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Abstract
Nowadays, many real-world applications are producing data that keeps increasing
in both quantity and scale, making it impossible for human to manually analyze
and understand such data. Thus, automatic and scalable solutions for extracting
interesting and useful knowledge hidden in the data are required. Motivated by
this need, data mining has been proposed as a general solution.

Traditional data mining techniques focus on the full space which consists of all
given dimensions. However, due to the presence of noisy and/or irrelevant dimen-
sions, mining the full space cannot lead to the discovery of interesting patterns.
Thus, subspace mining has been introduced as an alternative paradigm to address
the problem of high dimensionality. In short, subspace mining looks for novel pat-
terns in multiple (possibly overlapping) subspaces. Recent development in this
area has pointed out that knowledge discovery in subspaces whose dimensions
are correlated will yield patterns that are of high quality and are easy to interpret.
Hence, for an effective knowledge discovery in subspaces, it is important to first
discover correlated subsets of dimensions, i.e., correlated subspaces. To achieve
this, we need to have reliable methods to assess the correlation of any subset of
dimensions. This in turn is the general goal of correlation analysis.

The notion of correlation is one of the key elements of modern statistics and has a
wide impact in many areas of applied science. In short, correlation analysis studies
the statistical relationships of two or more dimensions. Considering the fact that
in today’s real-world applications, data is collected in multivariate spaces having
hundreds of dimensions, enabling efficient and effective correlation analysis for
subspace mining enriches both of their applicability not only in data mining but
also in any area dealing with high dimensional data.

In this thesis, we develop novel methods for correlation analysis in multivariate
data, with a special focus on mining correlated subspaces. These methods han-
dle the major open challenges arisen when combining correlation analysis with
subspace mining. In particular, we propose novel techniques with new correla-
tion measures for scalable mining of correlated subspaces in real-valued data as
well as in relational databases with mixed data types. In addition to introducing
new correlation measures, we propose methods for computing total correlation—a
well-known multivariate measure. As total correlation has a widespread impact in
many fields, our work opens various potential venues of applications. We also ex-
tend our research beyond traditional correlation analysis: We explore interaction-
preserving discretization of multivariate data and multivariate causality analysis.
Besides theoretical findings, we conduct thorough experiments on a variety of
real-world data sets. The results validate the benefits of our methods.
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Zusammenfassung

Heutzutage produzieren viele reale Anwendungen Daten, die sowohl in Quantität
als auch in Umfang zunehmen, was es unmöglich für Menschen macht, die Daten
manuell zu analysieren und zu verstehen. Deswegen werden automatische und
skalierbare Lösungen für das Extrahieren vom interessanten und nützlichen Wis-
sen, die in den Daten verborgen sind, erforderlich. Dieses Bedürfnis motiviert,
Data-Mining als allgemeine Lösung vorzuschlagen.

Traditionelle Data-Mining-Techniken konzentrieren sich auf die Fullspace, die von
allen angegebenen Dimensionen besteht. Allerdings, aufgrund von verrauschten
und/oder irrelevanten Dimensionen führt Fullspace-Mining zur Entdeckung von
interessanten Mustern nicht. Deswegen wurde Subspace-Mining als alternatives
Paradigma eingefürht, um das Problem der hohen Dimensionalität zu behandeln.
Kurz gesagt, sucht Subspace-Mining nach neuen Mustern in mehreren (möglicher-
weise überlappenden) Subspaces. Die jüngste Entwicklung in diesem Bereich
hat gezeigt, dass Knowledge-Discovery in Subspaces, deren Dimensionen korre-
liert werden, Muster ergeben, die von hoher Qualität und leicht zu interpretieren
sind. Daher ist es wichtig für ein effektives Knowledge-Discovery in Subspaces,
zuerst korrelierte Untermengen von Dimensionen zu entdecken, d.h. korrelierte
Subspaces. Um dies zu erreichen, müssen wir zuverlässige Methoden, um die Kor-
relation jeder Untermenge von Dimensionen bewerten zu können. Dies wiederum
ist das allgemeine Ziel der Korrelationsanalyse.

Der Begriff der Korrelation ist eines der Schlüsselelemente der modernen Statistik
und hat breite Auswirkungen in vielen Bereichen der angewandten Wissenschaft.
Zusammengefasst, untersucht die Korrelationsanalyse die statistischen Beziehun-
gen von zwei oder mehreren Dimensionen. Weil in den heutigen realen Anwen-
dungen werden Daten in multivariaten Spaces mit Hunderten von Dimensionen
gesammelt, das Ermöglichen einer effizienten und effektiven Korrelationsanalyse
für Subspace-Mining steigt die Anwendbarkeit des Data-Minings und jedes Bere-
iches, der sich mit hoher dimensionaler Daten beschäftigt.

In dieser Thesis entwickeln wir neue Methoden zur Korrelationsanalyse in multi-
variaten Daten mit einem speziellen Fokus auf das Mining von korrelierten Sub-
spaces. Diese Methoden behandeln die großen offenen Herausforderungen der
Kombination von Korrelationsanalyse mit Subspace-Mining. Im Besonderen schla-
gen wir neuartige Techniken mit neuen Korrelationsmaßen für skalierbares Mining
von korrelierten Subspaces in kontinuierlichen Daten, sowie in relationalen Daten-
banken mit gemischten Datentypen, vor. Neben der Einführung neuer Korrelation-
smaßnahmen schlagen wir Methoden zur Berechnung der Total-Korrelation vor—
eine bekannte multivariate Maßnahme. Weil die Total-Korrelation weitverbreitete
Auswirkungen in vielen Bereichen hat, öffnet unsere Arbeit verschiedene mögliche
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Anwendungen. Wir erweitern auch unsere Forschung über die traditionelle Ko-
rrelationsanalyse: Wir erforschen die Interaction-Preserving Diskretisierung der
multivariaten Datenanalyse und der multivariaten Kausalität. Neben theoretis-
chen Erkenntnissen führen wir flächendeckende Experimente auf einer Vielzahl
von realen Datensätzen aus. Die Ergebnisse bestätigen die Vorteile unserer Meth-
oden.
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1. Overview of Thesis

1.1. Introduction
Nowadays, many real-world applications are producing data that keeps increas-
ing in both quantity and scale. This tremendous growth has made it increasingly
more and more difficult for human to manually analyze and understand the data.
Therefore, automatic and scalable solutions for extracting interesting and useful
knowledge hidden in the data are required. The knowledge obtained in turn is
important for users in multiple aspects, e.g., decision making and planning. Moti-
vated by such a need, Knowledge Discovery in Databases (KDD) has been proposed
and quickly become a promising approach towards tackling the challenge of data
analysis. Roughly speaking, the KDD process takes in raw data, pre-processes it,
extracts novel patterns from it, evaluates these patterns for their impact and valid-
ity, and finally presents the knowledge learned out of the most important patterns
to users [HK01]. The step of identifying novel patterns, known as “data mining”,
is the key component of the KDD process.

Traditionally, data mining techniques focus on the full space which consists of all
given dimensions. However, this space often obscures interesting patterns due
to the presence of noisy and/or irrelevant dimensions [BGRS99]. Further, tak-
ing into account the full space with very many dimensions often causes the curse
of dimensionality [LV07], especially when the number of data objects more than
often is insufficient to fill up the full space. At first, global dimensionality re-
duction is proposed to alleviate the issue. Techniques of this type, e.g., Principle
Component Analysis (PCA), aim at finding a global projection that best preserves
some characteristic of the data; in the case of PCA, it is the variance that is pre-
served. However, by focusing on a single view, they miss local structure, e.g.,
locally clustered objects, embedded in different subsets of dimensions (a.k.a. sub-
spaces). Thus, subspace mining has been introduced as an alternative paradigm
to address the problem of high dimensionality. In short, subspace mining looks for
multiple (possibly overlapping) subspaces where novel patterns are likely present.
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For example, subspace clustering [AGGR98, SZ04, MAG+09, AKMS07, GFM+11]
detects subspaces that likely exhibit clustering structure while subspace outlier
detection [AY01, KSZK09, MSS11] uncovers subspaces where one or more ob-
jects exhibit some deviation from the remaining objects. However, most ex-
isting subspace mining methods tie the subspace mining process to a specific
type of pattern, e.g., clusters or outliers. Hence, they produce subspaces that
do not provide any guarantee on the detectability of other types of pattern,
i.e., their subspaces lack generality. Recognizing this problem, recent stud-
ies [CFZ99, ZPWN08, CYZR10, KMB12] advocate for decoupling the process of
subspace discovery and the mining of interesting patterns in these subspaces.
Their proposals are based on the observation that knowledge discovery in sub-
spaces where member dimensions are correlated will result in novel patterns that
cannot be obtained by looking at each individual dimension. Furthermore, the
results are often easier to interpret by, e.g., checking the characteristics of the
dimensions involved with domain experts. Hence, for an effective knowledge dis-
covery in subspaces, it is crucial to first discover correlated subspaces.

Example 1. The facility management of KIT stores indicator values of buildings, such
as electricity, heating, gas, and water consumption per time unit. Each dimension is
one indicator of a specific building. In such data, not all indicators of all buildings
are correlated with each other. Instead, there are different subsets of correlated in-
dicators, e.g., the heating indicators of office buildings, the ones of the Chemistry
department, and so on. Overlap among subsets is possible since buildings can both be
office buildings and belong to the Chemistry department. In practice, detecting sub-
sets of correlated indicators is important for facility managers. This is because they
can understand the energy consumption of the university better from such subsets.
For instance, they can apply specialized data analytics on just those subsets to find
anomalous measurements. An example would be an abnormally high heating value
among the office buildings. Clearly, one cannot observe such patterns when indica-
tors are not correlated or data is distributed randomly. Further, the subsets can be
exploited to construct prediction models to monitor energy consumption, and hence,
save the management from investing in new energy smart meters.

To mine correlated subspaces, in turn we need to have reliable methods to assess
the correlation of any subspace, or more in particular, we need techniques to assess
the correlation of any subset of dimensions. In fact, this is the general goal of
correlation analysis.

For years, the notion of correlation has become one of the key elements of modern
statistics. It also plays an important role in many areas of applied science, e.g.,
databases [IMH+04, ZHO+11], data mining [CFZ99, ZPWN08, CYZR10, KMB12],
machine learning [AL13, AABL13, JHS10], signal processing [SRPP11, RSX+11],
biology [CYZR10, RRF+11], to name a few. In a nutshell, correlation analysis is
concerned with studying the statistical relationship of two (then the analysis is
pairwise) or more (then the analysis is multivariate) dimensions [Ren59]. As such
dependencies are reliable indicators of the existence of interesting patterns, corre-
lation analysis can help to steer the focus of users to appropriate subspaces, and
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hence, reduce their effort in dealing with a huge number of subspaces; most of
which are irrelevant. This is an important requirement in the era of big data. Con-
sidering the fact that nowadays in several real-world applications, data is collected
in increasingly multivariate spaces having hundreds of dimensions, enabling effi-
cient and effective correlation analysis for subspace mining enriches both of their
applications not only in data mining but also in various other areas having some-
thing to do with high dimensional data.

With such a motivation, in this thesis, we aim at developing novel methods for
correlation analysis in multivariate data, with a special focus on mining correlated
subspaces. In the following, we point out major open challenges that are in the
way of achieving our goal. After that, we specify the scope of this thesis as well as
its contributions.

1.2. Challenges

There are many challenges associated with the general research of correlation
analysis. As we mainly address the issue of mining correlated subspaces, in this
section, we discuss five major issues specifically relevant for this task, namely:
complex types of correlation, computability, efficiency, mixed data types, and re-
dundancy of output subspaces. Chapters 3 to 7 focus on the development of effec-
tive techniques to tackle each of these challenges.

Challenge 1: Complex Types of Correlation

In general, real-world data contains different types of correlation: pairwise vs.
multivariate and linear vs. non-linear. A correlation is pairwise if it is involved
in two dimensions; otherwise, it is multivariate. Regarding linear correlations,
the scatter plot of two dimensions (pairwise) that are linearly correlated features
a straight line; see Figure 1.1(a) for an example. In general, linear correlations
without noise are not common. Instead, data tends to be noisy; see Figure 1.1(b)
for an example. On the other hand, non-linear correlations can be either func-
tional (Figure 1.1(c)) or non-functional (Figure 1.1(d)). Again, functional and
non-functional correlations can also be noisy.

In the setting of data mining, we often do not have much knowledge about the
data at hand, including which correlations it contains. Thus, to ensure the gen-
erality of the mining process, the underlying correlation analysis method should
be able to detect generic (i.e., linear as well as non-linear, functional as well as
non-functional) correlations. Further, the correlations should not be restricted to
pairwise only; they can be involved in any arbitrary number of dimensions. Un-
raveling multivariate generic correlations is particularly very challenging. In fact,
there have been correlation measures proposed for such a purpose, such as those
based on Shannon entropy [CT06]. However, as we explain in the next challenge,
it is not always straightforward to reliably compute them on real-valued data.
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(a) Linear correlation (b) Noisy linear correlation

(c) Functional non-linear correlation (d) Non-functional non-linear correlation

Figure 1.1.: Examples of different types of correlation.

Challenge 2: Computability

Traditional statistics usually assume that distributions of data are available and de-
fine correlation measures based on these distributions. This especially is the case
for measures capturing complex types of correlation, e.g., the measures defined
based on Shannon entropy (mutual information and total correlation). While such
distributions can be easily obtained for discrete/categorical data, this in general is
not the case for real-valued data. Thus, if we want to apply existing correlation
measures on real-valued data, we usually need to first obtain data distributions.
This could be done by choosing a distribution in advance and fit it to the data at
hand, or by means of kernel methods [Sil86]. However, these workarounds not
only cause biases to the choice of the distribution/kernel but also flag in power
with the growing number of dimensions, i.e., the curse of dimensionality [LV07].
On the other hand, there are non-parametric approaches to computing correla-
tion measures, such as discretization [CFZ99] and estimation based on nearest
neighbor analysis [KSG04]. Yet, these non-parametric methods also suffer from
some certain problems which will be explained in Section 1.3. Thus, in this thesis,
we propose new correlation measures together with their robust non-parametric
computation for an effective mining of data containing real-valued dimensions.

Challenge 3: Efficiency

The search space of potentially overlapping correlated subspaces, called the sub-
space lattice (see Figure 1.2), is exponential in the number of dimensions. For a
data set with 40 dimensions, the total number of subspaces is 240 (more than 1
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Figure 1.2.: Example showing the subspace lattice of multivariate data.

trillion). Considering the fact that real-world data usually contains a larger num-
ber of dimensions, the subspace lattice in practice is astronomically large. Setting
aside the complexity of computing correlation measures, this huge search space
presents a tremendous challenge in terms of computational cost. As we will point
out later, state of the art techniques for subspace search mostly do not scale well
due to inefficient search schemes. Further, in Chapter 4, we show that under an
enhanced setting, the subspace search problem is NP-hard. Thus, it is very chal-
lenging how to perform multivariate correlation analysis in a scalable manner.

Challenge 4: Mixed Data Types

Real-world data may contain dimensions of heterogeneous data types (i.e., real-
valued, discrete, and categorical) while traditional correlation analysis usually as-
sumes that dimensions have the same data type. As a result, performing corre-
lation analysis in data with mixed data types demands not only novel correlation
measures but also novel methods to explore the subspace lattice. Solving this issue
will enable us to include all possible dimensions, representing different sources of
information, into the mining process, regardless of their data types. As opposed
to limiting to a single data type during the process of correlation analysis, by con-
sidering heterogeneous data types, we are able to achieve a more comprehensive
picture on the data.

Challenge 5: Redundancy of Output Subspaces

As the number of candidate subspaces is huge, the process of mining correlated
subspaces may produce many subspaces which essentially convey similar informa-
tion regarding the underlying data. This not only hinders manual inspection and
post-analysis but also reduces the value of the results: Instead of benefiting from
the output, users must spend additional (significant) effort to find out which sub-
space is valuable and which one is not. In other words, they are again faced with
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the daunting task of extracting useful knowledge from a large amount of data, in
this case, the large amount of output subspaces. Thus, it is of great importance
that the number of output subspaces is reasonably small while still capturing the
essential knowledge. This issue so far has not been addressed in the literature.

1.3. Related Work
In the following, we briefly review related work and explain why none of them
can tackle all of the aforementioned challenges. To ease presentation, we first dis-
cuss well-known correlation measures, which form the core of correlation analysis.
Then, we review methods that are capable of mining subspaces, namely feature
selection, general subspace search, and subspace search for specific tasks. The
details are as follows.

Correlation measures. Pearson’s coefficient is a popular correlation measure
widely used in data analysis, thanks to its easy computation on empirical data,
i.e., it addresses Challenge 2. However, since it is only for two dimensions (pair-
wise) and mainly captures linear correlations, it does not address Challenge 1.
Apart from Pearson’s coefficient, there exist also other more advanced pairwise
correlation measures, e.g., Spearman’s rank coefficient [Spe87], Kendall’s τ coeffi-
cient [Ken38], distance correlation [SR09]. However, it is often hard to generalize
them for the multivariate setting [RRF+11]. Thus, they also do not address Chal-
lenge 1.

Correlation measures defined based on Shannon entropy in turn are able to cap-
ture generic correlations [CT06]. Arguably, two most well-known measures of this
kind are mutual information (pairwise) and total correlation (multivariate). In
fact, total correlation is a generalization of mutual information to the multivari-
ate setting [Han78]. To compute both measures non-parametrically on real-valued
data, we need to estimate data distribution by, e.g., discretization (converting real-
valued data to discrete) or performing nearest neighbor analysis. Regarding the
former, a common practice is to use equal-width or equal-frequency binning. How-
ever, such naïve discretization methods suffer from hard parameter setting, for in-
stance, we do not know in general how many bins we should use and where we
should place the bins. Further, they are often oblivious of data distribution, and
hence, tend not to preserve correlations well. Recently, Reshef et al. [RRF+11]
propose a method to find optimal discretization to compute mutual information
on real-valued data. Yet, as we point out in Chapter 6, their technique suffers from
some drawbacks on the pairwise case as well as cannot be generalized for total
correlation. Other advanced discretization techniques have also been proposed,
for instance, [Bay01, MPY05, KM07]. In Chapter 8 (in particular Section 8.3), we
will explain in more details the weaknesses of existing discretization techniques.
Overall, addressing the computability of mutual information and total correlation
w.r.t. discretization is still an open issue, i.e., existing computation methods us-
ing discretization do not meet Challenge 2. Besides discretization, one could also
estimate both mutual information and total correlation by nearest neighbor anal-
ysis [KSG04]. This approach can avoid discretizing the data. However, it requires
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us to choose the number of nearest neighbors—a hard-to-set parameter as well. In
addition, it relies on metric distances. The higher the dimensionality, the less reli-
able the distances are [BGRS99]. Therefore, the robustness of this approach tends
to reduce in multivariate spaces, and hence, Challenge 1 might not be met. While
there is no clear winner between discretization and nearest neighbor analysis, in
this thesis, part of its contributions is to compute total correlation by discretization.
The study of nearest neighbor analysis is left for future work.

Another class of correlation measures is the quadratic measures of depen-
dency [AL97, Ach08, SGSS07]. Most of them, however, require kernel density
estimation in their computation [RSX+11], i.e., they do not address Challenge 2.
An exception to this is the measure recently proposed in [SRPP11]. Yet, it is pair-
wise in its current form. We will extend this measure in Chapter 4 and explain
how to efficiently and reliably compute it on empirical data.

Please note that the measures aforementioned could be computed easily when the
data distribution is known, or such an assumption is made. Nevertheless, such
a parametric approach is not the focus of this thesis, and hence, is not further
explored.

Regarding mixed data types (i.e., real-valued, discrete, and categorical), generally
it is not straightforward to apply existing measures for this setting, i.e., many of
them do not address Challenge 4. Exceptions to this are mutual information and
total correlation. In particular, one could discretize real-valued data, and then,
process discrete/categorical data and the original real-valued alike. However, as
discussed above, finding a reliable discretization still is an open issue. On the
other hand, one could tackle heterogeneous data types by combining measures
specialized for each type. The subtlety here is to utilize measures that ensure
no big “gap” between each world, e.g., to facilitate interpretability. Nevertheless,
to the best of our knowledge, there currently exists no such solution. Thus, we
address this issue in Chapter 5.

Feature selection. In a nutshell, feature selection (as well as feature transforma-
tion) aims at selecting a subset of dimensions (a.k.a. features, attributes) that are
most suitable for the mining/learning task in consideration. Besides, feature se-
lection is also a way to alleviate the curse of dimensionality. In the following, we
review some feature selection methods and point out why they are not suited for
our goal.

Principle Component Analysis (PCA) [LV07] transforms the data to a new space
that best preserves its variance. This transformation however retains linear corre-
lation only, and hence, does not satisfy Challenge 1.

Supervised feature selection [Hal00, PLD05, SSG+07, GN09, RLHEC10, SM11]
aims at choosing a subset of dimensions that are correlated to the class label but
otherwise not correlated to each other. Thus, its goal is different from ours.

Unsupervised feature selection [DCSL02, DB04, HCN05, GDJ11, ZL07] selects
the smallest subset of features that best uncovers interesting patterns (e.g., clus-
ters) from data. This approach tends to be biased w.r.t. to the chosen notion of
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1. Overview of Thesis

interesting pattern. This in turn could limit the types of correlation it can un-
cover [CFZ99, KMB12] (cf., Challenge 1).

Overall, a common major drawback of supervised/unsupervised feature selection
techniques is that by mining a single subspace, they potentially miss other inter-
esting correlated subspaces that also containing useful knowledge.

General subspace search. Some recent proposals are [CFZ99, KKKW03, CYZR10,
KMB12]. Methods of this kind are capable of mining several overlapping corre-
lated subspaces, abstracting from any concrete task. Thus, they can detect differ-
ent types of correlation, i.e., they can address Challenge 1. The notions of corre-
lation used in these techniques vary. For instance, ENCLUS [CFZ99] employs total
correlation and computes it using equal-width discretization (a naïve discretiza-
tion technique). HiCS [KMB12] on the other hand proposes a novel correlation
measure quantifying the difference between marginal and the respective condi-
tional distributions. In fact, our measures proposed in Chapter 3 are based on the
measure of HiCS. That is, we also perform correlation analysis by examining the
divergence between marginal and condition distributions. However, our measures
in Chapter 3 are different from that of HiCS regarding (a) the conditional distri-
butions to use, (b) the way the divergence is quantified, and (c) robustness to the
curse of dimensionality. More details are provided in the respective chapter.

The general subspace search techniques mentioned above all explore the search
space using a bottom-up search scheme, which is also known as the Apriori search.
This search scheme imposes a monotonicity property, reminiscent of that used in
itemset mining [AS94], to substantially reduce the search space. HiCS introduces
a version of this scheme which eases parameterization. In Chapter 3, we adopt
this version for mining correlated subspaces.

Nonetheless, as we will explain in Chapter 4, due to the monotonicity restriction,
this search scheme tends to detect only low dimensional subspaces. Such sub-
spaces in turn likely are different projections of the same high dimensional cor-
related subspaces. This causes redundancy that is well-known for most subspace
mining models [MGAS09, MAG+09], i.e., Challenge 5 is not met. Besides, this
search scheme also suffers from the scalability issue due to its expensive mining
of correlated dimension pairs, and the levelwise search scheme which generates
very many candidate subspaces, i.e., it does not address Challenge 3. As a ma-
jor contribution of this thesis, we propose a highly scalable search scheme with
post-removal of redundancy in Chapter 4 to tackle both Challenges 3 and 5. One
last remark is that existing general subspace search techniques also do not meet
Challenge 4 due to the lack of a correlation measure suitable for mixed data types
(as explained above). We will study this issue in details in Chapter 5.

There is also work in the database area which can be adapted to mine sub-
spaces [ZHO+11, IMH+04, SBHR06, AHS+09, PLP+10]. Yet, they are limited to
disjoint partitioning of dimensions [ZHO+11, AHS+09] (i.e., overlapping of sub-
spaces is not allowed), foreign key and primary key constraints [SBHR06], or
pairwise correlation analysis [IMH+04, PLP+10]. We will get back to these meth-
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ods in Chapter 5 where we propose a method for mining multivariate (possibly
overlapping) correlated subspaces in relational databases.

Subspace clustering and outlier detection. Besides general subspace search
methods, there are also subspace methods designed specifically for well-known
mining tasks such as outlier detection [AY01, KKSZ12, MSS11, DAN+14,
MNDA13] and clustering [AGGR98, NGC01, YM05, KKK04, KKRW05, AKMS07,
AKMS08b, AKMS08a, MAK+09, MAG+09, MAGS11, DB14, HFK+14, GHP+14].
However, they are strongly coupled with a specific notion of outlier or cluster. As a
result, they tend to have little effect on other tasks, e.g., detecting different types
of pattern exhibiting different types of correlation. Thus, they in general do not
address Challenge 1.

In addition, some of the methods mentioned above [DAN+14, MNDA13, GHP+14]
detect one to two subspaces only, and hence, miss other important subspaces.
Most of the remaining methods [AY01, MSS11, AGGR98, NGC01, YM05, KKK04,
AKMS07, AKMS08b, AKMS08a] in turn can detect several subspaces. They how-
ever utilize the Apriori search scheme and have the scalability problem (cf., Chal-
lenge 3). In contrast, [KKRW05, MAK+09, MAG+09, MAGS11] perform jump
search and achieve high efficiency. Our jump search in Chapter 4 in fact is in-
spired from these methods. But please note that their jump search mines mul-
tivariate regions of high density (e.g., with respect to the cluster notion of DB-
SCAN as in [MAGS11]). Our goal on the other hand is to mine correlated sub-
spaces not bound to any specific local pattern, i.e., we perform global processing
while [KKRW05, MAK+09, MAG+09, MAGS11] perform local processing.

As a final remark, most of the methods looking for patterns in several subspaces
tend to produce redundant output (cf., Challenge 5). This issue is handled
in [AKMS08b, MAG+09] which are able to mine non-redundant clusters. Their
handling of redundancy is in-process. Our solution in turn is post-process. Study-
ing in-process removal of redundancy is reserved for future work.

Correlation clustering. Methods of this category [ABK+07a, ABK+07b, AY00,
AR10, BKKZ04, YWWY02, GFVS12] perform a more direct treatment of corre-
lations during the clustering process. In particular, they aim to look for clusters
whose member objects exhibit a high correlation. Roughly speaking, their focus
is on local correlation while we are interested in global correlation. Yet, till now
these methods are limited to linear correlations, i.e., Challenge 1 is not addressed.
Extending them to more complex correlations is hard since both of their notions of
correlated cluster and their mining processes are coupled with linear correlations.
We identify local correlation analysis capturing multivariate and generic correla-
tions to be an interesting direction for future research. In this thesis, we however
focus specifically on the global aspect of correlation.

1.4. Contributions and Thesis Outline
There are many possible ways to advance the field of correlation analysis. In this
thesis, the main aim is to address correlation analysis in multivariate data with
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a special focus on mining correlated subspaces. Further, we embark on a non-
parametric approach and propose methods to tackle all of the aforementioned
challenges. In the following, we present the main contributions and the structure
and of this thesis. Overall, the thesis is divided into four parts.

Part 1: Background

In this part, the basic concepts that are relevant for understanding the theories
behind our novel methods are introduced. In particular, the notion of correlation
measure is formalized and two properties a correlation measure should satisfy for
effective data mining is specified. Some well-known measures widely used in data
analysis are also reviewed and formal explanation on why they are unsuited for
addressing the challenges mentioned in Section 1.2 is provided.

Part 2: Mining Correlated Subspaces in Real-Valued Data

In this part, the focus is on mining correlated subspaces in real-valued data. In
particular, we propose two methods for tackling Challenges 1–3 and 5.

In Chapter 3, we study multivariate correlation analysis with cumulative entropy
(CE) [RCVW04, CL09], a new type of entropy designed specifically for real-valued
data. Since it is not readily clear how cumulative entropy can be used for cor-
relation analysis, we make an important contribution by introducing two new
multivariate correlation measures, CMI (for cumulative mutual information) and
CMI++, which are based on this type of entropy. In fact, our measures could be
considered as extensions of the measure proposed in HiCS; yet, we will later point
out their major differences. In a nutshell, our measures do not make any assump-
tion on the type of correlation. They are thus capable of capturing both linear and
non-linear, functional and non-functional correlations (cf., Challenge 1). Besides
addressing the good properties a correlation measure should possess (see Chap-
ter 2), we prove that CMI and CMI++ possess all important properties that total
correlation [CT06] has on discrete/categorical data. Further, we introduce effec-
tive and efficient methods for reliably computing CMI and CMI++ on real-valued
data, and hence, address Challenge 2. As the main focus in this chapter is on
correlation measures, to mine correlated subspaces, we simply plug our measures
into the Apriori search scheme of HiCS. We evaluate the quality of subspaces de-
tected by both CMI and CMI++ through clustering and outlier detection. The
experiments show that our methods bring about quality improvement for both
data mining tasks.

In Chapter 4, we point out that the Apriori search scheme suffers from four issues:
(a) it is not highly scalable, (b) it tends to miss high dimensional correlated sub-
spaces, (c) it fragments them into many redundant lower dimensional subspaces,
and (d) it is prone to the curse of dimensionality. From this analysis, we propose a
new scalable search scheme using jump search. Instead of traversing the subspace
lattice level by level, this search scheme jumps to the relevant high dimensional
subspaces by analyzing the statistics of their two dimensional projections. Our
jump search in fact is inspired from that of [MAK+09]; yet, as aforementioned the
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latter searches for multivariate regions of high density while we go for multivari-
ate correlated subspaces. While the jump search is efficient, it alone is insufficient.
In particular, to ensure scalability we have to mine the two dimensional subspaces
efficiently. Hence, we study a correlation measure which belongs to the class of
quadratic measures of (in)dependence [RSX+11, SRPP11] and which allows for
an efficient pairwise computation. Similarly to CMI and CMI++, this measure
also is based on cumulative distribution functions (cdfs) and does not assume a
specific type of correlation (cf., Challenge 1). In addition, its computation on em-
pirical data is fully in closed form, e.g., it permits straightforward application in
practice (cf., Challenge 2). This closed form also allows an efficient approximation
based on AMS Sketch [AMS96]. Combining the jump search scheme and the effi-
cient method for mining two dimensional subspaces, the technique covered in this
chapter, named 4S for scalable subspace search scheme, achieves high scalability in
mining correlated subspaces in very high dimensional data (cf., Challenge 3). Last
but not least, we incorporate into 4S an MDL-based merge of subspaces which
ensures succinctness of output as well as retrieves fragmented high dimensional
correlated subspaces (cf., Challenge 5). The subspace merge step is done using
the algorithm in [MV13]; yet, our transformation of subspace search to a problem
where the technique in [MV13] becomes applicable is a novel contribution.

Part 3: Mining Correlated Subspaces in Mixed Typed Data

Though 4S achieves scalability, it is not applicable to data with mixed data types.
Thus, the goal in this part is to address Challenge 4.

In Chapter 5, we do not only handle heterogeneous data types: We take into
account the fact that data may be stored in multiple relations as well. Thus,
this chapter, in a more precise way to put, is about detecting groups of corre-
lated columns (dimensions) in relational databases. Here, our solution, named
DECOREL for Detecting Column Correlations, takes advantage of the knowledge
gained from the CMI measures (which means CMI and CMI++) and the scalable
search scheme of 4S. Considering the correlation measure, since we are going
to adapt (not fully) the search scheme of 4S, we only need to deal with pairwise
correlations. Hence, we propose a pairwise information-theoretic correlation mea-
sure, which is a blend between the pairwise version of the CMI++ measure and
mutual information. Recalling that both are information-theoretic measures, we
hence achieve a handling of mixed data types with no major change in the inter-
pretation of correlation scores. Further, we show that this close relation between
the CMI++ measure and mutual information enables a cross-data-type correla-
tion computation. Besides, we note that our correlation measure proposed in this
chapter is related to the one employed in [PLP+10]; yet, as we will point out their
measure uses Shannon entropy and does not consider real-valued data. Regarding
the search scheme, we adopt the jump search of 4S. However, we change some
details to better fit mixed data types and the multi-relational nature of the data.
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Part 4: Computing Total Correlation

Total correlation is a well-known multivariate correlation measure and defined
based on Shannon entropy. One of the most famous ways in data mining to
compute total correlation is to first discretize the data to obtain probability mass
functions. However, naïve discretizations usually break correlations among di-
mensions, causing inaccurate computation of total correlation. Thus, the objective
of this part is to develop a correlation-aware discretization technique to compute
total correlation (cf., Challenge 2). By correlation-aware, we mean that the tech-
nique should preserve correlations in the data with respect to total correlation. Our
solutions in this part in fact are inspired from the work of Reshef et al. [RRF+11],
which finds optimal discretization for mutual information. We will show that their
approach however is not for computing total correlation. Hence, new methods
such as ours are required.

In Chapter 6, we propose such our solution for real-valued data. Yet, our contri-
butions here are beyond merely computing total correlation. Instead, we propose
multivariate maximal correlation analysis, which we generalize from various ex-
isting methods for correlation analysis. It serves as the main theme of the entire
chapter. Our method for computing total correlation on empirical data, named
MAC for Multivariate Maximal Correlation Analysis, is an instantiation of this gen-
eral notion.

In Chapter 7, we extend MAC to incorporate external information (e.g., class la-
bel) for the supervised setting. Further, we extend MAC to handle mixed typed
data (cf., Challenge 4). These two extensions amend the applicability and poten-
tial impact of MAC in practice.

Part 5: Going beyond Correlation Analysis

In the previous four parts, we devise novel methods for scalable mining of cor-
related subspaces and for computing total correlation. This part slightly departs
from the spirit of correlation analysis: We aim at exploring possible extensions of
our research to other related venues.

In Chapter 8, we further our study on correlation-aware discretization. However,
our new method, named IPD for Interaction-Preserving Discretization, is not re-
stricted to any specific notion of correlation. Instead, we aim at preserving more
general interactions among dimensions by analyzing their multivariate distribu-
tions in consecutive data regions. In fact, IPD belongs to and is inspired from the
class of multivariate discretization techniques [Bay01, MPY05]. However, to our
knowledge, we are first to propose an objective function for this task. Our objec-
tive function successfully balances between preserving interactions of dimensions
and the detail of the dimension under discretization. We introduce two efficient
algorithms for solving the objective function; one is optimal, the other is a 2-
approximation of the optimal. Last but not least, we propose a novel distance
function for assessing the difference between two multivariate distributions. IPD
is a combination of our objective function and our distance measure. Extensive
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experiments on both synthetic and real-world data demonstrate the superiority of
IPD compared to state of the art methods.

In Chapter 9, we extend our research to causality analysis which goes beyond
telling if two (groups of) dimensions are correlated. Instead, it tells us, under the
assumption of causal sufficiency (no hidden confounders), which (group) of the
two causes the other. In particular, given two multivariate random variables X and
Y with some correlation relationship and with the same number of observations,
we aim at efficiently inferring their causal direction. We accomplish this by propos-
ing a new principle for causal inference that is based on Kolmogorov complexity
and which makes use of the algorithmic Markov condition. We show that our
principle generalizes various existing methods that rely on the principle of plau-
sible Markov kernels. As Kolmogorov complexity is not computable, we present
NOVUM (for entropy divergence-based causal inference on multivariate and mixed
typed data), an efficient non-parametric implementation of our principle based on
cumulative and Shannon entropy. As it will turn out, the computation of NOVUM

is based on that of CMI++. Further, we show that our method is applicable to
mixed typed data, as well as how to derive a scalable causal discovery framework.
One important feature of our work is that we do not restrict the type of correlation
between random variables, be it linear or non-linear, functional or non-functional.
Extensive experiments on both synthetic and real-world data show NOVUM to yield
both high accuracy and high efficiency on both deterministic and noisy data.

Part 6: Summary

In this part, we summarize all contributions of this thesis and discuss directions
for future research.
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2. Principles of Correlation
Measures

In this chapter, we formalize the notion of correlation measure. We further show
how some well-known measures instantiate this notion. Overall, the materials
presented in the following are useful for understanding the the theories behind all
methods proposed in this thesis.

To formalize the principle of correlation measures, consider d real-valued random
variables X1, . . . , Xd. Let p(Xi) be the probability density function (pdf) of Xi.
Also, let p(xi) be a short form for p(Xi = xi). Let P (Xi) stand for the cumulative
distribution function (cdf) of Xi, and P (xi) be a short form for P (Xi ≤ xi). To
understand what constitutes correlation, we first define the condition under which
the dimensions are mutually/statistically independent.

Definition 1. Statistical Independence:
X1, . . . , Xd are statistically independent iff

p(X1, . . . , Xd) =
d∏
i=1

p(Xi) .

Hence, in principle the correlation score of X1, . . . , Xd, denoted as
Corr(X1, . . . , Xd), quantifies to which extent their relationship deviates from the
statistical independence condition, i.e., to which extent their joint probability dis-
tribution differs from the product of their marginal probability distributions. The
larger the difference, the higher Corr(S) is. Thus, we have:

Corr(X1, . . . , Xd) ∼ diff

(
p(X1, . . . , Xd),

d∏
i=1

p(Xi)

)
with diff being an instantiation of a difference function. In general, Corr is ex-
pected to possess the following two properties [Ren59]:
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• Property 1 (Positive score): Corr(X1, . . . , Xd) > 0 iff p(X1, . . . , Xd) 6=
d∏
i=1

p(Xi).

• Property 2 (Zero score): Corr(X1, . . . , Xd) = 0 iff p(X1, . . . , Xd) =
d∏
i=1

p(Xi),

i.e., X1, . . . , Xd are statistically independent.

These two properties are to ensure the correctness of Corr from the theoretical as-
pect. In addition, Corr must address Challenges 1 and 2 to ensure its applicability
in practical data mining where, in general, neither prior knowledge on correlation
types nor pdfs are known; only the data is available.

In the following, for illustration purposes, we present some well-known correlation
measures instantiating the above general notion of correlation measure. The first
measure is the Pearson’s coefficient.

Definition 2. Pearson’s coefficient:
The Pearson’s coefficient of two variables Xi and Xj, denoted by ρ(Xi, Xj), is

ρ(Xi, Xj) =
E(XiXj)− E(Xi)E(Xj)

σXiσXj
.

In the above equation, E(XiXj) and E(Xi)E(Xj) can be considered to represent
p(Xi, Xj) and p(Xi)p(Xj), respectively. In this sense, ρ(Xi, Xj) is the normalized
difference between p(Xi, Xj) and p(Xi)p(Xj).

Pearson’s coefficient is popular as it permits closed form computation on empirical
data, i.e., it solves Challenge 2. However, it suffers from three drawbacks:

• That ρ(Xi, Xj) = 0 does not imply Xi and Xj are statistically independent,
i.e., it meets neither Property 1 nor Property 2.

• It is only defined for pairwise correlation.

• It is only effective in capturing linear correlation [BF85], i.e., it does not
address Challenge 1.

Mutual information [CT06] also is a pairwise measure. However, it is based on
Shannon (differential) entropy and capable of capturing generic correlations. The
formal definition of mutual information is as follows.

Definition 3. Mutual Information:
The mutual information of two random variables Xi and Xj is

I(Xi, Xj) = H(Xi) +H(Xj)−H(Xi, Xj)

where H(.) is the Shannon entropy.
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Here, H(Xi)+H(Xj) represents p(Xi)p(Xj) andH(Xi, Xj) represents p(Xi, Xj). In
fact, I(Xi, Xj) is the Kullback-Leibler (KL) divergence of p(Xi, Xj) and p(Xi)p(Xj):

I(Xi, Xj) = KL(p(Xi, Xj) || p(Xi)p(Xj)) =

∫
p(xi, xj) log

p(xi, xj)

p(xi)p(xj)
dxidxj .

This property will be used in Chapters 4 and 5 to explain the rationale of our
methods. Further, mutual information possesses the following properties.

Lemma 1. I(Xi, Xj) = H(Xi)−H(Xi | Xj) = H(Xj)−H(Xj | Xi).

Lemma 2. I(Xi, Xj) ≥ 0 with equality iff Xi and Xj are statistically independent.

Lemma 2 implies that mutual information meets both Properties 1 and 2. Further,
it can detect generic correlations [RRF+11]. However, mutual information is un-
suited for real-valued columns in both theoretical and practical aspects. From a
theoretical point of view, intuitively, the more Xi and Xj are correlated, the lower
the conditional entropy terms H(Xi | Xj) and H(Xj | Xi) are, i.e., the higher
their mutual information. Thus, a high mutual information score often indicates a
correlation between X and Y . We use the word often because Shannon entropy,
a constituent element of traditional mutual information, is only well defined for
discrete/categorical data. Its continuous form, differential entropy, suffers from
some unexpected properties, such as [RCVW04]:

• it can be negative, and

• that the differential entropy of Xi given Xj equals to zero does not imply
that Xi is a function of Xj.

Thus, unlike the discrete/categorical case, a high mutual information score be-
tween real-valued Xi and Xj, though indicating that Xi and Xj are correlated,
conveys less information on their actual correlation. In particular, it does not say
if Xi is a function of Xj or vice versa.

From a practical point of view, to compute mutual information for the real-
valued case, we need the pdfs, which usually are unavailable and need to be esti-
mated [CT06], e.g., by discretization or by nearest neighbor analysis (the latter is
not explored further in this thesis). Naïve discretization tends to produce overly
simple or complex histograms due to the lack of knowledge on the number and
width of histogram bins. More advanced discretization method for computing mu-
tual information has been proposed [RRF+11]. However, it needs to fix either Xi

or Xj to equal-frequency binning first before searching for the optimal discretiza-
tion in the other dimension. Due to this issue, which will be discussed in more
details in Chapter 6, [RRF+11] does not effectively address Challenge 2.

A well-known generalization of mutual information to more than two random
variables is total correlation.
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Definition 4. Total Correlation:
The total correlation of X1, . . . , Xd is

T (X1, . . . , Xd) =
d∑
i=2

H(Xi)−H(Xi | X1, . . . , Xi−1) .

Similarly to mutual information, total correlation is the divergence of
p(X1, . . . , Xd) and

∏d
i=1 p(Xi).

T (X1, . . . , Xd) = KL(p(X1, . . . , Xd) ||
d∏
i=1

p(Xi))

=

∫
p(x1, . . . , xd) log

p(x1, . . . , xd)∏d
i=1 p(xi)

dx1 · · · dxd .

Besides, we have:

Lemma 3. T (X1, . . . , Xd) =
d∑
i=2

H(Xi)−H(Xi | X1, . . . , Xi−1).

Lemma 4. T (X1, . . . , Xd) ≥ 0 with equality iff X1, . . . , Xd are statistically indepen-
dent.

We will use the above properties to motivate/explain our methods in the later
chapters. As with mutual information, total correlation also suffers from the issues
of interpretability and computability on real-valued data. We will present our
solutions w.r.t. discretization to handle these issues in Chapters 6 and 7.
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3. Subspace Mining with CE-based
Correlation Measures

This chapter is based on our work originally published as [NMV+13]:

H. V. Nguyen, E. Müller, J. Vreeken, F. Keller, and K. Böhm, CMI: An information-
theoretic correlation measure for enhancing subspace cluster and outlier detection, in
SDM, 2013, pp. 198-206.

Here, the focus is on mining correlated subspaces on real-valued data and show
their benefits for both clustering and outlier detection. In particular, we propose
two novel correlation measures: CMI (for cumulative mutual information) and
CMI++. In a nutshell, two measures are similar in that, for each subspace,
its CMI score as well as its CMI++ score is defined based on cumulative en-
tropy [RCVW04, CL09] and quantifies their mutual correlation accordingly. Our
measures could be considered as extensions of the one in HiCS [KMB12]. How-
ever, as we will point out, our measures can better alleviate the curse of dimension-
ality. We also prove certain properties of both CMI and CMI++ which suggest that
they are suitable for correlation analysis. In terms of their differences, CMI++ im-
proves over CMI in three main aspects: (a) it provides an unbiased comparison
of correlation scores of subspaces with different dimensionality, (b) it is not in-
volved in the search of dimension permutation, and (c) it allows a more principled
computation on empirical data. As the major focus here is to propose new cor-
relation measures, to mine correlated subspaces, we model the search space as a
lattice of subspaces and simply plug our measures into the Apriori search scheme
in [KMB12] to explore this lattice. The details are as follows.

3.1. Basic Notions

Given a database DB of size N and dimensionality D. The full space of all di-
mensions is given by F = {X1, . . . , XD}. Each dimension i ∈ [1, D] is associated
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with a random variable Xi that has a real-valued domain dom(Xi) = R. We use
the notion of density distribution p(Xi) for the projected database on dimension i.
Any non-empty subset S ∈ P(F ) is called a subspace of DB. The dimensionality
of S is denoted as dim(S). W.l.o.g., the d-dimensional subspace {X1, . . . , Xd} is
used as a representative for any d-dimensional subspace in our analysis.

As discussed in Chapter 2, a correlation measure Corr quantifies as closely as
possible the deviation of subspaces from the ones whose member dimensions are
statistically independent. In particular, for a d-dimensional subspace S with di-
mensions X1, . . . , Xd, its correlation score depends on how much the difference
between its joint distribution p(X1, . . . , Xd) and the product of its marginal distri-
butions p(X1) · · · p(Xd) is:

Corr(S) ∼ diff

(
p(X1, . . . , Xd),

d∏
i=1

p(Xi)

)
. (3.1)

As aforementioned, the higher the difference, the higher the correlation score of
S. Correlation of one dimensional subspaces is undefined. Thus, we focus on two
or higher dimensional subspaces.

3.2. Detailed Assessment of Subspace Search Meth-
ods

Looking at existing techniques, ENCLUS [CFZ99] instantiates the diff function by
total correlation

d∑
i=1

H(Xi)−H(X1, . . . , Xd)

where X1, . . . , Xd are discretized versions of the original dimensions.

PODM [YLO09], like ENCLUS, also discretizes data to obtain probability mass
functions. Different from ENCLUS, it instantiates diff as∑

x1∈dom(X1),...,xd∈dom(Xd)

1

p(x1, . . . , xd)

where p(x1, . . . , xd) 6= 0. In other words, PODM computes the sum of the inverse
of the joint distribution p(X1, . . . , Xd).

The instantiation of HiCS [KMB12] is done by averaging over multiple random
runs of the form

diff (p(Xi), p(Xi | {X1 , . . . ,Xd} \ {Xi}))

where Xi is picked randomly. That is, HiCS computes the Monte Carlo sum of
the difference between marginal distribution p(Xi) and its conditional distribution
p(Xi | {X1, . . . , Xd}\{Xi}). The calculation of HiCS is not dependent on discretiza-
tion, and hence, HiCS comes closer than both ENCLUS and PODM to addressing
the problem of correlation analysis in the real-valued domain.
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Yet, none of these techniques fulfills Properties 1 and 2, and Challenges 1 and 2.
Considering Property 2, the measure of ENCLUS is unreliable because of the
knowledge loss caused by naïve discretization. The use of joint probability mass
function p(x1, · · · , xd) is also problematic. In particular, following the definition of
Shannon entropy we have that

H(X1, . . . , Xd) = −
∑

x1∈dom(X1),...,xd∈dom(Xd)

p(x1, . . . , xd) log p(x1, . . . , xd)

with p(x1, . . . , xd) measured by the relative number of points in the respective hy-
percube. For increasing d, most of the hypercubes are empty and the nonempty
ones most likely contain only one data point each [AY01, LV07]. Taking into ac-
count that limx→0 x log x = 0, we have

H(X1, . . . , Xd)→ −
N∑
i=1

1

N
log

1

N
= logN .

That is, the joint entropy H(X1, . . . , Xd) approaches logN , which is constant.
Hence, when d is large enough and all Xi have similar distribution, e.g., uniformly
dense, any d-dimensional subspaces S1 and S2 have very similar correlation scores:
Corr(S1) ≈ Corr(S2). In other words, the measure of ENCLUS produces indiffer-
ent scores for high dimensional subspaces. In addition, since ENCLUS employs
naïve discretization, it does not address Challenge 2.

PODM on the other hand fails to address both Properties 1 and 2 as well as Chal-
lenge 1 since its measure just relies on the joint probability, i.e., it does not mea-
sure correlation. Similarly to ENCLUS, it also does not meet Challenge 2. Further,
since PODM relies on the joint probability p(X1, . . . , Xd), so analogously to EN-
CLUS, it also suffers from the issue of indiscriminative correlation scores in high
dimensional subspaces.

As for HiCS, the random choice of Xi might miss important information on cor-
relation as some dimension might not be tested against the remaining ones. For
instance, a zero correlation score assigned by HiCS does not imply statistically in-
dependence as there is no guarantee that all dimensions are assessed against the
others at least once. Thus, HiCS principally does not address Properties 1 and 2.
In addition, HiCS uses conditional probability distributions with (d− 1) conditions
and might suffer from the empty space issue as ENCLUS and PODM do.

3.3. Our Correlation Measure CMI
We now introduce CMI. The organization of this section is as follows. First, we
propose a new general notion of correlation measure that is more robust to the
curse of dimensionality than the one in Equation (3.1). This new notion also
forms the basis for as well as explains the intuition behind both CMI (covered
in this Section and Section 3.4) and CMI++ (covered in Sections 3.5 and 3.6).
Second, we introduce cumulative entropy (CE), which is used to instantiate CMI.
Third, we present the actual CMI measure.
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3. Subspace Mining with CE-based Correlation Measures

3.3.1. Correlation measure – another general form
Our goal is to have correlation measures that are robust to the curse of dimen-
sionality. Towards achieving this goal, we make the observation that working with
high dimensional joint distributions (as in Equation (3.1)) or conditional distribu-
tions with many dimensions in the conditional part (as in HiCS) exposes us to the
empty space issue. Thus, one solution is to avoid such distributions. In particular,
consider S = {X1, . . . , Xd}. We introduce another generalized form to implement
Corr(S), or Corr(X1, . . . , Xd), which meets our objective:

Corr(X1, . . . , Xd) ∼
d∑
i=2

diff (p(Xi), p(Xi | X1, . . . , Xi−1)) . (3.2)

Equation (3.2) can be considered as a factorized form of Equation (3.1). In par-
ticular, it computes the correlation Corr(X1, . . . , Xd) of X1, . . . , Xd by aggregat-
ing the difference between the marginal distribution p(Xi) and the conditional
distribution p(Xi | X1, . . . , Xi−1) for i ∈ [2, d]. In this way, loosely speaking
Corr(X1, . . . , Xd) is the sum of the correlation scores of subspaces

(X1, X2), . . . , (X1, . . . , Xi), . . . , (X1, . . . , Xd)

if we consider diff (p(Xi), p(Xi | X1, . . . , Xi−1)) to be the correlation score of the
subspace (X1, . . . , Xi). The advantage of using lower dimensional subspaces is that
the correlation measure is more robust to the empty space phenomenon. Thus, by
avoiding the joint distribution p(X1, . . . , Xd) as well as conditional distributions
p(Xi | {X1, . . . , Xd} \ {Xi}), Equation (3.2) is able to mitigate the curse of dimen-
sionality in correlation computation.

Please also note that Equation (3.2) is inspired from and hence related to the cor-
relation measure of HiCS mentioned in Section 3.2. In particular, both quantify
correlation through the divergence of marginal and the respective conditional dis-
tributions. However, for each d-dimensional subspace, while HiCS uses conditional
distributions with (d− 1) conditions, Equation (3.2) uses conditional distributions
with 1 to (d − 1) conditions, which helps to mitigate the curse of dimensionality
when d is high. Further, while HiCS randomly picks the dimensions Xi to form
marginal and conditional distributions, Equation (3.2) makes sure that all dimen-
sions are included in the correlation assessment.

In addition, our factorized form of correlation measure in Equation (3.2) has
its link to the total correlation. In particular, from Chapter 2, we have that
T (X1, . . . , Xd) = KL(p(X1, . . . , Xd) ||

∏d
i=1 p(Xi)). Following [CT06], we have

a factorization property of the KL divergence:

KL(p(X1, . . . , Xd) ||
d∏
i=1

p(Xi))

= KL (p(X2 | X1 ) || p(X2 )) + . . .+ KL (p(Xd | X1 , . . . ,Xd−1 ) || p(Xd)) .
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3.3. Our Correlation Measure CMI

In other words, T (X1, . . . , Xd) is the summation of the KL distances between one-
dimensional (conditional) pdfs. This means that the correlation of X1, . . . , Xd can
be represented as the summation of the difference between one-dimensional (con-
ditional) pdfs. Thus, our factorized form of correlation measure is justified.

However, unlike Equation (3.1), the correlation measure in Equation (3.2) may be
variant to the way we form the factorization, i.e., the permutation of dimensions
used. To build a general notion, our goal here is to eliminate such dependence.
Thus, we derive a permutation-free version of Equation (3.2) as follows. Let Fd be
the set of bijective functions σ : {1, . . . , d} → {1, . . . , d}.

Definition 5. Factorized correlation measure:
The correlation score of {X1, . . . , Xd} is

Corr(X1, . . . , Xd) = max
σ∈Fd

d∑
i=2

diff
(
p(Xσ(i)), p(Xσ(i) | Xσ(1), . . . , Xσ(i−1))

)
. (3.3)

Equation (3.3) eliminates the dependence on any specific permutation by taking
the maximum score over all permutations. By considering the maximum value,
we aim at uncovering the best correlation score of the dimensions involved. This
design choice also is in line with maximal correlation analysis [BF85, RSX+11];
see Chapter 6 for more information.

In principle, one could instantiate diff in Equation (3.3) by KL divergence, and
Corr becomes the total correlation. However, due to the issues differential entropy
on real-valued data (cf., Chapter 2), this turns out not to be a good choice. Our
goal instead is to work with cumulative entropy, a new notion of entropy designed
for real-valued data.

3.3.2. Cumulative entropy

In short, cumulative entropy (CE) captures the information content, i.e., com-
plexity, of a probability distribution. However, different from Shannon entropy, it
works with (conditional) cdfs, which turn out to facilitate computation on real-
valued data.

Definition 6. Cumulative Entropy (CE):
The cumulative entropy of a continuous random variable X, denoted as h(X), is:

h(X) = −
∫
dom(X)

P (X ≤ x) logP (X ≤ x)dx.

Similarly to Shannon entropy, the cumulative entropy of X captures the amount
of uncertainty contained in X. Different from Shannon entropy, it is defined based
on the cumulative distribution P (X ≤ x). From 0 ≤ P (X ≤ x) ≤ 1, we obtain
h(X) ≥ 0. This means that CE is always non-negative just like Shannon entropy
defined on discrete data.
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3. Subspace Mining with CE-based Correlation Measures

The notion of cumulative entropy in Definition 6 is based on [RCVW04, CL09].
However, it is more general since it is not restricted to non-negative random vari-
ables. Furthermore, following [RCVW04, CL09] we extend the notion of CE to
conditional cumulative entropy and show that it maintains some important prop-
erties of conditional Shannon entropy on discrete/categorical data, as follows.

Definition 7. Conditional Cumulative Entropy:
The conditional CE of any real-valued random variable X knowing that some ran-
dom vector V ∈ RB (with B being a positive integer) takes the value v is defined
as:

h(X | v) = −
∫
dom(X)

P (X ≤ x | v) logP (X ≤ x | v)dx.

The CE of X conditioned by V is:

EV [h(X | V )] =

∫
dom(V )

h(X | v)p(v)dv.

Just like the usual conditional entropy, we denote EV [h(X | V )] as h(X | V ) for
notational convenience. The conditional CE has two important properties given
by the following theorems.

Theorem 1. h(X | V ) ≥ 0 with equality iff there exists a function

f : dom(V )→ dom(X)

such that X = f(V ).

Proof. See [RCVW04, CL09].

Theorem 2. h(X | V ) ≤ h(X) with equality iff X is independent of V .

Proof. See [RCVW04, CL09].

In other words, Theorem 1 tells us that the conditional cumulative entropy
h(X | V ) is non-negative and it is zero iff X is a functional of V . Theorem 2
in turn tells us that the conditional cumulative entropy h(X | V ) does not exceed
the unconditional term h(X), and equality takes place iffX is independent of V . In
fact, these two properties of conditional CE match those of conditional Shannon
entropy. Taking into account the fact that the unconditional CE has similar prop-
erties to unconditional Shannon entropy, we can see that CE preserves the good
properties of Shannon entropy, which corroborates its suitability for data analysis.

3.3.3. Cumulative mutual information

Our goal here is to realize Equation (3.3) to create correlation measures that can
alleviate the empty space issue. Hence, we create CMI measure instantiating Equa-
tion (3.3) by means of CE and conditional CE . In particular, using CE , we set
diff (p(x), p(x | . . .)) to h(X)− h(X | . . .). Thus, we have:
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Figure 3.1.: Example subspaces with low and high correlation having different
CMIs

Definition 8. Cumulative Mutual Information:
The cumulative mutual information (CMI) of real-valued random variables
X1, . . . , Xd is:

CMI(X1, . . . , Xd) = max
σ∈Fd

d∑
i=2

h(Xσ(i))− h(Xσ(i) | Xσ(1), . . . , Xσ(i−1))

where h(Xσ(i) | Xσ(1), . . . , Xσ(i−1)) is h(Xσ(i) | V ) with V = (Xσ(1), . . . , Xσ(i−1)) being
a random vector whose domain is dom(Xσ(1))× · · · × dom(Xσ(i−1)).

Intuitively, the more correlated X1, . . . , Xd are, the smaller the conditional CE
terms are, i.e., the larger CMI is. Thus, CMI is able to capture subspace correlation
(Property 1). To further clarify this property, we use the toy example in Figure 3.1,
which is based on that of [KMB12]. It depicts the scatter plots, cdf plots, and plots
of the function −P (X ≤ x) logP (X ≤ x), namely −cdf log cdf , of two subspaces
S1 and S2 (ccdf means conditional cdf). The blue lines stand for the marginal
distribution of the corresponding dimension. The red lines on the other hand
feature the conditional distribution of one dimension obtained by selecting a range
of the remaining dimension (gray stripes). One can see that S2 has a higher score
than S1, and hence,

CMI(X3, X4)selected range = 4.344 > CMI(X1, X2)selected range = 0.113.
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3. Subspace Mining with CE-based Correlation Measures

Further, even when high-order conditional CE s may be impacted by the curse of
dimensionality, CMI still yields distinguishable correlation scores for high dimen-
sional subspaces thanks to its member low-order conditional CE terms. Thus,
CMI is more robust to the curse of dimensionality compared to existing correla-
tion measures (Property 1). As CMI is based on the factorized form of correlation
measure in Equation (3.2), its first difference to the measure of HiCS follows cor-
respondingly (cf., Section 3.3.1). Another difference comes from the fact that the
measure of HiCS quantifies the divergence between marginal and conditional dis-
tributions using statistical tests (e.g., Welch’s t-test or Kolmogorov-Smirnov test)
while CMI employs cumulative entropy. Our experiments later will further reveal
the difference between CMI and HiCS in terms of performance.

Regarding additional characteristics of CMI, we can see that if X1, . . . , Xd are m-
wise independent, then CMI(X1, . . . , Xd) is low as h(Xi)− h(Xi | . . .) vanishes for
i ≤ m (Property 3). Moreover, we prove that CMI = 0 iff X1, . . . , Xd are mutually
independent (Property 2).

Theorem 3. CMI(X1, . . . , Xd) ≥ 0 with equality iff X1, . . . , Xd are statistically inde-
pendent.

Proof. We have:

CMI(X1, . . . , Xd) ≥
d∑
i=2

hCE (Xi)− hCE (Xi | X1, . . . , Xi−1) .

As conditioning reduces CE (cf., Theorem 2), it holds that hCE (Xi) − hCE (Xi |
X1, . . . , Xi−1) ≥ 0. Thus CMI(X1, . . . , Xd) ≥ 0. Furthermore, the equality occurs
when Xi is independent from (X1, . . . , Xi−1) for 2 ≤ i ≤ d. This implies that

p(X1, . . . , Xd) =
d∏
i=1

p(Xi).

Conversely, when X1, . . . , Xd are mutually independent, Xi is independent from
(X1, . . . , Xi−1) for 2 ≤ i ≤ d. Thus, we have:

d∑
i=2

hCE (Xi)− hCE (Xi | X1, . . . , Xi−1) = 0 .

This also holds for other permutation. Thus, CMI(X1, . . . , Xd) = 0.

As another result, we observe that:

Lemma 5. CMI(X1, . . . , Xd) ≤ max
σ∈Fd

d∑
i=2

h(Xσ(i)).

Proof. The result follows from Theorem 1.
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Lemma 5 essentially says that CMI(X1, . . . , Xd) is upper-bounded by sums of
marginal (unconditional) CE terms. We will use this lemma in Section 3.5 for
normalization purposes, which leads to the creation of CMI++.

Heuristic choice of permutation. To compute CMI, ideally we have to find the
optimal permutation σ∗ ∈ Fd. There are d! possible cases in total. Together
with the exponential number of subspaces, a brute-force approach is impractical.
We therefore propose a heuristic to obtain a permutation that approximates σ∗.
In particular, we first pick a pair of dimensions Xa and Xb (1 ≤ a 6= b ≤ d)
such that h(Xb) − h(Xb | Xa) is maximal among the possible pairs. Then,
we continue selecting the next dimension Xc (c 6= a and c 6= b) such that
h(Xc) − h(Xc | Xa, Xb) is maximal among the remaining dimensions. Likewise,
at each step, assuming that I = {Xp1 , . . . , Xpk} is the set of dimensions already
picked and R = {Xr1 , . . . , Xrd−k} is the set of remaining ones, we select the dimen-
sion Xri ∈ R such that h(Xri) − h(Xri | I) is maximal. The process goes on until
no dimension is left. We let σ∗ be the permutation obtained by our strategy. Our
experiments will show that this heuristic works well in practice.

3.4. Computing CMI

To compute CMI, we need to compute CE and conditional CE .

3.4.1. Computing unconditional CE

Let X[1] ≤ . . . ≤ X[N ] be realizations of X.

Theorem 4. We have:

h(X) = −
N−1∑
i=1

(X[i+ 1]−X[i])
i

N
log

i

N
.

Proof. See [RCVW04, CL09].

From Theorem 4, we can see that the unconditional CE can be computed in closed
form on empirical data. Compared to unconditional Shannon entropy, uncondi-
tional CE thus is more suited to practical data analysis on real-valued domains.

3.4.2. Computing conditional CE

In contrast to the straightforward computation of unconditional CE , it is not as
simple to calculate the conditional CE in an accurate and efficient way. In the
following, we first point out that, due to limited data, sticking to the exact formula
of conditional CE may lead to inaccurate results. We then propose a strategy to
resolve the issue.
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Consider d dimensions X1, . . . , Xd and assume that we want to compute h(X1 |
X2, . . . , Xd). From Definition 7, we have:

h(X1 | X2, . . . , Xd)

=

∫
dom(X2)

· · ·
∫
dom(Xd)

h(X1 | x2, . . . , xd)p(x2, . . . , xd)dx2 · · · dxd.

Further:

h(X1 | x2, . . . , xd)

= lim
ε→0+

h(X1 | x2 − ε ≤ X2 ≤ x2 + ε, . . . , xd − ε ≤ Xd ≤ xd + ε).

This means h(X1 | x2, . . . , xd) is computed based on the data in the hypercube
[x2 − ε, x2 + ε] × · · · × [xd − ε, xd + ε] where ε can be arbitrarily small. Since N is
finite, the expected number of data points falling into this hypercube approaches
0 as ε → 0+ [LV07]. When d is large, the problem is exacerbated as one faces the
empty space phenomenon. With empty hypercubes (or even hypercubes of one
data point), h(X1 | x2, . . . , xd) vanishes. Hence, h(X1 | X2, . . . , Xd) becomes 0. We
thus encounter a paradox: If sticking to the exact formula of conditional CE , we
may end up with an inaccurate result.

To alleviate this problem, instead of computing conditional CE for each individual
tuple (x2, . . . , xd) that is 0 due to the empty space phenomenon, we switch to com-
binations of different tuples. This is to increase the likelihood that we have enough
points for a meaningful computation. Therefore, we resort to data summarization
by clustering.

In principle, clustering summarizes the data by means of clusters. Since the num-
ber of clusters is generally much less than the original data size, we may have
more data points in each cluster. Hence, the issue of limited data is mitigated.
Assuming that a clustering algorithm C is used on DB projected to {X2, . . . , Xd}
resulting in Q clusters {C1, . . . , CQ} (the support of Ci is |Ci|), we propose to es-

timate h(X1 | X2, . . . , Xd) by
Q∑
i=1

|Ci|
N

h(X1 | Ci). That is, we consider each cluster

to be a condition on X1. As each cluster potentially contains many data points,
this helps us to overcome the empty space problem. Note that if M is kept small
enough, we will have enough points for a meaningful computation of h(X1 | Ci)
regardless of the dimensionality d.

As our cluster-based approach does not rely on any specific cluster notion, it can
be instantiated by any method. To ensure efficient computation of CMI, we use
the one-pass K-means clustering strategy introduced in [OO04] with K = Q. Also
following this paper, for Q > 1 the jth centroid (1 ≤ j ≤ M) is first initialized to

~µ± j − 1

(d− 1)(Q− 1)
~λ where the ± sign is picked randomly with probability 1/2, and

~µ and ~λ are the vector mean and standard deviation of (X2, . . . , Xd), respectively
(which are precomputed). That is, each centroid deviates from the vector mean
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~µ by small fraction of ~λ. Each incoming data point is assigned to the nearest
centroid. The centroids are updated periodically after every

√
N points. To reduce

dependency on the order of data points, data perturbation is performed prior to
clustering.

After doing clustering, we obtain Q clusters summarizing the data. For the pa-
rameter Q, if it is set too high, we may end up with high runtime and not enough
data in each cluster for a reliable estimation of conditional CE . If it is instead set
to 1, i.e., no clustering at all, h(X1 | · · · ) becomes h(X1), i.e., there is a loss of
information. In our preliminary experiments, we find that Q = 10 yields a reason-
ably good balance between quality and efficiency, so we set Q to this value. Using
clustering, applying the same proof as the one of Theorem 2, we conclude that the
conditional CE is less than or equal to its respective unconditional CE .

3.4.3. Time Complexity Analysis

We now analyze the time complexity of computing CMI(X1, . . . , Xd). According
to Section 3.3.3, we first need to select a pair {Xa, Xb} ⊂ {X1, . . . , Xd} such that
h(Xb)− h(Xb | Xa) is maximal. Following [OO04], computing h(Xb)− h(Xb | Xa)
for every pair {Xa, Xb} costs O(QN), i.e., O(N) as Q is relatively small compared
to N . Thus, processing all pairs costs O(d2N).

At each step, I = {Xp1 , . . . , Xpk} is the set of dimensions already picked and
R = {Xr1 , . . . , Xrd−k} is the set of remaining ones. According to our heuristic
to select the permutation of dimensions, we need to compute h(Xri) − h(Xri | I)
for every Xri ∈ R. To do so, we first cluster the data in the subspace formed by the
dimensions of I. This costs O(kQN), which can be simplified to O(kN). Comput-
ing h(Xri)− h(Xri | I) then costs O(N) (we sort all dimensions only once). Thus,
the total cost at this step is O(kN + (d− k)N), i.e., O(dN).

Overall, the total complexity of computing CMI(X1, . . . , Xd) is

O(d2N) +O

(
d−1∑
k=2

dN

)
,

which is equivalent to O(d2N).

3.5. CMI++: Improving over CMI and Its Implemen-
tation

As we have shown so far, CMI satisfies the properties for a reliable correlation
analysis. Further, it permits robust and efficient computation on empirical data.
However, CMI suffers from three issues. First, as we are going to use CMI in
subspace search, we may need to compare CMI scores of subspaces with different
dimensionality. For a fair comparison, those scores should be on the same scale.
Yet, CMI currently does not guarantee this. Second, to compute the CMI score of
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each subspace, we need to search for the optimal permutation of its dimensions.
Though we have proposed a heuristic to tackle this, the approximate permutation
is dependent on how well we estimate the conditional CE terms. As we currently
compute these terms by data clustering, this essentially boils down to how good
the selected clustering algorithm is. On the other hand, choosing a suitable clus-
tering method is non-trivial. Thus, to eliminate that search and the issues just
mentioned, we aim at a correlation measure defined on a fixed permutation of di-
mensions, i.e., no search is required. Third, to avoid data clustering in correlation
computation, another approach to compute the conditional CE terms is required.

To address all of these three issues, we propose CMI++. In the following, we
focus on the former two issues and postpone the third one to Section 3.6.

3.5.1. Normalized CMI

As mentioned above, for a fair comparison, the correlation scores of subspaces
with different dimensionality should be on the same scale. In particular, we aim at
normalizing the scores of CMI such that they fall into the range [0, 1] with 0 being
no correlation at all.

To this end, we observe that simply normalizing CMI(X1, . . . , Xd) by d (i.e., nor-
malizing the score of each d-dimensional subspace by its dimensionality) would
not give correlation scores of the same range. This is because if we normalized
CMI(X1, . . . , Xd) by d, following Lemma 5, the normalized score would be upper-

bounded by
max
σ∈Fd

d∑
i=2

h(Xσ(i))

d
. Since max

σ∈Fd

d∑
i=2

h(Xσ(i)) varies for different subspaces,

the normalized score would not bring about a fair comparison of subspaces with
different dimensionality.

Instead, we perform normalization based on the observation that for each

permutation σ of dimensions X1, . . . , Xd, the term
d∑
i=2

h(Xσ(i)) − h(Xσ(i) |

Xσ(1), . . . , Xσ(i−1)) is bounded above by
d∑
i=2

h(Xσ(i)). In particular, we have:

Lemma 6. It holds that:

d∑
i=2

h(Xσ(i))− h(Xσ(i) | Xσ(1), . . . , Xσ(i−1)) ≤
d∑
i=2

h(Xσ(i))

with equality iff Xσ(2), . . . , Xσ(d) are functions of Xσ(1).

Proof. The result follows from Theorem 1.

From Lemma 6, for unbiased comparison of the correlation scores of different
subspaces, we propose the normalized CMI as follows.
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Definition 9. Normalized Cumulative Mutual Information:
The normalized CMI of real-valued random variables X1, . . . , Xd is:

CMIn(X1, . . . , Xd) = max
σ∈Fd

d∑
i=2

h(Xσ(i))− h(Xσ(i) | Xσ(1), . . . , Xσ(i−1))

d∑
i=2

h(Xσ(i))

with the convention that 0
0

= 0.

That is, CMIn(X1, . . . , Xd) is the maximum normalized correlation over all per-
mutation of X1, . . . , Xd. As one can see, we derive CMIn(X1, . . . , Xd) based on
Lemma 6. To show that CMIn is indeed suited to unbiased correlation analysis, we
prove some of its good properties below.

Lemma 7. We have:

• 0 ≤ CMIn(X1, . . . , Xd) ≤ 1.

• CMIn(X1, . . . , Xd) = 0 iff X1, . . . , Xd are statistically independent.

• CMIn(X1, . . . , Xd) = 1 iff there exists Xi such that each Xj ∈ {X1, . . . , Xd} \
{Xi} is a function of Xi.

Proof. The results are derived from Theorem 3 and Lemma 6.

Based on Lemma 7, CMIn can be used to compare the correlation scores of differ-
ent subspaces, regardless of their dimensionality. In addition, its value is bounded
on both sides, which according to [Ren59] yields better interpretability than un-
bounded values. It is straightforward to verify that CMIn satisfies Properties 1–3.

3.5.2. Practical CMI

To compute CMIn, we still need to look for the permutation that maximizes the
score. Our goal is to avoid this search. We therefore propose a practical (heuristic)
version of CMIn that achieves this goal. In other words, our strategy heuristi-
cally fixes a permutation for correlation computation, and hence, saves time. The
details are as follows.

Definition 10. Practical Cumulative Mutual Information:
The practical CMI of real-valued random variables X1, . . . , Xd is:

CMIp(X1, . . . , Xd) =

d∑
i=2

h(Xσ(i))− h(Xσ(i) | Xσ(1), . . . , Xσ(i−1))

d∑
i=2

h(Xσ(i))
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3. Subspace Mining with CE-based Correlation Measures

where σ ∈ Fd is a permutation such that h(Xσ(1)) ≥ . . . ≥ h(Xσ(d)).

In other words, CMIp chooses the permutation corresponding to the sorting of
dimensions in descending order of CE values. The intuition behind this choice is as
follows. To compute CMIn, we must find the permutation π ∈ Fd that maximizes

d∑
i=2

h(Xπ(i))− h(Xπ(i) | Xπ(1), . . . , Xπ(i−1))

d∑
i=2

h(Xπ(i))

.

To maximize the above term, we should minimize the denominator and maxi-
mize the numerator. To minimize the former, it would most likely help to ex-
clude h(Xσ(1))—the largest unconditional CE term. Thus, we expect a permuta-
tion where Xσ(1) appears first to be good.

For the numerator, we have the following observation. Assume that h(Xi) ≥ h(Xj),
i.e., Xi is more random than Xj. Then h(Xk | Xi) tends to be smaller than h(Xk |
Xj) [RCVW04]. For instance, if Xj is deterministic, h(Xk | Xi) ≤ h(Xk | Xj) =
h(Xk). So h(Xk | . . .) will get further away from h(Xk) as the condition “. . .”
becomes more random, and vice versa.

Now assume that h(Xk) ≥ h(Xi). If Xk is after Xi in the permutation, h(Xk) will
appear in the numerator. However, h(Xk | . . .) will get close to h(Xk) as “. . .”
containing Xi is less random, i.e., h(Xk)− h(Xk | . . .) tends to be small.

If Xk instead is before Xi in the permutation in turn, we will have h(Xi) in the
numerator. However, h(Xi | . . .) gets further away from h(Xi), i.e., h(Xi)− h(Xi |
. . .) tends to be relatively large.

All in all, these suggest that dimensions with large CE values should be placed
before those with small CE values to maximize the numerator. Though we do not
have a rigorous proof for our intuition, our experiments reveal that CMIp works
very well in practice. To show that CMIp is also suited to unbiased correlation
analysis, we prove some of its good properties below.

Lemma 8. It holds that:

• 0 ≤ CMIp(X1, . . . , Xd) ≤ 1.

• CMIp(X1, . . . , Xd) = 0 iff X1, . . . , Xd are statistically independent.

• CMIp(X1, . . . , Xd) = 1 iff Xσ(2), . . . , Xσ(d) are functions of Xσ(1).

Proof. The results are derived from Theorem 3 and Lemma 6.

Similarly to CMIn, CMIp also meets Properties 1–3. In addition to the original
CMI measure, we will use CMIp in the rest of this paper and call it CMI++.
In summary, compared to CMI, CMI++ allows for unbiased correlation analysis
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of subspaces with different dimensionality. In addition, its computation does not
require searching for an optimal permutation. Please note that the aforementioned
differences between CMI and HiCS also hold for CMI++. In the next section, we
explain how to compute CMI++ on empirical data.

3.6. Computing CMI++
In this section, w.l.o.g., we assume that

CMI++(X1, . . . , Xd) =

d∑
i=2

h(Xi)− h(Xi | X1, . . . , Xi−1)

d∑
i=2

h(Xi)

.

That is, the permutation of dimensions in CMI++(X1, . . . , Xd), which is fixed (see
Section 3.5.2), is assumed to be X1, . . . , Xd for ease of presentation.

For X ∈ {X1, . . . , Xd}, let X[1] ≤ . . . ≤ X[N ] be realizations of X. According to
Theorem 4, we have

h(X) = −
N−1∑
i=1

(X[i+ 1]−X[i])
i

N
log

i

N
.

On the other hand, from Definition 7, we have

h(Xi | X1, . . . , Xi−1)

=

∫
dom(X1)

· · ·
∫
dom(Xi−1)

h(Xi | x1, . . . , xi−1)p(x1, . . . , xi−1)dx1 · · · dxi−1.

We propose to compute the conditional CE terms of CMI++(X1, . . . , Xd) by what
we refer to as correlation-aware discretization. We go for discretization as it also is
an approach to summarize data/group values. However, existing simple discretiza-
tion methods (e.g., equal-width) are oblivious of subspace correlation: They form
bins without considering the dependencies among dimensions, and hence, they
break correlation in the data. On the contrary, we formulate the computation of
the conditional CE terms in CMI++ as optimization problems where we search
for the discretization maximizing CMI++(X1, . . . , Xd). That is, we search for the
bins that preserve as well as reveal hidden correlation of the data. The details are
as follows.

• Computing h(X2 | X1): The value of h(X2 | X1) depends on how we estimate
the distribution of X1, or in other words, how we discretize the realizations
of X1. Here, our goal is to maximize h(X2) − h(X2 | X1), i.e., maximizing
CMI++(X1, . . . , Xd). As h(X2) is fixed given the realizations of X2, maxi-
mizing h(X2) − h(X2 | X1) is equivalent to minimizing h(X2 | X1). To solve
the latter problem, we propose to search for the discretization ofX1 such that
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3. Subspace Mining with CE-based Correlation Measures

h(X2 | X1) is minimal. As we will show in the following, we can efficiently
tackle this optimization problem by dynamic programming.

• Computing h(Xi | X1, . . . , Xi−1) for i ≥ 3: Ideally, one would search for the
optimal discretizations of X1, . . . , Xi−1 that minimize h(Xi | X1, . . . , Xi−1).
However, this is very computationally expensive. We overcome this issue by
observing that, to this end, we have already discretized X1, . . . , Xi−2, and the
resulting discretizations are for maximizing CMI++(X1, . . . , Xd). Hence, we
choose to search for the discretization of Xi−1 only. To this end, we will also
show that we can efficiently find the discretization of Xi−1 that minimizes
h(Xi | X1, . . . , Xi−1) by dynamic programming. By not re-discretizing any
dimension already processed, we are able to reduce the computational cost
and permit large-scale processing.

Overall, to compute CMI++(X1, . . . , Xd), we take advantage of the fact that the
order of dimensions has been fixed. From there, we compute each conditional CE
term appearing in CMI++(X1, . . . , Xd) (in that order) optimally using dynamic
programming. To this end, our solution indeed is inspired from [RRF+11]. Yet,
they focus on Shannon entropy and we focus on cumulative entropy.

We now prove that the discretization at each step can be searched efficiently by
dynamic programming. In particular, assume that I is the set of dimensions we
have already discretized. Further, assume that we want to compute h(X ′ | I,X),
i.e., we need to search for the discretization of X in the current step.

Let X[1] ≤ . . . ≤ X[N ] be realizations of X. We write X[j, u] for {X[j], X[j +
1], . . . , X[u]} where j ≤ u. We note that X[1, N ] is in fact X. Further, we write
〈X[j, u]〉 as a bin of X, which contains points of DB falling into the range from
X[j] to X[u]. Accordingly, we let h(X ′ | I, 〈X[j, u]〉) denote h(X ′ | I) computed
using points of DB falling into that bin. To show that the optimal discretization
of X minimizing h(X ′ | I,X) can be searched by dynamic programming, we in-
troduce the following formulation which will subsequently lead to the solution of
our problem. In particular, for 1 ≤ l ≤ u ≤ N , we write

fX′,I,X(u, l) = min
g:|g|=l

h(X ′ | I,Xg[1, u])

where g is a discretization of X[1, u], |g| is its number of bins, and Xg[1, u] is the
set of bins g forms on X[1, u]. That is, fX′,I,X(u, l) is the minimum h(X ′ | I,X[1, u])
over all discretization g of X[1, u] into l bins. For brevity, we simply write fX′,I,X as
f . In the following, we show a recursive formula for f(u, l) which inspires the use
of dynamic programming to efficiently compute it, and hence, to efficiently solve
our problem of minimizing h(X ′ | I,X).

Theorem 5. Let l, u be two integers such that 1 < l ≤ u ≤ N . We have

f(u, l) = min
j∈[l−1,u)

Aj
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where
Aj =

j

u
f(j, l − 1) +

u− j
u

h(X ′ | I, 〈X[j + 1, u]〉).

Proof. Let g∗ = arg min
g:|g|=l

hCE (X ′ | B,Xg[1, u]). We denote l bins that g∗ generates

on X as b(X)1, . . . , b(X)l. We write |b(X)t| as the number of values of X in b(X)t.
For each X ′i ∈ I, we denote its bins as b(X ′i)1, . . . , b(X

′
i)n′i.

Further, let cz =
z∑
i=1

|b(X)i|. Note that each bin of X is non-empty, i.e., cz ≥ z.

We use hCE (X ′ | I, bt) to denote hCE (X ′ | I) computed using the points of
DB corresponding to the realizations of X in b(X)t, projected onto X ′ and I.
We write |(t, t1, . . . , tk)| as the number of points in the cell made up by bins
b(X)t, b(X

′
1)t1 , . . . , b(X

′
|I|)t|I|.

We have: f(u, l)

=
l∑

t=1

n′1∑
t1=1

. . .

n′|I|∑
t|I|=1

|(t, t1, . . . , tk)|
u

× hCE (X ′ | b(X)t, b(X
′
1)t1 , . . . , b(X

′
|I|)t|I|)

=
l−1∑
t=1

n′1∑
t1=1

. . .

n′|I|∑
t|I|=1

|(t, t1, . . . , tk)|
u

× hCE (X ′ | b(X)t, b(X
′
1)t1 , . . . , b(X

′
|I|)t|I|)

+
|bl|
u
hCE (X ′ | I, bl)

=
cl−1

u

l−1∑
t=1

n′1∑
t1=1

. . .

n′|I|∑
t|I|=1

|(t, t1, . . . , tk)|
u

× hCE (X ′ | b(X)t, b(X
′
1)t1 , . . . , b(X

′
|I|)t|I|)

+
u− cl−1

u
hCE (X ′ | I, 〈X[cl−1 + 1, u]〉)

=
cl−1

u
f(cl−1, l − 1) +

u− cl−1

u
hCE (X ′ | I, 〈X[cl−1 + 1,m]〉) .

In the last line,

l−1∑
t=1

n′1∑
t1=1

. . .

n′|I|∑
t|I|=1

|(t, t1, . . . , tk)|
u

×

hCE (X ′ | b(X)t, b(X
′
1)t1 , . . . , b(X

′
|I|)t|I|)

is equal to f(cl−1, l − 1) because otherwise, we could decrease f(u, l) by choosing
a different discretization of X[1, cl−1] into l − 1 bins. This in turn contradicts our
definition of f(u, l). Since cl−1 ∈ [l−1, u) and f(u, l) is minimal over all j ∈ [l−1, u),
we arrive at the final result.

Theorem 5 shows that the optimal discretization of X[1, u] can be derived from
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3. Subspace Mining with CE-based Correlation Measures

that of X[1, j] with j < u. This allows us to design a dynamic programming
algorithm to find the discretization of X that minimizes h(X ′ | I,X).

We note that we have to impose a maximum number of bins on any discretization
g considered. This is because in the extreme case when all realizations of X are
distinct and |g| = N , h(X ′ | I,X) will be zero. This is also known as the empty
space issue [LV07]. Therefore, inspired by [RRF+11], we restrict that |g| < N ε

where ε ∈ (0, 1).

Efficiency Consideration. For each dimension, a cut point is a mid value of two
of its consecutive distinct values. When discretizing a dimension at each step, if
we consider the data at highest granularity (i.e., we use the original set of cut
points of that dimension), the time complexity of dynamic programming is O(N3).
This is too restrictive for large data sets. We overcome this problem by reducing
the number of candidate cut points. In particular, when discretizing a dimension
with maximum grid size max_grid (here, max_grid = N ε), we limit its number of
cut points to c × max_grid with c > 1. Similarly to [RRF+11], we do this using
equal-frequency discretization on the dimension with the number of bins equal
to (c × max_grid + 1). More elaborate pre-processing is possible, but beyond the
scope of this work.

Regarding ε and c, the larger these are, the more candidate discretizations we con-
sider. Hence, we can achieve a better result, but the computational cost becomes
higher. Our preliminary empirical analysis shows that ε = 0.3 and c = 4 offers a
good balance between quality and efficiency, and we will use these values in the
experiments.

Following an analysis similar to that of [RRF+11], the cost of discretizing a dimen-
sion is O(c3 ×max_grid3), which is equivalent to O(N0.9) as max_grid = N0.3 and
c = 4 is small. The total complexity of computing CMI++(X1, . . . , Xd) is therefore
O(dN0.9).

Remarks. In fact, one also could use correlation-aware discretization to compute
CMI, not only CMI++. However, in CMI, we need to search for the optimal
permutation by the heuristic search (see Section 3.3.3). Thus, if correlation-aware
discretization was used, at each step of the heuristic search, we would have to
solve the optimization problem for all dimensions not yet selected at this step. This
potentially incurs a high computational cost and hinders large-scale processing.

3.7. Subspace Search Scheme

For a D-dimensional data set, there are 2D − 1 candidate subspaces to examine.
The exponential number of subspaces makes a brute-force search impractical. To
address this issue, we adopt the Apriori search scheme proposed in HiCS [KMB12].
It is an approximate, yet scalable, levelwise subspace search framework.

This search scheme relies on the intuition that a correlated high dimensional sub-
space likely has its correlation reflected in its lower-dimensional projections. In
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the field of subspace clustering, there is an analogous observation: High dimen-
sional subspace clusters tend to have their data points clustered in all lower dimen-
sional projections [AGGR98, KKRW05, AKMS07]. One could then apply a level-
wise search to mine subspaces having correlation scores larger than a pre-specified
value. However, to facilitate parameterization, the search scheme in HiCS avoids
imposing direct thresholds on correlation scores.

Instead, it employs a beam search strategy to obtain efficiency. Starting with two-
dimensional subspaces, in each step it uses the topM subspaces of high correlation
scores to generate new candidates in a levelwise manner. A newly generated can-
didate is only considered if all of its child subspaces have high correlation scores.
First, this requirement permits tractable time complexity. Second, it takes into
account interaction among subspaces of different dimensionality, and selects sub-
spaces that are ensured to have high correlation scores. Third, it avoids redun-
dancy; if T ⊆ S and S has a higher correlation score than T then T is excluded
from the final result. Experiments in Section 3.8 demonstrate that this search
scheme yields good results when it comes to clustering and outlier analysis.

3.8. Experiments

We compare our methods, CMI and CMI++, to two existing methods for min-
ing correlated subspaces: ENCLUS and HiCS. As further baselines, we include
FB [LK05] which selects subspaces randomly, and PCA [LV07]. The methods dis-
cussed so far select subspaces not bound to any specific data mining task. As
specialized techniques, we consider HOD [AY01] for subspace outlier detection,
and CLIQUE [AGGR98] and PROCLUS [APW+99] for subspace clustering.

For our methods, we use Q = 10 for CMI, and ε = 0.3 and c = 4 for CMI++
unless stated otherwise. For the Apriori search scheme, we set M = 400. For each
competitor, we tried to find its optimal parameter setting. As FB and HOD are non-
deterministic, we record 5 runs for each of them and give the average (standard
deviations were recorded, but negligible).

We evaluate how correlated subspaces improve the result quality of outlier
detection and clustering techniques. Therefore, LOF [BKRTN00] and DB-
SCAN [EKSX96], two well-established methods for pattern detection, are selected
on top of the approaches tested. To ensure comparability, we use the same param-
eter value of MinPts for LOF across all experiments. This in turn is not possible
with DBSCAN as the values of its parameters, especially the neighborhood distance
threshold, are known to vary from one data set to another [MGAS09, GFM+11].
Thus, instead of using a global parameter setting for DBSCAN, we customize it for
each data set. Yet, for each data set, we apply the same setting when processing
the subspaces output by different subspace search methods.

To ensure succinct sets of subspaces that allow for post-analysis, only the best 100
subspaces of each technique are utilized for clustering and outlier detection. As a
standard practice [LK05, KMB12, MSS11], we assess outlier detection results by
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Figure 3.2.: Higher is better] Correlation score vs. dimensionality.

the Area Under the ROC Curve (AUC). Similarly, we evaluate clustering results by
means of F1 and Accuracy [MAG+09, MGAS09, GFM+11].

All techniques were implemented in Java (to ensure fair runtime comparison)
and all experiments were conducted on an Intel R© i5-2520M Processor with 8GB
memory.

3.8.1. Impact of dimensionality

To illustrate that our methods are robust to increasing dimensionality of subspaces,
we evaluate them on a synthetic data set of 20 dimensions and 5120 instances,
generated according to [MSS11]. In this data set, we embed subspace clusters
in randomly selected 2–10 dimensional subspaces. Additionally, 120 outliers are
created deviating from these clusters. Please note that in this experiment, we
perform an exhaustive search without any pruning. Because of the large total
number of subspaces (220−1), we only experiment up to d = 10 to avoid excessive
runtime. We record maxAd−minAd

maxAd
where Ad is the set of correlation scores of all

d-dimensional subspaces. For 2 ≤ d ≤ 10, minAd ≈ 0 as there are uncorrelated
d-dimensional subspaces, and maxAd 6= 0 as there are correlated d-dimensional
subspaces with clusters and outliers. Hence, ideally maxAd−minAd

maxAd
= 1 for 2 ≤ d ≤

10. For each correlation measure and each value of d, the closer maxAd−minAd
maxAd

to 1,
the better.

The results are in Figure 3.2. We can see that CMI and CMI++ are relatively
robust to dimensionality: They yield discriminative correlation scores for high
dimensional subspaces with CMI++ having better performance. This is because
both CMI and CMI++ work with factorized distributions, i.e., they can mitigate
the empty space issue. In addition, CMI++ computes conditional CE terms in
a more principled and accurate way. Thus, it can better capture correlation of
subspaces.
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On the other hand, HiCS and ENCLUS produce non-discriminative correlation
scores for high dimensional subspaces. Specifically, when dimensionality in-
creases, subspaces tend to have similar correlation scores under their schemes,
i.e., their correlation measures are overshadowed by the curse of dimensionality.
Hence, ENCLUS starts assigning somewhat indifferent correlation scores starting
from dimensionality 5 while that of HiCS is dimensionality 9. Thus, using high di-
mensional conditional and joint probability distributions in correlation measures
may lead to unreliable correlation analysis.

3.8.2. Synthetic data: clustering and outlier detection

Based on the method described in [MSS11], we generate synthetic data sets with
5120 data points and 20, 40, 80, and 120 dimensions. Each data set contains
subspace clusters embedded in randomly chosen 2-6 dimensional subspaces of
the full space and 120 outliers deviating from these clusters. Higher dimensional
subspaces are not used to ensure reliability of correlation scores produced by HiCS
and ENCLUS.

Quality for outlier detection. The quality of subspaces is evaluated by inspect-
ing how they enhance outlier detection compared to LOF without subspace selec-
tion as the baseline. Since we are experimenting with outlier mining, we include
HOD as another competitor. The results are given in Figure 3.3. Overall, CMI++
achieves the best outlier detection results and CMI comes in second. Further, both
are more stable than competitors with increasing dimensionality.

The performance of LOF degrades with increasing dimensionality of data, under-
scoring the problem of using the noisy full spaces. FB is affected by random selec-
tion of subspaces with little to no correlation. HiCS and ENCLUS in turn have low
AUC values due to the problems we point out in Section 3.2. HOD considers ob-
jects falling into sparse hypercubes in multivariate subspaces as outliers. Thus, it
is prone to the empty space issue, which explains its degrading performance with
respect to increasing dimensionality. PCA shows the worst performance due to its
inability to capture complex correlations in multivariate subspaces. As subsequent
evaluation confirmed this trend, we exclude PCA in the following experiments.

Next, we briefly illustrate the parameterization of both CMI and CMI++. Re-
garding CMI, we study the impact of setting Q (i.e., choosing a suitable clustering
setting) on its computation. For CMI++, we examine its performance w.r.t. dif-
ferent values of ε and c. As a representative case, in Figure 3.4, we display the
outlier detection results of CMI, with Q varied, on the synthetic data set of 5120
data points and 20 dimensions. Using the same data set, Figure 3.5(a) features the
outlier detection results of CMI++ with c = 4 and ε varied, while Figure 3.5(b)
shows its results with ε = 0.3 and c varied. We skip the results on data sets of other
size and dimensionality as they exhibit a similar trend. Going over the results, we
see that the quality of CMI is impacted when Q changes. Further, there is no value
of Q, i.e., no clustering setting, that clearly stands out in terms of quality. CMI++
in turn is not involved in such an issue: Its performance is relatively stable w.r.t.
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Figure 3.3.: [Higher is better] Outlier detection results on synthetic data: AUC vs.
dimensionality.
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Figure 3.4.: [Higher is better] Sensitivity of CMI to the selection of clustering set-
ting (Q) on a synthetic data set with N = 5120 and D = 20.

both ε and c. This shows that by allowing a clustering-free computation on empir-
ical data, CMI++ allows easier parameterization. We note that these settings are
suggestive to the experiments performed in this chapter only. For other scenarios,
further search of a suitable parameterization might be required.

Quality for clustering. In this experiment, we assess the quality of subspaces by
clustering results. We use DBSCAN as the baseline clustering algorithm. For each
subspace search method tested, we reduce redundancy in its set of discovered
clusters following the scheme proposed in [AKMS07]. Besides, we include CLIQUE
and PROCLUS as further baselines. The results are in Table 3.6. We again see that
CMI++ and CMI achieve respectively the best and second best quality in terms
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Figure 3.5.: [Higher is better] Sensitivity of CMI++ to ε and c on a synthetic data
set with N = 5120 and D = 20.
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Figure 3.6.: [Higher is better] Clustering results on synthetic data.

of both F1 and Accuracy values. They also scale better with dimensionality than
other methods.

Overall, the experiments on synthetic data point out that CMI++ and CMI per-
form well in selecting subspaces containing clusters and outliers. We skip the
experiment on quality against data size as the results show similar tendency of
all methods. Furthermore, real-world data sets included in our empirical study
already have various sizes that can be served as an assessment of quality against
data size.

Runtime scalability. We now study the runtime scalability of our methods. We ob-
serve that different methods may find subspaces of different dimensionality, i.e.,
they reach different levels of the subspace lattice. Thus, it does not make sense to
compare the time subspace search methods spend for mining subspaces. Instead,
we assess their runtime in computing the correlation score of the same data space
with the same number of objects. Our objective is to compare the scalability of all
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Figure 3.7.: [Lower is better] Scalability results on synthetic data.

methods with regard to the dimensionality and the data size of the space. To this
end, we employ synthetic data sets. In particular, for scalability in dimensionality,
we generate synthetic data set of size 1000 and the number of dimensions varying
from 2 to 120. For scalability in data size, we generate synthetic data set of dimen-
sionality 5 and the number of objects varying from 1000 to 15000. Note that for all
data sets, the correlation computation is limited to the full space. The results are
in Figure 3.7.

We see that ENCLUS has the best scalability due to its simple computation of
total correlation. CMI has the second best scalability. CMI++ scales better than
HiCS. Besides, the scalability of CMI++ approaches that of CMI with increasing
dimensionality and data size. Overall, CMI and CMI++ have linear scalability in
both dimensionality and data size. They both take less than 2.5 seconds to process
a data set with 120 dimensions and a data set with 15000 data points. Combining
with the results on quality, we conclude that our methods yield high accuracy for
correlation assessment at low computational cost.

3.8.3. Evaluation on real-world data

All real world data sets used in our experiments are from the UCI Machine
Learning Repository and have been used as benchmarks in recent publica-
tions [LK05, KMB12, GFM+11, MAG+09]. The characteristics of the data sets
are summarized in Table 3.1.

Quality for outlier detection. We evaluate the performance of all subspace search
methods with outlier detection on real world data. We perform experiments on 11
benchmark datasets, using the minority class as ground truth for the evaluation of
detected outliers. In some of these data sets, e.g., Pendigits, all classes have identi-
cal support and we down-sample one class to 10% of its original size—a procedure
commonly used in outlier evaluation [LK05, KMB12, MSS11]. The results are in
Table 3.2. In each row, we highlight the top two best values. Overall, CMI++
achieves the best AUC score in 8 out of 11 data sets and is the second best in 2
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Data set Attributes Size

Ann-Thyroid 21 3772
Arrhythmia 129 420
Diabetes 8 768
Glass 9 214
Ionosphere 34 351
Lymphography 18 148
Madelon 500 600
Pendigits 16 7494
Segment 19 2310
Shape 17 160
Vowel 10 990
WBC 33 198
WBCD 30 569

Table 3.1.: Characteristics of real world data sets.

other data sets. CMI has the best AUC score in 3 data sets and is the second best
in 2 data sets.

By applying a Friedman test [Dem06] at significance level α = 0.05, we find that
the observed differences in AUC values of all methods are significant. By perform-
ing a post-hoc Nemenyi test, we learn that CMI++ significantly outperforms HiCS,
ENCLUS, FB, HOD, and LOF. Using a Wilcoxon signed rank test with α = 0.05 to
compare CMI++ and CMI, we find CMI++ to be significantly better.

The overall conclusion is that our methods, especially CMI++, provide the best
quality improvement for LOF.

Quality for clustering. Here, we pick 5 data sets that are frequently used to assess
subspace clustering methods [MGAS09]. According to the results in Table 3.3 (in
each row, the top two best values are highlighted), CMI and CMI++ provide the
best quality improvement in DBSCAN.

By applying a Friedman test at α = 0.05, we find the observed differences between
the methods to be significant. A Nemenyi test in the post-hoc analysis shows that
CMI++ performs significantly better than HiCS, ENCLUS, FB, CLIQUE, PROCLUS,
and LOF. A Wilcoxon signed rank test between CMI++ and CMI shows CMI++
to be significantly better.

3.9. Conclusion

So far, we have introduced CMI and CMI++, two new correlation measures for
analyzing multivariate data. In short, they are based on cumulative entropy of sub-
spaces and are robust to the curse of dimensionality. In addition, they are not re-
stricted to pairwise analysis, and capture mutual dependencies among dimensions.
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Data set CMI CMI++ HiCS ENCLUS FB HOD LOF

Ann-Thyroid 0.75 0.80 0.84 0.75 0.81 0.71 0.75
Arrhythmia 0.63 0.65 0.58 0.59 0.60 0.58 0.57
Diabetes 0.60 0.62 0.61 0.61 0.58 0.55 0.53
Glass 0.50 0.52 0.51 0.50 0.50 0.51 0.52
Ionosphere 0.59 0.61 0.59 0.59 0.60 0.57 0.59
Lymphography 0.83 0.85 0.80 0.81 0.81 0.76 0.80
Madelon 0.82 0.86 0.79 0.83 0.82 0.83 0.87
Pendigits 0.97 0.98 0.77 0.94 0.91 0.89 0.98
Segment 0.64 0.63 0.61 0.60 0.57 0.60 0.59
WBC 0.94 0.94 0.93 0.92 0.92 0.77 0.69
WBCD 0.44 0.44 0.42 0.43 0.40 0.41 0.40

Average 0.70 0.72 0.68 0.69 0.68 0.65 0.66

Table 3.2.: [Higher is better] Outlier detection results (AUC values) on real world
data. Top two best values in each row are in bold. CMI++ signifi-
cantly outperforms HiCS, ENCLUS, FB, HOD, and LOF under a Fried-
man test with α = 0.05. CMI++ significantly outperforms CMI under
a Wilcoxon signed rank test with α = 0.05.

Furthermore, they allow efficient and reliable computation on empirical data. To
find correlated subspaces, we employ the Apriori search scheme in [KMB12] that
can explore the exponential search space of subspaces in practical runtime. Ex-
periments on various synthetic and real world data sets show that compared to
existing techniques, our methods deliver better improvement for both clustering
and outlier detection.

In this chapter, we focus on information-theoretic correlation measures and the
Apriori search scheme for mining correlated subspaces in real-valued data. This
opens a research question: Is there any better way to detect correlated subspaces
in multivariate data? In the course of tackling this question, we find out that the
method proposed in this chapter tends not to detect high dimensional correlated
subspaces. This is because the Apriori search scheme is biased against high dimen-
sionality. In particular, the higher the level of the subspace lattice, the more restric-
tions are placed on the respective subspaces. As a consequence, the Apriori search
scheme tends to produce subspaces that are fragments of some high dimensional
correlated subspaces, which cause redundancy. Motivated by this observation, we
have devised a new scalable subspace search scheme (inspired from [MAK+09])
coupled with a quadratic measure of dependence that is able to handle data sets
with millions of records and thousands of dimensions. An analysis on the draw-
backs of the Apriori search scheme together with a scalable search technique are
given in the next chapter.
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CMI CMI++ HiCS ENCLUS FB CLIQUE PROCLUS DBSCAN

WBC
F1 0.71 0.79 0.64 0.71 0.48 0.67 0.49 0.61
Acc. 0.70 0.75 0.69 0.65 0.74 0.68 0.70 0.66

Shape
F1 0.81 0.82 0.79 0.84 0.76 0.61 0.79 0.32
Acc. 0.73 0.79 0.74 0.61 0.71 0.72 0.75 0.47

Pendigits
F1 0.74 0.78 0.69 0.68 0.71 0.55 0.70 0.62
Acc. 0.72 0.75 0.71 0.68 0.68 0.60 0.67 0.63

Diabetes
F1 0.65 0.68 0.64 0.64 0.62 0.51 0.62 0.61
Acc. 0.65 0.69 0.63 0.65 0.62 0.61 0.64 0.58

Glass
F1 0.47 0.57 0.44 0.41 0.44 0.45 0.44 0.41
Acc. 0.55 0.61 0.50 0.44 0.46 0.52 0.54 0.44

Table 3.3.: [Higher is better] Clustering results (F1 and Accuracy values) on real
world data. Top two best values in each row are in bold. CMI++
significantly outperforms HiCS, ENCLUS, FB, CLIQUE, PROCLUS, and
LOF under a Friedman test with α = 0.05. CMI++ significantly out-
performs CMI under a Wilcoxon signed rank test with α = 0.05.
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4. Subspace Mining with Quadratic
Measure of Dependence

This chapter is based on our work originally published as [NMB13] and [NMB14]:

H. V. Nguyen, E. Müller, and K. Böhm, 4S: Scalable subspace search scheme over-
coming traditional apriori processing, in BigData Conference, 2013, pp. 359-367.

H. V. Nguyen, E. Müller, and K. Böhm, A near-linear time subspace search scheme for
unsupervised selection of correlated features, Big Data Research, vol. 1, pp. 37-51,
2014.

The focus still is on mining correlated subspaces for multivariate real-valued data.
However, instead of an information-theoretic correlation measure, we now pro-
pose a quadratic measure of (in)dependence for correlation assessment, which is
an extension of that of [SRPP11]. Similarly to the measures proposed in the pre-
vious chapter, our measure here also is based on cumulative distribution functions
(cdfs). However, its computation on empirical data is fully in closed form. With
the new measure, we broaden our study to another class of correlation measure.
Regarding the search for correlated subspaces, we will point out several draw-
backs of the Apriori search scheme through a formal analysis of its characteristics.
Hence, we depart from this search scheme and propose a novel jump search, rem-
iniscent of the one in [MAK+09], with theoretical justifications. We will explain
how our jump search alleviates the issues of the Apriori search scheme. Overall,
the method covered in this chapter, named 4S for scalable subspace search scheme,
enables a truly scalable solution towards efficient search of correlated subspaces
in high dimensional data.

The road map of this chapter is as follows. In Section 4.1, we introduce the main
notions used. In Section 4.2, we propose our own measure. In Section 4.3, we
formally review the Apriori search scheme. In Section 4.4, we give an overview
of 4S, with details on mining pairwise correlations in Section 4.5, mining higher
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dimensional subspaces in Section 4.6, and subspace merge in Section 4.7. We
study the speed up of 4S in Section 4.8, followed by our extensive experiments in
Section 4.9. We conclude the chapter in Section 4.10.

4.1. Preliminaries
Consider a database DB of size N and dimensionality D. The set of dimensions is
denoted as the full space F = {X1, . . . , XD}. Each dimension Xi has a continuous
domain dom(Xi) and w.l.o.g, we assume dom(Xi) = [−v, v] ⊆ R with v ≥ 0. We
write p(Xi) for the probability density function (pdf) of Xi. We also write p(xi) as
a short form for p(Xi = xi). We let P (Xi) stand for the cumulative distribution
function (cdf) of Xi, and write P (xi) as a short form for P (Xi ≤ xi).

A subspace S is a non-empty subset of F . Its dimensionality is written as |S|.
The subspace lattice of DB consists of D − 1 layers {Li}Di=2. Single dimensional
subspaces are excluded since one is interested in correlations of two or more di-
mensions. Every layer Li contains

(
D
i

)
subspaces, each having i dimensions.

We aim at mining subspaces across all lattice layers whose member dimensions
are highly correlated. Note that the search space is huge. For a dataspace with
D dimensions the total number of possible subspaces is O(2D). For one subspace,
one needs at least O(D · N) time to process, e.g., to compute the correlation. An
overall complexity ofO(D·N ·2D) makes brute-force search impractical. Even more
sophisticated search schemes have severe scalability problems (see Section 4.3).
Hence, we will propose a new scalable solution (see Section 4.4).

4.2. Correlation Measure
For correlation assessment, we here also aim at a correlation measure which fa-
cilitates computation on empirical data. In the following, we propose such a new
measure. It is based on cdfs, is non-parametric (no prior assumption on the data
distribution is required), and permits computation on empirical data in closed
form. Our measure belongs to the class of quadratic measure of (in)dependence
and is an extension of the one in [SRPP11] (specializing in pairwise correlations)
to multivariate data. It is defined as follows.

Definition 11. Correlation Measure Corr :
The correlation score of S = {X1, . . . , Xd} is

Corr(X1, . . . , Xd) =

∫ v

−v
. . .

∫ v

−v
(P (x1, . . . , xd)− P (x1) · · ·P (xd))

2 dx1 · · · dxd .

Essentially, our measure quantifies the correlation of X1, . . . , Xd by computing the
squared difference between their joint cdf and the product of their marginal cdfs.
This in fact is an instantiation of the general notion of correlation measure pre-
sented in Chapter 2. In particular, the joint cdf stands for the joint pdf and
marginal cdfs stand for marginal pdfs. To show that our measure indeed is suitable
for correlation analysis, we prove the below lemma.
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Lemma 9. Corr(X1, . . . , Xd) ≥ 0 with equality iff p(X1, . . . , Xd) = p(X1) · · · p(Xd).

According to Lemma 9, our correlation measure meets Properties 1 and 2 of a
good correlation measure. In addition, it does not make any assumption on the
types of correlation, and hence, satisfies Challenge 1. Further, we prove that it can
be computed in closed form on empirical data, i.e., it addresses Challenge 2. In
particular, let Xi(1), . . . , Xi(N) be the realizations of Xi. We have:

Theorem 6. Corr(X1, . . . , Xd) =

1

N2

N∑
i=1

N∑
j=1

d∏
k=1

(v −max(Xk(i), Xk(j)))

− 2

Nd+1

N∑
i=1

d∏
k=1

N∑
j=1

(v −max(Xk(i), Xk(j)))

+
1

N2d

d∏
k=1

N∑
i=1

N∑
j=1

(v −max(Xk(i), Xk(j))) .

Proof. Our proof is based on [SRPP11], which has proved for the pairwise case.
In particular, let ind(α) be an indicator function with value 1 if α is true and 0
otherwise. It holds that

P (a1, . . . , ad) =

∫ v

−v
. . .

∫ v

−v
ind(x1 ≤ a1) · · · ind(xd ≤ ad)p(x1, . . . , xd)dx1 · · · dxd .

Using empirical data, Eq. (4.2) becomes: P (a1, . . . , ad) = 1
N

N∑
i=1

d∏
k=1

ind(Xk(i) ≤ ak).

Likewise: P (ak) =
1

N

N∑
i=1

ind(Xk(i) ≤ ak). Therefore, Corr(X1, . . . , Xd) equals to:

∫ v

−v
. . .

∫ v

−v

(
1

N

N∑
i=1

d∏
k=1

ind(Xk(i) ≤ xk)−
d∏

k=1

1

N

N∑
i=1

ind(Xk(i) ≤ xk)

)2

dx1 · · · dxd .

Expanding Eq. (4.2), we have:∫ v

−v
. . .

∫ v

−v

(
1

N2

N∑
i=1

N∑
j=1

d∏
k=1

ind (max(Xk(i), Xk(j)) ≤ xk)

− 2

Nd+1

N∑
i=1

d∏
k=1

N∑
j=1

ind (max(Xk(i), Xk(j)) ≤ xk)

+
1

N2d

d∏
k=1

N∑
i=1

N∑
j=1

ind (max(Xk(i), Xk(j)) ≤ xk)

)
dx1 · · · dxd
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Bringing the integrals inside the sums, we obtain:

1

N2

N∑
i=1

N∑
j=1

d∏
k=1

∫ v

−v
ind (max(Xk(i), Xk(j)) ≤ xk) dxk

− 2

Nd+1

N∑
i=1

d∏
k=1

N∑
j=1

∫ v

−v
ind (max(Xk(i), Xk(j)) ≤ xk) dxk

+
1

N2d

d∏
k=1

N∑
i=1

N∑
j=1

∫ v

−v
ind (max(Xk(i), Xk(j)) ≤ xk) dxk

by which we arrive at the final result.

Using Theorem 6, computing our measure Corr on empirical data is straightfor-
ward. Thus, we will use Corr as the correlation measure in 4S. In fact, one can
also plug Corr into existing subspace search schemes. However, in the next section
we point out why these search schemes are not suited to big data applications.

4.3. Existing Search Schemes

Existing methods explore the search space based on the Apriori principle (APR)
using a correlation measure for subspace assessment, e.g., total correlation as used
in [CFZ99].

For APR, one can either keep a top number of subspaces at each layer (beam-
based) or impose a threshold on the subspace correlation (threshold-based). Re-
cently, [KMB12] point out that the beam-based scheme allows more intuitive pa-
rameterization than the threshold-based one. Thus, for better presentation, we
stick to the former. However, our discussion is also applicable to the threshold-
based scheme [CFZ99, KKKW03].

We illustrate the lattice exploration of APR in Figure 4.1. Its pseudocode is in
Algorithm 1. APR starts at layer L2 (Line 1). For each layer Li visited, APR com-
putes the total correlation T (S) for each candidate subspace S ∈ Li. The top
min(MAX _NUM ,

(
D
i

)
) subspaces CAND i with the highest total correlation are se-

lected (Lines 1 and 6). MAX _NUM is the beam size. CAND i is also used to
determine which subspaces to examine in the next layer Li+1. In particular, a sub-
space Si+1 in Li+1 is considered iff all of its i-dimensional projections are in CAND i

(Line 5). This is known as the monotonicity restriction, which causes redundant
processing: To reach one subspace, one needs to generate and examine all of its
lower dimensional projections, even though not all of them are relevant.

APR stops when either there is no more layer to explore, or the set of candidate
subspaces in the current layer is empty. Assume that MAX _NUM is set such that
APR reaches layer Lk. We have:
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Figure 4.1.: Example showing the subspace lattice exploration of Apriori approach
APR.

Algorithm 1: APR

CAND2 = Set of min(MAX _NUM ,
(
D
2

)
) subspaces in L2 with the highest1

correlation
OUT = CAND22

i = 23

while CAND i 6= ∅ do4

CAND i+1 = {S ∈ Li+1 : ∀S ′ ⊂ S ∧ |S ′| = i⇒ S ′ ∈ CAND i}5

CAND i+1 = Top min(MAX _NUM , |CAND i+1|) subspaces of CAND i+1 with6

the highest correlation
OUT = OUT ∪ CAND i+17

i = i+ 18

Return OUT9

Lemma 10. The time complexity of APR is O(∆ ·
k∑
i=2

(
D
i

)
) where ∆ is the cost of

computing the correlation of each subspace.

Proof. For each layer Li (i ≥ 2) with
(
D
i

)
subspaces, the worst case time complexity

to compute the correlation for all of its subspaces is O(∆ ·
(
D
i

)
). Thus, the overall

time complexity is O(∆ ·
k∑
i=2

(
D
i

)
).

Regarding ∆, we have ∆ = Θ(N) with total correlation [CFZ99], and ∆ = Θ(N2)
with our Corr measure.

Since the monotonicity property imposes strict restrictions on high-level layers
(i.e., high k), APR tends not to reach high dimensional subspaces. To resolve the
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issue, MAX _NUM must be very large. However, this causes APR to process many
candidate subspaces at each layer visited. Further, to process a subspace, APR
requires to examine exponentially many lower dimensional projections to ensure
that they all have high correlation. These cause its runtime to become very high.
Even when MAX _NUM is kept low, APR still suffers from poor scalability due to
its expensive mining of L2, in particular, O(D2 · ∆). Further, setting MAX _NUM
to low values fails to offset the monotonicity restriction. This prevents APR from
discovering high dimensional subspaces. Only lower dimensional fragments of
correlated subspaces are detected. Thus, the quality of subspaces is impacted.

Another drawback of using APR is that the higher the layer visited, the more likely
it is that the curse of dimensionality occurs. This is because most existing multi-
variate correlation measures, including our Corr measure, suffer from reduction
of discriminative power in high dimensional spaces—a phenomenon which has
been demonstrated empirically in Chapter 3.

In summary, APR (a) is inefficient, (b) tends to miss high dimensional correlated
subspaces, (c) fragments them into many redundant lower dimensional subspaces,
and (d) is prone to the curse of dimensionality.

4.4. Overview of 4S Processing

We illustrate the lattice exploration of 4S in Figure 4.2 and contrast it to the APR
scheme depicted in Figure 4.1. To avoid the exponential runtime in the data di-
mensionality, 4S does not explore the subspace lattice in a levelwise manner. In-
stead, 4S initially mines subspaces of high correlations in L2. They are then com-
bined to directly create higher dimensional subspaces. In short, 4S works in three
steps. First, we compute the correlation of each pair of dimensions and only keep
the top K pairs (i.e., subspaces of L2) with the largest correlations. Setting K is
explained in Section 4.6.

Second, we construct an undirected correlation graph GD representing our search
space of subspaces. Its nodes are the dimensions, connected by an edge iff their
correlation is in the top K values. Following our new notion of correlated sub-
space, we apply the algorithm in [ELS10] to mine maximal cliques of this corre-
lation graph. The maximal cliques serve as candidate subspaces. We also prove
that these candidate subspaces are likely mutually correlated. The toy example in
Figure 4.3 displays a correlation graph for a 10-dimensional data set. There are
45 possible subspaces in L2; K = 10 of which are picked to construct GD. From
GD, 4S finds three maximal cliques (subspaces): S1 = {1, 2, 3, 4}, S2 = {1, 3, 4, 5},
and S3 = {7, 8}.

Third, mining maximal cliques on GD may also produce subspaces that are projec-
tions of the same subspaces due to the restriction on pairwise correlations (i.e.,
through K). For instance, in Figure 4.3, dimension 5 is connected to all dimen-
sions in S1 except for dimension 2. This leads to the detection of two separate
subspace fragments S1 and S2 that have high overlap with each other. It would
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Figure 4.2.: Example showing the subspace lattice exploration of 4S.
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Figure 4.3.: Example of correlation graph.

make sense to merge S1 and S2 to create the larger subspace {1, 2, 3, 4, 5}. This also
helps us to cope with real-world data where perfect pairwise correlation between
dimensions of correlated subspaces may not always be fulfilled. Thus, we propose
to merge similar subspaces using the MDL-based approach in [MV13]. Following
this step, we obtain higher dimensional subspaces with minimal redundancy.

Overall, in contrast to APR, we can reach high dimensional correlated subspaces
with our scalable search scheme, which consists of: (a) scalable computation of
L2, (b) scalable mining of Lk with k > 2, and (c) subspace merge. While APR
needs to impose the Apriori monotonicity restriction on all layers for the sake of
efficiency, we only require that dimensions of subspaces are pairwise correlated
(i.e., restriction on L2), which facilitates a jump search strategy.

To this end, we note that our jump search is related to that of DensEst [MAK+09].
In particular, DensEst mines multivariate regions of high density by (a) collect-
ing density statistics of 2-dimensional histograms and (b) jumps directly to such
regions using the 2-dimensional statistics. The second step is done by first con-
structing an independence graph of dimensions, using χ2 test as the correlation
measure. Then, based on this independence graph DensEst factorizes the joint
distribution into 2-dimensional distributions. Hence, DensEst is able to estimate
the density of each multivariate region based on the densities of its 2-dimensional
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projections. Our goal in this chapter is different from that of DensEst. More specif-
ically, instead of mining high density regions, we in turn mine correlated subspaces
by collecting statistics on pairwise correlations. DensEst thus can be perceived as
a local approach while ours is a global approach. Further, as DensEst relies on χ2

test which is for discrete/categorical data, its success on real-valued data highly
depends on the discretization technique used. Choosing the right one w.r.t. χ2

test and multivariate density estimation, however, is a non-trivial issue. Hence,
with naïve discretization DensEst may fall prey to unreliable performance, like
ENCLUS [CFZ99]. Our method 4S in contrast can avoid this issue.

There is another remark that we want to highlight regarding 4S. That is, the
subspace search under our problem transformation (i.e., after the computation of
pairwise correlations in L2) is NP-hard. We note that the input of the subspace
search problem for database DB consists of: (a) the set of all dimensions F , and
(b) the set of dimension pairs P ⊆ F × F with the largest correlations to be kept.
We prove the NP-hardness of the subspace search problem by giving a polynomial
reduction of the classic Maximal Cliques Mining (MCM) problem, which is a NP-
hard problem [JP09], to subspace search (SS): MCM ≤p SS.

Theorem 7. The subspace search problem under the setting of 4S is NP-hard.

Proof. First, we map the input graph G = (V , E) of MCM to an input (F ,P) of SS.
The mapping is straightforward: For each node t ∈ V, we add a dimension Xt to
the set of dimensions F . After that, for each edge e = (t, t′) ∈ E , we add the pair
(Xt, Xt′) into P. Obviously, our mapping is done in polynomial time. Now we have
to show that the subspace search result (under our notion of correlated subspace)
on (F ,P) corresponds to a solution of MCM in G. This is easy to show as by our
convention, each correlated subspace S ⊆ F has to satisfy:

(a) ∀(Xt, Xt′) ⊂ S ⇒ (Xt, Xt′) ∈ P

(b) no proper superset of S is a correlated subspace, i.e., S is maximal

In other words, S represents a maximal clique of G. Thus, solving SS for the
constructed instance (F ,P) leads to a valid solution of MCM for G.

Following Theorem 7, without making any assumption on the structure of the
search space, i.e., the correlation graph GD, SS is NP-hard. To overcome the is-
sue, we instead impose restrictions on GD. In particular, we heuristically make
GD sparse by implicitly limiting the maximal degree of its nodes. We accomplish
this by carefully setting K (more details are in Section 4.6). By enforcing GD to
be sparse, we are able to apply exact and efficient algorithms [JP09], which have
good performance on sparse graphs. Next, we introduce the details of 4S (see
Sections 4.5–4.8), including our analysis showing that 4S reliably identifies corre-
lated subspaces and is more general than APR in Section 4.6. We empirically show
that 4S produces subspaces of higher quality than existing methods in Section 4.9.
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4.5. Scalable Computation of L2

In L2, we need to compute the correlation score of all pairs of dimensions. To this
end, for two dimensions X and Y , we have:

Lemma 11. Corr(X, Y ) =

1

N2

N∑
i=1

N∑
j=1

(v −max(xi, xj))(v −max(yi, yj))

− 2

N3

N∑
i=1

(
N∑
j=1

(v −max(xi, xj))

)(
N∑
j=1

(v −max(yi, yj))

)

+
1

N4

N∑
i=1

N∑
j=1

(v −max(xi, xj))
N∑
i=1

N∑
j=1

(v −max(yi, yj)) .

Proof. The proof can be obtained by either applying Theorem 6 for d = 2, or by
following that in [SRPP11] which specializes in the pairwise case.

Following Lemma 11, we need to compute three terms, referred to as T1, T2, and
T3, and

Corr(X, Y ) =
1

N2
T1 −

2

N3
T2 +

1

N4
T3 .

To compute Corr(X, Y ), we need O(N2) time. For D-dimensional data sets, the to-
tal runtime required to explore layer L2 becomes O(D2N2). This is a serious prob-
lem for any data set. To tackle the issue, we introduce two new approaches, Multi-
Pruning and Sketching, to boost efficiency regarding both N and D. MultiPruning
calculates the exact correlation. However, it still has issues regarding efficiency for
large data sets. Sketching in turn trades accuracy for efficiency. Yet it is still better
than APR (see Section 4.9). Note that Corr deploys the same estimator as other
quadratic measures of independence [RSX+11], such as [Ach08, SGSS07]. The
difference only lies in different kernels employed. Thus, the ideas of MultiPruning
and Sketching are also applicable to other measures of the same category. In other
words, our method is not limited to one correlation measure.

4.5.1. MultiPruning
MultiPruning aims at reducing the runtime by applying pruning rules for
Corr(X, Y ) based on two upper bounds of T1. It uses the fact that we only keep
the top K pairs of dimensions with the largest correlation. Let {(xs(i), ys(i))}Ni=1 be
{(xi, yi)}Ni=1 sorted in descending order w.r.t. X. The upper bounds of T1 are as
follows.

Theorem 8. [CAUCHY-SCHWARZ BOUND]

T1 ≤
N∑
i=1

√√√√ N∑
j=1

(v −max(xi, xj))2

N∑
j=1

(v −max(yi, yj))2 .
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Proof. Applying the Cauchy-Schwarz inequality, we have that for each i ∈ [1, N ]:(
N∑
j=1

(v −max(xi, xj))(v −max(yi, yj))

)2

≤
N∑
j=1

(v −max(xi, xj))
2

N∑
j=1

(v −max(yi, yj))
2 .

Taking the square root for each side of Eq. (4.5.1) and summing up over all i ∈
[1, N ], we arrive at the final result.

To derive the second bound, we observe that in T1, each term (v−max(xi, xj))(v−
max(yi, yj)) indeed appears twice. This can be avoided by sorting, for instance,
with respect to the values of X. This leads to another formula of T1, as follows:

Lemma 12. It holds that

T1 =
N∑
i=1

(v − xs(i))(v − ys(i)) + 2
N∑
i=1

(v − xs(i))
N∑

j=i+1

(v −max(ys(i), ys(j))) .

Proof. We have:

T1 =
N∑
i=1

N∑
j=1

(v −max(xi, xj))(v −max(yi, yj))

=
N∑
i=1

N∑
j=1

(v −max(xs(i), xs(j)))(v −max(ys(i), ys(j)))

=
N∑
i=1

(v − xs(i))(v − ys(i))

+ 2
N∑
i=1

N∑
j=i+1

(v −max(xs(i), xs(j)))(v −max(ys(i), ys(j)))

=
N∑
i=1

(v − xs(i))(v − ys(i)) + 2
N∑
i=1

(v − xs(i))
N∑

j=i+1

(v −max(ys(i), ys(j))) .

We can see that after sorting with respect to X, for each (xs(i), ys(i)), we only
need to compute (v−max(xs(i), xs(j)))(v−max(ys(i), ys(j))), which in fact equals to
(v − xs(i))(v − max(ys(i), ys(j))), for xs(j) ≤ xs(i). Lemma 12 leads to the following
theorem on the second upper bound of T1.
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Algorithm 2: Computing the statistics of the Cauchy-Schwarz bound on X
{
(
xs(1), org_pos1

)
, . . . ,

(
xs(N), org_posN

)
} ← Sort {x1, . . . , xN} in descending order1

sum = 02

for i = 1→ N do3

ret(org_pos i) = sum + (v − xs(i))2 · (N − i+ 1)4

sum = sum + (v − xs(i))25

Return {ret(1), . . . , ret(N)}6

Theorem 9. [SORTED-BASED BOUND]

T1 ≤
N∑
i=1

(v − xs(i))(v − ys(i)) + 2
N∑
i=1

(v − xs(i))
N∑

j=i+1

(v − ys(j)) .

Proof. The proof is derived directly from Lemma 12 and the fact that

v −max(ys(i), ys(j)) ≤ v − ys(j) .

The statistics required for the Cauchy-Schwarz bound, e.g.,
N∑
j=1

(v − max(xi, xj))
2

for 1 ≤ i ≤ N , can be pre-computed for each dimension inO(N logN) time. This is

from our observation that
N∑
j=1

(v−max(xi, xj))
2 =

∑
xj≥xi

(v−xj)2 +
∑

xj<xi
(v−xi)2 =∑

xj≥xi
(v − xj)

2 + (v − xi)
2 · |{xj : xj < xi}|. That is, for each dimension, we first

sort its data in descending order. Then, we loop through the data once in that
order and pre-compute the required statistics. We illustrate our point by giving in
Algorithm 2 a sample pseudocode, which computes the statistics of the Cauchy-
Schwarz bound on X. We note that org_pos i stands for the original position (be-
fore sorting) of xs(i). A corresponding numerical example is described below.

Example 2. Consider three data points P1 = (1,−1), P2 = (−1, 1), and P3 = (0, 0)
(i.e., dom(X) = [−1, 1]). To compute the statistics for X, we sort X in descending

order and obtain {1, 0,−1}. Then, we compute
3∑
j=1

(1 − max(xi, xj))
2 (1 ≤ i ≤ 3)

by looping through the sorted list once and obtain: 0 for P1, 5 for P2, and 2 for

P3. Similarly, for
3∑
j=1

(1 − max(yi, yj))
2 (1 ≤ i ≤ 3), we obtain: 5 for P1, 0 for P2,

and 2 for P3. We calculate the Cauchy-Schwarz bound by looping through the stored
statistics once, and achieve:

√
0 · 5 +

√
5 · 0 +

√
2 · 2 = 2.

The statistics required to exactly compute the second term T2 of Corr(X, Y ), which

is
N∑
j=1

(v −max(xi, xj)) for 1 ≤ i ≤ N , can be pre-computed similarly. The statistics
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of the third term T3, which is
N∑
i=1

N∑
j=1

(v −max(xi, xj)), is also computed during this

phase by incrementally summing up the statistics of T2 (per dimension).

During the pairwise correlation computation, we maintain the top K values seen
so far. For a new pair of dimensions (X, Y ), we first compute the bounds. This
computation is in O(N) (see Algorithm 2). Similarly, the exact value of the second
term T2 is computed. Similarly to Algorithm 2, we obtain the sorted-based bound
in Theorem 9 in O(N) time. The details are as follows. We loop through the data
sorted w.r.t. X. For each point (xs(i), ys(i)), we compute (v − xs(i))(v − ys(i)) and

(v − xs(i))
N∑

j=i+1

(v − ys(j)). We do so by taking into account that
N∑

j=i+1

(v − ys(j)) =

N∑
j=1

(v−ys(j))−
i∑

j=1

(v−ys(j)). That is,
N∑

j=i+1

(v−ys(j)) can be incrementally computed

using the data values encountered so far in the loop.

The sorted-based bound can also be computed w.r.t. Y . So in fact, we have two
versions of this bound, one for X and one for Y . The exact value of T3 is computed

in just O(1) time using its pre-computed statistics, which are
N∑
i=1

N∑
j=1

(v−max(xi, xj))

and
N∑
i=1

N∑
j=1

(v −max(yi, yj)).

If any upper bound of Corr(X, Y ) is less than the Kth largest value so far, we can
safely stop computing its actual value. Otherwise, we compute T1, and hence,
Corr(X, Y ) (and update the top K correlation values), using Lemma 12. That is,
for each xs(i), we search for ys(i) in the list of values of Y sorted in descending
order. For each value y > ys(i) encountered, we add 2(v − xs(i))(v − y) to T1. Once
ys(i) is found, the search stops. Suppose that the position found is p, and the list
has e elements. We add 2(e − p + 1)(v − xs(i))(v − ys(i)) to T1. We remove ys(i)
from the list and proceed to xs(i+1). This helps us to avoid scanning the whole list

and, hence, reduces the runtime. We note that
N∑
i=1

(v − xs(i))(v − ys(i)) is already

computed during the sorted-based bound computation.

By means of pruning rules and efficient computation heuristics, MultiPruning is
able to achieve efficiency in practice. However, as there is no theoretical guaran-
tee on the effectiveness of the pruning rules, the worst-case complexity of Multi-
Pruning is still O(D2N2). This motivates us to introduce Sketching, which trades
accuracy for further improvement in scalability.

4.5.2. Sketching

To better address the scalability issue (i.e., quadratic in N), we propose Sketching
as an alternative solution. First, we see that T3 is computed in only O(1) time using
its pre-computed statistics. Thus, our main intuition is to convert the terms T1 and
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T2 to forms similar to that of T3. We observe that T1 and T2 can be perceived as
dot products of vectors. In particular, T1 is the product of vectors

(v −max(x1, x1), . . . , v −max(x1, xN), . . . , v −max(xN , x1), . . . , v −max(xN , xN))

and

(v −max(y1, y1), . . . , v −max(y1, yN), . . . , v −max(yN , y1), . . . , v −max(yN , yN)) .

Likewise, T2 is the product of vectors(
N∑
j=1

(v −max(x1, xj)), . . . ,
N∑
j=1

(v −max(xN , xj))

)

and (
N∑
j=1

(v −max(y1, yj)), . . . ,
N∑
j=1

(v −max(yN , yj))

)
.

Vector products in turn can be efficiently estimated by AMS Sketch [AMS96]. AMS
Sketch provides rigorous theoretical bounds for its estimation and can outperform
other sketching schemes [RD08]. However, to our knowledge, we are first to
use this theory to efficiently compute pairwise correlations of continuous random
variables.

Our general idea is to use AMS Sketch to derive unbiased estimators of T1 and T2

that have forms similar to T3. The estimators are unbiased since their expected
values equal to their respective true values. We will prove that the estimators are
close to the true values of T1 and T2, respectively. Overall, Sketching reduces the
time complexity of computing Corr(X, Y ) to O(N logN).

Sketching approximates Corr(X, Y ) through unbiased estimators by projecting X
and Y onto random 4-wise independent vectors. Let u,w ∈ {±1}N be two such
vectors which are independent to each other. We estimate T1 as follows:

Theorem 10. Let Z be a random variable that equals to

N∑
i=1

N∑
j=1

(v −max(xi, xj))uiwj

N∑
i=1

N∑
j=1

(v −max(yi, yj))uiwj

then E(Z) = T1 and Var(Z ) ≤ 8 [E (Z )]2 .

Likewise, we estimate T2 as:

Theorem 11. Let W be a random variable that equals to

N∑
i=1

N∑
j=1

(v −max(xi, xj))ui

N∑
i=1

N∑
j=1

(v −max(yi, yj))ui

then E(W ) = T2 and Var(W ) ≤ 2 [E (W )]2 .
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4. Subspace Mining with Quadratic Measure of Dependence

We derive Theorems 10 and 11 based on [AMS96]. These theorems tell us that
T1 and T2 can be approximated by unbiased estimators, i.e., Z and W respectively.
Further, these estimators have forms similar to that of T3. Hence, Corr(X, Y ) can
be approximated in O(N logN) time by pre-computing the statistics required in
a way similar to MultiPruning. Please note that, we also need to ensure that the
estimators concentrate closely enough around their respective mean. To accom-
plish this, we apply Chebychev’s inequality. The variance of Z is upper-bounded by
8[E(Z)]2. By averaging over s1 different values of u and w, the variance is reduced
to at most 8[E(Z)]2

s1
. Using Chebychev’s inequality, we have

P (|Z − E(Z)| > εE(Z)) ≤ 8

s1ε2
.

That is, the probability of high estimation error can be upper bounded, i.e., esti-
mation error can be controlled probabilistically. In fact, if we repeat the averaging
s2 = O(1/δ) times and take the median of these averages, the relative error of Z
w.r.t. E(Z) is at most ε with probability at least 1− δ, as proven in [AMS96].

Similarly, by averaging over s1 different values of u, the variance of W is reduced
to at most 2[E(W )]2

s1
. Applying Chebychev’s inequality, we have

P (|W − E(W )| > εE(W )) ≤ 2

s1ε2
.

We again boost the estimation accuracy by repeating the averaging s2 = O(1/δ)
times.

Sorting all dimensions costs O(DN logN). For each random vector and each di-
mension, it costs the same amount of time as that of T3 to pre-compute the statis-
tics, which is O(N) (see Section 4.5.1). For all vectors and all dimensions, the total
cost of pre-computing statistics is O(s1s2DN). Since s1s2 must be large enough to
guarantee estimation accuracy, the cost of pre-computing statistics dominates that
of data sorting. For each pair of dimensions, the cost to calculate its (estimated)
correlation is O(s1s2). Thus, computing the correlations for all dimension pairs
and maintaining the top values cost O(s1s2D

2 + D2 logK), with O(s1s2D
2) domi-

nating. Therefore, the total time complexity of Sketching is O(s1s2DN + s1s2D
2).

In our experiments, D < N , i.e., the time complexity becomes O(s1s2DN), a
considerable improvement from O(D2N2). We note that the factor s1s2 does not
contribute much to the overall runtime, and in practice Sketching scales linearly in
both N and D.

4.6. Scalable Mining of Lk
Based on the set of 2-dimensional subspaces found in L2, denoted as S2, we now
explain how to mine subspaces in higher-level layers. According to our notion, a
subspace has a high correlation if its member dimensions are all pairwise corre-
lated. We now point out that subspaces fulfilling our notion likely have a high total
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correlation. We also formally prove that our new notion of correlated subspace is
more general than that of APR. That is, given the same correlation measure, all
subspaces found by APR are also discovered by our mining scheme. Further, we
will demonstrate empirically later on that, with our notion, 4S produces better
subspaces than APR. First, let us consider a subspace S with all pairs {Xi, Xj} ∈ S2.
W.l.o.g., assume that S = {X1, . . . , Xd}. We have:

Lemma 13. The total correlation score of X1, . . . , Xd (i.e., of S) is lower-bounded by

T (X1, . . . , Xd) ≥
d∑
i=2

H(Xi)−H(Xi | Xi−1) .

Proof. As conditioning reduces entropy [CT06], we have:

H(Xi | Xi−1) ≥ H(Xi | X1, . . . , Xi−1) .

Using Definition 4, we arrive at the result.

That is, the total correlaiton score of S is lower bounded by the mutual infor-
mation scores of its dimension pairs. By definition, every pair {Xi−1, Xi} ∈ S2

has a high correlation. Following Definition 11, this means that P (Xi−1, Xi) and
P (Xi−1)P (Xi) deviate from each other. Thus, the joint density function p(Xi−1, Xi)
of Xi−1 and Xi deviates from the product of their marginal density functions,
which is p(Xi−1)p(Xi) [SRPP11]. Consequently, H(Xi) − H(Xi | Xi−1), which
equals to the Kullback-Leibler divergence of p(Xi−1, Xi) and p(Xi−1)p(Xi), is high.
Based on Lemma 13, we conclude that: T (X1, . . . , Xd) is high. Lemma 13 also
holds for any permutation of X1, . . . , Xd. Hence, under any permutation of the
dimensions of S, S has a high total correlation. This also means: The difference
between the joint density function of S and the product of its marginal density
functions is high w.r.t. the Kullback-Leibler divergence. Hence, subspaces fulfilling
our notion likely are mutually correlated, not just pairwise correlated. Since cor-
relation measures define mutual correlation based on the difference between the
joint distribution and the product of marginal distributions (see Chapter 2), our
subspaces are also likely mutually correlated under other correlation measures.

We now prove that our new notion of correlated subspace is more general than
that of APR:

Theorem 12. Let S be a subspace detected by APR using Corr as correlation measure
and given MAX _NUM ≤ K, then all of its pairs {Xi, Xj} ∈ S2.

Proof. We use induction:
Let S = {X1, . . . , Xd} be a subspace mined by APR.

Basis: When d = 2, since MAX _NUM ≤ K, we have that S ∈ S2.

Hypothesis: Suppose that Theorem 12 holds for d = n ≥ 2.
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Inference: We prove that Theorem 12 also holds for d = n + 1, i.e., we prove
∀Xi 6= Xj ∈ S : {Xi, Xj} ∈ S2. This is straightforward. For Xi 6= Xj, there exists
an n-dimensional subspace U ⊂ S such that Xi, Xj ∈ U and U is included by APR
in the output (cf., monotonicity property). Hence, {Xi, Xj} ∈ S2 according to the
hypothesis.

Theorem 12 also holds for other correlation measures, e.g., the ones in [CFZ99,
KMB12] or in Chapter 3, with S2 being formed according to the measure used.
It implies that, given the same correlation measure and MAX _NUM ≤ K, all
subspaces included in the final output of APR are also discovered by our mining
scheme. This is because any two of their dimensions are pairwise correlated, i.e.,
they form cliques in the correlation graph. This shows that our mining scheme
is more general than APR and, hence, can discover subspaces missed by APR.
Note that a subspace satisfying the pairwise condition is not necessarily included
in the final output of APR. Also, the monotonicity restriction imposed by APR is
only to reduce the runtime, and does not guarantee the quality of subspaces. Our
empirical study also confirms this.

Having formally analyzed the theoretical properties of our notion of correlated
subspace, we now map the problem of mining subspaces in higher-level layers to
maximal clique mining in the correlation graph. Consider an undirected correla-
tion graph GD with nodes being the dimensions. An edge exists connecting two
dimensions Xi and Xj iff {Xi, Xj} ∈ S2. A subspace of our interest then forms
a clique in GD. To avoid redundancy, we propose to mine only maximal cliques,
i.e., subspaces are not completely contained in each other. To efficiently find all
maximal cliques in GD, we apply the algorithm proposed in [ELS10]. We regard
maximal cliques of GD as the result of this step.

Interestingly, our consideration of maximal cliques in GD fits with undirected
graphical modeling [WJ08]. In particular, let us denote C as the set of maxi-
mal cliques of GD. Under undirected graphical modeling, the joint distribution of
X1, . . . , XD is factorized as follows:

p(X1, . . . , XD) =
1

Z

∏
C∈C

ψC(C)

where Z is the normalization factor and ψC is the compatibility function of the
dimensions in C. That is, the undirected graphical model GD, also known as a
Markov random field, factorizes the joint distribution of all dimensions into the
product of the distributions of the maximal cliques. Thus, the maximal cliques
of GD are very important for large-scale analysis of p(X1, . . . , XD) [WJ08]. This
in turn supports our design choice in mining these maximal cliques as candidate
subspaces.

Given D dimensions, the worst-case complexity to find all maximal cliques is
O(3D/3). To ensure the practicality of 4S, we need a way to construct GD which can
help to reduce the runtime. To achieve this, we rely on a recent finding [AC10].
It states that the properties of a data set (e.g., distances between data points) are
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preserved after dimensionality reduction as long as the number of dimensions kept
is O(logN). As a result, we set K ≤ D logN , i.e., O(D logN). Hence, the expected
maximal degree of each node in GD is O(logN), i.e., each dimension can be part
of subspaces (maximal cliques) with expected maximal dimensionality O(logN).
This implies that the expected degeneracy of GD is O(logN). Following [ELS10],
we obtain the following result:

Theorem 13. The expected time complexity of mining maximal cliques is
O(DN1/3 logN). The expected number of maximal cliques is O((D − logN)N1/3).

According to Theorem 13, our strategy of constructing GD enables us to efficiently
and directly mine high dimensional subspaces with reduced knowledge loss. Fur-
ther, we achieve this without traversing the subspace lattice in a levelwise manner.
Note that our scheme is different from approaches imposing the maximal dimen-
sionality of subspaces. This is because the maximal dimensionality is implicitly
embedded in 4S (by setting K), rather than explicitly. Further, 4S is not con-
strained by the O(logN) bound in practice. This is due to the MDL-based merge
of subspaces described next, which reconstructs high dimensional correlated sub-
spaces from fragments.

4.7. Subspace Merge
We denote the set of dimensions, each belonging to at least one maximal clique, as
{Xr(j)}lj=1. Also, {Ci}mi=1 is the set of maximal cliques. Due to the pairwise restric-
tion of our subspace notion, subspaces (maximal cliques) obtained by mining GD
may be projections of the same higher-dimensional correlated subspaces (see Fig-
ure 4.3). To reconstruct such subspaces and to remove redundancy in the output,
we merge subspaces into groups such that the new set of subspaces guarantees
completeness and minimizes redundancy. To accomplish this, we first construct a
binary matrix B with l rows and m columns. The rows are dimensions, and the
columns are cliques. Bij = 1 iff Xi is in Cj, and 0 otherwise.

Example 3. The binary data set B of the example in Figure 4.3 is as follows:

Columns
S1 S2 S3

Rows

X1 1 1 0
X2 1 0 0
X3 1 1 0
X4 1 1 0
X5 0 1 0
X7 0 0 1
X8 0 0 1

The columns of B correspond to the three subspaces detected. The cells are colored
according to the color of its respective subspace.
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We transform the subspace merge to grouping similar columns of B, each final
group constituting one subspace. We aim at achieving the task without having
to define any distance function among the dimensions of B. Thus, we apply the
merge technique proposed in [MV13] which uses the Minimum Description Length
(MDL) principle. This technique is as follows.

Given a set of modelsM, MDL identifies the best model M ∈ M as the one that
minimizes

L(B,M) = L(M) + L(B |M) .

Here, L(M) is the length in bits of the description of the model M , and L(B | M)
is the length of the description of the data B encoded by M . That is, MDL helps
select a model that yields the best balance between goodness of fit and model
complexity.

In our problem, each model is a grouping of maximal cliques {Ci}mi=1. Each
candidate grouping G = {A1, . . . , Ak} under consideration is a partitioning of
{Ci}mi=1, i.e., it must satisfy three properties: (a)

⋃k
i=1 Ai = {Ci}mi=1, (b) for i 6= j:

Ai ∩ Aj = ∅, and (c) for every i: Ai 6= ∅. To find the optimal grouping G, we
need to formulate L(B, G) to enable the optimization process. To this end, we rely
on [MV13] for this derivation.

In particular, each Ai ∈ G can be described by a code table CTi. This table has
an entry for each possible value a from dom(Ai). The left-hand column of CTi
contains the value, and the right-hand column contains the corresponding code
(the code assigned by MDL encoding). The frequency of a ∈ CTi is defined as its
support relative to the number of rows l of the binary data set B: fr(Ai = a) =
supp(Ai = a)/l. The total encoding cost L(B, G) is given as [MV13]:

Definition 12. Total Encoding Cost:
Let a grouping G = {A1, . . . , Ak} be given. We have: L(B, G) = L(G) + L(B | G),
where

• L(B | G) = l
∑k

i=1H(Ai),

• L(G) = logBn +
∑k

i=1 L(CTi),

• L(CTi) =
∑

a∈dom(Ai)

|Ai|+ log log l − log fr(Ai = a)

with fr(Ai = a) 6= 0, and Bn being the Bell number.

Definition 12 formulates all components that constitute the total encoding cost
L(B, G), giving way for us to mine the grouping G that minimizes it. Note that
the search space is O(2m) and unstructured. Thus, a heuristic algorithm is em-
ployed [MV13]. This algorithm starts with each attribute forming its own group.
Then, it progressively picks two groups whose merge leads to the largest reduc-
tion in the total encoding cost, and it merges them. This practice indeed ensures
that two most similar groups are merged at each step. The algorithm terminates
when either there are no more groups to merge, or when the current step does not
reduce the total encoding cost any more. The result below follows:
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Theorem 14. The subspace merge guarantees completeness and minimizes redun-
dancy.

That is, using the technique in [MV13], we ensure that the merge process outputs
subspaces containing information of all the subspaces produced by the second step
(completeness). This stems from the fact that MDL guarantees a lossless compres-
sion [Grü07]. Thus, the original set of subspaces is compressed while guaranteeing
that no information loss occurs. Besides, the heuristic algorithm of [MV13] selects
the grouping of subspaces that minimizes the overall compression cost. For in-
stance, if a grouping contains two very similar subspaces (i.e., redundant ones),
the algorithm would not pick it since the merge of two subspaces can result in a
better grouping with a lower encoding cost. Hence, redundancy is minimized.

According to [MV13], the total time complexity of this step is O(lm3), which is
O((D− logN)3lN). Nevertheless, the runtime in practice is much smaller because
(a) the number of cliques is much smaller than the one stated in Theorem 13,
(b) the number l of dimensions left is small compared to D, and (c) the merge al-
gorithm tends to terminate early. Our experiments also point out that the runtime
of this step is negligible compared to the first step. While APR can also apply this
subspace merge, it does not achieve the same quality as 4S since it hardly ever
reaches high dimensional subspaces.

4.8. Overall Complexity Analysis
Table 4.1 summarizes the time complexity reduction achieved by 4S for each step.
The computation of L2 (using Sketching) costs O(DN). The mining of Lk costs
O(DN1/3 logN). The subspace merge costs O((D − logN)3lN). Thus, the worst-
case complexity of 4S is O((D − logN)3lN). However, our experiments point out
that the most time-consuming step is the computation of L2, which accounts for
nearly 90% of the overall runtime. Hence, overall, we for our part conclude that
4S has O(DN) average-case complexity. Our experiments also confirm that 4S has
near-linear scalability with both N and D.

Considering the high time complexity of APR where k is the highest layer reached
(see Lemma 10), one can see that the speed-up 4S achieves is a significant im-
provement: It enables a near-linear time heuristic search to explore an exponen-
tial search space. Further, it eliminates the efficiency bottleneck of exploring Lk.
Nevertheless, we note that 4S does not push the envelop. That is, from the linear
scalability of 4S, there is in fact still much room of improvement towards a truly
scalable solution for big data. For instance, we could use parallelization: Paral-
lelizing the computation in L2 is straightforward; parallelizing the search in Lk
can be done by using special techniques, such as [SSTP09].

4.9. Experiments
We write 4S-M and 4S-S as 4S with MultiPruning and Sketching, respectively.
We compare 4S with the following methods: FS as baseline in full space;
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Step Brute-force 4S

Computation of L2 O(D2N2) O(DN)
Mining of Lk O(3D/3) O(DN1/3 logN)

Subspace merge O(2(D−logN)N1/3
) O((D − logN)3lN)

Overall complexity O(2(D−logN)N1/3
) O((D − logN)3lN)

Table 4.1.: Overview of complexity reduction.

FB [LK05] using random subspaces for outlier mining; ENCLUS [CFZ99], CMI,
and HICS [KMB12] representing the APR-style methods; DensEst [MAK+09]
(plugged into the mining framework of [MAGS11]) representing jump search
for local processing; FEM [DB04] representing the unsupervised feature selec-
tion approaches. Note that DensEst applied to the framework of [MAGS11] is
for density-based subspace clustering. So to use it for other tasks (e.g., outlier
detection) we extract the subspaces out of the clusters it produces. Besides, we
include Krimp [VvLS11] and CompreX [ATVF12], two methods for compressing
data by itemset mining. In short, Krimp and CompreX mine itemsets that com-
press the data well. Similarly to DensEst, we extract the subspaces out of these
itemsets. Further, as DensEst, Krimp, and CompreX work on discrete data, we
follow [NMVB14] to discretize the data.

For all of these methods, we try several parameter combinations in order to find
the optimal parameter setting for each data set. Finally, we use the results of the
parameter combination showing the best quality results. We note that we attempt
to find the most relaxing parameters for ENCLUS, CMI, and HICS that can return
good results within five days. As shown later, this practice, however, is not always
possible due to the high complexity of APR methods. This is also the reason why
we exclude CMI++ here: With restricted parameter setting, its results are about
the same as those of CMI.

For our 4S-M and 4S-S, following Theorem 13, we set K = D logN to ensure a
reasonable tradeoff between quality and efficiency. For 4S-S, we need to set s1

and s2. Regarding the former, we fix s1 = 10000 as large values of s1 yield high
estimation accuracy [PP12]. For the latter, we fix s2 = 2 following the observation
that smaller values for s2 generally result in better accuracy [DGGR02].

We study the quality of subspaces produced by the methods tested in: outlier de-
tection with LOF [BKRTN00], clustering with DBSCAN [EKSX96], and classifica-
tion with the C4.5 decision tree. The first two areas are known to yield meaningful
results when the subspaces selected have high correlations, i.e., include few or no
irrelevant dimensions [CFZ99, KMB12, LK05, MGAS09, NMV+13]. Hence, they
are good choices for evaluating the quality of correlated subspaces. The third area
is to show that correlated subspaces found by 4S are also useful for the supervised
domain. For each method, LOF, DBSCAN, and C4.5 are applied on its detected
subspaces and the results are combined (following [LK05] for LOF, [CFZ99] for
DBSCAN, and [Ho98] for C4.5), and judged using corresponding well-known per-
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Data set Size Attributes Classes

Gisette 13500 5000 2
HAR 10299 561 6
KIT 48501 540 2
Mutant1 16592 5408 2
Mutant2 31159 5408 2
PAMAP1 1686000 42 15
PAMAP2 1662216 51 18

Table 4.2.: Characteristics of real-world data sets. Each of them has more than 1
trillion subspaces.

formance metrics. Note that when using DensEst for clustering purposes, this
procedure is not applied; that is, we do not perform DBSCAN on the subspaces
produced by DensEst and instead directly evaluate its subspace clusters (also ob-
tained by means of DBSCAN [MAGS11]). Regarding parameter settings: We set
MinPts of LOF to about min(N · 0.005, 100). For DBSCAN, we set MinPts from 2
to 10, and ε from 0.01 to 0.04. For C4.5, we use the default parameter setting in
WEKA.

For this quantitative assessment of subspaces, we use synthetic data and 6 real-
world labeled data sets from the UCI Repository: the Gisette data about handwrit-
ten digits; HAR, PAMAP1, and PAMAP2 all sensor data sets with physical activity
recordings; Mutant1 and Mutant2 containing biological data used for cancer pre-
diction. Further, we use the facility management’s database of our university (KIT)
with energy indicators recorded from 2006 to 2011 (described in Chapter 1). More
details are in Table 4.2. Note that each of them has more than 1 trillion subspaces.
This features a challenging search space w.r.t. dimensionality for all methods.

Besides, we also further our study on the performance of 4S by experimenting
it with a real-world unlabeled data set on climate and energy consumption. Our
objective here is to qualitatively assess the subspaces detected by 4S, e.g., if they
make sense to our domain expert. Lastly, we investigate how well the subspace
merge of 4S compresses the output subspaces, or in other words, how succinct the
output of 4S is.

4.9.1. Experiments on synthetic data

Quality on outlier detection. We have created 6 synthetic data sets of 10000
records and 100 to 1000 dimensions. Each data set contains subspace clusters
with dimensionality varying from 8 to 24 and we embed 20 outliers deviating from
these clusters. Our performance metric is the Area Under the ROC Curve (AUC),
as in [LK05, KMB12, KKSZ12]. From Table 4.3, one can see that 4S-M overall has
the best AUC on all data sets. 4S-S in turn achieves the second-best performance.
In fact, in most cases, 4S-M correctly discovers all embedded subspaces. Though
4S-S does not achieve that, its subspaces are close to the best ones, and it has
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Data set 4S-M 4S-S FS FB ENCLUS CMI HICS DensEst FEM Krimp CompreX

D100 1.00 1.00 1.00 0.65 0.90 0.46 0.43 0.88 0.50 0.92 0.98
D200 1.00 1.00 0.99 0.50 0.85 0.47 0.46 0.85 0.48 0.97 0.94
D400 0.99 0.98 0.96 0.51 0.83 0.46 0.45 0.87 0.63 0.94 0.95
D600 0.99 0.98 0.77 0.54 0.76 0.42 0.29 0.83 0.54 0.86 0.91
D800 0.99 0.87 0.75 0.61 0.74 0.43 0.40 0.77 0.59 0.82 0.84
D1000 0.99 0.92 0.81 0.47 0.75 0.46 0.40 0.80 0.64 0.84 0.87

Table 4.3.: AUC on outlier mining for synthetic data sets. Highest values are in
bold.

better performance than other methods. We are better than FS, which focuses on
the full space where noisy dimensions likely hinder the detection of outliers. Our
methods outperform FB, which highlights the utility of our correlated subspaces
compared to random ones. DensEst, Krimp, and CompreX detect some correlated
subspaces but they miss others, probably due to data discretization. Examining
the subspaces found by APR-style methods (ENCLUS, CMI, and HICS), we see
that they are either irrelevant, or they are low dimensional fragments of relevant
subspaces. This explains their poor performance. FEM has low AUC since it only
mines a single subspace, and hence, misses other important correlated subspaces
where outliers are present.

We now study the sensitivity of 4S-S to different parameter settings. In particular,
to assess how its performance is impacted by the setting of s1, we fix s2 = 2. On
the other hand, to assess its sensitivity to s2, we fix s1 = 10000. We discuss the
results on a data set with N = 10000 and D = 800 for illustration purposes. We
note that the results on data sets of other dimensionality convey a rather similar
information. From Figure 4.4, we notice that the performance of 4S-S (its AUC
score) fluctuates as both parameters change, especially in the case of s1. We ob-
serve that 4S-S has the best performance at s1 = 14000, following by s1 = 10000.
As the second value yields better runtime (see Section 4.5.2), we choose it as our
setting for s1 in the remaining experiments. In turn, we see that the performance
of 4S-S does not change much with 2 ≤ s2 ≤ 6. Thus, for efficiency reasons, we
fix s2 = 2 in other experiments. We note that these settings are suggestive to the
experiments performed in this chapter only. For other scenarios, further search of
a suitable parameterization might be required.

Quality on clustering. Synthetic data sets with 100 to 1000 dimensions are used
again. Our performance metric is the F1 measure, as in [MGAS09, MAG+09].
Table 4.4 displays clustering results of all methods. One can see that 4S-M and
4S-S have the best performance on all data sets tested. This again highlights the
quality of subspaces found by our methods.

From the outlier detection and clustering experiments, we can see that 4S-S is a
good approximation of 4S-M.

APR using subspace merge. For illustration, we only present the outlier detec-
tion and clustering results on the synthetic data set with 10000 records and 1000
dimensions. From Table 4.5, by applying the subspace merge, APR-style methods

72



4.9. Experiments

0

0.2

0.4

0.6

0.8

1

6000 8000 10000 12000 14000

AU
C

s_1

(a) AUC vs. s1

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

AU
C

s_2

(b) AUC vs. s2

Figure 4.4.: [Higher is better] Sensitivity of 4S-S to s1 and s2 on a synthetic data
set with N = 10000 and D = 800.

Data set 4S-M 4S-S FS FB ENCLUS CMI HICS DensEst FEM Krimp CompreX

D100 0.99 0.99 0.72 0.95 0.67 0.50 0.80 0.90 0.76 0.92 0.95
D200 0.89 0.89 0.67 0.66 0.67 0.50 0.80 0.81 0.76 0.84 0.83
D400 0.85 0.83 0.67 0.81 0.67 0.80 0.77 0.77 0.75 0.76 0.79
D600 0.96 0.95 0.67 0.66 0.67 0.67 0.83 0.83 0.53 0.83 0.85
D800 0.99 0.93 0.67 0.67 0.67 0.67 0.83 0.81 0.74 0.84 0.88
D1000 0.91 0.88 0.67 0.67 0.83 0.67 0.74 0.78 0.75 0.81 0.85

Table 4.4.: F1 on clustering for synthetic data sets. Highest values are in bold.

achieve better AUC and F1 values than without merge. Yet, our methods outper-
form all of them. This is because APR-style methods already face severe issue with
reaching high dimensional subspaces. Thus, applying subspace merge in their case
does not bring much improvement.

Scalability. Since FS and FB do not spend time for finding subspaces, we only
analyze the runtime of the remaining methods. To test scalability to dimensional-
ity, we use data sets with 10000 data points and dimensionality of 100 to 1000.
Based on Figure 4.5, we see that DensEst and 4S-S have respectively the best and
second best scalability. FEM scales better than 4S-M because it only searches for a
single subspace. Krimp and CompreX also have good scalability due to their effec-
tive pruning schemes. Overall, 4S-S has near-linear scalability to dimensionality,
thanks to our efficient search scheme.

Task 4S-M 4S-S ENCLUS CMI HICS

Outlier Mining (AUC) 0.99 0.92 0.76 0.49 0.44
Clustering (F1) 0.91 0.88 0.84 0.70 0.76

Table 4.5.: Comparison with APR using subspace merge on the synthetic data set
with 10000 records and 1000 dimensions. Highest values are in bold.
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Figure 4.5.: Runtime vs. dimensionality on synthetic data.
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Figure 4.6.: Runtime vs. data size on synthetic data.

For scalability to data size, we use data sets with 100 dimensions and sizes of
10000 to 100000. From Figure 4.6, we see that 4S-S scales linearly and is more
efficient than 4S-M. This agrees with our theoretical analysis.

We also note that the runtime of the first step in our methods dominates the other
two steps. For example, on the data set of 10000 records and 1000 dimensions,
4S-S takes about 150 minutes for the first step and only 14 minutes for the re-
maining two steps. These costs in turn are negligible compared to the cost of per-
forming clustering and outlier detection on the subspaces detected. For instance,
LOF requires about 4 days to process this data set.

From the results obtained, we can conclude that 4S-S achieves the efficiency goal
while still ensuring high quality of subspaces found. Though DensEst is faster, it
misses certain important correlated subspaces, which explains why it is inferior
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Data set 4S FS FB ENCLUS CMI HICS DensEst FEM Krimp CompreX

Gisette 0.77 0.67 0.60 0.73 0.74 0.74 0.72 0.68 0.72 0.73
HAR 0.67 0.42 0.53 0.27 0.65 0.15 0.62 0.53 0.62 0.60
KIT 0.73 0.36 0.51 0.33 0.55 0.55 0.64 0.44 0.67 0.69
Mutant1 0.62 0.58 0.55 0.56 0.58 0.57 0.55 0.55 0.56 0.58
Mutant2 0.64 0.57 0.53 0.55 0.58 0.59 0.58 0.56 0.57 0.60
PAMAP1 0.86 0.54 0.47 * * * 0.75 0.48 0.77 0.83
PAMAP2 0.87 0.53 0.45 * * * 0.72 0.41 0.75 0.84

Table 4.6.: AUC on outlier mining for real-world data sets. Highest values are in
bold. (*) means the result is unavailable due to excessive runtime.

to 4S-S in terms of quality on both clustering and outlier detection. From now
onwards, we use 4S-S for the remaining experiments and write only 4S.

4.9.2. Experiments on real data

We apply all methods to two applications: outlier detection and classification.
Clustering is skipped here since it conveys similar trends among the methods as
with synthetic data.

Quality on outlier detection. As a standard procedure in outlier mining [LK05,
KMB12, KKSZ12], the data sets used are converted to two-class ones, i.e., each
contains only a class of normal objects and a class of outliers. This is done by
either picking the smallest class or down-sampling one class to create the outlier
class. The rest forms the normal class. From Table 4.6, 4S achieves the best re-
sults. Its superior performance compared to other methods, including APR-style
methods (ENCLUS, CMI, and HICS), stems from the fact that 4S better discovers
correlated subspaces where outliers are visible. For example, on the KIT data set,
4S finds subspaces where several consumption indicators of different buildings of
the same type (e.g., office buildings, laboratories) cluster very well with a few ex-
ceptions, possibly caused by errors in smart-meter readings, or rare events (e.g.,
university holidays when energy consumption is low or large-scale physics experi-
ments when electricity consumption is extremely high). These subspaces however
are not discovered by all other methods.

On the PAMAP1 and PAMAP2 data sets, we can only compare 4S against FS, FB,
DensEst, FEM, Krimp, and CompreX. This is because other methods take exces-
sively long time without completing. These data sets contain data collected by
sensors attached to human bodies when they perform different activities, e.g.,
walking, running, ascending stairs. The best AUC of 4S on both data sets once
again implies that 4S successfully discovers high quality subspaces, which in turn
assist in the detection of outliers. For example, the subspaces found by 4S on
PAMAP1 exhibit correlations among the hand, chest, and ankle of human subjects.
There are of course different grouping patterns representing different types of ac-
tivity. In any case, such correlations let records representing transient activities
become outliers. This is intuitive because those activities are very random and do
not feature any specific correlation among different parts of human bodies [RS11].
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Figure 4.7.: Runtime (in seconds) of subspace search methods on real-world data
sets. ENCLUS, CMI, and HICS did not finish within 5 days on the
PAMAP data sets.

Data set 4S Random Forest FEM CFS

Gisette 0.76 0.75 0.72 0.84
HAR 0.83 0.81 0.74 0.85
KIT 0.97 0.96 0.85 0.92
Mutant1 0.99 0.88 0.85 0.97
Mutant2 0.99 0.87 0.89 0.98
PAMAP1 0.91 0.71 0.69 0.87
PAMAP2 0.93 0.71 0.66 0.86

Table 4.7.: Classification accuracy for real-world data sets. Highest values are in
bold.

In Figure 4.7, we show the wall-clock runtime (in seconds) for each subspace
search method. We note that Apriori search techniques ENCLUS, CMI, and HICS
did not finish within 5 days on the PAMAP data sets. The results show that except
for DensEst, 4S is much faster than all other competitors. Combining with the
results on quality, we can see that 4S yields the best balance between quality and
efficiency.

Quality on classification. We here test 4S against the well-known Random Forest
classifier [Ho98], FEM for unsupervised feature selection, and CFS [Hal00] for
supervised feature selection. We skip other methods since previous experiments
already show that 4S outperforms them. The classification accuracy (obtained
by 10-fold cross validation) is in Table 4.7. Overall, 4S consistently yields better
accuracy than Random Forest and FEM. It is comparable to CFS which has access
to the class label. The results obtained show that the correlated subspaces found
by 4S are also useful for data classification.
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4.9.3. Discovering novel correlations on climate data

In this experiment, we evaluate whether 4S can be used to discover novel cor-
related subspaces in non-benchmark data. To this end, we apply 4S on a large
real-world data set of climate and energy consumption measurements for an of-
fice building in Frankfurt, Germany [WLV+14]. After data pre-processing to han-
dle missing values, our final data set contains 35601 records and 251 dimensions.
Example dimensions include room CO2 concentration, indoor and outdoor tem-
perature, temperature produced by heating systems, drinking water consumption,
and electricity consumption by different devices, etc. Since this data set is un-
labeled, we cannot calculate clustering/outlier detection/classification quality as
above. Instead, we focus on detecting correlated subspaces, and investigate the
discovered correlations. Our objective is thus to study how climate and energy
consumption indicators interact with each other.

Overall, the results show that 4S detects many interesting high dimensional corre-
lated subspaces. All reported correlations are significant at α = 0.05. We verified
all findings with a domain expert, resulting in some already known correlations,
and others that are novel.

An example of a known multivariate correlation discovered using 4S is the one
among atrium layer pressures (see Figure 4.8). This correlation is linear. Another
known but more complex correlation is the one among between the air tempera-
ture supplied to the heating system, the temperature of the heating boiler, and the
amount of heating it produces (see Figure 4.9). This relation is expected. How-
ever, the most interesting point is the interaction between the temperature of the
heating boiler and the amount of heating produced. Intuitively, the higher the for-
mer, the larger the latter. However, the correlation is not linear. Instead, it seems
to be a combination of two quadratic functions (see Figure 4.9(b)).

4S also finds an interesting correlation among the drinking water consumption,
the outgoing temperature of the air conditioning (cooling) system, and the room
CO2 concentration (see Figure 4.10). There is a clear tendency: the more water
consumed, the higher the CO2 concentration (see Figure 4.10(c)). Besides, there
is a sinusoidal-like correlation between the drinking water consumption and the
outgoing temperature of the cooling system (see Figure 4.10(b)). These correla-
tions, novel to our domain expert, offer a view on how human behavior interacts
with indoor climate and energy consumption.

Other significant correlations detected by 4S whose intuitions can be straightfor-
wardly perceived are given below:

• wind speed, wind direction, outdoor temperature, outdoor CO2 concentra-
tion, outdoor humidity

• amount of heating by wood, amount of heating by gas, outdoor temperature,
temperature of room 401, temperature of room 402

• occupation of building, outdoor temperature, amount of drinking water con-
sumption, electricity used for ventilator
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(a) 3-d space (b) type 1 vs. type 2

(c) type 1 vs. type 3 (d) type 2 vs. type 3

Figure 4.8.: Atrium Layer Pressures.

• outdoor temperature, light intensity north (of the building), south, east,
west, amount of solar heating produced

Overall, the correlations 4S detected range from linear ones to non-linear func-
tional, and non-linear non-functional. In terms of runtime, 4S only needs about 1.5
hours to explore the huge search space of this data set. In conclusion, the results
suggest that 4S is a practical tool for scalable correlation analysis—an important
feature which is crucial for understanding and mining large and high dimensional
real-world data.

4.9.4. Succinctness of output
We study the benefits of the MDL-based subspace merge on 4S. Our performance
metric is the reduction ratio, i.e., m

m′
where m and m′ are the number of subspaces

before and after merging. The results are in Figure 4.11. We see that the merging
phase achieves up to an order of magnitude reduction ratio. This verifies our
claim that 4S produces a succinct set of overlapping correlated subspaces while
still guaranteeing their quality (see for instance Sections 4.9.2). By providing end
users with a succinct set of correlated subspaces, in practice 4S facilitates manual
inspection and post-analysis which benefit advanced applications based on the
knowledge derived from the subspaces.

4.10. Conclusions
Mining high dimensional correlated subspaces is a very challenging but important
task for knowledge discovery in multivariate data. We have introduced 4S, a new

78



4.10. Conclusions

(a) 3-d space (b) amount of heating vs. heating
temperature

(c) amount of heating vs. air temperature (d) heating temperature vs. air temperature

Figure 4.9.: Correlation among air temperature, heating temperature, amount of
heating.

scalable subspace search scheme that addresses the issue. 4S works in three steps:
scalable computation of L2, scalable mining of Lk (k > 2), and subspace merge
to reconstruct fragmented subspaces and to reduce redundancy. Our experiments
show that 4S scales to data sets of more than 1.5 million records and 5000 di-
mensions (i.e., more than 1 trillion subspaces). Not only being efficient, compared
to existing methods 4S better detects high quality correlated subspaces that are
useful for outlier mining, clustering, and classification.

The superior performance of 4S compared to existing methods comes from (a) our
new notion of correlated subspace that has proved to be more general than existing
notions, and hence, allows to discover subspaces missed by such methods, (b) our
scalable subspace search scheme that can discover high dimensional correlated
subspaces, and (c) the subspace merge that can recover fragmented subspaces
and remove redundancy.

Nevertheless, we design 4S specifically for numerical data. Since real-world data
often contains data of different types, e.g., numerical and categorical, it is inter-
esting to address the problem of mining correlated subspaces in mixed typed data.
The next chapter is devoted to such a study. However, we do not only target mixed
data types: We take into account the fact that data may be stored in multiple rela-
tions as well. Thus, the upcoming chapter, in a more precise way to put, is about
detecting groups of correlated columns (dimensions) in relational databases.
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(a) 3-d space (b) drinking water vs. cooling air
temperature

(c) drinking water vs. CO2 concentration (d) cooling air temperature vs. CO2

concentration

Figure 4.10.: Correlation among cooling air temperature, drinking water con-
sumption, and CO2 concentration.
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Figure 4.11.: Reduction ratio of the MDL merging phase. 4S achieves up to an
order of magnitude reduction ratio.
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Mining Correlated Subspaces in
Mixed Typed Data
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5. Mining Correlated Columns in
Databases with Mixed Data Types

This chapter is based on our work originally published as [NMAB14]:

H. V. Nguyen, E. Müller, P. Andritsos, and K. Böhm, Detecting correlated columns in
relational databases, in SSDBM, 2014, p. 30.

In Chapters 3 and 4, we focus on the scalable mining of correlated subspaces in
individual real-valued data sets. In this chapter, we still target at subspace search.
However, we broaden our study to relational databases containing multiple rela-
tions and columns (dimensions) with heterogeneous data types. As we focus on
databases in this chapter, we call dimensions as columns and correlated subspaces
as groups of correlated columns. This is to ensure uniform terminologies with
other work on databases.

In general, a relational database usually contains multiple relations (tables); each
can be perceived as a data set. Each relation in turn can contain multiple columns
(dimensions). Each column’s data type can either be real-valued numerical, dis-
crete numerical, or categorical. For instance, the original KIT Energy database
contains different relations (Building, Institute, Consumption) and columns of dif-
ferent data types (total area of buildings: real-valued numerical, the number of
employees in buildings: discrete numerical, and the location of buildings: cat-
egorical). The question of our interest remains intact: How to mine groups of
correlated columns, where the columns can belong to different relations, in a scal-
able manner? At a first glance, this question can be resolved by simply joining all
relations together to create a universal relation [TDJ11], and then applying ex-
isting subspace search methods (e.g., CMI or 4S) to extract groups of correlated
columns out of the universal relation. However, this practice suffers from two
major drawbacks. First, it potentially incurs a high storage overhead to store the
universal relation. Second, CMI and 4S are not readily applicable to mixed data
types due to their correlation measures. Thus, a new solution is required.
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Therefore, we propose DECOREL, our novel method for Detecting Column
Correlations. In short, DECOREL employs the jump search (with modifications as
explained later) proposed in Chapter 4. That is, DECOREL starts by mining pairs
of correlated columns (possibly located in different relations). Then, it jumps
directly to groups of multiple correlated columns. By using the jump search,
DECOREL only needs to focus first on pairwise correlations, and hence, it only
needs to join maximum two relations at a time. Further, as we aim to handle mixed
data types in this chapter, we modify some details of the original jump search
in Chapter 4 to better fit the new scenario. In particular, previously we choose
top pairs of dimensions/columns with largest correlation scores to construct the
correlation graph. In DECOREL, we accomplish this by an adaptive thresholding
scheme, which is inspired from eigenvalue spectrum analysis [JMK09]. Second,
while we go for cliques in Chapter 4, here we mine quasi-cliques that are more
fault-tolerant to noise [JP09]. Regarding the correlation measure, we propose a
pairwise information-theoretic correlation measure, which is a blend between the
pairwise version of the CMI++ measure and mutual information. Recalling that
both are information-theoretic measures, we hence achieve a handling of mixed
data types with no major change in the interpretation of correlation scores. Fur-
ther, we show that this close relation between the CMI++ measure and mutual
information enables a cross-data-type correlation computation. Besides, we note
that our correlation measure here is related to the one employed in [PLP+10]; yet,
as we will point out their measure uses Shannon entropy and does not consider
real-valued data. Our measure in turn covers heterogeneous data types.

This chapter is organized as follows. Section 5.1 covers related work in the
database area. Section 5.2 provides preliminaries and general notions. Section 5.3
gives the details of our correlation measure. Section 5.4 explains how to find mu-
tual correlations through pairwise correlations. Section 5.5 describes our algo-
rithm for grouping correlated columns. Section 5.6 presents our analysis on the
generality of DECOREL compared to a recent approach [ZHO+11]. Section 5.7 re-
ports our empirical study. Section 5.8 presents an important proof and Section 5.9
concludes the chapter.

5.1. Related Work in Database Research

Apart from related work in subspace search mentioned in Section 1.3 of Chap-
ter 1, there are also other methods in the database area which are capable of
mining columns with certain relationships. We review some representatives in the
following.

ECLUS [ZHO+11] groups database columns that have similar distributions. It
differs from DECOREL in many aspects. First, it uses the EMD test [LB01] which
is bound to discover groups of columns with the same data type and overlapping
value domains. A detailed analysis on this issue is given in Section 5.6. Second,
it only detects non-overlapping groups, and hence, misses other semantics that a
column may have.
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CORDS [IMH+04] and ENTROPY [PLP+10] mine overlapping pairs of correlated
columns using χ2 test and Shannon entropy, respectively. They focus on discrete
and categorical data; real-valued data is not included in their studies. Further, they
lack a mechanism to combine those pairs into larger meaningful groups. Lastly,
both χ2 test and Shannon entropy are better suited to discrete and categorical data,
limiting the generality of both CORDS and ENTROPY. DECOREL in turn detects
overlapping groups of two or more columns. In addition, it is applicable to real-
valued, discrete, and categorical data.

GORDIAN [SBHR06] and DUCC [HQRA+13] aim at finding overlapping composite
primary keys. That is, unlike DECOREL, they do not detect groups of columns that
are correlated but do not form any key.

Finding overlapping groups of correlated columns is also addressed by selectivity
estimation methods, such as [TDJ11]. Nevertheless, for efficiency reasons, they
keep the group sizes small (typically 2). Thus, their goal is not to optimize the
quality of groups. In contrast, DECOREL discovers groups that are potentially
useful for multiple purposes, e.g., selectivity estimation. Applying DECOREL to
each specific task is a subject of our future work.

Clustering relational columns has also been explored in [AHS+09]. It groups
columns based on generic data types. The type information of columns is cap-
tured using q-grams. Thus, this method can also benefit DECOREL when there is
insufficient information to correctly identify data types of columns.

5.2. Preliminaries
Here we re-introduce the main terminologies related to correlation analysis. Most
of them have been introduced in Chapter 2. However, as we are switching to the
database domain, adapting these terminologies accordingly will ease the subse-
quent presentation.

Let R be the set of relations in the database. We write C as the set of all columns
in R. We regard each column C ∈ C as a random variable with a distribution
p(C). For notational convenience, we use C to represent both the column C and
its associated random variable. If C is discrete or categorical, p(C) is named the
probability mass function (pmf for short). Otherwise, i.e., C is real-valued, p(C)
is called the probability density function (pdf for short). Let g = {Ci}di=1 ⊆ C be a
group of columns. We write p(C1, . . . , Cd) as the joint probability function of all
columns in g, or of g for short. If g contains all discrete, or all categorical, or a
mix of discrete and categorical columns, p(C1, . . . , Cd) is a pmf. If g contains all
real-valued columns, p(C1, . . . , Cd) is a pdf. For simplicity, we call it probability
function in any case.

A correlation function Corr assigns each group g with at least two columns
a non-negative real-valued correlation score, denoted as both Corr(g) and
Corr(C1, . . . , Cd). In principle, Corr(g) quantifies the extent to which its joint
probability function differs from the product of its marginal probability functions
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(see Chapter 2). The larger the difference, the higher Corr(g) is, i.e., the more cor-
related the columns of g are. When g has a high correlation score, we regard g to
be a group of correlated columns. In that case, the columns of g are (a) mutually
(multi-way) correlated if g has more than two columns, and (b) pairwise corre-
lated otherwise. (We discuss later how to decide if a correlation score is high.)
When the context is clear, we omit ‘pairwise’ and ‘mutually’.

In the next section, we describe our correlation measure Corr . Then, we explain
the intuition of reasoning about mutual correlations by means of pairwise correla-
tions in Section 5.4. Finally, we present an efficient group discovery algorithm in
Section 5.5.

5.3. Our Correlation Measure
As a basic building block of our method, we present our correlation measure in this
section. Our general goal is to mine groups with arbitrary numbers of correlated
columns. Yet we will show later that one can find such groups by analyzing pairs
of correlated columns. As a result, our Corr measure of correlation is pairwise
(we describe how to form the joint distribution of two columns in Section 5.3.1).
Further, Corr is able to handle heterogeneous data types. In order to help readers
to understand this feature of Corr , we first extend the notion of conditional CE
presented in Chapter 3 to incorporate discrete/categorical data.

Definition 13. Conditional CE:
Consider a column Y .
If Y is discrete or categorical, then

h(X | Y ) =
∑

h(X | y)p(y)

where p(Y ) is the pmf of Y . Otherwise,

h(X | Y ) =

∫
h(X | y)p(y)dy

where p(Y ) is the pdf of Y .

The extended conditional CE still possesses two important properties of the origi-
nal CE , which are:

• h(X | Y ) ≥ 0 with equality iff X is a function of Y , and

• h(X | Y ) ≤ h(X) with equality iff X is independent of Y , i.e., p(X, Y ) =
p(X) · p(Y ).

These properties guarantee the suitability of the extended conditional CE for cor-
relation analysis. Assume that we want to measure the correlation between two
columns X and Y . As in CMI++, we aim at a correlation measure that produces
scores in the range [0, 1] (with 0 being no correlation at all) for an unbiased cor-
relation analysis. This is an important feature for processing heterogeneous data
types. Thus, we define Corr(X, Y ) as follows.
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Definition 14. Correlation Measure Corr:
Corr(X, Y ) is equal to

• H(X)−H(X | Y )

H(X)
if X is categorical,

• h(X)− h(X | Y )

h(X)
if X is numerical (either real-valued or discrete).

Note that if Y is discrete or categorical, then

H(X | Y ) =
∑

H(X | y)p(y) .

Otherwise,

H(X | Y ) =

∫
H(X | y)p(y)dy .

In particular, when X is categorical we use H(X) − H(X | Y ) (i.e., the mutual
information of X and Y ) to quantify the correlation of both columns. For normal-
ization, we use H(X), which is a tight upper bound of H(X)−H(X | Y ) [CT06].
When X is numerical, we use h(X) − h(X | Y ) which also quantifies the correla-
tion of X and Y ; in addition, we obtain normalization with h(X), which is a tight
upper bound of h(X)− h(X | Y ) (see Chapter 3). Hence, our correlation measure
Corr essentially combines the nice characteristics of both mutual information and
CMI++. It is straightforward to verify that it satisfies Properties 1 and 2, and
Challenge 1. Further, its values are in [0, 1]. As we will show later, this facilitates
the handling of heterogeneous data types. Since Corr(X, Y ) may not be equal to
Corr(Y,X), Corr is asymmetric. This is beneficial for analyzing asymmetric de-
pendencies among columns; one of which is the functional dependency [IMH+04].
For instance, zip code functionally determines the city name but the reverse may
not be true.

Example 4. Considering our Energy database, let E be the column capturing the
electricity consumption (real-valued) of each building,N be the column for its number
of staffs (discrete), and L be the column for its location (categorical). Following
Definition 14, we have:

Corr(E,N) =
h(E)− h(E | N)

h(E)

Corr(E,L) =
h(E)− h(E | L)

h(E)

Corr(N,E) =
h(N)− h(N | E)

h(N)

Corr(N,L) =
h(N)− h(N | L)

h(N)

Corr(L,E) =
H(L)−H(L | E)

H(L)
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Corr(L,N) =
H(L)−H(L | N)

H(L)

Corr is asymmetric, e.g., in general Corr(E,L) 6= Corr(L,E).

To this end, we note that our Corr measure is related to that of EN-
TROPY [PLP+10]. In particular, ENTROPY represents the correlation between two
columns X and Y as H(X)−H(X|Y )

H(X)
and H(Y )−H(Y |X)

H(Y )
, regardless of their data types.

Because of this, ENTROPY does not take into account the fact that directly apply-
ing Shannon entropy on real-valued data is unreliable (see Chapter 2). Further, as
mentioned in Section 5.1 ENTROPY does not have a mechanism to combine cor-
related pairs into larger meaningful groups. DECOREL in turn is capable of using
Corr to discover groups of correlated columns with heterogeneous data types.

In Definition 14, when X is numerical, we compute Corr(X, Y ) using CE since
CE is applicable to both real-valued and discrete data. This helps us to avoid
further checks of data types. In reality, database programmers sometimes declare
discrete columns as real-valued, and such a check may cost additional effort. To
show that Corr is indeed suitable for correlation analysis, we prove the following
results:

Lemma 14. It holds that:

• 0 ≤ Corr(X, Y ) ≤ 1.

• Corr(X, Y ) = 0 iff X and Y are statistically independent.

• Corr(X, Y ) = 1 iff X is a function of Y .

Proof. The results follow from the properties of Shannon entropy and CE (see
Chapter 3).

Based on Lemma 14, we derive the following lemma:

Lemma 15. Corr(X, Y ) > 0 iff p(X, Y ) and p(X) · p(Y ) are different.

We will use Lemma 15 in Section 5.4 where we explain how to find mutual corre-
lations by means of pairwise correlations.

5.3.1. Forming joint distributions
Assume that we want to compute Corr(X, Y ) where X and Y are two columns. If
X and Y belong to the same relation R, their joint distribution is defined as the
projection of R onto (X, Y ) (duplicates are kept).

If X and Y belong to two different relations R1 and R2, respectively, without any
join relationship, their joint distribution is undefined, and they are considered to
be independent.

If R1 and R2 have some join relationship, then we form a joint distribution for
X and Y by performing a left outer join between R1 and R2. In this scenario, the
outer join is preferred to the inner join since we want to punish unmatched values.
The left outer join is used to reflect the asymmetric nature of Corr .
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X
r d c

Y
r Case 1 Case 1 Case 1
d Case 2 Case 2 Case 2
c Case 3 Case 3 Case 3

Table 5.1.: Matrix of computation. ‘r’ is for real-valued, ‘d’ for discrete, and ‘c’ for
categorical.

5.3.2. Computing Corr on empirical data

Given the definition of the Corr measure, we now describe how we compute it
based on the type of value stored in column Y . A detailed mapping of which case
to apply for Corr(X, Y ) is given in Table 5.1.

Case 1: Y is real-valued. W.l.o.g., we assume that X is categorical. The case
for when X is numerical follows similarly. To compute Corr(X, Y ), we need to
compute H(X) and H(X | Y ). Computing H(X) is straightforward. Computing
H(X | Y ) on the hand also suffers from the empty space issue as conditional CE
(cf., Section 3.4.2, Chapter 3). This in turn leads to unreliable correlation scores.
To illustrate this, let us consider the following example.

Example 5. Suppose that the joint distribution of X (categorical) and Y (real-
valued) is as follows:

X orange red orange red orange red
Y 1.00 1.01 2.00 2.01 4.00 4.01

Sticking to the exact formula of H(X | Y ), we have H(X | Y ) = 1
6
H(X | Y =

1.00) + 1
6
H(X | Y = 1.01) + 1

6
H(X | Y = 2.00) + 1

6
H(X | Y = 2.01) + 1

6
H(X | Y =

4.00) + 1
6
H(X | Y = 4.01) = 0. Thus, Corr(X, Y ) = H(X)−H(X | Y ) = 1− 0 = 1.

This result is not accurate since it is due to small mismatches in the values of Y—a
scenario which is common for real-valued columns. A more correct computation of
H(X | Y ) is given in Example 6.

To overcome the issue, we propose to search for the histogram (discretization) of
Y that minimizes H(X | Y ), i.e., maximizes Corr(X, Y ), by dynamic program-
ming. Note that our solution here is based on the computation of CMI++ and the
computation of mutual information in [RRF+11]. For readability, we skip the de-
tail of our histogram search for now and present it instead in Section 5.8. Overall,
by means of histogram construction, we can overcome the empty space issue and
obtain a reliable estimation of H(X | Y ).

Example 6. Continuing Example 5. To simplify our illustration, we here assume that
the equal-frequency technique is applied where the number of bins is 3. Note, however,
that in reality our method does not require fixing the number of bins in advance.
DECOREL produces following bins for Y : b1 = [1.00, 2.00), b2 = [2.00, 4.00), and
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b3 = [4.00, 4.01]. We have H(X | Y ) = 1
3
H(X | b1) + 1

3
H(X | b2) + 1

3
H(X | b3) = 1.

Thus, Corr(X, Y ) = H(X)−H(X | Y ) = 1− 1 = 0. We note that this result makes
sense since X is randomly distributed in any bin of Y , i.e., knowing the value (bin)
of Y tells us nothing about X.

Note that when forming the histogram for Y , we place its NULL values (caused by
the left outer join) into the same histogram bin. We expect the values of X in this
bin to be very disparate. In other words, the NULL bin is expected to have high
entropy/CE with respect to X. Hence, Corr(X, Y ) gets smaller. This helps us to
achieve our goal of punishing unmatched values between the two columns.

Case 2: Y is discrete. The usual way would be to compute Corr(X, Y ) as when Y
is categorical. However, this approach may be prohibitive if Y has a large number
of distinct values, for example, Y is an auto-generated primary key. To boost
efficiency, similarly to Case 1, we also construct a histogram for Y . The rests thus
are similar to Case 1.

Case 3: Y is categorical. Since categorical columns have straightforward distribu-
tions and thus information theoretic calculations, we omit further details of how
to compute Corr(X, Y ).

5.4. From pairwise to mutual correlation
Since our goal is to detect groups of any size, we need to compute mutual cor-
relations efficiently. In this section, we explain how to find mutual correlations
through pairwise correlations. Our results are based on the theory of indepen-
dence graphs [Whi90].

5.4.1. Independence graph

Consider a group g = {Ci}di=1. Using Corr , we compute its pairwise correlation
scores. Then, following [Whi90, MAK+09, TDJ11], we construct an independence
graph G for g. In short, G = (V , E) with V = g = {Ci}di=1 (i.e., each column
is a node) is undirected, acyclic, connected, and (Ci, Cj) /∈ E ⇔ Ci⊥Cj | V \
{Ci, Cj}. That is, two columns Ci and Cj not connected by an edge are regarded
as conditionally independent given all other columns V \ {Ci, Cj}.

Example 7. In Figure 5.1, we depict a possible independence graph for a hypothetical
group g = {C1, C2, C3, C4, C5}. One can see that this graph is undirected, acyclic, and
connected. Further, since there is no edge connecting C1 and C5, they are considered
to be conditionally independent given columns C2, C3, and C4. Therefore, C1⊥C5 |
{C2, C3, C4}.

To show that it is feasible to reason about multivariate correlation through pair-
wise correlations, we prove the following result on the total correlation:

Theorem 15. T (C1, . . . , Cd) is equal to
∑

(Ci,Cj)∈E

I(Ci, Cj).
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Figure 5.1.: Example of an independence graph for a group g =
{C1, C2, C3, C4, C5}.

Proof. From [MAK+09], p(C1, . . . , Cd) is equal to:∏
(Ci,Cj)∈E p(Ci, Cj)∏
C∈V p(C)deg(C)−1

where deg(C) denotes the degree of C in G.

W.l.o.g., we assume that {Ci}di=1 are all real-valued. Then we have that
T (C1, . . . , Cd) is equal to:∫

p({ci}di=1) log
p({ci}di=1)∏d
i=1 p(ci)

dc1 · · · dcd

=

∫
p({ci}di=1) log

∏
(Ci,Cj)∈E p(ci, cj)∏
C∈V p(c)

deg(C)
dc1 · · · dcd

=
∑

(Ci,Cj)∈E

∫
p({ci}di=1) log

p(ci, cj)

p(ci)p(cj)
dc1 · · · dcd

=
∑

(Ci,Cj)∈E

∫
p(ci, cj) log

p(ci, cj)

p(ci)p(cj)
dcidcj

=
∑

(Ci,Cj)∈E

I(Ci, Cj)

Example 8. Continuing Example 7. Following Theorem 15: T (C1, C2, C3, C4, C5) =
I(C1, C2) + I(C2, C3) + I(C3, C4) + I(C3, C5).

Theorem 15 shows a decomposition of total correlation into a sum of mutual in-
formation terms. In other words, it tells us that we can find mutual correlations
by means of pairwise correlations.

We note that being able to estimate mutual correlations by pairwise correlations
is insufficient. In particular, directly adopting the result of Theorem 15, a naïve
solution would be as follows: For each group g = {Ci}di=1, one measures the mu-
tual information score of each column pair. Then, one constructs the maximum
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spanning tree to obtain the independence graph of g [MAK+09, TDJ11]. One esti-
mates the total correlation score of g using Theorem 15. Finally, one picks groups
with largest scores. While this solution is straightforward, it suffers from two is-
sues. First, as mentioned before, mutual information is not a reliable correlation
measure for real-valued data. Second, the solution requires to examine each and
every candidate group. However, the number of groups is still exponential in the
number of columns. We address these issues next.

5.4.2. Our approach

We propose to mine groups g where each member column is correlated with most
of the columns in g. We name such a group an approximate group. Our intuition
behind this design choice is that by enforcing the requirement of almost perfect
pairwise correlation among columns of g, the edge weights of its graph G (nodes
are its columns and edge weights are pairwise correlation scores) are large. Hence,
the sum of edge weights of its maximum spanning tree is likely large, which,
according to our analysis in Section 5.4.1, signifies a large total correlation score,
i.e., mutual correlation.

We support this observation by another result of ours as follows. W.l.o.g., consider
a group g = {Ci}di=1 where every Ci is correlated with every other Cj. We define Ci
and Cj to be correlated iff Corr(Ci, Cj) and Corr(Cj, Ci) are large. We discuss how
to decide if a correlation score produced by Corr is large in Section 5.5. For now,
to show that group g is highly suited for our purposes, we derive the following
result.

Claim 1. {Ci}di=1 are likely mutually correlated under different correlation measures.

This claim is derived from the discussion in Section 4.6, Chapter 4. It implies that
for a given group, if every two of its columns are correlated, then its columns are
likely mutually correlated. In other words, this group is likely a group of corre-
lated columns. However, real-world data tends to contain noise making perfect
pairwise correlation between columns of any group not always happen. In fact,
our preliminary empirical analysis points out that sticking to the requirement of
perfect pairwise correlation, we would likely end up only with small groups, e.g.,
those containing two to three columns. To address this issue, we go for a fault-
tolerant solution. More specifically, we focus on groups g where each member
column is correlated with most of the columns in g. We will show in Section 5.5
that such groups permit efficient mining. In addition, they yield very high quality
in our experiments. Below we provide a formal definition of approximate groups.

Definition 15. Approximate Group:
g = {Ci}di=1 ⊂ C with d ≥ 2 is an approximate group of correlated columns iff (a) Ci
is correlated to at least dδ · (d− 1)e columns in g (0 < δ ≤ 1), and (b) no proper
superset of g is an approximate group of correlated columns.

In Definition 15, we enforce the maximality requirement of approximate groups in
order to eliminate redundancy. We note that DECOREL is not constrained to this
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(b) g2: Not an approximate
group

Figure 5.2.: Example of approximate groups (δ = 0.5).

notion of approximate group. Depending on the application scenario, one could
go for a tighter notion, e.g., perfect pairwise correlation by setting δ = 1.

Example 9. Figures 5.2(a) and 5.2(b) depict pairwise correlations of two toy groups
g1 = {C1, C2, C3, C4, C5} and g2 = {C6, C7, C8, C9, C10}, respectively. Note that they
do not depict independence graphs. In both figures, the convention is that two nodes
are connected iff the corresponding columns are correlated. For instance, in group
g1, C1 and C2 are correlated. Assume that δ = 0.5. According to Definition 15, g1

is an approximate group. On the other hand, g2 does not meet the condition (a)
of Definition 15 since C6 is only correlated to one column C7 (the minimum vertex
degree is d0.5 · (5− 1)e = 2). Hence, g2 is not an approximate group. We note
that {C1, C2, C3, C5}, {C2, C3, C4}, and {C3, C4, C5} are also approximate groups.
However, with the maximality requirement, these groups will not be output since they
are redundant with respect to g1.

To solve our problem of detecting groups of correlated columns, for efficiency
reasons we mine approximate groups instead. From now on, with groups we
mean approximate groups.

5.5. Group Discovery
To mine groups, we have to address three questions. First, since Corr produces
real-valued correlation scores, how can we decide if a score is large enough to
signify that two columns are correlated? Second, the search space is still poten-
tially exponential to the total number of columns. So how can we efficiently mine
groups? Third, the number of groups output may be too large for subsequent pro-
cessing steps, e.g., when users want to manually inspect the groups for adjusting
the query optimizer. Hence, how can we produce a succinct set of groups that
facilitates post-analysis? We answer all these questions in this section.

5.5.1. Thresholding correlation scores

Corr(X, Y ) is upper-bounded by the entropy/cumulative entropy of X, which in
turn is dependent on its value domain. Further, Corr is asymmetric. Thus, we
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propose to threshold the correlation scores in each individual column. Our goal
is to obtain an adaptive thresholding scheme to facilitate parameterization. We
achieve this as follows.

Let {(Ci,Corr(C,Ci))}Mi=1 be the set of correlation scores between C and each
other column Ci. W.l.o.g., we assume that the set is sorted in descending order
w.r.t. Corr(C,Ci). We define ind(C) = arg max

i∈[1,M−1]

Corr(C,Ci)+1
Corr(C,Ci+1)+1

. That is, if we plot

the correlation score spectrum against the index i ∈ [1,M ], ind(C) is where there
is the biggest jump in the correlation score ratio. We add 1 to both the numerator
and the denominator to remove the impact of small correlation scores, which may
cause the respective ratios of scores to be unusually large. Let the cutoff threshold
be th(C) = Corr(C,Cind(C)). We use it as a cutoff to determine which correlation
scores Corr(C,Ci) are high. This consequently helps us to identify the columns Ci
that are most related to C in terms of Corr(C,Ci), i.e., Corr(C,Ci) is larger than
or equal to th(C). In particular, let the set of such columns be N (C). We identify
N (C) as

N (C) = {Ci : i ∈ [1,M ] ∧ Corr(C,Ci) ≥ th(C)}

This set can loosely be perceived as the set of neighboring columns of C where the
proximity is quantified by Corr . It is useful for constructing a correlation graph,
which leads to the discovery of candidate groups later.

Our thresholding scheme has its intuition from eigenvalue spectrum analy-
sis [JMK09], which shows that using score ratios effectively separates small and
zero scores from large ones in a score spectrum, without introducing any addi-
tional parameter.

Example 10. In Figure 5.3, we plot the correlation score spectrum of NATIONKEY
in TPC-H. We can see that the scores form three distinct clusters. Intuitively, a cutoff
should be placed at rank 12. Using our thresholding scheme, DECOREL correctly sets
ind(NATIONKEY ) to 12.

5.5.2. Group mining

We form an undirected column graph G = (V , E) where each node C ∈ V is a
database column. An edge e ∈ E exists between two nodes Ci and Cj (i 6= j) iff
Ci ∈ N (Cj) and Cj ∈ N (Ci). The resulting G captures pairwise correlations of
columns. In fact, G is equivalent to the correlation graph presented in Chapter 4.

Given a subset of vertices S ⊆ V, we define the subgraph G(S) induced by S as
the one with vertex-set being S, and edge-set being edges of E whose both end-
points are in S. In fact, the groups in Definition 15 correspond to quasi-cliques in
G [JP09].

Definition 16. Quasi-clique:
A subset S ⊆ V with at least two vertices is a δ-quasi-clique (or quasi-clique for short)
of G iff: (a) every vertex v ∈ S has a degree in G(S) of at least dδ · (|S| − 1)e, and (c)
no proper superset of S is a δ-quasi-clique.
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Figure 5.3.: Correlation score spectrum of NATIONKEY in TPC-H. According to our
method, ind(NATIONKEY ) = 12 .

Considering Definition 15 of approximate groups, the requirement of minimum
vertex degree ensures that each column of the group is correlated to most of the
other columns. Also, the maximality requirement of S addresses the maximality
of the group.

Hence, we mine groups forming quasi-cliques in G. If δ = 1, we end up with
cliques, which would yield groups of columns with stronger correlations. However,
we expect G to be sparse. Searching for cliques as in Chapter 4, we might end up
only with groups corresponding to two end-points of the same edges. On the other
hand, we still need to set δ high enough to ensure the compactness of the groups.
Following the proposal in [LW08], we set δ = 0.5. By this, we ensure that the
quasi-cliques, and hence groups, are connected tightly. In fact, the problem of
mining all quasi-cliques is NP-hard [JP09].

Since G tends to be sparse, we can address the NP-hardness complexity of the prob-
lem by practical algorithms that have good performance on real-world data. Here,
we apply the algorithm in [LW08] having several pruning rules to efficiently ex-
plore the search space. For instance, when δ = 0.5, the shortest path between any
two vertices of a quasi-clique contains at most two edges. The algorithm exploits
this observation to reduce the vertices which can be used to extend a candidate
quasi-clique. Another pruning is based on the upper and lower bounds of the num-
ber of vertices that can be added to a candidate quasi-clique concurrently to form
a larger quasi-clique. By these pruning rules, the algorithm is able to eliminate
candidate extensions of existing quasi-cliques. Our experiments show that using
this algorithm, DECOREL achieves both higher quality and better scalability than
existing methods.

After mining groups, we may achieve very many groups, which hinder post-
analysis. Our goal is to obtain a succinct set of groups that can be inspected
manually. Therefore, we propose to merge similar groups in the subsequent step.
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Example 11. Assume that after the group mining phase, two of the groups that we
obtain are g3 = {C1, C2, C3, C4} and g4 = {C1, C3, C4, C5}. Since they have many
dimensions in common, i.e., they bring about similar information, it would make
sense to merge them to create the larger group {C1, C2, C3, C4, C5}.

5.5.3. Group merging

The group merging phase of DECOREL is done similarly to Section 4.7, Chapter 4.
That is, we again apply the technique in [MV13]. We highlight that this merge step
only merges groups with high overlap. This means that groups with low overlap
remain separate. Thus, DECOREL still detects overlapping groups representing
different semantics of columns. We ensure this by detecting overlapping groups of
correlated columns by first mining quasi-cliques in the column graph G, and then
merging groups.

Alternative solutions to DECOREL could first detect connected components in G
and then further decompose the connected components into groups of related
columns. This has indeed been used in [ZHO+11]; however, both steps of that
solution result in disjoint grouping, which is undesirable for real-world databases.

5.6. Theoretical comparison

In this section, we theoretically compare DECOREL against the state of the art
method for grouping relational columns [ZHO+11]. This method, named ECLUS,
uses a distribution test based on Earth Mover’s Distance (EMD) [LB01] to assess
relationships of columns. Our purpose here is to show that DECOREL is more
general than ECLUS. Hence, we are able to discover column relationships that
ECLUS misses. We now review the background of ECLUS before presenting our
analysis.

5.6.1. Review: Distribution test in ECLUS

ECLUS uses EMD to quantify the (dis-)similarity between the marginal distribu-
tions of any two columns, e.g., C1 and C2. The lower the distance, the more similar
C1 and C2 are.

Let |C| be the number of distinct values of column C. To compute EMD, ECLUS
first forms pmfs on the sets of values of C1 and C2 by assigning a probability mass
of 1/|C1| and 1/|C2| to each value of C1 and C2, respectively. Then it sorts the
union of the values of C1 and C2 (in lexicographical order for strings, and in nu-
merical order for numerical values) and computes the EMD of two distributions of
the ranks. Suppose that the distribution of C1 is p = {(x1, p1), . . . , (x|C1|, p|C1|)} and
the distribution of C2 is q = {(y1, q1), . . . , (y|C2|, q|C2|)}. Here, xi and yj are ranks,
and pi and pj are their masses, respectively. ECLUS then instantiates EMD(C1, C2)
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to EMD(p, q). To compute EMD(p, q), ECLUS solves the below optimization prob-
lem [ZHO+11]:

minimize W (p, q, F ) =

|C1|∑
i=1

|C2|∑
j=1

Fij|xi − yj| subject to:

Fij ≥ 0 and
|C2|∑
j=1

Fij = pi and
|C1|∑
i=1

Fij = qj

|C1|∑
i=1

|C2|∑
j=1

Fij =

|C1|∑
i=1

pi =

|C2|∑
j=1

qj = 1 .

where F is a joint distribution of the ranks of C1 and C2. That is, ECLUS computes
EMD(p, q) as the cheapest cost to transform p to q over all joint distributions F
whose marginal distributions are p and q.

For efficiency purposes, the ranks may be further discretized into quantile his-
tograms, and the EMD is applied on two such histograms accordingly. Zhang et al.
[ZHO+11] show that the EMD test can discover various column relationships: (a)
foreign key and primary key constraints, (b) two foreign keys referring to the same
primary key, (c) a column in a view and its correspondence in the base table, (d)
two columns in two different views but originating from the same column in the
base table, and (e) two columns without any explicit association but semantically
related through a third column.

However, their method only discovers groups of columns of the same data type
and of overlapping value domains. This is too restrictive for real-world databases.

5.6.2. Correlation test is more general

Our claim is that two columns passing the EMD test, i.e., having a low EMD value,
are very likely correlated. On the other hand, having have a high EMD value does
not imply that they are uncorrelated. In other words, we have:

Claim 2. Our correlation test is more general than EMD test.

To show this, we utilize the statistical intuition of EMD. In fact, EMD can be re-
garded as the Wasserstein metric [Rac84]. Applying the Wasserstein metric to
columns C1 and C2, their EMD becomes:

min
F
{EF (|X − Y |) : X ∼ p, Y ∼ q, (X, Y ) ∼ F} .

That is, EMD(C1, C2) equals to the minimum of the expected difference between
their ranks (X and Y , respectively), taken over all possible joint probability dis-
tributions F of their ranks such that the marginal distributions of F are p and q.
Assume that |C1| = |C2| = n and {xi}ni=1 and {yi}ni=1 are sorted in ascending order.

It holds that [LB01]: EMD(C1, C2) = 1
n

n∑
i=1

|xi − yi|. Thus, EMD(C1, C2) = 0 iff
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xi = yi for every i ∈ [n]. This implies a perfect 1-to-1 mapping between X and
Y , and hence, between the values of C1 and C2. Thus, both Corr(C1, C2) and
Corr(C2, C1) are likely large, i.e., C1 and C2 are correlated. This observation also
holds for general cases when |C1| 6= |C2|. That is, the lower the EMD score, the
less cost of transforming p to q, the easier it is to define a 1-to-1 mapping between
X and Y . Thus, the more likely it is that C1 and C2 are correlated.

All in all, a low EMD score tends to correspond to a high correlation score. Thus, if
two columns have a low correlation score, they tend to have a high EMD score, i.e.,
they are unrelated under the EMD test. However, a high EMD does not say any-
thing about the correlation. This is because EMD does not assess joint distributions
while correlation analysis is involved in both marginal and joint distributions (see
Section 5.2). As a result, even if two columns have similar marginal distributions,
they may be uncorrelated. Thus, by performing correlation analysis, we can detect
not only the relationships that an EMD test can find but also the relationships that
such a test cannot cover.

Hence, when the basic schema information is available, ECLUS is restrictive and
misses correlations among columns with not only different value domains, but also
different data types.

Example 12. Our experiments reveal that on TPC-H, ECLUS cannot discover the
correlation between the order date and the corresponding order status. This is because
the two columns have very different value domains. On Energy, ECLUS also misses
the correlation between the energy consumption indicators of each building (real-
valued) and its location (categorical). DECOREL nevertheless handles these scenarios.

In sum, DECOREL assesses the relationships of columns based on their joint dis-
tributions and marginal distributions. Thus, it does not require columns to have
similar values or data types. This is an important contribution of ours to the area
of schema extraction.

5.7. Experiments
In this section, we report our empirical study on the performance of DECOREL. Our
objectives are to assess (a) the quality of groups produced by DECOREL, (b) the
scalability of DECOREL with the database size as well as the number of columns,
and (c) the succinctness of its output. To compute Corr(X, Y ) when Y is numer-
ical, we search for the histogram of Y that maximizes the score Corr(X, Y ) (see
Section 5.3.2).

We use both synthetic and real-world databases. In particular, we generate a syn-
thetic database SYNTH containing several relations and columns of different data
types (real-valued, discrete, and categorical). We model it according to the TPC-H
benchmark. However, we additionally embed several correlations, ranging from
simple linear to complex non-linear correlations. We use SYNTH to quantitatively
assess the quality of the correlations detected by DECOREL. Further, we use the
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Data Tables Rows Columns Data Types
SYNTH 8 50,000 40 r, d, c
SYNTH2 8 50,000 40 r, d
TPC-H 8 8,661,245 61 r, d, c
Energy 6 1,486,718 63 r, d, c
Climate 1 35,601 251 r
Census 1 95,130 41 d, c

Table 5.2.: Database characteristics. With data types: ‘r’ real-valued, ‘d’ discrete,
and ‘c’ categorical

synthetic TPC-H benchmark database itself with scale factor 1 (i.e., about 1GB
data).

For real-world data, we use the Energy database, which consists of several rela-
tions, e.g., Institution, Building, Consumption. It records the energy consumption
patterns of the KIT university campus. As aforementioned, Energy contains cate-
gorical, discrete, and real-valued columns. Thus, it is a good real-world testbed for
our evaluation. Another real-world database is Climate, which contains indoor cli-
mate and energy consumption indicators of a building in Frankfurt, Germany (cf.,
Chapter 4). Climate contains real-valued columns only. In addition, we include
Census, a publicly available real-world data set from the UCI Machine Learning
Repository. Table 5.2 summarizes the characteristics of all databases used.

We compare DECOREL to four state of the art techniques that also group columns
in the database area: First, ECLUS groups columns using EMD [ZHO+11]. Sec-
ond, CORDS groups columns into pairs using the χ2 test [IMH+04]. Since CORDS
is not designed for combining those pairs into larger groups of columns, we apply
our group mining algorithm on its output pairs. Third, ENTROPY [PLP+10], sim-
ilarly to CORDS, also finds pairs of correlated columns using a measure similar to
ours, but this measure relies merely on Shannon entropy. Like CORDS, we extend
ENTROPY to find groups of multiple correlated columns. We also include 4S (cf.,
Chapter 4) as another competitor.

5.7.1. Quantitative assessment of groups

Assessment based on Precision-Recall. We only use databases where we have
prior knowledge on its correlations. In particular, we use SYNTH with categorical
and numerical (discrete and real-valued) columns. We also generate its variant,
named SYNTH2, with only numerical (discrete and real-valued) columns. Note
that in both databases, the known correlations are involved in columns of different
data types and/or different value domains. Further, the ground truth of each
database contains overlapping groups of correlated columns.

The results are in Table 5.3. We can see that DECOREL performs very well, outper-
forming all of its competitors. In contrast, ECLUS has low accuracy since it clusters
columns of different data types and non-overlapping value domains into separate
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DECOREL ECLUS CORDS ENTROPY 4S
SYNTH Prec. 1.00 0.56 0.75 0.78 -

Rec. 1.00 0.66 0.72 0.78 -
SYNTH2 Prec. 1.00 0.54 0.73 0.70 1.0

Rec. 1.00 0.67 0.74 0.74 0.99

Table 5.3.: Precision and Recall on synthetic data.

groups although these columns are correlated. Moreover, ECLUS produces dis-
joint groups, and hence, breaks overlapping groups of correlated columns. The
performance of CORDS and ENTROPY is not high probably due to their use of
sampling to compute correlation scores. 4S is inapplicable to SYNTH since 4S is
not designed to handle categorical columns.

Overall, compared to all of its competitors, we see that DECOREL best detects over-
lapping groups of correlated columns with heterogeneous data types and value
domains.

Next, we assess the parameterization of DECOREL w.r.t. ε, c, and δ using the
SYNTH data set (as this data set contains columns of different data types). For
ε, we fix c = 2 and δ = 0.5. For c, we fix ε = 1/3 and δ = 0.5. For δ, we fix ε = 1/3
and c = 2. The results are in Figure 5.4. We can see that DECOREL achieves the
best performance (in terms of both precision and recall) at ε = 1/3 and ε = 0.5.
However, as the former value results in faster runtime (see Section 5.8), we use
it in other experiments. Regarding c, we see that DECOREL has fairly stable per-
formance w.r.t. this parameter. We choose to use c = 2 as it results in the fastest
runtime. Regarding δ, we can see that δ = 0.5 yields the best performance. Thus,
we set δ = 0.5 in the rest of this chapter. We note that these settings are suggestive
to the experiments performed in this chapter only. For other scenarios, further
search of a suitable parameterization might be required.

Assessment based on adjustment factor. Here, we use the adjustment factor to
assess the results of DECOREL on all databases. Intuitively, the adjustment factor
should be able to capture correlation. Thus, we define the adjustment factor of a
group g = {Ci}di=1 as

af (g) =

∏d
i=1 |Ci |

|C1 , . . . ,Cd |
where |Ci| is the number of distinct values in Ci and similarly for |C1, . . . , Cd|.
Note that if the columns belong to multiple relations, |C1, . . . , Cd| is computed by
applying full outer join of the involved relations, as done in [YPS11].

Intuitively, the adjustment factor of a group quantifies how much the joint selectiv-
ity |C1, . . . , Cd| deviates from the selectivity under the independence assumption.
Thus, the more correlated the columns of the group are, the higher its adjustment
factor. We define the adjustment factor of a method producing groups {gj}nj=1 as
1

n

n∑
j=1

af (gj ), i.e., the average of adjustment factors of its groups. Again, the larger
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the adjustment factor of a method, the better the method is in finding groups
of correlated columns. In fact, a similar notion of adjustment factor was used
in [IMH+04] to rank pairs of correlated columns. Further, it has been suggested
that the adjustment factor has an impact on the selectivity estimates of optimiz-
ers [IMH+04, TDJ11]. Thus, one can use the adjustment factor as an implicit
measure for query optimizers.

The relative adjustment factors of all methods in comparison to DECOREL are in
Figure 5.5. Recall that 4S is only applicable to the numerical Climate database. The
results show DECOREL to achieve the best results, outperforming its competitors
up to an order of magnitude. This suggests that DECOREL better discovers groups
of correlated columns where the joint distributions deviate more profoundly from
the product of the marginal distributions.

As mentioned above, the adjustment factor has an impact on selectivity estimates
of optimizers. Thus, by being able to discover dependable groups of correlated
columns, one could use DECOREL to reliably identify important column correla-
tions for improving query optimizers. This is one of several possible applications
of the groups detected by DECOREL.

5.7.2. Qualitative assessment of groups

We now explore in detail the groups discovered by DECOREL to gain more insight
into its performance. We limit our discussion to TPC-H and real-world databases
where we do not have full knowledge of the hidden correlations.

TPC-H. DECOREL correctly identifies all correlations which are involved in de-
clared foreign key and primary key constraints, regardless of column data types,
and place the respective columns into the same group. More than that, DECOREL

is able to group columns with no explicit relationships but semantically corre-
lated. For instance, DECOREL puts ORDERDATE and ORDERSTATUS into the same
group. In fact, [ZHO+11] has pointed out that the order date and the correspond-
ing order status are correlated. Since these two columns have totally different
value domains, ECLUS cannot recognize their relationship. CORDS and ENTROPY
in turn tend to place correlated columns where at least one column is real-valued
into separate groups. Intuitively, there is a correlation between the total price of
an order and the respective customer name. These two techniques however fail
to detect it. 4S in turn is inapplicable to TPC-H since it only handles numerical
columns. In contrast, DECOREL successfully groups correlated columns without
being constrained to their data types as well as value domains.

Climate. One of the groups identified by DECOREL reflects a correlation among
the air temperature supplied to the heating system, the temperature of the heating
boiler, and the amount of heating it produces. While this relation is rather intuitive
and expected, ECLUS does not detect it. This could be because the three measures
have very different ranges of values: from 10 to 45 for the supplied air temper-
ature, from 25 to 350 for the temperature of the heating boiler, and from 0 to
1100 for the amount of heating produced. ECLUS, by its design, places the three
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columns into different groups, and hence, leaves their relationship undetected.
CORDS and ENTROPY also do not find this correlation, partly because they both
use correlation measures that are more suited to categorical and discrete columns.
In addition, they both compute correlation scores using only samples randomly
drawn from the data. We observe that the pairwise joint distributions of the three
measures are rather skewed. Thus, a simple random sampling as employed by
CORDS and ENTROPY likely misses the bigger picture [KGKB03]. Another corre-
lation reflected in the groups discovered by DECOREL but not by any other method,
is among the electricity consumed, the amount of drinking water, and the amount
of heating. ECLUS misses this correlation, again, because the columns involved
have different value ranges. CORDS and ENTROPY also cannot identify this cor-
relation due to their correlation measures. 4S in turn does not detect it because of
inaccuracy caused by sketching.

Energy. DECOREL groups columns of energy consumption of buildings with
columns related to time (e.g., date-time, semester season, holiday/working day).
This is expected as, e.g., more energy is consumed on working days than on hol-
idays. DECOREL also groups consumption columns with the characteristics of
buildings, e.g., total area, total number of staff members, and location. Again,
this grouping is intuitively accurate: the larger area and the more staff members
a building has, the more energy it consumes; buildings located in the campus sec-
tion where, say, large-scale physics experiments are usually carried out consume
more energy than buildings in other locations. However, since these columns have
different value domains and even data types, ECLUS puts them into different
groups. The quality of groups detected by CORDS and ENTROPY degrades greatly.
This could stem from the fact that the consumption indicators are all real-valued.
Hence, the statistical power of χ2 test as well as measures based on Shannon en-
tropy, applied to these columns, becomes weak.

Census. We present some groups DECOREL produces, which are undetected by
other methods. We believe them to be interesting from a data analysis point of
view. Their details are as follows:

• weeks worked in year, education, reason for unemployment, hispanic origin,
member of a labor union, wage per hour

• weeks worked in year, education, citizenship, country of birth father, country
of birth mother, capital gains, income level

• marital status, age, education, dividends from stocks, detailed occupation
recode

We note that some of the correlations in the groups above intuitively make sense,
e.g., education and wage per hour. In addition, some of the remaining correlations,
e.g., marital status, age, and education, agree with a previous study [MPY05].

Overall, we see DECOREL to be capable of detecting column relationships regard-
less of their underlying data types as well as value domains. The relationships
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covered by DECOREL range from known ones (e.g., declared foreign key and pri-
mary key constraints) to novel ones. The latter can be exploited for, e.g., improving
query optimizers and advanced data analysis.

5.7.3. Scalability

We assess scalability of DECOREL to the database size using the TPC-H benchmark
and the number of columns using Census. For the former, we vary the scale factor,
and hence, effectively scale the number of tuples. For the latter, we scale the
number of columns by appending the identical Census database for a number of
times. The results are in Figures 5.6 and 5.7. For readability, we use a logarithmic
scale on both axes for Figure 5.6.

We see that DECOREL scales linearly to the database size, i.e., the number of tu-
ples. It has quadratic scalability to the number of columns. Moreover, DECOREL

achieves better scalability than ECLUS in both tests. DECOREL also scales bet-
ter than CORDS and ENTROPY even though they only work on samples of the
data. This highlights the benefits of our efficient computation of pairwise corre-
lations and our efficient mining of correlated groups. We are unable to display
the runtimes of 4S since 4S is inapplicable to both TPC-H and Census due to their
categorical columns. However, for numerical data such as Climate, we have ob-
served that DECOREL shows runtimes similar to 4S. Thus, we can perform both
categorical and numerical data assessment in a very scalable manner.

Overall, DECOREL is able to tackle the exponential search space of groups in poly-
nomial time, and hence, enables correlation analysis for large databases.

5.7.4. Succinctness of output

We study the benefits of the MDL group merging on DECOREL. Our performance
metric is the reduction ratio, i.e., m

m′
where m and m′ are the number of groups

before and after merging. The results are in Figure 5.8. We see that the group
merging phase achieves up to an order of magnitude reduction ratio. This shows
that by merging groups, DECOREL produces a succinct set of overlapping groups
while still guaranteeing their quality (according to the above experiments).

5.8. Searching for the optimal histogram
We show the derivation for when X is categorical. The derivation for when X is
numerical can be found in Chapter 3. The materials presented in the following are
based on Chapter 3 and [RRF+11].

Let g be a histogram of Y . We denote the number of bins of g as |g|. We write
Y g as Y discretized by g. Following [RRF+11], we restrict that |g| < N ε where N
is the number of tuples in the joint distribution of X and Y , and ε ∈ (0, 1). We
formulate the following problem: Find the histogram g of Y with |g| < N ε that
minimizes H(X | Y g).
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We prove that our optimization problem can be solved by dynamic programming.
In particular, w.l.o.g., let Y (1) ≤ . . . ≤ Y (N) be realizations of Y . Further, let

Y (j,m) = {Y (j), Y (j + 1), . . . , Y (m)}

where j ≤ m. Slightly abusing notation, we write Y (1, N) as Y . We use H(X |
〈Y (j,m)〉) to denote H(X) computed using the (m − j + 1) tuples of the joint
distribution corresponding to Y (j) to Y (m), projected onto X. To show that the
optimal discretization of Y minimizing H(X | Y ) can be searched by dynamic
programming, we introduce the following formulation which will subsequently
lead to the solution of our problem. In particular, for 1 ≤ l ≤ m ≤ N , we write

f(m, l) = min
g:|g|=l

H(X | Y g(1,m))

where g is a histogram of Y (1,m) with l bins, and Y g(1,m) is the discretized ver-
sion of Y (1,m) by g. That is, f(m, l) is the minimum H(X | Y (1,m)) over all
discretization g of Y (1,m) into l bins. For 1 < l ≤ m ≤ N , we prove the fol-
lowing recursive formulation of f(m, l), which gives way to efficiently computing
it using dynamic programming, and hence, to efficiently solving our problem of
minimizing H(X | Y ).

Theorem 16. f(m, l) = min
j∈[l−1,m)

Aj where

Aj = j
m
f(j, l − 1) + m−j

m
H(X | 〈Y (j + 1,m)〉).

Proof. Let g∗ = arg min
g:|g|=l

H(X | Y g(1,m)). We denote l bins that g∗ generates

on Y as b1, . . . , bl. We write |bt| as the number of values of Y in bt. Further, let

cz =
z∑
i=1

|bt|. Note that each bin of Y is non-empty, i.e., cz ≥ z. We use H(X | bt)

to denote H(X) computed using the tuples of the joint distribution corresponding
to the realizations of Y in bt, projected onto X. We have: f(m, l)

=
l∑

t=1

|bt|
m
H(X | bt)

=
l−1∑
t=1

|bt|
m
H(X | bt) +

|bl|
m
H(X | bl)

=
cl−1

m

l−1∑
t=1

|bt|
cl−1

H(X | bt) +
|bl|
m
H(X | bl)

=
cl−1

m
f(cl−1, l − 1)

+
m− cl−1

m
H(X | 〈Y (cl−1 + 1,m)〉) .
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In the last line,
l−1∑
t=1

|bt|
cl−1

H(X | bt) is equal to f(cl−1, l − 1) because otherwise, we

could decrease f(m, l) by choosing a different histogram of Y (1, cl−1) into l − 1
bins. This in turn contradicts our definition of f(m, l). Since cl−1 ∈ [l − 1,m) and
f(m, l) is minimal over all j ∈ [l − 1,m), we arrive at the final result.

Theorem 16 shows that the optimal histogram of Y (1,m) can be derived from that
of Y (1, j) with j < m. This allows us to design a dynamic programming algorithm
to find the optimal histogram g of Y with |g| < N ε. To further boost efficiency,
similarly to Chapter 3, we limit the number of cut points of Y to c × N ε with
c > 1. We do this using equal-frequency discretization on Y with the number of
bins equal to (c × N ε + 1). Regarding parameter setting, we fix ε = 0.333 and
c = 2 according to our preliminary analysis. Hence, the total time complexity of
our histogram search is O(N3ε) = O(N).

5.9. Conclusions
In this chapter, we have proposed DECOREL to mine groups of correlated columns
in databases with mixed data types. In short, DECOREL employs the search scheme
of 4S (with some modifications) to achieve high scalability. To handle mixed data
types, we propose a new correlation measure which can be perceived as a com-
bination of CMI++ and mutual information. Experiments on both synthetic and
real-world databases show DECOREL to discover groups of higher quality than ex-
isting methods. Moreover, DECOREL scales better than its competitors with both
the database size and the number of columns. This suggests that DECOREL is a
very promising tool for large-scale correlation analysis on real-world databases.

So far, we studied the discovery of correlated subspaces in multivariate data, which
constitutes the first part of this thesis. In particular, we introduced novel correla-
tion measures and new subspace search schemes which are able to handle large
and high dimensional data sets. The techniques presented so far work mainly with
cumulative distribution functions. While this facilitates computation on empirical
data, it is also interesting to study correlation measures that favor probability mass
functions, e.g., measures based on Shannon entropy. This is because such mea-
sures already have wide applications [RRF+11, CGA+01, SCH10, SCRR11, KN03,
TDJ11]. Any of their developments will thus bring about high impact across vari-
ous areas.

As mentioned in Chapter 1, one of the popular ways in data mining to com-
pute measures based on Shannon entropy is to discretize (real-valued) data. In
Chapters 3 and 5, we have demonstrated that correlation-aware discretization can
successfully do the job. In the next part of the thesis, we further this idea and
propose a correlation-aware discretization method to compute total correlation.
Please note that this new part does not serve as a replacement for what has been
discussed so far. It instead offers another facet of the multi-faceted problem of
correlation analysis.

105



5. Mining Correlated Columns in Databases with Mixed Data Types

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5

Pr
ec
is
io
n

ε

(a) Precision vs. ε

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5

Re
ca
ll

ε

(b) Recall vs. ε

0

0.2

0.4

0.6

0.8

1

2 4 6 8

Pr
ec
is
io
n

c

(c) Precision vs. c

0

0.2

0.4

0.6

0.8

1

2 4 6 8

Re
ca
ll

c

(d) Recall vs. c

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec
is
io
n

δ

(e) Precision vs. δ

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Re
ca
ll

δ

(f) Recall vs. δ

Figure 5.4.: [Higher is better] Sensitivity of DECOREL to ε, c, and δ on the SYNTH
data set.
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6. Multivariate Maximal Correlation
Analysis

This chapter is based on our work originally published as [NMV+14]:

H. V. Nguyen, E. Müller, J. Vreeken, P. Efros, and K. Böhm, Multivariate maximal
correlation analysis, in ICML, 2014, pp. 775-783.

In Chapters 3 to 5, we propose new correlation measures and use them to mine
correlated subspaces in multivariate data. In this chapter, we focus on the com-
putation of total correlation, an existing well-known correlation measure based
on Shannon entropy, using discretization. As opposed to naïve discretization, our
goal here is to develop a correlation-aware discretization technique to compute
total correlation. Recalling from Chapters 3 and 5, by correlation-aware, we mean
that the technique should preserve correlations in the data. In Chapter 3, the
preservation is w.r.t. CMI++. In Chapter 5, the preservation is w.r.t. pairwise
CMI++ and mutual information. In the context of this chapter, the preservation
is w.r.t. total correlation. Correlation-aware discretization has been proposed to
compute mutual information [RRF+11]. Yet, we will show that directly adopting
this technique is not sufficient for computing total correlation. Thus, our problem
to this end still is open. But please note that the contributions of this chapter are
beyond computing total correlation. In particular, we propose multivariate max-
imal correlation analysis, which we generalize from various existing methods for
correlation analysis. Our handling of total correlation is an instantiation of this
general notion.

More in particular, we go for maximal correlation analysis because it does not
require assumptions on data distributions, can detect non-linear correlations, is
very efficient, and robust to noise. Maximal correlation analysis is our gener-
alization of a number of powerful correlation measures that, in a nutshell, dis-
cover correlations hidden in data by (1) looking at various admissible transforma-
tions of the data (e.g., discretizations [RRF+11], measurable mean-zero functions
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[BF85]), and (2) identifying the maximal correlation score (e.g., mutual informa-
tion [RRF+11], Pearson’s correlation coefficient [BF85]) correspondingly. The key
reason why these measures first transform the data is that otherwise only simple
correlations can be detected: kernel transformations allow non-linear structures to
be found that would go undetected in the original data space [BF85, HSST04]. In
contrast, more complex measures such as mutual information can detect complex
interactions without transformation, at the expense of having to assume and esti-
mate the data distribution [Yin04]. However, Reshef et al. [RRF+11] showed that
instead of making assumptions, we should use the discretizations that yield the
largest mutual information. Our computation of total correlation in this chapter in
fact is inspired from the work of Reshef et al. Before providing the details of our
solution, we first formalize maximal correlation analysis.

6.1. Maximal Correlation Analysis
Above we sketch out important characteristics of maximal correlation analysis. On
a formal level, we define this approach as follows.

Definition 17. Maximal Correlation – General Form:
The maximal correlation of real-valued random variables {Xi}Di=1 is defined as:

Corr ∗(X1, . . . , XD) = max
f1,...,fD

Corr(f1(X1), . . . , fD(XD))

with Corr being a correlation measure, fi : dom(Xi)→ Ai being from a pre-specified
class of functions, Ai ⊆ R.

That is, maximal correlation analysis discovers correlations in the data by search-
ing for the permissible transformations fi’s of Xi’s that maximize their correlation
(measured by Corr). Following Definition 17, to search for maximal correlation,
we need to solve an optimization problem over a search space whose size is po-
tentially exponential to the number of dimensions. The search space in general
does not exhibit structure that we can exploit for an efficient search. Thus, it is in-
feasible to examine it exhaustively, which makes maximal correlation analysis on
multivariate data very challenging. Avoiding this issue, most existing work focuses
on pairwise maximal correlations. More details are given below.

6.1.1. Instantiations of maximal correlation

Breiman and Friedman [BF85] defined the maximal correlation between two real-
valued random variables X and Y as ρ∗(X, Y ) = max

f1,f2
ρ(f1(X), f2(Y )) with Corr =

ρ being the Pearson’s correlation coefficient, and f1 : R→ R and f2 : R→ R being
two measurable mean-zero functions of X and Y , respectively. If f1 and f2 are
non-linear functions, their method can find non-linear correlations.

Likewise, Rao et al. [RSX+11] searched for a, b ∈ R that maximize Corr(X, Y ) =
U(aX + b, Y ), which equals to

∣∣∫ κ(ax+ b− y)(p(x, y)− p(x)p(y))dxdy
∣∣ where κ
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is a positive definite kernel function (p(X), p(Y ), and p(X, Y ) are the pdfs of X,
Y , and (X, Y ), respectively). f1 is a linear transformation function, and f2 is the
identity function. If κ is non-linear, they can find non-linear correlations.

Canonical correlation analysis (CCA) [Hot36, HSST04, AABL13, CKKZ13], instead
of analyzing two random variables, considers two data sets of the same size. That
is, X ∈ RA and Y ∈ RB represent two groups of random variables. CCA looks
for (non-)linear transformations of this data such that their correlation, measured
by Corr , is maximized. In [Yin04], Corr is the mutual information, f1 : RA → R
and f2 : RB → R are linear transformations. Corr(f1(X), f2(Y )) is computed by
density estimation. Along this line, Generalized CCA [Car68, Ket71] is an exten-
sion of CCA to multiple data sets. Its focus so far, however, is on linear correla-
tions [vdVT12].

Maximal Information Coefficient (MIC) [RRF+11] analyzes the correlation of X
and Y by identifying the discretizations of X and Y that maximize their mu-
tual information, normalized according to their numbers of bins. Here, Corr is
the normalized mutual information. f1 and f2 are functions mapping values of
dom(X) and dom(Y ) to A1 = N and A2 = N (with counting measures), respec-
tively. Note that, MIC is applicable to CCA computation where mutual information
is used [Yin04]. However, we note that MIC cannot be adapted to computing to-
tal correlation. To illustrate this, consider a toy data set with three dimensions
{A,B,C}. MIC can find two separate ways to discretize B to maximize its correla-
tion with A and C, but it cannot find a discretization of B such that the correlation
with regard to both A and C is maximized. Thus, MIC is not suited for calculating
correlations over more than two dimensions. Further, directly adapting the solu-
tion of MIC to the multivariate setting suffers from high computational cost. We
will get back to this issue in Section 6.3.

In addition to the above measures, we note that CMI++ and the correlation mea-
sure of DECOREL are indeed related to MIC, and hence, to maximal correlation
analysis. That is, they both also search for the discretization of the data to maxi-
mize their respective correlation score.

Having introduced our general notion of maximal correlation analysis, in the fol-
lowing, we present our instantiation of this notion to compute total correlation.
We highlight that our solution in this chapter is related to CMI++. We name it
as MAC for Multivariate Maximal Correlation Analysis. Nonetheless, despite the
close relationship between MAC and CMI++, they are not entirely exclusive, and
in fact, are not meant to be like that. Instead, they just study different aspects
of information-theoretic correlation analysis. More in particular, MAC targets at
Shannon entropy while CMI++ targets at cumulative entropy. Before going to
solve MAC, we first present its theory in the next section.

6.2. Theory of MAC
In this section, we discuss the theoretical model of MAC. Consider a d-dimensional
data set DB with real-valued dimensions {Xi}Di=1 and N data points. We regard
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each dimension Xi as a random variable, distributed according to pdf p(Xi). Map-
ping MAC to Definition 17, we have that Corr is the normalized total correlation
(see below), and fi : dom(Xi) → N (with counting measure) is a discretization of
Xi. By definition, the total correlation of {Xi}Di=1, i.e., of the data set DB, written

as T (DB), is T (DB) =
D∑
i=1

H(Xi) − H(X1, . . . , XD) where H(.) is the Shannon

entropy. As mentioned in Chapter 2:

• T (DB) ≥ 0 with equality iff {Xi}Di=1 are statistically independent.

• T (DB) > 0 when the dimensions of DB exhibit any mutual correlation,
regardless of the particular correlation types.

As aforementioned, to compute total correlation on real-valued data, a common
practice in data mining is to use discretization. Following this line, MAC aims at
correlation-aware discretization whose advantages have been discussed in Chap-
ters 3 and 5.

In particular, let gi be a discretization of Xi into ni = |gi| bins. We will refer to ni as
the grid size of Xi. We write Xgi

i as Xi discretized by gi. We call G = {g1, . . . , gD}
a D-dimensional grid of DB. For mathematical convenience, we focus only on
grids G with ni ≥ 2. This has been shown to be effective in capturing complex
patterns in the data, as well as detecting independence [RRF+11]. The product of
grid sizes of G is |G| = n1 × . . .× nD. We write DBG as DB discretized by G. The
grid G induces a probability mass function on DB, i.e., for each cell of G, its mass
is the fraction of DB falling into it. The total correlation of DB given G becomes

T (DBG) =
D∑
i=1

H(Xgi
i ) − H(Xg1

1 , . . . , X
gD
D ). For maximal correlation analysis, one

could find an optimal grid G for DB such that T (DBG) is maximized. However,
the value of T (DBG) is dependent on {ni}Di=1:

Theorem 17. T (DBG) ≤
D∑
i=1

log ni −max({log ni}Di=1).

Proof. We have:

T (DBG) =
D∑
i=2

H(Xgi
i )−H(Xgi

i | X
g1
1 , . . . , X

gi−1

i−1 ) .

By not considering the subtracted terms H(Xgi
i | X

g1
1 , . . .), we have T (DBG) ≤

D∑
i=2

H(Xgi
i ). Since H(XG

i ) ≤ log(ni), we arrive at T (DBG) ≤
D∑
i=2

log(ni). Consid-

ering all permutations of X1, . . . , XD, it holds that

T (DBG) ≤
D∑
i=1

log(ni)− max
1≤i≤D

log(ni) .
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As our goal is to achieve an unbiased optimization for unbiased correlation anal-
ysis, we need to normalize T (DBG) according to the grid sizes of G. Hence, we
propose to maximize

Tn(DBG) =
T (DBG)

D∑
i=1

log ni −max({log ni}Di=1)

(6.1)

which we name the normalized total correlation. From the fact that T (DBG) is non-
negative and Theorem 17, we arrive at Tn(DBG) ∈ [0, 1]. However, maximizing
Tn(DBG) is not enough. Consider the case where each dimension has N distinct
values. If we discretize each dimension into N bins, then Tn(DBG) becomes 1, i.e.,
maximal. To avoid this trivial binning, we need to impose the maximum product
of grid sizes B of the grids G considered. For pairwise correlation (d = 2), Reshef
et al. [RRF+11] prove that B = N1−ε with ε ∈ (0, 1). As generalizing this result
to the multivariate case is beyond the scope of our work, we adopt it, and hence,
restrict ni × nj < N1−ε for i 6= j. As a result, we define MAC(DB) as follows:

Definition 18. Maximal Correlation:
MAC(DB) is given as:

MAC(DB) = max
G={g1,...,gD}

∀i 6=j:ni×nj<N1−ε

Tn(DBG) . (6.2)

That is, MAC(DB) is equal to the maximum normalized total correlation over all
grid G = {g1, . . . , gD} of DB where ni × nj < N1−ε (to avoid inflated scores). We
will write MAC(DB) and MAC(X1, . . . , XD) interchangeably.

We have MAC(DB) ∈ [0, 1]. When MAC(DB) = 0, we consider {Xi}Di=1 to be
statistically independent. Due to insufficient sample sizes, the theoretical zero
score might not happen in practice.

Theorem 18. If 2D > N then for any {ni}Di=1 with ni ≥ 2, we have MAC(DB) > 0.

Proof. We start by observing that n1 × . . . × nD ≥ 2D > N . For every set of grid
sizes {ni}Di=1, there is a discretization G = {g1, . . . , gD} such that each dimension
Xi is divided into ni = |gi| equal-frequency bins. Such a strategy yields

T (DBG) =
D∑
i=1

log(ni)−H(Xg1
1 , . . . , X

gD
D ) .

The resulting D-dimensional space has

n1 × . . .× nD > N

115



6. Multivariate Maximal Correlation Analysis

D-dimensional hypercubes. Allocating N points into these hypercubes, the maxi-
mum number of non-empty ones is N . Thus:

H(Xg1
1 , . . . , X

gD
D ) ≤ log(N) .

Hence: T (DBG) ≥ log
n1 × . . .× nD

N
> 0. Therefore: Tn(DBG) > 0. Since

MAC(DB) ≥ Tn(DBG), the theorem is proved.

Theorem 18 implies that, when 2D > N , there will always be some correlation in
the data, i.e., MAC is always positive. This is also known as the curse of dimen-
sionality. For real-world data sets, the issue is very common. Nevertheless, a low
score always indicates a low mutual correlation of {Xi}Di=1, and vice versa. We will
show in Section 6.5 that MAC performs very well in analyzing multivariate data.

6.3. Calculating MAC: Naïve Approach
To use MAC in practice, we need to compute it efficiently. Let us consider naïvely
extending the strategy that MIC uses. To approximate the optimal discretization of
two dimensions, MIC employs a heuristic: for every equal-frequency discretization
of a dimension, it searches for the discretization over the other dimension that
maximizes the normalized mutual information.

Naïvely extending this to the multivariate case, for every set of grid sizes {ni}Di=1

we would partition each set of (D − 1) dimensions into equal-frequency bins. We
would then try to find the optimal discretization of the remaining dimension. For
every set {ni}Di=1, we repeat this per dimension, and report the maximum over
these D values.

However, by using ni × nj < N (1−ε) for any i 6= j, one can prove that n1 × . . . ×
nD < N (1−ε)D/2. Hence, we know the size of the search space is O(ND)—which
implies this scheme is infeasible for high dimensional data. In fact, even for two
dimensions MIC already faces efficiency issues [RRF+11].

6.4. Calculating MAC: Our Approach
We propose a simple and efficient greedy method for estimating MAC. To com-
pute MAC(DB), one typically has to find concurrently the discretizations of all
dimensions that maximize their normalized total correlation Tn(DBG) (see Equa-
tion (6.1) and (6.2)), which is the source of the computational intractability. Our
intuition is to serialize this search. That is, step-by-step we find the dimension
and its discretization that maximizes its normalized total correlation with all the
dimensions already selected and discretized. In particular, we first identify two
dimensions X ′1 and X ′2 such that MAC(X ′1, X

′
2) is maximal among all pairs of di-

mensions. Then, at each subsequent step k ∈ [2, D − 1], let Ck = {X ′1, . . . , X ′k} be
the set of dimensions already picked and discretized. We aim to
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• identify the dimension X ′k+1 that is most likely correlated with Ck without
having to pre-discretize X ′k+1, and

• find the discretization of X ′k+1 yielding the MAC score of X ′k+1 and Ck.

Finally, we approximate MAC(DB) using the gridG obtained. From now on, when
using Shannon entropy, we imply the involved dimensions have been discretized,
e.g., we leave the superscript and write Xi for Xgi

i . The details of our method are
as follows.

6.4.1. Identifying and discretizing X ′1 and X ′2

We compute MAC(X, Y ) for every pair of dimensions (X, Y ) and pick (X ′1, X
′
2)

with the largest MAC score.

To compute MAC(X, Y ), for each pair of grid sizes (nX , nY ) with nXnY < N1−ε,
we maximize H(X) −H(X | Y ) = H(Y ) −H(Y | X). Note that, one could solve
this through MIC. However, since MIC fixes one dimension to equal-frequency
bins before discretizing the other dimension, we conjecture that the solution of
MIC is suboptimal. Instead, we compute MAC(X, Y ) by cumulative entropy (see
Chapter 3). In particular, h(X)−h(X | Y ) also captures the correlation between X
and Y . Therefore, by maximizing h(X) − h(X | Y ), we maximize the correlation
between X and Y , and hence, intuitively maximizes H(X)−H(X | Y ).

Maximizing h(X) − h(X | Y ) in fact is equivalent to minimizing h(X | Y ). The
latter can be solved by searching for the optimal discretization of Y (cf., Chap-
ter 3). Hence, we achieve the optimal discretization of Y that intuitively maxi-
mizes H(X) − H(X | Y ). As we need grid sizes for normalization, we apply our
solution in CMI++ to find the optimal discretizations of Y at different grid sizes
nY . As nX ≥ 2, we only consider nY < N1−ε/2.

We apply the same optimization process for h(Y ) − h(Y | X). Then, we combine
the optimal discretizations of both X and Y where nXnY < N1−ε. We compute
MAC(X, Y ) accordingly. We identify (X ′1, X

′
2) as the pair of dimensions with the

largest MAC score.

6.4.2. Efficient heuristic to identify X ′k+1

In practice, one could identify X ′k+1 and its optimal discretization concurrently by
computing MAC(X,Ck) for every dimension X left, and select the dimension with
the best MAC score as X ′k+1. Note that since all dimensions in Ck have already
been discretized, we do not discretize them again. We prove in Section 6.4.3 that
MAC(X,Ck) can be solved by dynamic programming. Yet, doing this for each and
every dimension X left may become inefficient for high dimensional data. Thus,
our intuition here is to first heuristically identify X ′k+1 and then find its optimal
discretization.
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In particular, let n′i be the grid size of X ′i ∈ Ck. From Equation (6.2), it follows
that to compute MAC(X,Ck), we need to maximize(

k∑
i=1

H(X ′i)

)
+H(X)−H(X | Ck)−H(Ck)

log n+
k∑
i=1

log n′i −max({log n} ∪ {log n′i}ki=1)

(6.3)

where n <
N (1−ε)

max({n′i}ki=1)
and X is discretized into n bins. Our goal is to efficiently

identify X ′k+1 without having to discretize all dimensions left. In order to achieve
this, we need an objective function that is free of the bin size of each candidate
dimension X. Thus, we consider the following term(

k∑
i=1

H(X ′i)

)
+ h(X)− h(X | Ck)−H(Ck)

h(X) +
k∑
i=1

log n′i −max({log n′i}ki=1)

. (6.4)

Informally speaking, we can regard both Equation (6.3) and (6.4) to represent the
normalized mutual correlation of X and all dimensions in Ck. To show that we can
use one to replace the other for optimization purposes, we prove in the following
theorem that they indeed have very similar properties.

Theorem 19. Equation (6.3) and (6.4) have the following properties:

(1) Their values are in [0, 1].

(2) They are both equal to 0 iff (discretized) X and all dimensions in Ck are statis-
tically independent.

(3) They are both maximal when there exists X ′i ∈ Ck such that (discretized) X
and all dimensions in Ck \ {X ′i}, each is a function of X ′i.

Proof. For the first property, Equation (6.3) is the normalized total correlation
of discretized X and all dimensions in Ck, so its value is in [0, 1]. Considering
Equation (6.4), from h(X) ≥ h(X | Ck), we have(

k∑
i=1

H(X ′i)

)
+ h(X)− h(X | Ck)−H(Ck) ≥ 0 .

Further, from h(X | Ck) ≥ 0(
k∑
i=1

H(X ′i)

)
+ h(X)− h(X | Ck)−H(Ck)

≤ h(X) +
k∑
i=1

log n′i −max({log n′i}ki=1) .
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Therefore, the value of Equation (6.4) is in [0, 1].

For the second property, from Theorem 1, it holds that Equation (6.3) is equal
to zero iff discretized X and all dimensions in Ck are statistically independent.
Also, Equation (6.4) is equal to zero iff all the dimensions in Ck are statistically
independent, and X is independent of Ck; hence,

p(X,Ck) = p(X)p(Ck) = p(X)p(X ′1) · · · p(X ′k)

Thus, X and all dimensions in Ck are statistically independent. We therefore have
proven the second property.

For the third property, it holds that Equation (6.3) is maximal when there exists
X ′i ∈ Ck such that discretized X and all dimensions in Ck \{X ′i}, each is a function
of X ′i. Considering Equation (6.4), it is maximal when (a) there exists X ′i ∈ Ck
such that all dimensions in Ck \ {X ′i}, each is a function of X ′i, and (b) X is a
function of Ck. These two conditions imply X is also a function of X ′i. Thus, we
have the third property proven.

Therefore, instead of solving Equation (6.3) for every n and every X to obtain
X ′k+1, we propose to use Equation (6.4) as a surrogate indicator of how likely a di-
mension X is indeed X ′k+1 (the larger the indicator, the better). This indicator has
three advantages: (a) it does not require us to discretize X, (b) it is independent
of grid size n, and (c) it can be computed much more efficiently (see Chapter 3).
Note that we are not restricted to this heuristic: If there are enough computational
resources, one can just skip this step and run the solution in Section 6.4.3 for every
dimension X not yet processed.

6.4.3. Discretizing X ′k+1

For readability, we use X to denote X ′k+1 in this section. To find the optimal
discretization of X, for each grid size n, we find the respective discretization of

X that maximizes H(X) − H(X,Ck); we ignore
(

k∑
i=1

H(X ′i)

)
as it has a fixed

value. We prove that this can be solved at multiple grid sizes simultaneously
by dynamic programming. Our derivation in the following in fact extends the
dynamic programming proof of MIC [RRF+11]. That is, the latter proved for the
pairwise case, and we generalize to the multivariate case.

First, w.l.o.g., let X(1) ≤ . . . ≤ X(N) be realizations of X. Further, let

X(j,m) = {X(j), X(j + 1), . . . , X(m)}

where j ≤ m. As before, we write X(1, N) as X. We use H(Ck | 〈X(j,m)〉) to
denote H(Ck) computed using the (m − j + 1) points of DB corresponding to
X(j) to X(m), projected onto the dimensions of Ck. Note that the bins of each
dimension in Ck are intact. To show that the optimal discretization of X maximiz-
ing H(X)−H(X,Ck) can be searched by dynamic programming, we introduce the
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following formulation which will subsequently lead to the solution of our problem.
In particular, for 1 ≤ l ≤ m ≤ N , we write

F (m, l) = max
g:|g|=l

H(Xg(1,m))−H(Xg(1,m), Ck)

where g is a discretization of X(1,m) in to l bins, and Xg(1,m) is the dis-
cretized version of X(1,m) by g. That is, F (m, l) is the maximum value of
H(X(1,m)) −H(X(1,m), Ck) over all discretizations g of X(1,m) into l bins. For
1 < l ≤ m ≤ N , we derive the following recursive formulation of F (m, l) which
gives way to efficiently computing it using dynamic programming, and hence, to
efficiently solving our problem of maximizing H(X)−H(X,Ck).

Theorem 20. We have:

F (m, l) = max
j∈[l−1,m)

j

m
F (j, l − 1)− m− j

m
H(Ck | 〈X(j + 1,m)〉) .

Proof. Let g∗ = arg max
g:|g|=l

H(Xg(1,m))−H(Xg(1,m), Ck). We denote l bins that g∗

generates on X as b(X)1, . . . , b(X)l. We write |b(X)t| as the number of values of X
in b(X)t. For each X ′i ∈ Ck, we denote its bins as b(X ′i)1, . . . , b(X

′
i)n′i.

Let cz =
z∑
t=1

|b(X)t|. Note that each bin of X is non-empty, i.e., cz ≥ z. We use

H(Ck | bt) to denote H(Ck) computed using the points of DB corresponding to
the realizations of X in bt, projected onto Ck.

We write (t, t1, . . . , tk) as the number of points in the cell made up by bins b(X)t,
b(X ′1)t1 , . . . , b(X

′
k)tk . We use (t, ∗, . . . , ∗) to also denote b(X)t. We note that

|(t, ∗, . . . , ∗)| =
n′1∑
t1=1

. . .
n′k∑
tk=1

|(t, t1, . . . , tk)|. We have: F (m, l)
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=
l∑

t=1

|(t, ∗, . . . , ∗)|
m

log
m

|(t, ∗, . . . , ∗)|

−
l∑

t=1

n′1∑
t1=1

. . .

n′k∑
tk=1

|(t, t1, . . . , tk)|
m

log
m

|(t, t1, . . . , tk)|

=
l∑

t=1

n′1∑
t1=1

. . .

n′k∑
tk=1

|(t, t1, . . . , tk)|
m

log
|(t, t1, . . . , tk)|
|(t, ∗, . . . , ∗)|

=
l−1∑
t=1

n′1∑
t1=1

. . .

n′k∑
tk=1

|(t, t1, . . . , tk)|
m

log
|(t, t1, . . . , tk)|
|(t, ∗, . . . , ∗)|

+

n′1∑
t1=1

. . .

n′k∑
tk=1

|(l, t1, . . . , tk)|
m

log
|(l, t1, . . . , tk)|
|(l, ∗, . . . , ∗)|

=
cl−1

m
×

l−1∑
t=1

n′1∑
t1=1

. . .

n′k∑
tk=1

|(t, t1, . . . , tk)|
cl−1

log
|(t, t1, . . . , tk)|
|(t, ∗, . . . , ∗)|

+
|(l, ∗, . . . , ∗)|

m
×

n′1∑
t1=1

. . .

n′k∑
tk=1

|(l, t1, . . . , tk)|
|(l, ∗, . . . , ∗)|

log
|(l, t1, . . . , tk)|
|(l, ∗, . . . , ∗)|

=
cl−1

m
F (cl−1, l − 1)− m− cl−1

m
H(Ck | b(X)l)

=
cl−1

m
F (cl−1, l − 1)− m− cl−1

m
H(Ck | 〈X(cl−1 + 1,m)〉) .

In the last line,

l−1∑
t=1

n′1∑
t1=1

. . .

n′k∑
tk=1

|(t, t1, . . . , tk)|
cl−1

log
|(t, t1, . . . , tk)|
|(t, ∗, . . . , ∗)|

is equal to F (cl−1, l− 1) because otherwise, we could increase F (m, l) by choosing
a different discretization of X(1, cl−1) into l − 1 bins. This in turn contradicts
our definition of F (m, l). Since cl−1 ∈ [l − 1,m) and F (m, l) is maximal over all
j ∈ [l − 1,m), we arrive at the final result.

We design a dynamic programming search following Theorem 20, and identify the

best discretizations of X at different grid sizes n <
N (1−ε)

max({n′i}ki=1)
. Then, we use

Equation (6.3) to identify the optimal discretization of X.

We present the pseudo-code of our method in Algorithm 3. Similarly to CMI++,
if we use the original set of cut points per dimension, the time complexity of using
dynamic programming for each dimension is O(N3), which would be restrictive
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Algorithm 3: COMPUTING MAC
1: R = {X1, . . . , XD}
2: C = ∅
3: Pick X ′1 and X ′2 according to Section 6.4.1
4: R = R \ {X ′1, X ′2}
5: C = C ∪ {X ′1, X ′2}
6: for k = 2→ D − 1 do
7: Pick X ′k+1 ∈ R according to Section 6.4.2
8: R = R \ {X ′k+1}
9: C = C ∪ {X ′k+1}

10: Discretize X ′k+1 according to Section 6.4.3
11: end for
12: Compute MAC using the grid obtained

for large data. To address this, we also impose a maximum grid size max_grid and
limit its number of cut points per dimension to c × max_grid with c > 1. Again,
we achieve this by equal-frequency binning on the dimension with the number of
bins equal to (c × max_grid + 1). In this chapter, we set c = 2 according to our
preliminary analysis.

The time complexity of MAC includes (a) the cost of pre-sorting the values of
all dimensions O(DN logN), (b) the cost of finding and discretizing X ′1 and X ′2
O(D2N3(1−ε)), and (c) the cost of finding and discretizing subsequent dimensions
O(D2N + DN3(1−ε)). The overall complexity is O(D2N3(1−ε)). As we fix ε to 0.5 in
our implementation, the complexity of MAC is O(D2N1.5).

6.5. Experiments
For assessing the performance of MAC in detecting pairwise correlations, we com-
pare against MIC [RRF+11] and DCOR [SR09], two state-of-the-art correlation
measures. However, neither MIC nor DCOR are directly applicable in the mul-
tivariate setting. In order to make a meaningful comparison, we consider two
approaches for extending these methods: (a) taking the sum of pairwise corre-
lation scores and normalizing it by the total number of pairs, and (b) taking the
maximum of these scores. Empirically, we found the second option to yield best
performance, and hence, we use this as the multivariate extension for both MIC
and DCOR. Note that we have also compared MAC and CMI++ and the results
show that they perform relatively similar. So we skip CMI++ to better focus on
demonstrating the benefits of MAC.

6.5.1. Synthetic data

To evaluate how MAC performs in different settings, we first use synthetic data.
We aim to show MAC can successfully detect both pairwise and multivariate cor-
relations.
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Assessing functional correlations. As a first experiment, we investigate whether
MAC can detect linear and non-linear functional correlations. To this end, we
create data sets simulating four different functions.

As performance metric we use the power of the measures, as in [RRF+11]: For
each function, the null hypothesis is that the data dimensions are statistically in-
dependent. For each correlation measure, we determine the cutoff for testing the
independence hypothesis by (a) generating 100 data sets of a fixed size, (b) com-
puting the correlation score of each data set, and (c) setting the cutoff according to
the significance level α = 0.05. We then generate 100 data sets with correlations,
adding Gaussian noise. The power of the measure is the proportion of the new
100 data sets whose correlation scores exceed the cutoff.

Results on pairwise functional correlations. We create data sets of 1000 data
points, using respectively a linear, cubic, sine, and circle as generating functions.
Recall that for pairwise cases, we search for the optimal discretization of one di-
mension at a time (Section 6.4.1). We claim this leads to better quality than MIC,
which heuristically fixes a discretization on the remaining dimension.

We report the results in Figure 6.1. Overall, we find that MAC outperforms MIC
on all four functions. Further, we see that MAC and DCOR have about the same
power in detecting linear and cubic correlations. For the more complex correla-
tions, the performance of DCOR starts to drop. This suggests MAC is better suited
than DCOR for measuring and detecting strongly non-linear correlations.

Results on multivariate functional correlations. Next we consider multivariate
correlations. To this end we again create data sets with 1000 data points, but
of differing dimensionality. Among the functions is a multi-dimensional spiral.
Figure 6.2 shows an example 3-d spiral function.

We show the results for 4-variate, 32-variate, and 128-variate functions in Fig-
ures 6.3, 6.4, and 6.5, respectively. We see that MAC outperforms both MIC and
DCOR in all cases. We also see that MAC is well suited for detecting multivariate
correlations.

We also use synthetic data sets with multivariate functional correlations to study
the parameterization of MAC w.r.t. to ε and c. In particular, to examine the sen-
sitivity of MAC to ε, we fix c = 2. To examine the sensitivity of MAC to c, we
fix ε = 0.5. For illustration purposes, we show the results for 32-variate functions
(at noise = 20%) in Figures 6.6 and 6.7. Results on other dimensionality exhibit
a similar trend, and hence, are skipped. Going over the two figures, we can see
that with 0.4 ≤ ε ≤ 0.5, the performance of MAC (in terms of statistical power)
is quite stable. However, ε = 0.5 takes the least runtime (as the larger ε is, the
faster MAC is). Thus, we choose to set ε = 0.5 in the rest of this chapter. On
the other hand, we notice that the performance of MAC is fairly robust to c; in
particular, c = 2 yields an overall good quality. Thus, we recommend to use c = 2
in the remaining experiments. We note that these settings are suggestive to the
experiments performed in this chapter only. For other scenarios, further search of
a suitable parameterization might be required.

123



6. Multivariate Maximal Correlation Analysis

0
0.2
0.4
0.6
0.8
1

0 0.2 0.4 0.6 0.8 1

Po
w
er

Noise Level

MAC
MIC
DCOR

(a) Linear

0
0.2
0.4
0.6
0.8
1

0 0.2 0.4 0.6 0.8 1

Po
w
er

Noise Level

MAC
MIC
DCOR

(b) Cubic

0
0.2
0.4
0.6
0.8
1

0 0.2 0.4 0.6 0.8 1

Po
w
er

Noise Level

MAC
MIC
DCOR

(c) Sine

0
0.2
0.4
0.6
0.8
1

0 0.2 0.4 0.6 0.8 1

Po
w
er

Noise Level

MAC
MIC
DCOR

(d) Circle

Figure 6.1.: [Higher is better] Baseline results for 2-dimensional functions, statis-
tical power vs. noise.

Assessing non-functional correlations. Finally, we consider multivariate non-
functional correlations. To this end we generate data with density-based subspace
clusters as in [MGAS09]. For each dimensionality r < D, we select w subspaces Sc
having r dimensions (called correlated subspaces), and embed two density-based
clusters representing correlation patterns. Since density-based clusters can have
arbitrarily complex shapes and forms, we can simulate non-functional correlations
of arbitrary complexity. For each correlated subspace, we create another subspace
by substituting one of its dimensions by a randomly sampled noisy dimension.
Thus, in total, we have 2w subspaces. We compute the correlation score for each of
these subspaces, and pick the top-w subspaces St with highest scores. The power

of the correlation measure is identified as its precision and recall, i.e.,
|Sc ∩ St|

w
since |Sc| = |St| = w. We add noise as above.

Results on non-functional correlations. We create data sets with 1000 data
points, of varying dimensionality. For each value of r and w, we repeat the above
process 10 times and consider the average results, noting that the standard devi-
ations are very small. As a representative, we present the results with w = 14 in
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Figure 6.2.: 3-d spiral function.
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Figure 6.3.: [Higher is better] Statistical power vs. noise for 4-dimensional func-
tions.

Figure 6.8. We see that compared to both MIC and DCOR, MAC identifies these
correlations best. Notably, its performance is consistent across different dimen-
sionalities. In addition, MAC is robust against noise.

Scalability. Finally, we examine scalability of measures with regard to dimension-
ality and data size. For the former, we generate data sets with 1000 data points
and dimensionality varied. For the latter, we generate data sets with dimension-
ality 4 and data size varied. We show the results in Figure 6.9. Each result is the
average of 10 runs. Overall, in both dimensionality and data size, we find that
MAC scales much better than MIC and is close to DCOR.

The experiments so far show that MAC is a very efficient and highly accurate
multivariate correlation measure.

6.5.2. Real-world data

Next, we consider real-world data. We apply MAC in two typical applications of
correlations measures in data analysis: cluster analysis and data exploration.
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Figure 6.4.: [Higher is better] Statistical power vs. noise for 32-dimensional func-
tions.
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Figure 6.5.: [Higher is better] Statistical power vs. noise for 128-dimensional func-
tions.

Cluster analysis. For cluster analysis, it has been shown that mining subspace
clusters is particularly useful when the subspaces show high correlation, i.e., in-
clude few or no irrelevant dimensions [MGAS09]. Thus, in this experiment, we
plug MAC and MIC into the Apriori subspace search framework to assess their
performance. Here, we omit DCOR as we saw above that MIC and DCOR per-
form similarly on multivariate data. Instead, we consider ENCLUS [CFZ99] as
a baseline. Note that ENCLUS computes total correlation using equal-width dis-
cretization rather than correlation-aware discretization. We show an enhanced
performance by using MAC instead.

Our setup follows that in Chapter 3: We use each measure for subspace search,
and apply DBSCAN [EKSX96] to the top 100 subspaces with highest correlation
scores. Using these we calculate Accuracy and F1 scores. However, different from
Chapter 3, here for each method tested, we try different parameter settings and
pick the best result. Regarding the data, we use 7 labeled data sets from different
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Figure 6.6.: [Higher is better] Sensitivity to ε.

domains (N ×D): Musk (6598× 166), Letter Recognition (20000× 16), PenDigits
(7494×16), Waveform (5000×40), WBCD (569×30), Diabetes (768×8), and Glass
(214×9), taken from the UCI ML repository. For each data set, we regard the class
labels as the ground truth clusters.

The results are in Table 6.1. Overall, MAC achieves the highest clustering quality.
It consistently outperforms MIC and ENCLUS. Notably, it discovers higher dimen-
sional subspaces. Recall that Apriori imposes the requirement that each subspace
is only considered if all of its child subspaces show high correlation. Whereas MAC
correctly identifies correlations in these lower-order projections, the other meth-
ods assign inaccurate correlation scores more often, which prevents them from
finding the larger correlated subspaces. As a result, MAC detects correlations in
multivariate real-world data sets better than its competitors.

By applying a Friedman test [Dem06] at significance level α = 0.05, we find that
the observed differences in Accuracy and F1 are significant. By performing a post-
hoc Nemenyi test we learn that MAC significantly outperforms MIC and ENCLUS.

Discovering novel correlations. To evaluate the efficacy of MAC in data explo-
ration, we also apply MAC with 4S search scheme on the climate data set (cf.,
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Figure 6.7.: [Higher is better] Sensitivity to c.

Chapter 4). The results also show that MAC is able to discover novel and signifi-
cant correlations.

6.6. Conclusions
We introduced MAC, a maximal correlation measure for multivariate data as well
as another correlation-aware discretization technique. In short, MAC discovers
correlation patterns by identifying the discretizations of all dimensions that max-
imize their normalized total correlation. We proposed an efficient estimation of
MAC that also ensures high quality. Experiments showed that MAC successfully
discovered interesting complex correlations in real-world data sets.

The research proposed here gives way to computing the total correlation on em-
pirical data, which has wide applications in various fields. In addition, it demon-
strates the potential of multivariate maximal correlation analysis to data analytics.
Through MAC, we have shown that searching for the optimal transformations of
all dimensions concurrently is impractical. Instead, we conjecture that: To effi-
ciently solve the optimization problem in Definition 17, one needs to find an order of
{Xi}Di=1 to process as well. Solving this conjecture for other general cases is beyond
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Figure 6.8.: [Higher is better] Precision/Recall vs. noise for non-functional corre-
lations (i.e., clusters).
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Figure 6.9.: [Lower is better] Scalability of correlation measures with regard to
dimensionality and data size.

the scope of this thesis, and reserved for our future work on maximal correlation
analysis.
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MAC MIC ENCLUS

Musk (6598× 166)
F1 0.89 0.66 0.62
Accuracy 0.88 0.70 0.63

Letter (20000× 16)
F1 0.82 0.64 0.64
Accuracy 0.84 0.69 0.71

PenDigits (7494× 16)
F1 0.85 0.48 0.50
Accuracy 0.88 0.75 0.66

Waveform (5000× 40)
F1 0.50 0.28 0.31
Accuracy 0.65 0.37 0.40

WBCD (569× 30)
F1 0.74 0.55 0.57
Accuracy 0.92 0.80 0.75

Diabetes (768× 8)
F1 0.72 0.54 0.25
Accuracy 0.78 0.53 0.67

Glass (214× 9)
F1 0.70 0.32 0.26
Accuracy 0.70 0.47 0.52

Table 6.1.: Clustering results on real-world data sets.
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7. Supervised MAC and MAC for
Mixed Typed data

In Chapter 6, we propose MAC which searches for the optimal discretization to
compute total correlation on real-valued data sets. In this chapter, we introduce
two extensions of MAC to broaden its applicability.

In the first extension, we aim at incorporating external information to the dis-
cretization process of MAC. An example of external information is class labels.
Through this, we show that MAC can be adapted to the supervised setting where
expert knowledge is available. Thus, we name this variant of MAC as SUPMAC
for supervised MAC. Taking into account class labels, the discretization of SUP-
MAC is potentially suited for supervised tasks, such as classification. In addition,
SUPMAC can be combined with subspace search schemes (e.g., the ones proposed
in Chapters 3 and 4) for supervised feature selection. We will shortly discuss the
relation between SUPMAC and each type of related work in the following.

In the second extension, we aim at adapting MAC to mixed typed data, i.e.,
we increase its applicability in real-world applications. We name this variant
of MAC as MIXEDMAC. In principle, MIXEDMAC is able to search for the op-
timal discretization of real-valued dimensions taking into account the available
discrete/categorical dimensions, instead of ignoring them. To this end, MIXED-
MAC is applicable to heterogeneous data types and can be used as an alternative
to DECOREL (see Chapter 5) for analyzing single data sets. Before going into the
details of both extensions, we discuss their respective related work.

7.1. Related Work
Here, we discuss related work of both SUPMAC and MIXEDMAC.

Related work to SUPMAC. As aforementioned, the discretization of SUPMAC can
be used for supervised tasks, such as classification. To this end, we note that
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SUPMAC is different from existing supervised discretization methods [FI93, Ker92,
KC04, Bou06] in two aspects:

• Supervised discretization aims at finding the discretization optimizing the
correlation between each individual dimension and the class label. In con-
trast, SUPMAC searches for the discretization optimizing the correlation of
all dimensions given the class label. That is, the class label serves as a “guide-
line” for SUPMAC in finding good discretization.

• Since the class label is taken into account during the discretization process,
the result of SUPMAC is potentially suited for supervised tasks, such as clas-
sification. Further, its discretization can also be used for correlation analysis.
Supervised discretization, on the other hand, does not optimize the correla-
tion of all dimensions. Thus, its result may not be relevant for correlation
analysis.

The second important property of SUPMAC is that it can be combined with sub-
space search schemes for supervised feature selection. We note that in Chapter 6,
we did combine MAC with subspace search methods for the unsupervised set-
ting, namely clustering analysis and knowledge discovery. The combination of
SUPMAC and subspace search in turn potentially yields subspaces that are ben-
eficial supervised tasks. To this end, SUPMAC is related to supervised feature
selection [Hal00, PLD05, SSG+07, GN09, RLHEC10, SM11] which has been dis-
cussed in Chapter 1. Nevertheless, the connection is not that obvious: Super-
vised feature selection methods consider correlation among selected dimensions
to represent redundancy, which should be minimized. SUPMAC in turn optimizes
correlation of all dimensions. However, we note that this correlation is condi-
tioned on the class label. On the other hand, recent work in supervised feature
selection [BPZL12, HZW+13, NCRB14] suggests that maximizing correlation of
dimensions given the class label can also lead to a relevant set of dimensions. As a
result, we find the relevancy of SUPMAC to feature selection. Yet, SUPMAC here
provides a more global picture than [BPZL12, HZW+13, NCRB14]: It considers
total correlation while the latter considers mutual information only. We will show
in our experiments that this brings better performance gain w.r.t. classification.

Related work to MIXEDMAC. DECOREL is capable of performing correlation anal-
ysis for mixed data types. Its correlation measure is pairwise. MIXEDMAC on
the other hand is a multivariate correlation measure. In addition, the correlation
measure of DECOREL uses both cumulative entropy and Shannon entropy. MIXED-
MAC in turn is based entirely on Shannon entropy. This could make the scores
produced by MIXEDMAC easier to understand. This is because till now, Shannon
entropy has been studied much more comprehensively than cumulative entropy.
One could also apply total correlation to mixed data types by performing naïve
discretization (e.g., equal-width and equal-frequency) on real-valued dimensions.
As we have explained many times in this thesis, this practice however is subopti-
mal. There is also work in the database area for analyzing related columns with
mixed data types [ZHO+11]. Its solution tries to separate columns with different
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types. MIXEDMAC on the other hand brings them together for a better process-
ing. When combining MIXEDMAC with subspace search schemes, we also see
related work on mining clusters and outliers in the setting of heterogeneous data
types [OGP06, KG10, MAS09]. However, similarly to methods for subspace clus-
tering and outlier detection, such techniques are closely tied to the specific notion
of cluster or outlier used.

7.2. SUPMAC: MAC with External Information
Consider external knowledge expressed in the form of a discrete/categorical
multivariate/univariate random variable Z. We further assume that Z has N
realizations—each associated with a record of DB. In practice, Z can represent
class labels. We consider a setting where we need to condition on Z in our com-
putation, i.e., how the knowledge about Z changes our results. An example of
such a setting is supervised feature selection [NCRB14]. W.l.o.g., we assume that
Z is univariate and discrete/categorical. The following materials extend straight-
forwardly to the case when Z is multivariate.

Our goal now is to compute MAC(DB | Z) which is given by:

MAC(DB | Z ) = max
G={g1,...,gD}

∀i 6=j:ni×nj<N1−ε

Tn(DBG | Z )

where

Tn(DBG | Z) =
T (DBG | Z)

D∑
i=1

log ni −max({log ni}Di=1)

.

Intuitively, Tn(DBG | Z) is the normalized total correlation of DBG conditioned
on Z. Below we show that each step of the original MAC algorithm can be adapted
to incorporate Z. As a result, solving MAC(DB | Z) is analogous to solving
MAC(DB). This completes our extension of MAC to create SUPMAC.

7.2.1. Extending Section 6.4.1

We aim to compute MAC(X, Y | Z) for every pair of dimensions (X, Y ) and pick
(X ′1, X

′
2) with the largest score. We achieve this by cumulative entropy. We for-

mulate a similar problem: Given a grid size of Y , find the respective discretization
g of Y that minimizes h(X | Z, Y g). Solving this problem, we essentially find
the optimal discretization of Y at the given grid size that intuitively maximizes
H(X | Z)−H(X | Z, Y ) without having to discretize X at the same time.

To this end, we can solve our new optimization problem using our calculation of
CMI++ (cf., Chapter 3). For readability, we re-present the proof for this particular
problem, which is simpler than the one in CMI++. In particular, in the following
we prove that our new optimization problem can be solved at multiple grid sizes
simultaneously by dynamic programming.
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First, we use h(X | Z, 〈Y (j,m)〉) to denote h(X | Z) computed using the (m−j+1)
points of DB corresponding to Y (j) to Y (m), projected onto X and Z. To show
that the optimal discretization of X minimizing h(X | Z, Y ) can be searched by
dynamic programming, we introduce the following formulation which will subse-
quently lead to the solution of our problem. In particular, for 1 ≤ l ≤ m ≤ N , we
write

f(m, l) = min
g:|g|=l

h(X | Z, Y g(1,m))

where g is a discretization of Y (1,m) in to l bins, and Y g(1,m) is the discretized
version of Y (1,m) by g. That is, f(m, l) is the minimum valued of h(X | Z, Y (1,m))
taken over all discretization g of Y (1,m) into l bins. For 1 < l ≤ m ≤ N , we derive
the following recursive formulation of f(m, l) which gives way to computing it
using dynamic programming, and hence, to solving our problem of minimizing
h(X | Z, Y ).

Theorem 21. We have:

f(m, l) = min
j∈[l−1,m)

j

m
f(j, l − 1) +

m− j
m

h(X | Z, 〈Y (j + 1,m)〉) .

Proof. Let g∗ = arg min
g:|g|=l

h(X | Z, Y g(1,m)). We denote l bins that g∗ generates on

Y as b1, . . . , bl. We write |bt| as the number of values of Y in bt. We denote the bins
of Z as b(Z)1, . . . , b(Z)nα.

Further, let cβ =

β∑
t=1

|bt|. Note that each bin of Y is non-empty, i.e., cβ ≥ β. We use

h(X | Z, bt) to denote h(X | Z) computed using the points of DB corresponding
to the realizations of Y in bt, projected onto X and Z.

We write |(t, tα)| as the number of points in the cell made up by bins bt, b(Z)tα.

We have: f(m, l)

=
l∑

t=1

nα∑
tα=1

|(t, tα)|
m

h(X | b(Z)tα , bt)

=
l−1∑
t=1

nα∑
tα=1

|(t, tα)|
m

h(X | b(Z)tα , bt) +
|bl|
m

nα∑
tα=1

|(l, tα)|
|bl|

h(X | b(Z)tα , bl)

=
l−1∑
t=1

nα∑
tα=1

|(t, tα)|
m

h(X | b(Z)tα , bt) +
|bl|
m
h(X | Z, bl)

=
cl−1

m

l−1∑
t=1

nα∑
tα=1

|(t, tα)|
cl−1

h(X | b(Z)tα , bt) +
m− cl−1

m
h(X | Z, 〈Y (cl−1 + 1,m)〉)

=
cl−1

m
f(cl−1, l − 1) +

m− cl−1

m
h(X | Z, 〈Y (cl−1 + 1,m)〉) .
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Note that
l−1∑
t=1

nα∑
tα=1

|(t, tα)|
cl−1

h(X | b(Z)tα , bt) is equal to f(cl−1, l− 1) as otherwise, we

could decrease f(m, l) by choosing a different discretization of Y (1, cl−1) into l− 1
bins. This in turn contradicts our definition of f(m, l). Since cl−1 ∈ [l − 1,m) and
f(m, l) is minimal over all j ∈ [l − 1,m), we arrive at the final result.

7.2.2. Extending Section 6.4.2

To compute MAC(X,Ck | Z), we need to maximize(
k∑
i=1

H(X ′i | Z)

)
+H(X | Z)−H(X | Z,Ck)−H(Ck | Z)

log n+
k∑
i=1

log n′i −max({log n} ∪ {log n′i}ki=1)

(7.1)

where n <
N (1−ε)

max({n′i}ki=1)
and X is discretized into n bins. To efficiently identify

X ′k+1 without having to discretize all dimensions left, we need an objective func-
tion that is free of the bin size of each candidate dimension X. Thus, we consider
the following term(

k∑
i=1

H(X ′i | Z)

)
+ h(X | Z)− h(X | Z,Ck)−H(Ck | Z)

h(X | Z) +
k∑
i=1

log n′i −max({log n′i}ki=1)

. (7.2)

Informally speaking, we can regard both Equation (7.1) and (7.2) to represent
the normalized mutual correlation of X and all dimensions in Ck given Z. They
have very similar properties. First, their values are in [0, 1]. Second, they are both
equal to 0 iff (discretized) X and all dimensions in Ck are statistically independent
given Z (conditioning reduces both Shannon and cumulative entropy). Third, they
are both maximal when there exists X ′i ∈ Ck such that (discretized) X and all
dimensions in Ck \ {X ′i}, each is a function of X ′i. The detailed explanation of all
three properties is as before.

Therefore, instead of solving Equation (7.1) for every n and every X to obtain
X ′k+1, we propose to use Equation (7.2) as a surrogate indicator of how likely
a dimension X is indeed X ′k+1—the larger the indicator, the better. Note that
Equation (7.2) can still be computed efficiently as Z is discrete/categorical.

7.2.3. Extending Section 6.4.3

To find the optimal discretization of X, for each grid size n, we find the respective
discretization of X that maximizes H(X | Z) −H(X,Ck | Z), which is equivalent

to maximizing H(X,Z)−H(X,Z,Ck); we ignore
(

k∑
i=1

H(X ′i | Z)

)
as it has a fixed
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7. Supervised MAC and MAC for Mixed Typed data

value. We prove that this can be solved at multiple grid sizes simultaneously by
dynamic programming.

We use H(Ck | 〈X(j,m)〉, Z) to denote H(Ck | Z) computed using the (m− j + 1)
points of DB corresponding to X(j) to X(m), projected onto the dimensions of
Ck and Z. Note that the bins of each dimension in Ck are intact. Similarly, the
bins of Z are intact. To show that the optimal discretization of X maximizing
H(X,Z) − H(X,Z,Ck) can be searched by dynamic programming, we introduce
the following formulation which will subsequently lead to the solution of our prob-
lem. In particular, for 1 ≤ l ≤ m ≤ N , we write

F (m, l) = max
g:|g|=l

H(Xg(1,m), Z)−H(Xg(1,m), Z, Ck)

where g is a discretization of X(1,m) in to l bins, and Xg(1,m) is the discretized
version of X(1,m) by g. That is, F (m, l) is the maximum value of H(X(1,m), Z)−
H(X(1,m), Z, Ck) taken over all discretization g of X(1,m) into l bins. For 1 < l ≤
m ≤ N , we derive the following recursive formulation of F (m, l) which gives way
to efficiently computing it using dynamic programming, and hence, to efficiently
solving our problem of maximizing H(X,Z)−H(X,Z,Ck).

Theorem 22. We have:

F (m, l) = max
j∈[l−1,m)

j

m
F (j, l − 1)− m− j

m
H(Ck | 〈X(j + 1,m)〉, Z) .

Proof. Let g∗ = arg max
g:|g|=l

H(Xg(1,m), Z)−H(Xg(1,m), Z, Ck).

We denote l bins that g∗ generates on X as b(X)1, . . . , b(X)l. We write |b(X)t| as
the number of values of X in b(X)t.

For each X ′i ∈ Ck, we denote its bins as b(X ′i)1, . . . , b(X
′
i)n′i. For Z, we denote its

bins as b(Z)1, . . . , b(Z)nz .

Let cβ =

β∑
i=1

|b(X)t|. Note that each bin of X is non-empty, i.e., cβ ≥ β. We use

H(Ck | bt) to denote H(Ck) computed using the points of DB corresponding to
the realizations of X in bt, projected onto Ck.

We write (t, tz, t1, . . . , tk) as the number of points in the cell made up by bins
b(X)t, b(Z)tz , b(X

′
1)t1 , . . . , b(X

′
k)tk . We use (t, ∗, . . . , ∗) to also denote b(X)t. We

note that

|(t, ∗, . . . , ∗)| =
n′1∑
t1=1

. . .

n′k∑
tk=1

|(t, t1, . . . , tk)| .
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We have: F (m, l)

=
l∑

t=1

nz∑
tz=1

|(t, tz, ∗, . . . , ∗)|
m

log
m

|(t, tz, ∗, . . . , ∗)|

−
l∑

t=1

nz∑
tz=1

n′1∑
t1=1

. . .

n′k∑
tk=1

|(t, tz, t1, . . . , tk)|
m

log
m

|(t, tz, t1, . . . , tk)|

=
l∑

t=1

nz∑
tz=1

n′1∑
t1=1

. . .

n′k∑
tk=1

|(t, tz, t1, . . . , tk)|
m

log
|(t, tz, t1, . . . , tk)|
|(t, tz, ∗, . . . , ∗)|

=
l−1∑
t=1

nz∑
tz=1

n′1∑
t1=1

. . .

n′k∑
tk=1

|(t, tz, t1, . . . , tk)|
m

log
|(t, tz, t1, . . . , tk)|
|(t, tz, ∗, . . . , ∗)|

+
nz∑
tz=1

n′1∑
t1=1

. . .

n′k∑
tk=1

|(l, tz, t1, . . . , tk)|
m

log
|(l, tz, t1, . . . , tk)|
|(l, tz, ∗, . . . , ∗)|

=
cl−1

m
×

l−1∑
t=1

nz∑
tz=1

n′1∑
t1=1

. . .

n′k∑
tk=1

|(t, tz, t1, . . . , tk)|
cl−1

log
|(t, tz, t1, . . . , tk)|
|(t, tz, ∗, . . . , ∗)|

+
|(l, ∗, . . . , ∗)|

m
×

nz∑
tz=1

|(l, tz, ∗, . . . , ∗)|
|(l, ∗, . . . , ∗)|

×

n′1∑
t1=1

. . .

n′k∑
tk=1

|(l, tz, t1, . . . , tk)|
|(l, tz, ∗, . . . , ∗)|

log
|(l, tz, t1, . . . , tk)|
|(l, tz, ∗, . . . , ∗)|

=
cl−1

m
F (cl−1, l − 1)− m− cl−1

m
H(Ck | b(X)l, Z)

=
cl−1

m
F (cl−1, l − 1)− m− cl−1

m
H(Ck | 〈X(cl−1 + 1,m)〉, Z) .

In the second last line,

l−1∑
t=1

nz∑
tz=1

n′1∑
t1=1

. . .

n′k∑
tk=1

|(t, tz, t1, . . . , tk)|
cl−1

log
|(t, tz, t1, . . . , tk)|
|(t, tz, ∗, . . . , ∗)|

is equal to F (cl−1, l− 1) because otherwise, we could increase F (m, l) by choosing
a different discretization of X(1, cl−1) into l − 1 bins. This in turn contradicts
our definition of F (m, l). Since cl−1 ∈ [l − 1,m) and F (m, l) is maximal over all
j ∈ [l − 1,m), we arrive at the final result.

7.3. MIXEDMAC: MAC with Mixed Typed Data
To extend MAC to create MIXEDMAC, we first assume that among D dimen-
sions, there are Dr real-valued dimensions and Dc discrete/categorical dimen-
sions. W.l.o.g., we write the set of real-valued dimensions as X = {X1, . . . , XDr},
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7. Supervised MAC and MAC for Mixed Typed data

Algorithm 4: COMPUTING MAC
1: R = {X1, . . . , XDr}
2: C = Y
3: for k = 1→ Dr do
4: Pick X ′k+1 ∈ R according to Section 6.4.2
5: R = R \ {X ′k+1}
6: C = C ∪ {X ′k+1}
7: Discretize X ′k+1 according to Section 6.4.3
8: end for
9: Compute MAC using the grid obtained

and the set of discrete/categorical dimensions as Y = {Y1, . . . , YDc}. Each dimen-
sion Yj has ncj bins. Note that if ncj = 1, Yj does not contribute to MAC(DB) at all.
Thus, we can safely assume that ncj ≥ 2. This implies that if there does not exist
Yj with ncj ≥ 2, solving MAC(DB) essentially reduces to the case when all dimen-
sions are real-valued. In addition, as a limitation of this thesis, we require that
ncj is relatively small compared to N . This is to avoid inflated pairwise correlation
scores [RRF+11]. More in particular, we assume that ncj1 × n

c
j2
< N1−ε.

Consider a grid G = {g1, . . . , gDr} that partitions each Xi into nri = |gi| bins. The
total correlation of DB given G is:

T (DBG) =
Dr∑
i=1

H(Xgi
i ) +

Dc∑
j=1

H(Yj)−H(Xg1
1 , . . . , X

gDr
Dr , Y1, . . . , YDc) .

Let nc = max({log nci}D
c

i=1). As in Chapter 6, for an unbiased optimization we use
the normalized total correlation, which is given as

Tn(DBG) =
T (DBG)

Dr∑
i=1

log nri +
Dc∑
j=1

log nci −max({log nri}D
r

i=1 ∪ {nc})
.

MAC(DB) is given by:

MAC(DB) = max
G={g1,...,grD}

∀i1 6=i2:nri1
×nri2<N

1−ε

Tn(DBG) .

As Y 6= ∅, to compute MAC(DB), we in fact can skip the first step of identifying
two initial dimensions X ′1 and X ′2 of X. Instead, we only need to proceed by pick-
ing one dimension of X at a time, i.e., only the details of Sections 6.4.2 and 6.4.3
are applicable. The modified pseudo-code is in Algorithm 4. With these, we have
completed our construction of MIXEDMAC.
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7.4. Experiments

7.4. Experiments
In this section, we report our empirical study on SUPMAC and MIXEDMAC. For
each method, we first experiment it with synthetic data sets to assess its statistical
power. Then, we use real-world data sets to better understand its performance in
practical scenarios.

7.4.1. Results on SUPMAC

In the following, we study the performance of SUPMAC on both synthetic and
real-world data sets.

7.4.1.1. Synthetic data

Statistical power. We follow the same procedure in Chapter 6 to test the statistical
power of SUPMAC. However, here we need to generate the class label as well.
Thus, the data generation process needs to be slightly modified. In the following,
we only highlight these modifications. The details that are not mentioned remain
intact.

First, we consider functional correlations (i.e., the correlation among dimensions
is functional). For each function f , to create a data set with D correlated dimen-
sions, we first generate (D − 1) dimensions X1, . . . , XD−1. Then, we generate the
XD = f(X1, . . . , XD−1). Next, we generate another dimension Z = f(X1, . . . , XD).
Finally, we discretize Z using equal-frequency to obtain the discrete class label. In
this way, the data set created contains a correlation among dimensions X1, . . . , XD

as well as a correlation between all dimensions and the class label. A data set with
no correlation among its dimensions is created by (a) generating a data set with
correlation and (b) replacing the data in one dimension with uniformly distributed
data.

We now consider non-functional correlations (i.e., the correlation among dimen-
sions is non-functional). To create a data set with D correlated dimensions, we
generate a D-dimensional density-based cluster. Next, we generate another di-
mension Z = f(X1, . . . , XD) where f is a linear function (other functions are also
considered but the results show a similar tendency). Finally, we discretize Z using
equal-frequency to obtain the discrete class label. In this way, the data set created
contains a non-functional correlation among dimensions X1, . . . , XD as well as a
functional correlation between all dimensions and the class label. A data set with
no correlation among its dimensions is again obtained by replacing a dimension
with uniformly distributed data.

As competitor, in Chapter 6, we have shown that MAC outperforms both
MIC [RRF+11] and DCOR [SR09] in terms of statistical power. So we test SUP-
MAC against MAC only. Note that when testing MAC, we ignore the class label.

The results are in Figures 7.1 to 7.5. We can see that SUPMAC is very close to
MAC in terms of statistical power. This shows that the discretization of SUPMAC
also successfully optimizes the correlation among dimensions.
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Figure 7.1.: [Higher is better] Results on MAC and SUPMAC: Statistical power vs.
noise for 2-dimensional functions.
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Figure 7.2.: [Higher is better] Results on MAC and SUPMAC: Statistical power vs.
noise for 4-dimensional functions.

Similarly to MAC, we use synthetic data sets with functional correlations to study
the parameterization of SUPMAC. In particular, to examine the sensitivity of SUP-
MAC to ε, we fix c = 2. To examine the sensitivity of SUPMAC to c, we fix ε = 0.5.
For illustration purposes, we show the results for 32-variate functions (at noise =
20%) in Figures 7.6 and 7.7. As in MAC, we make the observation that ε = 0.5
and c = 2 yield good quality in terms of statistical power. Hence, we will use these
values in the remaining experiments of SUPMAC.

Classification accuracy. In the previous experiment, MAC and SUPMAC have
rather similar statistical power. It is interesting to see if their discretization results
are also suitable for classification. To answer this question, we consider C4.5 as
the classifier, keeping its default parameter setting in WEKA. We also again use
synthetic data sets. However, we now only use those with correlation (generated
as described above). Regarding functional correlations, at each combination (func-
tion, dimensionality, noise level), we use multiple data sets and record the average

140



7.4. Experiments

0
0.2
0.4
0.6
0.8
1

Po
w
er

MAC SupMAC
(a) Noise = 20%

0
0.2
0.4
0.6
0.8
1

Po
w
er

MAC SupMAC
(b) Noise = 80%

Figure 7.3.: [Higher is better] Results on MAC and SUPMAC: Statistical power vs.
noise for 32-dimensional functions.
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Figure 7.4.: [Higher is better] Results on MAC and SUPMAC: Statistical power vs.
noise for 128-dimensional functions.

classification accuracy for each method. Similarly, for non-functional correlations,
we record the average accuracy at each combination (dimensionality, noise level).
The results are in Figures 7.8 to 7.12. We can see that the difference between
SUPMAC and MAC is now clearer with SUPMAC being better. This shows that
by incorporating the class label during the optimization process, the discretization
of SUPMAC is more suitable for the supervised setting. In both experiments, we
observe that SUPMAC takes slightly more time than MAC as it has to consider in
addition the class label. However, the difference is negligible.

7.4.1.2. Real-world data

Supervised feature selection. We now combine SUPMAC with the Apriori search
scheme to create a method for supervised feature selection. As competitors, we
pick InfoGain, GainRatio, and WrapperSE [KJ97] whose implementations are
available in WEKA. We also include MRMR [PLD05], QPFS [RLHEC10], and
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Figure 7.5.: [Higher is better] Results on MAC and SUPMAC: Precision/Recall vs.
noise for non-functional correlations (i.e., clusters).

SPEC [NCRB14], three state of the art techniques for supervised feature selec-
tion. To test the quality of subspaces/feature subsets detected by each method, we
again use C4.5 as the base classifier. Since SUPMAC produces multiple subspaces,
we combine the classification results on these subspaces following [Ho98].

Considering the data, we use 12 labeled data sets from the UCI ML repository
(N × D): Diabetes (768 × 8), Glass (214 × 9), German Credit Data (1000 × 24),
Letter (20000 × 16), Liver Disorders (345 × 6), PenDigits (7494 × 16), Red Wine
Quality (1599× 11), Segment (2310× 16), Waveform (5000× 40), WBC (198× 33),
WBCD (569× 30), and White Wine Quality (4898× 11).

The classification accuracy is in Table 7.1. Going over the results, we can see
that SUPMAC achieves the best overall outcome. In particular, it yields the best
classification accuracy in 8 out of 12 data sets. The good performance of SUPMAC
could be attributed to the fact that it takes into account the correlation of all
dimensions, as well as their association with the class label. In other words, it
provides a more global picture than, e.g., MRMR, QPFS, and SPEC, which focus
on pairwise correlations. All in all, we conclude that by incorporating class label—
a specific type of external information, SUPMAC combined with the Apriori search
yields a supervised feature selection technique which is comparable to state of the
art methods.

Discovering novel correlations. We here apply SUPMAC with 4S search scheme
on the climate data set (cf., Chapter 4). For the class label, we choose a dimension
describing the proportion of time within each hour a window is open. We dis-
cretize this dimension to create a discrete class label with values ‘low’, ‘medium’,
and ‘high’. As baselines, we again consider MRMR, QPFS, SPEC, InfoGain, Gain-
Ratio, and WrapperSE. The classification results are in Table 7.2. We can see that
SUPMAC yields the best accuracy. Besides, we also explore the subspaces found
by SUPMAC and observe the following interesting correlations:

• occupation of building, outdoor temperature, and indoor temperature
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Figure 7.6.: [Higher is better] Sensitivity of SUPMAC to ε.

• room CO2 concentration, indoor humidity, and outdoor humidity

• cooling air temperature, amount of drinking water consumption, and room
CO2 concentration

Those correlations are interesting because the dimensions involved all can impact
the chance the window is open. For instance, if there are too many people in the
building, it is likely that the window is open to get more fresh air, especially during
summer. Likewise, the more CO2 concentration in the room and the higher indoor
humidity, the higher likelihood that the window is open. We note that except
for SUPMAC, no other method tested is able discover all of these correlations.
This highlights the benefits of SUPMAC for both correlation analysis and feature
selection.

7.4.2. Results on MIXEDMAC

To study the performance of MIXEDMAC, we also use both synthetic and real-
world data sets.
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Figure 7.7.: [Higher is better] Sensitivity of SUPMAC to c.

7.4.2.1. Synthetic data: Statistical power

We first generate data sets as in Chapter 6. Then, to create discrete/categorical
dimensions, we pick half of the dimensions and discretize them using equal-
frequency discretization. As competitors, we consider MIC (adapted to mixed
data types as in Chapter 5). DCOR on the other hand requires a suitable distance
function for mixed data types, which could be obtained by considering the func-
tions proposed in [BCK08]. Yet, as our goal is to test correlation measures, not
distance functions, we prefer a measure not involved in such a choice to avoid un-
necessary biases. Thus, we replace DCOR by the measure proposed in DECOREL

(cf., Chapter 5). Similarly to MIC, this measure is pairwise. Thus, we adapt it to
the multivariate setting using the same procedure we apply for MIC. For readabil-
ity, we simply call this measure as DECOREL. However, please do not mistaken it
as the original DECOREL method, which consists of the correlation measure and a
mechanism to generalize from pairwise to multivariate correlations.

The results are in Figures 7.13 to 7.17. We can see that MIXEDMAC consistently
outperforms both MAC and DECOREL across different dimensionality and noise
levels. This shows that MIXEDMAC better captures multivariate correlations of
dimensions with different data types.
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Figure 7.8.: [Higher is better] Results on MAC and SUPMAC: Classification accu-
racy vs. noise for 2-dimensional functions.
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Figure 7.9.: [Higher is better] Results on MAC and SUPMAC: Classification accu-
racy vs. noise for 4-dimensional functions.

In terms of runtime, we observe that MIC and DECOREL scales rather similarly.
The tendency between MIXEDMAC and MIC in turn is analogous to that between
MAC and MIC.

To study the parameterization of MIXEDMAC, we again use synthetic data sets
with functional correlations. For exposition purposes, we display the results for
32-variate functions (at noise = 20%) in Figures 7.18 and 7.19. We see that
ε = 0.5 and c = 2 yield good performance in terms of statistical power, and hence,
we will use these settings in the remaining experiments of MIXEDMAC.

7.4.2.2. Real-world data

Cluster analysis. As in Chapter 6, we plug MIXEDMAC, MIC, and ENCLUS into
the Apriori subspace search framework to assess their performance w.r.t. cluster
analysis. Note that we exclude CMI++ as it does not handle mixed data types.
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Figure 7.10.: [Higher is better] Results on MAC and SUPMAC: Classification ac-
curacy vs. noise for 32-dimensional functions.
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Figure 7.11.: [Higher is better] Results on MAC and SUPMAC: Classification ac-
curacy vs. noise for 128-dimensional functions.

For ENCLUS, we discretize real-valued dimensions using equal-width discretiza-
tion [CFZ99]. We use each of the 3 measures for subspace search, and apply
DBSCAN [EKSX96] to the top subspaces with highest correlation scores. Then,
we calculate Accuracy and F1 scores. Since the data sets used contain mixed data
types, we apply the GoodAll3 distance function in [BCK08] for categorical dimen-
sions.

As further baselines, we include CLIQUE [AGGR98]—a subspace cluster-
ing method using equal-width discretization for real-valued dimensions,
HSM [MAS09]—a subspace clustering method designed to handle mixed data
types, and FEM [DB04]—an unsupervised feature selection method. FEM selects
features by iteratively (a) testing the quality of the current feature set using K-
means clustering, and (b) refining the feature set to improve the clustering quality
(i.e., minimizing the mean-squared error). As the data sets we consider here have
mixed typed dimensions, we combine K-means with the equivalently efficient K-
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Figure 7.12.: [Higher is better] Results on MAC and SUPMAC: Classification ac-
curacy vs. noise for non-functional correlations (i.e., clusters).

Data SUPMAC MRMR QPFS SPEC InfoGain GainRatio WrapperSE

Diabetes 0.76 0.75 0.74 0.74 0.74 0.74 0.73
German 0.75 0.74 0.73 0.70 0.75 0.74 0.75
Glass 0.98 0.97 0.96 0.73 0.98 0.98 0.93
Letter 0.85 0.81 0.83 0.81 0.68 0.68 0.83
Liver 0.65 0.63 0.60 0.68 0.62 0.62 0.64
PenDigits 0.93 0.89 0.87 0.89 0.82 0.84 0.86
Red Wine 0.58 0.60 0.59 0.59 0.59 0.61 0.62
Segment 0.93 0.96 0.96 0.96 0.88 0.88 0.93
Waveform 0.80 0.76 0.65 0.77 0.69 0.68 0.75
WBC 0.76 0.75 0.73 0.76 0.73 0.73 0.76
WBCD 0.94 0.94 0.92 0.92 0.92 0.92 0.92
White Wine 0.58 0.58 0.57 0.59 0.57 0.56 0.58

Table 7.1.: Classification accuracy of SUPMAC, MRMR, QPFS, SPEC, InfoGain,
GainRatio, and WrapperSE (using C4.5) on real-world data sets.

modes [Hua97]. We again plug the GoodAll3 distance function into K-modes. We
also apply DBSCAN on the feature set mined by FEM.

The results are in Table 7.3. We see that MIXEDMAC overall outperforms all com-
petitors. This implies that MIXEDMAC better detects correlated subspaces in real-
world data sets containing heterogeneous data types. We also note that MIXED-
MAC discovers higher dimensional subspaces than other methods tested—a sign
signifying that MIXEDMAC better unveils correlations in the data.

Discovering novel correlations. We also apply MIXEDMAC to the subspace search
of the original DECOREL method and test on TPC-H, Energy, and Census databases.
We compare the groups detected by the modified DECOREL to those of the original
DECOREL. We consider two groups to be similar if 80% of their columns are
similar. The results show that MIXEDMAC and DECOREL have high similarity
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SUPMAC MRMR QPFS SPEC InfoGain GainRatio WrapperSE

0.85 0.75 0.71 0.77 0.64 0.62 0.80

Table 7.2.: Classification accuracy of SUPMAC, MRMR, QPFS, SPEC, InfoGain,
GainRatio, and WrapperSE (using C4.5) on climate data set.
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Figure 7.13.: [Higher is better] Results on MIXEDMAC, MIC, and DECOREL: Sta-
tistical power vs. noise for 2-dimensional functions.

in their results. This means that MIXEDMAC also is capable of detecting novel
correlations in both benchmark and real-world relational databases with mixed
data types.

7.5. Conclusions
In this chapter, we propose two extensions of MAC: SUPMAC to incorporate ex-
ternal information, and MIXEDMAC to handle mixed typed data. Our experiments
show that SUPMAC preserves not only the correlation among the dimensions but
also the discriminative power w.r.t. class label. Further, we also demonstrate that
MIXEDMAC well detects correlations in real-world data sets containing heteroge-
neous data types.

This chapter also marks the end of pure correlation analysis. In the next part,
two extensions of our research to two other related venues are presented. First,
we introduce a discretization scheme which preserves more general interactions
in the data. Since this scheme is not bound to any specific correlation measure,
it can assist any measure and any task that requires discrete data maintaining
dimension interactions. Second, we propose an information-theoretic method for
causal discovery. With this development, we go beyond telling if two (groups of)
dimensions are correlated: We are able to tell, under the assumption of causal
sufficiency (no hidden confounders), which of the two causes the other.
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Figure 7.14.: [Higher is better] Results on MIXEDMAC, MIC, and DECOREL: Sta-
tistical power vs. noise for 4-dimensional functions.
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Figure 7.15.: [Higher is better] Results on MIXEDMAC, MIC, and DECOREL: Sta-
tistical power vs. noise for 32-dimensional functions.
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Figure 7.16.: [Higher is better] Results on MIXEDMAC, MIC, and DECOREL: Sta-
tistical power vs. noise for 128-dimensional functions.
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Figure 7.17.: [Higher is better] Results on MIXEDMAC, MIC, and DECOREL: Pre-
cision/Recall vs. noise for non-functional correlations (i.e., clusters).
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Figure 7.18.: [Higher is better] Sensitivity of MIXEDMAC to ε.

150



7.5. Conclusions

0

0.2

0.4

0.6

0.8

1

2 4 6 8

Po
w
er

c

(a) Linear

0

0.2

0.4

0.6

0.8

1

2 4 6 8

Po
w
er

c

(b) Cubic

0

0.2

0.4

0.6

0.8

1

2 4 6 8

Po
w
er

c

(c) Sine

0

0.2

0.4

0.6

0.8

1

2 4 6 8

Po
w
er

c

(d) Circle

Figure 7.19.: [Higher is better] Sensitivity of MIXEDMAC to c.
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MIXEDMAC MIC ENCLUS CLIQUE HSM FEM

Abalone (4177× 8)
F1 0.51 0.46 0.42 0.49 0.49 0.44
Accuracy 0.55 0.43 0.50 0.45 0.51 0.45

Annealing (798× 38)
F1 0.64 0.57 0.61 0.62 0.60 0.56
Accuracy 0.62 0.60 0.61 0.58 0.56 0.58

Arrhythmia (452× 279)
F1 0.68 0.63 0.59 0.64 0.66 0.61
Accuracy 0.69 0.62 0.62 0.69 0.69 0.58

Australian Credit Approval (690× 14)
F1 0.76 0.73 0.66 0.71 0.73 0.65
Accuracy 0.78 0.69 0.65 0.71 0.73 0.68

Indian Liver Patient (579× 10)
F1 0.75 0.66 0.72 0.76 0.74 0.71
Accuracy 0.74 0.63 0.70 0.72 0.70 0.68

Table 7.3.: Clustering results of MIXEDMAC, MIC, ENCLUS, CLIQUE, HSM, and
FEM on real-world data sets.
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Going beyond Correlation Analysis
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8. Interaction-Preserving
Discretization of Multivariate
Data

This chapter is based on our work originally published as [NMVB14]:

H. V. Nguyen, E. Müller, J. Vreeken, and K. Böhm, Unsupervised interaction-
preserving discretization of multivariate data, Data Min. Knowl. Discov., vol. 28,
no. 5-6, pp. 1366-1397, 2014.

Here, we continue our study on correlation-aware discretization as in Chapters 3,
5, 6 and 7. These chapters essentially focus on finding the optimal discretization
w.r.t. a specific correlation measure. In this chapter, we aim at finding discretiza-
tion preserving interactions of dimensions, or correlations, in general. That is, we
do not constrain ourselves to any specific measure. This is beneficial in the sense
that the discretization results potentially possess generic properties which in turn
are required by some data mining methods, e.g., pattern mining. This new prob-
lem setting, however, raises two research questions: What is the characteristic of
an interaction-preserving discretization? How to find such discretization? Solving
these two questions will lead to a generic correlation-aware discretization method.
In fact, there have been attempts to address these questions [Bay01, MPY05]. Our
method in this chapter indeed is inspired from such works. However, as we point
out later, they have not satisfactorily tackled generic correlation-aware discretiza-
tion due to (a) the pitfalls of their interaction distances on real-valued data and
(b) their lack of an objective function to guide the discretization process. Our
technique in turn handles both issues and hence features a promising solution for
interaction-preserving discretization. Note that the methods we propose in Chap-
ters 3, 5, 6 and 7 are not applicable here as their solutions are closely tied to
their own measure. Therefore, a new technique is required. We stress again that
this chapter is about generic discretization techniques that are not tied to any spe-
cific correlation measure; yet, their goal is to preserve interactions of dimensions

155



8. Interaction-Preserving Discretization of Multivariate Data

during the discretization process.

8.1. Introduction
Interaction-preserving discretization has been studied in [Bay01, MPY05]. To
understand it, let us first consider unsupervised discretization. In general, this
approach aims at transforming continuous data into discrete bins without prior
knowledge about any patterns hidden in the data. Well-known (naïve) examples
include equal-width and equal-frequency binning, as well as methods that opti-
mize the binning w.r.t. univariate the data distribution [KM07]. Considering only
a single dimension, all of these methods fail to preserve interactions among mul-
tiple dimensions, i.e., they may unwittingly cut a multivariate distribution into
many parts and so destroy essential characteristics of that data.

To further illustrate our point, let us now consider an example where it is impos-
sible to find correct cut points by univariate discretization. Consider the simple
toy example in Figure 8.1 (this example is based on those of [Bay01, MPY05,
KMB12]). It features a 3-dimensional data set with 4 clusters. There are interac-
tions among dimensions X1, X2, and X3. The clusters are only detectable when all
dimensions are considered together. For illustration purposes, we assume that X1

initially has 4 bins: b1, b2, b3, and b4. To discretize this data set while preserving
all clusters, one should discretize X1 into two bins (X1 < 0 and X1 ≥ 0), and sim-
ilarly for X2 and X3. Univariate methods, however, will place cut points randomly
w.r.t. the multivariate distribution of the data, and will hence fail to preserve the
interactions and clusters.

To alleviate the above issue, one clearly needs a discretization which can exploit
dependencies/interactions among dimensions for better multivariate discretiza-
tion. That is, one needs an interaction-preserving discretization. Existing meth-
ods [Bay01, MPY05] consider a discretization to be of this sort if it places two
multivariate regions in the same bin iff the objects in those regions have similar
multivariate joint distributions in the other dimensions. That is, it enforces each
bin to only contain data of similar distributions. For instance, in Figure 8.1, bins
b1 and b2 should be merged because the distributions of X2 and X3 in the two bins
(see Fig. 8.1(c)) are similar. We adopt this view here and propose a solution that
overcomes the drawbacks of [Bay01, MPY05].

To perform interaction-preserving discretization, one needs to measure the dif-
ference between multivariate distributions in different bins without assuming an
underlying distribution. This is especially important when the focus of this chap-
ter is on real-valued data. Well-known measures such as Kullback-Leibler diver-
gence [CT06] and Earth Mover’s Distance [PWR89] require assumptions on the
data distribution. Second, one needs a bin merge strategy that balances how well
interactions are maintained with the level of detail of the discretization. Third, the
search space of all possible discretizations is potentially exponential to the number
of data points. As a result, one needs efficient methods to find good discretizations.
To this end, existing techniques [Bay01, MPY05] do not fully address the first two
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Figure 8.1.: Example of the parity problem. There are 4 clusters in (X1, X2, X3)
marked by different colors. The correct discretization: one cut point
at 0.0 for each dimension.

requirements. In particular, the measure of [Bay01] relies on itemset mining and
hence is not entirely suited to real-valued data. The measure of [MPY05] on the
other hand captures linear interaction only. Further, both of these works simply
perform bottom-up merge of bins, i.e., they lack a formal objective function to
achieve the mentioned balance.

With our method, named IPD for Interaction-Preserving Discretization, we tackle
each of these problems and overcome the drawbacks of [Bay01, MPY05]. In a
nutshell, our method performs multivariate discretization in the sense that it dis-
cretizes one dimension while preserving its interactions with all other dimensions.
We propose to assess the similarity between multivariate distributions in different
bins through a new interaction distance, or ID for short. It works on cumulative
distributions, and hence, does not require any prior assumption on the data distri-
bution. Also because of this, it is not limited to linear interactions. In addition, its
computation on empirical data is in closed form, and we prove that it is a metric
distance. This ensures easy-to-interpret distance values and reliable assessment of
multivariate distributions.

As the second main ingredient of IPD, we define the task of multivariate discretiza-
tion in terms of the Minimum Description Length (MDL) principle [Ris78]. By opti-
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mizing the resulting objective function, IPD is able to balance between preserving
dimension interactions and information of the underlying dimension.

Third, we give two efficient methods for finding good discretizations. The first
strategy finds the optimal bin merge by dynamic programming, while the second
is a fast greedy heuristic. Though both algorithms have the same theoretical com-
plexity, the latter is by far the faster in practice, while providing very high quality
results—in fact, we formally prove that it is a (2− ε)-approximation of our optimal
strategy.

Empirical evaluation of IPD on a wide range of real and synthetic data, and unsu-
pervised and supervised tasks including pattern-based compression, outlier min-
ing, and classification clearly shows IPD to consistently outperform the state of
the art in both quality and speed. In short, our main contributions include:

• General notions and a set of abstract desiderata for interaction-preserving
multivariate discretization.

• The first interaction distance for quantifying the (dis-)similarity of multi-
variate distributions over bins, specifically designed for real-valued data and
computed in closed form on empirical data.

• An MDL-based framework for finding a balance between complexity and in-
teraction preservation of a discretization.

• Efficient algorithms for discretization, including an optimal solution based
on dynamic programming, and a greedy (2− ε)-approximation.

The road map of this chapter is as follows. We start by general notions and a
set of abstract criteria for interaction-preserving discretization. In Section 8.3 we
review related work. Afterward, we introduce IPD, which consists of ID , our
new interaction distance (Section 8.4), our MDL-based framework for multivariate
discretization (Section 8.5), and efficient algorithms (Section 8.6). We empirically
evaluate IPD in Section 8.7. We round up with discussion in Section 8.8 and finally
conclude in Section 8.9.

8.2. General Notions
We consider a database DB of n objects and m dimensions. Each dimension
Xi ∈ A, where A = {X1, . . . , Xm}, is considered as a continuous-valued ran-
dom variable. We denote the domain of Xi on DB as [min i,max i]. We write p(Xi)
for the probability density function (pdf) of the database projected on Xi. Further,
we write p(xi) for p(Xi = xi). All logarithms are to base 2, and by convention
0 log 0 = 0.

A discretization of Xi into ki bins induces a set of cut points Ki = {c1
i , . . . , c

ki−1
i },

which partitions [min i,max i] into ki bins, [min i, c
1
i ], (c

1
i , c

2
i ], . . . , (cki−1

i ,max i].

To preserve interactions, two sets of objects should only be in the same bin if they
have similar multivariate joint distributions. That is, one should only consider
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merging two consecutive bins Bg and Bf of dimension Xi if the distributions of
all other dimensions, i.e., A \ {Xi}, over the objects identified by Bg and Bf are
similar. In such a case, we say the bins exhibit similar interactions with regard
to the data. To tell whether sets of objects should be in the same bin we need to
quantify the interactions of bins. For this purpose, we propose a general notion of
interaction distance in the following.

Definition 19. Interaction Distance:
Assume we want to measure the interaction distance between bins of dimension
Xi over target variables {Y1, . . . , Yz}. In our setting of unsupervised multivariate
discretization, the target variables will typically be A \ {Xi}, i.e., {Y1, . . . , Yz} =
A \ {Xi}. Let Bi be the set of all possible bins on Xi. An interaction distance should
be applicable to any two bins of Bi. As such we have G : Bi×Bi → R+

0 . In general, an
interaction distance G(Bg, Bf ) with Bg, Bf ∈ Bi quantifies the difference of the dis-
tributions over variables {Y1, . . . , Yz} in two bins Bg and Bf . The more different they
are, i.e., the less Bg and Bf interact, the higher their interaction distance G(Bg, Bf )
will be. Formally,

G(B g ,B f ) ∼ diff (p(Y1 , . . . ,Yz |B g), p(Y1 , . . . ,Yz |B f )) .

In order to facilitate assessment of existing techniques, we introduce four desired
properties of meaningful interaction distances.

• Property 1 (Unsupervised): G does not require labeled data.

• Property 2 (Non-negativity): For any two bins Bg and Bf , G(Bg, Bf ) ≥ 0.

• Property 3 (Zero interaction): G(Bg, Bf ) = 0 if and only if the distributions
of {Y1, . . . , Yz} in Bg and Bf are identical.

• Property 4 (Non-parametric): G should not require prior assumptions on
either distributions or correlations.

Properties 1 and 4 are mandatory to ensure the generality of the discretization
scheme: to be applicable for exploratory data analysis, to be applicable on un-
labeled data, as well as easily computable on empirical data. In particular, one
should only use data distribution functions that can be computed directly from
empirical data with no prior assumptions or given labels. Properties 2 and 3 guar-
antee that the distance properly quantifies the difference in data distributions of
any two bins.

8.3. Related Work

Before introducing our approach, we review the literature. We divide related work
into four categories: univariate discretization, multivariate discretization, assess-
ment of dimension interactions, and other related work.
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8.3.1. Univariate discretization
First, we consider univariate solutions, which include standard approaches such
as equal-width and equal-frequency binning, as well as state of the art methods
such as UD [KM07] and its close cousin Bayesian Blocks [SNJ+13]. All of these
methods discretize dimensions individually, without considering other dimensions.
By definition, they do not preserve interactions. As they neither instantiate G,
Properties 1–4 are not applicable.

Supervised techniques [FI93, Ker92] aim to preserve interactions with a target
class label. As such, they instantiate G(Bg, Bf ) by the difference between the class
label distributions of two bins. To measure this difference, CHIM [Ker92] employs
χ2 test. By requiring prior information on class labels, supervised methods do
not match Property 1. More importantly, as only interactions with class labels are
preserved, the discretized data preserves only structure related to the given class
labels. In contrast, IPD aims to preserve all major interactions.

8.3.2. Multivariate discretization
Ferrandiz and Boullé [FB05] proposed a supervised multivariate discretization
technique. Though multivariate, its objective function is tightly coupled with the
class label distribution.

Kang et al. [KWL+06] introduced an unsupervised multivariate technique based on
ICA. However, due to approximation [SRPP11], ICA transformation is not guaran-
teed to preserve all important interactions. As a result, it is not guaranteed to
fulfill Property 3. Further, it does not meet Property 4 as it implicitly assumes the
dimensions to be non-Gaussian in the transformed space.

MVD [Bay01] instantiates G(Bg, Bf ) by means of STUCCO [BP99], a contrast set
mining algorithm. Two bins Bg and Bf are considered similar if no itemset can be
found that separates the two. However, by considering continuous values as items,
the support of most itemsets is very low, which leads to high false alarm rates.
Hence, in general, MVD does not meet Property 3. CPD [MPY05] transforms the
data using PCA, mines itemsets on the eigenspaces of the bins, and instantiates
G(Bg, Bf ) as the Jaccard coefficient between the resulting collections. By using
PCA, it can only capture and preserve linear correlations [LV07]. As such, it may
miss complex interactions, and is hence not guaranteed to satisfy Property 3. In
addition, neither MVD nor CPD are designed to work directly with data distribu-
tion functions, and hence, neither meet Property 4.

Both MVD and CPD employ a heuristic bottom-up approach as their binning strat-
egy. That is, two consecutive bins are merged if their interaction distance is low.
As such, the binning strategy of both MVD and CPD can be viewed as a hierar-
chical clustering where no objective function is directly optimized. In contrast,
univariate methods UD [KM07] and SD [FI93] search for bins based on the MDL
principle [Grü07]. That is, they seek the bins that yield the best balance between
goodness of fit and model complexity. Their encodings are designed for univari-
ate discretization, and hence, only reward precision, not the preservation of the
multivariate interactions of the data.
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8.3.3. Assessing dimension interactions

An interaction distance quantifies differences between two multivariate data dis-
tributions. In principle, one could use Kullback-Leibler divergence or a vari-
ant, such as Jensen-Shannon divergence [CT06]. To apply these, one needs
to assume a distribution, or estimate the multivariate pdf—which involves hard
parametrization [LV07]. Advanced density estimation techniques such as kernel
methods [Sil86] require selecting a kernel function and bandwidth. Other popular
measures include Earth Mover’s Distance [PWR89], which requires a probability
mass function.

In contrast, we employ cumulative distribution functions (cdfs), which do not re-
quire assumptions on the data distribution and do not have free parameters. Fur-
ther, they can be computed in closed form. In theory, smoother estimates can
be obtained through cdf kernel estimation [LY08]. However, similar to pdf ker-
nel estimation, performance depends on the chosen kernel. In addition, though
theoretical optimal bandwidth selection exists, its realization needs estimation.

Interactions among dimensions can encompass different types of relationship
among dimensions; one of which is correlation. Our work here deals with mul-
tivariate discretization and does not directly address such correlation analysis.
However, it benefits correlation analysis in the sense that we also aim to preserve
interactions among dimensions during the discretization process. Further, many
correlation measures are based on Shannon entropy, and hence, rely on discrete
data. With multivariate discretization, we aim at a general contribution to enhance
a variety of techniques, e.g., mutual information and total correlation, rather than
proposing a single solution improving one specific notion of correlation directly on
real-valued data.

8.3.4. Other related work

Lakshmanan et al. [LNW+02] and Bu et al. [BLN05] studied grouping cells of
data cubes satisfying a given property, e.g., frequencies higher than a pre-specified
threshold. The methods are designed for cell properties for which the validation
does not involve other cells. In other words, they do not check if cells interact, and
hence, do not address the issue of preserving interactions.

Aue et al. [AHHR09] discussed detecting changes in multivariate time series. Their
problem setting is different from ours in two main aspects: (a) they focus on
covariance matrices, i.e., second-order pairwise interactions, and (b) break points
signify changes in all dimensions, i.e., each set of cut points correspond to one
data point. [PP13] focus on a similar problem, but instead of covariance, targets
autocovariance. Like [AHHR09], it is also constrained to pairwise interactions.

The work by [All83, AF94] discusses a representation of time that uses temporal
intervals as primitives. It can be used to derive intervals, and for event change
detection. While the exact relationship between events can be unknown, some
prior knowledge on how they could be temporally related is required.
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8.4. Interaction Distance
To construct IPD, we start by introducing our interaction distance, ID . Quickly
going over its properties, ID does not require any prior knowledge such as class
labels, and hence, satisfies Property 1. In the following we will prove that ID
meets Properties 2 and 3, as well as show that ID is computed in closed form on
empirical data, i.e., it does not need to make any prior assumption on the data
distribution. Therefore, it also meets Property 4. The details of ID are as follows.

In principle, when discretizing Xi ∈ A, to preserve its interactions with all other
dimensions, we only consider merging two consecutive bins Bg and Bf of Xi if the
distributions of A \ {Xi} over the objects identified by Bg and Bf are similar. That
is, we instantiate G(Bg, Bf ) by diff (p(A \ {Xi}|B g), p(A \ {Xi}|B f )).

Typically, the diff function measures the difference between two multivariate pdfs
corresponding to two consecutive bins of any dimension. Formally, we consider
two pdfs p and q defined on the set of variables A = {X1, . . . , Xm}. In practice,
we want to measure the differences over A \ {Xi}. For notational convenience,
we however write diff (p(A), q(A)) instead of diff (p(A \ {Xi}), q(A \ {Xi})). The
domain of A is Ω = [min1,max 1]× . . .× [minm,maxm]. Though the analysis below
considers all dimensions, we note that our discussion holds for any A \ {Xi}.

To solve the problem of measuring diff (p(A), q(A)) we propose ID , a function for
quantifying the difference between distributions. In consistence with the chapters
presented so far, our goal is to design ID such that it does not require any prior
assumption and allows non-parametric computation on empirical data. Hence, we
formulate ID using cumulative distributions that can be determined directly from
data samples. This helps ID to address Property 4. In particular, let P (A) and
Q(A) be the cumulative distribution function of p(A) and q(A), respectively. That
is, for any vector a = {a1, . . . , am} ∈ Ω, we have

P (a) =

∫ a1

min1

. . .

∫ am

minm

p(x1, . . . , xm)dx1 · · · dxm

and similarly for Q(a). We define our function ID as follows:

Definition 20. Interaction Distance ID:
The interaction distance ID between p(A) and q(A), denoted as ID(p(A) || q(A)), is

defined as

√∫
Ω

(P (a)−Q(a))2da.

In other words, ID quantifies the difference between p(A) and q(A) by (a) inte-
grating the squared difference of their respective cumulative distributions, and (b)
taking the square root of this integral (we go for square root because it is useful
later for proving that ID is a metric distance). Thus, ID is reminiscent of the cor-
relation measure proposed in Chapter 4 and those in [RSX+11, SRPP11], i.e., the
class of quadratic measure. And similarly to many of those measures, shortly we
will show that ID permits computation on empirical data in closed form.
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Now we need to show that ID properly quantifies the difference of distributions,
and hence, is suitable for analyzing the interaction of any two bins. To accomplish
this, we derive the following theorem directly from Definition 20:

Theorem 23. ID(p(A) || q(A)) ≥ 0 with equality iff p(A) = q(A).

Based on Theorem 23, we can see that ID meets Properties 2 and 3, i.e., it is
appropriate for interaction analysis. One side question that we are interested in
knowing is that whether ID is a metric distance. To answer this question, in the
following we prove that ID satisfies the triangle inequality. In particular, let r(A)
be a pdf defined on A and R(A) is its cdf. We have:

Theorem 24. ID(p(A) || r(A)) + ID(r(A) || q(A)) ≥ ID(p(A) || q(A)).

Proof. Let H(A) = P (A) − R(A) and G(A) = R(A) − Q(A). The inequality
becomes √∫

Ω

H2(a)da +

√∫
Ω

G2(a)da ≥

√∫
Ω

(H(a) +G(a))2 da ,

which in turn is equivalent to√∫
Ω

H2(a)da ·
∫

Ω

G2(a)da ≥
∫

Ω

H(a)G(a)da ,

which is also known as Hölder’s inequality.

Following Theorems 23 and 24, and the fact that ID is symmetric, we conclude it is
a distance metric. This characteristic ensures easy-to-interpret distance values, as
well as reliable assessment of multivariate distributions. And this is also the reason
why we use square root in the formulatiom of ID: It helps us to achieve a metric
distance rather than a mere divergence measure. Besides being a metric, another
advantage of ID for multivariate discretization is that its values on empirical data
can be described in closed form. In particular, assume that the empirical data
forming p(A) contains data points {R1, . . . , Rk} of DB. Analogously, we denote
{S1, . . . , Sl} as the data points forming q(A). For each R ∈ {R1, . . . , Rk}, we
write Ri for R projected onto the dimension Xi. We define Si similarly for any
S ∈ {S1, . . . , Sl}. We prove the following result:
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Theorem 25. ID(p(A) || q(A)) equals to(
1

k2

k∑
j1=1

k∑
j2=1

m∏
i=1

(
max i −max(Ri

j1
, Ri

j2
)
)

− 2

kl

k∑
j1=1

l∑
j2=1

m∏
i=1

(
max i −max(Ri

j1
, Sij2)

)
+

1

l2

l∑
j1=1

l∑
j2=1

m∏
i=1

(
max i −max(Sij1 , S

i
j2

)
))1/2

.

Proof. Our proof is based on that in Chapter 4 and those in [RSX+11, SRPP11].
Let ind(α) be an indicator function with value 1 if α is true and 0 otherwise. It
holds that

P (a) =

∫ max1

min1

. . .

∫ maxm

minm

ind(x1 ≤ a1) · · · ind(xm ≤ am)p(x1, . . . , xm)dx1 · · · dxm

Using empirical data, we hence have

P (a) =
1

k

k∑
j=1

m∏
i=1

ind(Ri
j ≤ ai) , and Q(a) =

1

l

l∑
j=1

m∏
i=1

ind(Sij ≤ ai) ,

and therefore [ID(p(A) || q(A))]2 equals to

∫ max1

min1

. . .

∫ maxm

minm

(
1

k

k∑
j=1

m∏
i=1

ind(Ri
j ≤ ai)−

1

l

l∑
j=1

m∏
i=1

ind(Sij ≤ ai)

)2

da1 · · · dam

Expanding the above term and bringing the integrals inside the sums, we have

1

k2

k∑
j1=1

k∑
j2=1

m∏
i=1

∫ max i

mini

ind(max(Ri
j1
, Ri

j2
) ≤ ai)dai

− 2

kl

k∑
j1=1

l∑
j2=1

m∏
i=1

∫ max i

mini

ind(max(Ri
j1
, Sij2) ≤ ai)dai

+
1

l2

l∑
j1=1

l∑
j2=1

m∏
i=1

∫ max i

mini

ind(max(Sij1 , S
i
j2

) ≤ ai)dai ,

by which we arrive at the final result.

By Theorem 25 we can see that ID permits direct computation on empirical data
in closed form, without assumptions on the data distribution. That is, ID meets
Property 4. In the remainder of this chapter we will use ID to implement diff
in Definition 19. In particular, we set diff (p(A), q(A)) to ID(p(A) || q(A)), and
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will employ it in our practical score (Sec. 8.5.2) for identifying good interaction-
preserving discretizations.

8.5. Identifying the Optimal Discretization
Our overall goal is to find a discretization that balances preserving interactions
and detail of the data. We introduce a global objective function for identifying the
optimal multivariate discretization—which can be used to compare fairly between
any discretization—and a practical variant that allows for easier optimization.

We regard the problem of discretization as a model selection problem. Hence, in
order to select the best model we need an appropriate model selection criterion. As
we explicitly do not want to assume prior distributions, the Minimum Description
Length (MDL) principle [Ris78] makes for a natural and well-founded choice.

Loosely speaking, MDL identifies the best model as the model that obtains the best
lossless compression of the data. More formally, given a set of modelsM, the best
model M ∈M is identified as the one that minimizes

L(DB,M) = L(M) + L(DB |M)

where L(M) is the length, in bits, of the description of the model M , and L(DB |
M) is the length, again in bits, of the description of the data DB as encoded by M .
That is, MDL helps select a model that yields the best balance between goodness
of fit and model complexity. To ensure fair comparison, MDL requires lossless
encodings.

In the following, we will define interaction preserving discretization in terms of
MDL. First, we will discuss our ideal objective function in Section 8.5.1, which
allows for fair comparison between any discretization; yet, however, does not lend
itself for fast optimization. To facilitate efficient search, in Section 8.5.2 we extend
it into a practical score that uses ID and does allow for efficient search.

8.5.1. MDL for interaction-preserving discretization

In the context of discretization, let dsc be a discretization of DB, and dsc(DB)
be the discretized data that dsc creates on DB (see Figure 8.2). To search for the
optimal interaction-preserving discretization, we aim at constructing an objective
function based on lossless MDL encoding. To achieve this, for each candidate
discretization dsc, we need to encode (a) dsc itself, (b) dsc(DB), and (c) the
cost of reaching the continuous-valued entries of DB from the discrete values in
dsc(DB). The third component is very important for a lossless encoding. We
denote it as DB 	 dsc(DB). Based on our analysis, we formulate the following
objective function (which we name the ideal score):

L(DB, dsc) = L(dsc) + L(dsc(DB))︸ ︷︷ ︸
L(M)

+L(DB	 dsc(DB))︸ ︷︷ ︸
L(DB|M)
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Original Data D

Discretization dsc Discretized data dsc(D)

L(dsc) L(dsc(D)) + L(D ө dsc(D))

X1 X2

2.1 3.7
2.3 3.5
… …

X1 X2

A B
A B
… …

X2

X 1

Figure 8.2.: Example of discretization component costs. L(dsc) is the encoding
cost of a discretization dsc of DB. In this example, dsc is a dis-
cretization of both X1 and X2, i.e., here dsc is a 2-dimensional grid.
L(dsc(DB)) is the cost of encoding the discretized data dsc(DB). Fi-
nally, L(DB	 dsc(DB)) is the cost for encoding the exact data points
within each bin.

where L(dsc) is the encoding cost of dsc, L(dsc(DB)) is the encoding cost of the
discretized data dsc(DB) of DB, and L(DB 	 dsc(DB)) is the encoding cost of
DB	 dsc(DB).

We now give the intuition on how our ideal score helps to identify the best
interaction-preserving discretization. First, assume a discretization dsc that is too
detailed, i.e., it splits dimensions into overly many bins. That is, it is difficult (up
to impossible) to detect interactions in dsc(DB)—i.e., L(dsc(DB)) will be very
high. At the same time, as the bins are small identifying exact values within them
is easy—i.e., L(DB	 dsc(DB)) will be low.

Alternatively, assuming dsc is very coarse, i.e., data points are grouped into too
few, or even only 1 bin. dsc(DB) will now show interactions even when there are
none in DB. It will be easy to compress this data, and L(dsc(DB)) will be low.
However, there are now many more possible values per bin, and hence, encoding
the exact values of the data costs many more bits—L(DB 	 dsc(DB)) will be
very high. The optimal discretization dsc∗ is the discretization that is neither too
detailed or too coarse: the one that maintains the true interactions of DB. Hence,
with the ideal score we can identify the best interaction-preserving discretization
dsc∗: It is the one that minimizes our score function. Below we explain in details
how to quantify each component of this score.

Encoding the discretization. Encoding the discretization grid dscmeans encoding
the number of bins, and their cut points, per dimension Xi. Technically, we first
encode the number of bins. Assume that Xi has ki bins, i.e., (ki − 1) cut points.
When encoding the number of bins ki, our goal is that the larger this integer is, the
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more bits it costs. Thus, we use LN, the MDL-optimal encoding of integers [Ris83].
It is defined for z ≥ 1, with LN(z) = log∗(z) + log c0, where log∗(z) = log (z) +
log log (z) + . . ., where we only include the positive terms, and c0 is set to 2.8654
to make it a valid encoding by ensuring that all probabilities sum to 1. We can see
that the larger an integer is, the larger its LN value, i.e., our objective is met.

Next, to encode the locations of the cut points, we note that digitally stored data
is recorded at a finite resolution [KM07], and hence, the resolution res i of a di-
mension Xi is data-dependent. For example, let us assume that dimension Xi

has domain [0, 1]. From the data we can observe that it is encoded with, e.g.,
2 significant digits, or, at resolution of res i = 0.01. Given the resolution res i
for a dimension Xi, we have that every possible value of Xi belongs to the set
Vi = {min i + z · res i : z = 0, 1, . . . , ni} where ni = max i−mini

resi
.

As we have no prior expectation on their location, any set of (ki − 1) distinct
cut points is equally likely, and hence, data-to-model codes are optimal [VV04].
A data-to-model code is an index into a canonically ordered enumeration of all
possible data (i.e., values) given the model (the provided information). Here, we
know (ki − 1) cut points have to be selected out of ni candidates; a choice for
which there are

(
ni
ki−1

)
possibilities. Assuming a canonical order, log

(
ni
ki−1

)
gives

the number of bits to identify the actual set of cut points. As such, we have

L(dsc) =
m∑
i=1

LN(ki) + log

(
ni

ki − 1

)
for the number of bits required to encode a discretization dsc. Next, we discuss
how to encode the discretized data, dsc(DB).

Encoding the discretized data. To encode discrete data, in general we need to
choose the best lossless compressor C out of a set C of all lossless compressors
applicable to discrete data of the form dsc(DB) [LV93, VvS11]. We denote the
cost of encoding dsc(DB) using C as L(dsc(DB), C). The cost of identifying C
from C is log |C|, assuming that each compressor is equally likely. The length of the
discretized data dsc(DB) in bits, L(dsc(DB)), is thus given by

L(dsc(DB)) = log |C|+ min
C∈C

L(dsc(DB), C) .

This cost function is ideal as it minimizes over all possible compressors. That is,
it can detect and reward any interaction present in the discretized data. However,
this general form is not very practical: We do not have access to all applicable
compressors, nor the time to evaluate them all. To use the score, we will have to
instantiate C.

To this end, any compressor suited for categorical data can be used. naïvely, we
can even encode dimensions independently using prefix codes [CT06]. However,
as our aim is to find interaction-preserving discretizations, we should rather use
a compressor that is interaction-aware. That is, one that can detect and reward
correlations over dimensions. For instance, we could first serialize the data row
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per row, and then use GZIP or one of its many variants. This, however, would be
very sensitive to the serialization order of the data. Better choices hence include
modern itemset-based compressors, such as KRIMP [VvS11], COMPREX [ATVF12],
MTV [MVT12], or PACK [TV08], as these can detect interactions among dimen-
sions independently to the order of the data. Each can be used as plug in for
L(dsc(DB), C)—in our experiments we will evaluate using a number of applica-
ble compressors.

For the following, let us assume we have chosen a suited compressor, i.e., that we
can calculate L(dsc(DB)). We will now finalize the score by discussing how to
reconstruct the continuous input data DB given the discretized data dsc(DB).

Encoding the errors. In order to make our score lossless, a necessary requirement
in MDL, we have to formalize how to compute the encoding cost of reaching the
continuous-valued entries of DB from the discrete values in dsc(DB).

Let us write L(DB	dsc(DB)) for the number of bits required to identify the exact
data points within their respective multivariate cell. This cost can be factorized per
dimension, that is, per univariate bin. Hence, over all data points, we have

L(DB	 dsc(DB)) =
m∑
i=1

L(Xi 	 dsc(Xi)) .

For computation purposes, it is more convenient to aggregate this cost per bin. Let
{B1

i , . . . , B
ki
i } be the set of bins induced by dsc on dimension Xi. We write |Bj

i | as
the number of values of Xi that Bj

i contains. We then have

L(Xi 	 dsc(Xi)) =

ki∑
j=1

|Bj
i | log

(⌊
ub(Bj

i )− lb(Bj
i )

res i

⌋
+ 1

)

as the cost of reaching the actual values for a dimension Xi given the discretized
representation dsc(Xi), where ub(Bj

i ) is the upper bound of binBj
i , lb(Bj

i ) its lower

bound. With the resolution res i of Xi, we have
(⌊

ub(Bji )−lb(Bji )

resi

⌋
+ 1
)

as the number

of possible values in Bj
i .

Summing Up. With the above three elements we can construct our ideal score:

L(DB, dsc) = L(dsc) + L(dsc(DB))︸ ︷︷ ︸
L(M)

+L(DB	 dsc(DB))︸ ︷︷ ︸
L(DB|M)

.

The best discretization dsc∗ is identified as the one that minimizes this score. An-
other benefit of this score is that it allows for fair and unbiased comparison be-
tween any discretization discovered by any discretization method—simply by in-
stantiating it using different compressors, and comparing the total number of bits.
We will use it as such in our experiments in Section 8.7.3.

Though ideal for identifying the optimal discretization, the score does not lend
itself for fast optimization towards that goal. For example, it does not factor over
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dimensions, and so we would have to discretize all dimensions concurrently. How-
ever, for multivariate data the search space is exponential to both n and m, and
hence, restrictively large in practice. Moreover, we do not have access to the op-
timal compressor C∗, and can hence not compute L(dsc(DB)) directly. In theory
we could approximate C∗ by instantiation C with a collection of compressors, but
this could lead to erratic behavior. Most importantly, though, is that we aim for
a fast general approach for high quality interaction-preserving discretization, and
hence, want to avoid including computationally expensive heuristics in our objec-
tive that only reward specific types of interaction, such as [VvS11, ATVF12]. To
accomplish this, in the next section, we will take the ideal score and adapt it into a
practical score that is independent of specific compressors, can detect and reward
interactions in general, and does allow for efficient optimization.

8.5.2. A fast optimizable score

In this section we will discuss our practical score, which maintains key properties
of our ideal score, yet does allow for efficient optimization. From the ideal score,
we can see that the source of inefficiency comes from the fact that the score is not
factorizable per dimension, which requires us to process all dimensions simulta-
neously. Thus, to enable efficient processing, we need a score that allows us to
identify the optimal discretization per dimension, while still considering its inter-
actions with the other dimensions. Second, the score should not use any specific
compressor to avoid biases. Our practical score is designed for to meet these goals.
In short, it is defined per dimension and hence permits efficient optimization. In
addition, it relies on ID to evaluate whether interactions are maintained, indepen-
dent of any specific compressor. Third, to avoid problems of insufficient data for
meaningful statistical assessment [LV07], it considers the data at the level of micro
bins instead of the individual objects.

In particular, we form micro bins for Xi by partitioning its interval into Ti fine-
grained bins (e.g., by clustering). For each Xi, let Mi be the corresponding set of
micro bins. To avoid confusion, we refer to bins Bj

i of dsci as macro bins.

With Ti micro bins, we have (Ti − 1) cut points. Merging these micro bins into ki
macro bins B1

i , . . . , B
ki
i (each Bj

i contains |Bj
i | micro bins) means choosing (ki− 1)

out of (Ti − 1) cut points. As such, a discretization for dimension Xi corresponds
to a subset of all cut points, where the empty subset corresponds to merging all
micro bins of Xi into just one macro bin, and the full set corresponds to the input
micro bins. Given a discretization dsci of Xi, we denote dsci(Mi) as the resulting
discretized data of Xi, i.e., the resulting set of macro bins.

The building blocks of the score are analogue to the ideal score (Equation 8.5.1),
yet now defined per dimension and defined over micro bins. We will discuss its
terms in detail below.

Encoding the discretization. The intuition for encoding dsci is identical to the
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ideal score. We have

L(dsci) = LN(ki) + log

(
Ti − 1

ki − 1

)
,

where we encode the number of bins, and identify the cut points from (Ti − 1)
options.

Encoding the discretized data. Our goal is to avoid optimizing towards a specific
compressor. Thus, we will use ID to determine how well a discretization dsci
maintains the interactions of the data, independent of any particular compressor.
Hence, we define the cost of encoding the discretized data dsci(Mi) as

L(dsci(Mi)) = Lbid(dsci(Mi)) + Lmh(dsci(Mi))

where Lbid(.) is the cost of the discretized data under the independence model,
and Lmh(.) is a penalty on the multivariate heterogeneity of the discretization.
The intuition of Lmh(.) is that two micro bins with different data distributions, as
identified by ID , should stay separate. If a discretization combines them, we pe-
nalize accordingly. With this, we guarantee interaction preservation. More details
are given below.

Encoding the macro bin ids. Encoding the discretized data means encoding the
macro bin id per micro bin. We do this by assigning optimal prefix codes to the
macro bins, the lengths of which we calculate by Shannon entropy. The code
length of the id of macro bin Bj

i then is − log
|Bji |
Ti

. Over all macro bins, we have

Lbid(dsci(Mi)) =

ki∑
j=1

(
LN(|Bj

i |)− log
|Bj

i |
Ti
− |Bj

i | log
|Bj

i |
Ti

)
.

where the first term encodes the number of micro bins in Bj
i , the second is the cost

of the macro bin code in the dictionary, and the third term is the cost of using this
code to identify the macro bin per associated micro bin.

Penalizing multivariate heterogeneity. The above encoding is lossless, but unaware
of interactions. To make it interaction-aware, we include a penalty term based on
ID . The intuition is to reward regions with similar distributions to be in the same
hypercubes (cubes in the space formed by all dimensions), and vice-versa. That is,
two micro bins with different data distributions, as identified by ID , should stay
separate. If a discretization combines them, we penalize accordingly.

We penalize on the number of break points in a macro bin—the indexes of consec-
utive micro bins within the macro bin for which the interaction distance is large.
Intuitively, more break points should result in a higher encoding cost. More for-

mally, let us consider an arbitrary macro bin Bj
i with micro bins bj,1i , . . . , b

j,|Bji |
i .

For each pair of consecutive micro bins bj,wi and bj,w+1
i in Bj

i , if their interaction
distance is large, we will encode index w to represent a break point between the
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distributions. We write I(Bj
i ) for the set of indices of these break points, with

I (B j
i ) = {w ∈ [1 , |B j

i | − 1 ] |
ID(p(A \ {Xi}|bj ,w

i ) || p(A \ {Xi}|bj ,w+1
i )) is large} .

This allows us to include the cost of encoding I(Bj
i ) in Lmh(dsci(Mi)). (We will

discuss how to decide if an interaction distance is large in Section 8.6.)

To ensure we only penalize when interactions are broken, Lmh includes only those
macro bins for which I(Bj

i ) is non-empty. Formally, we define

Lmh(dsci(Mi)) =

ki∑
j=1: |I(Bji )|>0

LN(|I(Bj
i )|) + |I(Bj

i )| log(|Bj
i | − 1)

where we encode the number of break points by LN, and encode I(Bj
i ) using

optimal prefix codes. Here, this entails identifying the index of each break point
out of (|Bj

i | − 1) possible pairs, which hence costs log(|Bj
i | − 1) bits per index. This

penalty captures our intuition: The more micro bins with different multivariate
distributions in a macro bin, the higher its cost. Combined, Lbid and Lmh tell us
how well a discretization maintains the interactions and detail of the data.

Encoding the errors. With the above we know the discrete data. The final step is
to reconstruct the data up to the micro bin ids. As we know the number of micro
bins per macro bin from dsci(Mi), here we only have to identify the ids of the
micro bins. Using optimal prefix codes, we have

L(Mi 	 dsci(Mi)) =

ki∑
j=1

|Bj
i | log |Bj

i | .

Note that we do not have to reconstruct the original data up till the exact values
of Xi for fair model selection. This has two reasons. First, recall that our practical
score only considers data up to the resolution of the micro bins: it does not ‘see’
the data in higher detail. Second, the cost of encoding the exact values of Xi for a
given set of micro bins Mi is constant over all models. Hence, we can safely ignore
it here.

Summing Up. We have now completed the definition of our practical score, which
aims to identify the best interaction-preserving discretization per dimension. For-
mally, we aim at finding the discretization dsc∗i per dimension Xi that minimizes

L(Mi , dsci) = L(dsci) + L(dsci(Mi)) + L(Mi 	 dsci(Mi)) .

It is easy to see that its terms are analogue to the ideal score (Equation 8.5.1),
and though there exists no formal connection between our two scores, the general
intuition is identical: both reward and punish similarly. Intuitively, a good solution
under the practical score is also a good solution under the ideal score.

We do note that our practical score is independent of res i. In addition, it ad-
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Algorithm 5: IPD
for each dimension Xi ∈ A do1

Ai ← A \ {Xi}2

Form micro bins {b1
i , . . . , b

Ti
i } for Xi3

for w = 1 to Ti − 1 do4

idwi = ID(p(Ai|bwi ) || p(Ai|bw+1
i ))5

Macro bins {B1
i , . . . , B

ki
i } ← Merge of {b1

i , . . . , b
Ti
i } using {id1

i , . . . , id
Ti−1
i }6

dresses the lack of the optimal compressor, and can be optimized independently
per dimension. Furthermore, it can be instantiated by any interaction distance. In
this chapter, we use ID as an instantiation since it yields a good combination of
theoretical correctness and foundations, simplicity, and ease of computation.

8.6. The IPD Algorithm

Having introduced the theoretical model of IPD, which consists of our interaction
distance ID and our MDL-based score, we now detail our algorithmic approach. In
order, we will first give two efficient bin merge strategies, then discuss parameter
settings, and finally we will analyze the time complexity of our algorithms.

8.6.1. Algorithms

We will now discuss the IPD algorithm, for which we give the pseudo code as
Algorithm 5. First, we pre-process the data to obtain micro bins (Line 3), after
which for every pair of consecutive micro bins we use ID to calculate their inter-
action. The most important step in IPD is the bin merge strategy on Line 6. Given
Ti micro bins, there are 2Ti−1 merge possibilities, which is too many to evaluate
exhaustively. For example, for Ti = 50 we already have more than 1 trillion op-
tions. To tackle this problem, we prove that the optimal merge of micro bins can
be found in polynomial time by dynamic programming. The details are as follows.

Optimal bin merge strategy IPDopt . We show that the search space of bin merges
for a dimension Xi is structured, i.e., intermediate results can be re-used to avoid
redundant computation. In particular, let F (c, k) be the minimum total encoding
cost over all merges of the first c micro bins of Xi (1 < c ≤ Ti) producing k macro
bins (1 < k ≤ c). For each l with k−1 ≤ l < c, consider a merge of the first c micro
bins that combines the first l of them into (k − 1) macro bins, and combines the
remaining (c− l) micro bins into its kth macro bin Bk,l

i . We arrive at the following
theorem showing a recursive formulation of F (c, k), which gives way to efficiently
computing it using dynamic programming, and hence, to efficiently identifying the
optimal merge of micro bins.
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Theorem 26. F (c, k) is equal to

min
k−1≤l<c

{F (l, k − 1)

+ LN(k) + log

(
c− 1

k − 1

)
− LN(k − 1)− log

(
l − 1

k − 2

)
+ LN(|Bk,l

i |)− log
|Bk,l

i |
c
− (k − 1) log

c− |Bk,l
i |

c

− |Bk,l
i | log

|Bk,l
i |
c
− (c− |Bk,l

i |) log
c− |Bk,l

i |
c

+ LN(|I(Bk,l
i )|) + |I(Bk,l

i )| log(|Bk,l
i | − 1)

+ |Bk,l
i | log |Bk,l

i |
}

Informally speaking, with regard to our practical score we can consider term (26)
to represent L(dsci), terms (26) and (26) to correspond with Lbid(dsci(Mi)), term
(26) with Lmh(dsci(Mi)), and term (26) with L(Mi 	 dsci(Mi)).

Theorem 26 permits an algorithm based on dynamic programming, since the solu-
tion of the first (left-most) c micro bins can be derived from that of the first l < c
micro bins. Using dynamic programming, the search for the optimal bin merge is
feasible in a polynomial time: For each k such that 1 < k ≤ Ti, we find the optimal
bin merge w.r.t. our practical score producing k macro bins on Xi using dynamic
programming. When k = 1, there is no need to apply the algorithm. Finally, the
one yielding the minimum cost across all k ≥ 1 is selected as the final output.
Note that Xi could end up with only one bin. One possible interpretation of this is
that Xi contains no significant interaction with other dimensions since, e.g., Xi is
a noisy dimension where data values are randomly scattered.

Though dynamic programming is an efficient strategy for traversing an exponen-
tial search space, it may require prohibitively long runtime for large data. In
addition to this optimal solution, we therefore propose a fast greedy heuristic.

Greedy bin merge strategy IPDgr . Our greedy bin merge is as follows. Starting
with the Ti micro bins of Xi, in each step, it searches for two bins whose merge
minimizes the practical MDL-based score. If this score is less than the current
score, i.e., their merge is beneficial, the greedy algorithm merges these two bins
and continues. Otherwise, it terminates. To quantify the quality of IPDgr w.r.t.
IPDopt , we have two performance bounds of IPDgr on Xi as follows.

Theorem 27. Asymptotically IPDgr is a 2-approximation algorithm of IPDopt .

Proof. Consider a discretization dsci on dimension Xi with ki macro bins
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{B1
i , . . . , B

ki
i }. We have

L(Mi, dsci) ≥ Lbid(dsci(Mi)) + L(Mi 	 dsci(Mi))

≥

(
ki∑
j=1

LN(|Bj
i |) + (|Bj

i |+ 1) log
Ti

|Bj
i |

)
+

ki∑
j=1

|Bj
i | log |Bj

i |

≥ (Ti + ki) log Ti −
ki∑
j=1

log |Bj
i |

≥ Ti log Ti .

Let dscTii be the discretization that puts each micro bin into a separate macro bin.
We have

L(Mi, dsc
Ti
i ) = LN(Ti) + Ti log c0 + 2Ti log Ti .

Let dscopti and dscgri be the discretization yielded by IPDopt and IPDgr , respectively.

Let dsci be a discretization that merges two micro bins with a low interaction
distance into the same macro bin and places each of the other micro bins into a
separate macro bin. It holds that

L(Mi, dsci) = LN(Ti − 1) + log(Ti − 1) + (Ti − 1) log c0 + 2Ti log Ti − log Ti .

Thus, L(Mi, dsci) < L(Mi, dsc
Ti
i ), i.e., merging two consecutive micro bins with a

low interaction distance in the first place will yield an encoding cost lower than
that of dscTii . Thus, IPDgr will proceed after this step. Hence, L(Mi, dsc

gr
i ) ≤

L(Mi, dsci). We have
L(Mi, dsc

gr
i )

L(Mi, dsc
opt
i )
≤ L(Mi, dsci)

Ti log Ti
. This leads to

L(Mi, dsc
gr
i )

L(Mi, dsc
opt
i )
≤ LN(Ti − 1) + log(Ti − 1) + (Ti − 1) log c0 + 2Ti log Ti − log Ti

Ti log Ti
.

(8.1)
Let RHS be the right hand side of (8.1). It holds that

lim
Ti→∞

RHS = 2

as lim
Ti→∞

LN(Ti−1)
Ti log Ti

= 0 [Grü07]. In other words, as Ti → ∞, L(Mi,dsc
gr
i )

L(Mi,dsc
opt
i )
≤ 2. There-

fore, asymptotically IPDgr is a 2-approximation algorithm of IPDopt .

Theorem 28. Let dscgri be the discretization yielded by IPDgr on Xi. Further, let
dsc1

i be the discretization that merges all micro bins of Xi into one single macro bin.
Assuming L(Mi, dsc

gr
i ) ≤ L(Mi, dsc

1
i ), for ε ∈ [0, 1] such that (Ti − 1) · ε pairs of

consecutive micro bins of Xi have low interaction distance, we asymptotically have
IPDgr as a (2− ε)-approximation algorithm of IPDopt .

Proof. We assume that there are (Ti−1)ε pairs of consecutive micro bins of Xi that
have low interaction distance (0 ≤ ε ≤ 1), i.e., (Ti − 1)(1 − ε) pairs have a large
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interaction distance. We have

L(Mi, dsc
1
i ) = log c0 + LN(Ti) + LN ((Ti − 1)(1− ε)) +

(Ti − 1)(1− ε) log(Ti − 1) + Ti log Ti .

This means L(Mi,dsc
gr
i )

L(Mi,dsc
opt
i )
≤

log c0 + LN(Ti) + LN ((Ti − 1)(1− ε)) + (Ti − 1)(1− ε) log(Ti − 1) + Ti log Ti
Ti log Ti

.

(8.3)
Let RHS be the right hand side of (8.3). Note that lim

Ti→∞
RHS = 2 − ε. In other

words, as Ti →∞,
L(Mi, dsc

gr
i )

L(Mi, dsc
opt
i )
≤ 2− ε.

As in general ε will be larger than zero, the bound in Theorem 28 improves over
Theorem 27. For instance, when ε = 1/3, IPDgr is a 1.67-approximation algorithm
of IPDopt . We observe that the assumption made in Theorem 28 holds for all data
sets tested in the experiments. In fact, the results show that IPDgr achieves an
approximation factor of about 1.1 of IPDopt , while being up to an order of mag-
nitude faster. Overall, we find that in practice IPDgr strikes a very good balance
between time and quality. Still, we note that both variants are both more efficient
and produce higher quality discretizations than existing techniques.

8.6.2. Parameter settings

Setting the number of micro bins. To set Ti, we rely on a recent result by
[RRF+11]. They show that to avoid inflated pairwise correlation scores when
discretizing data, the number of bins in each dimension must be ≤ n1−δ, with n
being the number of data points of DB and δ ∈ (0, 1). Based on this result, and
our own preliminary empirical analysis, we use Ti = n0.5 in the remainder of this
chapter.

Setting a threshold for interaction distances. To use ID in our practical score,
i.e., to compute Lmh(dsci(Mi)), we need to be able to decide which interactions
distances are ‘large’. This is a difficult problem in general, also for other distance
functions. The naïve way is to use a fixed cutoff threshold. However, preliminary
analysis showed this does not work well. That is, in practice there is no global
threshold suitable for all dimensions and all data sets.

Instead, we propose a data-driven approach: sort the distances between consecu-
tive micro bins in ascending order and pick a threshold equal to a quantile tq of
the distance values. We thus make the threshold dependent on the distance distri-
bution of each dimension. Preliminary experiments showed that the first tertile is
a good choice. Of course, one can adjust tq, e.g., by analyzing the distance values,
to reflect the level of detail one is willing to keep. One can just set tq as we do,
and let our discretization methods handle the task of merging bins appropriately.
Throughout all experiments in this chapter we will use the first tertile.
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8.6.3. Complexity analysis

The computational complexity of IPD consists of three parts 1) pre-sorting the
data per dimension, 2) computing interaction distances, and 3) bin merging.

Sorting the data costs O(n log n) per dimension. For each dimension Xi we com-
pute the distances between all pairs of consecutive micro bins, with an individual
cost of O(mn

2

T 2
i

) (cf., Theorem 25). As there are Ti − 1 pairs of micro bins, the

cost per dimension is O(mn
2

Ti
) = O(mn1.5) (cf., Section 8.6.2). Bin merging takes

O(T 3
i ) = O(n1.5) for the dynamic programming method, and O(T 2

i ) = O(n) for
the greedy method. In sum, we see that for both bin merge strategies the total
theoretical complexity of IPD is O(m2n1.5).

It is interesting to compare this result to existing techniques. When we do so,
we find that with regard to size MVD [Bay01], CPD [MPY05], SD [FI93], and
CHIM [Ker92] all have a complexity of O(n2), while UD potentially scales cubicly
to n. With regard to dimensionality, CPD requires O(m3) time for performing PCA,
and potentially exponential time with m for mining itemsets inside the bins. Simi-
larly, in the worst case MVD scales exponentially to m due to its use of contrast set
mining. UD, SD, and CHIM scale linearly to m, as they do not analyze interactions
with the other (m− 1) dimensions. Overall, in terms of worst case complexity, we
find that IPD is at least as efficient as its multivariate competitors. However, the
empirical results show that in practice IPD is much faster than both its univariate
and multivariate competitors.

8.7. Experiments
In our experiments, we study the ability of IPD to maintain multivariate interac-
tions. We test its two variants: optimal IPD (IPDopt) using dynamic programming
and greedy IPD (IPDgr), which employs our greedy bin merge strategy.

All experiments were conducted on Intel i5-2520M machines with 8GB RAM.

8.7.1. Setup

We perform four sets of experiments. We first evaluate, using synthetic data, if
our methods preserve known interactions (Sec. 8.7.2). Next, we evaluate on real-
world data using three representative use cases for multivariate discretization:
pattern-based compression (Sec. 8.7.3), outlier detection (Sec. 8.7.4), and classi-
fication (Sec. 8.7.5).

We compare IPDopt and IPDgr against state of the art methods in both super-
vised and unsupervised discretization. Table 8.1 summarizes their characteris-
tics. UD [KM07] performs unsupervised univariate discretization, CPD [MPY05]
is for unsupervised multivariate discretization, and SD [FI93] is for supervised dis-
cretization. For each method, we optimize parameter settings according to their
respective papers. We create the initial micro bins on the basis of equal-frequency,
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Unsupervised Multivariate Interaction
Preserving

UD [KM07] X - -
CPD [MPY05] X X *
SD [FI93] - - -
IPD X X X

Table 8.1.: Characteristics of methods. (*) means partially.

Data N D Classes

Climate 35601 251 -
Crime 1993 101 -
Gas 13910 128 7
KDD 311029 41 38
Energy 48501 540 2
Mini 130064 50 2
PAMAP 1686000 42 15
PAMAP2 1662216 51 18
Parkinson 5875 18 -
SatImage 6435 36 6

Table 8.2.: Characteristics of the real data sets.

similar to [MPY05], and hence, allow for fair comparison. For IPD, we always fix
tq to the first tertile.

We experiment on 10 real data sets. We draw six of them from the UCI Machine
Learning Repository, the publicly available PAMAP database1, and two further data
sets on Energy and Climate data. The Energy data set contains hourly energy con-
sumption indicators (e.g., water, heating, electricity) of different buildings in KIT
university campus, recorded from 2006 to 2011. The Climate data set contains
climate data of an office building in Frankfurt, Germany, collected from 2004 to
2012 [WLV+14]. Note that SD requires labels and is hence, inapplicable on Cli-
mate, Crime, and Parkinson. We summarize the characteristics of these data sets
in Table 8.2.

8.7.2. Preserving interactions

To show that our methods are able to preserve known dimension interactions, we
first experiment on synthetic data.

Synthetic Case 1. First, we generate data according to theR+I+S parity problem,
which is the continuous version of the parity problem. That is, each data set
consists of (a) R dimensions uniformly distributed in the range [−0.5, 0.5], (b)

1http://www.pamap.org/demo.html
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X1 X2 X3 X4 X5 X6 X7 X8–X100

Ideal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -

IPDopt -0.04 0.03 -0.04 -0.05 0.02 0.04 -0.04 -
IPDgr -0.05 0.05 -0.04 -0.05 0.04 0.05 -0.05 -
UD - - - - - - - -
SD - - - - - - -0.04 -

CPD
{ 0.28 0.24 0.16 -0.21 -0.11 -0.24 0.22

+
0.41 0.37 0.34 0.39 0.33 0.10 0.36

Table 8.3.: Preserving interactions on Synthetic Case 1. The ideal outcome: one
cut point at 0.0 for dimensions X1–X7, no cut points for X8–X100. (-)
means no cut point. (+) means has at least one cut point.

another dimension whose value is a random number drawn from (0, 0.5] if an even
number of values of the first R dimensions are positive, and drawn from [−0.5, 0]
otherwise, and (c) S irrelevant dimensions. For each R, we create a data set of
10000 points, including 10% noise. We present representative results with R = 6
and S = 93, i.e., 100 dimensions in total. For SD, we create the class label as
follows: If the (R + 1)th dimension is positive, the class is 1, and 0 otherwise.

Please note that, in the ideal solution, each of the dimensions X1 to X7 only has
one cut point at 0.0 (i.e., two bins) while no irrelevant dimension has a cut point.
Table 8.3 shows that IPDopt and IPDgr produce the results closest to the ideal. UD
is univariate and oblivious to dimension interactions, and hence, here creates only
one bin for X1 to X7. SD also yields only one bin for X1 to X6. This is because
it only considers the interaction of each dimension with the class label, while in
this case, interactions among multiple dimensions are required to find proper cut
points. CPD in turn introduces spurious cut points for all dimensions, including
the irrelevant ones.

To assess robustness of ID with regard to high dimensional interactions, we eval-
uated on data with R = 60 and S = 300. The result are consistent with those
above.

Synthetic Case 2. Next, we generate data according to multivariate histograms.
Each data set created has (R+ 2R+ 3R+ 20R) dimensions in the range [−5.0, 5.0].
Each of the first R dimensions (R-dimensional interaction) has one cut point at
0.0. Each of the next 2R dimensions (2R-dimensional interaction) has three cut
points at -3.0, 0.0, 3.0. Each of the next 3R dimensions (3R-dimensional interac-
tion) has five cut points at -3.0, -1.0, 0.0, 1.0, 3.0. The remaining 20R dimensions
are irrelevant. For each group of relevant dimensions with n bins per dimension,
we pick n multivariate cells that do not overlap in any univariate bin. For in-
stance, assuming that R = 3, cells (0, 1, 0) and (1, 0, 1) of the first group do not
have a common univariate bin. For each cell picked, we assign a multivariate
Gaussian distribution with a dimensionally matching mean vector and covariance
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IPDopt IPDgr UD CPD SD

5-dimensional interaction X X - - n/a
10-dimensional interaction X X - - n/a
15-dimensional interaction X X - - n/a
100 irrelevant dimensions X X X - n/a

Table 8.4.: Preserving interactions on Synthetic Case 2. “X” means the respective
method discovers the correct discretization over all dimensions of the
given group, and “-” if otherwise. The ideal outcome: “X” in all groups.
SD is not applicable as the task is unsupervised.

matrix. To create a new data point o, from each relevant group we pick a cell
(with equal probability) and sample the values of o in the respective dimensions
accordingly. In the irrelevant dimensions, the values of o are sampled uniformly
randomly from [−5.0, 5.0]. To increase complexity we add 10% random data points
to the unselected cells. Using our procedure, we ensure each data set to follow a
known histogram, i.e., known ground-truth cut points.

For a given data set, a discretization method is considered to produce a correct
result for a group iff (a) it produces the correct number of cut points in all member
dimensions, and (b) if the group contains relevant dimensions, each cut point is
within a distance δ = 0.5 to the correct cut point. Table 8.3 shows the results
on a data set with R = 5, and containing 10000 points. For brevity, we only
show if methods correctly identify cut points for different groups. Only IPDopt and
IPDgr produce the correct discretizations for all groups. This implies that IPD, and
hence, ID are robust w.r.t. high dimensional interactions.

Overall, the experiments on synthetic data show that our methods successfully
identify and preserve synthetic interactions among dimensions.

8.7.3. Compression

Next, we examine whether IPD preserves interactions in real-world data. To this
end, we use our ideal score (Sec. 8.5.1) to fairly compare between discretizations.
The resolutions per dimension needed in L(dsc) and L(DB	 dsc(DB)) are deter-
mined from the data following [KM07].

We instantiate the score with three different compressors. First, we use GZIP, a
general purpose compressor. To apply it, we serialize the data per row, per col-
umn in the original order of the data. Further, we use KRIMP [VvS11] and COM-
PREX [ATVF12], two pattern-based methods that compress data using itemsets—
which allows these methods to detect and reward multivariate interactions. In
addition, COMPREX can exploit correlations by grouping and encoding highly in-
teracting attributes together. For GZIP and COMPREX we use default parameters,
for KRIMP we use a minimal support of 10%. Overall, for each compressor, the
total encoding cost L(DB, dsc) will be low only if the interactions are preserved
well.
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GZIP KRIMP COMPREX

Data IPDopt IPDgr IPDopt IPDgr IPDopt IPDgr

Climate 19413k 21018k 14092k 15501k 11247k 12597k
Crime 754k 786k 486k 511k 282k 305k
Gas 3867k 4358k 2929k 3134k 2753k 3028k
KDD 3178k 3178k 2838k 2923k 2724k 2751k
Energy 28367k 30197k 22743k 22971k 13246k 13908k
Mini 56033k 58360k 19348k 20509k 9757k 10635k
PAMAP 113062k 118373k 92215k 94982k 80187k 85800k
PAMAP2 132673k 137874k 105967k 114444k 92146k 104125k
Parkinson 294k 328k 210k 228k 169k 186k
SatImage 688k 754k 491k 530k 420k 462k

Table 8.5.: [Lower is better] The total compression costs in bits of IPDopt and
IPDgr , L(DB, dsc), using different compressors.

We present the results in Fig. 8.3. The plots show the relative compression rates,
with IPDopt as base, per dataset, for each of the considered discretization methods,
using respectively GZIP, KRIMP, and COMPREX as compressor. The absolute total
compression costs for IPDopt and IPDgr are reported in Table 8.5.

From the figures, we see that IPDopt yields the best results across all data sets and
all three compressors. The performance of IPDgr is very close to that of IPDopt .
Further, our methods provide about 100% saving in bits compared to SD, and
even over 200% compared to UD and CPD. This implies that our methods pre-
serve dimension interactions well, aiding interaction-aware methods like KRIMP

and COMPREX to detect patterns over multiple attributes, leading to lower com-
pression costs.

Concerning the competition, UD did not finish within 6 days for the PAMAP data
sets. Although multivariate in nature, CPD did not obtain very good scores, which
indicates it either does not maintain all strong interactions, or that spurious in-
teractions are introduced. Overall, the results show that IPDopt and IPDgr best
preserve complex patterns hidden in different real-world data sets.

We also use pattern-based compression to study the sensitivity of our methods
to input parameters. Recalling from Section 8.6.2, our methods receive two such
parameters: (a) the number of micro bins T and (b) the interaction distance cutoff
tq. Setting T on the other hand depends on the setting of δ, i.e., we study the
parameterization of δ instead. To study the performance of our methods w.r.t. δ,
we fix tq = 1/3 and choose the compression cost at δ = 0.5 as the base. To study the
performance of our methods w.r.t. tq, we fix δ = 0.5 and choose the compression
cost at tq = 1/3 as the base. We display the results on the Climate data set with
COMPREX as the compressor for illustration purposes. The results of IPDopt are in
Figure 8.4 and those of IPDgr are in Figure 8.5. We can see that the performance
of our methods (in terms of relative compression cost) improves as δ decreases.
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Figure 8.3.: [Lower is better] Relative total compression costs for all data sets,
using GZIP (top), KRIMP (middle), and COMPREX (bottom) as com-
pressor. The compression costs of IPDopt are the bases. SD is not
applicable on unlabeled data. UD did not finish within 6 days on the
PAMAP data.

However, the change when δ varies between 0.4 and 0.5 is small. On the other
hand, the runtime becomes higher with lower values of δ (see Section 8.6.3). Thus,
we use δ = 0.5 in the remainder of this chapter. Setting tq on the other hand seems
to be harder. Yet, we use tq = 1/3 as this value yields good performance compared
to other values. We note that these settings are suggestive to the experiments
performed in this chapter only. For other scenarios, further search of a suitable
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Figure 8.4.: [Lower is better] Relative compression cost of IPDopt vs. δ (i.e., T )
and tq on the Climate data set.
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Figure 8.5.: [Lower is better] Relative compression cost of IPDgr vs. δ (i.e., T ) and
tq on the Climate data set.

parameterization might be required.

8.7.4. Outlier detection

The previous experiments showed our methods preserve interactions. Next, we
investigate how well outliers can still be identified in the discretized data. If a
discretization is too detailed, all values will be unique, and hence, all records are
‘outliers’. If the discretization is too coarse, no outliers will be detectable.

To detect outliers we use COMPREX with the different discretization methods as
pre-processing step. As argued by [ATVF12], patterns that compress the majority
of the data well define its norm, and hence, data points that cannot be compressed
well can be safely regarded as an outlier. To evaluate performance we use labeled
data: one class as the ‘normal’ objects and another as the ‘outliers’. The evaluation
metric is the average precision, computed as the area under the precision-recall
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Data IPDopt IPDgr UD CPD SD LOF

Gas 0.74 0.72 0.36 0.42 0.48 0.64
KDD 0.54 0.53 0.14 0.19 0.03 0.44
Energy 0.70 0.69 0.33 0.45 0.45 0.36
Mini 0.79 0.79 0.30 0.53 0.51 0.60
PAMAP 0.82 0.79 * 0.38 0.24 0.54
PAMAP2 0.84 0.82 * 0.41 0.27 0.53
SatImage 0.41 0.41 0.21 0.28 0.15 0.33

Average 0.69 0.68 0.27 0.38 0.30 0.49

Table 8.6.: [Higher is better] Average precision (area under precision-recall curve)
for outlier mining. LOF ran on the original continuous data. Highest
values are in bold. (*) means the result is unavailable due to excessive
runtime.

curve. It is the average of the precision values obtained across recall levels. As
standard baseline, we run LOF [BKRTN00] on the original data. Climate, Crime,
and Parkinson are unlabeled, and hence, not applicable in this experiment.

We present the results in Table 8.6. Both IPDopt and IPDgr obtain very high average
precision, outperforming the competition with a broad margin. In fact, a Friedman
test [Dem06] at α = 0.05 shows that the observed differences are significant.
A Nemenyi test in the post-hoc analysis learns us that: (a) IPDopt significantly
outperforms UD, CPD, and SD, and (b) IPDgr significantly outperforms UD and
SD. Using a Wilcoxon signed rank test with α = 0.05 to compare IPDgr and CPD,
we find IPDgr to be significantly better.

Interestingly, IPDopt and IPDgr beat LOF with a wide margin—significant under a
Wilcoxon signed rank test—despite that discretized data contains inherently less
information. By weeding out irrelevant associations, IPD provides COMPREX the
chance to outperform LOF.

We are aware that outlier detection methods exist that may outperform LOF. How-
ever, our goal here is not to push the envelope in outlier detection, but to compare
the quality of the discovered discretizations. Moreover, LOF is often used as base-
line.

8.7.5. Classification

Next, we evaluate the methods in the context of a supervised task: classification.
To evaluate performance, we train Random Forests [Bre01] on the discretized
data, and consider accuracy as the performance metric. In addition, as a baseline,
we also report its performance on the continuous data (RF). We use the imple-
mentation in the WEKA toolkit with default parameters. All results are obtained by
performing 10-fold cross validation. For the unsupervised methods IPDopt , IPDgr ,
UD, and CPD, we do not show the class labels during discretization. As above,
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Data IPDopt IPDgr UD CPD SD RF

Gas .99 ± .00 .99 ± .00 .56 ± .01 .71 ± .01 .98 ± .00 .99 ± .00
KDD .98 ± .00 .98 ± .00 .58 ± .00 .70 ± .00 .98 ± .00 .98 ± .00
Energy .97 ± .01 .96 ± .01 .48 ± .02 .68 ± .02 .94 ± .01 .93 ± .01
Mini .92 ± .00 .91 ± .00 .75 ± .00 .72 ± .00 .89 ± .00 .91 ± .00
PAMAP .92 ± .01 .90 ± .01 * .71 ± .01 .87 ± .01 -
PAMAP2 .98 ± .01 .98 ± .01 * .66 ± .00 .86 ± .01 -
SatImage .89 ± .01 .87 ± .01 .82 ± .01 .81 ± .01 .86 ± .01 .89 ± .01

Average 0.95 0.94 0.64 0.71 0.91 0.94

Table 8.7.: [Higher is better] Classification accuracy. RF ran on the original con-
tinuous data. Highest values are in bold. (*) means the result is un-
available due to excessive runtime. (-) means the result is unavailable
due to memory overflow.

the unlabeled data sets are not applicable. For PAMAP, RF did not finish due to
memory overflows.

We present the results in Table 8.7. We report both mean and standard deviation
over the cross-validation folds. Considering the results, we see that the super-
vised methods SD and plain RF obtain much higher accuracies than UD and CPD.
Interestingly, and somewhat surprisingly, both IPDopt and IPDgr consistently out-
perform SD, and perform as least as good as plain RF—even though they were
unaware of the class labels. A possible explanation is that RF and SD only main-
tain interactions between individual dimensions and the class label, and by making
decisions locally may misalign bins of interacting dimensions. Our methods, how-
ever, are able to detect and maintain the multivariate structure of the data, which
if it correlates with the class label, will aid classification.

By applying a Friedman test at α = 0.05, we find the observed differences be-
tween the discretization methods to be significant. A Nemenyi test in the post-hoc
analysis shows IPDopt and IPDgr perform significantly better than UD and CPD. A
Wilcoxon signed rank test between IPDopt and SD, shows IPDopt to be significantly
better. Repeating this test between IPDgr and SD, we find IPDgr to be significantly
better. The difference between IPDopt , resp. IPDgr , and RF is not significant.

Note that we are aware of other modern classifiers (e.g., SVMs), which may out-
perform RF. However, for us, state of the art classification is not the goal, but
simply a means for evaluating how well discretization techniques maintain inter-
actions.

8.7.6. Runtime

Last, we evaluate runtime. In Figure 8.6, we show the relative runtimes of all
methods on all data sets considered. We pick the runtimes of IPDopt as the bases.
The wall-clock runtimes of IPDopt and IPDgr are in Table 8.8. The results show
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Figure 8.6.: [Lower is better] Relative runtimes of all methods compared to IPDopt .
SD is only applicable on labeled data.

that in practice, both our methods are faster than the competition, with IPDgr by
far the fastest method overall. UD did not finish within 6 days on the PAMAP data.

8.8. Discussion

The experiments show that IPD provides very high quality discrete data, maintain-
ing the key structures and interactions of the original continuous data. We found
that it consistently outperforms its competitors in maintaining interactions and
patterns, allowing for the identification of outliers, as well as in classification ac-
curacy. Moreover, the runtime experiment shows that it is faster than both state of
the art univariate and multivariate competitors. The improved performance of IPD
compared to existing techniques can be traced back to its three main components,
(a) our interaction distance ID , (b) our MDL-based balancing of preserving di-
mension interactions and the information within dimensions, and (c) our efficient
bin merge strategies. In sum, IPD provides a powerful approach for unsupervised
multivariate discretization.

This is not to say that the problem of interaction-preserving multivariate discretiza-
tion is now solved. IPD involves some design choices and there is room for alter-
native solutions and improvements, which are beyond the scope of this article. For
instance, we form micro bins on the basis of equal-frequency. It is interesting to
see whether more advanced techniques for forming micro bins, such as UD, may
lead to better overall interaction preservation.

MDL here guides us to very good discretizations. However, constructing an encod-
ing involves choices that determine which structure is rewarded. We formalized a
general MDL framework for interaction-preserving discretization; if one is willing
to make explicit assumptions on the distribution of the data or structure of the
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Data n m IPDopt IPDgr

Climate 35601 251 61242 10708
Crime 1993 101 47 32
Gas 13910 128 1267 682
KDD 311029 41 10200 3674
Energy 48501 540 107233 25532
Mini 130064 50 15208 3923
PAMAP 1686000 42 217835 77798
PAMAP2 1662216 51 284778 109530
Parkinson 5875 18 32 6
SatImage 6435 36 77 18

Table 8.8.: [Lower is better] The single-threaded, wall-clock runtimes in seconds
of IPDopt and IPDgr .

ideal discretization, other encodings or model selection techniques can be con-
sidered. Also, for a more specialized solution, one could optimize towards one
specific compressor.

We do note that our MDL framework can be instantiated by any interaction dis-
tance. In this chapter, we use ID as an instantiation. Depending on the task at
hand, other interaction distances may be preferred, such as the Kullback-Leibler
divergence or the Jensen-Shannon divergence [CT06]. As long as one is able to
find a reliable way to compute such distances, these can be used within our frame-
work. In our context, we find that ID yields a good combination of theoretical
correctness and foundations, simplicity, and ease of computation.

In this chapter we focused on discretization quality. As future work, we consider
looking into highly scalable approximations to IPD. Key ideas include that ID can
be sped up by considering not all dimensions, but only those within the subspace
most strongly interacting with the current dimension. That is, we can factor the
full space into smaller subspaces that can then be considered independently. This
reduces the complexity for ID , and allows for efficient implementation by paral-
lelization. Additionally, as IPD discretizes dimensions independently of the others
this can be trivially parallelized, as can the computation of ID between consecutive
micro bins.

8.9. Conclusion

In this chapter, we proposed IPD, an information-theoretic method for unsuper-
vised discretization of multivariate data, that specifically focuses on the preserva-
tion of interactions. That is, for each dimension we consider the distribution of
the data over all others. In particular, we only merge consecutive regions if their
multivariate distributions are statistically similar and the merge reduces the MDL
encoding cost. Empirical evaluation on both synthetic and real-world data sets
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8.9. Conclusion

shows that IPD obtains high quality discrete data that maintains the key interac-
tions of the original, while outperforming existing methods in a range of knowl-
edge discovery tasks.

IPD and ID have high potential impact in any setting where discretization is re-
quired, be it explicitly such as for methods that only consider discrete data, or
implicitly wherever cut points need to be decided. As examples, we plan to inves-
tigate the application and embedding of our methods for pattern mining, subgroup
discovery, and selectivity estimation. Moreover, we are investigating highly scal-
able approximations that would allow considering very large databases.
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9. Information-Theoretic Causality
Analysis

This chapter is based on our work in progress [NV]:

H. V. Nguyen and J. Vreeken, Information-theoretic causal discovery, in progress.

In all of the previous chapters, we discuss mainly correlation analysis. In this
chapter, we go one step forward and study efficient causal inference in high di-
mensional data. It is well-known in the statistics community that “correlation does
not imply causation” [Ald95]. Thus, to perform causality analysis, we need a whole
different treatment [Pea09, SGS00]. This motivates us to look at causal inference
in more details here. Yet, as it will turn out, our solution is based on that of
CMI++. This demonstrates another benefit of correlation-aware discretization.

The setting of our study is as follows. Under the assumption of causal sufficiency
(no hidden confounders), given two multivariate random variables X and Y with
some correlation relationship and with the same number of observations, we aim
at efficiently inferring their causal direction. Solving this problem in fact is iden-
tified as one of the key steps towards generating causal graphs from empirical
data [Pea09].

To solve the above problem, we propose a new principle for causal inference that is
based on Kolmogorov complexity and which makes use of the algorithmic Markov
condition. We show that our principle generalizes various existing methods that
rely on the principle of plausible Markov kernels. As Kolmogorov complexity is
not computable, we present NOVUM, an efficient non-parametric implementation
of our principle based on cumulative and Shannon entropy. We show our method is
applicable to mixed typed data, as well as how to derive a scalable causal discovery
framework. One important feature of our work is that we do not restrict the type
of correlation between random variables. Extensive experiments on both synthetic
and real-world data show NOVUM to yield both high accuracy and high efficiency
on both deterministic and noisy data.
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9.1. Introduction

Considerable research effort on causal analysis has been devoted to infer whether
X causes Y or Y causes X from only the joint observations of (X, Y ) under the
assumption of causal sufficiency (no hidden confounders) [SJS06, SJS08, ZH09,
PJS10, JS10, MSJ+10, JHS10, ZJZ11, JMZ+12, CZC13]. Recently, there is a focus
on inferring the causal direction between multivariate random variables X and
Y [JHS10, ZJZ11, CZC13]. Existing methods consider linear correlation and in-
vertible functional correlation. Correlations in real-world data, however, range
from non-linear to complex non-functional [RRF+11]. Furthermore, existing work
is not designed to handle mixed typed data. That is, X and Y may not contain
both numerical and categorical components. Lastly, existing techniques for han-
dling non-linear functional correlations are computationally expensive, and do not
scale to large data. In this work, we propose a framework and an instantiation that
alleviates each of these issues.

More in particular, we propose a new principle for causal inference based on Kol-
mogorov complexity, and which embraces the principle of plausible Markov ker-
nels [SJS06, SJS08, JS10, MSJ+10, ZJZ11].

Intuitively, the principle of plausible Markov kernels, which we name the Markov
kernel principle for short, states that the factorization of the joint distribution
p(cause, effect) into p(cause)p(effect | cause) typically yields a model of lower total
complexity than the factorization into p(effect)p(cause | effect) [ZJZ11]. A straight-
forward implementation of this principle is to take only the complexity of p(.) into
account. However, as the (conditional) pdfs are not available at hand, they need
to be estimated from empirical data. This estimation exercise in turn induces an
estimation of the joint probability p(cause, effect). Deriving our inference principle
from Kolmogorov complexity [LV93, AV09], we argue that this complexity of also
needs to be included in the total complexity.

Based on this observation, we define causal indicators that consider the complexity
of marginal and conditional pdfs and estimated joint distributions. On a concep-
tual level, we instantiate the notion of complexity using Kolmogorov complex-
ity [LV93]. We show that our principle yields a generalization of various existing
approaches [SJS06, SJS08, JS10, MSJ+10].

As a practical instantiation, we introduce NOVUM, an efficient method that imple-
ments our principle using entropy divergence. We use this method to infer the
causal direction between multivariate random variables X and Y , without having
to make any assumption on their distribution nor their correlation—be it linear or
non-linear, functional or non-functional. In addition, similar to most of the exist-
ing work on causal inference by the Markov kernel principle [SJS06, SJS08, JS10],
we do not have to make an explicit assumption on the presence of noise. This does
not mean we claim that we are impervious to stochastic relationships. However,
our experiments reveal that our method is robust to noise, showing very good
performance on a wide range of noisy real-world and synthetic data sets.
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Lastly, we explain how to extend our method to handle mixed typed data, as well
as how to derive a scalable causal discovery framework from it. We show that
the latter yields a more general and a more efficient alternative to the well-known
constraint-based causal discovery [Coo97].

Overall, our contributions include:

• We propose a new principle for causal inference using Kolmogorov complex-
ity.

• We introduce an efficient implementation of our principle to infer the causal
direction between two multivariate real-valued random variables X and Y .
Our method does not require any assumption on the relationship between X
and Y .

• We extend our method to handle categorical random variables, and hence,
enable causal analysis to mixed typed data sets.

• We present an automatic and scalable framework for mining cause-effect
univariate pairs together with their causal directions in large and high di-
mensional data. We show that this framework is suitable for data mining
applications where it is not mandatory to find the complete causal graph of
the data [SBMU00].

In this chapter, we make the assumption of causal sufficiency, i.e. there are no
hidden confounders. In addition, we pursue causal discovery by purely analyzing
non-experimental data.

9.2. Preliminaries

We consider a D-dimensional random variables X = {X1, . . . , XD} and k-
dimensional random variables Y = {Y1, . . . , Yk}. We write X to denote the data
we have for X. If we have collected N observations for X, X then represents the
N × D data matrix of X. Similarly, we use Xi for the data of Xi, and slightly
abusing notation, analogue we say X = {X1, . . . ,XD}.

We write p(X) for the probability distribution of X. If X contains real-valued
(resp. integer-valued) components only, we call X a real-valued (resp. integer-
valued) multivariate random variable, and p(X) the probability density function
(pdf) of X. If its components are all categorical we say X is a categorical multi-
variate random variable, and call p(X) the probability mass function (pmf) of X.
We write p(x) as a short form for p(X = x). We define p(Y ) similarly.

If X is numerical, we assume that the domain of Xi ∈ X is [min(Xi),max (Xi)].

Considering a univariate numerical random variable X, we write the cumulative
distribution function (cdf) of X as P (X), with P (x) as the short form of P (X ≤ x).
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9.3. Principle

Consider two multivariate random variables X = {X1, . . . , XD} and Y =
{Y1, . . . , Yk} for which we know there exists a correlation relationship—identified
by either domain experts or an appropriate test. Assume that we have N observa-
tions for each variable. Our task is then to infer the causal relationship between
X and Y given the data X and Y collected for these variables. We assume causal
sufficiency, and hence, the decision comes down to which of X → Y and Y → X
is more plausible.

Our inference principle is a generalization of the Markov kernel principle [SJS06,
SJS08, JS10, MSJ+10]. Intuitively, the Markov kernel principle states that the
factorization of the joint distribution p(cause, effect) into p(cause)p(effect | cause)
typically yields a model of lower total complexity than the factorization into
p(effect)p(cause | effect). A well-founded way to implement the notion of com-
plexity is to use Kolmogorov complexity. Following the Markov kernel principle,
one would compute the total complexity of two factorizations of p(X ,Y ) as

K(p(X)) +K(p(Y | X)) (9.1)

and
K(p(Y )) +K(p(X | Y )) , (9.2)

respectively, where K(p(·)) is the Kolmogorov complexity of p(·). Then, one infers
the causal direction corresponding to the smaller complexity.

Setting aside the non-computable property of Kolmogorov complexity, Eqs. (9.1)
and (9.2) ignore that the pdfs and conditional pdfs over X and Y are generally not
available: We only have empirical (observational) data X and Y. As a result, p(X)
resp. p(Y ) first needs to be estimated. This exercise yields, in turn, an estimation of
the joint probability p(X, Y ); see [SJS06] for an example. We write p̂X→Y (X, Y )
as the joint distribution induced by the factorization of p(X, Y ) into p(X) and
p(Y | X). We define p̂Y→X(X, Y ) similarly.

In the large data limit (the amount of empirical data approaches infinity), p(.) can
be estimated with arbitrarily high accuracy [Sil86, TP95]. Hence, the estimated
joint probability functions induced by different factorizations can be assumed to all
fit the data approximately equally well. In practice, however, the sample size of the
data is never infinite, and generic (conditional) pdfs tend to be hard to estimate
with limited observed data. Consequently, the complexity of the estimated joint
probability p̂X→Y (X, Y ) will become non-negligible, and hence, K(p̂X→Y (X, Y ))
will need to be included in the inference rule to allow a fair call on the causal
direction. This observation is in line with the discussion in [JS10] (Section III.C,
Equation (31)). Consequently, for the hypothesis X → Y , we propose its causal
indicator ∆X→Y as below:

∆X→Y = K(p(X)) +K(p(Y | X)) +K(p̂X→Y (X, Y ))
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We define ∆Y→X similarly. If ∆X→Y < ∆Y→X , we infer that X → Y is more
plausible. Otherwise, if ∆Y→X < ∆X→Y , we infer that Y → X.

In our causal indicators, for instance, ∆X→Y , the sum K(p(X)) + K(p(Y | X))
can be perceived as the cost of the model K(M). Thus, we denote this sum
as K(M(∆X→Y )). On the other hand, K(p̂X→Y (X, Y )) can be perceived as the
cost of the data given the model K(D | M). Thus, we write this term as
K(D | M(∆X→Y )). We use this interpretation to show that our principle is a
generalization of various existing approaches. For a more complete discussion of
related work we refer the reader to Section 9.8.

First, we consider [SJS06], a method for causal inference based on the Markov
kernel principle. In short, this method takes into account only K(D | M(∆X→Y ))
to infer causal direction. They instantiate K by the maximum log-likelihood func-
tion, inferring the probabilistic model by Maximum Entropy [Jay82]. Analogously,
[MSJ+10] first estimate p(X) and p(Y | X), giving preference to functions and
distributions of low complexity. Inferring the causal direction then becomes se-
lecting the joint distribution with larger likelihood. Though the latter implicitly
favour simple models, neither of these proposals explicitly consider the complex-
ity K(M(∆X→Y )).

In contrast, [SJS08] consider only K(M(∆X→Y )), instantiating K by means of
seminorms in a reproducing kernel Hilbert space. [JS10] also mainly consider
K(M(∆X→Y )), though they remark that the cost of the data given the model may
become significant under limited observed data. As their study was largely theo-
retical, they did not provide a specific instantiation for K.

Having formulated our principle and discussed its key relations to existing work,
we now proceed introducing our instantiation of our inference principle.

9.4. Implementing our Causal Inference Rules for Nu-
merical Data

Kolmogorov complexity provides a rather nice framework for reasoning about
data, yet its practical application is limited as it is not computable [LV93]. The
Minimum Description Length (MDL) principle [Ris78, Grü07] provides a practical
variant. Given a data set D and model class M, MDL identifies the best model
M ∈ M, the best available description of the data, as the model that minimizes
L(M)+L(D |M) where L(M) is the length, in bits, of the description of the model,
and L(D | M) is the length, in bits, for describing the data given the model. This
is also known as two-part, or crude1 MDL, and as Adriaans and Vitányi recently
showed has a very tight relation to two-part Kolmogorov complexity [AV09].

Our goal is to obtain computable causal indicators. Thus, we will implement them
using MDL. In particular, we will consider the sum of complexities over p(X),

1As opposed to refined MDL, where model and data are encoded together. While this avoids
possibly arbitrary choices in the definition of the encoding, refined MDL is only computable in
special cases.
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p(Y | X), and p̂X→Y (X, Y ), respectively denoted by L(p(X)), L(p(Y | X)), and
L(p̂X→Y (X, Y )). We will implement these scores non-parametrically.

As such, over the course of this section we will implement the following rule

∆X→Y =
L(p(X)) + L(p(Y | X))

LU(p(X)) + LU(p(Y ))︸ ︷︷ ︸
K(M(∆X→Y ))

+
L(p̂X→Y (X, Y ))

LU(p̂X→Y (X)) + LU(p̂X→Y (Y ))︸ ︷︷ ︸
K(D|M(∆X→Y ))

(9.3)

and analogue for ∆Y→X . Below we will explain Equation (9.3) in details. For
now, let us simply assume that all terms are non-negative and that both the left-
hand and right-hand terms are scaled into [0, 1], i.e. that L(p(X)) +L(p(Y | X)) ≤
LU(p(X)) + LU(p(Y )) and L(p̂X→Y (X, Y )) ≤ LU(p̂X→Y (X)) + LU(p̂X→Y (Y )).

First, the left hand side measures the relative complexity of the distributions p(X)
and p(Y | X) with regard to the maximally complex distributions over the same
variables, while the right hand side measures the relative complexity of the esti-
mated joint distribution p̂X→Y (X, Y ), with regard to the maximally complex dis-
tribution of the same parameters. Ignoring the normalization, the score can be
interpreted as the average number of bits we need per observation to describe it
under the assumption X → Y . In fact, a natural interpretation of the rule is that
it measures the divergence between X → Y and X ⊥⊥ Y . The lower the score,
the stronger the detected causality; the closer to its maximum, 2, the weaker the
causal relationship. We normalize to ensure the left and right hand terms measure
complexity in comparable domains.

For a discrete distribution (pmf), we can measures its description complexity by
means of Shannon entropy [CT06]. For a pdf, we can instead use cumulative
entropy (see Chapter 3). In short, cumulative entropy captures the information
content, i.e., complexity, of a probability distribution. However, different from
Shannon entropy, it works with (conditional) cdfs. Overall, to compute L(p(·))
when p(·) is a (conditional) pdf, we will use cumulative entropy. Otherwise, we
will use Shannon entropy. Our approach of using entropy to measure the complex-
ity of a distribution indeed coincides with one of the information-geometric causal
inference methods in [JMZ+12].

We consider relative complexities in Equation (9.3)—as opposed to summing the
plain complexity terms—to ensure the two sides are scaled to the same domain.
To this end we normalize with the complexities of the independence model. For
generality, we normalize using upper bounds LU(·) of L(·). A straightforward—
yet suboptimal—option is to set LU(·) = L(·). We will formalize L and LU using
cumulative entropy. For readability, we will only consider real-valued variables X
and Y in this section. We will give the details for how to compute our scores in
Section 9.5, and will expand our formalization to mixed typed data in Section 9.6.

9.4.1. Implementing complexity measure L
As part of the causal indicator ∆X→Y in Equation (9.3), we need to be able to
compute the complexity of p(X), p(Y | X), and p̂X→Y (X, Y ).
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We note that p(X) and p(Y | X) are respectively pdf and conditional pdf of numer-
ical multivariate random variables. Thus, we measure L(p(X)) and L(p(Y | X)) by
cumulative entropy. The complexity of p̂X→Y (X, Y ), L(p̂X→Y (X, Y )), in turn de-
pends on the specific estimation scheme used. We therefore will first describe the
desiderata of L(p̂X→Y (X, Y )) and then boil down to a specific estimation scheme.

First, we consider the unconditioned case L(p(X)). As X is multivariate, and
cumulative entropy is only defined for single univariate random variables (see
Chapter 3), we calculate the complexity of p(X) by applying a chain rule. That
is, we consider the factorization of p(X) into p(X1), p(X2 | X1), . . ., p(XD |
X1, . . . , XD−1). We quantify the complexity of a p(Xi | ·) with i ∈ [1, D] by the
cumulative entropy h(Xi | ·).

However, as there are D! possible factorizations of p(X), the question hence is:
which one to choose? Our goal is to build a general formulation that is inde-
pendent of any specific factorization. Thus, following the Minimum Description
Length principle, we define the complexity of p(X) as the minimum complexity
over all factorizations. In particular, we write σX to denote a permutation of the
member components of X, and have

L(p(X))

= min
σX

h(XσX(1)) + h(XσX(2) | XσX(1)) + · · ·+ h(XσX(D) | XσX(1), . . . ,XσX(D−1)) .

Likewise, we quantify the complexity of p(Y | X) through its factorizations of the
form p(Y1 | X), p(Y2 | X, Y1), . . ., p(Yk | X, Y1, . . . , Yk−1), again using cumulative
entropy to measure the complexity of each component. To maintain generality, we
also define the complexity of p(Y | X) as the minimum complexity over all of its
factorizations. In other words, we have

L(p(Y | X))

= min
σY

h(YσY (1) | X) + h(YσY (2) | X,YσY (1)) + · · ·+ h(YσY (k) | X,YσY (1), . . . ,YσY (k−1))

where σY is a permutation of the member components of Y .

9.4.1.1. Measuring L(p(Y | X))

To be able to use these measures for inference and to better understand our nor-
malization scheme, it is important to know that L(p(Y | X)) is at most L(p(Y )).

Lemma 16. It holds that L(p(Y | X)) ≤ L(p(Y )).

Proof. Let σY and σ′Y be the permutations of Y that yield L(p(Y )) and L(p(Y | X)),
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respectively. We have:

h(Yσ′Y (1) | X) + h(Yσ′Y (2) | X,Yσ′Y (1)) + · · ·+ h(Yσ′Y (k) | X,Yσ′Y (1), . . . ,Yσ′Y (k−1))

≤ h(YσY (1) | X) + h(YσY (2) | X,YσY (1)) + · · ·+ h(YσY (k) | X,YσY (1), . . . ,YσY (k−1))

≤ h(YσY (1)) + h(YσY (2) | YσY (1)) + · · ·+ h(YσY (k) | YσY (1), . . . ,YσY (k−1)) .

Thus, L(p(Y | X)) ≤ L(p(Y )).

Based on Lemma 16, we derive that L(p(X))+L(p(Y | X)) ≤ L(p(X))+L(p(Y ))—
which, under the assumption that p(Y | X) is known, allows inference of causal
direction by information-geometry [JMZ+12]. As identified above, we work under
the assumption that p(Y | X) is unavailable and needs to be estimated. Next, we
implement L(p̂X→Y (X, Y )).

9.4.1.2. Measuring L(p̂X→Y (X, Y ))

As aforementioned, the complexity of p̂X→Y (X, Y ) depends on the specific esti-
mation scheme used. In general, to comply with the property of L for real-valued
distributions, we enforce that L(p̂X→Y (X, Y )) ≤ L(p̂X→Y (X))+L(p̂X→Y (Y )) where
p̂X→Y (X) and p̂X→Y (Y ) are resp. the marginals of p̂X→Y (X, Y ) on X and Y .

While there are a variety of relevant estimation schemes, in this chapter, for prac-
tical reasons we consider the case when p̂X→Y (X, Y ) is discrete. This can happen
when we use discretization for density estimation, which is in fact the type of
estimation we employ in this work (we postpone the details to Section 9.5).

Under our choice, it is natural that we use Shannon entropy to compute
L(p̂X→Y (X, Y )). Assume that X̂ and Ŷ are resp. the discrete version of X and Y in-
duced by the underlying estimation scheme. We have L(p̂X→Y (X, Y )) = H(X̂, Ŷ)
where H denotes Shannon entropy. Note that we adopt the same convention as
for cumulative entropy: H(X̂, Ŷ) here stands for the joint Shannon entropy of dis-
cretized version of X and Y computed over data X̂ and Ŷ. Another justification
for the use of Shannon entropy is that H(X̂, Ŷ) ≤ H(X̂) + H(Ŷ), which is in line
with our convention in Section 9.4.1.1.

With the complexity of p(X), p(Y | X), and p̂X→Y (X, Y ), we could instantiate
∆X→Y . However, we note that L(M(∆X→Y )) = L(p(X)) + L(p(Y | X)) and
L(D | M(∆X→Y )) = L(p̂X→Y (X, Y )) may be on different scales—for instance,
due to the use of different complexity measures, e.g. cumulative entropy for pdfs
and Shannon entropy for pmfs. The issue does not occur for Equation (9.3) since
we always use Kolmogorov complexity there. To handle it, we use appropriate nor-
malization schemes for L(M(∆X→Y )) and L(D | M(∆X→Y )), respectively, which
we define next.

9.4.2. Implementing the normalization score LU
A key aspect of our inference rule is the normalization, as it brings L(M(∆X→Y ))
and L(D |M(∆X→Y )) to the same scale. To do so we have to define LU , for which
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there are several options. A straightforward solution comes from the fact that
L(p(X))+L(p(Y | X)) ≤ L(p(X))+L(p(Y )) and L(p̂X→Y (X, Y )) ≤ L(p̂X→Y (X))+
L(p̂X→Y (Y )). That is, one could set LU = L. Although this can work when both
X and Y are multivariate, we will point out in Section 9.5 that its discriminative
power degenerates when either X or Y is univariate. We hence define LU by a
more refined scheme as follows.

We observe that L(p(X)) ≤
D∑
i=1

h(Xi). Moreover, on a given interval [a, b] ⊂ R,

we know that the uniform distribution has the largest cumulative entropy [Rao05,
CL09, Liu07], with a value of b−a

4
—which gives us a natural upper bound that we

use to define LU(p(X)) with X = {X1, . . . , XD}, as LU(p(X)) =
D∑
i=1

max(Xi)−min(Xi)
4

.

Likewise, given a fixed alphabet, the uniform distribution has the largest Shan-
non entropy. Hence, given X = {X1, . . . , XD} with all discrete components,

L(p̂X→Y (X)) ≤
D∑
i=1

log(|Xi|) where |Xi| denotes the number of bins of discretized

Xi. So we define LU(p̂X→Y (X)) =
D∑
i=1

log(|Xi|).

Note that if all components of discretized X and Y each has only one bin, our
convention is that 0

0
= 0.

9.4.3. Putting it together

Let us recall the definition of our causal indicators, Equation (9.3), as

∆X→Y =
L(p(X)) + L(p(Y | X))

LU(p(X)) + LU(p(Y ))︸ ︷︷ ︸
K(X′)+K(Y′|X)

+
L(p̂X→Y (X, Y ))

LU(p̂X→Y (X)) + LU(p̂X→Y (Y ))︸ ︷︷ ︸
K(X,Y|X′,Y′)

and the analogue definition for ∆Y→X . As in Section 9.3, if ∆X→Y < ∆Y→X , we
infer that X → Y is more plausible. Otherwise, if ∆Y→X < ∆X→Y , we infer that
Y → X.

One can see that our causal indicators are reminiscent of mutual information, and
hence, Kullback-Leibler (KL) divergence. In particular, KL divergence quantifies
the difference of a joint distribution to the product of its marginals, i.e. comparing
the joint distribution against its independence model. Likewise, the normalized
left-hand and right-hand sides can be considered as to compare the complexity of
the respective joint distribution against the complexities of its marginals. In other
words, our indicators can be perceived as a variant of KL divergence defined over
entropy—we hence refer to this as entropy-divergence, which to the best of our
knowledge is a novel measure. We postpone an in-depth study of its properties to
future work.
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One can see that our causal indicators do not make any assumption on the type
of correlation between X and Y , be it linear or non-linear, functional or non-
functional. Besides, similar to most of the existing work on causal inference by
the Markov kernel principle [SJS06, SJS08, JS10], they do not make explicit as-
sumption on the presence of noise. This does not mean we are, or claim to be
impervious to noise. Our experiments on synthetic and real-world data reveal,
however, that our method does perform very well in both deterministic and noisy
settings.

Another advantage of our causal indicators is that they are also applicable when
D = k = 1, i.e. X and Y are univariate. We use the univariate case to demon-
strate an additional benefit of our indicators. In particular, following Theorem 1,
Chapter 3, h(Y | X) = 0 iff Y is a function of X, i.e. there exists a function
f : dom(X) → dom(Y ) such that Y = f(X). If f is not invertible, then h(X | Y)
is likely positive. In other words, the asymmetric property of cumulative entropy
seems to permit causal inference: IfX → Y then h(Y | X) = 0 while h(X | Y) > 0.
However, this observation alone is not sufficient for causal inference. In particular,
when f is invertible, we have that h(Y | X) = h(X | Y) = 0. So by conditional
cumulative entropy alone we are unable to discover the causal direction for de-
terministic relations. However, by additionally considering h(X), L(p̂X→Y (X, Y )),
and h(Y), L(p̂Y→X(Y,X)), we can break the tie.

9.5. Implementation Details for Numerical Data
We now present the implementation details of our causal indicators ∆X→Y and
∆Y→X . In particular, we explain our design choice for (a) efficiently computing
∆X→Y and ∆Y→X , and (b) estimating conditional cumulative entropy. We also
discuss the time complexity of our implementation.

9.5.1. Efficient computation of causal indicators

As our aim is to enable causal discovery for large-scale data, we present a method
to efficiently compute our causal formulations. In particular, to compute ∆X→Y
efficiently essentially boils down to computing L(p(X)) and L(p(Y | X)) efficiently.
We discuss the case of L(p(X)) first.

To compute L(p(X)) optimally, we need to exhausitively consider all D! permuta-
tions, which is infeasible for high dimensional data. Instead, we propose a greedy
solution. That is, we first pick X ′1 with minimal cumulative entropy, i.e., h(X′1) is
minimal. Then, we pick X ′2 such that h(X′2 | X′1) is minimal. We proceed till all di-
mensions have been selected. We consider the permutation σ∗X where dimensions
are picked to be the approximate optimal permutation of X.

Likewise, to compute L(p(Y | X)), we pick Y ′1 such that h(Y′1 | X) is minimal.
Then, we pick Y ′2 such that h(Y′2 | X,Y′1) is minimal. We proceed till all dimen-
sions of Y have been selected. We consider the permutation σ∗Y where dimensions
are picked using the above scheme as the approximate optimal permutation of Y .
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9.5.2. Estimating conditional cumulative entropy

We tie the estimation of conditional cumulative entropy together with our algo-
rithm for selecting the permutations of X and Y . For illustration, we first consider
computing L(p(X)). In our algorithm, we estimate conditional cumulative entropy
by discretization. That is, after selecting X ′1, we calculate h(E | X′1) for each di-
mension E left by searching for the discretization of X ′1 such that h(E | X′1) is
minimal; we select dimension E with the minimal score.

For each subsequent step, when computing conditional cumulative entropy, we
only discretize the dimension picked in the previous step, i.e. we do not re-
discretize any earlier chosen dimensions. As shown in Chapter 3, specifically in
CMI++, the discretization at each step can be done efficiently by dynamic pro-
gramming.

The computation of conditional entropy in L(p(Y | X)) is done analogously. One
small difference is that when searching for Y ′1 , we seek for the discretization of X ′D
concurrently. Thus, after processing all dimensions of Y , all but Y ′k are discretized.
One can see that our computation of L(p(X)) and L(p(Y | X)) somehow violates
the causal inference principle which requires p(X) and p(Y | X) to be algorith-
mically independent. However, as mentioned in [JS10], this is unavoidable when
the amount of observed data is limited such that the estimated (conditional) pdfs
do not coincide with the respective true distributions.

As an alternative solution to our computation of conditional entropy, one could
use kernel methods, such as the one in [SP12]. However, besides not having to
choose a kernel, our strategy of minimizing the conditional entropy is also in line
with our greedy algorithm for selecting good dimension permutations.

9.5.3. Computing L(p̂X→Y (X, Y )): Revisited

For brevity, we discuss only L(p̂X→Y (X, Y )), as we define L(p̂Y→X(Y,X)) ana-
logue. Recall that Y ′k is the last dimension of Y picked and not discretized. Thus,
p̂X→Y (X, Y ) is made up by the discretized X, the discretized Y \ {Y ′k}, and Y ′k.

In line with our strategy to search for a minimal value of ∆X→Y , it makes lots of
sense that we search for the discretization of Y ′k that minimizes Shannon entropy of
the joint distribution p̂X→Y (X, Y ). This essentially means we use only one bin for
Y ′k since H(X̂, Ŷ) ≥ H(X̂, Ŷ \ {Ŷ′k}). Thus, we have L(p̂X→Y (X, Y )) = H(X̂, Ŷ \
{Ŷ′k}). Please note here that it is not important whether p̂X→Y (X, Y ) is a good
estimation of p(X, Y ). That is, this issue plays no role in our causal inference:
What we care about is the complexity of p̂X→Y (X, Y ).

9.5.4. Normalizing, LU : Revisited

In Section 9.4.3, we assert that setting LU = L suffers from degeneration in dis-
criminative power when either X or Y is univariate. We now explain our claim.
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For illustration purposes, let us assume that Y is univariate. Based on Equa-
tion (9.3), we then have

∆X→Y =
L(p(X)) + L(p(Y | X))

L(p(X)) + L(p(Y ))
+ 1

and

∆Y→X =
L(p(Y )) + L(p(X | Y ))

L(p(Y )) + L(p(X))
+

H(Ŷ, X̂ \ {X̂′D})
H(Ŷ) +H(X̂ \ {X̂′D})

.

It is easy to see that for ∆X→Y the normalized right-hand side term has highest
possible value (i.e. 1). This, however, is not an accurate reflection of the com-
plexity of p̂X→Y (X, Y ), but is rather an artifact of Y being univariate. In fact, if
X would also be univariate, the right hand side of ∆Y→X would also reduce to 1,
and we would be left with inferring the causal direction solely based on the left
hand side terms of our causal indicator, which is not comprehensive following our
analysis in Section 9.3. Furthermore, a preliminary empirical study verified this
simple normalization scheme does not perform well in practice.

In Section 9.4.3, we justify the advantage of our causal indicators using the case
when X and Y are both univariate. We now reuse this case to further justify
our computation method. In particular, assume that X and Y are statistically
independent—possibly due to a false positive correlation test. Following Theo-
rem 2, Chapter 3, we have h(Y | X) = h(Y) and h(X | Y) = h(X). Moreover,
under independence we expect to end up with one bin only when discretizing X
to compute h(Y | X). And, likewise for Y when discretizing to compute h(X | Y).
As a result, when computing the causal direction between X and Y we have

∆X→Y = ∆Y→X =
h(X) + h(Y)

max(X)−min(X)
4

+ max(Y )−min(Y )
4

.

Thus, when X ⊥⊥ Y we make no inference on the causal direction, which is cor-
rect. Not only does our method yield accurate inference in this case, our extensive
experiments show that it also performs very well in complex settings, including
noisy ones.

9.5.5. Complexity analysis

Here we fix ε = 0.3 and c = 10 following our preliminary analysis. The cost
of discretizing a dimension then is O(N). The overall complexity of computing
∆X→Y and ∆Y→X is therefore O((D2 + k2) ·N).

9.6. Extending the Framework
In the following, we extend our method for causal inference. First, we consider the
case of mixed typed data. Second, we sketch a framework for scalable inference
in large data.
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9.6.1. Numerical and categorical variables

Our formulations extend straightforwardly to the case where either X or Y is
categorical. We first focus on the case of inferring which of X → Y and Y → X is
more plausible, provided that X is an D-dimensional real-valued random variable
and Y is a k-dimensional categorical random variable. The intuition here is as
before: We use cumulative entropy for real-valued data and Shannon entropy for
categorical data. In particular, we have:

• L(p(X)) as above,

• L(p(Y | X)) = H(Y | X),

• L(p̂X→Y (X, Y )) = H(X̂,Y),

• L(p(Y )) = H(Y),

• L(p(X | Y )) as above, and

• L(p̂Y→X(X, Y )) = H(X̂ \ {X̂′D},Y).

We compute L(p(Y | X)) = H(Y | X) by extending Sections 9.5.1 and 9.5.2 to
Shannon entropy. This extension is straightforward as our reasoning there still
holds when h is replaced by H. Our causal inference otherwise proceeds similar
to when both X and Y are real-valued.

Note that by this formalization in practice we restrict ourselves to the case where
either X or Y is categorical; when both are categorical, due to the symmet-
ric nature of Shannon entropy, we would lose all signals for correct inference.
This could be resolved using a non-symmetric definition of entropy for categori-
cal data, or by instantiating the complexity measure using a pattern-based MDL
score [VvS11, MVT12]. We postpone these extensions to future work.

9.6.2. Mixed data-type variables

Next, we consider the case where X and Y both contain a mix of numerical and
categorical components. We write Xr and Xc as the sets of real-valued and cat-
egorical components of X, respectively. We denote Y r and Y c similarly. We re-
define the followings terms as follows.

For L(p(X)), the complexity of p(X), again our goal is to minimize it. Thus, we
have L(p(X)) = min{L(p(Xc))+L(p(Xr | Xc)), L(p(Xr))+L(p(Xc | Xr))}. On the
other hand, for the complexity of p(Y | X), also with the goal to minimize it, we
have L(p(Y | X)) = min{L(p(Y c | X)) + L(p(Y r | X, Y c)), L(p(Y r | X)) + L(p(Y c |
X, Y r))}. The complexity of p̂X→Y (X, Y ) will depend on whether Y c or Y r comes
first. If Y c comes first, we have L(p̂X→Y (X, Y )) = H(X̂, Ŷ \ {Ŷ′k}). Otherwise, we
have L(p̂X→Y (X, Y )) = H(X̂, Ŷ).

Analogue to the case where both X and Y are real-valued, Ŷ′k here refers to
the real-valued dimension in Y picked last and not discretized during the cal-
culation of L(p(Y | X)). To calculate ∆Y→X , we define L(p(Y )), L(p(X | Y )),
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and L(p̂Y→X(X, Y )) analogue to above. Regarding existing work, to the best of
our knowledge, only the method of [SJS08] is applicable to mixed data types—
however, due to high computational cost, in practice it restricts itself to binary
variables as opposed to categorical variables in general. We do not impose such a
restriction.

9.6.3. Towards a scalable causal discovery framework
Given a data set D with N observations and D dimensions X1, . . . , XD. We aim
at efficiently detecting all cause-effect univariate pairs in D, especially when N is
large.

This problem has been studied in [Coo97, SBMU00]. Relying on the fact that data
mining is concerned with discovering interesting knowledge in the data, be it com-
plete or incomplete, they argued and demonstrated through empirical studies the
benefits of efficient mining of cause-effect pairs, i.e. incomplete causal discovery,
in large data.

Following their thesis, we propose to plug our method into frameworks for scalable
correlated subspace mining, such as [NMB13]. Using such a method, we can
efficiently discover pairs of correlated dimensions in a multivariate data set D.
Then, we use our causal indicators to decide the causal direction for each pair.

Compared to constraint-based causal discovery [Coo97], we have the advantage
that we do not need to process three dimensions in order to find pairwise causal
relationships. Further, we can avoid disambiguation in deciding if Xi → Xj or
Xj → Xi since our formulation exactly resolves such situations.

In fact, the information-geometric approach of [JMZ+12] can be a more efficient
alternative to our method in handling pairwise univariate causal inference. How-
ever, we allow for causal inference in mixed typed data, and hence, open opportu-
nities for analyzing large-scale mixed typed data sets.

9.7. Experiments
We assess our method, NOVUM, which stands for entropy divergence-based causal
inference on multivariate and mixed typed data,2 under three different scenarios:

• causal inference for X and Y where at least one is multivariate,

• causal inference for X and Y where both are univariate,

• causal discovery in large and high dimensional data sets.

For comparison, we include LTR [JHS10], KTR [CZC13], GPI [MSJ+10], and
IGCI [JMZ+12]. LTR and KTR are state of the art for causal inference for multi-
variate pairs, while GPI and IGCI are state of the art for univariate pairs. Table 9.1
summarizes their characteristics. We use both synthetic and real-world data con-
taining noise. All experiments were conducted on Intel i5-2520M machines with
8GB RAM. We implemented NOVUM in Java.

2NOVUM is also Latin for new fact.
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Method Multivariate Univariate Mixed typed data

NOVUM X X X

LTR [JHS10] X − −
KTR [CZC13] X − −
GPI [MSJ+10] − X −
IGCI [JMZ+12] − X −

Table 9.1.: Characteristics of methods. (X) means the method possesses the re-
spective property, (−) means it does not.

9.7.1. Causal inference for multivariate pairs: Synthetic data

To understand the performance of NOVUM under different settings, we generate
synthetic data sets simulating complex non-deterministic causal relations. To this
end, we generate multivariate XD×1 = AD×D × ZD×1 where zi ∼ Gaussian(0, 1)
and aij ∼ Uniform[0, 1]. Then we generate multivariate YN×1 with yi = f(ui) + ei
where Uk×1 = Bk×D ×XD×1 with bij ∼ Uniform[0, 0.5], f is a function describing
the relationship between X (through U) and Y , and ei ∼ Gaussian(0, σ) with σ
being a free parameter. We use σ to control the level of noise: If σ = 0, we have
deterministic relationships; larger values of σ correspond to larger noise levels.
We choose three instantiations for f :

• f1(x) = tanh(2x) + tanh(3x+ 1) + tanh(4x+ 2)

• f2(x) = sin(2x) + sin(3x+ 1)

• f3(x) = sin(2x) + sin(3x+ 1) + 1
3
(tanh(2x) + tanh(3x+ 1) + tanh(4x+ 2))

We choose these functions as all are non-linear, complex, and non-invertible.

We study NOVUM on three aspects: (a) accuracy against dimensionality, (b) accu-
racy against noise, and (c) runtime against data size and dimensionality. For com-
parison, we include LTR [JHS10] and KTR [CZC13], two causal inference methods
for the multivariate setting. LTR assumes the correlation between X and Y to be
linear. KTR relaxes this requirement but explicitly requires the relationship to be
deterministic (no noise), functional, and invertible.

Per experiment, we generate 100 data sets per function, and infer the causal direc-
tion using each of the above methods. We report the accuracy, the relative number
of correct inferences over all data sets.

For accuracy against dimensionality, we set D = k and vary their values from
5 to 120. We fix N = 1000 and σ = 0.5. The results are depicted in Fig-
ures 9.1(a), 9.1(b), and 9.1(c). Looking at these, we see that NOVUM performs
very well: it yields the highest inference accuracy across different numbers of di-
mensions and across different functions of varying complexity. Further, its perfor-
mance is stable with respect to dimensionality and types of relationship between
X and Y .
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For accuracy against noise, analogue to the study of [JHS10], we vary σ from 0
(deterministic) to 2. We fix N = 1000 and D = k = 5. Further, for brevity we
only discuss the results on f1. From Figure 9.1(d), we can see that NOVUM is very
robust to noise, outperforming both LTR and KTR. The results show NOVUM as a
promising solution for causal inference in noisy settings.

With regard to scalability, we evaluate NOVUM in two scenarios. First, we fix
σ = 0.5 and D = k = 5, and vary N from 1000 to 15000. Second, we fix N = 1000
and σ = 0.5, and vary D = k from 5 to 120. Based on the results, depicted in
Figures 9.1(e) and 9.1(f), we find that NOVUM scales linearly to data size and
quadratically to dimensionality. This agrees with our analysis in Section 9.5.5.
We observe that NOVUM scales better than KTR but worse than LTR. Taking into
account accuracy, we find that NOVUM yields a good balance between quality and
efficiency. As it scales linearly to data size it is applicable to large data sets, which
we will further study in Section 9.7.4.

We now assess the parameterization of NOVUM. In particular, to study its sen-
sitivity to ε, we fix c = 10. On the other hand, to study its sensitivity to c, we
fix ε = 0.3. For illustration, we display the results on synthetic data sets with
N = 1000, D = k = 5, and σ = 0.5 generated using the f1 function. Regarding ε,
we see that the performance of NOVUM increases as this parameter increases. Yet,
with ε ≥ 0.3, the performance is stable. Thus, we use ε = 0.3. Regarding c, we see
that NOVUM achieves the best performance at c = 10 and c = 11. Recalling smaller
values of c result in better runtime, we set c = 10 in the remainder of this chapter.
We note that these settings are suggestive to the experiments performed in this
chapter only. For other scenarios, further search of a suitable parameterization
might be required.

9.7.2. Causal inference for multivariate pairs: Real-world data

We examine if NOVUM is able to infer the causal direction between X and Y where
at least one of them is multivariate. In order to do so, we use benchmark real-
world data containing pairs of variables for which the causal direction is known.
To cover different settings, we include real-valued pairs as well as pairs of mixed
data types.

First, we use data on climate forecast [Zsc13]. In this case, both X and Y contain
four components

{air temperature, pressure at surface, sea level pressure, relative humidity} .

These components were measured at the same location grid at different times. X
contains 10266 observations on day 50 of year 2000. Y contains respectively 10266
observations on day 51 of year 2000. The ground truth is assumed to be X → Y .

Second, we test using data on the relationship between ozone concentration
and different meteorological parameters [Zsc13]. The data contains 989 obser-
vations and was collected in Neckarsulm and Heilbronn, Germany. We define
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X = {ozone concentration} and Y = {wind speed, global radiation, temperature}.
Following [JHS10], the production of ozone is impacted by wind, sun radiation,
and air temperature, the ground truth causal direction is Y → X. We note that in
this experiment, X is univariate while Y is multivariate.

Third, we use data on car efficiency in terms of miles per gallon, of 392
records [Zsc13]. We define X = {displacement, horsepower, weight} and Y =
{mpg, acceleration}. It is natural to assume that X → Y .

The fourth data set contains daily mean values of ozone values and sun radiation
in the last 83 days of 2009 at 16 different places in Switzerland [Zsc13]. This
data set is rather small: it has only 72 records. We set X to contain 16 measures
of ozone values and Y to contain 16 measures of sun radiation. As in the second
data set, the causal direction is assumed to be Y → X. Using this data, we want
to check if NOVUM is able to perform accurate causal inference even when the
number of observation is relatively small compared to the numbers of dimensions.

The fifth data set is from the medical domain and has 120 records [Zsc13]. X
contains 6 symptoms of patients and Y contains diagnosis results of two diseases.
We note that Y is categorical. It is expected that X → Y .

The sixth data set is about weather and air pollution in Chemnitz, Ger-
many [JHS10]. It contains 1440 observations. X has 3 dimensions on the wind
direction and air temperature. Y has 6 dimensions on air quality indices, e.g.
sulfur dioxid and dust concentration. The ground truth specifies that X → Y .

The seventh data set is on Energy consumption on a university campus [NMB13].
X contains three components: the location of each building (categorical), the
total area of the building (real-valued), and its number of staff members (integer-
valued). Y contains four energy consumption indicators of buildings: electricity,
gas, heating, water. We expect the causal direction to be X → Y .

Finally, we utilize two additional real-world data sets from [JHS10], one on pre-
cipitation and the other on stock indices.

All in all, we summarize the results in Table 9.2. Since LTR and KTR require both X
and Y to be multivariate, they are inapplicable to the ozone concentration problem
with univariate X. They are also inapplicable to the symptoms & diseases, and
energy consumption problems as they do not handle categorical data. Note that
on the symptoms & diseases data set, [Vre15] considers the categorical columns
as numerical columns while we here stick to the original data types of all columns.
We will explain the relationship between NOVUM and the method of [Vre15] in
more details in Section 9.8. Looking at the results, one can see that the accuracy
of LTR and KTR are both 50%. NOVUM in turn achieves an accuracy of 77.78%.
Further, NOVUM is applicable to all data sets, be the underlying problem purely
multivariate or a mix of univariate and multivariate, be the data real-valued or a
mix of different data types.

Regarding the two incorrect causal inference results of NOVUM, we see that the
absolute difference between two respective causal indicators are small (0.04 for
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Data N D k type NOVUM LTR KTR

Climate forecast 10266 4 4 real-valued X X −
Ozone concentration 989 1 3 real-valued X (n/a) (n/a)

Car efficiency 392 3 2 real-valued X − X
Ozone & radiation 72 16 16 real-valued X − X
Symptoms & diseases 120 6 2 mixed X (n/a) (n/a)

Weather & air pollution 1440 3 6 real-valued X X −
Energy 48501 3 4 mixed X (n/a) (n/a)

Precipitation 4748 3 12 real-valued − X −
Stock indices 2394 4 3 real-valued − − X

Table 9.2.: Results of real-world cause-effect multivariate pairs with known
ground truth. (X) means the respective method infers the causal direc-
tion correctly, and (−) otherwise. (n/a) means the respective method
is inapplicable to the given pair.

precipitation data and 0.03 for stock) compared to that of other data sets (min-
imum 0.11). We do not have yet an explanation for the case of precipitation
data. For the stock indices case, [JHS10] assume that daily Asian stock indices
cause daily European stock indices due to the difference in time zones. Though
stock indices around the world tend to be related, each stock index is impacted
by many external factors, including local events and situations, such as unem-
ployment rates. Hence, in this data the assumption of causal sufficiency may be
(strongly) violated—which could be an explanation why NOVUM does not reach
the desired inference.

We note that these data sets are very noisy, especially Energy. Given the results,
we hence conclude that NOVUM is applicable in non-deterministic settings.

9.7.3. Causal inference for univariate pairs: Real-world data

In this experiment, we apply NOVUM to real-world cause-effect univariate
pairs with known ground truth [Zsc13]. We compare to GPI [MSJ+10] and
IGCI [JMZ+12], two recent causal inference methods which are applicable to uni-
variate pairs. We pick 78 pairs from various domains. All of them are more or
less noisy, i.e. the relationship between each pair is non-deterministic. The re-
sult shows that NOVUM achieves an accuracy of 74.36%. The accuracy of IGCI is
70.51% while that of GPI is 62.82%. Thus, we can see that NOVUM also achieves
very promising accuracy on causal inference for univariate pairs.

Besides univariate pairs of numerical domains, we also consider pairs of mixed
types. To this end, we test NOVUM on three real-world pairs extracted from a
Census data set [BL13]: (a) age (integer) and marital status (categorial), (b) sex
(binary) and income (real-valued), and (c) education level (categorical) and income
(real-valued). Common sense says age→ marital status, education level→ income,
while various studies have shown, sadly, sex→ income. Using NOVUM, we find:
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• age→ marital status is correctly inferred, as
∆age→marital status = 0.90, while ∆marital status→age = 1.36

• education level→ income is recovered, with
∆education level→income = 1.13, while ∆income→education level = 1.62

• sex→ income is confirmed, as
∆sex→income = 0.55, while ∆income→sex = 0.96.

In other words, NOVUM correctly infers the causal directions in all three cases.
We note that GPI and IGCI are inapplicable to the three pairs as they only work
with real-valued pairs. The method of [SJS08] in theory can handle mixed typed
data. However, in practice, it has to convert categorical data to binary one to
avoid high computational costs. While this conversion is feasible in some cases,
e.g. age→ marital status and sex→ income, it may not be straightforward in other
cases, e.g. education level → income. That is, different conversions might produce
different causal directions. In conclusion, NOVUM achieves high accuracy on both
real-valued univariate pairs as well as mixed typed univariate pairs.

9.7.4. Causal discovery in real-world data

Next, we evaluate whether NOVUM can be used to discover novel causal relations
in non-benchmark data. To this end, we apply NOVUM on the climate data set (see
Section 4.9.3, Chapter 4).

To discover pairs of correlated dimensions, we first apply 4S (cf., Chapter 4) to
assess pairwise correlations. Next, we apply NOVUM on the 886 pairs discovered
to decide the causal directions between the dimensions. For comparison, we also
experiment with IGCI [JMZ+12], which specializes in inferring the causal direc-
tion for univariate X and Y ; and LCD, a constraint-based causal discovery tech-
nique [Coo97]. In short, LCD examines each triple of univariate X, Y , and W .
If it holds that (a) W has no cause, (b) X and W are correlated, (c) X and Y
are correlated, and (d) W and Y are independent given X, then LCD infers that
X → Y . For the conditional independence test of LCD, we use the nonparametric
method in [SP12].

Overall, the results show that NOVUM and IGCI take about the same amount of
time, less than one hour, while LCD needs about two hours, to process all candidate
pairs. In terms of quality, all three methods detected sensible causal relationships.
Nevertheless, the decisions of NOVUM and IGCI tend to be of higher quality since
they are able to resolve the disambiguation of X → Y and Y → X. We now
discuss some findings of NOVUM that were not discovered by both IGCI and LCD.

First, for the temperature fed into (called temp_in) and the temperature produced
by the heating system (called temp_out), NOVUM yields ∆temp_in→temp_out = 1.14
and ∆temp_out→temp_in = 1.46. Hence, we infer that temp_in → temp_out, which
corresponds to common sense.

207



9. Information-Theoretic Causality Analysis

Second, NOVUM detects that the amount of air coming into the ventilator (called
air_in) causes the amount of air coming out of the ventilator (called air_out). In
particular, ∆air_in→air_out = 1.24 and ∆air_out→air_in = 1.59. This again is intuitively
correct.

Likewise, NOVUM concludes that the amount of electricity consumed by the ven-
tilator (called elec) causes the amount of air coming out of the ventilator, with
∆elec→air_out = 0.46 and ∆air_out→elec = 0.61.

9.8. Related Work
Traditional causal inference methods [Pea09, SGS00] are based on the causal
Markov condition which states that every variable is conditionally independent
of its non-effects, given its direct causes. Thus, to detect causal relationships,
these methods rely on conditional independence tests, and hence, require at least
three observed random variables; they are not designed to infer the causal direc-
tion for just two observed random variables X and Y . Recent developments in this
approach, such as [TGS09, ZPJS11], focus mainly on proposing new conditional
independence tests, e.g. the kernel-based conditional independence test (KCI).

The algorithmic information-theoretic approach to causal inference [LD06, LS10,
JS10, LJ13] formulates the problem of inferring causal direction on the founda-
tions of algorithmic information theory, or, Kolmogorov complexity, and postulates
that X → Y is only acceptable if p(X) and p(Y | X) are algorithmically indepen-
dent, i.e. the shortest description of p(X, Y ) is given by separate descriptions of
p(X) and p(Y | X).3 As Kolmogorov complexity is not computable, these inference
rules require practical implementations. To this end it has been proposed to infer
whetherX causes Y based on whether p(X) and p(Y | X) are independent. In par-
ticular, [JMZ+12] proposed multiple information-geometric approaches to detect
(in)dependencies between p(X) and p(Y | X), with specialization to the case when
X and Y are univariate and deterministically related (no noise). [JHS10, ZJZ11]
studied causal inference for strictly multivariate X and Y linked by linear relation-
ship Y = A×X + E. They modeled the property of p(X) through the covariance
matrix

∑
XX of X and detected (in)dependencies between

∑
XX and A. [CZC13]

improved upon [JHS10, ZJZ11] by allowing non-linear correlations, but, require
correlations to be deterministic, functional, and invertible.

Causal inference based on additive noise model (ANM) [SHHK06, HJM+08,
MJHS11, PJS11] postulates that if Y = f(X) +E with X being the cause, Y being
the effect, and E being an additive error term that is statistically independent of
X, then typically there is no additive noise model for the direction which maps
the Y to X. [ZH09] generalizes ANM to the post-nonlinear model (PNL) where
Y = h(f(X) + E). The intuition of both ANM and PNL can be justified by the
above algorithmic information-theoretic approach, in particular the algorithmic
independence postulate.

3This approach in fact handles causal DAGs—we use the case of pairwise inference for illustration
purposes.
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Apart from the above types of approach, there exists work based on the Markov
kernel principle [SJS06, SJS08, JS10, MSJ+10]. As shown in Section 9.3, these
define special cases of our inference principle.

In terms of data types, [SJS06, SHHK06, HJM+08, ZH09, MSJ+10, JHS10, ZJZ11,
MJHS11, PJS11, JMZ+12, CZC13] mainly focus on numerical (real/integer-
valued) data. [SJS08] allows for categorical data, however, due to high com-
putational cost, restrict themselves to the binary case.

Recently, ERGO, an independent development of NOVUM was published as [Vre15].
ERGO is developed after NOVUM was created. To clarify, ERGO and this thesis were
submitted for review roughly at the same time. Both methods are similar in spirit,
in the sense that they derive causal indicators from Kolmogorov complexity. How
they do so differs between the methods, in particular over which parts of the
data complexity w.r.t. Kolmogorov complexity need to be included in the causality
assessment, as well as how to do so. Nevertheless, they are not exclusive and
should be considered as different approaches towards the same goal; similarly as
that Shannon entropy and cumulative entropy provide different ways to quantify
the entropy of the data, while not excluding each other. To the contrary, as we
have shown in Chapters 5 and 6 both types of entropy in combination feature a
powerful approach for correlation analysis. Our preliminary analysis shows that in
general NOVUM and ERGO have similar performance on synthetic and real-world
data sets, which corroborates our argument that they do not exclude each other.
Another point to highlight is that NOVUM is applicable to mixed data types while
ERGO currently focuses exclusively on real-valued data (its extension to mixed data
types still is open). As we mentioned at the beginning of this chapter, development
of NOVUM is on-going and there are many interesting ways to extend/modify it,
besides the alternate complexity consideration that ERGO proposes.

9.9. Conclusion
In this chapter, we focus on inferring the causal direction of two random vari-
ables X and Y . To tackle the problem, we have proposed and argued for a new
causal inference principle. On a conceptual level, we model our principle after
Kolmogorov complexity. From a practical point of view, we implement it by means
of cumulative entropy and Shannon entropy. Accordingly, we introduce NOVUM

for efficient causal inference based on our principle. NOVUM allows for flexible
processing. It does not make any assumption on the form of correlation between
X and Y , be it linear or non-linear, functional or non-functional. Further, it allows
X and Y to contain mixed data types, and to be either univariate and multivariate.
To verify the merits of NOVUM, we have performed extensive experiments on both
synthetic and real-world data sets. The results show that NOVUM achieves both
high accuracy and high efficiency, and hence, is suited for causal inference in large
and high dimensional data.
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Figure 9.1.: Results on synthetic data: Scalability to noise (by varying σ), data size
(by varying N), and number of dimensions (by varying D = k). f1,
f2, and f3 are the functions describing the relationship between X and
Y (please refer to Section 9.7.1 for their definition). For the runtime
plots, the vertical axes are in log-scale.
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10. Conclusions

In this chapter, we first summarize the main contributions of this thesis. Then, we
give an internal comparison of the methods we proposed in this thesis. Finally, we
provide pointers to future work.

10.1. Summarization
Correlation analysis is one of the key elements of modern statistics and has wide
impacts across many areas of applied science, e.g., databases, data mining, ma-
chine learning, signal processing, biology, to name a few. Considering the fact that
nowadays in many real-world applications, data is collected in increasingly multi-
variate spaces having hundreds of dimensions, correlation analysis, aiming at an-
alyzing the dependencies among dimensions which in turn are reliable indicators
of the existence of interesting patterns, becomes a promising tool for extracting
useful knowledge out of high dimensional data.

With such a motivation, in this thesis, we studied the problem of correlation anal-
ysis in multivariate data, with a special focus on mining correlated subspaces. We
identified five major challenges specifically relevant for correlated subspace min-
ing, which are complex types of correlation, computability, efficiency, mixed data
types, and redundancy of output subspaces. Accordingly, we proposed several non-
parametric methods to tackle all of the challenges. Overall, the main contributions
are as follows.

• We introduced CMI and CMI++, two new multivariate correlation mea-
sures. We built them based on cumulative entropy. Since they do not make
any assumption on the type of correlation, they are able to capture both lin-
ear and non-linear, functional and non-functional correlations. Further, we
proved that both measures possess all important properties that total correla-
tion [CT06] has on discrete/categorical data. We also presented effective and
efficient methods for computing CMI and CMI++. Especially, with CMI++,
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we demonstrated the benefits of correlation-aware discretization for the first
time in this thesis. To mine correlated subspaces, we applied both measures
to the Apriori subspace search scheme proposed in [KMB12]. Experiments
on both synthetic and real-world data sets showed that our methods bring
significant quality improvement for both clustering and outlier detection—
two famous data mining tasks.

• We identified the issues associated with the Apriori search scheme: (a) it
is not highly scalable, (b) it tends to miss high dimensional correlated sub-
spaces, (c) it fragments them into many redundant lower dimensional sub-
spaces, and (d) it is prone to the curse of dimensionality. Because of these
issues, the Apriori search scheme does not achieve high scalability and high
quality. Thus, we developed a new search scheme based on jump search.
This scheme is able to jump directly to the relevant high dimensional sub-
spaces by analyzing the statistics of their two dimensional projections. How-
ever, to further improve scalability, one needs to mine the two dimensional
subspaces efficiently. Therefore, we studied a correlation measure belonging
to the class of quadratic measures of (in)dependence. This measure also is
based on cumulative distribution functions (cdfs) and does not assume a spe-
cific type of correlation. Most importantly, its computation on empirical data
is fully in closed form. We showed that this closed form allows an efficient
approximation based on sketching. Combining the jump search scheme and
the efficient method for mining two dimensional subspaces, 4S—our new
method for correlated subspace mining—achieved high scalability in very
high dimensional data. We also incorporated into 4S an MDL-based phase of
merging subspaces, which ensures succinctness of output as well as retrieves
fragmented high dimensional correlated subspaces. Experiments showed 4S
to detect high quality correlated subspaces that are useful for clustering, out-
lier mining, and classification.

• All methods above are designed specifically for real-valued data. To han-
dle mixed typed data, we proposed DECOREL which takes advantage of the
knowledge gained from the CMI measures and the scalable search scheme
of 4S. For correlation assessment, since we followed the search scheme of
4S, we proposed a pairwise correlation measure. It nicely combines the
good properties of both mutual information and CMI++. We also employed
correlation-aware discretization to compute this correlation measure. Be-
sides, we also modified the search scheme of 4S to better fit mixed data
types and the multi-relational nature of the data. Extensive experiments
showed that DECOREL well discovered groups of correlated columns in rela-
tional databases with heterogeneous data types. We also demonstrated that
the groups found by DECOREL are beneficial for many database applications,
e.g., selectivity estimation and schema extraction.

• We studied multivariate maximal correlation analysis, which we generalize
from various existing methods for correlation analysis. Computing total cor-
relation through correlation-aware discretization is an instantiation of this
general notion. We introduced MAC to solve this task. Further, we extended
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MAC to SUPMAC which incorporates external information, and MIXEDMAC
which handles mixed typed data. As total correlation has a wide impact in
several areas of applied science, MAC and its extensions open various venues
of applications.

• We furthered our study on correlation-aware discretization by proposing
IPD. It is not restricted to any specific notion of correlation. Instead, it
aims to preserve more general interactions among dimensions by analyz-
ing their multivariate distributions in consecutive data regions. IPD belongs
to the class of multivariate discretization techniques. However, unlike exist-
ing work, we introduced an objective function for this task. This function
successfully balances between preserving interactions of dimensions and the
detail of the dimension under discretization. We developed two efficient al-
gorithms for solving the objective function; one is optimal, the other is a
2-approximation of the optimal. Furthermore, we proposed a novel distance
function for assessing the difference between two multivariate distributions.
Extensive experiments on both synthetic and real-world data demonstrated
the superiority of IPD compared to state of the art methods in pattern-based
compression, outlier detection, and classification.

• We investigated causality analysis from an information-theoretic point of
view. In particular, given two multivariate random variables X and Y with
some correlation relationship and with the same number of observations, we
aimed at efficiently inferring their causal direction. We addressed this by
proposing a new principle for causal inference that is based on Kolmogorov
complexity and which makes use of the algorithmic Markov condition. We
showed that our principle generalizes various existing methods that rely on
the principle of plausible Markov kernels. As Kolmogorov complexity is not
computable, we presented NOVUM—an efficient non-parametric implemen-
tation of our principle based on cumulative and Shannon entropy. Through
extensive experiments on both synthetic and real-world data, we showed
that NOVUM is applicable to mixed typed data as well as has good scalability.
Further, it yielded both high accuracy and high efficiency on both determin-
istic and noisy data.

In conclusion, this thesis advances the research of non-parametric correlation anal-
ysis in multivariate data. It enables scalable mining of correlated subspaces in high
dimensional data. In addition, it shows that correlated subspaces are indeed ben-
eficial for many tasks of data mining. Besides, it improves correlation-aware as
well as interaction-preserving discretization. Last but not least, it contributes to
multivariate causality analysis.

10.2. Comparison of Our Methods
In terms of correlation measures, we see a strong relationship between CMI
measures and MAC. In particular, they all are information-theoretic measures:
CMI/CMI++ is defined based on cumulative entropy while MAC is defined based
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on Shannon entropy. Further, CMI++ and MAC both yield normalized scores,
facilitating unbiased correlation assessment. We conceive both measures to be
highly applicable for correlation analysis. Likewise, MIXEDMAC and the corre-
lation measure of DECOREL are related: The former handles mixed data types
using Shannon entropy while the latter combines both types of entropy. As cumu-
lative entropy is relatively new compared to Shannon entropy, we see that more
research effort is required to fully study cumulative entropy, and hence, to help
us understand more about the characteristics of CMI++ and the correlation mea-
sure of DECOREL. This in turn will assist us in better judging in which scenarios
one measure is more applicable than the rests. Compared to information-theoretic
measures, in particular CMI measures and MAC, the quadratic measure of depen-
dence proposed in Chapter 4 has both plus and minus. That is, it is handier thanks
to its closed form computation on empirical data. Yet, it is more prone to the curse
of dimensionality due to its reliance on the full space cdf. So the dimensionality of
the data at hand may be an important factor in deciding which which measure to
use.

In terms of search schemes, we note that though the jump search can find much
higher dimensional correlated subspaces than the Apriori search scheme, it is only
becomes really effective when the knowledge is located in high dimensional sub-
spaces. That is, if interesting patterns are mostly in low dimensional subspaces
(consisting of, e.g., 2 to 3 dimensions), the Apriori search scheme might already
be sufficient. Nevertheless, one could still apply the jump search in such scenarios
and extract low dimensional correlated subspaces in the post-analysis phase.

In terms of processing relational databases, DECOREL is dedicated for this task.
However, we note that 4S may be effective as well if the database under consid-
eration (a) contains only a few tables of medium sizes (i.e., storing the universal
table does not cause much overhead), and (b) all columns are numeric. In such a
case, as 4S has an efficient mining of pairwise correlations, it potentially is more
efficient than DECOREL. Yet, for relational databases with heterogeneous data
types, DECOREL remains a better choice.

In terms of discretization, CMI++, DECOREL, MAC and its variants aim at dis-
cretizing the data to optimize correlation w.r.t. their specific correlation measures.
IPD in turn is a generic discretization technique. That is, it optimize the dis-
cretization towards interactions of dimensions without being constrained to any
correlation measure. Thus, IPD is more suitable to scenarios where the correlation
analysis task needs not be limited to any particular correlation measure. On the
other hand, in very many applications where total correlation has been applied,
MAC is natural choice.

10.3. Future Work
In this work, we focused on the non-parametric approach for tackling the issue
of correlation analysis in multivariate data. It is interesting to study parametric
and kernel methods as well. In particular, parametric methods are useful when
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we know the type of data distribution, e.g., if we know that the distribution is a
mixture of exponential distributions, we can learn it from the data. On the other
hand, kernel estimation is highly suitable for the pairwise case as it does not suffer
the curse of dimensionality, and it offers reliable computation on empirical data.

We considered cumulative distribution functions (cumulative entropy) and ad-
vanced discretization as key tools for computing correlation measures. It is worth
to investigate other approaches, such as statistical estimation methods based on
nearest neighbor analysis. While such methods require the data to be embedded
in a metric space, they become effective when a relevant metric distance function
is well defined for the data. In addition, one could also consider using the theory
of copula to model and mine correlation pattens.

We introduced the novel notion of multivariate maximal correlation analysis. Fur-
ther, we solved a specific instantiation of this notion, which is total correlation.
Solving other instances is interesting as well. For example, generalizing CCA for
the multivariate non-linear setting is an important research direction. While for
CCA, we already have the objective function to optimize, it is still open how to
form the optimization problem for other correlation measures as well as other
sub-problems of correlation analysis.

Our research mostly targets the unsupervised setting. However, our work on
SUPMAC has demonstrated the potential of incorporating external knowledge
to the correlation analysis process. Generalizing our findings, one can examine
constraint-based correlation analysis. The constraints can be first extracted out
of the background knowledge and then fed into the computation of correlation
measures, as we did in SUPMAC. As constraint-based clustering has been applied
successfully in practice, we hypothesize that constraint-based correlation analysis
could also bring about a similar impact on real-world applications.

In addition, we plan to apply the research here to the area of graphical model-
ing [Whi90, WJ08, PLM13]. In a nutshell, graphical modeling aims at “modeling
and studying complex dependencies among random variables, and building large-
scale multivariate statistical models” [WJ08]. To construct a graph representing
the correlations among variables, one needs to compute the correlation score of
each pair of variables. Thus, the first application of our research is to use the corre-
lation measures covered in this thesis to construct such a graph. In fact, the notion
of independence graph we discussed in Section 5.4, Chapter 5 is a type of graph-
ical model [Whi90]: It shows how our measures can help to factorize a complex
multivariate probability distribution into two dimensional distributions (which are
easier to model), and hence, facilitate large-scale statistical analysis. The second
application of our work to graphical modeling is to build conditional independence
graphs [WJ08]. In a zero- and first-order conditional independence graph, an edge
exists between two nodes (two variables) if and only if (a) they are correlated, and
(b) they are not conditionally independent given any other variable. Our aim is
to build such a graph in a non-parametric manner. As our measures already are
non-parametric, we need non-parametric measures of conditional independence.
To this end, we can apply a measure recently proposed in [SP12]. However, this
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measure is kernel-based and is thus sensitive to the choice of kernel function.
Hence, our goal is to develop new measures of conditional independence that are
neither parametric nor kernel-based. To this end, we see potential opportunities
from extending our existing correlation measures to capture conditional indepen-
dencies. As the third application of our work to graphical modeling, we aim to use
the subspaces detected by our methods together with their correlation scores to
build graphs of variables that can represent more information on their dependen-
cies. In particular, instead of just using pairwise (conditional) (in-)dependencies,
we target at integrating groups containing three or more correlated variables into
the process of graph construction. We hypothesize that this would lead to a better
graphical representation of the relationships of variables.
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