomial coefficients.

Lemma 6.15. Let f: N — N and g: N — N be two functions such that g(n) € o (f(n)).
Then,
(f(n)> cof _fm™
9(n) Vo) - g(n)?™

Proof. For n > 0, Stirling’s formula yields

Vo -n"t2 e <l < e /2 gt T2 e
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Hence, it is

(6 . \/ﬂ)2 . g<n>9(n) . g(n) ) [f(n) _ g(n)]f(n)—g(n) AV f()—g(n)

oF (M —g(n)

and thus,

f(n) 1 F(n)f®
@@Qeg(éwEngWm-gm»vmwﬂmwwﬁw>

It is f(n) — g(n) < f(n) and hence,
f(n) S ()™
(9(”)) < (x/g(n) -g(n)g(")>

Lemma 6.16. Let uq,us, k1, ko € N with uy > ki, us > kg and k1 > ks. Furthermore,
let fi: N—>N, fo: N—= N, g1: N— N and g2: N = N be functions with f1(n) € ©(n"1),
f2(n) € ©(n"2), g1(n) € O(n*1) and go(n) € O(n*2). Then,

(o) <2 (Gio)

Proof. From Lemma 6.15, it follows that

fl(n) fl (n)gl (n)
<me€Q< mmwmmww>

Furthermore, for large n there exist constants ay, by, bo > 0 such that

O

o by -nM < gi(n) < by 0

e a;-n" < fi(n)
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and hence, as fi1(n)/gi(n) > 1 for large n,

fi(m)#t) 1 '<f1(n)>91(n)2 1 '<f1(n)>b1'”kl

g1(n) - g1 (n)"™ g1(n) \g1(n) g1(n) \g1(n)
> 1 (a1 -n"“)bl "
= Vol gy gy

From this, it follows that

fl(n) cQ albl'nkl . nbl-ul-nkl L ( )
gl(n) nl/2k1 . bgbl'nkl . nb1'k1~nk1 = aln

On the other hand there exist constants ao, bs > 0 such that for large r

o fa(n) <ag-n"

[ gg(n) S b3 . nkQ

and hence,

k

<f2(n)> < f2(n)g2(n) < (a2 . nug)bs.nkz _ a2b3.nk2 . nbs-uz.n 2 = lg(n)

g2(n)
It remains to show that l3(n) € o(l1(n)). To see that this is the case, we look at the
logarithm:
1
log(l1(n)) = by - n** -log(ar) + by - ug -0 - log(n) — 5 - kn - log(n)
— by -nf -log(be) — b1 - k1 .nk1 -log(n)
= by - (ug — k1) 0™ -log(n) + by - (log(ar) — log(b2)) - n*
0
>

1
-5 ki - log(n)
Hence, log(l1(n)) € ©(n** -log(n)). On the other hand,
log(l2(n)) = b3 - n™* - log(ag) + bs - ug - n*2 - log(n) € O(n** - log(n))

Thus, l2(n) € o(l1(n)).

We are now ready to prove Lemma 6.4.

Proof of Lemma 6.4. 4Assume that C is an optimal clustering with respect to surprise
and i,(C) — i.(C) > %. We will compare S(C) to the value of the clustering C’ used in

the proof of Lemma 6.3. C’ is a clustering into cliques with |M| - (T; ) intracluster edges.
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Hence, i,(C’) = i.(C’) and thus

(2)r- (49)- (40D~ ("B )

with fo € O(r%) and go € O(r3).

Case 1: i.(C) < iy(C)/2: As i.(C) < ip(C)/2, substituting a lower bound for i.(C)

decreases (Zf’e((%)) From Lemma 6.3, we know that i.(C) > |M]| - (r;), which can be

estimated from below by 7 for large r. Altogether, we get that

() 503 () C00)=(6) = (1l ™)

Z‘:'LAe(C)

with f; € ©(r%) and g; € O(r*). Now we can use Lemma 6.16 to see that, for large r,
S(C) is larger than S(C’), which contradicts the optimality of C.

. . ip(C ip(C . . .
Case 2: i.(C) > i,(C)/2: We have (lzgc)) = (ip(cﬁ)gi)e(C))' As i.(C) > zp(C)/Q,‘zp(C) -
ie(C) < ip(C)/2 and substituting a lower bound for i,(C) — i.(C) decreases (Z.p(cz;’gi(c)).
Hence, by Lemma 6.4,

(2) 502 (20) = (erhe) = (1) = (L5 0™)
with f; € O(r®) and g € O(r?). Analogously to Case 1, it follows that C was not
optimal. O



Chapter 7

Agglomerative Algorithms for
Surprise Optimization

In Chapter 6, we discussed how optimal solutions with respect to surprise can be found
by solving a sequence of integer linear programs. Although it is nice to have an exact
method for small instances, typical applications require algorithms that are able to
cluster graphs with millions of vertices and edges. In this context, it is often sufficient
to compute clusterings that are not (provably) optimal, but still exhibit high quality,
which is why we turn our attention to heuristics in this chapter. Heuristic algorithms for
surprise maximization are still a largely untrodden field. The only algorithms we know
of that explicitly target surprise are the algorithms UVCluster and SCluster [4, 15] and
the metaheuristic SurpriseMe [9] that subsumes these algorithms. SurpriseMe runs a set
of seven clustering algorithms, chosen by their performance with respect to surprise in
the experiments by Aldecoa and Marin [8], and selects the clustering with the highest
quality. Most of these algorithms are well known in the literature. In Chapter 6, we
already saw that SurpriseMe yields an optimal clustering for the small instance karate,
which indicates that it is indeed able to find clusterings of high surprise. A drawback
of SurpriseMe is the large running time; clustering the small instance football already
took approximately 4 seconds. Hence, there is still a need for improvement.

A straightforward method for explicit surprise maximization is to use a metaheuristic
like GENERIC GREEDY VERTEX MOVING that greedily optimizes surprise. A drawback
of this approach is that the efficiency of GENERIC GREEDY VERTEX MOVING funda-
mentally depends on the question whether we can determine the next cluster of each
vertex v in O(d,). For surprise, it is unclear how to achieve this, even if the number
of intracluster edges and pairs can be maintained efficiently throughout the algorithm.
Another idea is to make use of the bicriteria view from Chapter 6 and optimize the
number of intracluster pairs while constraining the number of intracluster edges, or vice
versa. This is very similar to the algorithms discussed in Chapter 5, if we interpret
ie = m — nxe as a measure for intercluster sparsity and i, as a measure for intracluster
density. We deem however none of the two as a good priority function when building
clusters on its own, as the former exclusively considers the number of covered edges and
the latter only the balance of the clustering.

Contribution. We propose hence to use another standard approach to bicriteria opti-
mization via optimizing a weighted sum of the two objectives. In Section 7.1, we give an

111
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FIGURE 7.1: Hlustration of weighted sum method. In (a), every red point can be found
with the weighted sum method. Subfigure (b) illustrates that if surprise is strictly
concave, optimum solutions always lie on the convex hull. Subfigure (c) indicates the
relevant parameter range for A: the green region does not contain any points.

explanation of why we deem this approach to be suitable in our context. We then de-
scribe and evaluate the individual algorithms contained in SurpriseMe on a benchmark
set for graph clustering. It turns out that the high quality of the resulting clustering
mostly stems from one particular algorithm, and that this algorithm is implicitly based
on the weighted sum approach, although with a different motivation in mind. Motivated
by this observation, we further engineer this approach, both with respect to quality and
scalability.

7.1 Solving Surprise Maximization via the Weighted Sum
Method

In Chapter 6, we exploited the fact that clusterings that are optimal with respect to
surprise are Pareto optimal with respect to minimizing 4, and maximizing 4., which
means that all Pareto optimal solutions can be found by fixing one of the parameters to
a certain value and optimizing the other under this constraint. Another simple standard
approach to bicriteria problems is to consider the single objective problem that consists
in optimizing a linear combination of the two objectives; in our case, this corresponds
to maximizing the following objective for some parameter \ € Qg .

maximize i.(C) — A - i,(C) (7.1)

Let ) denote the objective space of our bicriteria problem, i.e., the set of (z,y) € Q?
such that there is a clustering with x intercluster edges and y intracluster pairs. It is
not too hard to see that all solutions of Equation 7.1 correspond to (weakly) Pareto
optimal solutions. Furthermore, if ) is convex, all (weakly) Pareto optimal clusterings
can be found by optimizing Equation 7.1 for some parameter A € R™ (cf. for example
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Ehrgott [69], pages 68-71). A graphical illustration of the set )} and optimal solutions
with respect to the weighted sum objective can be found in Figure 7.1 (a). The points
in the figure depict all elements in ). Green and red points are nondominated, i.e.,
they correspond to Pareto optimal solutions; red points lie on the convex hull. The red
point in the middle can be found by minimizing Equation 7.1 with A = 1/2; this can be
illustrated by the arrow indicating “in which direction” we seek for optimal solutions.

Unfortunately, for our problem, it is not hard to construct graphs such that ) is not con-
vex. Hence, not all Pareto optimal clusterings can be found by optimizing the weighted
sum. If, however, surprise, understood as a function in 4, and i, is strictly concave,
it can be argued that optimal solutions with respect to surprise always correspond to
points on the convex hull and the weighted sum approach works. There is no unique
definition of what is meant by concave in the context of discrete functions [230]. For
our purposes, it suffices if surprise can be extended to a strictly concave function on R?.
This is illustrated in Figure 7.1 (b). Recall that for a strictly concave function f the
value of any point on a line between x; and x4y is strictly larger than the minimum of
f(x1) and f(z2). Hence, if this property holds, the green point y is either worse than z
or than y'. If x is worse than ¢/, it is also worse than y by Lemma 6.1 (ii) and hence
not optimal with respect to surprise.

Contour plots for the surprise landscape on an imaginary graph with 20 vertices and 10,
30, 50 or 100 edges can be found in Figure 7.2. The example demonstrates that surprise
is not concave, which can be for example seen by considering the boundaries for levels
0.8 and 0.9. However, the plots suggest that it might be concave in the region below the
red 0.5 line, which is actually the part we are interested in, given that the surprise of an
optimal clustering of non degenerate graphs is usually far less than 0.5. Unfortunately,
we do not know of any formal proof for this conjecture. Nonetheless, the discussion in
this section gives an explanation why the weighted sum approach is expected to work
well for surprise optimization. Indeed, it turns out that the best algorithm with respect
to our test set among the algorithms contained in SurpriseMe uses exactly this approach,
although it was designed with a completely different motivation in mind.

We close the discussion with an observation on the range of relevant parameter settings
for X. If A > 1, as i.(C) < i,(C), the objective in Equation 7.1 is at most 0 and this
value can only be obtained by the singleton clustering. This is graphically illustrated in
Figure 7.1 (c); the green region does not contain any points. Hence, it is sufficient to
consider values of A in [0, 1].

7.2 Algorithms contained in SurpriseMe

The metaheuristic SurpriseMe is based on the following seven graph clustering algo-
rithms.

RNSC. The Restricted Neighbourhood Search Clustering Algorithm (RNSC) [136] is a
local search algorithm that seeks to minimize the following objective function:

n—1 lu#veV: ({u,v} € Eand C(u) # C(v) or ({u,v} ¢ E and C(u) = C(v))|
52

eV 1 + dv + nc(v)
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FIGURE 7.2: Contour plot of surprise as a function in ¢, and ¢, on an imaginary
graph with 20 vertices and 10, 30, 50, or 100 edges. The set of levels used is
{0.99375,0.975,0.9,0.7,0.5,0.3,0.1,0.025,0.00625}; the red line corresponds to Level
0.5.

To obtain this goal, the algorithm proceeds in two phases. In the first phase, a simplified
objective function is used that only considers the numerator of the above equation,
which is equivalent to the objective of cluster editing [196]. The resulting clustering
then provides the initial clustering of the second phase, which optimizes the actual cost
function. Both phases rely on a local search algorithm based on vertex moves, including
some diversification steps to escape local minima. RNSC has been successfully applied
to analyze protein-protein interaction networks [136].

UVCluster. UVCluster has first been proposed by Arnau et al. [15], again in the
context of protein-protein interaction networks. SurpriseMe uses a more efficient imple-
mentation than the original one, which is part of the clustering suite Jerarca [4] provided
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by Aldecoa and Marin. The motivation behind UVCluster is that conventional SAHN
algorithms, especially in the first iterations, suffer from the ties in proximity problem
if the distances are distributed only over a small range of values. This means that the
decision of which clusters to merge in each step very much depends on the tie breaking
strategy, and this affects the quality of the resulting clustering considerably. UVCluster
solves this issue by computing secondary distances in a preprocessing step. To this end,
a greedy algorithm for finding a clustering into disjoint cliques is applied, which is re-
peated several times. Now, the secondary distances are obtained by counting the number
of times two vertices are not contained in the same cluster. After that, a dendrogram is
created based on these secondary distances using a SAHN algorithm implementing av-
erage linkage [206], also called UPGMA. Finally, the level of the dendrogram is selected
that corresponds to the clustering with the highest surprise.

SCluster. SCluster is also contained in Jerarca and almost identical to UVCluster. The
difference lies in the computation of the set of clusterings that is produced to obtain
the secondary distances. Instead of greedily computing disjoint cliques, an even faster
approach is chosen which repeatedly selects a vertex and its neighbors, generates a
cluster containing them and removes them from the graph.

Infomap. Infomap! is an algorithm that greedily optimizes the map equation [188].
The idea behind this objective function is that the information which cluster the vertices
belong to helps in encoding a random walk on the graph. More precisely, if the random
walk is interpreted as a discrete memoryless channel, the best expected encoding length
we can hope for is given by the entropy of the source, using the probabilities given by
the stationary distribution associated with the random walk. If it is however allowed to
store the cluster of the last vertex in the walk, the walk can be encoded more efficiently
by using customized codebooks to encode the vertices in each cluster. Informally, the
map equation now associates with each clustering the expected encoding length per
vertex of a random walk on a graph that uses a codebook for each of the clusters.
The lower this value, the less likely are moves between clusters and hence, the better
the clustering. Infomap optimizes this measure by using GENERIC GREEDY VERTEX
MoVING (cf. Algorithm 4 in Chapter 3), followed by some additional optimization steps.

RB. SurpriseMe also contains a variant of multiresolution modularity the authors at-
tribute to Reichardt and Bornholdt [182] and therefore refer to it as the RB algorithm.
In their article, Reichardt and Bornholdt show that modularity maximization can be
seen as finding the ground state of an infinite range spin glass. The idea behind this
point of view is that neighboring vertices attract each other in the sense that they aim
for the same spin state and non-neighbors repulse each other and hence aim for different
spin states. Given the concrete attractive and repulsive forces for each pair of vertices,
the task is to find a spin configuration of minimum energy. If community ids are mapped
to spin states, this defines a family of clustering measures. One particular instantiation
of this problem is the modularity of a clustering as defined in Section 2.3. A more gen-
eral model introduces a scaling factor v into modularity that allows to specify a custom
tradeoff between the first and the second term in the modularity equation:

1. v02
mod (C) = %ZQ(C) — 2
ceC

"http://www.mapequation.org/
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If we replace vo by ne, minimizing this equation is equivalent to minimizing Equa-
tion 7.1, up to an additive and multiplicative constant. Again, the higher we choose the
parameter v the denser the clusters and hence, the more clusters we should expect. If
v = 1, we retrieve the definition of modularity. Aldecoa and Marin solve this problem
heuristically for a range of parameter settings between 0.01 and 30. In the first iter-
ation, the parameter is always increased by 1, in the second iteration by 1/2, in the
third by 1/4 and so forth. If the last 100 solutions did not lead to a clustering that has
higher surprise than any clustering found so far, the procedure terminates and returns
the clustering with highest surprise among all solutions found. Finding a clustering that
corresponds to a certain resolution scale is done by using the implementation of Traag
et al.2, which boils down to GENERIC GREEDY VERTEX MOVING optimizing the above
measure, without the optional refinement step.

RN. Ronhovde and Nussinov [187] propose another objective function that can be de-
rived as a special case of the family of cluster measures defined by Reichardt and Born-
holdt, called the absolute Potts model. For unweighted graphs, it can be written in our
notation as

(1+7)ie(C) = 7ip(C),

up to a multiplicative and additive constant. Clearly, this is equivalent to the objective
in Equation 7.1 by setting A = /(1 + ). They motivate the use of this function
by the observation that the tradeoff between the two terms does not depend on the
size of the graph, which circumvents the resolution limit of modularity [84]. In their
experiments, they use a move-based algorithm that is very similar, but not identical to
GENERIC GREEDY VERTEX MOVING to find good solutions for their model. Introducing
a parameter that defines the resolution of the clustering entails the question how to
choose one, or probably several, significant resolution scales. Ronhovde and Nussinov
address this question in a follow-up article [186], where they propose to consider a
sequence of parameter settings. For each parameter v, they run their (non-deterministic)
solver several times and compute the average similarity between the resulting clusterings
using normalized mutual information [83]. If this is high, it is a sign that the local search
landscape for this parameter setting contains only few significantly different local minima
and hence, the cluster structure is more pronounced. Hence, they choose the scale with
the highest similarity and return the best clustering found for this scale. SurpriseMe
contains this metaheuristic under the name RN, using the implementation provided by
the authors.

CPM. The last algorithm contained in SurpriseMe is based on the constant Potts model
(CPM) proposed by Traag and Van Dooren [212]. Up to a multiplicative and additive
constant, this objective function is the same as the one we defined in Equation 7.1 and
therefore equivalent to the absolute Potts model up to a simple transformation of the
parameter. Again, Traag and Van Dooren derive this function as a special case of the
general model by Reichardt and Bornholdt and motivate its use by the resolution limit
of modularity. In contrast to Ronhovde and Nussinov, they derive a formal definition of
the notion resolution-limit-free and show that the CPM is resolution-limit-free according
to this definition. In the experimental part, the model is evaluated by finding clusterings
with GENERIC GREEDY VERTEX MOVING, without the optional refinement. SurpriseMe
tests a range of parameter values and chooses the one with the best surprise value. The
choice of parameters used is similar to RB, with the difference that the parameter range
is [0.0001, 1] and the initial increment 0.5 instead of 1.

*https://launchpad.net/louvain
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TABLE 7.1: Properties of graphs in test set

# graph n m # graph n m

1  karate 34 78 19 as-22july06 22963 48436

2 chesapeake 39 170 20 cond-mat-2003_wi 30460 120029

3  dolphins 62 159 21 cond-mat-2005_wi 39577 175691

4  lesmis_uw 7 254 22 Gn_pin_pout_wi 99995 501198

5  polbooks 105 441 23 preferentialAttachment 100000 499985

6 adjnoun 112 425 24 smallworld 100000 499998

7  football 115 613 25 caidaRouterLevel 192244 609066

8 jazz 198 2742 26 coAuthorsCiteseer 227320 814134

9 celegansneural_uw 297 2148 27 citationCiteseer 268495 1156647
10 celegans_metabolic 453 2025 28 coAuthorsDBLP 299067 977676
11 email 1133 5451 29 cnr-2000 325557 2738969
12 polblogs_wi 1224 16715 | 30 coPapersCiteseer 434102 16036720
13 netscience_wi 1461 2742 31 coPapersDBLP 540486 15245729
14 power 4941 6594 32 eu-2005 862664 16138468
15 hep-th wi 7610 15751 | 33 in-2004_wi 1382867 13591473
16 PGPgiantcompo 10680 24316 | 34 road_central 14081816 16933413
17 astro-ph wi 16046 121251 | 35 uk-2002_wi 18483186 261787258
18 cond-mat_wi 16264 47594 | 36 road_usa 23947347 28854312

7.3 Performance of Algorithms in SurpriseMe

To get an impression how effectively and efficiently the algorithms contained in Sur-
priseMe optimize surprise on typical benchmark instances used for graph clustering, we
ran the individual algorithms on a subset of the clustering category from the 10th DI-
MACS Implementation Challenge on Graph Partitioning and Graph Clustering®. As
some of the algorithms took quite long to cluster the larger graphs, we only considered
the graphs with up to 100000 vertices and set a time limit of 1 hour for each instance.
The number of vertices and edges in these instances can be found in Table 7.1. These
instances are a superset of the benchmark used in Chapter 5, but some of the graphs
had to be modified slightly, which is why we list the properties of the benchmark graphs
twice. The reason for that is that some of the implementations contained in SurpriseMe
only support edge lists as input, which do not take into account isolated vertices. For
this reason, we chose to remove them in a preprocessing step in order to guarantee that
all algorithms work on the same graph. The graphs that are affected by this step can
be identified by the appendix wi after the graph name. Furthermore, as surprise is only
well defined on unweighted graphs, we consider all graphs as unweighted; this affects
only the instances lesmis and celegansneural.

Parameter Setting and Measurement. Some of the algorithms contained in Sur-
priseMe depend on input parameters. To keep the running time for the experiments
manageable, we used the parameter setting from SurpriseMe instead of tuning each al-
gorithm separately. SurpriseMe applies default parameters whenever possible. UVClus-
ter and SCluster only depend on one parameter, the number of iterations to obtain the
secondary distances; for UVCluster, this is set to min{10n,1000} and for SCluster to
10000. Infomap is a randomized algorithm that offers the possibility to supply a pa-
rameter r, which causes the base algorithm to be repeated r times; the final result then
corresponds to the clustering with the best value according to the map equation. We

3http://www.cc.gatech.edu/dimacs10/
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set 7 to 10, as in SurpriseMe. RB and CPM are parameter free. For RNSC and RN,
default parameters are used, except for an upper bound of n on the number of scanned
resolutions in combination with RN. To run the individual algorithms, we use the scripts
in SurpriseMe. For the algorithms UVCluster, SCluster, RB and CPM, we measure the
time for the whole script, as the former two are by the authors of SurpriseMe and for
the latter two, the computation of surprise for each resolution scale is essential for the
(meta)heuristic. For the other three, we only measure the time to cluster the graphs?,
without the computation of surprise and other pre or postprocessing steps. All experi-
ments were executed on one core of an AMD Opteron Processor 6172. The machine is
clocked at 2.1 GHz and has 256 GB of RAM in total.

Approximate computation of surprise. In Chapter 6, we used the GNU Multiple
Precision library in order to compute the surprise of a given clustering with high pre-
cision. Applied to larger graphs, there are several issues with this approach. The first
issue is that the numbers involved are very high due to the binomial coefficients; using
arbitrary-precision arithmetic prevents overflows, but quickly results in unacceptably
high running times and memory consumption. Aldecoa and Marin tackle this problem
in the code provided for their metaheuristic SurpriseMe by computing the logarithm
of surprise, S’(C) := —log;yS(C), and use logarithms for intermediate results in the
computation whenever possible. It turns out that this is sufficient to prevent overflows
for the graph sizes we consider in this chapter. Nevertheless, computing the binomial
coefficients is slow and actually dominates the running time for fast algorithms that
rely on computing the objective more than once, as does our multilevel heuristic for
surprise optimization. For this reason, Aldecoa and Marin use two approximations in
their computation of surprise. The first one is to only take the first £ summands of the
surprise equation into account, where k is the first index such that the current summand
is at least 4 orders of magnitude smaller than the sum of the preceding entries. As the
contribution of the summands to the sum drops very quickly, this speeds up the running
time considerably and we only observed a negligible impact on the result. Unfortunately,
for large graphs, the running time is still not satisfactory. Hence, Aldecoa and Marin
approximate factorials of numbers larger than 1000 by the Stirling approximation, i.e.,
they approximate logn! with nlogn — n. As this approach is fast enough for our pur-
poses and yields good approximations, we adopt it in our algorithm and use the code
provided in the source code for SurpriseMe.

Results. Table 7.2 shows the quality of the clusterings obtained by the particular
algorithms in terms of S’ and Table 7.3 the running time needed to compute them.
Recall that S’(C) = —log;q S(C) and we therefore aim at large values of S’. We set a
time limit of 1 hour and a memory limit of 32 GB; if an algorithm exceeds these resources,
this is indicated by the entry TO in the former and MO in the latter case in Table 7.3.
In terms of quality, CPM and Infomap clearly dominate the field. There are only two
instances where one of them does not give the best result: the small karate instance and
apreferentialAttachment graph where both of them do not compete due to a timeout.
Furthermore, for smaller graphs, CPM yields consistently better results than Infomap,
which confirms the usefulness of the weighted sum method introduced in Section 7.1.
CPM dominates RB, which might have been expected, given the fact that RB measures
the size of a cluster in terms of accumulated vertex degrees and CPM in terms of the
number of contained vertices; the latter is more likely to yield good results, in view of the
bicriteria formulation of surprise. Furthermore, it is not surprising that RN yields worse

“In the case of RNSC, this includes the execution of the programs rnscconvert, rnsc and rnscfilter.
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TABLE 7.2: Quality of algorithms in SurpriseMe with respect to S’

G CPM Infomap RB RN RNSC SCluster  UVCluster
1 23.85 17.17 21.19 25.69 25.04 23.66 25.69
2 28.59 0.00 16.67 25.30  28.02 23.54 20.07
3 74.32 51.66 56.75 44.57  74.28 72.20 66.26
4 183.5 136.5 119.5 30.40 182.1 181.7 161.1
5 186.7 151.4 157.9 154.1 166.7 166.1 162.2
6 97.56 37.63 72.22 22.83 74.31 82.84 80.66
7 406.2 403.8 405.6 403.8  405.7 379.8 365.1
8 1026 722.7 655.2 587.2 1003 9714 965.9
9 598.2 442.5 431.5 75.64 542.4 500.9 459.2
10 886.9 652.1 674.5 67.16 730.8 752.2 721.8
11 3366 2960 2881 541.8 2505 3160 2855
12 8995 4195 4157 1630 5834 7691 3953
13 6221 6061 6068 4778 5936 6214 6186
14 12929 13063 12740 7482 9416 12869 12654
15 31022 30694 29795 25888 25362 - 30290
16 49864 47922 41738 42012 39114 - -

17 197631 186190 162852  0.00 178364 - -

18 99056 99002 93800  0.00 82884 - -

19 45998 42459 43766 13896 16190 - -

20 219938 221672 204116  0.00 179069 - -

21 301109 304198 276365 0.00 240147 - -

22 353042 - - - 257276 - -

23 - - - - 231957 - -

24 - 1201720 - - 976124 - -

results than CPM, as both optimize Equation 7.1 for different values of A and CPM
chooses directly the clustering optimizing surprise, whereas RN is oblivious of surprise
and chooses a clustering according to another criterion. Interestingly, RN deems 4 of the
larger graphs as not well clusterable, i.e., it returns a trivial clustering. The other three

algorithms yield fairly good results, but are, with few exceptions, consistently worse
than CPM.

In terms of running time, CPM, RB and RN scale comparably well, managing to cluster
graphs with up to approximately 35000 vertices. SCluster and UVCluster scale signifi-
cantly worse with the graph size, while RNSC and Infomap are roughly comparable and
faster than CPM.

In summary, with only few exceptions, RB, RN, SCluster and UVCluster are dominated
by CPM and RNSC by Infomap with respect to both running time and quality. Hence,
to save resources, we ran only these two algorithms on the whole benchmark set and
compare our modifications to these two baseline algorithms only. As Infomap’s base
algorithm is repeated 10 times in SurpriseMe, we also included a version that only runs
the base algorithm once, which yields an even faster heuristic we refer to as InfomapS.
Table 7.8 and Table 7.9 show the quality and the running time of these algorithms on the
whole benchmark set; the results for InfomapS are averaged over 5 runs (using random
seeds between 1 and 5).
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TABLE 7.3: Running time in seconds of algorithms in SurpriseMe

G CPM Infomap RB RN RNSC  SCluster UVCluster
1 5.41 0.03 5.51 0.08 0.04 0.08 0.04
2 5.75 0.03 3.52 0.13 0.07 0.11 0.04
3 7.68 0.06 34.81  0.29 0.06 0.27 0.09
4 4.7 0.0 5.0 0.46 0.1 0.2 0.1
5 8.4 0.1 7.8 0.8 0.1 0.3 0.2
6 14.50 0.11 5.49 0.82 0.06 0.30 0.19
7 5.8 0.2 7.4 0.8 0.1 0.3 0.1
8 14.7 0.2 18.8 4.2 0.1 0.8 0.3
9 17.8 0.4 30.8 5.57 0.1 1.4 0.7
10 17.9 0.5 31.8 8.12 0.2 3.0 0.9
11 43.0 2.8 66.4 30.0 0.4 15.8 7.6
12 60.6 1.2 263.0 53.6 2.8 17.4 6.2
13 16.3 0.5 29.6 11.1 0.2 39.4 23.8
14 76.2 7.0 148.0 79.9 1.4 1104 826.9
15  99.8 12.6 239.9 147.1 4.5 TO 2748
16 138.0 9.9 420.7 239.5 9.3 TO TO
17 591.1 49.9 761.7 77842 68.3 TO TO
18 4244 289 504.8 281.21 28.6 TO TO
19 550.0 31.8 984.2  940.3 46.0 TO TO
20 991.1 100.2 1187 1069 135.9 TO TO
21 825.6 170.7 1797 1873 260.2 TO TO
22 2554 TO TO TO 2837 MO MO
23 TO TO TO TO 2455 MO MO
24  TO 778.6 TO TO 2781 MO MO

7.4 Engineering the Weighted Sum Method

Motivated by the good results of the weighted sum method included in SurpriseMe as
CPM, we build upon this approach and further engineer it. Our main purpose is to
decrease the running time, such that the algorithm can be used to cluster larger graphs
within reasonable time bounds.

Base. Our first implementation is conceptually equivalent to CPM, with some small
modifications. Recall that CPM finds clusterings optimizing Equation 7.1 with GENERIC
GREEDY VERTEX MOVING as defined in Algorithm 4 in Chapter 3, without the optional
refinement step. We keep this approach to compute clusterings for each parameter
setting individually, which results in a fast way to estimate which parameter setting for
A leads to the best quality. In a postprocessing step, we run GENERIC GREEDY VERTEX
MOVING once again for the estimated parameter setting, this time with refinement, to
obtain the final result. Furthermore, instead of terminating as soon as the last 100
parameter settings for A did not yield an improvement with respect to surprise, as is
done in SurpriseMe, we use k parameter settings for A, equidistant in [0, 1]. This avoids
considering the same A multiple times and leads to better predictable running times.
We refer to the resulting metaheuristic as Basey.

Dendrogram Heuristics (DH). Our student Philipp Glaser evaluated in his student
thesis [92] different heuristics to speed up the running time to compute clusterings
optimizing multiresolution modularity, which is equivalent to the objective of the RB
heuristic. Given a set of parameters 7, he computes a clustering for each parameter
setting by a modified GENERIC GREEDY VERTEX MOVING procedure which reuses parts
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FIGURE 7.3: Illustration of how the algorithm is initialized with dendrogram heuristics.

of the dendrogram resulting from the previous parameter. Motivated by the promising
results in this setting, we use this idea to compute clusterings optimizing Equation 7.1
for the parameters we are interested in.

Figure 7.3(a) depicts an example of a dendrogram that can be found by GENERIC
GREEDY VERTEX MOVING for some parameter A (the black vertices). The picture
also contains an (artificial) additional level, which corresponds to the green vertices and
emphasizes the clustering obtained on the highest level after local moving. Due to the
way this algorithm proceeds, this clustering will always correspond to the singleton clus-
tering, i.e., each green vertex is mapped to exactly one vertex on the highest level. With
this convention, the initial state of the dendrogram in Basej, for each new parameter can
be depicted as in Figure 7.3(b); the clustering process starts again from the lowest level
and the clustering is reset to the singleton clustering.

Our DH heuristic reuses parts of the dendrogram instead, depending on two parameters
d and p € [0,1]. Let us assume that the levels of the dendrogram are numbered from
0 to r, where Level 0 is the lowest level and Level r the highest level in the graph
hierarchy, i.e., the black level directly below the green level. DH will now start the next
computation from Level |d -7+ 1/2] and use the clustering defined by the vertices in
Level |p-7r+1/2]. Figure 7.3(c) shows how the dendrogram is prepared in case d = 1/3
and p = 1. Here, we start the next computation from Level 1 and initialize the clustering
with the two clusters corresponding to the highest level, prior to applying local moving
to the graph at Level 1. Recall that the higher A, the more clusters we expect. Hence,
in order for this approach to make sense, we have to consider all A in decreasing order.
Similar to Basey, we use a postprocessing step which runs GENERIC GREEDY VERTEX
MOVING once again with the best parameter found, including the refinement phase. We
call the resulting heuristic DHg’p , where d and p are as defined above and k refers to the
number of different parameter settings to be tested, analogous to Base.

Table 7.4 and Table 7.5 show the quality and running time of DH100 for selected values
of d and p with respect to our small benchmark set. Note that DHlO% is equivalent
to Basejgp. For multiresolution modularity, Glaser [92] finds that there is an inherent
tradeoff between running time and quality; heuristics, which start from a high level in
the dendrogram and use a coarse clustering as initialization take less time to complete
but yield (slightly) worse results. With respect to Equation 7.1 and also with respect
to the surprise of the clusterings found in the main phase of DH, we can confirm this
observation. However, in terms of the quality of clustering after the postprocessing
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TABLE 7.4: Quality of dendrogram heuristics

G DHyy  DHjs®  DHyy,  DHyw”®  DHjgs'  DHjy
1 25.55 25.55 25.55 25.04 25.04 25.04
2 28.76 28.94 28.94 28.54 28.54 28.54
3 75.72 75.69 75.69 75.69 75.69 75.69
4 183.8 183.8 183.8 183.8 183.8 183.8
5 189.7 188.7 188.7 189.5 189.3 189.5
6 102.3 98.06 98.00 98.00 98.00 97.39
7 406.2 406.2 406.2 406.2 406.2 406.2
8 1031 1018 957.3 1021 1026 1016
9 612.8 592.7 585.3 590.7 592.1 592.1
10 892.2 885.6 887.1 892.2 892.0 892.0
11 3399 3373 3373 3399 3399 3403
12 9043 6729 6729 6792 6792 6729
13 6233 6231 6233 6233 6233 6233
14 13029 13029 13029 13029 13029 13029
15 31041 31041 31041 31041 31041 31041
16 50197 50066 50197 50197 50197 49867
17 198076 197981 197981 198076 198076 198076
18 99769 99717 99717 99393 99393 99717
19 46482 46482 46482 46482 46482 46482
20 221584 221036 221036 221036 221036 221036
21 304292 303281 303281 303281 300861 303281
22 304942 300063 314481 300063 304942 300063
23 271835 271835 271521 271934 271835 271835
24 1190710 1190710 1190710 1190710 1186650 1190710

step, the value does not drop significantly even for the fastest variant DH%blo, which still

matches the quality of Basejgg in 8 out of 24 cases and even surpasses the base algorithm
on Instance 11. Hence, we ran this variant on the whole benchmark set and compare it
to the other algorithms in the final discussion.

Parameter Selection by Fraction of Moved Vertices (F). Until now, we chose
the set of parameters equidistant in the interval [0,1]. Another possibility is to use
the information from the dendrogram for the last parameter A to determine the highest
“interesting” parameter smaller than \. The idea is that, to yield a substantially different
clustering, optimizing Equation 7.1 with the new parameter should merge some of the
clusters from the clustering obtained with parameter A\. Given a parameter f € [0, 100],
we start with the singleton clustering and determine the largest A such that at least
f percent of the vertices would change their cluster membership in the local moving
procedure, if we optimize Equation 7.1 with A as parameter. This yields A1, which
we use to obtain clustering C;. Ag is then defined by the largest A such that at least f
percent of the vertices on the highest level of the resulting dendrogram would change
their cluster membership when optimizing Equation 7.1 with A as parameter and so on.
In principle, this way of parameter selection can be combined with any of the dendrogram
heuristics, including the base algorithm. To keep the number of different configurations
manageable, we only combine this approach with DH!, which yields the fast heuristic
Fy.

Intuitively, the smaller f, the more resolutions we scan and therefore, the better the
expected quality of the resulting clustering. Table 7.6 however shows that this is not the
case; the quality of Fy, which computes the largest value such that any of the vertices on
the highest level is moved, is often worse than the quality obtained by using a constant
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TABLE 7.5: Running time in seconds of dendrogram heuristics

G DHyy DHiyg® DHyy, DHyG"® DHjgs'  DHig
1 0.11 0.10 0.10 0.10 0.10 0.10
2 0.11 0.13 0.11 0.11 0.11 0.13
3 3.23 0.12 0.11 0.11 0.11 0.13
4 0.1 0.1 0.1 0.1 0.1 0.1
5 0.2 0.1 0.1 0.1 0.1 0.1
6 0.3 0.60 0.15 0.14 0.16 0.16
7 0.3 0.2 0.1 0.1 0.1 7.5
8 1.7 0.3 0.1 0.1 0.1 0.3
9 0.3 0.3 0.3 0.2 0.2 0.2
10 0.3 0.3 0.3 0.2 0.2 0.3
11 09 0.5 0.5 0.3 0.3 0.3
12 1.8 1.1 1.0 0.7 0.5 0.5
13 0.3 0.3 0.3 0.2 0.1 0.1
14 1.3 0.8 0.7 0.5 0.5 0.3
15 2.8 1.5 1.4 0.9 0.8 0.6
16 4.4 2.9 2.7 1.5 1.3 1.2
17 20.6 12.0 11.2 4.5 4.3 3.6
18 9.2 5.1 4.9 2.3 2.1 1.7
19 119 8.9 7.3 5.7 5.5 3.2
20 271 16.9 16.6 7.1 6.6 5.3
21  49.6 27.6 26.8 12.3 11.2 9.5
22 243.6 147.8 150.4 98.9 95.8 65.5
23 1772 123.6 118.9 86.7 78.4 45.9
24 155.7 70.4 122.0 44.2 41.1 27.2

fraction of the vertices. A possible explanation for that is the fact that this variant has
the tendency to grow clusters one by one, similar to GENERIC GREEDY MERGE, which
is often not beneficial for the resulting quality. Comparing the quality and running time
(cf. Table 7.6) for different settings of f between 1.25 and 50 reveals no clear winner.
In contrast to that, setting f to 100, hence requiring all clusters to merge in the next
step, is too restrictive and the quality of the resulting clustering drops considerably in
most cases. Overall, we think that F}g yields a good tradeoff between running time and
quality.

7.5 Scanning the Convex Hull Directly

An alternative approach to find interesting values of the parameter A is to reconstruct
the convex hull of the set of nondominated points recursively. Let p := (g) Starting
with the two known border points 2! = (8) and " = (m) corresponding to the singleton
and the all clustering, new points can be found as described in Algorithm 8. The first
relevant value of X\ is chosen such that we optimize in a direction that is orthogonal
to the line between z! and z". If the optimal clustering corresponds to a point z* to
the lower right of this line, this point is guaranteed to be a nondominated point on the
convex hull. In this case, we repeat this process with the line between z* and z! and the
line between z* and z". Otherwise, we know that we found all vertices of the convex
hull that lie between 2! and z". Occasionally, it may happen that the optimal clustering
for a particular A is not unique. If we would like to find all points on the convex hull,
we would have to enumerate all optimal solutions or at least to enumerate all points (ay”)
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TABLE 7.6: Results for Fy heuristic, different values of f

(a) Quality with respect to S’ (b) Running Time in Seconds
G Fo F1.25 Fas Fio Fso F1o00 G Fo Fi2s Fas Fio Fso Fioo
1 25.04 25.04 25.04 25.04 24.04 21.08 1 0.09 0.08 0.08 0.09 0.09 0.09
2 28.54 28.54 28.54 28.54 28.71 20.10 2 0.09 0.09 0.09 0.11 0.10 0.09
3 75.69 75.69 75.69 75.55 75.42 52.37 3 0.09 0.10 0.09 0.11 0.09 0.09
4 183.8 183.8 183.8 183.8 137.7 151.7 4 01 01 01 01 0.1 0.1
5 189.3 189.3 189.3 189.2 189.2 154.1 5 01 01 01 01 0.1 0.1
6 97.39 98.09 98.09 98.09 98.09 71.68 6 012 0.12 0.12 0.11 0.11 0.10
7 406.2 406.2  406.2 403.8 347.1 347.1 7 01 01 01 22 0.1 0.1
8 1016 1016 1016 1029 899.1 899.1 8 01 01 0.1 20 0.1 0.1
9 592.1 610.9 610.9 610.9 610.9 379.1 9 01 01 0.1 01 0.1 0.1
10  890.6 890.6 890.6 886.2 802.6 825.6 0 02 01 01 01 01 0.1
11 3337 3399 3399 3373 3249 2286 1 04 02 01 01 0.1 o0.1
12 6767 6790 6782 6795 6776 5696 12 07 03 03 03 03 03
13 6230 6230 6234 6234 6234 5860 3 01 01 01 01 0.1 0.1
14 13029 13029 13026 13013 13026 12905 14 06 03 03 03 02 0.2
15 31055 31055 31032 31096 31096 29644 15 15 05 04 03 03 03
16 50181 50193 50193 50193 49021 43433 6 35 11 09 05 04 0.4
17 198076 198071 198071 197632 195422 161954 17 167 1.7 15 15 13 1.1
18 99723 99732 99723 99364 99365 88923 8 63 11 09 07 07 0.6
19 46069 46132 46132 46258 44897 45366 19 374 199 16.7 13.7 2.0 0.8
20 221259 221324 221096 220895 215468 171268 20 306 25 23 19 15 1.5
21 303167 303634 303095 304035 289160 218295 21 637 41 34 27 25 22
22 - 297451 299199 301420 293325 317579 22 MO 474 38.0 384 20.8 43.3
23 - 271929 271929 271500 271908 269552 23 MO 35.1 30.0 246 18.9 18.8
24 1189750 1190530 1190500 1173000 1132690 1185080 24 3731 14.2 123 163 8.5 9.2

such that a clustering with z intracluster edges and y intracluster pairs exists and such
that x — Ay corresponds to the value of the optimum. We did not choose this approach
and restrict ourselves to finding all vertices of the convex hull. It is not hard to see that
whenever we find a point on the convex hull that is no vertex, i.e., that lies on a line
between two vertices [ and r, these vertices will be found later on. This means, each
point found by Algorithm 8 is a nondominated point on the convex hull, but not each
nondominated point on the convex hull is necessarily found; this is only guaranteed for
vertices. In contrast to the parameter scanning done in Basey, this approach has the
nice property that it scans at most 2c¢ resolutions, where ¢ is the number of points on
the convex hull. A trivial upper bound on c¢ is the number of edges in the graphs; in
general, the algorithm will scan less resolutions.

OptConvex. Optimal solutions for Equation 7.1 can be easily found by an integer
linear program similar to the ones we used in Chapter 6. We build upon the same
set of variables X' as in the case of minIP. Integrality (cf. Equation 6.3) and transi-
tivity (cf. Equation 6.4) constraints guarantee that the solution of the linear program
induces a clustering of the graph. With the same arguments we used in the case of
minlP, it is sufficient to restrict the transitivity constraints for vertices u and v to ver-
tices in a vertex separator of them. The objective in Equation 7.1 can now be easily
translated as follows:

maximize Z Xyw — A+ Z X (7.2)

{uv}eE {u,v}e(‘z/)

As motivated in Section 7.1, we conjecture that the point corresponding to a clustering
that is optimal with respect to surprise is a vertex on the convex hull. If this conjecture
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Algorithm 8: OpTCONVEX

Input : Graph G with p = (g) vertex pairs and m edges
Output: Set S containing all nondominated points that are vertices of the convex hull

S 1@ )

L+ (I(o). (7). m/p])

while L is not empty do

[z!, 2", \] < L.dequeue()
C* « ming{i.(C) — Nip(C)}

2 (e
if 2 is not on line between z' and =" then
S« Su{z*}
if 23 — 2! > 1 then
L L.enqueue([wl, , (:L‘i‘ — xl)/($§‘ —x5)])
if 27 — 23 > 1 then
L L.enqueue([z*, 2", (2] — 27) /(2 — 23)])

return S

is true, Algorithm 8, which we call OptConvex, yields an alternative way to obtain
provably optimal clusterings with respect to surprise.

Bettinelli et al. consider the related problem to compute the piece-wise linear function
P that assigns each A the value of an optimal solution with respect to multiresolution
modularity [29] and the weighted parsimonity criterion [30], with A as parameter. Again,
the latter is equivalent to CPM with respect to optimum solutions, up to a simple
transformation of the parameter. It is not hard to see that computing the breakpoints
of P and computing all vertices on the convex hull of the Pareto front are two sides of
the same coin, as there is a one-to-one correspondence between the coordinates of these
vertices and the equations associated with the pieces of P. Hence, OptConvex can be
used to compute P, and the algorithm by Bettinelli et al. can be used to find all vertices
on the convex hull of the Pareto front. Both approaches rely on computing optimum
solutions for Equation 7.1 with the help of a linear program for a sequence of values for
A. In contrast to the recursive approach from Algorithm 8, Bettinelli et al. reconstruct
P “from left to right”, i.e., from the lowest possible value for \ to the largest one.
Compared to OptConvex, in the best case, this might lead to slightly less calls to the
ILP solver, but there is no good upper bound on the maximum number of calls needed.
Hence, there is a priori no reason to choose this more complicated algorithm in our
scenario instead of the conceptually simple recursive approach.

We ran OptConvex and the gap variant (Opt) from Chapter 6, including the modification
that prunes small k, on the seven smallest instances from our test set, with a timeout
of 5 hours. Although four of these instances have been already considered in Chapter 6,
we had to rerun the experiments for the gap heuristic as we use another machine and
timeout as in the experiments there. Table 7.7 shows the running time, number of
solved linear programs and the quality for OptConvex and Opt for these instances. As
expected, whenever both approaches found a solution within the time limit, their quality
is identical. Except for Instance 4, where Opt needed to call the ILP solver less than
half the times, OptConvex was always faster, for Instance 2 and 7, considerably.
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TABLE 7.7: Experimental results for OptConvex

OptConvex Opt
G time ILP S’ time ILP S’
1 13s 32 25.69 16s 20 25.69
2 | 1h 44m 9s 40 29.24 TO - -
3 47s 53 76.00 2m 22s 50 76.00
4 4m 34s 67 183.81 3m 1s 29 183.81
5 TO - - TO - -
6 TO - - TO - -
7 11m 38s 41  406.25 | 4h 15m 47s 53  406.25

Convexy. Obviously, the above approach can only be used for small instances. We hence
considered a heuristic that works in principle as in Algorithm 8 but replaces the step
to find optimal solutions for a particular parameter A by finding a good clustering with
GENERIC GREEDY VERTEX MOVING. Furthermore, we terminate as soon as we have
scanned k resolutions and call GENERIC GREEDY VERTEX MOVING again on the best
parameter found, this time using refinement. This is very similar to the base algorithm,
the only difference is that we determine the set of resolutions to scan dynamically while
executing the algorithm. Unfortunately, this hinders the combination with the heuristic
DH, as this requires the set of A values to be ordered decreasingly.

7.6 Experimental Results

Table 7.8 and Table 7.9 show the quality and running time of selected configurations on
the whole set of graphs in Table 7.1.

Infomap vs. InfomapS. As to be expected, running Infomap’s base algorithm once
instead of 10 times reduces the running time by approximately a factor of 10. On 18
out of 25 instances where both variants found a solution within the time limit, the
quality drops slightly without the repetition, but, with the exception of Instance 6, not
considerably. Overall, InfomapS seems to be a good and fast heuristic for graphs with
100000 vertices and more, being able to cluster a webgraph with over 13 million edges
within approximately 42 minutes.

Base vs. CPM and Infomap. It turns out that the quality loss incurred by only
scanning a fixed number of 100 resolutions is more than compensated by the simple
postprocessing which runs GENERIC GREEDY VERTEX MOVING once again on the best
parameter found, including the refinement phase. In 21 out of 22 instances, Basejgg
yields a better quality than CPM while the computation time drops by a factor of
around ten to twenty, making the potential of the weighted sum approach more apparent.
Compared to Infomap, Basegg is significantly better on the small instances 1 to 12 with
respect to quality, and still better than Infomap (InfomapS) on 9 out of 13 (14 out of 19)
of the remaining instances. For larger instances, its running time is usually in between
the time needed for Infomap and InfomapS, often comparable to InfomapS.

Convex vs. Base. Comparing the quality of Basejgg and Convexigg reveals no clear
advantage in using either of the both variants over the other, although there might be a
slight tendency towards the former on small and towards the latter on larger instances.



Chapter 7 Agglomerative Algorithms for Surprise Optimization 127

TABLE 7.8: Quality of algorithms on large set with respect to S’

G CPM  Infomap InfomapS Baseioo Convexioo  Baseip Convexig DH; Fio
1 23.85 17.17 17.17 25.55 25.55 25.55 25.55 25.04 25.04
2 28.59 0.00 0.00 28.76 28.76 28.71 28.71 28.54 28.54
3 74.32 51.66 53.03 75.72 75.69 75.69 75.55 75.69 75.55
4 183.5 136.5 132.4 183.8 183.8 183.8 183.8 183.8 183.8
5 186.7 151.4 151.1 189.7 189.5 188.7 189.5 189.5 189.2
6  97.56 37.63 14.42 102.3 102.3 98.08 103.2 97.39 98.09
7  406.2 403.8 403.8 406.2 406.2 406.2 406.2 406.2 403.8
8 1026 722.7 699.1 1031 1025 1017 1025 1016 1029
9 598.2 442.5 440.9 612.8 612.8 593.5 612.8 592.1 610.9
10 886.9 652.1 646.3 892.2 894.0 880.4 884.2 892.0 886.2
11 3366 2960 2927 3399 3378 3323 3293 3403 3373
12 8995 4195 4182 9043 8981 8895 8981 6729 6795
13 6221 6061 6057 6233 6233 6219 6207 6233 6234
14 12929 13063 13036 13029 13021 12443 12970 13029 13013
15 31022 30694 30672 31041 31063 30601 30997 31041 31096
16 49864 47922 47916 50197 50134 49193 49051 49867 50193
17 197631 186190 186391 198076 197867 198187 198389 198076 197632
18 99056 99002 98980 99769 99778 98406 98763 99717 99364
19 45998 42459 42422 46482 46705 36756 44845 46482 46258

20 219938 221672 221772 221584 222020 218101 221299 221036 220895
21 301109 304198 303769 304292 303558 297904 300060 303281 304035

22 353042 - 480393 304942 304904 276966 297588 300063 301420
23 - - 212059 271835 271524 264663 271524 271835 271500
24 - 1.202e+6 1.20le+6 1.191e+6 1.191e+6 1.171e+6 1.19le+6 1.191e+6 1.173e+6
25 - 1.354e+6 1.353e+6 1.358e+6 1.361le+6 1.175e+6 1.335e+6 1.358e+6 1.337e+6
26 - 2.378e+6 2.378e+6 2.412e+6 2.407e+6 2.347e+6 2.407e+6 2.412e4-6 2.411le+6
27 - - 1.995e+6 2.004e+6 2.011le+6 1.636e+6 2.01le+6 2.004e+6 2.010e+6
28 - - 2.566e+6 2.572e+6 2.573e+6 2.449e+6 2.563e+6 2.571e+6 2.573e+6
29 - 4.60le+6 4.60le+6 4.314e+6 5.225e+4+6 3.519e+6 5.183e+6 4.314e+6 5.225e4-6
30 - - 4.604e+7 4.774e+7 4.775e+47T 4.763e+7 4.774e+7 4.763e+7 4.759e+7
31 - - 4.103e+7 4.281e4-7 4.276e+7 4.278e+7 4.208e+7 4.269e+7 4.276e+7
32 - - 2.470e+7 - - 2.263e+7 2.929e4-7 - 2.857e+7
33 - - 3.522e+7 - - 3.160e+7 3.761le+47 3.690e+7 -
34 - - - - - 7.588e+7 8.678e+7 8.692e+7 8.719e+7
35 - - - - - - - - -
36 = = - - - 1.343e+8 - - 1.549e+-8

Convexyg is often slightly slower, as it apparently tends to scan more resolutions that
are more costly to optimize. If we however compare Basejg and Convexjg, the latter
yields better quality on 26 and the same result on 4 out of 34 instances, sometimes
considerably better quality. Our interpretation is that 100 parameter settings are more
than enough for both variants, especially for the smaller instances, but the parameter
estimation of Convexy, is preferable if k is small or if we are dealing with especially large
instances. Compared to InfomapS, Convexy is faster on large graphs, sometimes up to
a factor of 8, while yielding better quality in 25 out of 33 cases.

DH and F. On our test set, DH%E)IO and Fyg yield comparable quality; either of the two
wins in about half of the cases and the results are often similar. As Fy( is consistently
faster than DH}E)IO, we deem it the better choice among the two versions. Similarly,
compared to Convexyg, it yields better results in 17 out of 30 cases and is usually faster.
There is however a slight catch with both the DH and F heuristic; due to the way the
dendrogram is built, it usually consists of considerably more levels in the end than by
using the base algorithm for any of the A considered. This is the reason why DH%@IO needs
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TABLE 7.9: Running time in seconds of algorithms on large set

G CPM Infomap InfomapS Baseioo Convexioo Baseip Convexig DH}(’)IO Fio
1 5.41 0.03 0.02 0.11 0.09 0.09 0.09 0.10 0.09
2 N 0.03 0.02 0.11 0.12 0.09 0.09 0.13 0.11
3 7.68 0.06 0.02 3.23 2.58 0.09 0.11 0.13 0.11
4 4.7 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
5 8.4 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1
6 14.50 0.11 0.04 0.3 0.3 0.75 2.4 0.16 0.11
7 5.8 0.2 0.0 0.3 0.3 0.1 0.7 7.5 2.2
8 14.7 0.2 0.0 1.7 0.3 0.1 1.6 0.3 2.0
9 17.8 0.4 0.1 0.3 0.3 0.1 0.1 0.2 0.1
10 17.9 0.5 0.1 0.3 0.3 0.1 0.1 0.3 0.1
11 43.0 2.8 0.3 0.9 0.6 0.3 0.3 0.3 0.1
12 60.6 1.2 0.2 1.8 1.1 0.3 1.4 0.5 0.3
13 16.3 0.5 1.4 0.3 0.3 0.1 0.3 0.1 0.1
14 76.2 7.0 2.3 1.3 1.6 0.3 0.5 0.3 0.3
15 99.8 12.6 2.9 2.8 2.5 0.5 0.5 0.6 0.3
16 138.0 9.9 1.8 4.4 3.6 0.7 0.7 1.2 0.5
17  591.1 49.9 5.3 20.6 17.9 2.8 2.9 3.6 1.5
18 4244 28.9 3.2 9.2 7.6 1.3 1.2 1.7 0.7
19 550.0 31.8 3.3 11.9 22.8 1.5 3.4 3.2 13.7
20 991.1 100.2 11.3 27.1 27.2 3.8 3.8 5.3 1.9
21 825.6 170.7 18.5 49.6 45.4 6.3 6.0 9.5 2.7
22 2554 TO 548.8 243.6 596.2 32.9 104.6 65.5 38.4
23 TO TO 703.2 177.2 1966 24.5 234.1 45.9 24.6
24 TO 778.6 79.8 155.7 213.1 56.2 24.4 27.2 16.3
25 TO 1317 140.6 340.2 715.9 45.5 40.1 56.7 22.1
26 TO 1482 135.5 213.4 200.9 27.8 31.5 48.8 14.8
27 TO TO 895.2 689.8 964.2 115.0 113.3 172.2 40.6
28 TO TO 424.7 345.8 478.8 46.6 54.1 84.3 26.2
29 TO 2883 256.9 1078 2369 122.4 302.2 159.7 143.4
30 TO TO 477.6 1339 1280 204.3 192.6 120.2 99.7
31 TO TO 829.0 1911 2330 284.9 229.5 211.1  110.9
32 TO TO 1916 TO TO 865.5 1913 MO 1115
33 TO TO 2525 TO TO 653.5 1226 735.8 MO
34 MO TO TO TO TO 1369 2973 1644 876.3
35 MO TO TO MO MO MO MO MO MO
36 MO TO TO TO TO 2210 TO MO 1199

slightly more than 32 GB of main memory for Instance 32, which also happens for F1g on
Instance 33. For the fast versions DH%’Ol0 and Fjg, this could however easily be avoided
by storing only the highest level of the dendrogram, as we do not reuse intermediate
levels in the clustering process.

Summary. Of all configurations we tested, we deem Basejgg and Fig to yield the best
tradeoff between running time and quality. The former yields better results than any
of the algorithms contained in SurpriseMe on a large majority of the test instances
we considered, while its running time is still often comparable to a single application
of Infomap. The latter is faster than InfomapS and yields better quality on all but 5
instances. For karate (Instance 1), dolphins (Instance 3), lesmis (Instance 4) and
football (Instance 7), we know the surprise of an optimal solution (cf. Table 7.7).
Furthermore, for chesapeake (Instance 2), by using OptConvex, we found a lower bound
on the value of an optimal solution that we believe to be optimal. The clustering found
by Basejggp matches this quality in case of lesmis and football, while the results for the
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other instances are slightly suboptimal. Hence, at least for small instances, the margin
for significant improvements with respect to quality is small.

7.7 Concluding Remarks

In this chapter, we evaluated heuristic algorithms for surprise optimization. We first
examined the clustering algorithms contained in the metaheuristic SurpriseMe and found
that for typical test instances, one of these algorithms dominates the others with respect
to the quality of the resulting clustering. We gave a theoretical justification of this
approach by connecting it to the bicriteria view on surprise via the weighted sum method
that optimizes a linear combination of the number of intracluster edges and intracluster
pairs. The algorithm as contained in SurpriseMe is a metaheuristic on its own, which
solves the above weighted sum objective for a range of weights or resolution scales. We
engineered this approach by introducing a simple postprocessing step which improves the
quality of the clustering and by reusing parts of the dendrogram between the clustering
procedures for the particular parameters instead of always computing the clustering
from scratch. Furthermore, we examined two orthogonal ways to determine interesting
resolution scales automatically during the clustering process. The former is based on an
estimation of how much the clustering will change when decreasing the weight, while the
latter directly scans nondominated points on the convex hull of the objective space of
our bicriteria problem, either exactly or heuristically. Based on the experimental results,
we propose two simple configurations of the weighted sum approach; the former yields
most of the time better quality than SurpriseMe while consuming far less resources,
while the latter is faster than the fastest of the algorithms in SurpriseMe and still
yields competitive quality. The main purpose of this and the preceding chapter is to
demonstrate that even if the expression associated with surprise might seem daunting
at first glance, it can be optimized reasonably well in practice.

The methods used in this chapter are not limited to the scope of surprise optimization,
but can be used whenever the aim is to estimate properties of the clustering found by
optimizing CPM [212] or, similarly, multiresolution modularity [182] depending on the
resolution scale. For multiresolution modularity, some experiments can be found in the
student thesis of Glaser [92]. Scanning the convex hull directly yields also a fast alter-
native to the algorithm by Bettinelli et al. [29, 30], and to recursive bisection on the
resolution parameter as proposed for example by Traag et al. [213]. This is particu-
larly useful if the task is to find clusterings which have a certain property that grows
monotonously with the resolution parameter, as for example the number of clusters,
as in this case a logarithmic number of computations is sufficient to find the correct
resolution scale.

It would be interesting to know if our conjecture is true that clusterings that are optimal
with respect to surprise always correspond to vertices on the convex hull in objective
space. If yes, this yields both an even stronger connection to the constant Potts model
CPM and a faster method for finding optimal solutions. To substantially widen the
range of graph sizes where computing optimum clusterings is realistic, it is however
necessary to use other improvements; potential candidates for this are mentioned in
Chapter 6. Another direction of future work includes the development of better heuristics
with respect to quality and running time. A simple modification of the methods we
used is to perform the local moving procedure in parallel. As for modularity [209],
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this can be done in a straightforward way by ignoring stale data, although it might
lead to slightly worse quality. Another possibility would be to go back to the idea of
directly optimizing surprise by GENERIC GREEDY VERTEX MOVING. Evaluating the
exact change in the objective function when moving vertices to other clusters seems
infeasible on large instances, but using approximations similar to the ones we used to
approximate surprise for large graphs might be possible. It is not obvious in advance
if this leads to better quality or efficiency; even with approximations, evaluating the
benefit of single move operations will be more costly than for CPM, and it is not clear
if these approximations are good enough to be used on such a fine scale.

On a more conceptual level, it is interesting that Infomap seems to yield clusters of very
high quality on large graphs, although it does not explicitly optimize surprise. Instead,
it is based upon the map equation. One possible explanation for this might be that
optimizing the map equation becomes more or less equivalent to optimizing surprise if
the graph size goes to infinity. Investigating similarities between the two objectives is
interesting, as such interconnections would strengthen the theoretical foundation of both
of them.



Chapter 8

An Efficient Dynamic Generator
for Clustered Random Graphs

Often, researchers developing new or enhanced algorithms are faced with the question
which data sets to use to illustrate the advantages and validity of their approach. In
the context of clustering dynamic graphs, the data needs to have some temporal aspects
and, ideally, should come with a well-motivated ground truth clustering. Additionally,
using data that has been previously used in the literature makes the comparison to other
methods less cumbersome.

Synthetic data refers to graphs that are artificially generated by graph generators. Given
a number of vertices, such generators decide which vertices are connected by an edge,
based on some probabilistic model. The edge probabilities can be derived for example
from a preferential attachment process [20], where vertices that already have a high
degree are connected with higher probability than others, or from other rules that are
characteristic for the particular generator. In the context of dynamic graphs, graph
generators usually not only have to decide which vertices are linked in the beginning,
but also which vertices or edges are added or deleted over time. Furthermore, if the
generator incorporates a hidden ground truth clustering, this usually evolves randomly
as well, which in turn influences the edge probabilities.

Depending on the aim of designing a certain clustering algorithm, there are good reasons
to use synthetic data as well as good reasons to not entirely rely on synthetic data for
its evaluation. One advantage of real world data, i.e., instances that stem from typical
applications, is that they frequently exhibit very specific properties and symmetries that
are difficult to analyze and rebuild in synthetic data. Hence, to predict the performance
of an algorithm in a certain application, using only synthetic data is unrewarding, since
experiments involving sample instances stemming from this application are often more
accurate.

This raises the question of why to use synthetic data at all. There are some good
arguments that justify the use of synthetic data, at least together with real world data:

e Tunable characteristics, as for example the density of the generated graphs, allow
to evaluate algorithms in detail depending on these characteristics. A scenario
where this can be useful is when an algorithm yields good results for some networks
but bad results on others. A study on a large set of generated graphs might help to
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identify characteristics of the graph that are difficult to handle for the algorithm,
which in turn might raise some potential for improvements.

e Synthetic graphs can usually be generated in any possible size, even very large
networks that might not (yet) exist in practice. This is especially useful in the
context of scalability studies.

e Using a graph generator, an unlimited number of different networks with simi-
lar properties can be generated, preventing algorithms to focus only on very few
benchmark instances. This permits to test algorithms on a representative sample
of the graph class one is interested in, ensuring some degree of significance.

e In particular in the context of graph clustering, there is another reason why syn-
thetic networks are quite popular. Since there is no general agreement on a single
objective function evaluating the goodness of the clustering, a common approach
to evaluate graph clusterings independent of any objective function is the compar-
ison to a known ground truth clustering. The downside of this is that real world
graphs with a well-motivated ground truth clustering are still rare. For this reason,
synthetic networks incorporating a hidden ground truth clustering that has been
used in the generation process are widely used.

Probably the most fundamental model for synthetic graphs are graphs where every
edge exists with a fixed, constant probability. The planted partition model [37, 56, 87],
also called ad hoc model, is a simple modification thereof that takes as input a given
ground truth clustering and two parameters pi, and poyt that correspond to the linking
probabilities between vertices in the same and different clusters. We already encountered
such random graphs in the experiments described in Chapter 5.

Contribution. In this chapter, we augment the planted partition model by allowing
dynamic events; edge and vertex events add or delete an edge or vertex, whereas cluster
events split or merge clusters. More formally, we generate a time series of random graphs
Go,...,G,, where Gy emerges from G;_1 via exactly one atomic update, i.e., the insertion
or deletion of an edge or vertex. Over the whole generation process, the generator
keeps track of a (dynamic) ground truth clustering. The probability of atomic events
is chosen in a way that adheres to this clustering, without losing randomness. Graph
growth /shrinkage and cluster dynamics can be simulated, steered by input parameters.
Together with the benefit of the reference clustering, this can be used to thoroughly
evaluate dynamic graph clustering algorithms, i.e., algorithms that incrementally update
the calculated clustering as new node/edge events occur. A preliminary version of this
generator is documented in the technical report by Gorke and Staudt [104], and the
dissertation of Gorke [94], and has been used in [100]. The new generator documented
here differs fundamentally in the data structures used, which allows for faster practical
and worst case running time, as well as linear space complexity. As the random model
and parameters used are taken from the old generator, their description closely adheres
to the technical report. Our generator is free for use and can be downloaded as Java
software from our project page '.

A large part of the credit goes to our former student Roland Kluge, who implemented the
generator in his bachelor thesis [138]. I had the initial idea to improve the performance by
using virtual Fisher-Yates shuffles for the individual clusters, supervised Roland’s thesis

"http://itlwww.iti.uni-karlsruhe.de/en/projects/spp1307/dyngen
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together with Robert Gorke, proved Theorem 8.1, and wrote the conference paper [98]
this chapter is based upon.

8.1 Related Work

In the following, we give a short overview of models for synthetic graphs and benchmark
instances occurring in the context of clustering evolving networks. We focus on models
especially suited for complex networks that try to explain network evolution, and on
benchmark instances that incorporate a hidden ground-truth clustering together with
approaches to make these benchmarks dynamic.

Random graphs where edge probabilities are given by a constant and independent from
each other have been first considered by Gilbert [89] in 1959. Until then, a lot of effort has
been put into alternative models that better capture the properties of real world networks
which typically exhibit characteristics like small diameter, high clustering coefficient and
a powerlaw degree distribution [171]. Two classical models are small world networks [224]
that explicitly address the first two issues and the Barabdsi-Albert model [20] that mostly
addresses the degree distribution. The latter can be seen as a dynamic model for graph
growth according to a preferential attachment process. Numerous variations thereof
exist, most of which are targeted in capturing more accurately properties observed in real
world social networks [140, 150, 217]. Based on the associated likelihood values, Leskovec
et al. [149] automatically determine, among a set of parameterized models, the one fitting
a set of four large online networks best. Similarly, Patro et al. [177] propose to use an
evolutionary algorithm to choose among a set of parameterized models of network growth
the one fitting a given set of input characteristics best, in order to automatically learn
the best model for different graph classes. In their experiments, Brandes and Mader [39]
use exponential-family random graphs [184] as basis and describe the evolution between
two networks with the help of stochastic actor-oriented models [205]. Both steps rely on
properties of real-world dynamic networks that are given as input.

Although these models incorporate network growth and already reflect common prop-
erties of observed complex networks as for example online social networks very well,
they do not come with a well motivated inherent ground truth clustering that can be
used to evaluate clustering algorithms. An exception to this is the model by Zheleva
et at. [235] that is especially targeted at modeling the growth of social networks where
vertices can additionally choose to enter special groups of interest. Here, the assumption
is that both the network and the group structure evolve simultaneously, influencing each
other. It might be possible to use the group structure chosen by the vertices as a ground
truth clustering for overlapping clusters, although the group structure is correlated to
the network only to a certain extent. In the model of Bagrow [18], starting from a
graph generated according to preferential attachment, edges are randomly rewired to
incorporate a given ground truth clustering. While this approach combines a ground
truth clustering with a realistic degree distribution, the evolution stemming from the
preferential attachment process is lost.

For static graph clustering, two synthetic benchmark sets have been used very frequently
in the literature; the GN benchmark introduced by Girvan and Newman [91] and the
LFR benchmark introduced by Lancichinetti et al. [145]. The GN benchmark is based
on the planted partition model; typically, it is used to determine how well an algo-
rithm is able to recover the ground truth clustering, depending on the gap between
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Pin and poyt. The planted partition model has been generalized to weighted [75] and
bipartite [113] graphs as well as hierarchical [236] and overlapping [191] ground truth
clusterings. Closely related are relaxed caveman graphs [5, 223]. Among the dynamic
graph clustering algorithms that have been evaluated with the aid of planted partition
graphs are FACETNET [152], the approaches by Yang et al. [227] and Kim and Han [135],
and the above mentioned algorithm framework by Gorke et al. [99]. The former two eval-
uations use graphs from the GN benchmark and introduce dynamics based on vertex
moves; in each time step, a constant fraction of vertices leave their cluster and move
to a random one. Kim and Han additionally consider a dynamic network that also
incorporates the forming and dissolving of clusters and vertex addition and deletion.

In the LFR benchmark, cluster sizes as well as vertex degrees are expected to follow a
power law distribution. Similar to the planted partition model, vertices share a certain
fraction of their links with other vertices in their cluster and the remaining links with
random vertices in other parts of the graph. The LFR benchmark has been generalized
to weighted and directed graphs, as well as to overlapping clusters [144]. Dinh et al. [65]
have used a modification of this benchmark to a dynamic setting. Furthermore, Green et
al. [106] use dynamic benchmarks based on LFR graphs that incorporate different cluster
events, including membership switching, cluster growth, shrinkage, birth and death, and
the merge and split of clusters. After the ground truth clustering has been adapted, a
new random graph is drawn according to the mechanisms of the LFR benchmark, which
results in large differences between adjacent timesteps.

Aldecoa and Marin [6] finally suggest to interpolate between two graphs with a signifi-
cant clustering structure by rewiring edges at random. This is proposed as an alternative
to benchmarks like the GN or LFR benchmark in the context of static clustering algo-
rithms. Here, the assumption is that clusterings of the intermediate states of the graph
during the rewiring process should have low distance to both the ground truth cluster-
ing of the initial and the final state. The rewiring process could be seen as a model
for community evolution. In the context of tracking clusterings over time, Berger et
al. [27] do not consider models for dynamic graphs but two scenarios for the evolution
of clusters that are more sophisticated than random vertex moves or cluster splits and
merges. It remains to mention that, in principle, all generative models used to infer clus-
terings of dynamic graphs via a Bayesian approach [152, 210, 227] might also be used as
benchmark instances, as they naturally come with a dynamic ground truth clustering.

Other models for dynamic graphs based on random evolution according to a given
Markov chain include edge-Markovian Dynamic Graphs [23, 54]. This model does not
incorporate a reference clustering but uses two fixed parameters p and ¢ that represent
the edge birth-rate and edge death rate of each possible edge. In contrast to the model
we consider, an arbitrary number of edge deletions and insertion can take place in each
time step.

8.2 Static Model for Planted Partition Graphs

The first graph Gg created by our generator is based on Gilbert’s static model with
uniform edge probability [89], which we modified to incorporate a planted partition [37,
87]. The idea behind this modification, which we will call G(n, pin, Pout ), is that vertices
in the same cluster should be linked with high probability pi,, whereas intercluster edges
should be present with a lower probability pout, i-e., we always assume piy > Pout-
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The parameter n denotes the number of vertices. Edges are added randomly according
to the following process. The generation is based on a fixed ground truth clustering
C = {Cy,...,Ck} of the vertices. We set pout to a single value, whereas py, is a list
of length k: py, = (pin(C1), e ,pin(Ck)). For two vertices u and v the probability for
edge e = {u,v} to exist in a graph created with G(n, pin, Pout) is called edge probability
p(e) = p(u,v), where

pin(Ci) u,v € C;
p(u,v) =

Dout otherwise

The probability of a particular graph G according to this model is thus

p(@) =[] pte)- JT (1 = ple))

ecE ecE

Our dynamic generator is strongly based on this concept, and the first graph in the gen-
erated sequence is a G(n, Pin, Pout) graph. The number of clusters of the ground truth
clustering, as well as a list of intracluster probabilities p;;, and the uniform intercluster
probability pout are input parameters. Cluster sizes can either be set manually or de-
termined automatically by the generator. In the latter case, we choose the cluster of a
vertex uniformly at random, which entails a binomial distribution of the cluster sizes
with mean 7.

Furthermore we introduce a coefficient € Q which skews the binomial distribution
as follows (8 = 1 in the unskewed case): Each cluster C; is assigned to a subinterval
[%, %) of [0,1). When searching for a cluster to add a new vertex to, we draw an integer
i € [0,k —1]. Now, we add the vertex to the cluster which is assigned to the surrounding

interval of (%)ﬁ . Examples for cluster size distributions with different values of 5 can
be found in the technical report of Gorke and Staudt [104].

8.3 Edge Dynamics

Neglecting cluster dynamics for the moment, we describe the random process we use for
edge dynamics, along with some theoretical properties of the random sequence generated.
We further give details on how this process is implemented in our generator, together
with worst case guarantees on running times.

8.3.1 Associated Markov Chain and Distribution

Ideally, we would like to have a random process that triggers an edge operation, i.e., in-
sertion or deletion, in each time step such that the relative frequency of a graph G in
the resulting sequence follows its probability p(G) in the G(n, pin, Pout) model. Unfortu-
nately, such a random process does not have to exist in general: Consider for example
the simple case that we have two vertices and the probability of the edge between these
equals 0.1. Under these assumptions, the probability of the empty (complete) graph on
two vertices equals 0.9 (0.1), respectively. On the other hand, there is only one possible
edge operation in each state. Hence, each random sequence with an operation in each
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step alternates between these states, which can never lead to the graph distribution
resulting from the assumed edge probabilities.

There is however a simple random process that follows prescribed edge probabilities if we
allow for repeated occurrences of a graph in the sequence. This process chooses in each
step a pair of vertices u and v uniformly at random, deletes the edge {u, v} if it exists and
(re)inserts it with probability p(u,v). There is a natural correspondence between this
procedure and a Markov chain M’ whose states represent all possible (labeled) graphs on
n vertices. It is not hard to see that G(n, pin, Pout) is the unique stationary distribution of
this chain. Thus, if we choose our initial state according to this distribution, the expected
relative frequency of a graph generated by this Markov chain follows G(n, pin, Pout )-

However, in the context of evaluating dynamic algorithms, we are typically interested
in sequences of graphs such that consecutive graphs follow from each other by atomic
changes. We therefore slightly modify M’ such that each time step that does not change
the graph is discarded and call the resulting Markov chain M. Let Pg := ) g (1 — p(e))
and Py := > __pple). Let p := (3) denote the number of vertex pairs in the graph.
Then, the probability pge(u,v) that one step of M deletes an existing edge {u, v} is given
by the quotient of the probability that one step of M’ deletes {u,v} and the probability
that this step causes an edge flip, i.e., the deletion of an existing or the insertion of a
non-existing edge:

% . (1 —p(u,v)) — 1 —p(u,v)
Seer |5 (1-p(@)] + Seep [2-pe)] Tt TE

Pdel (U, v) =

Similarly, the probability pins(u,v) of inserting a non-existing edge is

D=
!

(u,v) ~ plu,v)
ZeEE [% ) (1 - p(e))} + Zeeﬁ [% ’ p(e):| PE + PE
Intuitively, we expect the relative frequency of unlikely states in the sequence generated

by M to be slightly larger than in the sequence generated by M’ and vice versa, as they
are less often discarded. The following theorem makes this intuition precise.

pins(ua U) =

Theorem 8.1. If we choose the initial graph Gy according to G(n, pin, Pout ), the expected
relative frequency of a graph G = (V, E) in a sequence R generated by M is

p(G) -

ZE‘(l p(e)) + X .cpple)
Z()(( p(e))

Proof. We use that M is derived from M’ and look at the random sequence R’ =
..., Gl with TV > T that M’ generates. We call an occurrence of a graph at time
step t > 1 wvalid, if G} # G}_;. The probability that G has a valid occurrence at a certain

time step t is then

p(Gi=G) - p(Gi 1 #G | Gi=G) = p(G;=G) - [1 - p(G}_, =G | Gi=G)]  (8.1)
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If we use that the probability of G at any time step equals p(G), the probability that
no edge in G is changed from ¢ — 1 to ¢ equals

;L ’ . p( QflzG) . ;7 r . p(e) 1 —p(e)
PE=C1 Gl =0) = =y PC=C G = 0= T 4D~y

ecE \2 ecE 2

Hence, the right hand side of Equation 8.1 is equal to

p(G)- 1—21)(5?))—21‘(5@ =p<G>~(i)- ST (1 -pe) + S pe)| (52

c€EE \2 ccE 2 2 c€E e€E

The probability that a time step contains a valid occurrence of an arbitrary graph is the
sum over all pairs of vertices that the corresponding edge is flipped in this time step,

which equals 2- ﬁ D (V) p(e)(1—p(e)). Dividing the probability of a valid occurrence
2 2

of G at time step ¢ (Equation 8.2) by this probability yields the claim. O

As an example illustrating the effect of the factor in Theorem 8.1, consider the simple
case that the graph consists of one cluster such that the probability of each potential
edge e equals p(e) = %. As p(e) < %, the complete graph is more unlikely than the
empty graph. Indeed, the factor for the former equals 2 and for the latter %, which
means that the complete graph occurs more often and the empty graph less often in the
sequence generated by M, compared to their probability according to G(n, pin, Pout)- If
the random graph matches the expectation in the sense that m = i(g), we get an even

smaller factor of %

Until now, we have assumed that the initial graph is a G(n, pin, Pout) graph and that
the following time steps are obtained by mere edge dynamics. As motivated in the
introduction, our generator also incorporates vertex and cluster dynamics, which we will
introduce later on. The latter two types of dynamics disturb the probability distribution
in a way that is difficult to analyze. However, as it is always possible to reach any
graph from any other graph in a finite number of steps with a positive probability, M
is irreducible. The expected relative frequency in Theorem 8.1 is therefore the only
stationary distribution of M and we can expect the relative frequency of graphs to get
close to this distribution after a sufficiently large number of edge operations following
vertex or cluster events [25].

8.3.2 Data Structures and Implementation

Before we introduce the dynamic data structures our generator builds upon and show
how these data structures can be used to efficiently implement edge dynamics, we briefly
describe how vertex pairs can be enumerated continuously, which corresponds to the
enumeration of potential edges in a graph. We use a bijection between pairs of vertices
and integers between 0 and ("2/‘) proposed by Batagelj and Brandes [22]. Figure 8.1
intuitively illustrates this bijection by using the adjacency matrix of the graph. As we
only consider undirected graphs, potential edges correspond to the entries below the
diagonal. These entries can be enumerated by traversing this sub matrix row by row.
For given vertices u and v, the index e(u,v) can be obtained by
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Vice versa, given the edge index e(u,v), the corre-
sponding vertices u and v can be found as follows:

1 1 n—1
u=1+ —5—1— Z+2-e(u,v) 0 n—1

v=e(u,v) — 1u(u -1) FIGurRe 8.1: Indexing
2 scheme

Random Binary Selection Tree. In order to choose the next edge to be added or
deleted, we need a data structure that allows us to efficiently draw an element from a
weighted set O = {o01,...,0,} such that the probability to choose a certain element is
proportional to its weight. Given such a data structure, a naive generator could simply
store each potential edge {u,v} with weight p(u,v) and each non-edge with weight
1 — p(u,v) and iteratively draw edges to add or delete. Later on, we will show that one
entry for each cluster rather than for each edge is sufficient.

A simple solution for such a data structure is an array A storing prefix sums of the
weights, i.e., A[k] = Zi‘:f w(0;), 1 <k <mn+1. Let W be the sum of all weights. Then
we can draw a uniformly distributed random number z in the interval [0, W) and use
binary search to find the index k such that A[k] <z < A[k+1]. It is easy to see that this
process selects each element oy, with probability w(ox)/W. For static sets this approach
works well, however, we will need to update weights frequently, and to add and delete
elements occasionally. Updating the prefix sums has linear worst-case complexity, which
we would like to avoid.

We therefore use a complete binary tree to store the elements. We define each vertex
of this tree to be a tuple ¢; = (05, w;, l;,7;), where o; is an element, w; is its associated
weight w(o;), I; is the sum of the weights in the left subtree and r; is the sum of weights
in its right subtree. The weight [, and r,, of a leaf ¢,, are simply 0. Contrary to the
prefix sum array, inserting and deleting elements as well as weight updates can be done
in logarithmic time. To keep the tree balanced, new elements are inserted as leaves with
minimum distance to the root and deleted elements are replaced by a leaf element with
maximum distance to the root. Afterwards, weight changes have to be propagated on
the path(s) to the root.

The procedure for the selection of an element starts at the root s by drawing a random
number z from the interval [0,ls + ws + r5). Now there are three possible ranges for
x: if Iy < z < Iy + ws, the element is returned; if x < [s, the carryover z is sent
to the left subtree; and if 5 + ws < x, the carryover x — ws — I is sent to the right
subtree. The procedure continues recursively from there until an element is returned
after at most O(logn) steps. The correctness of the selection process can be seen by
constructing an array with prefix sums of the weights such that elements in the array are
ordered according to an inorder traversal of the tree. Selecting an element in the tree is
equivalent to a binary search in this array. An example for a random binary selection
tree and the corresponding array can be found in Figure 8.2.
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FI1GURE 8.2: Example of a random binary selection tree and its associated array. Blue
numbers are weights of individual elements, whereas red number correspond to the
accumulated weight of subtrees. Random number 1.08 in [0,2.7) guides the selection
process through the tree.

Virtual Fisher Yates Shuffle. Recall that our generator considers a single value poyt
and a list py, of values for the clusters, i.e., edges between pairs of vertices in the same
cluster are equiprobable. Using a binary tree to store all intracluster vertex pairs is thus
quite inefficient. Instead, we use for each cluster a modified Fisher-Yates shuffle [78]
that maintains the information which intracluster edges exist in the graph.

A Fisher-Yates shuffle is a simple method to uniformly sample without replacement from
a given set of IV elements. The elements are stored in an array of size N with indices
from 0 to N — 1 and the border index i of the shuffle is initially set to 0. In each step, a
random number r between ¢ and N — 1 is drawn, the corresponding element at index r
is marked as selected and swapped with the element at index i. Then, the border index
1 is increased by 1. It is easy to see that each element can only be chosen once and the
probability to choose each subset of size k is the same. For our purposes, the elements
correspond to all potential edges within a cluster, and the selected elements, which are
stored in the first ¢ entries of the array, to edges currently existing in the graph.

A drawback of this approach is that we have to enumerate and store each element
explicitly. For elements that can be easily enumerated, it is more efficient to store
an implicit representation of this array one of which is the virtual Fisher-Yates shuffie
introduced by Batagelj and Brandes [22].

Let 7 be the number of elements drawn so far, L be the set of indices smaller than ¢ that
have not yet been drawn and H the set of indices at least ¢ that have been drawn. In
our view, the indices in L and H are “exceptions from the rule that small indices are
selected and large indices unselected”. The crucial observation is that the cardinality of
L and H is equal. Hence, we can define a bijection from H to L and store it in a map
replace. Similarly to the original Fisher-Yates shuffle, we can now iteratively draw a
random number 7 between ¢ and N — 1. If replace(r) =1, i.e., if there is no entry for r
in the map, index r has not yet been selected and we select the corresponding element.
If replace(r) = s, we choose index s instead. This process guarantees that we draw in
each step an unselected element with uniform probability.

After we have selected the element, we have to update the map such that it is still guar-
anteed that each element in L is assigned to a corresponding element in H. Depending
on the previous state of the shuffle, we have to consider the four cases shown in Table
8.1. Entries of the form replace(z) = y are depicted as arrows from x to y and the
thick line marks the border between elements with index less than ¢ and larger i. It is



140 Chapter 8 An Efficient Dynamic Generator for Clustered Random Graphs

TABLE 8.1: Illustrative figures for select. Index r € {i,..., N — 1} is drawn uniformly
at random.
Initial state Final state
T~
Case 1 _z:ET:] _z:7:]
S P
Case 2 J_Z:E7:] H:l%:
— T~
Case 3 s_z:Er:] ﬁ:ﬁ:
— —
Case 4 s j i r s g r
TABLE 8.2: Illustrative figures for deselect. Index r € {0,...,i—1} is drawn uniformly
at random.
Initial state Final state
A
Case 1 r i1 r il —
P —
Case 2 r i1 J r il i
— . T
Case 3 r i1 s T Z—,' 1 _s
i — (T i
Case 4 r i1 j s r il i s

easy to see that in each case a constant number of lookup, delete and insert operations
in replace suffices. If we assume that the data structure we use for the map replace is
a binary search tree, these operations take logarithmic time. Hence, the time complexity
of choosing the next element is in O(log V).

Unlike the generation of static random graphs, we also need to delete edges over time.
To this end, we have to modify the virtual Fisher-Yates shuffle slightly to deselect
already selected numbers, i.e., putting them once again in the set of selectable elements.
This can be done by making the pointers bidirectional, i.e., for each entry of the form
replace(j) = i, we add a corresponding entry replace(i) = j. Deselection now works
analogously to selection: First, we draw a random number r in the interval [0,7 — 1].
If there is no entry for r in replace, r is a currently selected index. In this case, we
undo the selection by setting replace(i — 1) = r and vice versa and move the border
one index to the left. If r is an unselected element, we undo the selection of replace(r)
instead. Special care has to be taken if the element at index 7—1 is also unselected, i.e., if
replace(i — 1) #L. Figure 8.2 depicts all possible cases and the corresponding updates
of the map. Deselection is therefore just as efficient as selection. For each selected
element, we have to store at most two entries in the map, hence the space requirement
is linear in the number ¢ of currently selected elements.

Overview of Selection Procedure. In this section we explain how we use a com-
bination between a random binary selection tree and virtual Fisher-Yates shuffles to
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efficiently implement edge dynamics according to the random model described in Sec-
tion 8.3.1. For the sake of simplicity, we first assume that we only want to draw intra-
cluster edges, i.e., pout = 0. In this case, the following procedure can be used.

Each cluster has an associated shuffle that stores all intracluster edges in the cluster.
This shuffle is used to uniformly select edges in the cluster to delete or to insert. To be
able to use the enumeration scheme described above, each vertex v receives two ids, a
global id that unambiguously identifies the vertex during the whole generation process
and a local id in the range [0, |C(v)| —1]. The local id is used to continuously enumerate
intracluster edges in the individual shuffles; it may change if vertices are inserted or
deleted from the cluster.

On top of that, we store two randomized binary selection trees I'iys and I'y4e that each
contain one entry for every cluster. The weight of each cluster C' in I'i,s corresponds
to the sum of the probability weight of edge insertions within the cluster, e - pin(C).
Similarly, its weight in g is defined as ec - (1 — pin(C’)). The overall process of selecting
the next edge operation is now divided into three steps:

1. As introduced in Section 8.3.1, let Pp = Z{u’v}eE(l — p(u,v)) and furthermore
Pg =3 1uvy¢E P(u,v). With probability Pg/(Pg + Pg) we decide to delete and
with probability Pg/(Pg + Pg) to insert an edge.

2. For edge deletions, we choose a cluster C' in I'gq) according to the stored weights.
Similarly, we choose a cluster in I';ys if we have decided to insert an edge.

3. Depending on the choice in the first step, we insert or delete an edge in the virtual
Fisher-Yates shuffle associated with C.

Finally, the weight of C' in I'jys and I'ge has to be updated. Later on, we will show that
this process inserts an intracluster edge between two unconnected vertices v and v with
probabilities according to the random process described in Section 8.3.1. It remains to
describe how this procedure can be altered to be able to deal with intercluster edges.

Dealing with Intercluster Edges. In principle, it would be possible to handle in-
tercluster edges analogously and just introduce a virtual Fisher-Yates shuffle containing
all pairs of vertices in different clusters. As all of these vertices exist with the same
probability, this would be perfectly feasible. The problem with this approach is that,
unlike the local ids we use to identify vertices in the individual clusters, it is not easy
to continuously enumerate intercluster vertex pairs in the presence of vertex and clus-
ter dynamics. For this reason, we introduce a shuffle for a pseudocluster containing all
vertices in the graph. This pseudocluster gets an entry in I'iyys with weight m - pout.
As the pseudocluster contains all vertices, the associated shuffle also contains intraclus-
ter vertex pairs. Hence, it is possible to draw intracluster edges either in the shuffle
of the corresponding cluster or in the shuffle of the pseudocluster, which overestimates
the probability of choosing such edges. To correct this, we exploit our assumption that
Pin(C) > pout for each cluster C' and decrease the weight associated with C' in I'j,g to
ec - (pin(o) - pout) > 0.

For edge deletions, this trick cannot be used as 1 — poy is larger than 1 — pi,(C).
This is why we introduce an additional array storing the global id of all intercluster
edges and draw a random edge in this array in case we decide to delete an intercluster
edge. The respective edge is then both deleted in the array and in the shuffle of the
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FicUre 8.3: Example for a deselect operation in the pseudocluster: r is the integer
drawn uniformly at random in the range of 0,...,z, — 1 and v/, v’, resp. u,v are the
local, resp. global vertex indices of the endpoints of the selected edge. The white area
consists of the intercluster edges and dark gray areas contain all (forbidden) intracluster
edges.

pseudocluster. This procedure guarantees that we do not erroneously delete intracluster
edges by choosing from the pseudocluster, which is why the weight of the true clusters in
[ger remains unchanged. The weight of the pseudocluster in I'4e corresponds to x.(1 —
Pout). Whenever an intracluster edge is inserted or deleted, either in the pseudocluster
or in its own cluster, the corresponding entry in the other shuffle has to be updated.
Asymptotically, this does not increase running times and space requirements. Figure
8.3 illustrates the data structure used for the pseudocluster and the process of deleting
an intercluster edge.

Correctness and Time Complexity

In the following, we show that the selection process for edge dynamics described up to
now follows the random model introduced in Section 8.3.1.

Proposition 8.2. The described process inserts an edge between two unconnected ver-
tices u and v with probability

pins(u7 v) = p(u, U)/(PE + PE)'

Proof. The probability of an edge insertion is Pg/(Pg + P5). We first consider the case
that v and v are both contained in a cluster C. The probability of choosing C in T'jg
is m(C)/Pg - (pin(C) — pout) and the probability of choosing the pseudocluster in Iy
is M/ Pg - pout- Similarly, the probability of choosing {u,v} in the associated shuffles is
1/m(C) and 1/m, respectively. Hence, these probabilities sum up to

1

Py m(C) 1 m p(u,v)
. * \Pin C)— out) * —, A~ S "Pout " —| = 5~

If {u,v} is an intercluster pair, it can only be chosen via the pseudocluster. Hence, the
corresponding probability is
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A very similar proof yields the following proposition stating that deletions also follow
the specified random model.

Proposition 8.3. The described process deletes an existing edge {u,v} with probability

Paei(u,v) = (1 = p(u,v))/ (P + Pp)

Deciding whether to insert or delete an edge is done in constant time. For both oper-
ations, choosing the cluster in the respective cluster tree takes time O(logk), where k
denotes the current number of clusters. Similarly, selection or deselection in the corre-
sponding virtual Fisher-Yates shuffle takes time logarithmic in the size of the shuffle.
Hence, the expected time complexity for both operations is in O(logn). As the total size
of the shuffles is asymptotically bounded above by the number of edges of the current
graph, it is easy to verify that the total space requirement is linear in the size of the
graph.

8.4 Vertex and Cluster Dynamics

Assessing dynamic clustering algorithms usually involves the question whether the al-
gorithm is able to follow changes in the ground truth clustering. This is why we also
included the possibility to incorporate vertex and cluster dynamics.

Vertex Dynamics. Vertex dynamics are steered by a parameter p, that specifies the
probability that instead of an edge operation, a vertex operation occurs, i.e., we delete
or insert a vertex. If a vertex operation is to be performed, another parameter p,
determines the probability that this operation is a vertex insertion. Choosing p, to be
smaller or larger than 0.5 gives the opportunity to simulate graph growth or shrinkage.
For deletion, a vertex is chosen uniformly at random and all incident edges are deleted.
To adhere to the initial cluster size distribution, new vertices are assigned to clusters
according to expected cluster sizes, similar to the generation of the initial clustering.
To dampen the impact of vertex dynamics on the edge distribution and to stay closer
to the G(n, pin, Pout) model, new vertices are immediately connected to other vertices
according to the prescribed edge probabilities. Naively, this takes O(n) time, however,
it is possible to use the geometric method introduced by Fan et al. [74] and used by
Batagelj and Brandes [22] to reduce the running time to O(degv), where degv is the
resulting degree of the new vertex v.

It remains to explain what has to be done to up-
date the data structures. Updating the affected
entry in the random binary selection trees associ-
ated with the clusters takes O(logk) time. If a
new vertex is inserted or deleted, the index space
of the shuflle of its cluster and of the pseudoclus-
ter has to be adapted. For insertion, it suffices to
assign the highest local vertex id in the cluster to
the new vertex and increase the index space of the U
shuffle accordingly. If a vertex is deleted, we have
to guarantee that the index space is still continu-
ous. We do this by relabeling the vertex v; with

FIGURE 8.4: Update if ver-
tex with local id u is deleted.
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the previously largest local id in the shuffle of the deleted vertex w by the id of w. The
same procedure has to be performed for the vertex w; with the largest local id in the
pseudocluster. Figure 8.4 illustrates this case.

For the relabeling step, we first delete all edges incident to vy or wy in the shuffle and
then reinsert them using the new edge ids. Hence, the overall expected time complexity
of the deletion of vertex v is O((degv + degvy + degwy) - log n), whereas for vertex
insertion we get O(degv -log n)

Cluster Dynamics. Cluster dynamics is independent of vertex and edge dynamics in
the sense that in each time step, additionally to the vertex or edge operation performed,
a cluster operation can take place. The probability of a cluster operation is determined
by the input parameter p, and the probability that this cluster operation merges two
clusters is determined by the parameter p,. With probability 1—p,,, one of the clusters is
split by assigning each of its vertices to one of the new clusters with uniform probability.
The expected cluster size(s) of the resulting cluster(s) are sampled from a Gaussian
distribution, being estimated from the current ground truth clustering.

To calculate new values for pi,, an obvious possibility is to just use the old value(s). For
a cluster split, this means that the new clusters inherit p;, from the old cluster, whereas
for a cluster merge, the new cluster is assigned the average of the intracluster edge
probabilities of the participating clusters. This process leads to increasingly uniform p;,
values over the course of time. A more detailed description can be found in the technical
report of Gorke and Staudt [104].

One of the main motivations for using G(n, pin, pout) graphs for the evaluation of cluster-
ing algorithms is the knowledge of a ground truth clustering the result of the algorithm
can be compared to. However, for cluster dynamics, it can easily be imagined that
immediately after a split or merge operation, the clustering algorithm has no chance to
detect the current ground truth clustering, as the change is not yet reflected in the edge
structure. For this reason, the generator keeps track of an additional reference clustering
that follows the current ground-truth clustering with some delay, roughly speaking, as
soon as the involved subgraph becomes similar enough to the ground truth’s expectation.
A detailed description of the behavior of the reference clustering can be found in [104].
To prevent the interleaving of concurrent cluster events, as long as the change in the
ground-truth is not propagated to the reference clustering, the participating clusters
are not available for further cluster operations. If, for this reason, in some time step a
cluster event is triggered but no available clusters are found, the cluster event does not
take place.

To keep the data structures up to date, we delete the involved old shuffle(s) and cre-
ate one or two new shuffles from scratch, depending on the kind of cluster operation.
Furthermore, the additional array associated with the pseudocluster that stores all in-
tercluster edges has to be updated. The reason for this is that for a split operation,
new intercluster edges between the two parts arise, whereas cluster merges turn some
intercluster edges into intracluster edges. If pointers are used to link the occurrences
of an edge in different data structures, all these operations take O((n(C) + ec) - logn)
time, where C is either the cluster that is about to be split or the new cluster after a
merge. Removing the old cluster(s) and inserting the new cluster(s) in the cluster trees
takes logarithmic time. Hence, this does not increase the (asymptotic) running time.
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8.5 Experiments

We give a brief impression of the absolute running times of different sample configura-
tions. All values are averaged over 15 runs and do not include the time to write the
graph to hard disc. The first experiments in Figure 8.5(a) evaluate the running times for
one million steps of the generator, while only the intracluster density varies. The planted
partition contains 15 clusters and the cluster size distribution is unskewed (5 = 1). The
number of vertices as well as the intercluster edge probability poyt = 0.1 are constant.
As the number of edges is in ©(n?), the time to generate the initial graph sometimes
dominates the time needed for edge dynamics and is therefore not included in the plot.
Similarly, as the expected degree of each vertex is in ©(n), we didn’t include vertex
and cluster dynamics and set the corresponding probabilities to 0. As expected, the
running time is almost independent of pi,. The low running times for the experiments
with pin = 1 can be explained by the fact that intracluster edges are never deleted or
inserted and all dynamics involve intercluster vertex pairs. To obtain logarithmic worst
case running time for edge operations, the map replace used for the virtual Fisher-
Yates shuffles can be stored in a binary search tree. For comparison, we repeated the
experiments with hash maps instead of these trees. It can be seen that for graphs of
high density, hash maps yield better practical running times?.

Figure 8.5(b) illustrates the running time for less artificial parameter settings. Here,
the number of clusters equals y/n and the size distribution is skewed (8 = 0.5). The
probability of a vertex event instead of an edge event is set to 0.1 and in half of the
cases a vertex is added (deleted). The probability of a cluster event is 0.01 and in half
of the cases a cluster is split (two clusters are merged). The expected degree of a vertex
is constant, which yields very sparse graphs. To give a more realistic impression of
the total running time, we included the time to generate the initial graph, followed by
100000 dynamic updates. As above, the running times obtained by using hash maps
are better than for the tree based variant.

In summary, the experiments show that hash maps yield better practical performance
and that dynamics can be added to the planted partition model without causing much
overhead.

Implementation Notes. We conducted all experiments on a Dual-Core AMD Opteron
Processor clocked at 2.6 GHz, using Java version 1.6.0.22. The machine has 32GB of
RAM and 2 x 1 MB of L2 cache. The implementation uses no external libraries. As
hash map, we used java.util.HashMap, whereas the tree-based implementation uses
java.util.TreeMap, which is based on a red-black tree.

8.6 Concluding Remarks

We proposed a dynamic generalization of the planted partition model that can be used
to evaluate dynamic graph clustering algorithms, with the additional benefit of a known
reference clustering. Furthermore, we described how large dynamic random graphs
according to this model can be efficiently generated and showed the practicability of
this approach on selected example configurations. In order to make this model more

2Note that entries in the hash map are not distributed evenly over all possible indices, which is why
we don’t have expected constant time for all parameter settings
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FIGURE 8.5: Running times for some sample configurations.

realistic, modifications similar to the static model are conceivable. Possible changes in
the random model include vertex movements, less uniform degree distribution, higher
clustering coefficient as well as the generalization to hierarchical reference clusterings.
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Conclusion

Building directly upon the intracluster density vs. intercluster sparsity paradigm intro-
duced in Chapter 1, we investigated the generic problem of finding graph clusterings
with guaranteed intracluster density and best possible intercluster sparsity, where the
latter is based on the notion of sparse cuts in the graph. Besides systematically verifying
whether our intuition that intracluster density strives towards coarse and intercluster
sparsity towards fine clusterings, we investigated two metaheuristics for the problem,
where the first is primarily based on merging clusters and the second on moving vertices
between clusters. We discussed similarities between the former and SAHN algorithms
for distance based clustering and examined under which circumstances efficient algo-
rithms for SAHN clustering can be used in our scenario. An experimental evaluation
of the move based heuristic revealed that it often yields better quality than the merge
based heuristic, and that it efficiently addresses its own objective. We exploited this
in a study on real world and synthetic networks to identify similarities and differences
between different notions of intracluster density and intercluster sparsity.

The second part of this thesis was dedicated to a recently introduced clustering measure
called surprise. A bicriteria view on surprise laid the foundation for the main con-
tributions. We showed N P-completeness of the associated decision problem, derived
polynomial time algorithms for graphs of bounded tree width, and computed the first
provably optimal solutions for small example graphs with a sequence of integer linear
programs. Furthermore, we argued how the bicriteria view can be exploited to derive
efficient heuristics and gave empirical evidence that the quality of the clusterings pro-
duced by an existing metaheuristic is implicitly due to this approach. Engineering this
base algorithm led to algorithms that are able to cluster graphs with several millions of
vertices, while still yielding competitive quality. We further discussed a new measure
called SMod, which combines the configuration null model with the basic idea behind
surprise.

The last chapter of this thesis dealt with the generation of synthetic test instances incor-
porating a hidden reference clustering that can be used to evaluate clustering algorithms
for dynamic graphs. We described a more efficient implementation of the generator used
by Gorke et al. [99]; the main technical contribution is the reduction of the memory
footprint to linear size using customized data structures, which renders the generation
of significantly larger test data possible.

147
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TABLE 9.1: Classification of measures with respect to bicriteria view

Pareto optimal with respect to

maximizing 7. and minimizing %, maximizing i, and minimizing ¢,
2-expansion / 2-density 2-conductance

RB* [181, 182] modularity [173]

surprise [15] SMod

constant/absolute Pott’s model [212, 187] multiresolution modularity [182]

performance/cluster editing/
correlation clustering [215, 196, 19]

Bicriteria View. In the two main parts of this thesis, we considered two orthogonal
ways to assess the quality of a clustering, the first one being based on the sparsity of the
induced cuts and the second on the measure surprise, and compared the resulting clus-
terings to the ones obtained by optimizing modularity. A self-evident question one might
ask is concerned with the similarities and differences between these two approaches. In
both parts, we followed a bicriteria view on clustering; in the context of cut based mea-
sures, this was explicitly given by optimizing intercluster sparsity with constraints on
the intracluster density, whereas for surprise, we argued that optimal clusterings are
always Pareto optimal with respect to maximizing the number of intracluster edges i
and minimizing the number of intracluster pairs i,.

Although the latter is not true for the concrete intercluster measures we constructed in
Chapter 4, the related problems to find a 2-partition optimizing expansion, density and
conductance can be associated with the second kind of bicriteria view, which builds a
bridge between the two approaches. Recall that the density of a cut was defined as

ccve _m— ie(C)
neny\e P +ip(C)

density(C = {C,V \ C}) =

Hence, optimal solutions with respect to 2-density, i.e., the problem of finding a 2-
partition minimizing density, are Pareto optimal with respect to maximizing i, and
minimizing ¢,. With similar arguments, it can be seen that the same holds for 2-
expansion, whereas optimal solutions with respect to 2-conductance are always Pareto
optimal with respect to maximizing ¢, and minimizing the total sum of squared cluster
volumes i,2, which relates conductance to modularity and SMod.

Table 9.1 summarizes the classification of the objective functions considered in this the-
sis with respect to the two bicriteria problems associated with surprise and modularity.
It also includes the objective that has been earlier considered by Reichardt and Born-
holdt [181, 182], a variant of modularity using an Erdés-Rényi type random graph as null
model, which we term RB*, the variant of surprise using the configuration model as null
model, which we termed SMod in Chapter 6, as well as the multiresolution variants of
modularity and surprise. As we saw in Chapter 7, the multiresolution variant of surprise
is known as constant [212] or absolute [187] Pott’s model.

It turns out that other clustering measures from the literature can be integrated into
this context as well. For example, the performance [215] of a graph clustering is defined
as the fraction of vertex pairs {u, v} that are correctly identified in the sense that either
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u and v are in the same cluster and connected with an edge, or v and v are in different
clusters and not adjacent; in terms of the number of intracluster edges and pairs, this
can be written as follows, which makes it evident that performance belongs to the first
column of Table 9.1:

performance(C) = - (”) — M +2i(C) — iy (C)
(2) |\2
—const. const.

It is not hard to see that performance is equivalent to the objective of cluster edit-
ing [196] with respect to optimum solutions, which in turn is equivalent to the version of
correlation clustering minimizing disagreements [19]. Hence, these two approaches can
be included into the above classification as well.

Note that, although both surprise and performance lead to small clusters in practice, the
former allows for less dense clusters in general. From the above equation, it is evident
that the density of a clustering with optimum performance, in the sense of the number
of intracluster edges divided by the number of intracluster pairs, is always at least 1/2.
This does not hold for surprise. As an example, consider a graph that consists of six
disjoint cycles of six vertices each; an optimum clustering with respect to surprise will
cluster the graph according to its connected components, whereas a clustering that is
optimal with respect to performance corresponds to a perfect matching of the edges.

Besides the different resolution scale, one of the main differences we observed between
the objectives lies in how they handle vertices that are scarcely connected to the re-
mainder of the graph. Assigning them to the clusters of their anchor vertices increases
the number of intracluster pairs considerably, but has only a minor impact on the total
sum of component squares i,2, as the respective vertices have low degree; hence, in con-
trast to the objectives in the second column of Table 9.1, objectives in the first column
are prone to leave them unclustered. Depending on the application context, one might
argue for any of the two solutions. On a more conceptual level of reasoning, considering
the total sum of component squares is motivated by the use of the more realistic con-
figuration null model, which takes the observed degree sequence into account, whereas
considering the total number of intracluster pairs is more tightly connected to the in-
tuitive intercluster sparsity vs. intracluster density paradigm. Hence, recommendations
for any concrete method should take into account if outliers are desirable or not, and, if
available, informations about the expected density or size of the clusters.

Outlook. Besides the more technical follow-up questions discussed in the individual
chapters, I would like to point out some more general directions for future work. In his
recent survey [83], Fortunato points out that “...it appears that the field has grown
in a rather chaotic way, without a precise direction or guidelines.” He argues that the
most important task is “...defining a set of reliable benchmark graphs, against which
algorithms should be tested”.

I partly agree with this assessment, although in my opinion it is unlikely that there will
be one clustering measure or method that turns out to be appropriate for all types of
application. As discussed above, the question what is the best clustering of a graph may
be answered ambiguously, and this goes beyond the self-evident issue of graphs exhibiting
a hierarchical cluster structure. To get a better classification and overview of existing
methods, it would be worthwhile to further theoretically and empirically analyze them to
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identify similarities and differences that are helpful to know when choosing a particular
method. As a concrete example, it might be interesting to know how and if clusterings
produced by optimizing information theoretic measures for graph clustering [47, 188]
differ from the two general classes of bicriteria measures from Table 9.1. Besides thinning
out the jungle of fundamentally different approaches, interconnections between existing
methods that have been derived with a different motivation in mind might strengthen
their theoretical foundation. From a practical point of view, it would be nice to have
some general guidelines to the question under which circumstances which method is
the most promising, depending on some easily understandable user preferences. In
the other direction, incorporating more feedback from concrete applications would be
invaluable for the improvement of existing methods; similar to the field of graph drawing,
conducting user studies might be conceivable.

Another more specific issue concerns the identification of significant resolution scales
with respect to the multiresolution variants of modularity and surprise. Although we
discussed some simple possibilities to automatically determine interesting parameter
values in the context of surprise optimization (cf. Chapter 7), and there has been some
work in this direction [186, 213], the question of what is the best way to do this and,
especially, how this can be done efficiently, is still far from satisfyingly resolved.



Appendix A

Integer Linear Programs for
Density-Constrained Graph
Clustering

In this section we sketch how different instantiations of DENSITY-CONSTRAINED CLUS-
TERING can be cast into integer linear programs. As an in-depth treatment of this topic
is beyond the scope of this thesis and some of the constructions entail prohibitively large
sets of variables and constraints, we limit ourselves to the description of some common
building blocks that can be used to model our objective functions and constraints and
exemplify their usage by showing how to model aixd

A.1 Building Blocks for Density-Constrained Graph Clus-
tering

Similar to the linear programs used in the context of surprise optimization in Section 6.4,
the foundation of all our formulations is a set X of (’;) binary variables X,,, which
indicate whether vertices w and v share a cluster (X,, = 1) or not (X, = 0). Since
for a clustering, X constitutes an equivalence relation on V', O(n?) constraints suffice to
ensure transitivity within X. Based on X', we can model many convenient values, e.g.,
whether an edge e is internal to C(v), the number of intercluster edges of C(v), |C(v)| or
the number of clusters, |C|. To increase readability, we defer some of the more technical
details to Section A.3, but always indicate when we do so.

Node-Node-Equivalence Variables X,,: “is C(u) = C(v)?” To render our base vari-
ables X,,,, consistent, we use constraints ensuring their transitivity (Eq. A.12); reflexivity
and symmetry are immediate, since X,, and X,, are the same variable and since we
can simply set X,, =1 forallv e V.

1, if C(u) = C(v)

0, otherwise

X = {Xuw | {u,0} € <‘2/>} with Xy — { (A1)
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Internal-Edge-Indicator Variables E.,: “is e inside C(v)?” Using constraints for a
binary AND (Eq. A.13), we align E., with X’ to behave as follows:

E= {Eev ‘ ee F,ve V} with E{i,j}v = X;, AND va (A2)

External-Edge-Indicator Variables L¢,: “is e an intercluster edge of C(v)?” Deter-
mining e’s end-vertices {i,j}, we align L., with X’ by constraints for binary XOR using
Xiv and X, (Eq. A.14), which ensures the following behavior:

L= {Lev | e = {Z,]} e F,ve V} with L{i,j}v = X;, XORrR va (A3)

Cluster-Size Variables Z,p: “is |C(v)| = ¢ ?7” For each v € V we can write |C(v)| :=
EuEV Xuv, and then use constraints for value matching (see Eq. A.15) to align Z,, with
X such that the following holds:

L, ‘C(UH =/

0. otherwise

Z(V)={Zw|veV,Le{l,... n}} with ng:{ (A4)

Uber-Node Variables U,: “is v iiber-vertex of C(v)?” Let us assume that the vertices
are ordered, i.e., we identify each vertex with a unique index between 1 and n. We call
vertex v = min, ey {u} the dber-verter of C(w), i.e., the smallest index in a cluster.

. . ) 1 _

U(WV)={U,|veV}withU, =4 " minyec(v) {u} (A5)
0, otherwise

YVoeV:U,<1—— Xuw dU,>1- X A6

ve < n(z ) an 3 (A.6)

u<v u<v

Note that from &, £ and U, we can obtain the values ec(v)s Te(w)s Vo) and [Cl, re-
spectively, and even ec(,)c(,)- Building upon the variables above, we can express all
measures discussed in this work, however, with no claim about minimal complexity.
The following example models the constraint mid > a:

VWweV:Y Eow—a-( > G).ng)zo (A7)

eckE e{1,...,n}

C(v)-Indicator Variables: “J, p = does C(v) meet properties P?” We use these
variables as brute-force building blocks for substituting divisions, which we require but
cannot formulate linearly. In the following we show how to define appropriate variables
Ju,p for aixd. For aixd we require P to contain the variables necessary to precompute
ixd(C(v)), which are ¢, and ng(,). Thus we build a variable for each candidate
combination of vertex v, z¢(,) and ne(,):

Ty — (T anlveV,Ee{0,...,m}Ae{l,. .. n}} (A.8)

With Jy 5.5 = 1, if zey =7 and negy =7 (e, C( ) meets P)
o 0, otherwise
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But these two properties can easily be enforced as follows, using binary constraints for
value matching, as shown in Eq. A.15 for general settings, and variables L, and X, as
defined above:

. = cepl S ep Lew — &
0 for wrong Z: Jy 34 <1 — %ﬁ“ﬁ Josn <1— eenb;—:?i’
n— X Xy — 7t
0 for wrong n: Jy 34 <1 — M, Jozn <1— Z:UEV—““7
n n
m n
force the one fitting variable to 1: Yo € V : Z Z Jpzi=1 (A.10)
F=07=1

With the set of all variables J, ;7 at our disposal, we can now compute the value

ixd(C(v)) = % as follows:
ixd(C(v)) = Z Z(Jv,i,ﬁ : m) (A.11)
7=0n=1

A.2 Example Usage and Discussion

A general obstacle for modeling our measures linearly are the division operations neces-
sary for the computation of almost all of them. We can substitute such operations in a
brute-force manner: We multiply binary indicator variables J, p, which equal 1 if and
only if C(v) meets properties P, with precomputed intermediate results for P, and take
the sum over all possible configurations of P.

We exemplify the usage of J, p with the measure aixd. To calculate ixd(C(v)), we need
P to contain ne(,) and z¢(,). Thus, we add constraints forcing Jy 77 to equal 1 if and
only if . = n¢(,) and & = z¢(,). We can then use these indicators as follows: Let

n ~

" Z
A, = ;ﬁ; Jog 7 m

Then, ixd(C(v)) is given by >, cc(,) Aw and thus aixd'(C) := 37, o, Ay = |C| - aixd(C).
We can circumvent a division by |C| by more subtle means, avoiding an asymptotic
increase in complexity: For all possible values k which IC| can assume, we add constraints
aixd(C) > % -aixd'(C) — My, with M;, be~ing large if k£ # |C|. When minimizing aixd(C),
only the one inequality using the correct k actually constrains, thus this yields the correct
result.

In summary, we end up with O(n?m) variables, where the number of indicator variables
Juv,z,n dominates the term. Beyond the O(n3) constraints used for keeping the base
variables X consistent, and the lesser number of constraints for helper variables, every
single indicator variable requires a constant number (roughly 4 for aixd) of constraints,
which yields O(n?m) constraints.

Generally, we can use this method to construct ILPs for all our measures, however, some
measures require prohibitively large sets P of properties. For instance, conductance
requires additional properties representing the case distinction in the denominator and
the volume which roughly incurs a factor 2m in the number of variables (and constraints);
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all pairwise measures require indicators for pairs of vertices, adding another factor of n?
or even nm. Used as constraints (not as objective functions), the intracluster measures
gid and mid are simpler to model, while aid again seems to require a construction as
above.

A.3 DModelling Equivalence Relations and Boolean Func-
tions

This section reviews some standard techniques that can be used to model equivalence
relations and boolean functions with the help of linear constraints. These techniques
can be used to fill some of the details left out in Section A.1, as indicated there. All
variables occurring in this section are binary, the value 1 indicating that the statement
associated with the variable is true.

Transitivity Constraints: “Ag, A Ap. = Ay’ Given a set of objects Set and binary
variables A, corresponding to each pair of objects a,b € Set, indicating a relation on
Set x Set, the following constraints ensure that this relation is transitive:

Aab + Abc - Aac <1

Set
Wa.bc} € ( ‘ ) A At Ao Ay <1 (A.12)
Aac +Abc - Aab < 1

Binary AND Constraints: “T = \'_, A

t t
1
T<t;Ai and T>;Ai—(t—1) (A.13)

Binary Xor Constraints: “T = A, XOR Ap”

T<2-A,—Ay, T<A+4A, T>A,—-A4A, T>-A.+4, (Al4)

1, t=/4
0, otherwise
We set t to be the target value, then ¢ searches t’s range and tries to match it. An

example showing how these constraints can be used for our purposes is given around
Eq. A.10.

2

Binary Value-Match Constraints: “T;, =

Ty <1-— (C—1t), Typ<1-— t=10), > Tu=1 (A.15)

[range| ferange

|range]
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label of the x axis) using aid as constraint are shown.



Appendix B Additional Experiments from Chapter 5

158

B.3 Complete Experiments with Planted Partition Graphs
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Appendix B Additional Experiments from Chapter 5
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