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Abstract 

The prediction of strength in silica needs knowledge of failure behaviour of 
defects in the surface region. Two types of defects are studied by using the 
Finite Element method: 
 

1. Due to the SiO2 ring structure there exist pore-like regions in the material 
with diameter in the order of nanometers. They may be modeled by 
spherical pores. At the surface we assume half-spheres.  

2. Surface corrosion in humid environments may result in a high 
density of surface defects, which can interact. Such defects are treated 
by assuming sharp cracks.  

3. Crack-like surface defects undergo swelling when they are exposed to 
mechanical stresses. This must affect strength behaviour.   

 
The results for pores are given in terms of stresses, the results for cracks by 
stress intensity factors.  
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A) CRACKS 

1. Single edge crack 

The water penetrated through the surface reacts with the silica network according to [1] 

 Si-O-Si +H2O  SiOH+HOSi (1) 

with the concentration of the hydroxyl S = [SiOH] and that of the molecular water C = 

[H2O]. In the following considerations it is assumed for clearness that the equilibrium 
of (2) is already reached.  

A single crack embedded in a swelling zone of height  and constant volume swelling 
is shown in Fig. 1. The crack length, a, and the zone height are negligibly small 
compared to the specimen dimensions.  
Zones of different heights were modelled in a finite element (FE) study. The case of a 
half-space was realized by a plate of width 50 and height 100. Solid continuum 
elements (8-node bi-quadratic) were chosen and the computations carried out with 
ABAQUS Version 6.8. The volume strain was replaced by the equivalent thermal 
problem by heating the swelling zone by T keeping T=0 in the rest of the structure.  
This results in the strain 

 Tv   3  (2) 

(=thermal expansion coefficient).  

 

Fig. 1 Single edge crack in a semi-infinite specimen embedded in a swelling zone. 

The shielding stress intensity factors from FE-computations normalized on the value 
Ksh(0), i.e. for the semi-infinite crack with /a=0 [2], are plotted in Fig. 2 as a function 
of the ratio of /a. 
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The FE-results given by the circles can be expressed by the relation 
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Fig. 2 Shielding stress intensity factor as a function of the relative zone height.  

From the solution in Fig. 2 the shielding stress intensity factor for any swelling distri-
bution can be determined using the Green’s function as outlined in [3]. The shielding 
contribution of a zone of thickness d’ at the height coordinate ’ (Fig. 3) is 
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defining the Green’s function  
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This function allows to determine the shielding stress intensity factor for an arbitrarily 
given strain distribution (’) 

 ')'()'(
0

 dhK sh 


  (8) 

 
Fig. 3 Shape of a differential layer of thickness d’ in a zone with constant hydroxyl concentration.  

2. Multiple edge cracks 

2.1 Applied stress intensity factor  

Figure 4 shows an array of identical edge cracks. The applied stress intensity factors 
are known from literature [4]. 

We can represent these data by the simple relation [5] 

 
5/11

11/5 2122.1tanh2/ 
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

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
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c

a
cK applappl    (9) 

with the constant solution for long cracks, a>c/3 

 2/cK applappl    (10) 

independent on the crack depth a. This fact is very important. Equation (9) is plotted in 
Fig. 4b. For half-penny shaped surface cracks the solution deviates for a/c>0.5 less 
than 10% as can be seen from Isida and Tsuru [6]. In the following computations we 
therefore consider the surface cracks as edge cracks. 
Whereas the single-crack solution increases continuously with increasing crack length, 
the stress intensity factor for the crack array remains constant for larger than a/c 1/3.  

2.2 Shielding stress intensity factor  

Swelling behaviour of multiple cracks is the same as for a single crack. This is 
illustrated in Fig. 5a for a subcritically grown crack with heart-shaped zone front 
contour and in Fig. 5b for an unloaded crack array showing semi-circular zone fronts. 
The crack array with the semi-circular zone front contour and the same swelling zone 
of height  for each crack yields the shielding stress intensity factors of Fig. 5.  

d’

’
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Fig. 4 a) Array of edge cracks under remote load , b) stress intensity factor solution. 

             

Fig. 5 a) Swelling zones of growing multiple cracks, b) modelling by a single crack introducing 
symmetry planes. 
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Fig. 6 Shielding stress intensity factors for multiple cracks (semi-circular zone ends). 

3. Stress-enhanced swelling zones at short surface cracks 

In the case of a long crack of length a with a swelling zone height  small compared 
to the crack length, <<a, the heart-shaped zone for an arrested crack yields a dis-
appearing shielding stress intensity factor Ksh=0 [7]. The height of the contour for the 
hydrostatic stress is in this case 
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For the computation of the swelling zones ahead of very short surface cracks, a, a 
Finite Element analysis was performed. Figure 7 shows such a crack together with 
contours for constant hydrostatic stresses h, which under “weak swelling” conditions 
describe the shape of the swelling zones (dashed contours). This treatment is similar to 
the case of “weak phase transformation” assuming that the stress field caused by a 
phase transformation in zirconia ceramics does not affect the stress field triggering the 
transformation [7,8]. The solid contours in Fig. 7 show the contours of hydrostatic 
stresses h for a tensile stress appl. For a crack of depth a, the stress intensity factor 
results as  

 aK appl 122.1  (12) 

which is used in Fig. 8 for scaling the ordinate. 
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In Fig. 8 the zone heights from FE are compared with the near-tip stresses as resulting 
from the long-crack solution 
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For /a¼, differences are negligible. 

 
Fig. 7 Contours of hydrostatic stress field ahead of a short crack with depth a in a semi-infinite plate 

loaded by a tensile stress appl (solid curves). The dashed contours show the related long-crack solution 
with /a0. 

     
Fig. 8 Hydrostatic stress at a crack under tension, comparison of short-crack results obtained via FE 

with the solution for a long crack according to McMeeking and Evans [7]; (contour for constant 
hydrostatic stress as insert). 
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4. A crack passing the initial swelling zone 

During the soaking treatment under tension the crack-tip region is surrounded by a 
swelling zone. The shielding stress intensity factor caused by this zone is given by [7] 

 
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


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E
K v

sh  (14) 

When crack propagation has taken place during soaking, the swelling zone extends 
with crack length as illustrated in Fig. 9b. For the case of weak swelling as discussed 
by McMeeking and Evans [7] the heart-shaped contour remains ahead of the tip and 
the coefficient is =0.22.  
After high-temperature soaking, these swelling zones are maintained at room tempera-
ture where the strength tests are performed. 
When the crack undergoes continuously increasing loading, the crack must extend and 
will escape of the initial swelling zone. Concequently, the coeffient  in eq.(14) must 
become dependent on the crack extension a in the strength test. The red curve in Fig. 
9c represents analytical results for a heart-shaped swelling zone we got by application 
of the McMeeking and Evans [7] procedure. A maximum of  is reached at a/ = 

8/27 1.54 with 0.3. In the case of a grown crack with extended swelling zone 
(black curve) it results 0.33. 
 
 

 
Fig. 9 a) Swelling zone for an arrested crack, b) grown crack for weak swelling, c) shielding stress 
intensity factor for crack extension through the initially swelling zone, red curve: crack passing the 

initial zone developing for an arrested crack, obtained by application of the procedure by McMeeking 
and Evans [7]; black: grown crack after additional extension a obtained from FE-analysis. 
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Fig. 10 FE-results for a for a circular zone shape from [9]. 

5. Crack opening displacements  

5.1 Crack opening in zones with reduced Young’s module 
The crack opening displacement  for a crack in a homogeneous material with Young’s 
modulus E under an externally applied load is given by the so-called Irwin parabola. 
When Kappl denotes the related stress intensity factor, it holds for plane stress conditions 
as present in very thin test specimens 
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When a hydroxyl has been formed, the initial silica ring is broken and the mechanical 
cohesion is weakened. The consequence is a reduction in the Young's modulus, E. The 
stress-enhanced reaction (1) results in heart-shaped damage zones for the case that 
swelling stresses are neglected (“weak swelling”), shaded region in Fig. 11. This result 
is identical to the case of “weak phase transformation” assuming that the stress field 
caused by a phase transformation in zirconia ceramics does not affect the stress field 
triggering the transformation [7,8].  

When swelling contributes considerably to the stresses (“strong swelling”), the zone 
shape changes. The influence of “strong swelling” on the shape of the swelling zones 
was studied in [10, 11] with the result that the zone shape tends against a circular 
contour as indicated by the dashed curve in Fig. 11. 
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5.2 Computation of crack opening displacements (COD) for an arrested crack 

In the case of the crack tip located in the damage zone (dashed curve in Fig. 11), the 
near-tip displacements can be computed analytically.  
In a material with varying Young’s modulus, the fracture mechanics J-Integral as the 
driving force for crack extension remains path-independent, i.e. any path in the near-
tip region, Jtip, must give the same result as a path far away from the crack, J. In the 
case of linear-elastic fracture mechanics, the J-integral is identical with the energy 
release rate G. If E and  stand for the Young's modulus and Poisson ratio at the tip 
and E0 and 0 for the bulk material, it results 

 )1()1( 2
0

0

2
2

2

 
E

K

E

K appltip  (16) 

In (16) Ktip is the “true” stress intensity factor acting at the tip and Kappl is the exter-
nally applied stress intensity factor that can be computed from handbook solutions. 
Under plane stress conditions, we get from (16)  

 
0E

E
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Introducing this result into eq.(15) yields finally 
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For the heart-shaped zone (hatched area in Fig. 11), the displacement behaviour is 
much more complicated. In this case, the crack tip belongs as well to the zone of low 
modulus E as to the outer region with Young's module E0.  

 

 
Fig. 11 Crack-tip region under load showing damage zones for “weak swelling” conditions (hatched 

heart-shaped area) and “strong swelling” (dashed curve). 
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We studied the displacements in a FE-study on heart-shaped zones of height  in a 
plate of width=60 and height=60 showing constant Young’s module, E, inside the 
zone and deviating module outside the zone, E0, Fig. 11.  
The FE-results are plotted in Fig. 12a as the circles. Especially for r/ < 0.3 the 
displacements for small Young’s modules are strongly increased. For r/ > 1 the 
further increase of COD is the same independent on the module E and the curves all 
appear to be parallel. The near-tip behaviour leads the observer to believe that “crack-
tip blunting” would occur. 

The reciprocal near-tip displacements 1/ obtained for r/0 are plotted in Fig. 12b 
(circles) versus E. The results deviate from the straight line representing eq.(18). 
However the general trend, given by eq.(18) is confirmed at least roughly. 

 
Fig. 12 a) Normalized near-tip displacements for heart-shaped zones with different Young’s 

modulus; b) displacements under constant externally applied stress intensity factor, Kappl, as a function 
of Young’s modulus: Symbols for heart-shaped zones, straight line for the crack tip inside the zone. 
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B) PORES 

In order to allow application of continuum mechanics relations in terms of stresses and 
strains, the complicated SiO2 micro structure is simplified as shown in Fig. 13. Figure 
13a shows a volume element of the silica network containing rings of different size. 
The largest are indicated by the dashed circles. Figure 13 illustrates the simplification 
by spherical pores. 
For all computations the Poisson’s ratio =0.17 was used. 

 

Fig. 13 a) Silica network, b) large SiO2 rings replaced by nano-pores. 

6.  2-dimensional array of half-spherical surface pores 

Figure 14a shows a symmetry element of a two-dimensional array of semi-spherical 
pores at a flat surface. The radius of the half-sphere is R and the distance to the next 
one 2H. The applied stress is denoted as . The stresses y along the equator between 
points (A) and (B) are represented in Fig. 14b for several values of H/R. Figure 14c 
shows the reciprocal stress at the surface and the deepest point as a function of R/H.  
The stresses y at the surface points, (B), and the deepest point (A) can be approxima-
ted for R/H<0.8 by  
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Fig. 14 a) Semi-spherical surface pore, b) stress distribution y along the equator, c) reciprocal stresses, 

1/y at the surface (B) and the deepest point (A), =0.17. 
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7. Description of broken bonds by a circular internal notch  

In the preceding considerations, it was assumed that no interaction of the bond-
breaking events is present. For very high stresses, this cannot be guaranteed.  

On one hand side, a stress concentration occurs around a broken bond since the 
surrounding bonds must transfer the load that was originally carried by this bond. The 
increased load in the neighboured bonds causes an increased failure probability by 
stress-enhanced hydroxyl generation.   

On the other side, also the displacements between the original bond partners are 
increased. Consequently, the reverse reaction in (1) may be hindered somewhat 
resulting in an increased hydroxyl concentration. 

A SiO2-ring of the silica network may be described by a spherical (nano)-void in a 
continuous material. This allows a fracture mechanics treatment by an FE-study. 
According to the finite crack-tip curvature for cracks, the radius of such a void has to 
be expected in the order of  = 0.5 nm [12], Fig. 15. Under a load in z-direction, the red 
Si-O-bond may be cracked by reaction with molecular water (blue/red). Since the open 
bond cannot transfer load, the void now acts as a disk-like defect of length 2(+L) 
oriented perpendicular to the load direction. 

 
Fig. 15 Left: Bond breaking under uni-axial tension by reaction with molecular water (attacked SiO-
bond in red); right: open bond represented by a disk-like notch of diameter 2(+L). 

The stress increase max/ at the notch root is shown in Fig. 16a as a function of the 
length L (circles). A rough representation of these data may be given by the simple 
relation  
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The maximum displacement in the centre is given in Fig. 16b. The straight-line depen-
dency is represented by 
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Fig. 16 a) Stress concentration at the notch root for several values of notch length L (circles: FE-

results, curve: approximation by eq.(21), b) displacements in the axis direction. 
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