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Abstract
Over the last decades computers have become part of our daily life. However,
often the interaction with computers is still unnatural. In recent years, a lot
of research has been done on developing advanced human-machine interfaces.
For interaction in a certain situations those interfaces need to have knowledge
about the current events in their environment, i. e. they need to recognize what
humans are doing. Automatic recognition systems are necessary to recognize
human actions. An important aspect of human actions are motions.
The observation and recognition of people’s daily activities and motions pro-
hibit invasive procedures or body-worn sensors. For unobtrusive motion cap-
ture systems optic sensors can be used. Optic sensors such as video cameras
have the advantage of enabling additional recognition tasks such as person or
object recognition. Although the final system needs to be unobtrusive, the de-
velopment of most system components, e. g. the pre-processing besides the
feature extraction, the model training and recognition algorithms as well as the
context models, can be done with various sensors. This allows simultaneous
development of an unobtrusive motion capture system as well as the motion
modeling and recognition parts.
Typical application areas for human motion recognition are human-robot inter-
action, entertainment, surveillance, sports and medicine, and video retrieval, to name
only a few. Probably the most challenging task is the recognition of human
motions for human-robot interaction, where motions to be recognized range
from simple gestures to daily life activities. When humans interact with other
humans they simply know what others are doing or what their gestures mean.
Humans are mostly unaware of the complex processes in their brain which en-
able them to recognize simple motions or even complex activities. To empower
a robot with such skills, a series of challenges has to be tackled. In this thesis,
we focus on those human-robot interactions, more specifically on interaction
with humanoid robots. Our application domain is ARMAR III [ARA+06], a hu-
manoid robot that was developed in Collaborative Research Center 588 (CRC
588) "Humanoid Robots - Learning and Cooperating Multimodal Robots". AR-
MAR requires an online human motion recognition system that runs with the
limited sensor information of a humanoid robot. We use the motion recogni-
tion, for example, to feed ARMARs intention recognition system.
In this thesis we designed, developed and implemented such a motion recog-
nition system. For this purpose, we systematically develop methods and algo-
rithms for all parts of the recognition system, i. e. Feature Extraction, Motion
Segmentation and Labeling, Motion Primitive and Context Modeling as well
as Decoding. We implement and evaluate several state-of-the-art techniques.
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For this purpose, we collect several datasets to compare our proposed methods
with the state-of-the-art in human motion recognition. The main contributions
of this thesis are as follows:

Structured functional motion decomposition: The basis of a motion recogni-
tion system is a method to generate models of human motions. Many motion
recognition systems use motion primitives, i. e. meaningful motion units, for
their recognition , yet a methodology for structured decomposition of motions
into meaningful motion units is missing. We present an approach for functional
human motion decomposition which is based on findings in biology and sports
sciences. This approach achieves motion segments that facilitate the modeling
and recognition of a large variety of human motions.

Flexible and scalable motion recognition: Based on the primitives from the
functional motion decomposition, we develop a baseline recognition system
for human motions. Afterwards we improve the system to recognize individ-
ual body parts. The improvement includes an innovative modeling and search
technique for motion primitives, an appropriate context model and a method-
ology for error measurement. Together these components allow to create a
flexible and scalable motion recognition which allows to tackle the recognition
of more complex activities than other state-of-the-art systems. The error rate
improves by up to 15% relative on a complex dataset compared to the baseline
system.

Motion Recognition for a Humanoid Robot: To prove the functionality of our
algorithms in real-life scenarios, we use the vision sensors of ARMAR for mo-
tion recognition experiments. We develop a recognition system for a humanoid
robot that recognizes human daily activities online, i. e. in real-time. The recog-
nition system is integrated into ARMAR’s intention recognition system. Most
of the methods developed in this thesis are used in online demonstration sys-
tems. This proves our concepts to have immediate practical impact and the
potential to be applied in human motion recognition.
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1
Introduction

1.1 Motivation

Over the last decades computers became part of our daily life. However, often
the interaction with computers is still unnatural. In recent years, a lot of re-
search has been done on developing advanced human-machine interfaces. To
enable humans to easily use a computer, those interfaces are tailored towards
natural communication channels, such as speech and gestures. The focus of
research has been automatic speech recognition and handwriting recognition.
Faster hardware and advances in sensors, e. g. webcams, increased the oppor-
tunities for automatic motion recognition.
Typical application areas for human motion recognition are human-robot inter-
action, entertainment, surveillance, sports and medicine, and video retrieval, to name
only a few. When recognizing motions in video retrieval, sports or medicine,
the recognition is mostly performed offline, i. e. the recognition is done after
the motion has been finished. In contrast, the recognition in areas like human-
robot interaction, entertainment or surveillance, has to be done online for a fast
reaction time, i. e. the recognition process is started while performing the ac-
tivity. The focus in surveillance is in recognizing unusual situations whereas
in entertainment the goal is to recognize specific simple motions. Probably the
most challenging task is the recognition of human motions for human-robot in-
teraction, where motions to be recognized range from simple gestures to daily
life activities. An additional challenge is a recognition on a humanoid robot
with limited sensors and limited resources for processing the data.
In this thesis, we focus on human-robot interaction more specifically on interac-
tion with humanoid robots. In the field of robotics exists an increasing need for
knowledge about human motions, as a humanoid robot has to be empowered
with knowledge about sequences of motions [Sch07]. Our application domain
is ARMAR III [ARA+06], a humanoid robot that was developed in the Col-
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laborative Research Center 588 (CRC 588) "Humanoid Robots - Learning and
Cooperating Multimodal Robots". CRC 588 developed a humanoid robot that
looks and acts like humans. In order to act human-like, ARMAR needs to be
able to recognize what is going on in its environment. Therefore, we developed
an online human motion recognition system that runs with the limited sensor
information on a humanoid robot. We used the motion recognition for example
to feed ARMARs intention recognition system.

When humans interact with other humans they simply know what others are
doing or what their gestures mean. Humans are mostly unaware of the complex
processes in their brain which enable them to recognize simple motions or even
complex activities. To empower a humanoid robot with such skills, a series of
challenges has to be tackled.

1.2 Goal of the Thesis

The goal of this thesis is the development of a motion recognition system for
a humanoid robot. The main aspects for the design of the recognition system
are:

• unobtrusive capturing of human motions

• continuous recognition of human motions

• online recognition of motions

• integration of context information into the recognition system

• development of motion modeling techniques that scale well to more un-
constrained recognition domains

Unobtrusive Capturing: The observation and recognition of people’s daily
activities and motions prohibit invasive procedures or body-worn sensors. For
unobtrusive motion capture systems acoustic or optic sensors can be used. Op-
tic sensors such as video cameras have the advantage of enabling additional
recognition tasks on a humanoid robot such as person or object recognition.
Although the final system needs to be unobtrusive, the development of most
system components, e. g. the pre-processing besides the feature extraction, the
model training and recognition algorithms as well as the context models, can
be done with various sensors. This allows simultaneous development of an
unobtrusive motion capture as well as the motion modeling and recognition
parts.
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Continuous Recognition: Humans are moving all the time or at least show
particular body poses constantly. Therefore, a motion recognition system has
to be able to recognize continuous sequences of human motions.

Online Recognition: For an online recognition system such as one for a hu-
manoid robot, it is not sufficient to start the recognition after a person has
finished an activity. Rather it is necessary to recognize the motions as early as
possible, already while observing the activity.

Integration of Context Information: To fully recognize a human motion the
context, e. g. the situation, previous motions and manipulated objects, has to
be considered. Therefore, context information has to be integrated into the
modeling and recognition process.

Scalability: Humans are capable of performing a wide range of motions. A
major aspect that has to be considered to enable good scalability of the system
is the ability to perform multiple independent motions in parallel. The system
needs to flexibly handle the dynamics of body parts that perform coupled or
concurrent motions.
To achieve the above goals, we implemented and evaluated several state-of-the-
art techniques. For this purpose, we collected several datasets to compare our
proposed methods with the state-of-the-art in human motion recognition. The
main contributions of this thesis are as follows:

1. Structured functional motion decomposition: The basis of a motion
recognition system is a method to generate models of human motions.
Many motion recognition systems use motion primitives, i. e. meaning-
ful motion units, for their recognition but a methodology for structured
decomposition of motions into meaningful motion units is missing. To
achieve motion segments that facilitate the modeling and recognition of
a large variety of human motions, we developed an approach for human
motion decomposition which is based on findings in biology and sports
sciences. The structured functional decomposition is described in Chapter
4.

2. Flexible and scalable motion recognition: Based on the primitives from
the functional motion decomposition, we developed a system that recog-
nizes motions of individual body parts. The improvement includes an
innovative modeling and search technique for motion primitives, an ap-
propriate context model and a methodology for error measurement. To-
gether these components allow to create a flexible and scalable motion
recognition which allows to tackle more complex activities than other
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state-of-the-art systems. Furthermore, we improve the error rate by up
to 15% relative on a complex dataset. The flexible and scalable motion
recognition is presented in Chapters 6 and 7.

3. Motion Recognition for a Humanoid Robot: To prove the functionality
of our algorithms in real-life scenarios, we used the vision sensors of AR-
MAR for motion recognition experiments. We developed a online recog-
nition system for a humanoid robot that recognizes motions of human
daily activities in real-time. The recognition system is integrated into AR-
MAR’s intention recognition system. The vision-based recognition system
is described in Chapter 8.

1.3 System Overview

Activities can be modeled or described based on the performed motions or
based on the changes to the environment. Systems that model activities as
changes to the environment typically focus on object affordances. We focus on
motion related modeling techniques since they allow to recognize both types
of motions, those that change and those that do not change the properties of
objects.
The techniques for modeling activities based on the performed motion can be
devided into the three categories, structural models, biomechanical models,
and models about the internal represention of motions in humans. As we want
to recognize motions in an unobtrusive fashion, we concentrate on the two tech-
niques that model motions as they can be observed by looking at people, i. e.
the structural models and the biomechanical models. The more general view
on motion sequences, i. e. sequences of human motions, is a representation using
structural models as in [Göh92]. The structural models can be used to model
the structure of activities. The structure of activities is part of the motion’s con-
text information. Another way of modeling human motions are biomechanical
models with kinematic and dynamic features of the movement. We apply this
idea for modeling the individual motion primitives.
Figure 1.1 gives an overview of the components necessary to train and use our
recognition system. The can-shaped items describe the input and output of
the different processing steps which are represented by rectangular boxes. The
yellow items are concerned with the training of the system while all red items
are concerned with the recognition process. Both processes, the training and the
recognition, start with the acquisition of motion data. For training, we define
a set of motion primitives and then segment the data into those primitives
which gives us labels and segment boundaries for the acquired motion data.
We also generate appropriate features from the motion data. The labels and
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Figure 1.1: The diagram shows the components of our motion recognition sys-
tem.

the preprocessed data are used to train motion primitive models for individual
motion primitives and to generate models for the motion primitives’ contexts.
For recognition the motion primitive models and the context models are used
to recognize sequences of human motions or activities. The result is a textual
representation of the performed motion primitives or the activity. To build such
a system, we need to solve the following tasks:

1. Define a motion primitive alphabet
2. Model motion primitives
3. Extract and select appropriate features
4. Model the motion context
5. Online recognize motion sequences

1.4 Structure of the Thesis

In the following we give a short overview on how this thesis is structured:
Chapter 2 In chapter 2 we give a detailed introduction to human motion mod-

eling and recognition techniques as they are used in this thesis.
Chapter 3 In chapter 3 we describe the datasets collected for this thesis’ exper-

iments.
Chapter 4 In chapter 4 we explain the state-of-the-art of human motion recog-

nition and give an overview on the different techniques. We introduce
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the basic principles of our sequential human motion recognition system.
We give an introduction on defining and training motion primitive. We
also give an overview on motion contexts including some basic context
modeling techniques.

Chapter 5 In chapter 5 we describe and evaluate our sequential human motion
recognition system. We first develop a marker-based baseline recognition
system for continuous motion recognition. We then extend the system by
developing a new object dependent context model.

Chapter 6 In chapter 6 we describe our approach for modeling and recognizing
concurrent and coupled human motion sequences. Based on the methods
and results of chapters 4 and 5 we develop methods for the concurrent and
coupled human motion modeling and recognition. We extend the motion
primitive definition and segmentation as well as the training of motion
primitives from chapter 4. We develop a new N-Gram context model for
concurrent and coupled recognition and describe the recognition process
in detail.

Chapter 7 In chapter 7 we evaluate the proposed algorithms for modeling and
recognizing concurrent and coupled motions and compare the results to
the sequential system from chapter 5.

Chapter 8 In chapter 8 we transfer our knowledge from the marker-based sys-
tems to marker-less video-based recognition. The final system in this
chapter is a video-based person-independent human motion recognition
system for various daily activities.

Chapter 9 Chapter 9 summarizes the developments and results of this thesis,
compares these to the proposed goals of the thesis and gives an outlook
on future work.
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Human Motion Recognition

2.1 Goals and Features

In the past decade a lot of work had been done in the area of activity recog-
nition, but the challenging problem of fine-grained recognition of human daily
activities had only been addressed rarely. In this thesis we tackle these chal-
lenges and solve some of them. The goal is to enable a humanoid robot to
recognize fine-grained motions of daily activities.

In our research we focus on motions as they appear in a household environ-
ment. Even in this rather limited environment the number of motion sequences
that humans perform is basically unlimited. Therefore, the recognition system
needs to scale well to a large set of motions.

Thus, it is not feasible to create a separate model for each motion sequence
due to the lack of enough training data. It is necessary to find motion primitives
(small motion units) that are the elements of all activities. We describe each
activity in terms of a sequence of motion primitives.

Since we want to recognize those motions with a humanoid robot, the sys-
tem is limited to the sensors of the humanoid robot for capturing the motions.
Therefore, the system needs to enable a recognition process based on limited
information about the human motions. Additionally, those motions have to be
recognized online, i. e. they need to be recognized with a small latency, so that
the robot can react on the human’s behavior in time. As motions may happen
at all times, we need a continuous recognition of the human’s motions.
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2.2 Automatic Recognition System for Human Mo-
tion

In this section we give an overview on modeling techniques for human motion
recognition. Human motion recognition is investigated in different research
fields such as computer vision, robotics, and human-computer interaction.
Many good overview papers have been written on motion and activity recogni-
tion such as [AR11, AC97, MHKS11, DW11, KKUG07, MA07, WH99, PSH97].
Following the taxonomy proposed by Aggarwal and Ryoo [AR11] human mo-
tion recognition techniques can be categorized into single-layered approaches
and hierarchical approaches. Single-layered approaches are approaches that
represent and recognize human activities directly based on sequences of im-
ages (or other sensory input). Due to their nature, single-layered approaches
are suitable for the recognition of motion primitives with sequential character-
istics. In contrast, hierarchical approaches represent high-level human activities
by describing them in terms of simpler activities or motion primitives. Recog-
nition systems composed of multiple layers are constructed, making them suit-
able for the analysis of complex activities.
Single-layered approaches can be split further into space-time approaches and

sequential approaches. The space-time approaches use a 3D XYT space-
time volume, i. e. they stack 2D images over time to form a 3D volume.
Those volumes are analyzed to recognize human motions. Space-time ap-
proaches are suitable for recognizing periodic motions and gestures, but
they often have difficulties handling speed and motion variations inher-
ently. In contrast, sequential approaches use features to recognize human
motions. They consider a sequence of observations (i. e. feature vectors)
as an input that is used to recognize a human motion. They first con-
vert the input (e. g. a video) into feature vectors by extracting features.
Once the feature vectors have been extracted, they are used to measure
how likely the feature vectors are produced by a person performing an
activity.

Hierarchical approaches use the single-layered approaches to recognize prim-
itives that are combined into more complex activities. They use either
statistical, syntactic or description-based methods to model higher level
activities based on motions or low-level activities.

To enable the recognition of a large variety of motions most of the above ap-
proaches use primitives (e. g. motion primitives) as the elements of the recogni-
tion system. A very common approach using primitives for motion recognition
are Hidden Markov Models (HMMs). In this thesis we use two approaches. On
the one hand, we use a single-layered approach, which is well suited to recog-
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nize motion primitives while allowing variability in speed and motion perfor-
mance. On the other hand, we use an hierarchical syntactic approach to govern
higher-level information. In the following we will describe the basics of our
recognition system.

2.3 Capturing Human Motion

Human motions need to be captured before they can be recognized. A variety
of methods for capturing human motions can be used. These methods can be
categorized by the signal that is captured. The most common approaches use
optical signals, i. e. motions are captured using video cameras. The capturing of
optical signals can be split into marker-based methods and marker-less methods.
Markers are attached to the human body for the marker-based methods. Those
markers simplify the capturing of the human motion through having a distinct
color or by reflecting a specific waveband of light so that the markers can be
easily detected in the captured videos. For details on the marker-based method
used in this thesis we refer to Section 4.2. Marker-less methods use videos
without attaching markers to the human body. The marker-less methods used
in this thesis are presented in Sections 8.1.2 and 8.1.1. The marker-based as
well as the marker-less methods extract features, e. g. joint angles. All features
belonging to the same time step are stacked to form a feature vector. A recog-
nition system can then recognize the observed motions based on a sequence of
feature vectors, i. e. an observation sequence.

2.4 Overview on HMM-decoder

Our recognition system (see Fig. 2.1) uses an HMM-based decoder, which
typically consists of three components. The first component is a set of primitive
models, i. e. a set of HMMs, which model sequences of feature vectors. Since
the motions are split into motion primitives, a second component (the context
model) is typically used to describe the possible combinations of the primitive
models during the decoding. The context model can also add information
about the environment in which the motion is performed, e. g. available objects.
The primitive models and the context model are used to measure how likely
a sequence of feature vectors is produced by a person performing an activity.
This is done by the third component namely the decoder. We will now describe
those techniques in more detail.
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Figure 2.1: Overview on a HMM-based recognition system.

2.5 Gaussian Mixture Models

A common approach for modeling the distribution of a set of feature vectors
are Gaussian distributions. A Gaussian distribution can be fully described by
its mean µ and its covariance matrix Σ. If a single Gaussian distribution is not
enough to represent a set of feature vectors it can be extended to a mixture of
Gaussian Models, a Gaussian Mixture Model (GMM). A GMM is a weighted sum
of Gaussian distributions which can be used as a good approximation for the
distribution of a set of feature vectors.

2.6 Hidden Markov Models

Since feature vectors of a motion primitives evolve over time, the GMMs are
extended by using HMMs. An HMM is a statistical model that consists of states
(Circles in Fig. 2.2) representing a temporal sequence. In this thesis we model
each motion primitive with one HMM. Each HMM-state has an internal model
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(e. g. a GMM) that models the likelihood of observing a feature vector while
the temporal process is in this state. The states are hidden and can not be
observed directly. Feature vectors (Squares in Fig. 2.2) are called observations.
To fully describe an HMM λ we need five parameters: the HMM-states Si, initial
state probabilities πi, an observation space, emission probabilities for each state, and
transition probabilities aij for each pair of states Si and Sj. The observation space
in this thesis is RD, whereas the emission probabilities for each state are GMMs
over RD.

Figure 2.2: Four-state left to right HMM for the motion primitive "Take bottle".

We use left to right HMMs, i. e. a sequence of HMM states whereas each state
has two equally likely transitions. Each state has one transition to the successor
state and a selfloop (see Fig. 2.2). The actual number of states varies depending
on the dataset that is modeled with the HMMs.

2.6.1 HMM Training

Training is performed based on an observation sequence and the corresponding
sequence of HMMs. The initial state probability of each HMM is always 1
for the first state and 0 for all others. During HMM training the emission
probabilities are optimized based on observation sequences of the training data.
In the first step, the Viterbi algorithm is used to assign each feature vector of the
observation sequences to an HMM state. Such an assignment is called a path.
In the second step, each GMM is optimized based on the set of feature vectors
assigned to the corresponding state. Both steps are repeated several times.
For calculating the paths for each observation sequence we use the Viterbi al-
gorithm which optimizes equation

Q̂ = argMax
q1,...,qT

p(q1...qT|X, λ) (2.1)
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i. e. it calculates the most likely state sequence Q̂ given an observation sequence
X of length T and an HMM λ. In order to find the most likely state sequence
we define the quantity

δt(i) = max
q1,...,qt−1

p(q1...qt = i, x1...xt|λ) (2.2)

where δt(i) is the best score along a path, at time t, which accounts for the first
t observations and ends in state Si. By induction we have

δt+1(j) = max
i
(δt(i)aij)pGMMj(xt+1) (2.3)

The complete procedure for finding the most likely state sequence can be de-
scribed as follows:

Initialization

δ1(i) = πi pGMMi(x1), 1 ≤ i ≤ N (2.4)
ψ1(i) = 0. (2.5)

where N is the number of the number of HMM states.

Recursion

δt(j) = max
1≤i≤N

(δt−1(i)aij)pGMMi(xt), 2 ≤ t ≤ T, 1 ≤ j ≤ N (2.6)

ψt(j) = argMax
1≤i≤N

(δt−1(i)aij), 2 ≤ t ≤ T, 1 ≤ j ≤ N (2.7)

Termination The most likely final state for time T (q̂T) can be calculated as

q̂T = argMax
1≤i≤N

(δT(i)). (2.8)

where i needs to be a final state. The most likely state sequence can then be
retrieved by backtracking:

q̂t = ψt+1( ˆqt+1), t = T − 1, ..., 1 (2.9)

For a more detailed description on HMMs see [Rab89]. The paths Q̂ of all
observation sequences can then be used to train the emission probabilities, i. e.
the GMMs.
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2.7 Context Models

Since we split human motions into motion primitives and model each motion
primitive with an HMM, we should also model the structure of the motion
sequence, i. e. how the primitives can be combined to form a motion sequence
or what motion sequences are more likely than others. This information is
called the context model, as it describes the context of motion primitives in terms
of how likely is a motion primitive in its context e. g. the previously recognized
motion primitives. The context can also contain information about the context
in terms of the spatial context, e. g. the location a motion is performed in. The
context models that are used in this thesis are described in Section 4.4. The
context information can significantly reduce the search space and improve the
recognition of motion sequences, since it helps the recognition system to find
the most likely motion primitives given the context.

2.8 Decoding

For the recognition of a motion based on a set of HMMs we can use the Viterbi
algorithm [Rab89]. It calculates a likelihood for an observation sequence for
each of the HMMs. The HMM with the highest likelihood specifies which
motion has most likely been observed. The Viterbi algorithm works well for
short sequences of HMMs. The HMM sequences need to be rolled out for the
recognition, i. e. a motion primitive model that is part of multiple sequences
is instantiated and processed multiple times. Therefore, the processing time
grows exponentially with the length of the HMM sequence, i. e. we need to
improve our search technique. We extend the Viterbi algorithm to Beam search,
which can be used to search for the most likely state sequence in a sequence
of HMMs with arbitrary length. The decoding of the most likely sequence of
motion primitives is carried out as a time-synchronous beam search guided by
context models, which will be described in more detail in section 2.8.1.

2.8.1 Time-Synchronous Beam Search

Time-synchronous beam search [HAH01] is based on Viterbi search [Rab89]. As
with the Viterbi algorithm beam search processes one feature vector at a time
and updates the probability of being in a certain HMM state. To recognize a
sequence of motion primitives we have to build all possible sequences of motion
primitives (HMMs) and search through all of them. It is not possible to use the
standard Viterbi search on sequences of HMMs since the number of HMMs to
be searched through is growing exponentially. To solve this problem we use
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beam search which limits the number of HMM states that are traversed using
heuristics. For the decoding of human motion sequences we need to optimize
the following equation:

M̂ = argMax
M

p(M|X) = argMax
M

p(X|M) · p(M) (2.10)

We search for the most likely motion primitive sequence M̂ over all possible se-
quences M given the observation sequence X. Applying Bayes rule we get the
right hand side of the equation. Therefore, we can search for the motion prim-
itive sequence M̂ that optimizes the right hand side. This allows us to handle
the likelihood of an observation sequence given a motion primitive sequence
p(X|M) separately from the a-priori probability for the motion primitive se-
quence. While searching within an HMM we mostly have a very small number
transitions between states we can traverse to, e. g. as in Fig. 2.2. The main
challenge of searching in a set of motion primitive HMMs occurs when travers-
ing from one HMM to another. In the following we will first introduce how to
optimize p(X|M) before describing how to integrate p(M), which describes the
probability of sequences of motion primitives.

Figure 2.3: The graph shows the search space for sequences of three primitive
models.

When traversing from the end of an HMM to the beginning of other HMMs the
number of HMM states we have to consider for our search grows exponentially
(see Fig. 2.3). To handle the exponentially growing number of HMM states that
have to be searched, two optimizations have to be used. The optimizations
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1. only traverse the best states and forget about all others.
2. create only one HMM per motion primitive.

The idea of the first optimization is that it is not possible to search all state
sequences but we can assume that the states with the best scores (a score is the
negative logarithm of a probability or a probability density value) at a certain
time step are the ones that most likely lead to the overall motion sequence with
the best score. This comparability of different scores is an important advan-
tage of time-synchronous beam search in comparison to other search methods,
such as A-star search. Due to the comparability of scores we can apply a beam,
i. e. applying a threshold relative to the best score and only traversing states
that are closer to the best score than the threshold (beam). Using this beam we
can vary the trade-off between recognizer speed and recognition accuracy. In
general, smaller beams result in faster systems whereas the recognition accu-
racy decreases at the same time due to search errors resulting from eliminating
promising paths.

Figure 2.4: A lattice node is created when propagating a hypothesis from the
end of an HMM to the beginning of another HMM.

For the second optimization it is necessary to change several things in the search
structure. We add history objects (lattice nodes) which store the traversed mo-
tion primitives. Each lattice node contains one traversed motion primitive and
is connected to its predecessor. A lattice node is created when traversing from
one HMM to another (see Fig. 2.4). Instead of storing the current score in an
HMM state and knowing the traversed motion primitives implicitly through
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the connection of the motion primitive HMMs (as in Fig. 2.3) we can use a
single HMM for all occurrences of the same motion primitive. We use hypoth-
esis objects of which each stands for a partial motion primitive sequence. Each
hypothesis knows its history of motion primitives, i. e. its latest lattice node,
and the current score for the HMM state given the history of motion primitives.
Each hypothesis is propagated along all outgoing transitions to the successor
states once every time step. Only the best hypothesis is kept for each state while
all others are removed. Afterwards the hypotheses are pruned, i. e. thresholds
are applied and hypotheses that are worse than the thresholds are removed
before further propagating the hypotheses. After processing the last feature
vector we take the best hypothesis in a final HMM state and trace the motion
sequence back by iterating backwards over the lattice nodes. The result is the
most likely sequence of motion primitives.

Incorporating Context Models into Beam Search

In the previous section we have explained how to efficiently search the sequence
of motion primitives that optimizes p(X|M). We will now introduce how to
integrate context models into the search. When integrating context models into
Beam Search we have to do two things:

1. Add the context model state to the hypothesis and in each HMM state
keep the best hypothesis for each context model state.

2. At motion primitive transitions add the context model score for the cur-
rent motion primitive.

It is necessary to always keep a hypothesis for each context model state since
the context model score that will be added when traversing to the next motion
primitive could lead to a change in order of hypotheses, i. e. the best hypoth-
esis could be replaced by a previously worse hypothesis. This context model
score is always added to the hypothesis score when traversing from one motion
primitive to another (see Figure 2.5).

The context model score is often a probability while the HMM score especially
the GMM scores are probability density functions. This means that the context
model probability is normalized between 0 and 1 while the value of the GMM
given a feature vector can be arbitrarily large. Therefore, we use a context model
weight (cmw), which reduces this discrepancy between the two different scores.
We also add a primitive insertion penalty (pip) each time we traverse from one
motion primitive HMM to another. With this parameter we can additionally
configure the tendency of recognizing too many or too few motion primitives.
Thus, the final equation that is optimized during the decoding is:
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Figure 2.5: When propagating a hypothesis from the end of an HMM to the
beginning of another HMM the context model score is added to the hypothesis
score.

argMax
M

p(M|X) ≈ argMax
M

(p(X|M) ·
|M|

∏
i=1

p(Mi)
cmw · |M|pip). (2.11)

2.9 Recognition Toolkits

In this thesis we use two different frameworks for time-synchronous beam
search. The first one is the Janus Recognition Toolkit (JRTk) [FGH+97] using
the ibis decoder [SMFW01]. This framework has been developed primarily for
speech recognition. JRTk is used for the sequential recognition systems if not
stated otherwise (see Chapters 4, 5, and 8). The second framework that was
developed during this thesis and which was used for several experiments is the
Biosignals Recognition Toolkit (BioKIT) [TWG+14]. BioKIT is designed and used
for all kinds of recognition systems based on biosignals such as electromyogra-
phy, electroencephalography or signals from human motions. This framework
is used for the experiments with concurrent motions (see Chapters 6 and 7).

2.9.1 BioKIT

BioKIT [TWG+14] is a software framework for modeling and recognizing fea-
ture sequences, especially in the area of biosignals such as speech, electromyog-
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raphy (EMG), electroencephalography (EEG) and motion. It contains modules
for loading a variety of data types, modeling and recognizing sequences of
primitive models as well as some post-processing. The core framework is writ-
ten in c++ to be fast enough to compete with other state-of-the-art recognition
framework. For easier possibilities of experimenting with new algorithms and
performing large experiments, the core framework is wrapped in python. The
core recognition engine is a beam search based on token passing as described in
2.8.1. Since our research is partially based on extending the BioKIT framework
we will now describe the decoder of the BioKIT framework in more detail.

Pruning in BioKIT

As explained in section 2.8.1 one of the core issues of beam search are the beams
(i. e. the pruning). In Figure 2.6 (a) we can see a search graph (in our case a
set of HMMs) with multiple hypotheses (with different context model states)
at each node. Although we have a rather simple structured search graph the
pruning procedure applies the same way for all types of search graphs.
In BioKIT we have 6 different beams for pruning the hypotheses in each time
step after having propagated the hypotheses to the successor nodes and up-
dated the hypothesis attributes (e. g. its score). All nodes that have at least one
hypothesis are active nodes. The beams are active node top N, active node beam,
final node top N, final node beam, hypothesis top N, and hypothesis beam. All top N
prunings eliminate all elements of the respective type that are not within the
best N elements. The beam prunings eliminate all elements of the respective
type that are not within a beam (i. e. a score difference) to the best element.
The first pruning step is the active node top N pruning. Here we keep the best
N nodes (from all nodes) and eliminate all others. The score of a node is the
score of the best hypothesis within this node. After active node top N pruning
we get for example the search graph in Figure 2.6 (b). At the same time the
final node top N pruning is performed. We again keep the best N nodes of the
initial search graph (a) but this time we apply top N only to the final nodes.
This gives us for example the situation in (c). Since the active and final node
top N prunings are performed simultaneously we get the result in (d). On the
resulting active and final nodes we perform the beam prunings. First we apply
the active node beam. Therefore, we need to find the best of all nodes and
prune all nodes that are worse than the score of the best node plus the active
node beam. As a result we get a search graph like in (e). Again we do the
same for final nodes only, which gives us a search graph as in (f). We now have
only a few active nodes left and look into the hypotheses in more detail. Up
to know we always pruned all hypotheses of a node. We will now perform the
hypothesis beam pruning which is applied on each node separately. For each
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a) b)

c) d)

e) f)

g) h)

Figure 2.6: Search graph with hypotheses before pruning (a), after active node
top N pruning (b), after final node top N pruning (c), after active and final node
top N prunings (d), after both node top N and active node beam prunings (e),
after both node top N and both node beam prunings (f), after both node top
N, active node, final node, and hypothesis beam prunings (g), and after all
pruning steps (h).
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node we keep the hypotheses that are better than the best hypothesis plus the
hypothesis beam as in (g). Afterwards we perform hypothesis top N pruning,
e. g. with N = 2 we keep only the best 2 hypotheses for each node. The
final status of the search graph after the pruning might look like Figure 2.6
(h). As we can see the number of hypotheses has been reduced significantly.
This means that the effort for propagating hypotheses in the next time step is
a lot less. Selecting the thresholds for the pruning steps is always a trade-off
between recognition speed and accuracy.
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Databases

3.1 Collaborative Research Center 588 - Humanoid
Robots

The research in this thesis was part of the Collaborative Research Center 588
"Humanoid Robots" (CRC 588)1. The goal of the CRC 588 was the development
of concepts, methods and concrete mechatronic components for a humanoid
robot. With the help of this partially anthropomorphic robot system, it is possi-
ble to perform human-robot interactions in household environments. In order
to be accepted by humans the robot needs to look and behave human-like. For
a human-like behavior the robot has to have an understanding of its enviro-
ment, e. g. it needs to recognize what humans are doing. One important aspect
is the recognition of human motions. To evaluate the approaches developed in
this thesis we collected several datasets in household environments.

3.2 Databases

3.2.1 KIT-S - The Staged Kitchen Motions Dataset

For our first experiments we collected a dataset which is a rather straight for-
ward recognition task. We collected upper body motions of a single subject.
The subject was asked to only perform one motion at a time, i. e. the left and
the right arm are never performing concurrent motions. We also asked the sub-
ject to move back to a rest position between each motion. This gives distinct

1Collaborative Research Center 588 on "Humanoid Robots – Learning and Cooperating
Multimodal Robots" sponsored by the German Research Foundation - http://www.sfb588.uni-
karlsruhe.de
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pauses within the motion sequence which makes the segmentation of the data
and the recognition easier.

Scenario

We focus on human motions as they appear in a kitchen and food preparation
scenario of CRC 588, such as placing objects on a table or pouring a liquid
into a container. We discriminate the following ten motion sequences: rolling
pastry, pouring water, slicing an apple, grinding coffee, sweeping, grating an
apple, stirring, cutting a cake, cutting an apple, and mashing. Each motion
is described in terms of a sequence of motion primitives, such as fetching,
maneuvering, and putting back an object.
Rolling pastry: Rest position - Take rolling pin - Rest position - Grasp rolling pin

- Roll pastry - Release rolling pin - Rest position - Put rolling pin back - Rest
position

Pouring water: Rest position - Take glass - Rest position - Take bottle - Pour - Put
bottle back - Rest position - Put glass back - Rest position

Slicing an apple: Rest position - Take slicer - Take apple - Slice apple - Put apple back
- Put slicer back - Rest position

Grinding coffee: Rest position - Take grinder - Grasp grinder - Grind coffee - Release
grinder - Put grinder back - Rest position

Sweeping: Rest position - Take broom and dustpan - Sweep - Put broom and dustpan
back - Rest position

Grating an apple: Rest position - Take grater - Take apple - Grate apple - Put apple
back - Put grater back - Rest position

Stirring: Rest position - Take bowl - Rest position - Take spoon - Grasp bowl - Stir -
Release bowl - Put spoon back - Rest position - Put bowl back - Rest position

Cutting a cake: Rest position - Take cake - Rest position - Take bread knife - Grasp
cake - Cut cake - Release cake - Put bread knife back - Rest position - Put cake
back - Rest position

Cutting an apple: Rest position - Take apple - Rest position - Take knife - Grasp apple
- Cut apple - Release apple - Put knife back - Rest position - Put apple back - Rest
position

Mashing: Rest position - Take bowl - Rest position - Take masher - Grasp bowl - Mash
- Release bowl - Put masher back - Rest position - Put bowl back - Rest position

The above described 10 motion sequences consist of sequences of 5-11 motion
primitives, where the total number of different primitives is 49. Many motion
sequences share the same motion primitives. The subject was asked to perform
these motions in a controlled setting (see Fig. 3.1). The objects were placed
at fixed positions on the table. The subject stands at the table in a neutral
position, i. e. both hands resting on the table. Starting from this rest position the
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Figure 3.1: The table for the performance of motions in the KIT-S dataset: 1)
Working area, 2) Apple, 3) Bowl, 4) Glass, 5) Bottle, 6) Bread knife, 7) Knife, 8)
Rolling pin, 9) Grinder, 10) Spoon, 11) Masher, 12) Grater, 13) Slicer, 14) Broom,
15) Dustpan [SGS11].

subject executes a predefined sequence of motion primitives, e. g. fetching an
empty glass, fetching a bottle of water, pouring water into the glass, and putting
the objects back. In between the motion primitives, the subject is returning to
the rest position. An exemplary image sequence of the performed motions is
shown in Fig. 3.2.

3.2.2 KIT-F - The Fluent Kitchen Motions Dataset

The scenario of our second dataset is also part of the Collaborative Research
Center 588 - Humanoid Robots. Therefore, it also takes place in a kitchen. The
motion sequences again comprise taking kitchen utensils from a table, work-
ing with them and putting them back to their original positions. The main
difference between the KIT-S dataset and the KIT-F dataset is that the subject
no longer moved back to the rest position between each motion. Thus motion
sequences are fluent. The only constraint is that only one motion primitive is
performed at a given time, i. e. no two objects are picked up at the same time.
The motion primitives and sequences are as follows:
Pouring water: Rest position - Take bowl - Take bottle - Pour - Put bottle back - Put

bowl back - Rest position
Grating an apple: Rest position - Take grater - Take apple - Grate apple - Put apple

back - Put grater back - Rest position
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Figure 3.2: Motion sequence for "cutting an apple".
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Figure 3.3: Motion sequence for "pouring water".

Figure 3.4: The table for the performance of motions in the KIT-F dataset: 1)
Working area, 2) Apple, 3) Bowl, 4) Bottle, 5) Knife, 6) Spoon, 7) Masher, 8)
Grater [SGS11].

Stirring: Rest position - Take bowl - Take spoon - Stir - Put spoon back - Put bowl
back - Rest position

Cutting an apple: Rest position - Take apple - Take knife - Grasp apple - Cut apple -
Release apple - Put knife back - Put apple back - Rest position

Mashing: Rest position - Take bowl - Take masher - Mash - Put masher back - Put
bowl back - Rest position

If a cyclic motion primitive is involved like stirring or grating, this motion
primitive is individually repeated 3-6 times per sequence. The subject was
asked to do the motions as natural as possible. The KIT-F dataset was captured
in a single session. A female subject performed each task 20 times. The object
locations were the same as in the KIT-S dataset, although we used only a subset
of the objects for the recordings of the KIT-F dataset (see Fig. 3.4).
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Figure 3.5: Schematic diagram of the possible object position for the KIT-M
dataset. Small circles represent object positions at the beginning or end of a
motion sequence. The large circle represents the working area.

3.2.3 KIT-M - The Kitchen Motions Dataset with Multiple Po-
sitions per Object

We acquired a dataset KIT-M with fluent motions as in the KIT-F dataset for
further experiments, with two differences to the KIT-F dataset. In the KIT-
M dataset we used varying positions for the objects. Also the subject was
allowed to use both hands independently, i. e. she was allowed to perform
two independent motions at the same time. Dataset KIT-M contains motion
sequences as they happen in every-day life. We collected five types of motion
sequences: cutting an apple, grating an apple, mashing, pouring water and
stirring. Each type of motion sequence was recorded 75 times, 15 times for
each of 5 different object positions. For the 5 different object positions each
object was placed once at each of five locations shown in Figure 3.5. Only
one object was placed at each position. In order to achieve a good amount
of repetitions of each motion primitive we told the subject to grasp an object
always with the same hand. In total, we collected more than 1 hour of motion
data of one subject for this experiment.
The motion primitives which were recorded for the five different positions are
Take apple, Put apple and grater back, Put apple back, Take bottle, Put bottle back, Take
spoon, Put spoon back, Grasp apple during taking knife, Put knife back and release
apple, Take grater and apple, Take bowl, Put bowl back, Take masher, Put masher back.
For four of the five positions we also observed the motion primitive Take knife
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and apple concurrently. Other motion primitives that were only performed for
one locations on the table are Pour, Stir, Mash, Grate apple, Cut apple, Rest position,
Put apple back (center location), Put grater back (right front location).

3.2.4 The Minta Dataset

For the experiments with the humanoid robot ARMAR, we acquired a dataset
with multiple kitchen tasks. The main difference to the previous datasets is
the size in terms of recording time and the number of subjects. We also used
another set of activities. For the acquisition of this dataset we used a single
video camera. The camera view-point was fixed during the recordings to a
place in front of a kitchen table, i. e. facing the human. A Point Grey Dragon-
Fly Camera with a resolution of 640x480 pixels and a frame rate of 30 fps was
used. In the experiments a mix of artificial and day light (9 AM to 8 PM) as
well as textured and plain background was used.

The dataset was collected in a kitchen setting, where ten different subjects per-
formed seven kitchen tasks. For each task the subject entered the scene, per-
formed manipulations at the table and left the scene. There were almost no
restrictions on how to perform the activities besides always entering the scene
from the same direction. Everybody used the same objects for the same tasks
and left the scene to the same direction. Every subject performed each task
ten times resulting in a total of 700 image sequences. The seven recorded tasks
were: lay table, prepare cereals, prepare pudding, eat with spoon, eat with
fork, clear table, and wipe table. For a fine-grained recognition of the per-
formed tasks a set of 60 motion primitives, e. g., Place Object on Table, Pour, or
Stir, was defined for the motion recognition system.

3.2.5 The Breakfast Dataset

As the Minta and KIT datasets, the Breakfast dataset contains a variety of
kitchen activities. We acquired the motion sequences of one subject while
performing the activities prepare Bun, prepare cocoa drink, prepare cereals,
prepare orange juice, cook scrambled eggs and bake pancake. We captured
each of the six activities with five randomly chosen object positions. Each set
of object positions was collected three times which gave us a total of about 90
(6x5x3) collected motion sequences. In total the subject manipulated more than
35 objects. Due to the variety of unconstrained kitchen activities this is the most
complex dataset we collected for this thesis.
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Figure 3.6: Exemplary image of Breakfast dataset

3.2.6 Comparison of Datasets

In this section we give an overview on properties of the collected datasets. The
KIT datasets are all rather simple. They were capture to develop the recog-
nition systems. The resulting recognition systems were then applied to the
mroe complex datasets, i. e. the Minta dataset and the Breakfast dataset. The
Minta dataset is used to show that the recognition system is capable of person-
independent online recognition with a humaoid robot. The Breakfast dataset is
used for further improvements of the recognition system, specifically the recog-
nition of concurrent and coupled motion primitives. Table 3.7 gives some more
details on the properties of the different datasets.

Property KIT-S KIT-F KIT-M Minta Dataset Breakfast Dataset
#activities 10 5 5 7 6
#primitives 49 24 82 60 1164
hours of 2 0.3 1 10 2
recording
#subjects 1 1 1 10 1
#objects 14 7 7 14 35
data marker marker marker marker
acquisition video video
fluent no yes yes yes yes
concurrency no no yes yes yes
object fixed fixed varying varying varying
positions

Table 3.7: Properties of the collected datasets.
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Figure 4.1: The training part of the overall recognition system.

To perform human motion recognition of meaningful motion primitives, e. g.
for describing human activities in detail or for doing intention recognition we
have to tackle the following tasks as described in Chapter 1:

1. Define a motion primitive alphabet
2. Model motion primitives
3. Extract and select appropriate features
4. Model the motion context
5. Online recognize motion sequences

In this chapter we will explain how we carried out those tasks for sequential
human motion recognition. Figure 4.1 shows which components of the system
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are concerned with carrying out these tasks. In the following we will describe
relevant work from literature and how our system is designed that meets some
of the existing challenges.
For the generation of our models we assume to have sensor data for a set of
motion sequences. A motion sequence usually contains the motions that are
performed during a specific activity. As described in chapter 2 we need to split
the sensor data of a motion sequence into smaller units to model the motion
sequences appropriately. We call those smaller units motion primitives which
are used to build motion sequences. Firstly, we will describe the system de-
veloped to define an appropriate set of motion primitives for a given set of
activities. Secondly, we will explain how we segment the sensor data into mo-
tion primitives before we explain how we train motion primitive models with
the segmented data. Thirdly, we will describe our proposed solutions on how
to model the context of motion primitives. Besides using traditional context
models, we developed an object dependent context model which allows to in-
corporate object knowledge into the recognition process of motion primitives.

4.1 Related Work

The focus of our work is on online recognition of human motion primitives,
e. g. for a humanoid robot, instead of high-level activity recognition. Recog-
nizing smaller units like motion primitives instead of activities allows a wider
range of applications based on the recognized motion primitives such as inten-
tion recognition, imitation learning and programming by demonstration. For
the recognition of motion primitives it is appropriate to use a single-layered
approach, i. e. an approach that represents and recognizes human activities
directly based on sequences of images (or other sensory input). Due to their
nature, single-layered approaches are suitable for the recognition of motion
primitives with sequential characteristics. In contrast, hierarchical approaches
represent high-level human activities by describing them in terms of simpler
activities or motion primitives. Recognition systems composed of multiple lay-
ers are constructed, making them suitable for the analysis of complex activi-
ties. However, we will show that we can improve the recognition of motion
primitives by applying some methods of hierarchical approaches. Most of the
approaches that can recognize concurrent and coupled motion primitives are
hierarchical approaches. Due to their modeling techniques most of them are
inflexible concerning new activities or even only slightly differently performed
activities. They also have difficulties performing online recognition. We will for
now stick to single-layered approaches and explain the hierarchical approaches
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in chapter 6. Aggarwal and Ryoo divide the single-layered approaches into
space-time approaches and sequential approaches.

4.1.1 Space-Time Techniques

Space-time approaches are approaches that recognize human activities by an-
alyzing space-time volumes of activity videos. The simplest way would be to
concatenate the images of each training video to retrieve a volume and build a
volume template for each activity. Those volumes can then be compared to an-
other volume to recognize the activity. Besides the pure volume representation
there are other variations of the space-time representation. The activity may be
modeled as space-time trajectories or other trajectories instead of modeling the
whole volume. To model each activity a set of trajectories is used. Those can
then be compared to the trajectories of an activity to be recognized. The sec-
ond alternative are features extracted from the volume or the set of trajectories.
According to [AR11] "Space-time approaches are suitable for the recognition of
periodic actions and gestures. Basic approaches using space-time volumes pro-
vide a straight-forward solution but often have difficulties handling speed and
motion variations. Recognition approaches using space-time trajectories are
able to perform detailed-level analysis and are view-invariant in most cases.
However, 3-D modeling of body parts from video, which is still an unsolved
problem, is required for a trajectory-based approach to be applied. The spatio-
temporal local feature-based approaches are getting an increasing amount of
attention because of their reliability under noise and illumination changes. The
major limitation of the space-time feature based approaches is that they are
not suitable for modeling complex motion sequences. The relations among fea-
tures are important for a non-periodic activity that takes a certain amount of
time which most of the previous approaches ignored."

4.1.2 Sequential Techniques

In contrast to the space-time techniques, sequential approaches consider an ac-
tivity as a sequence of observations (i. e. features). Instead of comparing point
trajectories or features of those trajectories they convert the activity into a se-
quence of feature vectors. To recognize an unknown activity it is also converted
into a sequence of feature vectors (e. g. joint angles), describing the persons
motions per time step. Once feature vectors have been extracted, sequential
approaches analyze the sequence to measure how likely the feature vectors are
produced by the person performing the activity. If the likelihood between the
sequence and the activity class (or the posterior probability of the sequence be-
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longing to the activity class) is high enough, the system decides that the activity
has occurred.
Aggarwal et al. [AR11] divide the sequential approaches into two categories
using a methodology-based taxonomy: exemplar-based recognition approaches
and state model-based recognition approaches. Exemplar-based sequential ap-
proaches describe classes of human actions using training samples directly.
They maintain either a representative sequence per class or a set of training
sequences per class and match them with a new sequence to recognize its ac-
tivity. State model-based sequential approaches are approaches that represent
a human action by constructing a model which is trained to generate sequences
of feature vectors corresponding to the activity. By calculating the likelihood (or
posterior probability) that a given sequence is generated by each activity model,
the state model-based approaches are able to recognize the activities. In gen-
eral, sequential approaches consider sequential relationships among features in
contrast to most of the space-time approaches, thereby enabling detection of
complex activities (i. e. non-periodic activities such as sign language or kitchen
activities).
The main advantage of exemplar-based approaches in comparison with state
model-based approaches is that they are able to cope with little training data.
However, state model-based approaches are able to make a probabilistic anal-
ysis on the activity, which enables the modeling and recognition of large sets
of motions. A state model-based approach calculates a posterior probability of
an activity occurring, enabling it to be easily incorporated with other decisions.
In contrast to the training of the exemplar based approaches the training of the
state model-based approaches most often does not have a closed solution which
can make the training procedure very expensive. An important advantage of
the state model-based approaches is the ability to model variations in the data
such as temporal and spatial variations. One of the limitations of the state
model-based approaches is that the amount of required training data increases
with the complexity of the activity. Therefore, it is necessary to divide the
activities into simpler motion primitives to reduce the need for more training
data.

4.1.3 Motion Primitives

Given the continuous nature of motion, there is an unlimited number of motion
sequences that can be performed. Therefore, it is impossible to collect enough
traning data to model each motion sequence independently. Boundaries of
motion primitives are often arbitrarily defined, making it difficult to automate
the motion segmentation process [KTS03]. However, humans tend to perceive
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motion in terms of discrete motion primitives [GP03, RFG01] and thus motion
segmentation is still considered useful for several applications, including imi-
tation learning [PHAS09] and human motion recognition [GKWS09].
When modeling human motions one of the main questions is what entity of
a motion should be modeled as one unit. Obviously, human motions have to
be split into smaller pieces, since we can not model all motions someone is
performing during a day as one entity. As humans we can name the parts of
motions and give them a label. Neurological evidence shows that humans also
generate motions in terms of motion primitives [RC05].
There is also evidence in the computer science literature that it is a good idea to
model motions in terms of primitives [FMJ02, Mat02, KHN09, Bob97, SKKK11].
The definition of motion primitives depends on the application and is often
done manually [VKKL07, BA01].

4.1.4 Sequential State Model-based Techniques

State model-based approaches represent human motions as a model composed
of a set of states. They are statistical approaches that are designed to gener-
ate a sequence of feature vectors with a certain probability. For each model,
the probability of the model generating an observation sequence is calculated
to measure the likelihood between the motion model and the observation se-
quence. State model-based approaches can easily be incorporated with other
decisions and model the statistical nature of the motion primitives. Therefore,
we use a state model-based approach for our recognition of complex human
kitchen activities. The most popular method for state model-based recogni-
tion are Hidden Markov Models (HMMs). HMMs are widely used and have
been proven to be well suited for continuous human motion recognition. One
of the earliest works is from Yamato et al. [YOI92] who recognize the tennis
actions forehand stroke, backhand stroke, forehand volley, backhand volley,
smash, and service. They use vector quantization to create a feature vector
for each binarized image. They train one discrete HMM for each action. Ten-
nis actions of three players are recognized by solving the evaluation problem
[Rab89]. They get good recognition rates even for player independent recogni-
tion. Another early work has been done by Starner and Pentland [SP95]. They
recognize American sign language (ASL) based on video input of a tracked
human hand (with/without a colored glove). Their system extracts features
describing shapes and positions of the hands. Each word of ASL is modeled as
one HMM. They perform continuous training and recognition of sentences of
ASL. The recognition is performed with 5 frames per second using the Viterbi
algorithm. Bobick and Wilson [BW97] recognize gestures based on state models
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similar to HMMs. They represent each gesture as a trajectory in 2D-XY space
describing the location changes of a hand. The trajectory is modeled using a
sequence of fuzzy states each represented by a single Gaussian directly com-
puted by a training sample trajectory. For the recognition of gestures with their
system they use the dynamic programming approach. Applying their frame-
work they have successfully spotted and recognized two different types of ges-
tures: ’wave’ and ’point’ from sequences of motion data. They acknowledge the
relation between their work and HMMs, but comment on one important dis-
tinction, namely, the existence of a prototype. The time-collapsing procedure
discussed in their paper yields a reasonable prototypical model, even if only
one training example is present. The statistical nature of an HMM precludes a
rapid training phase: Many free parameters need to be adjusted for the model
to have some relation to the action. In the approach outlined in [BW97], a
model is available immediately.
As a generalization of HMMs some researchers use Dynamic Bayesian Networks
(DBN). Park and Aggarwal [PA04] recognize actions and interactions using a
DBN. They extract body part blobs from video images, estimate the body pose
and recognize interactions such as two people approaching each other, two
people shaking hands, punching or pushing. Another paper that uses DBNs
is the one of Ryoo and Aggarwal. In [RA07] they extend the approach to also
considering relations between objects and motions.

4.2 Marker-Based Features

The basis to all high-performing state-of-the-art motion recognition systems are
appropriate features.

4.2.1 Motion Capture

Human motions can be captured with several methods, e. g. marker-based
methods, methods based on accelerometers, as well as video-based methods.
A short overview is given in [Gär09]. In the following section we will describe
motion capture with marker-based methods. They are suitable for fine grained
motion capture, as it is necessary to recognize motion sequences in a kitchen en-
vironment. A marker-based motion capture system simultaneously tracks the
positions of multiple markers attached to a human body and provides their po-
sitions in 3 dimensional space. Using marker positions as features for human
motion recognition is suboptimal since the marker positions of a performed
motion dependent on the person’s position and orientation. However, the de-
scription of an actual motion trajectory should be position and orientation in-
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dependently. Therefore, we convert the marker positions to joint angles. Thus,
the goal of the motion capture is a mapping of the marker trajectories onto a
kinematic human body model to retrieve joint angles.
To capture human motions we use a Vicon motion capture system1. We attach
reflecting markers to the subject’s upper body, head and arms. Reflecting infra
red light is simultaneously recorded with 10-14 MX13 Vicon cameras, which
are arranged around the subject. The Vicon system outputs 3-dimensional po-
sitions and labels of the markers for each time step. We use a very similar
marker set (see 4.2) as the Plug-in Gait marker set from Vicon which is the
same as the CRC model in [Sim09]. For capturing upper body motions the
upper body marker set from Vicon’s Plug-In-Gait model is well suited. For
body model scaling and the joint angle reconstruction the markers are divided
into static and dynamic markers. The static markers are placed on landmarks,
i. e. well defined positions on the human body, which have only little relative
displacement of the skin in relation to the bones. With this markers we can au-
tomatically scale the body model to match the anatomy of the subject. Dynamic
markers are placed on the center of body segments and are additionally used to
the static markers when reconstructing the joint angles providing redundancy.
After scaling the body model the dynamic markers can be calibrated automati-
cally using the Vicon software. The position of the markers can be taken from
the manual of the Plug-In-Gait model.

Figure 4.2: Marker set used for motion sequences capturing (See Plug-In-Gait
from Vicon).

1www.vicon.com
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Challenges

When capturing markers with a camera based tracking system, two errors can
occur: wrong marker labeling and occluded markers. The marker labels can
be assigned to the wrong marker or even to a location where no markers exist.
This problem can be avoided by good parameter tuning of the Vicon system,
controlled environmental conditions (e. g. light) and with human intervention
when detecting wrong marker labels. When detecting an erroneous marker
label, the marker can be relabeled using the Vicon system either automatically
or if this does not work manually. When Vicon returns gaps in the marker
trajectories, those gaps can either be interpolated semi-automatically using the
Vicon system or they can simply be ignored when using a kinematic body
model for joint angle reconstruction. The body model can compensate most
markers for calculating joint angles if only very few are missing at the same
time.

4.2.2 Joint Angles

Kinematic quantities of a human body (e. g. joint angles) can be calculated
using various automatic methods with different degrees of power. A simple
approach is to draw virtual lines between the respective markers and to calcu-
late the joint angles between those lines. The approach used in Vicon’s motion
capture system works in this way. For a more precise estimate it calculates
planes through multiple markers. The main problem of both approaches is
their sensitivity to the correct positioning of markers on the human body. If
a marker is missing, the joint angle reconstruction algorithm might fail. For
our system we used an alternative approach, which is a motion mapping us-
ing optimization methods. For this approach we need a kinematic model with
joints and model marker positions relative to the joints. Through optimization
we can minimize the distance between the measured marker positions and the
model’s marker positions and retrieve the desired quantities (e. g. joint angles)
[Ste08, Gär09]. This approach is very robust against missing and wobbling
markers. The approach can be improved by scaling the body model based on
markers positioned at landmarks to better fit the anatomy of the human per-
forming motions. Before applying the motion mapping we scaled our model
as described in [Köh08].
The problem that has to be solved for motion mapping is a classical non linear
optimization problem, which can be solved with a large number of standard
methods. For the calculations in this work we used non linear optimization
methods of the Matlab Optimization Toolbox, which yielded numerically stable
and efficient solutions. An important impact on the quality of the solution have
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the definitions of the relative marker positions. For reconstruction we used a
rigid upper body multibody model of the human skeleton with 30 DOF. The
joints are wrist (2 DOF), elbow (2 DOF) and shoulder (3 DOF) of both arms as
well as joints at the lower (neck: 2 DOF) and upper (skull: 3 DOF) neck, and at
the lower (lumbar: 2 DOF) and upper (thorax: 3 DOF) spine.

Figure 4.3: The kinematic body model used for joint angle reconstruction from
marker points.

As a result, the motion mapping outputs per time step one feature vector con-
sisting of 30 coefficients, 24 joint angles of the kinematic body model as well as
6 values for global position and orientation of the body model. The joint angles
of the 24 DOF are used as input features for our motion recognition system.

4.3 Motion Primitive Models

4.3.1 Functional Decomposition of Human Activities

The first step when using motion primitives as the basic unit for motion recog-
nition is the definition of a vocabulary of human motion primitives. Currently,
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the various systems using motion primitives define them depending on the ap-
plication the motion recognition is used for. In [GSFS10] we propose a method
for standardizing the decomposition of motion sequences into motion primi-
tives. The motion sequences are decomposed based on functional properties.
In comparison to biomechanical decomposition which is used in most auto-
matic motion segmentations, we assume to get more meaningful primitives
which can be used for higher level reasoning about the current activity. The
functional motion primitives can still be used for most tasks the automatically
retrieved primitives are used for, e. g. motion synthesis.
As many others we decompose activities into motion primitives manually. This
has several advantages:

1. Assures motion primitives with human understandable labels and mean-
ings

2. Assures motion primitives with functional meaning
3. Avoids the lack of grounding the motion primitives
4. Can be assisted by automatic methods (clustering into sets of motion

primitives with similar properties, e. g. the same motion primitive for
different objects that are handled the same way)

Various different approaches can be found in the literature as to what should be
seen as a motion primitive and to how these motion primitives can be modeled
[PHAS09]. Various types of motion primitives are used ranging from low-
level motions, e. g. moving the hand forward, up to complex motions such as
setting the table. In many scenarios it is not sufficient to know the kinematic
or dynamic parameters of a motion, since the goal of the motion might not
be reached although the execution of the motion is correct. For example, if
a robot wants to grasp a glass, it has to make sure that the glass is properly
grasped. It is not sufficient, if the robot only performs a motion trajectory based
on kinematic and dynamic parameters, which does not result in grasping the
glass.
We bridge this gap by looking at the problem from top-down. We belief that a
system for decomposing motions into motion primitives should take the goals
of a motion into account. It is not suitable to decompose a motion in an ar-
bitrary way, since the goals of the motions have to be fulfilled to perform the
motion properly. To the best of our knowledge there is no system for decom-
posing arbitrary daily-life motions into motion primitives based on functional
information. In our work we propose a system which allows us to retrieve a
motion decomposition into motion primitives based on functional knowledge.
So far relatively few papers dealt with higher abstraction levels of human mo-
tions which touch the border of semantics. Some approaches segment the data
based on object relationships [AAWD10, SCH08]. We do not apply these ap-
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proaches since we also want to segment communication gestures which are not
object related. Another step in the direction of functional motion representation
has been done by Guerra-Filho and Aloimonos [GF06]. They started to close the
semantic gap between a WordNet and sensorimotor information by grounding
a set of primitive words. Similar ideas have been presented by Ivanov et al.
[IB00], whereas they assume a natural decomposition of motions into low-level
primitives and higher-level semantic information.
In this section we propose a systematic approach for manually defining mo-
tion primitives based on activity goals as presented in [GSFS10]. This approach
allows to systematically analyze a given set of activities and retrieve a func-
tionally plausible set of motion primitives. Activities are separated into motion
primitives which fulfill subgoals concerning the overall activity goal. Depend-
ing on the flexibility of performing an activity and the application, the retrieved
set of motion primitives might vary.
The set of motion primitives is the basis for building a motion recognition
system. It can be used to segment motion trajectories or to create a motion
grammar for the set of activities. The procedure consists of four steps:

1. Retrieve motion contexts (e.g. available objects and their properties)
2. Find functional primitives
3. Retrieve functional and temporal relationships between primitives
4. Define temporal and positional constraints for primitives

These steps are described in more detail in the following section. Before ana-
lyzing the motion sequence in detail, the motion context should be considered.
As motion context we consider the humans and objects in the environment.
The motion context needs to be determined since this information gives the
solution space, e. g. one can only grasp an apple if it is within reach otherwise
one needs to walk towards the apple first. After the solution space is defined,
an analysis of the motion sequence itself has to be carried out. The individual
elements of the motion are primitives, which carry a specific function accord-
ing to the overall goal of the motion sequence. These primitives therefore are
called functional primitives. We distinguish between main functional primitives
and supporting functional primitives. Main functional primitives determine the
goal of the motion. They appear at least once during the motion sequence. In
contrast, supporting functional primitives are not directly related to the goal
of the motion but rather functionally dependent on other functional primitives.
Preparatory supporting functional primitives improve the situation for subsequent
functional primitives, e. g. Picking up a knife. In contrast, assistant supporting
functional primitives improve the execution of concurrent functional primitives,
e. g. Steadying an apple while cutting it. Finally, transitional supporting func-
tional primitives transform the present motion situation into a new situation,
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e. g. Putting the knife back to be able to do something else [Göh92]. Besides,
this functional relation there is a temporal relation (Fig. 4.4). Temporal rela-
tions describe the order in which motion primitives have to be performed. In
Fig. 4.6 the primitive Pick and Place apple has to be performed before Pick up
knife and prepare cutting since as soon as we have grasped the knife and carried
it to the cutting position we can no longer carry the apple with the same hand.
The two axes of the diagram in Fig. 4.4 represent the functional and tempo-
ral relationships of motion primitives. Lines and arrows are used for a more
precise representation of the dependencies. An arrow specifies a functional
relationship between two motion primitives while a line specifies a temporal
relationship.

Figure 4.4: Types and relationships of functional primitives [GSFS10].

There are three possibilities for the decomposition of a motion sequence into
functional primitives [Göh92]. In the case of the inductive functional structuring
observed motions of the performer are the starting point for the decomposition.
These motions are performed because they fulfill certain functions in the con-
text of the motion goal. The decomposition into functional primitives that fulfill
certain functions is done during the functional decomposition of the observed
motions.
The origin of the deductive functional structuring are a motion goal and a motion
context instead of observed motions. Thereby a motion goal has to be decom-
posed into sub-goals and according actions of a performer have to be defined.
A third possibility is a combined functional structuring which corresponds to a
synthesis of the inductive and deductive structuring [Göh92].
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For each of the identified functional primitives temporal and positional con-
straints have to be examined. This has to be done for the beginning, the middle
part and the end of each functional primitive, e. g. it has to be considered where
the hands of a person must be, at the beginning, during and at the end of each
functional primitive. It also has to be specified, whether a motion primitive
has to be performed in a certain period of time. Finally, the segmentation of a
motion into different functional primitives can be applied. The procedure does
not guarantee that the decomposition always results in the same motion prim-
itives and the same structure. The procedure is mainly a possibility to retrieve
functionally plausible motion primitives, whereas the plausibility may depend
on the desired application.

Functional Decomposition of Complex Human Activities with Sequential
Motions

In this section we apply the functional decomposition procedure to a daily-life
motion sequence, cutting apple (see Fig. 4.5). In our setup we assume that
a subject stands in front of a table. The result of the decomposition strongly
depends on the environmental conditions, e. g. present objects. The objects
involved in the activity “cutting an apple” are an apple, a knife, a table and
a cutting board. At the beginning and at the end of the motion sequence the
objects are placed on the table.

Figure 4.5: Complex human motion sequence in a kitchen scenario: "Cutting
an apple".

We use a deductive functional structuring to decompose the activity into motion
primitives, since this allows us to define motion primitives independent from
recording motion data. Fig. 4.6 shows two different decompositions of the ac-
tivity “cutting an apple”. For simplicity reasons we assume that only one mo-
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tion primitive is performed at a time. Multiple motion primitives performed at
the same time will be addressed in Section 6.2.1. The main functional primitive
is Cut apple. The dotted line represents an arbitrary number of repetitions of the
primitive, e. g. cutting an apple multiple times. In order to be able to cut the
apple someone needs to get the necessary objects, a knife and an apple. Those
motion primitives have no temporal constraints besides the temporal structure
shown in Fig. 4.6. At the beginning and at the end of the motion sequence the
positional constraints depend on the object locations. The positional constraints
during the motion primitives are: FP4: cut at the position of the apple, other
hand is at the apple. Constraints at the end of motion primitives are: FP1: ap-
ple placed on the cutting board, FP2: knife located on top of apple, FP3: hand
at apple, FP6: knife placed at original position, FP7: apple leftover at original
position.

Figure 4.6: Two functional and temporal structures of a complex human motion
sequence in a kitchen scenario: "Cutting an apple".

The functional decompositions could be arbitrarily complex. When the subject
already picked up the apple someone could call for him from another room,
he could go there, come back and then cut the apple. In our experiments
we generated the simplest functional decomposition which fully describes our
data.

Applying the Functional Decomposition to Segmentation and Grammar
Building

The results of the functional decomposition can be applied to two tasks:
• Use it as basis for segmenting the data into motion primitives
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• Create a motion grammar describing the typical sequences of motion
primitives

Using it for segmenting data a generalized set of motion primitives needs to be
defined based on the retrieved ones, e. g. possible start and end positions for the
different motion primitives. We retrieved the positions by extracting all possible
positions from our training data. The result is a set of motion primitives that
can be actually used to segment captured motion sequences into the respective
motion primitives. For the segmentation we also need to define how to find the
beginning and the ending for each motion primitive, e. g. the motion primitive
Carry starts when the subject has grasped the object and ends when he starts
to release the object. Applying motion primitives as units for segmentation is
described in the following Section 4.3.2, the application to grammar building is
introduced in Section 4.4.

4.3.2 Segmentation of Human Motion Sequences

Related Work on Automatic Segmentation

In the previous section we described a method to derive and define a set of
motion primitives for a given scenario. In order to build models for these
motion primitives, we need to segment observation sequences regarding the
time slices in which each motion primitive has happened. This segmentation
can either be done manually or automatically.
Although many researcher segment their data manually due to reasons that
will be discussed below, a lot of work has been done to automatically segment
data into motion primitives which we will now briefly discuss.
Most of the automatic approaches segment motion data based on some ex-
tremum criteria [WLZ05, WSXZ01] e. g. minimum torque over all joints. After
segmentation the motion segments are clustered into a set of motion primitives.
For Human motion segmentation it is necessary to find temporal segment
boundaries of body parts with many degrees of freedom. Methods that have
been proposed often depend on an extremum criteria such as points in time
with minimum velocity. The motivation is that human motion does not happen
in constant speed since in biological systems the spring effect of muscle is usu-
ally exploited to minimize energy costs during movement. Energy can also be
saved through turning joints as few as possible, i. e. joints near the end of limbs
rotate more than those near the root of body. These characteristics introduce a
natural physical measurement of elementary behavior − the torque. Consider-
ing the body as articulated, the torque of the whole body at time t is the sum
of torques of all joints. The segment boundaries are at the moments with local
minima of the torque [WLZ05].
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Another approach is governed by the idea that segmentation involves search-
ing natural inconsistent points within the whole observation. A change in the
type of human movement usually causes dips in velocity or abrupt variations in
moving direction. Wang et al. [WSXZ01] exploit this by finding the local min-
ima of velocity and local maxima of change in direction. The minima (maxima)
below (above) a certain threshold are selected as segment points. In practice,
they found the calculation of change in direction to be prone to noise. As a
result, they apply a Gaussian smoothing filter to reduce noise.
Besides using maxima or minima in velocity or similar as boundaries Shum
et al. [LWS02] use linear dynamical systems to find the segmentation bound-
aries and Jenkins [JM04] proposes a kinematic centroid segmentation. For the
kinematic centroid segmentation the center of a body part is observed. When
the distance of the center to the original center position is highest, a segment
boundary is inserted. Afterwards, the current center position is used as refer-
ence and the procedure is repeated.
Most of the automatic segmentation approaches do only return segment bound-
aries but they do not assign the segments to a class label. Therefore, the seg-
ments are usually clustered, e. g. using Nearest Neighbor Clustering with Dy-
namic Time Warping (DTW) [OSU99] or Hierarchical Clustering using HMMs
[WSXZ01].
Segmenting and clustering the data automatically into primitives does not re-
quire any human intervention, which makes it feasible for online learning. The
main focus of this work is not on online learning but on reliable recognition of
human motion, e. g. for further semantical processing of the recognized motion
primitives. Therefore, we use motion primitives defined with the functional de-
composition described in the previous section. This also solves the problem of
assigning motion primitives a human understandable label and meaning which
makes the recognition system and its output easier to interpret for a human
user. Thus, we decided to use manual segmentation for this work which will
be explained in more detail in the following Section 4.3.2.

Manual Segmentation

In this section we describe the approaches used for manual segmentation.
The methods for manually segmenting observation sequences can be separated
into different types. Gaps between motion primitives or overlapping of motion
primitives can be allowed depending on the application. In our case we want to
achieve a segmentation where each point in time belongs to exactly one motion
primitive.
According to Kahol et al. [KTS03] the segmentation of motion trajectories is
done differently by different persons. Therefore, it is necessary to clearly define
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the criteria to segment the motion primitives to get congruent results. The first
step when segmenting a set of observation sequences is the definition of criteria
for motion primitive boundaries.
For the actual segmentation we visualize the current time step in a motion tra-
jectory. Since we do not allow gaps or overlap we need to specify the motion
primitive label and the beginning of each motion primitive while the ending is
given implicitly through the start point of the successor primitive. The name
of the motion primitive is selected from a list (see Figure 4.7) of motion prim-
itives as defined by the functional decomposition and is used as label for the
corresponding segment.

Figure 4.7: User interface for motion sequences segmentation and labeling.

With this approach the segmentation of the data takes 20-40 times real-time
for a human annotator, which makes the manual segmentation and labeling of
the data a tedious and time consuming task. In [SGS11] we showed that the
same recognition rates can be achieved by segmenting only a small amount of
data while labeling the rest of the data without specifying the motion primitive
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boundaries. The labeling without specifying the boundaries takes only about
50% of the time of segmenting the data.

4.3.3 Model Initialization and Training

After segmenting and labeling the observation sequences into motion primi-
tives we can train our recognition system and evaluate its recognition perfor-
mance. As stated above we use statistical sequence modeling in terms of Hid-
den Markov Models [Rab89] to model each motion primitive. Hidden Markov
Models (HMMs) allow a better modeling of the temporal variations of the mo-
tions than templates. For modeling the emission probabilities of the HMM
states we use Gaussian Mixture Models (with diagonal covariance matrices).

Initializing the Recognition System

Before we can iteratively improve (train) our HMMs we need to initialize the
parameters of the HMMs, namely the means, covariances and weights for the
GMMs as well as the state transition probabilities. It is possible to use ran-
dom initial values and train those to fit the training data. However, as we have
manually segmented and labeled data it is better to use the motion primitive
boundaries as an initial alignment of the training observation sequences and
the HMMs. Therefore, we know which feature vector belongs to which HMM.
We could assume that each HMM state models the same number of consecutive
feature vectors (which is of course wrong, but it is a good initial guess). With
this assumption we partition each observation sequence belonging to an HMM
into equally long pieces and assign one piece to each HMM state. Using pieces
belonging to a certain HMM state we can estimate the Gaussian Mixture Model
using the K-Means algorithm (see e. g. [HAH01] Chapter 4.4) or a fuzzy version
of the K-Means algorithm which is called Neural Gas clustering. Both cluster
the data into K clusters. The number of clusters is equal to the number of mix-
ture components in the GMM. We then use the clustered data to calculate the
Gaussian Mixture Model. The main difference between the K-Means clustering
and the Neural Gas clustering is the fact that Neural Gas does assign feature
vectors to multiple clusters, which takes more processing time but is more ro-
bust against a poor choice of initial cluster centroids. We now have a set of
Gaussians and their weights for each HMM state. In order to fully describe
the HMM we also need to specify the HMM topology and the transition prob-
abilities. We always use a left to right HMM topology with two transitions for
each state. One transition to the successor state and a self loop. The transition
probabilities are set to 0.5 for each transition and are not trained.
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Training the HMM Parameters

The initial HMMs can be further improved. We use standard HMM training
[Rab89] on observation sequences of isolated motion primitive or forced align-
ment training on sequences of motion primitives to improve the GMMs. Note
that in both cases we do not train the HMM transition probabilities. When
using forced alignment training we build a sequence HMM representing a
training sequence of motion primitives. The sequence HMM is simply a con-
catenation of the motion primitive HMMs of the given motion sequence. We
then align the training observation sequence with the sequence HMM using
the Viterbi algorithm as described in Section 2.6.1. The training observation
sequence is forced to follow the sequence of motion primitives the sequence
HMM is build of. Therefore, the method is called forced alignment. If not
stated otherwise, we used forced alignment training featuring the Viterbi al-
gorithm. After aligning the feature vectors to the HMM state sequence the
Gaussian Mixture Models are improved using the standard EM-Training for
Gaussian Mixture Models. Finally, an HMM for each of our motion primitives
has been created.
What we also need is a model on which HMM is more or less likely in a given
situation (or context).

4.4 Context Models

It is not sufficient to model motion primitives without modeling their temporal
and spatial context. We need to know what happened before the motion or
what is happening in the environment while we perform a motion. Several
context models have been proposed.

4.4.1 The Different Types of Context Models

Nevatia et al. [NZH03] as well as Ryoo and Aggarwal [RA06] stated that three
different types of context have to be modeled to fully describe the context of a
motion primitive, i. e. the temporal, spatial and logical contexts. The standard
temporal context is Allen’s interval temporal logic [All94] which contains the
temporal dependencies before, meets, overlaps, starts, during and finishes. Spatial
dependencies are e. g. near a certain object or touching a certain object. When de-
scribing higher level activities based on motion primitives we also need logical
elements such as and, or and not. For our work we concentrated on the first two
aspects, i. e. temporal and spatial dependencies, since the logical dependencies
contradict the needs of an online recognition system.
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4.4.2 Context Free Grammars

One possibility for modeling temporal dependencies which is often used are
grammars, especially context free grammars (CFGs). CFGs model the tempo-
ral dependencies before and meets. In the formal language theory, context-free
grammars denote a particular class of languages which generate strings of ter-
minals (i. e. symbols). CFGs have first been defined by Chomsky [Cho56]. The
advantage of CFGs is that they are expressive enough to describe complex lan-
guages like programming languages, while parsing them is computationally
tractable. A CFG consists of four components a set of non-terminal symbols,
a set of terminal symbols, a set of rules and a start symbol. Beginning with
the start symbol the rules can be used to generate all sequences of terminal
symbols that follow the given grammar. When modeling motion sequences we
can create a CFG that is capable of generating all possible sequences of motion
primitives. Each motion primitive in the grammar does have predecessors and
successors which specify the context of the motion primitive.

Manual Grammar Generation Based on Functional Decomposition

For small domains it is possible for an expert to manually design a grammar.
The advantage of manually defining the grammar is the ability to give names
to the non-terminal symbols which have some semantic meaning for a human.
In our work we use the functional decomposition described in 4.3.1, which
has been created by an expert. The decomposition gives information about
the temporal and functional dependencies between the motion primitives. This
information can be converted into a context free grammar by an expert. The
expert can define non-terminal symbols which belong to subparts of the motion
sequence and can also model similar parts of different motion sequences with
the same non-terminal in the grammar.

Automatic Grammar Generation Based on Segmentations

Nonetheless Context Free Grammars can also be defined automatically. Af-
ter retrieving the sequence of motion primitives for the observation sequences,
which has to be done anyway to initialize and train our recognition system, it is
possible to use these sequences to build a context free grammar. For our work
we used a modified version of the Sequitur algorithm [NMW97]. For each pair
of consecutive motion primitives that occurs twice in the data a non-terminal is
created and the occurrences of the pairs are replaced by the non-terminal sym-
bol. This is done iteratively and recursively investigating one motion primitive
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after another. Since we have multiple motion sequences we had to modify the
Sequitur algorithm to take sequence boundaries into consideration.

4.4.3 Statistical N-Grams

For a small domain with a fixed set of possible motion sequences context free
grammars work quite well but they are lacking flexibility concerning sponta-
neous or unusual motion sequences that were rarely or not seen in the train-
ing. We need a large amount of training examples and create a huge gram-
mar to be able to model all motion sequences that can occur. This problem
gets even more difficult when we move to larger domains. An alternative to
context free grammars are N-Grams. N-Grams do not consider the whole mo-
tion sequence but a few consecutive motion primitive, i. e. an N-Gram models
the probability of a motion primitive given its N-1 predecessors [BJM83], e. g.

p(mpi) = p(mpi|mpj). This probabilities can be calculated as
count(mpj,mpi)

count(mpj)
us-

ing the training data. Since we model the motion primitives depending on the
predecessors, we also model some spatial context since the predecessor motion
primitive contains some information on the spatial situation. Since this might
not be sufficient we also develop an object dependent context model.

4.4.4 Object Dependent Context Model

We should not only model the temporal context of motion primitives, but also
the spatial context. Contexts could be:

• The room a motion primitive is performed in
• The situation a motion primitive is performed in
• Objects that are available in the environment
• Objects that have been used shortly
• Typical object positions
• Currently likely object positions/Salient objects

Using this consideration about the environmental context, we decided to de-
veloped an object dependent context model (ODCM) [Wer11] which models the
following aspects for each motion primitive:

1. Do we need objects for the motion primitive?
2. What objects need to be available?
3. What positions do the objects need to be located?
4. What objects have to be grasped to start the motion primitive?

Answering those questions for a motion primitive gives us the context model
state the motion primitive can be performed in. The probability of a motion
primitive mpi can be calculated as follows:
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If it is an object independent motion primitive then p(mpi) =
pobjectIndependentScore. If it is a manipulative motion primitive that manipulates
objects O1 through ON then

p(mpi) =
∑N

j=1(pavailable(Oj) + patCorrectLocation(Oj) + pgrasped(Oj))

3 ∗ N
(4.1)

whereas all three probabilities are calculated the same way, e. g.:

pavailable(Oj) = pavailable, i f Oj is available

= pnot available, i f Oj is NOT available
(4.2)

In total we have 7 scores that are optimized during the training of the con-
text model (the score of pobjectIndependentScore and two scores each for pavailable,
patCorrectLocation, and pgrasped. During the recognition process we can then com-
pare the desired state with the actual environmental context. We learn the de-
sired states by inferring it directly from the motion primitive, e. g. if a motion
primitive is called Get apple from left back the context model state is as follows:

1. Yes, we need an object (an apple).
2. An apple needs to be available.
3. The apple needs to be located in the left back corner of the table.
4. No objects must be grasped to start the motion primitive.

If using external sensors/recognizers to model the environment (e. g. using an
object recognition system to recognize objects, their location and other prop-
erties) it is sufficient to have one universal environment model state for all
alternative motion sequences that are part of the current recognition process.
If using the recognized motion primitives to estimate the changes in the envi-
ronment it is necessary to model the environment depending on the performed
motion sequences.
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Figure 5.1: The diagram highlights all components involved in the sequential
recognition process.

In this chapter we will describe and evaluate our sequential human motion
recognition system. We first develop a marker-based baseline human motion
recognition system for continuous motion recognition, i. e. we develop suitable
features as well as motion primitive models and evaluate various context mod-
els. Then we advance the system and evaluate the proposed object dependent
context model.
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5.1 Improving the Pre-processing

5.1.1 Feature Normalization

For the first experiment we use the KIT-S dataset. Based on the tracked mark-
ers and a kinematic body model of the subject, we calculated joint angles of
the human upper body for each time frame (see Section 4.2.2). We investigated
different features and the influence of features normalization. Since the goal
is to optimize recognition accuracy, we performed the evaluation of the fea-
tures through recognition results. These recognition experiments will now be
explained in more detail.

The Recognition System

Based on the collected KIT-S dataset we extracted feature vectors with 24 joint
angles each to build a motion recognition system. Our human motion recog-
nition system features the one-pass IBIS decoder [SMFW01], which is part of
the Janus Recognition Toolkit (JRTk) [FGH+97]. For HMM motion primitive
model training we used about 500 recordings (2 hrs) of human motions from a
single subject. For model bootstrapping, we manually segmented two third of
the data into motion primitives (see section 4.3.2). In total we have 49 unique
motion primitives. Each state of a motion primitive left-to-right HMM has two
equally likely transitions, one to the current state and one to the successor state.
The emission probabilities are modeled by Gaussian mixtures, initialized by the
K-Means algorithm based on the manually segmented and labeled data. HMM
training was performed based on forced alignment training (see section 4.3.3)
on whole motion sequences. A session independent set of about 100 human
motions of the same subject was used as test data. Session independent data
refers to a set of recordings from the same subject but collected on another day
or in another session. Between sessions markers were repositioned. For decod-
ing we used Time-synchronous Beam Search as described in Section 2.8.1.

Error Measurement

Primitive Error Rate As an error rate we can calculate the Levenshtein dis-
tance at motion primitive level between the correct motion primitive sequence
(i. e. the reference sequence) and the recognizer output (i. e. the sequence hy-
pothesis). The Levenshtein distance measures the number of edits (i. e. inser-
tions, deletions and substitutions) needed to transform the reference into the
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hypothesis. The primitive error rate (PER) is calculated as

PER =
I + D + S

N
× 100, (5.1)

whereas I is the number of inserted primitives, D is the number of deleted
primitives, S is the number of substituted primitives and N is the total number
of primitives in the reference sequence. In order to calculate the error rate for
a set of motion sequences we calculate the average primitive error rate, i. e. we
calculate the error rate for each sequence in the set and build the average over
the error rates of all sequences in the set.

Experiments and Results on the KIT-S Dataset

The goal of the following experiments is to find initial features for recognizing
continuous human motion sequences. We found that we can not use the joint
angle vectors directly since results were very poor (78.4% primitive error rate).
Therefore, we first evaluated if we can improve recognition rates by normalizing
the feature vectors.

Normalization In our first experiment we used the recognition system de-
scribed in section 5.1.1. We used standard parameters from the JRTk. Using the
standard parameters means that we trained the system with 3 HMM states and
4 Gaussians per state and used a context model weight of 32 and a primitive
insertion penalty of 0. For the first experiment we used a 2-gram context model
(see section 4.4.3). On the one hand we trained and tested the system with the
joint angles described in section 4.2.2 and on the other hand we trained and
tested the system on joint angles normalized over time. The 24-dimensional
feature vectors were therefore normalized by setting the mean to 0 and the
standard deviation to 1 per sequence over time, i. e. x−µ

σ . The results for the
two different types of feature vectors are as follows:

Normalization without with
PER 78.4% 20.9%

Table 5.2: Primitive Error Rate with and without feature normalization.

The above results show that it is essential to use feature normalization for our
session-independent motion recognition system, which we did for all following
systems.
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Figure 5.3: Primitive error rates of the KIT-S dataset for varying numbers of
states per HMM.

Optimization of amount of HMM states For further improvements of the
recognition system we optimize the number of states per HMM. We used the
recognition system described in section 5.1.1 with normalized joint angles. This
time we used a 0-gram context model (see 4.4.3), i. e. all motion primitives have
an a priori probability of 1. We use a 0-gram context model to optimize the
amount of HMM states independent of the context model. Figure 5.3 shows
the error rates for different numbers of states per HMMs. The best error rate of
22.7 % is achieved when using 4 states (and 4 Gaussians per state).

5.1.2 Feature Comparison

After having shown that the recognition system works well on the KIT-S
dataset, we used a dataset with less controlled motions and compare the influ-
ence of different features concerning performance. For this purpose we applied
a second dataset (KIT-F dataset). We compared three different types of features
namely joint angles as well as their first (∆ joint angles) and second (∆∆ joint
angles) order derivatives.

Joint Angle-Based Features

In the following experiment we compared three different types of features.
Firstly, we used the joint angles from section 4.2.2. Secondly, we calculated
the differences of consecutive joint angles (∆ joint angles) which gives us a sort
of joint angle velocity. For a sequence of feature vectors X = x1, x2, ..., xn we
calculated the joint angle difference as ẋi = xi+1 − xi−1. Thirdly, we calculated
the second derivative of the joint angles, i. e. ẍi = ẋi+1 − ẋi−1.
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Figure 5.4: Primitive error rates of the KIT-F dataset for varying numbers of
Gaussians per state.

The Recognition System

For the following experiments we made some changes to the recognition system
described in section 5.1.1. Due to the small size of the dataset we use 10-fold
cross-validation to evaluate the system performance. For the bootstrapping
of the recognition system all motion sequences had been manually segmented
into motion primitives as described in section 4.3.2. In total we had 24 unique
motion primitives. Due to the more robust results in comparison with K-Means
the models were initialized by the Neural Gas algorithm based on the manually
segmented and labeled data. HMM training and decoding was done as before.

Experiments and Results on the KIT-F Dataset

In the previous experiment, 4 states per HMM worked best. We optimize the
number of Gaussians per state using 10-fold cross-validation. The number of
states was kept at 4. We also optimized the context model weight and the
primitive insertion penalty and found that setting both to 2 works best. In Fig.
5.4 we show the recognition error rates on the KIT-F dataset for using different
numbers of Gaussians while decoding using a 0-gram context model.
Figure 5.4 shows that we get the best results when using 16 Gaussians where
the primitive error rate is 17.6 %. We use this setup to find the best feature type
among the three described features. Table 5.5 shows the average primitive error
rates over all cross-validation folds on the KIT-F dataset.
We can see that using ∆ joint angles works best on the KIT-F dataset. This might
be due to the fact that although we normalize the joint angles their variance is
still high depending on the subjects position and orientation relative to the
table. For ∆ joint angles this dependency is a lot smaller. Therefore, we will
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Feature joint angles ∆ joint angles ∆∆ joint angles
PER 17.6% 12.4% 37.2%

Table 5.5: Primitive Error Rate for different feature types using HMMs with 4
states and 16 Gaussians per state for the KIT-F dataset.

stick to ∆ joint angles for the following experiments. We will get back to feature
optimization in Chapter 7 using larger datasets.

5.2 Evaluating the Context Models

In the first experiment on context models we compared different types of tra-
ditional context models namely statistical N-Gram models with a context free
grammar on the KIT-F dataset. Those context models are described in section
4.4.
The second experiment on context models is performed on the KIT-M dataset.
We also developed a completely new object-dependent context model. We com-
pare this new model with different N-Grams and show that its power is com-
parable while the modeled properties are complimentary.

5.2.1 Evaluating Traditional Context Models

Experiments and Results on the KIT-F Dataset

Since the optimal number of states per HMM and Gaussians per state could
change when using new features we again optimized those parameters for the
new features before integrating context models. The average cross-validation
results are shown in Fig. 5.6.
In Fig. 5.6 we can see that we achieve the best result with 9 states and 4 Gaus-
sians per state which is an error rate of 4.2 %. The result is also published in
[GKS10].
Since 9 states and 4 Gaussians works best on the KIT-F dataset we used this
setup for our first experiment on context models. In order to compare the dif-
ferent types of traditional context models, we performed an experiment with
the same setup for each of the three context models. First of all, we performed a
test with a 0-gram context model, where all transitions from one motion prim-
itive to another are equally likely. In a second experiment we used a simple
automatically generated statistical 2-gram context model, where the probabil-
ity of a motion primitive depends on the predecessor primitive. As a third
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Figure 5.6: Primitive error rates for varying numbers of states per HMM and
Gaussians per state on the KIT-F dataset using ∆ joint angles as features.

experiment we used a context free grammar (CFG) deduced from the func-
tional decomposition of the motion sequences. As recognition system we used
the best system from Section 5.1.2. We only added the different context models
during the decoding process.

Context Model 0-gram 2-gram CFG
PER 4.2% 2.3% 0.9%

Table 5.7: Primitive Error Rates for different context models on the KIT-F
dataset.

The results in Table 5.7 [GSFS10] show that context models give significant im-
provements in primitive error rate. When replacing a 0-gram context model by
a 2-gram model the error rate drops by a factor of 2. The same is true when
moving from a 2-gram context model to a context free grammar. This suggests
that a context free grammar seems to be the best solution for motion recogni-
tion. However, a context free grammar also has several drawbacks. While it
gave the best results, it had to be created manually. Also, grammars are not
as flexible as 2-grams concerning new domains or unseen motion sequences.
Since the KIT-F dataset is a rather simple dataset, the drawbacks do not show
here.

5.2.2 Evaluating the Proposed Object-Dependent Context
Model

In the previous experiment we showed that context models improve the recog-
nition rate of a motion recognizer significantly. All context models that were
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used focus on the motion primitives and their typical temporal order. However,
they do not take into account any information about the environment, e. g. in-
formation about objects that are relevant for the performed motion primitives.
Consequently, we developed a context model that models the relations between
the performed motion primitives and the objects on the table. This allows the
recognizer to react on environmental changes. We compared this new context
model with a 0-gram and a 2-gram context model on the KIT-M dataset.
For the experiments in this section we used the KIT-M dataset with fluent mo-
tions in contrast to isolated motions in the KIT-S dataset. There are two differ-
ences to the KIT-F dataset. The KIT-M dataset used varying positions for the
objects and the subject was allowed to use both hands independently, i. e. she
was allowed to perform two motions at the same time. This dataset contains
motion sequences as they happen in every day life.

The Recognition System

For the evaluation of the ODCM we trained the system as described in section
5.1.2. For the recognition we trained HMMs for 82 motion primitives. The mo-
tion primitives are roughly the motion primitives of the previous experiment
separated by object positions. We performed a 5-fold cross-validation on the
KIT-M dataset. For the recognition we replaced our previous recognizer frame-
work with the Biosignals Recognition Toolkit (BioKIT) (see section 2.9.1) and
implemented the ODCM in that framework.

Experiments and Results on the KIT-M Dataset

Before comparing the context models we optimized the numbers of states and
Gaussians for the KIT-M dataset. We found that 6 states and 16 Gaussians work
best for the KIT-M dataset. Table 5.8 shows the average results for the 5-fold
cross-validation as published in [Wer11].

Decoder JRTk BioKIT
Context Model 0-gram 0-gram 2-gram ODCM
PER 8.0% 7.7% 3.9% 5.0%

Table 5.8: Primitive Error Rate for different context models on the KIT-M
dataset.

Table 5.8 shows for the KIT-M dataset that the error rate drops when using
the object-dependent context model in comparison to using a 0-gram context
model. This indicates that the recognition process can be improved by using
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object knowledge, although the ODCM results are worse than the 2-gram re-
sults. This might be partially due to the nature of the dataset which contains
motion sequences that most of the time follow the same sequential order which
makes it easy for the 2-gram model to predict the correct successor motion
primitive. Due to the complementary nature of the 2-gram context model and
the ODCM we expect the error rate to improve when combining both context
models. We do not futher investigate this combination due to limit time for this
thesis and move on to improving the motion primitive models. Nevertheless,
both systems can recognize the correct motion primitive including the correct
object and the location on the table in more than 95% of all cases, which is a
very good recognition result.

5.3 Online Recognition

5.3.1 Feature Normalization

Probably the most important difference between an offline system and an online
system is the limited feature normalization. While we normalized our features
in offline mode based on whole sequences, in online mode we can only normal-
ize the features based on the feature vectors that have been captured up to the
time step in which we want to recognize the current motion. In section 5.1.1 we
calculated the mean and standard deviation for a whole motion sequence and
normalized the feature vectors using those values. Now we calculate the mean
and standard deviation on the feature vector between the start of the motion
sequence and the current time step. As a result the feature normalization is
poor in the beginning but improves over time as long as the same activity is
performed.

5.3.2 Vicon-Based Online Motion Recognition

For our first online experiment we used a system very similar to the one de-
scribed in section 5.1.1. There are only a few differences to that system. We
limited the number of activities to 8. Thus, the number of unique motion prim-
itives was 41. For the training of the system we used the 400 motion sequences
of those eight activities. We initialized and trained the system as described in
section 5.1.1. For the decoding we used the according 80 test sequences. The
decoding was guided by a context free grammar which was designed to allow
online recognition, i. e. the primitive sequences that start with the start symbol
are valid parses of the grammar. For the decoding we normalized the features
as described in Section 5.3.1 while recognizing the current motion primitive
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every 1.5 seconds. We achieved an activity error rate (see section 8.1.2) for the
whole sequences of 0%, i. e. at the end of each sequence we recognized the ac-
tivity correctly. This demo system has been published in [GFK+08] and online
demonstrations have been presented multiple times.



6
Concurrent and Coupled Recognition for

Human Motion

Most motion recognition systems to date recognize motions in a limited do-
main. Many of those systems do not scale well to larger domains, while others
that scale well do not allow online recognition. In this chapter we introduce
a novel approach to concurrent and coupled (C&C) human motion recognition.
This method scales a lot better than most state-of-the-art systems while allow-
ing online recognition of complex human motion sequences. The main differ-
ence to the system in chapter 4 is the modeling of motion primitives of individ-
ual body parts instead of modeling movements of the whole human body as
one combined motion. In order to define a set of motion primitives we extend
our method for structured functional motion decomposition from section 4.3.1.
The resulting motion primitives can belong to individual body parts or combi-
nations of body parts depending on the motion performed. Thus, we have to
model significantly fewer motion primitives than with our previous approach.
This enables us to perform online recognition of larger domains.

6.1 Related Work

In this section we want to give an overview on techniques that are capable of
modeling concurrency of motions (both single-layered and hierarchical meth-
ods) since this is one of the main aspect of this thesis. Only few of the ap-
proaches mentioned in Section 4.1 consider concurrency of motions. On the
one hand, modeling concurrent motions independently is motivated by find-
ings in neural science concerning human motion generation [KSJ00]. On the
other hand, it is motivated by the technical advantages when building a mo-
tion recognition system with motion primitive models that occur more frequent
in human motion sequences and that are simpler and consequently easier to



62 Chapter 6. Concurrent and Coupled Recognition for Human Motion

model. According to [Müs08] humans can perform multiple activities at the
same time, i. e. they can perform multiple motions that are independent of
each other. The motion generation in the human brain is capable of generating
independent motions of a single limb and motions for a combination of limbs
[KSJ00].

6.1.1 Single-Layered Techniques

To model concurrent motions some authors use variants of HMMs, such as
Coupled HMMs (CHMMs) or Dynamic Bayesian Networks (DBNs). A stan-
dard HMM is a sequential model and only one state is activated at a time,
preventing it from modeling two or more concurrent motions. Oliver at al.
[ORP00] published the concept of CHMMs to model interactions of two agents.
Basically, a coupled HMM is constructed by coupling multiple standard HMMs.
Each standard HMM represents one of the agents. The coupled HMM has ad-
ditional transitions between the hidden states of the two different HMMs. They
recognize complex interactions of two agent such as ’two persons approaching,
meeting, and continuing together’. Brand and Oliver [BOP97] use CHMMs to
recognize complex human motions. CHMMs are able to recognize multiple
coordinated motion primitives, but their disadvantage is the need for training
all possible combinations of concurrent motion primitives.

In contrast, Vogler and Metaxas [VM99] use parallel Hidden Markov Mod-
els (PaHMMs), which train motion primitives of different body parts indepen-
dently and whose likelihoods are only combined for recognition. The PaHMMs
are synchronized after every motion primitive and do not allow asynchronous
sequences of motion primitives in their application. Each pair of motion prim-
itives stands for a sign of the American sign language.

In [NN07] Natarajan and Nevatia advance the CHMM to Continous Hidden
Semi Markov Models (CHSMMs) by adding duration models. They show that
those outperform the CHMM and the PaHMM in the domain of sign language.
They also present an approximation to the learning and infering algorithms to
handle the exponentially increasing computation time for training and apply-
ing the CHMM and the CHSMM.

Park and Aggarwal [PA04] use DBNs to recognize interactions of two persons,
e. g. pushing, hugging, and kicking. They assume that the temporal evolution
of the DBNs for poses of different body-parts is independent of each other.
Using the DBNs they evolve the whole-body pose estimation of each person
over time. For the recognition of interactions they add spatial and temporal
constraint which need to be satisfied for an interaction to be recognized. In
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order to model the temporal constraints between the two persons’ motions they
use an adoption of Allen’s interval temporal logic [AF94].

6.1.2 Hierarchical Techniques

Aggarwal et al. [AR11] state that statistical and syntactic techniques have dif-
ficulties modeling concurrent motions. Only description-based approaches are
capable of modeling complex temporal structures.

Statistical

Shi et al. [SHM+04] developed a propagation network to model concurrent
motions. With this network they verify the correctness of performing a glucose
monitor calibration task. Each node of the network uses a Bayesian Network
to evaluate the performed motions. A duration model for each node is used to
guide the traversal through the network. With this approach they can model
multiple concurrent motions.

Description-based

Gupta et al. [GSSD09] recognize actions in Videos using AND-OR graphs.
In contrast to other work they aim to improve the recognition by modeling
causality between their primitives. They match tracks from baseball videos to
actions in a storyline which includes concurrent actions.
Other researchers such as [GDDD04, ACM+08] use petri nets to recognize hu-
man activities. The petri nets are capable of representing Allen’s temporal
interval logic. Ghanem et al. [GDDD04] developed a system to recognize in-
teractions between humans and vehicles using petri nets. Their system does
not yet handle noisy or irrelevant observations. A further disadvantage of their
approach is that they do not use confidences of the low-level detection for their
activity recognition. Due to the fact that the tokens in a petri net are undistin-
guishable from each other they can not describle multiple alternative histories.
Therefore, the petri nets have difficulties recognizing complex scenes.
Nevatia et al. [NZH03] developed a language-based representation (VERL)
to recognize interactions between multiple persons. They use three levels of
events to model human activities: primitive events, single-thread composite
events, and multi-thread composite events. In order to specify constraints be-
tween events they use Allen’s temporal, spatial and logical predicates. For the
low-level recognition of primitive events and single-thread composite events
they use Baysian networks and HMMs respectively. For the high-level recog-
nition of multi-thread composite events they developed a heuristic algorithm
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to solve constraint satisfaction. A disadvantage of their system was to handle
recognition failures of the low-level components. Vu et al. [VBT03] extended
the approach of Nevatia et al. to describe any levels of hierarchy, but in contrast
to [NZH03] only conjunctions where allowed as logical predicates.

Pinhanez [Pin99] developed a {past, now, future} network (PNF-network) that
can model all temporal constraints of Allen’s interval temporal logic. Their
work focuses on recognizing high-level activities based on simple low-level de-
tectors. They do not try to recognize human motions. Although the network is
capable of recognizing activities with arbitrary temporal constraints, the system
has several shortcomings. Their system is not capable of handling confidence
values of the low-level detectors, i. e. perceptions are converted into a discrete
PNF representation. Thus, a miss detection is more likely to happen and re-
sults in an erroneous state of the PNF-network. They introduced methods to
compensate for a single detection failure. Another disadvantage is the fact that
the PNF-network for all activities has to be modeled manually, whereas a sub-
network has to be specified redundantly if the sub-event can occur multiple
times.

Ryoo et al. [RA09] use a CFG for a high-level description of an activitiy to
model the temporal, spatial and logical constraints between motion primitives.
Motion primitives are represented as HMMs. As temporal constraints they
model the constraints of Allen’s interval temporal logic. Their system first
detects all low level motion primitives and then evaluates if the detected motion
primitives satisfy the CFG of high-level activities. This assumes that the whole
activitiy has been performed before recognizing it. In addition to Pinhanez
[Pin99], they introduced a way to handle confidence measures of the low-level
detectors as well a method for dealing with missing detections of low-level
motion primitives. They still have the same drawback as Pinhaned [Pin99] with
modeling the activities which has also been done manually.

Zhang et al. [ZTH11] extend stochastic context-free grammars (SCFGs) by
Allen’s interval temporal logic, but in constrast to Ryoo et al. [RA09] they
use the SCFG directly for parsing instead of an abstract representation which
needs to be satisfied. HMMs are used as motion primitive detectors in a simple
2D setup. An activity description is retrieved automatically based on training
data. For the recognition they use a Multithread parsing algorithm.
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6.2 Motion Primitive Models

6.2.1 Functional Decomposition

In section 4.3.1 we proposed a method for structured functional decomposition
of human motion sequences. While this method is sufficient for the decompo-
sition of sequential motion sequences it has to be extended for more complex
activities, such that it can be applied to the decomposition of human activities
with C&C human motion primitives. The main difference is the possibility of
resulting in parallel motion primitives. While the previous method results in
motion primitives containing independent motions of multiple body parts, the
extended version now models motions independently, which is more congru-
ent with the nature of motions. An example for such motion primitives is Move
knife and Steady apple in Figure 6.1 assuming a right-handed person. It results
in the two motion primitives Carry knife of the right arm and Steady apple of the
left arm (see Figure 6.2). The modeling of concurrent motions with separate
motion primitives uses the full power of the previously proposed method. The
functional decomposition gives us a list of abstract motion primitives which
have to be concretized during segmentation.

Cut apple

temporal relationship

fu
nc

ti
on

al
 r

el
at

io
ns

hi
p

Pick apple 

Move knife 
during Steady apple

Cut apple

FP1

FP4

FP5 FP5

Move apple 
FP2

Release apple 
and Pick knife

FP3

Move knife 
during Release apple

FP6

Release knife 
and Pick apple

FP7

Move apple 
FP8

Relase apple 
FP9

Figure 6.1: Fine grained functional and temporal structures of a complex hu-
man motion sequence ”cutting an apple” with concurrent motions but without
distinction of the used body parts.

6.2.2 Segmentation and Labeling

During segmentation, the different properties of the abstract motion primitives
have to be specified, e. g. the beginning and ending as well as the inital and
final position of a motion. Depending on the category of the motion primi-
tive, different properties have to be specified. The motions can for example
be separated into stationary and non stationary motions. Stationary motions
may consist of manipulation motions such as cut apple which are performed
at a certain location. Non stationary motions serve as supporting functional
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Figure 6.2: Complex human motion sequence with concurrent motion primi-
tives: "cutting an apple".

primitives, which move a body part or an object to the appropriate position,
e. g. carrying a knife to the cutting board. For those primitives two locations
have to be specified, the start and the end position.
We also need a definition of boundaries between motion primitives with objects
and without objects. The intuitive boundary is the contact with the object when
grasping or releasing an object. The grasping or releasing motion is always
assigned to the motion without object since this motion can not be separated
from reaching for the object (see [SB99, Müs08]) due to the anticipation effect.
Since the grasping or releasing motion can not be separated from the movement
of the hand from one object to another, a motion without object consists of three
parts: releasing, moving, and grasping. This is the most general form, but the
start or end motion can also be omitted if the predecessor or successor motion
primitive is not a motion with an object. For simplicity reasons we do not
distinguish different grasps for the releasing or grasping motion.

Concurrent and Coupled Segmentation

Due to the nature of human motions, several motion primitives can be per-
formed at the same time. The set of joints moved when performing a motion
primitive varies between different motion primitives. When annotating data
with motion primitives for individual body parts, it is necessary to specify the
set of joints used for each motion primitive. Therefore, a hierarchy of body
parts is used which decomposes the human body into body parts of multiple
levels of granularity, e. g. the upper body is separated into left arm, right arm,
head, and torso (see Figure 6.3).
Since every label is associated to a body part it has to be decided which body
part is the most relevant for the motion primitive. In general, motion primitives
are always assigned to the body part that is most important for the performed
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Figure 6.3: Decomposition of a feature vector into feature vectors for individual
body parts.

primitive. Motions are only assigned to the whole upper body, if all limbs
are performing a coordinated motion serving the same goal which can not be
divided further, e. g. the lifting of a heavy object from the floor.

For the segmentation the basic procedure and the software framework are the
same as in section 4.3.2 but due to the more complex segmentation process
we can not directly use the segmentation module. The segmentation method
needs to handle the annotation of motion primitives for multiple layers in a
body hierarchy, e. g. upper body (both arms) versus left arm or right arm only.
Another challenge is the very large number of possible motion primitive labels,
which have to be assigned to the segmented motions. Both aspects will be
discussed in the following.

Extension of the Motion Sequence Segmentation Toolkit

The most straight forward extension of the manual segmentation method de-
scribed in section 4.3.2 is segmenting the data separately for each body part.
But this method has multiple drawbacks. If using one column for each body
part the segmentation user interface will no longer fit completely on the screen
if using more than three or four body parts. In addition to that, it is more dif-
ficult to verify the correct start and end times for a motion primitive. As in the
sequential manual segmentation, the end time of a motion primitive is specified
by the start time of the next primitive to speed up the segmentation process.
When the successor primitive is in another column as the motion primitive to
be segmented it is difficult to validate the correct end time. We resolved those
conflicts by using only one column (for the highest body part in the hierarchy)
and split this column only in areas where multiple motions of body parts in
a lower level occur. This saves a lot of space on the screen and allows a more
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intuitive segmentation of the motion primitives, which allows to segment the
data faster and with less errors.

Labeling

For the labeling of human motions we aim at a general method. For datasets
with realistic daily activities and an sufficiently fine grained segmentation into
motion primitives it is not feasible to use a list of all possible motion primitive
labels due to the huge number of possible primitives. Therefore, we developed
a dynamic generator of motion primitive labels instead of a static list. This
results in small lists for different attributes of the motion primitive, e. g. the
performed motion such as pouring object O at position A, moving something
from A to B etc. In other lists the possible values for O as well as possible
positions for A and B are defined. The selection of a motion primitive label from
a very large static list of motion primitive labels is transformed in a selection of
multiple motion primitive attributes from small lists which can be done faster.
It is also easier to find the correct labels. To speed up this process we further use
context dependent attributes which means that the set of possible positions for
example depends on the performed motion whereby the lists get even smaller.
Another big advantage of this method is the possibility of easily transferring
the set of possible attributes to another domain. So for example the possible
positions for objects can be generically defined and used in multiple domains
whereas the combinations of positions for a specific motion will differ between
domains. The same is true for other attributes. The set of labels for a specific
domain is then computed using all attribute combinations used for this domain.

Motion Primitive Attributes

Based on the functional decomposition and observed motion sequences we cre-
ated a set of 8 attributes. The possible attributes of a motion primitive are:
action, body part, direct object, indirect object, target object, start position, end posi-
tion, activity. Depending on the action of a motion primitive a subset of these
attributes has to be specified.
The definition of all possible labels for a given domain is also problematic when
using static lists. This list has to be specified beforehand or it has to be extended
each time a new primitive occurs in the data. The effort for handling these lists
is a lot less when using a list for each attribute. As stated in the previous para-
graph these lists are a lot easier to create and maintain due to their more general
nature and the shorter lists. A side-effect of modeling each motion primitive
as an object with multiple attributes is the easier automatic post-processing of
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the manually created motion segmentations. The system can for example clus-
ter each attribute individually into coarser classes for the attribute to model the
motion sequences in a coarse-grained way, e. g. modeling the motion primitives
independent of the used objects. This allows to easily experiment with the set
of motion primitives to find the set which models the data best.

6.2.3 Initialization and Training of Concurrent and Coupled
Models

Since the main idea of our approach of modeling C&C human motion primi-
tives as independent as possible, the initialization and training of the models is
straight forward. We can train the models for each body part independent of
the others. The only difference to the training in section 4.3.3 is the training of
each motion primitive separately instead of training on whole sequences. And
of course only using the features belonging to the respective body part.

6.3 Context Models

For the recognition of motion sequences based on motion primitives as in the
sequential recognition (see section 4.4) we need context models for the C&C
motion recognition to model the dependencies between multiple motion prim-
itive. When moving from the sequential to the C&C recognition two new chal-
lenges have to be dealt with. The challenges are, firstly, the need for mod-
eling temporal context along multiple layers of the hierarchy and, secondly,
the necessity of rules for dependencies between concurrent motion primitives.
Since the basic idea of our methodology is to model each concurrent motion
separately, we dropped the dependencies between concurrent motion primi-
tives which would withdraw one of the main advantages of our methodology.
Nevertheless, we need models for sequential dependencies between multiple
motion primitives. In order to be flexible with respect to recognizing unseen
motion sequences we decided to extend the standard N-Grams for C&C motion
primitives.

6.3.1 N-Grams

For the extension of the standard N-Gram context model to a 2-gram context
model for the C&C recognition, we calculate the 2-grams and their back-offs
for all combinations of predecessors and successor independent of the stream
they belong to. At transitions from multiple motion primitives in finer layers



70 Chapter 6. Concurrent and Coupled Recognition for Human Motion

Figure 6.4: Traversing from two motion primitives A and B in layer 2 and a
motion primitive C in layer 1 to a motion primitive D in layer 0 we calculate the

likelihood for D as p(D) =
√√

p(D|A) ∗ p(D|B) ∗ p(D|C)

to one motion primitive in a coarser layer, we need to weight the likelihoods
of the individual 2-grams accordingly. This is done by weighting each motion
primitive with the same parent in the body hierarchy equally. This is done
recursively for all layers in the body hierarchy. So for example consider the
transition in Figure 6.4.

In order to get a probability for a motion primitive, we calculate the average

probability for all predecessors (e. g. p(D) =
√√

p(D|A) ∗ p(D|B) ∗ p(D|C)).
All probabilities needed for the C&C 2-gram context model are calculated the
same way as for the sequential 2-gram context model described in section 4.4.3.
Before that we have to convert the sequence of motion primitives into an appro-
priate format by expressing the whole sequence in the most fine-grained layer.
The probabilities can then be calculated for each concurrent stream separately.

6.4 Beam Search for Concurrent and Coupled Hu-
man Motion Sequences

6.4.1 Beam Search in BioKIT

In section 2.8.1 we described the general methodology of beam search. In the
following we will describe how we designed and implemented beam search for
C&C human motion sequences in BioKIT.



6.4. Beam Search for Concurrent and Coupled Human Motion Sequences 71

Hypothesis Propagation across Body-Parts

When recognizing C&C motion primitives we model motions of different body
parts separately, e. g. we model motions of the right arm, motions of the left
arm and motions performed with both arms, i. e. the whole upper body. In
order to be able to handle the complexity of possible concurrent motions, those
motions are modeled independently, i. e. we model motions of the right arm
independent of the motion of the left arm if they are not coupled. This gives us
the ability to recognize all possible combinations of concurrent motion prim-
itive with a small amount of training data. We are even able to recognize
concurrent motion primitives that have not been in the training data.
In order to achieve this independent modeling we create a search graph (a set of
HMMs) for each modeled body part, i. e. we have models for coupled motions
of the whole upper body, models for motions of the left arm only and motions
of the right arm only. Instead of one search graph as before we have multiple
search graphs and search independently for the best motion primitives in the
different search graphs. As long as we are within a search graph, the hypothesis
propagation and pruning is done as before. Once we are at the end of an HMM,
things get more complicated. In addition to the propagation of hypotheses from
the end of an HMM to the beginning of HMMs of the same search graph as
in Figure 2.4, we now have more possibilities of propagating hypotheses. We
can propagate them downwards to HMMs of a finer granularity of the current
body part (see downwards propagation in Figure 6.5) or we can propagate them
upwards to a coarser granularity of a set of body parts (see upwards propagation
in Figure 6.5).
We could, for example, propagate a hypothesis that has finished a motion prim-
itive of the whole upper body to continue in the left and right arm. In this case
hypothesis propagation can be done as in the previous chapter. This means
we propagate the hypotheses that are in final nodes to all initial nodes of the
HMMs in all finer layers. When, for example, propagating upwards from two
separate motions of the left and the right arm to a motion of the whole up-
per body, things get more complicated. Since we propagated the hypotheses
independently in each finer body part we need to merge the hypotheses and
propagate them upwards. For the merging we always need one hypothesis
from each finer body part, e. g. one from the left arm and one from the right
arm. Since we have many hypotheses in each finer body part we have a lot of
possible combinations, but not all combinations make sense. If, for example,
the history of one hypothesis starts with Take bowl while the history of the sec-
ond hypothesis starts with Rest position those hypotheses can not be merged
since their histories do not fit together. Therefore, we only need to merge hy-
potheses with matching histories (see Figure 6.6). This can be achieved by
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Figure 6.5: Search graphs for C&C motion recognition with possible transitions
for propagating hypotheses.
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Figure 6.6: Search graphs for C&C motion recognition while propagating hy-
potheses from a finer to a coarser layer. The hypotheses 2 and 3 can be merged
and propagated upwards since they have the same lattice node (C) in the des-
tination layer while the hypotheses 1 and 3 can not be merged due to differing
lattice nodes (B,C).

comparing their latest lattice node in the level the hypotheses are propagated
to. If they have the same lattice node, the histories match and the hypotheses
can be merged. The fact that each lattice node has multiple end times, gives
us the flexibility of combining hypotheses with similar but not necessarily ex-
actly equal histories. When merging the hypotheses we also need to merge
their scores. This is done by calculating the weighted mean. Each hypothesis
is weighted by the fraction of the body part it belongs to. If a body part has
two sub body parts each is weighted with 1

2 . If one of those has three sub body
parts each of those is weighted by 1

2 ·
1
3 = 1

6 . Assuming that the score we ac-
cumulate in the different search graphs are in the same range, we can compare
the newly created hypothesis with other hypotheses in the initial node of the
coarser level and perform propagation and pruning within the search graph as
before. Unfortunately, the score in the different search graphs dependent on
the dimensionality of the GMMs. Therefore, we need to normalize the scores
each time we evaluate a GMM.

Score Normalization

Since the motions of different body parts are trained separately and the scores
are combined when recognizing the motions, we need to make sure that the
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scores of the different motion primitives can be compared with each other.
The value ranges of the GMMS are different for the different body parts due
to the varying dimensionality of the feature vectors. Therefore, the scores of
the GMMs have to be normalized to be comparable between body parts with
different dimensionality. In the literature there are several normalization tech-
niques proposed. Ozeki [Oze96] proposes to use the score of an ergodic HMM
to normalize the scores of the recognition HMMs. They show that this method
works well for comparing speech segments with different lengths. They ap-
proximate the mutual information of the hypothesis M and the observations X
I(M; X) = logp(X|M)− logp(X). Alternatively, it has been proposed to use the
sum of likelihoods of a cohort set instead of using an ergodic HMM to approx-
imate logp(X). Both methods require a lot of additional computation power
during the decoding since both need additional HMM evaluations. Therefore,
we decided to use Z-normalization. For each body part we calculated the aver-
age score µ and the standard deviation σ during training and normalize each
score during decoding through mean and standard deviation normalization
z = logp(X|M)−µ

σ .



7
Evaluating Concurrent and Coupled

Human Motion Recognition

In this chapter we analyze and evaluate the proposed methods for C&C human
motion recognition. We compare different properties for the purely sequential
modeling technique as well as the C&C modeling technique. For this com-
parison we used the Breakfast dataset with a large variety of complex kitchen
activities. On this dataset we show the advantages and disadvantages of the
developed modeling technique. At the end of this chapter we will present an
online system of our C&C motion recognition.

7.1 Motion Primitive Alphabet

The functional decomposition described in 6.2.1 gives a set of primitives.
Since no dataset can contain all motions a human can perform, we need to
adapt our segmentation to the actual scenario. The segmentation was based
on the motions a human performed. If a human performed two independent
motions with the left and the right arm, they were segmented separately. If
they always occur concurrently in the scenario, it is better to model them as
one primitive. Therefore, we adapted the Breakfast dataset in a way that we
searched for motion primitives that occur concurrently most of the time. Those
motion primitives are combined into one motion primitive. Exceptions of this
rule are static and cyclic motion primitives, where the above rule only applies
to the concurrent motion primitive and the static or cyclic motion is splitted
temporally. This limits the power of transferring the models to other scenarios
but there will be better recognition results in the given scenario.
We also need to adapt our segmentations for the sequential segmentation. We
first split the static or cyclic motions based on the boundaries of the concur-
rently performed motion primitives. We then build new motion primitives
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wherever concurrent motion primitives have the same start and end time. We
combine motions of both arms into one motion of the whole body. If bound-
aries of multiple motion primitives only match at their beginning and at the
very end but not in the middle, the group of motion primitives is combined
into one large primitive. This shows the difficulty of modeling arbitrary mo-
tions with purely sequential primitives.

7.2 System Properties

When comparing different types of motion recognition system there are mul-
tiple important aspects. The recognition systems can be compared in terms
of:

• Primitive Error Rate
• Number of Parameters
• Distribution of the data onto the models
• Portability on other scenarios

The first one is probably the most important, but the others give more insight
into the recognition system and its properties. The Primitive Error Rate mea-
sures the errors for a certain setup of recognition system, while the others are
independent of the actual parameter setting of the system and describe the way
the recognition system models the data. The main focus of this work lies on the
better utilization of the data and the portability to other scenarios which allows
to build systems with less training data and for scenarios without any training
data.

7.3 Comparing the Parameters of the Sequential and
the Concurrent and Coupled Models

7.3.1 Number of Parameters

Given the above definitions of motion primitives for the Breakfast dataset, we
get the model properties in Table 7.1.
Table 7.1 shows that the C&C recognition system needs only 2

3 of the models
and parameters respectively than the Sequential recognition system. At the
same time, the average length for each motion primitive decreases by 14 %
while the minimum length of the motion primitives remains at 3 frames. Hav-
ing a shorter average length suggests that we can use less states. Thus, we need
to train less parameters, i. e. we have more training data for each parameter.
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Sequential C&C Reduction
#Primitives 1164 805 30 %
Avg. Length 51 Frames 44 Frames 14 %
Min. Length 3 Frames 3 Frames -

Table 7.1: System properties for the sequential and the C&C modeling tech-
niques the Breakfast dataset.

7.3.2 Distribution of the Data onto the Models

Fig. 7.2 shows that the data is distributed better on the C&C models since each
model on average occurs 3 times more often in the data than for the sequential
models. Thus, we have more training data for each parameter that needs to be
trained.

Sequential C&C
Avg. Frequency 2 6

Table 7.2: Average frequency of the models in the Breakfast dataset for the
sequential and the C&C modeling techniques.

7.3.3 Portability to Other Scenarios

Number of Activities Sequential C&C
1 1119 615
2 40 107
3 4 42
4 1 20
5 - 13
6 1 5

Table 7.3: The table shows how many unique (object dependent) primitives
occur in a certain number of activities.

Table 7.3 as well as Figure 7.4 show that the C&C modeling technique is suited
better to be transferred to unknown activities. The tables show the overlap of
motion primitives between the recorded activities. Table 7.3 shows that 42 of the
805 C&C motion primitives were performed in 3 different activities whereas 40
of the 1164 sequential primitives were performed in 2 different activities. Fig-
ure 7.4 shows how many unique motion primitives need to be modeled for a
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certain number of activites. Those results show two things. Firstly, if recog-
nizing an activity that has not been part of the training data we can recognize
more motion primitives with the C&C system as with the sequential system.
Secondly, when scaling the system to larger datasets the number of primitives
to be modeled increases a lot faster for the sequential system as for the C&C
system.

Figure 7.4: Number of unique motion primitives for increasing number of ac-
tivities for the Breakfast dataset.

7.4 The Recognition System

For the comparison of the sequential and the C&C approach concerning error
rate we use the same pre-processing to achieve joint angles as in the previous
chapters. In [GS08] we showed that using joint angles of shoulders, arms, and
hands is sufficient to achieve good recognition results on our scenarios. For
simplicity reasons we start our experiments using those features only.
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7.4.1 Primitive Error Rate

In order to compare the recognition results of the sequential and the C&C
recognition, we need to define an error rate that gives comparable error rates for
both systems. We achieve this by splitting all motion primitives we combined
for the recognition into the original manually segmented primitives and calcu-
late the recognition rate on this recognition result. We need to split combined
primitives into their parts and merge multiple static or cyclic motion primitives
if the same primitive occurs multiple times in a row, since the splitting of those
primitive is not of interest for the recognition result and they have been split
differently for the sequential and for the C&C recognition. We then calculate
the primitive error rate similar to 5.1.1.
In order to achieve comparable error rates for sequential as well as C&C recog-
nition, we calculate the error rate on each finest stream, i. e. if a whole body
motion was recognized while two separate motions of the left and of the right
arm had been actually performed, we count this as two errors. During the cal-
culation of the Levenshtein distance we make sure that motion primitives of
higher streams are not matched only partially to ensure the temporal order of
the primitives.
In the calculation of the error rate, it is not an error if e. g. two motion primitives
in finer streams are recognized as one motion primitive in a higher stream, if
they are named equally. We do not penalize if recognizing motion primitives
for the wrong level in the body hierarchy.

7.5 Experiments and Results on the Breakfast
Dataset

7.5.1 Parameter Optimization

In our first experiment we optimized the parameters of the C&C recognition
system based on ∆ joint angles as features with a 0-gram context model. We
optimized the number of states between 8 and 16 and the pip between 0 and
40 using 5-fold cross-validation. We achieved the best result with a pip of 10
while the optimal number of states was 14. With this setup we achieved a PER
of 68.4% while the corresponding sequential system has a PER of 57.8%.
For further improvements of the recognition system, we investigated the fol-
lowing four topics.

1. Score normalization
2. Tendency towards finer streams
3. Beams optimization
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4. Feature set optimization

Score Normalization

We learn the score normalization on the training data which might be subopti-
mal since the training data fits better to the models than the test data. There-
fore, we perform an experiment where we learned the score normalization on
the test data. While this could be considered as a "cheating" experiment, we do
so in order to get an upper bound for the recognition accuracy. The mean and
standard deviation values changed significantly but the primitive error rates
did not improve (see Table 7.5). So, the score normalization is not the reason
for the worse recognition results of the C&C system.

Training on Training Data Test Data
PER 68.4% 68.2%

Table 7.5: Motion Primitive Error Rates for the C&C recognition when normal-
izing the score based on the training or on the test data.

Tendency Towards Finer Streams

The recognition of motion primitives in finer streams might be more likely than
primitives in a higher stream. The recognition of primitives in a finer streams
is more flexible concerning start/end time of primitives as well as alignment
of primitives between streams. We evaluated if compensating the tendency
towards finer streams improves the recognition rate. Therefore, we added a
stream penalty which is implemented as an additional offset to the score nor-
malization depending on the stream. We found that we can improve the recog-
nition rate by using an offset of 1 for the finer stream which makes the finer
streams less likely. This improves the recognition results as shown in Table 7.6.

Offset Recognition Error
0 68.4%

0.5 64.9%
1 64.5%

1.5 66.7%
2 77.5%

Table 7.6: Motion Primitive Error Rates for different stream penalties.



7.5. Experiments and Results on the Breakfast Dataset 81

Beam Optimization

Since the beams in the previous experiments are a trade-off between accuracy
and speed, we will now evaluate the optimal recognition rate without consid-
ering the speed issue. Since the hypothesis top N pruning has the most impact
concerning accuracy and speed, we define a master beam, which specifies all
pruning thresholds besides hypothesis top N. The hypothesis top N thresh-
old is specified independently. In the experiment we varied the master beam
between 1 and 6 and the hypothesis top N factor between 5 and 20 whereas
hypo Top N = master beam ∗ hypo Top N f actor. The results in Table 7.7 show
that we can improve the recognition rate by almost 12% relative using larger
beams, although the recognition speed drops to more than 20 times real time.

7.5.2 Feature Set Optimization

With optimized beams, i. e. a master beam of 4 and a hypothesis top N factor
of 5, we use Sequential Forward Selection (SFS) to select a better set of features.
In [GS08] we showed that SFS works best in comparison with a brute force
search and Linear Discriminant Analysis on our data. For the feature selection
we use an extended feature set, i. e. joint angles and ∆ joint angles. Since the
Breakfast dataset is session-dependent we also use the marker positions and
the ∆ marker positions directly to distinguish between object positions. When
selecting the optimal features, we can improve the recognition rate by about
25% relative. The results show that the C&C recognition works comparably
well as the sequential recognition (see Fig. 7.8).

Implicit Context Model

In the sequential system we somehow have an implicit context model, i. e. we
model which motion primitives of the finer layers are performed concurrently
in the training data. If we have a limited dataset and the test data is similar
to the training data, this will give better recognition results than recognizing
concurrent motions independent of each other. This advantage will turn into a
disadvantage, if we recognize more realistic motions. In order to support this
theory, we performed several experiments where we train our system on a set
of activities and test it on another activity.

7.5.3 Recognizing unseen activity

For this experiment we trained the system on 5 of the 6 activities in the Break-
fast dataset and tested it on the activity "Cook Scrambled Eggs" which was not
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Beam hypothesis top N factor PER real time factor
1 5 70.9% 0.29
1 10 71.5% 1.25
1 15 71.4% 1.48
1 20 71.4% 1.48
2 5 63.6% 3.57
2 10 61.9% 4.54
2 15 61.3% 6.06
2 20 61.2% 6.06
3 5 63.3% 10.5
3 10 62.9% 13.3
3 15 62.3% 15.4
3 20 61.7% 15.4
4 5 61.6% 20.2
4 10 60.7% 25
4 15 60.3% 33.3
4 20 60.3% 33.3
5 5 61.2% 40.0
5 10 60.1% 100
5 15 59.5% 100
5 20 59.6% 100
6 5 61.0% 100
6 10 60.1% 500
6 15 59.5% 500
6 20 59.3% 500

Table 7.7: Motion primitive error rates for varying master Beam and hypothesis
top N thresholds.

part of the training data. Due to the size of our dataset we use object indepe-
dent motion primitives. The results in Table 7.9 show that the sequential system
and the C&C system work comparably on an unseen activity.

Sequential C&C
83.8% 84.4%

Table 7.9: Motion Primitive Error Rates for recognizing unseen activity "Cook
Scrambled Eggs" for ∆ joint angles.
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Figure 7.8: Primitive error rates of sequential forward selection on the Breakfast
dataset.

For further improvements we again use SFS for the Recognition of the Activity
"Cook Scrambled Eggs". The results show that the C&C system retrieves better
results than the sequential system if testing on an unknown activity (see Fig.
7.10). In order to further validate this result, we created a synthetic dataset with
motion sequences that have not been part of the training data.

Synthetic Test Data

For our synthetic test data we used the original segmentations of the test data
of one cross-validation fold and combined it arbitrarily. This can produce gaps
between separate motions of the left and right arm and whole body motions,
e. g. if the left arm motion is shorter than the right arm motion. We filled these
gaps with the motion primitive wait. As features we use the 14 ∆ joint angles of
both arms. Performing a test on the synthetic test data gave us the recognition
results shown in Table 7.11. While the recognition rate for the C&C recognition
remains the same as the best result for the same cross-validation fold for the
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Figure 7.10: Primitive error rates of sequential forward selection for activity
"Cook Scrambled Eggs".

tendency towards finer streams experiment at page 80 the recognition rate of
the sequential system drops significantly. The recognition results show that the
C&C recognition system generalizes better on unseen motion sequences than
the sequential system.

System PER (original data) PER (synthetic test data)
Sequential 76% 92%
C&C 79% 79%

Table 7.11: Recognition results for testing on synthetic test data and on the
original data on cross-validation fold 1.
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7.6 Online Recognition

Based on the findings in the previous sections we built an online recognition
system on the Breakfast dataset. This system has been demonstrated in the
official evaluation of the CRC 588. With this demonstration we have shown
that the C&C recognition is capable of recognizing human motions in an online
recognition scenario.
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8
Marker-less Recognition

In this chapter we will demonstrate the capabilities of our recognition systems
concerning marker-less human motion recognition. We transfer knowledge
from the marker-based system to a marker-less video-based recognition. We
start with two sequential recognition systems, one based on motion capturing
and another based on video cameras. We will present performance numbers
of different recognition systems as well as describe systems that have been
demonstrated in online recognition. Finally, we will present a video-based
person-independent human motion recognition system for motions of seven
different activities.

8.1 Video-Based Recognition of Human Motion Se-
quences

The previoulsy described systems have one major shortcoming. They depend
on a tracking system with markers attached to the person whose motions are
recognized. Markers are not suitable for human-robot interaction in real-life. It
is not practical to attach markers to everybody that is in the robots field of view
in their everyday environment. In this section we describe the transfer of our
knowledge from the marker-based recognition to marker-less motion recogni-
tion with video cameras. We have learned from the marker-based recognition
that:

• features need to be normalized
• motion features work well
• optimizing the number of states and the number of Gaussians per state

improves performance
• a motion grammar gives the best recognition results for restricted tasks
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The main challenge is the generation of good features from the video images
while the transfer of the recognition system itself is rather straight forward. Our
goal in this section is to transfer the marker-based recognition systems to video-
based motion recognition. We compare different types of video-based features
with each other and with the marker-based motion recognition systems.

8.1.1 Optical Flow Histogram-based Recognition

The first features that we use for our video-based motion recognition systems
are weighted histograms of optical flow (OF). Optical flow is a method for cal-
culating motion in a video image. Optical flow yields a motion vector with di-
rection and length of the motion for each pixel between two consecutive video
images. In order to be able to use this information for HMM-based human mo-
tion recognition we build histograms over the motion directions. More details
about the feature calculation are described in the following section.

Optical Flow Histograms

For the image-based representation of motion, histograms of optical flow di-
rections weighted with their norm values are used. The videos of the motion
sequences were captured with the left camera of a robot head, which was placed
in front of a table. The robot cameras are dragonfly cameras with a resolution
of 460 x 680 pixel and a frame rate of 30. Every frame of the video sequence is
represented by a histogram of its overall motion directions without any further
local information.
The optical flow is computed using a pyramid version of the Lucas Kanade
method, as described in [LK81], [Bou99].
The weighted histogram for frame t is calculated from the optical flow OF of
images (It, It+1).

OF(It+δt(x, y)) = It(x + u(δt), y + v(δt)) (8.1)

The motion vector (u(δt), v(δt)) is used to calculate the resulting motion di-
rection θ, indicated by an angle value from [−π, π] and γ defining the motion
intensity.

tan(θ(u(δt), v(δt))) =
v(δt)
u(δt)

(8.2)

γ(u(δt), v(δt)) =
√

u(δt)2 + v(δt)2 (8.3)
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Histogram Calculation

In order to simplify the notation the time index δt is presumed to be fixed
and omitted in the following. The elements for one bin of the histogram are
calculated based on the motion angle θ. As the motion angle ranges from
[−π, π], the vector of elements for the k-th bin h(k) of the histograms with n
bins can be defined as:

h(k) = {(u, v)|θ(u, v) ≥ (k2π)

n
− π ∩ θ(u, v) <

((k + 1)2π)

n
− π} (8.4)

The number of elements in h(k) is indicated by N(h(k)) and the elements repre-
sent the coordinates (u, v) of the related optical flow vector. So, the i-th element
of h(k) is defined as

h(k, i) = (u, v) (8.5)

The k-th bin for the weighted histogram is calculated from the intensity γ of all
elements in the vector as shown in

H(k) =
N(h(k))

∑
i=1

γ(h(k, i)) (8.6)

The histograms are sampled over time resulting in sequence of a multidimen-
sional input vectors for the HMMs. An example for the occurring optical flow
vectors as well as for its weighted histogram can be seen in Fig. 8.1.

The Recognition System

The motion sequences of the KIT-F dataset (see 3.2.2) were simultaneously
recorded with a Vicon motion capture system and the dragonfly camera system
of a humanoid robot head. As video and marker data captures were taken at
the same time, the markers are partly visible in the video images but are only
used by the Vicon system. We resampled the video to 20 fps for good com-
parability with the marker-based recognition. We used the same recognition
system for the video-based recognition as in section 5.1.2. The only difference
are the used features. Instead of the ∆ joint angles we use weighted histograms
of optical flow.

Experiments and Results on the KIT-F Dataset

Since the number of bins in the histogram is not given beforehand, we have to
figure out which number works best. We optimized the dimensionality of the
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a) b)

c) d)

Figure 8.1: Example for motion sequence stirring: (a) one frame of motion
unit taking bowl as part of the motion sequence stirring, (b) motion gradient
histogram for that particular frame, (c) distribution of optical flow gradients
for the complete motion sequence, (d) motion distribution over time of the
motion sequence stirring.
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Figure 8.2: Primitive error rates for varying numbers of Gaussians per state and
dimension of the feature vector.

feature vector and again the number of Gaussians to see if we can transfer the
methods from the marker-based system and to find out how the video-based
recognition works in comparison to the ∆ joint angles. For better comparability
we kept the number of states to 4 since this was the setup for the marker-
based recognition for the same dataset. For the experiments we used a 0-gram
context model and optimized the primitive insertion penalty and the context
model weight. The best values were 64 for the primitive insertion penalty and
32 for the context model weight. Figure 8.2 shows the recognition results over
the number of Gaussians with different amount of feature dimensionality (also
see [GKWS09]).

We can see that we can achieve comparable error rates as with the marker-
based system by simply replacing the ∆ joint angle by weighted histograms of
optical flow while keeping the rest of the system. The figure also shows that
a 30 or more dimensional histogram gives good recognition rates. We decided
to use the 30-dimensional feature vectors since 30 dimensions are in the range
of the number of ∆ joint angles and so they are suited better for comparing
both systems. Nevertheless, the 45-dimensional feature vectors give slightly
better results. The best recognition rate is achieved when using 16 Gaussians
per state as in the marker-based system and we achieve an error rate of 13.1 %.
In comparison to the marker-based recognition rate of 12.4 % on ∆ joint angles
in section 5.1.2 on the same dataset, this is a very good recognition rate. The
main drawback of the optical flow histograms is that it is too slow for online
recognition (see Table 8.6).
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1a) 1b)

2a) 2b)

Figure 8.3: Comparison of feature motion (a) and optical flow (b) histogram: 1)
example for vector plot, 2) bar plot of weighted motion histograms

8.1.2 Feature Flow Histogram-based Recognition

A possibility of speeding up the motion histogram calculation is the use of
feature flow (FF) instead of optical flow as describe in Section 8.1.1. We compare
the recognition systems with feature flow and optical flow with respect to the
recognition results and speed.

Feature Flow Histograms

Motion information can be gained from dense optical flow fields or from track-
ing of feature points only. The feature tracking used in this thesis is based on
the Lucas-Kanade method described in [LK81] and [Tom91]. The initialization
and tracking of features follows the pyramidal KLT feature tracking implemen-
tation by [Köh08]. The initialization of new features is done for every frame
following the algorithms of Shi and Tomasi [ST94]. Every frame of the video
sequence is represented by a global histogram of its overall motion directions
without any further local information. The weighted histogram for frame t is
calculated from the motion vector of the feature points of images I at time in-
dex t and t + 1 (It, It+1). The motion vector (u(δt), v(δt)) of the feature is used
to calculate the resulting motion direction θ, indicated by an angle value from
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Figure 8.4: Example for feature motion histogram distribution for motion se-
quence "Pouring water"

[−π, π] and γ defining the motion intensity. The histograms are calculated are
calculated the same way as the optical flow histograms (see page 89).
Examples for the feature flow motion compared to the optical flow motion as
well as the resulting histograms can be seen in Figure 8.3. The histograms are
sampled over time resulting in a 30-dimensional input vector for the HMMs.
An example for the histogram distribution over a complete action sequence can
be seen in Figure 8.4.

Comparison with Optical Flow-based and Marker-based Recognition using
a Context-Free Grammar on the KIT-F Dataset

In order to evaluate the recognizer performance when using the histograms of
feature flow, we compared the results with histograms of optical flow and with
∆ joint angles. The results have been calculated with the recognition system
described in 5.1.2 using the KIT-F dataset and have been published in [KGSS12].
We used a context free grammar to guide the recognition process. The primitive
error rates of the different systems are shown in Table 8.5.

Feature OF FF ∆ joint angles
PER 3.1% 2.5% 1.7%

Table 8.5: Comparison of video-based features with ∆ joint angles on the KIT-F
dataset.

The recognition performance is high since the performed motion sequences can
be described very well with a context free motion grammar and therefore the
grammar models the motion sequences well and does allow few alternative
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sequences. When applying the recognition system to a dataset with more un-
constrained motion sequences, we can see that we get worse results due to the
more complex grammar and we can see that the OF recognition outperforms
the feature flow system.
The runtime is evaluated for feature flow histograms and optical flow his-
tograms on a 2.83GHz Intel Core2Quad processor with 8GB RAM. For the
evaluation the processing time per frame for each sequence is analyzed. It can
be shown that the optical flow histogram calculation takes around 764 ms and
feature flow histograms needs 34 ms, which is about 20 times faster. We can
see that feature flow-based recognition is much faster than optical flow-based
recognition at the cost of a slightly worse error rate.

Feature OF FF
Processing time (per frame) 764 ms 34 ms

Table 8.6: Comparison of the processing time for optical flow (OF) and feature
flow (FF) histograms.

Error Measurement

Activity Error Rate Besides calculating the primitive error rate (PER) on mo-
tion primitive level, we can also evaluate the results on activity level. Given the
recognized activities and the actual performed activities as ground truth, we
can compute the activity accuracy. When using a motion grammar as context
model for the recognition process, the best way of retrieving the recognized
activity is to model the grammar in a way that we have a non-terminal node
for every activity, i. e. we can extract this node given the recognized motion
primitive sequence to get the recognized activity.

Comparison with Optical Flow-Based Recognition using a Context-Free
Grammar on the ADL Dataset

A more complex dataset is the University of Rochester Activities of Daily Liv-
ing dataset [MPK09]. This set comprises 10 different activities of 5 different
persons, which have been manually segmented using a total of 53 motion prim-
itives. We evaluated the dataset using optical flow and feature flow performing
a 3-fold cross-validation.
The results show that while optical flow performs quite well for person inde-
pendent recognition feature flow also gives promising recognition rates. How-
ever, the more difficult dataset makes the benefits of OF more prominent.
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Feature OF FF
PER 36.5% 45.0%
Activity error rate 18.0% 28.7%

Table 8.7: Comparison of video-based features on the Activities of Daily Living
dataset.

8.2 Person-Independent Recognition

One of the main advantages of marker-less motion recognition is the possibility
of recognizing motions of any person without preparing the person beforehand
by attaching markers.

When doing person independent recognition there are two challenges in com-
parison to person dependent recognition. Firtly, two persons perform the same
motion primitive differently, which increases variance and thus makes it more
difficult to distinguish two motion primitives. In order to achieve good per-
son independent recognition results we use a motion grammar, which limits
the possible sequences of motion primitives and therefore limits the number of
motion primitives that have to be distinguished in every time step. We learn the
grammar automatically from our segmentations. This eliminates the drawback
of manually creating a grammar but we still need segmentations of the motion
sequences. Secondly, two persons perform the same activity using different
sequences of motion primitives. Assuming that there is a limited set of motion
sequences an activity is usually performed, we can improve the recognition
system by training the grammar on motion sequences by pooling data from as
many persons as possible.

The Recognition System

For the experiments in this section we used the Minta dataset with multiple
kitchen activities. The motion recognition uses the same feature flow his-
tograms as in the previous section to recognize the motions of an observed
person. The number of states and the number of Gaussians per mixture were
optimized in the cross-validation experiments described below. The possible
concatenations of the motion primitives are modeled using an automatically
learned context-free grammar. We extended the Sequitur algorithm [NMW97]
(see section 4.4.2) to work on a set of motion sequences instead of only one
sequence. The grammar allows a reliable recognition of the possible motion
sequences.
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Error Measurement

Online Primitive Error Rate Since this system is intended to run online, we
define an online primitive error rate. We also use this error rate for the offline
evaluation of the system for better comparability with the online system pre-
sented in section 8.3. For an online system we need to recognize the current
motion primitive before we have seen the whole activity. Instead of retrieving
the best motion sequence after we have finished the sequence of feature vec-
tors, we output the best current motion primitive every second and compare
this sequence of motion primitives to the sequence of reference motion primi-
tives. The error rate between those sequences is calculated the same way as for
the standard primitive error rate.

Experiments and Results on the Minta Dataset

For the evaluation of our system, we optimized the recognizer on 560 image se-
quences of eight persons using 8-fold cross-validation (CV). The 140 sequences
of the two remaining persons were used as an evaluation set. Recognition re-
sults are given as the average recognition rates for the cross-validation and the
recognition rate on the evaluation set (EVAL set).

Task Lay Prepare Prepare Eat
Table Cereals Pudding with Spoon

CV 23.1 % 21.1 % 23.9 % 26.9 %
EVAL 16.9 % 12.5 % 19.6 % 57.5 %

Task Eat Clear Wipe Avg.
with Fork Table Table Rate

CV 42.0 % 13.5 % 52.7 % 29.4 %
EVAL 27.2 % 10.3 % 33.0 % 25.6 %

Table 8.8: Motion primitive error rate given per task for the CV and EVAL sets.
The bold numbers are averages over all tasks.

Table 8.8 shows the results of the motion recognition system for the different
tasks as published in [GKR+11]. The primitive error rate is low for most of the
tasks. Many of the primitives that are not recognized well belong to the task
Wipe Table, which is the most difficult task to recognize for the motion recogni-
tion system due to the large variance in wiping the table. Another problem with
the recognition system is the recognition of motions from one specific person,
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which is due to the nature of our pre-processing and the unusual feature dis-
tribution in the videos of this person. The approach is robust against different
clothing and appearance of all the other 9 persons. Only unusual appearances
which are very different to the ones in the training data are problematic for the
recognition system.

8.3 Person-Independent Online Recognition of In-
tentions, Activities and Motions

We will now describe a system that is capable of online recognizing motion
primitives of unknown persons based on video images. It gives an insight on
possible application as it is part of the intention recognition system for the
humanoid robot ARMAR. The proposed system is based on the one in sec-
tion 8.2. The main difference is the feature normalization, which is performed
for online recognition as in section 5.3.1. For training and for evaluation we
used the described feature normalization, whereas we updated and performed
the feature normalization in chunks of 1 second. Every second we recognized
the most likely performed motion primitives and fed them into the intention
recognition system. The motion recognition system does always continue rec-
ognizing without considering previous feature vectors again, which allows us
to recognize the motion primitive with more than 30 frames per second. This
also enables the system to recognize arbitrarily long motion sequences, that are
only limited by the expressiveness of the used motion grammar. If we do not
detect any motion in the video image for a certain time we restart with the start
symbol in the grammar since we can then assume that next time we detect a
motion in the image someone is entering the scene and starting with a new
activity.
In order to measure the performance of the system we calculate the online
primitive error rate described in section 8.2. The results for the cross-validation
and the evaluation set are shown in Table 8.9.
The recognition results are quite promising, if we consider that we recognize
motions of unknown persons with a single video camera. They are worse than
the offline recognition result but far better than guessing the correct motion
primitive which would give us an error rate of 98.4%.
The results together with other knowledge such as the recognized activity,
available objects and the time of day, are fed into an intention recognition sys-
tem. The result in [GKR+11] shows the good recognition rate of the intention
recognition based on the underlying motion and activity recognition systems.
The error rate of the intention recognition system decreases from 19.6% to 16.5%



98 Chapter 8. Marker-less Recognition

Task Lay Prepare Prepare Eat
Table Cereals Pudding with Spoon

CV 37.6 % 38.8 % 40.5 % 33.9 %
EVAL 33.7 % 34.7 % 43.0 % 55.3 %

Task Eat Clear Wipe Avg.
with Fork Table Table Rate

CV 55.2 % 40.2 % 57.6 % 43.7 %
EVAL 36.9 % 38.7 % 44.5 % 41.4 %

Table 8.9: Average motion primitive error rate given per task for the CV and
EVAL sets.

when using the recognized motion primitives in addition to the other knowl-
edge, i. e. the recognized activity, available objects and the time of day. It also
shows that the complementarity of the motion and the activity recognition al-
low the system to be robust against single recognition failures. Therefore, the
motion recognition system is a valuable part of the intention recognition sys-
tem. It has been published in [GKR+11] and demonstrated at various occasions.
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Conclusion and Future Work

The ultimate goal of this thesis was the development of a recognition system
for a humanoid robot. The main aspects that had to be tackled were described
in Section 1.2 as follows:

• unobtrusive capturing of human motions
• continuous recognition of human motions
• online recognition of motions to enable immediate robot reaction
• integration of context information into the recognition system
• development of motion modeling technique that scales well to more un-

constrained recognition domains

9.1 Summary of Thesis Results

To achieve the above goals we implemented and evaluated several state-of-the-
art techniques. For this purpose, we collected multiple datasets to compare our
proposed methods with the state-of-the-art in human motion recognition. The
main contributions of this thesis are as follows:

Structured Functional Motion Decomposition The basis of a motion recog-
nition system is a way to generate models of human motions. Many motion
recognition systems use motion primitives for their recognition but a method-
ology for structured decomposition of motions into meaningful motion units is
missing. To find motion segments that facilitate the modeling and recognition
of a large variety of human motions, we developed an approach for human mo-
tion decomposition which is based on findings in biology and sports sciences.

Sequential Motion Recognition Based on the functional motion decomposi-
tion, we developed a sequential marker-based motion recognition system. This
system was evaluated on several datasets. We used the system to optimize
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the features for motion recognition and to find strategies for generating good
motion primitive models as well as context models. The different optimization
steps gave an relative improvement of 30% to 70% each (see Figure 9.1). This
knowledge was then used for investigations on C&C motion recognition as well
as on video-based motion recognition.

C&C Motion Recognition Based on the primitives from the functional motion
decomposition, we developed a recognition system that recognizes motions of
individual body parts. The improvement includes an innovative modeling and
search technique for motion sequences, an appropriate context model and a
methodology for error measurement. Together these components allow to cre-
ate a flexible and scalable motion recognition which allows to tackle more com-
plex activities than other state-of-the-art systems, and improve the Primitive
Error Rates by up to 15% relative for a complex recognition task (see Figure
9.2) in comparison to the sequential system.

Figure 9.1: Overview of the achieved recognition rate improvements for the
sequential marker-based systems.
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Figure 9.2: Overview of the improvements in recognition rates for the compar-
ison of the sequential and the C&C recognition systems.

Video-based Motion Recognition To prove the viability of our algorithms in
real-live scenarios, we used the vision sensors of a humanoid robot for motion
recognition experiments. Figure 9.3 shows the improvements in recognition
results for the video-based system. We developed a recognition system for a
humanoid robot that online recognizes motions of human daily activities. The
recognition system was integrated into the robots intention recognition system.

9.2 Suggestions for Future Work

Further Investigations on Integrating Context Information In this thesis we
covered a variety of different context models which we used for our motion
recognition. Nevertheless, there is far more to be done. We expect the recogni-
tion rate to improve further by developing more sophisticated context models
which include but are not limited to the following:

1. Combining conventional N-grams with the ODCM.
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Figure 9.3: Overview of the improvements in recognition rates for the video-
based systems.

2. Extending the ODCM to the C&C recognition.
3. Developing context models that include the dependencies of concurrent

motion primitives
Using those context models will surely improve the recognition accuracy while
hopefully also speeding up the recognition.

Further Investigations on Video-based Recognition of C&C Motion Prim-
itives The next step in recognizing human motions on a humanoid robot
should integrate the C&C recognition with a video-based feature extraction.
Different methods have been proposed to extract features for individual body
parts from videos. Those features vary in terms of robustness and in terms of
accuracy concerning the description of human motions.

Investigations on Recognizing Motion Sequences with Unknown Motions
In this thesis, we assumed that each observed motion primitive was modeled
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and trained during the training of the recognizer. In future research it should
be investigated how to handle motions that have not been modeled explicitly
in the recognition system. This includes modeling HMMs to detect unknown
motion primitives as well as extending the context models to handle the results
of those HMMs.
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Zusammenfassung
In den letzten Jahrzenten halten Computer immer mehr Einzug in unser tägli-
ches Leben. Bisher ist die Interaktion jedoch meist auf Maus, Tastatur und Mo-
nitor beschränkt. Die Interaktion mit Computern ist daher nicht intuitiv. In den
letzten Jahren wurde zunehmend an intuitiveren Mensch-Maschine Schnittstel-
len geforscht.
Um Aktivitäten oder Bewegungen von Menschen im Alltag automatisch erken-
nen zu können sind Sensoren notwendig, die nicht invasiv sind und die nicht
am Körper getragen werden. Für eine unaufdringliche Erfassung von Bewegun-
gen eignen sich insbesondere optische Sensoren. Optische Sensoren wir Video-
kameras ermöglichen darüber hinaus die Bearbeitung weiterer Erkennungs-
aufgaben wie z.B. die Personen- oder Objekterkennung. Obwohl das Erken-
nungssystem unaufdringlich sein muss, lässt sich die Entwicklung der meisten
Systemkomponenten auch mit anderen Sensoren durchführen. Dies ermöglicht
die gleichzeitige Entwicklung eines unaufdringlichen Erfassungssystems sowie
der Komponenten zur Bewegungsmodellierung und -erkennnung.
Typische Anwendungsgebiete für die Erkennung menschlicher Bewegungen
sind die Mensch-Roboter-Interaktion, die Unterhaltungsbranche, der Überwa-
chungsbereich, Sport und Medizin sowie die Indizierung von Videodatenban-
ken. Vermutlich die schierigste Aufgabe ist die Erkennung von Bewegungen
für die Mensch-Roboter-Interaktion, bei der Bewegungen erkannt werden müs-
sen, die von einfachen Gesten bis hin zu komplexen alltäglichen Handlungen
reichen. Der Fokus dieser Arbeit sind die Mensch-Roboter Interaktionen, ge-
nauer gesagt Interaktionen mit humanoiden Robotern. Angewendet werden
die Entwicklungen auf ARMAR III [ARA+06], einen humanoiden Roboter, der
im Sonderforschungsbereich 588 "Humanoide Roboter - Lernende und koope-
rierende multimodale Roboterëntwickelt wurde. Wenn Menschen miteinander
interagieren, dann wissen diese intuitiv, was der jeweils andere gerade tut und
was dessen Gesten bedeuten. Ihnen ist meistens nicht bewusst, welche kom-
plexen Prozesse in ihrem Gehirn ablaufen um ihnen die Erkennung von ein-
fachen Bewegungen oder auch komplexen Handlungen zu ermöglichen. Um
einen humanoiden Roboter mit diesen Fähigkeiten auszustatten, müssen eini-
ge Herausforderungen angegangen werden. In dieser Arbeit wird ein System
zur online Erkennung menschlicher Bewegungen enwickelt, das mit den ein-
geschränkten Sensorinformationen eines humanoiden Roboters zurechtkommt.
Die erkannten Bewegungen dienen zum Beispiel als Eingabe für das Intentions-
erkennungssystem von ARMAR.
In dieser Arbeit wurde ein System zur Erkennung menschlicher Bewegungen
konzipiert, entwickelt und implementiert. Zu diesem Zweck werden systema-



tisch Methoden und Algorithmen für alle Komponenten des Erkennungssys-
tems entwickelt, d. h. Merkmalsextraktion, Segmentierung und Labeling, Mo-
dellierung von Bewegungsprimitive und Kontext sowie die Dekodierung. Es
werden Techniken implementiert und evaluiert, die dem aktuellen Stand der
Forschung entsprechen. Es werden mehrere Datensätze aufgenommen, um die
entwickelten Methoden mit dem Stand der Forschung zu vergleichen. Die we-
sentliche Beiträge dieser Arbeit sind:

Strukturierte funktionale Bewegungszerlegung: Die Basis eines Systems zur
Bewegungserkennung bilden Methoden zur Erstellung von Modellen mensch-
licher Bewegungen. Viele Erkennungssystem verwenden Bewegungsprimitive,
d. h. aussagekräftige Bewegungseinheiten, für ihre Erkennung. Ein strukturier-
tes Vorgehen zur Definition solcher Einheiten existiert bisher jedoch nicht. In
dieser Arbeit wird ein Verfahren zur Bewegungszerlegung vorgestellt, das auf
Forschungsergebnissen der Biologie und der Sportwissenschaften basiert. Die-
ser Ansatz liefert Bewegungsprimitive, welche die Modellierung und Erken-
nung einer Vielzahl an menschlichen Bewegungen ermöglicht.

Flexible und skalierbare Bewegungserkennung: Basierend auf den Bewe-
gungsprimitiven der funktionalen Bewegungszerlegung wird ein System ent-
wickelt, das Bewegungen einzelner Körperteile erkennt. Dies beinhaltet eine
innovative Modellierungs- und Suchtechnik für Bewegungsprimitive, ein ge-
eignetes Kontextmodell sowie Methoden zur Fehlerberechnung. Dieser Ansatz
erlaubt die Erkennung von komplexeren Bewegungen als bei vergleichbaren Er-
kennungssystemen. Auf einem komplexen Datensatz konnte die Erkennungs-
rate mit diesem Ansatz um 15% relativ gesteigert werden.

Bewegungserkennung auf einem humanoiden Roboter: Um die Anwend-
barkeit der entwickelten Algorithemen für alltägliche Szenarien zu demons-
trieren, werden die optischen Sensoren von ARMAR für Experimente verwen-
det. Es wird ein System für einen humanoiden Roboter entwickelt, das online
die Bewegungen von alltäglichen Handlungen erkennt. Das Erkennungssys-
tem wird integriert in die Intentionserkennung von ARMAR. Die meisten in
dieser Arbeit entwickelten Methoden werden in online Systemen verwendet.
Dies zeigt, dass die entwickelten Konzepte einen direkten praktischen Nutzen
haben.
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