

DRAM Aware Last-Level-Cache Policies
for Multi-core Systems

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik

der Karlsruher Institut für Technologie (KIT)

genehmigte

Dissertation
von

Fazal Hameed

Tag der mündlichen Prüfung: 6. Februar 2015

Referent: Prof. Dr.-Ing. Jörg Henkel, Karlsruher Institut für Technologie (KIT), Fakultät
für Informatik, Lehrstuhl für Eingebettete Systeme (CES)

Korreferent: Prof. Dr. rer.nat. Wolfgang Karl, Karlsruher Institut für Technologie (KIT),
Fakultät für Informatik, Lehrstuhl für Rechnerarchitektur und
Parallelverarbeitung (CAPP)

This document is licensed under the Creative Commons Attribution – Share Alike 3.0 DE License

(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

simianer
Schreibmaschinentext

simianer
Schreibmaschinentext
DOI: 10.5445/IR/1000049345

simianer
Schreibmaschinentext

simianer
Schreibmaschinentext

simianer
Schreibmaschinentext

simianer
Schreibmaschinentext

simianer
Schreibmaschinentext

simianer
Schreibmaschinentext

simianer
Schreibmaschinentext

http://creativecommons.org/licenses/by-sa/3.0/de/

Fazal Hameed
Luisenstr. 22,
76137 Karlsruhe

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbständig verfasst
habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig angegeben
habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen – die
anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden
Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

 F a z a l H a m e e d

simianer
Schreibmaschinentext

Dedication

To the memory of my beloved late mother, Parveen Subhan. I
miss you very much. May your soul rest in eternal peace

i

Acknowledgements

This thesis is dedicated to my loving beloved mother, Parveen Subhan, who passed away during
the course of my PhD studies. My mother was an everlasting source of inspiration, love, and af-
fection. She prepared me to face the challenges of life with patience and dignity.

I express my sincere gratitude to Professor Dr.-Ing. Jörg Henkel for his guidance in mentor-
ing me during the course of my PhD studies. He taught me the true essence of academic research
and motivated me to explore new research ideas and directions. He provided the proper balance
of guidance and freedom required to make a smooth progress in research. It has been a more
pleasant learning experience to work under his guidance.

I would like to pay my deepest gratitude to Professor Dr-Ing. Wolfgang Karl for his ac-
ceptance to become my co-examiner.

I am grateful to my co-supervisor, Dr.-Ing Lars Bauer, whose valuable suggestions and in-
depth critique feedback during proof reading helped me to complete this work. He has been very
friendly and kind to me and his thoughtful reviews significantly improved the quality of my sev-
eral conference submissions. In addition to the technical support, I explicitly acknowledge his
efforts to arrange HiWi and DFG funding to support this work. I would also like to thank my
former co-supervisor Dr.-Ing. Mohammad Abdullah Al Faruque who provided me valuable feed-
back and suggestions while submitting my first paper in Design Automation and Test in Europe
(DATE) conference.

I want to thank my colleagues in the Chair of Embedded systems (CES) for their company to
provide a congenial and learning work environment for my studies. I would like to thank my of-
fice-mates Manyi Wang, Heba Khdr, and Florian Kriebel for their patience and tolerance with me
and my jokes. I would like to thank Waheed Ahmed, Nabeel Iqbal and Usman Karim for joining
me at the lunch breaks to have some fun. I will never forget the family gathering and sport activi-
ties (especially cricket) we have done together on weekends. I would like to thank Martin
Buchty, Sammer Srouji, Hussam Amrouch, Artjom Grudnitsky, Martin Haaß, Chih-Ming Hsieh,
Sebastian Kobbe, Mohammadi Abbas, Volker Wenzel, and Farzad Samie for their wonderful
company during my stay at CES.

I am also grateful to Institute of Space Technology (IST) and German Research Foundation
(DFG) for providing the financial support to complete this work.

Finally, I am specially thankful to my father Fazal Subhan and wife Rozina Khan for their
encouragement, patience, and prayers during my PhD. studies. I especially thank my wife for her
continued moral support and sacrifices when I felt dejected and depressed.

iii

“Ideally one would desire an indefinitely large memory capacity

such that any particular […] word would be immediately avail-

able […] It does not seem possible physically […]. We are there-

fore forced to recognize the possibility of constructing a hierar-

chy of memories, each of which has greater capacity than the

preceding but which is less quickly accessible.”

A.W. Burks, H.H. Goldstine, and J. von Neumann - 1946

v

List of Publications

Conferences (double-blind peer reviewed)

[C.1] F. Hameed, L. Bauer, and J. Henkel, “Reducing Latency in an SRAM/DRAM Cache Hierarchy
via a Novel Tag-Cache Architecture”, In IEEE/ACM Design Automation Conference (DAC’14),
June, 2014.

[C.2] F. Hameed, L. Bauer, and J. Henkel, “Reducing Inter-Core Cache Contention with an Adaptive
Bank Mapping Policy in DRAM Cache”, In IEEE International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS’13), October 2013.

Nominated for the best paper.

[C.3] F. Hameed, L. Bauer, and J. Henkel, “Simultaneously Optimizing DRAM Cache Hit Latency and
Miss Rate via Novel Set Mapping Policies”, In International Conference on Compilers, Architec-
ture, and Synthesis for Embedded Systems (CASES’13), October 2013.

[C.4] F. Hameed, L. Bauer, and J. Henkel, “Adaptive Cache Management for a Combined SRAM and
DRAM Cache Hierarchy for Multi-Cores”, In Proceedings of the 16th conference on Design, Au-
tomation and Test in Europe (DATE’13), pages 77–82, March 2013.

[C.5] F. Hameed, L. Bauer, and J. Henkel, “Dynamic Cache Management in Multi-Core Architectures
through Run-time Adaptation”, In Proceedings of the 15th conference on Design, Automation and
Test in Europe (DATE’12), pages 485–490, March 2012.

[C.6] F. Hameed, M.A. Al Faruque, and J. Henkel, “Dynamic Thermal Management in 3D Multi-core
Architecture Through Run-Time Adaptation”, In Proceedings of the 14th conference on Design,
Automation and Test in Europe (DATE’11), pages 299–304, March 2011.

PhD Forum

[P.1] F. Hameed, L. Bauer, and J. Henkel, “DRAM Aware Last Level Cache Policies for Multi-Core
Systems”, In 17th conference on Design, Automation and Test in Europe (DATE), March 2014.

vii

The Big Picture

The Chair for Embedded Systems (CES) at the Karlsruhe Institute of Technology (KIT) provided
me the required research platform and infrastructure to complete my thesis. The people at CES
are primarily involved in research in the field of Design and Architectures for Embedded Sys-
tems. A current focus of research are multi-core systems, dependability, and low power design. I
worked in the multi-core research group with a focus on cache and processor architectures lever-
aging the application access patterns to achieve performance and reliability goals.

The CES is involved in various projects of the DFG Transregional Collobarative Research
Center (TCRC) 89 “Invasive Computing” [44, 122]. This collaboration between various depart-
ments at KIT (including the CES), Technische Universität München (TUM), and University of
Erlangen (FAU), aimed to investigate a novel paradigm for the design and resource aware pro-
gramming of future parallel computing systems. This scientific team includes experts in algo-
rithms for parallel algorithm design, hardware architects for multi-core system development as
well as language, compiler, application and operating system designers. The key idea of invasive
computing is to develop resource aware programming support so that programs are given the ca-
pability to dynamically spread its computations over a dynamic area in the multi-core systems
similar to a phase of invasion. This requires revolutionary changes in architecture, programming
languages, compilers, operating systems, and design of multi-core systems to effectively enable
resource aware programming for various processor and memory configurations. I primarily con-
tributed to the “Invasive Computing” research project by introducing novel architectural concepts
in the multi-core cache hierarchy [C.1][C.2][C.3][C.4][C.5]. The proposed architectural tech-
niques aimed to develop efficient run-time hardware techniques to exploit the full potential of the
multi-core cache hierarchy.

The CES also makes significant contributions to the DFG SPP 1500 “Dependable Embedded
Systems” projects. The key idea of SPP 1500 research project is to address the increasing de-
pendability and reliability issues in future nano-scale technologies [41] due to device aging, high
chip power densities, and process variation. The SPP aimed to develop reliability aware mecha-
nisms at both the hardware level (i.e., architecture and micro-architecture), and software level
(i.e. compilers, operating system, and application). The SPP 1500 comprises various individual
sub-projects, working synergistically to develop reliability modeling and aging mitigation tech-
niques based on the future technology trends [42]. The major challenges addressed by SPP 1500
include dark silicon and thermal challenges [43, 110]. One of the key contributions of the CES
towards SPP 1500 is the “VirTherm-3D” research project in collaboration with Technische Uni-
versität München (TUM) [23]. The goal of this project is to address dependability problems in
3D stacked many-core architectures resulting from extreme temperatures. I also contributed to
the VirTherm-3D project by proposing an efficient processor architecture and designed different
components of processing cores (arithmetic units, register file, instruction scheduler, cache, re-
order buffer, etc.) for performance, power and thermal improvement [C.6].

ix

Abstract

In addition to fast and small L1 and L2 caches, that are typically dedicated to a particular core in
multi-core systems, the larger so-called Last-Level-Cache (LLC) is shared among all cores and
used to bridge the latency gap between high speed cores and slower off-chip main memory. Tra-
ditionally, the LLC in multi-core systems consists of on-chip SRAM memory which comes at a
large area overhead that limits the LLC size. As multi-core systems employ more and more cores
on a single chip, the limited LLC size leads to an increasing number of off-chip memory access-
es. This increases the average latency per access which reduces the overall performance. There-
fore, recent research in academia and industry (e.g. IBM POWER7) has employed high capacity
on-chip DRAM as LLC between L1/L2 SRAM cache and main memory. The primary reason for
employing on-chip DRAM cache is that it provides greater capacity benefits for a given area
compared to SRAM cache (~8×), which reduces off-chip accesses.

When the DRAM cache is shared among multiple cores, the cores might interfere with each
other in the DRAM cache controller causing inter-core interference that increases DRAM cache
hit latency. The problem is exacerbated, when one core evicts useful data belonging to another
core causing inter-core cache eviction that increases DRAM cache miss rate. This thesis primari-
ly focuses on reducing DRAM cache miss rate and DRAM cache hit latency via novel applica-
tion-aware and DRAM-aware cache policies while addressing the above mentioned challenges.
This thesis makes the following novel contributions:

1. Different applications have different cache access behavior that make them better suited to
use different DRAM insertion rates (DRAM insertion rate is defined as the percentage of data
insertions into DRAM cache). To choose a suitable insertion rate at runtime, this thesis pro-
poses an adaptive DRAM insertion policy that mitigates inter-core cache eviction by adapting
the DRAM insertion rate in response to the dynamic requirements of the individual applica-
tions with different cache access behaviors. The proposed policy selects a suitable insertion
rate from multiple insertion rates depending on which insertion rate provides reduced off-chip
memory accesses.

2. To further mitigate the miss rate, this work proposes a DRAM set balancing policy after ana-
lyzing that DRAM accesses are not evenly distributed across the sets of the DRAM cache,
which leads to increased conflict misses via unbalanced set utilization. The proposed set bal-
ancing policy reduces conflict misses via reduced inter-core cache eviction that lead to a re-
duced miss rate, hereby improving the overall system performance.

3. DRAM row-buffer conflicts occurs, when multiple simultaneous requests are mapped to dif-
ferent rows of the same DRAM bank, causing high DRAM cache hit latency compared to a
scenario when these requests are mapped to the same row. To reduce DRAM cache hit laten-
cy, this thesis proposes a novel DRAM row buffer mapping policy that reduces row buffer
conflicts by exploiting data access locality in the row buffer.

4. To further reduce the DRAM cache hit latency, this thesis proposes a small and low latency
SRAM structure namely DRAM Tag-Cache (DTC) that holds the tags of rows that were re-
cently accessed in the DRAM cache. The proposed DTC has a high hit rate, because it ex-
ploits data access locality provided by the proposed DRAM row buffer mapping policy men-
tioned above. It provides fast tag lookup because for a DTC hit, it reads the tags from the low

Abstract

x

latency DTC in two cycles. In contrast, state-of-the-art DRAM cache always reads the tags
from DRAM cache that incurs high tag lookup latencies of up to 41 cycles.

In summary, high DRAM cache hit latencies, increased inter-core interference, increased in-
ter-core cache eviction, and the large application footprint of complex applications necessitates
efficient policies in order to satisfy the diverse requirements to improve the overall throughput.
This thesis addresses how to design DRAM caches to reduce DRAM cache hit latency, DRAM
cache miss rate and hardware cost, while taking into account both application and DRAM char-
acteristics by presenting novel DRAM and application aware policies. The proposed policies are
evaluated for various applications from SPEC2006 using a cycle accurate multi-core simulator
based on SimpleScalar that is modified to incorporate DRAM in the cache hierarchy. The combi-
nation of the proposed DRAM-aware and application-aware complementary policies improve the
average performance of latency-sensitive applications by 47.1% and 35% for an 8-core system
compared to [102] and [77] respectively while requiring 51% less hardware overhead.

xi

Zusammenfassung

Neben schnellen und kleinen L1- und L2-Caches, die in Mehrkernsystemen typischerweise
einem bestimmten Kern fest zugeordnet sind, wird der größere sogenannte Last-Level-Cache
(LLC) von allen Kernen gemeinsam genutzt und wird verwendet, um die unterschiedlichen
Latenzen von Kernen mit hoher Geschwindigkeit und dem langsameren externen Hauptspeicher
zu überbrücken. Traditionellerweise besteht der LLC in Mehrkernsystemen aus einem on-chip
SRAM-Speicher, der einen hohen Flächenverbrauch mit sich bringt, welcher die Größe des LLC
begrenzt. Da Mehrkernsysteme immer mehr Kerne auf einem einzelnen Chip integrieren, führt
die begrenzte LLC-Größe zu einer steigenden Anzahl von off-chip Speicherzugriffen. Dies
erhöht die durchschnittliche Latenz pro Zugriff, was die Gesamtleistungsfähigkeit reduziert.
Deshalb verwenden jüngste Forschungen in Akademie und Industrie (z.B. IBM POWER7) on-
chip DRAM mit hoher Kapazität als LLC zwischen L1/L2 SRAM Cache und dem
Hauptspeicher. Der primäre Grund für die Nutzung eines on-chip DRAM Caches ist, dass dieser
im Vergleich zu SRAM Cache höhere Kapazitätsvorteile für eine festgelegte Fläche erreicht
(~8×), wodurch die off-chip Zugriffe reduziert werden.

Wenn der DRAM Cache von mehreren Kernen gemeinsam genutzt wird, könnten die Kerne
sich im DRAM Cachecontroller gegenseitig beeinflussen und Inter-Kern-Interferenzen
verursachen, welche die Cache-Hitlatenz erhöhen. Das Problem verschlimmert sich, wenn ein
Kern nützliche Daten verdrängt die einem anderen Kern gehören und damit eine Inter-Kern-
Cacheverdrängung verursacht, welche die DRAM Cache Missrate erhöht. In dieser Arbeit liegt
der Schwerpunkt auf der Verringerung der DRAM Cache Missrate und der DRAM Cache
Hitlatenz durch neue applikations- und DRAM-bewusste Cacherichtlinien unter
Berücksichtigung der oben genannten Herausforderungen. Diese Arbeit leistet die folgenden
neuen Beiträge:

1. Verschiedene Applikationen haben unterschiedliches Cachezugriffsverhalten, wodurch sich
verschiedene DRAM Einfügungsraten besser eignen (die DRAM Einfügungsrate ist definiert
als der Anteil der vom Hauptspeicher zu einem Kern gebrachten Daten, die auch in den
DRAM Cache eingefügt wird). Um zur Laufzeit eine geeignete Einfügungsrate zu wählen,
schlägt diese Arbeit eine adaptive DRAM Einfügungsrichtlinie vor, welche die Inter-Kern-
Verdrängung durch Anpassung der DRAM Einfügungsrate als Antwort auf die dynamischen
Anforderungen der einzelnen Applikationen mit unterschiedlichem Cachezugriffsverhalten
reduziert. Die vorgeschlagene Richtlinie wählt aus mehreren Einfügungsraten eine geeignete
aus – abhängig davon welche Rate eine Verringerung der off-chip Speicherzugriffe liefert.

2. Nach der Analyse, dass DRAM Zugriffe nicht gleichmäßig über die Sätze (Sets) des DRAM
Caches verteilt sind, was zu einem Anstieg der durch Konflikte verursachten Cache Misses
durch unbalancierte Satznutzung führt, schlägt diese Arbeit eine DRAM
Satzbalancierungsrichtlinie vor, um die Missrate weiter zu verringern. Sie reduziert die durch
Konflikte verursachten Cache Misses durch Verringerung der Inter-Kern-Cacheverdrängung,
was zu einer geringeren Missrate führt, und verbessert damit die Gesamtleistung des Systems.

3. DRAM Zeilenpufferkonflikte treten auf, wenn mehrere gleichzeitige Anfragen auf
verschiedene Zeilen derselben DRAM Bank abgebildet werden, was eine hohe DRAM Cache
Hitlatenz zur Folge hat (verglichen mit dem Fall, dass diese Anfragen auf dieselbe Zeile

Zusammenfassung

xii

abgebildet worden wären). Um die DRAM Cache Hitlatenz zu verringern schlägt diese
Arbeit eine neuartige Richtlinie zur DRAM Zeilenpufferabbildung vor, welche die
Zeilenpufferkonflikte durch Ausnutzen von Datenzugriffslokalität im Zeilenpuffer verringert.

4. Um die DRAM Hitlatenz weiter zu verbessern schlägt diese Arbeit eine kleine SRAM
Struktur mit geringer Latenz namens DRAM Tag-Cache (DTC) vor, welche die Tags der
Zeilen enthält, auf die kürzlich im DRAM Cache zugegriffen wurde. Der DTC hat eine hohe
Hitrate, da er die Datenzugriffslokalität nutzt, welche von der oben genannten
vorgeschlagenen Richtlinie zur DRAM Zeilenpufferabbildung bereitgestellt wird. Er
ermöglicht ein schnelles Nachschlagen des Tags, da für einen DTC Hit der Tag innerhalb von
zwei Zyklen aus dem DTC gelesen werden kann. Im Gegensatz dazu werden bei derzeitigen
DRAM Caches die Tags immer aus dem DRAM Cache gelesen, was eine hohe Tag-
Nachschlagelatenz von bis zu 41 Zyklen mit sich bringt.

Zusammenfassend lässt sich feststellen, dass eine hohe DRAM Cache Hitlatenz, gestiegene
Inter-Kern-Interferenz, gestiegene Inter-Kern-Cacheverdrängung und der große Bedarf von
komplexen Applikationen effiziente Richtlinien notwendig machen, um die verschiedenen
Anforderungen zur Verbesserung des Gesamtdurchsatzes zu erfüllen. Diese Arbeit behandelt das
Design von DRAM Caches zur Reduzierung der DRAM Cache Hitlatenz, DRAM Cache
Missrate und Hardwarekosten, wobei sowohl die Eigenschaften der Applikationen als auch die
des DRAM durch neuartige DRAM- und applikationsbewusste Richtlinien berücksichtigt
werden. Die vorgeschlagenen Richtlinien wurden für verschiedene Applikationen aus der
SPEC2006 Benchmarksuite mit Hilfe eines zyklenakkuraten Mehrkernsimulators bewertet, der
auf SimpleScalar basiert und modifiziert wurde, um DRAM in die Cachehierarchie zu
integrieren. Die Kombination aus den vorgeschlagenen und sich ergänzenden DRAM- und
applikationsbewussten Richtlinien verbessert die durchschnittliche Leistung von latenzsensitiven
Applikationen um 47,1% und 35% für ein 8-Kern System verglichen mit [98] und [73], wobei
ein um 51% geringerer Hardwareaufwand notwendig ist.

xiii

Contents

Dedication .. i

Acknowledgements .. i

List of Publications ... v

The Big Picture .. vii

Abstract .. ix

Zusammenfassung ... xi

Contents ... xiii

List of Figures .. xvii

List of Tables ... xxi

Abbreviations ... xxiii

Chapter 1 Introduction .. 1
1.1 Why On-chip DRAM cache? ... 1

1.1.1 Benefits of On-Chip DRAM cache .. 4
1.2 Challenges in DRAM Cache Hierarchy .. 4

1.2.1 Inefficient resource allocation .. 5
1.2.2 Limited row buffer hit rate ... 5
1.2.3 High tag lookup latency ... 5
1.2.4 High Hardware cost .. 5

1.3 Thesis Contribution ... 5
1.4 Thesis Outline .. 6

Chapter 2 Background and Related Work .. 9
2.1 Cache Basics and Terminology ... 9

2.1.1 Least Recently Used (LRU) Replacement Policy 12
2.1.2 Multi-level Cache Hierarchies ... 13

2.2 DRAM Cache .. 14
2.2.1 Physical Realization ... 14
2.2.2 DRAM Organization .. 15
2.2.3 Tag-Store Mechanism .. 16

2.3 Important Application and DRAM Cache Characteristics 17

Contents

xiv

2.3.1 Inter-core Cache Contention ... 17
2.3.2 Inter-core DRAM Interference in the DRAM cache 18
2.3.3 Impact of Associativity ... 19
2.3.4 Impact of Row Buffer Mapping .. 19
2.3.5 Impact of cache line size ... 19

2.4 State-of-the-art DRAM Cache .. 20
2.4.1 LH-Cache [73, 74] ... 20
2.4.2 MMap$ Organization .. 22
2.4.3 Alloy-Cache [98] ... 23
2.4.4 Further Related Work in block-based DRAM Caches 24
2.4.5 Page-based DRAM Caches ... 25
2.4.6 Distinction with the state-of-the-art .. 26

Chapter 3 Overview of Proposed Policies ... 29
3.1 Adaptive DRAM Insertion Policy .. 30
3.2 Set Balancing Policy ... 31
3.3 DRAM Row Buffer Mapping Policy .. 32
3.4 Tag Cache Design ... 33
3.5 Super-block MMap$ (SB-MMap$) .. 34
3.6 Summary ... 34

Chapter 4 Experimental Setup ... 37
4.1 Simulation Infrastructure .. 38
4.2 Simulation Parameters .. 38
4.3 Benchmarks and classification .. 40
4.4 Simulation Methodology .. 40
4.5 Performance Metric .. 41

Chapter 5 Policies for Miss Rate Reduction ... 43
5.1 Motivation ... 44
5.2 Adaptive DRAM Insertion Policy (ADIP) ... 45

5.2.1 Application Profiling Unit (APU) ... 46
5.2.2 Probability Selection Unit (PSU) .. 47
5.2.3 Probability Realization .. 48

5.3 Set Balancing Policy (SB-Policy) ... 48
5.3.1 Row Assignment ... 50

5.4 Implementation ... 51
5.5 Overhead ... 52
5.6 Experimental Results .. 52

Contents

xv

5.6.1 ADIP and SB-policy on top of LH-Cache [74] 52
5.6.2 Impact on DRAM cache bandwidth and capacity utilization 53
5.6.3 Impact on miss rate .. 55
5.6.4 ADIP Run-time adaptivity ... 55
5.6.5 ADIP and SB-policy on top of Alloy-Cache [98] 56
5.6.6 Impact of Set Balancing Policy (SB-policy) 57

5.7 Summary .. 58

Chapter 6 Policies for Latency Reduction ... 59
6.1 Problems of the State-of-the-art .. 60
6.2 Proposed SRAM/DRAM Cache Organization .. 61
6.3 DRAM Row Buffer Mapping Policies .. 62

6.3.1 Row Buffer Mapping Policy with an Associativity of Seven
(RBM-A7) .. 63

6.3.2 Configurable Row Buffer Mapping Policy (CRBM) 64
6.3.3 Latency breakdown .. 70
6.3.4 Comparisons of different row buffer mapping policies 71
6.3.5 Impact of parameter CM .. 72

6.4 Super-block MMap$ (SB-MMap$) ... 72
6.4.1 Impact of super-block size on storage reduction 74

6.5 Innovative Tag-Cache Organization for larger caches 74
6.5.1 DRAM Tag-Cache (DTC) Organization .. 74
6.5.2 DTC Implementation with SB-MMap$... 76
6.5.3 Writing tag-blocks for a DTC hit ... 77
6.5.4 DTC organization for RBM-A7 policy .. 79
6.5.5 SRAM Tag-Cache (STC) Organization ... 81

6.6 Storage Overhead ... 82
6.7 Evaluation and Analysis .. 82

6.7.1 Impact on L4 DRAM miss rate .. 84
6.7.2 Impact on the L4 DRAM row buffer hit rate 85
6.7.3 Impact on the DTC hit rate ... 86
6.7.4 Impact on the L4 DRAM hit latency ... 86
6.7.5 Performance improvement without DTC 87
6.7.6 Performance improvement with DTC .. 88
6.7.7 Comparison of proposed policies ... 89

6.8 Evaluating CRBM policy .. 91
6.8.1 Impact of row buffer mapping policy .. 91
6.8.2 Impact of Tag-Cache on performance ... 91

Contents

xvi

6.8.3 Impact of the super-block size on performance 92
6.9 Summary ... 94

Chapter 7 Putting It All together: DRAM Last-Level-Cache Policies 95
7.1 Evaluation ... 96

7.1.1 Performance benefits ... 97
7.1.2 DRAM Aware Last-Level-Cache Policies are complementary 98

7.2 Result analysis .. 98
7.2.1 Miss rate reduction .. 98
7.2.2 Off-chip memory latency reduction .. 99
7.2.3 L4 DRAM hit latency reduction.. 99

7.3 Summary ... 101

Chapter 8 Conclusion and Outlook ... 103
8.1 Thesis Summary .. 103
8.2 Future Work .. 105

Bibliography .. 107

xvii

List of Figures

Figure 1.1: Processor memory speed gap over the past 30 years [12]1

Figure 1.2: LLC misses per thousand instructions (LLC MPKI) for different
SPEC2006 [5] applications ..3

Figure 2.1: A logical cache organization ..9

Figure 2.2: Example illustrating LRU replacement policy for an 8-way associative
cache (i.e. A = 8) (a) Insertion and eviction Policy (b) Promotion Policy12

Figure 2.3: A typical three-level multi-core cache hierarchy ...13

Figure 2.4: Die-stacked DRAM with multi-core chip [73, 74] implemented as (a) a
vertical stack (b) silicon interposer ..14

Figure 2.5: (a) DRAM organization (b) DRAM bank organization (c) Timing diagram
for a DRAM bank access ..16

Figure 2.6: Example showing inter-core cache contention between thrashing and non-
thrashing applications ...18

Figure 2.7: Example showing inter-core interference at the DRAM bank18

Figure 2.8: LH-Cache Cache Organization with Tags-In-DRAM for 2KB row size
[73, 74] ...21

Figure 2.9: LH-Cache (a) row buffer hit latency (b) row buffer miss latency for 2KB
row size with T = 3 and A = 29 ..21

Figure 2.10: LH-Cache row buffer mapping policy ...22

Figure 2.11: MMap$ for DRAM cache hit/miss detection [73, 74] ...23

Figure 2.12: DRAM cache row organization used by Alloy-Cache for 2KB row size24

Figure 2.13: Alloy-Cache (a) row buffer hit latency (b) row buffer miss latency24

Figure 2.14: Sector organization with 4 blocks per sector ..25

Figure 3.1: Proposed SRAM/DRAM cache hierarchy for an N-core system29

Figure 3.2: High level view of the proposed Adaptive DRAM Insertion Policy30

Figure 3.3: High level view of the proposed Set balancing policy ...31

Figure 3.4: DRAM cache row mapping without set balancing ..32

Figure 3.5: Steps involved in L4 DRAM tag lookup after an L3 SRAM miss33

Figure 4.1: Overview of the simulator based on Zesto simulator [75]37

Figure 5.1: Proposed DRAM cache hierarchy for an N-core system43

Figure 5.2: Example illustrating DRAM insertion probability of (a) 1, (b) ½, and (c) ¼45

Figure 5.3: Adaptive DRAM Insertion Policy for an N-core system47

List of Figures

xviii

Figure 5.4: DRAM cache row mapping for LH-Cache [73] (a) with SB-Policy (b)
without SB-Policy ...49

Figure 5.5: MMap$ segment entry; proposed SB-Policy adds an additional Seg-Row
field to MMap$ entry for set balancing ..50

Figure 5.6: Row assignment for SB-policy ...50

Figure 5.7: Steps involved in cache lookup operation ..51

Figure 5.8: Normalized HM-IPC speedup compared to LRU [73] for (a) Latency
Sensitive (LS) applications (b) Memory Sensitive (MS) applications (c)
Both LS and MS applications ..53

Figure 5.9: Distribution of DRAM cache accesses for different policies54

Figure 5.10: (a) DRAM cache miss rate (D$-MR) for Latency Sensitive (LS)
applications (b) Overall DRAM cache miss rate ..55

Figure 5.11: Run-time DRAM insertion probability for non-sampled sets of all
applications in Mix_01 ...56

Figure 5.12: Normalized HM-IPC speedup compared to Alloy [98] for (a) Latency
Sensitive (LS) applications (b) Memory Sensitive (MS) applications (c)
Both LS and MS applications ..57

Figure 5.13: (a) DRAM cache miss rate (D$-MR) for Latency Sensitive (LS)
applications (b) Overall DRAM cache miss rate ..58

Figure 6.1: SRAM/DRAM cache hierarchy highlighting the novel contributions59

Figure 6.2: (a) L4 DRAM hit latency (b) L4 DRAM miss rate (c) main memory
latency ..60

Figure 6.3: Row Buffer Mapping with Associativity of 7 (RBM-A7)62

Figure 6.4: Memory block mapping for the proposed RBM-A7 policy63

Figure 6.5: Row buffer mapping policy used by (a) LH-Cache [73] (b) CRBM policy
[Proposed] ..64

Figure 6.6: Block mapping for configurable row buffer mapping policy with different
values of CM ..65

Figure 6.7: DRAM cache row buffer hit rate for different values of CM...............................66

Figure 6.8: (a) Overview of LRU policy with 29-way associative cache (b) how the
tag entry fields are organized in LH-Cache [73, 74] ..66

Figure 6.9: Timing and sequence of commands for L4 DRAM hit that his in the row
buffer for LH-Cache ...67

Figure 6.10: (a) Overview of “pseudo LRU” policy (b) how the tag entry fields are
organized in configurable row buffer mapping policy ...68

Figure 6.11: Timing and sequence of commands for L4 DRAM read hit that his in the
row buffer for configurable row buffer mapping policy69

Figure 6.12: L4 DRAM cache Latency breakdown for a 2KB row size (a) LH-Cache
[73, 74] (b) Alloy-Cache [98] (c) RBM-A7 [proposed] (d) CRBM
[proposed] ...70

List of Figures

xix

Figure 6.13: MMap$ entry covering a 4KB memory segment for LH-Cache [73, 74]72

Figure 6.14: Proposed SB-MMap$ entry representing a 4KB memory segment for a
super-block containing (a) two adjacent blocks (b) four adjacent blocks73

Figure 6.15: DRAM Tag Cache (DTC) Organization for configurable row buffer
mapping policy ...75

Figure 6.16: L4 DRAM row buffer hit latency for (a) DTC hit (b) DTC miss76

Figure 6.17: DTC and MMap$ lookup following an L3 SRAM miss77

Figure 6.18: Timing and sequence of commands to update the tags in the DRAM cache
after a DTC hit in the configurable row buffer mapping policy for an L4
DRAM row buffer hit (a) read request (b) write/write back request (c) fill
request with clean victim block eviction (d) fill request with dirty victim
block eviction ...78

Figure 6.19: DRAM Tag Cache (DTC) Organization for the RBM-A7 policy79

Figure 6.20: Timing and sequence of commands to fill the DTC after a DTC miss for a
data block that belongs to Set-1 in the RBM-A7 policy80

Figure 6.21: Layout of a large L3 SRAM tag array [118] ..81

Figure 6.22: SRAM Tag-Cache (STC) organization ...82

Figure 6.23: L4 DRAM miss rate (a) for Latency Sensitive applications (b) Overall
miss rate; for different row buffer mapping policies ..84

Figure 6.24: DRAM cache row buffer hit rates for different row buffer mapping
policies ..85

Figure 6.25: DRAM Tag-Cache hit rates for different row buffer mapping policies86

Figure 6.26: L4 DRAM cache hit latency (a) without DTC (b) with DTC; for different
row buffer mapping policies ...87

Figure 6.27: Normalized HM-IPC speedup compared to Alloy-ADIP for different row
buffer mapping policies without DRAM Tag-Cache (DTC) for (a) latency
sensitive applications (b) all applications ...88

Figure 6.28: Normalized HM-IPC speedup compared to Alloy-ADIP for different row
buffer mapping policies with DRAM Tag-Cache (DTC) (a) latency
sensitive applications (b) all applications ...89

Figure 6.29: Average (a) DRAM cache row buffer hit rate (b) DTC hit rate (c) L4 hit
latency with DTC (d) L4 miss rate for latency sensitive applications90

Figure 6.30: Normalized HM-IPC speedup compared to the RBM-A7-ADIP policy with
DRAM Tag-Cache (DTC) (a) latency sensitive applications (b) all
applications ...91

Figure 6.31: Normalized HM-IPC speedup compared to Alloy-ADIP for (a) Latency
Sensitive (LS) applications (b) Memory Sensitive (MS) applications (c)
Both LS and MS applications ..92

Figure 6.32: Normalized HM-IPC speedup for different super-block (sb) sizes93

Figure 6.33: Percentage of false hits for super-blocks (sb) of size 2 and 493

List of Figures

xx

Figure 7.1: Proposed SRAM/DRAM cache hierarchy showing integration of selected
policies ..95

Figure 7.2: Normalized HM-IPC speedup compared to Alloy for (a) Latency Sensitive
(LS) applications (b) Memory Sensitive (MS) applications (c) Both LS and
MS applications ..97

Figure 7.3: L4 DRAM cache miss rate ...99

Figure 7.4: Off-chip main memory access latency ...99

Figure 7.5: (a) L4 DRAM hit latency (b) DRAM row buffer hit rate (c) DRAM Tag-
Cache hit rate ..100

xxi

List of Tables

Table 1.1: On-Chip SRAM LLC sizes over the past years for Intel Processor Chips 2

Table 2.1: Comparisons between different DRAM cache designs for a 2KB row size27

Table 2.2: Advantages of the proposed Policies ..27

Table 3.1: Overview of the proposed Policies ...35

Table 4.1: Core and cache parameters ...39

Table 4.2: Main memory parameters ...40

Table 4.3: Application mixes ..41

Table 6.1: Impact of row buffer mapping policy on associativity and latency71

Table 6.2: Storage overhead of DRAM Tag-Cache (DTC) and SRAM Tag-Cache
(STC) ..83

Table 7.1: Overview of different configurations with their incorporated policies96

xxiii

Abbreviations

A Associativity

ADIP Adaptive DRAM Insertion Policy

CRBM Configurable Row Buffer Mapping Policy

D$ Shared DRAM cache

DRAM Dynamic Random Access Memory

DTC DRAM Tag-Cache

FR-FCFS First Ready First Come First Serve

HL Hit Latency

HMIPC Harmonic Mean Instruction Per Cycle

KB Kilo Byte (also KByte): 1024 Byte

ILP Instruction Level Parallelism

IPC Instruction Per Cycle

LLC Last Level Cache

LRU Least Recently Used Policy

MB Mega Byte (also MByte): 1024 KB

ML Miss Latency

MR Miss Rate

MUX Multiplexer

OS Operating System

RAM Random Access Memory

RBM-A7 Row Buffer Mapping with Associativity of seven

RD Reuse Distance

ROB Reorder Buffer

S$ Shared SRAM cache

SB-Policy Set Balancing Policy

SiP System In Package

SRAM Static Random Access Memory

STC SRAM Tag-Cache

tCAS Column Access Strobe delay

tRAS Row Access Strobe delay

Abbreviations

xxiv

tRCD Row to Column Command delay

tRP Row Precharge delay

tWR Write Recovery time

TSV Through Silicon Via

Equation Chapter (Next) Section 1

- 1 -

Chapter 1 Introduction

Moore’s law [85] predicts that the number of transistors for a given chip area double every 18
months. The exponential growth in transistor density driven by Moore’s law and advanced mi-
croarchitecture techniques such as pipelining [119] and out-of-order execution [125] has led to
the significant increase in processor performance [12, 82] over the past several years. However,
compared to processor performance, the memory performance [140] has increased at a slower
pace as illustrated in Figure 1.1. This slower improvement in memory performance has led to the
significant speed gap between processor and memory referred to as “Memory Bandwidth” prob-
lem [12, 60, 108, 131, 136, 144].

Years

R
e
la
ti
ve
 s
p
e
ed

 im
p
ro
ve
m
e
n
t

Processor Memory
speed Gap

1

10

100

1000

Processor Speed

Memory Speed

1980 1985 1990 1995 2000 2005 2010

Figure 1.1: Processor memory speed gap over the past 30 years [12]

To alleviate the “Memory Bandwidth” problem, caches [29, 30] have been used to bridge the
latency gap between high speed cores and slower main memory. The cache is a smaller and faster
on-chip memory that stores copies of recently accessed data from frequently used memory loca-
tions to take advantage of the spatial and temporal locality of the applications. At first, processors
used a single level of cache as used by Intel Pentium P5 processor in 1993. However, the widen-
ing gap between processor and memory speed has led to the evolution of multi-level cache hier-
archies [12, 59, 96]. For instance, the recent Intel Xeon E5-2690 processor chip [3], introduced in
2012 employs three levels of cache hierarchy. In these hierarchies, fast and small L1 and L2
caches are dedicated to each core and provide low hit latency. The larger Last-Level-Cache
(LLC) is shared among all cores and provides low miss rate.

1.1 Why On-chip DRAM cache?

A recent trend in industry towards mitigating the “Memory Bandwidth” problem is to use a large
on-chip SRAM Last-Level-Cache (LLC) by dedicating a larger die area for the LLC. Table 1.1

Chapter 1 Introduction

- 2 -

illustrates this observation showing SRAM LLC capacity over the past several years for Intel
processor chips [1]. For example, Intel P5 processor introduced in 1993 was equipped with a
small 16KB SRAM cache, the recent Intel Xeon E5-2690 processor, introduced in 2012, has em-
ployed a larger 20MB SRAM LLC. Larger high-speed SRAM cache improves the performance
by sending fewer requests to the low-speed off-chip memory because it can contain the working
set size (i.e. the amount of memory required to execute the program) of many applications. How-
ever, for a given cache capacity, SRAM cache significantly increases the system cost compared
to DRAM cache in terms of larger die area because it provides lower density compared to
DRAM cache [18, 54, 55].

Year Intel Processor Name # Cores On-Chip Caches LLC size (Cache Level)

1993 Pentium P5 1 L1 16KB (L1)

1995 Pentium Pro 6 1 L1, L2 256KB (L2)

1997 Pentium II Klamath 1 L1, L2 512KB (L2)

2001 Pentium III-S Tualatin 1 L1, L2 512KB (L2)

2004 Pentium IV Prescott 1 L1,L2 2MB (L3)

2006 Core 2 Duo Conroe 2 L1, L2 4MB (L2)

2008 Xeon 7130M 2 L1,L2 8MB (L2)

2010 Xeon 7130M 6 L1, L2, L3 12MB (L3)

2012 Xeon E5-2690 8 L1, L2, L3 20MB (L3)

Table 1.1: On-Chip SRAM LLC sizes over the past years for Intel Processor Chips [1]

Despite continual increase in SRAM LLC size over the past years, the demand for cache
space has always exceeded due to large working set sizes of complex applications [32]. Fig-
ure 1.2 illustrates this observation by showing LLC misses per thousand instructions for different
LLC sizes and different SPEC2006 [5, 46] applications. It shows that the working set sizes of
some applications (e.g. 462.libquantum, 471.omnetpp, and 473.astar.train) exceeds the available
SRAM LLC size, even for the Intel Xeon E5-2690 processor chip with 20MB LLC. On the other
hand, the applications with small working set sizes (e.g. 437.leslie3d.train) obtain significant
benefits from a 20MB LLC, because the majority of cache requests will be satisfied in the LLC
for these applications.

Single-core processors [2, 7, 9, 25, 63, 111] have shown significant performance increase
during the last decades which is mainly driven by transistor speed as well as by exploiting in-
struction level parallelism (ILP) [12, 82, 91]. However, the diminishing transistor-speed scaling
and energy limits of single-core processors have led to the evolution of multi-core systems [2, 7,
9, 14, 25, 26, 27, 31, 33, 63, 111] because it is less complex to design a chip with many small
cores compared to a chip with a single larger core. For this reason, computing industry has an-
nounced multi-core processor chips that consist of several computing cores fabricated on a single
chip in contrast to traditional single-core processor chips.

1.1 Why On-chip DRAM cache?

- 3 -

LL
C
 M

P
K
I

LL
C
 M

P
K
I

LL
C
 M

P
K
I

0

2

4

6

8

2MB 4MB 8MB 16MB 32MB 64MB 128MB

437.leslie3d.train

0

5

10

15

20

2MB 4MB 8MB 16MB 32MB 64MB 128MB

470.lbm

10

12

14

16

18

2MB 4MB 8MB 16MB 32MB 64MB 128MB

433.milc

0

5

10

15

2MB 4MB 8MB 16MB 32MB 64MB 128MB

450.soplex

LL
C
 M

P
K
I

0

1

2

3

4

5

2MB 4MB 8MB 16MB 32MB 64MB 128MB

473.astar.train

0

2

4

6

8

10

2MB 4MB 8MB 16MB 32MB 64MB 128MB

462.libquantum

0

5

10

15

2MB 4MB 8MB 16MB 32MB 64MB 128MB

471.omnetpp

0

2

4

6

8

2MB 4MB 8MB 16MB 32MB 64MB 128MB

437.leslie3d.ref

Figure 1.2: LLC misses per thousand instructions (LLC MPKI) for different SPEC2006
[5] applications

Multi-core systems provide improved performance compared to a single-core system through
better resource utilization by replicating multiple cores on the chip. However, these multi-core
systems place a high pressure on the SRAM LLC due to their limited cache capacity because it
has to be shared among multiple applications. Recent trends likes Intel Tera-scale [127] and Til-
era TILE64 [9] multi-core processor chips show that the number of cores will likely continue to
increase in the future. As future multi-core systems are expected to have a large number of cores
(see Table 1.1), the aggregate working set size (i.e. the amount of memory required to execute all
applications) on a multi-core system will increase as well. As a result, increased number of inser-
tions in the limited size SRAM LLC from multiple cores will cause inter-core cache eviction [15,
16, 35, 51, 64, 65, 73, 75, 86, 98, 99, 138] where one core could evict useful data used by another
core. Increased inter-core cache eviction for traditional on-chip SRAM LLC [77, 78, 102] in-
creases the number of off-chip memory accesses, which may degrade the performance due to
limited off-chip memory bandwidth [12, 60, 108, 131, 136, 144].

Chapter 1 Introduction

- 4 -

The total die area dedicated for the LLC is an important design parameter for multi-core chip
vendors. Increasing the amount of cache capacity for the SRAM LLC can greatly improve the
performance by increasing the cache hit rate and reducing the number of high-latency off-chip
accesses. However, it increases the system cost in terms of larger die area due to high cost-per-bit
of the SRAM cache [123]. DRAM cache offers a lower cost-per-bit because it provides 8 to 16
times [54, 55] higher density compared to traditional SRAM caches. For a given cache capacity,
DRAM cache significantly reduces the system cost in terms of smaller die area. As a result, it
provides significantly higher cache capacity that leads to reduced off-chip accesses and reduced
inter-core cache eviction compared to an area equivalent SRAM cache. For instance, the IBM
POWER7 processor [7, 129] utilizes a 32MB on-chip DRAM as LLC between L1/L2 SRAM
cache and main memory.

1.1.1 Benefits of On-Chip DRAM cache

Integrating on-chip DRAM cache in the cache hierarchy provides significant performance bene-
fits due to the following reasons:

1. It provides eight times more bandwidth benefits compared to an off-chip memory [54, 55],
because it provides wider bus widths through the use of shorter on-chip interconnects [34, 77,
78] compared to conventional off-chip memory interfaces.

2. It operates at a higher clock speed through the use of low latency on-chip interconnects [52,
61, 62, 70] compared to off-chip memory.

3. It provides more independent channels compared to off-chip memory [66] because off-chip
memory cannot provide more channels due to limited pin bandwidth [60].

4. It provides 8 to 16 times capacity benefits compared to an area equivalent SRAM cache [11,
54, 55, 75] due to its small cell size per bit. Thus, it reduces contention for the off-chip main
memory due to its high capacity [77, 78, 102], hereby reducing off-chip memory accesses.

5. It offers up to four times higher bandwidth compared to an SRAM cache [53] due to its capa-
bility to service multiple outstanding requests in parallel due to the large number of DRAM
banks.

1.2 Challenges in DRAM Cache Hierarchy

On-chip DRAM cache is a promising alternative to SRAM cache, but its high access latency pro-
hibits its adoption as SRAM cache replacement. Neither SRAM nor DRAM cache alone can pro-
vide both highest capacity and fastest access for multi-core system, respectively. Therefore, state-
of-the-art SRAM/DRAM cache hierarchies [77, 78] exploit the latency benefits of fast SRAM
cache and the capacity benefits of slower DRAM cache.

The advantages of on-chip DRAM cache come at the cost of higher latency compared to
SRAM cache (but lower latency compared to off-chip memory). If designed efficiently, DRAM
cache could satisfy the high capacity needs of complex applications [32] while reducing the
number of high latency off-chip memory accesses. Before summarizing the thesis contributions
in Section 1.3, the following subsections explain the key challenges and drawbacks that are faced
by state-of-the-art and that are addressed in this thesis:

1.3 Thesis Contribution

- 5 -

1.2.1 Inefficient resource allocation

When the DRAM cache is shared among multiple cores, the cores might interfere with each other
in the DRAM cache controller causing inter-core interference that increases DRAM cache hit
latency. State-of-the-art DRAM cache suffers from increased inter-core interference because it
always allocates DRAM resources for both highly-reuse data (i.e. data that is reused in the near
future) and zero-reuse data (i.e. data that is not reused before it gets evicted). Furthermore, they
lead to inefficient DRAM cache bandwidth utilization and increased miss rate due to unnecessary
resource allocation for zero-reuse data.

1.2.2 Limited row buffer hit rate

The DRAM sub-system is composed of DRAM banks which consist of rows and columns of
memory cells called the DRAM array [68, 69, 88, 89, 141]. Each DRAM bank provides a row
buffer (typically 2 to 8 KB) that consists of SRAM cells (detailed background of a DRAM bank
is provided in Section 2.2.2) that operate faster than the DRAM array. Data in a DRAM bank can
only be accessed after it is fetched to the row buffer. Any subsequent access to the same row (so-
called row buffer hit) will bypass the DRAM array access and the data is directly read from the
row buffer. Such row buffer locality reduces the access latency compared to when actually ac-
cessing the DRAM array. State-of-the-art DRAM cache architectures [77, 78] do not exploit the
full potential of row buffer locality and their disadvantageous row buffer hit rate leads to high
DRAM cache access latencies due to reduced spatial locality because they map consecutive
memory blocks to different row buffers.

1.2.3 High tag lookup latency

In state-of-the-art DRAM cache [77, 78], each DRAM row (2048 bytes) consists of one cache set
which is divided into 29 64-byte data blocks (29 × 64 = 1856 bytes) and 3 tag blocks (3 × 64 =
192 bytes). The tag lookup latency is a severe bottleneck due to the following reasons. First, it
requires reading the tags (192 bytes) and data (64 bytes) for every DRAM cache access. The ex-
traneous DRAM bandwidth required for reading this large tag information results in higher tag
lookup latency. Second, the structure and access methods for DRAM subsystem (detailed back-
ground of DRAM subsystem is provided in Section 2.2) incurs high tag lookup latency compared
to SRAM cache tag lookup.

1.2.4 High Hardware cost

Recent state-of-the-art DRAM cache architectures [77, 78] invest noticeable hardware overhead
for auxiliary structures to circumvent some of the above-mentioned drawbacks. For instance,
they require 2MB SRAM storage for managing 128MB DRAM cache, which reduces the area
advantages of DRAM cache.

1.3 Thesis Contribution

The major challenges in the design of an SRAM/DRAM cache hierarchy is to reduce the on-chip
latency and off-chip memory accesses that majorly depends upon efficient utilization of DRAM

Chapter 1 Introduction

- 6 -

cache bandwidth and capacity, tag-store mechanism (i.e. where to store the tags of the DRAM
cache and how to access them), efficient utilization of off-chip memory bandwidth, and DRAM
cache row buffer hit rate. This thesis investigates state-of-the-art SRAM/DRAM cache hierar-
chies for multi-core systems and presents novel application-aware and DRAM-aware policies for
efficiently managing SRAM/DRAM cache hierarchies, while addressing the above mentioned
challenges.

In particular, this thesis makes the following novel contributions:

1. This thesis proposes an application-aware adaptive DRAM insertion policy (an insertion
policy decides whether an incoming data when brought from off-chip memory should be in-
serted into cache or not). It adaptively selects from multiple insertion policies at runtime on a
per-core basis depending on the monitored miss rate behavior of concurrently running appli-
cations. It provides efficient utilization of DRAM cache bandwidth that leads to improved
performance via reduced inter-core interference in the DRAM cache controller.

2. This thesis proposes a DRAM set balancing policy after analyzing that DRAM accesses are
not evenly distributed across the sets of the DRAM cache, which leads to increased conflict
misses via unbalanced set utilization. The proposed policy improves the DRAM capacity uti-
lization via reduced conflict misses, which leads to a reduced miss rate.

3. To reduce the DRAM cache hit latency, this thesis proposes several DRAM row buffer
mapping policies that improve the row buffer hit rate by exploiting data access locality in the
row buffer.

4. To reduce the tag lookup latency, this thesis proposes a small and low latency SRAM struc-
ture namely DRAM Tag-Cache that allows most DRAM accesses to be serviced at signifi-
cantly reduced access latency compared to when tags are accessed from the DRAM cache.

Altogether, this thesis develops a combined SRAM/DRAM cache organization that integrates
all of the proposed policies in a single unified framework. This includes modifying existing
DRAM cache controller policies to incorporate the proposed row buffer mapping policies and
DRAM Tag-Cache structures. This thesis also reduces the storage overhead required for DRAM
cache management with minimal impact on the overall instruction throughput for our novel row
buffer mapping policies.

1.4 Thesis Outline

The thesis is organized as follows: Chapter 2 presents the background for caches (especially the
DRAM cache) and the recent related work on SRAM and DRAM caches.

Chapter 3 provides a short overview of the proposed application and DRAM aware policies
employed in this thesis. The detailed explanation and investigation of the proposed policies will
later be presented in Chapter 5 and Chapter 6.

Chapter 4 provides the details of the experimental setup used for the extensive presentation of
the evaluation results using the proposed policies presented in Chapter 5, Chapter 6, and Chap-
ter 7. The simulation methodology for this work and state-of-the-art is presented, as well as the
tools and benchmarks used in this thesis.

1.4 Thesis Outline

- 7 -

Chapter 5 presents two novel policies namely adaptive DRAM insertion policy and set bal-
ancing policy for miss rate reduction, detailing their operations and implementation. This chapter
investigates the problems of state-of-the-art DRAM insertion policies in detail before presenting
the proposed adaptive DRAM insertion policy. At first, a short overview of the different DRAM
insertion probabilities is given, which is required to describe the proposed adaptive DRAM inser-
tion policy. Afterwards, the adaptive DRAM insertion policy that can select from multiple inser-
tion probabilities for each application is explained in detail. Subsequently, the online monitoring
mechanism to select the suitable insertion probability is explained. Finally, the Set Balancing
Policy (SB-Policy) is introduced to reduce conflict misses via an improved DRAM cache set uti-
lization.

Chapter 6 presents the policies for latency reduction demonstrating novel DRAM row buffer
mapping policies followed by an innovative Tag-Cache architecture. This chapter investigates the
latency trade-offs in architecting the DRAM cache and analyzes the effects of different DRAM
row buffer mapping policies on the overall performance. It analyzes the problems of state-of-the-
art DRAM row buffer mapping policies before presenting the proposed novel row buffer map-
ping policies. This chapter also presents the concept of a Tag-Cache – a small and low latency
structure – that improves performance by reducing the average cache hit latency. Afterwards, it
presents modifications to state-of-the-art DRAM cache controllers to further reduce the DRAM
cache hit latency.

The evaluation results for the adaptive DRAM insertion policy and set balancing policies are
presented in Chapter 5 and the results for DRAM row mapping policy and Tag-Cache organiza-
tions are presented in Chapter 6. In addition, Chapter 7 presents an evaluation for the combined
contributions.

Chapter 8 concludes this thesis and provides an outlook to potential future work.

- 9 -

Chapter 2 Background and Related Work

The primary focus of this thesis is to design and optimize DRAM cache based multi-core systems
that cover both application and DRAM aware policies in order to improve the overall instruction
throughput. This chapter presents the general background for caches followed by a short over-
view of SRAM caches. Afterwards, it introduces the organization of DRAM cache, detailing its
implementation and access mechanisms. Finally, the most recent related work in the area of
DRAM cache is reviewed.

2.1 Cache Basics and Terminology

Cache was first introduced in 1965 to bridge the latency gap between high speed cores and slow-
er main memory [132]. The cache [45, 48, 116, 132] is a smaller and faster on-chip memory that
stores copies of recently accessed data from frequently used memory locations in order to take
advantage of spatial and temporal locality of the applications [6, 45]. Figure 2.1 shows a typical
logical cache organization.

Figure 2.1: A logical cache organization

The following defines some of the basic terms required to understand caches.

Instruction Cache: An instruction cache only holds the instructions of a program and is used for
issuing instructions to processor’s fetch unit at a faster rate.

Data Cache: A data cache only holds the program’s data and is used for fetching data to proces-
sor’s execution unit at a faster rate.

Chapter 2 Background and Related Work

- 10 -

Unified Cache: A unified cache contains both program’s instructions and data.

Logical Cache organization: There are two basic types of logical cache organization namely
private and shared cache organizations [17, 22, 35, 97] in a multi-core system.

Private Cache organization: In the private cache organization, each core is provided with its
private cache that holds only the recently accessed data requested by its core (called local core).

Shared Cache organization: In a shared cache organization, the whole cache resources are
shared by all of the cores providing capacity sharing among different applications.

Block: ‘Block’ or a ‘memory block’ is a group of contiguous bytes in main memory (typical
block size is 64 byte). A block is identified by bits of the memory address, namely block address
as shown in Figure 2.1.

Cache line: Cache line is the basic unit of cache storage [95, 115]. A cache line may contain a
single block [77, 102, 112, 113] or multiple blocks [54, 55, 133]. Each cache line consists of a val-
id bit, dirty bit (not used in instruction caches), tag bits and the data as shown in Figure 2.1.

Set: A set is a group of cache lines. A particular cache set is determined by the ‘Set #’ field of the
main memory address as shown in Figure 2.1.

Associativity (A): Typically, cache is composed of a single set or multiple sets [49, 116], where
each set contains “A” cache lines, i.e. an associativity of A. Each block is mapped to a particular
cache line of a particular cache set that is determined by the cache organization.

Valid bit: The valid bit of a cache line indicates whether it contains valid (valid bit is 1) or inva-
lid (valid bit is 0) data. All the valid bits of each cache line are set to zero on power up or on a
cache reset. Some systems set the valid bit to zero in some special situations. For instance, when
a cache line is occupied by multiple cores in a multi-threaded environment, the valid bit of that
cache line in the core’s private cache is set to zero after its modification by another core. This
ensures that the cache lines in the core’s private cache are not stale.

Dirty bit: The dirty bit of a cache line indicates whether the cache line has been modified by the
processor (dirty bit is 1) or remained unchanged (dirty bit is 0) since it was fetched from main
memory.

Tag: Each cache line includes the data itself as well as the tag which is used to identify a particu-
lar block (belonging to a cache line) in a particular cache set.

Cache lookup: When the core needs to read/write data from/to a location in memory, it first
needs to identify the set (determined by the ‘Set #’ field; Figure 2.1) followed by tag checking to
identify whether a copy of that block resides in the cache set or not. A cache lookup requires
searching maximum of A valid cache lines (i.e. invalid cache lines are excluded) in the relevant
set to identify a cache hit or a miss.

2.1 Cache Basics and Terminology

- 11 -

Cache hit: Following a cache lookup, if the requested data is found in the cache (called cache
hit), the core immediately performs a read or write operation on the data which is much faster
than a memory read or write operation.

Cache miss: Following a cache lookup, if the requested data is not found in the cache (called
cache miss), then the data is brought from the next-level cache or main memory and inserted in
the cache.

Victim line: After a cache miss, a new cache line is allocated and a resident cache line called
victim line is chosen for eviction. The victim line is the candidate for eviction to make room for
an incoming cache line which is determined by the cache replacement policy (see Section 2.1.1).

Cache replacement policy: A cache replacement policy decides which cache line should be
evicted from the cache set when the set does not have enough space to accommodate a new cache
line. A well-known replacement policy for cache is described in Section 2.1.1.

Physical Cache organization: The physical cache organization decides how blocks are mapped
to a particular set of a cache. There are three basic types of physical cache organizations [45, 49]
namely direct-mapped, fully associative, and set associative cache organizations.

Direct-mapped Cache: In a direct-mapped cache [10, 47, 57, 58], a cache set consists of a single
cache line (i.e. A = 1; see Figure 2.1). On a cache lookup, a single cache line must be searched in
a set to find whether the request results in a cache hit or a miss. The replacement policy for di-
rect-mapped cache is simple as only one cache line is checked for a lookup and the cache line
residing in that particular cache set is the victim line to accommodate an incoming cache line.

Fully Associative Cache: A fully associative cache consists of a single cache set (i.e. S = 1; see
Figure 2.1) and all T cache lines are mapped to this single set. Fully associative cache has a com-
plex cache lookup operation because all T cache lines (see Figure 2.1) in the same set must be
searched in parallel to identify a cache hit or a miss.

Set Associative Cache: In a set-associative cache [50, 114, 120, 130], a cache consists of multi-
ple cache sets (i.e. S ≥ 2) where each set consists of multiple cache lines (i.e. A ≥ 2). A cache line
is first mapped onto a cache set, then the cache line can be placed anywhere in the set. On a
cache lookup, ‘A’ cache lines must be searched in a set to find whether the requested address re-
sults in a cache hit or a miss.

Hit latency: Hit latency is the time elapsed to transfer the requested data (includes the time spent
to identify a hit/miss) to the core after a cache hit.

Miss latency: determines the time elapsed to transfer the requested data to the core after a cache
miss. The miss latency is much higher than the hit latency due to the slower latency of the next
cache level or the main memory.

Miss rate: defined as the number of cache misses divided by total number of cache accesses.

Fetch granularity: It is the unit of data transfer between cache hierarchy and main memory [95].

Chapter 2 Background and Related Work

- 12 -

2.1.1 Least Recently Used (LRU) Replacement Policy

A cache replacement policy decides which cache line should be evicted from the cache set when
the set does not have enough space to accommodate a new cache line. The two commonly used
replacement policies are least recently used (LRU) [56, 90] and Pseudo-LRU replacement poli-
cies [111]. This section explains the traditional least recently used replacement policy [56, 90],
which is employed in state-of-the-art DRAM cache [77, 78].

Figure 2.2: Example illustrating LRU replacement policy for an 8-way associative cache
(i.e. A = 8) (a) Insertion and eviction Policy (b) Promotion Policy

The LRU replacement assigns priority values to each cache line in a cache set. The priority
values of the cache line belonging to a particular set are modified after a cache hit or a miss. The
LRU replacement policy can be divided into eviction, promotion and insertion policies described
as follows:

Eviction Policy: After a cache miss, one of the cache lines in a particular cache set is selected for
eviction (i.e. victim line) to make room for an incoming cache line. The eviction policy evicts the
cache line with the least priority of the relevant set.

Insertion Policy: The insertion policy modifies the priority values of the cache lines belonging to
a cache set after a cache miss to that particular set before insertion a new cache line.

Promotion Policy: The promotion policy decides how the priority values of the cache lines be-
longing to a cache set should be modified after a cache hit to that particular set.

To make room in a set for an incoming cache line, the traditional Least Recently Used (LRU)
replacement policy evicts a cache line that is least recently used [56, 90]. Figure 2.2-(a) shows a
logical organization (cache lines are shown from left to right in priority order) of a cache set with
priority values assigned to each cache line. The cache line with the highest priority is called Most
Recently Used (MRU) cache line, while the cache line with the least priority is called Least Re-

2.1 Cache Basics and Terminology

- 13 -

cently Used (LRU) cache line. The LRU cache line (cache line H with a priority value of 1) is the
candidate for eviction to make room for an incoming cache line on a cache miss. After a cache
miss, the insertion policy modifies the priority values of the cache lines in the priority list. In the
example shown in Figure 2.2-(a), the new cache line I is assigned a highest priority value of 8
(i.e. cache line I becomes the MRU cache line) while the priority values of the remaining cache
lines are decremented by one. The promotion policy enhances the priority value of a cache line
on receiving a cache hit. In an LRU based cache, a hit causes the cache line to get the highest
priority value. In the example shown in Figure 2.2-(b), cache line E (i.e. cache line E becomes
the MRU cache line) gets the highest priority value of 8 after receiving a cache hit.

2.1.2 Multi-level Cache Hierarchies

There are two different design alternatives for organizing caches in multi-core systems: private
and shared cache organizations [17, 22, 35, 97]. In the private cache organization, each core is
provided with its private cache that holds only the recently accessed blocks requested by its core
(called local core). The private cache organization provides inter-core performance isolation
because the cores are not allowed to insert their requested cache lines into other core’s private
caches. Inter-core performance isolation means that an application running on one core cannot
hurt the performance of concurrently running applications on other cores. However, in a private
cache organization, some of the private caches may be under-utilized, whereas others may be se-
verely over-utilized. In a shared cache organization, the whole cache resources are shared by all
of the cores providing capacity sharing (to prevent under-utilization and over-utilization of cache
resources) among different applications.

Figure 2.3: A typical three-level multi-core cache hierarchy

The performance of a cache depends on the miss rate and hit latency and there is a tradeoff
between them when varying the cache size. On one hand, a larger cache has a reduced miss rate
at the cost of increased hit latency (a larger SRAM structure has longer access latency). On the
other hand, a smaller cache has a reduced hit latency at the cost of increased miss rate due to lim-

- 14 -

ited cache c
96, 128] wi

Figure 2
private L1
larger L3 c
needs in ter
dress, the c
(i.e. L1 cac
cache (i.e. L
request is fo

2.2 DR

2.2.1 Ph

As compare
technology
the intercon
nect length
low latency
past decade
[20, 34, 39
tion techniq
tal stacking
multiple DR
the DRAM
70].

Figure 2.4

capacity. T
ith small low

2.3 illustrat
and L2 cac
ache with i
rms of redu
cache hierar
che hit), the
L1 cache m

forwarded to

RAM Ca

hysical Re

ed to the tra
node [4, 1

nnect scalab
h) through s
y and high b
e and has b
, 53, 54, 55
ques have b
g on an inte
RAM dies

M industry em

4: Die-stac

o address th
w-latency p

tes a typica
ches are em
ts relatively

uced miss ra
rchy first ch
en it is forw

miss), then th
o main mem

ache

ealization

ansistor del
05, 106]. D
bility proble
tacking. Di
bandwidth i
een employ

5, 75, 77, 78
been propos
erposer [20
with traditi

mploys Thro

cked DRAM

his, multi-c
private cache

al three-leve
mployed to s
y high hit la
ate. When a
heck the L1
warded to th
he L2 cache

mory.

ay, intercon
Die-stacking
em by reduc
ie-stacking t
interconnect
yed both in
8, 74, 76, 1
sed for die-s
0]. The Sam
ional System
ough Silico

M with mul
stack (b) s

core system
es backed u

el multi-cor
satisfy the c
atency is sh
core issues
 cache for

he core. Ho
e is checked

nnect delay
g technology
cing commu
technology
t. It has exp
industry [5
02, 113, 11
stacking suc

msung Semi
m In Packa

on Vias (TSV

lti-core chip
silicon inte

Chapter

s employ m
up by high-c

re cache hi
core’s needs
hared among
s a read or w
a hit. If the

owever, if th
d for a hit o

does not sc
y provides
unication pe
enables int

perienced tr
52, 61, 62, 6
12, 133, 139
ch as vertic
iconductors
age (SiP) te
Vs) to stack

p [77, 78] im
erposer

2 Backgroun

multiple leve
capacity sha

erarchy, wh
s in terms o
g all cores t
write reques
e data is fou
he data is n

or a miss, an

cale at the s
a potential
enalties (by
tegration of
remendous a
66, 70, 92,
9, 143]. Dif
cal stacking
s has comm
echnology [
k 3D DRAM

mplemente

nd and Relat

els of cache
ared caches.

here fast an
of low laten
to satisfy th
st to a partic
und in the L
not found in
nd so on, be

same rate w
solution to

y reducing in
f multiple d
attention du
109] and ac

fferent impl
[139] and h

mercialized
[109]. Furth
M chips [52

ed as (a) a v

ted Work

e [8, 45,
.

nd small
ncy. The
he cores’
cular ad-
L1 cache
n the L1
efore the

with each
address

ntercon-
dies with
uring the
cademia
lementa-
horizon-
stacking
hermore,
, 61, 62,

vertical

2.2 DRAM Cache

- 15 -

Die stacking technology provides a way to integrate a large amount of DRAM layers with a
conventional multi-core processor chip using vertical stacking (Figure 2.4-(a)) or horizontal/2.5D
stacking on an interposer (Figure 2.4-(b)). The DRAM layers can either be used as main memory
[54, 55, 74, 76, 139, 143] or DRAM caches [53, 75, 77, 78, 102, 112, 113]. Using DRAM layers
as main memory [54, 55, 74, 76, 139, 143] demands extensive modification to the operating sys-
tem required for mapping pages to on-chip and off-chip memory. Using DRAM layers as DRAM
caches retains software transparency, supports legacy software because it is not dependent on
new versions of operating systems [77, 78]. Therefore, state-of-the-art [53, 75, 77, 78, 102, 112,
113] employs stacked-DRAM layers as DRAM caches because it is not possible to stack the en-
tire system’s memory on top of multi-core processor chip due to large working set sizes of com-
plex applications [32].

2.2.2 DRAM Organization

A typical DRAM organization is shown in Figure 2.5-(a). A DRAM subsystem consists of multi-
ple banks where each bank is arranged into rows and columns of DRAM cells, called the DRAM
array. When a row is read from the DRAM array, its contents are destroyed which requires the
data to be buffered. Therefore, each DRAM bank provides a row buffer (see Figure 2.5-b) that
consists of SRAM cells and buffers one row of the DRAM bank (typically 2 to 8 KB). Data in a
DRAM bank can only be accessed after it is fetched to the row buffer. Any subsequent accesses
to the same row (row buffer hit) will bypass the DRAM array access and the data will be read
from the row buffer directly. This concept is referred to as row buffer locality [69, 107]. A re-
quest to a DRAM subsystem is sent to the DRAM controller which is responsible to schedule the
request to the DRAM bank as shown in Figure 2.5-(a). The DRAM controller consists of:

1. Request Buffer that holds a queue of pending requests,

2. DRAM Read/Write data buffers that holds the data that is read from/written to the
DRAM bank, and

3. Bank scheduler that schedules the request to the DRAM bank while prioritizing request
to open rows to improve row buffer locality [69, 107].

An access to a DRAM bank involves multiple steps before the read/write operation is per-
formed as shown in Figure 2.5-(c). Assuming that the requested row is not already open (i.e. it is
not in the row buffer), an activate (ACT) command is used to open the requested row in the row
buffer by reading the data through the sense amplifier. When data is loaded in the row buffer
(row access), a read (RD) or write (WR) command is required to access appropriate columns
(typical column size is 64 byte) from the row buffer (column access). The access latency of a row
buffer miss includes the time to write the contents of the previously opened row (tWR; required
because reading a row from the DRAM array destroys the row’s contents which needs to be writ-
ten back into the DRAM array), time to activate the row (tRCD), and the column access time
(tCAS). In case of a row buffer hit, only a read or write command is issued, which only requires
column access time (tCAS). tCAS is the delay between the moment a DRAM cache controller
requests the DRAM cache to access a particular column and the moment the data in the column
is available on the DRAM bus (Figure 2.5-c). The DRAM access latency highly depends on
whether an access leads to a row buffer hit or a row-buffer miss. It also depends upon the number
of requests en-queued in the DRAM request buffer.

Chapter 2 Background and Related Work

- 16 -

Figure 2.5: (a) DRAM organization (b) DRAM bank organization (c) Timing diagram for
a DRAM bank access

2.2.3 Tag-Store Mechanism

A primary challenge in architecting a large DRAM cache is the design of the tag store which is
required to identify a cache hit/miss. For instance, a 128MB DRAM cache can store 221 64-byte
blocks (221 × 64 bytes = 134217728 bytes = 128MB), which results in a tag overhead of 12MB
(221 × 6 bytes = 12582912 bytes = 12MB) assuming 6 bytes per tag entry [77]. Different design
alternatives to architect the DRAM cache tag-store mechanism are discussed as follows:

Tags-In-SRAM: This design approach stores the tags in a separate SRAM tag array which elim-
inates slow DRAM access if the SRAM tag array indicates a cache miss. For a larger DRAM
cache, this approach results in a high die area due to high cost-per-bit of the SRAM tag array.

2.3 Important Application and DRAM Cache Characteristics

- 17 -

Tags-In-DRAM: To reduce the die area, state-of-the-art DRAM caches [36, 77, 78, 143] store
the tags in the DRAM cache as well (called Tags-In-DRAM approach). They co-locate the tags
and data for an entire cache set in the same row. The tags indicate the actual location of the data
stored in the row. When a request is made to a particular DRAM cache row that is not present in
the row buffer, it is loaded in the row buffer. The row buffer is reserved until both tag and data
are read from it. This guarantees a row buffer hit for the data access after the tags are accessed
for a hit. The Tags-In-DRAM approach mitigates the storage overhead limitations of the Tags-in-
SRAM approach due to low cost-per-bit of the DRAM array. However, it requires a slow DRAM
access to identify a hit/miss before the request can be sent to off-chip main memory (in case of a
miss) that results in increased miss latency.

2.3 Important Application and DRAM Cache Characteristics

Three important parameters that determines the performance of a DRAM cache based multi-core
system are DRAM cache hit latency (D$-HL), miss rate (D$-MR) and miss latency (D$-ML). An
ideal DRAM cache should simultaneously reduce all of them. This section describes important
application characteristics and DRAM characteristics that have a significant impact on these met-
rics.

2.3.1 Inter-core Cache Contention

Inter-core cache contention in a shared cache occurs, when one core evicts a useful cache line
from another core that is subsequently referenced by that core. State-of-the-art DRAM cache [77,
78, 102] suffers from inter-core cache contention because they do not consider the cache access
pattern of complex applications. Inter-core cache contention primarily occurs, when ‘thrashing
applications’ run concurrently with ‘non-thrashing applications’. An applications is said to have
thrashing behavior if it exhibits poor locality that generates a large number of zero-reuse cache
lines (i.e. cache lines that are inserted but not used before they get evicted) [51, 137, 138].
Thrashing applications have a working set size greater than the available cache size and thus get
negligible benefits from the available cache capacity because the cache is not efficiently utilized
due to many zero-reuse cache lines. However, they have a high access rate relative to the access
rate of non-thrashing applications. This means, they insert a large number of cache lines in the
shared cache, and as a result, they quickly evict highly-reuse cache lines (i.e. cache line that is
reused in the near future) from other applications. This increases the contention between thrash-
ing and non-thrashing applications.

Figure 2.6 illustrates a cache servicing a mix of thrashing and non-thrashing applications with
accesses (shown in capital letters J, K, L etc.) from a thrashing application. The cache initially
contains some useful highly-reuse cache lines from non-thrashing applications (shown in grey
boxes with letters A, C, E etc.). On a cache miss, an incoming cache line is inserted into the most
recently used (MRU) position while the cache in the least recently used (LRU) position is the
candidate for eviction to make room for the incoming cache line. As the thrashing application
inserts more cache lines into the cache, the highly-reuse cache lines are evicted. Subsequent ac-
cesses to these highly-reuse cache lines (letters A, C, E etc.) will result in cache misses, hereby
affecting performance. State-of-the-art DRAM cache [77, 78] always insert both zero-reuse and

Chapter 2 Background and Related Work

- 18 -

highly-reuse cache lines in the DRAM cache, which increases inter-core cache contention and
leads to an increased DRAM cache miss rate.

Figure 2.6: Example showing inter-core cache contention between thrashing and non-
thrashing applications

2.3.2 Inter-core DRAM Interference in the DRAM cache

Simultaneous requests to the DRAM cache from multiple applications executing on a multi-core
system can affect system performance in unpredictable ways and it can lead to inter-core DRAM
interference among the cores, which results in poor system performance due to increased DRAM
cache hit latency and DRAM cache miss rate.

Figure 2.7: Example showing inter-core interference at the DRAM bank

Figure 2.7 presents an example showing the hit latencies for cache requests from applications
A and B running on two different cores with a DRAM cache. Application A has a high cache ac-
cess rate with thrashing behavior, while application B has a low cache access rate with non-
thrashing behavior. The highly-reuse requests from application B (B1 and B2) in Figure 2.7 ar-
rives at the DRAM controller (Figure 2.5-a) when the DRAM bank is scheduled to service the
large number of zero-reuse requests from application A (A1, A2, A3, and A4). As a result, cache

2.3 Important Application and DRAM Cache Characteristics

- 19 -

requests from application B are significantly delayed by this so-called inter-core DRAM interfer-
ence which can degrade the performance of application B. Inter-core DRAM interference is pri-
marily due to unnecessary fill requests (i.e. data is filled into the cache for the first time) from
thrashing applications. These unnecessary fill requests from thrashing applications may delay the
critical (read or write) requests from non-thrashing applications. The contention between critical
and unnecessary fill requests increases the amount of time needed to service critical requests,
which increases the DRAM cache hit latency. State-of-the-art DRAM cache [77, 78, 102, 112,
113, 133, 142] suffers from increased inter-core DRAM interference that leads to increased
DRAM cache hit latency because they always insert data into DRAM cache, independent on
whether it is highly-reuse or zero-reuse data. Furthermore, they incur increased DRAM cache
miss rate due to inter-core cache contention between thrashing and non-thrashing applications.

2.3.3 Impact of Associativity

Associativity (A) is a trade-off between hit latency and miss rate [45, 49]. Each set in a high as-
sociative cache (i.e. larger A) contains more cache lines than a set in a small associative cache
(i.e. smaller A). There is less chance of a conflict between two memory blocks in a high associa-
tive cache compared to a small associative cache. Thus, increasing associativity has the ad-
vantage of reducing conflict misses, which reduces the miss rate. However, the miss rate reduc-
tion for a high associative cache comes at the cost of increased hit latency due to high tag lookup
latency because a large number of tag entries needs to be accessed to locate the requested data
within the set to identify a cache hit or miss.

2.3.4 Impact of Row Buffer Mapping

Typically a DRAM cache is composed of multiple banks, where each bank is associated with a
row buffer (as shown in Figure 2.8). Row buffer mapping is the method by which blocks from
main memory are mapped to a particular set of a particular row of a particular bank (each bank is
provided with a row buffer as shown in Figure 2.8). It has a significant effect on the row buffer
hit rate, which directly affects the DRAM cache hit latency. The row buffer hit rate is high when
more adjacent blocks are mapped to the same row buffer, as it exploits the programs’ locality that
adjacent blocks are likely to be accessed in the near future. However, the primary disadvantage
of mapping more adjacent blocks to the same row buffer is that it results in a reduced miss rate
due to non-uniform set utilization (i.e. some sets are under-utilized while others are severely
over-utilized).

2.3.5 Impact of cache line size

As described in Section 2.1, a cache line is the basic unit of cache storage. A large cache line size
has a significant impact on the row buffer hit rate, hit latency, miss rate and main memory laten-
cy. A simple way to improve the row buffer hit rate is to increase the cache line size (i.e. a cache
line now contain multiple blocks that are stored in the same row). This improvement occurs be-
cause a larger cache line size takes advantage of spatial locality by fetching multiple blocks (typ-
ical block size is 64 bytes) at the same time while only one block is requested by the core. The
improvement in the row buffer hit rate comes at the cost of significantly increased memory
bandwidth consumption that results in significantly higher main memory latency because multi-
ple 64 bytes blocks must be transferred through a limited size memory channel (typical memory

Chapter 2 Background and Related Work

- 20 -

channel size is 8/16 bytes). A larger cache line size will reduce the DRAM cache miss rate for
applications with high spatial locality if such pre-fetched blocks are subsequently accessed.
However, a large cache line size will increase the DRAM cache miss rate for applications with
low spatial locality because the pre-fetched blocks will never be reused, which leads to ineffi-
cient cache space utilization.

2.4 State-of-the-art DRAM Cache

Existing DRAM cache designs can be classified into two categories based on the cache line sizes:
block-based and page-based. Block-based DRAM caches [75, 77, 78, 112, 102, 113] use a small
cache line size (i.e. 64 byte cache line size). In contrast, page-based DRAM caches [54, 55, 112,
133] use a large cache line size (i.e. 1KB/2KB cache line size). The summary and the distinction
of the block and the page based DRAM cache designs is presented in Section 2.4.6.

The concepts proposed in this thesis are compared with the most recently proposed block-
based designs namely LH-Cache (details in Section 2.4.1) and Alloy-Cache (details in Section
2.4.3). The page-based DRAM cache designs are discussed in Section 2.4.4. This section as-
sumes 2KB row size and 64-byte cache line size for qualitative comparisons.

2.4.1 LH-Cache [77, 78]

Recent work, namely LH-Cache [77, 78], employs a block-based DRAM cache design. It stores
the tags along with the cache lines of a set in the same row, as shown in Figure 2.8. To overcome
the latency disadvantage of this Tags-In-DRAM approach (see Section 2.2.3), LH-Cache uses a
low overhead SRAM-based structure named as MMap$ (MissMap cache) that accurately deter-
mines whether an access to the DRAM cache will be a hit or a miss (see Figure 2.8 and
Figure 2.11). It incurs a storage overhead of only 2MB SRAM compared to the unacceptable
high 12MB SRAM overhead that would be required for the Tags-in-SRAM approach (see Sec-
tion 2.2.3). Details on the internal functioning of the MMap$ are given in Section 2.4.2.

The DRAM cache row organization for the LH-Cache is shown in Figure 2.8, where each
DRAM row consists of one cache set. The DRAM cache row is divided into T tag blocks (T =
3/6/12 for 2KB/4KB/8KB row size) and A cache lines (i.e. A = 29/58/116 for 2KB/4KB/8KB row
size). After a hit is detected by the MMap$, the row buffer is reserved until both tag and cache
line are read from it. This guarantees a row buffer hit for the cache line access after the tag blocks
are accessed and thus it reduces the hit latency. However, LH-Cache must first read the T tag
blocks before accessing the cache line, which increases the hit latency.

Figure 2.9 shows the LH-Cache row buffer hit and miss latencies for a DRAM cache hit after
a miss in the SRAM cache of the previous level is detected. LH-Cache requires 10 cycles to ac-
cess the MMap$. If the DRAM cache hit will also hit in the row buffer (i.e. the requested row is
already open due to a previous request), then LH-Cache requires 18 cycles for CAS (to access the
three tag blocks from a particular row buffer), 12 cycles to transfer the three tag blocks (192
bytes) on the 16 bytes wide DRAM cache bus, 1 cycles for the tag check, 18 cycles for CAS (to
access the cache line from the row buffer), and 4 cycles to transfer the cache line (64 bytes). If
the requested row is not located in the row buffer (row buffer miss), it requires additional 18 cy-
cles for ACT (row activation) compared to the row buffer hit latency. The DRAM cache hit la-

2.4 State-of-the-art DRAM Cache

- 21 -

tency in LH-Cache is 63 cycles for a row buffer hit and 81 cycles for a row buffer miss as shown
in Figure 2.9.

Figure 2.8: LH-Cache Cache Organization with Tags-In-DRAM for 2KB row size [77, 78]

Figure 2.9: LH-Cache (a) row buffer hit latency (b) row buffer miss latency for 2KB row
size with T = 3 and A = 29 (see Section 4.2 for details of DRAM cache timing parameters)

Figure 2.10 illustrates how LH-Cache maps blocks from main memory to the row buffers of
banks and to the rows within a bank. The row buffer associated with a particular bank (indicated
by RB-i field) and the DRAM cache row number within a bank (indicated by the “Row#” field)
is determined by the main memory address. In LH-Cache, spatially close memory blocks are

Chapter 2 Background and Related Work

- 22 -

mapped to different row buffers (e.g. memory blocks 0, 1, and 2 are mapped to RB-0, RB-1, and
RB-2 respectively; memory block 64 is mapped to RB-0 again). Thus, the probability of tempo-
rally close accesses going to the same row is very low. This result in a reduced row buffer hit rate
that leads to increased DRAM cache hit latency, because a row buffer miss has a higher latency
than a row buffer hit.

Figure 2.10: LH-Cache row buffer mapping policy

2.4.2 MMap$ Organization

The design of the MMap$ is illustrated in Figure 2.11 that precisely determines whether an ac-
cess to the DRAM cache will be a hit or a miss. If the MMap$ identifies a hit, the request is sent
to the DRAM cache scheduler (see Figure 2.8). A MMap$ miss (i.e. data is not available in the
DRAM cache) makes DRAM cache misses faster because the DRAM cache does not need to be
accessed to determine a DRAM cache miss. MMap$ logically partitions the main memory into
consecutive segments of constant size. A segment is the basic unit of MMap$ storage and is a
group of contiguous blocks in main memory (typical segment size is 4KB byte). Each MMap$
entry represents a segment (this thesis uses a segment size of 4KB similar to state-of-the-art [77,
78]) and tracks the presence of the blocks (this thesis uses a block size of 64 bytes similar to
state-of-the-art [77, 78]) of that segment. Therefore, each MMap$ entry contains a tag (Seg-Tag;
see “MMap$ tag-array” in Figure 2.11) corresponding to the address of the tracked memory
segment and a bit vector (Seg-BV; see “MMap$ Data array”) with one bit per block that stores
the hit/miss information of the block. If a Seg-BV entry is 1, then the corresponding block within
the segment is present in the DRAM cache, otherwise it is absent.

On a MMap$ access, the set index field (see Figure 2.11) of the requested physical address is
used to index a MMap$ set in the MMap$ tag-array. All tag entries within that MMap$ set (an

2.4 State-of-the-art DRAM Cache

- 23 -

associativity of 4 is shown in Figure 2.11) are then compared to the Seg-Tag field of the physical
address to identify a segment hit/miss. A segment miss implies that the requested block is absent
in the DRAM cache. Following a segment hit, the vector index field of the requested physical
address is used to index the Seg-BV entry of the hit-segment to identify a block hit/miss.

Figure 2.11: MMap$ for DRAM cache hit/miss detection [77, 78]

When a block bi is evicted from the DRAM cache, then Seg-BV entry i (i.e. the ith bit of Seg-
BV) of the MMap$ segment entry S to which bi belongs is cleared. When a block bi is inserted
into the DRAM cache, then Seg-BV entry i of segment entry S needs to be set. If no segment en-
try for S exists in the MMap$, a new entry is allocated for it and only its Seg-BV entry i is set. To
allocate a new MMap$ entry, a victim segment is chosen using the least recently used (LRU) pol-
icy. If some Seg-BV entries of the victim segment S were set (i.e. some of its blocks are present in
the DRAM cache), then all corresponding blocks must be evicted from the DRAM cache. This
guarantees that the MMap$ always accurately determines whether an access to a DRAM cache
will be a hit or a miss.

2.4.3 Alloy-Cache [102]

For a DRAM cache access, LH-Cache reads T tag blocks (requires 192 bytes for 2KB row size;
i.e. T = 3) and one cache line (64 bytes) through a limited size DRAM channel (16 byte), which
leads to increased DRAM cache hit latency for LH-Cache as shown in Figure 2.9. To reduce the
DRAM cache hit latency, the Alloy-Cache [102] unifies tag and data of a cache line into a single
entity called TAD (Tag And Data) as shown in Figure 2.12. Each TAD entry (8 bytes for the tags
and 64 bytes for cache line) represents one set of the direct mapped cache (i.e. A = 1).

Alloy-Cache reduces the DRAM cache hit latency because for each DRAM cache access, it
reads 72 bytes (incurs bus latency of 5 clock cycles for transferring 72 bytes on a 16 byte chan-

Chapter 2 Background and Related Work

- 24 -

nel) instead of reading 256 bytes (192 bytes for the tags and 64 bytes for cache line) required for
LH-Cache for 2KB row size. Furthermore, Alloy-Cache requires a single DRAM cache access to
get the unified TAD entry instead of having separate accesses required for tags and cache line as
required for LH-Cache. As a result, Alloy-Cache significantly reduces the DRAM cache hit la-
tency compared to the LH-Cache. Figure 2.13 shows latencies for a row buffer hit and miss in
Alloy-Cache. The row buffer hit latency is 34 clock cycles and the row buffer miss latency is 52
clock cycles (18 additional cycles ACT) as illustrated in Figure 2.13. Despite the latency ad-
vantage, Alloy-Cache incurs increased DRAM cache miss rate and DRAM cache miss latency
compared to LH-Cache due to increased conflict misses, because it employs a direct mapped
cache organization. The increased conflict misses result in increased contention in the memory
controller, which leads to increased DRAM cache miss latency compared to LH-Cache.

One Row containing 28 sets with 1 way of data

28 TAD entries [28 x 72-byte TAD = 2016 bytes]

TAG + LINE OUT72 bytes

One Cache Set
LINE(64B)

TAG (8B)

TAG-AND-DATA (TAD)

Unused (32 bytes)

Figure 2.12: DRAM cache row organization used by Alloy-Cache for 2KB row size

Alloy-cache maps 28 consecutive memory blocks to the same DRAM row buffer (e.g.
memory block-0, block-1, …, block-27 are mapped to RB-0). Thus, the probability of temporally
close accesses going to the same row is very high in Alloy-Cache. This results in an increased
row buffer hit rate compared to LH-Cache, which further reduces DRAM cache hit latency.

Figure 2.13: Alloy-Cache (a) row buffer hit latency (b) row buffer miss latency
(see Section 4.2 for details of DRAM cache timing parameters)

2.4.4 Further Related Work in block-based DRAM Caches

The work in [75] investigated ways of reducing the DRAM cache miss rate by organizing
each DRAM cache set as multiple queue structures designed for a 4-core system and 64-way as-
sociative DRAM Last-Level-Cache. However, that work is impractical for larger number of cores
and smaller associative DRAM cache, because for each DRAM cache set it requires maintaining

2.4 State-of-the-art DRAM Cache

- 25 -

N + 2 queues (one per core and two shared queues) for an N-core system. In addition, they stores
the tags in an SRAM array that incurs significant area overhead for larger DRAM cache.

Ref. [112] proposes a self-balancing dispatch (SBD) mechanism that adaptively dispatches
requests either to DRAM cache or to main memory, depending on the instantaneous queuing de-
lays at the DRAM cache and main memory.

Ref. [113] focuses on improving the reliability by presenting a general approach for enabling
high-level as well as configurable levels of reliability, availability and serviceability for die-
stacked DRAM caches.

2.4.5 Page-based DRAM Caches

Page-based DRAM caches [54, 55, 133] use a large cache line (i.e. 1KB/2KB cache line) and a
large fetch granularity (i.e. 1KB/2KB). Note that cache line is the basic unit of cache storage and
fetch granularity is the unit of data transfer between cache hierarchy and main memory. The pri-
mary advantage of large cache line size/fetch granularity is that they exploit programs’ spatial
locality, which results in a reduced hit latency via improved row buffer hit rate. Unfortunately,
the larger fetch granularity comes at the cost of significant memory bandwidth consumption due
to excessive prefetching that results in a significantly high main memory latency. Furthermore, it
exacerbates the performance of memory intensive applications with limited data reuse and low
spatial locality. Though the large cache line size may improve the performance of less memory
intensive applications with high spatial locality, it comes at the cost of an increased miss rate for
memory intensive applications with reduced spatial locality. Another drawback of a large cache
line size is that it suffers from inefficient resource allocation because not all blocks within the
cache line are used prior to page evictions, which leads to reduced efficiency. Also, the cache
miss rates in multi-core systems for large cache line size generally limits the performance due to
reduced spatial locality and false sharing [126].

Figure 2.14: Sector organization with 4 blocks per sector

Ref. [142] proposes a sector cache organization to reduce the tag storage overhead for a large
DRAM cache. The basic unit of storage in [142] is defined as a sector, which is divided into mul-
tiple blocks as shown in Figure 2.14. Each sector is associated with a tag (Sector-Tag) to deter-
mine whether a particular sector is present in the DRAM cache (sector hit) or absent (sector
miss). Each block bi of a sector is provided with a presence bit Pi and thus only some of the
blocks of a sector need to be present. When a block bi is inserted into the DRAM cache, then Pi
of the sector entry S to which bi belongs is set. If no entry for S exists in the DRAM cache, a new
entry is allocated for it and only the presence bit of the requested block bi (i.e. Pi) is set. To allo-
cate a new sector entry, a victim sector is chosen using the least recently used (LRU) policy. If

Chapter 2 Background and Related Work

- 26 -

some Di bits (dirty bit associated with block bi) of the victim segment S were set, then the dirty
blocks from the victim segment must be written back to main memory.

Ref. [142] employs a large sector size (i.e. 256 bytes/512 bytes) together with a small block
size (i.e. 64 bytes). In contrast to traditional page-based designs [54, 55, 133], it fetches data at
small granularity (i.e. 64 bytes) in order to mitigate the excessive prefetching problem of page-
based designs. It proposes to store the sector tags along with the blocks and uses hit/miss predic-
tor to predict whether the requested block resides in DRAM cache or not. Each DRAM row can
hold blocks from K distinct sectors (typical value of K=4) in the physical memory. For the core
size (8-cores) and row size (2KB) considered in this thesis, this results in a tag overhead of 51
bytes per row (K=4 and sector size = 512 bytes).

The sector cache organization [142] has the following major disadvantages compared to the
recently proposed block-based LH-Cache design [77, 78]. First, it suffers from inefficient re-
source allocation due to internal fragmentation because it reserves the space for the entire sector,
while some of the blocks belonging to a sector may not be referenced before sector eviction.
Second, reserving one 64 byte column (each 2KB DRAM row contains 32 64-byte columns) for
the sector tags (i.e. they require 51 bytes for the tags) will make the other 31 columns available
for blocks (of a sector). This requires non-trivial changes to row mapping because it requires the
sector size to be power of 2. Third, it will incur a significantly high DRAM cache miss rate com-
pared to the LH-Cache because it allows blocks from 4 distinct sectors to be mapped to a particu-
lar row. In contrast, LH-Cache allows 29 distinct blocks to be mapped to a particular row (i.e.
they may belong to 29 distinct sectors).

2.4.6 Distinction with the state-of-the-art

There has been a considerable amount of research on DRAM caches [54, 55, 77, 78, 102, 112,
113, 133, 142] and this thesis compares the proposed policies with the most recent state-of-the-
art DRAM cache designs [77, 78, 102]. Table 2.1 provides a comparisons between different
DRAM cache designs with respect to the most important parameters (DRAM cache hit latency,
DRAM cache miss rate, and main memory latency), application and DRAM characteristics. An
ideal DRAM cache should simultaneously reduce the DRAM cache hit latency (depends upon
row buffer hit rate, associativity and tag lookup latency), DRAM cache miss rate (depends upon
associativity, inter-core cache contention and inter-core DRAM interference), and main memory
latency (depends upon DRAM cache miss rate and memory bandwidth consumption). At the
same time, it should provide efficient resource allocation with a low implementation overhead.

The DRAM cache proposed in this thesis employs a block based design that provides a low-
overhead tag-store mechanism (i.e. storing tags in DRAM cache) and reduced conflict misses
(via high associativity). It retains the benefits of block-based designs [77, 78, 102, 112, 113] by
employing small cache line size (to mitigate internal fragmentation compared to sector cache or-
ganization [142]) and small fetch granularity (to reduce memory bandwidth consumption com-
pared to page-based designs). For the rest of this thesis, the terms ‘cache line’, and ‘block’ are
used interchangeably because this thesis employs block based design for all cache levels. Ta-
ble 2.2 illustrates an overview of the proposed policies that mitigates the following major draw-
backs of LH-Cache [77, 78, 112] in specific and block-based designs [77, 78, 102, 112, 113] in
general.

2.4 State-of-the-art DRAM Cache

- 27 -

 [77, 112] [102,
113]

[142] [54, 55, 133] Proposed

Cache line size Block Block Sector Page Block

Fetch granularity Block Block Block Page Block

Associativity (A)
High
(29)

Low
(1)

Medium
(4)

Medium
(16)

High
(30)

Internal Fragmentation No No Yes No No

Requires operating system modification No No No Yes No

Low overhead Tag-store     

Reduced inter-core cache contention     

Reduced inter-core DRAM interference     

High row buffer hit rate     

Reduced memory bandwidth
consumption

    

Low DRAM cache miss rate /*  /* /* 

Low DRAM cache hit latency     

Low memory latency     

Table 2.1: Comparisons between different DRAM cache designs for a 2KB row size
*Miss ratio depends upon cache access pattern of concurrently running applications on a

multi-core system

DRAM Last-Level-Cache Polices Advantages

Adaptive DRAM Insertion Policy (Chapter 5)
reduces inter-core cache contention
reduces inter-core DRAM interference

Set Balancing Policy (Chapter 5) provides uniform access distribution

Row Buffer Mapping Policy (Chapter 6) improves row buffer hit rate

DRAM Tag-Cache (Chapter 6) reduces tag lookup latency

Table 2.2: Advantages of the proposed Policies

Existing block-based designs suffers from increased inter-core cache contention that leads to
increased DRAM cache miss rate via increased conflict misses. They lead to increased DRAM
cache hit latency via increased inter-core DRAM interference. They exhibit a non-uniform distri-
bution of accesses across different DRAM cache sets that leads to increased DRAM cache miss
rate. LH-Cache has a reduced row buffer hit rate due to reduced spatial locality that leads to in-
creased DRAM cache hit latency. LH-cache further worsens DRAM cache hit latency due to
high tag lookup latency because it always reads the tags from the DRAM cache.

To mitigate inter-core cache contention and inter-core DRAM interference, this thesis pro-
poses an adaptive DRAM insertion policy (details in Chapter 5) that is flexible enough to be ap-
plied to any DRAM cache organization and replacement policy. To reduce conflict misses via

Chapter 2 Background and Related Work

- 28 -

improved set utilization, this thesis proposes a set-balancing policy (details in Chapter 5) that
provides a uniform access distribution across DRAM cache sets. To reduce hit latency via an im-
proved row buffer hit rate, this thesis proposes a DRAM row buffer mapping policy (details in
Chapter 6) that exploits data access locality in the row buffer with a slight increase in miss rate.
To further reduce the hit latency via reduced tag lookup latency, this thesis proposes a low-
latency SRAM structure namely DRAM Tag-Cache (details in Chapter 6) that can quickly de-
termine whether an access to the DRAM cache will be a hit or a miss. A short overview of the
proposed policies is presented in Chapter 3.

- 29 -

Chapter 3 Overview of Proposed Policies

As the industry continues to increase the number of cores, multi-level caches [8, 45, 96, 128] are
increasingly becoming the trend of multi-core systems in order to mitigate the widening gap be-
tween processor and memory speed [12, 60, 108, 131, 136, 144]. Furthermore, the advent of on-
chip DRAM caches (thanks to die stacking technologies) has led to the evolution of multi-level
SRAM/DRAM cache hierarchies comprised of increasing cache sizes and latency at each level.
State-of-the-art multi-level SRAM/DRAM cache hierarchies are equipped with low latency
smaller caches backed up by high latency larger caches. These hierarchies contain fast and small
private L1 and L2 caches to satisfy the core’s need in terms of low latency. On the other hand,
they employ larger L3 SRAM and L4 DRAM caches, which are shared among all cores to reduce
high latency off-chip memory accesses.

Figure 3.1: Proposed SRAM/DRAM cache hierarchy for an N-core system

Multi-core systems present new challenges in the design of an ideal cache hierarchy that not
only reduces the miss rate and hit latency for each cache level, but also reduces the main memory
latency. Note that the main memory latency can be reduced by decreasing the number of requests
to the main memory which in turn reduces the average waiting latency per request. This chapter

Chapter 3 Overview of Proposed Policies

- 30 -

provides a short overview of the proposed cache policies applied on top of L4 DRAM cache that
substantially improve the performance via reduced L4 hit latency and L4 miss rate compared to
state-of-the-art [77, 78, 102]. Figure 3.1 shows the organization of the proposed SRAM/DRAM
cache organization, highlighting the proposed novel contributions. Similar to state-of-the-art [36,
38, 77, 78], this thesis stores the tags in the DRAM cache and employ a MMap$ (details in Sec-
tion 2.4.1) to identify DRAM cache hit/miss. The novel contributions of the proposed
SRAM/DRAM cache organization are highlighted in Figure 3.1 and outlined in the following.

3.1 Adaptive DRAM Insertion Policy

On a cache miss, state-of-the-art policies always insert data into the DRAM cache, independent
of whether it is highly-reuse (i.e. data that is reused in the near future) or zero-reuse data (i.e. da-
ta that is never reused before it gets evicted). This leads to inefficient DRAM resource allocation.
To address this problem, this thesis presents an adaptive DRAM insertion policy (ADIP) that ex-
ploits the fact that some applications (so-called thrashing application) often fetch zero-reuse data
that does not contribute to cache hits because it is not accessed again. The proposed policy is
based on the idea of restricting the number of zero-reuse data insertions from thrashing applica-
tions into DRAM cache and it decides at runtime whether data that is fetched from off-chip
memory shall be inserted into DRAM cache or not. Figure 3.2 shows the high level overview of
the adaptive DRAM insertion policy for an SRAM/DRAM cache hierarchy. After an L4 DRAM
cache miss, data is brought from memory and inserted into L1, L2, and L3 SRAM caches. The
data may or may not be inserted additionally in L4 DRAM cache, which is determined by the
proposed adaptive DRAM insertion policy. Existing DRAM cache hierarchies [77, 78, 102, 143]
always fills the data into L1, L2, L3 and L4 DRAM caches.

Figure 3.2: High level view of the proposed Adaptive DRAM Insertion Policy

3.2 Set Balancing Policy

- 31 -

The proposed ADIP uses a low overhead Selective Probabilistic Filter which provides an ef-
ficient filtering mechanism that filters out the majority of zero-reuse data but places the majority
of highly-reuse data into DRAM cache (details in Section 5.2). The proposed ADIP reduces con-
tention between highly-reuse and zero-reuse data which leads to reduced DRAM cache access
latency via improved DRAM bandwidth utilization. It provides efficient resource management
that leads to reduced miss rate. ADIP first identifies the thrashing applications by monitoring a
few sets (so-called sampled sets) of the DRAM cache to track the runtime miss rate information
of concurrently running applications. Then, it reduces the insertion rate into DRAM cache from
thrashing applications to reduce their effect on other applications. The insertion policy adaptively
switches at runtime, depending on monitored application characteristics. That provides perfor-
mance isolation between thrashing and other applications. In contrast, state-of-the-art insertion
policies always insert the data from thrashing and other applications in the DRAM cache, which
leads to increased miss rate due to contention between thrashing and other applications.

Figure 3.3: High level view of the proposed Set balancing policy

3.2 Set Balancing Policy

Typically, a DRAM cache is composed of multiple banks, where each bank consists of multiple
rows as shown in Figure 3.3. Each row may contain a single set [77, 78] or multiple sets [102],
where each set contains “A” cache lines, i.e. an associativity of A. State-of-the-art DRAM cache
uses the least significant bits of the memory block address to select the cache set number and
bank number as shown in Figure 3.4. On the other hand, they use the higher order bits of the
memory block address to select the DRAM cache row number. These bits exhibit highly non-
uniform distribution compared to lower order address bits. Using them to select the row number

Chapter 3 Overview of Proposed Policies

- 32 -

leads to inefficient utilization of the DRAM cache because some of the DRAM cache rows may
be under-utilized, whereas others may be severely over-utilized. As a result, over-utilized rows
incur large miss rates due to increased conflict misses compared to under-utilized rows, which
may degrade the performance.

To reduce conflict misses via improved row utilization, this thesis proposes a DRAM set bal-
ancing policy and integrates it into the MMap$ [77, 78] as shown in Figure 3.3. The proposed set
balancing policy improves the DRAM cache resource utilization by assigning the DRAM cache
row number to every newly requested MMap$ segments (details in Section 2.4.1) in a round rob-
in way. The primary difference is that state-of-the-art DRAM cache statically determines the
DRAM row number based on the memory block address (Figure 3.4) while the proposed set bal-
ancing policy determines it dynamically in a round robin manner based on the access sequence.
For each new allocated MMap$ segment entry (after a segment miss) a new row number is gen-
erated and stored in the MMap$ as part of the segment entry (details in Section 5.3.1).

Figure 3.4: DRAM cache row mapping without set balancing

3.3 DRAM Row Buffer Mapping Policy

An important factor that can impact the latency and the miss rate of a DRAM cache is the DRAM
row buffer mapping policy. DRAM Row Buffer mapping is the method by which memory blocks
are mapped to a row buffer of a particular DRAM cache bank. The mapping of the memory block
address into a DRAM cache row buffer has a significant effect on the system throughput as it di-
rectly affects the row buffer hit rate (effects DRAM cache access latency) and set-level parallel-
ism (effects miss rate). The task of an efficient DRAM row buffer mapping policy is to minimize
the probability of row buffer conflicts in temporally adjacent cache requests to improve row
buffer hit rate without significantly degrading the miss rate. This thesis demonstrates that the
state-of-the-art DRAM row buffer mapping policy namely LH-Cache [77, 78] has a reduced row
buffer hit rate due to reduced temporal locality because it maps consecutive memory blocks to
different row buffers. To address this problem, this thesis presents a novel row buffer mapping
policy that maps four consecutive memory blocks to the same row buffer so that spatially close
accesses hit in the row buffer. Thus, it reduces the DRAM cache hit latency via a significantly
improved row buffer hit rate. The proposed row mapping policy slightly increases the DRAM
cache miss rate due to a reduced set-level-parallelism compared to LH-Cache, but that is com-
pensated by a significant reduction in DRAM cache hit latency.

3.4 Tag Cache Design

- 33 -

3.4 Tag Cache Design

When the tags are stored in the cache, they need to be accessed quickly to identify the location of
the data. A major performance bottleneck in state-of-the-art DRAM caches [77, 78] is their high
tag lookup latency because they access the tags from the slower DRAM cache after MMap$ ac-
cess. Note that MMap$ consists of bits indicating the presence or absence of data, which exactly
determines an L4 hit/miss. But the MMap$ cannot not identify the actual location of data in a
DRAM cache set because it does not store the tag information, which would require huge storage
overhead. To reduce the tag lookup latency, this thesis proposes a small and low latency SRAM
structure namely DRAM Tag Cache (DTC) that holds the tags of the rows that were recently ac-
cessed in the DRAM cache. The proposed DTC has a high hit rate because it exploits temporal
locality provided by the proposed DRAM row buffer mapping policy (mentioned in Section 3.3).
It provides fast tag lookup, because for a DTC hit it directly reads the tags from the low latency
DTC in two cycles (see Figure 3.1 and Figure 3.5; one cycle required to identify DTC hit/miss
and one cycle required to identify L4 hit/miss). The tag lookup latency is reduced for a DTC hit,
because it does not requires MMap$ and DRAM cache access. In contrast, state-of-the-art
DRAM cache always access MMap$ followed by reading the tags from the DRAM cache, which
incurs high tag lookup latencies of up to 41 cycles (see Figure 2.9-a).

Figure 3.5: Steps involved in L4 DRAM tag lookup after an L3 SRAM miss

State-of-the-art SRAM/DRAM cache hierarchies employ a large L3 SRAM cache that ac-
commodates a large portion of the application’s working set size via high storage capacity, which
in turn improves the overall performance via reduced L4 DRAM access rate. However, the in-
creased capacity of a large L3 SRAM cache comes at the cost of higher tag latency due to wire
delays between the large tag array and L3 SRAM controller [87, 124]. Therefore, reading tags
from a large L3 SRAM tag array results in a high latency for L3 requests. Similar to the DTC,
this thesis also proposes a small and low latency SRAM Tag Cache (STC) that holds the tags of
the recently accessed sets in the L3 SRAM cache. The proposed STC exploits the spatial locality

Chapter 3 Overview of Proposed Policies

- 34 -

by prefetching tags from adjacent cache sets. The STC is accessed faster (2 cycles) than a large
L3 SRAM tag array (10 cycles). An STC hit quickly identifies L3 hit/miss to determine whether
the request should be sent to the L3 SRAM data array (i.e. L3 hit) or to the next level cache (i.e.
L4 DRAM cache for an L3 miss). This thesis further describes how a state-of-the-art SRAM tag
array is modified to support SRAM Tag-Cache design (details in Section 6.5.5).

3.5 Super-block MMap$ (SB-MMap$)

State-of-the-art DRAM cache utilizes an SRAM structure namely MissMap cache (MMap$) [77,
78] that provides DRAM hit/miss information (details in Section 2.4.1) by maintaining presence
bits (indicates whether a block is present in DRAM cache or not) at the block level. The primary
advantage of MMap$ is that it does not require DRAM access for a MMap$ block miss (i.e.
block is not present in the DRAM cache), before the request is sent to main memory. However, it
requires a reasonably large amount of SRAM storage (e.g. 2MB for 128MB DRAM cache) to
store block-level presence bits.

The proposed row buffer mapping policy (see Section 3.3) along with the DRAM Tag-Cache
allows reducing the size of the MMap$. To reduce the storage overhead, this thesis proposes to
use a single bit to store presence information about multiple blocks (instead of a single block)
called a super-block. A super-block comprises a power of two number of blocks. The presence
bit of a super-block indicates whether any (one or more) of its associated blocks are present in
the DRAM cache or not. The drawback of the proposed super-block MMap$ (SB-MMap$) is that
it exacerbates DRAM cache hit/miss prediction accuracy. The reason is that SB-MMap$ may
wrongly predict a DRAM hit (i.e. presence bit associated with a super-block is set while the
block is not present in DRAM cache) while it turns out to be a DRAM miss. However, the pre-
diction accuracy is significantly improved via a high DTC hit rate (i.e. DTC provides the block
hit/miss information instead of SB-MMap$) provided by the proposed row buffer mapping poli-
cy. Note that state-of-the-art DRAM row buffer mapping policy [77, 78] provides a reduced DTC
hit rate due to reduced spatial locality (details in Section 6.7.3), which leads to reduced perfor-
mance via poor DRAM cache hit/miss prediction accuracy when SB-MMap$ is incorporated in
the cache hierarchy. This thesis further analyzes the effect of different super-block sizes (small
vs. large) on the DRAM cache hit/miss prediction accuracy and the overall performance.

3.6 Summary

High DRAM cache hit latencies, increased inter-application contention (between thrashing and
non-thrashing applications), and the increased working set sizes of complex applications necessi-
tates efficient policies in order to satisfy the diverse requirements to improve the overall through-
put. This work addresses how to design DRAM caches to reduce DRAM cache hit latency,
DRAM cache miss rate and hardware cost at the same time, while taking into account application
and DRAM characteristics. It presents novel DRAM and application aware policies for on-chip
DRAM caches that simultaneously improve the DRAM hit latency and DRAM cache miss rate.

Table 3.1 illustrates an overview of the proposed policies whose details can be found in
Chapter 5 and Chapter 6. Chapter 5 presents the policies for miss rate reduction, while Chapter 6
provides the details of policies for latency reduction. Note that each of the proposed policies are

3.6 Summary

- 35 -

complementary. Therefore, they are evaluated independently in Chapter 5 and Chapter 6. Addi-
tionally, this thesis evaluates and analyzes the combinations of the selected policies in Chapter 7.
All evaluations in Chapters 5 to 7 are based on the identical experimental setup, and thus the set-
up is briefly explained upfront in Chapter 4. The tag lookup latency for a DTC hit with set bal-
ancing policy is 12 cycles (2 cycles for a DTC hit and 10 cycles for the MMap$ access required
to get the DRAM row number). In contrast, the tag lookup for a DTC hit without set balancing
policy is 2 cycles (i.e. it does not require MMap$ access to get the DRAM row number as it is
determined by the memory block address). The latency benefits via incorporating DTC out-
weighs the miss rate benefits from the set balancing policy. For this reason, the set balancing pol-
icy is not included in Chapter 7 with the DRAM Tag Cache (DTC).

The proposed policies are evaluated for various applications from SPEC2006 [5] using a
modified version of SimpleScalar. The combination of the proposed DRAM-aware and applica-
tion-aware complementary policies work synergistically, which improves the average perfor-
mance by 30.4% and 23.9% compared to [77, 78] and [102] respectively for an 8-core system
while requiring 51% less hardware cost (i.e. requiring ~1MB SRAM storage overhead instead of
~2MB).

DRAM Last-Level-Cache Polices Advantages
Reduces

Hit
Latency

Reduces
Miss
Rate

Adaptive DRAM Insertion Policy
(Chapter 5)

1. reduces inter-core interference Yes Yes

Set Balancing Policy (Chapter 5)
2. provides uniform access distribu-
tion

No Yes

Row Buffer Mapping Policy (Chapter 6) 3. improves row buffer hit rate Yes No

Tag-Cache (SRAM and DRAM Tag-Cache;
Chapter 6)

4. reduces tag lookup latency Yes No

Super-block MMap$
(SB-MMap$; Chapter 6)

5. Reduces storage overhead N/A N/A

Combination of selected policies (Chapter 7) 1, 3, 4, and 5 Yes Yes

Table 3.1: Overview of the proposed Policies

- 37 -

Chapter 4 Experimental Setup

Chapter 5 and Chapter 6 present policies for miss rate and latency reduction respectively, detail-
ing their operations and implementation with embedded evaluation. Chapter 7 presents an eval-
uation for the combined contributions presented in Chapter 5 and Chapter 6. This thesis employs
the same experimental setup for presenting the evaluation results in Chapters 5 to 7. Therefore,
this chapter presents a brief overview of the simulator infrastructure as well as the description of
the benchmarks and performance metrics used for evaluation.

Figure 4.1: Overview of the simulator based on Zesto simulator [79]

Chapter 4 Experimental Setup

- 38 -

4.1 Simulation Infrastructure

This thesis uses the x86 version of the SimpleScalar (Zesto) [79] simulator for evaluation. The
Zesto simulator is built on top of the SimpleScalar toolset [13], which provides a cycle-accurate
processor and detailed cache hierarchy model. The primary disadvantage of the original cycle-
accurate SimpleScalar [13] simulator is that it uses a simplified memory model with fixed laten-
cy. The simplistic model is not a true representative of modern main memory. In contrast, Zesto
faithfully models queuing delays and bandwidth constraints for the main memory banks and
ports. Also, the SimpleScalar simulator uses a simplified processor model based on an old con-
cept of Register Update Unit (RUU) [119] published in 1990. In contrast, Zesto provides detailed
modeling of a modern x86 based microarchitecture. It provides a detailed pipelined model im-
plementing fetch, decode, allocation, execute and commit stages similar to Intel’s Pentium Pro
architecture as shown at the bottom of Figure 4.1.

Several modifications and additions were made to the simulator infrastructure for this thesis,
especially in the DRAM cache. Since this work deals with the cache hierarchy, the simulator has
been modified to faithfully model bus contention for different cache levels including access to
MMap$ [77, 78]. The modified simulator models port contention, queuing delays, bank conflicts,
and other DDR3 DRAM system constraints [61] for DRAM cache. Figure 4.1 shows the block-
level details of the simulation infrastructure for simulating an N-core system for a DRAM cache
based hierarchy with embedded modifications. Each core is provided with its own private caches
(e.g. L1 and L2 SRAM caches) that are connected to a shared L3 SRAM cache. When a core is-
sues a read or write request, the cache hierarchy first check the private caches for a hit/miss. A
request that misses in the private caches is forwarded to the L3 shared SRAM cache. After an L3
cache miss, the MMap$ is queried to determine an L4 DRAM cache hit/miss. If the MMap$
identifies a hit (i.e. requested block is present in the L4 cache), the request is sent to the DRAM
cache. If the MMap$ identifies miss (i.e. requested block is not available in the L4 cache), the
request is sent to main memory.

4.2 Simulation Parameters

The core, cache, and main memory parameters are listed in Table 4.1 and Table 4.2. The core is
clocked at 3.2 GHz with 32 KB instruction cache and 32 KB data cache with 2 cycles latency.
The core has a 128-entry reorder buffer, 32-entry reservation station, 32-entry load queue, and
24-entry store queue. Each core is able to fetch, decode and commit up to four x86 instructions in
a single cycle. Similar to state-of-the-art [77, 78, 102], this thesis assumes that DRAM-cache tim-
ing latencies are approximately half of that compared to off-chip memory, which allows direct
comparison with them. The latency of the SRAM caches are computed using CACTI v5.3 [124]
for a 45nm technology.

Throughout this thesis, the following assumptions are considered for all evaluations:

1. Similar to state-of-the-art [36, 37, 38, 77, 78, 102], this thesis employs FR-FCFS (First Ready
First Come First Serve) access scheduling [107] in the DRAM cache and memory controllers.

2. Similar to state-of-the-art [36, 77, 78, 102], this thesis assumes four DRAM cache channels
and the DRAM cache bus width per channel is assumed to be 128 bits (16 bytes).

4.2 Simulation Parameters

- 39 -

3. This thesis assumes that the tags are stored in the DRAM cache similar to state-of-the-art [36,
77, 78, 102] while a 2 MB MMap$ [77, 78] is employed to identify a DRAM cache hit/miss.
MMap$ is accessed after an SRAM miss. The latency values of MMap$ is calculated using
CACTI v5.3 [87, 124] for a 45nm technology.

4. Similar to state-of-the-art [35, 75, 99, 138], this thesis assumes that each core runs a single
application.

Core Parameters

Core Frequency 3.2 GHz

ROB (reorder buffer) size 128

Reservation station (RS) size 32

Load Queue (LDQ) size 32

Store Queue (STQ) size 24

Decode width 4

Commit width 4

Branch misprediction penalty 14 cycles

SRAM Cache Parameters

Private L1 Caches (IL1 and DL1) 32KB, 8-way, 2 cycles

Private L2 Caches 256KB, 8-way, 5 cycles

Shared L3 SRAM Cache
(Serialized tag and data access)

8MB, 8-way, 10 cycles Tag-Latency,
15 cycle data latency

DRAM cache Parameters

MMap$ 2MB, 10 cycles

DRAM cache size 128 MB

Row buffer size 2KB (2048 bytes)

Number of DRAM banks 64

Number of channels 4

Bus Width 128 bits per channel

Bus Frequency 1.6 GHz

tRAS (Row access strobe) 72 cycles

tRCD (Row to column command delay) 18 cycles

tRP (Row precharge delay) 18 cycles

tCAS (Column access strobe) 18 cycles

tWR (Write recovery time) 18 cycles

Table 4.1: Core and cache parameters

Chapter 4 Experimental Setup

- 40 -

Main Memory Parameters

Number of channels 2

Bus Width 64 bits per channel

Bus Frequency 800 MHz

tRAS (Row access strobe) 144 cycles

tRCD (Row to column command delay) 36 cycles

tRP (Row precharge dealy) 36 cycles

tCAS (Column access strobe) 36 cycles

tWR (Write recovery time) 36 cycles

Table 4.2: Main memory parameters

4.3 Benchmarks and classification

One of the key metric that determines the application cache access behavior is the Last-Level-
Cache (LLC) Misses Per Thousand Instructions (MPKI). LLC MPKI is an indicator that deter-
mines how application performance is affected by the amount of cache resources available to it.
The applications from SPEC2006 exhibit diverse cache access patters as illustrated in Figure 1.2
which shows LLC MPKI for different applications while varying the LLC capacity. Based on the
LLC MPKI metric, this thesis classifies the applications into the following categories:

1. Latency Sensitive applications are very sensitive to the amount of cache resources allocated to
them. Increasing the cache resources of these applications (e.g. 473.astar.train,
437.leslie3d.train , 471.omnetpp etc.) provides significant reduction in MPKI.

2. Memory Sensitive applications have a high cache miss rate and a high cache access rate.
These applications (e.g. 437.leslie3d.rain, 433.milc, and 450.soplex) get negligible benefit
from increasing the cache resources.

Future multi-core systems are expected to execute multiple applications with diverse cache
access patterns. For evaluation, this thesis makes use of various application mixes from
SPEC2006 [5] as shown in Table 4.3. These application mixes were chosen because they contain
applications with different working set sizes and cache access patterns.

4.4 Simulation Methodology

This thesis uses the Simpoint tool [40, 93, 94] to select representative samples for each applica-
tion. The simulation statistics are collected for 500 million instructions with a fast-forward of 500
million instructions (to warm up the caches and branch predictors in functional mode) for each
application. When a shorter benchmark finishes early by completing its 500 million instructions,
then it is restarted and continues to contend for the cache and bus resources. However, the simu-
lation statistics are reported for the first 500 million instructions after the fast-forward.

4.5 Performance Metric

- 41 -

Name Benchmarks

Mix_01
433.milc(1), 437.leslie3d.ref (1), 437.leslie3d.train (1), 450.soplex (1),

462.libquantum(1), 470.lbm(1), 471.omnetpp(1), 473.astar.train(1)

Mix_02 437.leslie3d.ref (2), 437.leslie3d.train (2), 450.soplex (2), 462.libquantum(2)

Mix_03 433.milc(2), 470.lbm(2), 471.omnetpp(2), 473.astar.train(2)

Mix_04
433.milc(1), 437.leslie3d.ref (2), 437.leslie3d.train (2), 450.soplex (1),

462.libquantum(1), 473.astar.train(1)

Table 4.3: Application mixes (value in parenthesis denotes the number of instances used
for that particular application). Latency sensitive applications shown in italics

4.5 Performance Metric

Several performance metrics [24, 67, 75, 80, 118] have been used for the evaluation of multi-core
systems when comparing old and new policies, which determines throughput and fairness
measures. A throughput measure is used to determine the overall speedup of a new policy. The
speedup may come from one or more applications at the cost of performance degradation of
some other applications. On the other hand, a fairness measure is used to determine whether con-
currently running applications on a multi-core system receive a fair performance improvement
when using a new policy or not. Commonly used evaluation metrics are the ‘overall instruction
per cycle’, ‘arithmetic mean instruction per cycle’ and ‘harmonic mean instruction per cycle’.
The first two metrics favor the throughput measure but they do not truly capture the fairness
measure. The harmonic mean instruction per cycle metric has been shown to balance both fair-
ness and throughput [24, 67, 80] because it tends to be lower if one or more applications lose per-
formance when using a new policy. Therefore, this thesis employs the ‘harmonic mean instruc-
tion per cycle’ metric [24, 67, 80] for performance evaluation which is given as follows:

Harmonic Mean Instruction per cycle =

 
N

i
iIPC

N

1

1

N is the number of applications in a particular application mix. IPCi is the instruction per cy-
cle (IPC) of the application when it runs concurrently with other applications.

- 43 -

Chapter 5 Policies for Miss Rate Reduction

On-chip DRAM Last-Level-Cache has been employed recently [53, 75, 77, 78, 102, 112, 113] to
reduce the number of slower main memory accesses. A DRAM cache hit provides fast access to
the requested data compared to off-chip memory access. Therefore, to maintain high perfor-
mance, it is important to reduce DRAM Last-Level-Cache misses. This chapter proposes novel
policies namely adaptive DRAM insertion policy and set balancing policy to reduce the DRAM
cache miss rate by reducing the number of conflict misses. The integration of the proposed poli-
cies into a DRAM cache hierarchy is shown in Figure 5.1 for an N-core system.

Figure 5.1: Proposed DRAM cache hierarchy for an N-core system; Fill-DRAM field indi-
cates whether an incoming block from off-chip memory should be inserted into the L4$-

DRAM or not; Seg-Row field is used for set balancing

The first section of this chapter analyzes state-of-the-art static DRAM insertion policies [77,
78, 102] to show how some applications incur increased miss rate, which leads to reduced system
throughput. It demonstrates that existing policies do not work well because they use a static in-
sertion rate (DRAM insertion rate is defined as the percentage of block insertions into DRAM
cache) for all applications, i.e. they always insert requesting blocks into DRAM cache after a
DRAM cache miss. The next section demonstrates that the performance can be improved if the

Chapter 5 Policies for Miss Rate Reduction

- 44 -

applications are assigned appropriate insertion rates depending upon which insertion rate per-
forms better for a given application. It presents the novel adaptive DRAM insertion policy that
provides improved system throughput compared to state-of-the-art static insertion policies [51,
77, 78, 102] via reduced miss rate. The proposed adaptive DRAM insertion policy chooses the
best-performing insertion rate for each application at runtime among four different insertion
rates, by tracking the miss rate information of concurrently running applications with a low over-
head monitoring mechanism.

Section 5.3 of this chapter shows that multiple applications running on a multi-core system
exhibit a non-uniform distribution of accesses across different DRAM cache sets, which leads to
an inefficient utilization of DRAM cache capacity. To overcome this problem, this section pre-
sents a DRAM cache set balancing policy that mitigates the imbalance across DRAM cache sets
to improve the performance via efficient capacity utilization.

5.1 Motivation

In a typical multi-core system, cores are concurrently running heterogeneous applications such as
web-browser, text editors, scientific or data mining applications. These concurrently executing
applications compete with each other for the shared resources causing inter-core interference. An
important design consideration for a DRAM cache based multi-core system is the management of
shared resources such as DRAM cache capacity, DRAM cache bandwidth, and off-chip memory
bandwidth [12, 108, 131, 136, 144]. As the number of cores in a multi-core system increases, in-
creased number of requests from multiple cores can cause inter-core DRAM interference (ex-
plained in Section 2.3.2) in the DRAM cache leading to an increased load on DRAM cache
bandwidth. It may also result in an increased load on off-chip bandwidth via inter-core cache
contention (explained in Section 2.3.1), hereby increasing DRAM cache miss rate. This section
presents an example that shows how state-of-the-art DRAM insertion policies may cause in-
creased miss rate and how a judicious DRAM insertion policy can be used to mitigate inter-core
DRAM interference and inter-core cache contention.

State-of-the-art DRAM insertion policies [77, 78, 102] do not work well with applications
that have a reuse distance (i.e. the number of insertions before the block is reused) larger than the
cache associativity. Such applications are classified as “thrashing” applications [51, 138] (see
Section 2.3.1). These applications have poor temporal locality for the available cache size, as
they generate a large number of requests without being reused in the future [51, 138]. Figure 5.2
illustrates a 4-way DRAM cache with accesses (shown in capital letters E, F etc.) from a thrash-
ing application. On a cache miss, an incoming block is inserted into the most recently used
(MRU) position while the block in the least recently used (LRU) position is the candidate for
eviction to make room for the incoming block.

The DRAM insertion policy used in the state-of-the-art [77, 78, 102] statically inserts the
block with a probability of 1 after a DRAM cache miss, which increases the number of unneces-
sary fill requests for thrashing applications as illustrated in Figure 5.2-(a). For instance, blocks A,
B, E and F have a reuse distance (RD) greater than the associativity of 4 and are thus never re-
used if inserted with a probability of 1 as illustrated in Figure 5.2-(a). This results in a high load
on DRAM cache bandwidth via increased unnecessary fill requests. Additionally, the contention

5.2 Adaptive DRAM Insertion Policy (ADIP)

- 45 -

between thrashing and non-thrashing application for a static DRAM insertion policy will reduce
the number of hits, thus increasing the load on off-chip memory bandwidth.

For thrashing applications, the performance can be improved by inserting the blocks into
DRAM cache with a low probability, thus reducing the number of fill requests. It enables thrash-
ing applications to retain some fraction of the working set which increases the number of hits as
illustrated in Figure 5.2-(b) and (c). In this example, an insertion probability of ¼ leads to the
best hit rate and to reduced number of fill requests compared to higher insertion probabilities. To
reduce interference between hit and unnecessary fill requests in DRAM cache, the proposed
Adaptive DRAM Insertion Policy (ADIP) uses a low probability to insert an incoming block for
applications with long reuse distances and uses the highest probability of 1 for applications with
short reuse distances. ADIP adapts the DRAM insertion probabilities at run-time on a per-core
basis.

Figure 5.2: Example illustrating DRAM insertion probability of (a) 1, (b) ½, and (c) ¼
Block insertion shown as grey, hits shown as shades, NP stands for block not placed in

DRAM cache, RD stands for reuse distance

5.2 Adaptive DRAM Insertion Policy (ADIP)

The integration of the proposed Adaptive DRAM insertion policy (ADIP) into the cache hierar-
chy is shown in Figure 5.1 and Figure 5.3 presents the ADIP details. The MMap$ (functionality
explained in Section 2.4.1) is accessed after a miss in the L3 SRAM cache. A MMap$ hit indi-
cates that the block is present in L4 DRAM cache. In that case, the block is read from L4 DRAM
cache and inserted into L3 SRAM cache and the core private L1/L2 caches to exploit the tem-
poral locality that the referenced block might be accessed again in the near future. Hits to these
replicated blocks in L3 SRAM reduce the effective access latency by avoiding costly L4 DRAM

Chapter 5 Policies for Miss Rate Reduction

- 46 -

accesses, hereby reducing inter-core DRAM interference. On a MMap$ miss, the block is
brought from memory and inserted into L3 SRAM and core private L1/L2 caches. The block may
or may not be filled additionally in L4 DRAM cache, which is determined by the adaptive
DRAM insertion policy (ADIP). Existing DRAM cache hierarchies [77, 78, 102] always insert
the block into all cache levels when brought from main memory.

The adaptive DRAM insertion policy (ADIP) consists of two major components:

1. Application Profiling Unit (APU): In order to provide sufficient information for the ADIP
policy, the APU profiles the application behavior (thrashing or non-thrashing) by tracking
run-time miss rate information of all concurrently executing applications (described in Sec-
tion 5.2.1).

2. Probability Selection Unit (PSU): reads the runtime statistics provided by the APU to de-
termine the suitable insertion probability for each application (Section 5.2.2).

5.2.1 Application Profiling Unit (APU)

Figure 5.3 shows the details of the Application Profiling Unit (APU) that is based on set duel-
ing. Set dueling is a well established mechanism [75, 51] to adaptively choose between two com-
peting policies P0 and P1. In set dueling, a few sampled sets of the cache are dedicated to always
use policy P0 and other few sampled sets to always use policy P1. A saturating k-bit policy selec-
tion (PSEL) counter (counting from 0 to 2k-1 and initialized with 2k-1) estimates which of the two
policies leads to a smaller number of misses. Misses in the sampled sets using P0 cause the PSEL
counter to be incremented and misses in the sampled sets using P1 cause it to be decremented. If
the MSB of PSEL is ‘0’, then policy P0 is used for all non-sampled sets, if it is ‘1’, then policy
P1 is used.

This thesis employs the set dueling mechanism to adaptively choose among four DRAM in-
sertion probabilities (pa, pb, pc, and pd). In the proposed ADIP, each set inserts an incoming block
with a probability vector <p0, …, pn-1>, where pi denotes the insertion probability for requests
from corei. Some cache sets are “leader sets” (that contain some sampled sets per core) and other
cache sets are “non-sampled sets” that follow the decisions of the leader sets. Figure 5.3 shows
the ADIP for an N-core system where the sets are clustered into groups of CS sets (CS stands for
cluster size; this thesis uses CS = 128). Each cluster contains 6N leader sets (6 per core) and CS –
6N non-sampled sets. The first 6 sets of each cluster are used as sampled sets for core0, while the
next 6 sets are used as sampled sets for core1, and so on for the other cores. Out of the 6 leader
sets per core, 4 sets (grey boxes in Figure 5.3) are dedicated as sampled sets with fixed insertion
probabilities pa, pb, pc, and pd (this thesis uses pa = 1/64, pb = 1/16, pc = ¼, and pd = 1). For example,
core0 always inserts an incoming block with a fixed probability of pa for the first set of each clus-
ter (p0=pa for this set) and with probability pb for the second set of the cluster (p0=pb). Similarly,
core0 always inserts an incoming block with a fixed probability of pc for the fourth set of each
cluster (p0=pc for this set) and with probability pd for the fifth set of the cluster (p0=pd). Each core
is provided with three 10-bit policy selection counters namely PSELab

i, PSELcd
i, and MPSELi that

determine the winning policy for each core. The 10-bit policy selection counter PSELab
i for corei

estimates which of the two insertion probabilities (pa or pb) leads to the smaller number of miss-
es. A miss incurred in the set dedicated for pa increments PSELab

i while a miss incurred in the set
dedicated for pb decrements PSELab

i. This direct comparison between pa and pb is used to decide
the insertion probability pab,i of a so-called “partial set” for corei (shown as shaded boxes in Fig-

5.2 Adaptive DRAM Insertion Policy (ADIP)

- 47 -

ure 5.3). The policy section counters (PSELab
i, PSELcd

i, and MPSELi) remain unchanged for
misses in the non-leader sets of corei. The next section provides the details for choosing a suita-
ble insertion probability among four different insertion probabilities (i.e. pa , pb , pc , and pd) for
each core.

Figure 5.3: Adaptive DRAM Insertion Policy for an N-core system

5.2.2 Probability Selection Unit (PSU)

The goal of the Probability Selection Unit (PSU) is to decide the insertion probability pfi for corei
at run-time for the large number of non-sampled sets. The PSU reads the policy selection coun-
ters (PSELab

i, PSELcd
i, and MPSELi) for each competing application to determine the insertion

probability pfi (pfi stands for the policy that is used by the “non-sampled sets” of corei). If the

Chapter 5 Policies for Miss Rate Reduction

- 48 -

MSB of PSELab
i is 0, then pab,i is set to pa, otherwise to pb (see multiplexors at the lower part of

Figure 5.3). Similarly, PSELcd
i estimates which of the two insertion probabilities pc or pd leads to

the smaller number of misses. Finally, a meta-policy selection counter MPSELi is associated with
each corei that estimates which of the two partial insertion probabilities (pab,i or pcd,i) leads to the
smaller number of misses. If the MSB of MPSELi is 0, then the insertion probability pfi for all
non-sampled sets of corei is pab,i, otherwise pcd,i.

To reduce the number of unnecessary fill requests from thrashing applications, the ADIP pol-
icy chooses low insertion probability for them. It chooses high insertion probability for non-
thrashing applications, which in turn increases the number of hits. This reduces inter-core cache
contention between thrashing and non-thrashing applications by rarely inserting blocks into
DRAM cache from a thrashing application to reduce their effect on other applications.

5.2.3 Probability Realization

A target DRAM insertion probability can be implemented using a binary counter or a linear
feedback shift register (LFSR). This thesis uses LFSR to realize different insertion probabilities.
The primary advantage of using LSFR [28] is that it requires reduced hardware overhead (one
LFSR requires six XOR gates and six flip flops) compared to a conventional binary counter. The
other advantage of LFSR is that their minimum cycle time is independent of the number of bits
of the counter. The proposed ADIP needs seven LFSRs (six for sampled sets of leader set and
one for non-sampled sets) per core. To realize a target DRAM insertion probability, LFSR gener-
ates a 7-bit pseudo-random number (7-bit LFSR generates a number between 1-127 excluding
zero) which is compared to threshold values (‘3’ for pa = 1/64, ‘9’ for pb = 1/16, ‘33’ for pc = ¼,
and ‘128’ for pd = 1). For example the insertion probability pb = 1/16 requires generating a pseudo-
random number and testing whether it is smaller than 9. If this is the case, then the block is in-
serted in DRAM cache (i.e. 8 blocks are inserted among 127 requested blocks from main
memory), otherwise the block bypasses DRAM cache. Altogether, ADIP performs an adaptive
DRAM insertion/bypass decision based on the comparison of the pseudo random number gener-
ated by LFSR with the corresponding threshold value for the insertion probability.

5.3 Set Balancing Policy (SB-Policy)

For a large number of DRAM cache sets, the efficiency of the DRAM cache is reduced because
programs exhibit a non-uniform distribution of accesses across different cache sets [104]. In such
a scenario, some of the DRAM cache sets may be under-utilized, whereas others may be severely
over-utilized. As a result, over-utilized sets suffer more conflict misses compared to under-
utilized sets which may degrade the performance via increased miss rate. To reduce conflict
misses via improved row utilization, this thesis proposes a DRAM set balancing policy and inte-
grates it into MMap$ (details of MMap$ in Section 2.4.1; see Figure 2.11) as shown in Fig-
ure 5.4. Recent research has proposed various DRAM cache organizations namely LH-Cache
[77] (details in Section 2.4.1) and Alloy-Cache [102] (details in Section 2.4.3). The SB-policy can
be applied on top of both of them. This section performs analytical comparison of applying the
SB-policy on top of LH-Cache and Section 5.6.5 evaluates applying it on top of Alloy-Cache.
Figure 5.4 shows how a DRAM row is determined for LH-Cache with and without SB-policy.
The primary difference is that the LH-Cache without SB-policy determines the DRAM row num-
ber based on the main memory address (Figure 5.4-b) while the row number in SB-policy is pro-

5.3 Set Balancing Policy (SB-Policy)

- 49 -

vided by the MMap$. The SB-policy stores the DRAM row number in the MMap$ which is as-
signed to each MMap$ entry after a segment miss (see Section 5.3.1).

Figure 5.4: DRAM cache row mapping for LH-Cache [77] (a) with SB-Policy (b) without
SB-Policy

An intuitive answer to achieve uniform cache set distribution is to assign a DRAM cache row
number (each DRAM bank contains R rows as shown in Figure 5.4, where each row consists of
one cache set with 29-way associativity) to each block in a round robin way after a block miss.
This would require storing the row number (requires 11 bits for R = 2048) with each block in the
MMap$ (details of MMap$ in Section 2.4.1; see Figure 2.11) and this would lead to an additional
storage requirement of 640 bits (10 x 64 = 640 bits for R = 2048) for each MMap$ entry. Note
that each MMap$ entry requires storage overhead of 94 bits including 1 valid bit, 1 dirty bit, 4
LRU bits, 4 way-number bits, 20 bits for Seg-Tag field, and 64-bit for Seg-BV field as shown in
Figure 5.5. The above-mentioned approach will require up to ~7.8× more storage overhead (it
requires ~15.6 MB MMap$) compared to the original MMap$ size (it requires ~2MB MMap$).
Instead, the proposed Set Balancing policy (SB-Policy) stores the DRAM row number at coarser
granularity, as described in the following.

A segment is the basic unit of the MMap$ storage and is a group of contiguous blocks in
main memory (typical segment size is 4KB). Each MMap$ entry tracks the block (this thesis use
a block of 64 bytes similar to state-of-the-art [77, 78]) associated with a segment (this thesis uses
a segment size of 4KB similar to state-of-the-art [77, 78]). Each 4KB MMap$ segment is associ-
ated with a tag (called Seg-Tag) and a bit vector (called Seg-BV) with one bit per block as shown
in Figure 5.5. The Seg-Tag field determines whether a particular memory segment is present in
the MMap$ (segment hit) or absent (segment miss). The Seg-BV field determines the hit/miss of
a particular block bi within a particular segment. The proposed SB-Policy stores the row number

Chapter 5 Policies for Miss Rate Reduction

- 50 -

at segment level which only requires storage overhead of 10 bits (for R = 1024) for each MMap$
entry (i.e. the proposed SB-policy requires ~2.2 MB MMap$). For this reason, the proposed SB-
Policy add an additional Seg-Row field to each MMap$ entry for set balancing. The Seg-Row
field is assigned to each MMap$ entry after a segment miss (see Section 5.3.1).

Figure 5.5: MMap$ segment entry; proposed SB-Policy adds an additional Seg-Row field
to MMap$ entry for set balancing

5.3.1 Row Assignment

The SB-Policy assigns a DRAM cache row number to a MMap$ segment after a segment miss
(when the segment is referenced for the first time) as shown in Figure 5.6. When an application
running on corei accesses a new segment S that is currently absent in the MMap$ (i.e. segment
miss), then a new MMap$ entry E is allocated for S and a DRAM row number (called Seg-Row)
is assigned to S in a round robin manner for corei. After a MMap$ segment hit (DRAM row
number already assigned), the DRAM row number is provided by the MMap$ (determined by
Seg-Row field of the MMap$ entry). The DRAM bank number (i.e. row buffer) is determined by
the least significant bits of the memory block address as illustrated in Figure 5.4-(b). Since the
SB-Policy assigns the DRAM row number in a round robin manner for each core, it leads to an
improved DRAM cache row utilization (and hence it leads to an improved DRAM cache set
utilization).

Figure 5.6: Row assignment for SB-policy

5.4 Implementation

- 51 -

5.4 Implementation

Figure 5.7 shows the steps involved in cache lookup operation in the proposed ADIP and SB-
policy for a new request from corei, which are explained as follows:

Figure 5.7: Steps involved in cache lookup operation

L3 SRAM cache hit: After an L3 SRAM cache hit, the hit block is forwarded to the requesting
core and filled in its private L1/L2 caches.

L3 SRAM cache miss: After an L3 SRAM cache miss, a miss status handling register (MSHR)
[71] is allocated that keeps track of the outstanding L3 cache misses (see Figure 5.1). The various
fields of the MSHR entry include the Valid-bit, Issued-bit (request is issued or still pending), Ac-
cess-type (load or store), Value-field (data returned or store value), and Block-address. To sup-
port ADIP, an additional single-bit field is added to MSHR and to the main memory read/write
buffer (MM-RWB) named as Fill-DRAM that indicates whether an incoming block when brought
from off-chip memory should be inserted into the L4 DRAM cache or not. To support the SB-
policy, an additional field is added to MSHR and to the L4$-DRAM read/write buffer (L4$-
DRAM-RWB) named as Seg-Row that indicates the DRAM cache row number that will house the
relevant block.

MMap$ segment miss: Seg-Row is assigned to each MMap$ segment on a segment miss as il-
lustrated in Figure 5.6.

MMap$ segment hit: Seg-Row is read from the MMap$ hit entry (Figure 5.5) of the MMap$
and forwarded to the dispatcher (see Figure 5.1).

L3 SRAM cache miss/MMap$ hit: For a MMap$ hit after the L3 miss, the dispatcher (see Fig-
ure 5.1 and Figure 5.7) forwards the request to the L4 DRAM cache access scheduler by allocat-
ing an entry in the DRAM read/write buffer (L4$-DRAM-RWB; see Figure 5.1). When the data is
returned from DRAM cache, it is forwarded to the requesting core and filled in its private L1/L2
caches and the shared L3 SRAM cache.

L3 SRAM cache miss/MMap$ miss: For a MMap$ miss after the L3 miss, the Fill-DRAM field
of the MSHR entry is determined by ADIP as illustrated in Figure 5.1 and Figure 5.7. The dis-
patcher forwards the request to the main memory access scheduler by allocating an entry in the

Chapter 5 Policies for Miss Rate Reduction

- 52 -

MM-RWB. If the Fill-DRAM field of the MSHR entry is 1, the dispatcher additionally allocates
an entry in the L4$-DRAM-RWB. When the data is returned from main memory to MM-RWB, the
Fill-DRAM field of the MM-RWB entry is checked. If the Fill-DRAM field is 1, then the block is
forwarded to the respective L4$-DRAM-RWB entry so that the block is filled in L4 DRAM cache.
If the Fill-DRAM field is 0, then the block bypasses the DRAM cache. Independent of the Fill-
DRAM field, the data is forwarded to the requesting core and filled in L1/L2 and L3 SRAM
cache.

5.5 Overhead

The proposed ADIP needs seven LFSRs (six for sampled sets of leader set and one for non-
sampled sets; one LFSR requires six XOR gates and six flip flops), three multiplexers and three
10-bit policy selection counters per core as shown in Figure 5.3. Altogether, an N-core system
requires 7N LFSR (56 LFSR for an 8-core system), 3N multiplexers (24 multiplexers for an 8-
core system), and 3N 10-bit policy selection counters (24 policy selection counters for an 8-core
system). It requires a single bit per MSHR and MM-RWB entry for the Fill-DRAM field which
requires a storage overhead of 64 bits (8 bytes) for a 32-entry MSHR and a 32-entry MM-RWB.
Storing the DRAM row number in the MMap$ for SB-policy increases the size of the MMap$
entry by log2(R) bits where R is the number of rows in a DRAM bank. For a 2MB MMap$ with
R = 1024, this would lead to a storage overhead of ~200KB for the SB-policy. The other over-
head for the proposed SB-policy is the log2(R)-bit round-robin row selection logic for each core.
Altogether, the proposed policies presented in this chapter comes with negligible hardware over-
head.

5.6 Experimental Results

The parameters for the cores, caches and off-chip memory are the same as used in the experi-
mental setup in Section 4.2 (see Table 4.1) with various workloads from SPEC2006 [5] listed in
Table 4.3. This section uses 2KB row size for comparisons. However, the concepts proposed in
this chapter can be applied for other row sizes (e.g. 4KB or 8KB) as well. For evaluation, this
section compares the proposed Adaptive DRAM insertion policy (ADIP; details in Section 5.2)
and SB-policy (details in Section 5.3) on top of state-of-the-art DRAM cache organizations name-
ly LH-Cache [77] (discussed in Section 2.4.1) and Alloy-Cache [102] (details in Section 2.4.3).
The main drawback of these works is that they statically determine the DRAM insertion policy
for an incoming block and suffer from inter-core DRAM interference, whereas the proposed
ADIP adapts the DRAM insertion probability at run-time on a per-core basis. In addition, the
proposed SB-policy further improves the performance via improved DRAM cache set utilization.

5.6.1 ADIP and SB-policy on top of LH-Cache [78]

This subsection evaluates the performance impact of applying the proposed adaptive DRAM in-
sertion policy (ADIP) and SB-policy on top of the state-of-the-art DRAM cache organization
namely LH-Cache [78]. For evaluation, it compares the following different policies on top of
LH-Cache:

5.6 Experimental Results

- 53 -

1. Original LH-Cache with static DRAM insertion policy namely LH using traditional least re-
cently used policy (details in Section 2.1.1)

2. State-of-the-art replacement policy for set-associative caches namely LH-TAP, where TAP
stands for Thread Aware Placement policy proposed in [51].

3. Proposed adaptive DRAM insertion policy (ADIP; details in Section 5.2) namely LH-ADIP

4. Proposed ADIP and SB-policy (details in Section 5.3) namely LH-ADIP-SB

Figure 5.8 shows the average normalized harmonic mean instruction per cycle (HM-IPC)
throughput results with the speedup normalized to LH [78]. On average, the combination of
ADIP and SB-policy improves the overall HM-IPC speed by 14.3% and 6.9% compared to LH
[78] and LH-TAP [51] respectively. On average, the proposed LH-ADIP policy alone improves
the overall HM-IPC speed by 13% and 5.8% compared to LH and LH-TAP respectively. Thus,
the proposed SB-policy provides additional 1.3% improvement in performance compared to LH-
ADIP. On average, the proposed LH-ADIP-SB policy improves the HM-IPC speed of latency
sensitive applications by 15.9% and memory sensitive by 13.2% compared to LH for an 8-core
system.

0.8

0.9

1.0

1.1

1.2

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH

LH‐TAP

LH‐ADIP

LH‐ADIP‐SB(a
)
N
o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(L
S
ap
p
lic
at
io
n
s)

(b
)
N
o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(M
S
ap
p
lic
at
io
n
s)

(c
)
N
o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(A
ll
ap
p
lic
at
io
n
s)

0.8

0.9

1.0

1.1

1.2

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH

LH‐TAP

LH‐ADIP

LH‐ADIP‐SB

0.8

0.9

1.0

1.1

1.2

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH

LH‐TAP

LH‐ADIP

LH‐ADIP‐SB

Figure 5.8: Normalized HM-IPC speedup compared to LRU [77] for (a) Latency Sensitive
(LS) applications (b) Memory Sensitive (MS) applications (c) Both LS and MS applications

5.6.2 Impact on DRAM cache bandwidth and capacity utilization

The LH policy [78] does not work well with applications that have thrashing behavior and it suf-
fers from inter-core cache contention. In the LH policy, thrashing applications insert a large

Chapter 5 Policies for Miss Rate Reduction

- 54 -

number of blocks in the DRAM cache and as a result, they evict useful blocks belonging to other
applications. The eviction of useful blocks increases the contention between thrashing and non-
thrashing applications causing inter-core cache contention. To mitigate inter-core cache conten-
tion, LH-TAP [51] adapts the cache replacement policy at runtime by tracking run-time miss rate
information of all concurrently executing applications. However, LH-TAP still inserts blocks into
DRAM cache with a probability of 1 which causes inter-core DRAM interference by increasing
unnecessary fill requests from thrashing applications. The performance improvement of the pro-
posed LH-ADIP policy over LH-TAP is mainly due to reduced inter-core DRAM interference
because LH-ADIP chooses low insertion probabilities for thrashing applications with long reuse
distance.

Figure 5.9 shows the distribution of DRAM cache accesses. The four bars show the different
types of DRAM cache accesses as fraction of all accesses for LH [78], LH-TAP [51], LH-ADIP
[Proposed], and LH-ADIP-SB [Proposed] (from left to right). The cache accesses are categorized
as:

1. demand hits for read and write requests.

2. fill requests when the data is filled into DRAM cache for the first time.

3. writeback requests (i.e. when the dirty data is written back from L3 SRAM cache)

Demand Hits Fill Requests Writeback Requests

a b c d

a: LH b: LH‐TAP c: LH‐ADIP d: LH‐ADIP‐SB

Mix_01 Mix_02 Mix_03 Mix_04 Average

Fr
ac
ti
o
n
 o
f

D
R
A
M
 A
cc
e
ss
e
s

0%

20%

40%

60%

80%

100%

Figure 5.9: Distribution of DRAM cache accesses for different policies

Note that the distribution does not include the bypassed blocks for LH-ADIP, and LH-ADIP-
SB policies. On average, the proposed LH-ADIP-SB increases the percentage of demand hits by
43.2%, 19.9% and 2.5% compared to LH, LH-TAP, and LH-ADIP [Proposed], respectively. On
average, the proposed LH-ADIP-SB reduces the percentage of fill request by 56%, 43.8% and
8.1% compared to LH, LH-TAP, and LH-ADIP [Proposed], respectively. By reducing the intensi-
ty of fill requests and increasing the percentage of demand hits using ADIP and SB-policy, the
proposed policies mitigate a major disadvantage of shared DRAM caches, namely inter-core
DRAM interference. Thus, the proposed policies enables efficient utilization of DRAM cache
capacity and bandwidth via increased demand requests and reduced fill requests, respectively.

5.6 Experimental Results

- 55 -

5.6.3 Impact on miss rate

The proposed LH-ADIP-SB policy increases the effective DRAM cache capacity via reducing the
insertion rate of rarely-reused blocks (i.e. using ADIP) and via the use of efficient set balancing
(i.e. using SB-policy). The effective utilization of DRAM cache capacity reduces the miss rate,
which results in reduced contention on off-chip memory bandwidth. Figure 5.10 illustrates this
observation comparing different policies in terms of DRAM cache miss rate. On average, the
proposed LH-ADIP-SB policy reduces the overall DRAM cache miss rate by 24.8% and 12.7%
compared to LH and LH-TAP, respectively. In addition, the proposed LH-ADIP-SB policy reduc-
es the DRAM cache miss rate of latency sensitive application by 70% and 42.4% compared to
LH and LH-TAP, respectively.

0.00

0.05

0.10

0.15

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH

LH‐TAP

LH‐ADIP

LH‐ADIP‐SB

(a
)
D
$
‐M

R
(L
S
ap
p
lic
at
io
n
s)

(b
)
O
ve
ra
ll
D
$
‐M

R

0.10

0.20

0.30

0.40

0.50

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH

LH‐TAP

LH‐ADIP

LH‐ADIP‐SB

Figure 5.10: (a) DRAM cache miss rate (D$-MR) for Latency Sensitive (LS) applications (b)
Overall DRAM cache miss rate

5.6.4 ADIP Run-time adaptivity

Comparing across the applications, it has been found that the reuse distance of some applications
(470.lbm, 437.leslied.ref, 462.libquantum, 450.soplex) change during different phases of their
execution, which shows the fundamental advantage of the proposed adaptive DRAM insertion
policy. Figure 5.11 illustrates this observation showing the DRAM insertion probability that
ADIP automatically selects at runtime for the applications running in Mix_01 (see Table 4.3).
The DRAM insertion probability for each application is sampled once every 2 million cycles and
shown in Figure 5.11. The proposed DRAM insertion policy chooses low insertion probabilities
at runtime for memory sensitive applications (e.g. 470.lbm, 437.leslied.ref, 433.milc, and
450.soplex) for majority of their execution time. On the other hand, it chooses high insertion
probabilities at runtime for latency sensitive applications (e.g. 473.astar.train, 437.leslied.train,
462.libquantum, and 471.omnetpp) for majority of their execution time.

Chapter 5 Policies for Miss Rate Reduction

- 56 -

0 400 800 1200 1600

473.astar.train

1/64

1/16

1/4

1

0 400 800 1200 1600

470.lbm

1/64

1/16

1/4

1
D
R
A
M
 In
se
rt
io
n

P
ro
b
ab
ili
ty

0 400 800 1200 1600

437.leslie3d.ref

1/64

1/16

1/4

1

0 400 800 1200 1600

437.leslie3d.train

1/64

1/16

1/4

1

D
R
A
M
 In
se
rt
io
n

P
ro
b
ab
ili
ty

0 400 800 1200 1600

462.libquantum

1/64

1/16

1/4

1

0 400 800 1200 1600

433.milc

1/64

1/16

1/4

1

D
R
A
M
 In
se
rt
io
n

P
ro
b
ab
ili
ty

0 400 800 1200 1600

471.omnetpp

1/64

1/16

1/4

1

0 400 800 1200 1600

450.soplex

1/64

1/16

1/4

1

D
R
A
M
 In
se
rt
io
n

P
ro
b
ab
ili
ty

Execution time in million of cycles Execution time in million of cycles

Execution time in million of cycles

Execution time in million of cycles Execution time in million of cycles

Execution time in million of cycles Execution time in million of cycles

Execution time in million of cycles

Figure 5.11: Run-time DRAM insertion probability for non-sampled sets of all applications
in Mix_01 (see Table 4.3). Latency sensitive applications shown in italic and memory sensi-

tive applications shown in non-italic

5.6.5 ADIP and SB-policy on top of Alloy-Cache [102]

The primary advantage of the proposed policies is that they can be applied irrespective of DRAM
cache organizations and replacement policy and they complement each other. It implies that the
proposed ADIP and set balancing policies are flexible enough to be applied to any replacement
policy and DRAM cache organization. This section shows the performance impact of applying
the proposed ADIP and SB-policy on top of the state-of-the-art DRAM cache organization name-
ly Alloy-Cache [102]. Since Alloy-Cache (details in Section 2.4.3) employs a direct-mapped

5.6 Experimental Results

- 57 -

cache organization as shown in Figure 2.12, the traditional least recently used and other replace-
ment policies cannot be applied on top of Alloy-Cache.

0.8

0.9

1.0

1.1

1.2

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy

Alloy‐ADIP

Alloy‐ADIP‐SB

(a
)
N
o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(L
S
ap
p
lic
at
io
n
s)

(b
)
N
o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(M
S
ap
p
lic
at
io
n
s)

(c
)
N
o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(A
ll
ap
p
lic
at
io
n
s)

0.8

0.9

1.0

1.1

1.2

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy

Alloy‐ADIP

Alloy‐ADIP‐SB

0.8

0.9

1.0

1.1

1.2

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy

Alloy‐ADIP

Alloy‐ADIP‐SB

Figure 5.12: Normalized HM-IPC speedup compared to Alloy [102] for (a) Latency Sensitive
(LS) applications (b) Memory Sensitive (MS) applications (c) Both LS and MS applications

For evaluation, this section provides the following different policies on top of Alloy-Cache:

1. Alloy-Cache with static DRAM insertion policy namely Alloy

2. The proposed ADIP applied on the top of Alloy-Cache namely Alloy-ADIP

3. The proposed ADIP and SB-policy applied on the top of Alloy-Cache namely Alloy-ADIP-SB

Figure 5.8 shows the performance improvement of the proposed policies compared to Alloy
[78]. On average, the combination of ADIP and SB-policy improves HM-IPC speedup of latency
sensitive applications by 13.1%, memory sensitive applications by 9.9% and overall HM-speedup
by 11.3% compared to Alloy [102].

5.6.6 Impact of Set Balancing Policy (SB-policy)

This section evaluates the performance impact of the SB-policy (details in Section 5.3) by com-
paring LH-ADIP (without SB-policy) and LH-ADIP-SB (with SB-policy). It also evaluates the
performance impact of the SB-policy when applied on top of Alloy-Cache [102] by comparing
Alloy-ADIP (without SB-policy) and Alloy-ADIP-SB (with SB-policy). On average, LH-ADIP-SB
reduces the overall DRAM cache miss rate by 2.4% (Figure 5.13-a) compared to LH-ADIP via
improved set utilization (i.e. storing the DRAM row number in the MMap$ and assigning it in a

Chapter 5 Policies for Miss Rate Reduction

- 58 -

round robin fashion). Similarly, Alloy-ADIP-SB reduces the overall DRAM cache miss rate by
4% (Figure 5.13-a) compared to the Alloy-ADIP. When applied on top of LH-Cache, set balanc-
ing improves the HMIPC throughput (Figure 5.8-a) of latency sensitive applications by 1.8% and
overall HMIPC throughput (Figure 5.8-c) by 1.3%. For Alloy-Cache, set balancing provides bet-
ter speedup (3.3% for latency sensitive application with 1.9% overall speedup) as shown in Fig-
ure 5.12. When the overall DRAM cache miss rate is high (Alloy-ADIP has a higher miss rate
compared to LH-ADIP as shown in Figure 5.13), set balancing provides greater performance im-
provement for Alloy-Cache (3.3% improvement in performance of latency sensitive applications
via set balancing) compared to LH-cache (1.8% speedup for latency sensitive applications).

Figure 5.13: (a) DRAM cache miss rate (D$-MR) for Latency Sensitive (LS) applications (b)
Overall DRAM cache miss rate

5.7 Summary

This chapter showed that that inter-core DRAM interference can cause performance degradation
in existing DRAM cache hierarchies [77, 102] when the cache access rate from multiple applica-
tions varies significantly. It showed that in order to mitigate inter-core DRAM interference it is
necessary to minimize the number of DRAM fill requests from thrashing applications that have
large working set sizes. This chapter proposed application and DRAM aware policies for multi-
core systems that reduce DRAM fill requests from thrashing applications via an adaptive DRAM
insertion policy, thereby reducing inter-core DRAM interference. It also presented a set balanc-
ing policy that reduces DRAM cache miss rate via improved capacity utilization, thereby reduc-
ing the load on the off-chip bandwidth. This chapter evaluated the proposed policies for various
workload mixes and compared it to state-of-the art. The experiments showed that the proposed
policies increase the performance (harmonic mean instructions throughput) by 14.3% and 6.9%
compared to LH [77] and LH-TAP [51] at negligible hardware overhead when applied on the top
of LH-Cache [77]. They also improve harmonic mean instructions throughput by 11.3% when
applied on the top of direct mapped Alloy-Cache [102].

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy‐ADIP

Alloy‐ADIP‐SB

LH‐ADIP

LH‐ADIP‐SB

(a
)
D
$
‐M

R
(L
S
ap
p
lic
at
io
n
s)

(b
)
O
ve
ra
ll
D
$
‐M

R

0.10

0.30

0.50

0.70

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy‐ADIP

Alloy‐ADIP‐SB

LH‐ADIP

LH‐ADIP‐SB

- 59 -

Chapter 6 Policies for Latency Reduction

Memory speed has become a major performance bottleneck as more and more cores are integrat-
ed on a multi-core chip. The widening latency gap between high speed cores and memory has led
to the evolution of multi-level SRAM/DRAM cache hierarchy comprised of increasing cache siz-
es and latency at each level. These multi-level SRAM/DRAM cache hierarchies exploit the laten-
cy benefits of smaller caches (e.g. private L1 and L2 SRAM caches) and the capacity benefits of
larger caches (e.g. shared L3 SRAM and shared L4 DRAM cache) as shown in Figure 6.1. How-
ever, they incur high latencies for the larger cache levels due to high tag lookup latency, which
may degrade the performance. Therefore, to improve the overall instruction throughput, it is im-
portant to reduce the latency of L3 SRAM and L4 DRAM cache. To solve this problem, this
chapter proposes policies (highlighted in Figure 6.1) for latency reduction in the cache hierarchy.

Figure 6.1: SRAM/DRAM cache hierarchy highlighting the novel contributions

This chapter analyzes the design trade-offs in architecting an SRAM/DRAM cache hierarchy
and presents different policies for latency reduction. The first section demonstrates that the
DRAM row buffer mapping policy (i.e. the method by which blocks from main memory are
mapped to the row buffer of a particular DRAM cache bank) plays a significant role in determin-
ing the overall instruction throughput because it effects L4 DRAM cache hit latency and L4
DRAM cache miss rate. It demonstrates that state-of-the-art row buffer mapping policies [77, 78,
102] are not well suited for improving the aggregate performance of a multi-core system running
heterogeneous applications because they are either optimized for L4 hit latency [102] or for L4
miss rate [77, 78]. None of these policies provides a good L4 hit latency and L4 miss rate at the
same time. The second section gives an overview of the proposed SRAM/DRAM cache organi-

Chapter 6 Policies for Latency Reduction

- 60 -

zation highlighting the novel contributions proposed in this thesis. The third section presents
novel row buffer mapping policies that simultaneously target L4 hit latency and L4 miss rate
with the goal of achieving the best of both. It provides detailed qualitative comparisons of differ-
ent row buffer mapping policies and their impact on important parameters such as DRAM cache
row buffer hit rate, DRAM cache hit latency, and DRAM cache miss rate. Section 6.5 presents
novel low latency SRAM structures namely DRAM Tag-Cache (DTC) and SRAM Tag-Cache
(STC). The STC and DTC hold the tags of the sets that were recently accessed in L3 and L4 cach-
es, respectively. They provide fast lookup because for a Tag-Cache hit, they quickly identify
hit/miss for the larger caches. This chapter further analyzes the effect of different DRAM row
buffer mapping policies on the DTC hit rate and the overall performance.

6.1 Problems of the State-of-the-art

Recently proposed DRAM row buffer mapping policies for DRAM caches are predominantly
optimized for either L4 DRAM cache hit latency or L4 DRAM cache miss rate. Figure 6.2 illus-
trates this observation by comparing state-of-the-art row buffer mapping policies proposed in
[77, 78, 102].

0

40

80

120

160

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH‐Cache Alloy‐Cache

(a
)
L4
 D
R
A
M
 c
ac
h
e
h
it

la
te
n
cy
 [
cy
cl
es
]

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH‐Cache Alloy‐Cache

(b
)
L4
 D
R
A
M
 c
ac
h
e

m
is
s
ra
te

100

200

300

400

500

600

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH‐Cache Alloy‐Cache

(a
)
M
ai
n
 m

em
o
ry

la
te
n
cy
 [
cy
cl
es
]

Figure 6.2: (a) L4 DRAM hit latency (b) L4 DRAM miss rate (c) main memory latency

LH-Cache [77, 78] (details in Section 2.4.1) is optimized for L4 DRAM miss rate by provid-
ing a high associativity (high associativity reduces the L4 miss rate). The downside of the LH-

6.2 Proposed SRAM/DRAM Cache Organization

- 61 -

Cache row buffer mapping policy is that it has a serialized tag-and-data access with reduced row
buffer hit rate that leads to increased L4 DRAM hit latency. The Alloy-Cache row buffer map-
ping policy (explained in Section 2.4.3) [102] optimizes the L4 DRAM hit latency because it
provides fast tag lookup and improved row buffer hit rate. This comes at the cost of increased L4
miss rate because it employs direct mapped cache. Figure 6.2 shows the L4 hit latency, L4 miss
rate and main memory latency experienced by LH-Cache and Alloy-Cache for an 8-core system.
The parameters for the cores, caches and off-chip memory are the same as used in the experi-
mental setup in Chapter 3 (see Table 4.1 and Table 4.2) with various workloads from SPEC2006
[5] listed in Table 4.3. On one extreme, LH-Cache [77, 78] has a high L4 hit latency compared to
the Alloy-Cache [102] as depicted in Figure 6.2-(a). On the other extreme, Alloy-Cache has a
high L4 miss rate compared to LH-Cache as depicted in Figure 6.2-(b). The higher L4 miss rate
of Alloy-Cache also leads to a higher main memory access latency compared to LH-Cache
(Figure 6.2-c) due to increased contention in the main memory controller. This chapter proposes
policies for the DRAM cache that minimize both L4 hit latency (via improved row buffer and
DTC hit rate) and L4 miss rate (via high associativity) at the same time in order to improve the
overall instruction throughput.

6.2 Proposed SRAM/DRAM Cache Organization

Figure 6.1 shows the organization of the proposed SRAM/DRAM cache organization along with
a MMap$ (details in Section 2.4.1), highlighting the novel contributions proposed in this chapter.
Similar to state-of-the-art [77, 78, 102], the proposed approach stores the tags in the DRAM
cache and employs MMap$ to identify DRAM cache hit/miss. This chapter presents the follow-
ing novel contributions:

1. This chapter proposes novel DRAM row mapping policies (details in Section 6.3) after ana-
lyzing that state-of-the-art row buffer mapping policies [77, 78, 102] do not work well be-
cause they are optimized only for a single parameter (L4 DRAM hit latency or L4 DRAM
miss rate). The proposed row buffer mapping policies reduce the L4 DRAM hit latency via
improved row buffer hit rates and they reduce the L4 DRAM miss rate via a high associativi-
ty.

2. This chapter proposes a small and low latency SRAM structure namely DRAM Tag-Cache
(DTC; details in Section 6.5.1) that allows most L4 DRAM tag accesses to be serviced at re-
duced access latency compared to when tags are accessed from the DRAM cache. Accesses
that hit in the DTC are serviced with a lower latency compared to accesses that miss in the
DTC. This chapter further analyze the effect of different row buffer mapping policies from
state-of-the-art [77, 78] and the proposed row mapping policy on DTC hit rate.

3. The proposed row buffer mapping policy allows reducing the size of existing MissMap cache
(MMap$) [77, 78] organization which is used by state-of-the-art DRAM cache to provide
hit/miss information (details in Section 2.4.1). Reducing the size of the MMap$ may reduce
the DRAM cache hit/miss prediction accuracy. This chapter analyze the effect of different
MMap$ sizes on the DRAM cache hit/miss prediction accuracy.

4. This chapter modifies the DRAM cache controller (detail in Section 6.5.3), which further re-
duces the L4 DRAM hit latency for the various row buffer mapping policies proposed in this
chapter.

Chapter 6 Policies for Latency Reduction

- 62 -

6.3 DRAM Row Buffer Mapping Policies

This section introduces novel DRAM-aware row buffer mapping policies that simultaneously
optimize L4 DRAM hit latency and L4 DRAM miss rate. The proposed row buffer mapping pol-
icies are based on the notion that the latency of L4 DRAM can be reduced by improving row
buffer hit rate. This section assumes 2KB row size for qualitative comparisons because the same
row buffer size is used by state-of-the-art for DRAM cache [77, 78, 102]. However, the concepts
proposed in this section can also be applied for other row sizes.

Figure 6.3: Row Buffer Mapping with Associativity of 7 (RBM-A7)

6.3 DRAM Row Buffer Mapping Policies

- 63 -

6.3.1 Row Buffer Mapping Policy with an Associativity of Seven (RBM-A7)

The DRAM row organization for the proposed Row Buffer Mapping policy with an Associativi-
ty of 7 (RBM-A7) is illustrated in Figure 6.3, where each 2KB DRAM row comprises 4 cache
sets with a 7-way set associativity. Each cache set consists of 1 tag block (64 bytes = 512 bits)
and 7 cache lines. The 7 cache lines need 7 x 36 = 252 bits for their tag entries with 260 bits left
unused. An L4 DRAM cache access must first read the tag block before accessing the cache line.
After an L4 DRAM hit is detected by the MMap$, the row buffer is reserved until the tag block
and cache line are both read from it. This guarantees a row buffer hit for the cache line access
after the tag block is accessed.

Figure 6.4: Memory block mapping for the proposed RBM-A7 policy

Figure 6.3 illustrates how RBM-A7 maps blocks from main memory to the row buffers. The
DRAM cache row number within a bank (indicated by the “Row#” field) is determined by the
memory block address. A high row buffer hit rate can effectively amortize the high cost of a
DRAM array access by reducing the hit latency. RBM-A7 exploits the row buffer locality by
mapping 4 spatially close blocks to the same row buffer. The DRAM cache set number (each
DRAM row contains 4 cache sets as shown in Figure 6.3) within a row is determined by the least
significant two bits of the memory block address as illustrated in Figure 6.3.

Figure 6.4 illustrates how memory blocks are mapped to a row buffer and to a DRAM cache
set within a row buffer. The RBM-A7 policy maps 4 consecutive memory blocks to the same
DRAM row buffer. For instance, blocks 0-3 from main memory are mapped to RB-0 (i.e. row
buffer associated with Bank-0) and blocks 4-7 are mapped to RB-1 (i.e. row buffer associated
with Bank-1) as depicted in Figure 6.4. The DRAM cache set number within a row is determined

Chapter 6 Policies for Latency Reduction

- 64 -

by the two least significant bits of the memory block address as illustrated in Figure 6.4. For in-
stance, block-4 is mapped to set-0 and block-7 is mapped to set-3 of RB-1.

The proposed RBM-A7 policy reduces the L4 DRAM hit latency via reduced tag serialization
latency (details in Section 6.3.3) and high row buffer hit rate (evaluated in Section 6.7.2) com-
pared to the LH-Cache [77, 78] (details of LH-Cache in Section 2.4.1). A cache access in the
RBM-A7 policy must first access one tag block (in contrast to three tag blocks accesses in the
LH-Cache) before having an access to the cache line. This reduces tag serialization latency com-
pared to the LH-Cache. The row buffer hit rate is improved compared to the LH-Cache because
RBM-A7 maps four spatially close blocks to the same row buffer. In contrast, the LH-Cache has
a reduced row buffer hit rate due to reduced spatial locality because it maps consecutive blocks to
different row buffers. The primary advantage of the RBM-A7 policy over the Alloy-Cache [102]
(details in Section 2.4.3) is that it minimizes the L4 DRAM miss rate via high associativity (7-
way associative cache) compared to the direct mapped (1-way associative cache) Alloy-Cache.

6.3.2 Configurable Row Buffer Mapping Policy (CRBM)

The major difference between the configurable row buffer mapping policy and the LH-Cache
[77, 78] is explained in the following.

Figure 6.5: Row buffer mapping policy used by (a) LH-Cache [77] (b) CRBM policy [Pro-
posed]

(a) Row buffer mapping

The configurable row buffer mapping policy is based on the observation that the latency of L4
DRAM can be reduced by improving the row buffer hit rate. The differences between the row
buffer mapping policy employed in LH-Cache [77, 78] and the one used in the configurable row
buffer mapping policy is shown in Figure 6.5 (a-b). To exploit spatial and temporal locality, the
row buffer hit rate can be improved by mapping more consecutive blocks to the same DRAM
cache row buffer. Figure 6.5-(b) shows the configurable row buffer mapping policy where the
row buffer hit rate depends upon the parameter CM (defined as number of consecutive memory
blocks mapped to the same row). CM is chosen as a power of two. If CM is equal to 1, then spa-

6.3 DRAM Row Buffer Mapping Policies

- 65 -

tially close blocks are mapped to different row buffers and the row buffer mapping policy is the
same as employed by LH-Cache.

Figure 6.6: Block mapping for configurable row buffer mapping policy with different val-
ues of CM

Figure 6.6 shows how blocks from main memory are mapped to a row buffer for different
values of CM. Figure 6.7 shows the row buffer hit rate for different values of CM for an 8-core
system. Increasing CM improves the row buffer hit rate (1.1% for CM = 1, 14.1% for CM = 2,
22.2% for CM = 4, 28.5% for CM = 8, and 35% for CM = 16) which comes at the cost of in-
creased DRAM cache miss rate due to reduced set-level-parallelism (because high order address
bits are used to select DRAM cache row/set) and increased conflict misses (spatially close main
blocks increases conflict misses within a set). The result section explores the trade-offs between
L4 DRAM hit latency (depends upon row buffer hit rate) and L4 DRAM miss rate for different
values of CM (1, 2, 4, 8, 16) and its impact on the overall performance. The primary advantage
of the configurable row buffer mapping policy is that it benefits from a high associativity (30-
way associativity; see Figure 6.10-b) that reduces conflict misses compared to Alloy-Cache (1-
way associativity) and RBM-A7 policy (7-way associativity). At the same time, it can provide a
high row buffer hit rate compared to the LH-Cache via judicious selection of CM without signifi-
cantly degrading the L4 DRAM miss rate.

Chapter 6 Policies for Latency Reduction

- 66 -

0.00

0.10

0.20

0.30

0.40

0.50

Mix_01 Mix_02 Mix_03 Mix_04 Average

CM = 1

CM = 2

CM = 4

CM = 8

CM = 16D
R
A
M
 c
ac
h
e
ro
w

b
u
ff
er
 h
it
 r
at
e

Figure 6.7: DRAM cache row buffer hit rate for different values of CM

(b) Tag block mapping and organization

The LH-Cache [77, 78] uses the traditional least recently used (LRU) replacement policy (details
in Section 2.1.1) for cache replacement. The overhead of the LRU policy is 42 bits per cache line
(1 valid bit, 1 dirty bit, 22 tag bits to identify presence/absence, 5 bits to track the priority of the
cache line using LRU bits, 5 bits to track the location of the cache line, and eight coherence bits
for an 8-core system) as shown in Figure 6.8-(a).

Figure 6.8: (a) Overview of LRU policy with 29-way associative cache (b) how the tag entry
fields are organized in LH-Cache [77, 78]

6.3 DRAM Row Buffer Mapping Policies

- 67 -

Figure 6.8-(a) shows the logical organization of LH-Cache where one DRAM cache set con-
sists of 29 cache lines entries. Figure 6.8-(b) shows how the tag entry fields are mapped into the
blocks of the DRAM cache in LH-Cache. The tag block mapping used by LH-Cache leads to in-
creased L4 DRAM cache hit latency because it always requires reading 3 tag blocks from the
DRAM cache before reading the data block (see Figure 6.9). LH-Cache also unnecessarily con-
sumes DRAM cache bandwidth as it always requires writing 3 tag blocks (192 bytes) on a lim-
ited-size (16 bytes) DRAM cache channel (see Figure 6.9) when the tag blocks are modified.
Note that the LH-Cache requires writing 3 tag blocks on a hit to update the LRU information
which are stored in TB-0, TB-1, and TB-2 (see Figure 6.8-c).

Figure 6.9: Timing and sequence of commands for L4 DRAM hit that his in the row buffer
for LH-Cache

To reduce the L4 DRAM hit latency and to improve the DRAM cache bandwidth utilization,
the configurable row buffer mapping policy employs the clock-based “pseudo-LRU” replacement
policy [111] that reduces the overhead compared to the LRU policy. The overhead of the pseudo-
LRU policy is 33 bits per cache line (1 valid bit, 1 dirty bit, 1 used bit, eight coherence bits for an
8-core system, and 22 tag bits) as shown in Figure 6.10-(a). In contrast, the overhead of LRU
policy (used by LH-Cache) is 42 bits per cache line as shown in Figure 6.8-(a). The valid bit in-
dicates whether a cache line contains a valid (valid bit is 1) or invalid block (valid bit is 0) from
main memory. All the valid bits of each cache line are set to zero on power or cache reset. The
dirty bit of cache line indicates whether the block from main memory has been modified by the

Chapter 6 Policies for Latency Reduction

- 68 -

processor (dirty bit is 1) or remained unchanged (dirty bit is 0) since it was fetched from main
memory.

For each cache set, the pseudo-LRU policy requires a single counter (5 bits) called “clock
pointer” to track the current clock position. On insertion, a cache line clears its used bit and the
clock pointer points to the next cache line, while the tag of the cache line is inserted. A dirty bit is
set on cache line writeback and the used bit is set on cache line hit. On eviction, the cache line
pointed by “clock pointer” is checked. If its used bit is zero, the cache line is evicted. Otherwise
the policy clears the used bit and gives a second chance to the cache line by advancing the clock
pointer. It repeats the same check until it finds a cache line with a used bit with value zero.

Figure 6.10-(a) shows the logical organization of one DRAM cache set for the configurable
row buffer mapping policy that consists of 30 cache lines. Each cache set consists of 2 tag blocks
and 30 cache lines as shown in Figure 6.10-(b). Each tag entry in the “pseudo-LRU” replacement
policy requires 22-bits tag and 11 bits for replacement flags (valid bit, dirty bit, used, and coher-
ence bits) to identify hit/miss. These replacement flags are updated on a cache hit (i.e. set used
bit), cache writeback (set dirty bit) and updating coherence bits while the tag bits remain un-
changed. Both, the replacement flags and the tags are updated on cache fill (i.e. when the data is
filled in the DRAM cache).

Figure 6.10: (a) Overview of “pseudo LRU” policy (b) how the tag entry fields are organized
in configurable row buffer mapping policy

6.3 DRAM Row Buffer Mapping Policies

- 69 -

An L4 DRAM access in the configurable row buffer mapping policy must first access two tag
blocks (in contrast to three tag block accesses in the LH-Cache) before having an access to the
cache line. This reduces the L4 DRAM hit latency for a read request compared to the LH-Cache.
The L4 DRAM hit latency for a row buffer hit in the LH-Cache is 63 cycles as shown in Fig-
ure 6.9. In contrast, the L4 DRAM hit latency for a row buffer hit in the configurable row buffer
mapping policy is 59 cycles as shown Figure 6.11.

Figure 6.10-(b) shows how the cache line and the tag entry fields are organized in the config-
urable row buffer mapping policy (CRBM). The replacement flags in CRBM are stored in TB-0
(tag block zero), while the tags are stored in TB-0 and TB-1 as illustrated in Figure 6.10-(b). In
the configurable row buffer mapping policy, only TB-0 needs to be written back on a cache hit,
cache writeback, and on updating coherence information as shown in Figure 6.11. This would
require 64 bytes to be transferred on the DRAM cache channel instead of transferring 192 bytes
required for the LH-Cache. However, both tag blocks TB-0 and TB-1 need to be written into
DRAM cache on a cache fill (requires 128 bytes to be transferred on DRAM cache channel).
Since, the percentage of fill request (as fraction of all DRAM cache accesses) is very low (less
than ~15% on average), this optimization avoids unnecessary DRAM cache bandwidth wastage
for writing tag blocks that are not changed. This leads to a reduced L4 DRAM hit latency com-
pared to LH-Cache via efficient bandwidth utilization.

Figure 6.11: Timing and sequence of commands for L4 DRAM read hit that his in the row
buffer for configurable row buffer mapping policy

Chapter 6 Policies for Latency Reduction

- 70 -

6.3.3 Latency breakdown

This section analyzes the row buffer hit latencies (i.e. the accessed data is in the row buffer) and
row buffer miss latencies (i.e. the accessed data is not in the row buffer) for different row buffer
mapping policies. Figure 6.12 shows the latency breakdown (in terms of processor clock cycles)
for different row buffer mapping policies for a 2KB row size. Note that the latency breakdown
does not show the latency of the DRAM cache controller (time spent in the DRAM cache con-
troller before having an access to a DRAM bank). This section assume identical latency values
for all DRAM cache parameters which are listed in Table 4.1. All of the row buffer mapping pol-
icies require 10 clock cycles to access the MMap$ to identity DRAM cache hit/miss before the
request can be sent to DRAM cache (MMap$ hit) or main memory (MMap$ miss).

Figure 6.12: L4 DRAM cache Latency breakdown for a 2KB row size (a) LH-Cache [77, 78]
(b) Alloy-Cache [102] (c) RBM-A7 [proposed] (d) CRBM [proposed]

If the data is already in the row buffer (i.e. row buffer hit), the LH-Cache [77, 78] requires 18
clock cycles for CAS (to access the tags from the row buffer), 12 cycles to transfer the three tag
blocks (see Figure 6.8-a) on the bus (64 x 3 = 192 bytes need to be transferred on 16 byte wide
bus that incurs 12 clock cycles for the bus latency 192/16 = 12), 1 clock cycles for the tag check,
18 clock cycles for the CAS (to access the data from the row buffer), and 4 clock cycles to trans-

6.3 DRAM Row Buffer Mapping Policies

- 71 -

fer the cache line. If the data is not in the row buffer (i.e. row buffer miss), it would require an
additional latency of 18 ACT clock cycles. For the LH-Cache, the row buffer hit latency is 63
clock cycles and the row buffer miss latency is 81 clock cycles as illustrated in Figure 6.12-(a).

For the Alloy-Cache [102], the row buffer hit latency is 34 clock cycles (10 cycle for MMap$
access, 18 clock cycles for CAS, 1 cycle tag-check, and 5 bus cycles for the TAD (Tag And Data)
entry and the row buffer miss latency is 52 clock cycles (18 additional cycles required for row
activation) as illustrated in Figure 6.12-(b).

For the proposed RBM-A7 policy, the access latency of a row buffer hit includes the time to
access MMap$ (10 cycles), time to access the tags (18 clock cycles for CAS tags), time to read
the tags through DRAM bus (4 cycles for the tags), time to check the tag (1 clock cycle), time to
access the cache line (18 clock cycles for CAS LINE) and time to read the cache line through the
DRAM bus (4 cycles for the cache line). Thus, the row buffer hit latency is 55 clock cycles and
the row buffer miss latency is 73 clock cycles (18 additional cycles required for row activation)
for RBM-A7 policy as illustrated in Figure 6.12-(c).

For the proposed CRBM policy, the row buffer hit latency is 59 clock cycles and the row
buffer miss latency is 77 clock cycles as shown in Figure 6.12-(d) because it requires 4 additional
clock cycles to transfer the extra tag block compared to the RBM-A7 policy.

6.3.4 Comparisons of different row buffer mapping policies

Table 6.1 shows the impact of different row buffer mapping policies on the L4 DRAM miss rate
(depends upon associativity; higher the associativity, lower the miss rate) and L4 DRAM hit la-
tency (depends upon row buffer hit rate and L4 tag latency).

Row Buffer Mapping Policy Associativity
Row Buffer

Hit rate
L4 Tag
Latency

LH-Cache [77, 78] 29 (Great) Worst 41 cycles

Alloy-Cache 1 (Worst) Great 11 cycles

RBM-A7 7 (Good) Good 33 cycles

Configurable row buffer mapping policy 30 (Great) depends upon CM 37 cycles

Table 6.1: Impact of row buffer mapping policy on associativity and latency

L4 DRAM cache hit latency highly depends on whether an access leads to a row buffer hit or
a row buffer miss (details in Section 6.3.3; see Figure 6.12). Row buffer hits have a reduced ac-
cess latency compared to row buffer misses for all row buffer mapping policies as illustrated in
Figure 6.12.The LH-Cache [77, 78] does not exploit the full potential of row buffer locality and
its disadvantageous row buffer hit rate leads to a high L4 DRAM cache hit latency. The Alloy-
Cache [102] on the other hand employs a direct mapped cache that reduces the L4 DRAM hit
latency via a reduced tag access latency (see Figure 6.12-b) and an increased row buffer hit rate
(evaluated in Section 6.7.2). However, that reduction comes at the cost of an increased L4
DRAM miss rate due to increased conflict misses. The proposed RBM-A7 and configurable row
buffer mapping policies benefit from a high associativity with a significantly reduced L4 DRAM
miss rate compared to the Alloy-Cache (evaluated in Section 6.7.1). At the same time, they pro-

Chapter 6 Policies for Latency Reduction

- 72 -

vide reduced L4 DRAM hit latency via improved row buffer hit rate and reduced tag access la-
tency compared to the LH-Cache (evaluated in Section 6.7.2).

6.3.5 Impact of parameter CM

For the configurable row buffer mapping policy, the L4 DRAM hit latency can be reduced by
improving the row buffer hit rate that depends upon the parameter CM (see Figure 6.5-b). In-
creasing CM improves the row buffer hit rate (which reduces the L4 hit latency), but comes at the
cost of increased L4 DRAM miss rate due to reduced set-level-parallelism (because high order
address bits are used to select the L4 DRAM set) and increased conflict misses (spatially close
blocks increases the conflict misses within a set). The result section explores the trade-offs be-
tween the L4 DRAM hit latency (depends upon row buffer hit rate) and main memory latency
(depends upon L4 DRAM miss rate) for different values of CM (1, 2, 4, 8, 16) and its impact on
the overall performance.

6.4 Super-block MMap$ (SB-MMap$)

The MissMap Cache (MMap$) was proposed by Loh and Hill [77, 78] to precisely determine
whether an access to a DRAM cache will be a hit or a miss. It is organized as a set of memory
segments (typical memory segment size is 4KB) and there is a tag associated with each segment
(called Seg-Tag as shown in Figure 6.13). Each memory segment itself is divided into blocks
(typical block size is 64 bytes). Each MMap$ segment entry maintains a bit vector (called Seg-
BV) representing whether or not the corresponding block of the relevant segment is present in
DRAM cache.

Figure 6.13: MMap$ entry covering a 4KB memory segment for LH-Cache [77, 78]

Let’s assume there is a request for block bi that belongs to a segment S. When there is a miss
to a segment (Seg-Tag field does not matches with tag of S), a resident segment is evicted and
Seg-Tag is set corresponding to the new segment S. When there is a hit to a segment (Seg-Tag
field matches), then the MMap$ checks the Presence bit (P-bit) associated with the block bi (see
Figure 6.13) of the hit segment S. If the P-bit of the hit segment S is set (block bi is present in the
DRAM cache), the MMap$ forwards the request to the DRAM cache. Otherwise, it is forwarded
to the main memory, bypassing the DRAM cache. When the block bi is filled in the DRAM
cache (the tags/data of block bi is stored in the DRAM cache), then the P-bit entry of block bi
corresponding to segment S is set. When a block bi is evicted from the DRAM cache, then the P-
bit entry of block bi corresponding to segment S is reset. When a segment is evicted from the
MMap$, its tag and data must also be evicted from DRAM cache. This guarantees that the

6.4 Super-block MMap$ (SB-MMap$)

- 73 -

MMap$ always precisely determines whether an access to a DRAM cache will be a hit or a miss
(i.e. it provides 100% precise information about L4 DRAM hit/miss).

The proposed row buffer mapping policies allow reducing the size of the MMap$ with negli-
gible performance degradation. The size of the MMap$ Seg-BV entry is reduced by using coarse-
grained presence information. Therefore, a super-block is defined as a set of adjacent blocks.
Figure 6.14-(a) and Figure 6.14-(b) show a super-block comprising two and four adjacent blocks,
respectively. The proposed super-block MMap$ (SB-MMap$) organization assigns a presence bit
to each coarse-grained super-block instead of having a separate bit for each fine-grained block.
This reduces the MMap$ Seg-BV entry size by half (for super-block size of 2) and by quarter (for
super-block size of 4) which leads to a reduced MMap$ storage overhead. However, storing
presence information at coarse-grained super-block level effects the DRAM cache hit/miss pre-
diction accuracy compared to a MMap$ that stores the presence information at the fine-grained
block level.

Figure 6.14: Proposed SB-MMap$ entry representing a 4KB memory segment for a super-
block containing (a) two adjacent blocks (b) four adjacent blocks

In the proposed SB-MMap$ organization, when a block bi that belongs to a segment S is
filled in the DRAM cache, then the P-bit entry of the super-block to which bi belongs is set.
When block bi is evicted from DRAM cache, then resetting the P-bit entry requires a tag-lookup
for the adjacent blocks to determine whether adjacent blocks are present in the DRAM cache or
not. Since in the configurable row mapping policy (Section 6.3) consecutive blocks are mapped
to the same DRAM cache row, resetting the P-bit entry after block eviction requires a single
DRAM cache row lookup. However, employing SB-MMap$ size for the LH-Cache [77, 78]
(Section 2.4.1) would require additional row lookups for resetting the P-bit after block eviction,
because they map consecutive blocks to different cache rows. The number of row lookups in LH-
Cache will depend upon the size of the super-block.

Chapter 6 Policies for Latency Reduction

- 74 -

The proposed SB-MMap$ detects either a “true miss” or a “maybe hit” after an L3 SRAM
miss. A “true miss” (i.e. super-block P-bit is zero and all blocks belonging to the super-block are
absent in the DRAM cache) indicates that the requested block is not present in the DRAM cache.
A “true miss” does not require a DRAM cache lookup, so the request is directly sent to the main
memory controller (see Figure 6.1). A “maybe hit” (i.e. super-block P-bit is set) indicates that the
block may or may not be present in the DRAM cache. A “maybe hit” requires a DRAM cache
lookup to identify a hit/miss to determine whether the request should be sent to the main memory
controller or not. The L4 DRAM hit/miss prediction accuracy of the SB-MMap$ depends upon
the super-block size. If the super-block size is 1 (traditional MMap$ proposed by [77, 78]), then
it provides 100% precise information about L4 DRAM hit/miss. Increasing the super-block size
reduce SB-MMap$ storage overhead at the cost of a reduced SB-MMap$ hit/miss prediction ac-
curacy. The result section will explore the impact of different super-block sizes on the SB-
MMap$ hit/miss prediction accuracy and the overall performance for the configurable row buffer
mapping policy. The super-block size is chosen to be smaller than CM (consecutive memory
blocks mapped to the same row) in the configurable row buffer mapping policy because it then
only requires a single row lookup to access all adjacent blocks of a super-block. In addition, a
small on-chip SRAM structure namely DRAM Tag-Cache (Section 6.5.1) is added to improve
the L4 DRAM hit/miss prediction accuracy with SB-MMap$.

6.4.1 Impact of super-block size on storage reduction

This thesis employs traditional least recently used (LRU) replacement policy for the MMap$.
Each MMap$ entry requires 1 valid bit, 1 dirty bit, 4 LRU bits, 4 way-number bits, 20 bits for
Seg-Tag field, and 64-bit for Seg-BV field. This leads to a storage overhead of 94 bits required
for each MMap$ entry. A super-block size of 2 will reduced the SB-MMap$ Seg-BV size by half
(it requires 32 bits for Seg-BV field), which leads to storage requirement of 62 bits for each SB-
MMap$ entry. Similarly, a super-block size of 4 requires 16 bits for the Seg-BV field, which
leads to storage requirement of 46 bits for each SB-MMap$ entry. A super-block of size 2 or 4
reduces the SB-MMap$ storage overhead by 34% or 51%, respectively compared to the original
MMap$.

6.5 Innovative Tag-Cache Organization for larger caches

Multi-core systems with an on-chip SRAM/DRAM cache hierarchy typically employ larger L3
SRAM and L4 DRAM caches to accommodate the large working set sizes of emerging applica-
tions [32]. The larger L3 SRAM incurs high access latencies due to long interconnect delays
[87]. On the other hand, the larger L4 DRAM caches incur high access latencies due to slower
DRAM cache access [54, 77, 78, 102]. This section proposes several architectural innovations to
minimize L3 SRAM and L4 DRAM hit latencies to improve the overall instruction throughput.

6.5.1 DRAM Tag-Cache (DTC) Organization

The tag latency for an L4 DRAM hit in the proposed configurable row buffer mapping policies is
37 cycles (see Figure 6.12). To reduce it, this thesis adds a small low latency on-chip SRAM
structure named as DRAM Tag-Cache (DTC) that holds the tags of recently accessed rows in the
DRAM cache. The integration of the DTC into the cache hierarchy is shown in Figure 6.1 and

6.5 Innovative Tag-Cache Organization for larger caches

- 75 -

Figure 6.15 presents the DTC details for the configurable row buffer mapping policy. Note that
the DTC only stores the tag blocks of recently accessed rows and does not contain any data. The
DTC has a fast access latency due to its small size. It is accessed right after an L3 SRAM miss
and, in case of a DTC hit, it reduces the L4 hit latency because it avoids the high latency MMap$
access to identify a L4 hit/miss and it avoids reading the tag block from the DRAM cache. The
proposed DTC also reduces the L4 miss latency because the request is sent immediately (requires
2 clock cycles; one cycle to identify a DTC hit and one cycle to identify an L4 hit/miss) to the
main memory controller after an L4 DRAM miss is detected by the DTC. In contrast, state-of-
the-art [77, 78] requires 10-cycles for the MMap$ access to identify a miss before the request can
be sent to the memory controller.

Figure 6.15: DRAM Tag Cache (DTC) Organization for configurable row buffer mapping
policy

Figure 6.15 shows the DTC organization with 32 sets and 4-way associativity where the data
payload of each entry contains the tags for a particular Row-id. On a DTC access, the DTC-Index
field is used to index a DTC set in the “DTC Row-Id” array. All 4 Row-Tag entries (grey blocks
in Figure 6.15) within that DTC set are then compared to the DTC-Row-Tag field from the
memory block address to identify a DTC hit/miss.

The proposed DTC has the following major advantages.

1. Accesses that hit in the DTC incur a reduced L4 tag access latency (Figure 6.16-a) compared
to a DTC miss (Figure 6.16-b) because they do not require DRAM cache access to read the

Chapter 6 Policies for Latency Reduction

- 76 -

tags and they do not require MMap$ access to identify a L4 DRAM hit/miss. Similarly, the
row buffer miss latency is also reduced for a DTC hit (Figure 6.16-c) compared to a DTC
miss (Figure 6.16-d). A DTC hit reduces the DRAM cache bandwidth consumption compared
to a DTC miss because it reads 64 bytes (required for a cache line access) instead of reading
192 bytes (128 bytes for the tags and 64 bytes for the cache line) in case of a DTC miss for
the configurable row buffer mapping policy.

2. Accesses that hit in the DTC precisely identify whether they lead to an L4 DRAM hit or a
miss for a “maybe hit” signal detected by the proposed reduced SB-MMap$, which improves
the DRAM cache hit/miss prediction accuracy.

3. If an L4 DRAM miss is identified after a DTC hit, the request can be sent immediately to the
main memory controller (without requiring MMap$ access), which reduces the L4 DRAM
miss latency.

0 8 16 24 32 40 48 56 64 72 80

Processor Clock cycles

CAS (18 cycles)

ACT (18 cycles) Bus latency (4 cycles)

MMap$ latency (10 cycle)

CAS (TAGS) (59 cycles)

ACT

CAS (LINE)

CAS (TAGS) (77 cycles)CAS (LINE)

(a)

(b)

Tag check latency (1 cycle)

Tags read
from DRAM cache

after MissMap
access

Tags read
from DTCCAS (DATA) (24 cycles)

ACT CAS (DATA) (42 cycles) Tags read
from DTC

(c)

(d)

DTC latency (1 cycle)

L4 Tag Latency (37 cycles)

L4 Tag Latency (2 cycles)

Figure 6.16: L4 DRAM row buffer hit latency for (a) DTC hit (b) DTC miss
L4 DRAM row buffer miss latency for (c) DTC hit (d) DTC miss

6.5.2 DTC Implementation with SB-MMap$

Figure 6.17 shows the steps involved after an L3 SRAM miss in the proposed SRAM/DRAM
cache organization. The DTC and SB-MMap$ is accessed after an L3 SRAM miss. If the DTC
hits, then the tags from DTC are accessed to identify an L4 DRAM hit/miss and to identify the
location of the cache line (see Tag-Compare at the right bottom part of Figure 6.15). An L4
DRAM hit (i.e. the tag matches with an incoming cache line tag) requires only data access from
the DRAM cache. However, if the DTC misses, then the SB-MMap$ needs to be queried to iden-
tify a “true miss” or a “maybe hit” (details in Section 6.4). A “true miss” requires a main memory
access to get the data. If the SB-MMap$ identifies a “true miss”, the request is forwarded to the
main memory, bypassing the DRAM cache access. If the SB-MMap$ identifies a “maybe hit”,
then the request is forwarded to the DRAM cache to eventually identify a hit or a miss. When the
tags are read from the DRAM cache after a DTC miss, then they are inserted into the DTC in or-
der to exploit the temporal locality that these tags will be accessed in the near future. The results
in Section 6.7.3 show that the proposed configurable row buffer mapping policy has an improved

6.5 Innovative Tag-Cache Organization for larger caches

- 77 -

DTC hit rate compared to the LH-Cache (i.e. when DTC is incorporated with LH-Cache) [77,
78].

Figure 6.17: DTC and MMap$ lookup following an L3 SRAM miss

6.5.3 Writing tag-blocks for a DTC hit

When the tags are updated in the DTC (cache hit, cache writeback, cache fill etc.), then the cache
line in the DRAM cache must be accessed (read/write for a cache hit, write for a cache
writeback, and insert new cache line for a cache fill). The following modification has been made
to the DRAM cache controller to efficiently write the dirty tags by exploiting the row buffer lo-
cality. The modified DRAM cache controller writes the updated DTC tags into the DRAM cache
along with the cache line so that writing updated tag information is guaranteed to have a row
buffer hit. Figure 6.18 shows the timing and sequence of commands involved in the proposed
DRAM cache controller for different requests that hit in the DTC and that are explained as fol-
lows.

L4 DRAM read hit: For an L4 DRAM read hit request that hits in the row buffer (see
Figure 6.18-a), the controller issues a read request to read the requested block whose location is
determined by the tags of the DTC followed by a subsequent request to update the dirty tags. The
requested data is read from the DRAM cache and forwarded to the requesting core followed by
updating tag block TB-0 (e.g. used bit is set to 1 which is stored in TB-0; see Section 6.3.2-b and
Figure 6.10-b). The latency incurred in updating TB-0 is only 4 cycles as illustrated in
Figure 6.18-a.

L4 DRAM write/writeback hit: For an L4 DRAM write/writeback hit request that hits in the
row buffer (see Figure 6.18-b), the controller issues a write request to update tag block TB-0 (to
set the dirty bit for cache write and cache writeback and to set the used bit for cache write; these
bits are stored in TB-0; see Section 6.3.2-b and Figure 6.10-b) followed by a subsequent write
request to the cache line (whose location is determined by the DTC tags).

Chapter 6 Policies for Latency Reduction

- 78 -

Figure 6.18: Timing and sequence of commands to update the tags in the DRAM cache after
a DTC hit in the configurable row buffer mapping policy for an L4 DRAM row buffer hit

(a) read request (b) write/write-back request (c) fill request with clean victim block eviction
(d) fill request with dirty victim block eviction

L4 DRAM cache fill with clean victim line eviction: For an L4 DRAM fill request that hits in
the row buffer (see Figure 6.18-c), the controller issues two write requests to update the tag

6.5 Innovative Tag-Cache Organization for larger caches

- 79 -

blocks TB-0 and TB-1 (to store the tags of an incoming cache line, to clear the used bit and to
update the clock pointer). There is no need to write a clean victim line (i.e. dirty bit is 0) to main
memory because the main memory contains the most recent copy of the data.

L4 DRAM cache fill with dirty victim line eviction: For an L4 DRAM fill request that hits in
the row buffer (see Figure 6.18-d), the controller issues two write requests to update the tag
blocks TB-0 and TB-1. Also, an additional read request is issued to read the dirty victim line (i.e.
dirty bit is 1) that is written to main memory because the victim line has been modified since it
was fetched from main memory.

6.5.4 DTC organization for RBM-A7 policy

Figure 6.15 shows the DTC organization for the configurable row buffer mapping policy (details
in Section 6.3.2), while Figure 6.19 shows the DTC organization for the RBM-A7 policy (details
in Section 6.3.1).

Figure 6.19: DRAM Tag Cache (DTC) Organization for the RBM-A7 policy

Chapter 6 Policies for Latency Reduction

- 80 -

Figure 6.20: Timing and sequence of commands to fill the DTC after a DTC miss for a data
block that belongs to Set-1 in the RBM-A7 policy

Each 2KB DRAM row in the RBM-A7 policy consists of 4 cache sets, where each cache set
consists of one tag blocks and 7 cache lines as shown in Figure 6.3. The inclusion of DTC re-
quires an efficient DRAM cache controller implementation in order to insert 4 tag blocks into
DTC after a DTC miss for the RBM-A7 policy. In the proposed controller implementation, a read
operation is performed for the requested cache line first, and then the non-requested tag blocks
are also read from the DRAM cache to be filled in the DTC. Figure 6.20 shows an example of the
sequence of commands to fill the DTC after a DTC miss with low latency overhead. Let us as-
sume that there is a DRAM cache read hit for a cache line that belongs to Set-1. In the proposed
implementation, the controller issues a read request to read the tag block TB-1 (tag block associ-
ated with Set-1) which indicates the location of the cache line in Set-1. The requested cache line
is read from the DRAM cache and forwarded to the requesting core followed by updating tag

6.5 Innovative Tag-Cache Organization for larger caches

- 81 -

block TB-1 (e.g. updating LRU information). After that, subsequent read commands are sent to
access the remaining tag blocks (i.e. TB-0, TB-2, and TB-3) which are filled into DTC. All of
these operations are performed on the row buffer. In the proposed controller implementation, the
non-requested tag block transfers are performed off the critical path so that they do not affect the
latency of the demand request. The extra bus latency incurred to read the remaining 3 tag blocks
is 12 cycles as shown in Figure 6.20. The latency overhead to read additional 3 blocks (to fill
DTC) is compensated by future hits in the DTC exploiting the fact that adjacent tag blocks are
likely to be accessed in the near future (see Section 6.7.3 for evaluation).

6.5.5 SRAM Tag-Cache (STC) Organization

A large SRAM tag array (e.g. an 8 MB L3 SRAM requires a tag storage of ~512 KB) is com-
posed of multiple banks [124], where each bank consists of multiple sub-banks with one sub-
bank being activated per access as shown in Figure 6.21. Each sub-bank is composed of multiple
identical mats, where all mats in a sub-bank are activated per access. Each mat is an array of
SRAM cells with associated peripheral circuitry. Each row in a mat contains the tags of one
cache set. State-of-the-art SRAM/DRAM cache organizations [36, 38, 77, 78, 102] always read
the tags from that large L3 SRAM tag array (see Figure 6.21) which incurs a high L3 tag latency.
To reduce the L3 tag latency, a small SRAM Tag-Cache (STC) organization with 16 sets and 4-
way associativity is added to the cache hierarchy to identify L3 hit/miss in a single cycle. The
STC organization (see Figure 6.22) is similar to the DTC organization (see Figure 6.16) except
that it holds the tags of the 8 adjacent sets (i.e. belonging to the same row of 8 mats) that were
recently accessed in the L3 SRAM tag array. Entries in STC are indexed by the STC-index field
of the memory block address as shown in Figure 6.22.

Figure 6.21: Layout of a large L3 SRAM tag array [124]

Chapter 6 Policies for Latency Reduction

- 82 -

Figure 6.22: SRAM Tag-Cache (STC) organization

6.6 Storage Overhead

Table 6.2 summarizes the storage overhead for the DRAM Tag-Cache (DTC) and SRAM Tag-
Cache (STC). The proposed DTC with 32 sets and 4-way associativity requires a storage over-
head of ~16KB for a 2KB DRAM cache row size, while the proposed STC with 16 sets and 4-
way associativity requires a storage overhead of ~20KB. The total storage overhead required for
both is ~36KB which is negligible compared to the large L3 SRAM cache (8 MB for L3 data ar-
ray) and MMap$ (2MB required for DRAM cache hit/miss prediction). Note that the proposed
SB-MMap$ requires 51% less storage overhead compared to state-of-the-art.

6.7 Evaluation and Analysis

This section evaluates the proposed row buffer mapping policies (RBM-A7 and configurable row
buffer mapping policy; details in Section 6.3) with state-of-the-art row mapping policies namely
LH-Cache [77, 78] (details in Section 2.4.1) and Alloy-Cache [102] (details in Section 2.4.3).
The drawback of these policies is that they are optimized for one parameter (LH-Cache is opti-
mized for L4 DRAM miss rate and Alloy-Cache is optimized for L4 DRAM hit latency). In con-
trast, the proposed row buffer mapping policies optimize both L4 miss rate and L4 hit latency.
This section also evaluates the impact of the parameter CM (number of consecutive memory
blocks mapped to the same row; details in Section 6.3.5) on the L4 miss rate and L4 hit latency.

6.7 Evaluation and Analysis

- 83 -

DRAM Tag-Cache (DTC) Overhead for configurable row buffer mapping policy Overhead

Size of each L4-Tag entry in DRAM cache (Figure 6.10-a)
(1 valid bit + 1 dirty bit + 1 used bit + 8 coherence bits + 22 L4-Tag bits)

33 bits

Tag size for each row in L4 DRAM cache (Figure 6.10-b)
(5 bits “clock-pointer” + 30 way * 33 bits/way = 990 bits)

995 bits

Size of each DTC entry [1 valid bit + 1 dirty bit + 11-bits DTC-Row-Tag + 2-bit LRU +
2-bit way-no + 995 bits for each row in L4 DRAM cache] (Figure 6.15)

1012 bits

Total DTC storage overhead
[32 sets * 4 entry/set * 1012 bits/entry = 129536 bits = 15.8125 KB]

~16 KB

DRAM Tag-Cache (DTC) Overhead for RB-A7 policy Overhead

Size of each L4-Tag entry in DRAM cache (Figure 6.3)
(1 valid bit + 1 dirty bit + 3-bit LRU + 3-bit way-no + 8 coherence bits + 20 L4-Tag bits)

36 bits

Tag size for each row in L4 DRAM cache (Figure 6.3)
(4 sets * 7 way/set * 35 bits/way = 980 bits)

1008 bits

Size of each DTC entry [1 valid bit + 1 dirty bit + 11-bits DTC-Row-Tag + 2-bit LRU +
2-bit way-no + 1008 bits for each row in L4 DRAM cache] (Figure 6.19)

1025 bits

Total DTC storage overhead
[32 sets * 4 entry/set * 1025 bits/entry = 131200 bits = 16.01 KB]

~16 KB

SRAM Tag-Cache (STC) Overhead Overhead

Size of each L3-Tag entry in SRAM cache
(1 valid bit + 1 dirty bit + 3-bit LRU + 3-bit way-no + 8 coherence bits + 24 L4-Tag bits)

40 bits

Tag size for each sub-bank in L3 SRAM cache (Figure 6.21)
(8 sets * 8 way/set * 40 bits/way = 2560 bits)

2560 bits

Size of each STC entry [1 valid bit + 7-bits DTC-Row-Tag + 2-bit LRU + 2-bit way-no +
2560 bits for each row in L3 SRAM cache] (Figure 6.22)

2572 bits

Total STC storage overhead
[16 sets * 4 entry/set * 2572 bits/entry = 164608 bits = 20.1 KB]

~20 KB

Table 6.2: Storage overhead of DRAM Tag-Cache (DTC) and SRAM Tag-Cache (STC)

The parameters for the cores, caches and off-chip memory are the same as used in the exper-
imental setup in Section 4.2 (see Table 4.1 and Table 4.2) with various workloads from
SPEC2006 [5] listed in Table 4.3. This chapter uses 2KB DRAM row size for comparisons.
However, the concepts proposed in this chapter can also be applied for other row sizes (e.g. 4KB
and 8KB). This chapter employs the adaptive DRAM insertion policy (ADIP; details in Section
5.2) on top of all row buffer mapping policies. However, the concept proposed in this chapter are
flexible enough to be applied to any replacement policy. The following row buffer mapping poli-
cies are compared:

1. State-of-the-art LH-Cache [77, 78] (details in Section 2.4.1) namely LH-ADIP which is opti-
mized for L4 DRAM miss rate.

Chapter 6 Policies for Latency Reduction

- 84 -

2. State-of-the-art Alloy-Cache [102] namely Alloy-ADIP (details in Section 2.4.3) which is op-
timized for L4 DRAM hit latency.

3. The proposed RBM-A7 policy (details in Section 6.3.1) namely RBM-A7-ADIP.

4. The proposed configurable row buffer mapping policy (details in Section 6.3.2) namely
CRBM-ADIP-CM, where CM (details in Section 6.3.2 and Section 6.3.5) corresponds to the
number of consecutive blocks from main memory that are mapped to the same L4 DRAM
row.

The latency and performance impact of DRAM Tag-Cache (DTC; details in Section 6.5.1) for
above row buffer mapping policies is presented in Section 6.7.4 and 6.7.6 respectively. Section
6.8.2 explores the performance benefits of incorporating SRAM Tag-Cache (STC; details in Sec-
tion 6.5.5) in the cache hierarchy.

6.7.1 Impact on L4 DRAM miss rate

This sections compares the L4 DRAM miss rate (lower is better) for different row buffer map-
ping policies. First, the miss rate optimized LH-ADIP [77, 78] and the latency optimized Alloy-
ADIP (with worst L4 miss rate) [102] policies are compared. Then, the impact of parameter CM
(2, 4, 8, 16) on the L4 DRAM miss rate it evaluated for the configurable row buffer mapping pol-
icy.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH‐ADIP (CM = 1)

CRBM‐ADIP (CM = 2)

CRBM‐ADIP (CM = 4)

CRBM‐ADIP (CM = 8)

CRBM‐ADIP (CM = 16)

RBM‐A7‐ADIP

Alloy‐ADIP

(a
)
L4
 m

is
s
ra
te

(L
S
ap
p
lic
at
io
n
s)

0.15

0.25

0.35

0.45

0.55

0.65

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH‐ADIP (CM = 1)

CRBM‐ADIP (CM = 2)

CRBM‐ADIP (CM = 4)

CRBM‐ADIP (CM = 8)

CRBM‐ADIP (CM = 16)

RBM‐A7‐ADIP

Alloy‐ADIP(b
)
O
ve
ra
ll
L4
 m

is
s
ra
te

Figure 6.23: L4 DRAM miss rate (a) for Latency Sensitive applications (b) Overall miss
rate; for different row buffer mapping policies

Figure 6.23-(a) shows the L4 miss rate for latency sensitive applications, while Figure 6.23-
(b) shows the overall L4 miss rate for different row buffer mapping polices. The Alloy-ADIP pol-
icy (employs direct mapped cache) suffers more misses compared to the LH-ADIP policy (em-

6.7 Evaluation and Analysis

- 85 -

ploys 29-way associative cache), which leads to an increased L4 miss rate. The LH-ADIP policy
reduces the overall L4 miss rate by 40.8% compared to the Alloy-ADIP policy via high associa-
tivity and reduced conflict misses. On the other hand, the Alloy-ADIP policy improves the L4
DRAM row buffer hit rate (see Section 6.7.2) and reduces the L4 tag latency (details in Sec-
tion 6.3.3), which leads to a significant reduction in L4 hit latency (50.1%) compared to the LH-
ADIP policy (details in Section 6.7.4).

The proposed configurable row buffer mapping policy slightly increases the overall L4 miss
rate (0.7% for CM = 2, 3% for CM = 4 and 15.8% for CM = 8) compared to the miss rate opti-
mized LH-ADIP policy, but that is compensated by a significant reduction in L4 hit latency. A
higher value of CM reduces the L4 hit latency (lower is better) via an improved row buffer hit
rate (details in Section 6.7.2) but it suppresses the set-level-parallelism, which results in an in-
creased L4 miss rate. For instance, CM = 16 incurs a significantly increased L4 miss rate (39.1%
compared to the LH-ADIP policy), because it maps a large contiguous memory space (with 16
blocks) to a single set, which leads to a lot of conflict misses due to reduced set-level-parallelism.
The proposed RBM-A7-ADIP policy increases the overall L4 miss rate by 5.1% compared to the
LH-ADIP policy, because it employs an 7-way associative DRAM cache compared to the 29-way
associative LH-ADIP policy. On the other hand, the RBM-A7-ADIP policy improves the row
buffer hit rate (see Section 6.7.2) for the DRAM cache, which reduces the L4 hit latency by
14.9% compared to the LH-ADIP policy (details in Section 6.7.4).

6.7.2 Impact on the L4 DRAM row buffer hit rate

This section compares the L4 DRAM row buffer hit rate (higher is better) for all evaluated con-
figurations. It also evaluates the impact of parameter CM on the L4 DRAM cache hit rate for the
configurable row buffer mapping policy. The Alloy-ADIP policy maps 28 consecutive blocks to
the same DRAM cache row, which leads to a significantly higher row buffer hit rate (39.4%)
compared to other row buffer mapping policies as shown in Figure 6.24. However, this im-
provement comes at the cost of an increased L4 miss rate (Figure 6.23).

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH‐ADIP (CM = 1)

CRBM‐ADIP (CM = 2)

CRBM‐ADIP (CM = 4)

CRBM‐ADIP (CM = 8)

CRBM‐ADIP (CM = 16)

RBM‐A7‐ADIP

Alloy‐ADIP

D
R
A
M
 c
ac
h
e
ro
w

b
u
ff
er
 h
it
 r
at
e

Figure 6.24: DRAM cache row buffer hit rates for different row buffer mapping policies

To exploit spatial and temporal locality, the row buffer hit rate can be improved by mapping
more consecutive memory blocks to the same DRAM row buffer. Figure 6.24 illustrates this ob-
servation showing the DRAM cache row buffer hit rate for different row buffer mapping policies.
The proposed configurable row buffer mapping policy benefits from a high associativity (30-way
associativity) with correspondingly reduced L4 miss rate (Figure 6.23) compared to the Alloy-

Chapter 6 Policies for Latency Reduction

- 86 -

ADIP policy. It improves the DRAM cache row buffer hit rate (14.1% for CM = 2, 22.2% for
CM = 4, 28.5% for CM = 8, and 35.1% for CM = 16) compared to the LH-ADIP policy (1.2%).
The impact of the DRAM cache row buffer hit rate on the L4 DRAM cache hit latency is evalu-
ated in Section 6.7.4.

6.7.3 Impact on the DTC hit rate

This sections compares the DTC hit rate (higher is better) for all evaluated configurations
when DTC is incorporated in the DRAM cache hierarchy. It also evaluates the impact of parame-
ter CM on the DTC hit rate for the configurable row buffer mapping policy. As CM increases, the
DRAM cache row buffer hit rate increases (Figure 6.24), which leads to a reduced L4 hit latency.
However, the performance of a DRAM cache with DTC depends upon the DTC hit rate.
Figure 6.25 shows the DTC hit rate for different row buffer mapping policies. The LH-ADIP pol-
icy (CM = 1) has a reduced DTC hit rate (1.6%) compared to the configurable row buffer map-
ping policy (DTC hit rate is 33.4% for CM = 2, 57.7% for CM = 4, 73.2% for CM = 8 and 78.8%
for CM = 16). Increasing CM improves the DTC hit rate, which leads to a reduced L4 DRAM hit
latency for the configurable row buffer mapping policy, which is evaluated in the next section.

0.00

0.20

0.40

0.60

0.80

1.00

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH‐ADIP (CM = 1)

CRBM‐ADIP (CM = 2)

CRBM‐ADIP (CM = 4)

CRBM‐ADIP (CM = 8)

CRBM‐ADIP (CM = 16)

RBM‐A7‐ADIP

D
R
A
M
 T
ag
‐C
ac
h
e

(D
TC
)
h
it
 r
at
e

Figure 6.25: DRAM Tag-Cache hit rates for different row buffer mapping policies

6.7.4 Impact on the L4 DRAM hit latency

This sections compares the L4 DRAM cache hit latency (lower is better) for different row buffer
mapping policies. It also evaluates the impact of parameter CM and DTC on the L4 hit latency.
First, this section compares the L4 hit latency for the latency optimized Alloy-ADIP [102] and the
miss rate optimized LH-ADIP (with worst L4 hit latency) [77, 78] policies. Then, it evaluates the
impact of parameter CM (2, 4, 8, 16) on the L4 hit latency.

Figure 6.26-(a) shows the L4 hit latency without incorporating DTC into the cache hierarchy,
while Figure 6.26-(b) shows the L4 hit latency when DTC is incorporated in the cache hierarchy.
The Alloy-ADIP policy optimizes the L4 hit latency due to reduced L4 tag latency and a high
DRAM cache row buffer hit rate compared to the LH-ADIP policy. Thus, the Alloy-ADIP policy
leads to a significant reduction in L4 hit latency (50.1%) compared to the LH-ADIP policy as
shown in Figure 6.26-(a).

6.7 Evaluation and Analysis

- 87 -

As CM increases for the proposed configurable row buffer mapping policy, the DRAM cache
row buffer hit rate increases (Figure 6.24), which leads to a reduced L4 hit latency (Figure 6.26-
a). The reduction in L4 hit latency compared to the LH-ADIP policy without DTC is 6.8% for
CM = 2, 12.4% for CM = 4, 17.3% for CM = 8, and 22.5% for CM = 16 as illustrated in Fig-
ure 6.26-(a). On the other hand, the reduction in L4 hit latency with DTC compared to the LH-
ADIP policy (with DTC) is 15.1% for CM = 2, 24.3% for CM = 4, 30.2% for CM = 8, and 34.8%
for CM = 16 due to a high DTC hit rate. Note that the LH-ADIP policy gets negligible latency
benefits from DTC because the DTC hit rate is only 1.7% for the LH-ADIP policy.

50

70

90

110

130

150

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH‐ADIP (CM = 1)

CRBM‐ADIP (CM = 2)

CRBM‐ADIP (CM = 4)

CRBM‐ADIP (CM = 8)

CRBM‐ADIP (CM = 16)

RBM‐A7‐ADIP

Alloy‐ADIP

(a
)
L4
 h
it
 la
te
n
cy

(w
it
h
o
u
t
D
TC
)

50

70

90

110

130

150

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH‐ADIP (CM = 1)

CRBM‐ADIP (CM = 2)

CRBM‐ADIP (CM = 4)

CRBM‐ADIP (CM = 8)

CRBM‐ADIP (CM = 16)

RBM‐A7‐ADIP

(a
)
L4
 h
it
 la
te
n
cy

(w
it
h
 D
TC
)

Figure 6.26: L4 DRAM cache hit latency (a) without DTC (b) with DTC; for different row
buffer mapping policies

6.7.5 Performance improvement without DTC

Figure 6.27 shows the average normalized harmonic mean instruction per cycle (HM-IPC)
throughput results for different values of CM with the speedup normalized to the Alloy-ADIP
policy without DTC. On average, the configurable row buffer mapping policy without DTC im-
proves the HM-IPC speed of latency sensitive applications by 17.2%/21.2%/14.2%/5.2% com-
pared to the Alloy-ADIP policy for CM = 2/4/8/16, respectively. It improves the overall HM-IPC
speedup by 14.4%/17.5%/10.4%/2.4% compared to the Alloy-ADIP policy for CM = 2/4/8/16,
respectively.

Chapter 6 Policies for Latency Reduction

- 88 -

0.80

0.90

1.00

1.10

1.20

1.30

1.40

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy‐ADIP

LH‐ADIP (CM = 1)

CRBM‐ADIP (CM = 2)

CRBM‐ADIP (CM = 4)

CRBM‐ADIP (CM = 8)

CRBM‐ADIP (CM = 16)

RBM‐A7‐ADIP

(a
)
N
o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(L
S
ap
p
lic
at
io
n
s)

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy‐ADIP

LH‐ADIP (CM = 1)

CRBM‐ADIP (CM = 2)

CRBM‐ADIP (CM = 4)

CRBM‐ADIP (CM = 8)

CRBM‐ADIP (CM = 16)

RBM‐A7‐ADIP

(b
)
N
o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(A
ll
ap
p
lic
at
io
n
s)

Figure 6.27: Normalized HM-IPC speedup compared to Alloy-ADIP for different row buff-
er mapping policies without DRAM Tag-Cache (DTC) for (a) latency sensitive applications

(b) all applications

6.7.6 Performance improvement with DTC

The proposed configurable row buffer mapping policy gets significant performance benefits from
adding a DTC. Figure 6.28 illustrates this observation showing the HM-IPC speed compared to
the Alloy-ADIP policy. On average, the configurable row buffer mapping policy with DTC im-
proves the HM-IPC speed of latency sensitive applications by 22.6%/29.1%/22.7%/16.1% com-
pared to the Alloy-ADIP policy for CM = 2/4/8/16, respectively. It improves the overall HM-IPC
speedup by 19%/24.8%/18.4%/13% compared to Alloy-ADIP policy for CM = 2/4/8/16, respec-
tively.

The LH-ADIP policy has a significantly low DRAM cache row buffer hit rate (1.1%) and low
DTC hit rate (1.6%), which results in a high L4 hit latency. Choosing a suitable value of CM is a
compromise between L4 miss rate and L4 hit latency for the configurable row buffer mapping
policy. Setting CM to a value of 4 provides the best performance improvement because it has a
high DRAM row buffer hit rate (22.2%) and a high DTC hit rate (57.7%) compared to the LH-
ADIP policy (DRAM row buffer hit rate is 1.1% and DTC hit rate is 1.6%). For this reason, CM
= 4 significantly reduces the L4 hit latency by 24.3% compared to LH-ADIP policy with a negli-
gible increase (3%) in L4 miss rate. Thus, the configurable row buffer mapping policy with CM
= 4 and DTC significantly improves the HM-IPC speed of latency sensitive applications by
14.5% and the overall HM-IPC speed by 12.5% compared to LH-ADIP policy. The LH-ADIP
policy gets negligible benefits (0.2%) from DTC, while the configurable row buffer mapping
with CM = 4 provides additional 6.2% improvement in performance from DTC.

6.7 Evaluation and Analysis

- 89 -

0.90

1.00

1.10

1.20

1.30

1.40

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy‐ADIP

LH‐ADIP (CM = 1)

CRBM‐ADIP (CM = 2)

CRBM‐ADIP (CM = 4)

CRBM‐ADIP (CM = 8)

CRBM‐ADIP (CM = 16)

RBM‐A7‐ADIP(a
)
N
o
rm

al
iz
ed

 H
M
‐I
P
C

sp
ee
d
u
p

(L
S
ap
p
lic
at
io
n
s)

0.90

1.00

1.10

1.20

1.30

1.40

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy‐ADIP

LH‐ADIP (CM = 1)

CRBM‐ADIP (CM = 2)

CRBM‐ADIP (CM = 4)

CRBM‐ADIP (CM = 8)

CRBM‐ADIP (CM = 16)

RBM‐A7‐ADIP(b
)
N
o
rm

al
iz
ed

 H
M
‐I
P
C

sp
ee
d
u
p

(A
ll
ap
p
lic
at
io
n
s)

Figure 6.28: Normalized HM-IPC speedup compared to Alloy-ADIP for different row buff-
er mapping policies with DRAM Tag-Cache (DTC) (a) latency sensitive applications (b) all

applications

6.7.7 Comparison of proposed policies

This section compares the performance of proposed configurable row buffer mapping policy with
CM = 4 (namely CRBM-ADIP-CM=4) and the RBM-A7-ADIP policy. Both CRBM-ADIP-CM=4
and RBM-A7-ADIP polices map 4 consecutive memory blocks to the same 2KB DRAM cache
row, which results in almost similar row buffer and DTC hit rates as illustrated in Figure 6.29 (a-
b).

The L4 tag latency for a DTC miss is 33 and 37 clock cycles respectively for the RBM-A7-
ADIP and CRBM-ADIP-CM=4 policies as shown in Figure 6.12. The L4 tag latency is reduced
to 2 clock cycle for a DTC hit for both RBM-A7-ADIP and CRBM-ADIP-CM=4 policies as illus-
trated in Figure 6.16-(a). A high DTC hit rate for the CRBM-ADIP-CM=4 policy results in al-
most similar L4 hit latency compared to the RBM-A7-ADIP policy as illustrated in Figure 6.29-
(c). The slight increase in L4 hit latency (0.7% as shown in Figure 6.29-c) for the CRBM-ADIP-
CM=4 policy compared to the RBM-A7-ADIP policy is compensated by a significant miss rate
reduction (20.8% as shown in Figure 6.29-d) of latency sensitive applications. The miss rate is
reduced because the CRBM-ADIP-CM=4 policy provides a higher associativity (30-way associa-
tivity) compared to the RBM-A7-ADIP policy (7-way associativity). Thus, the CRBM-ADIP-
CM=4 policy improves the HM-IPC speed of latency sensitive applications by 2.2%
(Figure 6.30-a) and the overall HM-IPC speed by 1.95% (Figure 6.30-b) compared to the RBM-
A7-ADIP policy.

Chapter 6 Policies for Latency Reduction

- 90 -

(a
)
D
R
A
M
 c
ac
h
e
ro
w

b
u
ff
er
 h
it
 r
at
e

(b
)
D
TC

 h
it
 r
at
e

(c
)
L4
 h
it
 la
te
n
cy

(w
it
h
 D
TC
)

0.00

0.10

0.20

0.30

0.40

Mix_01 Mix_02 Mix_03 Mix_04 Average

RBM‐A7‐ADIP CRBM‐ADIP (CM = 4)

0.00

0.10

0.20

0.30

0.40

0.50

Mix_01 Mix_02 Mix_03 Mix_04 Average

RBM‐A7‐ADIP CRBM‐ADIP (CM = 4)

70

85

100

115

Mix_01 Mix_02 Mix_03 Mix_04 Average

RBM‐A7‐ADIP CRBM‐ADIP (CM = 4)

0.00

0.05

0.10

Mix_01 Mix_02 Mix_03 Mix_04 Average

RBM‐A7‐ADIP CRBM‐ADIP (CM = 4)

(d
)
L4
 m

is
s
ra
te

(L
S
ap
p
lic
at
io
n
s)

Figure 6.29: Average (a) DRAM cache row buffer hit rate (b) DTC hit rate (c) L4 hit latency
with DTC (d) L4 miss rate for latency sensitive applications

6.8 Evaluating CRBM policy

- 91 -

0.90

1.00

1.10

Mix_01 Mix_02 Mix_03 Mix_04 Average

RBM‐A7‐ADIP CRBM‐ADIP (CM = 4)

(a
)
N
o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(L
S
ap
p
lic
at
io
n
s)

(b
)
N
o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(A
ll
ap
p
lic
at
io
n
s)

0.90

1.00

1.10

Mix_01 Mix_02 Mix_03 Mix_04 Average

RBM‐A7‐ADIP CRBM‐ADIP (CM = 4)

Figure 6.30: Normalized HM-IPC speedup compared to the RBM-A7-ADIP policy with
DRAM Tag-Cache (DTC) (a) latency sensitive applications (b) all applications

6.8 Evaluating CRBM policy

6.8.1 Impact of row buffer mapping policy

For the rest of this chapter, the term proposed-ADIP refers to the configurable row buffer map-
ping policy with CM = 4, while the adaptive DRAM insertion policy is applied on top of it. This
section evaluates and investigates the performance benefits of the proposed-ADIP policy com-
pared to the state-of-the-art Alloy-ADIP (optimized for L4 hit latency with worst L4 miss rate)
and LH-ADIP (optimized for L4 miss rate with worst L4 hit latency) policies. The main draw-
back of these policies is that they are optimized for a single parameter (L4 hit latency or L4 miss
rate). In contrast, the proposed-ADIP simultaneously reduces L4 hit latency and L4 miss rate at
the same time. On average, the proposed-ADIP without DTC improves the overall HM-IPC
speedup by 17.5% and 5.9% compared to Alloy-ADIP and LH-ADIP policies respectively as il-
lustrated in Figure 6.31.

6.8.2 Impact of Tag-Cache on performance

This section evaluates the performance benefits of incorporating a DRAM Tag-Cache (DTC;
details in Section 6.5.1) on top of the proposed-ADIP namely proposed-ADIP-DTC. It also pre-
sents the performance benefits of incorporating an SRAM Tag-Cache (STC; details in Section
6.5.5) on top of the proposed-ADIP-DTC namely proposed-ADIP-DTC-STC. On average, the
proposed-ADIP-DTC improves the overall HM-IPC speed by 24.9%, 12.5%, and 6.3% compared
to Alloy-ADIP, LH-ADIP, and proposed-ADIP respectively as illustrated in Figure 6.31. On aver-
age, the proposed-ADIP-DTC-STC improves the overall HM-IPC speed by 26.5%, 14%, 7.6%,

Chapter 6 Policies for Latency Reduction

- 92 -

and 1.26% compared to Alloy-ADIP, LH-ADIP, proposed-ADIP, and proposed-ADIP-DTC re-
spectively as illustrated in Figure 6.31. The incorporation of the low latency DRAM Tag-Cache
(DTC) on top of the proposed-ADIP provides additional 6.3% improvement in performance due
to a high DTC hit rate (57.7% as shown in Figure 6.29-b) which avoids high latency DRAM
cache and MMap$ access for a DTC hit. Similarly, the incorporation of the low latency STC on
top of the proposed-ADIP-DTC provides an additional 1.26% improvement in performance due
to a high STC hit rate (average STC hit rate is 61.2%).

0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy‐ADIP

LH‐ADIP (CM = 1)

Proposed‐ADIP

Proposed‐ADIP‐DTC

Proposed‐ADIP‐DTC‐STC(a
)
A
vg
. N

o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(L
S
ap
p
lic
at
io
n
s)

(c
)
A
vg
. N

o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(A
ll
ap
p
lic
at
io
n
s)

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy‐ADIP

LH‐ADIP (CM = 1)

Proposed‐ADIP

Proposed‐ADIP‐DTC

Proposed‐ADIP‐DTC‐STC(b
)
A
vg
. N

o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(M
S
ap
p
lic
at
io
n
s)

0.80

0.90

1.00

1.10

1.20

1.30

1.40

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy‐ADIP

LH‐ADIP (CM = 1)

Proposed‐ADIP

Proposed‐ADIP‐DTC

Proposed‐ADIP‐DTC‐STC

Figure 6.31: Normalized HM-IPC speedup compared to Alloy-ADIP for (a) Latency Sensi-
tive (LS) applications (b) Memory Sensitive (MS) applications (c) Both LS and MS applica-

tions

6.8.3 Impact of the super-block size on performance

This section evaluates the impact of the super-block size (2 and 4; details in Section 6.4.1) on the
overall performance by evaluating two policies namely the proposed-ADIP-DTC-STC-sb-2 and
the proposed-ADIP-DTC-STC-sb-4 for super-block (sb) sizes of 2 and 4 respectively on top of

6.8 Evaluating CRBM policy

- 93 -

the proposed-ADIP-DTC-STC policy. Note that a super-block of size 2 (i.e. proposed-ADIP-
DTC-STC-sb-2 policy) reduces the MMap$ size by 34% and a super-block of size 4 (i.e. pro-
posed-ADIP-DTC-STC-sb-4 policy) reduces the MMap$ size by 51% (details in Section 6.4.1).
Reducing the MMap$ size reduces the MMap$ latency. The MMap$ latency is assumed to be 10
clock cycles (for 2MB MMap$) for all configurations, although a reduced MMap$ is employed
for the proposed-ADIP-DTC-STC-sb-2 (1.33 MB) and the proposed-ADIP-DTC-STC-sb-4 (1MB
MMap$) policies (i.e. a conservative comparison).

N
o
rm

al
iz
ed

 H
M
‐I
P
C

sp
ee
d
u
p

0.80

0.90

1.00

1.10

1.20

1.30

1.40

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy‐ADIP

LH‐ADIP (CM = 1)

Proposed‐ADIP‐DTC‐STC‐sb‐1

Proposed‐ADIP‐DTC‐STC‐sb‐2

Proposed‐ADIP‐DTC‐STC‐sb‐4

Figure 6.32: Normalized HM-IPC speedup for different super-block (sb) sizes

Fa
ls
e
h
it
 r
at
e

0%
1%
2%
3%
4%
5%
6%
7%
8%

Mix_01 Mix_02 Mix_03 Mix_04 Average

Proposed‐ADIP‐DTC‐STC‐sb‐2

Proposed‐ADIP‐DTC‐STC‐sb‐4

Figure 6.33: Percentage of false hits for super-blocks (sb) of size 2 and 4

On average, the proposed-ADIP-DTC-STC-sb-2 improves the overall HM-IPC speedup by
25.3% and 12.9% compared to the Alloy-ADIP and LH-ADIP policies respectively as shown in
Figure 6.32. On average, the proposed-ADIP-DTC-STC-sb-4 improves the HM-IPC speedup by
24.4% and 12.1% compared to the Alloy-ADIP and LH-ADIP respectively. Figure 6.33 shows the
percentage of false hits detected for the proposed-ADIP-DTC-STC-sb-2 and proposed-ADIP-
DTC-STC-sb-4 policies. The percentage of false hits is 2.6% and 5.5% for the proposed-ADIP-
DTC-STC-sb-2 and proposed-ADIP-DTC-STC-sb-4 respectively. Note that most of the false hits
are eliminated by the DTC (DTC hit rate is 57.7% for CM = 4) if “maybe hit” is identified by the
proposed SB-MMap$.

Chapter 6 Policies for Latency Reduction

- 94 -

6.9 Summary

This chapter presented a novel DRAM row buffer mapping policy for on-chip DRAM caches that
simultaneously improves the DRAM cache miss rate and the DRAM cache hit latency. Along
with that it proposed the concept of a DRAM Tag Cache, a small and low latency SRAM struc-
ture that further improves the DRAM cache hit latency. This chapter further applied the concepts
of the Tag-Cache architecture on top of L3 SRAM cache. This chapter performed extensive eval-
uations and compared the performance of the proposed approaches with two state-of-the-art row
buffer mapping policies for on-chip DRAM caches. For an 8-core system, the proposed policies
improve the harmonic mean instruction per cycle throughput by 24.4% and 12.1%, respectively.
At the same time, it requires 51% less storage overhead to determine the DRAM cache hit/miss
prediction.

The detailed analysis showed that it is the combination of improved miss rate and hit latency
that provides the general performance improvement. As the proposed DRAM Tag cache architec-
ture allows reducing the size of the MMap$ structure (used in DRAM caches to provide hit/miss
prediction), the performance improvement comes at reduced area overhead which makes it gen-
erally applicable for a wide range of applications and architectures.

- 95 -

Chapter 7 Putting It All together: DRAM Last-
Level-Cache Policies

The performance of an SRAM/DRAM cache hierarchy can be improved by reducing the average
latency of a read request which can be reduced by reducing the latency and miss rate at different
levels of the cache hierarchy. This thesis has presented several techniques to reduce the average
access latency by reducing the L3 SRAM hit latency, L4 DRAM hit latency and L4 DRAM miss
rate via novel policies while reducing MissMap Cache (MMap$) storage overhead. The perfor-
mance benefits of the proposed policies along with the storage reduction benefits are presented in
Chapter 5 and Chapter 6 in detail. Each of the proposed policy is employed on different on-chip
hardware structures of the SRAM/DRAM cache hierarchy including L3 SRAM, L4 DRAM and
MMap$ caches. Therefore, the proposed policies are complementary.

Figure 7.1: Proposed SRAM/DRAM cache hierarchy showing integration of selected poli-
cies

Figure 7.1 shows the proposed organization of the four-level SRAM/DRAM cache hierarchy
illustrating the integration of selected policies (shown in highlighted areas) from Chapter 5 and
Chapter 6. The proposed policies work synergistically, which improves the performance com-
pared to state-of-the-art SRAM/DRAM cache hierarchies. This chapter discusses and evaluates

Chapter 7 Putting It All together: DRAM Last-Level-Cache Policies

- 96 -

the performance gains, miss rate and latency benefits of the selected contributions (highlighted in
Figure 7.1) when they are incorporated in the cache hierarchy.

7.1 Evaluation

For the evaluation on a multi-core system where each core is based on the x86 microarchitecture,
this thesis has compared the proposed policies with state-of-the-art DRAM cache namely LH-
Cache [77, 78] and Alloy-Cache [102], which share the same philosophy of reducing miss rate
via increased DRAM cache capacity. However, they do not fully exploit the application and
DRAM characteristics, which can cause inter-core interference. In addition, they incur a large
area overhead required for DRAM cache hit/miss prediction, which reduces the area advantage of
a DRAM cache.

 LH LH-ADIP
CM=4-
ADIP

CM=4-ADIP-
TAG$-RS

Adaptive DRAM Insertion Policy
(ADIP)

(Details in Section 5.2)
   

Configurable row Buffer Mapping
Policy with CM= 4

(Section 6.3.2 and Section 6.3.5)
   

Tag-Cache (TAG$)
(Details in Section 6.5)

   

Reducing Storage (RS) size
(Details in Section 6.4)

   

Table 7.1: Overview of different configurations with their incorporated policies

For evaluation, this chapter compares the following different configurations:

1. State-of-the-art row buffer mapping policy with static DRAM insertion policy namely Alloy
[102].

2. State-of-the-art row buffer mapping policy with static DRAM insertion policy namely LH
[77, 78].

3. Proposed adaptive DRAM insertion policy (ADIP; details in Section 5.2) on top of LH [77,
78] configuration namely LH-ADIP.

4. Proposed ADIP on top of proposed configurable row buffer mapping policy with CM = 4 (de-
tails in Section 6.3.2 and Section 6.3.5) namely CM=4-ADIP.

5. Proposed DRAM Tag-Cache (details in Section 6.5.1) and SRAM Tag-Cache organizations
(details in Section 6.5.5) incorporated in the cache hierarchy along with reduced storage
overhead (using super block of size 4; details in Section 6.4 and Section 6.8.3) on top of
CM=4-ADIP configuration namely CM=4-ADIP-TAG$-RS. The acronym TAG$ and RS
stands for Tag-Cache (SRAM and DRAM Tag-caches) and reduced storage, respectively. For
this configuration, modifications have been made in the SRAM Tag-array (to incorporate the

7.1 Evaluation

- 97 -

SRAM Tag-Cache; details in Section 6.5.5), in the MMap$ (to reduce the storage overhead;
details in Section 6.4), and in the DRAM cache controller (to incorporate the DRAM Tag-
Cache; details in Section 6.5.3).

Table 7.1 shows an overview of different configurations with their incorporated policies. The
first column of Table 7.1 shows the proposed policies while the first row represents the evaluated
configurations. The second column in the table shows the state-of-the-art LH policy. Each addi-
tional column introduces an additional policy or enhancement in the cache hierarchy when built
on top of the previous configuration. For example, the configuration shown in the third column
(LH-ADIP) applies the adaptive DRAM insertion policy on top of the configuration shown in the
second column (LH).

0.8

1.0

1.2

1.4

1.6

1.8

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy

LH

LH‐ADIP
CM = 4‐ADIP

CM = 4‐ADIP‐TAG$‐RS(a
)
A
vg
. N

o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(L
S
ap
p
lic
at
io
n
s)

(b
)
A
vg
. N

o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(M
S
ap
p
lic
at
io
n
s)

(c
)
A
vg
. N

o
rm

al
iz
ed

H
M
‐I
P
C
 s
p
ee
d
u
p

(A
ll
ap
p
lic
at
io
n
s)

0.8

1.0

1.2

1.4

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy

LH
LH‐ADIP

CM = 4‐ADIP

CM = 4‐ADIP‐TAG$‐RS

0.8

1.0

1.2

1.4

1.6

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy

LH
LH‐ADIP

CM = 4‐ADIP

CM = 4‐ADIP‐TAG$‐RS

Figure 7.2: Normalized HM-IPC speedup compared to Alloy for (a) Latency Sensitive (LS)
applications (b) Memory Sensitive (MS) applications (c) Both LS and MS applications

7.1.1 Performance benefits

Figure 7.2 shows the average normalized harmonic mean instruction per cycle (HM-IPC)
throughput results for various configurations with the speedup normalized to the Alloy policy. On
average, the combination of the proposed policies improves the HM-IPC speed of latency sensi-
tive applications by 47.1% and 35% compared to the Alloy and LH policies respectively

Chapter 7 Putting It All together: DRAM Last-Level-Cache Policies

- 98 -

(Figure 7.2-a). At the same time, it improves the HM-IPC speedup of memory sensitive applica-
tions by 30.4% and 23.9% compared to the Alloy and LH policies respectively (Figure 7.2-b).
This results in an overall HM-speedup of 35.9% and 26.7% compared to the Alloy and LH poli-
cies respectively (Figure 7.2-c).

7.1.2 DRAM Aware Last-Level-Cache Policies are complementary

Figure 7.2 demonstrates that the proposed policies are complementary when they are employed
in the cache hierarchy. Each newly added policy provides additional performance improvements
compared to the identical configuration but without that policy as described in the following.

1. The LH-ADIP configuration (with the adaptive DRAM insertion policy) improves the overall
HM-speed by 13.1% compared to the LH configuration (without adaptive DRAM insertion
policy).

2. The CM=4-ADIP configuration (with the proposed configurable row buffer mapping policy
with CM = 4) improves the overall HM-speedup by 5.9% compared to the LH-ADIP configu-
ration (with state-of-the-art row buffer mapping policy from [77, 78]).

3. The CM=4-ADIP-TAG$-RS configuration (with the proposed Tag-Cache architecture along
with the storage reduction technique that reduces the MMap$ storage overhead by 51%) im-
proves the overall HM-speedup by 5.8% compared to the CM=4-ADIP configuration (with-
out Tag-cache architecture and storage reduction).

7.2 Result analysis

The performance of a DRAM cache based multi-core system depends upon the L4 DRAM miss
rate, L4 DRAM hit latency and off-chip memory latency. The proposed SRAM/DRAM cache
hierarchy simultaneously optimizes all of the above mentioned metrics to improve the overall
instruction throughput. This section describes and evaluates the miss rate and latency benefits of
the proposed policies.

7.2.1 Miss rate reduction

The combination of the proposed policies namely the CM=4-ADIP-TAG$-RS configuration sig-
nificantly reduces the L4 miss rate by 46.3% and 20.5% compared to Alloy [102] and LH [77, 78]
respectively as shown in Figure 7.3. The miss rate is primarily reduced due to the adaptive
DRAM insertion policy (ADIP) that mitigates inter-core interference via reducing the insertion
rate of rarely-reused blocks. Note that the configurations with ADIP have a reduced miss rate
compared to the configurations without ADIP as shown in Figure 7.3. The proposed adaptive
DRAM insertion policy reduces the number of fill requests by 52.1% and increases the number
of useful demand requests by 39.6% compared to the static DRAM insertion policy. Thus, the
proposed ADIP policy improves the DRAM cache bandwidth and capacity utilization, which sig-
nificantly reduces the L4 DRAM miss rate by 20.5% compared to the static DRAM insertion pol-
icy.

7.2 Result analysis

- 99 -

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy

LH
LH‐ADIP

CM = 4‐ADIP
CM = 4‐ADIP‐TAG$‐RS(a

)
D
R
A
M
 c
ac
h
e

m
is
s
ra
te

Figure 7.3: L4 DRAM cache miss rate

7.2.2 Off-chip memory latency reduction

The proposed CM=4-ADIP-TAG$-RS configuration reduces the off-chip memory latency by
32.1% and 10.7% compared to Alloy [102] and LH [77, 78] respectively as shown in Figure 7.4.
The off-chip memory latency is directly dependent on the L4 DRAM miss rate, which increases
with an increased number of misses due to increased contention in the memory controller. The
main memory access latency is reduced (see Figure 7.4) for all configurations using the adaptive
DRAM insertion policy due to reduced main memory controller queuing/scheduling delay and
contention.

100

200

300

400

500

600

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy

LH
LH‐ADIP
CM = 4‐ADIP
CM = 4‐ADIP‐TAG$‐RS

M
ai
n
 m
em

o
ry
 a
cc
es
s

la
te
n
cy
 [
cy
cl
es
]

Figure 7.4: Off-chip main memory access latency

7.2.3 L4 DRAM hit latency reduction

The L4 DRAM hit latency depends upon the L4 tag latency (lower is better; see Figure 6.12 and
Figure 6.16), the DRAM cache row buffer hit rate (higher is better; see Figure 7.5-b), and the
contention in the DRAM cache controller. The L4 hit latency also depends upon the DRAM Tag-
Cache (DTC) hit rate (higher is better) for the CM=4-ADIP-TAG$-RS configuration that incorpo-
rates DTC in the cache hierarchy.

The Alloy configuration (based on the Alloy-Cache [102]; details in Section 2.4.3) is opti-
mized for L4 hit latency due to fast tag lookup (Figure 6.12 and Table 6.1) compared to other
configurations. At the same time, it significantly improves the DRAM row buffer hit rate com-
pared to other configurations as shown in Figure 7.5-(b). However, the improvement in L4 hit
latency for the direct mapped Alloy configuration (Figure 7.5-a) comes at the cost of increased L4

Chapter 7 Putting It All together: DRAM Last-Level-Cache Policies

- 100 -

miss rate (Figure 7.3) and off-chip memory latency (Figure 7.4), which leads to significant per-
formance degradations compared to other configurations (Figure 7.2).

The proposed configurations (i.e. LH-ADIP, CM=4-ADIP, and CM=4-ADIP-TAG$-RS) ben-
efit from a high associativity (30-way) with significantly reduced L4 miss rate and off-chip
memory latency compared to the Alloy configuration as illustrated in Figure 7.3 and Figure 7.4
respectively.

40
60
80
100
120
140
160

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy

LH

LH‐ADIP

CM = 4‐ADIP

CM = 4‐ADIP‐TAG$‐RS

0.3

0.4

0.5

0.6

0.7

Mix_01 Mix_02 Mix_03 Mix_04 Average

CM = 4‐ADIP‐TAG$‐RS

0.0

0.1

0.2

0.3

0.4

0.5

Mix_01 Mix_02 Mix_03 Mix_04 Average

Alloy

LH

LH‐ADIP

CM = 4‐ADIP

CM = 4‐ADIP‐TAG$‐RS

(a
)
D
R
A
M
 c
ac
h
e
h
it

la
te
n
cy
 (
cy
cl
es
)

(b
)
D
R
A
M
 r
o
w
 b
u
ff
er

h
it
 r
at
e

(c
)
D
R
A
M
 T
ag
‐C
ac
h
e

(D
TC
)
h
it
 r
at
e

Figure 7.5: (a) L4 DRAM hit latency (b) DRAM row buffer hit rate (c) DRAM Tag-Cache
hit rate

Each newly added policy provides additional reduction in L4 hit latency compared to the LH
configuration (employed in LH-Cache [77, 78]) as described in the following.

1. The L4 hit latency reduction via the adaptive DRAM insertion policy (ADIP) is 7.7% com-
pared to a static DRAM insertion policy, while comparing LH and LH-ADIP configurations.
The L4 hit latency is reduced due to reduced contention in the DRAM cache controller be-
cause the adaptive DRAM insertion policy reduces the number of fill requests by 52.1% and
increases the number of useful demand requests by 39.6% compared to the static DRAM in-
sertion policy.

2. The L4 hit latency reduction via the CM=4-ADIP configuration (proposed configurable row
buffer mapping policy with CM = 4) is 8.9% compared to the LH-ADIP configuration (state-

7.3 Summary

- 101 -

of-the-art row buffer mapping policy in [77, 78]). The latency is reduced because the CM=4-
ADIP configuration (row buffer hit rate is 22.1%) significantly improves the row buffer hit
rate compared to the LH-ADIP configuration (row buffer hit rate is only 1.4%) as shown in
Figure 7.5-(b). The row buffer hit rate is improved because the proposed row buffer mapping
policy reduces row buffer conflicts via exploiting data access locality in the row buffer by
mapping four consecutive blocks to the same DRAM cache row buffer. In contrast, the state-
of-the-art row buffer mapping policy in [77, 78] does not fully exploit data access locality be-
cause it maps consecutive blocks to different row buffers with significantly lower row buffer
hit rate.

3. The L4 DRAM hit latency reduction via the CM=4-ADIP-TAG$-RS configuration (with the
proposed Tag-Cache architecture along with the storage reduction technique) is 14.5% com-
pared to the CM=4-ADIP configuration (without Tag-cache architecture). The latency reduc-
tion is due to the fast tag lookup (i.e. L4 tag latency is reduced) via high DRAM Tag-Cache
hit rate (58%) as shown in Figure 7.5-(c). The L4 tag latency is reduced for a DRAM Tag-
Cache (DTC) hit because the tags are read from the low latency DTC in two cycles for the
CM=4-ADIP-TAG$-RS configuration. In contrast, the CM=4-ADIP configuration always ac-
cess the MMap$ followed by reading the tags from the slower DRAM cache, which incurs
high L4 tag latency of 37 cycles (see Figure 6.16).

7.3 Summary

DRAM cache management has become more challenging in multi-core systems because of in-
creased inter-core cache contention (leads to increased DRAM cache miss rate), increased inter-
core DRAM interference (leads to increased DRAM cache hit latency), limited off-chip memory
bandwidth (leads to increased off-chip memory latency), and DRAM organization (DRAM cache
is slower compared to SRAM cache). This chapter described and evaluated the performance ben-
efits of application and DRAM aware complementary policies to address the above mentioned
challenges. This chapter showed that the application aware adaptive DRAM insertion policy can
mitigate inter-core DRAM interference and inter-core cache eviction, which lead to reduced
DRAM cache miss rate and hit latency. It further explored and investigated the latency benefits
of the novel DRAM aware policies (i.e. novel DRAM row buffer mapping policy, Tag-cache ar-
chitecture, and DRAM controller optimizations) that further improved the performance of
DRAM cache based multi-core systems.

This chapter performed extensive evaluations and compared the performance of complemen-
tary policies with two state-of-the-art proposals for on-chip DRAM caches. Through detailed per-
formance analysis, this chapter showed that the proposed policies provide simultaneous reduction
in DRAM cache miss rate, DRAM cache hit latency and off-chip memory access latency com-
pared to state-of-the-art DRAM cache, resulting in substantial performance benefits. For an 8-
core system, the combination of the proposed policies improves the performance of latency sensi-
tive applications by 47.1% and 35% compared to two state-of-the-art proposals for on-chip
DRAM caches. At the same time, it requires 51% less storage SRAM overhead required to man-
age on-chip DRAM cache.

- 103 -

Chapter 8 Conclusion and Outlook

As the pressure on the off-chip memory tends to increase due to large application footprints of
complex applications [32], a traditional SRAM-based cache hierarchy cannot satisfy the capacity
requirements of these applications with large working set sizes. The problem worsens for multi-
core systems with increasing number of cores causing memory bandwidth problems [12, 60, 108,
131, 136, 144]. To mitigate these problems, various proposals for on-chip DRAM caches have
been proposed because of the DRAM capacity advantages compared to traditional SRAM caches
and the low latency advantage compared to off-chip main memory. Although on-chip DRAM
cache provides high capacity (compared to SRAM caches) and large bandwidth (compared to
off-chip memory), it is not simple to actually integrate it in the cache hierarchy due to its higher
latency (compared to SRAM caches) and complex management. Before summarizing the thesis
contributions in Section 8.1, the challenges that need to be addressed to employ the emerging on-
chip DRAM cache in an SRAM/DRAM based cache hierarchy are summarized as follows:

1. Efficient management of DRAM cache capacity and bandwidth is required to mitigate inter-
core cache eviction and inter-core DRAM interference respectively.

2. The data access locality in the row buffer needs to be exploited in order to reduce the DRAM
cache hit latency via improved row buffer hit rate.

3. The tag lookup latency needs to be minimized, which is the dominant factor of a DRAM
cache hit latency. Similarly, the tag lookup latency for the large shared SRAM cache should
be minimized.

4. The total SRAM storage required for DRAM cache management should be minimal, as it in-
curs high system cost.

8.1 Thesis Summary

This thesis addresses the challenges of state-of-the-art DRAM cache hierarchies that limit the
overall instruction throughput. It proposes low-overhead policies in order to provide improved
performance for DRAM cache based multi-core systems. The proposed policies exploit the ca-
pacity benefits of emerging on-chip DRAM cache at the architectural level to achieve high per-
formance while simultaneously considering the application (e.g. cache access pattern) and
DRAM system characteristics (e.g. bandwidth and row buffer locality etc.).

To efficiently manage on-chip DRAM cache capacity and bandwidth, an adaptive DRAM in-
sertion policy (ADIP) has been presented that adapts the DRAM insertion rate at runtime based
on the miss rate information provided by a low overhead hardware monitoring unit. The pro-
posed ADIP is not only capable of adapting the DRAM insertion rate of concurrently running
applications on a multi-core system, but it is also able to dynamically adjust the DRAM insertion
rate during different execution phases of the same application. ADIP restricts the number of zero-
reuse data (i.e. data that is not reused before it gets evicted) insertions into the DRAM cache,
which reduces inter-core DRAM interference via reduced contention in the DRAM cache con-
troller. It reduces the number of evictions for the highly-reuse data (i.e. data that is likely to be
reused in the near future), which reduces inter-core cache evictions. It maximizes DRAM cache

Chapter 8 Conclusion and Outlook

- 104 -

bandwidth and capacity utilization for highly-reuse data and it minimizes the negative effect of
zero-reuse data. It has been shown in Chapter 5 that the proposed adaptive DRAM insertion poli-
cy significantly outperforms the existing static DRAM insertion policy and requires negligible
hardware overhead. It has been demonstrated in Chapter 5 that the proposed ADIP can be applied
to any DRAM cache organization.

To maximize the DRAM row buffer locality, a novel row buffer mapping policy has been
proposed that simultaneously optimizes the DRAM cache hit latency and DRAM cache miss rate.
The proposed row buffer mapping policy maps four consecutive memory blocks to the same row
buffer, which results in a significantly higher row buffer hit rate with negligible increase in miss
rate compared to state-of-the-art. It reduces the DRAM cache hit latency via an improved row
buffer hit rate while exploiting programs spatial and temporal locality. At the same time, it re-
duces the DRAM cache miss rate via a higher associativity. It has been demonstrated in Chap-
ter 6 that the proposed row buffer mapping policy outperforms state-of-the-art row buffer map-
ping policies that are either optimized for DRAM cache hit latency or for DRAM cache miss
rate.

To minimize the tag lookup latency for a large shared DRAM cache, this thesis proposes a
low-overhead and low-latency SRAM structure namely DRAM Tag-Cache (DTC) that can
quickly determine whether an access to the large DRAM cache will be a hit or a miss. However,
the performance of the proposed DRAM Tag-Cache depends upon the DTC hit rate. This thesis
demonstrates that integrating a DTC into a recently proposed hierarchy for on-chip DRAM cache
[77, 78] provides negligible latency and performance benefits due to their low DTC hit rates
(they map consecutive memory blocks to different row buffers, which leads to a significantly low
DTC hit rate). However, when the DTC is integrated with the proposed row buffer mapping poli-
cy that exploits programs spatial and temporal locality by mapping four consecutive memory
blocks to the same row buffer, it exhibits a high hit rate. In contrast to the previous proposal [77,
78] for on-chip DRAM cache that always reads the tags from the slower DRAM cache after a
MissMap cache (MMap$) access (requires 41 cycles for both accesses), the proposed DTC pro-
vides fast tag lookup that incurs only two cycles for a DTC hit. Similarly, to minimize the tag
lookup latency for a large shared SRAM cache, this thesis applies the concept of the Tag-Cache
architecture on top of SRAM cache. The latency and performance benefits using the proposed
Tag-Cache architecture (for SRAM and DRAM cache) are discussed in Chapter 6.

To reduce the hardware cost required for DRAM cache management with minimal impact on
the overall performance, this thesis reduces the storage overhead of the recently proposed
MMap$ (provides precise information about DRAM cache hit/miss using fine-grained presence
information). The MMap$ overhead is reduced by storing presence information at coarser level
instead of storing fine-grained presence information. The main drawback of storing coarse-
grained presence information is that it increases the number of false DRAM cache hits. However,
incorporating the DRAM Tag-cache (DTC) along with the proposed row buffer mapping policy
reduces the number of false hits via a high DTC hit rate. Thus, the proposed approach significant-
ly reduces the storage overhead of the existing MMap$ by 51% with a negligible performance
degradation of only 1.6% (compared to a larger precise MMap$) due to a false hit rate of 5.5%.

The policies proposed in this thesis are able to efficiently mitigate inter-application interfer-
ence, maximize DRAM cache capacity and bandwidth utilization, exploit DRAM row buffer lo-
cality, and reduce tag lookup latency. It has been demonstrated in Chapter 7 that when the pro-

8.2 Future Work

- 105 -

posed policies are combined together, they synergistically improve the overall performance of
SRAM/DRAM based cache hierarchies.

The proposed policies are evaluated for various applications from SPEC2006 [5] using a
modified version of a cycle accurate performance simulator [79] that supports a detailed cache
and memory hierarchy model. Experimental results demonstrate that the synergistic combination
of the proposed complementary policies improves the harmonic mean instruction per cycle
throughput of latency sensitive applications by 47.1% and 35% compared to Alloy-Cache [102]
and LH-Cache [77, 78], respectively. At the same time, it requires 51% less storage overhead for
the MMap$.

8.2 Future Work

The latency and miss rate advantages, the comparisons with state-of-the-art proposals for on-chip
SRAM/DRAM cache hierarchy, and the experimental results using SPEC2006 [5] workloads
demonstrate that the proposed policies are capable of improving the overall instruction through-
put of SRAM/DRAM cache based multi-core systems. These encouraging results open up new
directions for research in on-chip cache hierarchies, which are summarized as follows.

Emerging memory technologies: The concepts proposed in this thesis are not limited to DRAM
based memory technology only. They are flexible enough to be applied to any other emerging
memory technologies (e.g. Phase change memory [72, 100, 101, 103], Spin-transfer torque
RAM [84, 117, 121, 145], magnetic RAM [21, 134], and resistive RAM [83]) that exhibit
characteristics similar to DRAM. For instance, the novel adaptive DRAM insertion policy
proposed in this thesis can be applied to the phase change memory (PCM) to mitigate inter-
application interference and finite PCM endurance. The proposed row buffer mapping policy
along with the Tag-cache architecture can be extended to PCM to mitigate long PCM laten-
cies via improved row buffer locality and high Tag-Cache hit rates. Thus, the novel concepts
proposed in this thesis can be extended to multi-core cache hierarchies that use new emerging
memory technologies.

Emerging cache hierarchies: The on-chip cache hierarchy has remained relatively simple in the
past, consisting of traditional SRAM based caches. However, the continues improvement in
process technology (e.g. die stacking [52, 61, 62, 66, 70, 92, 109] and heterogeneous integra-
tion [81, 146]) and memory technologies [72, 83, 84, 100, 101, 103, 117, 121, 145] have led
to the evolution of emerging hybrid cache hierarchies [19, 134, 135]. These hybrid cache hi-
erarchies will likely be composed of different memory technologies to exploit their capacity
(e.g. DRAM, PCM, STT-RAM, and RRAM etc.) and latency (e.g. SRAM and embedded
DRAM etc.) benefits. These cache hierarchies provide different latency, area and power
trade-offs when compared with traditional SRAM based cache hierarchies. The policies pre-
sented in this thesis need to be modified for these future cache hierarchies in order to exploit
their latency and miss rate benefits more effectively.

Compile-time DRAM insertion policy: The performance of a DRAM cache based multi-core
system depends upon memory access patterns. The proposed adaptive DRAM insertion poli-
cy allocates the DRAM cache resources to concurrently running applications at runtime while
considering their memory access patterns. However, a compile time DRAM insertion policy

Chapter 8 Conclusion and Outlook

- 106 -

considering DRAM (e.g. considering DRAM row buffer locality) and application (e.g. con-
sidering applications’ memory access pattern) characteristics can further improve DRAM ca-
pacity utilization by giving hints about application behavior at the page level to the operating
system. This approach can increase the programming complexity. However, it can improve
the overall instruction throughput via reduced off-chip accesses, if efficiently managed by the
compiler.

Operating-system based DRAM insertion policy: The proposed adaptive DRAM insertion pol-
icy performs the on-chip DRAM cache insertion/bypass decision at the block level. However,
it is also possible to carry out the insert/bypass decision at the page-level by exposing the on-
chip DRAM cache and off-chip memory resources to the operating system. To perform page-
level on-chip DRAM cache management, efficient operating system based techniques are re-
quired to determine which pages are critical to be inserted in the on-chip DRAM cache. For
instance, many applications have small working set sizes that can fit within the limited capac-
ity of on-chip DRAM memory. Inserting the pages of these applications in the on-chip
DRAM cache will lead to a significant reduction in off-chip memory traffic. Even for the ap-
plications with large working set size that do not fit into the on-chip DRAM memory, there
exists a significant variation in the page usage. For instance, some pages are frequently used
by the application (classified as hot pages), while other pages are rarely used by the applica-
tion (classified as cold pages). The operating system can track the page usage statistics to de-
termine whether a recently accessed pages should be inserted into on-chip DRAM cache or
not. Inserting the most frequently accessed hot pages in the on-chip DRAM cache while by-
passing the rarely reused cold page can lead to a noticeable performance improvement, if ef-
fectively handled by the operation system.

Reducing row buffer conflicts: This thesis has proposed a novel row buffer mapping policy to
mitigate row buffer conflicts compared to state-of-the-art while exploiting programs’ spatial
and temporal locality. However, when the DRAM cache banks are shared among a large
number of applications, it results in increased row buffer conflicts in the same bank via in-
creased inter-application contention, which limits the performance. One possibility is to allow
each bank to be accessed by a limited number of applications to reduce row buffer conflicts.
This approach would require an intelligent mapping of the application pages to different
DRAM cache banks that can be handled at the operating system level. An intelligent applica-
tion to bank mapping can potentially reduce the negative impact of inter-application interfer-
ence via reduced row buffer conflicts.

Although this thesis demonstrated the latency, miss rate and performance benefits of the pro-
posed policies for an SRAM/DRAM cache hierarchy, there is still a lot of room for interesting
future work in the area of on-chip caching for multi-core systems.

- 107 -

Bibliography

[1] Intel Inc. http://ark.intel.com.

[2] Intel Inc. http://techresearch.intel.com/articles/Tera-Scale/1826.htm.

[3] Intel® Xeon® Processor E5-2690. http://ark.intel.com/products/64596/intel-xeon-
processor-e5-2690-20m-cache-2_90-ghz-8_00-gts-intel-qpi.

[4] International Technology Roadmap for Semiconductors. http://www.itrs.net.

[5] Standard Performance Evaluation Corporation. http://www.spec.org.

[6] Agarwal A., J. Hennessy, and M. Horowitz. Cache Performance of Operating System and
Multiprogramming Workloads. ACM Transactions on Computer Systems (TOCS), 6(4):393–431,
November 1988.

[7] R. X. Arroyo, R. J. Harrington, S. P. Hartman, and T. Nguyen. IBM POWER7 Systems.
IBM Journal of Research and Development, 55(3):2:1 – 2:13, 2011.

[8] J.-L. Baer and W.-H. Wang. On the Inclusion Properties for Multi-level Cache Hierar-
chies. SIGARCH Computer Architecture News, 16(2):73–80, May 1988.

[9] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, Lie-
wei Bao, J. Brown, M. Mattina, Chyi-Chang Miao, C. Ramey, D. Wentzlaff, W. Anderson,
E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J Zook. TILE64 Processor: A
64-Core SoC with Mesh Interconnect. In Proceedings of the International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), pages 88–598, February 2008.

[10] B.N. Bershad, D. Lee, T.H. Romer, and J. B. Chen. Avoiding Conflict Misses Dynamical-
ly in Large Direct-mapped Caches. In Proceedings of the Sixth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS VI), pages
158–170, 1994.

[11] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, and L. Jiang. Die-Stacking (3D)
Microarchitecture. In Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 469–479, December 2006.

[12] S. Borkar and Andrew A. Chien. The Future of Microprocessors. Communications of the
ACM, 54(5):67–77, May 2011.

[13] D. Burger and T.M. Austin. The SimpleScalar tool set, version 2.0. SIGARCH Computer
Architecture News, 25(3):13–25, 1997.

Bibliography

- 108 -

[14] John Callaham. Intel Announces its First i7 8-core Extreme Edition Processor. http://-
www.neowin.net/news/intel-announces-its-first-i7-8-core-extreme-edition-processor, March
2014.

[15] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting Inter-Thread Contention on a
Chip Multi-Processor Architecture. In Proceedings of the 11th IEEE Symposium on High-
Performance Computer Architecture (HPCA), pages 340–351, February 2005.

[16] J. Chang and G. Sohi. Cooperative Caching for Chip Multiprocessors. In Proceedings of
the 33rd International Symposium on Computer Architecture (ISCA), pages 264–276, June 2006.

[17] J. Chang and G. Sohi. Cooperative Cache Partitioning for Chip Multiprocessors. In Pro-
ceedings of the 21st International Conference on Supercomputing (ICS), pages 242–252, June
2007.

[18] M. Chang, P. Rosenfeld, S. Lu, and B. Jacob. Technology Comparison for Large Last-
Level Caches (L3Cs): Low-Leakage SRAM, Low Write-Energy STT-RAM, and Refresh-
Optimized eDRAM. In Proceedings of the 19th IEEE Symposium on High-Performance Com-
puter Architecture (HPCA), pages 143–154, 2013.

[19] Y. T. Chen, J. Cong, H. Huang, L. Chunyue, M. Potkonjak, and G. Reinman. Dynamical-
ly Reconfigurable Hybrid Cache: An Energy-Efficient Last-Level Cache Design. In Proceedings
of the 15th conference on Design, Automation and Test in Europe, DATE ’12, pages 45–50,
March 2012.

[20] Y. Deng and W. Maly. Interconnect Characteristics of 2.5-D System Integration Scheme.
In Proceeding of the International Symposium on Physical Design (ISPD), pages 171–175, April
2001.

[21] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen. Circuit and Microarchitecture
Evaluation of 3D Stacking Magnetic RAM (MRAM) As a Universal Memory Replacement. In
Proceedings of the 45th Design Automation Conference (DAC), pages 554–559, 2008.

[22] H. Dybdahl and P. Stenström. An Adaptive Shared/Private NUCA Cache Partitioning
Scheme for Chip Multiprocessors. In Proceedings of the 13th IEEE Symposium on High-
Performance Computer Architecture (HPCA), pages 2–12, February 2007.

[23] T. Ebi, H. Rauhfuss, A. Herkersdorf, and J. Henkel. Agent-based Thermal Management
using Real-time I/O Communication Relocation for 3D Many-cores. In Integrated Circuit and
System Design. Power and Timing Modeling, Optimization, and Simulation workshop
(PATMOS’11), 2011.

[24] S. Eyerman and L. Eeckhout. System-Level Performance Metrics for Multiprogram
Workloads. IEEE MICRO, 28(3):42–53, May 2008.

[25] J. Feehrer, S. Jairath, P. Loewenstein, R. Sivaramakrishnan, D. Smentek, S. Turullols, and
A. Vahidsafa. The Oracle Sparc T5 16-Core Processor Scales to Eight Sockets. IEEE MICRO,
33(2):48–57, 2013.

Bibliography

- 109 -

[26] David Geer. Chip Makers Turn to Multicore Processors. Computer, IEEE Computer Soci-
ety, 38(5):11–13, 2005.

[27] David Geer. For Programmers, Multicore Chips Mean Multiple Challenges. Computer,
IEEE Computer Society, 40(9):17–19, 2007.

[28] S.W. Golumb. Shift Register Sequences, 1982.

[29] J. R. Goodman. Using Cache Memory to Reduce Processor-memory Traffic. SIGARCH
Computer Architecture News, 11(3):124–131, June 1983.

[30] J. R. Goodman. Using Cache Memory to Reduce Processor-memory Traffic. In Proceed-
ings of the 10th International Symposium on Computer Architecture (ISCA), pages 124–131,
1983.

[31] P. Frost Gorder. Multicore Processors for Science and Engineering. IEEE Computer Sci-
ence Engineering, 9(2):3–7, 2007.

[32] Darryl Gove. CPU2006 Working Set Size. SIGARCH Computer Architecture News,
35(1):90–96, March 2007.

[33] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T. Yamazaki. A
Novel SIMD Architecture for the Cell Heterogeneous Chip-multiprocessor. In Proceedings of the
17th Hot Chips, 2005.

[34] S. Gupta, M. Hilbert, S. Hong, and R. Patti. Techniques for Producing 3D ICs with High-
Density Interconnect. In Proceedings of the 21st International VLSI Multilevel Interconnection
Conference, 2004.

[35] F. Hameed, L. Bauer, and J. Henkel. Dynamic Cache Management in Multi-Core Archi-
tectures through Run-time Adaptation. In Proceedings of the 14th conference on Design, Auto-
mation and Test in Europe (DATE), pages 485–490, March 2012.

[36] F. Hameed, L. Bauer, and J. Henkel. Adaptive Cache Management for a Combined
SRAM and DRAM Cache Hierarchy for Multi-Cores. In Proceedings of the 15th conference on
Design, Automation and Test in Europe (DATE), pages 77–82, March 2013.

[37] F. Hameed, L. Bauer, and J. Henkel. Reducing Inter-Core Cache Contention with an
Adaptive Bank Mapping Policy in DRAM Cache. In IEEE International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS’13), 2013.

[38] F. Hameed, L. Bauer, and J. Henkel. Simultaneously Optimizing DRAM Cache Hit La-
tency and Miss Rate via Novel Set Mapping Policies. In International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES’13), 2013.

[39] F. Hameed, M.A. Al Faruque, and J. Henkel. Dynamic Thermal management in 3D Mul-
ti-core Architecture Through Run-Time Adaptation. In Proceedings of the 14th conference on
Design, Automation and Test in Europe (DATE), pages 299–304, March 2011.

Bibliography

- 110 -

[40] G. Hamerly, E. Perelman, J. Lau, and B. Calder. Simpoint 3.0: Faster and More Flexible
Program Analysis. Journal of Instruction Level Parallelism, 7, 2005.

[41] J. Henkel, L. Bauer, J. Becker, O. Bringmann, U. Brinkschulte, S. Chakraborty, M. Engel,
R. Ernst, H. Hartig, and L. Hedrich. Design and Architectures for Dependable Embedded Sys-
tems. In IEEE International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS’11), 2011.

[42] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M. Tahoori, and N. Wehn.
Reliable On-chip Systems in the Nano-era: Lessons Learnt and Future Trends. In Proceedings of
the 50th Design Automation Conference (DAC’13), 2013.

[43] J. Henkel, T Ebi, H. Amrouch, and H. Khdr. Thermal Management for Dependable On-
chip Systems. In Asia and South Pacific Design Automation Conference (ASP-DAC’13), 2013.

[44] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. K. Pujari, A. Grudnitsky,
J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and S. Kobbe. Invasive Manycore Architectures. In Asia
and South Pacific Design Automation Conference (ASP-DAC’12), pages 193–200, 2012.

[45] J.L. Hennessy and D.A. Patterson. Computer Architecture, Fourth Edition: A Quantita-
tive Approach. 2006.

[46] John L. Henning. SPEC CPU2006 Benchmark Descriptions. SIGARCH Computer Archi-
tecture News, 34(4):1–17, September 2006.

[47] M.D. Hill. A Case for Direct-mapped Caches. IEEE Computer, 21(12):25–40, December
1988.

[48] M.D. Hill and A. J. Smith. Experimental Evaluation of On-chip Microprocessor Cache
Memories. In Proceedings of the 11th International Symposium on Computer Architecture
(ISCA), pages 158–166, 1984.

[49] M.D. Hill and A.J. Smith. Evaluating Associativity in CPU Caches. IEEE Transactions
on Computers, 38(12):1612–1630, 1989.

[50] K. Inoue, T. Ishihara, and K. Murakami. Way-predicting Set-associative Cache for High
Performance and Low Energy Consumption. In Proceedings of the International Symposium on
Low Power Electronics and Design (ISLPED ’99), pages 273–275, 1999.

[51] A. Jaleel, W. Hasenplaugh, M.K. Qureshi, J. Sebot, S. Steely Jr., and J. Emer. Adaptive
Insertion Policies for Managing Shared Caches. In Proceedings of the 17th International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT), pages 208–219, 2008.

[52] Tokyo Japan, Elpida. Elpida completes development of Cu-TSV (Through Silicon Via)
multi-layer 8-Gigabit DRAM. http://www.elpida.com/pdfs/pr/2009-08-27e.pdf, 2009.

Bibliography

- 111 -

[53] D. Jevdjic, S. Volos, and B. Falsafi. Die-stacked DRAM caches for Servers: Hit Ratio,
Latency, or Bandwidth? Have it All with Footprint Cache. In Proceedings of the 40th Interna-
tional Symposium on Computer Architecture (ISCA), pages 404–415, 2013.

[54] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell, Y. Solihin, and
R. Balasubramonian. CHOP: Adaptive Filter-Based DRAM Caching for CMP Server Platforms.
In Proceedings of the 16th IEEE Symposium on High-Performance Computer Architecture
(HPCA), pages 1–12, 2010.

[55] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell, Y. Solihin, and
R. Balasubramonian. CHOP: Integrating DRAM Caches For CMP Server Platforms. IEEE Micro
Magazine (Top Picks), IEEE Computer Society, pages 99–108, 2011.

[56] T. Johnson and D. Shasha. 2Q: A Low Overhead High Performance Buffer Management
Replacement Algorithm. In Proceedings of 20th International Conference on Very Large Data
Bases (VLDB’94), pages 439–450, 1994.

[57] N.P. Jouppi. Improving Direct-mapped Cache Performance by the Addition of a Small
Fully-associative Cache and Prefetch Buffers. In Proceedings of the 17th International Symposi-
um on Computer Architecture (ISCA), pages 364–373, 1990.

[58] N.P. Jouppi. Improving Direct-mapped Cache Performance by the Addition of a Small
Fully-associative Cache and Prefetch Buffers. SIGARCH Computer Architecture News,
18(2SI):364–373, May 1990.

[59] N.P. Jouppi and S.J.E Wilton. Tradeoffs in Two-level On-chip Caching. In Proceedings
of the 21st International Symposium on Computer Architecture (ISCA), pages 34–45, 1994.

[60] A. Kagi, J.R. Goodman, and D. Burger. Memory Bandwidth Limitations of Future Mi-
croprocessors. In Proceedings of the 23rd International Symposium on Computer Architecture
(ISCA), pages 78–89, May 1996.

[61] U. Kang, H.-J. Chung, S. Heo, S.-H. Ahn, H. Lee, S.-H. Cha, J. Ahn, D. Kwon, J.H. Kim,
J.-W. Lee, H.-S. Joo, W.-S. Kim, H.-K. Kim, E.-M. Lee, S.-R. Kim, K.-H. Ma, D.-H. Jang, N.-S.
Kim, M.-S. Cho, S.-J. Oh, J.-B. Lee, T.-K. Jung, J.-H. Yoo, and C. Kim. 8 Gb 3-D DDR3 DRAM
using Through-Silicon-Via Technology. In IEEE Journal of Solid State Circuits, volume 45,
pages 111–119, January 2010.

[62] M. Kawano, S. Uchiyama, Y. Egawa, N. Takahashi, Y. Kurita, K. Soejima, M. Komuro,
S. Matsui, K. Shibata, J. Yamada, M. Ishino, H. Ikeda, Y. Saeki, O. Kato, H. Kikuchi, and
A. Mitsuhashi. A 3D packaging technology for 4 Gbit stacked DRAM with 3 Gbps data transfer.
In International Electron Devices Meeting, pages 1–4, 2006.

[63] C.N. Keltcher, K.J. McGrath, A. Ahmed, and P. Conway. The AMD Opteron Processor
for Multiprocessor Servers. IEEE MICRO, 23(2):66–76, 2003.

Bibliography

- 112 -

[64] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache Replacement Based on Reuse-
distance Prediction. In Proceedings of the 25th International Symposium on Computer De-
sign(ICCD), pages 245–250, 2007.

[65] S.M. Khan, D.A. Jiménez, D. Burger, and B. Falsafi. Using Dead Blocks as a Virtual Vic-
tim Cache. In Proceedings of the 19th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 489–500, 2010.

[66] J.S. Kim, C.S. Oh, H. Lee, D. Lee, H.R. Hwang, S. Hwang, B. Na, J. Moon, J.G. Kim,
H. Park, J.W. Ryu, K. Park, S.K. Kang, S.Y. Kim, H. Kim, J.M. Bang, H. Cho, M. Jang, C. Han,
J.B. Lee, K. Kyung, J.S. Choi, and Y.H. Jun. A 1.2V 12.8GB/s 2Gb Mobile Wide-I/O DRAM
with 4x128 I/Os using TSV-based Stacking. In Proceedings of the International Solid-State Cir-
cuits Conference Digest of Technical Papers (ISSCC), pages 496–498, 2011.

[67] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and Partitioning in a Chip Multi-
processor Architecture. In Proceedings of the 13th International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), pages 111–122, 2004.

[68] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A Scalable and High-
performance Scheduling Algorithm for Multiple Memory controllers. In Proceedings of the 16th
IEEE Symposium on High-Performance Computer Architecture (HPCA), pages 9–14, January
2010.

[69] Y. Kim, M. Papamichael, O. Mutlu, and M.H. Balter. Thread Cluster Memory Schedul-
ing: Exploiting Differences in Memory Access Behavior". In Proceedings of the 43rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 65–76, December
2010.

[70] D. Klein. The future of memory and storage: Closing the gaps. presented at the Microsoft
Windows Hardware Engineering Conference, Los Angeles, CA, 2007.

[71] D. Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization. In Proceedings of
the 8th International Symposium on Computer Architecture (ISCA), pages 81–87, 1981.

[72] B.C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase Change Memory as a
Scalable DRAM Alternative. In Proceedings of the 36th International Symposium on Computer
Architecture (ISCA), pages 2–13, June 2009.

[73] J. Lin, Q. Lu, X. Ding, Z. Zhang, and P. Sadayappan. Gaining Insights into Multicore
Cache Partitioning: Bridging the Gap between Simulation and Real Systems. In Proceedings of
the 14th IEEE Symposium on High-Performance Computer Architecture (HPCA), pages 367–
378, February 2008.

[74] G.H. Loh. 3D-Stacked Memory Architectures for Multi-core Processors. In Proceedings
of the 35th International Symposium on Computer Architecture (ISCA), pages 453–464, 2008.

Bibliography

- 113 -

[75] G.H. Loh. Extending the Effectiveness of 3D–stacked Dram Caches with an Adaptive
Multi-Queue Policy. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 174–183, 2009.

[76] G.H. Loh. A Register-file Approach for Row Buffer Caches in Die-stacked DRAMs. In
Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture, pag-
es 351–361, 2011.

[77] G.H. Loh and M.D. Hill. Efficiently Enabling Conventional Block Sizes for Very Large
Die-stacked DRAM Caches. In Proceedings of the 44th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 454–464, 2011.

[78] G.H. Loh and M.D. Hill. Supporting Very Large DRAM Caches with Compound Access
Scheduling and MissMaps. IEEE Micro Magazine, Special Issue on Top Picks in Computer Ar-
chitecture Conferences, 32(3):70–78, 2012.

[79] G.H. Loh, S. Subramaniam, and Y. Xie. Zesto: A Cycle-Level Simulator for Highly De-
tailed Microarchitecture Exploration. In International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2009.

[80] K. Luo, J. Gummaraju, and M. Franklin. Balancing Throughput and Fairness in SMT
Processors. In International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 164–171, 2001.

[81] N. Madan and R. Balasubramonian. Leveraging 3D Technology for Improved Reliability.
In Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 223–235, 2007.

[82] C. Madriles, P. López, J.M. Codina, E. Gibert, F. Latorre, A. Martinez, R. Martinez, and
A. Gonzalez. Boosting Single-thread Performance in Multi-core Systems through Fine-Grain
Multi-Threading. In Proceedings of the 36th International Symposium on Computer Architecture
(ISCA), pages 474–483, June 2009.

[83] J. Meza, L. Jing, and O. Mutlu. A Case for Small Row Buffers in Non-volatile Main
Memories. In Proceedings of the 30th International Symposium on Computer Design(ICCD),
pages 484–485, September 2012.

[84] A.K. Mishra, X. Dong, G. Sun, Y. Xie, N. Vijaykrishnan, and C.R. Das. Architecting On-
chip Interconnects for Stacked 3D STT-RAM Caches in CMPs. In Proceedings of the 38th Inter-
national Symposium on Computer Architecture (ISCA), pages 69–80, 2011.

[85] G.E. Moore. Cramming more Components onto Integrated Circuits. Electronics,
38(8):114–117, April 1965.

[86] M. Moreto, F.J. Cazorla, A. Ramirez, and M. Valero. MLP-aware dynamic cache parti-
tioning. In Proceedings of the 3rd international conference on High performance embedded ar-
chitectures and compilers (HiPEAC), pages 337–352, 2008.

Bibliography

- 114 -

[87] N. Muralimanohart and N. Balasubramonian, R.and Jouppi. Optimizing NUCA Organiza-
tions and Wiring Alternatives for Large Caches with CACTI 6.0. In Proceedings of the 40th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 3–14, Decem-
ber 2007.

[88] O. Mutlu and T. Moscibroda. Stall-time Fair Memory Access Scheduling for Chip Multi-
processors. In Proceedings of the 40th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 146–160, December 2007.

[89] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enhancing both Per-
formance and Fairness of Shared DRAM Systems. In Proceedings of the 35th International Sym-
posium on Computer Architecture (ISCA), pages 22–32, June 2008.

[90] E.J. O’Neil, P.E. O’Neil, and G. Weikum. The LRU-K Page Replacement Algorithm for
Database Disk Buffering. In Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data, pages 297–306, 1993.

[91] V.S. Pai, P. Ranganathan, and S.V. Adve. The Impact of Instruction-level Parallelism on
Multiprocessor Performance and Simulation Methodology. In Proceedings of the 3rd IEEE Sym-
posium on High-Performance Computer Architecture (HPCA), pages 72–83, February.

[92] J. T. Pawlowski. Hybrid Memory Cube: Breakthrough DRAM Performance with a Fun-
damentally Re-Architected DRAM Subsystem. In Proceedings of the 23rd Hot Chips, 2011.

[93] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder. Using Sim-
Point for Accurate and Efficient Simulation. SIGMETRICS Performance Evaluation Review,
31(1):318–319, 2003.

[94] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder. Using Sim-
Point for Accurate and Efficient Simulation. In Proceedings of the 2003 ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling of Computer Systems, pages 318–319,
2003.

[95] S. Przybylski. The Performance Impact of Block Sizes and Fetch Strategies. In Proceed-
ings of the 17th International Symposium on Computer Architecture (ISCA), pages 160–169,
1990.

[96] S. Przybylski, M. Horowitz, and J. Hennessy. Characteristics of Performance-Optimal
Multi-Level Cache Hierarchies. In Proceedings of the 16th International Symposium on Comput-
er Architecture (ISCA), pages 114–121, 1989.

[97] M. K. Qureshi. Adaptive Spill-Receive for Robust High-Performance Caching in CMPs.
In Proceedings of the 15th IEEE Symposium on High-Performance Computer Architecture
(HPCA), pages 45–54, February 2009.

[98] M. K. Qureshi, D Lynch, O. Mutlu, and Y. N. Patt. A Case for MLP-Aware Cache Re-
placement. In Proceedings of the 33rd International Symposium on Computer Architecture
(ISCA), pages 167–178, June 2006.

Bibliography

- 115 -

[99] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A Low-Overhead, High-
performance, Runtime mechanism to Partition Shared Caches. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 423–432, 2006.

[100] M.K. Qureshi, M.M. Franceschini, A. Jagmohan, and L.A. Lastras. PreSET: Improving
Performance of Phase Change Memories by Exploiting Asymmetry in Write Times. In Proceed-
ings of the 39th International Symposium on Computer Architecture (ISCA), pages 380–391,
2012.

[101] M.K. Qureshi, M.M. Franceschini, and L.A. Lastras-Montano. Improving Read Perfor-
mance of Phase Change Memories via Write Cancellation and Write Pausing. In Proceedings of
the 16th IEEE Symposium on High-Performance Computer Architecture (HPCA), pages 1–11,
Jan 2010.

[102] M.K. Qureshi and G.H. Loh. Fundamental Latency Trade-offs in Architecting DRAM
Caches. In Proceedings of the 45th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 235–246, 2012.

[103] M.K. Qureshi, V. Srinivasan, and J.A. Rivers. Scalable High Performance Main Memory
System Using Phase-change Memory Technology. In Proceedings of the 36th International Sym-
posium on Computer Architecture (ISCA), pages 24–33, June 2009.

[104] M.K. Qureshi, D. Thompson, and Y.N. Patt. The V-Way Cache: Demand Based Associa-
tivity via Global Replacement. In Proceedings of the 32nd International Symposium on Comput-
er Architecture (ISCA), pages 544–555, June 2005.

[105] V. Zyuban R. Kumar and D.M. Tullsen. Interconnections in Multi-core Architectures:
Understanding Mechanisms, Overheads and Scaling. In Proceedings of the 32nd International
Symposium on Computer Architecture (ISCA), pages 408–419, June 2005.

[106] J. M. Rabaey and S. Malik. Challenges and Solutions for Late- and Post-Silicon Design.
Design and Test, 25(4):292–308, 2008.

[107] S. Rixner, W. Dally, U. Kapasi, P. Mattson, and J. Owens. Memory Access Scheduling.
In Proceedings of the 32nd International Symposium on Computer Architecture (ISCA), pages
128–138, June 2000.

[108] B.M. Rogers, A. Krishna., G.B. Bell, K. Vu, X. Jiang, and Y. Solihin. Scaling the Band-
width Wall: Challenges in and Avenues for CMP Scaling. SIGARCH Computer Architecture
News, 37(3):371–382, 2009.

[109] Samsung Semiconductor. Package Information. http://www.samsung.com/global/-
business/semiconductor/support/package-info/overview, 2010.

[110] M. Shafique, S. Garg, D. Marculescu, and J. Henkel. The EDA Challenges in the Dark
Silicon Era: Temperature, Reliability, and Variability Perspectives. In Proceedings of the 51st
Design Automation Conference (DAC’14), 2014.

Bibliography

- 116 -

[111] M. Shah, J. Barreh, J. Brooks, R. Golla, G. Grohoski, R. Hetherington, P. Jordan,
M. Luttrel, O. Chistopher, B. Saha, D. Sheahan, L. Spracklen, and A. Wynn. UltraSPARC T2: A
Highly-Threaded, PowerEfficient, SPARC SOC. In IEEE Asian Solid State Circuit Conference,
pages 22–25, 2007.

[112] J. Sim, G.H. Loh, H. Kim, M. O’Connor, and M. Thottethodi. A Mostly-Clean DRAM
Cache for Effective Hit Speculation and Self-Balancing Dispatch. In Proceedings of the 45th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 247–257, 2012.

[113] J. Sim, G.H. Loh, V. Sridharan, and M. O’Connor. Resilient die-stacked DRAM caches.
In Proceedings of the 40th International Symposium on Computer Architecture (ISCA), 2013.

[114] A. J. Smith. A Comparative Study of Set Associative Memory Mapping Algorithms and
Their Use for Cache and Main Memory. IEEE Transaction on Software Engineering, 4(2):121–
130, March 1978.

[115] A. J. Smith. Line (Block) Size Choice for CPU Cache Memories. IEEE Transaction on
Computers, 36(9):1063–1076, September 1987.

[116] A.J. Smith. Cache Memories. ACM Computing Surveys (CSUR), 14(3):473–530, 1982.

[117] C.W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M.R. Stan. Relaxing Non-
volatility for Fast and Energy-efficient STT-RAM Caches. In Proceedings of the 17th IEEE
Symposium on High-Performance Computer Architecture (HPCA), pages 50–61, February 2011.

[118] A. Snavely and Dean M. Tullsen. Symbiotic Jobscheduling for a Simultaneous Multi-
threaded Processor. SIGARCH Computer Architecture News, 28(5):234–244, 2000.

[119] G.S. Sohi. Instruction Issue Logic for High-performance, Interruptible, Multiple Func-
tional Unit, Pipelined Computers. IEEE Transactions on Computers, 39(3):349–359, 1990.

[120] R. A. Sugumar and S.G. Abraham. Set-associative Cache Simulation Using Generalized
Binomial Trees. ACM Transaction on Computer System (TOCS), 13(1):32–56, February 1995.

[121] Z. Sun, X. Bi, H.H. Li, W-Fai Wong, Z-Liang Ong, X. Zhu, and W. Wu. Multi Retention
Level STT-RAM Cache Designs with a Dynamic Refresh Scheme. In Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’11, pages 329–338,
2011.

[122] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W. Schröder-Preikschat, and
G. Snelting. Invasive Computing: An Overview. Multiprocessor System-on-Chip – Hardware
Design and Tool Integration, M. Hübner and J. Becker (Eds.), Springer, 31(4):241–268, July
2011.

[123] S. Thoziyoor, J.Ho Ahn, A. Monchiero, J.B. Brockman, and N.P. Jouppi. A Comprehen-
sive Memory Modeling Tool and its Application to the Design and Analysis of Future Memory
Hierarchies. In Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 51–62, June 2008.

Bibliography

- 117 -

[124] S. Thoziyoor, J.H. Muralimanohart, R.and Ahn, and N. Jouppi. CACTI 5.1 HPL 2008/20,
HP Labs, April 2008.

[125] R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM
Journal of Research and Development, 11(1):25–33, 1967.

[126] J. Torrellas, M.S. Lam, and John L. Hennessy. False Sharing and Spatial Locality in Mul-
tiprocessor Caches. IEEE Transactions on Computers, 43(6):651–663, 1994.

[127] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer,
A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar. An 80-Tile
1.28TFLOPS Network-on-Chip in 65nm CMOS. In Proceedings of the International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), pages 98–589, February 2007.

[128] W. H. Wang, J.-L. Baer, and H. M. Levy. Organization and Performance of a Two-level
Virtual-real Cache Hierarchy. SIGARCH Computer Architecture News, 17(3):140–148, April
1989.

[129] D. Wendel, R. Kalla, R. Cargoni, J. Clables, J. Friedrich, R. Frech, J. Kahle, B. Sinharoy,
W. Starke, S. Taylor, S. Weitzel, S.G. Chu, S. Islam, and V. Zyuban. The Implementation of
Power7TM: A Highly Parallel and Scalable Multi-core High-end Server Processor. In Proceed-
ings of the International Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
pages 102–103, February 2010.

[130] R.T. White, F. Mueller, C.A. Healy, D.B. Whalley, and M.G. Harmon. Timing Analysis
for Data Caches and Set-associative Caches. In Proceedings of the 3rd IEEE Real-Time Technol-
ogy and Applications Symposium, pages 192–202, June 1997.

[131] Maurice V. Wilkes. The Memory Gap and the Future of High Performance Memories.
SIGARCH Computer Architecture News, 29(1):2–7, 2001.

[132] M.V. Wilkes. Slave Memories and Dynamic Storage Allocation. IEEE Transactions on
Electronic Computers, EC-14(2):270–271, 1965.

[133] D.H. Woo, N.H. Seong, D.L. Lewis, and H-H.S. Lee. An Optimized 3D-stacked Memory
Architecture by Exploiting Excessive, High-density TSV Bandwidth. In Proceedings of the 16th
IEEE Symposium on High-Performance Computer Architecture (HPCA), pages 1–12, 2010.

[134] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie. Hybrid Cache Architecture
with Disparate Memory Technologies. In Proceedings of the 36th International Symposium on
Computer Architecture (ISCA), pages 34–45, June 2009.

[135] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie. Design Exploration of Hy-
brid Caches with Disparate Memory Technologies. ACM Transaction on Computer System
(TOCS), 7(3):15:1–15:34, December 2010.

[136] W.A. Wulf and S.A. McKee. Hitting the Memory Wall: Implications of the Obvious.
Computer Architecture News, 23(1):20–24, March 1995.

Bibliography

- 118 -

[137] Y. Xie and G. H. Loh. Dynamic Classification of Program Memory Behaviors in CMPs.
In 2nd Workshop on Chip Multiprocessor Memory Systems and Interconnects (CMP-MSI), June
2008.

[138] Y. Xie and G. H. Loh. PIPP: Promotion/Insertion Pseudo-Partitioning of Multi-Core
Shared Caches. In Proceedings of the 36th International Symposium on Computer Architecture
(ISCA), pages 174–183, June 2009.

[139] Y. Xie, G.H. Loh, B. Black, and K. Bernstein. Design Space Exploration for 3D Architec-
tures. ACM Journal on Emerging Technologies in Computing Systems (JETC), 2(2):65–103,
2006.

[140] A. Zeng, R. Rose, and R.J. Gutmann. Memory Performance Prediction for High-
Performance Microprocessors at Deep Submicrometer Technologies. IEEE Transactions on
Computer-aided Design Of Integrated Circuits and Systems, 25(9):1705–1718, 2006.

[141] Z. Zhang, Z. Zhu, and X. Zhang. A Permutation-based Page Interleaving Scheme to Re-
duce Row-buffer Conflicts and Exploit Data Locality. In Proceedings of the 33rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 32–41, 2000.

[142] Z. Zhang, Z. Zhu, and X. Zhang. Design and Optimization of Large Size and Low Over-
head Off-Chip Caches. IEEE Transactions on Computers, 53(7):843–855, 2004.

[143] L. Zhao, R. Iyer, R. Illikkal, and D. Newell. Exploring DRAM Cache Architecture for
CMP Server Platforms. In Proceedings of the 25th International Symposium on Computer De-
sign(ICCD), pages 55–62, 2007.

[144] L. Zhao, R. Iyer, S. Makineni, J. Moses, R. Illikkal, and D. Newell. Performance, Area
and Bandwidth Implications on Large-Scale CMP Cache Design. In Proceedings of the Work. on
Chip Multiprocessor Memory Systems and Interconnects, 2007.

[145] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. Energy Reduction for STT-RAM Using Early
Write Termination. In Proceedings of the IEEE/ACM International Conference on Computer
Aided Design (ICCAD’09), pages 264–268, 2009.

[146] Q. Zhu, B. Akin, H.E. Sumbul, F. Sadi, J.C. Hoe, L. Pileggi, and F. Franchetti. A 3D-
stacked Logic-in-memory Accelerator for Application-specific Data Intensive Computing. In
Proceedings of the IEEE International conference on 3D Systems Integration (3DIC), pages 1–7,
October 2013.

	Unbenannt

