
 

 Karlsruhe Reports in Informatics 2015,7 
Edited by Karlsruhe Institute of Technology,  
Faculty of Informatics   

 ISSN 2190-4782 
 
 
 
 

 
 

 
Computing Top-k Closeness Centrality 

Faster in Unweighted Graphs 
(Technical Report) 

 
 
 
 

Elisabetta Bergamini and Henning Meyerhenke 

 

 

 

 

 

 

 

 

 

 

 
 
 2015 
 

 

KIT –  University of the State of Baden-Wuerttemberg and National 

Research Center of the Helmholtz Association  



 

  
   

  
 
 
 
 
 
 
 
 
 

Please note: 
This Report has been published on the Internet under the following 
Creative Commons License: 
http://creativecommons.org/licenses/by-nc-nd/3.0/de. 



Computing Top-k Closeness Centrality Faster
in Unweighted Graphs

(Technical Report)

Elisabetta Bergamini and Henning Meyerhenke?

Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Germany
Email: {elisabetta.bergamini, meyerhenke} @ kit.edu

Abstract. Centrality indices are widely used analytic measures for the importance of nodes in a net-
work. Closeness centrality is very popular among these measures. For a single node v, it takes the sum of
the distances of v to all other nodes into account. The currently best algorithms in practical applications
for computing the closeness for all nodes exactly in unweighted graphs are based on breadth-first search
(BFS) from every node. Thus, even for sparse graphs, these algorithms require quadratic running time
in the worst case, which is prohibitive for large networks.
In many relevant applications, however, it is unnecessary to compute closeness values for all nodes.
Instead, one requires only the k nodes with the highest closeness values in descending order. Thus, we
present a new algorithm for computing this top-k ranking in unweighted graphs. Following the rationale
of previous work, our algorithm significantly reduces the number of traversed edges. It does so by
computing upper bounds on the closeness and stopping the current BFS search when k nodes already
have higher closeness than the bounds computed for the other nodes.
In our experiments with real-world and synthetic instances of various types, one of these new bounds
is good for small-world graphs with low diameter (such as social networks), while the other one excels
for graphs with high diameter (such as road networks). Combining them yields an algorithm that is
faster than the state of the art for top-k computations for all test instances, by a wide margin for
high-diameter graphs.
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1 Introduction

Finding a graph’s most central nodes is a fundamental problem in network analysis. Intuitively, the
centrality of nodes represents their structural importance within the domain under consideration.
Depending on the definition, the most central nodes can be for example those that are traversed by
a large fraction of shortest paths, those that can quickly reach the rest of the graph or the ones that
recur more often in random walks [14, Chap. 7]. In this work, we focus on closeness centrality, a
widely-used centrality measure which is defined as the inverse of the average shortest-path distance.
In other words, a node with high closeness represents an individual or an entity that is close, on
average, to all the other entities of the domain. The identification of the nodes with highest closeness
finds its application in a plethora of research areas. Examples include facility location [10], marketing
strategies [9] and identification of key infrastructure nodes as well as disease propagation control
and crime prevention [3]. Unfortunately, computing the closeness of all nodes in a graph can be
very expensive. The currently best algorithm solves an all-pairs shortest paths (APSP) problem to
compute the distance between each pair of nodes. For an unweighted graph G = (V,E) with n nodes
andm edges, this can be done inO(n2.373) using fast matrix multiplication [23] or inO(nm) running a
BFS from each node. Since real-world networks are often sparse and since the first approach contains
large hidden constants, BFS-based approaches are predominant in practice (also see Section 2.2).
Nevertheless, this running time becomes prohibitive already for networks with a few million nodes,
restricting the exact computation of closeness to a small fraction of real applications. Moreover,
since closeness values tend to be close together [14, p. 182], resorting to approximations [8,6] for
accelerating the computation may lead to undesirable errors in the nodes’ ranking w. r. t. closeness.

The problem we therefore target in this paper is the identification of the top-k nodes with highest
closeness, and doing so faster than computing it for all nodes. As mentioned above, many research
areas are indeed interested in the most central nodes of the network, rather than in the closeness
value of each single node. For example, somebody willing to open a store might be interested in
knowing one or a few locations that are close, on average, to many potential customers and not in
the closeness of each possible location. To the best of our knowledge, only two methods that improve
on exhaustive computation (= computing closeness for all nodes) have been proposed so far [16,4].
Both are quite recent; only the slightly older one [16] can handle (nonnegative) edge weights.

Contribution. In this paper, we propose an algorithm for unweighted graphs that, compared to [16,4],
further reduces the number of traversed edges to find the top-k nodes w. r. t. closeness centrality.
The basic idea is to find, for each node, an upper bound on its closeness and stop the computation
when k nodes are found whose closeness is higher than the upper bounds for the other nodes. We
present two techniques for computing upper bounds, each effective on a different class of graphs.

In the worst case, our algorithms are not guaranteed to be faster than computing closeness for
all nodes. This is not surprising, since it was proven that the complexity of finding the node with
highest closeness is equivalent (under subcubic reductions) to the APSP problem [1]. Nonetheless,
by combining our two bounds, we achieve significant speedups (between one and four orders of
magnitude) on exhaustive computation, both on street networks and complex networks. Compared
to the best previous algorithm for unweighted networks [4], we improve the running time in all
experiments. Intriguingly, there is a clear distinction between networks with high diameter (such as
street networks) and low diameter (complex networks): While the acceleration by our algorithm is
only 1.7 on average (but also up to a factor of 18) for complex networks, our algorithm outperforms
the previous algorithm [4] by two orders of magnitude on networks with high diameter.
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2 Preliminaries

2.1 Notation

Let G = (V,E) be a (strongly) connected unweighted graph with n = |V | nodes and m = |E| edges.
We say node u and v are at distance k if the length of the shortest path between u and v is k. We
refer to the distance from u to v as d(u, v). Then, we define the total distance S(v) of node v as
the sum of the distances from v to all the other nodes, i. e. S(v) =

∑
w∈V d(v, w). The closeness

centrality for node v, c(v), is defined as

c(v) =
n− 1

S(v)
. (1)

We define the diameter of G, diam(G), as the maximum distance between any two nodes in G.
Also, we define the neighborhood N(v) of a node v as the set of nodes w such that (v, w) ∈ E (or
{v, w} ∈ E, for undirected graphs). The degree of v, deg(v), is the size of v’s neighborhood.

Some extensions of closeness centrality have been proposed also for disconnected graphs [17,7].
However, since there is no clear generalization of closeness that can be applied to all contexts, we
restrict ourselves to connected undirected graphs and strongly-connected directed graphs. We believe
this is not a major limitation, since one could just apply our algorithm to the largest (strongly)
connected component or to each component separately.

2.2 Related Work

The closeness of all nodes in unweighted graphs can be computed by solving the APSP problem.
For this problem, there is no solution that is always better than running a BFS from each node.
This requires O(n(n + m)) time (for sparse graphs this is faster than approaches based on fast
matrix multiplication). Since this running time is prohibitive for large networks, attention has been
devoted to approximation algorithms. For graphs with bounded diameter, Eppstein and Wang [8]
proposed an algorithm that computes the closeness of all nodes within an additive error ε with high
probability. The method basically samples a set of source nodes, runs a BFS from them and uses
the computed distances to extrapolate the closeness of the other nodes. Subsequently, Brandes and
Pich [5] conducted an experimental evaluation of this approximation algorithm, also considering
different ways of sampling the source nodes. A more refined approximation algorithm with better
practical performance has recently been published [6]. Although the approximation algorithms can
often provide scores that are close to the real ones, they may fail at preserving the ranking, in
particular for nodes with similar closeness. For this reason, the problem of accurately computing
the ranking of the top-k nodes with highest closeness has been considered, both exactly [16], with
high probability [15] and with heuristics [13,12]. Although the algorithms can actually save time
compared to the exhaustive computation of closeness for all nodes, it was shown [4] that on many
instances their running time is very close to that of APSP. Only very recently a new method that
efficiently computes the top-k closeness values in unweighted graphs has been proposed [4] and shown
to outperform the existing approaches on several real-world networks. We will refer to this method
as BCM. For each node v, BCM runs a BFS that keeps track of the sum of the distances of the visited
nodes and of a lower bound on the distances of the unvisited nodes. In particular, assuming that all
the nodes up to distance j have been visited in the BFS, the sum of the distances of the unvisited
nodes is bounded by j+2 minus the sum of the degrees of nodes at distance j. When this sum (plus
the lower bound) becomes larger than that of the k-th node with maximum closeness discovered so
far, the BFS is interrupted, avoiding to visit the remaining edges. Clearly, for the approach to work
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well, the nodes with maximum closeness must be considered as early as possible. In the worst case,
if nodes are considered in order of increasing closeness, the approach would be as bad as running a
complete BFS for each node. Since in real-world networks there is often a correlation between degree
and closeness, the authors propose to consider the nodes in order of decreasing degree.

3 Computing top-k closeness centrality

In this section we describe our new approach for computing the top k nodes with maximum closeness.
The basic idea of the algorithm is to keep track of a lower bound on the total distance of each node
(and therefore an upper bound on the closeness). Let S(v) be the total distance of node v and let
S̃(v) be the lower bound. Then, if S(v) ≤ S̃(w) ∀w ∈ V , it is also true that S(v) ≤ S(w) ∀w ∈ V .
Thus, v is (one of) the node(s) with maximum closeness. This simple observation allows us to skip
the computation of the exact value of S(w) for all the remaining nodes.

The idea sketched above is implemented as Algorithm 1: First, we compute the lower bounds
S̃ (Line 1) and insert all the nodes into a priority queue Q, ordered by increasing S̃(v). Then, we
extract the nodes from Q one after another (Line 10). If the priority S? of the extracted node v?

is exactly the total distance of v? (exact[v] = true), then the closeness centrality of v? is smaller
than the closeness centrality of all the other nodes in Q. Therefore we can append v? to the list of
the most central nodes. Otherwise (i. e. S? is only a lower bound on S(v?)), we compute the exact
total distance of v? (Line 16), we re-enqueue v? with priority S(v?) and, possibly, we update the
lower bounds on the other nodes using the information obtained while computing S(v?). Clearly,
the tightness of the bounds S̃ can influence the algorithm’s performance dramatically. If the bounds
are close to the exact values, only a few iterations will be enough to find the k most central nodes,
allowing us to skip the computation of S(v) for a large portion of nodes. In Sections 3.1 and 3.2, we
propose two different techniques for computing and updating the lower bounds S̃. Unlike BCM [4],
our algorithm computes lower bounds in the initialization phase, i. e. before computing the closeness
of any node. This allows us to skip completely all the remaining nodes, once we find k nodes whose
exact S(v) is smaller than the lower bounds of the other vertices. On the contrary, BCM does not
compute any initial bound and starts a BFS from each node v ∈ V , interrupting it if the lower bound
on S(v) becomes larger than the current k-th smallest value of S (see Section 2.2 for more details).
Since the lower bound is computed and updated during the BFS, this often requires to visit several
edges before the bound becomes large enough to interrupt the BFS, in particular if the diameter is
relatively large.

3.1 Level-based lower bound

Let G be an undirected graph and let us consider a BFS traversal from a source node s. We refer
to the distances d(s, v) between s and all the nodes v ∈ V as levels: node v is at level i if and only
if the distance between s and v is i, and we write ls(v) = i (or simply as l(v) = i if s is clear from
the context or if the particular s is irrelevant). Let i and j be two levels, i ≤ j. Then, the distance
between any two nodes v at level i and w at level j must be at least j − i. Indeed, if d(v, w) was
smaller than j − i, w would be at level i+ d(v, w) < j, which contradicts our assumption. It follows
directly that

∑
w∈V |ls(w)− ls(v)| is a lower bound on S(v), for all v, s ∈ V :

Lemma 1. S̃(v) :=
∑

w∈V |ls(w)− ls(v)| ≤ S(v) ∀v, s ∈ V .

To improve the approximation, we notice that the number of nodes at distance 1 from v is exactly
the degree of v. Therefore, all the other nodes w such that |l(v) − l(w)| ≤ 1 must be at least at
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Algorithm 1: Top-k closeness
Input : A graph G = (V,E)
Output: Top k nodes with highest closeness and their closeness values c(v)

1 S̃ ← computeLowerBounds(V );
2 Q← ∅;
3 foreach v ∈ V do
4 Q← enqueue(v, pv = S̃(v));
5 exact[v]← false;
6 end
7 i← 0;
8 TopK← [ ];
9 while i < k do

10 (v?, S?)← extractMin(Q);
11 if exact[v?] then
12 TopK[i]← (v?, S?);
13 i← i+ 1;
14 end
15 else
16 S(v)←

∑
w∈V d(v, w);

17 Q← enqueue(v, pv = S(v));
18 exact[v]← true;
19 updateLowerBounds();
20 end
21 end
22 return TopK

distance 2 (with the only exception of v itself, whose distance is of course 0). We can now write the
level-based lower bound S̃(v)L as:

S̃
(un)
L (v) = deg(v) + 2(#{w ∈ V : |l(w)− l(v)| ≤ 1} − deg(v)− 1) +

∑
w∈V

|l(w)−l(v)|>1

|l(w)− l(v)|

= 2 ·#{w ∈ V : |l(w)− l(v)| ≤ 1}+

 ∑
w∈V

|l(w)−l(v)|>1

|l(w)− l(v)|

− deg(v)− 2

(2)

A straightforward way to compute S̃(un)
L would be to run a BFS from a node s and then, for each

node v, to consider the level difference between v and all the other nodes. However, this would
require O(n2) operations. Algorithm 3 in the Appendix describes a more efficient computation of
S̃
(un)
L . Since the bound S̃ for nodes at the same level differs only in the degrees of the nodes (see

Eq. (2)), we can compute the approximation only once for each level and then subtract, for each
node, its degree. Naming maxL the maximum level in the BFS search, Algorithm 3 computes, for
each level i, the value 2 ·#{w ∈ V : |l(w) − l(v)| ≤ 1} +

∑
w∈V

|l(w)−l(v)|>1

|l(w) − l(v)| by summing over

all the levels j and then uses this sum to compute S̃(un)
L (v) for all nodes v at level i. This requires

exactly
∑maxL

i=1 maxL + #{v ∈ V : l(v) = i} = maxL2 + n operations. Since maxL ≤ diam(G) and
adding the complexity of the initial BFS, the following holds:

Proposition 1. Computing the lower bound S̃(un)
L takes O(diam2(G) + n+m) time.
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Notice that many real-world networks (e.g. social networks) exhibit the small world phenome-
non [22,19], i. e. their diameter is O(log n). Therefore, for these networks and large enough n, the
computation of the lower bound is linear in the number of edges.

For directed graphs, the result does not hold for nodes w whose level is smaller than l(v), since
there might be a directed edge or a shortcut from v to w. Yet, for nodes w such that l(w) > l(v), it
is still true that d(v, w) ≥ l(w)− l(v). For the remaining nodes (apart from the outgoing neighbors
of v), we can only say that the distance must be at least 2. The upper bound for directed graphs
can therefore be written as:

S̃
(dir)
L (v) = 2 ·#{w ∈ V : l(w)− l(v) ≤ 1}+

∑
w∈V

l(w)−l(v)>1

(l(w)− l(v))− deg(v)− 2 (3)

The computation of S̃(dir)
L for directed graphs is analogous to the one described in Algorithm 3. The

particular choice of the source node s does not influence the correctness of the bounds; however, it
can determine how close they are to S. A node s with large eccentricity (i. e., maximum distance) is
preferable, since the presence of more level allows for a major differentiation in the lower bounds of
the different nodes. For this reason, in seedNode() in Algorithm 3, first we pick a node v at random
and then we choose as s the node with maximum distance from v.

3.2 Neighborhood-based lower bound

In a tree we can compute the closeness centrality of all nodes faster than running a BFS from each
node. We exploit this by providing an exact bound for trees which translates into a lower bound in
general unweighted graphs later on.

Let us consider a node s for which we want to compute S(s). The number of nodes at level 1
in the BFS tree from s is clearly the degree of s. What about level 2? Since there are no loops, all
the neighbors of the nodes in N(s) are nodes at level 2 for s, with the only exception of s itself.
Therefore, naming Lk[s] the set of nodes at level k from s and #Lk[s] the number of these nodes,
we can write #L2[s] =

∑
w∈N(s)#L1[w] − deg(s). In general, we can always relate the number of

nodes in each level k of s to the number of nodes at level k− 1 in the BFS trees of the neighbors of
s. Let us now consider #Lk[s], for k > 2. Figure 1 shows an example where s has three neighbors
w1, w2 and w3. Suppose we want to compute #L4[s] using information from w1, w2 and w3. Clearly,
L4[s] ⊂ L3[w1]∪L3[w2]∪L3[w3]; however, there are also other nodes in the union that are not in L4[s].
Let us consider w1: the nodes in L3[w1] (red nodes in the leftmost tree) are of two types: nodes in
L4[s] (the ones in the subtree of w1) and nodes in L2[s] (the ones in the subtrees of w2 and w3). An

w1 w2 w3 w1 w2 w3 w1 w2 w3

Levels

0

1

2

3

4

s s s

Fig. 1. Relation between nodes at level 4 for s and the neighbors of s. The red nodes represent the nodes at level 3
for w1 (left), for w2 (center) and for w3 (right).

6



analogous behavior can be observed for w2 and w3 (central and rightmost trees). If we simply sum
all the nodes in #L3[w1], #L3[w2] and #L3[w3], we would be counting each node at level 2 twice,
i. e. once for each node in N(s) minus one. In general, for k > 2, we can write

#L
(un)
k [s] =

∑
w∈N(s)

#Lk−1[w]−#Lk−2[s] · (deg(s)− 1). (4)

From this observation, we define a new method to compute the total distance of all nodes, described
in Algorithm 4 in Appendix A. Instead of computing the BFS tree of each node one by one, at
each step we compute the number #Lk[v] of nodes at level k for all nodes v. First (Lines 1 - 4),
we compute #L1[v] for each node (and add that to S(v)). Then (Lines 7 - 27), we consider all the
other levels k one by one. For each k, we use #Lk−1[w] of the neighbors w of v and #Lk−2[v] to
compute #Lk[v] (Line 10 and 13). If, for some k, #Lk[v] = 0, all the nodes have been added to S(v).
Therefore, we can stop the algorithm when #Lk[v] = 0 ∀v ∈ V .

Proposition 2. Algorithm 4 requires O(diam(T ) ·m) operations to compute the closeness centrality
of all nodes in a tree T . (Proof in Appendix A)

For cyclic graphs, Eq. (4) is not true anymore – but a related lower bound on #Lk[·] will still be
useful. Indeed, there could be nodes x for which there are multiple paths between s and x and that
are therefore contained in the subtrees of more than one neighbor of s. This means that we would
count x multiple times when considering its level k, overestimating the number of nodes at level
k. However, what we know for sure is that at level k there cannot be more nodes than in Eq. (4).
If, for each node v, we assume that the number of nodes at level k is that of Eq. (4) and we stop
the computation when the sum of the numbers of nodes at levels i ≤ k is equal to n, we get a
lower bound S̃N(v) on S(v). In fact, since #Lk[v] ≥ #{w ∈ V |d(v, w) = k}, the sum of the levels of
the first n nodes found by our algorithm is always smaller than or equal to the sum of the actual
distances of the n nodes. The procedure is described in Algorithm 2. The computation of S̃N works
basically like Algorithm 4, with the difference that here we keep track of the number of the nodes
found in all the levels up to k (nVisited) and stop the computation when nVisited becomes equal to
n (if it becomes larger, in the last level we consider only n− nVisited nodes, see Lines 28 - 33).

Proposition 3. For an unweighted graph G, computing the lower bound S̃N described in Algorithm 2
takes O(diam(G) ·m) time. (Proof in Appendix A)

In directed graphs, we can simply consider the out-neighbors, without subtracting the number
of nodes discovered in the subtrees of the other neighbors in Eq. (4). The lower bound is obtained
by replacing Eq. (4) with the following in Lines 12 and 15 of Algorithm 2:

#L(dir)s [k] =
∑

w∈N(s)

#Lw[k − 1] (5)

3.3 Additional engineering

The two lower bounds that we described in the previous sections cover the first line of Algorithm 1.
One could either compute only one of them or both of them, taking for each node the maximum
among the the two. Having a lower bound that is close to the exact total sum of a node is crucial.
For example, if all the lower bounds were smaller than the minimum value of S(v), our algorithm
would be as bad as computing closeness for each node. On the other hand, if the actual values of
S(v) of the first k nodes were smaller than the lower bounds of the remaining nodes, we could find
the top k nodes with a constant number of BFSs. For this reason, after the initialization, we try
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to further improve the bounds of the nodes also while computing the exact closeness of a node v
in Line 16. In the case of the level-based lower bound, we can keep track of the nodes in each level
of the BFS from v and recompute S̃L using v as source. If, for some node, the new bound is larger
than its current one, we can update it. Also, to additionally reduce the number of visited edges, we
can stop the BFS beforehand when we discover that the closeness of v cannot be larger than that
of the current k-th top node, similarly to BCM [4] (see Section 2.2 and [4] for more details).

Algorithm 2: Neighborhood-based lower bound
Input : A graph G = (V,E)
Output: Lower bounds S̃N(v) of each node v ∈ V

1 foreach s ∈ V do
2 #Lk−1[s]← deg(s);
3 S̃N[s]← deg(s);
4 nVisited[s]← deg(s) + 1;
5 finished[s]← false;
6 end
7 k← 2;
8 nFinished← 0;
9 while nFinished < n do

10 foreach s ∈ V do
11 if k = 2 then
12 #Lk[s]←

∑
w∈NG(s) #Lk−1[w]− deg(s);

13 end
14 else
15 #Lk[s]←

∑
w∈NG(s) #Lk−1[w]−#Lk−2[s](deg(s)− 1);

16 end
17 end
18 foreach s ∈ V do
19 if finished[v] then
20 continue;
21 end
22 #Lk−2[s]← #Lk−1[s];
23 #Lk−1[s]← #Lk[s];
24 if n− nVisited[s] > #Lk−1[s] then
25 S̃N[s]← S̃N[s] + k ·#Lk−1[s];
26 nVisited[s]← nVisited[s] + #Lk−1[s];
27 end
28 else
29 S̃N[s]← S̃N[s] + k(n− nVisited[s]);
30 nVisited[s]← n;
31 nFinished← nFinished+ 1;
32 finished[s]← true;
33 end
34 end
35 k← k+ 1;
36 end
37 return S̃N

4 Experiments

Implementation and Settings. For the experimental evaluation, we implemented three versions of our
algorithm: one based on the level-based lower bound (BML), one that uses the neighborhood-based
lower bound (BMN ) and one that combines both (BM), i. e. takes the maximum among the two
bounds. For a comparison with the state of the art, we also implemented the algorithm presented
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by Borassi et al. [4] (BCM) as baseline. This algorithm was shown to outperform the other existing
algorithms for exact and approximate top-k closeness centrality [4]. We implemented all algorithms
in C++, building on the open-source NetworKit framework [18]. The machine used has 2 x 8 Intel(R)
Xeon(R) E5-2680 cores at 2.7 GHz, of which we use only one, and 256 GB RAM. All computations
are sequential to make the comparison to previous work more meaningful.

Methodology. We test the algorithms on a large collection of real-world networks. Tests on synthetic
networks are added in order to examine the scaling behavior of the algorithms. The real networks
are taken from SNAP (snap.stanford.edu), KONECT (konect.uni-koblenz.de) and the 10th
DIMACS Implementation Challenge [2]. In case of disconnected networks, we always extract the
largest (strongly) connected component first. In all the tests we adopt as a measure of performance
the performance ratio, introduced by Borassi et al. [4]. Naming |Evis| the number of edges visited
by a top-k algorithm, the performance ratio is defined as |Evis| divided by the number of edges that
the exhaustive algorithm (running a BFS for all nodes) would use, i. e. |Evis|

n·m . This measure does
not depend on the particular implementation of the algorithms, but only on the actual number of
operations performed. Moreover, it allows an assessment independent of computer architectures. In
the measure we do not consider the initialization phases of any of the algorithms, since the times
they require are negligible. We refer to the inverse of the performance ratio as speedup and evaluate
the algorithms mainly by comparing their speedups.

Results. Our results show that our two lower bounds perform differently depending on the nature
of the network. In particular, BML performs very well on street networks (where closeness has
a straightforward interpretation) and on networks with similar properties, i. e. a relatively large
diameter and small variance in the degree distribution. The presence of several “levels” with relatively
few vertices allows for a differentiation in the lower bounds of the different nodes. This leads to a fast
identification of the most central nodes. On the other hand, BMN and the baseline BCM perform
relatively poorly on this kind of networks, because their assumption is that closeness centrality is
strongly correlated with the degrees. For example, to find the top node with highest closeness on
the street network of Luxembourg, BML (as well as the combined version BM) has a speedup of
more than 400, whereas BMN and BCM have speedups of 3.2 and 2.6, respectively. Since BCM does
not scale well to large street networks (for networks with millions of nodes, it does not finish the
computation in two days), we tested only BM on a set of street networks, also taken from [2]. The
results are shown in Table 1. Using BM, we are able to find the top 100 nodes with highest closeness
in the whole European street network in minutes (where the exhaustive algorithm would take years).

To examine the scaling on graphs with properties similar to those of street networks, we compared
the algorithms on synthetic Delaunay graphs of increasing sizes, taken from [2]. Figure 2 (left) shows
the speedups of BM and those of BCM, with k (the number of nodes with highest closeness computed)
equal to 1 and 10. The results obtained using only BMN are extremely similar and therefore omitted.
Since we use a log-log scale, it is quite apparent that the speedup of BM increases exponentially
with the size of the graph, reaching values of more than 103 for graphs with 220 nodes. The speedup
of BM, in turn, is basically constant and always smaller than 10.

Very different is the behavior of the algorithms on complex networks (e. g. social networks,
communication networks), characterized by a strongly varying degree distribution and a very small
diameter. Here BML cannot perform well, because very similar lower bounds are computed for many
nodes, due to the small number of levels in the BFS trees. On the other hand, the structure of
complex networks allows BMN to compute lower bounds that are close to the the actual closeness
values, quickly identifying the top-k nodes. Also BCM performs very well on complex networks, since
here the degree is often related to the closeness of nodes and the small diameter makes it possible to
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Graph Nodes Edges Speedup (k = 1) Speedup (k = 10) Speedup (k = 100)
luxembourg.osm 114 599 119 666 415.2 375.7 236.7
belgium.osm 1 441 295 1 549 970 4 214.3 3 992.5 2 649.4
netherlands.osm 2 216 688 2 441 238 5 833.3 5 191.3 3 895.7
italy.osm 6 686 493 7 013 978 15 300.8 14 925.2 12 474.8
great-britain.osm 7 733 822 8 156 517 20 298.7 19 579.2 12 762.0
europe.osm 50 912 018 54 054 660 57 462.7 55 947.2 48 303.6

Table 1. Speedups of BM on street networks.
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Fig. 2. Left: speedups of BM and BCM on Delaunay graphs, with k = 1 and k = 10, n equal to powers of 2 and
m ≈ 3n. Right: speedups of BM and BCM on random hyperbolic graphs, with n of increasing sizes and m ≈ 10n.

quickly discard nodes that cannot be in the top-k list. Figure 2 (right) shows the speedups of BM
and BCM on synthetic complex networks of increasing sizes, created with an efficient generator [20]
according to an hyperbolic geometry-based model [11]. This model was shown to reproduce many
properties of real complex networks (such as low diameter and power-law degree distribution, see [21]
and the references therein). The picture shows that the speedups of both algorithms increase with
the size of the graph, with BM reaching values larger than 104. The speedups of BM are always
larger than those of BCM and the gap between the two seems to increase with the size of the graphs.
It is also interesting to note that the gap between the number of operations required to find the top
node and the top k nodes is often much larger in complex networks than in street networks. Table 2
summarizes the speedups of BM and BCM on complex undirected networks. We do not report the
results of BML and BMN because the first one does not perform well on complex networks so it would
have been too expensive to compute for many of the tested networks and because those of BMN

are basically the same as those of the combined algorithm BM. The table shows that BM is always
faster than BCM. The speedups vary considerably depending on the properties of the networks, but
they tend to increase with the size of the network and to be larger in networks with small diameters.
Table 3 contains the results on directed networks. Also here BM is always faster than BCM, although
the difference between the two is often relatively small.

To summarize, our results show that our combined version BM performs very similarly to BML on
street networks and to BMN in complex networks, i. e. it always performs like the fastest of the two
methods on the network it is applied to. Also, BM is always faster than the currently best existing
method BCM, several orders of magnitude in street networks and up to a factor 18 in complex
networks, where BCM already performs well. In these networks, we are on average 1.7 times faster
than BCM (geometric mean).
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Speedup (k = 1) Speedup (k = 10) Speedup (k = 100)
Graph Nodes Edges Diameter BM BCM BM BCM BM BCM
CA-HepPh 11 204 117 619 13 9.7 8.5 9.5 8.4 8.9 7.9
CA-AstroPh 17 903 196 972 14 69.8 26.4 29.3 18.3 13.9 11.0
CA-CondMat 21 363 91 286 14 493.4 369.9 95.5 76.6 35.5 15.5
Email-Enron 33 696 180 811 11 896.1 225.6 318.8 114.9 38.9 29.3
Gowalla-edges 196 591 950 327 14 33 086.1 12 030.7 33.5 32.8 28.2 26.9
com-youtube 1 134 890 2 987 624 20 2 241.0 2 060.7 168.9 162.1 110.6 104.7
as-skitter 1 694 616 11 094 209 25 187.4 166.1 167.0 148.6 139.8 116.7

Table 2. Speedups of BM and BCM on complex undirected networks.

Speedup (k = 1) Speedup (k = 10) Speedup (k = 100)
Graph Nodes Edges Diameter BM BCM BM BCM BM BCM
p2p-Gnutella25 5 153 17 695 10 1 166.7 172.0 58.8 34.7 13.7 11.9
p2p-Gnutella24 6 352 22 928 10 3 631.9 198.8 48.9 30.5 12.3 10.9
Cit-HepTh 7 464 116 252 17 148.9 79.5 25.3 22.0 19.3 11.9
Cit-HepPh 12 711 139 965 12 149.4 129.5 56.3 49.9 30.4 22.5
p2p-Gnutella31 14 149 50 916 11 197.7 96.7 20.5 17.8 8.1 7.7
Slashdot081106 26 996 337 351 11 363.0 171.5 131.9 93.9 53.2 40.6
Slashdot090216 27 222 342 747 11 333.3 165.3 119.7 87.5 54.5 41.3
soc-Epinions1 32 223 443 506 14 1792.9 336.2 53.2 39.3 28.8 22.7
Email-EuAll 34 203 151 132 14 24 833.2 6 306.1 3 419.6 1 348.7 294.6 207.0
twitter-combined 68 413 1 685 152 7 204.7 173.4 152.5 110.6 70.6 47.9
Slashdot0811 70 355 818 310 10 11 021.8 2 940.3 423.0 279.6 47.9 42.8
Slashdot0902 71 307 841 201 11 12 006.4 2 867.0 394.4 262.6 48.6 43.3
WikiTalk 111 881 1 477 893 9 6 746.1 3 276.8 2 604.4 1 004.6 1 026.6 512.9
Amazon0302 241 761 1 131 217 32 38.7 20.2 31.7 16.1 13.9 12.9

Table 3. Speedups of BM and BCM on complex directed networks.

5 Conclusions

In this paper we have presented new methods for finding the k nodes with highest closeness centrality
in a network, a problem of high practical relevance in network analysis. By finding lower bounds on
the inverse closeness of each node, we limit the exact computation to a small fraction of vertices.
More precisely, we propose two lower bounds, one that has shown to work better on networks with
relatively large diameter and degree distribution with small variance (e. g., street networks) and one
that is more performant on complex networks. The combination of the two approaches into one
method is orders of magnitude faster than computing closeness for all nodes in our experiments, on
every tested network. Compared with the state of the art, our combined approach is always faster
than the currently best algorithm for top-k closeness centrality [4]. Thanks to our new approach, we
are able to find the top-10 nodes with highest closeness in the whole European street network (with
54 millions edges) in minutes (where exhaustive computation would take years).

Future work may include the extension of our technique and of those presented in [4] to weighted
graphs, for which the computation of a lower bound is the only obstacle. Also, it would be inter-
esting to investigate whether our concepts can be extended to other centrality measures, such as
betweenness, and whether they can be used to compute a fast approximation of closeness in very
large networks. We also plan to run our code in parallel to further accelerate the computations. Our
implementation will be made publicly available as part of a future release of the network analysis
tool suite NetworKit [18].

Acknowledgements. The authors would like to thank Michele Borassi for helpful discussions regarding the code
described in [4]. Furthermore, we would like to thank Moritz von Looz for providing the hyperbolic random graphs
used in our experiments.
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A Proofs and pseudocode omitted due to space constraints

A.1 Pseudocode of Algorithm 3

Algorithm 3: Level-based lower bound
Input : A graph G = (V,E)
Output: Lower bounds S̃L(v) of each node v ∈ V

1 s← seedNode();
2 d← BFSfrom(s);
3 maxL← maxv∈V d(s, v);
4 for i = 1, 2, ...,maxL do
5 L[i] = {w ∈ V : d(s, w) = i};
6 nL[i] = #L[i];
7 end
8 for i = 1, 2, ...,maxL do
9 sum← 0;

10 for j = 1, 2, ...,maxL do
11 if |j − i| ≤ 1 then
12 sum← sum+ 2nL[j];
13 end
14 else
15 sum← sum+ |j − i| · nL[j];
16 end
17 end
18 for v ∈ L[i] do
19 S̃L(v)← sum− deg(v)− 2;
20 end
21 end
22 return S̃L

A.2 Proof of Proposition 2

Proof. The for loop in Lines 1 - 4 of Algorithm 4 clearly takes O(n) time. For each level of the
while loop of Lines 7 - 27, each node scans its neighbors in Line 10 or Line 13. In total, this leads
to O(m) operations per level. Since the maximum number of levels that a node can have is equal to
the diameter, the algorithm requires O(diam(T ) ·m) operations. ut

A.3 Proof of Proposition 3

Proof. Like in Algorithm 4, the number of operations performed by Algorithm 2 at each level of the
while loop is O(m). At each level i, all the nodes at distance i are accounted for (possibly multiple
times) in Lines 12 and 15. Therefore, at each level, the variable nVisited is always greater than or
equal to the the number of nodes v at distance d(v) ≤ i. Since d(v) ≤ diam(G) for all nodes v, the
maximum number of levels scanned in the while loop cannot be larger than diam(G), therefore the
total complexity is O(diam(G) ·m). ut
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A.4 Pseudocode of Algorithm 4

Algorithm 4: Closeness centrality in trees
Input : A tree T = (V,E)
Output: Closeness centralities c(v) of each node v ∈ V

1 foreach s ∈ V do
2 #Lk−1[s]← deg(s);
3 S[s]← deg(s);
4 end
5 k← 2;
6 nFinished← 0;
7 while nFinished < n do
8 foreach s ∈ V do
9 if k = 2 then

10 #Lk[s]←
∑

w∈N(s) #Lk−1[w]− deg(s);
11 end
12 else
13 #Lk[s]←

∑
w∈N(s) #Lk−1[w]−#Lk−2[s](deg(s)− 1);

14 end
15 end
16 foreach s ∈ V do
17 #Lk−2[s]← #Lk−1[s];
18 #Lk−1[s]← #Lk[s];
19 if #Lk−1[s] > 0 then
20 S[s]← S[s] + k ·#Lk−1[s];
21 end
22 else
23 nFinished← nFinished+ 1;
24 end
25 end
26 k← k+ 1;
27 end
28 foreach s ∈ V do
29 c(v)← (n− 1)/S[v];
30 end
31 return c
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