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Abstract of the Doctoral Thesis

The doctoral thesis deals with the examination of methods for topological data handling,
as well as designing and implementing a toolkit for the geosciences for management of
topological  and  temporal  3D  data  and  models  in  geo-database  architectures.  The
conceptual work and realisation process takes into account the management of multi
LoD since it is considered to be an integral part of geo-modelling. The thesis presents
the current state of processes, modelling tools, and  database management systems in
application-oriented  use  cases.  An  insight  into  the  topics  of  model  integration,
abstraction of geodata and spatio-temporal modelling is given, including references to
early pioneering, basic, and contemporary literature.

It is shown that geoscientific data is characterized by a heterogeneity of models and
applications.  The  integration  of  multiple  models  and  applications  into  common
architectures is a relevant goal of the international scientific community. The topic of
multi-representation  is  deepened  by  discussing  the  concepts  of  hierarchical  digital
landscape models, progressive mesh representation, multiple topological representations
and others. The topic of spatio-temporal modelling is tackled through the discussion of
such concepts as TimeStep, temporal point tube model and others.

The design of  a  Topology  Module for  the  modelling  of  spatio-temporal  topological
objects is explained in detail. A concept and implementation for modelling and handling
the  topology  of  the  cells  of  a  complex  geo-object  is  presented.  Since  the  concept
differentiates into net level and object level, it allows to create “big cells” that in turn
comprise an arbitrary number of cells. The implementation of the model provides an
iterator  framework that allows for a flexible  navigation on the topological  structure.
Editing methods for the topological structure are introduced and discussed. The concept
of net level and object level is a sound preparation for the management of LoD of cell
net components. Since net level and object level already exist, there is an architectural
foundation  which  can  be  extended  by  additional  detail  levels.  The  spatio-temporal
model of the Topology Module builds on the foundation of the Temporal Joint Model.
Continuous  geometric  change  can  be  processed  through  the  Temporal  Joint  Model,
whereas discrete topological change of “big cells” is modelled by the  spatio-temporal
model  of  the  Topology  Module.  Finally,  different  aspects  of  runtime  and  memory
performance of the Topology Module are evaluated.
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Zusammenfassung

Die Dissertation untersucht Methoden zur topologischen Datenhaltung und beschäftigt
sich mit der Konzeption und Umsetzung eines Toolkits für die Geowissenschaften zur
Verwaltung  von  topologischen  und  zeitlichen  3D-Daten  und  Modellen  in
Geodatenbank-Architekturen.  Die  konzeptionelle  Arbeit  und  die  Realisierung
berücksichtigt  die  Verwaltung  hierarchischer  Datenstrukturen,  da diese  als  integraler
Bestandteil  der  Geomodellierung  angesehen  werden.  Die  Arbeit  legt  den  aktuellen
Stand der Modellierungstools, Datenbankmanagement-Systeme und Methoden anhand
anwendungsnaher  Beispiele  dar.  Ferner  wird  ein  Einblick  in  die  Themen
Modellintegration,  Abstraktion  von  Geodaten  und  räumlich-zeitliche  Modellierung,
einschließlich umfangreicher Verweise auf grundlegende und zeitgenössische Literatur
gegeben.

Des Weiteren wird gezeigt, dass geowissenschaftliche Daten durch die Heterogenität der
Modelle und Anwendungen gekennzeichnet sind. Die Integration mehrerer Modelle und
Anwendungen  in  gemeinsame  Architekturen  ist  ein  Ziel  dieser  Arbeit.  Das  Thema
Multi-Representation  wird  durch  die  Erörterung  der  Konzepte  der  hierarchischen
Digitalen Landschaftsmodelle, Progressive Mesh Representation, Multiple Topological
Representations  u.a.  vertieft.  Die  räumlich-zeitliche  Modellierung  wird  durch  eine
Diskussion über Konzepte wie TimeStep, Temporal Point Tube Model u.a. dargestellt.

Der Entwurf eines Topologie-Moduls zur Modellierung raum-zeitlicher topologischer
Objekte wird im Detail erläutert. Das Konzept und die Implementierung des Moduls zur
Modellierung und Handhabung der Topologie von Zellen komplexer Geo-Objekte wird
vorgestellt. Da das Konzept nach Netz- und Objektebene differenziert, ermöglicht es die
Modellierung  „großer  Zellen“,  die  wiederum  eine  beliebige  Anzahl  von  Zellen
umfassen können. Die Implementierung des Modells liefert ein Iterator-Framework, das
eine  flexible  Navigation  auf  der  topologischen  Struktur  ermöglicht.
Bearbeitungsmethoden für die topologische Struktur werden vorgestellt und diskutiert.
Das Konzept der Netz- und Objektebene ist eine solide Grundlage für die Verwaltung
von  Levels  of  Detail  in  Zellnetzkomponenten.  Das  raum-zeitliche  Modell  des
Topologie-Moduls baut auf dem Temporal Joint Model von DB4GeO auf, einer service-
basierten  Geodatenbank-Architektur.  Kontinuierliche  geometrische  Veränderungen
können  durch  das  Temporal  Joint  Modell  verarbeitet  werden,  während  diskrete
topologische  Änderungen  der  „großen  Zellen“  durch  das  Raum-Zeit-Modell  des
Topologie-Moduls  modelliert  werden.  Schließlich  werden  Programm-Laufzeiten  und
des Speicherverbrauch des Topologie-Moduls untersucht.
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etc.

Db3dRestModule Db3dRestModule is the server module of DB4GeO/DB3D. It 
provides the functionality to expose geodata to a network.

DB4GeORestAdmin Tool for the administration of DB4GeO/DB3D databases
(Acquisition source: http://scc-
bilbo.scc.kit.edu:8080/db4geotest/) 

Eclipse EE IDE Eclipse Enterprise Edition is an integrated development 
environment, used for the development and validation of Java 
programs and XML schemata.
(Acquisition source: http://www.eclipse.org/downloads/) 

Mirarco ParaViewGeo Tool for visualization of geoscientific data, uses the 
Visualization Toolkit (VTK), based on ParaView
(Acquisition source: http://paraviewgeo.mirarco.org/) 

ParadigmTM Gocad Software Suite for the visualization, creation and manipulation 
of geoscientific data
(Acquisition source: http://www.pdgm.com/) 

ESRI ArcGIS/ArcScene A widely used Geoinformationsystem that is capable of 
visualisation and conversion of meshed surface models
(Acquisition source: 
http://www.esri.com/jumppages/buttons/arcview_eval.html) 

Microsoft Office Visio Software is used for the development of various diagrams
(Acquisition source: http://office.microsoft.com/de-de/visio/) 

SIC moKa The „Modeleur de Cartes“ is a CAD that has been developed at
the Laboratoire SIC (Signal, Image, Communications) at the 
French Université de Poitiers. moKa internally exploits a graph
based model of G-Maps
(Acquisition source: http://www.sic.sp2mi.univ-
poitiers.fr/moka/) 

Sun Java SE SDK Development package for the programming language Java
(Acquisition source: http://java.sun.com/javase/downloads/) 
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1 Introduction and Related 

Work

1.1 Scope, Style, and Outline

The subject of this doctoral thesis is a direct outcome of the homonymous research project
of  the  German Research Foundation (DFG) on which  a  small  research  group worked
during the last years.1 Since several years, research has been done in the  Geodatabases
Working Group at the University of Osnabrück and at the Chair of Geoinformatics in the
Geodetic Institute of KIT on the technology of 3D data and model management for the
geosciences.  During these years,  a  prototype of a geodatabase architecture  (Geo-DBA)
known as DB4GeO/DB3D2 has been developed (Bär 2007; Breunig, Schilberg, et al. 2009;
Breunig, Butwilowski, Kuper, et al. 2013). My work bases on DB4GeO, and the results are
reintegrated into the main development tracks.

As the title of the research project/thesis mentions, this work will focus on topological and
temporal modelling. The DB4GeO Geo-DBA has some insufficiencies in these domains.
The Working Group3 already added much relevant  work on this  topic  (Thomsen et  al.
2008; Thomsen and Breunig 2007). I've already worked on this subject during my diploma
thesis (Butwilowski 2007), so I'm glad to be able to continue this work on the development
of my Ph.D. thesis. Now I aim to contribute to a more comprehensive model/architecture
of  DB4GeO. The employed work items  will  include  i.a.  the  design  of  models  for  the

1 Grant no. BR 2128/9-1, official German title is “3D Daten- und Modellmanagement für die 
Geowissenschaften unter besonderer Berücksichtigung von Topologie und Zeit.” Group members were 
my colleagues Dipl.-Math. Andreas THOMSEN, Dipl.-Geogr. M.Sc. Geoinf. Daria GOLOVKO, and others.

2 DB4GeO is the newer external/marketing name; the older and still internally (in source code) used name
is and will remain DB3D. In the following only DB4GeO is used as the term for DB4GeO/DB3D, 
though DB3D may appear in source code excerpts at times.

3 Especially A. THOMSEN



2 CHAPTER 1  INTRODUCTION AND RELATED WORK

management  of  topology  of  3D/4D  geological  data,  the  development  of  suitable
algorithms, runtime experiments and performance testing.

Generally,  DB4GeO is developed with the ideal to be an “all-purpose”  Geo-DBA at its
core. This means that the core geometry model of  DB4GeO has not been developed to
serve any special application purpose but has been kept sufficiently generic to serve many
different geometry modelling/computing applications (even those that are not common to
the geosciences). Though, DB4GeO shall stay a multi-purpose Geo-DBA, it is important to
keep  in  mind  concrete  application  scenarios  when  enhancing  the  system  with  new
functionalities in order to stay close to real-world requirements.  As a consequence,  the
EEA Earth Energy Analytics & Development GmbH4 was found as a partner of practice.
The EEA is a company that plans to operate on deep geothermal energy projects and thus
inherently  has  to  be  capable  of  managing  and  understanding  a  huge  amount  of
geoscientific  data.5 As  a  company  in  a  highly  competitive  market  their  focus  lies  on
effectiveness and cost reduction of the applied processes and thus they are able to provide
me with application requirements which I will mention especially in the introductory parts.
The integrated concept of the EEA is subdivided into six modules (see Fig. 1).

This  service  portfolio  has  been  termed  GINuSys©  which  is  a  system  that  employs
knowledge  from  the  scientific  disciplines  geology,  computer  science  and  numerical
analysis.  It  is  envisioned  to  deploy  DB4GeO as  the  3D/4D  geodatabase  management
system for spatial and temporal (3D/4D) operations on geometric objects in module 3 of

4 Company website: http://beyondwind.net/

5 The essential question that such a business venture aims to answer is whether it is possible to produce 
enough hot water from a certain drill-hole to install an economically successful project. This set of 
problems is seen as the biggest barrier to investment in geothermal energy production (so-called 
Exploration Risk, see (Münchener Rück 2004, 44)).

Fig. 1: Integrated concept GINuSys©
Source: (EEA GmbH 2012)
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GINuSys. As such it would be the central depository for the data exchange needs of the
other modules.

This thesis consists of four main parts. It starts with a motivation for dealing with this
topic;  this  is  especially  done  by  giving  an  inside  view  into  the  current  application
requirements of the geological modelling community, the relevant techniques that are used,
the technical limitations of current data modelling and management systems and a number
of use cases. This is followed by an overview of the relevant scientific literature in the field
of  geometric,  topological,  hierarchical,  and  temporal  modelling  for  geoinformation
systems.  The  third  part  describes  details  of  the  implementation  of  the  spatio-temporal
topology component that are developed in this dissertation. Finally the last part gives an
outlook onto possible further workings/open issues.

The  targeted  audiences  are  spatial  information  technologists,  especially  those  that  are
concerned with geological  modelling,  e.g.  personnel  of geological  surveys or company
employees in the Exploration and Production (E&P) industry, as well as GIS experts.

The style of writing generally follows the  Chicago Manual of Style guide  (University of
Chicago Press 2010). The employed citation style follows the guidelines of the Chicago
Manual of Style in the  author-date system. If adopted figures, tables, content etc. from
other  authors  were  modified,  then  the  indication  of  source  are  preluded  by  “cf.”
Figuratively used terms are set in quotation marks only on the first appearance. In the then
following sentences, they are “used normally”. Only when a longer segment lies between
two such terms, quotes are used again.  Upper/lower case spelling of adopted technical
terms is aligned on the spelling in the respective source literature.

1.2 Motivation

1.2.1 Geological Modelling in Practice

Industries that typically benefit from geoinformation are defence and intelligence, business
administration, education, government, health and human services, mapping and charting,
utilities and communication, transportation, and public safety, as well as natural resources.6

A subset of  geoinformation is the information on geological features. The modelling of
geological  objects is performed especially  in the various fields of the natural resources
branch  as  in  geomorphology,  geophysics,  nature  conservancy  or  environmental
management.

Geological models are used for education and in business consulting (whether done by
national government agencies for geology or by private stakeholders). Geological models
are a  crucial  factor  for cost  reduction  in  various geoscientific  applications  in the  E&P
industry,  such  as  searching  for  oil,  gas  or  geothermal  fields.  In  E&P industry  there
generally is a high financial risk of finding the right subsurface spots of natural resources.

6 For a comprehensive list, see (ESRI 2010)
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A better knowledge of the engineering and management of subsurface assets help to lower
the uncertainty of  E&P operations. Furthermore, geometric models are also essential  to
compute mechanical, hydrological or e.g. subsurface temperature models in order to make
predictions about possible processes under the earth's surface.

To create a consistent geological model of an earth's crust sector, it is inevitable to “look
below the surface of the earth” (i.e. to collect extensive data of the subsurface). There is a
large number of methods to collect data for subsurface models most of which are based on
the interpretation of rock exposures, remote sensing imaging, drillings7 etc. Geophysical
methods  are  applied  in  seismic  measurements8,  electrical  resistivity  imaging  (ERI)  or
gravimetry (Götze and Lahmeyer 1988).

Following the terminology of  SCHAEBEN et al.  (2003, 174), there is a distinction between
conventional  geographic data that is modelled in “traditional”  Geographic Information
Systems (GIS),  and geoscientific  data,  which is  used in  fields  of  the  natural  resources
branch. Geoscientific data shows a higher complexity in terms of dimensionality, mobility,
and  impreciseness,  as  well  as  a  greater  diversity of  its  types.  According  to  SCHAEBEN,
commercial  GIS (that  typically  process  2-dimensional,  static  data)  are  not  capable  of
dealing with geoscientific  data  adequately.  Hence,  geoscience specialists9 that  construct
geomodels (e.g. geologists) use versatile specialized software suites10 additionally to  GIS
to process subsurface data.

The subsurface data that is gathered through the above-mentioned collection methods (or
measurements), is often of considerable size, it is raw, and it has to be refined, i.e. reduced
and converted into a format that is processable by geomodelling software. Then the refined
data is interpreted by the specialists with the help of geomodelling tools and transformed
into a sensible model of the subsurface. The data formats that have to be managed by the
specialists in day-to-day workload range from typical geoscientific data such as drill-hole
files, point sets, geo-referenced remote sensing images, seismic images, Esri shapefiles,
GOCAD ASCII files etc. to “common” data such as texts in various formats11, pictures,
videos etc. A typical geomodel that emerges as a final result of a modelling process is
depicted in Fig. 2.

7 Here a lot of information/material is accumulated that can be used for interpretation such as borehole 
imaging, geoelectrical imaging or the drilling mud.

8 Seismic measurements are carried out by so-called geophones during (natural or man-made) seismic 
events and in principle base on the usage of the reflection and refraction of seismic waves for the 
interpretation of subsurface structures.

9 Simply “specialists” hereinafter

10 Some of the well known 3D modelling tools in the E&P industry are e.g. Paradigm GOCAD, 
Schlumberger PETREL, Halliburton Landmark, Seismic Micro-Technology KINGDOM or 
Maptek Vulcan.

11 E.g. office suite documents and Adobe Portable Document Format
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Typically, the modelled region is a delimited sector of the earth's crust with an extension of
a  few kilometres  in  width  and depth  (delimited  by  a  bounding box  of  interest).  Such
models normally show the distribution of rock in the subsurface as well as the location and
orientation  of  discontinuities  in  the  rock.  Usually,  the  strata  solids  themselves  are  not
modelled  but  only their  boundary and fault  layers  (as seen in  Fig.  2 where two strata
boundary and seven fault layers are depicted).12

In advanced projects  the specialists  produce volumetric  strata  models  (in  an additional
step). An example of a volumetric data block is depicted in Fig. 3.

12 The geomodel in Fig. 2 also consists of well markers (point geometry data) and drilling trajectories (line
segment geometry data); the boundary surfaces are internally structured as nets of triangles.

Fig. 2: Typical subsurface model with two strata boundary 
layers, seven fault layers and visualized well data
Source:Visualization using GOCAD software, data from
GOCAD workshop 2009

Fig. 3: Exterior of the Porcupine volumetric data block (left fig.) and a “look inside” the block 
(right fig.). Some layers have been removed in the foreground of right fig. to gain insight.
Source: Visualization using GOCAD software, data by (Pouliot and Fallara 2007)
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The figure shows a geomodel of the Porcupine-Destor zone, which is a one km deep earth
solid under a ~ 45 km² wide area in the Abitibi subprovince of Quebec, Canada.13 Albeit, it
is not common yet to produce consistent volumetric strata models, since the construction of
strata solids sets high demands on the quality of the refined data. But it is likely to become
more common in the future as data quality and the tools' quality improve. Volumetric data
is  more  intuitive  and,  what  is  more  important,  it  provides  the  means  for  improved
analytical processing of the data (see Ch. 2.1).

As a result of conversations with personnel of the  Landesamt für Bergbau, Energie und
Geologie (LBEG)14 and  the  EEA,  one  of  the  more  pressing  problems  of  geological
modelling in practice could be identified, which is the handling of large amounts of data
files (of the models) that occur during the modelling process. These large amounts of data
files emerge because often one geomodel is modelled by multiple specialists that work on
their  own  files  and  additionally  backup  significant  design  steps  in  separate  files.
Furthermore, a geomodel can comprise changes of the model in  time (also managed in
separate  files).  And of  course,  most  organizations  have  to  manage  multiple  models  in
different  spatial  areas.  The models  may also  be  scattered  over  multiple  organizational
domains/boundaries. In addition, the data is kept in a proprietary data format, what often
results in the necessity to acquire software only from one vendor (so called “data/vendor
lock-in”).

1.2.2 Introducing DBMS for the Management of Geoscientific Data

The above mentioned insufficiencies in day-to-day work lead to a demand for a database
(DB)  server  system  that  provides  a  remote  access  service  for  the  management  and
synchronization of geologically modelled data in an organized fashion (so that teams are
enabled to work on the geodata separated but in cooperation). A DB server acts as a central
data hub in a client-server system. In such a setting, an operator who wants to contribute to
a certain geological model connects his workstation to a central repository of geological
models over the internet or an intranet, fetches the model he wants to alter and transmits
the changes he made back to the central repository.15 It can be assumed that more users and
editors will gain access to information systems in the future, increasing the amount of data
accesses  and  the  diversification  of  structured  and  unstructured  data  that  have  to  be
managed.  Under  such  conditions,  DBMS  become  inevitable  data  integrators  to  keep
control on high amounts of data.

According to BRINKHOFF, a geodatabase management system (Geo-DBMS) has to fulfil the
following requirements (Brinkhoff 2008, 25):

13 Dataset source is (Pouliot and Fallara 2007), the content of the figures is described later in more detail

14 The LBEG is the geological survey of the federal-state of Lower Saxony. The conversations took place 
during a visit at the LBEG offices in 2009.

15 A detailed description of such a typical application session with a particular focus on DB navigation and
querying, using the predecessor of DB4GeO (which was GeoToolKit/Corba Adapter), is given by 
(Shumilov et al. 2002, 120 et seqq.)
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• provide geometric datatypes

• provide geometric functions for the geometric datatypes

• provide spatial access methods and spatial indices

• provide interfaces for spatial data interoperability

Topology in Industry-Scale Geo-DBMS

Geo-DBMS are  an  established topic  in  the  information  technology  industry.  The most
prevalent  industry-scale  Geo-DBMS  are  Oracle  Spatial  (Ravada  and  Sharma  1999),
Microsoft SQL Server (Fang et al. 2008) and Refractions Research PostGIS (Blasby 2001).
These Geo-DBMS are conceptionally similar since they internally use the object-relational
model  for  geodata  management.  Furthermore,  their  geometry  models  are  based  on the
Simple Feature Model16 of the Open Geospatial Consortium (OGC®/OpenGIS®).17

The topological functionalities in these DBMS are still under conceptual development or in
an early stage of implementation. The PostGIS and Oracle Spatial topology modules aim to
implement the guidelines of the ISO SQL/MM part 3 (“Spatial”) standard (ISO 2011). In
the following, the topology model of PostGIS is presented. An entity relationship diagram
of the conceptual PostGIS topology model is shown in Fig. 4.

The key element of the depicted topology model is the EDGE. Every edge is in relation to
its start point and its end point, as well as to its right and left face, and to its next left and
next  right  face.  BRUGMAN (Brugman  2010,  17  et  seq.) highlights  that  this  model  is
equivalent to the Winged Edge Data Structure (WEDS) by BAUMGART (Baumgart 1975).

PICAVET points out the practical benefits of topologically enabled models in comparison to
spaghetti  structures18 in  PostGIS (Picavet  2010,  14  et  seqq.).  The  primary  aim of  the

16 Which is specified in (Open Geospatial Consortium 2011).

17 For more information on simple feature support of the Geo-DBMS see (Patenge 2010) for Oracle 
Spatial and (Refractions Research 2012) for PostGIS.

18 Unstructured point sequences

Fig. 4: Conceptual PostGIS topology model
Source: (Santilli 2011, 19)
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development  of  a  PostGIS topology  module  is  to  improve  data  quality.  The  topology
module

• ensures that the occurrence of duplicate boundary elements is avoided wherever
possible,

• it eases algorithmic navigation on parts of geo-objects, and

• reduces the need for geometric calculations.

However, the key assumption of  WEDS is that an edge has always exactly two incident
faces. This is only true in a 2D manifold setting, not for volumetric 3D geomodels.19 Thus,
WEDS and the PostGIS topology module only work in 2D application settings. Also the
PostGIS topology module does not consider two and three dimensional net objects such as
triangle  nets  and  tetrahedral  nets  that  are  essential  for  the  management  of  complex
geoscientific objects as they were previously described.

PostgreSQL Topology Add-In for the Management of Geological Data

Therefore, members of the  Chair of Geoscience Mathematics and Informatics of the  TU
Bergakademie Freiberg develop a net topology module for the PostgreSQL DBMS. It is
capable of importing and managing geodata that has been created with Paradigm GOCAD.
The geodata will be exposed through a  Web Feature Service (WFS) in the data formats
Geography Markup Language (GML) and  GeoScience  Markup Language (GeoSciML)
(Gabriel, Gietzel, and Schaeben 2010).

The geometry kernel of the PostgreSQL net  topology module of  GABRIEL,  GIETZEL,  and
SCHAEBEN is  termed  Geoscience  spatial  and  temporal  data (GST).  GST is  capable  of
managing point sets, multiline sets, triangle nets, and tetrahedral nets (Gabriel et al. 2011,
4).  Having  a  closer  look  at  the  geometry  kernel,  it  becomes  apparent  that  the  kernel
comprises runtime issues in certain  application scenarios.  The relational  data  model  of
GST for the management of triangulated irregular network (TIN) objects is shown in Fig.
5.

19 In a 3D setting, multiple faces may be aligned along an edge which leads to the Radial Edge Data 
Structure by Weiler (1988).



CHAPTER 1  INTRODUCTION AND RELATED WORK 9

In GST, a TIN (gst.tin) is modelled as a collection of faces (gst.tface) which in turn

are modelled as a collection of triangles (gst.trgl). Every gst.trgl has a relation to

three vertices (gst.vrtx).  Also there are some back-relations  from objects of a lower

hierarchy level to the ones of a higher hierarchy level (like from every triangle to the face
it  belongs  to).  Though,  this  model  is  more  powerful  than  the  model  of  the  PostGIS
topology  module,  with  such  a  model  it  still  becomes  complicated  to  navigate  on  the
geometry net (e.g. to compute shortest paths between two nodes of a net), especially to
navigate along the exterior of a net. For example, since node adjacencies are modelled only
indirectly, to gain node adjacencies, it is necessary to traverse the structure from node to
the triangles  of the node and than from the triangles  level  back to the incident  nodes.
Similar inconveniences are expected for the tetrahedral net model.

DB4GeO for the Management of Geoscientific Data

The  above-mentioned  requirements  stated  by  BRINKHOFF are  also  fulfilled  by  the
geodatabase management system DB4GeO20. DB4GeO provides 3D geometric data types,
functions for these data types, and spatial access methods, as well as spatial indices in its
core module, which is the  DB4GeO Core API.21 Some more complex operations (such as
the cross-section operation) that are built as a composite of basic geometric functions, are
gathered in a separate module which is termed just db3d22. This module also provides the
means for project management,  a basic handling of thematically defined data  (Breunig,

20 DB4GeO is completely developed in Java.

21 The name of the development project of the DB4GeO/DB3D core API is db3dcore. db3dcore has been 
published as an opensource library under a GPL-like licence on the git hosting service “github”, 
available at the project's address http://github.com/geodb/db3dcore. For the sake of simplicity, the 
DB4GeO Core API is termed DB4GeO kernel or Core API or db3dcore hereinafter.

22 db3d - in contrast to db3dcore - is not published as open source.

Fig. 5: TIN part of the relational data model of GST
Source: (Gabriel et al. 2011, 5)



10 CHAPTER 1  INTRODUCTION AND RELATED WORK

Schilberg, et al. 2009, 49 te seq.), and an implementation of a model for spatio-temporal
(4D) data, as well as the interfaces for spatial data interoperability through its I/O classes.
DB4GeO exports the file types DB3D XML (which is the proprietary interchange format of
DB4GeO), GOCAD (VSet, PLine, TSurf, TSolid, SGrid23), GML, JML, VRML, and X3D
and imports DB3D XML, GOCAD, JML, and Abaqus.24

Historically,  DB4GeO is a  successor to  GeoStore and the  GeoToolKit (Balovnev et  al.
2004, 10 et seqq.). GeoStore is a Geo-DBMS that has mainly been developed in the 90s at
the collaborative research centre SFB 350 of the University of Bonn. It has been developed
with the C++ programming language and is an application-specific DBMS that focuses on
the management of geological objects. Later, members of the research groups of SFB 350
realized that many of the geometric functions of GeoStore were useful in other application
domains  than  geological  modelling  as  well  (Cremers  et  al.  2000,  4).  Thus,  a  more
generalised geometric kernel has been extracted from GeoStore and termed GeoToolKit.
GeoToolKit is a library of geometric data types, functions, and spatial access methods. The
foundations of the geometry model that was applied in GeoToolKit have been described in
detail  in  (Breunig 2001). GeoStore itself has been redesigned to use GeoToolKit as its
kernel  for  geometric  computation.  A custom  desktop  client  has  been  developed  for
GeoStore  that  was  able  to  load  and  visualize  geodata  from  a  GeoStore  DB.  In  the
following, other application modules such as GeoWeb (for the access on geological models
via the web) have also been developed on top of the GeoToolKit library. GeoWeb had
already  been  extended  with  such  advanced  functionalities  as  mesh  decimation  for  a
progressive  transmission  of  the  geodata  to  lower  the  usage  of  bandwidth  for  data
transmission  (Shumilov  et  al.  2002,  117).  Also  the  Geo-DBMS had  a  spatio-temporal
model and was able to process  time-dependent queries  (Siebeck 2003, 41 et seqq.). The
resulting  static  or  temporal  geo-objects  were  visualized  in  a  VRML browser  that  was
extended by the Java applet  CortonaTM (Shumilov et  al.  2002, 116).  After the 90s,  the
project  “Advancement  of  Geoservices”25 gave  project  team member  Wolfgang  BÄR the
chance  to  take  GeoToolKit  and  all  the  lessons  learned  from  its  development  as  the
inspirational  basis  to  design  and  implement  the  next  stage  of  the  software  in  Java
programming language (Bär 2007); it was termed DB4GeO.

The architecture of the network interface of the  DB4GeO server changed several times
during its development stages: in the first approach, when DB4GeO was developed in C+
+, the geometry objects  where exposed to the net by the  remote invocation framework

23 Support for SGrid (Stratigraphic Grids; also unstructured, irregular grids or “non-uniform” structured 
grids) is very limited

24 An exhaustive description of the I/O interfaces of DB4GeO can be found in (Rolfs 2005, 44). The 
supported file formats for import/export show that one of the main aims of DB4GeO is to bridge the gap
between geoscientific IS and geographic IS.

25 The project with the German title “Weiterentwicklung von Geodiensten” was part of the special program
GEOTECHNOLOGIEN of the Federal Ministry of Education and Research (BMBF) and the DFG. 
Detailed information on the project can be found on http://www.planeterde.de.
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CORBA26. Later, when DB4GeO was ported to Java, the service architecture was changed
to the  distributed  systems network architecture  Jini (and remote  invocation  framework
changed to RMI27). In the last step, the service architecture has been changed to RESTful
HTTP.

The  DB4GeO REST module28 allows to expose the main functionality of the  DB4GeO
DBMS through a network as a service. The module implements the geodatabase server as a
RESTful HTTP web server, which means that the operations of the DB4GeO DBMS can
simply  be  accessed  through  URL requests,  using  the  Representational  State  Transfer29

(REST) architectural style and REST verbs – for call examples see (Breunig, Broscheit, et
al. 2009, 104).

The  RESTful  interface  supports  the  objective  of  DB4GeO to  operate  as  a  distributed
spatial  DBMS (or even more pointedly as a distributed  GIS) to provide data selection,
retrieval and operations on complex large scale geoscientific models.  DB4GeO with the
RESTful interface eases the distribution of geoscientific data across multiple virtual and
real servers. Since RESTful HTTP is stateless, individual instances of DB4GeO servers do
not have to synchronize states (cf. (Fielding and Taylor 2002, 119)).

DB4GeO has already been deployed in several research-centered application scenarios like
for the early warning of landslides (Breunig et al. 2010, 84 et seq.), and it is intended to use
DB4GeO as the central part of a distributed data system for the geosciences where data
from different  geoscientific  fields  shall  be  integrated  into  a  network-based,  metadata-
driven system (Breunig et al. 2011, 15 et seq.).

Some application scenarios for  DB4GeO have also been determined by the industry. For
example, the EEA has identified some functionalities of a geodatabase as vital for their
operational business. These were e.g. a “discrete access on geo-objects like aquifer, faults,
and  temporally  moving  crevasses,  and  the  storage,  access  and  export  of  virtual  (i.e.
computed) 2D profiles of 3D volume models, as well as the possibility for spatio-temporal
querying and geometric 3D/4D operations on volume models” (EEA GmbH 2012).

Typical  queries  and  editing  operations  on  DB4GeO (and  spatio-temporal  databases  in
general) in application scenarios might be:

• Which  stratigraphic  horizons  and faults  are  penetrated  on  a  given drilling  path
(geometric query)?

• What is the volume size of a given block of rock (geometric query)?

• What  are  the  hydrological  parameters  of  the  rock  in  a  given  spot
(parameter/thematic query)?

26 Common Object Request Broker Architecture

27 Remote Method Invocation (Java's type of Remote Procedure Call)

28 The internal name of the service infrastructure project is RestDb3dModule.

29 For more information on REST architecture, see (Fielding and Taylor 2002)
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• Remove  a  certain  component  of  a  horizon  surface  from  the  whole  geo-object
(editing operation).

• Did a given fault ever cut through a given rock solid (temporal geometric query)?

• What  was  the  average  speed  of  a  given  moving  crevasse  during  the  last  two
decades (temporal geometric query)?

Due  to  the  limitations  of  its  kernel  geo-object  model,  DB4GeO is  not  able  or  has
performance issues (i.e. is unacceptably slow) at responding to queries such as:

• What is the boundary polyline of a given fault?

• Show the polyhedral boundary surface of a rock solid.

• What  is  the  shortest  path  between  two drilling  points  on  the  mesh  of  a  given
stratigraphic horizon surface?

• On a digital geologic profile section: which is the stratigraphic layer on top of the
given stratigraphic layer?

All of these queries require a powerful underlying topological model for geo-objects in the
Geo-DBA kernel.

Hitherto, the implementation state of the topology model of the DB4GeO kernel limited its
capabilities  for  the  integration  of  heterogeneous  spatial  data  models.  DB4GeO is
specialized on the management of Simplicial Complexes like triangle and tetrahedral nets.
On the other hand, “classical/on-surface” GIS data utilizes a more unstructured approach to
geometric modelling – e.g.  cadastre parcels are typically modelled as polygons with an
arbitrary number of support vertices.

1.3 A Generalized Geo-Model for the Integrated Modelling of Geoscientific 

and GIS Data

The integration of geoscientific subsurface data and “on-surface” (cultural) GIS data, such
as 2D cadastre parcel features or 3D city models, brings forth valuable applications, cf.
(Krämer  et  al.  2010;  IAI  (Institut  für  Angewandte  Informatik  Karlsruhe)  2011).  An
example of such an application is  the integrated analysis  of data  of a geothermal  field
(subsurface) and 3D city model data (cultural) to study the profitability of a geothermal
project,  taking  into  account  numbers,  volumes  and  locations  of  potential  customers'
buildings as well as considering the costs of competing teleheating pipe pathways and the
productivity of geothermal fields. A (simulated) visualisation example of a setting with two
subsurface  stratigraphic  horizon  boundaries,  some  well  paths,  a  digital  terrain  model
(DTM), combined with on-surface features like trees, drilling rigs and a city is shown on
the left side of Fig. 6.
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Another  major  application  scenario  for  the  combined  management  and  analysis  of
geoscientific data and cultural geodata is the planning of subsurface infrastructure, which
is depicted on the right side of Fig. 6, where a 3D city model and the model of a planned
subway track are shown. In such planning scenarios, it is useful to seamlessly integrate
geological subsurface data into the planning process in order to investigate the subsurface
stability on the basis of rock material properties directly in one common system.

A well-known data  exchange format  for  3D city  models  is  CityGML,  which  has  been
introduced by KOLBE and GRÖGER (Kolbe and Gröger 2003). CityGML since has become an
OGC standard  (Open Geospatial Consortium 2008). It is likely that the standard will be
supported by several  visualization  clients  in the future (cf.  Fig.  7 for an example of a
CityGML 3D city model, rendered with Autodesk® LandXplorer).

The fundamental standard for CityGML and other OGC as well as ISO/TC211 standards is
ISO 19107 “Geographic information - Spatial schema” (ISO 2003). The geometry/topology
model laid out in ISO 19107 specifies that OGC-compliant GIS/Geo-DBMS may support
both,  the  modelling  of  geo-objects  with  vaulted,  polyhedral  surfaces  (class

Fig. 7: CityGML model of Alexanderplatz, Berlin
Source: Autodesk® LandXplorer screenshot; data:
© City of Berlin; citygml.org

Fig. 6: Left: Subsurface geodata combined with 3D city model (collage/not related to 
reality); Right: Subsurface infrastructure planning
Source: left: collage from the figures of (Andenmatten and Kohl 2002) and City of 
Berlin dataset screenshot (© City of Berlin; citygml.org); right: (Dorffner, Ludwig, 
and Forkert 2006)
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GM_PolyhedralSurface,  constructed  e.g.  as  triangle  nets)  as  well  as  with  arbitrary

planar polygons (class  GM_Polygon) in  boundary representation (B-Rep) (Andrae 2008,
117 et seqq.).

CityGML uses  B-Rep for  the  modelling  of  man-made objects.  CityGML buildings  for
example are modelled as sets of polygons that define the buildings' boundaries. The B-Rep
of CityGML requires bounding lines of building walls to be straight lines and bounding
surfaces of building solids to be planar polygons (Open Geospatial Consortium 2008, 23).
CityGML also explicitly encourages the usage of topological data structures, for example
to model the joint use of geometries.30 To efficiently handle the B-Rep of CityGML, a
geometry/topology module has to be able to model topologically  connected geometries
with  arbitrary  flat  boundary  shapes  (polygons)  and  to  efficiently  retrieve  boundary
geometries  of geo-objects  (e.g.  the bounding polygons of a  solid  or  the bounding line
segments of a polygon). Furthermore, efficient topological navigation between CityGML
geometry  entities  is  needed  (e.g.  navigation  from  one  building  solid  to  its  adjacent
building). These requirements hitherto were not satisfactorily met by the DB4GeO kernel.
This  is  because  the  concept  of  B-Rep  is  not  directly  consistent  with  the  Simplicial
Complex model  of  the  DB4GeO kernel  (more  on  this  in  Ch. 2.1).  To  meet  these
requirements,  the  geometry  kernel  needs  to  be  extended by a  topology module that  is
capable of handling both, objects that are described by net representation, and objects that
are described by B-Rep, in one model.

However,  the  focus  of  this  work  will  not  be  to  design  and  implement  data  exchange
interfaces in DB4GeO for CityGML (or OGC geodata models in general). Nonetheless, the
topology module for DB4GeO shall enable the DBMS to internally handle such data. On
top of the topology module, specialized models and import/export interfaces for CityGML
data may be implemented (see Ch. 5.2.1 for more details).

1.4 Abstraction of Geodata

One of the key techniques of the human mind to make reality intellectually graspable is
abstraction.  Humans  abstract  continuously  in  various  situations.  This  is  a  necessary
consequence out of the fact that reality is too complex to be recognized in its entirety.
Thus, the human mind generates models of reduced complexity of the reality in order to
process  it.  This  reasoning  is  fundamental,  especially  to  the  art  of  cartography  and  to
geoinformatics in general. Cartography and geoinformatics deal with the creation of world
models (2D maps or 3D representations) that are better graspable if provided on multiple
levels of abstraction.

However, multi-scale modelling is not only an important concept for the human mind, but
equally important for machine based processing. In fact, multi-scale modelling also is a
fundamental subject in general computer science. The reason for the wide dissemination of

30 CityGML topology is formulated with XLinks. An examination of the topic of modelling CityGML 
topology with XLinks can be found in (Krimmelbein 2011).
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the topic is due to the fact that in various problem definitions of computer science, it often
is useful for performance reasons to initially compute an approximate solution on a coarse
level, and then to seek more accurate solutions in levels of increasing detail.  From this
perspective,  even  search  trees  like  B-trees (Bayer  and  McCreight  1972) can  also  be
regarded as methods of multi-scale modelling.

In geoinformatics  and cartography literature,  there are several  terms for the concept  of
abstraction with a similar meaning, as e.g.  generalization,  multiple representation,  multi
resolution,  hierarchy  management,  plurality  of  scales,  or  levels  of  detail (LoD).  With
regard to some terms in this field, there is a confusion of tongues. In particular, the usage
of higher and lower LoD or large and small scale of a map is often ambiguous/inverse. To
avoid such confusion in this work, these terms shall explicitly be used in the following
way:  a  higher LoD e.g.  of  a  city  model  means  that  there  is  more  detail in  such  a
representation. For example: at a lower LoD, a city model may be missing all windows in
the buildings, whereas these are added in a higher level. A similar concept applies for map
scales: a large scale means that a map is very much “zoomed in” (much detail), a small
scale “zooms out” (less detail).

Due to the broadness of the topic,  a definition of a clean taxonomy of all  concepts of
hierarchy management is difficult. In geoinformatics, the topic of abstraction focuses on
geometric,  attributive,  and  topological  abstraction.  In  geometric  modelling,  there  are
methods that allow for a continuous change of detail of a geo-object, like the progressive
mesh method (which is explained in Ch. 2.4). However, in many applications of hierarchy
management,  it  is useful to formulate  certain definitions of fixed level of detail.  These
level definitions can only be formulated depending on certain applications. The definition
of a certain detail level includes which types of geo-objects are assigned to that level. The
assignment of a geo-object type to a certain LoD typically not only depends on the average
size of the geo-objects of that type but also on attributive data. For example: in small scale
waterways  mapping,  only  features  of  large  size,  like  a  broad  channel,  are  of  interest.
However, although waterway signs would be classified as to small in size on that  LoD,
they still would be included since they thematically are of special interest in this context.

1.4.1 Early Research on Abstraction of Geodata

Research efforts in machine based generalization were already conducted as early as in the
70s, e.g. by David William RHIND (1973). The research of RHIND focused on abstraction of
geometry  objects  with  fixed  detail  level  definitions.  Later,  a  greater  research  initiative
called  “Multiple  Representations”  on  multiple  representation  databases (MRDB)  was
carried out by the National Center for Geographic Information and Analysis (NCGIA) in
1988.  The  closing  report  of  the  initiative  (Buttenfield  1993) comprises  an  extensive
collection of literature on the topic, some of which is discussed in the theory-part of this
work.

MRDB are defined as spatial databases that are capable of maintaining several geometric
representations  with  different  levels  of  detail  of  the  same  real-world  phenomenon.
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Research  on  MRDB  for  a  great  part  refers  to  the  management  and  provision  of  2-
dimensional maps on multiple LoD (cf. Fig. 8).

Fig.  8 shows a map excerpt  from an  MRDB on landuse at  three different  scales.  The
linestrings depict boundaries of areas of different landuse. From left to right, the average
sizes of the landuse areas are increasing. With changes of the area sizes, also the assigned
land use classes change from more detailed to more general. Thus, any more generally
classified landuse area can be defined as a collection of several more precisely classified
landuse areas.

Many traditional paper maps already are published in multiple scales. In the design process
of the maps, the lower scales have to manually be derived from maps of larger scale by
techniques of generalization.  While the generalization process for paper maps is  solely
targeted  to  the  visualisation,  one  of  the  major  specific  tasks  of  an  MRDB is  also  the
management  of  the  relations  between  multiple  representations  of  a  spatial  object  on
different scales. This allows for cross-scale navigation and cross-scale analysis on geodata.

1.4.2 Difficulties in Automated Geodata Abstraction

Hierarchy  management  of  geodata  is  a  broad  topic.  The  cartographic  generalisation
processes  cannot  easily  be  structured.  For  example,  in  some  applications  of  hierarchy
management, there is a demand that a geo-object even has to change its dimensionality on
different  LoD. This can be the case e.g. for a digital city model, where the city can be
modelled as a point feature at small map scales, as a planar (polygonal) feature at medium
map scales and as a volumetric buildings model at large map scales. Such cases make it
difficult to find correlations between the different LoD and complicate a sound automated
algorithmic treatment.31

31 A similar issue is found in multi-scale modelling of CityGML (Open Geospatial Consortium 2008, 9). 
CityGML supports the management of up to five LoD. Although it is possible e.g. to navigate between 
the LoD of a single whole building, it is not possible to navigate on parts of a building (e.g. a building 
wall) between their multiple versions on different LoD. In CityGML only a reduced set of relations is 
modelled between the LoD.

Fig. 8: Digital landscape model two different scales (left higher scale, right lower scale)
Source: (Haunert and Sester 2005, 14)
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It  is  obvious  that  in  such cases  it  is  not  only difficult  to  automatically  find geometric
interrelations between different LoD but that also issues arise when a geomodel is changed,
i.e.  when the geomodel  is  edited/updated  by a  specialist.  To stick with the city  model
example given above, a multiple  representation system has to incorporate  rules for the
adjustment  of  a  lower  LoD to  changes  in  a  higher  LoD.  An  example  would  be  the
extension of a city model at its boundaries by the 3D building model of a spacious building
complex on highest LoD. In such a case, an automatic update of all lower LoD might be
necessary.  On  the  polygon  level,  the  base  area  polygon of  the  city  might  need  to  be
expanded. On the point level, the representative point of the city (lowest LoD) might need
to be displaced. 

However, the adjustments are generally vague, since it depends on the application scenario
and purpose,  which  rules  apply.  For  example,  there  might  be no  need to  displace  the
representative point if it is defined in a different way than as the centre of gravity of the
urban extent, or if other rules interfere.

Often, automatic updates are not possible in the opposite direction at all.  This can also
clearly  be  shown  by  the  above  example:  if  the  operator  first  manually  displaces  the
representative point (due to the construction of a new building complex), the system of
course cannot create a detailed building model by itself on a higher LoD. This is a general
problem: on geometric modifications at a lower LoD, obviously the missing information of
a higher LoD mostly cannot be synthesized automatically.32

The  examples  show  that  abstraction  rules/mechanisms  mostly  have  to  be  defined  for
certain narrow application cases and are not generally applicable. Hierarchy management
systems  for  geodata  are  always  restricted  to  one  certain  application  or  to  a  narrow
application field. Thus, in industry and research, there are approaches that are specialized
on clearly defined applications, or at least that strongly limit the application radius so that
it is possible to develop applicable rules and systems that are valid in their respective field.

An example of a widely used hierarchy management system with a clearly defined narrow
field of application is ATKIS33 (Anders and Bobrich 2004), which is an MRDB of multiple
digital  landscape models (DLM) with a fixed amount  of  four LoD. ATKIS is  a solely
geometric MRDB, where the generalization information is maintained by links between the
geo-objects of a larger scale and their representative of a lower scale.

This chapter explained the importance of the abstraction subject area in geoinformatics and
outlined some general concepts and issues of geometric abstraction. However, in Ch. 2.4
not only the introduced reasoning further will be further elaborated (i.e. specific methods
of geometric hierarchy management in 2D and 3D applications that are state of research
are  discussed)  but  also  a  shift  in  focus  will  lead  to  topological  modelling  of  multiple
representations.

32 Though, its not impossible in all cases. Synthesization can be achieved through the application of 
comprehensive sets of rules.

33 German Authoritative Topographic-Cartographic Information System
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1.5 Spatio-Temporal Geodata

Spatio-temporal geodata is data that is defined with respect to space and time.34 In several
application  domains,  the  extension  of  spatial  data  with  a  temporal  component  enables
many  additional  useful  types  of  analyses  that  static  geodata  alone  cannot  provide.
Consequently, industries start adopting temporal geodata in their day-to-day business. In
fact, temporal geodata can be employed virtually anywhere wherever geodata is already in
use, e.g. in business management,  social sciences, environmental research,  geoscientific
modelling, or city planning. For example, in the environmental sciences,  spatio-temporal
analysis of daily rainfall data that is measured at multiple locations, helps to understand the
processes of climate change.

1.5.1 An Example of Spatio-Temporal Modelling in City Planning

City  planning  places  particularly  high  demands  on  the  capabilities  of  spatio-temporal
models.  Example  cases  of  the  application  of  spatio-temporal  data  in  city  planing  are
illustrated in Fig. 9 and Fig. 10.

Fig. 9 shows state changes of a building (here: Palace of the Republic) over its lifetime
(from 1753  to  the  future).  A  spatio-temporal  DBMS  that  is  capable  of  managing  the
chronological sequence of a building needs to handle various states and transitions. In the
example,  the  Berlin  City  Palace  was  constructed  in  1753.  In  1945  the  building  was
completely  destroyed.  Only  debris  remained  on the  lot  for  five  years.  The debris  was

34 Definition according to the entry "Spatio-temporale Daten" in the GI-Lexikon of the Geoinformatik-
Service of the University of Rostock (entry link: http://www.geoinformatik.uni-rostock.de/einzel.asp?
ID=1981)

Fig. 9: Application example for the evolution of a building site over time 
(Berlin City Palace/Palace of the Republic), source: presentation of 
Andreas Thomsen at DFG project “Abstraction of GeoInformation” 
meeting in Gengenbach 2008
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removed and the successor to the Berlin City Palace, the Palace of the Republic was build
on the same lot in 1976. The Palace of the Republic remained externally unaltered for
almost two decades, until it was constructionally extended in 1993. In 2009 the Palace of
the Republic has completely been removed, and only an empty lot remained. At present, a
reconstruction of the Berlin City Palace is under way.

This  kind  of  complex  setting  is  a  typical  case  that  occurs  in  urban  planning.  In  the
presented setting, multiple different types of temporal changes take effect. The schematic
drawing of  Fig. 10 more clearly delineates, abstracts and classifies the different change
types.

In the example of Fig. 10, at time step T i−1 , the model consists of two disjoint buildings.

A new building is added to the model at time step T i . This changes the overall geometry

of the model but not the geometries of the existing buildings. At time step T i1  another

building is added to the model that connects two of the existing buildings. This not only
changes  the  overall  geometry  of  the  model  but  also  the  geometry  of  the  two existing
buildings that are affected by the constructional expansion. In the same temporal step, the
overall topology also changes, since the two buildings, which were disjoint before, now get

connected through the newly introduced central block. In time step T i2  (which is marked

as current time), there are three different types of changes that take place at the same time
step.  There  is  a  change  of  ownership,  which  is  an  attributive  change.  This  is  not  a
geometric change, it only changes the character sequence entry of the ownership property
of the building. Furthermore, in the same step, the facade of a building is expanded by a
balcony. This induces a change of the building's own geometry and topology. In the future,

the construction of a fourth building is planned for  time step  T i3 , but this is only one

Fig. 10: Application example for geometric, attributive and topological 
changes of a 3D city model, source: presentation of Andreas Thomsen 
at DFG project “Abstraction of GeoInformation” meeting in 
Gengenbach 2008
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possible version of what really might be implemented when the  time step becomes the
present.

This was only one example of an application domain and its  adoption of the temporal
component. With an increasing number of application domains that need to adopt temporal
geodata, also the claim to science to elaborate sophisticated spatio-temporal models and a
clean structuring of the processes and problems increases.

1.5.2 Early Research on Spatio-Temporal Modelling and its Objectives

The management and storage of spatio-temporal data is a strong observed field of research
in  the  geoinformation  sciences  already  for  several  years.  In  1990,  LESTER compiled  a
comprehensive  overview  of  (still  mostly  valid)  research  problems  in  spatio-temporal
modelling, cf. (Lester 1990), some of which are:35

• the understanding of time,

• temporal logic,

• architecture of temporal GIS, and

• how to deal with alternative representations.

In this  context,  this  thesis  is  primarily  concerned with the issue of  the  architecture  of
temporal GIS.

SHOHAM and  GOYAL identify  four  different  reasoning  tasks that  can  be  supported  by
temporal  GIS36,  which  are:  prediction,  explanation,  learning  new  rules,  and  planning
(Shoham and Goyal 1988, 419 et seq.). Whereas prediction uses a set of existing rules and
a model of the present state to predict a future state,  explanation uses the set of rules to
explain a former state from the present. In the task of  learning new rules, two recorded
states of two different points in time are used to deduce the affecting rules. In planning, a
model of a present state, a model of a desired future state, and a set of rules are used to
deduce activity guidelines to achieve that state.

At first glance, the extension of a GIS to a time-integrative GIS (Ott and Swiaczny 2001)
seems straightforward, by introducing an additional  time variable to the already existing
spatial variables. But the problem is more delicate, since a temporal information system
needs to hold and arrange copies of old recorded states (its  versions). Thereby, questions
concerning the level of version tracking arise.37 Topologically regarded, similar rules apply
for  time as for  space  (Langran and Chrisman 1988):  neighbourhoods can be modelled
explicitly, with similar benefits as there are for the explicit modelling of topology in space.

35 This chapter presents some basic ideas of the topic in order to provide a rough overview. However, not 
all presented aspects will further be covered in the thesis.

36 Real-life application examples for the usage of temporal GIS are be given by (Worboys, M.-F. 1994).

37 The topics of temporal data and version control are closely related and should be considered conjointly.
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1.5.3 Basic Considerations on Spatio-Temporal Modelling

WACHOWICZ describes two traditional, fundamental approaches regarding version control in
temporal  GIS (Wachowicz 1999, 3 et seqq.): The idea of “organising space over time” is
closely related to the layer concept of GIS. Here, every step in time renders a completely
new data layer (Fig. 11).

On the other side, the idea of “representing a real-world phenomenon in space and time”
(ibid.)  means  to  append  time  to  the  spatial  unit  that  is  indivisible  in  the  respective
application and to perform version control on that element. This approach is more closely
related to the object-oriented perspective. An indivisible unit can be – depending on the
application – a whole geo-object (object level) or parts of the object, e.g. an object attribute
(attribute level).38 Version changes may imply a change of an attribute value, as well as
changes in the object's geometry, or in its topological configuration (more on this topic in
Ch. 2.5), or even in the schema of the object.

In temporal  modelling  of  geo-objects,  version control plays  an important  role.  Version
control  aims  at  the  incremental  update  of  geo-objects  or  their  parts.  With  incremental
updates, versions are calculated by a combination/addition of other available versions of a
geo-object. This raises new issues that can be summarized under the “space vs. runtime”
problem  field.  DADAM et  al.  detected  two  types  of  strategies  for  incremental  update
(Dadam,  Lum,  and  Werner  1984),  which  are  forward  oriented  versioning (non-
accumulative and accumulative), and backward oriented versioning (non-accumulative and
accumulative). In forward oriented versioning, the oldest object that has been added to the
data set, is taken as the basis on which the newer versions of the object are created. Newer
objects are thus constructed on basis of the older objects by only recording the changes to
the older objects. In contrast, in backward oriented versioning, the object that was added

38 Generally, the consideration of time aspects under the object-oriented perspective seems to be 
particularly fruitful. This has especially been pointed out by Wachowitz and others active in the field.

Fig. 11: Layer concept in GIS (left) and spatio-temporal layers (right)
Source: (Wachowicz 1999, 4)
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last, is taken as the basis on which the older versions of the object are redefined. By the
non-accumulative strategy, the derivative versions of an object are always deduced from
the one base version (oldest/youngest object), whereas by the accumulative strategy, each
derivative version is incrementally  deduced from its predecessor in the version history.
Each approach has  its  advantages  and disadvantages  in  terms  of  runtime and memory
usage in certain applications. In research on  spatio-temporal models, a recurring issue is
which parts of a  geo-object shall transfer from an existing to a new version, respectively
what  proportion of an object  shall  become part  of its  copy. Such problems are closely
related to the question, in which cases an old object ceases to exist and when a new one
begins.

In the attempt to capture temporal information in databases, it soon turned out that it is
useful to categorize the recorded  time into two types.  SNODGRAS and  AHN framed various
approaches that were developed at that  time by several research groups, under the terms
valid time and transaction time (Snodgrass and Ahn 1985). While valid time designates the
time in which an event occurs in the reality, transaction time indicates the time instant at
which the same event is recorded in the  database. Based on this classification,  SNODGRAS

and AHN distinguish four kinds of (chronological) databases, which are: snapshot, rollback,
historical and temporal databases. While snapshot databases do not support any concept
of  time (do not store temporal  data),  rollback databases  are capable of storing several
versions  of  a  data  unit  along  with  its  transaction  time.  With  the  help  of  this  meta
information,  previous  states  of  the  database  can  be  restored  (rollback  database).  In
contrast,  historical databases  have no rollback functionality.  Instead they include  valid
time to each data unit version. By this, it becomes possible to consider the real temporal
evolution  of  an  observed  item.  Finally,  a  temporal  database  supports  valid  time and
transaction time and thus makes it possible to study the historical evolution of an object as
it happened in (or was planned for) reality, as well as the evolution of its representation in
the database (combination of rollback and historical database).

Furthermore, valid time can be modelled in a longitudinal configuration or in a branching
configuration (Lester 1990, 12) (see Fig. 12).

Fig. 12: Longitudinal and branching time
Source: (Wachowicz 1999, 21)
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The figure  shows the  time  dimension plotted  against  one  space  dimension.  The  space
dimension in this figure is a representation of several  space dimensions (for the sake of
simplicity) and symbolizes the physical movement of a  geo-object through  space. In the
longitudinal configuration (left), entity A takes only one path through time, so that at any
time  instant,  there  is  always  exactly  one  version  of  the  object.  In  the  branching
configuration (right), first there is also exactly one version of entity B in the example, but

only  until  “present  time”  (cf.  “Now line”).  However,  after  this,  it  splits  into  multiple
simultaneously  existing  versions.  Thus,  at  specific  times,  there  are  several  versions  of
entity B that differ in their attributive and/or spatial configuration (position, shape).39

In the 70s, HÄGERSTRAND proposed the usage of space-time trajectories of spatial objects for
problem solving in the geographic information domain  (Hägerstrand 1975).40 Space-time
paths  describe  the  lines  that  a  geo-object  generates  in  space-time  over  a  given period
through its spatial movement. Each spatial feature moves on its own spatio-temporal path
(see Fig. 13).

During  its  lifetime  on  the  space-time  path,  a  geo-object  can  repeatedly  change  the
characteristics of its movement or of its other entity properties. Such time instants can be
considered as states (see left illustration in Fig. 13). States are triggered by events in time
(Fig. 13, right). An event can be for example an update process on the data. In information
systems, events can typically be used to store explicit versions of the geo-object (more on
this in Ch. 2.5.2).

The periods of  time between states can be described by different approaches, such as by
kinematic or dynamic descriptions. Kinematic models describe the change of an object by
comparably  simple  rules  that  only  consider  change  of  the  external  appearance  of  the
object.41 Dynamic models instead describe the change of the external  appearance of an
object as a result of physical forces acting on the object.

39 A well-crafted application example of 5D models that combines both, valid branching time as well as 
transaction time in a realistic spatial database query, can be found in (Schaeben et al. 2003, 178).

40 Hägerstrand presented his ideas on the basis of an application-oriented example concerning the human 
behaviour in urban surroundings.

41 (Alms et al. 1998, 255 et seqq.) delineates the architecture of a class library that facilitates the modelling
of change of the external appearance of geological objects.

Fig. 13: States (left) and events (right) of a geo-object during its lifetime
Source: (Wachowicz 1999, 22 et seq.)
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Based on these elementary considerations of spatio-temporal reasoning, several models for
the handling of spatio-temporal data have been developed in the last decades. As we will
see,  the models focus on specific  application requirements.  Temporal  geodata becomes
increasingly valuable in a growing number of application fields. For example,  temporal
geoscientific data is recorded when an oil reservoir is tapped. As long as the oil field is in
production, the reservoir is monitored and temporal geometry models of the reservoir solid
are  constantly  generated.  The  temporal  models  are  needed  to  detect  changes  in  the
reservoir volume early in order to be able to react properly in  time. Another application
field where temporal geodata becomes increasingly useful is city planning, where temporal
geodata can help to better understand the mechanics of the city's evolution.

Applications  with  temporal  geodata  put  high  demands  on  the  underlying  temporal
geometry model. Chapter 2.5 will present well-known  spatio-temporal models and show
that they have deficiencies in modelling topology that changes in  time. The extension of
the DB4GeO topology module with the capability of handling temporal data (Ch. 3.6) can
contribute to an advanced usage of topology in temporal data.

1.6 Remarks on Suitable Spatio-Temporal Testdata

Spatio-temporal  2.5D and 3D data  are  still  rare.  A remarkable  spatio-temporal  dataset
(Lautenbach and Berlekamp 2002) that has been compiled and developed by LAUTENBACH in
his diploma thesis, could be obtained. It is used in tests of concept implementations in this
thesis (two snapshots of the dataset are illustrated in Fig. 14 for a first impression).

Multiple datasets and informations from different sources were integrated to produce the
resulting  dataset  at  hand.  The  Piesberg dataset  is  a  combination  of  clipping of  digital
elevation model (DEM) of the city of Osnabrück42, SICAD® drawings, and cross-section
drawings. The SICAD drawings are a top view line drawings of the breaking edges of the

42 The DEM for Osnabrück is provided by the LGN (Ordnance Survey + Geoinformation Lower Saxony), 
the product is called DGM5 with a grid expanse of 10 m

Fig. 14. 3D model of Piesberg landfill site with cells of different usage (1982 
and 1993).
Background image: ©2010 GeoContent, ©2009 Tele Atlas, ©2009 Google
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dumpsite. Cross-section drawings are vertical “cuts” through the dumpsite that illustrate
the local height profile. These were first only available as paper drawings and had to be
manually  digitized.  All  drawings  are  available  for  multiple  years.  The  “flat”  SICAD
drawings were combined with the height profiles of the cross-section drawings. In this
process, the heights from the cross-section drawings have been transferred to the SICAD
drawings to generate several 2.5D geomodels. The Triangulated Irregular Network (TIN)
of the geomodel has been computed by the TIN module of Arc/Info. Finally, the DEM has
been used to expand the geomodel to its sides. After all, the whole temporal model consists
of 12 TINs – screenshots of the individual geo-objects, denoting the year of valid time of
the respective object, are depicted in Fig. 15.

The final dataset consists of twelve files (the twelve points in time). Originally LAUTENBACH

stored the data in ADF format43 that can be visualized and converted with  ESRI ArcGIS
3D-Analyst. In ArcGIS 3D-Analyst the data has been converted to the more open/better

43 Arc/Info Binary Grid format; a binary format developed by ESRI for storing raster data

Fig. 15. Complete Piesberg dataset, years 1976 - 1993
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readable VRML format. In VRML format the complete dataset takes about 67 MB44. In a
point in time, the model consists of about 30K triangles (so about 300K triangles at large).
As it can be seen in  Fig. 15, the configuration of the TIN changes from year to year at
large. There are parts that nearly stay unchanged (especially at the borders) and parts that
greatly change (in the centre). The amount of triangles that build up the TIN also differs
from year to year (cf. Table Table 1).

Year 1976 1978 1980 1981 1982 1983

Iteration +0 +2 +4 +5 +6 +7

Triangles 30,144 30,092 28,742 26,978 26,582 25,688

Year 1986 1987 1989 1991 1992 1993

Iteration +10 +11 +13 +15 +16 +17

Triangles 24,436 24,474 24,026 24,056 24,004 19,128

Table 1. Number of triangles in the Piesberg dataset

In  general,  the  amount  of  triangles  decreases  at  every  time  step  (with  some  minor
exceptions). For a better overview, the data history are clearly presented in Fig. 16.

The decrease in the number of triangles is because the model of the landfill itself has a
lower resolution (is represented by fewer triangles) than the DEM of Osnabrück, in which
it is embedded. Since the landfill continues to expand, more and more surface of the DEM
is “covered” by the landfill model, and thus the number of triangles in total is continuously
reduced.

The meshing of the triangle model is realised with continuously fewer triangles and subject
to strong changes with each time step. Due to this dynamic properties, the data set provides
a major challenge to temporally model and keep track its geometry and topology.

44 In comparison ADF format consumes ~ 10 MB

Fig. 16: Number of triangles in the Piesberg dataset
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2 Topological Concepts of 

Spatio-Temporal Data Modelling

As stated in section  1.2.1 (Geological Modelling in Practice),  geoinformation occurs in
diverse applications in a variety of ways. The underlying models that are used to manage
geodata are also diverse, starting with a simple model as spaghetti structure that is used as
the simplest, unstructured way to gather geoinformation in common GIS (Peuquet 1984, 76
et seq.) to the complex models that are needed to represent  temporal  3D objects.  This
chapter gives a summary of the common models that are most important for sophisticated
spatio-temporal modelling and outlines the current state of international research in the
field of spatio-temporal model-building for geoscientific data.

2.1 Geometry Model as Basis for the Topological Model

Within spatio-temporal data models, topological information should be supplemented by a
geometry model representing the location of geo-objects in space and time. As an example,
the  db3dcore geometry  model  is  an  implementation  of  the  Simplicial  Complex model
(Alexandroff and Hopf 1935, 45:158 et seqq.). In the model of  Simplicial Complex, the
considered  space is completely subdivided into connected  simplices, thus it is a specific
cell decomposition model, cf.  (Mäntylä 1988, 72 et seqq.). The intersections between d-
dimensional simplices are the (d-1-dimensional) simplices that constitute the boundary of
the d-dimensional simplices (see Fig. 17).
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The DB4GeO/DB3D Core API implements the Simplicial Complex model for the spatial
part of its  3D object  model,  see UML class diagram in  (Bär 2007, 65). The Core API
defines a 3D object to be an object in 3D space that has a spatial part which can be a point
sample, a curve, a surface or a volume. These abstract geometry concepts are specified by
concrete geo-objects as follows:

• point sample as point net,

• curve as line segment net,

• surface as triangle net, and

• volume as tetrahedron net.

The triangle net is a construct that is used in application to model e.g. the strata boundary
layers of subsurface models, as depicted in Fig. 2. Tetrahedron nets can be the substructure
of blocks of volumetric geomodels, as depicted in  Fig. 3. It is obvious that volumetric
objects enable more analytical evaluation in application than plain 2D objects, since e.g.
the volume size of rock blocks can only be computed with volumes that are represented by
closed surfaces. If a volume is subdivided into multiple tetrahedra, the calculation problem
for  the  whole  geo-object  can  be  distributed  to  the  single  tetrahedra  of  the  net.  The
calculation of the volume size of a single tetrahedron is algorithmically easier than the
calculation of an arbitrarily shaped geometric object. After calculating the volumes of the
single tetrahedra,  the individual  intermediate  results  can be added to obtain the overall
volume size.  The concept  of splitting a complex geometric  object into multiple  simple
geometric  objects  is  applied  in several  methods of the API with the aim to ease code
complexity and maintenance.

All the aforementioned nets are subdivided into non-overlapping  net components. A net
component  itself  consists  of  connected  simplices.  By the means of the Core API,  it  is
possible  to  navigate  on  top  of  net  components  by  iterating  over  the  explicitly  stored
neighbourhood relations between simplices.45

45 This structure can be seen as the implicit topology model of the DB4GeO/DB3D Core API

Fig. 17: Example and non-example of Simplicial Complex
Source: (Weisstein 2010c)
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2.2 Limitations of Navigation on the Geometry Model

The explicitly stored neighbourhood relations between single simplices can be visualized
in an incidence graph. Fig. 18 shows the incidence graph of the Simplicial Complex model
as it is implemented in db3dcore.

The arrows (left  side)  represent  the connections  between the simplices.  Depicted is  an

example of two triangles that are adjacent through the line segments  S2 , S 3  (see right

side). There are directed top-down incidence relations from triangles to segments to points,
as well as “next to”-connections between multiple triangles (of a triangle net) and equally
between multiple  segments  (of a segment  net).  This  incidence graph is  quite  usual  for
geometry modelling systems (B. Lévy and Mallet 1999, 3). Obviously, there are also some
insufficiencies concerning the navigational properties of this structure. For example, there
are no back references from lower to higher dimension simplices as well as there is e.g. no

direct connection between  S2  and  S3 , what makes navigation quite difficult. There are

cases that  force a  traversal  of the whole structure  to  do only one step in  navigation.46

LIENHARDT (1989) and  BRISSON (1989) proposed  explicit  generic  topology  models  that
address such problems.

46 For example if it is necessary to find all neighbouring line segments to a given point.

Fig. 18: Incidence graph of Simplicial Complex model of the DB4GeO kernel (T: 
triangle, S: line segment, P: point)
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2.3 Cell-Tuple Structure and Generalized Maps

The way to the invention of the cell-tuple structure and the Generalized Maps was paved
by prior  topological  models  that  have widely been used in  CAD industry.  These prior
models have been BAUMGART's winged edge representation (Baumgart 1975), WEILER's half-
edge structure (Weiler 1985), and the radial edge representation (Weiler 1988). The cell-
tuple structure has finally been proposed by BRISSON (1989).

2.3.1 Cell-Tuple Structure and Adjacencies

In the  cell-tuple structure, first, a  geo-object of dimension  N is completely divided into
arbitrarily shaped cells of dimensions N ,N−1, ,1,0 . Second, cell-tuples are defined as

ordered sequences of cells ( cn ) of decreasing dimension. A cell-tuple is denoted as:

C c N , c N−1 , , c1 , c0 .

From  another  perspective,  a  cell-tuple  corresponds  to  a  path  in  the  aforementioned
incidence graph.47 A cell-tuple structure is a set of  cell-tuples that represent all possible
paths in the incidence graph. In the set, all cell-tuples are unique by their tuple elements.

All cell-tuples of a set are “connected” through the concept of adjacency that is inherent to
the cell-tuple structure:

C Ai C '⇔∀ 0≤ j≠i≤N ,c j=c ' j .48

Two cell-tuples C  and C '  are called i -adjacent ( Ai ) if exactly one cell, viz. the cell of

dimension i  of the cell-tuple is exchanged (switch operation) so that another unique tuple
of the set of valid cell-tuples is obtained in return.49 This structure can easily be mapped to
a relational  database. Once the cell-tuples are stored in a database table, adjacencies can
be computed elegantly through SQL statements such as:

SELECT * FROM celltuples ORDER BY Node-ID, Edge-ID

Listing 1: SQL statement to generate a result that pairwise lists cell-tuples that are 2-adjacent

Listing  1 exemplary  shows an  SQL statement  that  can  be  used  to  pairwise  list  all  2-

adjacencies ( A2 ) of a set of  cell-tuples. This method can be used as a basis to find any

desirable adjacency.50 Such representations are discussed in more detail in Ch. 2.5.5 in the
context of spatio-temporal modelling.

47 For example, for a 2-dimensional structure we can note F1 , E1 , N 1 , with face F 1 , edge E1  and 

node N 1 . On terminology of geometry and topology primitives, cf. (Butwilowski 2007, 18 et seq.)

48 Source of this denotation is (B. Lévy and Mallet 1999, 3)

49 For instance, the following two cell-tuples are 0-adjacent: F1 , E1 ,V 1  and F1 , E1 ,V 3

50 More detail and more examples on the topic of the relational representation, particularly its 
combinatorial properties, can be found in (Butwilowski 2007, 47 et seqq.)
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In an actual implementation, for convenience and faster processing, the cell-tuples can be
explicitly linked (see Fig. 1951).

In  Fig. 19, an implementation example is sketched, where the  cell-tuples are realised as
nodes  of  a  graph  (depicted  as  rectangles)  and  are  connected  by  bidirectional  pointers
(arrows) that pre-calculate and make the switch operations persistent.

2.3.2 Generalized Maps and Involutions

LIENHARDT (1989) proposed the more abstract model of Generalized Maps52. A G-Map ( G )
of dimension  N  is defined as a pair that consists of a set of  darts ( D ) and of a set of

operations that are defined on the darts, called involutions ( i ):

N- G D ,0 ,... ,N−1 ,N .

The  involutions  have  to  satisfy  LIENHARDT's  axioms  αi(αi(d ))=d  and

∀0≤i<i+2≤ j≤N ,αi ∘α j  (B. Lévy and Mallet 1999, 4).

A dart  is  an  abstract  construct  and  the  involutions  are  defined  as  abstract  transitions
between  darts,  not  specifying  the  actual  realisation  of  a  transition  (for  a  visual
representation of an example 2-G-Map, see Fig. 20).

51 In the fig. the order of the sequence of cells is inverse, compared to the definition of Brisson.

52 Abbreviated as G-Maps or GMaps

Fig. 19: Graph representation of an oriented 3-G-Map
Source: (Thomsen et al. 2008)
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The dimension of a G-Map (N) equals the number of involutions in the involutions set. For

example, a 2-G-Map (2- G ) consists of the involutions α0 ,α1 ,α2 .

Cell-tuples  are  a  possible  realisation  of  darts  and  switch  operations  are  a  possible
realisation of involutions. In such a case, the cell-tuple structure is a realisation of G-Map.
Another viable realisation of G-Map could be to model the darts as shallow objects and the
involutions as direct references between the darts (this can also be interpreted as  graph
representation of G-Maps).

Particular attention should be paid to the darts at the boundaries of the example 2-G-Map
that is depicted in Fig. 20. Since the 2-G-Map “ends” at the boundary, a special handling of

the  2 -involutions is needed: also exemplary depicted in  Fig. 20, the  2 -involution of

any dart d b  at the boundary is defined as d b=2d b  (i.e. the dart is self-referencing for

2 ). Outer darts, lying in the 2D universe (face universe) or outer void, are not defined in

this case, but they can be added easily.

The realisation of G-Maps by LÉVY and MALLET (1999) is capable of modelling all kinds of
manifold geometric set-ups in 2D and 3D. Though, G-Maps are generally not capable of
modelling  non-manifold  situations  as  visualized  in  Fig.  21,  they  still  are  capable  of
modelling some non-manifold objects that are the so-called Cellular Quasi-Manifolds53 cf.
(B. Lévy and Mallet 1999, 2)).

53 This class of objects is discussed in more detail in Ch. 3.1.5.

Fig. 20: 0-2-involutions of a 2-G-Map
Source: (B. Lévy and Mallet 1999, 4)

Fig. 21: Examples of non-manifolds
     Source: (B. Lévy and Mallet 1999, 2)
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Manifolds are a class of geometric objects that are locally homeomorphic to a disc in 2D or
a ball in 3D.54

2.3.3 Involution Sequences Forming Orbits

A series of single involution steps can be combined to  orbits.55 An orbit is defined as a

subset of darts and is denoted as 〈i1
,i2

,... ,ik
〉 d s  (B. Lévy and Mallet 1999, 4), where

the part in angle brackets ( 〈 ...〉 ) is a list of involutions (involution sequence of the orbit).
Only these involutions are allowed to be traversed. The involutions in the list can generally
be traversed in an arbitrary sequence, but they have to obey the preconditions stated in

Ch. 2.3. However, at least the orbits  〈i ,i1〉 d s  can also be traversed in an ordered

sequence  (B.  Lévy  and  Mallet  1999,  5).  An  example  of  such  an  ordered  orbit  is
〈0 ,1〉 d s  that can be used e.g. to return all vertices of a face in an ordered sequence.

With  an  orbit,  it  is  possible  to  traverse  all  darts  that  belong  to  an  i-cell  of  arbitrary
dimension.  This  is  done  by  defining  an  orbit  that  consists  of  all  involutions  but  the

involution of dimension i. Such an orbit is denoted as ⟨αi⟩(ds)
56 or as i-orbit (an orbit of

dimension i), see also (Butwilowski 2007, 66 et seq.), where i determines the dimension of
the cell that is traversed by the orbit. This is the cell that is completely described by the

orbit. For example: a 0-orbit always performs a repeating sequence of 1− 2 -involutions

until it reaches the start dart, thus collecting all darts of a 0-cell (node).

LÉVY and  MALLET present an algorithm to traverse darts of cells of any dimension in  (B.
Lévy and Mallet 1999, 5):

1.  traverse(start: Dart, i1
,i 2

, ... ,ik
 : int)

2.    S : Stack;
3.    mark(start);
4.    push(S, start);
5.    while not empty(S)
6.      Dart d = pop(S);
7.      DO_IT(d);
8.      for j = 1 to k
9.        if not marked( i j

d  )
10.         mark( i j

d  )
11.         push(S, i j

d  )
12.       end if
13.     end for

54 For a comprehensive definition, see (Remmert 1964).

55 Orbits are discussed in greater detail in (Butwilowski 2007, 35 et seq.)

56 e.g. the orbit 〈0,1,2〉d s  on a 3-G-Map traverses all cell-tuples of a 3-cell (solid) since the only 

missing involution in the orbit is 3 , thus 〈3〉d s
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14.   end while
15. end traverse

Listing 2: Dimension independent orbit traversal algorithm (pseudo code); source: (B. Lévy and Mallet 
1999, 3)

Fig.  22 more  clearly  shows  the  execution  sequence  of  the  introduced  orbit  traversal
algorithm in a flow chart diagram.

To start the process, the method user passes two parameters to the orbit traversal method:

• a start dart (dstart) and

• a list of involutions i1
,i 2

, ... ,ik
 of size k to be applied to form the orbit.

dstart is the dart with which the orbit shall start and end. First,  dstart is marked as “visited”
and pushed onto a stack of darts (S) that yet have to be processed. If S is empty, then the
algorithm terminates. S is not empty in first step, since dstart is already in S. As long as S is
not empty, the top dart  d is popped from  S and processed by the API user. The type of
processing depends on the case of the user and can e.g. simply be a push of d onto the end
of a  resulting orbit list. This arbitrary, case dependent processing is paraphrased by the
DO_IT function call in line 7.

Then j (which is the index number of the involutions list) is set to 1. Then, in a for-loop,

all involutions of the involutions list are applied on d. Every d '  ( d '=i j
d  ) is checked

whether it is already  marked (has already been visited).  If it  has not been visited, it  is
pushed onto S and marked. Then the next dart d is popped from S. Since, in this way, it can
be guaranteed  that  any dart  of  an  N-G-Map is  visited  at  least  once,  this  algorithm is
dimension independent.

Fig. 22: Flow chart diagram of dimension independent orbit traversal algorithm
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G-Maps offer a way of flexible navigation on cells. The type of manageable cells is not
restricted to simplices but they may be all kinds of connected cell subdivisions, thus this
model has a higher expressive power. For example, the G-Map representation may also be
seen as a generalisation of B-Rep  (B. Lévy and Mallet  1999, 2),  and therefore is  also
capable of modelling B-Rep. The model facilitates  simple,  short  algorithms,  since it  is
dimension neutral (though in their presentation of the model in 1999,  LÉVY and  MALLET

give visual  examples  and some details  only on 2-G-Map).  Due to their  flexibility  and
modelling  power,  G-Maps  are  used  as  a  topological  toolbox  by  the  widely-used
geomodelling software GOCAD, as indicated in (Royer 2004, 4).

2.4 Managing Geomodels with Multiple Levels of Detail

While  Ch. 1.4 introduces  the  basic  ideas  of  generalization/abstraction  of  geodata,  this
chapter will detail the concepts and present specific common methods of geometric and
topological generalization that have been developed in previous research efforts.

2.4.1 Hierarchy Relationships as Links Between LoD

In their description of ATKIS (a four LoD DLM, cf. Ch. 1.4), ANDERS and BOBRICH outline
three  ways to  generate  the  links  between objects  of  different  levels.  First,  by  manual
linking where  an  operator  manually  and  interactively  sets  the  links  between  multiple
representations of the same geo-object on different scales. No automation algorithms are
involved in this process.

Second,  linking by matching which is a semi-automated process that identifies geometry
objects  on  different  scales  that  possibly  represent  the  same  geo-object.  The  matching
algorithms analyse different aspects of a  geo-object which are the  geo-object's geometry,
topology  and  semantics.  More  elaborate  algorithms  incorporate  all  three  aspects  in
integrated  relational  matching procedures.  Still,  every  LoD comprises  its  own separate
dataset  that  is  maintained  independently  of  the  other  LoD.  The  process  of  manually
maintaining every LoD separately is error prone and cost intensive.

Therefore,  a  third approach is  to automate  or at  least  to  semi-automate  the process  of
generalization in an MRDB by predictable/deterministic and thus repeatable algorithms.57

By this approach, only the dataset with the highest LoD is explicitly modelled by the user.58

All other LoD are automatically derived from the highest LoD/largest scale (this becomes
the  base  dataset).  The  links  between  the  geo-objects  of  different  LoD are  generated
automatically during generation and later with every editing process on the base dataset.

57 In fact, Fig. 8 shows the results of a semi-automated generalization process for the abstraction of 
polygon features.

58 Though, in different contexts, e.g. in building planning, a top-down approach is more suitable for the 
workflow, since architects design simple building models first and then add more detail to their models 
step by step.
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This is only possible if the generalization rules are sophisticated enough so that it is always
known which geo-objects of a larger map scale have to be condensed to which geo-objects
of a lower map scale.

Subsequent research on  MRDB dealt with topics such as the optimization of updates on
already existing data sets of multiple scales  (Haunert and Sester 2005), which was also
termed incremental generalization. The (semi-)automated generation of small-scale maps
from larger scales is computationally intensive. The aim of the research of  HAUNERT and
SESTER was to identify methods that allowed for local modifications in the base dataset
without the necessity to fully recalculate all map areas of all smaller scales.

2.4.2 Progressive Abstraction/Reduction of Geometry

As indicated in the introductory chapter, the topic of geodata generalization is not limited
to  “traditional”  2D  map  data  but  encompasses  other  geoinformatics  disciplines  and
geospatial data models, such as 2.5D meshed surfaces, 3D vector data, or georaster data
(Sester et al. 2008). For example, the technique of progressive mesh representation (PM)
which has been introduced in (Hoppe 1996), is regarded as an abstraction technique (see
Fig. 23).

Fig. 23 shows an application of a PM algorithm on a geometric object that is described by
a triangulated mesh surface. The left figure shows the object in full detail, while the right
figure shows the same object with a mesh of reduced detail.

PM provides the means to represent  a spatial  object  that  is  modelled  as a triangulated
surface in different degrees of detail, from the least detailed mesh that still preserves some

of the main geometric characteristics of a geo-object ( M 0 ) to the most detailed geo-object

( M n ). This is achieved in two steps: first,  M n  is taken as a basis on which elementary

operations are applied to reduce the detail of the  geo-object step-by-step by reducing the
amount of triangles (to “thin out” the geo-objects) and therefore to lower the descriptive
details  of  the  geo-objects.  The  operation  that  is  used  to  reduce  the  detail  is  the  edge
collapse transformation that merges two vertices and two triangles and deletes the edge

Fig. 23: Application of the progressive mesh algorithm (left: a
geometric object in full detail; right: the same object with 
reduced detail)
Source: (Hoppe 1996, 108)
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between the two vertices. The edge collapse operations are conducted in such a way that
the main geometric characteristics of the geo-object are preserved. This is made possible
through the inclusion of attribute  information of the  geo-object  into the  PM algorithm.
Attribute information could comprise for example breaklines.

At  the  end  of  the  PM  reduction,  M 0  remains.  Only  M 0  and  all  detail  reduction

operations are recorded. Intermediate complete versions of the mesh are not stored. This
saves a great amount of storage  space, since only the differences (deltas) between each
detail representation but not the bulky detail representations themselves are stored. Finally,

all intermediate versions of the mesh and the most detailed geo-object ( M 1 , M 2 , ... , M n )

can be restored by applying the inverse operation of each recorded edge collapse operation

step-by-step on  M 0 . The inverse operation of the edge collapse operation is the  vertex

split operation. The vertex split operation splits one vertex into two vertices and connects
them by a new edge (which necessarily leads to the creation of two new triangles).

One of the great advantages of PM is that any reduced geometric model always remains to
be  a  triangulation,  which  is  important  for  3D graphics  processing,  since  3D graphics
hardware is optimized on efficiently handling triangle meshes. A PM algorithm has been
implemented in DB4GeO by KUPER (2010). This implementation focused on reducing the
complexity of geometric models for computational purposes. A geo-object that is reduced
in detail  can more easily  (faster)  be processed,  uses  less  memory and thus  needs  less
bandwidth when it is transmitted through a computer network.

2.4.3 Generalized Topological Approach on Multiple Representation

While the  MRDB approach presented in Ch. 1.4 only aimed at managing links between
geometries of one type on different LoD (e.g. only between polygons), BRUEGGER and KUHN

(1991) integrated the cell  concept  and cell  connectivity  (i.e.  topological  representation)
into  their  considerations.  One  of  the  early  attempts  to  structure  the  subject  matter  of
hierarchical management of topological representations – so called  multiple topological
representations (MTR) – was developed by them. BRUEGGER and KUHN argue that MTR are
inevitable for multiple LoD of geodata to avoid severe performance problems in processing
topological  queries.  They  elaborate  a  GIS application  example  that  demonstrates  that
unnecessary topological information is an obstacle to efficient algorithms for certain spatial
queries  that  refer  to  particular  (lower)  LoD.  Fig.  24 shows,  for  an  example  of  a  2-
dimensional  cell  decomposition,  how  detailed  topological  information  can  lead  to
information overload at lower map scales.
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Fig. 24 depicts demarcation of land area on multiple map scales. The map scale lowers
from left to right. The thick lines in the leftmost depiction show the boundaries of property
parcels of a city, the rightmost depiction shows a whole state. In this example, the parcels
are  internally  modelled  as  TIN  (indicated  by  thin  lines  in  left  figure).  A  single
representation model would preserve all topological information throughout all map scales,
leading to an extensive topological information overload at the lowest map scale. In such a
case,  a topological  query such as “which states are neighbour states to a given state?”
would involve an iteration over all outer boundary line segments of the outer property
parcels, making this a computationally expensive query.

Assuming the usage of MTR in such applications, topological queries can be performed in
constant time. BRUEGGER and KUHN elaborate a general concept on MTR, without restricting
their  approach  to  a  specific  cellular  model.  Their  considerations  apply  to  any cellular
model  of  arbitrary  dimension  (whether  Simplicial  Complex or  others).  They introduce
largest  homogeneous  cells (LHC)  which  are  an  abstraction  of  specific,  implementable
topological cell types.59, and that are used as the basis of  MTR. Cells that represent the
same point set on different LoD are linked in both directions. In an MTR, a set of cells of
one level is connected to a set of cells of another level. The inherent dimension of the cells
does not matter: e.g., a 2-dimensional cell may be represented as a 1-dimensional cell at
another  LoD. All correspondence relations between all topological cells of all contained
dimensions  are  modelled.  Fig.  25 shows a  diagram representation  of  an  MTR with 2-
dimensional LHC and all bidirectional links.

59 In Fig. 24, for example, LHC are realized as Simplicial Complex cells.

Fig. 24: Increasing number of topological cells at lower map scales
Source: (Bruegger and Kuhn 1991, 8)
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The diagram presents a stylized profile view of the above introduced application example
of land area demarcation on multiple map scales, with districts  demarcation on lowest,
towns  demarcation  on  middle  and  parcels  demarcation  on  highest  map  scale.  All
topological elements on different  LoD that represent the same point set are linked. In the
example, not only the demarcation surface elements of different LoD are linked but also all
boundary edges that represent the same boundary at different LoD, and also all nodes. The
diagram shows all links between surface elements and between node elements.60

Many links of a multi representation are not modelled explicitly but are given implicitly
through the transitivity rule. Even if two levels of detail of a multi representation are not
directly connected/adjoining, then nonetheless their geometries are linked indirectly. The
transitivity rule states that if a subgeometry on a higher LoD is part of a parent geometry
on a lower LoD, then all geometries that are part of the subgeometry on even higher LoD
are also part of the parent geometry of the lower LoD. All indirect hierarchy relations can
be derived by following all direct links from a lower  LoD geometry to its higher  LoD
representations through all intervening hierarchy levels.

BRUEGGER and KUHN identify two types of relations between cells of different LoD, which
are  1:m- and m:n-relations.  m:n-relations allow for multiple linking in both directions of
two adjoining LoD. This implies on the one side that a cell at lower LoD is represented by
one or  more  cells  at  higher  LoD. On the  other  side,  a  cell  at  higher  LoD may partly
represent not only one but also two or more cells of a lower LoD.61 Such a constellation is
not possible with  1:m-relations, since these allow multiple linking only in one direction
from lower to higher LoD. This implies that a cell at lower LoD is represented by one or
more cells at higher LoD but that a cell at higher LoD always partly represents only exactly
one cell of a lower  LoD. If all links in an  MTR are modelled as  1:m-relations, then any
higher  LoD is said to be a  refinement of all lower  LoD. Only from refinement relations
follows a clear hierarchy of abstraction. The diagram in Fig. 25 shows an example of an

60 Edges are also linked but they are not depicted only due to diagram type.

61 An example of an m:n-relation would be the hierarchical linking between countries and UTM zones. A 
UTM zone may include any number of countries. In the opposite direction, a country belongs to 
multiple UTM zones if the country is crossed by grid lines of the UTM system.

Fig. 25: Links between cells of multiple LoD
Source: (Bruegger and Kuhn 1991, 14)
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1:m-relational  MTR. Finally,  BRUEGGER and  KUHN show that only 1:m-relations preserve
connectivity relations (i.e. do not lead to contradictory topological representations) of a
cellular partition on different LoD. Therefore, in the implementation part of the thesis only
refinement relations will further be dealt with.

2.4.4 Application of Multiple Topological Representation in Subsurface Modelling

Multiple topological representations can be applied in a variety of application cases, not
only  in  demarcation  of  land  area  on  multiple  map  scales  but  also  e.g.  in  geological
modelling. Fig. 26 shows an example of an MTR in geological modelling.

The figure shows a geometric model that represents a subsurface fault. The level of detail
decreases in the figure from left to right. The left depiction shows a representation of the
fault  at  highest  level  of  detail  as  a  TIN.  It  represents  the  direct  interpretation  of  the
collected raw data. Such grade of detail may comprise a large amount of data which might
be unnecessary/overwhelming in some application cases.

One of the lowest possible  LoD that  still  preserves the overall  geometry is  simply the
boundary of the fault (see right depiction of Fig. 26). This “big cell” on lowest LoD is a
simplified representation of the whole fault.  Even such simple representation is already
useful in some application cases, for example if only the general position and extend of a
fault is of interest.

In between these both outer stages, any number of intermediate abstraction instances are
feasible. For example, in the figure, one intermediate step of abstraction is presented in the
central  depiction.  In  the  intermediate  step,  the  whole  fault  object  (at  lowest  LoD)  is
subdivided into two parts by a line segment that “cuts through” the surface and splits it into
two new connected surfaces.  In geological  application,  this  is  a useful subdivision,  for
example to indicate that a fault extends into two geological horizons on both sides. The
cutting line segment indicates where the borderline between the geological horizons passes
on the fault.

Fig. 26: A subsurface fault, depicted in three levels of detail
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2.4.5 Using G-Maps for Multiple Topological Representations

An example of a concrete multiple topological representation specialized on the creation of
architectural models on the basis of G-Maps has been presented by FRADIN, MENEVEAUX, and
LIENHARDT in  2005.  The definitions  of  G-Maps/cell-tuple  structure  presented  in  Ch. 2.3
facilitate only the modelling of geo-objects of one certain  LoD. The definitions do not
make any statements on how to model multiple LoD. However, (Fradin, Meneveaux, and
Lienhardt 2005) extended the concept of G-Maps by the concept of H-G-Maps62 to add the
possibility  of  managing multiple  LoD.  Their  approach is  based on copies  of  G-Maps,
where every LoD is represented by a complete G-Map. Thus, an H-G-Map is defined as a
sequence of G-Maps:

Gi D
i ,0

i , ... ,N−1
i ,N

i
i=0,m ,

where  i  is a certain hierarchy level of an H-G-Map and  m  is the number of available
levels. Fig. 27 illustrates the process of creating a new LoD of a geometric object from an
existing LoD with H-G-Maps during an editing session.

The operator starts with a simple geometric object that consists of two rectangles (see top
left depiction in Fig. 27). This object is considered to be the object with the lowest detail.

The topology of the lowest detail object is internally modelled by a G-Map ( G0 ). The

operator wants to edit one of the rectangles in order to add a detail. To add a detail means
to establish  a  new hierarchy level.  Thus,  in  advance  to  the actual  editing  process,  the
operator creates a copy of the rectangle, and the copy is labelled to be an object of a higher

LoD. All darts of G0  that model the polygon's topology are also copied. The copied darts

produce the G-Map of a new hierarchy level ( G1 ). Consequently, the system consists of

two topological LoD ( G0  and G1 ).

62 Hierarchical G-Maps

Fig. 27: Editing of an H-G-Map (visualized on two hierarchy 
levels)
Source: Fradin et al. 2005
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A navigation between different LoD is made possible by explicit links. First, FRADIN et al.

use a general, bidirectional link on whole G-Maps between Gi  and Gi+1 . Second, a finer

graded connection between the two G-Map levels is established as a bijection (symbolised

by an η) between the newly created darts of Gi+1  and their representatives on Gi . This is

visualized  in  the  lower  depiction  of  Fig.  27 where  the  light  grey  arrows  symbolize

bidirectional  links  between  each  dart  that  exists  in  G0  and  its  copy  in  G1 .  The

bidirectional links allow to navigate between darts of different LoD. This leads to a flexible
navigation  on  the  hierarchy  since  it  enables  instant  movement  between  all  hierarchy
representatives of any cell-type. For example if it is necessary to retrieve a certain edge at a
higher detail, the system only needs to access an arbitrary dart of the edge and follow η one
step up which will  return the higher level representative of the given dart.  Finally,  the
higher detail edge is accessed through the returned higher level dart.

After  the  whole  copy  has  been  created  and  the  bijection  completely  established,  the
operator can start editing the object at higher LoD to add detail. In the example of Fig. 27,
the operator first adds a node to an edge (which splits the edge into two) and then adds an
edge between two nodes (which splits a face into two faces). In this process, new darts

emerge in G1  that all have no representatives in G0  and thus, there are no additional links

set between darts of both levels (see  Fig. 27). Accordingly, there is no link between the
newly added node and its less detailed representative.  This is correct behaviour by the
system,  since  this  node  is  only  available  at  higher  detail  and  has  no  lower  detail
representative.

In  (Fradin,  Meneveaux,  and  Lienhardt  2005),  H-G-Maps  are  used  exclusively  for
architectural modelling. FRADIN et al. present application examples, where H-G-Maps make
it  possible  to  manage,  render  and  visualize  comparably  large  and  detailed  models  on
standard desktop hardware. They show examples of large 3D building models with several
stories, indoor  spaces and detailed interior decoration. In their concept, the least detailed

model of a building ( G0 ) is a volume that represents only the exterior walls. At the next

higher LoD ( G1 ), the building model is detailed by indoor walls that define indoor spaces.

At highest  LoD, the indoor  spaces are increasingly detailed by elaborated models of the
furnishing. Since H-G-Maps are used internally, the different  LoD representations of the
same volumetric object are connected by bidirectional links.

For example, an indoor room ( G1 ) is connected by bidirectional links to the exterior shell

model of the building ( G0 ) to which it belongs. The number of steps an algorithm needs to

navigate from higher LoD to lower LoD differ, depending on the spatial position of the dart
that is used for hierarchy navigation. If the dart is positioned at a cell that is shared by both
LoD (e.g. a face that represents an exterior wall), then only one step suffices. If the dart is
positioned at a cell that only exists at the higher LoD (e.g. a face that represents an interior
wall), then an algorithm first has to perform an orbit in order to find a dart that is shared by
both  LoD. Depending on the topological situation, the orbit that is needed to find a dart
that  links  between  LoDs,  can  be  a  1-,  2-,  or  even  a  3-orbit.  There  are  even  spatial
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configurations, where no hierarchy link can be set. For example if a room of a building lies
completely inside the building and does not share any wall with the shell of the building,
then H-G-Maps do not establish a hierarchy link between the room and the building at all.
This makes finding hierarchy relation still difficult in some special cases.

Following  FRADIN et  al.,  THOMSEN and  BREUNIG proposed  to  use  H-G-Maps  for  other
application  domains  than  architecture  also.  (Thomsen  and  Breunig  2007) specifically
elaborated  an  example  in  which  hierarchical  2-G-Maps  (see  Fig.  28)  are  used  for  the
generalization of 2-dimensional land use maps.

The application  example  builds  on  the  use  case  of  HAUNERT and  SESTER that  has  been
presented in Ch. 2.4.1. The depicted cells in Fig. 28 can be interpreted as land use areas at
two  hierarchy  levels  that  are  managed  in  an  MRDB.  For  example,  the  area  on  the
generalized level B could be general agricultural land. On level A, this area is subdivided
into  different  kinds  of  agricultural  land  like  wheat  fields,  corn  fields  and  so  on.  The
affiliated cells of the different levels are interconnected by bidirectional links between the
cell-tuples that are appended to the cells.

The last  section  of  the chapter  presented  an approach that  uses  G-Maps to  model  the
hierarchy of the topological representation of geodata. The description of the concept and
application  examples  showed  the  versatility  of  the  introduced  H-G-Maps  approach.  In
Ch. 3.5, the presented H-G-Maps approach is used as a basis and expanded. First, it  is
necessary to adjust the model to the needs of the underlying DB4GeO architecture and the
G-Maps kernel model for  DB4GeO that is developed in Ch. 3.1. The adapted H-G-Maps
for the DB4GeO approach will also deal with some disadvantages of the H-G-Maps that
has been presented in this chapter. The disadvantages are discussed in Ch. 3.5 in detail.

Fig. 28: Generalisation by aggregation in a hierarchical 2-G-Map.
Source: (Thomsen and Breunig 2007, 248)
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2.5 Modelling the Temporality of Geoscientific Data

While Ch. 1.5 presented a general introduction to the topic of spatio-temporal models and
clarified the meaning of essential terms of the subject area of temporal geodata, this section
will  introduce  a  number  of  specific  spatio-temporal  models  that  mostly  focus  on  the
management of large kinematic geo-models, and discuss their advantages and drawbacks.
The interaction of topology, geometry and net meshing is of particular importance in this
examination.

2.5.1 Concepts of Continuous and Discrete Temporality

While time is changing continuously, information on time can only be computed discrete.63

In application, during data input, usually not every (minimal) change of a  geo-object is
stored, due to limited amount of storage space and limited amount of measured time steps
(in the original  data).  But when it  comes to  data  retrieval,  it  is  valuable  to  access the
geometry  of  a  geo-object  in  a  high  temporal  resolution.  Thus,  interpolation or
approximation techniques have to be employed to gain synthetic time step data in-between
the explicitly modelled time step data. This idea is conceptually illustrated in Fig. 29.

In  Fig. 29, curve  a) represents the actual geometric alteration/movement of a real world
object (the process to be represented). Computed models of the real object are stored at t0,
t1 and t2 in a database.

Curve C) indicates a linear interpolation between the explicitly stored temporal instances
of the geo-object. This means that a linear interpolated instance of the geo-object can be
obtained at any  time instant from such a system, but the instance will probably have an

63 Since a computer is a finite-state machine, the maximum number of internally representable time steps 
(temporal resolution) is always limited. Thus, there must always be a “time leap” between time steps 
(discrete time computation).

Fig. 29: Continuous vs. discrete modification of 
geometry in time.
Source: Drawing by Andreas Thomsen, KIT
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offset compared to the real object (like at  time step  t). Other interpolation methods than
linear interpolation can be implemented as Geo-DB methods.64

In  contrast,  curve  b) represents  a  stepwise  approximation,  where  the  geometry  is  not
interpolated but changed “abruptly” only at fixed time instants. Before the abrupt change,
the object simply constantly adopts the geometry of its temporal predecessor.

DB4GeO, for example, uses  linear interpolation between 4D vertices to create synthetic
geometric representations of a geo-object in its spatio-temporal modules (see Ch. 2.5.3 and
Ch. 2.5.4).  However,  though  interpolation  with  a  high  temporal  resolution  between
temporal instances of a  geo-object is possible, the topology of a  geo-object can only be
changed in a discrete manner of clearly distinguishable states. Thus, in order to combine
geometric and topological data in a temporal system, the underlying temporal models for
geometric interpolation and topological representation have to be integrated.

2.5.2 TimeStep, an Adaptive Time-Dependent Discretization

Relevant work on the issue of integrating geometric and topological change in a temporal
model has been done by POLTHIER and RUMPF. In (Polthier and Rumpf 1995) they propose
the notion of TimeStep, an adaptive time-dependent discretization (see Fig. 30).

The class TimeStep models the state of a geometry of a certain geo-object at a particular
time step (time instant). The geometry of an object cannot change “inside” a time step – it
is “frozen” in this state. But the topological configuration of an object (its  discretization)
may change (adapt) inside a  time step, between the  pre-object and the  post-object of the
same time step. This is indicated in the example set-up of Fig. 30, where every TimeStep

object t0, t1, t2 references a preObject and a postObject that represent the same geo-

object  at  a  certain  time step with  a  similar65 geometry  but  with a  potentially  different
topological description.

64 For example: morphing

65 “Similar” in the sense that the overall geometric characteristics of the object are similar but the 
underlying geometry pattern that describes the object may vary.

Fig. 30: The Class TimeStep
Source: (Polthier and Rumpf 1995)
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An alteration of the geometry of an object is possible in the time interval in-between two
time steps. The transition between two geometrically altered states of an object proceeds
between  the  postObject of  the  preceding  time  step  and  the  preObject of  the

succeeding  time  step.  POLTHIER/RUMPF use  linear  interpolation to  generate  intermediate
geometric  instances  between  a  postObject and  the  subsequent  preObject.  In  this
phase, the topological structure of the object must remain unaltered.

In applications that process temporal geo-data, the geo-objects are exposed to alterations of
their geometries. If the geometric changes are extensive, it becomes necessary to change
the discretization of the geo-object in order to better reflect the transformed geometry (for
example to add or reduce mesh detail in certain parts of the object). With the introduction
of  TimeStep class,  POLTHIER/RUMPF made it possible to model geometric change and to
model changes of the object's discretization at fixed time steps in one system. This greatly
improved the usability and applicability of the model in many application domains.

2.5.3 Temporal Point Tube Model of DB4GeO

The concept of  time steps is also used by  ROLFS and  THOMSEN in the design of the  STO
model of  DB4GeO66 (Rolfs  2005) which  became  the  first  model  for  spatio-temporal
objects (STO) of DB4GeO. The major element of this STO model of DB4GeO is the class

of SpaceTimeElement (ste). An ste is an ordered pair of simplices (start s1  and end s2

simplex). The two simplices are extended with information on the  time instant in which
they exist  (“are alive”)  and with rules that describe an interpolation between the  point
tubes of the two simplices. An ste describes the state of a simplex at two time steps (see
lower part of UML class diagram in Fig. 3167, and cf. the UML diagram in (Rolfs 2005, 68)
for a comprehensive overview of the class structure of the space-time module).

66 Designed and implemented during the research project “Development of Component-Software for the 
Internet-Based Access to Geo-Database Services”.

67 Singular simplices are of type “simple geo-object” (SimpleGeoObj) in DB4GeO/DB3D.
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A series  of  ste is  combined  to  a  SpaceTimeSequence (seq)  in  such  a  way  that

s2 seqi=s1 seqi1
68, i.e. the end simplex of a preceding ste equals the start simplex of

the succeeding  ste. However, a  seq can describe the geometric evolution of a simplex at
any number of user-added time steps.

A  set  of  spatio-temporally  non-overlapping,  adjacent  seq constitutes  a
SpaceTimeComponent (stcomp). An stcomp does not only describe multiple user added

states of a simplex but multiple states of a whole net component of simplices (see Fig. 32
for a schematic illustration of an stcomp with two seq; cf. illustration in (Rolfs 2005, 55)
for a geometric example of this situation).

68 Where i is the index of the time step

Fig. 31: Simplified UML diagram of the
space-time model of DB4GeO/DB3D

Fig. 32: Spatio-temporal component consisting of 
two spatio-temporal sequences.
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A notable restriction in this model is that the topology of the mesh of stcomp has to stay
invariant throughout all time steps – only the geometry may change. Multiple stcomps with
varying mesh topology can be assembled successively in order to create a temporal  geo-
object  that  changes  its  discretization  through  time.  This  is  similar  to  the  concept  of
POLTHIER/RUMPF, in the way that the process inside an  stcomp is analogue to the process
between  two  time  steps  in  the  model  of  POLTHIER/RUMPF.  A  valuable  extension  in
comparison to the concept of POLTHIER/RUMPF is that an stcomp can have not only two but
any number of user-added time steps.

The  space-time module of  DB4GeO is capable of computing  spatio-temporal analytical
information and spatio-temporal intersection queries, such as:

• “what is the average speed of a certain volume?” or

• “do the trajectories of a line segment intersect a certain rectangle?” or

• “is a segment contained in a tetrahedron at any time step?”

It is also capable of computing artificial 3D models at user-defined time steps (snapshots)
and capable of using spatio-temporal access method (STAM).

In the taxonomy of  reasoning tasks of  SHOHAM and  GOYAL (cf.  Ch. 1.5),  the point  tube
model of  DB4GeO is best covered by the category  planning tool, since it needs explicit
geometric objects and a set of rules in order to operate properly. Furthermore, according to
the  taxonomy  introduced  in  Ch. 1.5,  the  system can  be  classified  as  an  accumulative
forward oriented versioning system, since every new object that is added to the database is
stored fully redundant, and the first object that is added to the  database, is taken as the
reference  point  for  newer  versions  of  the  object.  However,  the  model  only  provides
management of  valid  time in a  longitudinal configuration (historical  database), since it
does not additionally record transaction time nor does it support the branching of time.

2.5.4 Temporal Joint Model of DB4GeO

In order to overcome the issue of highly redundant geometry storage of the ROLFS/THOMSEN

point tube model,  KUPER and  THOMSEN drafted in 2010 a new  spatio-temporal model for
DB4GeO. Like the model of ROLFS/THOMSEN, it also falls under the category planning tool
with a forward oriented versioning of objects in valid time in a longitudinal configuration.
The important difference is that the forward oriented versioning is implemented to be non-
accumulative.,  i.e.  only  the  differences  of  newer  versions  of  a  geo-object  are  stored
explicitly; unchanged parts of an object are reused.

KUPER (2010) describes the implementation of the revised 4D model of DB4GeO. The new
4D module merges the concepts of  PointTube,  delta storage and  POLTHIER/RUMPF in one
joint  model  (further  referred  to  as  Temporal  Joint  Model).  Each of  the  three  concepts
addresses  a  different  issue  of  spatio-temporal  modelling.  The  main  objective  for
implementing PointTube model is to simplify data handling for interpolation and analysis
calculation.  Geometric  calculations  that  integrate  multiple  time steps  of  the  same  geo-
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object  are  algorithmically  simpler  if  the  passage  of  a  net  geometry  through  time  is
perceived as separate passages of the net's points through a tube that is stretched in time.
The  delta  storage concept  reduces  the  memory  footprint  in  volatile  and  non-volatile
memory, since it stores only the differences between the individual  time steps of a  geo-
object. Finally, the model of POLTHIER/RUMPF facilitates the possibility to support temporal
changes in the meshing of a Simplicial Complex.

KUPER extended the existing DB4GeO API by the Temporal Joint Model as depicted in the
architecture overview diagram of Fig. 33.

The  general  approach  of  the  Temporal  Joint  Model is  to  define  a  temporal  object
(Object4D)  on the basis  of  two parallel  structures,  the point  tube and the spatial  4D

object.  While  the point  tube  comprises  the  point  geometry  of  the temporal  object,  the
spatial 4D object models its net meshing. The API has to constantly maintain consistency
between both branches.

On  the  most  abstract  architectural  level,  the  Temporal  Joint  Model allows  for  the
instantiation of an Object4D. An Object4D has to be populated with a list of time steps

(Date69 typed timesteps list class attribute of Object4D class). The Date objects define
the  time  steps  at  which  the  temporal  object  provides  explicitly  modelled  geo-object
instances.  Every  temporal  object  additionally  contains  a  list  of  spatial  4D  objects
(SpatialObject4D) that define the  meshing of the net (geometry) of the 4D object.

69 The Date class of Java operates on the basis of Java data type long ( 264  possible values) that stores 
milliseconds. This is sufficient for a description of time for ~ 300 million years into the past and into the
future. This could already be to short for geological applications. However, since this is merely a 
prototype implementation, a Date object is accepted as adequate.

Fig. 33: Architecture overview diagram of Kuper's 4D model for 
DB4GeO
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Each spatial  4D object  has a  start date and an  end date of type  Date and a set  of

temporal  triangle  nets  (TriangleNet4D).70 Each  temporal  triangle  net  owns  a  set  of

temporal triangles (Triangle4D). Each temporal triangle includes three IDs that identify
the three points of the triangle. For each node/point ID of a Simplicial Complex, one point
tube  with  the  same ID  is  defined  directly  at  the  temporal  object  (pointTubes).  The

system has to maintain the consistency of the IDs internally. A point tube itself consists of
a set of points of type Point3D. The points of a point tube represent the same point at
several time steps; a point tube is the “spatio-temporal path” of a point.

This model  allows for memory efficient  management  of temporal  complex geo-objects
such as triangle nets as depicted in Fig. 34.

Fig. 34 shows an application example where a triangle net component moves through time
(in five  time steps). The meshing of the triangle net component stays constant until step
T=3a. Until step T=3a, the triangle net component only changes the coordinates of some
of its points (the point geometry) but not its meshing. In KUPER's 4D library for DB4GeO,
this part is modelled as an  Object4D with one  SpatialObject4D with  start value

T=1 and end value T=3a. Additionally, 14 PointTubes are created and also appended to

Object4D. Every PointTube is populated with three points (one for each time step).

“Inside” step  3,  the overall  geometry of the  geo-object  stays constant but  the meshing
changes between T=3a and  T=3b. Subsequently, the  Object4D has to be extended by a

new  SpatialObject4D with  start value  T=3a and  end value  T=5. If some support

points of the triangle net component are identical between T=3a and T=3b (e.g. by their

70 The current implementation only provides support for temporal triangle nets, not for temporal 
tetrahedral nets.

Fig. 34: Application example of the 4D model of Kuper
Source: (Kuper 2010, 42)



CHAPTER 2  TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA 
MODELLING 51

geometry or by explicit IDs), then their point tubes can be reused for the points of the new
SpatialObject4D.  If  we  assume  in  this  example  that  all  point  identities  can  be

established, then the Object4D has to be extended by only four new PointTubes, since

the post-object has four more points than the pre-object. All  PointTubes are populated
with three more points (one for each additional time step).

The  example  shows  how the  Temporal  Joint  Model makes  it  possible  to  manage  the
geometry of a  Simplicial Complex through  time, even if the meshing of the object's net
representation changes at certain time steps. Hitherto, the Temporal Joint Model has been
implemented by KUPER in DB4GeO for the management of triangle meshes.

2.5.5 Temporal Cell-Tuple Model for Spatio-Temporal-Attribute-Objects

(Polthier and Rumpf 1995) left the question open on how to model the transition between
the  preObject and  postObject of  a  TimeStep.  In  such  a  transition  the  overall
geometry  stays  unchanged  but  the  mesh  configuration  of  the  geometric  net  changes.
Though, KUPER's Temporal Joint Model is capable of managing point identity even after a
reconfiguration of the mesh, the identity of the topological objects (simplices) is lost in
such a case.  This becomes obvious in the diagram of  Fig. 33 that indicates  that  every
SpatialObject4D has its own TriangleNet4Ds with their own new Triangle4Ds.

However, in practice, it is of little value to track identity of the meshing, since it is most
often used as a meta-structure that is  transparent to the user.  But the situation is quite
different  regarding  the  management  of  the  topology  characterized  by  “big  cells”  (cf.
Ch. 2.4.4). Big cells are explicitly modelled by the user and provided with certain distinct
properties71.  The  temporal  change  of  big  cells  is  of  particular  interest  for  analytical
purposes. Thus, it is of interest to provide a model that is capable of managing the spatio-
temporal change of the topology of big cells.

RAZA and  KAINZ (1999) utilize  the  concepts  of  object-oriented  modelling  (OOM)  to
generate  a model  for the management  of  Spatio-Temporal-Attribute  Objects (STAO) in
generic  temporal  GIS (TGIS).  STAO  is  an  aggregation  of  three  objects  of  the  types
SpatioTemporal, Attribute and LinearTime (cf. Fig. 35).

71 For example in the geosciences domain with rock density, rock type, etc.
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Spatio-temporal objects are represented by cell objects of dimension 0,  1 and 2 (cf. with
the classes ZeroTCell,  OneTCell and TwoTCell in  Fig. 35). For the modelling of the
temporal  topological  relationships  of  cell  objects,  RAZA/KAINZ propose a  temporal  cell-
tuple structure (cf. TemporalCellTuple class in Fig. 35). Therefore, they introduce the

notion of temporal cell-tuple. First they develop a concept for the management of time of
cell objects on the basis of type SystemTime72 (ST). Two essential classes of type ST are

PointTime ( ST 0−T ) and IntervalTime ( ST 1−T ) class (cf.  Fig. 35). ST 0−T  is a one-

value point in time (value: [TFrom]), whereas ST 1−T  is a two-value time interval (values:

[TFrom] and [TUntil]). A TemporalCellTuple class is an aggregation of three cell

objects (one for each dimension  0-2) and of an object of type  IntervalTime (cf. field

ST 1−T  of class TemporalCellTuple in Fig. 35). Thus, a temporal cell-tuple is defined

as a  cell-tuple with a  time interval, i.e. a  life span. Every temporal  cell-tuple has a  time
instant when it is born and eventually a time instant when it dies. Furthermore, the model

72 Raza and Kainz use the terms world time (at which an event occurs in reality) and database time (at 
which an event is recorded in the database), which are equivalent to the terms valid time and transaction
time that have been introduced by Snodgrass and Ahn (cf. Ch. 1.5). However, Raza and Kainz 
additionally introduce the notion of system time. System time is similar to database time with the 
difference that it does not model the time of the whole STAO but only of single geometric/topological 
objects.

Fig. 35: Cell tuple based spatio-temporal data model
Source: (Raza and Kainz 1999, 21)
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of RAZA/KAINZ provides for every temporal cell-tuple an optional child link (to the temporal
predecessor cell-tuple) and an optional parent link (to the temporal successor cell-tuple).

RAZA/KAINZ give an application example for their temporal cell-tuple structure (cf. Fig. 36).

The left side of Fig. 36 shows a temporal cell complex. Depicted are the polygons, arcs and
nodes of the cell complex with their respective IDs. The cell complex makes a transition
from T1 to T2. Between T1 and T2, new nodes P7 and P8 and a new arc a4 are inserted
that split the Poly-1 polygon and the a1 arc of T1 into the two polygons Poly-3 and Poly-4
and the three arcs a5, a6 and a7 of T2. The life span of each cell in the cell complex is also
recorded by system.

The right side of Fig. 36 illustrates the cell-tuple structure that describes the temporal cell
complex that is depicted on the left side. Throughout the transition from T1 to T2, the cell-
tuples  of  Poly-2 stay  unchanged  while  the  cell-tuples  of  Poly-1 die  and  are  replaced
([TUntil] of  dead  cell-tuples  is  set).  Also new  cell-tuples  are added to the set  (with

existing [TFrom] value), and all required child and parent links are set.

Though,  RAZA/KAINZ use an object-oriented approach to generate the STAO model, they
use an SQL-database to make the STAO data persistent. Therefore, they finally transform
the object-oriented model into a relational model for the actual processing. In the final
relational model, the cell-tuples are stored as relational tuples, of which the combinatorial
structure corresponds to BRISSON's model of cell-tuple structure (cf. Ch. 2.3).

The model is explicitly designed to manage geodata at a maximum of  2 dimensions of
space. Hence, the concept is focused on polygons that are typical for traditional 2D GIS,
not for geo-objects with a complex underlying network structure. Additionally, the concept
makes  no  statements  on  the  management  of  geometric  change  (interpolation)  and  on
insertion of additional  time steps. The insertion of additional  time steps between existing
time steps is theoretically possible in the model. However, RAZA/KAINZ do not define such
an  operation,  thereby  leaving  open  the  questions  of  how to  ensure  consistency  when
inserting  intermediate  time  steps.  The  concept  of  RAZA/KAINZ also  does  not  support
geometric holes in polygons. These issues are discussed in more detail and solutions are
proposed in the process of designing a hierarchy-enabled  spatio-temporal  GMaps model
for DB4GeO, beginning in the next chapter.

Fig. 36: Model of Temporal Cell Tuple by Raza and Kainz
Source: (Raza and Kainz 1999, 23)
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3 Design and Implementation of

a Topology Module for the 

Modelling of Spatio-Temporal 

Objects

This section presents the design and implementation of a prototype Topology Module for
the  modelling  of  STO  (with  a  G-Maps  based  kernel)  in  a  Spatio-Temporal  Database
Architecture.73 The module works as a plug-in on top of DB4GeO. This way, the classes of
the Topology Module can reuse and extend the functionality of the already existing classes
of  DB4GeO.  It  is  a  recommendable  and  clean  approach  in  order  to  reuse  as  much
functionality as possible of an already application-proven API. This way, it can be avoided
to “reinvent the wheel”, and advantage can be taken of past and future bug fixes of the
DB4GeO API.  Additionally,  the  plug-in/module  approach  allows  for  experimental
development of the G-Maps module without intervening into the already matured and well-
tested source code of DB4GeO.

The  architecture  of  the  entire  system  is  developed  in  compliance  with  principles  of
software engineering such as abstraction, decomposition, encapsulation, or modularity.74 In
a first step, a concept and implementation details for a module for the management of the
topology of 3D geo-objects are elaborated. This is done with an emphasis on the question

73 The implementation of the module is realised in an individual, separated code trunk termed
GMapsDb3dModule. The module is implemented on top of DB4GeO. Its name suffix “Db3dModule” is 
in compliance with the implementation guidelines for DB4GeO plug-ins. Only modules with such 
ending will automatically be identified as plug-ins by the DB4GeO server.

74 Principles as described in the SWEBOK (Abran and Moore 2001)
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of how the  architecture  of  DB4GeO can be extended by such a module.  Second, it  is
evaluated how the 3D topology module can be extended to a system that is capable of
modelling multi-representation and temporal topology of geo-objects.

The most of the presented and implemented source code is deliberately not optimized for
runtime performance but for readability (and thus maintainability).

3.1 Basic Class Model

3.1.1 Overview of DB4GeO Kernel

In order to realise a “conceptual symmetry” between the Topology Module and DB4GeO
(i.e. not to break already established concepts), it is inevitable to have a closer look at the
design  principles  and  the  architecture  of  DB4GeO first.  Following  (Bär  2007),  the
architecture of  DB4GeO, at its most abstract level, is a subdivision into three horizontal
layers, see Fig. 37.

The most basic (lowest) layer that is essential for all other layers is the Database Kernel,
which includes a set of 3D geometric data types (and its methods) as well as topologically
defined nets and a spatial  index on the geometry data.  The kernel  provides only basic
geometric  operations.  More complex operations  that  are  built  as compositions  of basic
operations  are  gathered  in  the  Operational  Layer (I/O  operations  are  also  part  of  the
Operational Layer). Thus, the Operational Layer is based on the Database Kernel. On top,
the  Service  Framework is  based  on  the  Operational  Layer  and  exposes  the  complex
operations  to  a  communication  network  as  a  network  service.  The  following  section
focuses on the Database Kernel layer.

As briefly mentioned in Ch. 2.1, the geo-object model of DB4GeO incorporates the notion
of Simplicial Complex as a model for its geometric kernel. The geometric primitives of the
Simplicial Complex model (for up to three dimensions) are  point,  line segment,  triangle
and  tetrahedron, i.e. the 0-, 1-, 2-, 3-simplices.  These geometric primitives are used as
simple geo-objects in the DB4GeO kernel (see geom column in Fig. 38).

Fig. 37: Layers of software architecture of 
DB4GeO, according to (Bär 2007, 58)
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If a simple geo-object is part of a 3D object then it is a structural part of the 3D object's net
and of one of its net components. As depicted in  Fig. 38, for every primitive type, there
also exists a corresponding net component type (see NetComp column) and a net type (see
Net column).75 If a simple  geo-object  is embedded into a net component,  it  also holds
information on its  direct neighbours. A simple  geo-object enriched with neighbourhood
information is a net element (see Elt column).76

3.1.2 Extended Module Functionality

While this model is suitable for many applications, it  has also some shortcomings.  For
example, it is not possible to distinguish regions on a net component efficiently, i.e. it is
not possible to distinguish (big) cells (e.g. faces/volumes) that are composed of multiple
simple  geo-objects  (triangles/tetrahedra)  but  still  smaller  than  a  whole  net  component.
From  another  point  of  view:  it  is  not  possible  to  define,  which  simple  geo-objects
(thematically) belong together within a net component; every simple geo-object yields its
own separate cell (see Fig. 39, left of the arrow).

75 For example, an object of TriangleNet3D class has a reference to objects of TriangleNet3DComp class 
which in turn have references to objects of Triangle3D class.

76 For example, the net element of a Triangle3D object is a TriangleElt3D object.

Fig. 38. Geometry model of DB4GeO
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The left side of Fig. 39 shows an example of the Simplicial Complex model, where, in a
triangle net component, every simple geo-object is a distinct entity. As outlined in Ch. 1.3,
many applications require a model that allows for managing distinct regions that consist of
multiple simple geo-objects inside one net component, as depicted in the right side of Fig.
39. This applies also for volume models, using tetrahedral net components.

The inability to form regions is a general issue of the underlying model, predetermined by
the navigational deficiencies of the employed Simplicial Complex model, as pointed out in
Ch. 2.2.  To  support  the  creation/distinction  of  regions  that  cover  multiple  triangles  or
tetrahedra, following a naive approach, it would be sufficient to assign to every individual
triangle or tetrahedron of the  Simplicial  Complex an attribute that determines to which
region  the  respective  simplex  belongs.  However,  with  this  approach  it  would  not  be
possible e.g. to navigate along the edge geometries of the regions efficiently (for example
along the boundary surface between two volumes or along the boundary segment between
two surfaces).

Right  to  the  arrow of  Fig.  39,  the  extended  functionality  of  the  G-Maps  module  for
DB4GeO is shown, where a set of simple geo-objects can be combined to a cell. In the
figure this is indicated by the common IDs of some simple geo-objects and by the tones of
grey that related cells have in common.

The  following  list  summarizes  some  basic  design  goals  of  the  G-Maps  module  for
DB4GeO (not  considering  the  requirements  for  the  management  of  hierarchy  and
temporality so far):

• It should be possible to generate the cell-tuple structure directly from the Simplicial
Complexes of the DB4GeO kernel.

• The model requires to support only 2D and 3D geometries. A support of 0D is not
necessary,  since  a  net  object  consisting  solely  of  disjoint/unconnected  point
geometries makes no sense in the considered application domains. Line segment
nets of DB4GeO are also not supported by Topology Module since they are not in
focus of this work.

Fig. 39. Left: simple geo-objects are separate cells; right: three simple geo-
objects are combined to a cell
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• A pivotal  functionality is the generation of a  boundary geometry,  i.e. a  polyline
(consisting of segments and points) in 2D (from a surface) and a polyhedral surface
in 3D (from a volume) at any time.

• Editing of topological objects should be possible to some extent (e.g. inserting and
deleting an edge in a face).

• The editing process (e.g. the insertion of an edge) shall be supported by the system
with traversal algorithms on the object's net representation.77

• It should be possible to attach properties to any given (complex) cell.

• The editing of the underlying geometric objects of the triangular or tetrahedral net
(through  the  shifting  of  point  coordinates)  that  changes  the  topological
configuration of the net needs not to be supported.

• The deletion of geometric objects of the net needs not to be supported.

In addition, it is a design goal to utilize the advantages of  information hiding in the API
layout.  Classes  shall  be  encapsulated  in  packages  wherever  possible  by  setting  class
constructors as package visible and by hiding the complex inner class structure to the API
user. Ideally, the API user accesses only “high-level” classes on a higher model abstraction
level,  but  has  no  contact  with  “low-level”  classes  that  expose  detail  about  the  inner
workings of the API. In particular in G-Maps programming, the inner structure can be
notably  fragile  and  needs  some  experience  and  extensive  knowledge  with  Topology
Module to handle it, so information hiding becomes particularly useful here.

In the chosen approach, the first step in designing the G-Maps module for DB4GeO is to
define (on the most detailed architectural level) the mechanism by which the simple geo-
objects of DB4GeO can be accessed and processed by the G-Maps module.

3.1.3 Spatial Cells as Wrappers for Simple Geo-Objects

The G-Maps module  for  the management  of  topology of  3D geo-objects  relies  on the
notion  of  cells.  As  well  known,  cells  are  a  means  of  describing  a  geo-object  by
decomposing it, using “other kinds of basic elements than just cubes”78 (Mäntylä 1988,
72). By definition, a cell is a “finite regular polytope”  (Weisstein 2014a). In our narrow
perspective, a cell may be any spatial object that is composed of a set of connected simple
geo-objects, e.g. a curved surface or a polyhedron. If the cell of a particular dimension is
indicated,  it  is  denoted as a  d-cell,  where  d is  the dimension. In the next sections,  the
following denominations of cells for dimensions 0-3 are used interchangeably:

• a 0-cell shall be denoted as a node,

77 For example by finding the shortest path for an edge: if an edge is inserted, the shortest path should be 
found over the triangular or tetrahedral net. However, the concept of multi-level representations in the 
Topology Module is introduced in Ch. 3.1.8.

78 Meaning that for a cell any geometric form is possible that does not contain a hole.
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• a 1-cell as an edge,

• a 2-cell as a face,

• and a 3-cell as a solid.

The relations between the classes of simple geo-objects79 and the cell classes80 are depicted
in Fig. 40.

The associations between cells and simple geo-objects are directed from the classes of cells
to the classes of simple geo-objects (unidirectional).  The unidirectional associations are
optional  (see  cardinalities  in  Fig.  40);  the  optionality  theoretically81 allows  for  the
generation of an autonomous topological structure that exists independent of any geometry
considerations.82 Since  the associations  are  unidirectional,  there  can only  be references
from cells to simple geo-objects but no references from simple geo-objects back to cells.83

The  cardinality  from any  cell  object  towards  the  corresponding  simple  geo-objects  is
defined as 0 to unlimited, since a cell object can cover any number of simple geo-objects. A
“big cell” solid can internally be composed of many tetrahedra, a face of many triangles
and  an  edge  of  many  segments.  The  only  exception  is  node,  where  one  node  can

79 Implemented in the db3dcore API

80 Provided by the GMapsDb3dModule

81 “Theoretically”, since the approach is not pursued further in this treatise.

82 The paper (Ellul and Haklay 2006) identifies the need for “geometry free” topology toolkits, as they are 
needed in chemistry for atomic field modelling, or in biology for protein modelling.

83 This is a necessary condition for the decoupling of GMapsDb3dModule from the db3dcore module, 
since this way, the classes of db3dcore are able to exist without “knowing” anything about the Topology 
Module.

Fig. 40: Correlation between classes of simple geo-objects and cell classes
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geometrically only be described by no more than one point. The specific realisation of this
concept in Java code is described in the subsequent section.

As the classes Node, Edge, Face and Solid are cells, they all realise a common interface

Cell (see Fig. 41).

The Cell interface defines the methods that have to be provided by all implementing cell

classes. The diagram shows that any cell  has also to be a  Comparable (Comparable

interface is defined by the Java API, not by the G-Maps API). Since any Cell class is a

Comparable,  Cell objects may be stored in standard Java  Sets or  Maps and retrieved
efficiently by their identifier.84

All methods of the Cell interface that use identical algorithms for all cell types (i.e. for

the classes  Node,  Edge,  Face,  and  Solid) are gathered (and pre-implemented)  in the

AbstractCell abstract class (which is a partial realisation of the Cell interface). Fig. 42

shows  the  methods  that  are  defined  by  the  Cell interface  and  the  methods  that  are

implemented by the  AbstractCell class (to avoid double listing of the methods,  the

methods that are implemented by  AbstractCell are not listed in the class diagram of

Cell interface,  though the  Cell interface  also  requires  the  implementation  of  all  the

methods that are listed in the AbstractCell depiction).

84 More on the concept of the Java API interfaces Set and Map can be found in (Schildt 2011, 459 et seqq.,
482 et seqq.).

Fig. 41: Inheritance of cell classes
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The  AbstractCell class  defines  that  all  cells  need to  have an  ID of  type  int.  The

AbstractCell class provides methods to read and to set/change the cell-ID as well as a

method to compare  two cells  for equality  (equals).  The  equals method first  checks

whether the object type is correct (type Cell). This is necessary since – as a requirement

of  the  Java  language – the  parameter  of  equals method has  to  be  of  type  Object).

Second,  the  IDs  of  the  cells  are  compared.85 A  compareTo method  (which  has  to  be

provided  by  any  cell  as  a  requirement  of  the  Java  Comparable interface)  is  also
implemented. In the implementation, only the cell-IDs are evaluated for comparison. Also,
any AbstractCell can report whether it is on  net level or on another level through its

isOnNetLevel method. The specific concept of net level and of hierarchy levels that is

used in Topology Module is covered in Ch. 3.1.8 and Ch. 3.5.

Furthermore, an AbstractCell provides methods to count the number of neighbour i -

cells, with {i∈ℕ∣0≤i≤3} , by its countNeighbour<cells>86 methods. We state that c

is the cell for which to check the number of neighbouring cells and d  is its dimension. A

countNeighbour<cells> method returns the number of i -cells that are incident to cd ,

except for d≠i . The method returns the number of adjacent i -cells if d=i , instead.

All methods mentioned so far can be implemented uniformly for all cell classes (Node,

Edge etc.) in the AbstractCell class.87 Contrariwise, the methods listed in the diagram

85 Of course, technically, this is not a comparison for equality but for identity; but since it is guaranteed by 
the system that all cell-tuples inside the system are dissimilar, a real check for equality is not meaningful
and thus can be implemented trivially by an identity check.

86 This “wildcard notation” shall summarize all methods that start their name with “countNeighbour”, 
regardless of which cell type completes the method's name (“Node”, “Edge”, “Face”, or “Solid”).

87 Thus simplifying maintaining and bugfixing efforts

Fig. 42: Methods of cell interface and abstract cell
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of Cell interface have to be implemented individually by the Cell interface realisations

(i.e. in Node, Edge etc.).

The  countSimpleGeoObjs method returns the number of simple geo-objects that are

covered by the cell. “Covered” comprises all simple geo-objects that form the geometric
embedding of the boundary and the inside of a big cell. For example, a face cell returns the
number of all triangles that are at the inner side of the boundary and all triangles that are
inside the face. The same applies to all other cell types. In the case of a Node object, the
returned number can only be  0 or  1, in all other cases  0 to  unlimited (cf.  Fig. 40). The
getSimpleGeoObjs method  returns  the  simple  geo-objects  in  an  array  of

SimpleGeoObj class type.

Any Cell-implementing class has also to provide a getBoundary method. This method

has to return an ordered list of cells that form the boundary of the cell cd  that the method

is invoked on. The returned boundary i -cells are always of dimension i=d−1 , except for
d=0  where  always  an  empty  set  is  returned.  The  return  type  of  the  getBoundary

method is AbstractCellIterator (cell iterators are explained in Ch. 3.3.2 in detail).

Moreover,  every  implementation  of  the  Cell interface  has  to  supply

getNeighbour<cells> methods that  return for any cell  a  list  of  neighbouring cells.

Analogue to the behaviour of the  countNeighbour<cells> methods (see above), this

methods  return  incident  cells  if  d≠i  and  adjacent  cells  if  d=i .  As  valid  for  the
getBoundary method,  the  cells  are  returned  in  an  ordered  sequence.  In  fact,  the

getBoundary method  is  internally  implemented  as  an  invocation  of  the  appropriate

getNeighbour<cells> method, depending on the dimension of the respective cell:

• Edge class implements getBoundary as an invocation of getNeighbourNodes

method,

• Face class implements getBoundary as an invocation of getNeighbourEdges
method,

• Solid class implements getBoundary as an invocation of getNeighbourFaces

method.

The getNeighbour<cells> methods return different types of customized cell iterators;
these iterators will also be explained in Ch. 3.3.2.

Finally, the isNeighbourOf method returns a boolean value that indicates whether the

given parameter of type  Cell is a neighbour of the invoking cell object (actually this is

also  implemented  through  an  invocation  of  the  appropriate  getNeighbour<cells>

method and a subsequent check for equality).

3.1.4 Tuples of Spatial Cells

The advanced navigation requirements that are needed by the cell methods introduced in
the  last  chapter  can  be  satisfied  by  the  cell-tuple  structure,  as  considered  in  Ch. 2.3.
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Therefore, it is necessary to establish a path from any cell to a cell-tuple/dart88. In order to
provide a path from cell to cell-tuple, the AbstractCell class has a reference to a cell-
tuple (cf. Fig. 42 and Fig. 43).

The reference is realised as class attribute  anyCellTuple, which represents an arbitrary

cell-tuple of the cell (“of the cell” means that the respective cell-tuple back-references the
cell).  Thus,  any cell  (e.g.  a  node or an edge)  is  able to  provide a  valid  cell-tuple  that
“belongs” to the cell. On the other hand, any  cell-tuple has separate references to all its
cells (cf. Fig. 43 and Fig. 44).

The class attribute anyCellTuple is of type CellTuple. Referring to the definitions of

cell-tuple  structure  and  G-Map  of  BRISSON and  LIENHARDT,  such  as  those  indicated  in
Ch. 2.3, the class diagram of Fig. 44 serves as a basis for the CellTuple class model of
the Topology Module.

An object of CellTuple class is a composition of incident i -cell objects of dimensions

i ,{i∈ℕ∣0≤d≤3} 89. A CellTuple can be interpreted as the instantiation of a path in an

88 For practical reasons, the terms “cell-tuple” and “dart” are identified and used interchangeably in the 
following.

89 i.e. of objects of the classes Node, Edge, Face and Solid

Fig. 43: References between abstract cell, cells and cell-
tuples

Fig. 44: Model of CellTuple class
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incidence  graph  of  a  certain  cellular  representation  (cf.  Ch. 2.2).  A  CellTuple is

explicitly modelled as a composition of cells, thus it is only valid if it provides (not-null)-
references to all its i -cells. This is a pivotal consistency requirement for the model, since
following algorithms will rely on this assumption.

Following  the  definition  of  G-Map  darts (cf.  Ch. 2.3),  a  CellTuple object  is  also  a

composition of all its i -adjacent CellTuple objects. Thus, a CellTuple object is also

not valid if it misses to provide a reference to any of its adjacent CellTuple objects. The

i -adjacent  CellTuple objects  can  be  attained  through  its  adjacency or  involution

associations, which are denoted as  alpha0,  alpha1,  alpha2, and  alpha3 class fields
(cf. top of Fig. 44).

The presented adjacency model of cell-tuples can be interpreted as a graph representation
(cf. Ch. 2.2). However, a design goal is to ensure through the entire modelling process that
a  transformation into a  relational representation is possible at any point in  time without
loss of consistency. In order to be able to create certain cell configurations in the relational
representation, the introduction of a  polarity and additional  consistency checks on the
overall cell-tuple structure are necessary, which is explained in more detail in Ch. 3.1.5 and
(Butwilowski 2007, 71 et seq.). The consistency of both associated structures is respected
at any given point in time, and thus, a model transformation can also be performed at any
given time (a “switch” between the two concepts is possible).

The CellTuple class also includes an identification number (id class attribute)90. The IDs
of cell-tuples are unambiguous throughout a net component. Conversely, cell-tuple IDs are
ambiguous in a viewpoint across multiple net components. This design decision is based
on the specification of  NetComp which are always disjunct by definition. Thus, each net
component can be described by a separate G-Map and each G-Map employs its own ID
management. One 3-dimensional G-Map corresponds to one NetComp and vice versa (3-

G-Map ↔ NetComp).

Furthermore,  the  CellTuple provides  an  isAtFaceBoundary method  that  indicates

whether the cell-tuple ( d a ) is a cell-tuple at the inner side of a 2-cell universe boundary.

d a  is at the inner side of a 2-cell universe boundary if α2(d a)=d U , where d U  is a cell-

tuple  that  belongs  to  a  2-cell  universe.  This  method  is  extensively  used  by  the
OrbitIterator class (see Ch. 3.3.1).

Due to the principles of information hiding, the  CellTuple class is encapsulated in the
package by setting the class constructors and methods only as package visible, so that the
inner cell-tuple structure is hidden to the API user. The API users are only able to access
the various Cell classes but have no contact with the cell-tuples themselves since this is a
fragile structure that needs to be protected by the API.

90 The ids of objects of CellTuple class are always greater than or equal to 0.
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So far the class model of cells and cell-tuples, as it is used by the Topology Module, has
been outlined. The next section will highlight, what specific properties of geometric space
and model restrictions result from the adopted design.

3.1.5 Basic Properties of the Utilized G-Maps Approach

Properties of Utilized G-Maps Approach

The model of CellTuple class in the described configuration leads to notable properties

of the utilized G-Maps approach:

• As the d-cell classes are modelled explicitly, the maximum processable dimension
of a d-cell, provided by the API, is 3 (Solid).

• A valid  CellTuple object  has  always  to  reference  exactly  four  d-cell objects.
Thus,  the  only  utilized  G-Map  type,  notwithstanding  the  dimensions  of  the
managed cells, is always the 3-G-Map (cf. Ch. 2.3).91

◦ In  the  case  that  only  e.g.  2-cells  shall  be  managed  in  a  certain  application
scenario, to keep compatibility,

▪ these 2-cells will “forcefully” be embedded in a 3-G-Map. In this case, the
solid cell that is associated to all of the cell-tuples, is defined as the universe

solid ( S U ).

▪ The cell-tuples are not duplicated to generate mirroring cell-tuples for 3 -

involutions, instead

▪ all  3 -involutions for all darts of the 2-cell are reflective, i.e. 3d =d  (

3d =id ).

▪ Cell-tuples that are lying in the  outer void of 2-cells (face universe:  FU )

are also provided in the case that only 2-cells are modelled. Thus, for stand-

alone 2-cells  2db=db ' 92 is  always  true and  2db=db  is  never  the

case, where d b  is a cell-tuple at the inner side and d b '  a cell-tuple at the

outer side of the boundary of a face.

• If modelling 3-cells, a solid universe is attached to the outer void of the 3-cell. This
means that at the boundary to the outer void, outer cell-tuples are provided, i.e. that

in these cases, 3  is always defined as 3d b=d b ' , where d b  is a cell-tuple at

the inner side and d b '  a cell-tuple at the outer side of the boundary of a solid.

• If a surface is used as a part of a solid, then

• U F  cannot exist (in such cases, there is no face universe),

91 This keeps the overall model comparably simple, since only one type of G-Map has to be managed, thus
less code has to be implemented and less exceptional states have to be considered.

92 With d b  being an inner cell-tuple at the boundary of a 2-cell



66 CHAPTER 3  DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR 
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

• all cell-tuples of a face have to be duplicated to generate mirroring cell-tuples

for 3 -involutions.

• Since universe definitions are used for 2- and 3-dimensional cells, there are two
“flavours” of Face and Solid class: faces and solids that are marked as universe
and such that are not (“normal” cells).

The forceful embedding of 2-cells into a 3-G-Map is essential in order to simplify the class
model and the processing algorithms. As a result, there are several cases where only one
algorithm is needed instead of employing a case distinction for 2-G-Map algorithms and 3-
G-Map algorithms. Some of these cases are presented below, when the algorithms of the
Topology Module are examined in detail.

Cell Property Identifies Universe Cells

To mark faces and solids as cells that represent the universe, the classes Face and Solid

obtain an additional isUniverse class property of boolean type (see Fig. 45).

The information, whether a given cell is a universe or not, can be accessed through the
isUniverse method,  which is  also available  for both classes (the method returns the

value of the isUniverse instance property).

New universe cells can be created only through the  createUniverse methods.93 These
methods are object factories that internally instantiate a new universe cell (i.e. a cell class
with isUniverse class attribute pre-set to true) of the respective dimension and provide

them as the return value.

The Topology Module allows to instantiate multiple universe cells in each dimension – i.e.
multiple universe faces and multiple universe solids. The usefulness of multiple universe
cells is discussed in a section below.

93 For the convenience of the class user, the createUniverse methods are static methods that follow the 
factory method pattern.

Fig. 45: Face and Solid class provide the possibility
to create universe cells
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Non-Manifold Set-Ups

G-Maps generally model manifold geo-objects. As  LÉVY points out in his thesis  (Bruno
Lévy 2000), G-Maps can also be used to model non-manifold situations in some special
cases which are called Cellular Quasi-Manifolds.  LÉVY gives some examples of such set-
ups. For example, he shows that it is possible to “glue” three (or more) faces to a non-
manifold 3D “fan” with G-Maps  (Bruno Lévy 2000, 63 et seqq.). To do so,  LÉVY first
duplicates all  cell-tuples of the faces that already exist in 2D to generate mirroring  cell-

tuples for  3 -involutions and then assembles all faces to one face net. This set-up only

works if the 2-cell universe is not modelled, i.e. if 2db=id . The explicit integration of a

face  universe  (as  realized  in  the  Topology  Module)  prohibits  the  modelling  of  non-
manifold  fan  set-ups.  A problem  is,  for  example,  that  this  would  lead  to  undefined
intersections of the universe faces (see Fig. 46).

The API has to prevent the user from constructing such a topological set-up (more details
on this are given in later sections).

However, as long as the API user intends to utilize the Topology Module not in stand-alone
mode  but  in  combination  with  the  DB4GeO Kernel geometry,  this  issue  cannot  ever
occur.94

Minimal Cell Configurations

The minimal cell configuration that is possible in the presented model95 is

94 The Topology Module constructors that base on the DB4GeO Kernel, will reuse the already existing 
construction algorithms of the DB4GeO Kernel (more on this in Ch. 3.2). Therefore, the constructors are
limited by the constructing capabilities of the kernel algorithms. The model of and the construction 
algorithm for triangle nets in DB4GeO is not designed for non-manifold triangle set-ups and thus does 
not allow to construct such.

95 “Presented model” means particularly: with polarity; always 3-dimensional; mapping between graph 
and relational representation always possible

Fig. 46: Non-manifold face fan in 3D and the intersection of 
universe faces
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• a face with one edge and one node (“racket”, cf.  Fig. 47, left), embedded in FU

and S U , for 2-cells, and

• a  solid  with  two faces,  one edge and one  node (“nutshell”,  cf.  Fig.  47,  right),

embedded in S U , for 3-cells.

It is considered here as the minimal configuration, since a configuration with any cell less
of  any  dimension  would  lead  to  an  inconsistent  set  of  cell-tuples  in  relational
representation, i.e. a set where the  cell-tuples are not  unique by their tuple elements any
more (cf. Ch. 2.3 and (Butwilowski 2007, 71 et seq.)).

In this context,  the polarity is an important feature in this set-up to keep the  cell-tuple
structure  consistent  in  relational  representation.  The  switch  operation  in  relational
representation only works if the cell-tuples of a cell-tuple structure are unique throughout
the  structure.  They  would  not  be  unique  any more  in  the  examples  of  Fig.  47 if  the
polarity property would be omitted. Then there would be multiple equal  cell-tuples in

the set which would break the switch operation. Such situations cannot only occur in this
simple configuration but can also reoccur in particular set-ups of complex geo-objects.96

Since the internal graph representation of the Topology Module should be able to produce
a consistent external relational representation of the cell-tuple structure at any time instant,
the  polarity property  has  always  to  be  maintained  by  the  kernel  of  the  Topology

Module.

Though,  the  Topology  Module can  be  used stand-alone  to  purely  model  the  cell-tuple
structure  without  a  connection  to  a  geometry,  the  common  mode  of  operation  is  in
combination with the Geometry Model of the DB4GeO Kernel. In that case, the Topology
Module has  to  support  the geometry  data  structure of  the  DB4GeO Kernel.  Then,  the
actually minimal cell  configuration is predetermined by triangle type for 2-cells and by
tetrahedron type for 3-cells (see Fig. 48).

96 Examples of such set-ups can be found in (Butwilowski 2007, 71 et seq.)

Fig. 47: 3-G-Map minimal cell configurations: 2-cell (left), 3-cell (right)
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In the minimal cell configuration for 2-cells, the G-Map consists of 12 cell-tuples (see left
depiction of Fig. 48). Six cell-tuples lie inside the triangle. The 2-cell of these cell-tuples is

always  F ,  their  3-cell  is  always  the  solid  universe  S U .  The  other  six  cell-tuples  lie

outside the triangle in the 2D universe. Therefore, the 2-cell of these cell-tuples is always

the face universe FU , their 3-cell is also S U . All inner and outer cell-tuples are connected

through 2 -involutions. All cell-tuples are reflective in their α3 -involution.

The minimal cell configuration for 3-cells results in a G-Map with 48 cell-tuples (see right
depiction of Fig. 48). 24 of these 48 cell-tuples lie inside the tetrahedron and reference cell

S  as their 3-cell. The other 24 cells lie outside the tetrahedron in S U . All inner and outer

cell-tuples are connected through 3 -involutions. There are no α2 -involutions that could

lead to a face universe ( FU ), therefore FU  is not modelled.

3.1.6 Nets of Spatial Cells and Cell Net Builder Architecture

The  Topology  Module provides  a  framework  that  uses  the  above  described  notion  of
CellTuple class to create cellular complexes from existing 3D objects97. The topological
structure of these cellular nets is internally managed in G-Maps. After a cellular net has
been  created  by  the  means  of  the  Topology  Module,  the  module  can  provide  valid
CellTuple objects that describe the topological structure of the cellular net.

97 Defined in db3dcore

Fig. 48: Most simple possible cells in DB4GeO Topology Module: 2-cell (left), 3-cell 
(right)
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Cell Net Builder Architecture Class Model

For the consistent creation of cell nets, the  net builder architecture98 is extended by the
Topology Module as exemplary depicted for the 2D case triangle and face net builder99 in
Fig. 49.

The diagram indicates the procedure for the creation of valid net objects. A builder object
(e.g.  an  object  of  TriangleNetBuilder class,  see  left  side  of  Fig.  49)  is  used  to

construct a consistent net (e.g. a  TriangleNet3D object). The builder design pattern is
used here for consistent ID management, arrangement of geometry elements and spatial
index  construction.  A  builder  object  “consumes”  geometry  objects,  analyses  their
geometric  configuration  in  space,  constructs  the  appropriate  net  components  and
aggregates them in a net.

Through the invocation of the  getTriangleNet method on the net builder object,  an

object of  TriangleNet3D class is returned. The  TriangleNet3D class is then used to

retrieve  a  triangle  net  component  (object  of  TriangleNet3DComp class)  through  the

invocation of the getComponent method on the triangle net.

The  G-Map  topology  module  bases  on  this  architecture  and  extends  the  Simplicial
Complex net builders by cell net builders (in the example case by a face net builder, see
right side of Fig. 49). In analogy to the triangle net builder, a face net builder returns the
face  net  (object  of  FaceNet3d class)  through an  invocation  of  its  getTriangleNet

method and the face net in turn returns a required face net component by the invocation of
its getComponent method.

98 Defined in db3dcore

99 The following examples describe only the situation for triangle nets, but the examples are analogous for 
the case of tetrahedron nets.

Fig. 49: Face net builder architecture as an extension of the triangle net builder architecture of 
DB4GeO
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Cell Net Builder Instantiation Example

As a result of using this architecture, it is possible to instantiate a cell net (and thus a G-
Map) in a way that is strongly analogous to the instantiation process of a complex  geo-
object in db3dcore (see Listing 3 for an example).

1. ScalarOperator sop = new ScalarOperator();
2. FaceNetBuilder build = new FaceNetBuilder(sop);
3. TriangleElt3D tri1 = new TriangleElt3D(

new Point3D(2.0, 1.0, 1.0),
new Point3D(2.0, 3.0, 1.0),
new Point3D(1.0, 2.0, 1.0), sop);

4. TriangleElt3D tri2 = new TriangleElt3D(
new Point3D(2.0, 1.0, 1.0),
new Point3D(2.0, 3.0, 1.0),
new Point3D(3.0, 2.0, 1.0), sop);

5. build.addComponent(new TriangleElt3D[] { tri1, tri2 });
6. FaceNet3d net = build.getTriangleNet();
7. FaceNet3dCompNetLevel comp = net.getComponent(0);
8. Face face1 = comp.getFace(1);
9. Face face2 = comp.getFace(2);

Listing 3: Example of an instantiation of a cell net (and G-Map)

Listing 3 shows an instantiation example, where first, two triangles are created (lines 3 and
4).  The  triangles  are  then  added  to  a  face  net  builder  in  the  addComponent method

(line 5), where the main build process takes place, and where internally, first, a triangle net
is  created  and,  second,  a  face  net  is  deduced  from the  triangle  net.  Actually,  in  this
example, two faces100 are generated from two triangles. Inside the addComponent method,

the G-Map is generated through an evaluation of the structure of the complex geo-object.
As  a  result  of  the  process,  the  API  user  has  access  to  a  face  net  (line 6),  a  face  net
component (line 7) and the actual faces (lines 8 and 9). The internal algorithm inside the
addComponent method that creates the G-Map is discussed in detailed in Ch. 3.2.

Note that the methods  getTriangleNet of  FaceNetBuilder and  getComponent of

FaceNet3d class  override the  respective  methods  of  TriangleNetBuilder and

TriangleNet3D class. This approach has the advantage that a FaceNetBuilder object

can be used exchangeably everywhere in the API where a TriangleNetBuilder object

can be used. Similarly, an object of FaceNet3d can function as a substitution for an object

of TriangleNet3D class wherever sensible and useful.

Actually,  the  returned face  net  component  is  a  face  net  component  at  net  level  (class
FaceNet3dCompNetLevel). The concept for handling levels of detail is introduced later
in Ch. 3.1.8. For the sake of simplicity, for now the net level component can be considered
as a cell net component that exactly reflects the object's meshing in a cell-tuple structure.

100 Two faces at net level (more information on net level in Ch. 3.5)
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Fitting into Main Inheritance Hierarchy

Fig.  50 illustrates  the idea of  how the cell  net  classes fit  into  to the  main inheritance
hierarchy and dependency relations.

Fig. 50 presents a condensed overview of a central part of the class inheritance hierarchy of
the  DB4GeO Kernel.  It  begins with a  Space3D at  the top.  Space3D is  mounted  to  a

Project (not depicted in the diagram), and thus is one of the “upper”, i.e. one of the entry

objects of db3dcore. A Space3D can have an arbitrary number of Object3D (which is the
class that generally represents any kind of 3D object in  DB4GeO). A 3D object in turn
always  consists  of  exactly  one  object  of  Spatial3D type.  Since  Spatial3D is  an

interface, the actual spatial part of a 3D object can vary, but is always a net object. Several
different  realisations  of  Spatial3D can  be  used  as  the  spatial  part,  like  a

TriangleNet3D or  a  TetrahedronNet3D.  By  using  the  Topology  Module,  also  a

FaceNet3d or a  SolidNet3d can be the spatial  part of a 3D object since the classes

indirectly realise the Spatial3D interface.

The chosen approach has several advantages:

• The G-Map-enabled cell net components can also be used in place of simplex net
components  throughout  the  DB4GeO APIs  by  using  the  (implicit)  class  cast
technique (which is common practice in Java programming).

Fig. 50: Adaptation of cell nets (face net and 
solid net) into the central class 
inheritance hierarchy
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• Since a G-Map cell net component is a net component, all methods of the simplex
net  component  can  still  be  used  on  the  cell  net  component  (reuse  of  existing
methods).101

• Code  duplication  is  reduced,  since  much  of  the  already  existing  code  of  the
DB4GeO Kernel does not need to be rewritten. Methods of the  DB4GeO Kernel
that  are  not  overridden  by  the  Topology  Module,  are  easier  to  maintain,  since
bugfixes in the DB4GeO Kernel are directly available in Topology Module.

Indices of Cell Net Components

When  executing  the  build  up  process  as  presented  in  Listing  3 (line 7),  a  face  net
component is returned that is defined as a composition of its d-cells and cell-tuples (cf. Fig.
51).

Face net  components  consist  of  separate  indices  for  faces,  edges  and nodes.  Solid  net
components have an additional separate index for solids. The d-cell indices are needed for
fast retrieval of cells by their cell ID. A face net component does not need a solids index,
since it always references only exactly one solid which is the universe solid.

Additionally,  an  index  for  CellTuple objects  is  also  part  of  the  field  of  a  cell  net

component. The CellTuple index serves for fast retrieval of CellTuple objects by their

CellTuple ID. All  cell-tuples of a cell net component are added to the  cell-tuple index
during  the  component  construction  process.  The  set  of  cell-tuples  of  one cell  net
component constitute a  cell-tuple structure/G-Map. All  d-cells in the cell net component
indices belong to one contiguous component. A cell net component is part of a cell net that
can have several disconnected cell net components.

Orientability Check of Net Component by Polarities

In  the  case  that  the  Topology  Module operates  on  top  of  the  DB4GeO Kernel,  the
polarity property  of  the  cell-tuples  has  an  additional  important  functionality.  The

DB4GeO Kernel provides  the  possibility  to  orientate triangle  net  components.  After  a
triangle net component has been imported into DB4GeO, it is possible that the triangles of

101 For a final, consistent implementation, all methods of the superclasses have to be reviewed on the need 
to be overridden by methods of the subclasses. However, this is not part of this work, and therefore not 
yet completely accomplished.

Fig. 51: FaceNet3DCompNetLevel as composition of indices of 
CellTuple objects and cells
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the component are not homogeneously orientated. The orientation of a triangle is given in
DB4GeO by the sequence of numbering of its support points. The orientation is important,
since e.g. the direction vector of a triangle is deduced from the sequence of numbering. If
the triangles of a net component are not homogeneously orientated, the overall triangle net
component is inhomogeneous in its orientation, which is not wanted in many applications.

In the case of an inconsistent orientation, the TriangleNet3DComp class of the DB4GeO

Kernel provides  the  makeOrientationConsistent method  which  rearranges  the
triangles' orientations to realize a homogeneously orientated triangle net component. This
is always done in the aftermath of an import operation. But not all contiguous surfaces are
orientable. A well-known example of  non-orientable surfaces is the  MÖBIUS strip, which
has been discovered by MÖBIUS and LISTING (Weisstein 2015b). The DB4GeO Kernel does
not consider non-orientable surfaces and thus behaves incorrect in such cases. It tries to
orientate a non-orientable triangle net component and terminates the operation in constant
time.  However,  after  the  attempt,  the  isOrientationConsistent method  of  the

TriangleNet3DComp class  of  the  Kernel  reports  that  the  non-orientable  surface  is
orientated, which obviously is incorrect.

In  most  industrial  applications  as  well  as  in  the  standard  ISO 19107,  non-orientable
surfaces  are  not  applicable  (cf.  (Andrae  2008,  114)).  Since  ISO 19107  defines  the
foundations of CityGML (see Ch. 1.3), non-orientable surfaces are also not applicable in
CityGML. As it is one goal of the  Topology Module to prepare the basis for CityGML
integration, it is useful if the API is able to identify and report non-orientable surfaces.

In the process of face net component creation (as described in  Listing 3), all underlying
cell-tuples  and all  polarity  values  are  also  internally  built  up  and set  (see  Ch. 3.2 for
details). After the process has finished, it is easy to identify a non-orientable surface with
the  help  of  the  polarised  cell-tuple  structure.  In  a  polarised  cell-tuple  structure,  the

polarities of all pairs of cell-tuples that are connected through an 2 -involution, must be

opposite if the surface is orientable (cf.  (B. Lévy and Mallet 1999, 8)). If the surface is

non-orientable,  polarities  of  2 -cell-tuple-pairs  cannot always  be  opposite.  This

verification  method is  used  by the  isOrientable method of  FaceNet3dComp class,

which is presented in Listing 4.

1. public boolean isOrientable() {
2.   for (CellTuple ct : this.cellTupleIndex.values()) {
3.     if (ct.polarity == ct.alpha2.polarity)
4.       return false;
5.   }
6.   return true;
7. }

Listing 4: Implementation of isOriented method of FaceNet3dComp class

In line 2 of Listing 4, all cell-tuples of the face net component are fetched and iterated. In
line 3, it is checked whether there is any cell-tuple polarity that is equal to the polarity of



CHAPTER 3  DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR 
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 75

its 2 -cell-tuple (pair check). If so, the surface is non-orientable, thus false is returned

by the method. Otherwise if all  2 -pairs of the component have opposite polarities, the

surface is orientable and true is returned.102

3.1.7 Handling Holes in Cell Net Components

In many application cases of geodata modelling, it is important to provide the possibility to
model holes in the geo-object's geometry, i.e. to model holes in surface and volume nets. In
subsurface modelling for example, holes are useful to model crevasses (in surface nets) or
enclosed caverns (in volume nets).

In the presented model, holes are treated as universe cells. Every universe cell has its own
cell ID. Not only holes but also the outer void itself is modelled as a universe cell with a
specific ID. Any cell net component is embedded in the outer void (cf. Ch. 3.1.5). If the
cell net component is modelled with a hole inside, then the hole is created as an additional
universe cell with an ID that is different from the ID of the universe cell that represents the
outer void. See Fig. 52 for an example of a face net component that is placed into the outer
void and which has one hole inside.

In  Fig. 52, the outer void is represented by the universe face  U1. A face net component,
consisting of some triangles is embedded into  U1. Cell-tuples that reference face  U1, i.e.
cell-tuples that lie in the outer void, are depicted in the figure. The face net has a hole
inside of it that is represented by the universe face U2. A set of cell-tuples (in this case eight
of them) reference the inner universe face  U2 (these  cell-tuples are also depicted in the
figure). Every inner hole of the face net results in a new universe face with a distinct ID
(though, in the example set-up, there is only one hole). Since the face net at this level is a

102 The implementation, presented in Listing 4, involves many unnecessary double checks, which degrades 
runtime. The runtime could be improved by an “already-visited” list, which on the other hand impairs 
memory usage.

Fig. 52: Face net component in outer void (U1) with additional inner hole (U2)
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direct  representation  of  the  underlying  Simplicial  Complex,  all  faces  are  modelled  as
triangles. However, this is not true for the universe faces. They can have any polygonal
shape that is needed to represent the particular part of the void.

Having a  clear  distinction  between “normal”  cells  and cells  that  represent  parts  of the
universe, it is straightforward to implement algorithms that retrieve all cells of the cell net
component's boundaries. A boundary retrieving algorithm returns – for example – all edges
of a face net component that have contact to the universe. This is a collection of all edges
that  lie  at  the  outer  void  and all  edges  at  the  inner  holes  of  the  face  net  component.
However, the boundary retrieving algorithm needs to identify all boundaries of the cell net
component, since, if a component has multiple holes, it also has multiple boundaries. But it
is a priori  unknown where the boundaries or where the universe cells  are. It  would be
necessary to iterate over all cells and check every cell for whether it is a universe cell in
order to sort out all universe cells.

To  solve  this  problem,  all  universe  cells  that  are  created,  are  registered  in  additional
separate indices already during construction of a cell net. Each component of the cell net
maintains its own index of all universe cells of the respective component (see Fig. 53).

On the one hand, a face net component needs only an additional index on universe faces.
There is no need for an index for universe solids in a face net component, since in the case
of a face net component, there is always only exactly one solid universe, which is the solid
outer void. Inner solid holes are not possible in face nets.

On the other  hand,  a  solid  net  component  needs  only an additional  index on universe
solids. There is no need for an index on universe faces in a solid net component, since in
the case of a solid net component, it is not possible to create a universe face that represents
the 2D outer void or a 2D inner hole. This is not possible, since, when creating a solid net
component, a face net component is automatically generated as the boundary of the solid
net  component.  The  face  net  component  boundary  forms  the  closure  of  the  solid  net
component. Therefore, it has no outer void and no inner holes. All further steps of editing
the faces of a solid are monitored by the editing algorithms that prohibit a manipulation

Fig. 53: Indices of universe cells are part of face net component and
of solid net component
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that would lead to the creation of universe faces. Thus, since there are no universe faces in
a solid net component, there is no need to index face universe objects.

With the help of the indices, the boundary retrieving algorithms can be kept concise, clear,
and perform in a linear runtime, depending only on boundary size. Listing 5 shows, as an
example  of  boundary  retrieving  methods,  the  getBoundaryEdges method  of

FaceNet3DCompNetLevel class that efficiently returns all boundary edges of a face net
component in an ordered sequence.

1.  public Collection<Edge> getBoundaryEdges() {
2.    Collection<Edge> result = new LinkedList<Edge>();
3.    for (Face uFace : this.getAllUniverseFaces()) {
4.      for (Edge edge : new EdgeIterator(uFace)) {
5.        result.add(edge);
6.      }
7.    }
8.    return result;
9.  }

10. public Collection<Face> getAllUniverseFaces() { 
11.   return this.universeFaceIndex.values(); 
12. }

Listing 5: Implementation of getBoundaryEdges and getAllUniverseFaces methods of 
FaceNet3dCompNetLevel class

The algorithm of the getBoundaryEdges method starts with the retrieval of a collection
of all  universe faces of the face net component on which it  is invoked. To retrieve all
universe  faces,  the  method  internally  invokes  the  getAllUniverseFaces method

(line 3),  which  in  turn  accesses  the  universeFaceIndex instance  property  of

FaceNet3DCompNetLevel class (this index is the  index of universe faces, presented in

Fig. 53). The method returns the values of this associative map, which are the universe
faces  themselves  (line 11).  The  getBoundaryEdges method  then  iterates  through  all
universe faces of the collection (line 3). For every universe face, the algorithm creates an
edge iterator on the face (see instantiation of object of type EdgeIterator in line 4). An

edge iterator is an example of a  cell iterator. Cell iterators are introduced in Ch. 3.3.2 in
detail, where the meaning of cell iterators and implementation detail is given. However,
basically an edge iterator returns all edges of a face in an ordered sequence by iterating an
orbit.  It  is not capable of evaluating holes by itself.  The  getBoundaryEdges method
instantiates edge iterators of the face that represents the outer void, and edge iterators of all
faces that represent inner holes, in order to collect all boundary edges. These edges are
collected in a result collection (line 5), which is returned as the return value of the method
(line 8).

Now it becomes obvious, why holes require the creation of separate instances of universe
faces. The  getBoundaryEdges method uses an edge iterator which by itself  can only
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collect the cells of one hole face or of the outer void universe but not of all universe faces
combined. A cell iterator needs a  cell-tuple to start with, which can be received from a
universe face through the getACellTupleOfCell method (see Fig. 42). If there is only

one universe face with multiple parts (the inner holes), then it would not be possible to
gain e.g. all boundary edges of the universe face through an edge iterator, since not all cell-
tuples of the multi-part universe face would be accessible through one orbit. Only if the
multi-part universe face is modelled as multiple separate instances of universe face type, it
is possible to run orbits on all parts of the universe and thus to collect all boundary cells.

Similar methods are implemented to retrieve boundary nodes (getBoundaryNodes) and

boundary faces (getBoundaryFaces) (see Fig. 54).

These  methods  are  not  only  available  for  face  net  components,  but  also  for  solid  net
components.  Additionally,  solid  net  components  also  provide  a  getBoundarySolids

method that retrieves all  boundary solids of a solid net component.  All these boundary
retrieval methods operate on the same principle as presented in Listing 5.

FaceNet3dCompNetLevel and  SolidNet3dCompLevel also  have

countBorder<cells> and  isBorder<cells> methods. The  countBorder<cells>

methods  are  based  on  the  getBoundary<cells> methods.  The  purpose  of  the

countBorder<cells> methods  is  to  count  and to  return  the  number  of  cells  of  the

respective cell type (node, edge, face or solid) that can be found at the boundary of the cell
net component. It returns the number as the method's return value of type int. Internally, a

Fig. 54: Methods of cell net components that retrieve boundary cells
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countBorder<cells>  method  simply  invokes  the  suitable  getBoundary<cells>
method  and  reads  the  size  of  the  returned  cell  collection.  The  implementations  of
countBorder<cells> methods  override  the  homonymous  methods  of  its  superclass

TriangleNet3DComp (which is a class of the DB4GeO Kernel).103 

The isBorder<cells> methods have the purpose to check whether a given cell is part of
the boundary of the cell net component at hand. As an example of the implementation of
the  isBorder<cells> methods,  Listing  6 shows  the  actual  implementation  of  the

isBorderVertex(Node) method of FaceNet3dCompNetLevel class.

1.  public boolean isBorderVertex(Node node) {
2.    if (!nodeIndex.containsKey(node.id))
3.      return false;
4.    OrbitIterator orbit1 =

new OrbitIterator(node.anyCellTuple, 1);
5.    for (CellTuple ct : orbit1) {
6.      if (ct.isInFaceUniverse())
7.        return true;
8.    }
9.    return false;
10. }

Listing 6: Implementation of isBorder(Node) method of FaceNet3dCompNetLevel class

The algorithms of these methods first check whether the given cell is part of the cell net
component that the method is invoked on. In the example of  isBorderVertex(Node)

method, the algorithm first checks whether the given  node is in the  nodeIndex of the

component (line 2). If the given cell is not a cell of the component, then it cannot be part of
its border and therefore false is returned. In a second step, the algorithm collects all cell-

tuples of the given cell, which, in the case of isBorderVertex(Node) method, are all
cell-tuples “around” the given node. To gather all  cell-tuples around a node, a  1-orbit is
needed (instantiated in line 4). Orbits are given in the form of iterators by the API. Orbit
iterators are described in Ch. 3.3.1 in detail. Basically, a 1-orbit iterator can be used in a
for-loop to iterate step-by-step over all cell-tuples that reference the given node (line 5).

Each cell-tuple of the 1-orbit iterator is checked whether it also references a universe face
(whether it is lying in a universe face) (line 6); if one is found, the method returns true

(line 9).  All  other  isBorder<cells> methods  of  FaceNet3dCompNetLevel class
operate in a similar way, the differences only involve different orbit iterator types (line 4,
depending on the given cell) and different universe cell types (line 6, depending on the
type of the cell net component on which the method is invoked).

As  the  class  diagram in  Fig.  54 shows,  this  boundary  finding  functionality  is  already
provided by the superclasses TriangleNet3DComp and TetrahedronNet3DComp of the

103 This is why the denomination of these methods break with the general rules (vertices instead of nodes 
etc.): these methods have to have the same name as the ones of Trianglenet3DComp that are overridden.
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DB4GeO Kernel. For example, the findTinBorder1 and findTinBorder2 methods of

the DB4GeO Kernel have the same purpose as the getBoundary<cells> methods of the
Topology  Module:  they  all  retrieve  the  boundary  elements  of  the  net  components.104

Though, these methods serve the same purposes, the underlying models and algorithms are
very much different. This is reflected in highly differing  asymptotic runtimes. Since the
Topology Module makes extensive use of references between the cells, it is assumed that
these methods will have exceptional gains in asymptotic runtimes. Due to this fact, the
structure, created by the Topology Module, can also be referred to as a “topological index”.
However, this assumption is checked with runtime tests, and the results are presented in
Ch. 4.

3.1.8 Object Level and Net Level

To prepare the model for hierarchy management, a cell net component is conceptionally

further subdivided into a cell net component at network level (or just net level, C NL ) and a

cell net component at object level ( COL ) (cf. Fig. 55).

The topology of C NL  is an exact reproduction of the topology of the net structure of the

underlying net of simple geo-objects. The network level is mainly used for navigational

purposes. It eases the algorithmic navigation on the net structure. Once  C NL  is created

through the constructor, the topology defined by the cell-tuple structure cannot be edited by
the user on this level any more. This edit restrictions are backed by the employment of
interfaces  that  define  editable (of  type  EditableCellNet3dCompLevel)  and  non-

editable (of type CellNet3dCompLevel) cell net levels (cf. Fig. 56).

104 The differences in functionality between the methods findTinBorder1 and findTinBorder2 are explained 
in Ch. 4.

Fig. 55: Example configuration of cell net components 
at net level (bottom) and at object level (top)
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As  soon  as  C NL  construction  has  finished,  COL  is  deduced  from  C NL .  COL  is  the

boundary representation of the component object (cf. top of Fig. 55).

The cells of COL  are not reused cells of C NL  but completely newly instantiated cells. As

an example, this means that one new inner face and one new face that represents the “outer
void” are created  on object level for a face net component  on net level (without a hole).
Furthermore, for every edge and node at the boundary of the component on net level, a
new edge and node object is created on object level.

For every cell-tuple in C NL  that belongs to the “outer void” ( d U ), a new cell-tuple in COL

is instantiated. Additionally, for all  cell-tuples  2dU   of  C NL , the according new  cell-

tuples  in  COL  are  created.  Every  newly  created  cell-tuple  of  COL  is  linked  to  the

respective  cell-tuple at  C NL ; this references are also modelled backwards from  C NL  to

COL  (two-way link, reversible uniquely assigned). The references between the cell-tuples

of the net level and of the object level are stored in higher and lower field properties of

CellTuple class. To accommodate this functionality, the model of CellTuple class (Fig.
44) is extended by the two new attributes as depicted in Fig. 57.

Fig. 56: Two distinctive cell net component interfaces
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The lower references of all cell-tuples of COL  are always set to null (because there can

be no lower level than the object level itself). The higher references of all cell-tuples of

C NL  are also always set to  null (because there is no higher level possible than the net

level).  The  higher references  of  all  cell-tuples  of  COL  are  initially  pointing  to  their

respective cell-tuples at C NL . A subset of the lower references of the cell-tuples of C NL

link to the respective  cell-tuples at  COL . Not all  lower references of the  cell-tuples of

C NL  can  be  set,  since  not  every  cell-tuple  at  C NL  has  a  representative  at  COL .  For

example,  directly  after  the  construction,  all  the  cell-tuples  of  C NL  that  are  not  at  the

boundary of the component have no representative at COL . Thus, the lower references of

such cell-tuples are also set to null.

The key mindset of this concept is that the net level always reflects the net structure of the
underlying geometry, which is unchangeable, once build. The object level instead reflects
the geo-object (as boundary representation), which can be topologically edited/changed by
the user. To reflect this concept, the level indicating classes on net level and on object level
differ  in  the  interfaces  they  implement  (CellNet3dCompLevel or

EditableCellNet3dCompLevel interface) (cf. Fig. 56 and Fig. 58).

Fig. 57: Higher and lower field attributes of CellTuple class (left: class 
diagram; right: example set-up)
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All  cell  net  component  classes  on  net  level  (i.e.  FaceNet3dCompNetLevel and

SolidNet3dCompNetLevel)  implement  the  CellNet3dCompLevel interface  which
only requires to implement  methods that  query the cell  net  structure – but it  does not
require/allow for methods that modify the cell net structure on that level. In contrast, all
cell  net  component  classes  on  object  level  (i.e.  FaceNet3dCompLevel and

SolidNet3dCompLevel)  implement  the  EditableCellNet3dCompLevel interface,

which extends the CellNet3dCompLevel interface – i.e. it requires the implementation

of all the methods of  CellNet3dCompLevel interface that require the querying of the

structure,  plus  methods  of  EditableCellNet3dCompLevel that  allow  for  a
modification of the cell net structure on that level.

To get an overview of the allocation of the methods, it is appropriate to start with the getter
methods. A cell net component, whether at net level or at object level, can be searched for a
cell object of a certain ID through its get<cell> method by passing a cell ID of type int
as a parameter. The method returns the cell with the given ID only if it actually is part of
the cell  net at this level;  otherwise the method returns  null. Furthermore, any cell  net

component can return collections that represent all cells of a certain type of the respective
component  by  the  getAll<cells> methods.  The  getUniverseFaces and

getUniverseSolids methods return sets of all faces and solids that have been marked

as universe cells. The getBoundary<cells> and countBorder<cells> methods have
been discussed in detail in Ch. 3.1.7.

The  insertNode method  that  is  required  by  the  EditableCellNet3dCompLevel

interface shall place a node onto an edge at object level. The object of type Node that is

required as the first parameter,  must be a  Node at  net level.  The  insertNode method

creates a new node at object level that “mirrors” the given node of net level at object level

Fig. 58: Cell net comp level methods
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(i.e. these represent the same node at net level and at object level – though both nodes are
individual objects and have differing object IDs). The insertNode method splits the edge
that is passed to the method as the method's second parameter, into two edges. Finally, the
method returns the newly created node at object level as the methods return value.

The  removeNode method that is also a method of the object level (i.e. required by the

EditableCellNet3dCompLevel interface) deletes a node (that is located on an edge).

The method only requires a Node object as its parameter. This has to be the node that shall
be removed from the cell net at object level – i.e. it must be a node of object level. The
operation removes the node and thus merges the two edges, that are incident to the node,
into one edge.

The  insertEdge method inserts an edge between two nodes. This method needs two

nodes as  its  parameters.  These  nodes  define  where the  new edge shall  be inserted  in-
between. The method instantiates a new edge and defines the two given nodes as incident
to the new edge. Also, the insertion of a new edge splits a face into two. Thus, the method
also creates two new faces and defines them as incident to the newly created edge.

The  removeEdge method  deletes  an  edge  that  is  located  on  faces.  The  method  only

requires an  Edge object as its parameter. This has to be the edge that shall be removed

from the cell net at object level – i.e. it must be an edge of object level. The operation
removes the edge and thus merges the two faces that are incident to the edge, into one face.

Before  the  actual  algorithms  of  the  insert<cell> and  remove<cell> methods  are

described in detail105, it is helpful to have an elaborated inside look into the algorithms that
are needed to create the cell nets out of nets of simple geo-objects and into the algorithms
that simplify the traversal of the darts of a G-Map.

3.2 Constructing Cell-Tuple Structure from DB4GeO Simplicial Complexes

The Topology Module provides the means to construct cell-tuple structure (G-Map) from
triangle nets and tetrahedron nets that are provided by db3dcore. First, for each component
of a simplicial net, a distinct G-Map is created. Afterwards, all components of the cell net
(FaceNet3dComp/SolidNet3dComp)  are  attached  to  the  respective  cell  net

(FaceNet3d/SolidNet3d).  The  cell  net  is  finally  returned by the  builder  object  (see

Ch. 3.1.6).

The construction process for a cell net component is subdivided into two main steps,

1. the  construction  of  cells  and  cell-tuples  at  net  level
(FaceNet3dCompNetLevel/SolidNet3dCompNetLevel) and

2. the  construction  of  cells  and  cell-tuples  at  object  level
(FaceNet3dCompLevel/SolidNet3dCompLevel).

105 Algorithms are discussed in Ch. 3.4
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In fact, not a component itself but each level of a component constitutes a distinct G-Map.
After the construction of G-Maps of net level and object level completes, both levels are
attached to the respective cell net component.

The following section explains the algorithms for the construction of cells and cell-tuples
at net and at object level. The explanation is given for triangle net components first – the
differences  to the algorithm for the construction out of tetrahedron net components are
described thereafter (Ch. 3.2.5).

3.2.1 Framework for Cell Complex Construction

Basically, the algorithm traverses every single triangle of the triangle net once, processing
the following two steps:

1. create all cells and cell-tuples for every triangle solemnly and

2. connect  the  cell-tuples  of  a  triangle  (face)  with  the  cell-tuples  of  its  adjacent
triangles.

The  actual  algorithm  implements  a  DIJKSTRA-based106 approach  for  the  traversal  of  all

triangles of a triangle net. The algorithm utilizes an ordered list LP  of face-triangle-pairs,

where P=( f , te)  is a pair of one face f  (geometrically embedded by a triangle t f ) and

a triangle element te . The algorithm has to ensure that if f  and te  are in P  then t f

and te  are geometrically adjacent to each other.

Additionally, an indexed set of already visited triangles S f  is prepared. Every te  that is

put on  S f  has to be “transformed” into a face  f  in advance. So in fact,  S f  does not

contain the triangles but the faces they have been transformed into. Every f  is indexed by

the ID of the affiliated te , so that any f  on S f  can be retrieved through the operation

f =S f ( te) .

Listing 7 describes the global frame of the algorithm of the cellNetBuildUp method (of

FaceNet3dCompNetLevel class),  i.e.  how  a  triangle  net  component (class

TriangleNet3DComp) is traversed and the cells and cell-tuples are created:

Method: cellNetBuildUp
Purpose: Construct cell complex on net level from triangle net 
component
Parameter: A (any) triangle element te s  of the triangle net component 
for which the cell complex shall be constructed (the "start" triangle)
1. Push te s  onto LP  (this first te s  has no f  companion in P
2. While LP  is not empty do

3.   Poll (take and remove) the first P  of LP

4.   Extract te  from P

106 The Dijkstra shortest path finding algorithm is explained later when it is shown how the path finding 
algorithm can take advantage of the G-Maps structure of the Topology Module.
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5.   If te  has not already been visited (is not already on S f )

6.     Create all cells (i.e. nodes, edges and the face f current )

       and all cell-tuples for te
7.   Else
8.     f current=S f ( te)
9.   Extract f before  from P  (if possible)107

11.  If f before  exists (it does not exist for first P )

12.    Merge f current  with f before
108

13.  For all neighbour triangle elements tei ,{i∈ℕ∣1≤i≤3}  of te
14.    If tei  exists and is not already on S f

15.      Create new PN=( f current ,te i)  and push it onto the end

         of LP

16.  Add te  to S f

Listing 7: Pseudocode description of the algorithm of cellBuildupOnNetLevel method

The algorithm of cellNetBuildUp method of Listing 7 is also depicted in a flow chart
diagram in Fig. 59 for a better overview.

In  summary,  the  algorithm  starts  with  the  first  triangle  element  of  the  triangle  net
component and “transforms” it into a face (i.e. all its  cell-tuples are created). The face is
pushed pairwise with all of its neighbouring triangles onto the list of face-triangle-pairs.
Thus, the triangles of a face-triangle-pair are known to be adjacent. Then, new triangle-
face-pair elements are taken from the list of face-triangle-pairs in order to be processed.
They repeatedly undergo the same procedure (which is: create  cell-tuples, build pair) but

107 This is not possible for the triangle element that is processed as the first one in the algorithm since there 
has been no triangle before that was already “transformed” into a face (i.e. that all its cell-tuples were 
created)

108 Merge operation is described in next sections

Fig. 59: Flow chart diagram of cellNetBuildUp method
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they also merge with their (previously generated) adjacent faces. It is guaranteed that every
triangle  is  reached (processed)  since the algorithm accesses  the face-triangle-pairs  in  a
FIFO109 manner.

3.2.2 Creating Cells and Cell-Tuples of a Triangle

This section describes how the cells and the  cell-tuples that describe the topology of a
triangle element110, are created (referred to in sixth step of Listing 7) and how two faces are
merged (referred to in twelfth step of Listing 7). The creation of cell and cell-tuple objects
for a single triangle is encapsulated in the private createCellsOfTriangle method

of the FaceNet3dCompNetLevel class (see Listing 8). 

Method: createCellsOfTriangle
Purpose: Create all corresponding cell-objects (i.e. nodes, edges and a
face) for the given triangle element (TriangleElt3D) and also create 
all corresponding cell-tuples
Parameter: The triangle element (TriangleElt3D) for which to create all
corresponding cell objects (i.e. nodes, edges and a face)
1. Create three Node objects for the three points of the
   triangle (link the nodes to the corresponding point objects)
2. Create three Edge objects for the three line segments of the
   triangle (link the edges to the corresponding segment
   objects)
3. Create one Face object for the triangle (link face object to
   the corresponding triangle object)
4. Register all newly created cell objects in the appropriate
   index fields of the face net component instance. The cells
   are then sorted by their ID
5. Create only the six “inside-lying”111 cell-tuple objects of
   the triangle and link each cell-tuple to its four incident
   cell objects (0-, 1-, 2- and 3-cell). Create a back-reference
   from every cell object to the respective cell-tuple
6. Put all newly created cell-tuple objects into an index field
   (face net component instance) which sorts the cell-tuples by
   their ID

Listing 8: A textual description of createCellsOfTriangle algorithm

The creation of  cell-tuples (as mentioned in the fifth step of  Listing 8) is implemented
straightforward: the constructor method of a  cell-tuple is given all  the cell  objects that
constitute the path in the incidence graph that is represented by that cell-tuple (see step 1 in
Listing 9 for example set-up). A “universe” solid is given as parameter to the  cell-tuple
constructor; a universe solid is a 3-cell with the ID -1 and indicates the outer space. Since

109 First in, first out

110 Implemented in db3dcore

111 In order to avoid the creation of unnecessary cell-tuple objects in the process, the “outside-lying” cell-
tuples (that reference the universe faces) are created in the end, after the creation of all “normal” faces 
has finished.
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the createCellsOfTriangle method of the FaceNet3DComp only regards triangle nets
(i.e. always a 2-dimensional geometry), there is always the universe solid on the “top” and
the  “bottom”  of  the  face  net  component.  Thus,  all  cell-tuples  that  are  created  in  the
createCellsOfTriangle method have universe as its 3-cell.

Then all the involutions ( 0 ,1 , 2 ,3 ) towards the already existing cell-tuple objects are

established by assigning the appropriate values to alpha<dim> class attributes of the cell-

tuples (see code example in Listing 9).

...
1. CellTuple ct6 =
     new CellTuple(node1, edge3,
     face, universeSolid, false);
2. ct5.alpha0 = ct6;
3. ct6.alpha0 = ct5;
4. ct1.alpha1 = ct6;
5. ct6.alpha1 = ct1;
6. ct6.alpha2 = ct6;
7. ct6.alpha3 = ct6;
...

Listing 9: Java code excerpt for the creation of a cell-tuple (ct6) in createCellsOfTriangle method

The knowledge of the cell-tuple structure, i.e. which cell-tuples are adjacent, is extracted
from the net topology structure of the underlying triangle net component of the DB4GeO
Kernel112.  Instances  of  TriangleElt3D class  of  the  Kernel  reference  adjacent  and
incident geometry objects by index numbers (see Fig. 60).

The neighbourhood relations between points, segments, and triangles are codified within
the index numbers 0, 1, 2. For example, an incident point and a neighbouring triangle with

112 Which is built up and managed by the TriangleNet3DComp class of db3dcore

Fig. 60: Indexing of net topology in DB4GeO 
triangle net component
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the same index number oppose each other. A segment and two points with unequal index
numbers are incident.

Since  it  is  known  inside  the  createCellsOfTriangle method,  which  point  is

transformed into which node, which segment is transformed into which edge, and which
triangle is transformed into which face, all relations between edges and nodes inside a face
can also be deduced.

3.2.3 Merging Cells and Cell-Tuples of Faces

After all edge, node, and cell-tuple objects of a face have been created, the face is “glued”
to its neighbouring faces (see Fig. 61), with the purpose to build one contiguous face net
component at net level.

The algorithm of Listing 7 iterates over all triangles of the triangle net component (line 2)
in order to merge all faces (cf. line 12).

In the process of merging two neighbouring faces, identical nodes and edges are identified
and unified, as well as the  α2 -involutions between  cell-tuples in the opposing faces are
set.  This  is  done  by  the  algorithm  of  the  mergeFaces method  of  the

FaceNet3dCompNetLevel class (see Listing 10).

Method: mergeFaces
Purpose: Merge the cells and connect the cell-tuples of the two given 
faces at the intersection areas of the corresponding triangles
Parameter: The two 2-cells that shall be merged are given as 
parameters: face f 1  and face f 2  of class Face. The cells incident to

f 1  will remain after the merging process whilst the cells incident to

f 2  will be erased and replaced

1. For all edges ( e f 1
) of f 1

2.   For all edges ( e f 2
) of f 2

3.    If e f 1
 equals(is geometrically equivalent to) e f 2

4.      Get all cell-tuples ( d ) that reference e f 1

5.      Get all d  that reference e f 2

6.      Get the two nodes of e f 1

Fig. 61: Inspection of cell identity (left) and remapping of alpha-2 involutions during face merging
process (in mergeFaces method)
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7.      Get the two nodes of e f 2

8.      Check which of the nodes of e f 1
 are equal to which of

        the nodes of e f 2

9.      Based on the information of step 8: correctly update the
        2 -involution links of all d  of e f 1

 and e f 2

10.     The nodes and the edge of f 1  replace the nodes and

        the edge of f 2 . Therefore: update/replace the 0-cell

        and 1-cell references of all d  of e f 2
. Remove e f 2

 and
        the nodes of the edge from the face net component's
        nodes and edges index

Listing 10: Pseudocode/textual description of the algorithm of mergeFaces algorithm

In summary, the mergeFaces method iterates over all edges of the both faces that shall be
merged (lines 1 and 2 of  Listing  10).  All  edges  are  compared crosswise on geometric
equality  of their  line segment representatives  (line 3).113 When the two equal edges are
identified, then the point representatives of their nodes are checked for geometric equality
in order to identify the correct alignment of the edges (Fig. 61, left).114 After the alignment
is known, the correct α2 -involution links between all cell-tuples of the both edges are set
(Fig. 61, right). All duplicates of identical cells (nodes and edges) that are now merged, are
removed from the structure (especially from the indices).

3.2.4 Creating Universe Faces and Object Level Structure

After merging the cells and cell-tuples of all faces of a face net component, the component
is still incomplete. In the following step, the “outside structures” are created. These are all
faces and cell-tuples that are located outside the boundary (in the 2D universe) of the face
net component (see Listing 11).

Method: createUniverseFaces
Purpose: Create a universe face for the outer void and for all inner 
holes and all cell-tuples that lie “outside” the face net component
Parameter: Any cell-tuple of the face net component for which to build 
the “universe structure”
1. Create a set of all cell-tuples that are located at
   component's 2-cell boundary ( S ct ( B) )

2. While S ct (B)  is not empty

3.   Take a cell-tuple ( ct B ) from S ct ( B)  (memorize this

     cell-tuple also as start cell-tuple ct S )

113 This yields 3x3=9 checks on geometric equality of line segments per triangle at a maximum.

114 The gathering of all the information that is needed for merging of neighbouring faces can also be 
achieved with improved runtime performance by an expanded use of the underlying triangle orientation 
structure that is presented in Fig. 61. However, this would also complicate the algorithm and make its 
maintenance more difficult. Thus, the presented simple approach has been favoured.
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4.   Create a new universe face ( f U )

5.   Put f U  on universe face index ( I f U
)

6.   Do
7.     Create new cell-tuple ( ctU ) as copy of ct B  but with

       f U  as 2-cell (and set all involution links as far as
       possible)
8.     Set ctU  as α2  of ct B  (and vice versa)

9.     Set ctU  as α1  of ctbefore  (and vice versa)

10.    Remove ct B  from S ct (B)

11.    ct B←α0(ctB)

12.    Create new cell-tuple ( ctU (α 0)
) as copy of ct B  with f U

       as 2-cell
13.    Set α0(α2(ctB))  as α0  of ctU

14.    Set ctU  as α0  of α0(ctU )
15.    Set ctU  as α2  of ct B

17.    ct before←ctU

17.    Remove ct B  from S ct (B)

18.    Move cell-tuple iterator “coast to coast” until it
       reaches the boundary again and set the cell-tuple as ct B

19.  While ct B≠ctS

Listing 11: Pseudocode/textual description of the algorithm of createUniverseFaces method

In this process, for each inside cell-tuple of the component's boundary, a new “twin” cell-
tuple is created as a copy of the inside cell-tuple with the difference that the new tuple gets
a universe face as its 2-cell entry (see line 7 and 12 in Listing 11). When generating outer
cell-tuples, it is of particular importance to consider possible holes in the component. As
discussed in Ch. 3.1.7, each hole renders a new universe face instance (with a unique face
ID).

The algorithm first creates a set of all  cell-tuples of the component's boundary (line 1).
This is achieved by iterating through all  cell-tuples of the component and checking each

tuple. If α2(d )=id  is true for a cell-tuple then it lies at the component's boundary and

therefore is added onto the result set.

After the set is compiled, it is iterated in the next step. For each cell-tuple, a new universe
cell-tuple is created. A simple 2-orbit along the “outer” component's boundary – i.e. along
the  cell-tuples  that  lie  in  the  universe,  is  not  possible  so far  since the  outer  cell-tuple
structure is not generated at this state and thus would lead to erroneous behaviour. In order
to find the inner way along the component's boundary, the iterator often needs to move
“coast to coast” (see line 18). For this purpose, a private moveToBoundary helper method
is developed that takes an inner boundary cell-tuple as parameter value, then moves “fast
forward” a 0-orbit until it reaches the boundary again (see Fig. 62) and finally returns the
other (opposite) inner boundary cell-tuple.
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The condition for reaching the boundary in  0-orbit is to identify an inner boundary  cell-

tuple ( d b ) for which α2(d b)=id 115 is still valid at this state.

Each time, a new boundary cell-tuple is processed, it is removed from the set of boundary
cell-tuples. This way, only  cell-tuples remain in the set that are part of other, dissimilar
boundaries of the component. These cell-tuples are processed in the following steps of the
algorithm, until all cell-tuples are removed from the set.

In a final step, the object level of a cell net component is deduced from the now completed
net  level  in  the  cellNetBuildUp method of  FaceNet3dCompLevel.  This  is  simply
done by performing 2-orbits around all universe faces and creating object level siblings of
all encountered net level cells and  cell-tuples. In the course of the process, each newly
created cell-tuple of object level is (bi-directionally) linked to its sibling cell-tuple of net
level (cf. Ch. 3.1.8).

3.2.5 Constructing Solid Complexes From Tetrahedral Nets

So far, the process of constructing cell complexes and G-Maps from DB4GeO Simplicial
Complexes has been discussed on the basis of 2-dimensional structures (triangle nets). The
construction  process  for  3-dimensional  cell  complexes  (on  basis  of  tetrahedral  nets  in
DB4GeO) is analogue but encompasses some minor differences.

Analogously to the FaceNet3dCompNetLevel class that represents a face net component

at net level, the SolidNet3dCompNetLevel class represents a solid net component at net

level.  The  cell  net  build  up  entry  method  cellNetBuildUp of

SolidNet3dCompNetLevel class is mostly the same as the cellNetBuildUp method

of  FaceNet3dCompNetLevel class (cf. Ch. 3.2.1). The major difference for solid build

up is that the starting point of the geometric processing is not a triangle but a tetrahedron
that  first  has  to  be  queried  for  its  four  incident  triangles  –  the  rest  of  the  algorithm,
concerning the lists of visited elements (now tetrahedra instead of triangles) and the list of
element pairs, is similar.

115 This condition becomes incorrect after the universe cell-tuple are created. The condition for inner 
boundary cell-tuples is then α2(d b)=d U .

Fig. 62: Navigating along “inner side” of component boundary
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Accordingly to the above described  createCellsOfTriangle method of the face net
component  constructor  (see  Ch. 3.2.2),  the  solid  net  component  constructor  has  a
createCellsOfTetrahedron method which creates all cells (nodes, edges, faces, and a

solid)  and  all  48  cell-tuples that  describe  one  single  tetrahedron.  The  mergeSolids

(Listing 12) method of the SolidNet3dCompNetLevel class has a similar purpose as the

mergeFaces method of SolidNet3dCompNetLevel class (see Ch. 3.2.3): it merges the

two given solids along their equal faces.

Method: mergeSolids
Purpose: Merge the cells and connect the cell-tuples of the two given 
solids at the intersection areas of the corresponding tetrahedra
Parameter: The two 3-cells that shall be merged are given as 
parameters: solid s1  and solid s2  of class Solid. The cells incident 

to s1  will remain after the merging process whilst the cells incident 

to s2  will be erased and replaced

1. Find the face f 1  of s1  and the face f 2  of s2  whose
   corresponding triangles are geometrically equivalent
2. Find the both cell-tuple d 1  and d 2  of f 1  and f 2  that
   match – where “match” means that the point (of the node)
   and the segment (of the edge) of d 1  and d 2  are

   geometrically equivalent. In other words, d 1  and d 2  in the

   two solids s1  and s2  are located at the same point, pointing
   along the same segment
3. Use d 1  and d 2  as start cell-tuples to instantiate

   〈α2〉 (d 1 (S ))  and 〈α2〉 (d 2(S ))

4. For each involution step in 〈α2〉 (d 1 (S ))

5.   Do an involution step in 〈α2〉 (d 2(S ))

6.   Link the two current cell-tuples of both sides ( d 1 (C )  and

     d 2 (C) ) so that α3(d 1(C))=d 2(C )  and α3(d 2 (C ))=d 1(C )

7.   Replace/update the 2-cell reference of d 2 (C)

8.   Update 0-cell references of all cell-tuples of 〈α0〉 (d 2(C))

9.   Update 1-cell references of all cell-tuples of 〈α1〉 (d 2 (C ))

10.  Remove f 2  and the edges of f 2  and the nodes of the
     edges from the solid net component's nodes, edges and
     faces index

Listing 12: Textual description of the algorithm of mergeSolids method

The algorithm first searches for the two matching faces/triangles of the solid and then the
two matching  cell-tuples inside the faces. The following steps (from line 3) harness the
functionality  of  the  OrbitIterator framework  (which  is  explained  in  detail  in

Ch. 3.3.1). Basically, the algorithm makes use of 2-orbits in both solids, starting with the

two matching cell-tuples d 1 (S )  and d 2 (S )  (see Fig. 63).
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The both 2-orbits simultaneously lead along the equal faces of the two solids, cell-tuple by
cell-tuple. On each step, the cell-tuples on both sides of the faces are linked by α3  (line 6),
and cell references of all affected cell-tuples are updated properly (lines 7 ff.).

Finally, all universe solids and all cell-tuples of universe solids are instantiated and linked.
Then, the object level is deduced from net level. These processes are very similar to the
processes for 2-dimensional structures described in Ch. 3.2.4. The main difference is that
for finding  cell-tuples  of the inner boundary of the solid component,  the condition for

identifying such cell-tuples is α3(d )=id .116

3.3 Basic Methods of the Topology Module

The previous chapters presented the basic class model of the G-Maps topology module for
DB4GeO. This was followed by an explanation of how the class model is internally used to
construct valid G-Maps. Now that valid G-Maps can be instantiated by the means of the
module, the next step is to illustrate the basic algorithms that provide the functionality to
query the topology of cells or whole geo-objects. The algorithms are implemented on a
generalized sub-level (level of iterators) from where they can be reused in concrete query
methods such as in the getNeigbour… methods of Cell objects.

3.3.1 Iterating an Orbit

The notion and usefulness of orbits on cell-tuples has been discussed in Ch. 2.3.3 and an
example algorithm of orbit traversal has been presented. However, in a naive approach,

116 In this case, simply all valid cell-tuples of the cell net component at net level (stored in cell-tuple index 
of SolidNet3dCompNetLevel class) are checked for the condition.

Fig. 63: Merging cells and connecting cell-tuples of two tetrahedra (left); 
confronting faces detail (only confronting faces are depicted): 
simultaneous 2-orbits on both sides of faces (right)
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such orbit algorithms could be implemented inside of ordinary methods that take a start
cell-tuple and an orbit dimension indicator as parameters and return all  cell-tuples of the
complete i-orbit sequence in an array of cell-tuples. The disadvantage of such an approach
would be that the gathering of  cell-tuples in arrays could end up in very big arrays that
have a high memory  space consumption.  A better  approach to this  issue is  to create  a
framework that supports the retrieval of solitary  cell-tuples with each step by calculating
them “on-the-fly”. This can be achieved through the development of iterators that iterate
the cell-tuples of an orbit step by step.

The  orbit  framework  in  the  Topology  Module currently  consists  of  the  four  classes
OrbitIterator,  NodeIterator,  EdgeIterator,  FaceIterator and

SolidIterator117, where OrbitIterator is the main, polar class that is needed by the

other classes.118 An OrbitIterator is an appropriate approach to model orbits on a graph

based implementation of the cell-tuple structure.

An Orbit to Be Iterated and to Provide Its Iterator

To realize a clean architectural approach that leads to concise source code at the sections
where  orbits  have  to  be  employed,  the  OrbitIterator class  utilizes  the  iterator

framework of  the  Java  API  and  thus  provides  a  hasNext and  a  next method  (see

Iterator class of java.util package in Fig. 64).119

117 All four classes are gathered in the edu.kit.gik.db3d.gmaps.model3d package. NodeIterator, EdgeItrator, 
FaceIterator and SolidIterator are discussed in next section.

118 Since the OrbitIterator class is only package visible, an OrbitIterator object can only be 
instantiated from inside its package (cf. the description of the principle of encapsulating the cell-tuple 
structure in the sense of information hiding in Ch. 3.1.2). 

119 Regardless of the fact that the OrbitIterator implements the Iterator interface, substantially it is a 
circulator, as the start and end point of an orbit always coincide by definition.

Fig. 64: Diagram of OrbitIterator class
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There  are  at  leased  three  straight-forward  methods  to  create  an  orbit.  The  most  basic
method  is  to  provide  a  start  cell-tuple  and  an  array  of  integer  values that  define  the
involution  sequence  of  the  orbit.  This  is  realized  in  a  constructor  of  OrbitIterator

class.  An  example  of  a  constructor  invocation  can  be:
new OrbitIterator(startCt, new int[]{1, 3} for  the  instantiation  of  an

〈α1,α3〉(startCt) -orbit (see line 1 of Listing 13 for complete example).

Another method is to provide a start  cell-tuple and an integer value  n , {n∈ℕ∣0≤n≤3}

that  defines  the  dimension  of  the  orbit.  This  method  of  orbit  creation  can  always  be
translated into the basic method. The method determines an involution sequence according
to the given orbit  dimension.  For example,  if  the given  n value is  1,  then the orbit  is
〈0,2〉 d s  which translates into the basic method with int[]{0, 2}.

The third method to create an orbit is similar to the first but additionally requires another
array of cell-tuples in order to be performed. This additional array of cell-tuples is used by
the orbit as an artificial border where the orbit cannot go beyond. Application cases for this
method are introduced in a following section.

After the creation of an orbit, the dimension of the orbit cannot be queried subsequently,
since not every involution sequence (that can be provided to the creation method) yields a
defined orbit dimension.120

Since an orbit is iterable by definition, it provides several methods that facilitate, and some
that simplify the traversal of a cell-tuple orbit. An iterable orbit has to provide a method to
query whether there is a next cell-tuple in orbit (hasNext) and a method that provides the

next cell-tuple in orbit (next).121

Due to the architectural approach (an orbit is an iterator), the instantiation and usage of an
OrbitIterator is quite simple and straight-forward, as presented in  Listing 13 by the
example of two different orbits:

1. OrbitIterator orbit13 = new OrbitIterator(startCt, new int[]{1, 3});
2. for(CellTuple ct : orbit13){
3.   System.out.println(ct);
4. }
5. OrbitIterator orbit0 = new OrbitIterator(startCt, 0);
6. for(CellTuple ct : orbit0){
7.   System.out.println(ct);
8. }

Listing 13: Java code example, demonstrating the usage of OrbitIterator in enhanced for-loops

120 e.g. ⟨α1,α3⟩ (d s)  is not traversing the tuples of any cell of a certain dimension

121 These methods are required by the Iterator interface. The Iterable interface requires the 
interator method that returns an object of the Orbit class itself.
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In  Listing 13,  it  is  shown how orbits  can elegantly  be used in  enhanced  for-loops122.
Line 1 to line 4 of Listing 13 demonstrate an orbit invocation by involution list and print all

cell-tuples  of  the  orbit  〈α1,α3〉(d s)  to  standard  out.  Line 5  to  line 8  demonstrate  an

invocation by orbit dimension and print all cell-tuples of a 0-orbit ( 〈0〉 d s ), i.e. an orbit

around a node, starting and ending at the start cell-tuple startCt, to standard out.

Designing an Iterator On an Orbit

An iterator over an orbit consists of at least an  involution list, a  start  cell-tuple, a set of
marked cell-tuples  and  a  stack  of  collected  darts.  The  stack  of  collected  darts  is
implemented in  OrbitIterator as a field of the class (member variable  ctStack is a

CellTuple typed Java Stack, cf. first member variable in Fig. 65).

In order to provide its functionality,  an iterator over an orbit memorizes the  involution
sequence of the orbit. Thus, the class has an involutionsList class field, modelled as

an integer  array (int[]).  Additionally,  an iterator  memorizes  the start  cell-tuple  (class

member  startCt of  type  CellTuple)  in  order  to  be  able  to  reach  the  termination

condition. Finally, the iterator has a set of  marked cell-tuples (member  marked of type

Set) in order to mark all cell-tuples that have already been visited by the orbit.

The marked set contains all cell-tuples that have been “touched” by the orbit on its way.

This detail differs from the algorithm of Ch. 2.3. In Ch. 2.3, marked has been modelled as

a variable of the dart class itself. Such an approach induces the disadvantage that only one
orbit  can be performed upon a cell  net  component  at  the same  time.  The approach of
maintaining the markings of the cell-tuples in sets, having every OrbitIterator object

posses its own set, causes the iteration of orbits to be suitable for multi-threading. This is
of particular importance especially for the implementation of orbits in a  database, since
here, multiple users could wish to iterate over the same data at the same time with different
orbits.

When an  orbit  shall  be  created  by  using  a  given orbit  dimension,  then  the  dimension
integer must be translated into the matching involution sequence. This is realised by an

122 An object of the OrbitIterator can be used in an enhanced for-loop, since it is iterable (realising 
the Iterable interface).

Fig. 65: Member variables of 
OrbitIterator class
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OrbitIterator constructor that translates the dimension integer parameter value into

the appropriate involutionsList array, the processing instructions in Listing 14:

Constructor: OrbitIterator
Parameter: The start cell-tuple for the orbit (startCt) and the 
dimension (integer value) of the orbit to be computed (dimension).
1.  switch (dimension) {
2.  case 0:
3.    this.involutionsList = new int[] { 1, 2 };
4.    break;
5.  case 1:
6.    this.involutionsList = new int[] { 0, 2 };
7.    break;
8.  case 2:
9.    this.involutionsList = new int[] { 0, 1 };
10.   break;
11. case 3:
12.   this.involutionsList = new int[] { 0, 1, 2 };
13.   break;
14. default:
15.   throw new IllegalArgumentException("Unsupported
      dimension!");
16. }

Listing 14: Translating dimension integer parameter value into an involutionsList in 
OrbitIterator(startCt:CellTuple, dimension:int) constructor (Java code)

This  algorithm  simply  conducts  the  translations:  0-orbit  =  〈1,2〉d s ,  1-orbit  =

〈0,2〉 d s ,  2-orbit = 〈0,1〉d s  and 3-orbit = 〈0,1,2〉 d s . Other dimensions are

not allowed and provoke an IllegalArgumentException.

Realisation of hasNext and next method of OrbitIterator

The  realisation  of  the  hasNext and  next methods  of  OrbitIterator are  straight-

forward and analogous to the orbit traversal algorithm in Ch. 2.3. The  hasNext method

returns  true if  there is still  at least one cell-tuple in the stack, i.e. the  cell-tuple stack

(ctStack) is not empty (cf. Listing 15):

return !ctStack.empty();

Listing 15: Idempotent implementation of OrbitIterator.hasNext method (Java code)

The hasNext method implementation of OrbitIterator is idempotent123.

123 The invocation of the hasNext method does not manipulate/change the state (the structure of the class 
members) of OrbitIterator. This behaviour satisfies the requirement for hasNext method that is 
stated by the Java Iterator interface.
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In the first step of an orbit, the orbit always provides the start cell-tuple itself. Thus, there
is  always  a  cell-tuple  in  the  iterator  in  the  first  step  (which  is  startCt itself),  i.e.

hasNext()==true is always the case in the first invocation of hasNext.

The main functionality of an iterator over an orbit is to provide the next cell-tuple of the
orbit. This functionality is realized in the next method of the OrbitIterator class (cf.

Listing 16).

1.  if (this.ctStack.empty()) {
2.    throw new NoSuchElementException();
3.  }
4.  CellTuple result = this.ctStack.pop();
5.  CellTuple currCt;
6.  for (int i = 0; i < this.involutionsList.length; i++) {
7.    currCt = result.getInvolution(this.involutionsList[i])124;
8.    if (!this.marked.contains(currCt.getID())) {
9.      this.ctStack.push(currCt);
10.     this.marked.add(currCt.getID());
11.   }
12. }
13. return result;

Listing 16: Implementation of OrbitIterator.next method (Java code)

The first step in iterating an orbit is to check whether the stack of collected cell-tuples is
not empty (cf. line 1). If ctStack is empty, a NoSuchElementException is thrown by

the  next method.  However,  this  will  never  happen  if  the  API  user  always  invokes

hasNext in advance (which is a mandatory convention of iterator semantics). The top cell-

tuple of ctStack is popped of the stack and assigned to be the result of this invocation

of next method (in first step, this is the startCt itself).

Afterwards, all the involution steps that are registered in the involutionsList array of

this OrbitIterator, are iterated one-by-one, conducting the appropriate involution step

(depending on the integer value in the involutionsList) on the result cell-tuple and

assigning the result of that operation to currCt (see lines 6 and 7 of Listing 16).

Finally, it is checked whether currCt is in the marked set. If currCt is not already in

the  marked set (i.e. has not already been marked), then  currCt is pushed on ctStack

and added to the  marked set (i.e.,  currCt is marked). The  result cell-tuple is given

back as the return value of the method.

124 The getInvolution method of CellTuple class is a helper method that simply performs the 
involution which is defined by the integer number of the parameter value and returns the involution cell-
tuple as the method's return value.
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Orbits With Virtual Cell Barriers

As indicated  earlier,  the  Topology  Module provides  the means to  create  an  orbit  with

virtual cell barriers.125 In order to create such orbit, an additional integer value ( dimOL ) has

to  be  provided.  dimOL  defines  the  dimension  of  a  cell at  object  level that  cannot  be

exceeded  by the  orbit  at  net  level.  This  is  achieved  by prohibiting  the  orbit  to  do an
involution  step that  would “touch” one  of  the  cell-tuples  that  lie  outside  the  net  level
representation  of  the  cell  at  object  level  (cf.  Fig.  66 for  an  example  based  on
〈α0,α1,α2〉(d S (NL)) ).

The  left  hand  side  of  Fig.  66 shows  a  2-G-Map at  net  level  with  four  faces  and  an
0−1−2 -orbit, starting at d S (NL) . At object level, the whole complex is subdivided into

two faces  F A (OL)  and  F B OL , with  F AOL {F1 NL ,F 2 NL , F3 NL}  and  F B OL{F 4NL } . If

the constructor is now invoked with an arbitrary  cell-tuple of  F AOL  ( d S (OL) ), then the

orbit  will  start  with  its  “sibling”  at  net  level  d S (NL) .  Presuming  dim(OL)=2  in  this

example set-up, the cell of object level that is not allowed to be left by the orbit is the 2-

cell (i.e. the face; in this example  F OLA ). For the algorithm this means that at the 2 -

transitions between F NL 3   and F NL 4 , the orbit simply omits the 2 -involution and thus

never can “break-through” from  F NL 3   into  F NL 4  (illustrated in detail  view on right

hand side of Fig. 66). So in this example, only the cell-tuples of the complex that belong to
F AOL {F1 NL ,F 2 NL , F3 NL}  are collected.

To implement this functionality in OrbitIterator, only some small changes in the next

method are necessary. In the for-loop of Listing 16 (line 8), it has to be checked whether

there exists a d OL  for d NL . If d OL  exists, then the insertion of d NL  into ctStack is only

125 Realized in the third constructor of the OrbitIterator class.

Fig. 66: Example case for OrbitIterator barrier cell-tuple list
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allowed (pushCurrCtOnStackAllowed=true)  if  α2(d OL)  is  not  an outer  boundary

cell-tuple of F AOL  (see Listing 17):

1.  if (this.ctStack.empty()) {
2.    throw new NoSuchElementException();
3.  }
4.  CellTuple result = this.ctStack.pop();
5.  CellTuple currCt;
6.  for (int i = 0; i < this.involutionsList.length; i++) {
7.    currCt = result.getInvolution(this.involutionsList[i]);
8.    boolean pushCurrCtOnStackAllowed = false;
9.    if (!this.marked.contains(currCt.getID())) {
10.     if (this.dimForObjLevel == -1) {
11.       pushCurrCtOnStackAllowed = true;
12.     } else {
13.       if (!ctsOnBoundary.contains(currCt.
14.            getInvolution(dimForObjLevel).getID())) {
15.         pushCurrCtOnStackAllowed = true;
16.       }
17.     }
18.   }
19.   if (pushCurrCtOnStackAllowed) {
20.     this.ctStack.push(currCt);
21.     this.marked.add(currCt.getID());
22.   }
23. }
24. return result;

Listing 17: Extension of OrbitIterator.next method to handle cell barriers (Java code)

This mode of OrbitIterator becomes especially useful when it comes to the constraints
checking process of the editing algorithms (cf. Ch. 3.4).

3.3.2 Traversing Cells with the Help of Cell Iterators

To simplify the usage of the iterators over orbits that traverse all  cell-tuples of a certain,
given cell, it is useful to introduce an additional abstraction layer that eases the creation of
such topological queries.

Designing Cell Iterators

A cell iterator concept can be defined on the basis of the orbit iterator notion. In analogy to
the orbit  iterator,  an abstract cell  iterator  is also  iterable and provides an  iterator (Fig.
67).126

126 And thus also can conveniently be used in enhanced for-loops and lead to a stepwise processing when it 
comes to querying for the neighbourhood properties of cells (like demonstrated in previous section for 
orbit iterator).
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The AbstractCellIterator class has been designed to partially realise the Iterator

and Iterable interfaces. All cell iterators base on the same principle that they consume

an OrbitIterator instantiation as well as a dimension integer value and then process

an orbit of the given dimension. This means that cell iterators only consume a subset of all
orbit iterators, indeed only those that can be identified to be of a certain dimension.127

All  concrete  cell  iterators  can  be  grouped  into  the  boundary  cell  iterators (that  are
NodeIterator, EdgeIterator, FaceIterator and SolidIterator; cf. Fig. 68) and

the closure cell iterators (cf. Fig. 71).

All cell iterators internally forward topological queries to an orbit iterator. Cell iterators
translate topological queries on cells into suitable orbits. Thus, every  cell iterator has a
reference  to  one  instance  of  orbit  iterator  (inherited  from  AbstractCellIterator).

127 e.g. the orbit 〈0,3〉d   cannot be an orbit of a cell iterator since it does not traverse the cell-tuples 
of a cell (of a certain dimension).

Fig. 67: AbstractCellIterator abstract class

Fig. 68: Boundary cell iterator classes
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Internally, all the cell iterators always operate on an OrbitIterator. In order to create a
boundary cell iterator, a cell (i.e. a node, edge, face, or solid) has to be provided. The cell
iterators return all cells

• that are of the type that is indicated by the respective cell iterator's class designation
and

• that are adjacent or incident (depends on the cell's dimension) to the cell that is
given as parameter to the constructor of the cell iterator.128

Concept Details and Implementation Examples

A graphical representation of the cell iterators' functionalities is given in Fig. 69.129

Fig. 69 shows (for some example set-ups), which cells are provided by the different cell
iterators,  depending  on  the  type/dimension  of  the  cell  iterator  and  depending  on  the
type/dimension of the cell that is given to the cell iterator's constructor. The returned cells
are indicated by the arrows in the depiction. For example, the illustration in the last row of
the  last  column  shows  the  iterating  functionality  of  a  FaceIterator that  has  been

instantiated with an object of type Face as constructor parameter: the resulting cell iterator

returns all faces that are adjacent to the given face. To formulate such a topological query
that iterates all faces, adjacent to a given  face object, the cell iterator API allows for a
concise code (cf. Listing 18).

128 e.g. with the invocation of NodeIterator(Face) constructor, the instantiated iterator returns all nodes that 
are incident to the given face in an ordered sequence, whereas the invocation of FaceIterator(Face) 
constructor returns all faces that are adjacent to the given face

129 The SolidIterator has been omitted since the depiction would lead to ambiguities...

Fig. 69: Graphical representation of the respective iterating functionalities of 
cell iterators
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FaceIterator faceIterator = new FaceIterator(face); 
for(Face adjacentFace : faceIterator){ 
  System.out.println(adjacentFace); 
}

Listing 18: Usage of cell iterator API for the iteration of adjacent faces (Java code)

Internally,  the  several  constructors  of  the  cell  iterators  instantiate  appropriate
OrbitIterators (depending on which cell iterator constructor has been invoked) and

pass  it  to  the  AbstractCellIterator constructor.  This  shall  be  exemplified  by  the

constructors  of  NodeIterator class  in  Listing  19130 (this  is  similar  in  all  other
constructors).

public NodeIterator(Node node) {
  super(new OrbitIterator(node.anyCellTuple, 0), 0);
}
public NodeIterator(Edge edge) {
  super(new OrbitIterator(edge.anyCellTuple, 1), 1);
}
public NodeIterator(Face face) {
  super(new OrbitIterator(face.anyCellTuple, 2), 2);
}
public NodeIterator(Solid solid) {
  super(new OrbitIterator(solid.anyCellTuple, 3), 3);
}

Listing 19: Implementation of translation between a cell iterator and orbit iterators (Java code)

Any concrete extension of  AbstractCellIterator has still at least to implement the

next method (of the Iterator interface).131 On net level, on each step of the cell iterator,

it needs to do two steps on the orbit and then query the cell of the demanded dimension.

For example, the iteration of faces that are adjacent to a given face f g  should be executed

by  instantiating  a  FaceIterator with  f g  as  constructor  parameter.  The  inner

implementation  of  the  appropriate  FaceIterator constructor  instantiates  the  orbit

〈0,1〉d f g
 .  Then,  at  every  invocation  of  the  next method  of  FaceIterator,  the

algorithm of the  next method (only) needs to do an  0 -involution, ignore the resulting

130 In order to convey the idea, the concept presented in this chapter explains a simple model that has been 
used in an earlier version of GMapsDb3dModule. The latest procedure employs a more complex model 
in order to handle holes. Basically, the new cell iterators do a complete scan of a “big cell” (with 3-orbit)
and search for all cell boundaries. This procedure is similar to the one of closure iterators, which are 
addressed below in this chapter.

131 The hasNext method cannot be realised in AbstractCellIterator, because the implementation 
of hasNext highly depends on the type of cell iterator.
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cell-tuple and then, in the same step of next, do an 1 -involution and return the 2 -face

of the resulting cell-tuple as the result of the next method's invocation (Listing 20132):

public Face next() {
  CellTuple ct = this.orbit.next();
  Face result = ct.alpha2.face;
  this.orbit.next();
  return result;
}

Listing 20: Algorithm (simplified) of next method of FaceIterator (Java code)

This principle also works for the other cell iterator instantiations in similar ways.

Cells of Object Level in Cell Iterators

For  object  level  cells,  the  situation  is  more  complicated.  On object  level  it  has  to  be
considered that some incident/adjacent cells may appear more than once in an orbit. This is
explained on three examples in Fig. 70.

Illustration (1) of  Fig. 70 shows a detail of a 2-G-Map, where a  FaceIterator( f g )

shall iterate over all adjacent faces ( f 1, f 2, f 3,... ) of  f g . Now the simple approach of

iterating an  〈0,1〉 startCt   orbit and returning the face of an  2 -involution at every

second step of the orbit  would not produce the desired result,  since  f 2  is incident  to

multiple  edges  along the  orbit.  A similar  issue  occurs  if  an  adjacent  face  f 3  lies  in

between another  adjacent  face  f 2  (as in the second illustration).  The third illustration

132 The algorithm in the Listing starts with 1  instead of 0 , according to the sequence, implemented in 
the algorithm of OrbitIterator, as explained in Ch. 3.3.1.

Fig. 70: Examples of cell iterators where adjacent/incident cells occur more than once
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shows  that  a  similar  issue  occurs  not  only  with  FaceIterator but  also  with

EdgeIterator( f g ), where 〈0,2〉 d e  may return the same face f 1  on both sides of

the edge.

As a consequence, all cell iterators additionally need to maintain a set of visited cells (field
attribute  visited) that has to be checked at every step of  next (Listing 21 shows an

extended version of the method of Listing 20):

public Face next() {
  Face result = this.orbit.next().alpha2.face;
  while (this.visited.contains(result)) {
    this.orbit.next();
    result = this.orbit.next().alpha2.face;
  }
  this.orbit.next();
  this.visited.add(result);
  return result;
}

Listing 21: Algorithm (simplified) of next method of FaceIterator (Java code)

The various cell iterators are used by the  getNeighbour<cells> methods of the cell

classes (Ch. 3.1.3). In fact, the implementation of the  getNeighbour<cells> methods
consists of nothing more than an invocation of the appropriate cell iterator – as exemplified
by the implementation of the getNeighbourEdges method of Face class in Listing 22:

public EdgeIterator getNeighbourEdges() { 
  return new EdgeIterator(this); 
}

Listing 22: Implementation of getNeighbourEdges method of Face class (Java code)

Tabular Overview of Correlation Between Cell Iterators, Cells and Orbits

Every  getNeighbour<cells> method uses a unique combination of cell  iterator  and
constructor parameter. An overview is compiled in Table Table 2.
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NodeIterator EdgeIterator FaceIterator SolidIterator

Parameter type Node ( n )

OrbitIterator
invocation

OrbitIterator( d n , 0);

Orbit definition 〈1,2〉 d n〈0〉 d n

getNeighbour<cells>
method of n

Node.getNeigh
bourNodes()

Node.getNeigh
bourEdges()

Node.getNeigh
bourFaces()

Node.getNeigh
bourSolids()

Parameter type Edge ( e )

OrbitIterator
invocation

OrbitIterator( d e , 1);

Orbit definition 〈0,2〉 d e〈1〉de 

getNeighbour<cells>
method of e

Edge.getNeigh
bourNodes()

Edge.getNeigh
bourEdges()

Edge.getNeigh
bourFaces()

Edge.getNeigh
bourSolids()

Parameter type Face ( f )

OrbitIterator
invocation

OrbitIterator( d f , 2);

Orbit definition 〈α0,α1〉(d f )(〈α2〉(d f ))

getNeighbour<cells>
method of f

Face.getNeigh
bourNodes()

Face.getNeigh
bourEdges()

Face.getNeigh
bourFaces()

Face.getNeigh
bourSolids()

Solid ( s )

OrbitIterator
invocation

OrbitIterator( d f , 3);

Orbit definition 〈α0,α1,α2〉 (d f )(〈α3〉(d f ))

getNeighbour<cells>
method of s

Solid.getNeigh
bourNodes()

Solid.getNeigh
bourEdges()

Solid.getNeigh
bourFaces()

Solid.getNeigh
bourSolids()

Table 2: Overview constructor invocation and functionality of cell iterator objects

Table Table 2 shows an overview of which cell iterator is used in combination with which
cell type as its parameter in which  getNeighbour<cells> method. Therefore, all cell

iterators are listed in columns, whereas the cells are listed in rows. A combination of a cell
iterator  and  a  cell  leads  to  a  certain  query  for  neighbouring  cells  (a  certain
getNeighbour<cells> query).  For  example,  the  EdgeIterator with  a  constructor

parameter cell of type Face is used in the method Face.getNeighbourEdges (query for

all incident edges of a face). Additionally, the table shows for each cell iterator/constructor
parameter combination, which  OrbitIterator constructor invocation is used and how
the respective orbit is defined. In the given example (query for all incident edges of a face),

a 2-orbit ( 〈α2〉 (d f ) ) is instantiated by invoking the constructor  OrbitIterator( d f ,

2).
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Closure Cell Iterator Classes

As noted earlier, some cell iterators can be classified as closure cell iterators (see Fig. 71).

The closure cell iterators are similar to the boundary cell iterators despite that they do not
iterate only the boundary cells of a given cell but also the “inner“ cells of the given cell at
net level133. For example, a NodeNetLevelIterator that is instantiated with a parameter

object of type Face iterates all nodes at net level that are inside and at the boundary of the

given object-level face (cf Fig. 72).

Fig. 72 shows a sample net configuration with nodes  N OL={N 1 , N 2 , N 3 ,N 4 , N 5 , N 6 }  at

object  level  that  constitute  a  face  F OL N OL   at  object  level.  The  thicker  lines  in  the

illustration represent the object level while the thinner lines represent the net level. Thus,

the nodes of the net level are comprised of nNL= {n7 , n8 , n9 }  as well as of the siblings of

the cells of N OL  on N NL . While the boundary cell iterator NodeIterator( F OL ) would

return  N OL , the closure cell iterator  NodeNetLevelIterator( F OL ) returns  nNL  and

the siblings of N NL  on N NL .

The closure cell iterators internally use OrbitIterator objects that are instantiated with
the third constructor, i.e. orbit iterators that operate on net level and additionally never do

133 This is the reason why the naming of these iterators always contains a “NetLevel” part.

Fig. 71: Closure cell iterator classes

Fig. 72: Sample configuration
of a face net at object and 
net level
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an involution step that would “breach” the boundary of the object level cell of the given
dimension (Ch. 3.3.1).

Generally, the closure or net level cell iterators provide several constructors, defined as

r jc i , {i , j∈ℕ∣i≥ j } ,  with  c  being  the  constructor  parameter  cell,  r being  the  cell

iterator type,  i  being the dimension of  c  and  j  being the dimension of  r . However,
some  constructors  are  omitted  since  they  would  make  no  sense,  such  as
NodeNetLevelIterator(Node), since it makes no sense to query for all closure nodes

of a node.

The presented classes and methods operate on a very basic architectural level. They can be
used as a construction kit to create more complex, composite methods that manipulate/edit
the cellular structure of the cell complexes. However, before such complex methods can be
created,  an  additional  level  of  abstraction  should  be  conceived  that  allows  for  the
formulation of constraints that can be used in such complex editing methods.

3.3.3 Finding the Shortest Path on a G-Map

One of the primary implementation objectives of the Topology Module is the improvement
of  the  navigability  on  top  of  a  network  component.  The  best  way to  demonstrate  the
improved navigation capabilities is to implement an algorithm for finding shortest paths on
top of the  cell-tuple structure. Such an algorithm naturally places high demands on the
navigation capabilities on top of a network. Moreover, the discovery of a shortest path is a
relevant operation for a variety of applications – e.g. for the insertion of an edge into a
face:  in  this  case,  the  framework  user  specifies  only  the  two  nodes  (start  and  target)
between which an edge should be created, the framework has to determine the shortest
path on the net-level and create the edge accordingly (Fig. 73).

A fundamental algorithm to determine a cost minimizing path between a start node and a
target node is  DIJKSTRA's algorithm (Dijkstra 1959) which is a search algorithm for  edge-
weighted graphs. The basic idea of the algorithm is to follow at each node only those edges

Fig. 73: Finding a path on net level (light lines) between two 
nodes of an object level face (thick lines)
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that comprise the lowest costs so far.134 Arbitrary types of costs can be minimized by the
algorithm, e.g. the gasoline cost of a journey or the strength of curvature of a path or the
length (distance) of a path.

In the Topology Module, the determination of cost minimizing paths focuses on calculating
the minimal distance.135 The DIJKSTRA algorithm works only on edge-weighted graphs, thus
the path finding operates in two steps:

1. the minimal costs to reach any node are calculated,

2. the path with the lowest overall cost is determined.

In fact, the first step is computed “backwards”, i.e. starting at the target node and leading to
the  start  node,  and  then  the  second  step  calculates  the  shortest  path  in  the  “forward
direction”.

Initially,  the  algorithm  needs  an  empty  list136 of  nodes  that  still  have  to  be  visited
(nodesToVisit)  and  an  empty  list  of  nodes  that  already  have  been  visited

(visitedNodes).  Furthermore,  the algorithm needs an extended definition  of  a  node.

Therefore,  a  class  DNode (“distance-node”)  is  defined that  extends the  notion  of  node

(class  Node)  by  the  specification  of  a  distance  value  (cf.  distance attribute  of  type

double in Fig. 74).

Thereby, every  DNode is a node that knows its  path distance from the target  node. In

addition, every DNode memorizes its precursor; a precursor is defined as the DNode

that the path finding algorithm identifies as the preceding node on a path. A DNode further

134 The implementation of the algorithm in the GMapsDb3dModule is loosely following (Waldura 2007).

135 The method is implemented as the (single) method of the function object class Dijkstra. A function 
object class is a class that provides only one method – thus its only reason for existence is to provide the
functionality of that method. The method of the class is called getShortestPath. It takes the 
parameters start and target of type Node and returns an array of cell-tuple objects (CellTuple) 
that are “touched” by a sequence of involutions that represent the shortest path between the given 
start and target parameters; or it returns an empty array if no shortest path could be found.

136 Also FIFO

Fig. 74: Definition of DNode
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notes the “in”-cell-tuple of the node: this is the one cell-tuple of every node that shows into
the direction of the precursor.

The full algorithm of the getShortestPath method is described in Listing 23.

Method: getShortestPath 
Purpose: Finds the shortest path between the given start and target 
nodes 
Parameter: The two nodes (of class Node) start and target between which
the shortest path is to find 
1. Add the target node itself to the nodesToVisit list137

2. While the list of the nodes that still are to visit
   (nodesToVisit) is not empty
3.   Poll a node from nodesToVisit and define the node as
     currentNode
4.   Put currentNode into the set of visited nodes
     (visitedNodes)
5.   Get all nodes that are adjacent to currentNode
6.   For every adjacent node
7.     If the adjacent node has not already been visited (is not
       part of the visitedNodes set)
8.       Calculate the Euclidean distance between currentNode
         and the current adjacent node as incrementalDistance 
9.       Add incrementalDistance to the distance of currentNode
         as distanceToTargetNode
10.      If the adjacent node is not part of the nodesToVisit
         set
11.        Add the node to the nodes of the nodesToVisit list
12.        Update the distance value of the adjacent node with
           current distanceToTargetNode value and update the
           path of the adjacent node
13.      Else
14.        Compare the distance value of the adjacent node with
           distanceToTargetNode value
15.        If distanceToTargetNode is less than the distance
           value of the adjacent node
16.          Update the distance value of the adjacent node with
             current distanceToTargetNode value and update the
             path of the adjacent node

Listing 23: Pseudocode description of getShortestPath method of the Dijkstra class

The determination of adjacent nodes in step number 5 of Listing 23 is a costly operation in
db3dcore of  quadratic runtime but an inexpensive operation of  linear runtime with the
help of the cell-tuple structure (cf. Ch. 2.2).

Fig.  75 shows  a  simple  example  of  a  path  finding  scenario.  Each  of  the  four  single
drawings shows the state of the algorithm (and the state of the lists  nodesToVisit and

visitedNodes and  the  nodes  that  are  adjacent  to  the  current  node)  at  the  second

execution step of Listing 23.

137 This is the natural precondition for the algorithm to work since it needs at least one node that has to be 
visited.
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In the first step (depiction 1), the algorithm starts with the target node nt (nt is active). The
node is removed from the nodesToVisit list and added to the visitedNodes list. The

adjacent nodes of nt are identified, which are n1, n2, and ns and put onto the nodesToVisit
list.  Then the  EUCLIDEAN distances between  nt  and all  adjacent  nodes are calculated and
memorized.  The  precursor of  nodes  n1,  n2,  and  ns  (start  node)  are  set  to  nt.  Next

(depiction 2), node n1 is set as the active node, it is removed from nodesToVisit list and

added to visitedNodes list. The nodes that are adjacent to n1 are identified, which are nt

and ns. Of the adjacent nodes, only the nodes that have not already been visited (that are
not already on the nodesVisited list) are further processed: in this case only ns is further
processed. The distance of ns to nt along n1 node is calculated and compared to the direct
distance between ns and nt. Since the straight distance between ns and nt is smaller than the
distance along node n1, the precursor of ns is not changed: it still directly points from ns

to  nt. The same steps are undergone for node n2 (depiction 3). Finally (depiction 4),  ns is
evaluated. Since all adjacent nodes of ns have already been visited, there is no processing
necessary anymore.  The algorithm terminates,  since there are  no more elements  in the
nodesToVisit list.

At this point, an edge-weighted graph has been created on top of the net component. In the
next step, the shortest path can be calculated, simply by following the precursor of every
node, starting at ns and collecting the path cell-tuples at every node in a result list:

17. Get the start node and call it currentNode
18. While currentNode is defined (not null)
19.   If currentNode has a precursor node
20.     Add the cell-tuple of currentNode (that is pointing to
        the precursor) to the result list
21.     Add the 0  cell-tuple of the cell-tuple of step 18
        (i.e. the cell-tuple of the adjacent node of
        currentNode) to the result list
22.   Assign the precursor of currentNode to currentNode

Listing 24: Collecting cell-tuple of shortest path in a result list

Fig. 75: Simple example of a path finding scenario
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Once the while-loop of the 18. step of Listing 24 quits, all cell-tuples of the shortest path

from ns to nt are collected in a result array and given back as the method's return value.
To be precise, these are the cell-tuples that are “leading in and leading out” of the nodes of
the shortest path.

Due to the complexity of the geo-objects that may be modelled in DB4GeO, the writing of
an algorithm for navigation on that geo-objects is easier with the  cell-tuple structure. By
introducing this structure, even the complexity of incidence/adjacency graphs138 that have
nodes with high degrees could be reduced so much that an intelligible modelling became
feasible.

3.4 Methods that Manipulate the Cellular Structure 

This chapter will describe the algorithms that are used to edit the cellular structure of the
cell  nets.  They  have  already  briefly  been  introduced  in  Ch. 3.1.8 as  methods  that  are
required  by  the  EditableCellNet3dCompLevel interface.  The  editing  algorithms
always operate two-staged:

1. The algorithms check whether the intended editing of the cell net is permissible –
in  the  sense  that  no  inconsistent  state  of  the  cell  net  arises  from  the  editing
operation. This is achieved through a process that checks several constraints that
are defined individually for each editing method.

2. The actual alteration of the cell net is performed.

In the following sections these two steps are exemplary explained for the editing methods
of FaceNet3dCompLevel). A systematic evaluation of editing operations and constraints
is not provided since this is out of scope of this thesis. However, such evaluation would be
of particular value and should be performed in future.

3.4.1 Method to Insert a Node on a Face Net Component

A basic editing operation for a face net component is the operation to insert a node into an
already existing edge. In order to insert a node, two elements have to be provided which

are  a  node  at  net  level  ( nNL )  and  an  edge  at  object  level  ( eOL ).  nNL  is  used  as  a

“template” to create a new node at object level ( nOL ) as its “sibling”. “Sibling” means here

that  the  geometric  part  of  nOL  shall  be  equal  to  the  geometric  part  of  nNL  (cf.  right

illustration of Fig. 76).

138 The graph that is meant here is the graph that is mentioned in Ch. 2.2, where the nodes are the d-cells 
and the edges are the connections betweens the cells.
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Fig. 76 shows an example of an insertNode operation where the left illustration shows a
face  net  component  before  editing  and  the  right  illustration  shows  the  same  face  net
component  after  the editing  process.139 In the figure,  the thick lines  and dots represent
edges and nodes at object level while the thin lines represent edges at net level.140

In the left illustration, eOL  represents the edge that is passed to the insertNode method

as the second parameter in this example set-up. The geometric representation of eOL  runs

along the shortest path (on top of the triangle net of the net level) between the nodes ne1

and ne2  (i.e. eOL ne 1 , ne2  ).

The insertNode method splits eOL  into e1OLnOL , ne1  and e2 OLnOL , ne2  (cf. right

illustration  of  Fig.  76).  This  leads  to  a  re-computation  of  the  path  of  the  geometric
representation of the edge.  Two new shortest  paths are computed (with the help of the

shortestPath method)141 – one between ne1  and nOL  and one between ne2  and nOL .

These shortest paths are stored nowhere permanently but are only computed to perform
consistency checks before conducting the operation.

There are several consistency conditions that have to be verified before a node can be
inserted into an edge. Beginning with obvious and simple verifications such as

• the  check  whether  the  given  nNL  and  eOL  actually  exist  (i.e.  are  not  null),

proceeding with checks

• whether nOL  is already part of another edge, or

• whether  nNL  and  eOL  are  part  of  the  cell  net  component  on  which  the

insertNode method has been invoked.

Such consistency requirement can be checked efficiently due to underlying model of the
Topology Module. For example, the last requirement can be checked easily and fast, since

139 Though, this could also depict two arbitrary faces somewhere inside a more complex face net 
component.

140 i.e. both levels are shown here superimposed

141 c.f. Ch. 3.3.3

Fig. 76: Example of insertNode, represented on object and on net level (left: 
before operation, right: after operation)
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every object of a realising class of  CellNet3dCompLevel interface has ordered sets of
cells – these sets can efficiently be queried for whether they contain a certain cell.

The next consistency condition to be checked is whether nOL  would lie in one of the both

faces ( f 1  and f 2 ) that are incident to eOL  after the operation (cf. illustration a) in Fig.

77142).

If the node lies neither in f 1  nor in f 2  but in another face (like in f 3  in the illustration),

the insertion operation will not perform (the  insertNode method aborts and returns an

Exception), since the intended operation in such set-up is actually not insertNode but

a  more  complex  operation  that  is  a  composite  operation of  a  sequence  of  editing
operations.

The presented consistency condition check is a suitable example of a complex topological
query,  but  yet  is  simple  to  formulate  due  to  the  well  defined  model  of  the  Topology

Module. In Listing 25, for example, the boolean variable nNL
ispart ?  stores the result whether

nNL  is a part of the neighbour faces of eOL .

1. boolean nNL
ispart ?  = false;

2. for(Face f eOL
 : eOL .getNeighbourFaces()){

     NodeNetLevelIterator nodeNlIt =
new NodeNetLevelIterator( f eOL

);
3.   for(Node nodeTemp : nodeNlIt){
4.     if(nodeTemp == nNL ){

5.       nNL
ispart ?  = true;

6.       break;
7.     }
8.   }
9. }

Listing 25: Topological node-in-face query in blended pseudo code

142 In the illustrations of Fig. 77 the underlying triangle net structure is hidden for simpler reception. 
However, it should always be assumed to be given

Fig. 77: Examples of illegal states for insertNode method
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To determine whether  nNL  is a part of the neighbour faces, first, the neighbour faces of

eOL  are queried (line 2). For each neighbour face of eOL  (line 3), all nodes of f eOL
 at net

level (use of closure cell iterator) are checked for equality with nNL  (line 4). If an equality

is detected, the algorithm terminates successfully (line 5 and line 6), i.e. with the result that
nNL  is in a neighbour face of eOL .

Another consistency condition is that the paths of the geometric representation of  e1OL

and e2 OL  are not allowed to intersect the geometric representation of any other edge of

the  neighbouring  faces  (cf.  illustration  b) in  Fig.  77),  since  this  would  also  yield  a
composite operation or even be impossible in the case that the new edges run through the
“outer void” (due to the underlying functionality of DB4GeO).

Furthermore, it is not permissible that two or more edges at object level share the same
geometric representation (depicted in illustration  c) in  Fig. 77). This is because it would
break  the  refinement postulate  (cf.  Ch. 2.4.3)  and  lead  to  a  situation  that  cannot  be
modelled as correlation between object and net level without ambiguities.

After the constraints for  insertNode have been checked, the alteration of the cell net
itself is performed (Fig. 78).

During the operation of inserting a new node into an existing edge, the edge is split in two

parts by the node. For the node at net level ( nNL ), a new “mirror” node at object level is

created. The given node at net level is be linked to the newly created node at object level as
its higher level of detail “sibling”.

In the first step of the process, a new node at object level  nOL  is instantiated that is the

“sibling” of  nNL . Then, two new edges  e1OL  and e2 OL  are created at object level. An

arbitrary cell-tuple ( d e ) of eOL  is assigned to be a cell-tuple of e1OL  from now on (i.e.

before:  d e=d (eOL) ,  after:  d e=d (e1(OL)) ;  cf.  Fig.  78).  The  cell-tuple  ( d α )  of  an  ɑ0-

involution  of  d (e1 (OL))  is  assigned  to  be  a  cell-tuple  of  d (e2(OL))  (i.e.:  before:

d α=α0(d (eOL)) , after: d α=d (e2(OL)) ).

Fig. 78: Adding new cell-tuples when performing insertNode method
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Since the preceding edge will be deleted and instead two new edges are inserted, all 1-cell
(edge)  references of  affected  cell-tuples  need to  be exchanged.  Effected  cell-tuples  are
d (eOL) ,α0(d (eOL)) ,α2(d (eOL))  and  α0(α2(d (eOL))) . For all these  cell-tuples, the edges

are reset ( eOL→e1 (OL)  and eOL→e2 (OL) ).

The splitting of an edge has the consequence that four new cell-tuples of nOL , which are

d1, d2, d3, d4 ,  are  introduced  into  the  structure.  The  cell-tuples  are  instantiated  and

consistently linked with the appropriate cell, such that every  cell-tuple represents a valid
incidence graph in the end of the process (according to the concepts introduced in Ch. 2.2
and  Ch. 2.3).  The  newly  created  cell-tuples  are  embedded  into  the  existing  cell-tuple

structure by setting all missing involution links (such as  α0(d1)=d(eOL) ) and all back

references (such as α0(d (eOL))=d1 ).

As the situation between net level and object level also changes when a node is inserted,

the links between net and object level  cell-tuples are updated. The cell-tuples of nNL  are

re-linked  to  the  cell-tuples  of  nOL  (for  example  higher (d1)=d (nNL)  and  its  back-

reference lower(d (nNL))=d1 ).

Finally, all newly created cells and  cell-tuples are added to the appropriate component's

indices (cellTupleIndex,  edgeIndex etc.),  eOL  is removed from the edge index and

nOL  is returned as the methods return value.

3.4.2 Method to Insert an Edge on a Face Net Component

Another basic editing operation for a face net component is the operation to insert a new
edge e  into an already existing face of a face net component. e  is inserted between two

given nodes n1 , n2  (cf. Fig. 79).

Fig. 79 shows an example of an insertEdge operation where the left illustration shows
face  net  component  before  editing  and  the  right  illustration  shows  the  same  face  net
component after the editing process. In the figure, the thick lines and dots represent edges
and nodes at object level while the thin features represent objects at net level.

Fig. 79: Example of insertEdge operation, represented on object and on net level
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To perform the insertEdge operation, three parameter values are needed, one object of

type Face f  and two objects of type Node n1 , n2 . n1 , n2  have to be the nodes that will

constitute the boundary nodes of the new edge.  f  has to be the face that is split by the

edge  insertion  operation  into  two  new  faces  f 1 , f 2 .  Obviously,  n1 , n2  have  to  be

(boundary)  nodes  of the  same face ( f ),  otherwise the new edge would intersect  with

existing edges. A shortest  path is computed between  n1  and  n2  (with the help of the

shortestPath method). The shortest path is not stored permanently but is only computed
to perform consistency checks before conducting the operation.

There are several consistency conditions that have to be verified before an edge can be
inserted  into  a  face.  Beginning  with  obvious  and  simple  verifications  like  the  check

whether  given  n1 , n2  and  e  actually  exist  (i.e.  are  not  null),  proceeding  to  checks

whether  n1 , n2  and  e  are  part  of  the cell  net  component  on which the  insertEdge

method has been invoked.

Another  consistency  condition  to  be  checked  is  whether  e  would  intersect  or  partly
overlay any other edge (cf. Fig. 80).

The left  illustration  of  Fig.  80 shows an example,  where  if  e  (dotted  line)  would  be
inserted,  it  would (twice)  intersect  a  boundary edge of  f  (which  would be an  illegal
operation). The right illustration shows the object level (thick lines) and the net level (thin
lines) of an example set-up. Due to the spatial configuration of the net level,  e  would
partly overlay an already existing boundary edge of f  on object level (which would be an
illegal operation as well).

After  the  discussed  constraints  (and some other  simpler  tests)  have  been checked,  the
alteration of the cell net itself is performed (Fig. 81).

Fig. 80: Examples of illegal states in insertEdge 
method
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In the insertion operation, first a new object e of type Edge and two new objects f 1, f 2  of

type  Face are created on object level and put onto the  edge  and  face index of face net

component of object level. Next, the shortest path on net level between start node n1  and

target node n2  is computed. The shortest path is needed in order to find the cell-tuples at

net level that are hierarchically linked to the newly created cell-tuples of e ( d1, d2, d3, d4 ) at

object level. All cells (i.e. n1, n2, e , f 1, f 2, sU ) are set on the newly created cell-tuples as well

as all involutions (i.e. α0,α1,α2,α3 ). For example, α1  of (n1, e2, f , sU)  now points to d1

instead to (n1, e1, f , SU)  (as it did before operation). Finally, all face references of all cell-

tuples  of  f  are  reset  to  f 1  and  f 2  respectively.  Therefore,  a  2-orbit  around  f  is

performed in order to distinguish cell-tuple that belong f 1  from cell-tuples that belong to

f 2 .

3.4.3 Method to Remove Node and Edge From Face Net Component

Removing Nodes From Edges

The inverse operation to adding a node into an edge is to remove an existing node from an
edge. In order to remove a node, one element has to be provided which is the node n that

has to be deleted. n lies in between (connects) exactly two edges e1 , e2 . If n is removed,

then  e1 , e2  are  merged  into  a  new  edge  e.  The  removeNode method  is  the  inverse

operation  to  the  insertNode method.  Thus  the  figures  used  in  describing  the

insertNode method  also  apply  here.  For  an  illustration  of  an  exemplary  operation
process, depicted on object and net level, you may confer to Fig. 76 and read it backwards.

As with the insertion methods, also in the  removeNode method, constraints have to be

checked before the actual delete operation can be performed. First, simple constraints like
that the given Node object cannot be null or that the given node has to be part of the net

component that the removeNode method is invoked on, are checked. Then more complex
constraints are evaluated, such as that e  is not allowed to intersect or partly overlay any
other edge (cf.  Fig. 80), or that a node may be removed only if exactly two edges are
incident to the given node (cf. left illustration of Fig. 82).

Fig. 81: Adding new cell-tuples when performing insertEdge method
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In Fig. 82, a valid spatial configuration is depicted on the left side in “delete node” section,
since here, exactly two edges are incident to n. An invalid spatial configuration is depicted
on the right side in “delete node” section, since more than two edges (here: three edges) are
incident to  n. This is an important validity check for node removal, since an intersection
between two edges always causes an intersection node. Thus, a deletion of a node in an
intersection  of  more  than  two  edges  leads  to  an  invalid  edge  intersection  without  an
intersection node. As an advantage of the Topology Module framework, the validity check,
whether a node is incident two exactly two edges is quite simple, following the code of
Listing 26:

boolean isExactlyTwoEdges = false; 
isExactlyTwoEdges = node.getNeighbourEdges().size() == 2;

Listing 26: Checking for edge neighbourhood properties of a node (Java code)

In  Listing  26,  isExactlyTwoNodes variable  contains  BOOLEAN value  that  encodes

whether the node to delete is incident to exactly two edges (true) or not (false).

After  the  discussed  constraints  (and some other  simpler  tests)  have  been checked,  the
alteration of the cell net itself is performed. The remove node operation performs similar
steps as the insert node operation, but in a backwards manner. Explained on the basis of

Fig. 78, first, a newly created eOL  is added to the edge index. The edge references of cell-

tuples α0(d1) ,... ,α0(d4)  are reset to eOL . The α0 -involution of cell-tuple α0(d1)  is re-

linked such that α0(α0(d1))=α0(d2) . This process is similarly repeated for the other cell-

tuples  d2, ... , d4 . Finally, all  cell-tuples that contain  nOL  ( d1, d2, d3, d4 ) are removed from

cell-tuple index. Then the cells nOL , e1(OL) , and e2(OL)  are also removed from the indices.

Removing Edges From Faces

The inverse operation to adding an edge into a face is to remove an existing edge e from a

face. e lies in between (connects/separates) exactly two faces f 1 , f 2 . If e is removed, then

Fig. 82: Examples of valid and invalid spatial configurations for node and edge delete 
operations



CHAPTER 3  DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR 
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 121

f 1 , f 2  are merged into a new face f . The removeEdge method is the inverse operation

to the insertEdge method. Thus, the figures used in describing the insertEdge method

also apply here. For an illustration of an exemplary operation process, depicted on object
and net level, you may confer to Fig. 79 and read it backwards.

As  in  the  insertion  method,  also  in  the  removeEdge method,  constraints  have  to  be

checked before the actual delete operation can be performed. Beside trivial constraints like
that the given Edge object cannot be null or that the given edge has to be part of the net

component that the  removeEdge method is invoked on, another important constraint is
that an edge may be removed only if exactly two faces are incident to the given edge (cf.
left side in “delete edge” section of  Fig. 82). In  Fig. 82, a valid spatial configuration for
edge deletion is depicted on the left side in “delete edge” section. Here, exactly two faces
are incident to e. Invalid spatial configurations are depicted in the centre and on the right
side in “delete edge” section. The centre depiction shows a spatial  configuration where
more than two faces (in this case: three faces) are incident to the edge that shall be deleted.
This is an important validity check for edge removal, since an intersection between two
faces always causes an intersection edge. Thus, a deletion of an edge in an intersection of
more than two faces leads to an invalid face intersection without an intersection edge.

The right depiction of Fig. 82 shows a spatial configuration where the edge e to be deleted

is part of a face that is surrounded by U f . The deletion of e converts the inner face into

U f  which leads to an inconsistent cell-tuple structure (non-manifold). The cell-tuples d1

and  d2  are  not  unique any more  after  the operation  but represent  the same  cell-tuple

(n1, e1, U f , US) .

After the discussed constraints (and some other tests) have been checked, the alteration of
the cell net itself is performed. The remove edge operation performs similar steps as the
insert edge operation, but in a backwards manner. Explained on the basis of Fig. 81, first, a

newly created  face  f OL  is  added to  the  face  index.  The face  references  of  cell-tuples

⟨α2⟩(d1)  and ⟨α2⟩ (d4)  are reset to f OL . The α2 -involution of cell-tuple α2(d1)  is re-

linked such that α2(α2(d1))=α2(d4) . This process is similarly repeated for the other cell-

tuples d2, ... , d4 . Finally, all cell-tuples that contain e ( d1, d2, d3, d4 ) are removed from cell-

tuple index. Then the cells e, f 1 , and f 2  are also removed from the indices.

So far, the concepts, inner design principles,  construction and editing operations of the
Topology  Module have  been  described  that  add  an  abstraction  layer  to  the  DB4GeO
database architecture to manage the topology of arbitrary 2D and 3D cells. The module
utilizes  the  concept  of  interconnected  net  and object  levels  of  cell  nets.  However,  the
concept of subdividing cell net components into net and object level is also a precursor to a
concept that allows for the modelling of arbitrary numbers of hierarchy levels – not only
two levels.



122 CHAPTER 3  DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR 
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

3.5 Management of Levels of Detail of Cell Net Components

The  modelling  of  several  levels  of  detail  of  data  is  a  pivotal  task,  particularly  in
applications dealing with geoinformation.143 The main scheme in this approach is to extend
the  already implemented  concepts  and to  reuse  much of  the  development  efforts.  The
classes that are designed for the management of the LoD are based on the net and object
level  architecture  described  in  Ch. 3.1.8.  The  basic  idea  of  the  LoD approach  of  the
Topology Module is to allow for the insertion of any number of additional detail levels in
between the object and the net level. These additional detail levels behave more “object-
level-like” than “net-level-like”, since they also are editable – like the object level (cf. Fig.
83).

Fig. 83 shows a simple sample configuration of a face net component with several  LoD
(the  illustration  can  be  interpreted  as  four  layers  of  LoD,  which  are  depicted
simultaneously  one over the other).  It  is  also the result  of an editing  session that  was
performed on the different LoDs. The session is described in the following section.

At object level the face net component consists of one face  f 1  (see top of illustration).

The  net  level  shows  the  triangle  net  structure  of  the  face  net  component  (bottom  of
illustration). The two face net components LoD 1 and LoD 2 are additional levels of detail
that  are  forming  intermediate  steps between  the  net  and  the  object  level.144 These
intermediate levels are derived from copies of existing levels. After the copies of existing

levels are created, they are edited. At LoD 1, a new edge is inserted that splits f 1  into the

143 For some thoughts on the application relevance of systems that are capable of managing multiple LoDs, 
see Ch. 2.4 and (Butwilowski 2007, 13 et seq.)

144 Counting starts at 1 with the lowest level of detail after the object level (the object level itself is actually 
defined as LoD 0)

Fig. 83: Simple face net example of several 
LoD
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two new faces f 2  and f 3 . So f 2  and f 3  are cells that only exist at LoD 1. At LoD 2,

again a new edge is inserted and f 2  is split into the two faces f 4  and f 6 . Thus, f 4  and

f 6  only exist at LoD 2. Although face f 5  of LoD 2 is identical to f 3  of LoD 1, this two

cells are separate instances. This behaviour is intentional by design, since it is an objective
to be able to distinguish similar cells at different LoD in order to assign different property
values to the equivalent cell on different levels.

Before the algorithmic characteristics of the model are described, an overview of the class
model145 of the chosen approach is given in the following section (cf. Fig. 84).

Fig. 84 is based on  Fig.  49 of Ch. 3.1.6 and shows, how the classes of the Geometric
Model, the gmaps.model3d package and the gmaps.hierarchy package relate to each

other. While Fig. 49 only shows how the classes of the gmaps.model3d package extend
classes  of  the  Geometric  Model,  Fig.  84 also  shows  how  the  classes  of  the
gmaps.hierarchy package further extend classes of the gmaps.model3d package and

thus  reuse  some  of  the  already  available  functionality  and  extend  them  with  LoD
functionality.146

The most important design decisions are that the  HFaceNetBuilder class extends the

FaceNetBuilder class, the  HFaceNet3d class extends the  FaceNet3d class and the

HFaceNet3dComp class extends the  FaceNet3dComp class. The same applies to curves

and solids. From this, the instantiation process of an “LoD enabled” cell net component is
analogue to the instantiation process of a “simple” cell net component; the required code
has  been  presented  in  Listing  3:  at  first,  an  HFaceNetBuilder is  constructed  by

providing it  the triangles of a net as parameter in an array through its  addComponent

method.147 The  HFaceNetBuilder returns an  h-face net (an instance of  HFaceNet3d)

145 All classes that provide the functionality for managing several hierarchy levels of cell components are 
gathered in the separate package edu.kit.db3d.gmaps.hierarchy. The set of classes of the 
hierarchy package is analogue1 to the classes of the above discussed ...gmaps.model3d package

146 The class schema is similar for solid nets/tetrahedral nets

147 The addComponent method of HFaceNetBuilder overrides the homonymous methods of 

Fig. 84: Architecture of hierarchical net builder as an extension of the cell net builder architecture
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through  its  getTriangleNet method.  An  h-face  net  consists  of  an  arbitrary  (0 to

unlimited) number of h-face net components (objects of type HFaceNet3dComp).

Fig. 85 shows a more detailed view, concerning the HFaceNet3dComp class.

Fig. 85 shows that an  h-face net component consists of an arbitrary number of levels of
detail (i.e. objects of type LOD). A level of detail is a face net component level (extends the

FaceNet3dCompLevel class).  Since  a  FaceNet3dCompLevel is  an  editable  cell  net

component  level  (i.e.  it  is  a  realisation  of  the  EditableCellNet3dCompLevel

interface), also a level of detail is an editable cell net component level (cf. Fig. 86).

Since  HFaceNet3dComp is  a  FaceNet3dComp,  every  instance  of  HFaceNet3dComp

consists  of  exactly  one  FaceNet3dCompNetLevel (the  net  level)  and  exactly  one

FaceNetBuilder and of TriangleNetBuilder

Fig. 85: Relationship between the classes that build the net level, object level and LoD

Fig. 86: Class LOD is a realisation of 
EditableCellNet3dCompLevel 
interface



CHAPTER 3  DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR 
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 125

FaceNet3dCompLevel (the object  level)  as well  as an arbitrary  amount  of additional
LoD.

When  the  API  user  has  instantiated  an  “LoD enabled”  face  net  by  the  means  of  the
HFaceNetBuilder, that face net at first only consists of one net level, one object level

and no levels of detail. Only then the user may begin to create additional LoD. To do so,
the user has to utilize methods of the HFaceNet3dComp class (cf. Fig. 87).

Fig. 87 shows the methods of  HFaceNet3dComp class.  HFaceNet3dComp class inherits

the behaviour (i.e. all methods) of FaceNet3dComp class and adds methods for appending

and retrieving additional  LoD. Furthermore,  the  HFaceNet3dComp class  reimplements

and  overrides  all  the  count<cells>-methods  of  FaceNet3dComp class  since  these

methods return the cell numbers of the whole component – i.e. of all detail levels together.
FaceNet3dComp only had to consider net and object level when calculating cell numbers

but  HFaceNet3dComp also needs to take into account the cells of all intermediate  LoD.

Thus, the count<cell>-methods need to be overridden.

To insert a new LoD into an h-face net component, the HFaceNet3dComp class provides

an  addLod method  that  takes  two  method  parameters,  an  lodToCopy of  LOD type  (

LODmaster ) and the  boolean value  copyOfLower.  LODmaster  is the  LoD of which the

topological structure is copied. It is an exact copy where for every existing cell, a new cell

(a  new  instance)  is  created  on  the  new  LoD ( LODcopy ).  The  boolean parameter

copyOfLower indicates whether LODcopy  is created as a copy of a lower LODmaster  or as

a copy of a higher LODmaster  (cf. Fig. 88).

Fig. 87: Additional methods of HFaceNet3dComp class
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If  copyOfLower is  true, then LODcopy  is created as a copy of a lower LODmaster  (i.e.

LODcopy  is  defined  as  a  higher LoD than  LODmaster )  if  otherwise  copyOfLower is

false then LODcopy  is created as a copy of a higher LODmaster  (i.e. LODcopy  is defined

as a lower LoD than LODmaster ).

The  LOD class itself is a subclass of  FaceNet3dCompLevel class and thus inherits its

behaviour but also adds some LOD class specific methods (cf. Fig. 89).

To freely navigate between levels of detail, the LOD class adds two methods getHigher

and  getLower that each return an object of  LOD class that represents the  LoD one step

higher (i.e. with more details) or one step lower (i.e. with less details). Each LOD instance

also provides a  getFaceNetComponent method that allows to navigate  “back” to the

superordinate  h-face net component, which in turn facilitates direct steps to the net level
(getNetLevelComp method  of  FaceNet3dComp class)  and  to  the  object  level

(getObjectLevelComp method of FaceNet3dComp class).

The LOD class provides two constructors for instantiation (cf. Fig. 89). The first constructor

consumes  a  FaceNet3dCompLevel object  as  its  objectLevel parameter.  This

constructor just transforms an existing  FaceNet3dCompLevel object into an object  of

LOD type without making any further computations (especially there is no copy process

involved at this stage). Such an LoD object is yet not integrated into the hierarchy structure

Fig. 89: Additional methods and constructors of LOD class

Fig. 88: Effect/purpose of copyOfLower parameter (on the LoD copy process)
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of any  h-face net component.  Thus, to complete the building of a fully functional  LOD

object, the object has to be integrated into an h-face net component by passing the new LOD

object  as  a  parameter  to  the  addLoD  method of an object  of  FaceNet3dCompLevel

class. This process is outlined in Listing 27, where objectLevel is the object level of a

face net component and hFaceNetComp is an object of type HFaceNet3dComp.

FaceNet3dCompLevel objectLevel;
...
LOD lodToCopy = new LOD(objectLevel);
hFaceNetComp.addLod(lodToCopy, true);

Listing 27: Integration of a new LOD into an h-face net component by passing the object as parameter value 
(Java code)

In Listing 27, the object level of an existing face net component is used as the master to
create a copy LoD which then is inserted into an h-face net component as the LoD 1 – i.e.
the LoD is defined more detailed than the object level but less detailed than the net level
(analogue to the left depiction in Fig. 88).

A remarkable  advantage  of  the  outlined  LoD management  approach  is  that  it  is  not
invasive to the non-LoD core of the Topology Module. For example, the CellTuple class
of  core  Topology  Module had  not  to  be  manipulated  in  order  to  operate  in  LoD
management.  The  lower and  higher links  of  CellTuples  that  are  used  to  switch

between net level and object level,  are also used to switch between two LoDs in  LoD
management. All higher and lower links are set between CellTuples of different LoD
by the same principles as described in Ch. 3.1.8.

3.6 Implementation of a Geo-DBA For Time-Varying Topologies

The historical development of the currently utilized  spatio-temporal models of  DB4GeO
for the management of temporal change in geometry and the theoretical foundations of
these and related models have been outlined earlier in Ch. 2.5. The required capabilities of
a temporal topology module implementation for  DB4GeO are discussed on the basis of
case studies in the following. Then a proposal for an architectural frame for a Temporal
Topology  Model  is  developed.  The  model  is  based  on  the  Temporal  Joint  Model in
DB4GeO that has been implemented by KUPER (cf. Ch. 2.5.5). Finally, it is clarified, which
adjustments have to be performed on the  Piesberg data (Ch. 1.6) in order to be able to
process the data in further experiments of the Temporal Topology Module.

3.6.1 Required Capabilities of a Temporal Topology Module

The DB4GeO Temporal Joint Model is capable of managing temporal change of geometry
and also supports the functionality to switch the underlying meshing of the geo-object at
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certain  time steps.  Fig.  90 demonstrates  the functionality  of the  Temporal  Joint  Model
through an example set-up.

In the example, first, at time step t=1, a set of points SPa  (Point3D objects) is added to

the temporal object (left side of Fig. 90) through the addTimeStep method of Object4D

class. This operation also prepares point tube PT a  and adds the set of points as the first

entry of PT a . Additionally, a meshing for the existing set of points is appended through

the addMesh method of Object4D class. At this step, TriangleNet4D TN a  also starts

to exist retroactive at  time step t=1. At time step t=2, a new set of points  SPb  is added

through  addTimeStep method  of  Object4D class.  The  points  of  SPb  geometrically

differ  from  SPa ,  nonetheless  the  topological  configuration  of  TN a  stays  constant.

Subsequent,  another set  of points ( SPc ) is also added at  time step  t=2.  SPc  partially

differs from SPb . SPc  has more points than SPb . It is not possible any more to map all

points of SPb  to the points of SPc . Thus, the already utilized point tube cannot be used

for the new points. Subsequent, a new point tube ( PT b ) is created.

Also,  a  new mesh is  added  for  the  new set  of  points  (addMesh method).  This  mesh

constitutes the net topology of TN b . The meshing of TN b  also partially differs from the

meshing of TN a . The new set of points, together with the new mesh, constitutes the post

object of t=2. At time step t=3, again a new set of points is added through addTimeStep
method. This set of points constitutes the pre-object of  t=3 and again only differs in its
geometry from the set of points of the post-object of  t=2. The pre-object of  t=3 has the

same number of points as the post-object of  t=2. The new points are added to PT b  and

also adopt the net topology of TN b .

The  example  demonstrates,  how  it  is  possible  to  model  a  spatio-temporal  object  that
changes in geometry and in its topological net configuration through time with the built-in
spatio-temporal  module  of  DB4GeO.  As  mentioned  before,  this  spatio-temporal
component of  DB4GeO uses the  Simplicial Complex approach to model the geo-objects
geometry. It is not capable of modelling complex cells. Thus, the objective is to combine
the existing functionality of the built-in  spatio-temporal module (Temporal Joint Model)
with the already implemented Topology Model. The intended functionality is to support the

Fig. 90: Example of creation of temporal objects with DB4GeO Temporal Joint Model
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modelling of complex cells over  time (spatio-temporal complex cells) as depicted in Fig.
91.

Fig. 91 shows a similar temporal object creation case as in the previous example. But this
example  is  extended with  complex cells  (i.e.  non-simplicial  cells)  that  are  outlined  by
thicker  lines  (in  the  depiction  of  the  net  meshes).  At  t=1,  there  is  not  only  a
TriangleNet4D created but also a FaceNet3D and a FaceNet3DCompLevel at object

level ( COL , cf. lower left side of  Fig. 91). At  t=1,  COL  consists of only one face that

extends  over  the  whole  net  component  (cf.  left  side  of  Fig.  91).  At  t=2 not  only  the

geometry has changed as in the previous example but also the topology of COL . The one

face  of  COL  has  been  split  into  two  new  faces.  The  topological  change  occurred

somewhere in between  t=1 and  t=2 and is discussed below. In the transition from pre-
object of t=2 to post-object of t=2, the topology of the geo-object at net level changes, but
the topology of the object level stays constant. The change of the net level is also apparent
in the diagram of DB4GeO classes (bottom of Fig. 91). It shows that the temporal triangle
net (TriangleNet4D class) and PointTube (both represent the net level) end to exist at
time  step  t=2.  They  are  both  replaced  by  new  objects  of  same  type.  However,  the
FaceNetCompLevel (object level of faces) does not end live at t=2 but persists over the

entire period. This is only possible if there is a direct mapping between all cells of COL  of

the pre-object and all cells of COL  of the post-object.

At  t=3,  the  geometry  of  the  geo-object  changes,  as  in  the  previous  example,  but  the

topology of COL  stays still constant. This is possible, since there is a direct mapping of all

nodes of the  geo-object's mesh between the post-object of  t=2 and the pre-object of  t=3
(the net topology does not change between these two objects).

Fig. 92 provides a closer look at the time interval between t=1 and t=2, where a change of
the topology at object level occurs. At t=1.5, an edge is inserted into the (object level) face

of  COL  by the use of the  insertEdge method, thus splitting the face  a) into two new

faces b) and c).

Fig. 91: Example of creation of temporal “big cells” on object level with Topology Module
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Editing operations of object levels (such as the performed  insertEdge method) can be
conducted at any point in time (i.e. in time steps and in time intervals). Internally, the face
net component at a certain (object) level is modified. In this case, face a) is split into two
new faces b) and c). All constraint checks and changes to the cells and cell-tuple structure
of an insert edge operation that have been discussed in Ch. 3.4.2 are performed. Since all
links between net level and object level cell-tuples are known, they can be adapted to the
new structure accordingly. When a new net level topology (meshing) is introduced through
post object of time step t=2, the links have to be recomputed according to the new spatial
relation between object level and net level.

3.6.2 Architecture and Model of Temporal Topology Module

The development of the  spatio-temporal model for the Topology Module is conducted in
strict compliance with object oriented principles, especially inheritance semantics. They
are used to maximize source code re-usage and modularity. 

The main connector between the Temporal Joint Model and the Temporal Topology Model
is the inheritance relationship between the  ServicesFor4DObjects class of  Temporal

Joint Model and the CellNetServicesFor4DObjects class of the Temporal Topology
Model (see Fig. 93).

Fig. 92: Detail of Fig. 91: Interval between t=1 and t=2. An edge is inserted at t=1.5
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ServicesFor4DObjects is a  service class148 that is responsible for the processing of
temporal  geo-objects.  It  currently  basically  provides  one  method  that  is  called
getInstanceAt. The getInstanceAt method is a “processing unit” that consumes a

temporal object (Object4D) and a Date object and returns an object of type Object3D as

a result of the processing. This means that the service class creates a snapshot of a temporal
geo-object, i.e. “translates” that temporal geo-object into a 3D geo-object at a certain time
step (Date).

The  CellNetServicesFor4DObjects enters  at  this  point  and  specializes  the

ServicesFor4DObjects class  by  overriding  the  getInstanceAt method.  The

specialized getInstanceAt method consumes a temporal cell net object (object of type

CellNetObject4D)  instead  of  an  Object4D but  also  provides  an  Object3D as  the
process' result. A temporal cell net object is a specialisation of a temporal object. Whereas
a temporal object only provides functionality for the management of geo-objects whose
spatial  part  consists  of  a  temporal  Simplicial  Complex,  a  temporal  cell  net  object
additionally models a temporal cell net as the spatial part of the geo-object.

A temporal cell net object in first place consists of a set of discrete temporal cell nets. In
the current  implementation,  temporal  face nets  (FaceNet4d,  see  Fig.  93) are the only
realisation of temporal cell nets.149 Internally, the set of temporal face nets is managed in a
(sequential) list (LinkedList) that is part of the field of the temporal cell net object (see

Fig. 94).

148 The distinctive feature between a utility/helper class and a service class is that while the former is 
intended to solve typical internal issues, the latter is mainly intended to provide an access interface for 
(external) clients/API users.

149 Thus the model is discussed only on the basis of temporal face nets. Temporal solid nets are still to be 
developed and to be implemented.

Fig. 93: The extraction of a 3D face net from a temporal cell net object as class diagram
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The fact that a temporal cell net object consists of temporal face nets is an analogy to the
Geometry Model of DB4GeO. But whereas a geo-object (Object3D) has one triangle net

as its spatial part, a temporal cell net object has several face nets as its spatial part. All
temporal face nets of a temporal cell net object in fact represent one (the same) face net
that changes in  time and has a representation at  several  time steps (its manifestations).
Every entry in the field list is a temporal manifestation (cf. Fig. 94).

The  getInstanceAt method of  CellNetServicesFor4DObjects takes a  temporal

cell net object. Then the method first creates a new 3D geo-object, determines the temporal
face net that is valid at the given  Date, attaches this face net at the newly created  geo-
object as its spatial part and returns the geo-object. Fig. 95 shows this flow of application
states exemplary on a CellNetObject4D that already has three face nets at three different

time steps.

In this example,  the service class consumes the temporal cell  net object with the three
temporal face nets and a Date object with t=2.5 and provides an Object3D as result. The

Object3D holds exactly one temporal face net (FaceNet4d) that is valid at  t=2.5 as its

spatial part, which is the temporal face net at t=2. This is possible, since a FaceNet4D is a

Fig. 95: Service class use case, employing temporal cell net object

Fig. 94: A temporal cell net object includes a sequential list of temporal face nets
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FaceNet3d which in turn is a  TriangleNet3D (cf.  Fig.  93);  thus a  FaceNet4D can
“automatically”  be  the  spatial  part  of  a  geo-object  (by  the  rules  of  polymorphism).
Object3D provides the temporal face net through its getSpatial3D method (see Listing

28).

CellNetServicesFor4DObjects services =
new CellNetServicesFor4DObjects(); 

Object3D geoObj =
services.getInstanceAt(obj4d, date2013); 

FaceNet4d tempFaceNet = (FaceNet4d) obj3d.getSpatial3D();

Listing 28: Retrieving a temporal face net as the spatial part of a geo-object

A temporal face net is simply a 3D face net (FaceNet3d class), but additionally has an

extended  class  field,  with  the  state  references  predecessor and  successor to  the

respective  temporally preceding and succeeding 4D face nets. These references may also
be  null if  the  respective  temporal  face  net  has  no  predecessor  or  no  successor.  So
temporal face nets may always be accessed from their parental temporal cell net object or
from another temporal face net through the state references.

Since a temporal face net (FaceNet4d) is a specialisation of face net (FaceNet3d), it not

only can be used in any context where a FaceNet3d can be used150, but it also inherits its
set of an arbitrary amount of face net components (see Fig. 96).

150 For example as the special part of a basic 3d geo-object

Fig. 96: The temporal net components (with their NL and OL) of temporal face nets in a 
class diagram
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Originally, a 3D face net aggregates 3D face net components. Since a  temporal face net
component (FaceNet4dComp)  is a face net component (FaceNet3dComp), a face net is
also capable of aggregating an arbitrary amount of temporal face net components. As a
result,  it  can be stated that every temporal  face net (FaceNet4d)  is  an aggregation of

temporal face net components (FaceNet4dComp).

Originally, a face net component is a composition of exactly one face net component at
object level (one FaceNet3dCompLevel) and exactly one face net component at net level

(one FaceNet3dCompNetLevel) which are the net level and object level representations
of the same face net component (cf. Fig. 49 and top of Fig. 96). These references to object
level and net level components cannot be used here any more as a consequence of the
differing  definitions  of  the  static  net  component  in  comparison  with  the  temporal  net
component: unlike the static net component, the temporal net component may consist of
multiple  net  level  and multiple  object  level  components  (cf.  Fig.  96)  that  describe the
temporal progression of the net component at net and at object level. This principle is also
depicted in Fig. 97.

A temporal face net (FaceNet4dComp) provides a (sequential) list (LinkedList) of net

level  components  (FaceNet4dCompNetLevel)  and  object  level  components

(FaceNet4dCompLevel) of which everyone exists at a certain point in time (these are the
manifestations  of  the  object  level  component  and the  net  level  component).  Thus,  the

original references of FaceNet4dComp to exactly one COL  and exactly one C NL  are not

sufficient  for the modelling of a temporal  net component  and must be replaced by the
above-mentioned list. As a result, a FaceNet4dComp is a composition of any number of
(but  at  least  of  one)  temporal  face  net  components  at  net  level
(FaceNet4dCompNetLevel)  and  of  any  number  of  (but  at  least  of  one)  face  net

components at object level (FaceNet4dCompLevel). The face net components at object

level are the multiple  temporal  object  levels of a face net  component  and the face net
components  at  net  level  are  the  multiple  temporal  net  levels  of  the  same  face  net
component.

Both, the face net components (FaceNet4dComp) as well as all temporal object levels

(FaceNet4dCompLevel) of every face net component have each of them one Date object
that provides the timestep at which the object began to exist.

Fig. 97: A temporal face net component includes sequential lists of face 
net components at net level and at object level
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As depicted in  Fig. 91, an objective of the temporal module is to establish a cell based
temporal link between the cells of the pre- and the post-cells of a time step. In the current
implementation of this doctoral thesis, this is realised for node cells. For this purpose, the
already existing basic Node class (of model3d package) has been extended with the two

reflexive  references  successor and  predecessor that  point  to  the  nodes  that  are
temporally succeeding and preceding the respective node (see Fig. 98).

These references between preceding and succeeding nodes are compiled every time when a
new net meshing is added to the temporal geo-model (through the addGeometry method

of  CellNetObject4D).  In  this  case,  the  addComponent method  of

FaceNet4dBuilder is  invoked  internally  by  the  addGeometry method,  and  all
components are added to the face net. If actually a face net has a preceding face net, then
the object level components of both face nets are extracted at the respective  Date151 and

equal nodes are identified on both nets (by their equal ID) and are assigned to each other.

3.6.3 Preparation of Piesberg Dataset

The  whole  process  can  be  exemplified  on  the  Piesberg dataset  (that  is  introduced  in
Ch. 1.6). The following examples show actual outputs of the Topology Module modelling
that is visualized with ParaviewGeo and manually labelled. To be used with temporal G-
Maps, the Piesberg dataset needs to be prepared. The dataset has exactly one version of the
meshing for every of the 12  time steps, but no pre- and post-objects. Thus, the pre- and
post-objects have to be created manually.

For  a  test  run,  two  time steps  are  chosen from the  dataset.  To arrange a  more  catchy
example, the two chosen time steps are not two sequential time steps of the dataset but are
temporally more separated. These are the  time steps of the years 1976 and 1983 (though
the  sequentially  following  time  step  in  the  dataset  to  1976  is  1978).  To  produce  the
required pre- and post-objects, the following individual operations are carried out.

151 Pre component and post component have the same date since they are modelled at the same time step.

Fig. 98: Basic Node class (of model3d 
package) extended with temporal 
field
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First,  the  geo-object  of  1976  is  chosen  to  be  the  pre-object  of  1976.  Second,  the
coordinates of the points of the geo-object of 1983 are parallel projected152 onto the surface
of the pre-object of 1976. This results in the post-object of 1976. Thus, the post-object of
1976 has the meshing of the pre-object of 1983 but the surface geometry of the pre-object
of 1976. Next, the geo-object of 1983 is determined to be the pre-object of 1983. Then the
coordinates of the points of the geo-object of 1993 are parallel projected onto the surface
of the pre-object of 1983 to produce the post-object of 1983. This four prepared datasets
are imported and managed by topological 4D module as presented in Fig. 99.

Fig. 99 shows the top views of the Piesberg dataset's pre- and post-objects of the time steps
1976 and 1983. Time only elapses between the post-object of 1976 and the pre-object of
1983.  This  is  the  time  frame  where  the  geometry  changes,  while  the  topological
configuration  of  the  triangle  mesh  stays  constant.  Thereby,  it  is  possible  to  generate
“artificial” geo-objects of  time steps where the geo-objects were not modelled explicitly,
such as in the Piesberg dataset e.g. in 1979 (cf. Fig. 15). The change of the geometry of the
geo-object surface is indicated in the illustration by the curly lines directly above the top
views of the  geo-objects. These curly lines show the cross-section of the surface at the
continuous horizontal cross lines that are drawn onto the top views. It is evident from the
cross-sections that the surface geometry does not change between the pre- and the post-

152 By the means of the geometric operations of DB4GeO (composite operation PolyLineDrillingOperation)

Fig. 99: Top views of the Piesberg dataset pre- and post-objects of the years 1976, 1983 and 1993
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object of one time step, but it changes between the post-object of a preceding time step and
the pre-object of a succeeding time step.

The changes between the depicted  geo-object states of  Fig. 99 are categorized into three
types  of  changes.  These are  changes  in the surface geometry  (“geometry”  in  Fig.  99),
changes in the topology of the net level (or the meshing, “net level topo”) and changes in
the topology of the object level (“object level topo”). In Fig. 99, there are links between the
depicted  geo-object  states  that  are  labelled  with  the  types  of  change that  occur  in  the
respective transition. In the transition from pre-object of 1976 to post-object of 1976, the
net level topology changes while the geometry stays constant. “Constant geometry” means
in this context the constance of the “overall geometry” of the geo-object, i.e. in this case
the geometry of the whole surface. While the surface geometry stays constant, the point
objects  of  the  surface  are  replaced.  Though,  the  points  are  exchanged,  one  important
constraint of this replacement is that all “post-points” remain on the surface of the pre-
object. The net level topology (i.e. the mesh configuration of the triangle net) also changes.
The procedures on object level are discussed later.  In the transition from post-object of
1976 to pre-object of 1983, the meshing of the triangle net stays constant (also the amounts
of points, edges and triangles stay constant) while the geometry of the surface geometry,
i.e. the coordinates of the points, changes. The transition from pre-object of 1983 to post-
object of 1983 is analogous in geometry and on net level.

At object level, there are at first three faces (f1, f2 and f3) in pre- and post-object of 1976
and later four faces (+f4) in pre- and post-objects of 1983. Not depicted in Fig. 99 is that a
new face has been added at object level in 1980 (see Fig. 100).

Fig. 100: Adding a new face at object level (in 1980) through insertEdge method
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Particular attention should be paid to the fact that the faces (at object level) are preserved
through  time,  though in the meantime the geometry and the meshing of the  geo-object
changes.

This example demonstrates the broadness of the chosen modelling approach. The model
not only allows for the temporal change of the geo-object's geometry but also permits the
temporal  change of  the  geo-object's  meshing as  well  as  supports  the  management  and
editing  of  temporal  “big cells”  (on object  level)  that  even preserve when the  meshing
changes.
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4 Performance Measurements 

and Comparisons

This chapter presents metrics on CPU runtime and memory consumption of the Topology
Module.153 Where appropriate, the measured data is compared to performance data of the
DB4GeO Kernel.  The  purpose  is  to  gain  a  better  judgement  of  the  advantages  and
disadvantages  in  execution  performance  that  result  from  the  usage  of  the  module,
compared to the usage of the Kernel solely.

All measurements are compiled on a common desktop machine with ~ 280 MFLOP/s154.
The test  data are synthetically generated by an algorithm (see Ch. 4.1). Therefore,  it  is
possible to easily adjust the data size for different measurement iterations. The measuring
of CPU runtime and memory consumption can be subject to random influences, due to the
characteristics  of  modern  operating  systems  (OS).  Since  modern  OS  are  capable  of
multitasking, it is not certain, when processes are switched. Obviously, a process switch
has a negative impact  on runtime.  In order to reduce the effects  of such unpredictable
external factors,  all  runtime values are calculated as an average of at  least  ten runtime
measurement  cycles.  Similar  considerations  apply  to  the  measuring  of  memory
consumption.

153 The source code of all performance tests and the result data are documented in a separate Eclipse 
development project named “Db3dProfiling”.

154 The calculation of “floating point operations per second” is considered more accurate than the provision 
of the more common “instructions per second”, since FLOP/s incorporates multiple properties of a 
computer's architecture like main memory, bus system etc. However, the presented value is determined 
with the Java Linpack Benchmark of the Oak Ridge National Laboratory (for further information visit 
http://www.netlib.org/benchmark/linpackjava/)
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4.1 Construction of Net Components

In the first test set-up, the creation of geometry and topology structures is measured. For
this purpose,  an array of triangles is prepared as synthetic geometry data.  All triangles
together form a flat, contiguous net of quadratic shape. The array of triangles is passed to
the  constructors  of  Simplicial  Complex (triangle  nets  with  DB4GeO's
TriangleNetBuilder) and G-Maps face nets (FaceNetBuilder of Topology Module).
The duration of the construction process is measured in milliseconds (ms). The averaged
results are presented in the left diagram of Fig. 101.

As can be seen in the left diagram of Fig. 101, with a rising number of triangles, the CPU
runtime of net component construction also rises proportionally. With a number of triangles
slightly  below  2.000,  the  runtime  amounts  to  about  a  quarter  of  a  second for
TriangleNetBuilder and to about half a second for triangle and face net construction

(FaceNetBuilder).  At  the  other  end  of  the  scale,  it  takes  1.5 s for

TriangleNetBuilder and 3 s for FaceNetBuilder to process about 13.000 triangles.

The right diagram of Fig. 101 presents the memory consumption of the process of triangle
net and face net creation in megabyte (MB). With a number of triangles slightly below
2.000, the memory consumption adds up to  5 MB for triangle net construction and 7 MB
for face net construction. Whereas a model with about  13.000 triangles needs  40 MB to
construct only a triangle net and 60 MB to construct a face net.

It can be concluded that the construction of a triangle net is generally faster and consumes
less  memory  than  the  construction  of  a  face  net.  This  result  is  obvious  since  the
construction of a face net includes the construction a triangle net. Furthermore, the face net
builder needs time and memory to generate all the additional topological links and objects
of a face net. In practice, this means that the user has to wait  1.5 s longer and provide
20 MB more main memory or permanent storage in average if he has a dataset of 13.000
triangles and he wants to construct a G-Maps face net instead of a DB4GeO triangle net.

Fig. 101: Runtimes of net component construction (left); memory consumption of net component 
construction (right)
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In the process of net component construction, each net element (i.e. triangle element or
tetrahedron element) is traversed mostly only once. Thus, the asymptotic runtime is a linear
function of n ( O(n)  in BACHMANN-LANDAU notation), with n being the number of elements
in the net component. The graph of Fig. 101 confirms these assumptions, since it shows a
clear linear growth in runtime behaviour as well as in memory consumption for DB4GeO
Kernel and Topology Module.

4.2 Basic Spatial/Topological Queries

In  the  second  test  set-up,  the  retrieval  of  topological  information  is  measured.  In  this
measurement, larger arrays of triangles are synthetically prepared in order to get significant
test results. Apart from that, these are again flat, contiguous nets of quadratic shape. After
triangle nets and face nets are constructed, the duration of selected retrieval operations are
measured in  ms. The diagrams of  Fig. 102 show averaged results of  boundary retrieving
operation runtimes (left diagram) and get-2D-for-0D operation runtimes (right diagram).

The  boundary  retrieving  operations  have  been  implemented  in  order  to  receive  the
boundary geometry  of  a  complex  geo-object,  for  example  the linestring  that  bounds a
surface.  These  operations  were  programmed  by  the  means  of  DB4GeO Kernel
(findTinBorder methods) and by the means of Topology Module (getBoundaryEdges
method) independently.

In  DB4GeO Kernel, the boundary retrieving operations have been realized in two ways.
The first  algorithm (findTinBorder1 method of  TriangleNet3DComp class) simply

iterates over all triangles of a surface and checks each triangle whether it is at the surface's
boundary. If so, the boundary segments are added to the result set. This algorithm returns
an unordered set of boundary segments.

The second algorithm (findTinBorder2 method of  TriangleNet3DComp class) first
finds an arbitrary boundary triangle, then it follows the triangles along the boundary and

Fig. 102: Runtimes of boundary retrieving operations (left); runtimes of get-2D-for-0D operation 
(right)
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collects  the  boundary  segments.  This  algorithm  returns  an  ordered set  of  boundary
segments.

In  Topology  Module,  the  getBoundaryEdges method of  FaceNet3dCompNetLevel

class  returns  all  boundary edges  of  a  face.  The algorithm takes  advantage  of  2-orbits,
therefore  it  simply  follows  explicitly  modelled  links  along  the  boundary  edges.  This
algorithm returns an ordered set of boundary segments.

The different boundary retrieving operations have different asymptotic runtime behaviour.
In worst case, the  findTinBorder1 method has to evaluate  all triangles (n) of the net
component, each once, in order to find all boundary segments. Additionally, it has to add
all  boundary  segments  (m)  to  the  result  set.  Thus,  it  has  a  linear  asymptotic  runtime
O(n+m) . This assumption is confirmed by the graph of findTinBorder1 method in left
diagram of Fig. 102 that shows an at least linear growth rate.

The  findTinBorder2 method first  needs to  find a  boundary segment  of an arbitrary

triangle at the component's boundary in k steps. Then it iterates only along the boundary
segments. The iteration along the boundary still needs some computation, since there are
no precomputed links along boundary triangles or segments. If the number of boundary
segments  is  m,  then  the  asymptotic  runtime  is  O(m+ k ) .  The  runtime  of
findTinBorder2 method  is  assumed  to  be  usually  less  than  the  runtime  of

findTinBorder1 method, since the number of boundary segments m is usually less then

the total number of triangles n of a component. The supposed asymptotic runtime is backed
by the graph of  findTinBorder2 method in left diagram of Fig. 102 that also shows a
generally  linear  growth rate.  However,  as also assumed,  the runtime is  lower than the
runtime of findTinBorder1.

The getBoundaryEdges method simply navigates along the explicitly pre-computed 2-
orbit links along the boundary segments. By this, the asymptotic runtime only depends on
the number of boundary edges m that have to be collected. Thus, its asymptotic runtime is
O(m) , which is the optimum runtime, since each boundary element needs to be visited at
least  once  in  order  to  become  part  of  the  result  set.  Furthermore  the  retrieval  of
neighbouring  edges  is  fast,  since  boundary  edge  neighbourhood  is  precomputed  and
boundary edges are linked. The graph of getBoundaryEdges method in left diagram of
Fig. 102 reassures this assumption, since the average runtime of Topology Module method
is much lower than the average runtimes of DB4GeO Kernel methods. Such evidence gives
reason to call the data structure of Topology Module a “topological index”.

Working with a  geo-object with the size of about 13.000 triangles, the average runtime
gain  of  Topology  Module against  DB4GeO Kernel is  4 ms at  each  invocation  of  a
boundary  retrieving  method.  The  average  runtime  loss  of  Topology  Module against
DB4GeO Kernel during the construction process is  1.3 s (cf.  Fig. 101). This means that,
with a  geo-object of 13.000 triangles, the usage of  Topology Module starts to pay off in
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terms  of  runtime  consumption  after  approximately  300  invocations  of
getBoundaryEdges method.155

The  right  diagram of  Fig.  102 shows averaged  runtimes  of  get-2D-for-0D operations.
These operations return the 2D geometries (surfaces) that are incident to a 0D geometry
(point).  Get-2D-for-0D operations are available in both,  DB4GeO Kernel and  Topology
Module. The  DB4GeO Kernel returns all triangles that are incident to a given point. In
order to compute the result set, the algorithm iterates over all triangles of the triangle net
component and compares all points of each triangle until an equal point is found. This has
the effect that all triangles (n) have to be visited in order to get the result. Accordingly, the
asymptotic runtime is linear ( O(n) ), which corresponds to the graph of  get-2D-for-0D
operation of DB4GeO Kernel in right diagram of Fig. 102.

The  get-2D-for-0D operation of  Topology Module returns all faces that are incident to a
node.  In  contrast  to  the  get-2D-for-0D operation  of  DB4GeO Kernel,  the  operation  in
Topology Module simply follows the link to a cell-tuple of the node and then runs a 0-orbit
“around” the node in order to collect all incident faces. This operation has to perform only
one step for each incident face. The runtime only depends on the number of faces in the
result set (m), which is usually very small compared to n. Thus, the asymptotic runtime is
O(m) , which is the optimum runtime, since each incident face needs to be visited at least
once in order to become part of the result set. With a runtime of  O(m) , the  Topology
Module decouples  the  calculation  of  the  result  set  from the  total  amount  of  triangles.
Having a geo-object of about 200.000 triangles, the Topology Module saves 200 ms with
each 2D-for-0D operation compared to DB4GeO Kernel.

4.3 Additional Performance Tests

The  presented  ratios  in  runtime  behaviour  can  be  found  in  a  multitude  operations  of
DB4GeO Kernel and Topology Module, since many other methods base on the presented
fundamental methods, and since the presented algorithmic approaches are used in a similar
way in  related  operations.  As an  example,  the  average  runtimes  of  get-1D-for-0D and
countBorderEdges operations are depicted in Fig. 103.

155 300 x 4 ms = 1.2 s, which is nearly 1.3 s that is needed for construction
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The left diagram of  Fig. 103 shows the average runtimes for operations that retrieve the
segments (edges) that are incident to a given point (node). These operations are similar to
the  get-2D-for-0D operations  presented  in  right  diagram  of  Fig.  102.  Actually,  the
DB4GeO Kernel internally uses the same code base as  get-2D-for-0D operation with the
difference that it additionally needs to check, to which segments of a triangle a given point
belongs. The get-1D-for-0D operation of the Topology Module is also similar to the get-
2D-for-0D operation of  Topology Module. Internally, they also both use the same code
base that executes a 0-orbit around the given node. Since the get-1D-for-0D operations are
based  on  the  same  principles  as  the  get-2D-for-0D operations,  the  resulting  runtime
behaviour is also similar, which can be recognized by comparing left diagram of Fig. 103
to right diagram of Fig. 102.

The right diagram of  Fig. 103 shows the average runtimes for operations that count the
number of boundary segments/edges. These operations are strictly based on the boundary
retrieval operations that have been introduced earlier in this section, since internally they
do nothing more then retrieving the boundary segments and return the size of the result set.
Thus, the resulting runtime behaviours are similar, which can be recognized by comparing
right diagram of Fig. 103 to left diagram of Fig. 102.

This chapter shows the advantages and disadvantages in terms of runtime behaviour and
memory usage of  Topology Module compared to  DB4GeO Kernel.  While  the memory
usage  of  Topology  Module is  approx.  40 % higher  (due  to  the  additional  extensive
topological structure) and the construction process takes approx. 80 % more time than the
DB4GeO Kernel, the Topology Module then saves runtime, e.g. as shown in figures  102
and 103, each time the user states a spatial/topological query. As the module is used in a
Geo-DBA, this runtime behaviour becomes especially  useful, since a  database for geo-
applications is imported and stored in a DBMS once, but queried, retrieved, and exported
several times (eventually by multiple users).

Fig. 103: Runtimes of get-1D-for-0D operations (left); runtimes of countBorderEdges operations 
(right)
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5 Discussion

5.1 Summary and Conclusion

The doctoral thesis at hand deals with the examination of methods for topological data
handling,  as  well  as  designing and implementing  a  toolkit  for  the  geosciences  for  the
management  of  topological  and  temporal  3D  data  and  models  in  Geo-DBA.  The
conceptual work and realisation process takes into account the management of multi LoD
since it is considered to be an integral part of geo-modelling.

The  first  main  chapter  (introductory  chapter)  unfolds  the  motivation  for  handling
geoscientific data and employing database management systems for geodata. The current
state of processes,  modelling tools,  and  DBMS is presented in application-oriented use
cases.  Furthermore,  the  introduction  gives  a  first  insight  into  the  topics  of  model
integration,  abstraction  of  geodata  and  spatio-temporal  modelling.  These  first  insights
already include references to early pioneering and basic literature. Finally, the test dataset
of this work is presented.

In the chapter it is shown that data and model management for the geosciences is a non-
trivial, multifaceted task. Geoscientific data is characterized by a heterogeneity of models
and  applications.  The  integration  of  multiple  models  and  applications  into  common
systems is a striving goal of the international scientific community. It allows for new types
of analyses that have not been possible before. Geo-DBMS are a useful platform for data
management and model integration, but market (and close-to-market) solutions are still in
an early stage and leave many questions of geoscientific data management open.

As  RHIND (1973),  BUTTENFIELD (1993) and  others  have  shown,  multi-representation  of
geodata is broad in topic so that the perspective has to be narrowed. However, a key object
of  study  is  the  adequate  maintenance  of  linking  between  the  geo-objects  of  multiple
resolutions.  The  question  of  how to  generate  and  organize  the  hierarchy  links  greatly
influences  the  navigation  and  editing  capabilities  of  the  multi-resolution  database.
Contemporary research efforts  by  HAUNERT and  SESTER (2005), and  ANDERS and  BOBRICH

(2004) in the management of multi LoD of DLM are introduced.
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Another  key topic of research in the  geoinformation community is  the management  of
spatio-temporal  data.  The introductory chapter lays out the importance and application-
relevance of temporal geodata by presenting an elaborate use case in city planning. The
research range is widened by an overview of key research topics that have been compiled
by  LESTER (1990) which  are  the  understanding of  time,  temporal  logic,  architecture  of
temporal GIS, and how to deal with alternative representations. The focus of his thesis is
placed on the architecture of temporal  GIS. In this  context,  SHOHAM and  GOYAL (1988)
identify four different reasoning tasks that can be supported by temporal  GIS, which are
prediction, explanation, learning new rules, and planning.

According to WACHOWICZ (1999), there are two fundamental approaches on temporal GIS:
layer-based or object-oriented. Regardless of the approach,  DADAM et al.  (1984) identify
two types of strategies for incremental update, which are forward oriented and backward
oriented versioning. According to  SNODGRAS and AHN (1985),  time can be recorded in the
two types valid time and transaction time. Depending on the level of assistance of types of
time,  SNODGRAS and  AHN distinguish four kinds of (chronological)  databases,  which are
snapshot, rollback, historical and temporal databases.  HÄGERSTRAND (1975) established the
notion of space-time trajectories of geo-objects that can be taken as a basis to conceptualise
longitudinal  and  branching  configuration  of  valid  time.  Additionally,  space-time  paths
introduced states and events in the lifetime of geo-objects.

The second chapter  gives  a  deeper  insight  into  relevant  literature,  explains  theoretical
considerations in more detail, and presents the current state of research. The chapter starts
with an introduction into the architecture of  DB4GeO's geometry kernel and exposes its
capabilities  and deficiencies  in  navigation  on the  geometry.  The concepts  of  cell-tuple
structure  by  BRISSON (1989) and  G-Maps  by  LIENHARDT (1989) are  introduced  as  an
alternative approach to model the topology of complex geo-objects. Inter alia due to their
advanced  navigational  capabilities,  these  concepts  are  chosen  as  a  basis  for  a  new
topological  kernel  architecture  for  DB4GeO that  promises  to  achieve  data  access  in
constant  time  in  many  cases  (“topological  index”)  and  to  simplify  the  handling  of
topological information, especially in complex environments such as multi-representation
and  spatio-temporal  modelling.  For  testing  purposes,  the  new  prototype  kernel  is
developed as a plug-in/module for DB4GeO and not directly incorporated into the existing
DB4GeO Kernel.

The topic of  multi-representation  is  further  deepened by going into more detail  of the
foundational  research  work  on  multi-representation  in  2D  (hierarchical  DLM)  by
ANDERS/BOBRICH and  HAUNERT/SESTER.  Another  foundational  abstraction  technique  that
applies to the geometry of 3D geo-objects, the PM by HOPPE (1996), is explained in detail.
The explanation of PM demonstrates what kind of geometric models are relevant in multi-
representation  applications.  After  having  presented  concrete,  application-related
approaches,  the  more  theoretical,  generalized  approach  MTR  by  BRUEGGER and  KUHN

(1991) is introduced. BRUEGGER and KUHN identify two types of relations between cells of
different  LoD and set  the  basic  framework for  further  reflections  on multi  topological
representations. The H-G-Maps model of  FRADIN et al.  (2005) can be seen as a concrete
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implementation  of  multiple  topological  representations.  In  H-G-Maps,  each  level  of
topological  representation  is  modelled  as  a  complete  separate  G-Map.  Hierarchy  links
between the multiple G-Maps are established through links between the G-Maps' darts.

The topic of  spatio-temporal modelling is continued with a contrasting juxtaposition of
concepts of continuous and discrete temporality. It is identified that the geometry of a geo-
object can change continuously in  time while the topology changes in discrete steps. In
order to model both, the geometry and topology of a geo-object in one joint system, it is
necessary to develop an integrative  model.  POLTHIER and  RUMPF (1995) present such an
integrative model by introducing TimeStep, an adaptive time-dependent discretization. By
incorporating time-steps with pre- and post-objects into the model, the approach allowes to
handle continuous change of geometry and discrete change of topology in one model.

The DB4GeO Kernel has been extended by the temporal point tube model of ROLFS (2005)
that  is  based on the ideas  of TimeStep.  The temporal  point  tube model  combines  two
representatives of a simplex element at two different time steps to a space time element. A
series of space time elements is combined to a space time sequence, and a set of spatially
non-overlapping space time sequences forms a space time component. The temporal point
tube model can be categorized as an accumulative forward oriented versioning system that
manages valid time in a longitudinal configuration. Later, the temporal model of ROLFS has
been revised by KUPER (2010). The new spatio-temporal model for DB4GeO supports non-
accumulative  forward  oriented  versioning.  It  merges  the  concepts  of  PointTube,  delta
storage, and  POLTHIER/RUMPF in one new model in order to manage continuous change of
geometry.

Though, the presented models do a great deal in modelling dynamic geometry, they do not
cover  the  modelling  of  temporal  topology.  2-dimensional  temporal  topology  has  been
covered by RAZA and KAINZ (1999) in their concept of STAO. STAO introduces a concept
of temporal cells and the notion of temporal cell-tuple structure. It provides the means to
model cell complexes that change their topological configuration in discrete time instances.

The third chapter explicates the design and implementation of the Topology Module for the
modelling  of  spatio-temporal  topological  objects.  Since  the  module  is  attached  to  the
DB4GeO Kernel, the chapter begins with an explicit description of the Simplicial Complex
geometry model of the Kernel. Generalized cells are introduced as wrappers for the simple
geo-object types of DB4GeO: nodes for points, edges for segments, faces for triangles, and
solids for tetrahedra.  All cells (i.e. one cell of each dimension) are then integrated into
CellTuple class. Sets of CellTuple objects create a G-Map that represents the topology
of a cell net component. A cell net component is a collection of conjunct, non-overlapping
cells realized as an extension of simplex net components of  DB4GeO. Multiple cell net
components can loosely be coupled to a cell net realized as an extension of simplex nets of
DB4GeO.

The employed cell-tuple model encompasses universe cells, cell-tuple polarity, and holes in
cell net components. The differentiation into net level and object level allows to create a
“big cell” that comprises an arbitrary number of cells. The net level is defined as the G-
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Map that exactly represents the topology of the Simplicial Complex. The permissible cells
at  net  level  are  identical  to  the  simplices.  At  object  level,  instead,  cells  can have any
geometric representation. Usually, one  big cell of the object level is detailed by multiple
cells of the net level. References between both detail levels are realised through higher

and lower links between darts of the respective levels. The topology of net level is non-
editable,  since  it  is  completely  dependent  upon the  underlying  Simplicial  Complex of
DB4GeO Kernel. However, the topology of object level can be altered within some defined
restrictions.

The  construction  of  cell  complexes  (and  G-Maps)  is  based  on  the  construction  of
Simplicial Complexes of  DB4GeO Kernel. So the process of cell net creation has three
stages. After the API user hands over a set of simplices, first, the DB4GeO Kernel analyses
the geometric configuration of the simplices and aggregates them based on this information
to  a  Simplicial  Complex.  Secondly,  the  Topology  Module receives  the  pre-engineered
Simplicial Complex from DB4GeO Kernel and evaluates the neighbourship configuration
of the structure.  From the evaluation,  all information can be gathered that is needed to
construct a cell complex and the corresponding G-Map at net level. In the third step, the
cell complex at net level is taken as a basis to derive the cells and G-Map of object level.

Once a cell net and G-Map are created, the Topology Module provides the API user with a
sophisticated methodology to freely traverse the topological structure in any direction. This
is achieved in an accurate architectural approach by the means of OrbitIterator class,

which realizes the Iterator interface of standard Java. The OrbitIterator helps the
API user to create different kinds of orbits. The user only needs to provide the involution
sequence  or  orbit  dimension  of  interest.  The  algorithms  of  OrbitIterator already

demonstrate the benefits of the G-Maps approach. They are comparably short, crisp, and
elegant.  OrbitIterator serves as a basis for the definition of  CellIterator class.
Cell iterators help the API user to iterate over the neighbours of cells. For example, with an
appropriate cell iterator the user can easily query for all faces that are adjacent to a given
face.

The advanced navigation capabilities of the  Topology Module allow to easily implement
an algorithm that finds the shortest path on top of the meshing of a cell net component.
Since  such an  algorithm is  helpful  for  editing  methods,  a  DIJKSTRA-based  path  finding
algorithm (Dijkstra 1959) has been designed and implemented that operates on top of G-
Maps structure.

Given net level and object level, and having advanced navigation capabilities with orbit
and cell  iterators,  it  becomes  feasible  to  develop methods  with which the  topology of
cellular complexes can be edited. Editing methods have to obey sets of constraints in order
to function properly. Thus, a Constraint class is designed that allows to define custom

constraints. A constraint is represented by a stored query. The stored query is evaluated and
the query result is checked against a target value. If the query result equals the target value
then the constraint is active. An example of a constraint is that the amount of faces being
adjacent  to  another  certain  face  has  to  equal  a  specific  number.  A number  of  such
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constraints is checked before an editing operation can be conducted. Editing operations are
implemented prototypically in order to demonstrate  feasibility:  insert node,  insert edge,
delete node, and delete edge. The insert node method adds a new node onto an existing
edge, which can modify the course of the edge. The method splits the existing edge on
which it is inserted into two new edges. Delete node is the inverse function to insert node
and removes an existing node form an edge, which also can modify the course of the edge
and which merges  the two former edges into one new common edge.  The insert  edge
method adds a new edge onto a face between two given nodes. The course of the new edge
has  to  be  determined  by  a  suitable  method.  The  Topology  Module uses  the  DIJKSTRA

shortest  path  algorithm to  determine  the  course  of  the  edge.  The  new edge  splits  the
existing face on which it is inserted into two new faces. Delete edge is the inverse function
to insert edge and removes an existing edge from a face, which merges the two former
faces into one new common face. Due to the concept of net level and object level, the
topological changes of all these methods are performed only on object level.

The  concept  of  net  level  and  object  level  is  not  only  necessary  to  facilitate  editing
capabilities,  but  it  is  also a  sound preparation  for the management  of  LoD of  cell  net
components. Since net level and object level already exist, there is a basis which can be
extended by additional detail levels. Additional detail levels are inserted in-between net
level and object level. They are numbered ascending from lowest to highest LoD, i.e. the
level with the lowest  LoD, except for object level, has the index 1. The additional detail
levels follow the same principles as the object level,  i.e. they are also editable.  This is
reflected in the class model where the LOD class extends object level class. This means that

every detail level is an object level, except the net level. The connections between levels
are still established finely granulated through higher and lower links of cell-tuples. The
API user employs levels of detail in the editing process in order to add or remove detail. In
the workflow, the API user first  chooses a detail  level  to alter.  Depending on whether
intendedly to add or remove detail, the module creates a copy of the detail level above or
below the original level.  Then the API user can carry out the editing operations on the
newly created level. Meanwhile, the module observes the consistency of all  higher and

lower links of the  cell-tuples. Following  BRUEGGER and  KUHN, only refinement relations
between levels of detail are permissible.

In order to demonstrate the application-side performance of LoD management, an example
test case has been set up by GOLOVKO on the basis of the Piesberg landfill dataset (Breunig,
Butwilowski, Kuper, et al. 2013, 9 et seq.). The test application has completely been set up
by the means of Topology Module. The aim was to show an application example where the
area of an initially homogeneous landfill  site is subdivided into several subregions that
could represent regions with different material properties of the soil or with different land
use classes (see Fig. 104).
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GOLOVKO extracted the  geo-object from the  Piesberg dataset (at an arbitrary year) as the
starting point for the demonstration. In the first step, the Topology Module models the geo-
object as a cell net component with one net level that represents the underlying meshing
and one object level that represents the boundary (polyline) (see state (a) in Fig. 104). In a
second step, a new edge is inserted between two points of the existing boundary in order to
delimit the northern mining field of the site from the southern landfill area  (b) (example
fictitious). In the next step, she added another additional edge in order to subdivide the
newly created southern field into two new fields  (c).  Through multiple additional  edge
insertion operations,  the  Piesberg geo-object is stepwise subdivided into six subregions
(see  (d),  (e),  (f)). Afterwards, two edges that subdivided the mining field, were removed
again so that the mining area is represented by one region finally (g). Please note that as a
result of the last edge removal operation, an island/hole remains insight the mining face.
Due  to  model  specifications  of  the  Topology  Module,  this  hole  does  not  lead  to  an
inconsistent state of the model.

The  spatio-temporal  model  of  the  Topology  Module builds  on  the  foundation  of  the
Temporal  Joint  Model of  KUPER that  has  been  implemented  in  DB4GeO Kernel.  The
Temporal Joint Model operates on Simplicial Complexes and models geometric change,
but it does not track topological change of “big cells”.  Continuous geometric change is

Fig. 104: Example of editing session on Piesberg dataset (visualized with ParaviewGeo)
Source: (Breunig, Butwilowski, Kuper, et al. 2013, 10)
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carried  out  in  the  form of  altering  of  the  support  point  coordinates  of  the  Simplicial
Complex through the Temporal Joint Model, whereas discrete topological change of “big
cells”  is  modelled  by  the  spatio-temporal  model  of  the  Topology  Module.  Since  both
models are in a loose coupling,  it  is possible to change the underlying meshing, while
preserving the general topological configuration of object level cells over periods of time.
Conversely, the editing of cells of object level triggers the creation of a new, different cell
complex, while the underlying meshing stays unchanged. These capabilities of the spatio-
temporal  model  are audited and demonstrated on the basis  of a realistic  temporal  geo-
object that is derived from Piesberg landfill site dataset.

Finally, different aspects of runtime and memory performance of the Topology Module are
evaluated and compared to the performance of the DB4GeO Kernel. As an overall outcome
can be stated that the Topology Module consumes more memory and needs more time for
cell net construction (for details cf. Ch. 4). This is not surprising, since a cellular complex
of the Topology Module needs a fully constructed Simplicial Complex of DB4GeO Kernel
in first place. This means that runtime and memory of DB4GeO Kernel are mandatory for
construction process. But in operation mode, the  Topology Module provides significant
benefits  in  runtime  behaviour,  which  shows  that  the  structure  can  be  designated  as  a
“topological index”.

5.2 Outlook

In future, the Topology Module can be used as the basis for advanced developments, e.g. to
implement new high level functionalities in DB4GeO, such as a CityGML exporter.

5.2.1 The Topology Module as Basis for a DB4GeO CityGML Im-/Exporter

As noted in the introduction (especially in Ch. 1.3), the integration of multiple geometric
and topological models (especially B-Rep and Simplicial Complex) into one architecture,
can be of great value in particular application scenarios. In order to provide an example of
the added value of functionality that uses an integrated model, Daria GOLOVKO implemented
OpenGisDb3dModule.  OpenGisDb3dModule mainly  is  a  prototypical  CityGML
exporter/importer for DB4GeO on the basis of the Topology Module.

GOLOVKO's module internally uses citygml4j in order to read and write the XML exchange
format of CityGML. citygml4j is a Java library that provides classes of GML and CityGML
model (e.g.  MultiSurface or  Building) and an  XML compiler that transforms  XML
data  into  the  Java  classes.  In  order  to  combine  citygml4j with  the  Topology  Module,
GOLOVKO developed a translation between the classes of both models and implemented a
polygon triangulation mechanism. For example, the topology of a CompositeSurface in

citygml4j is internally modelled as a FaceNet3dComp of the Topology Module. With this
concept,  the geo-objects of CityGML can internally  be represented by B-Rep of object
level and by Simplicial Complex of net level simultaneously (see Fig. 105).
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The depiction shows a building model which is a detail of a CityGML dataset from British
Ordnance  Survey  (OS)  that  has  been  made  available  as  test  data  on  citygml.org.  The
CityGML  XML  file  of  OS  (displayable  by  CityGML  software  such  as  Autodesk®
LandXplorer) has been imported into  DB4GeO with the  Topology Module installed and
then  exported  from  DB4GeO as  GOCAD  format  (.ts)  (displayable  by  subsurface
visualizers such as ParaViewGeo). Though, the original geo-object stems from the field of
city  models  (and  thus  uses  B-Rep),  it  can  also  be  loaded  into  subsurface  modelling
software (in the form of  Simplicial Complex). The illustration in  Fig. 105 shows the OS
geo-object in the subsurface visualizer  ParaViewGeo. The right side shows the polygons
(B-Rep) of the geo-object that were modelled on object level by the Topology Module. The
left  side illustrates  the underlying triangulation (Simplicial  Complex) of the same  geo-
object that was modelled on net level.

5.2.2 Direct Integration of the Topology Module into DB4GeO Kernel

Currently, the Topology Module is implemented as a plug-in in order to study architectural
modifications gradually step-by-step. Now that the Topology Module matured very well, it
becomes feasible to integrate it directly into the main development repository of DB4GeO
and  replace  the  previous  kernel.  The  replacement  process  could  also  be  used  as  an
opportunity  to  refine  some  architectural  arrangements  that  were  necessary  as  a
consequence of  the plug-in approach.  The plug-in approach forced a  class  architecture
where simplexes are part of cells. Though, the approach is feasible and leads to useful
results, it is not perfectly clean from the viewpoint of OOM. From an OOM perspective,
cell could be seen as the base interface not only for concrete cells but also for simplices
(see Fig. 106).

Fig. 105: Net level and object level representation of building model
Source: (Breunig, Butwilowski, Golovko, et al. 2013, 102), visualized with 
ParaViewGeo
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The diagram shows a model  with  the  Cell interface  as  the  fundamental  basis  for  all

geometric and topological elements. Like in the current model of the Topology Module, the
topology information of cells is managed and stored in objects of the  CellTuple class.
Unlike in the model of the  Topology Module, to keep things simple, the coordinates of
geometry are directly stored in the Node class (there is no intermediate Point3D class any

more).

A Simplex interface is derived from the Cell interface. This means that in this model, a
simplex is a cell, which more corresponds to the terms of the mathematical definition. The
interfaces  Cell and  Simplex are realized by concrete cell  and simplex classes. Node,

edge, triangle, and tetrahedron are modelled as simplices. Thereby, they are indirectly also
cells. Face and solid are directly modelled as cells. Thereby, they are not simplices (since
they do not realize Simplex). This is a sensible predicate, since faces and solids can be of

any shape in this model.

If a face consists of only three nodes/points, then it is a triangle. In such cases faces can be
modelled by the Triangle class, which is a subclass of Face class, saying that a triangle
is a specialized face. The situation is similar concerning solids. If a solid consists of only
four points, then it is a tetrahedron, modelled by the Tetrahedron class (as subclass of

Solid).

All  cells  (and  thereby  all  simplices)  have  to  provide  the  topological  methods
getNeighbour<Cell>,  countNeighbour<Cell>,  and  getBoundary().  These
methods are internally working similar for all types of cells. A specialized method of the
Face class is  getArea() that calculates the surface size of the arbitrarily shaped face.

Similarly, the Solid class has a getVolume() method for volume size calculation. The

area  and  volume  methods  can  be  overridden  by  the  getArea() and  getVolume()

methods of the Triangle and Tetrahedron class. By this, the simplex properties of the

Fig. 106: Cell complex model for direct integration into DB4GeO Kernel
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triangle and tetrahedron can be utilized to employ simpler, more cost-effective algorithms
for area and volume calculation.

It  is  assumed that  the direct  integration  of this  model  into the kernel  will  render even
cleaner and consolidated source code since it will remove several currently necessary code
doublings.

5.2.3 Approach to Dimension-independent Cell Model

The present  cell  model  of the  Topology Module is  limited  to  dimensions  0 to  3.  This
limitation is “hard wired” by the class model, since the naming of the concrete cell classes
is dimension-dependent (Node for 0-d, Edge for 1-d, Face for 2-d, and Solid for 3-d see
Fig.  40).  The algorithms  of  the  Topology  Module reflect  the  class  model,  so  that  the
dimension-dependency  is  also  reflected  in  most  of  the  topological  algorithms  of  the
module.  A limitation  of  the  considered  dimensions  is  a  reduction  of  the  conceptual
complexity that is helpful for the first steps. It helps to develop a first impression of the
interactions between class model and algorithms.

However,  now that  extensive  experience  could  be  gained  with  the  model,  it  becomes
feasible to create a dimension-independent cell class model in the DB4GeO Kernel. During
the  development  of  the  Topology  Module,  it  was  remarkable  that  many algorithms of
individual cell types had close similarity. To be precise, many algorithms could have been
reused in  different  cell  classes  if  there  had  been  no fixed  naming  of  cell  types.  It  is
assumed that the utilization of a dimension-independent cell class model will additionally
reduce model and code complexity (see Fig. 107).

At a first glance it is already apparent that the class model in Fig. 107 is more concise than
the preceding model in Fig. 106, though it serves the same purpose.

Fig. 107: Classes of dimension-independent cell model approach
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Again, Cell is the key class of the model. The cell itself is indeed a class, not an interface

anymore, since it can realize all the needed functionality itself.156 The  Cell class has a

dimension (dim) property of  integer type, so that the dimension can be set as required.

Since  G-Maps  are  used  for  topology  modelling,  the  Cell class  is  associated  to  one

CellTuple.  CellTuples  have  the  ability  to  manage  an  arbitrary  number  of  self-

referencing alpha associations in a List. Practically, the number of alpha associations

equals the maximum dim of all cells. Since the dimension of cells and  cell-tuples is not
fixed, the topological algorithms can also be written dimension-independent.

The  dim property of the  Cell class has to be provided by the API user who intends to

instantiate  a  Cell object.  He provides it  as a parameter  value of the class constructor.

Additionally, the API user also provides an array of support points for the cell's geometry
through pts constructor parameter value of type Point. Though, it is possible to provide

any number of points as support points, one Cell object can associate not more than one

Point. The idea behind this construct is that if a cell of higher dimension with more than
one support points (e.g. edge or face) shall be created, then the constructor implicitly has to
create all incident cells of all lower dimensions. In this process,  only the 0-dimensional
cells (nodes) are the carriers of the geometry information, i.e. only they get a reference to a
Point object. Each Point object has an array of geometry coordinates in the coord class

field property. Finally,  the constructor sets the 0-dimensional cells as part of the higher
dimensional cells.

If the API user invokes the Cell constructor with a  minimum set of support points for a

given dimension (e.g. two support points for a 1-cell or three support points for a 2-cell),
then the constructor automatically sets the isSimplex class property to true, indicating

that the cell is a simplex. The Cell class also provides a getSize method that returns the

size of spatial extent of the cell. The meaning of the return value of getSize depends on
the  dimension of  the  cell,  e.g.  length  for  1-cell,  area  for  2-cell,  or  volume for  3-cell.
Additionally, the calculation algorithm has to consider whether the isSimplex flag is set,

since the costs for calculation of spatial extent size can be reduced in the case of a simplex.

Similar to the preceding model in Fig. 106, the dimension-independent model provides a
getNeighbourCells method in Cell class. But in this case, the method and return type
are  dimension-independent.  Thus,  only  one  method  and  only  one  return  type
(CellIterator) instead of four is needed. The getNeighbourCells method requires a

dim parameter  of type  int in order to  return the neighbouring cells  of the demanded

dimension. For example if the API user has a face (2-cell) and needs to retrieve all edges
(1-cells) of the face, then getNeighbourCells(1) has to be invoked on the 2-cell. Then

the  resulting  CellIterator will  be  of  dimension  1,  i.e.  it  will  iterate  over  all
neighbouring  1-cells.  Analogously  to  the  Topology  Module API,  the  method  returns
incident cells if the dimension of the cell iterator is  different than the dimension of the
invoking cell (Cell.dim != CellIterator.dim), and it returns  adjacent cells if the

156 The implementation of concrete cell classes (Node, Edge etc.) can be omitted.
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dimension of the cell iterator  equals the dimension of the invoking cell (Cell.dim ==

CellIterator.dim). The getBoundary method of Cell is based on the functionality

of  getNeighbourCells method  and  simply  invoked  getNeighbourCells with  a

dimension value that is 1 dimension lower than the dimension of the given cell (Cell.dim

– 1).

The  fundamental  classes,  properties,  and  methods  of  a  proposal  for  a  dimension-
independent model have been presented. First observations suggest that such an approach
will  provide  a  leaner  cell  class  model  with  reduced  and  cleaner  code.  However,  the
usefulness of higher-dimensional cell-tuples is debatable, since the growth of the cell-tuple
structure is strong in relation to dimension. The number of darts grows exponentially with
each higher dimension.

5.2.4 Comparison of the Topological Index with Classical Indices

The  performance  metrics  in  Ch. 4 already  give  some  interesting  insights  into  the
advantages and disadvantages of using the Topology Module, considering its runtime and
memory usage. However, the metrics only cover a comparison between data structures of
the Topology Module on the one side and unordered sequences of DB4GeO on the other
side,  in  order  to  demonstrate  the  index-like  behaviour  of  the  Topology  Module.  The
resulting metrics suggest to consider the Topology Module as a “topological index”. In the
next step, it would also be interesting to compare the runtime behaviour of the topological
index vs. the indices that are already built in into DB4GeO Kernel such as the R*-tree and
the Octree, in order to determine the performance of the topological data structure as an
index compared to “classical” indices. Test queries could be typical spatial DB queries that
search for neighbouring, incident, and adjacent geo-objects.
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