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fore forced to recognize the possibility of constructing a hierar-

chy of memories, each of which has greater capacity than the 

preceding but which is less quickly accessible.” 
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Abstract 

In addition to fast and small L1 and L2 caches, that are typically dedicated to a particular core in 
multi-core systems, the larger so-called Last-Level-Cache (LLC) is shared among all cores and 
used to bridge the latency gap between high speed cores and slower off-chip main memory. Tra-
ditionally, the LLC in multi-core systems consists of on-chip SRAM memory which comes at a 
large area overhead that limits the LLC size. As multi-core systems employ more and more cores 
on a single chip, the limited LLC size leads to an increasing number of off-chip memory access-
es. This increases the average latency per access which reduces the overall performance. There-
fore, recent research in academia and industry (e.g. IBM POWER7) has employed high capacity 
on-chip DRAM as LLC between L1/L2 SRAM cache and main memory. The primary reason for 
employing on-chip DRAM cache is that it provides greater capacity benefits for a given area 
compared to SRAM cache (~8×), which reduces off-chip accesses. 

When the DRAM cache is shared among multiple cores, the cores might interfere with each 
other in the DRAM cache controller causing inter-core interference that increases DRAM cache 
hit latency. The problem is exacerbated, when one core evicts useful data belonging to another 
core causing inter-core cache eviction that increases DRAM cache miss rate. This thesis primari-
ly focuses on reducing DRAM cache miss rate and DRAM cache hit latency via novel applica-
tion-aware and DRAM-aware cache policies while addressing the above mentioned challenges. 
This thesis makes the following novel contributions: 

1. Different applications have different cache access behavior that make them better suited to 
use different DRAM insertion rates (DRAM insertion rate is defined as the percentage of data 
insertions into DRAM cache). To choose a suitable insertion rate at runtime, this thesis pro-
poses an adaptive DRAM insertion policy that mitigates inter-core cache eviction by adapting 
the DRAM insertion rate in response to the dynamic requirements of the individual applica-
tions with different cache access behaviors. The proposed policy selects a suitable insertion 
rate from multiple insertion rates depending on which insertion rate provides reduced off-chip 
memory accesses. 

2. To further mitigate the miss rate, this work proposes a DRAM set balancing policy after ana-
lyzing that DRAM accesses are not evenly distributed across the sets of the DRAM cache, 
which leads to increased conflict misses via unbalanced set utilization. The proposed set bal-
ancing policy reduces conflict misses via reduced inter-core cache eviction that lead to a re-
duced miss rate, hereby improving the overall system performance. 

3. DRAM row-buffer conflicts occurs, when multiple simultaneous requests are mapped to dif-
ferent rows of the same DRAM bank, causing high DRAM cache hit latency compared to a 
scenario when these requests are mapped to the same row. To reduce DRAM cache hit laten-
cy, this thesis proposes a novel DRAM row buffer mapping policy that reduces row buffer 
conflicts by exploiting data access locality in the row buffer. 

4. To further reduce the DRAM cache hit latency, this thesis proposes a small and low latency 
SRAM structure namely DRAM Tag-Cache (DTC) that holds the tags of rows that were re-
cently accessed in the DRAM cache. The proposed DTC has a high hit rate, because it ex-
ploits data access locality provided by the proposed DRAM row buffer mapping policy men-
tioned above. It provides fast tag lookup because for a DTC hit, it reads the tags from the low 
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latency DTC in two cycles. In contrast, state-of-the-art DRAM cache always reads the tags 
from DRAM cache that incurs high tag lookup latencies of up to 41 cycles. 

In summary, high DRAM cache hit latencies, increased inter-core interference, increased in-
ter-core cache eviction, and the large application footprint of complex applications necessitates 
efficient policies in order to satisfy the diverse requirements to improve the overall throughput. 
This thesis addresses how to design DRAM caches to reduce DRAM cache hit latency, DRAM 
cache miss rate and hardware cost, while taking into account both application and DRAM char-
acteristics by presenting novel DRAM and application aware policies. The proposed policies are 
evaluated for various applications from SPEC2006 using a cycle accurate multi-core simulator 
based on SimpleScalar that is modified to incorporate DRAM in the cache hierarchy. The combi-
nation of the proposed DRAM-aware and application-aware complementary policies improve the 
average performance of latency-sensitive applications by 47.1% and 35% for an 8-core system 
compared to [102] and [77] respectively while requiring 51% less hardware overhead. 
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Zusammenfassung 

Neben schnellen und kleinen L1- und L2-Caches, die in Mehrkernsystemen typischerweise 
einem bestimmten Kern fest zugeordnet sind, wird der größere sogenannte Last-Level-Cache 
(LLC) von allen Kernen gemeinsam genutzt und wird verwendet, um die unterschiedlichen 
Latenzen von Kernen mit hoher Geschwindigkeit und dem langsameren externen Hauptspeicher 
zu überbrücken. Traditionellerweise besteht der LLC in Mehrkernsystemen aus einem on-chip 
SRAM-Speicher, der einen hohen Flächenverbrauch mit sich bringt, welcher die Größe des LLC 
begrenzt. Da Mehrkernsysteme immer mehr Kerne auf einem einzelnen Chip integrieren, führt 
die begrenzte LLC-Größe zu einer steigenden Anzahl von off-chip Speicherzugriffen. Dies 
erhöht die durchschnittliche Latenz pro Zugriff, was die Gesamtleistungsfähigkeit reduziert. 
Deshalb verwenden jüngste Forschungen in Akademie und Industrie (z.B. IBM POWER7) on-
chip DRAM mit hoher Kapazität als LLC zwischen L1/L2 SRAM Cache und dem 
Hauptspeicher. Der primäre Grund für die Nutzung eines on-chip DRAM Caches ist, dass dieser 
im Vergleich zu SRAM Cache höhere Kapazitätsvorteile für eine festgelegte Fläche erreicht 
(~8×), wodurch die off-chip Zugriffe reduziert werden. 

Wenn der DRAM Cache von mehreren Kernen gemeinsam genutzt wird, könnten die Kerne 
sich im DRAM Cachecontroller gegenseitig beeinflussen und Inter-Kern-Interferenzen 
verursachen, welche die Cache-Hitlatenz erhöhen. Das Problem verschlimmert sich, wenn ein 
Kern nützliche Daten verdrängt die einem anderen Kern gehören und damit eine Inter-Kern-
Cacheverdrängung verursacht, welche die DRAM Cache Missrate erhöht. In dieser Arbeit liegt 
der Schwerpunkt auf der Verringerung der DRAM Cache Missrate und der DRAM Cache 
Hitlatenz durch neue applikations- und DRAM-bewusste Cacherichtlinien unter 
Berücksichtigung der oben genannten Herausforderungen. Diese Arbeit leistet die folgenden 
neuen Beiträge: 

1. Verschiedene Applikationen haben unterschiedliches Cachezugriffsverhalten, wodurch sich 
verschiedene DRAM Einfügungsraten besser eignen (die DRAM Einfügungsrate ist definiert 
als der Anteil der vom Hauptspeicher zu einem Kern gebrachten Daten, die auch in den 
DRAM Cache eingefügt wird). Um zur Laufzeit eine geeignete Einfügungsrate zu wählen, 
schlägt diese Arbeit eine adaptive DRAM Einfügungsrichtlinie vor, welche die Inter-Kern-
Verdrängung durch Anpassung der DRAM Einfügungsrate als Antwort auf die dynamischen 
Anforderungen der einzelnen Applikationen mit unterschiedlichem Cachezugriffsverhalten 
reduziert. Die vorgeschlagene Richtlinie wählt aus mehreren Einfügungsraten eine geeignete 
aus – abhängig davon welche Rate eine Verringerung der off-chip Speicherzugriffe liefert. 

2. Nach der Analyse, dass DRAM Zugriffe nicht gleichmäßig über die Sätze (Sets) des DRAM 
Caches verteilt sind, was zu einem Anstieg der durch Konflikte verursachten Cache Misses 
durch unbalancierte Satznutzung führt, schlägt diese Arbeit eine DRAM 
Satzbalancierungsrichtlinie vor, um die Missrate weiter zu verringern. Sie reduziert die durch 
Konflikte verursachten Cache Misses durch Verringerung der Inter-Kern-Cacheverdrängung, 
was zu einer geringeren Missrate führt, und verbessert damit die Gesamtleistung des Systems. 

3. DRAM Zeilenpufferkonflikte treten auf, wenn mehrere gleichzeitige Anfragen auf 
verschiedene Zeilen derselben DRAM Bank abgebildet werden, was eine hohe DRAM Cache 
Hitlatenz zur Folge hat (verglichen mit dem Fall, dass diese Anfragen auf dieselbe Zeile 
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abgebildet worden wären). Um die DRAM Cache Hitlatenz zu verringern schlägt diese 
Arbeit eine neuartige Richtlinie zur DRAM Zeilenpufferabbildung vor, welche die 
Zeilenpufferkonflikte durch Ausnutzen von Datenzugriffslokalität im Zeilenpuffer verringert. 

4. Um die DRAM Hitlatenz weiter zu verbessern schlägt diese Arbeit eine kleine SRAM 
Struktur mit geringer Latenz namens DRAM Tag-Cache (DTC) vor, welche die Tags der 
Zeilen enthält, auf die kürzlich im DRAM Cache zugegriffen wurde. Der DTC hat eine hohe 
Hitrate, da er die Datenzugriffslokalität nutzt, welche von der oben genannten 
vorgeschlagenen Richtlinie zur DRAM Zeilenpufferabbildung bereitgestellt wird. Er 
ermöglicht ein schnelles Nachschlagen des Tags, da für einen DTC Hit der Tag innerhalb von 
zwei Zyklen aus dem DTC gelesen werden kann. Im Gegensatz dazu werden bei derzeitigen 
DRAM Caches die Tags immer aus dem DRAM Cache gelesen, was eine hohe Tag-
Nachschlagelatenz von bis zu 41 Zyklen mit sich bringt. 

Zusammenfassend lässt sich feststellen, dass eine hohe DRAM Cache Hitlatenz, gestiegene 
Inter-Kern-Interferenz, gestiegene Inter-Kern-Cacheverdrängung und der große Bedarf von 
komplexen Applikationen effiziente Richtlinien notwendig machen, um die verschiedenen 
Anforderungen zur Verbesserung des Gesamtdurchsatzes zu erfüllen. Diese Arbeit behandelt das 
Design von DRAM Caches zur Reduzierung der DRAM Cache Hitlatenz, DRAM Cache 
Missrate und Hardwarekosten, wobei sowohl die Eigenschaften der Applikationen als auch die 
des DRAM durch neuartige DRAM- und applikationsbewusste Richtlinien berücksichtigt 
werden. Die vorgeschlagenen Richtlinien wurden für verschiedene Applikationen aus der 
SPEC2006 Benchmarksuite mit Hilfe eines zyklenakkuraten Mehrkernsimulators bewertet, der 
auf SimpleScalar basiert und modifiziert wurde, um DRAM in die Cachehierarchie zu 
integrieren. Die Kombination aus den vorgeschlagenen und sich ergänzenden DRAM- und 
applikationsbewussten Richtlinien verbessert die durchschnittliche Leistung von latenzsensitiven 
Applikationen um 47,1% und 35% für ein 8-Kern System verglichen mit [98] und [73], wobei 
ein um 51% geringerer Hardwareaufwand notwendig ist. 
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Chapter 1 Introduction 

Moore’s law [85] predicts that the number of transistors for a given chip area double every 18 
months. The exponential growth in transistor density driven by Moore’s law and advanced mi-
croarchitecture techniques such as pipelining [119] and out-of-order execution [125] has led to 
the significant increase in processor performance [12, 82] over the past several years. However, 
compared to processor performance, the memory performance [140] has increased at a slower 
pace as illustrated in Figure 1.1. This slower improvement in memory performance has led to the 
significant speed gap between processor and memory referred to as “Memory Bandwidth” prob-
lem [12, 60, 108, 131, 136, 144]. 
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Figure 1.1: Processor memory speed gap over the past 30 years [12] 

To alleviate the “Memory Bandwidth” problem, caches [29, 30] have been used to bridge the 
latency gap between high speed cores and slower main memory. The cache is a smaller and faster 
on-chip memory that stores copies of recently accessed data from frequently used memory loca-
tions to take advantage of the spatial and temporal locality of the applications. At first, processors 
used a single level of cache as used by Intel Pentium P5 processor in 1993. However, the widen-
ing gap between processor and memory speed has led to the evolution of multi-level cache hier-
archies [12, 59, 96]. For instance, the recent Intel Xeon E5-2690 processor chip [3], introduced in 
2012 employs three levels of cache hierarchy. In these hierarchies, fast and small L1 and L2 
caches are dedicated to each core and provide low hit latency. The larger Last-Level-Cache 
(LLC) is shared among all cores and provides low miss rate. 

1.1 Why On-chip DRAM cache? 

A recent trend in industry towards mitigating the “Memory Bandwidth” problem is to use a large 
on-chip SRAM Last-Level-Cache (LLC) by dedicating a larger die area for the LLC. Table 1.1 
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illustrates this observation showing SRAM LLC capacity over the past several years for Intel 
processor chips [1]. For example, Intel P5 processor introduced in 1993 was equipped with a 
small 16KB SRAM cache, the recent Intel Xeon E5-2690 processor, introduced in 2012, has em-
ployed a larger 20MB SRAM LLC. Larger high-speed SRAM cache improves the performance 
by sending fewer requests to the low-speed off-chip memory because it can contain the working 
set size (i.e. the amount of memory required to execute the program) of many applications. How-
ever, for a given cache capacity, SRAM cache significantly increases the system cost compared 
to DRAM cache in terms of larger die area because it provides lower density compared to 
DRAM cache [18, 54, 55]. 

Year Intel Processor Name # Cores On-Chip Caches LLC size (Cache Level) 

1993 Pentium P5 1 L1 16KB (L1) 

1995 Pentium Pro 6 1 L1, L2 256KB (L2) 

1997 Pentium II Klamath 1 L1, L2 512KB (L2) 

2001 Pentium III-S Tualatin 1 L1, L2 512KB (L2) 

2004 Pentium IV Prescott 1 L1,L2 2MB (L3) 

2006 Core 2 Duo Conroe 2 L1, L2 4MB (L2) 

2008 Xeon 7130M 2 L1,L2 8MB (L2) 

2010 Xeon 7130M 6 L1, L2, L3 12MB (L3) 

2012 Xeon E5-2690 8 L1, L2, L3 20MB (L3) 

Table 1.1: On-Chip SRAM LLC sizes over the past years for Intel Processor Chips [1] 

Despite continual increase in SRAM LLC size over the past years, the demand for cache 
space has always exceeded due to large working set sizes of complex applications [32]. Fig-
ure 1.2 illustrates this observation by showing LLC misses per thousand instructions for different 
LLC sizes and different SPEC2006 [5, 46] applications. It shows that the working set sizes of 
some applications (e.g. 462.libquantum, 471.omnetpp, and 473.astar.train) exceeds the available 
SRAM LLC size, even for the Intel Xeon E5-2690 processor chip with 20MB LLC. On the other 
hand, the applications with small working set sizes (e.g. 437.leslie3d.train) obtain significant 
benefits from a 20MB LLC, because the majority of cache requests will be satisfied in the LLC 
for these applications. 

Single-core processors [2, 7, 9, 25, 63, 111] have shown significant performance increase 
during the last decades which is mainly driven by transistor speed as well as by exploiting in-
struction level parallelism (ILP) [12, 82, 91]. However, the diminishing transistor-speed scaling 
and energy limits of single-core processors have led to the evolution of multi-core systems [2, 7, 
9, 14, 25, 26, 27, 31, 33, 63, 111] because it is less complex to design a chip with many small 
cores compared to a chip with a single larger core. For this reason, computing industry has an-
nounced multi-core processor chips that consist of several computing cores fabricated on a single 
chip in contrast to traditional single-core processor chips. 
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Figure 1.2: LLC misses per thousand instructions (LLC MPKI) for different SPEC2006 
[5] applications  

Multi-core systems provide improved performance compared to a single-core system through 
better resource utilization by replicating multiple cores on the chip. However, these multi-core 
systems place a high pressure on the SRAM LLC due to their limited cache capacity because it 
has to be shared among multiple applications. Recent trends likes Intel Tera-scale [127] and Til-
era TILE64 [9] multi-core processor chips show that the number of cores will likely continue to 
increase in the future. As future multi-core systems are expected to have a large number of cores 
(see Table 1.1), the aggregate working set size (i.e. the amount of memory required to execute all 
applications) on a multi-core system will increase as well. As a result, increased number of inser-
tions in the limited size SRAM LLC from multiple cores will cause inter-core cache eviction [15, 
16, 35, 51, 64, 65, 73, 75, 86, 98, 99, 138] where one core could evict useful data used by another 
core. Increased inter-core cache eviction for traditional on-chip SRAM LLC [77, 78, 102] in-
creases the number of off-chip memory accesses, which may degrade the performance due to 
limited off-chip memory bandwidth [12, 60, 108, 131, 136, 144]. 
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The total die area dedicated for the LLC is an important design parameter for multi-core chip 
vendors. Increasing the amount of cache capacity for the SRAM LLC can greatly improve the 
performance by increasing the cache hit rate and reducing the number of high-latency off-chip 
accesses. However, it increases the system cost in terms of larger die area due to high cost-per-bit 
of the SRAM cache [123]. DRAM cache offers a lower cost-per-bit because it provides 8 to 16 
times [54, 55] higher density compared to traditional SRAM caches. For a given cache capacity, 
DRAM cache significantly reduces the system cost in terms of smaller die area. As a result, it 
provides significantly higher cache capacity that leads to reduced off-chip accesses and reduced 
inter-core cache eviction compared to an area equivalent SRAM cache. For instance, the IBM 
POWER7 processor [7, 129] utilizes a 32MB on-chip DRAM as LLC between L1/L2 SRAM 
cache and main memory. 

1.1.1 Benefits of On-Chip DRAM cache 

Integrating on-chip DRAM cache in the cache hierarchy provides significant performance bene-
fits due to the following reasons: 

1. It provides eight times more bandwidth benefits compared to an off-chip memory [54, 55], 
because it provides wider bus widths through the use of shorter on-chip interconnects [34, 77, 
78] compared to conventional off-chip memory interfaces. 

2. It operates at a higher clock speed through the use of low latency on-chip interconnects [52, 
61, 62, 70] compared to off-chip memory. 

3. It provides more independent channels compared to off-chip memory [66] because off-chip 
memory cannot provide more channels due to limited pin bandwidth [60]. 

4. It provides 8 to 16 times capacity benefits compared to an area equivalent SRAM cache [11, 
54, 55, 75] due to its small cell size per bit. Thus, it reduces contention for the off-chip main 
memory due to its high capacity [77, 78, 102], hereby reducing off-chip memory accesses. 

5. It offers up to four times higher bandwidth compared to an SRAM cache [53] due to its capa-
bility to service multiple outstanding requests in parallel due to the large number of DRAM 
banks. 

1.2 Challenges in DRAM Cache Hierarchy 

On-chip DRAM cache is a promising alternative to SRAM cache, but its high access latency pro-
hibits its adoption as SRAM cache replacement. Neither SRAM nor DRAM cache alone can pro-
vide both highest capacity and fastest access for multi-core system, respectively. Therefore, state-
of-the-art SRAM/DRAM cache hierarchies [77, 78] exploit the latency benefits of fast SRAM 
cache and the capacity benefits of slower DRAM cache. 

The advantages of on-chip DRAM cache come at the cost of higher latency compared to 
SRAM cache (but lower latency compared to off-chip memory). If designed efficiently, DRAM 
cache could satisfy the high capacity needs of complex applications [32] while reducing the 
number of high latency off-chip memory accesses. Before summarizing the thesis contributions 
in Section 1.3, the following subsections explain the key challenges and drawbacks that are faced 
by state-of-the-art and that are addressed in this thesis: 
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1.2.1 Inefficient resource allocation 

When the DRAM cache is shared among multiple cores, the cores might interfere with each other 
in the DRAM cache controller causing inter-core interference that increases DRAM cache hit 
latency. State-of-the-art DRAM cache suffers from increased inter-core interference because it 
always allocates DRAM resources for both highly-reuse data (i.e. data that is reused in the near 
future) and zero-reuse data (i.e. data that is not reused before it gets evicted). Furthermore, they 
lead to inefficient DRAM cache bandwidth utilization and increased miss rate due to unnecessary 
resource allocation for zero-reuse data. 

1.2.2 Limited row buffer hit rate 

The DRAM sub-system is composed of DRAM banks which consist of rows and columns of 
memory cells called the DRAM array [68, 69, 88, 89, 141]. Each DRAM bank provides a row 
buffer (typically 2 to 8 KB) that consists of SRAM cells (detailed background of a DRAM bank 
is provided in Section 2.2.2) that operate faster than the DRAM array. Data in a DRAM bank can 
only be accessed after it is fetched to the row buffer. Any subsequent access to the same row (so-
called row buffer hit) will bypass the DRAM array access and the data is directly read from the 
row buffer. Such row buffer locality reduces the access latency compared to when actually ac-
cessing the DRAM array. State-of-the-art DRAM cache architectures [77, 78] do not exploit the 
full potential of row buffer locality and their disadvantageous row buffer hit rate leads to high 
DRAM cache access latencies due to reduced spatial locality because they map consecutive 
memory blocks to different row buffers. 

1.2.3 High tag lookup latency 

In state-of-the-art DRAM cache [77, 78], each DRAM row (2048 bytes) consists of one cache set 
which is divided into 29 64-byte data blocks (29 × 64 = 1856 bytes) and 3 tag blocks (3 × 64 = 
192 bytes). The tag lookup latency is a severe bottleneck due to the following reasons. First, it 
requires reading the tags (192 bytes) and data (64 bytes) for every DRAM cache access. The ex-
traneous DRAM bandwidth required for reading this large tag information results in higher tag 
lookup latency. Second, the structure and access methods for DRAM subsystem (detailed back-
ground of DRAM subsystem is provided in Section 2.2) incurs high tag lookup latency compared 
to SRAM cache tag lookup. 

1.2.4 High Hardware cost 

Recent state-of-the-art DRAM cache architectures [77, 78] invest noticeable hardware overhead 
for auxiliary structures to circumvent some of the above-mentioned drawbacks. For instance, 
they require 2MB SRAM storage for managing 128MB DRAM cache, which reduces the area 
advantages of DRAM cache. 

1.3 Thesis Contribution 

The major challenges in the design of an SRAM/DRAM cache hierarchy is to reduce the on-chip 
latency and off-chip memory accesses that majorly depends upon efficient utilization of DRAM 
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cache bandwidth and capacity, tag-store mechanism (i.e. where to store the tags of the DRAM 
cache and how to access them), efficient utilization of off-chip memory bandwidth, and DRAM 
cache row buffer hit rate. This thesis investigates state-of-the-art SRAM/DRAM cache hierar-
chies for multi-core systems and presents novel application-aware and DRAM-aware policies for 
efficiently managing SRAM/DRAM cache hierarchies, while addressing the above mentioned 
challenges. 

In particular, this thesis makes the following novel contributions: 

1. This thesis proposes an application-aware adaptive DRAM insertion policy (an insertion 
policy decides whether an incoming data when brought from off-chip memory should be in-
serted into cache or not). It adaptively selects from multiple insertion policies at runtime on a 
per-core basis depending on the monitored miss rate behavior of concurrently running appli-
cations. It provides efficient utilization of DRAM cache bandwidth that leads to improved 
performance via reduced inter-core interference in the DRAM cache controller.  

2. This thesis proposes a DRAM set balancing policy after analyzing that DRAM accesses are 
not evenly distributed across the sets of the DRAM cache, which leads to increased conflict 
misses via unbalanced set utilization. The proposed policy improves the DRAM capacity uti-
lization via reduced conflict misses, which leads to a reduced miss rate. 

3. To reduce the DRAM cache hit latency, this thesis proposes several DRAM row buffer 
mapping policies that improve the row buffer hit rate by exploiting data access locality in the 
row buffer. 

4. To reduce the tag lookup latency, this thesis proposes a small and low latency SRAM struc-
ture namely DRAM Tag-Cache that allows most DRAM accesses to be serviced at signifi-
cantly reduced access latency compared to when tags are accessed from the DRAM cache. 

Altogether, this thesis develops a combined SRAM/DRAM cache organization that integrates 
all of the proposed policies in a single unified framework. This includes modifying existing 
DRAM cache controller policies to incorporate the proposed row buffer mapping policies and 
DRAM Tag-Cache structures. This thesis also reduces the storage overhead required for DRAM 
cache management with minimal impact on the overall instruction throughput for our novel row 
buffer mapping policies. 

1.4 Thesis Outline 

The thesis is organized as follows: Chapter 2 presents the background for caches (especially the 
DRAM cache) and the recent related work on SRAM and DRAM caches. 

Chapter 3 provides a short overview of the proposed application and DRAM aware policies 
employed in this thesis. The detailed explanation and investigation of the proposed policies will 
later be presented in Chapter 5 and Chapter 6. 

Chapter 4 provides the details of the experimental setup used for the extensive presentation of 
the evaluation results using the proposed policies presented in Chapter 5, Chapter 6, and Chap-
ter 7. The simulation methodology for this work and state-of-the-art is presented, as well as the 
tools and benchmarks used in this thesis. 
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Chapter 5 presents two novel policies namely adaptive DRAM insertion policy and set bal-
ancing policy for miss rate reduction, detailing their operations and implementation. This chapter 
investigates the problems of state-of-the-art DRAM insertion policies in detail before presenting 
the proposed adaptive DRAM insertion policy. At first, a short overview of the different DRAM 
insertion probabilities is given, which is required to describe the proposed adaptive DRAM inser-
tion policy. Afterwards, the adaptive DRAM insertion policy that can select from multiple inser-
tion probabilities for each application is explained in detail. Subsequently, the online monitoring 
mechanism to select the suitable insertion probability is explained. Finally, the Set Balancing 
Policy (SB-Policy) is introduced to reduce conflict misses via an improved DRAM cache set uti-
lization. 

Chapter 6 presents the policies for latency reduction demonstrating novel DRAM row buffer 
mapping policies followed by an innovative Tag-Cache architecture. This chapter investigates the 
latency trade-offs in architecting the DRAM cache and analyzes the effects of different DRAM 
row buffer mapping policies on the overall performance. It analyzes the problems of state-of-the-
art DRAM row buffer mapping policies before presenting the proposed novel row buffer map-
ping policies. This chapter also presents the concept of a Tag-Cache – a small and low latency 
structure – that improves performance by reducing the average cache hit latency. Afterwards, it 
presents modifications to state-of-the-art DRAM cache controllers to further reduce the DRAM 
cache hit latency. 

The evaluation results for the adaptive DRAM insertion policy and set balancing policies are 
presented in Chapter 5 and the results for DRAM row mapping policy and Tag-Cache organiza-
tions are presented in Chapter 6. In addition, Chapter 7 presents an evaluation for the combined 
contributions. 

Chapter 8 concludes this thesis and provides an outlook to potential future work. 
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Chapter 2 Background and Related Work 

The primary focus of this thesis is to design and optimize DRAM cache based multi-core systems 
that cover both application and DRAM aware policies in order to improve the overall instruction 
throughput. This chapter presents the general background for caches followed by a short over-
view of SRAM caches. Afterwards, it introduces the organization of DRAM cache, detailing its 
implementation and access mechanisms. Finally, the most recent related work in the area of 
DRAM cache is reviewed. 

2.1 Cache Basics and Terminology 

Cache was first introduced in 1965 to bridge the latency gap between high speed cores and slow-
er main memory [132]. The cache [45, 48, 116, 132] is a smaller and faster on-chip memory that 
stores copies of recently accessed data from frequently used memory locations in order to take 
advantage of spatial and temporal locality of the applications [6, 45]. Figure 2.1 shows a typical 
logical cache organization. 

 

Figure 2.1: A logical cache organization 

The following defines some of the basic terms required to understand caches. 
 
Instruction Cache: An instruction cache only holds the instructions of a program and is used for 
issuing instructions to processor’s fetch unit at a faster rate. 
 
Data Cache: A data cache only holds the program’s data and is used for fetching data to proces-
sor’s execution unit at a faster rate. 
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Unified Cache: A unified cache contains both program’s instructions and data. 
 
Logical Cache organization: There are two basic types of logical cache organization namely  
private and shared cache organizations [17, 22, 35, 97] in a multi-core system.  
 
Private Cache organization: In the private cache organization, each core is provided with its 
private cache that holds only the recently accessed data requested by its core (called local core). 
 
Shared Cache organization: In a shared cache organization, the whole cache resources are 
shared by all of the cores providing capacity sharing among different applications. 
 
Block: ‘Block’ or a ‘memory block’ is a group of contiguous bytes in main memory (typical 
block size is 64 byte). A block is identified by bits of the memory address, namely block address 
as shown in Figure 2.1. 
 
Cache line: Cache line is the basic unit of cache storage [95, 115]. A cache line may contain a 
single block [77, 102, 112, 113] or multiple blocks [54, 55, 133]. Each cache line consists of a val-
id bit, dirty bit (not used in instruction caches), tag bits and the data as shown in Figure 2.1. 
 
Set: A set is a group of cache lines. A particular cache set is determined by the ‘Set #’ field of the 
main memory address as shown in Figure 2.1. 
 
Associativity (A): Typically, cache is composed of a single set or multiple sets [49, 116], where 
each set contains “A” cache lines, i.e. an associativity of A. Each block is mapped to a particular 
cache line of a particular cache set that is determined by the cache organization. 
 
Valid bit: The valid bit of a cache line indicates whether it contains valid (valid bit is 1) or inva-
lid (valid bit is 0) data. All the valid bits of each cache line are set to zero on power up or on a 
cache reset. Some systems set the valid bit to zero in some special situations. For instance, when 
a cache line is occupied by multiple cores in a multi-threaded environment, the valid bit of that 
cache line in the core’s private cache is set to zero after its modification by another core. This 
ensures that the cache lines in the core’s private cache are not stale. 
 
Dirty bit: The dirty bit of a cache line indicates whether the cache line has been modified by the 
processor (dirty bit is 1) or remained unchanged (dirty bit is 0) since it was fetched from main 
memory. 
 
Tag: Each cache line includes the data itself as well as the tag which is used to identify a particu-
lar block (belonging to a cache line) in a particular cache set. 
 
Cache lookup: When the core needs to read/write data from/to a location in memory, it first 
needs to identify the set (determined by the ‘Set #’ field; Figure 2.1) followed by tag checking to 
identify whether a copy of that block resides in the cache set or not. A cache lookup requires 
searching maximum of A valid cache lines (i.e. invalid cache lines are excluded) in the relevant 
set to identify a cache hit or a miss. 
 



2.1 Cache Basics and Terminology 

- 11 - 

Cache hit: Following a cache lookup, if the requested data is found in the cache (called cache 
hit), the core immediately performs a read or write operation on the data which is much faster 
than a memory read or write operation. 
 
Cache miss: Following a cache lookup, if the requested data is not found in the cache (called 
cache miss), then the data is brought from the next-level cache or main memory and inserted in 
the cache. 
 
Victim line: After a cache miss, a new cache line is allocated and a resident cache line called 
victim line is chosen for eviction. The victim line is the candidate for eviction to make room for 
an incoming cache line which is determined by the cache replacement policy (see Section 2.1.1). 
 
Cache replacement policy: A cache replacement policy decides which cache line should be 
evicted from the cache set when the set does not have enough space to accommodate a new cache 
line. A well-known replacement policy for cache is described in Section 2.1.1. 
 
Physical Cache organization: The physical cache organization decides how blocks are mapped 
to a particular set of a cache. There are three basic types of physical cache organizations [45, 49] 
namely direct-mapped, fully associative, and set associative cache organizations. 
 
Direct-mapped Cache: In a direct-mapped cache [10, 47, 57, 58], a cache set consists of a single 
cache line (i.e. A = 1; see Figure 2.1). On a cache lookup, a single cache line must be searched in 
a set to find whether the request results in a cache hit or a miss. The replacement policy for di-
rect-mapped cache is simple as only one cache line is checked for a lookup and the cache line 
residing in that particular cache set is the victim line to accommodate an incoming cache line. 
 
Fully Associative Cache: A fully associative cache consists of a single cache set (i.e. S = 1; see 
Figure 2.1) and all T cache lines are mapped to this single set. Fully associative cache has a com-
plex cache lookup operation because all T cache lines (see Figure 2.1) in the same set must be 
searched in parallel to identify a cache hit or a miss. 
 
Set Associative Cache: In a set-associative cache [50, 114, 120, 130], a cache consists of multi-
ple cache sets (i.e. S ≥ 2) where each set consists of multiple cache lines (i.e. A ≥ 2). A cache line 
is first mapped onto a cache set, then the cache line can be placed anywhere in the set. On a 
cache lookup, ‘A’ cache lines must be searched in a set to find whether the requested address re-
sults in a cache hit or a miss. 
 
Hit latency: Hit latency is the time elapsed to transfer the requested data (includes the time spent 
to identify a hit/miss) to the core after a cache hit. 
 
Miss latency: determines the time elapsed to transfer the requested data to the core after a cache 
miss. The miss latency is much higher than the hit latency due to the slower latency of the next 
cache level or the main memory. 
 
Miss rate: defined as the number of cache misses divided by total number of cache accesses. 
 
Fetch granularity: It is the unit of data transfer between cache hierarchy and main memory [95]. 
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2.1.1 Least Recently Used (LRU) Replacement Policy 

A cache replacement policy decides which cache line should be evicted from the cache set when 
the set does not have enough space to accommodate a new cache line. The two commonly used 
replacement policies are least recently used (LRU) [56, 90] and Pseudo-LRU replacement poli-
cies [111]. This section explains the traditional least recently used replacement policy [56, 90], 
which is employed in state-of-the-art DRAM cache [77, 78].  

 

Figure 2.2: Example illustrating LRU replacement policy for an 8-way associative cache 
(i.e. A = 8) (a) Insertion and eviction Policy (b) Promotion Policy 

The LRU replacement assigns priority values to each cache line in a cache set. The priority 
values of the cache line belonging to a particular set are modified after a cache hit or a miss. The 
LRU replacement policy can be divided into eviction, promotion and insertion policies described 
as follows: 

Eviction Policy: After a cache miss, one of the cache lines in a particular cache set is selected for 
eviction (i.e. victim line) to make room for an incoming cache line. The eviction policy evicts the 
cache line with the least priority of the relevant set. 
 
Insertion Policy: The insertion policy modifies the priority values of the cache lines belonging to 
a cache set after a cache miss to that particular set before insertion a new cache line. 
 
Promotion Policy: The promotion policy decides how the priority values of the cache lines be-
longing to a cache set should be modified after a cache hit to that particular set. 

To make room in a set for an incoming cache line, the traditional Least Recently Used (LRU) 
replacement policy evicts a cache line that is least recently used [56, 90]. Figure 2.2-(a) shows a 
logical organization (cache lines are shown from left to right in priority order) of a cache set with 
priority values assigned to each cache line. The cache line with the highest priority is called Most 
Recently Used (MRU) cache line, while the cache line with the least priority is called Least Re-
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cently Used (LRU) cache line. The LRU cache line (cache line H with a priority value of 1) is the 
candidate for eviction to make room for an incoming cache line on a cache miss. After a cache 
miss, the insertion policy modifies the priority values of the cache lines in the priority list. In the 
example shown in Figure 2.2-(a), the new cache line I is assigned a highest priority value of 8 
(i.e. cache line I becomes the MRU cache line) while the priority values of the remaining cache 
lines are decremented by one. The promotion policy enhances the priority value of a cache line 
on receiving a cache hit. In an LRU based cache, a hit causes the cache line to get the highest 
priority value. In the example shown in Figure 2.2-(b), cache line E (i.e. cache line E becomes 
the MRU cache line) gets the highest priority value of 8 after receiving a cache hit. 

2.1.2 Multi-level Cache Hierarchies 

There are two different design alternatives for organizing caches in multi-core systems: private 
and shared cache organizations [17, 22, 35, 97]. In the private cache organization, each core is 
provided with its private cache that holds only the recently accessed blocks requested by its core 
(called local core). The private cache organization provides inter-core performance isolation 
because the cores are not allowed to insert their requested cache lines into other core’s private 
caches. Inter-core performance isolation means that an application running on one core cannot 
hurt the performance of concurrently running applications on other cores. However, in a private 
cache organization, some of the private caches may be under-utilized, whereas others may be se-
verely over-utilized. In a shared cache organization, the whole cache resources are shared by all 
of the cores providing capacity sharing (to prevent under-utilization and over-utilization of cache 
resources) among different applications. 

 

Figure 2.3: A typical three-level multi-core cache hierarchy 

The performance of a cache depends on the miss rate and hit latency and there is a tradeoff 
between them when varying the cache size. On one hand, a larger cache has a reduced miss rate 
at the cost of increased hit latency (a larger SRAM structure has longer access latency). On the 
other hand, a smaller cache has a reduced hit latency at the cost of increased miss rate due to lim-
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Die stacking technology provides a way to integrate a large amount of DRAM layers with a 
conventional multi-core processor chip using vertical stacking (Figure 2.4-(a)) or horizontal/2.5D 
stacking on an interposer (Figure 2.4-(b)). The DRAM layers can either be used as main memory 
[54, 55, 74, 76, 139, 143] or DRAM caches [53, 75, 77, 78, 102, 112, 113]. Using DRAM layers 
as main memory [54, 55, 74, 76, 139, 143] demands extensive modification to the operating sys-
tem required for mapping pages to on-chip and off-chip memory. Using DRAM layers as DRAM 
caches retains software transparency, supports legacy software because it is not dependent on 
new versions of operating systems [77, 78]. Therefore, state-of-the-art [53, 75, 77, 78, 102, 112, 
113] employs stacked-DRAM layers as DRAM caches because it is not possible to stack the en-
tire system’s memory on top of multi-core processor chip due to large working set sizes of com-
plex applications [32]. 

2.2.2 DRAM Organization 

A typical DRAM organization is shown in Figure 2.5-(a). A DRAM subsystem consists of multi-
ple banks where each bank is arranged into rows and columns of DRAM cells, called the DRAM 
array. When a row is read from the DRAM array, its contents are destroyed which requires the 
data to be buffered. Therefore, each DRAM bank provides a row buffer (see Figure 2.5-b) that 
consists of SRAM cells and buffers one row of the DRAM bank (typically 2 to 8 KB). Data in a 
DRAM bank can only be accessed after it is fetched to the row buffer. Any subsequent accesses 
to the same row (row buffer hit) will bypass the DRAM array access and the data will be read 
from the row buffer directly. This concept is referred to as row buffer locality [69, 107]. A re-
quest to a DRAM subsystem is sent to the DRAM controller which is responsible to schedule the 
request to the DRAM bank as shown in Figure 2.5-(a). The DRAM controller consists of: 

1. Request Buffer that holds a queue of pending requests, 

2. DRAM Read/Write data buffers that holds the data that is read from/written to the 
DRAM bank, and 

3. Bank scheduler that schedules the request to the DRAM bank while prioritizing request 
to open rows to improve row buffer locality [69, 107]. 

An access to a DRAM bank involves multiple steps before the read/write operation is per-
formed as shown in Figure 2.5-(c). Assuming that the requested row is not already open (i.e. it is 
not in the row buffer), an activate (ACT) command is used to open the requested row in the row 
buffer by reading the data through the sense amplifier. When data is loaded in the row buffer 
(row access), a read (RD) or write (WR) command is required to access appropriate columns 
(typical column size is 64 byte) from the row buffer (column access). The access latency of a row 
buffer miss includes the time to write the contents of the previously opened row (tWR; required 
because reading a row from the DRAM array destroys the row’s contents which needs to be writ-
ten back into the DRAM array), time to activate the row (tRCD), and the column access time 
(tCAS). In case of a row buffer hit, only a read or write command is issued, which only requires 
column access time (tCAS). tCAS is the delay between the moment a DRAM cache controller 
requests the DRAM cache to access a particular column and the moment the data in the column 
is available on the DRAM bus (Figure 2.5-c). The DRAM access latency highly depends on 
whether an access leads to a row buffer hit or a row-buffer miss. It also depends upon the number 
of requests en-queued in the DRAM request buffer. 
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Figure 2.5: (a) DRAM organization (b) DRAM bank organization (c) Timing diagram for 
a DRAM bank access 

2.2.3 Tag-Store Mechanism 

A primary challenge in architecting a large DRAM cache is the design of the tag store which is 
required to identify a cache hit/miss. For instance, a 128MB DRAM cache can store 221 64-byte 
blocks (221 × 64 bytes = 134217728 bytes = 128MB), which results in a tag overhead of 12MB 
(221 × 6 bytes = 12582912 bytes = 12MB) assuming 6 bytes per tag entry [77]. Different design 
alternatives to architect the DRAM cache tag-store mechanism are discussed as follows: 

Tags-In-SRAM: This design approach stores the tags in a separate SRAM tag array which elim-
inates slow DRAM access if the SRAM tag array indicates a cache miss. For a larger DRAM 
cache, this approach results in a high die area due to high cost-per-bit of the SRAM tag array. 
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Tags-In-DRAM: To reduce the die area, state-of-the-art DRAM caches [36, 77, 78, 143] store 
the tags in the DRAM cache as well (called Tags-In-DRAM approach). They co-locate the tags 
and data for an entire cache set in the same row. The tags indicate the actual location of the data 
stored in the row. When a request is made to a particular DRAM cache row that is not present in 
the row buffer, it is loaded in the row buffer. The row buffer is reserved until both tag and data 
are read from it. This guarantees a row buffer hit for the data access after the tags are accessed 
for a hit. The Tags-In-DRAM approach mitigates the storage overhead limitations of the Tags-in-
SRAM approach due to low cost-per-bit of the DRAM array. However, it requires a slow DRAM 
access to identify a hit/miss before the request can be sent to off-chip main memory (in case of a 
miss) that results in increased miss latency. 

2.3 Important Application and DRAM Cache Characteristics 

Three important parameters that determines the performance of a DRAM cache based multi-core 
system are DRAM cache hit latency (D$-HL), miss rate (D$-MR) and miss latency (D$-ML). An 
ideal DRAM cache should simultaneously reduce all of them. This section describes important 
application characteristics and DRAM characteristics that have a significant impact on these met-
rics. 

2.3.1 Inter-core Cache Contention 

Inter-core cache contention in a shared cache occurs, when one core evicts a useful cache line 
from another core that is subsequently referenced by that core. State-of-the-art DRAM cache [77, 
78, 102] suffers from inter-core cache contention because they do not consider the cache access 
pattern of complex applications. Inter-core cache contention primarily occurs, when ‘thrashing 
applications’ run concurrently with ‘non-thrashing applications’. An applications is said to have 
thrashing behavior if it exhibits poor locality that generates a large number of zero-reuse cache 
lines (i.e. cache lines that are inserted but not used before they get evicted) [51, 137, 138]. 
Thrashing applications have a working set size greater than the available cache size and thus get 
negligible benefits from the available cache capacity because the cache is not efficiently utilized 
due to many zero-reuse cache lines. However, they have a high access rate relative to the access 
rate of non-thrashing applications. This means, they insert a large number of cache lines in the 
shared cache, and as a result, they quickly evict highly-reuse cache lines (i.e. cache line that is 
reused in the near future) from other applications. This increases the contention between thrash-
ing and non-thrashing applications. 

Figure 2.6 illustrates a cache servicing a mix of thrashing and non-thrashing applications with 
accesses (shown in capital letters J, K, L etc.) from a thrashing application. The cache initially 
contains some useful highly-reuse cache lines from non-thrashing applications (shown in grey 
boxes with letters A, C, E etc.). On a cache miss, an incoming cache line is inserted into the most 
recently used (MRU) position while the cache in the least recently used (LRU) position is the 
candidate for eviction to make room for the incoming cache line. As the thrashing application 
inserts more cache lines into the cache, the highly-reuse cache lines are evicted. Subsequent ac-
cesses to these highly-reuse cache lines (letters A, C, E etc.) will result in cache misses, hereby 
affecting performance. State-of-the-art DRAM cache [77, 78] always insert both zero-reuse and 
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highly-reuse cache lines in the DRAM cache, which increases inter-core cache contention and 
leads to an increased DRAM cache miss rate. 

 

Figure 2.6: Example showing inter-core cache contention between thrashing and non-
thrashing applications 

2.3.2 Inter-core DRAM Interference in the DRAM cache 

Simultaneous requests to the DRAM cache from multiple applications executing on a multi-core 
system can affect system performance in unpredictable ways and it can lead to inter-core DRAM 
interference among the cores, which results in poor system performance due to increased DRAM 
cache hit latency and DRAM cache miss rate. 

 

Figure 2.7: Example showing inter-core interference at the DRAM bank 

Figure 2.7 presents an example showing the hit latencies for cache requests from applications 
A and B running on two different cores with a DRAM cache. Application A has a high cache ac-
cess rate with thrashing behavior, while application B has a low cache access rate with non-
thrashing behavior. The highly-reuse requests from application B (B1 and B2) in Figure 2.7 ar-
rives at the DRAM controller (Figure 2.5-a) when the DRAM bank is scheduled to service the 
large number of zero-reuse requests from application A (A1, A2, A3, and A4). As a result, cache 
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requests from application B are significantly delayed by this so-called inter-core DRAM interfer-
ence which can degrade the performance of application B. Inter-core DRAM interference is pri-
marily due to unnecessary fill requests (i.e. data is filled into the cache for the first time) from 
thrashing applications. These unnecessary fill requests from thrashing applications may delay the 
critical (read or write) requests from non-thrashing applications. The contention between critical 
and unnecessary fill requests increases the amount of time needed to service critical requests, 
which increases the DRAM cache hit latency. State-of-the-art DRAM cache [77, 78, 102, 112, 
113, 133, 142] suffers from increased inter-core DRAM interference that leads to increased 
DRAM cache hit latency because they always insert data into DRAM cache, independent on 
whether it is highly-reuse or zero-reuse data. Furthermore, they incur increased DRAM cache 
miss rate due to inter-core cache contention between thrashing and non-thrashing applications. 

2.3.3 Impact of Associativity 

Associativity (A) is a trade-off between hit latency and miss rate [45, 49]. Each set in a high as-
sociative cache (i.e. larger A) contains more cache lines than a set in a small associative cache 
(i.e. smaller A). There is less chance of a conflict between two memory blocks in a high associa-
tive cache compared to a small associative cache. Thus, increasing associativity has the ad-
vantage of reducing conflict misses, which reduces the miss rate. However, the miss rate reduc-
tion for a high associative cache comes at the cost of increased hit latency due to high tag lookup 
latency because a large number of tag entries needs to be accessed to locate the requested data 
within the set to identify a cache hit or miss. 

2.3.4 Impact of Row Buffer Mapping 

Typically a DRAM cache is composed of multiple banks, where each bank is associated with a 
row buffer (as shown in Figure 2.8). Row buffer mapping is the method by which blocks from 
main memory are mapped to a particular set of a particular row of a particular bank (each bank is 
provided with a row buffer as shown in Figure 2.8). It has a significant effect on the row buffer 
hit rate, which directly affects the DRAM cache hit latency. The row buffer hit rate is high when 
more adjacent blocks are mapped to the same row buffer, as it exploits the programs’ locality that 
adjacent blocks are likely to be accessed in the near future. However, the primary disadvantage 
of mapping more adjacent blocks to the same row buffer is that it results in a reduced miss rate 
due to non-uniform set utilization (i.e. some sets are under-utilized while others are severely 
over-utilized). 

2.3.5 Impact of cache line size 

As described in Section 2.1, a cache line is the basic unit of cache storage. A large cache line size 
has a significant impact on the row buffer hit rate, hit latency, miss rate and main memory laten-
cy. A simple way to improve the row buffer hit rate is to increase the cache line size (i.e. a cache 
line now contain multiple blocks that are stored in the same row). This improvement occurs be-
cause a larger cache line size takes advantage of spatial locality by fetching multiple blocks (typ-
ical block size is 64 bytes) at the same time while only one block is requested by the core. The 
improvement in the row buffer hit rate comes at the cost of significantly increased memory 
bandwidth consumption that results in significantly higher main memory latency because multi-
ple 64 bytes blocks must be transferred through a limited size memory channel (typical memory 
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channel size is 8/16 bytes). A larger cache line size will reduce the DRAM cache miss rate for 
applications with high spatial locality if such pre-fetched blocks are subsequently accessed. 
However, a large cache line size will increase the DRAM cache miss rate for applications with 
low spatial locality because the pre-fetched blocks will never be reused, which leads to ineffi-
cient cache space utilization. 

2.4 State-of-the-art DRAM Cache 

Existing DRAM cache designs can be classified into two categories based on the cache line sizes: 
block-based and page-based. Block-based DRAM caches [75, 77, 78, 112, 102, 113] use a small 
cache line size (i.e. 64 byte cache line size). In contrast, page-based DRAM caches [54, 55, 112, 
133] use a large cache line size (i.e. 1KB/2KB cache line size). The summary and the distinction 
of the block and the page based DRAM cache designs is presented in Section 2.4.6. 

The concepts proposed in this thesis are compared with the most recently proposed block-
based designs namely LH-Cache (details in Section 2.4.1) and Alloy-Cache (details in Section 
2.4.3). The page-based DRAM cache designs are discussed in Section 2.4.4. This section as-
sumes 2KB row size and 64-byte cache line size for qualitative comparisons. 

2.4.1 LH-Cache [77, 78] 

Recent work, namely LH-Cache [77, 78], employs a block-based DRAM cache design. It stores 
the tags along with the cache lines of a set in the same row, as shown in Figure 2.8. To overcome 
the latency disadvantage of this Tags-In-DRAM approach (see Section 2.2.3), LH-Cache uses a 
low overhead SRAM-based structure named as MMap$ (MissMap cache) that accurately deter-
mines whether an access to the DRAM cache will be a hit or a miss (see Figure 2.8 and 
Figure 2.11). It incurs a storage overhead of only 2MB SRAM compared to the unacceptable 
high 12MB SRAM overhead that would be required for the Tags-in-SRAM approach (see Sec-
tion 2.2.3). Details on the internal functioning of the MMap$ are given in Section 2.4.2. 

The DRAM cache row organization for the LH-Cache is shown in Figure 2.8, where each 
DRAM row consists of one cache set. The DRAM cache row is divided into T tag blocks (T = 
3/6/12 for 2KB/4KB/8KB row size) and A cache lines (i.e. A = 29/58/116 for 2KB/4KB/8KB row 
size). After a hit is detected by the MMap$, the row buffer is reserved until both tag and cache 
line are read from it. This guarantees a row buffer hit for the cache line access after the tag blocks 
are accessed and thus it reduces the hit latency. However, LH-Cache must first read the T tag 
blocks before accessing the cache line, which increases the hit latency. 

Figure 2.9 shows the LH-Cache row buffer hit and miss latencies for a DRAM cache hit after 
a miss in the SRAM cache of the previous level is detected. LH-Cache requires 10 cycles to ac-
cess the MMap$. If the DRAM cache hit will also hit in the row buffer (i.e. the requested row is 
already open due to a previous request), then LH-Cache requires 18 cycles for CAS (to access the 
three tag blocks from a particular row buffer), 12 cycles to transfer the three tag blocks (192 
bytes) on the 16 bytes wide DRAM cache bus, 1 cycles for the tag check, 18 cycles for CAS (to 
access the cache line from the row buffer), and 4 cycles to transfer the cache line (64 bytes). If 
the requested row is not located in the row buffer (row buffer miss), it requires additional 18 cy-
cles for ACT (row activation) compared to the row buffer hit latency. The DRAM cache hit la-
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tency in LH-Cache is 63 cycles for a row buffer hit and 81 cycles for a row buffer miss as shown 
in Figure 2.9. 

 

Figure 2.8: LH-Cache Cache Organization with Tags-In-DRAM for 2KB row size [77, 78] 

 

Figure 2.9: LH-Cache (a) row buffer hit latency (b) row buffer miss latency for 2KB row 
size with T = 3 and A = 29 (see Section 4.2 for details of DRAM cache timing parameters) 

Figure 2.10 illustrates how LH-Cache maps blocks from main memory to the row buffers of 
banks and to the rows within a bank. The row buffer associated with a particular bank (indicated 
by RB-i field) and the DRAM cache row number within a bank (indicated by the “Row#” field) 
is determined by the main memory address. In LH-Cache, spatially close memory blocks are 
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mapped to different row buffers (e.g. memory blocks 0, 1, and 2 are mapped to RB-0, RB-1, and 
RB-2 respectively; memory block 64 is mapped to RB-0 again). Thus, the probability of tempo-
rally close accesses going to the same row is very low. This result in a reduced row buffer hit rate 
that leads to increased DRAM cache hit latency, because a row buffer miss has a higher latency 
than a row buffer hit. 

 

Figure 2.10: LH-Cache row buffer mapping policy 

2.4.2 MMap$ Organization 

The design of the MMap$ is illustrated in Figure 2.11 that precisely determines whether an ac-
cess to the DRAM cache will be a hit or a miss. If the MMap$ identifies a hit, the request is sent 
to the DRAM cache scheduler (see Figure 2.8). A MMap$ miss (i.e. data is not available in the 
DRAM cache) makes DRAM cache misses faster because the DRAM cache does not need to be 
accessed to determine a DRAM cache miss. MMap$ logically partitions the main memory into 
consecutive segments of constant size. A segment is the basic unit of MMap$ storage and is a 
group of contiguous blocks in main memory (typical segment size is 4KB byte). Each MMap$ 
entry represents a segment (this thesis uses a segment size of 4KB similar to state-of-the-art [77, 
78]) and tracks the presence of the blocks (this thesis uses a block size of 64 bytes similar to 
state-of-the-art [77, 78]) of that segment. Therefore, each MMap$ entry contains a tag (Seg-Tag; 
see “MMap$ tag-array” in Figure 2.11) corresponding to the address of the tracked memory 
segment and a bit vector (Seg-BV; see “MMap$ Data array”) with one bit per block that stores 
the hit/miss information of the block. If a Seg-BV entry is 1, then the corresponding block within 
the segment is present in the DRAM cache, otherwise it is absent. 

On a MMap$ access, the set index field (see Figure 2.11) of the requested physical address is 
used to index a MMap$ set in the MMap$ tag-array. All tag entries within that MMap$ set (an 
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associativity of 4 is shown in Figure 2.11) are then compared to the Seg-Tag field of the physical 
address to identify a segment hit/miss. A segment miss implies that the requested block is absent 
in the DRAM cache. Following a segment hit, the vector index field of the requested physical 
address is used to index the Seg-BV entry of the hit-segment to identify a block hit/miss. 

 

Figure 2.11: MMap$ for DRAM cache hit/miss detection [77, 78] 

When a block bi is evicted from the DRAM cache, then Seg-BV entry i (i.e. the ith bit of Seg-
BV) of the MMap$ segment entry S to which bi belongs is cleared. When a block bi is inserted 
into the DRAM cache, then Seg-BV entry i of segment entry S needs to be set. If no segment en-
try for S exists in the MMap$, a new entry is allocated for it and only its Seg-BV entry i is set. To 
allocate a new MMap$ entry, a victim segment is chosen using the least recently used (LRU) pol-
icy. If some Seg-BV entries of the victim segment S were set (i.e. some of its blocks are present in 
the DRAM cache), then all corresponding blocks must be evicted from the DRAM cache. This 
guarantees that the MMap$ always accurately determines whether an access to a DRAM cache 
will be a hit or a miss. 

2.4.3 Alloy-Cache [102] 

For a DRAM cache access, LH-Cache reads T tag blocks (requires 192 bytes for 2KB row size; 
i.e. T = 3) and one cache line (64 bytes) through a limited size DRAM channel (16 byte), which 
leads to increased DRAM cache hit latency for LH-Cache as shown in Figure 2.9. To reduce the 
DRAM cache hit latency, the Alloy-Cache [102] unifies tag and data of a cache line into a single 
entity called TAD (Tag And Data) as shown in Figure 2.12. Each TAD entry (8 bytes for the tags 
and 64 bytes for cache line) represents one set of the direct mapped cache (i.e. A = 1). 

Alloy-Cache reduces the DRAM cache hit latency because for each DRAM cache access, it 
reads 72 bytes (incurs bus latency of 5 clock cycles for transferring 72 bytes on a 16 byte chan-
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nel) instead of reading 256 bytes (192 bytes for the tags and 64 bytes for cache line) required for 
LH-Cache for 2KB row size. Furthermore, Alloy-Cache requires a single DRAM cache access to 
get the unified TAD entry instead of having separate accesses required for tags and cache line as 
required for LH-Cache. As a result, Alloy-Cache significantly reduces the DRAM cache hit la-
tency compared to the LH-Cache. Figure 2.13 shows latencies for a row buffer hit and miss in 
Alloy-Cache. The row buffer hit latency is 34 clock cycles and the row buffer miss latency is 52 
clock cycles (18 additional cycles ACT) as illustrated in Figure 2.13. Despite the latency ad-
vantage, Alloy-Cache incurs increased DRAM cache miss rate and DRAM cache miss latency 
compared to LH-Cache due to increased conflict misses, because it employs a direct mapped 
cache organization. The increased conflict misses result in increased contention in the memory 
controller, which leads to increased DRAM cache miss latency compared to LH-Cache. 

One Row containing 28 sets with 1 way of data

28 TAD entries [28 x 72-byte TAD = 2016 bytes]

TAG + LINE OUT72 bytes

One Cache Set
LINE(64B)

TAG (8B)

TAG-AND-DATA (TAD)

Unused (32 bytes)

 

Figure 2.12: DRAM cache row organization used by Alloy-Cache for 2KB row size 

Alloy-cache maps 28 consecutive memory blocks to the same DRAM row buffer (e.g. 
memory block-0, block-1, …, block-27 are mapped to RB-0). Thus, the probability of temporally 
close accesses going to the same row is very high in Alloy-Cache. This results in an increased 
row buffer hit rate compared to LH-Cache, which further reduces DRAM cache hit latency. 

 

Figure 2.13: Alloy-Cache (a) row buffer hit latency (b) row buffer miss latency  
(see Section 4.2 for details of DRAM cache timing parameters) 

2.4.4 Further Related Work in block-based DRAM Caches 

The work in [75] investigated ways of reducing the DRAM cache miss rate by organizing 
each DRAM cache set as multiple queue structures designed for a 4-core system and 64-way as-
sociative DRAM Last-Level-Cache. However, that work is impractical for larger number of cores 
and smaller associative DRAM cache, because for each DRAM cache set it requires maintaining 
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N + 2 queues (one per core and two shared queues) for an N-core system. In addition, they stores 
the tags in an SRAM array that incurs significant area overhead for larger DRAM cache. 

Ref. [112] proposes a self-balancing dispatch (SBD) mechanism that adaptively dispatches 
requests either to DRAM cache or to main memory, depending on the instantaneous queuing de-
lays at the DRAM cache and main memory. 

Ref. [113] focuses on improving the reliability by presenting a general approach for enabling 
high-level as well as configurable levels of reliability, availability and serviceability for die-
stacked DRAM caches. 

2.4.5 Page-based DRAM Caches 

Page-based DRAM caches [54, 55, 133] use a large cache line (i.e. 1KB/2KB cache line) and a 
large fetch granularity (i.e. 1KB/2KB). Note that cache line is the basic unit of cache storage and 
fetch granularity is the unit of data transfer between cache hierarchy and main memory. The pri-
mary advantage of large cache line size/fetch granularity is that they exploit programs’ spatial 
locality, which results in a reduced hit latency via improved row buffer hit rate. Unfortunately, 
the larger fetch granularity comes at the cost of significant memory bandwidth consumption due 
to excessive prefetching that results in a significantly high main memory latency. Furthermore, it 
exacerbates the performance of memory intensive applications with limited data reuse and low 
spatial locality. Though the large cache line size may improve the performance of less memory 
intensive applications with high spatial locality, it comes at the cost of an increased miss rate for 
memory intensive applications with reduced spatial locality. Another drawback of a large cache 
line size is that it suffers from inefficient resource allocation because not all blocks within the 
cache line are used prior to page evictions, which leads to reduced efficiency. Also, the cache 
miss rates in multi-core systems for large cache line size generally limits the performance due to 
reduced spatial locality and false sharing [126]. 

 

Figure 2.14: Sector organization with 4 blocks per sector 

Ref. [142] proposes a sector cache organization to reduce the tag storage overhead for a large 
DRAM cache. The basic unit of storage in [142] is defined as a sector, which is divided into mul-
tiple blocks as shown in Figure 2.14. Each sector is associated with a tag (Sector-Tag) to deter-
mine whether a particular sector is present in the DRAM cache (sector hit) or absent (sector 
miss). Each block bi of a sector is provided with a presence bit Pi and thus only some of the 
blocks of a sector need to be present. When a block bi is inserted into the DRAM cache, then Pi 
of the sector entry S to which bi belongs is set. If no entry for S exists in the DRAM cache, a new 
entry is allocated for it and only the presence bit of the requested block bi (i.e. Pi) is set. To allo-
cate a new sector entry, a victim sector is chosen using the least recently used (LRU) policy. If 
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some Di bits (dirty bit associated with block bi) of the victim segment S were set, then the dirty 
blocks from the victim segment must be written back to main memory. 

Ref. [142] employs a large sector size (i.e. 256 bytes/512 bytes) together with a small block 
size (i.e. 64 bytes). In contrast to traditional page-based designs [54, 55, 133], it fetches data at 
small granularity (i.e. 64 bytes) in order to mitigate the excessive prefetching problem of page-
based designs. It proposes to store the sector tags along with the blocks and uses hit/miss predic-
tor to predict whether the requested block resides in DRAM cache or not. Each DRAM row can 
hold blocks from K distinct sectors (typical value of K=4) in the physical memory. For the core 
size (8-cores) and row size (2KB) considered in this thesis, this results in a tag overhead of 51 
bytes per row (K=4 and sector size = 512 bytes). 

The sector cache organization [142] has the following major disadvantages compared to the 
recently proposed block-based LH-Cache design [77, 78]. First, it suffers from inefficient re-
source allocation due to internal fragmentation because it reserves the space for the entire sector, 
while some of the blocks belonging to a sector may not be referenced before sector eviction. 
Second, reserving one 64 byte column (each 2KB DRAM row contains 32 64-byte columns) for 
the sector tags (i.e. they require 51 bytes for the tags) will make the other 31 columns available 
for blocks (of a sector). This requires non-trivial changes to row mapping because it requires the 
sector size to be power of 2. Third, it will incur a significantly high DRAM cache miss rate com-
pared to the LH-Cache because it allows blocks from 4 distinct sectors to be mapped to a particu-
lar row. In contrast, LH-Cache allows 29 distinct blocks to be mapped to a particular row (i.e. 
they may belong to 29 distinct sectors). 

2.4.6 Distinction with the state-of-the-art 

There has been a considerable amount of research on DRAM caches [54, 55, 77, 78, 102, 112, 
113, 133, 142] and this thesis compares the proposed policies with the most recent state-of-the-
art DRAM cache designs [77, 78, 102]. Table 2.1 provides a comparisons between different 
DRAM cache designs with respect to the most important parameters (DRAM cache hit latency, 
DRAM cache miss rate, and main memory latency), application and DRAM characteristics. An 
ideal DRAM cache should simultaneously reduce the DRAM cache hit latency (depends upon 
row buffer hit rate, associativity and tag lookup latency), DRAM cache miss rate (depends upon 
associativity, inter-core cache contention and inter-core DRAM interference), and main memory 
latency (depends upon DRAM cache miss rate and memory bandwidth consumption). At the 
same time, it should provide efficient resource allocation with a low implementation overhead. 

The DRAM cache proposed in this thesis employs a block based design that provides a low-
overhead tag-store mechanism (i.e. storing tags in DRAM cache) and reduced conflict misses 
(via high associativity). It retains the benefits of block-based designs [77, 78, 102, 112, 113] by 
employing small cache line size (to mitigate internal fragmentation compared to sector cache or-
ganization [142]) and small fetch granularity (to reduce memory bandwidth consumption com-
pared to page-based designs). For the rest of this thesis, the terms ‘cache line’, and ‘block’ are 
used interchangeably because this thesis employs block based design for all cache levels. Ta-
ble 2.2 illustrates an overview of the proposed policies that mitigates the following major draw-
backs of LH-Cache [77, 78, 112] in specific and block-based designs [77, 78, 102, 112, 113] in 
general. 
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 [77, 112] [102, 
113]

[142] [54, 55, 133] Proposed

Cache line size Block Block Sector Page Block 

Fetch granularity Block Block Block Page Block 

Associativity (A) 
High  
(29) 

Low  
(1) 

Medium
(4) 

Medium 
(16) 

High 
(30) 

Internal Fragmentation No No Yes No No 

Requires operating system modification No No No Yes No 

Low overhead Tag-store     

Reduced inter-core cache contention     

Reduced inter-core DRAM interference     

High row buffer hit rate     

Reduced memory bandwidth  
consumption 

    

Low DRAM cache miss rate /*  /* /* 

Low DRAM cache hit latency     

Low memory latency     

Table 2.1: Comparisons between different DRAM cache designs for a 2KB row size  
*Miss ratio depends upon cache access pattern of concurrently running applications on a 

multi-core system 

DRAM Last-Level-Cache Polices Advantages 

Adaptive DRAM Insertion Policy (Chapter 5) 
reduces inter-core cache contention 
reduces inter-core DRAM interference 

Set Balancing Policy (Chapter 5) provides uniform access distribution 

Row Buffer Mapping Policy (Chapter 6) improves row buffer hit rate 

DRAM Tag-Cache (Chapter 6) reduces tag lookup latency 

Table 2.2: Advantages of the proposed Policies 

Existing block-based designs suffers from increased inter-core cache contention that leads to 
increased DRAM cache miss rate via increased conflict misses. They lead to increased DRAM 
cache hit latency via increased inter-core DRAM interference. They exhibit a non-uniform distri-
bution of accesses across different DRAM cache sets that leads to increased DRAM cache miss 
rate. LH-Cache has a reduced row buffer hit rate due to reduced spatial locality that leads to in-
creased DRAM cache hit latency. LH-cache further worsens DRAM cache hit latency due to 
high tag lookup latency because it always reads the tags from the DRAM cache. 

To mitigate inter-core cache contention and inter-core DRAM interference, this thesis pro-
poses an adaptive DRAM insertion policy (details in Chapter 5) that is flexible enough to be ap-
plied to any DRAM cache organization and replacement policy. To reduce conflict misses via 
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improved set utilization, this thesis proposes a set-balancing policy (details in Chapter 5) that 
provides a uniform access distribution across DRAM cache sets. To reduce hit latency via an im-
proved row buffer hit rate, this thesis proposes a DRAM row buffer mapping policy (details in 
Chapter 6) that exploits data access locality in the row buffer with a slight increase in miss rate. 
To further reduce the hit latency via reduced tag lookup latency, this thesis proposes a low-
latency SRAM structure namely DRAM Tag-Cache (details in Chapter 6) that can quickly de-
termine whether an access to the DRAM cache will be a hit or a miss. A short overview of the 
proposed policies is presented in Chapter 3. 
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Chapter 3 Overview of Proposed Policies 

As the industry continues to increase the number of cores, multi-level caches [8, 45, 96, 128] are 
increasingly becoming the trend of multi-core systems in order to mitigate the widening gap be-
tween processor and memory speed [12, 60, 108, 131, 136, 144]. Furthermore, the advent of on-
chip DRAM caches (thanks to die stacking technologies) has led to the evolution of multi-level 
SRAM/DRAM cache hierarchies comprised of increasing cache sizes and latency at each level. 
State-of-the-art multi-level SRAM/DRAM cache hierarchies are equipped with low latency 
smaller caches backed up by high latency larger caches. These hierarchies contain fast and small 
private L1 and L2 caches to satisfy the core’s need in terms of low latency. On the other hand, 
they employ larger L3 SRAM and L4 DRAM caches, which are shared among all cores to reduce 
high latency off-chip memory accesses. 

 

Figure 3.1: Proposed SRAM/DRAM cache hierarchy for an N-core system 

Multi-core systems present new challenges in the design of an ideal cache hierarchy that not 
only reduces the miss rate and hit latency for each cache level, but also reduces the main memory 
latency. Note that the main memory latency can be reduced by decreasing the number of requests 
to the main memory which in turn reduces the average waiting latency per request. This chapter 



Chapter 3 Overview of Proposed Policies 

- 30 - 

provides a short overview of the proposed cache policies applied on top of L4 DRAM cache that 
substantially improve the performance via reduced L4 hit latency and L4 miss rate compared to 
state-of-the-art [77, 78, 102]. Figure 3.1 shows the organization of the proposed SRAM/DRAM 
cache organization, highlighting the proposed novel contributions. Similar to state-of-the-art [36, 
38, 77, 78], this thesis stores the tags in the DRAM cache and employ a MMap$ (details in Sec-
tion 2.4.1) to identify DRAM cache hit/miss. The novel contributions of the proposed 
SRAM/DRAM cache organization are highlighted in Figure 3.1 and outlined in the following. 

3.1 Adaptive DRAM Insertion Policy 

On a cache miss, state-of-the-art policies always insert data into the DRAM cache, independent 
of whether it is highly-reuse (i.e. data that is reused in the near future) or zero-reuse data (i.e. da-
ta that is never reused before it gets evicted). This leads to inefficient DRAM resource allocation. 
To address this problem, this thesis presents an adaptive DRAM insertion policy (ADIP) that ex-
ploits the fact that some applications (so-called thrashing application) often fetch zero-reuse data 
that does not contribute to cache hits because it is not accessed again. The proposed policy is 
based on the idea of restricting the number of zero-reuse data insertions from thrashing applica-
tions into DRAM cache and it decides at runtime whether data that is fetched from off-chip 
memory shall be inserted into DRAM cache or not. Figure 3.2 shows the high level overview of 
the adaptive DRAM insertion policy for an SRAM/DRAM cache hierarchy. After an L4 DRAM 
cache miss, data is brought from memory and inserted into L1, L2, and L3 SRAM caches. The 
data may or may not be inserted additionally in L4 DRAM cache, which is determined by the 
proposed adaptive DRAM insertion policy. Existing DRAM cache hierarchies [77, 78, 102, 143] 
always fills the data into L1, L2, L3 and L4 DRAM caches. 

 

Figure 3.2: High level view of the proposed Adaptive DRAM Insertion Policy 
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The proposed ADIP uses a low overhead Selective Probabilistic Filter which provides an ef-
ficient filtering mechanism that filters out the majority of zero-reuse data but places the majority 
of highly-reuse data into DRAM cache (details in Section 5.2). The proposed ADIP reduces con-
tention between highly-reuse and zero-reuse data which leads to reduced DRAM cache access 
latency via improved DRAM bandwidth utilization. It provides efficient resource management 
that leads to reduced miss rate. ADIP first identifies the thrashing applications by monitoring a 
few sets (so-called sampled sets) of the DRAM cache to track the runtime miss rate information 
of concurrently running applications. Then, it reduces the insertion rate into DRAM cache from 
thrashing applications to reduce their effect on other applications. The insertion policy adaptively 
switches at runtime, depending on monitored application characteristics. That provides perfor-
mance isolation between thrashing and other applications. In contrast, state-of-the-art insertion 
policies always insert the data from thrashing and other applications in the DRAM cache, which 
leads to increased miss rate due to contention between thrashing and other applications. 

 

Figure 3.3: High level view of the proposed Set balancing policy 

3.2 Set Balancing Policy 

Typically, a DRAM cache is composed of multiple banks, where each bank consists of multiple 
rows as shown in Figure 3.3. Each row may contain a single set [77, 78] or multiple sets [102], 
where each set contains “A” cache lines, i.e. an associativity of A. State-of-the-art DRAM cache 
uses the least significant bits of the memory block address to select the cache set number and 
bank number as shown in Figure 3.4. On the other hand, they use the higher order bits of the 
memory block address to select the DRAM cache row number. These bits exhibit highly non-
uniform distribution compared to lower order address bits. Using them to select the row number 
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leads to inefficient utilization of the DRAM cache because some of the DRAM cache rows may 
be under-utilized, whereas others may be severely over-utilized. As a result, over-utilized rows 
incur large miss rates due to increased conflict misses compared to under-utilized rows, which 
may degrade the performance. 

To reduce conflict misses via improved row utilization, this thesis proposes a DRAM set bal-
ancing policy and integrates it into the MMap$ [77, 78] as shown in Figure 3.3. The proposed set 
balancing policy improves the DRAM cache resource utilization by assigning the DRAM cache 
row number to every newly requested MMap$ segments (details in Section 2.4.1) in a round rob-
in way. The primary difference is that state-of-the-art DRAM cache statically determines the 
DRAM row number based on the memory block address (Figure 3.4) while the proposed set bal-
ancing policy determines it dynamically in a round robin manner based on the access sequence. 
For each new allocated MMap$ segment entry (after a segment miss) a new row number is gen-
erated and stored in the MMap$ as part of the segment entry (details in Section 5.3.1). 

 

Figure 3.4: DRAM cache row mapping without set balancing 

3.3 DRAM Row Buffer Mapping Policy 

An important factor that can impact the latency and the miss rate of a DRAM cache is the DRAM 
row buffer mapping policy. DRAM Row Buffer mapping is the method by which memory blocks 
are mapped to a row buffer of a particular DRAM cache bank. The mapping of the memory block 
address into a DRAM cache row buffer has a significant effect on the system throughput as it di-
rectly affects the row buffer hit rate (effects DRAM cache access latency) and set-level parallel-
ism (effects miss rate). The task of an efficient DRAM row buffer mapping policy is to minimize 
the probability of row buffer conflicts in temporally adjacent cache requests to improve row 
buffer hit rate without significantly degrading the miss rate. This thesis demonstrates that the 
state-of-the-art DRAM row buffer mapping policy namely LH-Cache [77, 78] has a reduced row 
buffer hit rate due to reduced temporal locality because it maps consecutive memory blocks to 
different row buffers. To address this problem, this thesis presents a novel row buffer mapping 
policy that maps four consecutive memory blocks to the same row buffer so that spatially close 
accesses hit in the row buffer. Thus, it reduces the DRAM cache hit latency via a significantly 
improved row buffer hit rate. The proposed row mapping policy slightly increases the DRAM 
cache miss rate due to a reduced set-level-parallelism compared to LH-Cache, but that is com-
pensated by a significant reduction in DRAM cache hit latency. 
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3.4 Tag Cache Design 

When the tags are stored in the cache, they need to be accessed quickly to identify the location of 
the data. A major performance bottleneck in state-of-the-art DRAM caches [77, 78] is their high 
tag lookup latency because they access the tags from the slower DRAM cache after MMap$ ac-
cess. Note that MMap$ consists of bits indicating the presence or absence of data, which exactly 
determines an L4 hit/miss. But the MMap$ cannot not identify the actual location of data in a 
DRAM cache set because it does not store the tag information, which would require huge storage 
overhead. To reduce the tag lookup latency, this thesis proposes a small and low latency SRAM 
structure namely DRAM Tag Cache (DTC) that holds the tags of the rows that were recently ac-
cessed in the DRAM cache. The proposed DTC has a high hit rate because it exploits temporal 
locality provided by the proposed DRAM row buffer mapping policy (mentioned in Section 3.3). 
It provides fast tag lookup, because for a DTC hit it directly reads the tags from the low latency 
DTC in two cycles (see Figure 3.1 and Figure 3.5; one cycle required to identify DTC hit/miss 
and one cycle required to identify L4 hit/miss). The tag lookup latency is reduced for a DTC hit, 
because it does not requires MMap$ and DRAM cache access. In contrast, state-of-the-art 
DRAM cache always access MMap$ followed by reading the tags from the DRAM cache, which 
incurs high tag lookup latencies of up to 41 cycles (see Figure 2.9-a). 

 

Figure 3.5: Steps involved in L4 DRAM tag lookup after an L3 SRAM miss 

State-of-the-art SRAM/DRAM cache hierarchies employ a large L3 SRAM cache that ac-
commodates a large portion of the application’s working set size via high storage capacity, which 
in turn improves the overall performance via reduced L4 DRAM access rate. However, the in-
creased capacity of a large L3 SRAM cache comes at the cost of higher tag latency due to wire 
delays between the large tag array and L3 SRAM controller [87, 124]. Therefore, reading tags 
from a large L3 SRAM tag array results in a high latency for L3 requests. Similar to the DTC, 
this thesis also proposes a small and low latency SRAM Tag Cache (STC) that holds the tags of 
the recently accessed sets in the L3 SRAM cache. The proposed STC exploits the spatial locality 
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by prefetching tags from adjacent cache sets. The STC is accessed faster (2 cycles) than a large 
L3 SRAM tag array (10 cycles). An STC hit quickly identifies L3 hit/miss to determine whether 
the request should be sent to the L3 SRAM data array (i.e. L3 hit) or to the next level cache (i.e. 
L4 DRAM cache for an L3 miss). This thesis further describes how a state-of-the-art SRAM tag 
array is modified to support SRAM Tag-Cache design (details in Section 6.5.5). 

3.5 Super-block MMap$ (SB-MMap$) 

State-of-the-art DRAM cache utilizes an SRAM structure namely MissMap cache (MMap$) [77, 
78] that provides DRAM hit/miss information (details in Section 2.4.1) by maintaining presence 
bits (indicates whether a block is present in DRAM cache or not) at the block level. The primary 
advantage of MMap$ is that it does not require DRAM access for a MMap$ block miss (i.e. 
block is not present in the DRAM cache), before the request is sent to main memory. However, it 
requires a reasonably large amount of SRAM storage (e.g. 2MB for 128MB DRAM cache) to 
store block-level presence bits. 

The proposed row buffer mapping policy (see Section 3.3) along with the DRAM Tag-Cache 
allows reducing the size of the MMap$. To reduce the storage overhead, this thesis proposes to 
use a single bit to store presence information about multiple blocks (instead of a single block) 
called a super-block. A super-block comprises a power of two number of blocks. The presence 
bit of a super-block indicates whether any (one or more) of its associated blocks are present in 
the DRAM cache or not. The drawback of the proposed super-block MMap$ (SB-MMap$) is that 
it exacerbates DRAM cache hit/miss prediction accuracy. The reason is that SB-MMap$ may 
wrongly predict a DRAM hit (i.e. presence bit associated with a super-block is set while the 
block is not present in DRAM cache) while it turns out to be a DRAM miss. However, the pre-
diction accuracy is significantly improved via a high DTC hit rate (i.e. DTC provides the block 
hit/miss information instead of SB-MMap$) provided by the proposed row buffer mapping poli-
cy. Note that state-of-the-art DRAM row buffer mapping policy [77, 78] provides a reduced DTC 
hit rate due to reduced spatial locality (details in Section 6.7.3), which leads to reduced perfor-
mance via poor DRAM cache hit/miss prediction accuracy when SB-MMap$ is incorporated in 
the cache hierarchy. This thesis further analyzes the effect of different super-block sizes (small 
vs. large) on the DRAM cache hit/miss prediction accuracy and the overall performance. 

3.6 Summary 

High DRAM cache hit latencies, increased inter-application contention (between thrashing and 
non-thrashing applications), and the increased working set sizes of complex applications necessi-
tates efficient policies in order to satisfy the diverse requirements to improve the overall through-
put. This work addresses how to design DRAM caches to reduce DRAM cache hit latency, 
DRAM cache miss rate and hardware cost at the same time, while taking into account application 
and DRAM characteristics. It presents novel DRAM and application aware policies for on-chip 
DRAM caches that simultaneously improve the DRAM hit latency and DRAM cache miss rate. 

Table 3.1 illustrates an overview of the proposed policies whose details can be found in 
Chapter 5 and Chapter 6. Chapter 5 presents the policies for miss rate reduction, while Chapter 6 
provides the details of policies for latency reduction. Note that each of the proposed policies are 
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complementary. Therefore, they are evaluated independently in Chapter 5 and Chapter 6. Addi-
tionally, this thesis evaluates and analyzes the combinations of the selected policies in Chapter 7. 
All evaluations in Chapters 5 to 7 are based on the identical experimental setup, and thus the set-
up is briefly explained upfront in Chapter 4. The tag lookup latency for a DTC hit with set bal-
ancing policy is 12 cycles (2 cycles for a DTC hit and 10 cycles for the MMap$ access required 
to get the DRAM row number). In contrast, the tag lookup for a DTC hit without set balancing 
policy is 2 cycles (i.e. it does not require MMap$ access to get the DRAM row number as it is 
determined by the memory block address). The latency benefits via incorporating DTC out-
weighs the miss rate benefits from the set balancing policy. For this reason, the set balancing pol-
icy is not included in Chapter 7 with the DRAM Tag Cache (DTC).  

The proposed policies are evaluated for various applications from SPEC2006 [5] using a 
modified version of SimpleScalar. The combination of the proposed DRAM-aware and applica-
tion-aware complementary policies work synergistically, which improves the average perfor-
mance by 30.4% and 23.9% compared to [77, 78] and [102] respectively for an 8-core system 
while requiring 51% less hardware cost (i.e. requiring ~1MB SRAM storage overhead instead of 
~2MB). 

DRAM Last-Level-Cache Polices Advantages 
Reduces  

Hit  
Latency 

Reduces
Miss 
Rate 

Adaptive DRAM Insertion Policy 
(Chapter 5) 

1. reduces inter-core interference Yes Yes 

Set Balancing Policy (Chapter 5) 
2. provides uniform access distribu-
tion 

No Yes

Row Buffer Mapping Policy (Chapter 6) 3. improves row buffer hit rate Yes No 

Tag-Cache (SRAM and DRAM Tag-Cache; 
Chapter 6) 

4. reduces tag lookup latency Yes No

Super-block MMap$ 
(SB-MMap$; Chapter 6) 

5. Reduces storage overhead N/A N/A 

Combination of selected policies (Chapter 7) 1, 3, 4, and 5 Yes Yes 

Table 3.1: Overview of the proposed Policies 
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Chapter 4 Experimental Setup 

Chapter 5 and Chapter 6 present policies for miss rate and latency reduction respectively, detail-
ing their operations and implementation with embedded evaluation. Chapter 7 presents an eval-
uation for the combined contributions presented in Chapter 5 and Chapter 6. This thesis employs 
the same experimental setup for presenting the evaluation results in Chapters 5 to 7. Therefore, 
this chapter presents a brief overview of the simulator infrastructure as well as the description of 
the benchmarks and performance metrics used for evaluation. 

 

Figure 4.1: Overview of the simulator based on Zesto simulator [79] 
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4.1 Simulation Infrastructure 

This thesis uses the x86 version of the SimpleScalar (Zesto) [79] simulator for evaluation. The 
Zesto simulator is built on top of the SimpleScalar toolset [13], which provides a cycle-accurate 
processor and detailed cache hierarchy model. The primary disadvantage of the original cycle-
accurate SimpleScalar [13] simulator is that it uses a simplified memory model with fixed laten-
cy. The simplistic model is not a true representative of modern main memory. In contrast, Zesto 
faithfully models queuing delays and bandwidth constraints for the main memory banks and 
ports. Also, the SimpleScalar simulator uses a simplified processor model based on an old con-
cept of Register Update Unit (RUU) [119] published in 1990. In contrast, Zesto provides detailed 
modeling of a modern x86 based microarchitecture. It provides a detailed pipelined model im-
plementing fetch, decode, allocation, execute and commit stages similar to Intel’s Pentium Pro 
architecture as shown at the bottom of Figure 4.1. 

Several modifications and additions were made to the simulator infrastructure for this thesis, 
especially in the DRAM cache. Since this work deals with the cache hierarchy, the simulator has 
been modified to faithfully model bus contention for different cache levels including access to 
MMap$ [77, 78]. The modified simulator models port contention, queuing delays, bank conflicts, 
and other DDR3 DRAM system constraints [61] for DRAM cache. Figure 4.1 shows the block-
level details of the simulation infrastructure for simulating an N-core system for a DRAM cache 
based hierarchy with embedded modifications. Each core is provided with its own private caches 
(e.g. L1 and L2 SRAM caches) that are connected to a shared L3 SRAM cache. When a core is-
sues a read or write request, the cache hierarchy first check the private caches for a hit/miss. A 
request that misses in the private caches is forwarded to the L3 shared SRAM cache. After an L3 
cache miss, the MMap$ is queried to determine an L4 DRAM cache hit/miss. If the MMap$ 
identifies a hit (i.e. requested block is present in the L4 cache), the request is sent to the DRAM 
cache. If the MMap$ identifies miss (i.e. requested block is not available in the L4 cache), the 
request is sent to main memory. 

4.2 Simulation Parameters 

The core, cache, and main memory parameters are listed in Table 4.1 and Table 4.2. The core is 
clocked at 3.2 GHz with 32 KB instruction cache and 32 KB data cache with 2 cycles latency. 
The core has a 128-entry reorder buffer, 32-entry reservation station, 32-entry load queue, and 
24-entry store queue. Each core is able to fetch, decode and commit up to four x86 instructions in 
a single cycle. Similar to state-of-the-art [77, 78, 102], this thesis assumes that DRAM-cache tim-
ing latencies are approximately half of that compared to off-chip memory, which allows direct 
comparison with them. The latency of the SRAM caches are computed using CACTI v5.3 [124] 
for a 45nm technology. 

Throughout this thesis, the following assumptions are considered for all evaluations: 

1. Similar to state-of-the-art [36, 37, 38, 77, 78, 102], this thesis employs FR-FCFS (First Ready 
First Come First Serve) access scheduling [107] in the DRAM cache and memory controllers. 

2. Similar to state-of-the-art [36, 77, 78, 102], this thesis assumes four DRAM cache channels 
and the DRAM cache bus width per channel is assumed to be 128 bits (16 bytes). 
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3. This thesis assumes that the tags are stored in the DRAM cache similar to state-of-the-art [36, 
77, 78, 102] while a 2 MB MMap$ [77, 78] is employed to identify a DRAM cache hit/miss. 
MMap$ is accessed after an SRAM miss. The latency values of MMap$ is calculated using 
CACTI v5.3 [87, 124] for a 45nm technology. 

4. Similar to state-of-the-art [35, 75, 99, 138], this thesis assumes that each core runs a single 
application. 

Core Parameters 

Core Frequency 3.2 GHz 

ROB (reorder buffer) size 128 

Reservation station (RS) size 32 

Load Queue (LDQ) size 32 

Store Queue (STQ) size 24 

Decode width 4 

Commit width 4 

Branch misprediction penalty 14 cycles 

SRAM Cache Parameters 

Private L1 Caches (IL1 and DL1) 32KB, 8-way, 2 cycles 

Private L2 Caches 256KB, 8-way, 5 cycles 

Shared L3 SRAM Cache 
(Serialized tag and data access) 

8MB, 8-way, 10 cycles Tag-Latency, 
15 cycle data latency 

DRAM cache Parameters 

MMap$ 2MB, 10 cycles 

DRAM cache size 128 MB 

Row buffer size 2KB (2048 bytes) 

Number of DRAM banks 64 

Number of channels 4 

Bus Width 128 bits per channel 

Bus Frequency 1.6 GHz 

tRAS (Row access strobe) 72 cycles 

tRCD (Row to column command delay) 18 cycles 

tRP (Row precharge delay) 18 cycles 

tCAS (Column access strobe) 18 cycles 

tWR (Write recovery time) 18 cycles 

Table 4.1: Core and cache parameters 
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Main Memory Parameters 

Number of channels 2 

Bus Width 64 bits per channel 

Bus Frequency 800 MHz 

tRAS (Row access strobe) 144 cycles 

tRCD (Row to column command delay) 36 cycles 

tRP (Row precharge dealy) 36 cycles 

tCAS (Column access strobe) 36 cycles 

tWR (Write recovery time) 36 cycles 

Table 4.2: Main memory parameters 

4.3 Benchmarks and classification 

One of the key metric that determines the application cache access behavior is the Last-Level-
Cache (LLC) Misses Per Thousand Instructions (MPKI). LLC MPKI is an indicator that deter-
mines how application performance is affected by the amount of cache resources available to it. 
The applications from SPEC2006 exhibit diverse cache access patters as illustrated in Figure 1.2 
which shows LLC MPKI for different applications while varying the LLC capacity. Based on the 
LLC MPKI metric, this thesis classifies the applications into the following categories: 

1. Latency Sensitive applications are very sensitive to the amount of cache resources allocated to 
them. Increasing the cache resources of these applications (e.g. 473.astar.train, 
437.leslie3d.train , 471.omnetpp etc.) provides significant reduction in MPKI. 

2. Memory Sensitive applications have a high cache miss rate and a high cache access rate. 
These applications (e.g. 437.leslie3d.rain, 433.milc, and 450.soplex) get negligible benefit 
from increasing the cache resources. 

Future multi-core systems are expected to execute multiple applications with diverse cache 
access patterns. For evaluation, this thesis makes use of various application mixes from 
SPEC2006 [5] as shown in Table 4.3. These application mixes were chosen because they contain 
applications with different working set sizes and cache access patterns. 

4.4 Simulation Methodology 

This thesis uses the Simpoint tool [40, 93, 94] to select representative samples for each applica-
tion. The simulation statistics are collected for 500 million instructions with a fast-forward of 500 
million instructions (to warm up the caches and branch predictors in functional mode) for each 
application. When a shorter benchmark finishes early by completing its 500 million instructions, 
then it is restarted and continues to contend for the cache and bus resources. However, the simu-
lation statistics are reported for the first 500 million instructions after the fast-forward. 
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Name Benchmarks 

Mix_01 
433.milc(1), 437.leslie3d.ref (1), 437.leslie3d.train (1), 450.soplex (1), 

462.libquantum(1), 470.lbm(1), 471.omnetpp(1), 473.astar.train(1) 

Mix_02 437.leslie3d.ref (2), 437.leslie3d.train (2), 450.soplex (2), 462.libquantum(2) 

Mix_03 433.milc(2), 470.lbm(2), 471.omnetpp(2), 473.astar.train(2) 

Mix_04 
433.milc(1), 437.leslie3d.ref (2), 437.leslie3d.train (2), 450.soplex (1), 

462.libquantum(1), 473.astar.train(1) 

Table 4.3: Application mixes (value in parenthesis denotes the number of instances used 
for that particular application). Latency sensitive applications shown in italics 

4.5 Performance Metric 

Several performance metrics [24, 67, 75, 80, 118] have been used for the evaluation of multi-core 
systems when comparing old and new policies, which determines throughput and fairness 
measures. A throughput measure is used to determine the overall speedup of a new policy. The 
speedup may come from one or more applications at the cost of performance degradation of 
some other applications. On the other hand, a fairness measure is used to determine whether con-
currently running applications on a multi-core system receive a fair performance improvement 
when using a new policy or not. Commonly used evaluation metrics are the ‘overall instruction 
per cycle’, ‘arithmetic mean instruction per cycle’ and ‘harmonic mean instruction per cycle’. 
The first two metrics favor the throughput measure but they do not truly capture the fairness 
measure. The harmonic mean instruction per cycle metric has been shown to balance both fair-
ness and throughput [24, 67, 80] because it tends to be lower if one or more applications lose per-
formance when using a new policy. Therefore, this thesis employs the ‘harmonic mean instruc-
tion per cycle’ metric [24, 67, 80] for performance evaluation which is given as follows: 

Harmonic Mean Instruction per cycle = 

 
N

i
iIPC

N

1

1
  

N is the number of applications in a particular application mix. IPCi is the instruction per cy-
cle (IPC) of the application when it runs concurrently with other applications. 
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Chapter 5 Policies for Miss Rate Reduction 

On-chip DRAM Last-Level-Cache has been employed recently [53, 75, 77, 78, 102, 112, 113] to 
reduce the number of slower main memory accesses. A DRAM cache hit provides fast access to 
the requested data compared to off-chip memory access. Therefore, to maintain high perfor-
mance, it is important to reduce DRAM Last-Level-Cache misses. This chapter proposes novel 
policies namely adaptive DRAM insertion policy and set balancing policy to reduce the DRAM 
cache miss rate by reducing the number of conflict misses. The integration of the proposed poli-
cies into a DRAM cache hierarchy is shown in Figure 5.1 for an N-core system. 

 

Figure 5.1: Proposed DRAM cache hierarchy for an N-core system; Fill-DRAM field indi-
cates whether an incoming block from off-chip memory should be inserted into the L4$-

DRAM or not; Seg-Row field is used for set balancing 

The first section of this chapter analyzes state-of-the-art static DRAM insertion policies [77, 
78, 102] to show how some applications incur increased miss rate, which leads to reduced system 
throughput. It demonstrates that existing policies do not work well because they use a static in-
sertion rate (DRAM insertion rate is defined as the percentage of block insertions into DRAM 
cache) for all applications, i.e. they always insert requesting blocks into DRAM cache after a 
DRAM cache miss. The next section demonstrates that the performance can be improved if the 
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applications are assigned appropriate insertion rates depending upon which insertion rate per-
forms better for a given application. It presents the novel adaptive DRAM insertion policy that 
provides improved system throughput compared to state-of-the-art static insertion policies [51, 
77, 78, 102] via reduced miss rate. The proposed adaptive DRAM insertion policy chooses the 
best-performing insertion rate for each application at runtime among four different insertion 
rates, by tracking the miss rate information of concurrently running applications with a low over-
head monitoring mechanism. 

Section 5.3 of this chapter shows that multiple applications running on a multi-core system 
exhibit a non-uniform distribution of accesses across different DRAM cache sets, which leads to 
an inefficient utilization of DRAM cache capacity. To overcome this problem, this section pre-
sents a DRAM cache set balancing policy that mitigates the imbalance across DRAM cache sets 
to improve the performance via efficient capacity utilization. 

5.1 Motivation 

In a typical multi-core system, cores are concurrently running heterogeneous applications such as 
web-browser, text editors, scientific or data mining applications. These concurrently executing 
applications compete with each other for the shared resources causing inter-core interference. An 
important design consideration for a DRAM cache based multi-core system is the management of 
shared resources such as DRAM cache capacity, DRAM cache bandwidth, and off-chip memory 
bandwidth [12, 108, 131, 136, 144]. As the number of cores in a multi-core system increases, in-
creased number of requests from multiple cores can cause inter-core DRAM interference (ex-
plained in Section 2.3.2) in the DRAM cache leading to an increased load on DRAM cache 
bandwidth. It may also result in an increased load on off-chip bandwidth via inter-core cache 
contention (explained in Section 2.3.1), hereby increasing DRAM cache miss rate. This section 
presents an example that shows how state-of-the-art DRAM insertion policies may cause in-
creased miss rate and how a judicious DRAM insertion policy can be used to mitigate inter-core 
DRAM interference and inter-core cache contention. 

State-of-the-art DRAM insertion policies [77, 78, 102] do not work well with applications 
that have a reuse distance (i.e. the number of insertions before the block is reused) larger than the 
cache associativity. Such applications are classified as “thrashing” applications [51, 138] (see 
Section 2.3.1). These applications have poor temporal locality for the available cache size, as 
they generate a large number of requests without being reused in the future [51, 138]. Figure 5.2 
illustrates a 4-way DRAM cache with accesses (shown in capital letters E, F etc.) from a thrash-
ing application. On a cache miss, an incoming block is inserted into the most recently used 
(MRU) position while the block in the least recently used (LRU) position is the candidate for 
eviction to make room for the incoming block. 

The DRAM insertion policy used in the state-of-the-art [77, 78, 102] statically inserts the 
block with a probability of 1 after a DRAM cache miss, which increases the number of unneces-
sary fill requests for thrashing applications as illustrated in Figure 5.2-(a). For instance, blocks A, 
B, E and F have a reuse distance (RD) greater than the associativity of 4 and are thus never re-
used if inserted with a probability of 1 as illustrated in Figure 5.2-(a). This results in a high load 
on DRAM cache bandwidth via increased unnecessary fill requests. Additionally, the contention 
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between thrashing and non-thrashing application for a static DRAM insertion policy will reduce 
the number of hits, thus increasing the load on off-chip memory bandwidth. 

For thrashing applications, the performance can be improved by inserting the blocks into 
DRAM cache with a low probability, thus reducing the number of fill requests. It enables thrash-
ing applications to retain some fraction of the working set which increases the number of hits as 
illustrated in Figure 5.2-(b) and (c). In this example, an insertion probability of ¼ leads to the 
best hit rate and to reduced number of fill requests compared to higher insertion probabilities. To 
reduce interference between hit and unnecessary fill requests in DRAM cache, the proposed 
Adaptive DRAM Insertion Policy (ADIP) uses a low probability to insert an incoming block for 
applications with long reuse distances and uses the highest probability of 1 for applications with 
short reuse distances. ADIP adapts the DRAM insertion probabilities at run-time on a per-core 
basis. 

 

Figure 5.2: Example illustrating DRAM insertion probability of (a) 1, (b) ½, and (c) ¼  
Block insertion shown as grey, hits shown as shades, NP stands for block not placed in 

DRAM cache, RD stands for reuse distance 

5.2 Adaptive DRAM Insertion Policy (ADIP) 

The integration of the proposed Adaptive DRAM insertion policy (ADIP) into the cache hierar-
chy is shown in Figure 5.1 and Figure 5.3 presents the ADIP details. The MMap$ (functionality 
explained in Section 2.4.1) is accessed after a miss in the L3 SRAM cache. A MMap$ hit indi-
cates that the block is present in L4 DRAM cache. In that case, the block is read from L4 DRAM 
cache and inserted into L3 SRAM cache and the core private L1/L2 caches to exploit the tem-
poral locality that the referenced block might be accessed again in the near future. Hits to these 
replicated blocks in L3 SRAM reduce the effective access latency by avoiding costly L4 DRAM 
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accesses, hereby reducing inter-core DRAM interference. On a MMap$ miss, the block is 
brought from memory and inserted into L3 SRAM and core private L1/L2 caches. The block may 
or may not be filled additionally in L4 DRAM cache, which is determined by the adaptive 
DRAM insertion policy (ADIP). Existing DRAM cache hierarchies [77, 78, 102] always insert 
the block into all cache levels when brought from main memory. 

The adaptive DRAM insertion policy (ADIP) consists of two major components: 

1. Application Profiling Unit (APU): In order to provide sufficient information for the ADIP 
policy, the APU profiles the application behavior (thrashing or non-thrashing) by tracking 
run-time miss rate information of all concurrently executing applications (described in Sec-
tion 5.2.1). 

2. Probability Selection Unit (PSU): reads the runtime statistics provided by the APU to de-
termine the suitable insertion probability for each application (Section 5.2.2). 

5.2.1 Application Profiling Unit (APU) 

Figure 5.3 shows the details of the Application Profiling Unit (APU) that is based on set duel-
ing. Set dueling is a well established mechanism [75, 51] to adaptively choose between two com-
peting policies P0 and P1. In set dueling, a few sampled sets of the cache are dedicated to always 
use policy P0 and other few sampled sets to always use policy P1. A saturating k-bit policy selec-
tion (PSEL) counter (counting from 0 to 2k-1 and initialized with 2k-1) estimates which of the two 
policies leads to a smaller number of misses. Misses in the sampled sets using P0 cause the PSEL 
counter to be incremented and misses in the sampled sets using P1 cause it to be decremented. If 
the MSB of PSEL is ‘0’, then policy P0 is used for all non-sampled sets, if it is ‘1’, then policy 
P1 is used. 

This thesis employs the set dueling mechanism to adaptively choose among four DRAM in-
sertion probabilities (pa, pb, pc, and pd). In the proposed ADIP, each set inserts an incoming block 
with a probability vector <p0, …, pn-1>, where pi denotes the insertion probability for requests 
from corei. Some cache sets are “leader sets” (that contain some sampled sets per core) and other 
cache sets are “non-sampled sets” that follow the decisions of the leader sets. Figure 5.3 shows 
the ADIP for an N-core system where the sets are clustered into groups of CS sets (CS stands for 
cluster size; this thesis uses CS = 128). Each cluster contains 6N leader sets (6 per core) and CS – 
6N non-sampled sets. The first 6 sets of each cluster are used as sampled sets for core0, while the 
next 6 sets are used as sampled sets for core1, and so on for the other cores. Out of the 6 leader 
sets per core, 4 sets (grey boxes in Figure 5.3) are dedicated as sampled sets with fixed insertion 
probabilities pa, pb, pc, and pd (this thesis uses pa = 1/64, pb = 1/16, pc = ¼, and pd = 1). For example, 
core0 always inserts an incoming block with a fixed probability of pa for the first set of each clus-
ter (p0=pa for this set) and with probability pb for the second set of the cluster (p0=pb). Similarly, 
core0 always inserts an incoming block with a fixed probability of pc for the fourth set of each 
cluster (p0=pc for this set) and with probability pd for the fifth set of the cluster (p0=pd). Each core 
is provided with three 10-bit policy selection counters namely PSELab

i, PSELcd
i, and MPSELi that 

determine the winning policy for each core. The 10-bit policy selection counter PSELab
i for corei 

estimates which of the two insertion probabilities (pa or pb) leads to the smaller number of miss-
es. A miss incurred in the set dedicated for pa increments PSELab

i while a miss incurred in the set 
dedicated for pb decrements PSELab

i. This direct comparison between pa and pb is used to decide 
the insertion probability pab,i of a so-called “partial set” for corei (shown as shaded boxes in Fig-
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ure 5.3). The policy section counters (PSELab
i, PSELcd

i, and MPSELi) remain unchanged for 
misses in the non-leader sets of corei. The next section provides the details for choosing a suita-
ble insertion probability among four different insertion probabilities (i.e. pa , pb , pc , and pd) for 
each core. 

 

Figure 5.3: Adaptive DRAM Insertion Policy for an N-core system 

5.2.2 Probability Selection Unit (PSU) 

The goal of the Probability Selection Unit (PSU) is to decide the insertion probability pfi for corei 
at run-time for the large number of non-sampled sets. The PSU reads the policy selection coun-
ters (PSELab

i, PSELcd
i, and MPSELi) for each competing application to determine the insertion 

probability pfi (pfi stands for the policy that is used by the “non-sampled sets” of corei). If the 
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MSB of PSELab
i is 0, then pab,i is set to pa, otherwise to pb (see multiplexors at the lower part of 

Figure 5.3). Similarly, PSELcd
i estimates which of the two insertion probabilities pc or pd leads to 

the smaller number of misses. Finally, a meta-policy selection counter MPSELi is associated with 
each corei that estimates which of the two partial insertion probabilities (pab,i or pcd,i) leads to the 
smaller number of misses. If the MSB of MPSELi is 0, then the insertion probability pfi for all 
non-sampled sets of corei is pab,i, otherwise pcd,i.  

To reduce the number of unnecessary fill requests from thrashing applications, the ADIP pol-
icy chooses low insertion probability for them. It chooses high insertion probability for non-
thrashing applications, which in turn increases the number of hits. This reduces inter-core cache 
contention between thrashing and non-thrashing applications by rarely inserting blocks into 
DRAM cache from a thrashing application to reduce their effect on other applications. 

5.2.3 Probability Realization 

A target DRAM insertion probability can be implemented using a binary counter or a linear 
feedback shift register (LFSR). This thesis uses LFSR to realize different insertion probabilities. 
The primary advantage of using LSFR [28] is that it requires reduced hardware overhead (one 
LFSR requires six XOR gates and six flip flops) compared to a conventional binary counter. The 
other advantage of LFSR is that their minimum cycle time is independent of the number of bits 
of the counter. The proposed ADIP needs seven LFSRs (six for sampled sets of leader set and 
one for non-sampled sets) per core. To realize a target DRAM insertion probability, LFSR gener-
ates a 7-bit pseudo-random number (7-bit LFSR generates a number between 1-127 excluding 
zero) which is compared to threshold values (‘3’ for pa = 1/64, ‘9’ for pb = 1/16, ‘33’ for pc = ¼, 
and ‘128’ for pd = 1). For example the insertion probability pb = 1/16 requires generating a pseudo-
random number and testing whether it is smaller than 9. If this is the case, then the block is in-
serted in DRAM cache (i.e. 8 blocks are inserted among 127 requested blocks from main 
memory), otherwise the block bypasses DRAM cache. Altogether, ADIP performs an adaptive 
DRAM insertion/bypass decision based on the comparison of the pseudo random number gener-
ated by LFSR with the corresponding threshold value for the insertion probability. 

5.3 Set Balancing Policy (SB-Policy) 

For a large number of DRAM cache sets, the efficiency of the DRAM cache is reduced because 
programs exhibit a non-uniform distribution of accesses across different cache sets [104]. In such 
a scenario, some of the DRAM cache sets may be under-utilized, whereas others may be severely 
over-utilized. As a result, over-utilized sets suffer more conflict misses compared to under-
utilized sets which may degrade the performance via increased miss rate. To reduce conflict 
misses via improved row utilization, this thesis proposes a DRAM set balancing policy and inte-
grates it into MMap$ (details of MMap$ in Section 2.4.1; see Figure 2.11) as shown in Fig-
ure 5.4. Recent research has proposed various DRAM cache organizations namely LH-Cache 
[77] (details in Section 2.4.1) and Alloy-Cache [102] (details in Section 2.4.3). The SB-policy can 
be applied on top of both of them. This section performs analytical comparison of applying the 
SB-policy on top of LH-Cache and Section 5.6.5 evaluates applying it on top of Alloy-Cache. 
Figure 5.4 shows how a DRAM row is determined for LH-Cache with and without SB-policy. 
The primary difference is that the LH-Cache without SB-policy determines the DRAM row num-
ber based on the main memory address (Figure 5.4-b) while the row number in SB-policy is pro-
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vided by the MMap$. The SB-policy stores the DRAM row number in the MMap$ which is as-
signed to each MMap$ entry after a segment miss (see Section 5.3.1). 

 

Figure 5.4: DRAM cache row mapping for LH-Cache [77] (a) with SB-Policy (b) without 
SB-Policy 

An intuitive answer to achieve uniform cache set distribution is to assign a DRAM cache row 
number (each DRAM bank contains R rows as shown in Figure 5.4, where each row consists of 
one cache set with 29-way associativity) to each block in a round robin way after a block miss. 
This would require storing the row number (requires 11 bits for R = 2048) with each block in the 
MMap$ (details of MMap$ in Section 2.4.1; see Figure 2.11) and this would lead to an additional 
storage requirement of 640 bits (10 x 64 = 640 bits for R = 2048) for each MMap$ entry. Note 
that each MMap$ entry requires storage overhead of 94 bits including 1 valid bit, 1 dirty bit, 4 
LRU bits, 4 way-number bits, 20 bits for Seg-Tag field, and 64-bit for Seg-BV field as shown in 
Figure 5.5. The above-mentioned approach will require up to ~7.8× more storage overhead (it 
requires ~15.6 MB MMap$) compared to the original MMap$ size (it requires ~2MB MMap$). 
Instead, the proposed Set Balancing policy (SB-Policy) stores the DRAM row number at coarser 
granularity, as described in the following. 

A segment is the basic unit of the MMap$ storage and is a group of contiguous blocks in 
main memory (typical segment size is 4KB). Each MMap$ entry tracks the block (this thesis use 
a block of 64 bytes similar to state-of-the-art [77, 78]) associated with a segment (this thesis uses 
a segment size of 4KB similar to state-of-the-art [77, 78]). Each 4KB MMap$ segment is associ-
ated with a tag (called Seg-Tag) and a bit vector (called Seg-BV) with one bit per block as shown 
in Figure 5.5. The Seg-Tag field determines whether a particular memory segment is present in 
the MMap$ (segment hit) or absent (segment miss). The Seg-BV field determines the hit/miss of 
a particular block bi within a particular segment. The proposed SB-Policy stores the row number 
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at segment level which only requires storage overhead of 10 bits (for R = 1024) for each MMap$ 
entry (i.e. the proposed SB-policy requires ~2.2 MB MMap$). For this reason, the proposed SB-
Policy add an additional Seg-Row field to each MMap$ entry for set balancing. The Seg-Row 
field is assigned to each MMap$ entry after a segment miss (see Section 5.3.1). 

 

Figure 5.5: MMap$ segment entry; proposed SB-Policy adds an additional Seg-Row field 
to MMap$ entry for set balancing 

5.3.1 Row Assignment 

The SB-Policy assigns a DRAM cache row number to a MMap$ segment after a segment miss 
(when the segment is referenced for the first time) as shown in Figure 5.6. When an application 
running on corei accesses a new segment S that is currently absent in the MMap$ (i.e. segment 
miss), then a new MMap$ entry E is allocated for S and a DRAM row number (called Seg-Row) 
is assigned to S in a round robin manner for corei. After a MMap$ segment hit (DRAM row 
number already assigned), the DRAM row number is provided by the MMap$ (determined by 
Seg-Row field of the MMap$ entry). The DRAM bank number (i.e. row buffer) is determined by 
the least significant bits of the memory block address as illustrated in Figure 5.4-(b). Since the 
SB-Policy assigns the DRAM row number in a round robin manner for each core, it leads to an 
improved DRAM cache row utilization (and hence it leads to an improved DRAM cache set 
utilization). 

 

Figure 5.6: Row assignment for SB-policy 
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5.4 Implementation 

Figure 5.7 shows the steps involved in cache lookup operation in the proposed ADIP and SB-
policy for a new request from corei, which are explained as follows: 

 

Figure 5.7: Steps involved in cache lookup operation 

L3 SRAM cache hit: After an L3 SRAM cache hit, the hit block is forwarded to the requesting 
core and filled in its private L1/L2 caches. 
 
L3 SRAM cache miss: After an L3 SRAM cache miss, a miss status handling register (MSHR) 
[71] is allocated that keeps track of the outstanding L3 cache misses (see Figure 5.1). The various 
fields of the MSHR entry include the Valid-bit, Issued-bit (request is issued or still pending), Ac-
cess-type (load or store), Value-field (data returned or store value), and Block-address. To sup-
port ADIP, an additional single-bit field is added to MSHR and to the main memory read/write 
buffer (MM-RWB) named as Fill-DRAM that indicates whether an incoming block when brought 
from off-chip memory should be inserted into the L4 DRAM cache or not. To support the SB-
policy, an additional field is added to MSHR and to the L4$-DRAM read/write buffer (L4$-
DRAM-RWB) named as Seg-Row that indicates the DRAM cache row number that will house the 
relevant block. 
 
MMap$ segment miss: Seg-Row is assigned to each MMap$ segment on a segment miss as il-
lustrated in Figure 5.6. 
 
MMap$ segment hit: Seg-Row is read from the MMap$ hit entry (Figure 5.5) of the MMap$ 
and forwarded to the dispatcher (see Figure 5.1). 
 
L3 SRAM cache miss/MMap$ hit: For a MMap$ hit after the L3 miss, the dispatcher (see Fig-
ure 5.1 and Figure 5.7) forwards the request to the L4 DRAM cache access scheduler by allocat-
ing an entry in the DRAM read/write buffer (L4$-DRAM-RWB; see Figure 5.1). When the data is 
returned from DRAM cache, it is forwarded to the requesting core and filled in its private L1/L2 
caches and the shared L3 SRAM cache. 
 
L3 SRAM cache miss/MMap$ miss: For a MMap$ miss after the L3 miss, the Fill-DRAM field 
of the MSHR entry is determined by ADIP as illustrated in Figure 5.1 and Figure 5.7. The dis-
patcher forwards the request to the main memory access scheduler by allocating an entry in the 



Chapter 5 Policies for Miss Rate Reduction 

- 52 - 

MM-RWB. If the Fill-DRAM field of the MSHR entry is 1, the dispatcher additionally allocates 
an entry in the L4$-DRAM-RWB. When the data is returned from main memory to MM-RWB, the 
Fill-DRAM field of the MM-RWB entry is checked. If the Fill-DRAM field is 1, then the block is 
forwarded to the respective L4$-DRAM-RWB entry so that the block is filled in L4 DRAM cache. 
If the Fill-DRAM field is 0, then the block bypasses the DRAM cache. Independent of the Fill-
DRAM field, the data is forwarded to the requesting core and filled in L1/L2 and L3 SRAM 
cache. 

5.5 Overhead 

The proposed ADIP needs seven LFSRs (six for sampled sets of leader set and one for non-
sampled sets; one LFSR requires six XOR gates and six flip flops), three multiplexers and three 
10-bit policy selection counters per core as shown in Figure 5.3. Altogether, an N-core system 
requires 7N LFSR (56 LFSR for an 8-core system), 3N multiplexers (24 multiplexers for an 8-
core system), and 3N 10-bit policy selection counters (24 policy selection counters for an 8-core 
system). It requires a single bit per MSHR and MM-RWB entry for the Fill-DRAM field which 
requires a storage overhead of 64 bits (8 bytes) for a 32-entry MSHR and a 32-entry MM-RWB. 
Storing the DRAM row number in the MMap$ for SB-policy increases the size of the MMap$ 
entry by log2(R) bits where R is the number of rows in a DRAM bank. For a 2MB MMap$ with 
R = 1024, this would lead to a storage overhead of ~200KB for the SB-policy. The other over-
head for the proposed SB-policy is the log2(R)-bit round-robin row selection logic for each core. 
Altogether, the proposed policies presented in this chapter comes with negligible hardware over-
head. 

5.6 Experimental Results 

The parameters for the cores, caches and off-chip memory are the same as used in the experi-
mental setup in Section 4.2 (see Table 4.1) with various workloads from SPEC2006 [5] listed in 
Table 4.3. This section uses 2KB row size for comparisons. However, the concepts proposed in 
this chapter can be applied for other row sizes (e.g. 4KB or 8KB) as well. For evaluation, this 
section compares the proposed Adaptive DRAM insertion policy (ADIP; details in Section 5.2) 
and SB-policy (details in Section 5.3) on top of state-of-the-art DRAM cache organizations name-
ly LH-Cache [77] (discussed in Section 2.4.1) and Alloy-Cache [102] (details in Section 2.4.3). 
The main drawback of these works is that they statically determine the DRAM insertion policy 
for an incoming block and suffer from inter-core DRAM interference, whereas the proposed 
ADIP adapts the DRAM insertion probability at run-time on a per-core basis. In addition, the 
proposed SB-policy further improves the performance via improved DRAM cache set utilization. 

5.6.1 ADIP and SB-policy on top of LH-Cache [78] 

This subsection evaluates the performance impact of applying the proposed adaptive DRAM in-
sertion policy (ADIP) and SB-policy on top of the state-of-the-art DRAM cache organization 
namely LH-Cache [78]. For evaluation, it compares the following different policies on top of 
LH-Cache: 
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1. Original LH-Cache with static DRAM insertion policy namely LH using traditional least re-
cently used policy (details in Section 2.1.1) 

2. State-of-the-art replacement policy for set-associative caches namely LH-TAP, where TAP 
stands for Thread Aware Placement policy proposed in [51]. 

3. Proposed adaptive DRAM insertion policy (ADIP; details in Section 5.2) namely LH-ADIP 

4. Proposed ADIP and SB-policy (details in Section 5.3) namely LH-ADIP-SB 

Figure 5.8 shows the average normalized harmonic mean instruction per cycle (HM-IPC) 
throughput results with the speedup normalized to LH [78]. On average, the combination of 
ADIP and SB-policy improves the overall HM-IPC speed by 14.3% and 6.9% compared to LH 
[78] and LH-TAP [51] respectively. On average, the proposed LH-ADIP policy alone improves 
the overall HM-IPC speed by 13% and 5.8% compared to LH and LH-TAP respectively. Thus, 
the proposed SB-policy provides additional 1.3% improvement in performance compared to LH-
ADIP. On average, the proposed LH-ADIP-SB policy improves the HM-IPC speed of latency 
sensitive applications by 15.9% and memory sensitive by 13.2% compared to LH for an 8-core 
system. 

0.8

0.9

1.0

1.1

1.2

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH

LH‐TAP

LH‐ADIP

LH‐ADIP‐SB(a
) 
N
o
rm

al
iz
ed

 
H
M
‐I
P
C
 s
p
ee
d
u
p
 

(L
S
ap
p
lic
at
io
n
s)

(b
) 
N
o
rm

al
iz
ed

 
H
M
‐I
P
C
 s
p
ee
d
u
p

(M
S
ap
p
lic
at
io
n
s)

(c
) 
N
o
rm

al
iz
ed

 
H
M
‐I
P
C
 s
p
ee
d
u
p

(A
ll 
ap
p
lic
at
io
n
s)

0.8

0.9

1.0

1.1

1.2

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH

LH‐TAP

LH‐ADIP

LH‐ADIP‐SB

0.8

0.9

1.0

1.1

1.2

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH

LH‐TAP

LH‐ADIP

LH‐ADIP‐SB

 

Figure 5.8: Normalized HM-IPC speedup compared to LRU [77] for (a) Latency Sensitive 
(LS) applications (b) Memory Sensitive (MS) applications (c) Both LS and MS applications 

5.6.2 Impact on DRAM cache bandwidth and capacity utilization 

The LH policy [78] does not work well with applications that have thrashing behavior and it suf-
fers from inter-core cache contention. In the LH policy, thrashing applications insert a large 
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number of blocks in the DRAM cache and as a result, they evict useful blocks belonging to other 
applications. The eviction of useful blocks increases the contention between thrashing and non-
thrashing applications causing inter-core cache contention. To mitigate inter-core cache conten-
tion, LH-TAP [51] adapts the cache replacement policy at runtime by tracking run-time miss rate 
information of all concurrently executing applications. However, LH-TAP still inserts blocks into 
DRAM cache with a probability of 1 which causes inter-core DRAM interference by increasing 
unnecessary fill requests from thrashing applications. The performance improvement of the pro-
posed LH-ADIP policy over LH-TAP is mainly due to reduced inter-core DRAM interference 
because LH-ADIP chooses low insertion probabilities for thrashing applications with long reuse 
distance. 

Figure 5.9 shows the distribution of DRAM cache accesses. The four bars show the different 
types of DRAM cache accesses as fraction of all accesses for LH [78], LH-TAP [51], LH-ADIP 
[Proposed], and LH-ADIP-SB [Proposed] (from left to right). The cache accesses are categorized 
as: 

1. demand hits for read and write requests. 

2. fill requests when the data is filled into DRAM cache for the first time. 

3. writeback requests (i.e. when the dirty data is written back from L3 SRAM cache) 
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Figure 5.9: Distribution of DRAM cache accesses for different policies 

Note that the distribution does not include the bypassed blocks for LH-ADIP, and LH-ADIP-
SB policies. On average, the proposed LH-ADIP-SB increases the percentage of demand hits by 
43.2%, 19.9% and 2.5% compared to LH, LH-TAP, and LH-ADIP [Proposed], respectively. On 
average, the proposed LH-ADIP-SB reduces the percentage of fill request by 56%, 43.8% and 
8.1% compared to LH, LH-TAP, and LH-ADIP [Proposed], respectively. By reducing the intensi-
ty of fill requests and increasing the percentage of demand hits using ADIP and SB-policy, the 
proposed policies mitigate a major disadvantage of shared DRAM caches, namely inter-core 
DRAM interference. Thus, the proposed policies enables efficient utilization of DRAM cache 
capacity and bandwidth via increased demand requests and reduced fill requests, respectively. 
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5.6.3 Impact on miss rate 

The proposed LH-ADIP-SB policy increases the effective DRAM cache capacity via reducing the 
insertion rate of rarely-reused blocks (i.e. using ADIP) and via the use of efficient set balancing 
(i.e. using SB-policy). The effective utilization of DRAM cache capacity reduces the miss rate, 
which results in reduced contention on off-chip memory bandwidth. Figure 5.10 illustrates this 
observation comparing different policies in terms of DRAM cache miss rate. On average, the 
proposed LH-ADIP-SB policy reduces the overall DRAM cache miss rate by 24.8% and 12.7% 
compared to LH and LH-TAP, respectively. In addition, the proposed LH-ADIP-SB policy reduc-
es the DRAM cache miss rate of latency sensitive application by 70% and 42.4% compared to 
LH and LH-TAP, respectively. 
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Figure 5.10: (a) DRAM cache miss rate (D$-MR) for Latency Sensitive (LS) applications (b) 
Overall DRAM cache miss rate 

5.6.4 ADIP Run-time adaptivity 

Comparing across the applications, it has been found that the reuse distance of some applications 
(470.lbm, 437.leslied.ref, 462.libquantum, 450.soplex) change during different phases of their 
execution, which shows the fundamental advantage of the proposed adaptive DRAM insertion 
policy. Figure 5.11 illustrates this observation showing the DRAM insertion probability that 
ADIP automatically selects at runtime for the applications running in Mix_01 (see Table 4.3). 
The DRAM insertion probability for each application is sampled once every 2 million cycles and 
shown in Figure 5.11. The proposed DRAM insertion policy chooses low insertion probabilities 
at runtime for memory sensitive applications (e.g. 470.lbm, 437.leslied.ref, 433.milc, and 
450.soplex) for majority of their execution time. On the other hand, it chooses high insertion 
probabilities at runtime for latency sensitive applications (e.g. 473.astar.train, 437.leslied.train, 
462.libquantum, and 471.omnetpp) for majority of their execution time. 
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Figure 5.11: Run-time DRAM insertion probability for non-sampled sets of all applications 
in Mix_01 (see Table 4.3). Latency sensitive applications shown in italic and memory sensi-

tive applications shown in non-italic 

5.6.5 ADIP and SB-policy on top of Alloy-Cache [102] 

The primary advantage of the proposed policies is that they can be applied irrespective of DRAM 
cache organizations and replacement policy and they complement each other. It implies that the 
proposed ADIP and set balancing policies are flexible enough to be applied to any replacement 
policy and DRAM cache organization. This section shows the performance impact of applying 
the proposed ADIP and SB-policy on top of the state-of-the-art DRAM cache organization name-
ly Alloy-Cache [102]. Since Alloy-Cache (details in Section 2.4.3) employs a direct-mapped 
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cache organization as shown in Figure 2.12, the traditional least recently used and other replace-
ment policies cannot be applied on top of Alloy-Cache. 
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Figure 5.12: Normalized HM-IPC speedup compared to Alloy [102] for (a) Latency Sensitive 
(LS) applications (b) Memory Sensitive (MS) applications (c) Both LS and MS applications 

For evaluation, this section provides the following different policies on top of Alloy-Cache: 

1. Alloy-Cache with static DRAM insertion policy namely Alloy 

2. The proposed ADIP applied on the top of Alloy-Cache namely Alloy-ADIP 

3. The proposed ADIP and SB-policy applied on the top of Alloy-Cache namely Alloy-ADIP-SB 

Figure 5.8 shows the performance improvement of the proposed policies compared to Alloy 
[78]. On average, the combination of ADIP and SB-policy improves HM-IPC speedup of latency 
sensitive applications by 13.1%, memory sensitive applications by 9.9% and overall HM-speedup 
by 11.3% compared to Alloy [102]. 

5.6.6 Impact of Set Balancing Policy (SB-policy) 

This section evaluates the performance impact of the SB-policy (details in Section 5.3) by com-
paring LH-ADIP (without SB-policy) and LH-ADIP-SB (with SB-policy). It also evaluates the 
performance impact of the SB-policy when applied on top of Alloy-Cache [102] by comparing 
Alloy-ADIP (without SB-policy) and Alloy-ADIP-SB (with SB-policy). On average, LH-ADIP-SB 
reduces the overall DRAM cache miss rate by 2.4% (Figure 5.13-a) compared to LH-ADIP via 
improved set utilization (i.e. storing the DRAM row number in the MMap$ and assigning it in a 
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round robin fashion). Similarly, Alloy-ADIP-SB reduces the overall DRAM cache miss rate by 
4% (Figure 5.13-a) compared to the Alloy-ADIP. When applied on top of LH-Cache, set balanc-
ing improves the HMIPC throughput (Figure 5.8-a) of latency sensitive applications by 1.8% and 
overall HMIPC throughput (Figure 5.8-c) by 1.3%. For Alloy-Cache, set balancing provides bet-
ter speedup (3.3% for latency sensitive application with 1.9% overall speedup) as shown in Fig-
ure 5.12. When the overall DRAM cache miss rate is high (Alloy-ADIP has a higher miss rate 
compared to LH-ADIP as shown in Figure 5.13), set balancing provides greater performance im-
provement for Alloy-Cache (3.3% improvement in performance of latency sensitive applications 
via set balancing) compared to LH-cache (1.8% speedup for latency sensitive applications). 

 

Figure 5.13: (a) DRAM cache miss rate (D$-MR) for Latency Sensitive (LS) applications (b) 
Overall DRAM cache miss rate 

5.7 Summary 

This chapter showed that that inter-core DRAM interference can cause performance degradation 
in existing DRAM cache hierarchies [77, 102] when the cache access rate from multiple applica-
tions varies significantly. It showed that in order to mitigate inter-core DRAM interference it is 
necessary to minimize the number of DRAM fill requests from thrashing applications that have 
large working set sizes. This chapter proposed application and DRAM aware policies for multi-
core systems that reduce DRAM fill requests from thrashing applications via an adaptive DRAM 
insertion policy, thereby reducing inter-core DRAM interference. It also presented a set balanc-
ing policy that reduces DRAM cache miss rate via improved capacity utilization, thereby reduc-
ing the load on the off-chip bandwidth. This chapter evaluated the proposed policies for various 
workload mixes and compared it to state-of-the art. The experiments showed that the proposed 
policies increase the performance (harmonic mean instructions throughput) by 14.3% and 6.9% 
compared to LH [77] and LH-TAP [51] at negligible hardware overhead when applied on the top 
of LH-Cache [77]. They also improve harmonic mean instructions throughput by 11.3% when 
applied on the top of direct mapped Alloy-Cache [102]. 
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Chapter 6 Policies for Latency Reduction 

Memory speed has become a major performance bottleneck as more and more cores are integrat-
ed on a multi-core chip. The widening latency gap between high speed cores and memory has led 
to the evolution of multi-level SRAM/DRAM cache hierarchy comprised of increasing cache siz-
es and latency at each level. These multi-level SRAM/DRAM cache hierarchies exploit the laten-
cy benefits of smaller caches (e.g. private L1 and L2 SRAM caches) and the capacity benefits of 
larger caches (e.g. shared L3 SRAM and shared L4 DRAM cache) as shown in Figure 6.1. How-
ever, they incur high latencies for the larger cache levels due to high tag lookup latency, which 
may degrade the performance. Therefore, to improve the overall instruction throughput, it is im-
portant to reduce the latency of L3 SRAM and L4 DRAM cache. To solve this problem, this 
chapter proposes policies (highlighted in Figure 6.1) for latency reduction in the cache hierarchy. 

 

Figure 6.1: SRAM/DRAM cache hierarchy highlighting the novel contributions 

This chapter analyzes the design trade-offs in architecting an SRAM/DRAM cache hierarchy 
and presents different policies for latency reduction. The first section demonstrates that the 
DRAM row buffer mapping policy (i.e. the method by which blocks from main memory are 
mapped to the row buffer of a particular DRAM cache bank) plays a significant role in determin-
ing the overall instruction throughput because it effects L4 DRAM cache hit latency and L4 
DRAM cache miss rate. It demonstrates that state-of-the-art row buffer mapping policies [77, 78, 
102] are not well suited for improving the aggregate performance of a multi-core system running 
heterogeneous applications because they are either optimized for L4 hit latency [102] or for L4 
miss rate [77, 78]. None of these policies provides a good L4 hit latency and L4 miss rate at the 
same time. The second section gives an overview of the proposed SRAM/DRAM cache organi-
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zation highlighting the novel contributions proposed in this thesis. The third section presents 
novel row buffer mapping policies that simultaneously target L4 hit latency and L4 miss rate 
with the goal of achieving the best of both. It provides detailed qualitative comparisons of differ-
ent row buffer mapping policies and their impact on important parameters such as DRAM cache 
row buffer hit rate, DRAM cache hit latency, and DRAM cache miss rate. Section 6.5  presents 
novel low latency SRAM structures namely DRAM Tag-Cache (DTC) and SRAM Tag-Cache 
(STC). The STC and DTC hold the tags of the sets that were recently accessed in L3 and L4 cach-
es, respectively. They provide fast lookup because for a Tag-Cache hit, they quickly identify 
hit/miss for the larger caches. This chapter further analyzes the effect of different DRAM row 
buffer mapping policies on the DTC hit rate and the overall performance. 

6.1 Problems of the State-of-the-art 

Recently proposed DRAM row buffer mapping policies for DRAM caches are predominantly 
optimized for either L4 DRAM cache hit latency or L4 DRAM cache miss rate. Figure 6.2 illus-
trates this observation by comparing state-of-the-art row buffer mapping policies proposed in 
[77, 78, 102]. 
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Figure 6.2: (a) L4 DRAM hit latency (b) L4 DRAM miss rate (c) main memory latency 

LH-Cache [77, 78] (details in Section 2.4.1) is optimized for L4 DRAM miss rate by provid-
ing a high associativity (high associativity reduces the L4 miss rate). The downside of the LH-
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Cache row buffer mapping policy is that it has a serialized tag-and-data access with reduced row 
buffer hit rate that leads to increased L4 DRAM hit latency. The Alloy-Cache row buffer map-
ping policy (explained in Section 2.4.3) [102] optimizes the L4 DRAM hit latency because it 
provides fast tag lookup and improved row buffer hit rate. This comes at the cost of increased L4 
miss rate because it employs direct mapped cache. Figure 6.2 shows the L4 hit latency, L4 miss 
rate and main memory latency experienced by LH-Cache and Alloy-Cache for an 8-core system. 
The parameters for the cores, caches and off-chip memory are the same as used in the experi-
mental setup in Chapter 3 (see Table 4.1 and Table 4.2) with various workloads from SPEC2006 
[5] listed in Table 4.3. On one extreme, LH-Cache [77, 78] has a high L4 hit latency compared to 
the Alloy-Cache [102] as depicted in Figure 6.2-(a). On the other extreme, Alloy-Cache has a 
high L4 miss rate compared to LH-Cache as depicted in Figure 6.2-(b). The higher L4 miss rate 
of Alloy-Cache also leads to a higher main memory access latency compared to LH-Cache 
(Figure 6.2-c) due to increased contention in the main memory controller. This chapter proposes 
policies for the DRAM cache that minimize both L4 hit latency (via improved row buffer and 
DTC hit rate) and L4 miss rate (via high associativity) at the same time in order to improve the 
overall instruction throughput. 

6.2 Proposed SRAM/DRAM Cache Organization 

Figure 6.1 shows the organization of the proposed SRAM/DRAM cache organization along with 
a MMap$ (details in Section 2.4.1), highlighting the novel contributions proposed in this chapter. 
Similar to state-of-the-art [77, 78, 102], the proposed approach stores the tags in the DRAM 
cache and employs MMap$ to identify DRAM cache hit/miss. This chapter presents the follow-
ing novel contributions: 

1. This chapter proposes novel DRAM row mapping policies (details in Section 6.3) after ana-
lyzing that state-of-the-art row buffer mapping policies [77, 78, 102] do not work well be-
cause they are optimized only for a single parameter (L4 DRAM hit latency or L4 DRAM 
miss rate). The proposed row buffer mapping policies reduce the L4 DRAM hit latency via 
improved row buffer hit rates and they reduce the L4 DRAM miss rate via a high associativi-
ty. 

2. This chapter proposes a small and low latency SRAM structure namely DRAM Tag-Cache 
(DTC; details in Section 6.5.1) that allows most L4 DRAM tag accesses to be serviced at re-
duced access latency compared to when tags are accessed from the DRAM cache. Accesses 
that hit in the DTC are serviced with a lower latency compared to accesses that miss in the 
DTC. This chapter further analyze the effect of different row buffer mapping policies from 
state-of-the-art [77, 78] and the proposed row mapping policy on DTC hit rate. 

3. The proposed row buffer mapping policy allows reducing the size of existing MissMap cache 
(MMap$) [77, 78] organization which is used by state-of-the-art DRAM cache to provide 
hit/miss information (details in Section 2.4.1). Reducing the size of the MMap$ may reduce 
the DRAM cache hit/miss prediction accuracy. This chapter analyze the effect of different 
MMap$ sizes on the DRAM cache hit/miss prediction accuracy. 

4. This chapter modifies the DRAM cache controller (detail in Section 6.5.3), which further re-
duces the L4 DRAM hit latency for the various row buffer mapping policies proposed in this 
chapter. 
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6.3 DRAM Row Buffer Mapping Policies 

This section introduces novel DRAM-aware row buffer mapping policies that simultaneously 
optimize L4 DRAM hit latency and L4 DRAM miss rate. The proposed row buffer mapping pol-
icies are based on the notion that the latency of L4 DRAM can be reduced by improving row 
buffer hit rate. This section assumes 2KB row size for qualitative comparisons because the same 
row buffer size is used by state-of-the-art for DRAM cache [77, 78, 102]. However, the concepts 
proposed in this section can also be applied for other row sizes. 

 

Figure 6.3: Row Buffer Mapping with Associativity of 7 (RBM-A7) 



6.3 DRAM Row Buffer Mapping Policies 

- 63 - 

6.3.1 Row Buffer Mapping Policy with an Associativity of Seven (RBM-A7) 

The DRAM row organization for the proposed Row Buffer Mapping policy with an Associativi-
ty of 7 (RBM-A7) is illustrated in Figure 6.3, where each 2KB DRAM row comprises 4 cache 
sets with a 7-way set associativity. Each cache set consists of 1 tag block (64 bytes = 512 bits) 
and 7 cache lines. The 7 cache lines need 7 x 36 = 252 bits for their tag entries with 260 bits left 
unused. An L4 DRAM cache access must first read the tag block before accessing the cache line. 
After an L4 DRAM hit is detected by the MMap$, the row buffer is reserved until the tag block 
and cache line are both read from it. This guarantees a row buffer hit for the cache line access 
after the tag block is accessed. 

  

Figure 6.4: Memory block mapping for the proposed RBM-A7 policy 

Figure 6.3 illustrates how RBM-A7 maps blocks from main memory to the row buffers. The 
DRAM cache row number within a bank (indicated by the “Row#” field) is determined by the 
memory block address. A high row buffer hit rate can effectively amortize the high cost of a 
DRAM array access by reducing the hit latency. RBM-A7 exploits the row buffer locality by 
mapping 4 spatially close blocks to the same row buffer. The DRAM cache set number (each 
DRAM row contains 4 cache sets as shown in Figure 6.3) within a row is determined by the least 
significant two bits of the memory block address as illustrated in Figure 6.3. 

Figure 6.4 illustrates how memory blocks are mapped to a row buffer and to a DRAM cache 
set within a row buffer. The RBM-A7 policy maps 4 consecutive memory blocks to the same 
DRAM row buffer. For instance, blocks 0-3 from main memory are mapped to RB-0 (i.e. row 
buffer associated with Bank-0) and blocks 4-7 are mapped to RB-1 (i.e. row buffer associated 
with Bank-1) as depicted in Figure 6.4. The DRAM cache set number within a row is determined 
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by the two least significant bits of the memory block address as illustrated in Figure 6.4. For in-
stance, block-4 is mapped to set-0 and block-7 is mapped to set-3 of RB-1. 

The proposed RBM-A7 policy reduces the L4 DRAM hit latency via reduced tag serialization 
latency (details in Section 6.3.3) and high row buffer hit rate (evaluated in Section 6.7.2) com-
pared to the LH-Cache [77, 78] (details of LH-Cache in Section 2.4.1). A cache access in the 
RBM-A7 policy must first access one tag block (in contrast to three tag blocks accesses in the 
LH-Cache) before having an access to the cache line. This reduces tag serialization latency com-
pared to the LH-Cache. The row buffer hit rate is improved compared to the LH-Cache because 
RBM-A7 maps four spatially close blocks to the same row buffer. In contrast, the LH-Cache has 
a reduced row buffer hit rate due to reduced spatial locality because it maps consecutive blocks to 
different row buffers. The primary advantage of the RBM-A7 policy over the Alloy-Cache [102] 
(details in Section 2.4.3) is that it minimizes the L4 DRAM miss rate via high associativity (7-
way associative cache) compared to the direct mapped (1-way associative cache) Alloy-Cache. 

6.3.2 Configurable Row Buffer Mapping Policy (CRBM) 

The major difference between the configurable row buffer mapping policy and the LH-Cache 
[77, 78] is explained in the following. 

 

Figure 6.5: Row buffer mapping policy used by (a) LH-Cache [77] (b) CRBM policy [Pro-
posed] 

(a) Row buffer mapping 

The configurable row buffer mapping policy is based on the observation that the latency of L4 
DRAM can be reduced by improving the row buffer hit rate. The differences between the row 
buffer mapping policy employed in LH-Cache [77, 78] and the one used in the configurable row 
buffer mapping policy is shown in Figure 6.5 (a-b). To exploit spatial and temporal locality, the 
row buffer hit rate can be improved by mapping more consecutive blocks to the same DRAM 
cache row buffer. Figure 6.5-(b) shows the configurable row buffer mapping policy where the 
row buffer hit rate depends upon the parameter CM (defined as number of consecutive memory 
blocks mapped to the same row). CM is chosen as a power of two. If CM is equal to 1, then spa-
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tially close blocks are mapped to different row buffers and the row buffer mapping policy is the 
same as employed by LH-Cache. 

 

Figure 6.6: Block mapping for configurable row buffer mapping policy with different val-
ues of CM 

Figure 6.6 shows how blocks from main memory are mapped to a row buffer for different 
values of CM. Figure 6.7 shows the row buffer hit rate for different values of CM for an 8-core 
system. Increasing CM improves the row buffer hit rate (1.1% for CM = 1, 14.1% for CM = 2, 
22.2% for CM = 4, 28.5% for CM = 8, and 35% for CM = 16) which comes at the cost of in-
creased DRAM cache miss rate due to reduced set-level-parallelism (because high order address 
bits are used to select DRAM cache row/set) and increased conflict misses (spatially close main 
blocks increases conflict misses within a set). The result section explores the trade-offs between 
L4 DRAM hit latency (depends upon row buffer hit rate) and L4 DRAM miss rate for different 
values of CM (1, 2, 4, 8, 16) and its impact on the overall performance. The primary advantage 
of the configurable row buffer mapping policy is that it benefits from a high associativity (30-
way associativity; see Figure 6.10-b) that reduces conflict misses compared to Alloy-Cache (1-
way associativity) and RBM-A7 policy (7-way associativity). At the same time, it can provide a 
high row buffer hit rate compared to the LH-Cache via judicious selection of CM without signifi-
cantly degrading the L4 DRAM miss rate. 
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Figure 6.7: DRAM cache row buffer hit rate for different values of CM 

(b) Tag block mapping and organization 

The LH-Cache [77, 78] uses the traditional least recently used (LRU) replacement policy (details 
in Section 2.1.1) for cache replacement. The overhead of the LRU policy is 42 bits per cache line 
(1 valid bit, 1 dirty bit, 22 tag bits to identify presence/absence, 5 bits to track the priority of the 
cache line using LRU bits, 5 bits to track the location of the cache line, and eight coherence bits 
for an 8-core system) as shown in Figure 6.8-(a). 

 

Figure 6.8: (a) Overview of LRU policy with 29-way associative cache (b) how the tag entry 
fields are organized in LH-Cache [77, 78] 
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Figure 6.8-(a) shows the logical organization of LH-Cache where one DRAM cache set con-
sists of 29 cache lines entries. Figure 6.8-(b) shows how the tag entry fields are mapped into the 
blocks of the DRAM cache in LH-Cache. The tag block mapping used by LH-Cache leads to in-
creased L4 DRAM cache hit latency because it always requires reading 3 tag blocks from the 
DRAM cache before reading the data block (see Figure 6.9). LH-Cache also unnecessarily con-
sumes DRAM cache bandwidth as it always requires writing 3 tag blocks (192 bytes) on a lim-
ited-size (16 bytes) DRAM cache channel (see Figure 6.9) when the tag blocks are modified. 
Note that the LH-Cache requires writing 3 tag blocks on a hit to update the LRU information 
which are stored in TB-0, TB-1, and TB-2 (see Figure 6.8-c). 

 

Figure 6.9: Timing and sequence of commands for L4 DRAM hit that his in the row buffer 
for LH-Cache 

To reduce the L4 DRAM hit latency and to improve the DRAM cache bandwidth utilization, 
the configurable row buffer mapping policy employs the clock-based “pseudo-LRU” replacement 
policy [111] that reduces the overhead compared to the LRU policy. The overhead of the pseudo-
LRU policy is 33 bits per cache line (1 valid bit, 1 dirty bit, 1 used bit, eight coherence bits for an 
8-core system, and 22 tag bits) as shown in Figure 6.10-(a). In contrast, the overhead of LRU 
policy (used by LH-Cache) is 42 bits per cache line as shown in Figure 6.8-(a). The valid bit in-
dicates whether a cache line contains a valid (valid bit is 1) or invalid block (valid bit is 0) from 
main memory. All the valid bits of each cache line are set to zero on power or cache reset. The 
dirty bit of cache line indicates whether the block from main memory has been modified by the 
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processor (dirty bit is 1) or remained unchanged (dirty bit is 0) since it was fetched from main 
memory. 

For each cache set, the pseudo-LRU policy requires a single counter (5 bits) called “clock 
pointer” to track the current clock position. On insertion, a cache line clears its used bit and the 
clock pointer points to the next cache line, while the tag of the cache line is inserted. A dirty bit is 
set on cache line writeback and the used bit is set on cache line hit. On eviction, the cache line 
pointed by “clock pointer” is checked. If its used bit is zero, the cache line is evicted. Otherwise 
the policy clears the used bit and gives a second chance to the cache line by advancing the clock 
pointer. It repeats the same check until it finds a cache line with a used bit with value zero. 

Figure 6.10-(a) shows the logical organization of one DRAM cache set for the configurable 
row buffer mapping policy that consists of 30 cache lines. Each cache set consists of 2 tag blocks 
and 30 cache lines as shown in Figure 6.10-(b). Each tag entry in the “pseudo-LRU” replacement 
policy requires 22-bits tag and 11 bits for replacement flags (valid bit, dirty bit, used, and coher-
ence bits) to identify hit/miss. These replacement flags are updated on a cache hit (i.e. set used 
bit), cache writeback (set dirty bit) and updating coherence bits while the tag bits remain un-
changed. Both, the replacement flags and the tags are updated on cache fill (i.e. when the data is 
filled in the DRAM cache). 

 

Figure 6.10: (a) Overview of “pseudo LRU” policy (b) how the tag entry fields are organized 
in configurable row buffer mapping policy 
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An L4 DRAM access in the configurable row buffer mapping policy must first access two tag 
blocks (in contrast to three tag block accesses in the LH-Cache) before having an access to the 
cache line. This reduces the L4 DRAM hit latency for a read request compared to the LH-Cache. 
The L4 DRAM hit latency for a row buffer hit in the LH-Cache is 63 cycles as shown in Fig-
ure 6.9. In contrast, the L4 DRAM hit latency for a row buffer hit in the configurable row buffer 
mapping policy is 59 cycles as shown Figure 6.11. 

Figure 6.10-(b) shows how the cache line and the tag entry fields are organized in the config-
urable row buffer mapping policy (CRBM). The replacement flags in CRBM are stored in TB-0 
(tag block zero), while the tags are stored in TB-0 and TB-1 as illustrated in Figure 6.10-(b). In 
the configurable row buffer mapping policy, only TB-0 needs to be written back on a cache hit, 
cache writeback, and on updating coherence information as shown in Figure 6.11. This would 
require 64 bytes to be transferred on the DRAM cache channel instead of transferring 192 bytes 
required for the LH-Cache. However, both tag blocks TB-0 and TB-1 need to be written into 
DRAM cache on a cache fill (requires 128 bytes to be transferred on DRAM cache channel). 
Since, the percentage of fill request (as fraction of all DRAM cache accesses) is very low (less 
than ~15% on average), this optimization avoids unnecessary DRAM cache bandwidth wastage 
for writing tag blocks that are not changed. This leads to a reduced L4 DRAM hit latency com-
pared to LH-Cache via efficient bandwidth utilization. 

 

Figure 6.11: Timing and sequence of commands for L4 DRAM read hit that his in the row 
buffer for configurable row buffer mapping policy 
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6.3.3 Latency breakdown 

This section analyzes the row buffer hit latencies (i.e. the accessed data is in the row buffer) and 
row buffer miss latencies (i.e. the accessed data is not in the row buffer) for different row buffer 
mapping policies. Figure 6.12 shows the latency breakdown (in terms of processor clock cycles) 
for different row buffer mapping policies for a 2KB row size. Note that the latency breakdown 
does not show the latency of the DRAM cache controller (time spent in the DRAM cache con-
troller before having an access to a DRAM bank). This section assume identical latency values 
for all DRAM cache parameters which are listed in Table 4.1. All of the row buffer mapping pol-
icies require 10 clock cycles to access the MMap$ to identity DRAM cache hit/miss before the 
request can be sent to DRAM cache (MMap$ hit) or main memory (MMap$ miss). 

 

Figure 6.12: L4 DRAM cache Latency breakdown for a 2KB row size (a) LH-Cache [77, 78] 
(b) Alloy-Cache [102] (c) RBM-A7 [proposed] (d) CRBM [proposed] 

If the data is already in the row buffer (i.e. row buffer hit), the LH-Cache [77, 78] requires 18 
clock cycles for CAS (to access the tags from the row buffer), 12 cycles to transfer the three tag 
blocks (see Figure 6.8-a) on the bus (64 x 3 = 192 bytes need to be transferred on 16 byte wide 
bus that incurs 12 clock cycles for the bus latency 192/16 = 12), 1 clock cycles for the tag check, 
18 clock cycles for the CAS (to access the data from the row buffer), and 4 clock cycles to trans-
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fer the cache line. If the data is not in the row buffer (i.e. row buffer miss), it would require an 
additional latency of 18 ACT clock cycles. For the LH-Cache, the row buffer hit latency is 63 
clock cycles and the row buffer miss latency is 81 clock cycles as illustrated in Figure 6.12-(a). 

For the Alloy-Cache [102], the row buffer hit latency is 34 clock cycles (10 cycle for MMap$ 
access, 18 clock cycles for CAS, 1 cycle tag-check, and 5 bus cycles for the TAD (Tag And Data) 
entry and the row buffer miss latency is 52 clock cycles (18 additional cycles required for row 
activation) as illustrated in Figure 6.12-(b). 

For the proposed RBM-A7 policy, the access latency of a row buffer hit includes the time to 
access MMap$ (10 cycles), time to access the tags (18 clock cycles for CAS tags), time to read 
the tags through DRAM bus (4 cycles for the tags), time to check the tag (1 clock cycle), time to 
access the cache line (18 clock cycles for CAS LINE) and time to read the cache line through the 
DRAM bus (4 cycles for the cache line). Thus, the row buffer hit latency is 55 clock cycles and 
the row buffer miss latency is 73 clock cycles (18 additional cycles required for row activation) 
for RBM-A7 policy as illustrated in Figure 6.12-(c). 

For the proposed CRBM policy, the row buffer hit latency is 59 clock cycles and the row 
buffer miss latency is 77 clock cycles as shown in Figure 6.12-(d) because it requires 4 additional 
clock cycles to transfer the extra tag block compared to the RBM-A7 policy. 

6.3.4 Comparisons of different row buffer mapping policies 

Table 6.1 shows the impact of different row buffer mapping policies on the L4 DRAM miss rate 
(depends upon associativity; higher the associativity, lower the miss rate) and L4 DRAM hit la-
tency (depends upon row buffer hit rate and L4 tag latency). 

Row Buffer Mapping Policy Associativity
Row Buffer  

Hit rate 
L4 Tag  
Latency 

LH-Cache [77, 78] 29 (Great) Worst 41 cycles 

Alloy-Cache 1 (Worst) Great 11 cycles 

RBM-A7 7 (Good) Good 33 cycles 

Configurable row buffer mapping policy 30 (Great) depends upon CM 37 cycles 

Table 6.1: Impact of row buffer mapping policy on associativity and latency 

L4 DRAM cache hit latency highly depends on whether an access leads to a row buffer hit or 
a row buffer miss (details in Section 6.3.3; see Figure 6.12). Row buffer hits have a reduced ac-
cess latency compared to row buffer misses for all row buffer mapping policies as illustrated in 
Figure 6.12.The LH-Cache [77, 78] does not exploit the full potential of row buffer locality and 
its disadvantageous row buffer hit rate leads to a high L4 DRAM cache hit latency. The Alloy-
Cache [102] on the other hand employs a direct mapped cache that reduces the L4 DRAM hit 
latency via a reduced tag access latency (see Figure 6.12-b) and an increased row buffer hit rate 
(evaluated in Section 6.7.2). However, that reduction comes at the cost of an increased L4 
DRAM miss rate due to increased conflict misses. The proposed RBM-A7 and configurable row 
buffer mapping policies benefit from a high associativity with a significantly reduced L4 DRAM 
miss rate compared to the Alloy-Cache (evaluated in Section 6.7.1). At the same time, they pro-
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vide reduced L4 DRAM hit latency via improved row buffer hit rate and reduced tag access la-
tency compared to the LH-Cache (evaluated in Section 6.7.2). 

6.3.5 Impact of parameter CM 

For the configurable row buffer mapping policy, the L4 DRAM hit latency can be reduced by 
improving the row buffer hit rate that depends upon the parameter CM (see Figure 6.5-b). In-
creasing CM improves the row buffer hit rate (which reduces the L4 hit latency), but comes at the 
cost of increased L4 DRAM miss rate due to reduced set-level-parallelism (because high order 
address bits are used to select the L4 DRAM set) and increased conflict misses (spatially close 
blocks increases the conflict misses within a set). The result section explores the trade-offs be-
tween the L4 DRAM hit latency (depends upon row buffer hit rate) and main memory latency 
(depends upon L4 DRAM miss rate) for different values of CM (1, 2, 4, 8, 16) and its impact on 
the overall performance. 

6.4 Super-block MMap$ (SB-MMap$) 

The MissMap Cache (MMap$) was proposed by Loh and Hill [77, 78] to precisely determine 
whether an access to a DRAM cache will be a hit or a miss. It is organized as a set of memory 
segments (typical memory segment size is 4KB) and there is a tag associated with each segment 
(called Seg-Tag as shown in Figure 6.13). Each memory segment itself is divided into blocks 
(typical block size is 64 bytes). Each MMap$ segment entry maintains a bit vector (called Seg-
BV) representing whether or not the corresponding block of the relevant segment is present in 
DRAM cache. 

 

Figure 6.13: MMap$ entry covering a 4KB memory segment for LH-Cache [77, 78] 

Let’s assume there is a request for block bi that belongs to a segment S. When there is a miss 
to a segment (Seg-Tag field does not matches with tag of S), a resident segment is evicted and 
Seg-Tag is set corresponding to the new segment S. When there is a hit to a segment (Seg-Tag 
field matches), then the MMap$ checks the Presence bit (P-bit) associated with the block bi (see 
Figure 6.13) of the hit segment S. If the P-bit of the hit segment S is set (block bi is present in the 
DRAM cache), the MMap$ forwards the request to the DRAM cache. Otherwise, it is forwarded 
to the main memory, bypassing the DRAM cache. When the block bi is filled in the DRAM 
cache (the tags/data of block bi is stored in the DRAM cache), then the P-bit entry of block bi 
corresponding to segment S is set. When a block bi is evicted from the DRAM cache, then the P-
bit entry of block bi corresponding to segment S is reset. When a segment is evicted from the 
MMap$, its tag and data must also be evicted from DRAM cache. This guarantees that the 
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MMap$ always precisely determines whether an access to a DRAM cache will be a hit or a miss 
(i.e. it provides 100% precise information about L4 DRAM hit/miss). 

The proposed row buffer mapping policies allow reducing the size of the MMap$ with negli-
gible performance degradation. The size of the MMap$ Seg-BV entry is reduced by using coarse-
grained presence information. Therefore, a super-block is defined as a set of adjacent blocks. 
Figure 6.14-(a) and Figure 6.14-(b) show a super-block comprising two and four adjacent blocks, 
respectively. The proposed super-block MMap$ (SB-MMap$) organization assigns a presence bit 
to each coarse-grained super-block instead of having a separate bit for each fine-grained block. 
This reduces the MMap$ Seg-BV entry size by half (for super-block size of 2) and by quarter (for 
super-block size of 4) which leads to a reduced MMap$ storage overhead. However, storing 
presence information at coarse-grained super-block level effects the DRAM cache hit/miss pre-
diction accuracy compared to a MMap$ that stores the presence information at the fine-grained 
block level. 

 

Figure 6.14: Proposed SB-MMap$ entry representing a 4KB memory segment for a super-
block containing (a) two adjacent blocks (b) four adjacent blocks 

In the proposed SB-MMap$ organization, when a block bi that belongs to a segment S is 
filled in the DRAM cache, then the P-bit entry of the super-block to which bi belongs is set. 
When block bi is evicted from DRAM cache, then resetting the P-bit entry requires a tag-lookup 
for the adjacent blocks to determine whether adjacent blocks are present in the DRAM cache or 
not. Since in the configurable row mapping policy (Section 6.3) consecutive blocks are mapped 
to the same DRAM cache row, resetting the P-bit entry after block eviction requires a single 
DRAM cache row lookup. However, employing SB-MMap$ size for the LH-Cache [77, 78] 
(Section 2.4.1) would require additional row lookups for resetting the P-bit after block eviction, 
because they map consecutive blocks to different cache rows. The number of row lookups in LH-
Cache will depend upon the size of the super-block. 
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The proposed SB-MMap$ detects either a “true miss” or a “maybe hit” after an L3 SRAM 
miss. A “true miss” (i.e. super-block P-bit is zero and all blocks belonging to the super-block are 
absent in the DRAM cache) indicates that the requested block is not present in the DRAM cache. 
A “true miss” does not require a DRAM cache lookup, so the request is directly sent to the main 
memory controller (see Figure 6.1). A “maybe hit” (i.e. super-block P-bit is set) indicates that the 
block may or may not be present in the DRAM cache. A “maybe hit” requires a DRAM cache 
lookup to identify a hit/miss to determine whether the request should be sent to the main memory 
controller or not. The L4 DRAM hit/miss prediction accuracy of the SB-MMap$ depends upon 
the super-block size. If the super-block size is 1 (traditional MMap$ proposed by [77, 78]), then 
it provides 100% precise information about L4 DRAM hit/miss. Increasing the super-block size 
reduce SB-MMap$ storage overhead at the cost of a reduced SB-MMap$ hit/miss prediction ac-
curacy. The result section will explore the impact of different super-block sizes on the SB-
MMap$ hit/miss prediction accuracy and the overall performance for the configurable row buffer 
mapping policy. The super-block size is chosen to be smaller than CM (consecutive memory 
blocks mapped to the same row) in the configurable row buffer mapping policy because it then 
only requires a single row lookup to access all adjacent blocks of a super-block. In addition, a 
small on-chip SRAM structure namely DRAM Tag-Cache (Section 6.5.1) is added to improve 
the L4 DRAM hit/miss prediction accuracy with SB-MMap$. 

6.4.1 Impact of super-block size on storage reduction 

This thesis employs traditional least recently used (LRU) replacement policy for the MMap$. 
Each MMap$ entry requires 1 valid bit, 1 dirty bit, 4 LRU bits, 4 way-number bits, 20 bits for 
Seg-Tag field, and 64-bit for Seg-BV field. This leads to a storage overhead of 94 bits required 
for each MMap$ entry. A super-block size of 2 will reduced the SB-MMap$ Seg-BV size by half 
(it requires 32 bits for Seg-BV field), which leads to storage requirement of 62 bits for each SB-
MMap$ entry. Similarly, a super-block size of 4 requires 16 bits for the Seg-BV field, which 
leads to storage requirement of 46 bits for each SB-MMap$ entry. A super-block of size 2 or 4 
reduces the SB-MMap$ storage overhead by 34% or 51%, respectively compared to the original 
MMap$. 

6.5 Innovative Tag-Cache Organization for larger caches 

Multi-core systems with an on-chip SRAM/DRAM cache hierarchy typically employ larger L3 
SRAM and L4 DRAM caches to accommodate the large working set sizes of emerging applica-
tions [32]. The larger L3 SRAM incurs high access latencies due to long interconnect delays 
[87]. On the other hand, the larger L4 DRAM caches incur high access latencies due to slower 
DRAM cache access [54, 77, 78, 102]. This section proposes several architectural innovations to 
minimize L3 SRAM and L4 DRAM hit latencies to improve the overall instruction throughput. 

6.5.1 DRAM Tag-Cache (DTC) Organization 

The tag latency for an L4 DRAM hit in the proposed configurable row buffer mapping policies is 
37 cycles (see Figure 6.12). To reduce it, this thesis adds a small low latency on-chip SRAM 
structure named as DRAM Tag-Cache (DTC) that holds the tags of recently accessed rows in the 
DRAM cache. The integration of the DTC into the cache hierarchy is shown in Figure 6.1 and 
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Figure 6.15 presents the DTC details for the configurable row buffer mapping policy. Note that 
the DTC only stores the tag blocks of recently accessed rows and does not contain any data. The 
DTC has a fast access latency due to its small size. It is accessed right after an L3 SRAM miss 
and, in case of a DTC hit, it reduces the L4 hit latency because it avoids the high latency MMap$ 
access to identify a L4 hit/miss and it avoids reading the tag block from the DRAM cache. The 
proposed DTC also reduces the L4 miss latency because the request is sent immediately (requires 
2 clock cycles; one cycle to identify a DTC hit and one cycle to identify an L4 hit/miss) to the 
main memory controller after an L4 DRAM miss is detected by the DTC. In contrast, state-of-
the-art [77, 78] requires 10-cycles for the MMap$ access to identify a miss before the request can 
be sent to the memory controller. 

 

Figure 6.15: DRAM Tag Cache (DTC) Organization for configurable row buffer mapping 
policy 

Figure 6.15 shows the DTC organization with 32 sets and 4-way associativity where the data 
payload of each entry contains the tags for a particular Row-id. On a DTC access, the DTC-Index 
field is used to index a DTC set in the “DTC Row-Id” array. All 4 Row-Tag entries (grey blocks 
in Figure 6.15) within that DTC set are then compared to the DTC-Row-Tag field from the 
memory block address to identify a DTC hit/miss. 

The proposed DTC has the following major advantages. 

1. Accesses that hit in the DTC incur a reduced L4 tag access latency (Figure 6.16-a) compared 
to a DTC miss (Figure 6.16-b) because they do not require DRAM cache access to read the 
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tags and they do not require MMap$ access to identify a L4 DRAM hit/miss. Similarly, the 
row buffer miss latency is also reduced for a DTC hit (Figure 6.16-c) compared to a DTC 
miss (Figure 6.16-d). A DTC hit reduces the DRAM cache bandwidth consumption compared 
to a DTC miss because it reads 64 bytes (required for a cache line access) instead of reading 
192 bytes (128 bytes for the tags and 64 bytes for the cache line) in case of a DTC miss for 
the configurable row buffer mapping policy. 

2. Accesses that hit in the DTC precisely identify whether they lead to an L4 DRAM hit or a 
miss for a “maybe hit” signal detected by the proposed reduced SB-MMap$, which improves 
the DRAM cache hit/miss prediction accuracy. 

3. If an L4 DRAM miss is identified after a DTC hit, the request can be sent immediately to the 
main memory controller (without requiring MMap$ access), which reduces the L4 DRAM 
miss latency. 
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Figure 6.16: L4 DRAM row buffer hit latency for (a) DTC hit (b) DTC miss  
L4 DRAM row buffer miss latency for (c) DTC hit (d) DTC miss 

6.5.2 DTC Implementation with SB-MMap$ 

Figure 6.17 shows the steps involved after an L3 SRAM miss in the proposed SRAM/DRAM 
cache organization. The DTC and SB-MMap$ is accessed after an L3 SRAM miss. If the DTC 
hits, then the tags from DTC are accessed to identify an L4 DRAM hit/miss and to identify the 
location of the cache line (see Tag-Compare at the right bottom part of Figure 6.15). An L4 
DRAM hit (i.e. the tag matches with an incoming cache line tag) requires only data access from 
the DRAM cache. However, if the DTC misses, then the SB-MMap$ needs to be queried to iden-
tify a “true miss” or a “maybe hit” (details in Section 6.4). A “true miss” requires a main memory 
access to get the data. If the SB-MMap$ identifies a “true miss”, the request is forwarded to the 
main memory, bypassing the DRAM cache access. If the SB-MMap$ identifies a “maybe hit”, 
then the request is forwarded to the DRAM cache to eventually identify a hit or a miss. When the 
tags are read from the DRAM cache after a DTC miss, then they are inserted into the DTC in or-
der to exploit the temporal locality that these tags will be accessed in the near future. The results 
in Section 6.7.3 show that the proposed configurable row buffer mapping policy has an improved 
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DTC hit rate compared to the LH-Cache (i.e. when DTC is incorporated with LH-Cache) [77, 
78]. 

  

Figure 6.17: DTC and MMap$ lookup following an L3 SRAM miss 

6.5.3 Writing tag-blocks for a DTC hit 

When the tags are updated in the DTC (cache hit, cache writeback, cache fill etc.), then the cache 
line in the DRAM cache must be accessed (read/write for a cache hit, write for a cache 
writeback, and insert new cache line for a cache fill). The following modification has been made 
to the DRAM cache controller to efficiently write the dirty tags by exploiting the row buffer lo-
cality. The modified DRAM cache controller writes the updated DTC tags into the DRAM cache 
along with the cache line so that writing updated tag information is guaranteed to have a row 
buffer hit. Figure 6.18 shows the timing and sequence of commands involved in the proposed 
DRAM cache controller for different requests that hit in the DTC and that are explained as fol-
lows. 

L4 DRAM read hit: For an L4 DRAM read hit request that hits in the row buffer (see 
Figure 6.18-a), the controller issues a read request to read the requested block whose location is 
determined by the tags of the DTC followed by a subsequent request to update the dirty tags. The 
requested data is read from the DRAM cache and forwarded to the requesting core followed by 
updating tag block TB-0 (e.g. used bit is set to 1 which is stored in TB-0; see Section 6.3.2-b and 
Figure 6.10-b). The latency incurred in updating TB-0 is only 4 cycles as illustrated in 
Figure 6.18-a. 
 
L4 DRAM write/writeback hit: For an L4 DRAM write/writeback hit request that hits in the 
row buffer (see Figure 6.18-b), the controller issues a write request to update tag block TB-0 (to 
set the dirty bit for cache write and cache writeback and to set the used bit for cache write; these 
bits are stored in TB-0; see Section 6.3.2-b and Figure 6.10-b) followed by a subsequent write 
request to the cache line (whose location is determined by the DTC tags). 
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Figure 6.18: Timing and sequence of commands to update the tags in the DRAM cache after 
a DTC hit in the configurable row buffer mapping policy for an L4 DRAM row buffer hit 

(a) read request (b) write/write-back request (c) fill request with clean victim block eviction 
(d) fill request with dirty victim block eviction 

L4 DRAM cache fill with clean victim line eviction: For an L4 DRAM fill request that hits in 
the row buffer (see Figure 6.18-c), the controller issues two write requests to update the tag 
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blocks TB-0 and TB-1 (to store the tags of an incoming cache line, to clear the used bit and to 
update the clock pointer). There is no need to write a clean victim line (i.e. dirty bit is 0) to main 
memory because the main memory contains the most recent copy of the data. 
 
L4 DRAM cache fill with dirty victim line eviction: For an L4 DRAM fill request that hits in 
the row buffer (see Figure 6.18-d), the controller issues two write requests to update the tag 
blocks TB-0 and TB-1. Also, an additional read request is issued to read the dirty victim line (i.e. 
dirty bit is 1) that is written to main memory because the victim line has been modified since it 
was fetched from main memory. 

6.5.4 DTC organization for RBM-A7 policy 

Figure 6.15 shows the DTC organization for the configurable row buffer mapping policy (details 
in Section 6.3.2), while Figure 6.19 shows the DTC organization for the RBM-A7 policy (details 
in Section 6.3.1). 

 

Figure 6.19: DRAM Tag Cache (DTC) Organization for the RBM-A7 policy 
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Figure 6.20: Timing and sequence of commands to fill the DTC after a DTC miss for a data 
block that belongs to Set-1 in the RBM-A7 policy 

Each 2KB DRAM row in the RBM-A7 policy consists of 4 cache sets, where each cache set 
consists of one tag blocks and 7 cache lines as shown in Figure 6.3. The inclusion of DTC re-
quires an efficient DRAM cache controller implementation in order to insert 4 tag blocks into 
DTC after a DTC miss for the RBM-A7 policy. In the proposed controller implementation, a read 
operation is performed for the requested cache line first, and then the non-requested tag blocks 
are also read from the DRAM cache to be filled in the DTC. Figure 6.20 shows an example of the 
sequence of commands to fill the DTC after a DTC miss with low latency overhead. Let us as-
sume that there is a DRAM cache read hit for a cache line that belongs to Set-1. In the proposed 
implementation, the controller issues a read request to read the tag block TB-1 (tag block associ-
ated with Set-1) which indicates the location of the cache line in Set-1. The requested cache line 
is read from the DRAM cache and forwarded to the requesting core followed by updating tag 
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block TB-1 (e.g. updating LRU information). After that, subsequent read commands are sent to 
access the remaining tag blocks (i.e. TB-0, TB-2, and TB-3) which are filled into DTC. All of 
these operations are performed on the row buffer. In the proposed controller implementation, the 
non-requested tag block transfers are performed off the critical path so that they do not affect the 
latency of the demand request. The extra bus latency incurred to read the remaining 3 tag blocks 
is 12 cycles as shown in Figure 6.20. The latency overhead to read additional 3 blocks (to fill 
DTC) is compensated by future hits in the DTC exploiting the fact that adjacent tag blocks are 
likely to be accessed in the near future (see Section 6.7.3 for evaluation). 

6.5.5 SRAM Tag-Cache (STC) Organization 

A large SRAM tag array (e.g. an 8 MB L3 SRAM requires a tag storage of ~512 KB) is com-
posed of multiple banks [124], where each bank consists of multiple sub-banks with one sub-
bank being activated per access as shown in Figure 6.21. Each sub-bank is composed of multiple 
identical mats, where all mats in a sub-bank are activated per access. Each mat is an array of 
SRAM cells with associated peripheral circuitry. Each row in a mat contains the tags of one 
cache set. State-of-the-art SRAM/DRAM cache organizations [36, 38, 77, 78, 102] always read 
the tags from that large L3 SRAM tag array (see Figure 6.21) which incurs a high L3 tag latency. 
To reduce the L3 tag latency, a small SRAM Tag-Cache (STC) organization with 16 sets and 4-
way associativity is added to the cache hierarchy to identify L3 hit/miss in a single cycle. The 
STC organization (see Figure 6.22) is similar to the DTC organization (see Figure 6.16) except 
that it holds the tags of the 8 adjacent sets (i.e. belonging to the same row of 8 mats) that were 
recently accessed in the L3 SRAM tag array. Entries in STC are indexed by the STC-index field 
of the memory block address as shown in Figure 6.22. 

 

Figure 6.21: Layout of a large L3 SRAM tag array [124] 



Chapter 6 Policies for Latency Reduction 

- 82 - 

 

Figure 6.22: SRAM Tag-Cache (STC) organization 

6.6 Storage Overhead 

Table 6.2 summarizes the storage overhead for the DRAM Tag-Cache (DTC) and SRAM Tag-
Cache (STC). The proposed DTC with 32 sets and 4-way associativity requires a storage over-
head of ~16KB for a 2KB DRAM cache row size, while the proposed STC with 16 sets and 4-
way associativity requires a storage overhead of ~20KB. The total storage overhead required for 
both is ~36KB which is negligible compared to the large L3 SRAM cache (8 MB for L3 data ar-
ray) and MMap$ (2MB required for DRAM cache hit/miss prediction). Note that the proposed 
SB-MMap$ requires 51% less storage overhead compared to state-of-the-art. 

6.7 Evaluation and Analysis 

This section evaluates the proposed row buffer mapping policies (RBM-A7 and configurable row 
buffer mapping policy; details in Section 6.3) with state-of-the-art row mapping policies namely 
LH-Cache [77, 78] (details in Section 2.4.1) and Alloy-Cache [102] (details in Section 2.4.3). 
The drawback of these policies is that they are optimized for one parameter (LH-Cache is opti-
mized for L4 DRAM miss rate and Alloy-Cache is optimized for L4 DRAM hit latency). In con-
trast, the proposed row buffer mapping policies optimize both L4 miss rate and L4 hit latency. 
This section also evaluates the impact of the parameter CM (number of consecutive memory 
blocks mapped to the same row; details in Section 6.3.5) on the L4 miss rate and L4 hit latency. 
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DRAM Tag-Cache (DTC) Overhead for configurable row buffer mapping policy Overhead 

Size of each L4-Tag entry in DRAM cache (Figure 6.10-a) 
(1 valid bit + 1 dirty bit + 1 used bit + 8 coherence bits + 22 L4-Tag bits) 

33 bits 

Tag size for each row in L4 DRAM cache (Figure 6.10-b) 
(5 bits “clock-pointer” + 30 way * 33 bits/way = 990 bits) 

995 bits 

Size of each DTC entry [1 valid bit + 1 dirty bit + 11-bits DTC-Row-Tag + 2-bit LRU + 
2-bit way-no + 995 bits for each row in L4 DRAM cache] (Figure 6.15) 

1012 bits 

Total DTC storage overhead 
[32 sets * 4 entry/set * 1012 bits/entry = 129536 bits = 15.8125 KB] 

~16 KB 

DRAM Tag-Cache (DTC) Overhead for RB-A7 policy Overhead 

Size of each L4-Tag entry in DRAM cache (Figure 6.3) 
(1 valid bit + 1 dirty bit + 3-bit LRU + 3-bit way-no + 8 coherence bits + 20 L4-Tag bits) 

36 bits 

Tag size for each row in L4 DRAM cache (Figure 6.3) 
(4 sets * 7 way/set * 35 bits/way = 980 bits) 

1008 bits 

Size of each DTC entry [1 valid bit + 1 dirty bit + 11-bits DTC-Row-Tag + 2-bit LRU + 
2-bit way-no + 1008 bits for each row in L4 DRAM cache] (Figure 6.19) 

1025 bits 

Total DTC storage overhead 
[32 sets * 4 entry/set * 1025 bits/entry = 131200 bits = 16.01 KB] 

~16 KB 

SRAM Tag-Cache (STC) Overhead Overhead 

Size of each L3-Tag entry in SRAM cache 
(1 valid bit + 1 dirty bit + 3-bit LRU + 3-bit way-no + 8 coherence bits + 24 L4-Tag bits) 

40 bits 

Tag size for each sub-bank in L3 SRAM cache (Figure 6.21) 
(8 sets * 8 way/set * 40 bits/way = 2560 bits) 

2560 bits 

Size of each STC entry [1 valid bit + 7-bits DTC-Row-Tag + 2-bit LRU + 2-bit way-no + 
2560 bits for each row in L3 SRAM cache] (Figure 6.22) 

2572 bits 

Total STC storage overhead 
[16 sets * 4 entry/set * 2572 bits/entry = 164608 bits = 20.1 KB] 

~20 KB 

Table 6.2: Storage overhead of DRAM Tag-Cache (DTC) and SRAM Tag-Cache (STC) 

The parameters for the cores, caches and off-chip memory are the same as used in the exper-
imental setup in Section 4.2 (see Table 4.1 and Table 4.2) with various workloads from 
SPEC2006 [5] listed in Table 4.3. This chapter uses 2KB DRAM row size for comparisons. 
However, the concepts proposed in this chapter can also be applied for other row sizes (e.g. 4KB 
and 8KB). This chapter employs the adaptive DRAM insertion policy (ADIP; details in Section 
5.2) on top of all row buffer mapping policies. However, the concept proposed in this chapter are 
flexible enough to be applied to any replacement policy. The following row buffer mapping poli-
cies are compared: 

1. State-of-the-art LH-Cache [77, 78] (details in Section 2.4.1) namely LH-ADIP which is opti-
mized for L4 DRAM miss rate. 
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2. State-of-the-art Alloy-Cache [102] namely Alloy-ADIP (details in Section 2.4.3) which is op-
timized for L4 DRAM hit latency. 

3. The proposed RBM-A7 policy (details in Section 6.3.1) namely RBM-A7-ADIP. 

4. The proposed configurable row buffer mapping policy (details in Section 6.3.2) namely 
CRBM-ADIP-CM, where CM (details in Section 6.3.2 and Section 6.3.5) corresponds to the 
number of consecutive blocks from main memory that are mapped to the same L4 DRAM 
row. 

The latency and performance impact of DRAM Tag-Cache (DTC; details in Section 6.5.1) for 
above row buffer mapping policies is presented in Section 6.7.4 and 6.7.6 respectively. Section 
6.8.2 explores the performance benefits of incorporating SRAM Tag-Cache (STC; details in Sec-
tion 6.5.5) in the cache hierarchy. 

6.7.1 Impact on L4 DRAM miss rate 

This sections compares the L4 DRAM miss rate (lower is better) for different row buffer map-
ping policies. First, the miss rate optimized LH-ADIP [77, 78] and the latency optimized Alloy-
ADIP (with worst L4 miss rate) [102] policies are compared. Then, the impact of parameter CM 
(2, 4, 8, 16) on the L4 DRAM miss rate it evaluated for the configurable row buffer mapping pol-
icy. 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH‐ADIP (CM = 1)

CRBM‐ADIP (CM = 2)

CRBM‐ADIP (CM = 4)

CRBM‐ADIP (CM = 8)

CRBM‐ADIP (CM = 16)

RBM‐A7‐ADIP

Alloy‐ADIP

(a
) 
L4
 m

is
s 
ra
te

(L
S
ap
p
lic
at
io
n
s)

0.15

0.25

0.35

0.45

0.55

0.65

Mix_01 Mix_02 Mix_03 Mix_04 Average

LH‐ADIP (CM = 1)

CRBM‐ADIP (CM = 2)

CRBM‐ADIP (CM = 4)

CRBM‐ADIP (CM = 8)

CRBM‐ADIP (CM = 16)

RBM‐A7‐ADIP

Alloy‐ADIP(b
) 
O
ve
ra
ll 
L4
 m

is
s 
ra
te

 

Figure 6.23: L4 DRAM miss rate (a) for Latency Sensitive applications (b) Overall miss 
rate; for different row buffer mapping policies 

Figure 6.23-(a) shows the L4 miss rate for latency sensitive applications, while Figure 6.23-
(b) shows the overall L4 miss rate for different row buffer mapping polices. The Alloy-ADIP pol-
icy (employs direct mapped cache) suffers more misses compared to the LH-ADIP policy (em-
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ploys 29-way associative cache), which leads to an increased L4 miss rate. The LH-ADIP policy 
reduces the overall L4 miss rate by 40.8% compared to the Alloy-ADIP policy via high associa-
tivity and reduced conflict misses. On the other hand, the Alloy-ADIP policy improves the L4 
DRAM row buffer hit rate (see Section 6.7.2) and reduces the L4 tag latency (details in Sec-
tion 6.3.3), which leads to a significant reduction in L4 hit latency (50.1%) compared to the LH-
ADIP policy (details in Section 6.7.4). 

The proposed configurable row buffer mapping policy slightly increases the overall L4 miss 
rate (0.7% for CM = 2, 3% for CM = 4 and 15.8% for CM = 8) compared to the miss rate opti-
mized LH-ADIP policy, but that is compensated by a significant reduction in L4 hit latency. A 
higher value of CM reduces the L4 hit latency (lower is better) via an improved row buffer hit 
rate (details in Section 6.7.2) but it suppresses the set-level-parallelism, which results in an in-
creased L4 miss rate. For instance, CM = 16 incurs a significantly increased L4 miss rate (39.1% 
compared to the LH-ADIP policy), because it maps a large contiguous memory space (with 16 
blocks) to a single set, which leads to a lot of conflict misses due to reduced set-level-parallelism. 
The proposed RBM-A7-ADIP policy increases the overall L4 miss rate by 5.1% compared to the 
LH-ADIP policy, because it employs an 7-way associative DRAM cache compared to the 29-way 
associative LH-ADIP policy. On the other hand, the RBM-A7-ADIP policy improves the row 
buffer hit rate (see Section 6.7.2) for the DRAM cache, which reduces the L4 hit latency by 
14.9% compared to the LH-ADIP policy (details in Section 6.7.4). 

6.7.2 Impact on the L4 DRAM row buffer hit rate 

This section compares the L4 DRAM row buffer hit rate (higher is better) for all evaluated con-
figurations. It also evaluates the impact of parameter CM on the L4 DRAM cache hit rate for the 
configurable row buffer mapping policy. The Alloy-ADIP policy maps 28 consecutive blocks to 
the same DRAM cache row, which leads to a significantly higher row buffer hit rate (39.4%) 
compared to other row buffer mapping policies as shown in Figure 6.24. However, this im-
provement comes at the cost of an increased L4 miss rate (Figure 6.23). 
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Figure 6.24: DRAM cache row buffer hit rates for different row buffer mapping policies 

To exploit spatial and temporal locality, the row buffer hit rate can be improved by mapping 
more consecutive memory blocks to the same DRAM row buffer. Figure 6.24 illustrates this ob-
servation showing the DRAM cache row buffer hit rate for different row buffer mapping policies. 
The proposed configurable row buffer mapping policy benefits from a high associativity (30-way 
associativity) with correspondingly reduced L4 miss rate (Figure 6.23) compared to the Alloy-
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ADIP policy. It improves the DRAM cache row buffer hit rate (14.1% for CM = 2, 22.2% for 
CM = 4, 28.5% for CM = 8, and 35.1% for CM = 16) compared to the LH-ADIP policy (1.2%). 
The impact of the DRAM cache row buffer hit rate on the L4 DRAM cache hit latency is evalu-
ated in Section 6.7.4. 

6.7.3 Impact on the DTC hit rate 

This sections compares the DTC hit rate (higher is better) for all evaluated configurations 
when DTC is incorporated in the DRAM cache hierarchy. It also evaluates the impact of parame-
ter CM on the DTC hit rate for the configurable row buffer mapping policy. As CM increases, the 
DRAM cache row buffer hit rate increases (Figure 6.24), which leads to a reduced L4 hit latency. 
However, the performance of a DRAM cache with DTC depends upon the DTC hit rate. 
Figure 6.25 shows the DTC hit rate for different row buffer mapping policies. The LH-ADIP pol-
icy (CM = 1) has a reduced DTC hit rate (1.6%) compared to the configurable row buffer map-
ping policy (DTC hit rate is 33.4% for CM = 2, 57.7% for CM = 4, 73.2% for CM = 8 and 78.8% 
for CM = 16). Increasing CM improves the DTC hit rate, which leads to a reduced L4 DRAM hit 
latency for the configurable row buffer mapping policy, which is evaluated in the next section. 
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Figure 6.25: DRAM Tag-Cache hit rates for different row buffer mapping policies 

6.7.4 Impact on the L4 DRAM hit latency 

This sections compares the L4 DRAM cache hit latency (lower is better) for different row buffer 
mapping policies. It also evaluates the impact of parameter CM and DTC on the L4 hit latency. 
First, this section compares the L4 hit latency for the latency optimized Alloy-ADIP [102] and the 
miss rate optimized LH-ADIP (with worst L4 hit latency) [77, 78] policies. Then, it evaluates the 
impact of parameter CM (2, 4, 8, 16) on the L4 hit latency. 

Figure 6.26-(a) shows the L4 hit latency without incorporating DTC into the cache hierarchy, 
while Figure 6.26-(b) shows the L4 hit latency when DTC is incorporated in the cache hierarchy. 
The Alloy-ADIP policy optimizes the L4 hit latency due to reduced L4 tag latency and a high 
DRAM cache row buffer hit rate compared to the LH-ADIP policy. Thus, the Alloy-ADIP policy 
leads to a significant reduction in L4 hit latency (50.1%) compared to the LH-ADIP policy as 
shown in Figure 6.26-(a). 
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As CM increases for the proposed configurable row buffer mapping policy, the DRAM cache 
row buffer hit rate increases (Figure 6.24), which leads to a reduced L4 hit latency (Figure 6.26-
a). The reduction in L4 hit latency compared to the LH-ADIP policy without DTC is 6.8% for 
CM = 2, 12.4% for CM = 4, 17.3% for CM = 8, and 22.5% for CM = 16 as illustrated in Fig-
ure 6.26-(a). On the other hand, the reduction in L4 hit latency with DTC compared to the LH-
ADIP policy (with DTC) is 15.1% for CM = 2, 24.3% for CM = 4, 30.2% for CM = 8, and 34.8% 
for CM = 16 due to a high DTC hit rate. Note that the LH-ADIP policy gets negligible latency 
benefits from DTC because the DTC hit rate is only 1.7% for the LH-ADIP policy. 
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Figure 6.26: L4 DRAM cache hit latency (a) without DTC (b) with DTC; for different row 
buffer mapping policies 

6.7.5 Performance improvement without DTC 

Figure 6.27 shows the average normalized harmonic mean instruction per cycle (HM-IPC) 
throughput results for different values of CM with the speedup normalized to the Alloy-ADIP 
policy without DTC. On average, the configurable row buffer mapping policy without DTC im-
proves the HM-IPC speed of latency sensitive applications by 17.2%/21.2%/14.2%/5.2% com-
pared to the Alloy-ADIP policy for CM = 2/4/8/16, respectively. It improves the overall HM-IPC 
speedup by 14.4%/17.5%/10.4%/2.4% compared to the Alloy-ADIP policy for CM = 2/4/8/16, 
respectively. 
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Figure 6.27: Normalized HM-IPC speedup compared to Alloy-ADIP for different row buff-
er mapping policies without DRAM Tag-Cache (DTC) for (a) latency sensitive applications 

(b) all applications 

6.7.6 Performance improvement with DTC 

The proposed configurable row buffer mapping policy gets significant performance benefits from 
adding a DTC. Figure 6.28 illustrates this observation showing the HM-IPC speed compared to 
the Alloy-ADIP policy. On average, the configurable row buffer mapping policy with DTC im-
proves the HM-IPC speed of latency sensitive applications by 22.6%/29.1%/22.7%/16.1% com-
pared to the Alloy-ADIP policy for CM = 2/4/8/16, respectively. It improves the overall HM-IPC 
speedup by 19%/24.8%/18.4%/13% compared to Alloy-ADIP policy for CM = 2/4/8/16, respec-
tively. 

The LH-ADIP policy has a significantly low DRAM cache row buffer hit rate (1.1%) and low 
DTC hit rate (1.6%), which results in a high L4 hit latency. Choosing a suitable value of CM is a 
compromise between L4 miss rate and L4 hit latency for the configurable row buffer mapping 
policy. Setting CM to a value of 4 provides the best performance improvement because it has a 
high DRAM row buffer hit rate (22.2%) and a high DTC hit rate (57.7%) compared to the LH-
ADIP policy (DRAM row buffer hit rate is 1.1% and DTC hit rate is 1.6%). For this reason, CM 
= 4 significantly reduces the L4 hit latency by 24.3% compared to LH-ADIP policy with a negli-
gible increase (3%) in L4 miss rate. Thus, the configurable row buffer mapping policy with CM 
= 4 and DTC significantly improves the HM-IPC speed of latency sensitive applications by 
14.5% and the overall HM-IPC speed by 12.5% compared to LH-ADIP policy. The LH-ADIP 
policy gets negligible benefits (0.2%) from DTC, while the configurable row buffer mapping 
with CM = 4 provides additional 6.2% improvement in performance from DTC. 
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Figure 6.28: Normalized HM-IPC speedup compared to Alloy-ADIP for different row buff-
er mapping policies with DRAM Tag-Cache (DTC) (a) latency sensitive applications (b) all 

applications 

6.7.7 Comparison of proposed policies 

This section compares the performance of proposed configurable row buffer mapping policy with 
CM = 4 (namely CRBM-ADIP-CM=4) and the RBM-A7-ADIP policy. Both CRBM-ADIP-CM=4 
and RBM-A7-ADIP polices map 4 consecutive memory blocks to the same 2KB DRAM cache 
row, which results in almost similar row buffer and DTC hit rates as illustrated in Figure 6.29 (a-
b). 

The L4 tag latency for a DTC miss is 33 and 37 clock cycles respectively for the RBM-A7-
ADIP and CRBM-ADIP-CM=4 policies as shown in Figure 6.12. The L4 tag latency is reduced 
to 2 clock cycle for a DTC hit for both RBM-A7-ADIP and CRBM-ADIP-CM=4 policies as illus-
trated in Figure 6.16-(a). A high DTC hit rate for the CRBM-ADIP-CM=4 policy results in al-
most similar L4 hit latency compared to the RBM-A7-ADIP policy as illustrated in Figure 6.29-
(c). The slight increase in L4 hit latency (0.7% as shown in Figure 6.29-c) for the CRBM-ADIP-
CM=4 policy compared to the RBM-A7-ADIP policy is compensated by a significant miss rate 
reduction (20.8% as shown in Figure 6.29-d) of latency sensitive applications. The miss rate is 
reduced because the CRBM-ADIP-CM=4 policy provides a higher associativity (30-way associa-
tivity) compared to the RBM-A7-ADIP policy (7-way associativity). Thus, the CRBM-ADIP-
CM=4 policy improves the HM-IPC speed of latency sensitive applications by 2.2% 
(Figure 6.30-a) and the overall HM-IPC speed by 1.95% (Figure 6.30-b) compared to the RBM-
A7-ADIP policy. 
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Figure 6.29: Average (a) DRAM cache row buffer hit rate (b) DTC hit rate (c) L4 hit latency 
with DTC (d) L4 miss rate for latency sensitive applications 
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Figure 6.30: Normalized HM-IPC speedup compared to the RBM-A7-ADIP policy with 
DRAM Tag-Cache (DTC) (a) latency sensitive applications (b) all applications 

6.8 Evaluating CRBM policy 

6.8.1 Impact of row buffer mapping policy 

For the rest of this chapter, the term proposed-ADIP refers to the configurable row buffer map-
ping policy with CM = 4, while the adaptive DRAM insertion policy is applied on top of it. This 
section evaluates and investigates the performance benefits of the proposed-ADIP policy com-
pared to the state-of-the-art Alloy-ADIP (optimized for L4 hit latency with worst L4 miss rate) 
and LH-ADIP (optimized for L4 miss rate with worst L4 hit latency) policies. The main draw-
back of these policies is that they are optimized for a single parameter (L4 hit latency or L4 miss 
rate). In contrast, the proposed-ADIP simultaneously reduces L4 hit latency and L4 miss rate at 
the same time. On average, the proposed-ADIP without DTC improves the overall HM-IPC 
speedup by 17.5% and 5.9% compared to Alloy-ADIP and LH-ADIP policies respectively as il-
lustrated in Figure 6.31. 

6.8.2 Impact of Tag-Cache on performance 

This section evaluates the performance benefits of incorporating a DRAM Tag-Cache (DTC; 
details in Section 6.5.1) on top of the proposed-ADIP namely proposed-ADIP-DTC. It also pre-
sents the performance benefits of incorporating an SRAM Tag-Cache (STC; details in Section 
6.5.5) on top of the proposed-ADIP-DTC namely proposed-ADIP-DTC-STC. On average, the 
proposed-ADIP-DTC improves the overall HM-IPC speed by 24.9%, 12.5%, and 6.3% compared 
to Alloy-ADIP, LH-ADIP, and proposed-ADIP respectively as illustrated in Figure 6.31. On aver-
age, the proposed-ADIP-DTC-STC improves the overall HM-IPC speed by 26.5%, 14%, 7.6%, 
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and 1.26% compared to Alloy-ADIP, LH-ADIP, proposed-ADIP, and proposed-ADIP-DTC re-
spectively as illustrated in Figure 6.31. The incorporation of the low latency DRAM Tag-Cache 
(DTC) on top of the proposed-ADIP provides additional 6.3% improvement in performance due 
to a high DTC hit rate (57.7% as shown in Figure 6.29-b) which avoids high latency DRAM 
cache and MMap$ access for a DTC hit. Similarly, the incorporation of the low latency STC on 
top of the proposed-ADIP-DTC provides an additional 1.26% improvement in performance due 
to a high STC hit rate (average STC hit rate is 61.2%). 
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Figure 6.31: Normalized HM-IPC speedup compared to Alloy-ADIP for (a) Latency Sensi-
tive (LS) applications (b) Memory Sensitive (MS) applications (c) Both LS and MS applica-

tions 

6.8.3 Impact of the super-block size on performance 

This section evaluates the impact of the super-block size (2 and 4; details in Section 6.4.1) on the 
overall performance by evaluating two policies namely the proposed-ADIP-DTC-STC-sb-2 and 
the proposed-ADIP-DTC-STC-sb-4 for super-block (sb) sizes of 2 and 4 respectively on top of 
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the proposed-ADIP-DTC-STC policy. Note that a super-block of size 2 (i.e. proposed-ADIP-
DTC-STC-sb-2 policy) reduces the MMap$ size by 34% and a super-block of size 4 (i.e. pro-
posed-ADIP-DTC-STC-sb-4 policy) reduces the MMap$ size by 51% (details in Section 6.4.1). 
Reducing the MMap$ size reduces the MMap$ latency. The MMap$ latency is assumed to be 10 
clock cycles (for 2MB MMap$) for all configurations, although a reduced MMap$ is employed 
for the proposed-ADIP-DTC-STC-sb-2 (1.33 MB) and the proposed-ADIP-DTC-STC-sb-4 (1MB 
MMap$) policies (i.e. a conservative comparison). 
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Figure 6.32: Normalized HM-IPC speedup for different super-block (sb) sizes 
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Figure 6.33: Percentage of false hits for super-blocks (sb) of size 2 and 4 

On average, the proposed-ADIP-DTC-STC-sb-2 improves the overall HM-IPC speedup by 
25.3% and 12.9% compared to the Alloy-ADIP and LH-ADIP policies respectively as shown in 
Figure 6.32. On average, the proposed-ADIP-DTC-STC-sb-4 improves the HM-IPC speedup by 
24.4% and 12.1% compared to the Alloy-ADIP and LH-ADIP respectively. Figure 6.33 shows the 
percentage of false hits detected for the proposed-ADIP-DTC-STC-sb-2 and proposed-ADIP-
DTC-STC-sb-4 policies. The percentage of false hits is 2.6% and 5.5% for the proposed-ADIP-
DTC-STC-sb-2 and proposed-ADIP-DTC-STC-sb-4 respectively. Note that most of the false hits 
are eliminated by the DTC (DTC hit rate is 57.7% for CM = 4) if “maybe hit” is identified by the 
proposed SB-MMap$. 
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6.9 Summary 

This chapter presented a novel DRAM row buffer mapping policy for on-chip DRAM caches that 
simultaneously improves the DRAM cache miss rate and the DRAM cache hit latency. Along 
with that it proposed the concept of a DRAM Tag Cache, a small and low latency SRAM struc-
ture that further improves the DRAM cache hit latency. This chapter further applied the concepts 
of the Tag-Cache architecture on top of L3 SRAM cache. This chapter performed extensive eval-
uations and compared the performance of the proposed approaches with two state-of-the-art row 
buffer mapping policies for on-chip DRAM caches. For an 8-core system, the proposed policies 
improve the harmonic mean instruction per cycle throughput by 24.4% and 12.1%, respectively. 
At the same time, it requires 51% less storage overhead to determine the DRAM cache hit/miss 
prediction. 

The detailed analysis showed that it is the combination of improved miss rate and hit latency 
that provides the general performance improvement. As the proposed DRAM Tag cache architec-
ture allows reducing the size of the MMap$ structure (used in DRAM caches to provide hit/miss 
prediction), the performance improvement comes at reduced area overhead which makes it gen-
erally applicable for a wide range of applications and architectures. 
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Chapter 7 Putting It All together: DRAM Last-
Level-Cache Policies 

The performance of an SRAM/DRAM cache hierarchy can be improved by reducing the average 
latency of a read request which can be reduced by reducing the latency and miss rate at different 
levels of the cache hierarchy. This thesis has presented several techniques to reduce the average 
access latency by reducing the L3 SRAM hit latency, L4 DRAM hit latency and L4 DRAM miss 
rate via novel policies while reducing MissMap Cache (MMap$) storage overhead. The perfor-
mance benefits of the proposed policies along with the storage reduction benefits are presented in 
Chapter 5 and Chapter 6 in detail. Each of the proposed policy is employed on different on-chip 
hardware structures of the SRAM/DRAM cache hierarchy including L3 SRAM, L4 DRAM and 
MMap$ caches. Therefore, the proposed policies are complementary. 

 

Figure 7.1: Proposed SRAM/DRAM cache hierarchy showing integration of selected poli-
cies 

Figure 7.1 shows the proposed organization of the four-level SRAM/DRAM cache hierarchy 
illustrating the integration of selected policies (shown in highlighted areas) from Chapter 5 and 
Chapter 6. The proposed policies work synergistically, which improves the performance com-
pared to state-of-the-art SRAM/DRAM cache hierarchies. This chapter discusses and evaluates 
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the performance gains, miss rate and latency benefits of the selected contributions (highlighted in 
Figure 7.1) when they are incorporated in the cache hierarchy. 

7.1 Evaluation 

For the evaluation on a multi-core system where each core is based on the x86 microarchitecture, 
this thesis has compared the proposed policies with state-of-the-art DRAM cache namely LH-
Cache [77, 78] and Alloy-Cache [102], which share the same philosophy of reducing miss rate 
via increased DRAM cache capacity. However, they do not fully exploit the application and 
DRAM characteristics, which can cause inter-core interference. In addition, they incur a large 
area overhead required for DRAM cache hit/miss prediction, which reduces the area advantage of 
a DRAM cache. 

 LH LH-ADIP
CM=4-
ADIP 

CM=4-ADIP-
TAG$-RS 

Adaptive DRAM Insertion Policy 
(ADIP) 

(Details in Section 5.2) 
    

Configurable row Buffer Mapping 
Policy with CM= 4  

(Section 6.3.2 and Section 6.3.5) 
    

Tag-Cache (TAG$)  
(Details in Section 6.5) 

    

Reducing Storage (RS) size  
(Details in Section 6.4) 

    

Table 7.1: Overview of different configurations with their incorporated policies 

For evaluation, this chapter compares the following different configurations: 

1. State-of-the-art row buffer mapping policy with static DRAM insertion policy namely Alloy 
[102]. 

2. State-of-the-art row buffer mapping policy with static DRAM insertion policy namely LH 
[77, 78]. 

3. Proposed adaptive DRAM insertion policy (ADIP; details in Section 5.2) on top of LH [77, 
78] configuration namely LH-ADIP. 

4. Proposed ADIP on top of proposed configurable row buffer mapping policy with CM = 4 (de-
tails in Section 6.3.2 and Section 6.3.5) namely CM=4-ADIP. 

5. Proposed DRAM Tag-Cache (details in Section 6.5.1) and SRAM Tag-Cache organizations 
(details in Section 6.5.5) incorporated in the cache hierarchy along with reduced storage 
overhead (using super block of size 4; details in Section 6.4 and Section 6.8.3) on top of 
CM=4-ADIP configuration namely CM=4-ADIP-TAG$-RS. The acronym TAG$ and RS 
stands for Tag-Cache (SRAM and DRAM Tag-caches) and reduced storage, respectively. For 
this configuration, modifications have been made in the SRAM Tag-array (to incorporate the 
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SRAM Tag-Cache; details in Section 6.5.5), in the MMap$ (to reduce the storage overhead; 
details in Section 6.4), and in the DRAM cache controller (to incorporate the DRAM Tag-
Cache; details in Section 6.5.3). 

Table 7.1 shows an overview of different configurations with their incorporated policies. The 
first column of Table 7.1 shows the proposed policies while the first row represents the evaluated 
configurations. The second column in the table shows the state-of-the-art LH policy. Each addi-
tional column introduces an additional policy or enhancement in the cache hierarchy when built 
on top of the previous configuration. For example, the configuration shown in the third column 
(LH-ADIP) applies the adaptive DRAM insertion policy on top of the configuration shown in the 
second column (LH). 
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Figure 7.2: Normalized HM-IPC speedup compared to Alloy for (a) Latency Sensitive (LS) 
applications (b) Memory Sensitive (MS) applications (c) Both LS and MS applications 

7.1.1 Performance benefits 

Figure 7.2 shows the average normalized harmonic mean instruction per cycle (HM-IPC) 
throughput results for various configurations with the speedup normalized to the Alloy policy. On 
average, the combination of the proposed policies improves the HM-IPC speed of latency sensi-
tive applications by 47.1% and 35% compared to the Alloy and LH policies respectively 
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(Figure 7.2-a). At the same time, it improves the HM-IPC speedup of memory sensitive applica-
tions by 30.4% and 23.9% compared to the Alloy and LH policies respectively (Figure 7.2-b). 
This results in an overall HM-speedup of 35.9% and 26.7% compared to the Alloy and LH poli-
cies respectively (Figure 7.2-c). 

7.1.2 DRAM Aware Last-Level-Cache Policies are complementary 

Figure 7.2 demonstrates that the proposed policies are complementary when they are employed 
in the cache hierarchy. Each newly added policy provides additional performance improvements 
compared to the identical configuration but without that policy as described in the following. 

1. The LH-ADIP configuration (with the adaptive DRAM insertion policy) improves the overall 
HM-speed by 13.1% compared to the LH configuration (without adaptive DRAM insertion 
policy). 

2. The CM=4-ADIP configuration (with the proposed configurable row buffer mapping policy 
with CM = 4) improves the overall HM-speedup by 5.9% compared to the LH-ADIP configu-
ration (with state-of-the-art row buffer mapping policy from [77, 78]). 

3. The CM=4-ADIP-TAG$-RS configuration (with the proposed Tag-Cache architecture along 
with the storage reduction technique that reduces the MMap$ storage overhead by 51%) im-
proves the overall HM-speedup by 5.8% compared to the CM=4-ADIP configuration (with-
out Tag-cache architecture and storage reduction). 

7.2 Result analysis 

The performance of a DRAM cache based multi-core system depends upon the L4 DRAM miss 
rate, L4 DRAM hit latency and off-chip memory latency. The proposed SRAM/DRAM cache 
hierarchy simultaneously optimizes all of the above mentioned metrics to improve the overall 
instruction throughput. This section describes and evaluates the miss rate and latency benefits of 
the proposed policies. 

7.2.1 Miss rate reduction 

The combination of the proposed policies namely the CM=4-ADIP-TAG$-RS configuration sig-
nificantly reduces the L4 miss rate by 46.3% and 20.5% compared to Alloy [102] and LH [77, 78] 
respectively as shown in Figure 7.3. The miss rate is primarily reduced due to the adaptive 
DRAM insertion policy (ADIP) that mitigates inter-core interference via reducing the insertion 
rate of rarely-reused blocks. Note that the configurations with ADIP have a reduced miss rate 
compared to the configurations without ADIP as shown in Figure 7.3. The proposed adaptive 
DRAM insertion policy reduces the number of fill requests by 52.1% and increases the number 
of useful demand requests by 39.6% compared to the static DRAM insertion policy. Thus, the 
proposed ADIP policy improves the DRAM cache bandwidth and capacity utilization, which sig-
nificantly reduces the L4 DRAM miss rate by 20.5% compared to the static DRAM insertion pol-
icy. 
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Figure 7.3: L4 DRAM cache miss rate 

7.2.2 Off-chip memory latency reduction 

The proposed CM=4-ADIP-TAG$-RS configuration reduces the off-chip memory latency by 
32.1% and 10.7% compared to Alloy [102] and LH [77, 78] respectively as shown in Figure 7.4. 
The off-chip memory latency is directly dependent on the L4 DRAM miss rate, which increases 
with an increased number of misses due to increased contention in the memory controller. The 
main memory access latency is reduced (see Figure 7.4) for all configurations using the adaptive 
DRAM insertion policy due to reduced main memory controller queuing/scheduling delay and 
contention. 
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Figure 7.4: Off-chip main memory access latency 

7.2.3 L4 DRAM hit latency reduction 

The L4 DRAM hit latency depends upon the L4 tag latency (lower is better; see Figure 6.12 and 
Figure 6.16), the DRAM cache row buffer hit rate (higher is better; see Figure 7.5-b), and the 
contention in the DRAM cache controller. The L4 hit latency also depends upon the DRAM Tag-
Cache (DTC) hit rate (higher is better) for the CM=4-ADIP-TAG$-RS configuration that incorpo-
rates DTC in the cache hierarchy. 

The Alloy configuration (based on the Alloy-Cache [102]; details in Section 2.4.3) is opti-
mized for L4 hit latency due to fast tag lookup (Figure 6.12 and Table 6.1) compared to other 
configurations. At the same time, it significantly improves the DRAM row buffer hit rate com-
pared to other configurations as shown in Figure 7.5-(b). However, the improvement in L4 hit 
latency for the direct mapped Alloy configuration (Figure 7.5-a) comes at the cost of increased L4 
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miss rate (Figure 7.3) and off-chip memory latency (Figure 7.4), which leads to significant per-
formance degradations compared to other configurations (Figure 7.2). 

The proposed configurations (i.e. LH-ADIP, CM=4-ADIP, and CM=4-ADIP-TAG$-RS) ben-
efit from a high associativity (30-way) with significantly reduced L4 miss rate and off-chip 
memory latency compared to the Alloy configuration as illustrated in Figure 7.3 and Figure 7.4 
respectively. 
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Figure 7.5: (a) L4 DRAM hit latency (b) DRAM row buffer hit rate (c) DRAM Tag-Cache 
hit rate 

Each newly added policy provides additional reduction in L4 hit latency compared to the LH 
configuration (employed in LH-Cache [77, 78]) as described in the following. 

1. The L4 hit latency reduction via the adaptive DRAM insertion policy (ADIP) is 7.7% com-
pared to a static DRAM insertion policy, while comparing LH and LH-ADIP configurations. 
The L4 hit latency is reduced due to reduced contention in the DRAM cache controller be-
cause the adaptive DRAM insertion policy reduces the number of fill requests by 52.1% and 
increases the number of useful demand requests by 39.6% compared to the static DRAM in-
sertion policy. 

2. The L4 hit latency reduction via the CM=4-ADIP configuration (proposed configurable row 
buffer mapping policy with CM = 4) is 8.9% compared to the LH-ADIP configuration (state-
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of-the-art row buffer mapping policy in [77, 78]). The latency is reduced because the CM=4-
ADIP configuration (row buffer hit rate is 22.1%) significantly improves the row buffer hit 
rate compared to the LH-ADIP configuration (row buffer hit rate is only 1.4%) as shown in 
Figure 7.5-(b). The row buffer hit rate is improved because the proposed row buffer mapping 
policy reduces row buffer conflicts via exploiting data access locality in the row buffer by 
mapping four consecutive blocks to the same DRAM cache row buffer. In contrast, the state-
of-the-art row buffer mapping policy in [77, 78] does not fully exploit data access locality be-
cause it maps consecutive blocks to different row buffers with significantly lower row buffer 
hit rate. 

3. The L4 DRAM hit latency reduction via the CM=4-ADIP-TAG$-RS configuration (with the 
proposed Tag-Cache architecture along with the storage reduction technique) is 14.5% com-
pared to the CM=4-ADIP configuration (without Tag-cache architecture). The latency reduc-
tion is due to the fast tag lookup (i.e. L4 tag latency is reduced) via high DRAM Tag-Cache 
hit rate (58%) as shown in Figure 7.5-(c). The L4 tag latency is reduced for a DRAM Tag-
Cache (DTC) hit because the tags are read from the low latency DTC in two cycles for the 
CM=4-ADIP-TAG$-RS configuration. In contrast, the CM=4-ADIP configuration always ac-
cess the MMap$ followed by reading the tags from the slower DRAM cache, which incurs 
high L4 tag latency of 37 cycles (see Figure 6.16). 

7.3 Summary 

DRAM cache management has become more challenging in multi-core systems because of in-
creased inter-core cache contention (leads to increased DRAM cache miss rate), increased inter-
core DRAM interference (leads to increased DRAM cache hit latency), limited off-chip memory 
bandwidth (leads to increased off-chip memory latency), and DRAM organization (DRAM cache 
is slower compared to SRAM cache). This chapter described and evaluated the performance ben-
efits of application and DRAM aware complementary policies to address the above mentioned 
challenges. This chapter showed that the application aware adaptive DRAM insertion policy can 
mitigate inter-core DRAM interference and inter-core cache eviction, which lead to reduced 
DRAM cache miss rate and hit latency. It further explored and investigated the latency benefits 
of the novel DRAM aware policies (i.e. novel DRAM row buffer mapping policy, Tag-cache ar-
chitecture, and DRAM controller optimizations) that further improved the performance of 
DRAM cache based multi-core systems. 

This chapter performed extensive evaluations and compared the performance of complemen-
tary policies with two state-of-the-art proposals for on-chip DRAM caches. Through detailed per-
formance analysis, this chapter showed that the proposed policies provide simultaneous reduction 
in DRAM cache miss rate, DRAM cache hit latency and off-chip memory access latency com-
pared to state-of-the-art DRAM cache, resulting in substantial performance benefits. For an 8-
core system, the combination of the proposed policies improves the performance of latency sensi-
tive applications by 47.1% and 35% compared to two state-of-the-art proposals for on-chip 
DRAM caches. At the same time, it requires 51% less storage SRAM overhead required to man-
age on-chip DRAM cache. 
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Chapter 8 Conclusion and Outlook 

As the pressure on the off-chip memory tends to increase due to large application footprints of 
complex applications [32], a traditional SRAM-based cache hierarchy cannot satisfy the capacity 
requirements of these applications with large working set sizes. The problem worsens for multi-
core systems with increasing number of cores causing memory bandwidth problems [12, 60, 108, 
131, 136, 144]. To mitigate these problems, various proposals for on-chip DRAM caches have 
been proposed because of the DRAM capacity advantages compared to traditional SRAM caches 
and the low latency advantage compared to off-chip main memory. Although on-chip DRAM 
cache provides high capacity (compared to SRAM caches) and large bandwidth (compared to 
off-chip memory), it is not simple to actually integrate it in the cache hierarchy due to its higher 
latency (compared to SRAM caches) and complex management. Before summarizing the thesis 
contributions in Section 8.1, the challenges that need to be addressed to employ the emerging on-
chip DRAM cache in an SRAM/DRAM based cache hierarchy are summarized as follows: 

1. Efficient management of DRAM cache capacity and bandwidth is required to mitigate inter-
core cache eviction and inter-core DRAM interference respectively. 

2. The data access locality in the row buffer needs to be exploited in order to reduce the DRAM 
cache hit latency via improved row buffer hit rate. 

3. The tag lookup latency needs to be minimized, which is the dominant factor of a DRAM 
cache hit latency. Similarly, the tag lookup latency for the large shared SRAM cache should 
be minimized. 

4. The total SRAM storage required for DRAM cache management should be minimal, as it in-
curs high system cost. 

8.1 Thesis Summary 

This thesis addresses the challenges of state-of-the-art DRAM cache hierarchies that limit the 
overall instruction throughput. It proposes low-overhead policies in order to provide improved 
performance for DRAM cache based multi-core systems. The proposed policies exploit the ca-
pacity benefits of emerging on-chip DRAM cache at the architectural level to achieve high per-
formance while simultaneously considering the application (e.g. cache access pattern) and 
DRAM system characteristics (e.g. bandwidth and row buffer locality etc.). 

To efficiently manage on-chip DRAM cache capacity and bandwidth, an adaptive DRAM in-
sertion policy (ADIP) has been presented that adapts the DRAM insertion rate at runtime based 
on the miss rate information provided by a low overhead hardware monitoring unit. The pro-
posed ADIP is not only capable of adapting the DRAM insertion rate of concurrently running 
applications on a multi-core system, but it is also able to dynamically adjust the DRAM insertion 
rate during different execution phases of the same application. ADIP restricts the number of zero-
reuse data (i.e. data that is not reused before it gets evicted) insertions into the DRAM cache, 
which reduces inter-core DRAM interference via reduced contention in the DRAM cache con-
troller. It reduces the number of evictions for the highly-reuse data (i.e. data that is likely to be 
reused in the near future), which reduces inter-core cache evictions. It maximizes DRAM cache 
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bandwidth and capacity utilization for highly-reuse data and it minimizes the negative effect of 
zero-reuse data. It has been shown in Chapter 5 that the proposed adaptive DRAM insertion poli-
cy significantly outperforms the existing static DRAM insertion policy and requires negligible 
hardware overhead. It has been demonstrated in Chapter 5 that the proposed ADIP can be applied 
to any DRAM cache organization. 

To maximize the DRAM row buffer locality, a novel row buffer mapping policy has been 
proposed that simultaneously optimizes the DRAM cache hit latency and DRAM cache miss rate. 
The proposed row buffer mapping policy maps four consecutive memory blocks to the same row 
buffer, which results in a significantly higher row buffer hit rate with negligible increase in miss 
rate compared to state-of-the-art. It reduces the DRAM cache hit latency via an improved row 
buffer hit rate while exploiting programs spatial and temporal locality. At the same time, it re-
duces the DRAM cache miss rate via a higher associativity. It has been demonstrated in Chap-
ter 6 that the proposed row buffer mapping policy outperforms state-of-the-art row buffer map-
ping policies that are either optimized for DRAM cache hit latency or for DRAM cache miss 
rate. 

To minimize the tag lookup latency for a large shared DRAM cache, this thesis proposes a 
low-overhead and low-latency SRAM structure namely DRAM Tag-Cache (DTC) that can 
quickly determine whether an access to the large DRAM cache will be a hit or a miss. However, 
the performance of the proposed DRAM Tag-Cache depends upon the DTC hit rate. This thesis 
demonstrates that integrating a DTC into a recently proposed hierarchy for on-chip DRAM cache 
[77, 78] provides negligible latency and performance benefits due to their low DTC hit rates 
(they map consecutive memory blocks to different row buffers, which leads to a significantly low 
DTC hit rate). However, when the DTC is integrated with the proposed row buffer mapping poli-
cy that exploits programs spatial and temporal locality by mapping four consecutive memory 
blocks to the same row buffer, it exhibits a high hit rate. In contrast to the previous proposal [77, 
78] for on-chip DRAM cache that always reads the tags from the slower DRAM cache after a 
MissMap cache (MMap$) access (requires 41 cycles for both accesses), the proposed DTC pro-
vides fast tag lookup that incurs only two cycles for a DTC hit. Similarly, to minimize the tag 
lookup latency for a large shared SRAM cache, this thesis applies the concept of the Tag-Cache 
architecture on top of SRAM cache. The latency and performance benefits using the proposed 
Tag-Cache architecture (for SRAM and DRAM cache) are discussed in Chapter 6. 

To reduce the hardware cost required for DRAM cache management with minimal impact on 
the overall performance, this thesis reduces the storage overhead of the recently proposed 
MMap$ (provides precise information about DRAM cache hit/miss using fine-grained presence 
information). The MMap$ overhead is reduced by storing presence information at coarser level 
instead of storing fine-grained presence information. The main drawback of storing coarse-
grained presence information is that it increases the number of false DRAM cache hits. However, 
incorporating the DRAM Tag-cache (DTC) along with the proposed row buffer mapping policy 
reduces the number of false hits via a high DTC hit rate. Thus, the proposed approach significant-
ly reduces the storage overhead of the existing MMap$ by 51% with a negligible performance 
degradation of only 1.6% (compared to a larger precise MMap$) due to a false hit rate of 5.5%. 

The policies proposed in this thesis are able to efficiently mitigate inter-application interfer-
ence, maximize DRAM cache capacity and bandwidth utilization, exploit DRAM row buffer lo-
cality, and reduce tag lookup latency. It has been demonstrated in Chapter 7 that when the pro-
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posed policies are combined together, they synergistically improve the overall performance of 
SRAM/DRAM based cache hierarchies. 

The proposed policies are evaluated for various applications from SPEC2006 [5] using a 
modified version of a cycle accurate performance simulator [79] that supports a detailed cache 
and memory hierarchy model. Experimental results demonstrate that the synergistic combination 
of the proposed complementary policies improves the harmonic mean instruction per cycle 
throughput of latency sensitive applications by 47.1% and 35% compared to Alloy-Cache [102] 
and LH-Cache [77, 78], respectively. At the same time, it requires 51% less storage overhead for 
the MMap$. 

8.2 Future Work 

The latency and miss rate advantages, the comparisons with state-of-the-art proposals for on-chip 
SRAM/DRAM cache hierarchy, and the experimental results using SPEC2006 [5] workloads 
demonstrate that the proposed policies are capable of improving the overall instruction through-
put of SRAM/DRAM cache based multi-core systems. These encouraging results open up new 
directions for research in on-chip cache hierarchies, which are summarized as follows. 

Emerging memory technologies: The concepts proposed in this thesis are not limited to DRAM 
based memory technology only. They are flexible enough to be applied to any other emerging 
memory technologies (e.g. Phase change memory [72, 100, 101, 103], Spin-transfer torque 
RAM [84, 117, 121, 145], magnetic RAM [21, 134], and resistive RAM [83]) that exhibit 
characteristics similar to DRAM. For instance, the novel adaptive DRAM insertion policy 
proposed in this thesis can be applied to the phase change memory (PCM) to mitigate inter-
application interference and finite PCM endurance. The proposed row buffer mapping policy 
along with the Tag-cache architecture can be extended to PCM to mitigate long PCM laten-
cies via improved row buffer locality and high Tag-Cache hit rates. Thus, the novel concepts 
proposed in this thesis can be extended to multi-core cache hierarchies that use new emerging 
memory technologies. 

Emerging cache hierarchies: The on-chip cache hierarchy has remained relatively simple in the 
past, consisting of traditional SRAM based caches. However, the continues improvement in 
process technology (e.g. die stacking [52, 61, 62, 66, 70, 92, 109] and heterogeneous integra-
tion [81, 146]) and memory technologies [72, 83, 84, 100, 101, 103, 117, 121, 145] have led 
to the evolution of emerging hybrid cache hierarchies [19, 134, 135]. These hybrid cache hi-
erarchies will likely be composed of different memory technologies to exploit their capacity 
(e.g. DRAM, PCM, STT-RAM, and RRAM etc.) and latency (e.g. SRAM and embedded 
DRAM etc.) benefits. These cache hierarchies provide different latency, area and power 
trade-offs when compared with traditional SRAM based cache hierarchies. The policies pre-
sented in this thesis need to be modified for these future cache hierarchies in order to exploit 
their latency and miss rate benefits more effectively. 

Compile-time DRAM insertion policy: The performance of a DRAM cache based multi-core 
system depends upon memory access patterns. The proposed adaptive DRAM insertion poli-
cy allocates the DRAM cache resources to concurrently running applications at runtime while 
considering their memory access patterns. However, a compile time DRAM insertion policy 
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considering DRAM (e.g. considering DRAM row buffer locality) and application (e.g. con-
sidering applications’ memory access pattern) characteristics can further improve DRAM ca-
pacity utilization by giving hints about application behavior at the page level to the operating 
system. This approach can increase the programming complexity. However, it can improve 
the overall instruction throughput via reduced off-chip accesses, if efficiently managed by the 
compiler. 

Operating-system based DRAM insertion policy: The proposed adaptive DRAM insertion pol-
icy performs the on-chip DRAM cache insertion/bypass decision at the block level. However, 
it is also possible to carry out the insert/bypass decision at the page-level by exposing the on-
chip DRAM cache and off-chip memory resources to the operating system. To perform page-
level on-chip DRAM cache management, efficient operating system based techniques are re-
quired to determine which pages are critical to be inserted in the on-chip DRAM cache. For 
instance, many applications have small working set sizes that can fit within the limited capac-
ity of on-chip DRAM memory. Inserting the pages of these applications in the on-chip 
DRAM cache will lead to a significant reduction in off-chip memory traffic. Even for the ap-
plications with large working set size that do not fit into the on-chip DRAM memory, there 
exists a significant variation in the page usage. For instance, some pages are frequently used 
by the application (classified as hot pages), while other pages are rarely used by the applica-
tion (classified as cold pages). The operating system can track the page usage statistics to de-
termine whether a recently accessed pages should be inserted into on-chip DRAM cache or 
not. Inserting the most frequently accessed hot pages in the on-chip DRAM cache while by-
passing the rarely reused cold page can lead to a noticeable performance improvement, if ef-
fectively handled by the operation system. 

Reducing row buffer conflicts: This thesis has proposed a novel row buffer mapping policy to 
mitigate row buffer conflicts compared to state-of-the-art while exploiting programs’ spatial 
and temporal locality. However, when the DRAM cache banks are shared among a large 
number of applications, it results in increased row buffer conflicts in the same bank via in-
creased inter-application contention, which limits the performance. One possibility is to allow 
each bank to be accessed by a limited number of applications to reduce row buffer conflicts. 
This approach would require an intelligent mapping of the application pages to different 
DRAM cache banks that can be handled at the operating system level. An intelligent applica-
tion to bank mapping can potentially reduce the negative impact of inter-application interfer-
ence via reduced row buffer conflicts. 

Although this thesis demonstrated the latency, miss rate and performance benefits of the pro-
posed policies for an SRAM/DRAM cache hierarchy, there is still a lot of room for interesting 
future work in the area of on-chip caching for multi-core systems. 
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