
3D Data and Model Management for the Geosciences
with Particular Emphasis on Topology and Time

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS

von der Fakultät für

Bauingenieur-, Geo- und Umweltwissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Geogr. Edgar Butwilowski

aus Novosibirsk

Tag der mündlichen
Prüfung: 16. Juli 2015

Referent: Prof. Dr. Martin BREUNIG, Karlsruher Institut für Technologie

Korreferent: Prof. Dr. Mulhim AL-DOORI, American University in Dubai

Karlsruhe 2015

II

Abstract of the Doctoral Thesis

The doctoral thesis deals with the examination of methods for topological data handling,
as well as designing and implementing a toolkit for the geosciences for management of
topological and temporal 3D data and models in geo-database architectures. The
conceptual work and realisation process takes into account the management of multi
LoD since it is considered to be an integral part of geo-modelling. The thesis presents
the current state of processes, modelling tools, and database management systems in
application-oriented use cases. An insight into the topics of model integration,
abstraction of geodata and spatio-temporal modelling is given, including references to
early pioneering, basic, and contemporary literature.

It is shown that geoscientific data is characterized by a heterogeneity of models and
applications. The integration of multiple models and applications into common
architectures is a relevant goal of the international scientific community. The topic of
multi-representation is deepened by discussing the concepts of hierarchical digital
landscape models, progressive mesh representation, multiple topological representations
and others. The topic of spatio-temporal modelling is tackled through the discussion of
such concepts as TimeStep, temporal point tube model and others.

The design of a Topology Module for the modelling of spatio-temporal topological
objects is explained in detail. A concept and implementation for modelling and handling
the topology of the cells of a complex geo-object is presented. Since the concept
differentiates into net level and object level, it allows to create “big cells” that in turn
comprise an arbitrary number of cells. The implementation of the model provides an
iterator framework that allows for a flexible navigation on the topological structure.
Editing methods for the topological structure are introduced and discussed. The concept
of net level and object level is a sound preparation for the management of LoD of cell
net components. Since net level and object level already exist, there is an architectural
foundation which can be extended by additional detail levels. The spatio-temporal
model of the Topology Module builds on the foundation of the Temporal Joint Model.
Continuous geometric change can be processed through the Temporal Joint Model,
whereas discrete topological change of “big cells” is modelled by the spatio-temporal
model of the Topology Module. Finally, different aspects of runtime and memory
performance of the Topology Module are evaluated.

III

Zusammenfassung

Die Dissertation untersucht Methoden zur topologischen Datenhaltung und beschäftigt
sich mit der Konzeption und Umsetzung eines Toolkits für die Geowissenschaften zur
Verwaltung von topologischen und zeitlichen 3D-Daten und Modellen in
Geodatenbank-Architekturen. Die konzeptionelle Arbeit und die Realisierung
berücksichtigt die Verwaltung hierarchischer Datenstrukturen, da diese als integraler
Bestandteil der Geomodellierung angesehen werden. Die Arbeit legt den aktuellen
Stand der Modellierungstools, Datenbankmanagement-Systeme und Methoden anhand
anwendungsnaher Beispiele dar. Ferner wird ein Einblick in die Themen
Modellintegration, Abstraktion von Geodaten und räumlich-zeitliche Modellierung,
einschließlich umfangreicher Verweise auf grundlegende und zeitgenössische Literatur
gegeben.

Des Weiteren wird gezeigt, dass geowissenschaftliche Daten durch die Heterogenität der
Modelle und Anwendungen gekennzeichnet sind. Die Integration mehrerer Modelle und
Anwendungen in gemeinsame Architekturen ist ein Ziel dieser Arbeit. Das Thema
Multi-Representation wird durch die Erörterung der Konzepte der hierarchischen
Digitalen Landschaftsmodelle, Progressive Mesh Representation, Multiple Topological
Representations u.a. vertieft. Die räumlich-zeitliche Modellierung wird durch eine
Diskussion über Konzepte wie TimeStep, Temporal Point Tube Model u.a. dargestellt.

Der Entwurf eines Topologie-Moduls zur Modellierung raum-zeitlicher topologischer
Objekte wird im Detail erläutert. Das Konzept und die Implementierung des Moduls zur
Modellierung und Handhabung der Topologie von Zellen komplexer Geo-Objekte wird
vorgestellt. Da das Konzept nach Netz- und Objektebene differenziert, ermöglicht es die
Modellierung „großer Zellen“, die wiederum eine beliebige Anzahl von Zellen
umfassen können. Die Implementierung des Modells liefert ein Iterator-Framework, das
eine flexible Navigation auf der topologischen Struktur ermöglicht.
Bearbeitungsmethoden für die topologische Struktur werden vorgestellt und diskutiert.
Das Konzept der Netz- und Objektebene ist eine solide Grundlage für die Verwaltung
von Levels of Detail in Zellnetzkomponenten. Das raum-zeitliche Modell des
Topologie-Moduls baut auf dem Temporal Joint Model von DB4GeO auf, einer service-
basierten Geodatenbank-Architektur. Kontinuierliche geometrische Veränderungen
können durch das Temporal Joint Modell verarbeitet werden, während diskrete
topologische Änderungen der „großen Zellen“ durch das Raum-Zeit-Modell des
Topologie-Moduls modelliert werden. Schließlich werden Programm-Laufzeiten und
des Speicherverbrauch des Topologie-Moduls untersucht.

IV

Hiermit erkläre ich, dass ich diese Arbeit, mit Ausnahme der hier vollständig und genau

bezeichneten Hilfsmittel, selbständig verfasst und die Grundsätze des Karlsruher

Instituts für Technologie zur Sicherung guter wissenschaftlicher Praxis beachtet habe.

Edgar Butwilowski

Karlsruhe, 9.4.2015

V

3D Data and Model Management for the Geosciences
with Particular Emphasis on Topology and Time

PhD Thesis

at the Chair of Geoinformatics, Geodetic Institute
Department of Civil Engineering, Geo and Environmental Sciences of

Karlsruhe Institute of Technology

Prof. Dr. rer. nat. Martin Breunig
Prof. Dr. Mulhim Al-Doori

Edgar Butwilowski
Tel.: +49(0)721/608-42309

E-Mail: edgar.butwilowski@kit.edu

All company and brand names, trademarks and logos that are used
in this PhD thesis are the property of their respective owners.

VI

Table of Contents

 List of Figures..VIII
 List of Tables...XI
 List of Source Code Samples..XII
 Glossary...XIII
 Directory of Utilized Software Tools...XIV
1 Introduction and Related Work...1

1.1 Scope, Style, and Outline...1
1.2 Motivation..3

1.2.1 Geological Modelling in Practice..3
1.2.2 Introducing DBMS for the Management of Geoscientific Data..6

1.3 A Generalized Geo-Model for the Integrated Modelling of Geoscientific and GIS Data................12
1.4 Abstraction of Geodata...14

1.4.1 Early Research on Abstraction of Geodata..15
1.4.2 Difficulties in Automated Geodata Abstraction...16

1.5 Spatio-Temporal Geodata...18
1.5.1 An Example of Spatio-Temporal Modelling in City Planning..18
1.5.2 Early Research on Spatio-Temporal Modelling and its Objectives...20
1.5.3 Basic Considerations on Spatio-Temporal Modelling...21

1.6 Remarks on Suitable Spatio-Temporal Testdata...24
2 Topological Concepts of Spatio-Temporal Data Modelling...28

2.1 Geometry Model as Basis for the Topological Model..28
2.2 Limitations of Navigation on the Geometry Model...30
2.3 Cell-Tuple Structure and Generalized Maps..30

2.3.1 Cell-Tuple Structure and Adjacencies...31
2.3.2 Generalized Maps and Involutions..32
2.3.3 Involution Sequences Forming Orbits...34

2.4 Managing Geomodels with Multiple Levels of Detail...36
2.4.1 Hierarchy Relationships as Links Between LoD...36
2.4.2 Progressive Abstraction/Reduction of Geometry..37
2.4.3 Generalized Topological Approach on Multiple Representation...38
2.4.4 Application of Multiple Topological Representation in Subsurface Modelling......................41
2.4.5 Using G-Maps for Multiple Topological Representations...42

2.5 Modelling the Temporality of Geoscientific Data..45
2.5.1 Concepts of Continuous and Discrete Temporality...45
2.5.2 TimeStep, an Adaptive Time-Dependent Discretization...46
2.5.3 Temporal Point Tube Model of DB4GeO..47
2.5.4 Temporal Joint Model of DB4GeO...49
2.5.5 Temporal Cell-Tuple Model for Spatio-Temporal-Attribute-Objects......................................52

3 Design and Implementation of a Topology Module for the Modelling of Spatio-Temporal Objects.......55
3.1 Basic Class Model..56

3.1.1 Overview of DB4GeO Kernel...56
3.1.2 Extended Module Functionality..57
3.1.3 Spatial Cells as Wrappers for Simple Geo-Objects...59
3.1.4 Tuples of Spatial Cells...63
3.1.5 Basic Properties of the Utilized G-Maps Approach..66
3.1.6 Nets of Spatial Cells and Cell Net Builder Architecture...70
3.1.7 Handling Holes in Cell Net Components..76
3.1.8 Object Level and Net Level...81

3.2 Constructing Cell-Tuple Structure from DB4GeO Simplicial Complexes......................................85
3.2.1 Framework for Cell Complex Construction..86
3.2.2 Creating Cells and Cell-Tuples of a Triangle..88
3.2.3 Merging Cells and Cell-Tuples of Faces...90

VII

3.2.4 Creating Universe Faces and Object Level Structure..91
3.2.5 Constructing Solid Complexes From Tetrahedral Nets...93

3.3 Basic Methods of the Topology Module..95
3.3.1 Iterating an Orbit...95
3.3.2 Traversing Cells with the Help of Cell Iterators..102
3.3.3 Finding the Shortest Path on a G-Map...110

3.4 Methods that Manipulate the Cellular Structure..114
3.4.1 Method to Insert a Node on a Face Net Component..115
3.4.2 Method to Insert an Edge on a Face Net Component..118
3.4.3 Method to Remove Node and Edge From Face Net Component..120

3.5 Management of Levels of Detail of Cell Net Components..123
3.6 Implementation of a Geo-DBA For Time-Varying Topologies..128

3.6.1 Required Capabilities of a Temporal Topology Module..129
3.6.2 Architecture and Model of Temporal Topology Module...131
3.6.3 Preparation of Piesberg Dataset...136

4 Performance Measurements and Comparisons...140
4.1 Construction of Net Components...141
4.2 Basic Spatial/Topological Queries...142
4.3 Additional Performance Tests...144

5 Discussion...146
5.1 Summary and Conclusion..146
5.2 Outlook...152

5.2.1 The Topology Module as Basis for a DB4GeO CityGML Im-/Exporter..............................152
5.2.2 Direct Integration of the Topology Module into DB4GeO Kernel..153
5.2.3 Approach to Dimension-independent Cell Model...155
5.2.4 Comparison of the Topological Index with Classical Indices...157

 Bibliography...159
 Subject Index..167

VIII

List of Figures

Fig. 1: Integrated concept GINuSys© Source: (EEA GmbH 2012)..2
Fig. 2: Typical subsurface model with two strata boundary layers, seven fault layers and visualized well

data Source:Visualization using GOCAD software, data from GOCAD workshop 2009..............5
Fig. 3: Exterior of the Porcupine volumetric data block (left fig.) and a “look inside” the block (right fig.).

Some layers have been removed in the foreground of right fig. to gain insight. Source:
Visualization using GOCAD software, data by (Pouliot and Fallara 2007)....................................5

Fig. 4: Conceptual PostGIS topology model Source: (Santilli 2011, 19)..7
Fig. 5: TIN part of the relational data model of GST Source: (Gabriel et al. 2011, 5)..................................9
Fig. 6: Left: Subsurface geodata combined with 3D city model (collage/not related to reality); Right:

Subsurface infrastructure planning Source: left: collage from the figures of (Andenmatten and
Kohl 2002) and City of Berlin dataset screenshot (© City of Berlin; citygml.org); right:
(Dorffner, Ludwig, and Forkert 2006)...13

Fig. 7: CityGML model of Alexanderplatz, Berlin Source: Autodesk® LandXplorer screenshot; data: ©
City of Berlin; citygml.org..13

Fig. 8: Digital landscape model two different scales (left higher scale, right lower scale) Source: (Haunert
and Sester 2005, 14)..16

Fig. 9: Application example for the evolution of a building site over time (Berlin City Palace/Palace of the
Republic), source: presentation of Andreas Thomsen at DFG project “Abstraction of
GeoInformation” meeting in Gengenbach 2008..18

Fig. 10: Application example for geometric, attributive and topological changes of a 3D city model,
source: presentation of Andreas Thomsen at DFG project “Abstraction of GeoInformation”
meeting in Gengenbach 2008..19

Fig. 11: Layer concept in GIS (left) and spatio-temporal layers (right) Source: (Wachowicz 1999, 4)......21
Fig. 12: Longitudinal and branching time Source: (Wachowicz 1999, 21)...23
Fig. 13: States (left) and events (right) of a geo-object during its lifetime Source: (Wachowicz 1999, 22 et

seq.)..23
Fig. 14. 3D model of Piesberg landfill site with cells of different usage (1982 and 1993). Background

image: ©2010 GeoContent, ©2009 Tele Atlas, ©2009 Google..25
Fig. 15. Complete Piesberg dataset, years 1976 - 1993...26
Fig. 16: Number of triangles in the Piesberg dataset...27
Fig. 17: Example and non-example of Simplicial Complex Source: (Weisstein 2010c).............................29
Fig. 18: Incidence graph of Simplicial Complex model of the DB4GeO kernel (T: triangle, S: line

segment, P: point)..30
Fig. 19: Graph representation of an oriented 3-G-Map Source: (Thomsen et al. 2008)..............................32
Fig. 20: 0-2-involutions of a 2-G-Map Source: (B. Lévy and Mallet 1999, 4)...33
Fig. 21: Examples of non-manifolds Source: (B. Lévy and Mallet 1999, 2)...33
Fig. 22: Flow chart diagram of dimension independent orbit traversal algorithm......................................35
Fig. 23: Application of the progressive mesh algorithm (left: a geometric object in full detail; right: the

same object with reduced detail) Source: (Hoppe 1996, 108)...37
Fig. 24: Increasing number of topological cells at lower map scales Source: (Bruegger and Kuhn 1991, 8)

...39
Fig. 25: Links between cells of multiple LoD Source: (Bruegger and Kuhn 1991, 14)..............................40
Fig. 26: A subsurface fault, depicted in three levels of detail..41
Fig. 27: Editing of an H-G-Map (visualized on two hierarchy levels) Source: Fradin et al. 2005..............42
Fig. 28: Generalisation by aggregation in a hierarchical 2-G-Map. Source: (Thomsen and Breunig 2007,

248)..44
Fig. 29: Continuous vs. discrete modification of geometry in time. Source: Drawing by Andreas

Thomsen, KIT..45
Fig. 30: The Class TimeStep Source: (Polthier and Rumpf 1995)...46
Fig. 31: Simplified UML diagram of the space-time model of DB4GeO/DB3D..48
Fig. 32: Spatio-temporal component consisting of two spatio-temporal sequences....................................48
Fig. 33: Architecture overview diagram of Kuper's 4D model for DB4GeO..50
Fig. 34: Application example of the 4D model of Kuper Source: (Kuper 2010, 42)...................................51

IX

Fig. 35: Cell tuple based spatio-temporal data model Source: (Raza and Kainz 1999, 21)........................53
Fig. 36: Model of Temporal Cell Tuple by Raza and Kainz Source: (Raza and Kainz 1999, 23)...............54
Fig. 37: Layers of software architecture of DB4GeO, according to (Bär 2007, 58)...................................56
Fig. 38. Geometry model of DB4GeO...57
Fig. 39. Left: simple geo-objects are separate cells; right: three simple geo-objects are combined to a cell

...58
Fig. 40: Correlation between classes of simple geo-objects and cell classes..60
Fig. 41: Inheritance of cell classes...61
Fig. 42: Methods of cell interface and abstract cell...62
Fig. 43: References between abstract cell, cells and cell-tuples..64
Fig. 44: Model of CellTuple class..64
Fig. 45: Face and Solid class provide the possibility to create universe cells...67
Fig. 46: Non-manifold face fan in 3D and the intersection of universe faces...68
Fig. 47: 3-G-Map minimal cell configurations: 2-cell (left), 3-cell (right)..69
Fig. 48: Most simple possible cells in DB4GeO Topology Module: 2-cell (left), 3-cell (right).................70
Fig. 49: Face net builder architecture as an extension of the triangle net builder architecture of DB4GeO

...71
Fig. 50: Adaptation of cell nets (face net and solid net) into the central class inheritance hierarchy..........73
Fig. 51: FaceNet3DCompNetLevel as composition of indices of CellTuple objects and cells...................74
Fig. 52: Face net component in outer void (U1) with additional inner hole (U2).......................................76
Fig. 53: Indices of universe cells are part of face net component and of solid net component...................77
Fig. 54: Methods of cell net components that retrieve boundary cells..79
Fig. 55: Example configuration of cell net components at net level (bottom) and at object level (top)......81
Fig. 56: Two distinctive cell net component interfaces..82
Fig. 57: Higher and lower field attributes of CellTuple class (left: class diagram; right: example set-up).83
Fig. 58: Cell net comp level methods..84
Fig. 59: Flow chart diagram of cellNetBuildUp method...87
Fig. 60: Indexing of net topology in DB4GeO triangle net component..89
Fig. 61: Inspection of cell identity (left) and remapping of alpha-2 involutions during face merging

process (in mergeFaces method)...90
Fig. 62: Navigating along “inner side” of component boundary...93
Fig. 63: Merging cells and connecting cell-tuples of two tetrahedra (left); confronting faces detail (only

confronting faces are depicted): simultaneous 2-orbits on both sides of faces (right)..................95
Fig. 64: Diagram of OrbitIterator class..97
Fig. 65: Member variables of OrbitIterator class...98
Fig. 66: Example case for OrbitIterator barrier cell-tuple list..101
Fig. 67: AbstractCellIterator abstract class..103
Fig. 68: Boundary cell iterator classes...104
Fig. 69: Graphical representation of the respective iterating functionalities of cell iterators....................105
Fig. 70: Examples of cell iterators where adjacent/incident cells occur more than once..........................107
Fig. 71: Closure cell iterator classes..109
Fig. 72: Sample configuration of a face net at object and net level...109
Fig. 73: Finding a path on net level (light lines) between two nodes of an object level face (thick lines) 111
Fig. 74: Definition of DNode...112
Fig. 75: Simple example of a path finding scenario...113
Fig. 76: Example of insertNode, represented on object and on net level (left: before operation, right: after

operation)...115
Fig. 77: Examples of illegal states for insertNode method..116
Fig. 78: Adding new cell-tuples when performing insertNode method...117
Fig. 79: Example of insertEdge operation, represented on object and on net level...................................119
Fig. 80: Examples of illegal states in insertEdge method..119
Fig. 81: Adding new cell-tuples when performing insertEdge method...120
Fig. 82: Examples of valid and invalid spatial configurations for node and edge delete operations.........121
Fig. 83: Simple face net example of several LoD..123
Fig. 84: Architecture of hierarchical net builder as an extension of the cell net builder architecture.......124
Fig. 85: Relationship between the classes that build the net level, object level and LoD.........................125
Fig. 86: Class LOD is a realisation of EditableCellNet3dCompLevel interface.......................................126

X

Fig. 87: Additional methods of HFaceNet3dComp class...126
Fig. 88: Effect/purpose of copyOfLower parameter (on the LoD copy process)......................................127
Fig. 89: Additional methods and constructors of LOD class...127
Fig. 90: Example of creation of temporal objects with DB4GeO Temporal Joint Model.........................129
Fig. 91: Example of creation of temporal “big cells” on object level with Topology Module..................130
Fig. 92: Detail of Fig. 91: Interval between t=1 and t=2. An edge is inserted at t=1.5..............................131
Fig. 93: The extraction of a 3D face net from a temporal cell net object as class diagram.......................132
Fig. 94: A temporal cell net object includes a sequential list of temporal face nets..................................133
Fig. 95: Service class use case, employing temporal cell net object...133
Fig. 96: The temporal net components (with their NL and OL) of temporal face nets in a class diagram134
Fig. 97: A temporal face net component includes sequential lists of face net components at net level and at

object level...135
Fig. 98: Basic Node class (of model3d package) extended with temporal field..136
Fig. 99: Top views of the Piesberg dataset pre- and post-objects of the years 1976, 1983 and 1993........137
Fig. 100: Adding a new face at object level (in 1980) through insertEdge method...................................138
Fig. 101: Runtimes of net component construction (left); memory consumption of net component

construction (right)..141
Fig. 102: Runtimes of boundary retrieving operations (left); runtimes of get-2D-for-0D operation (right)

...142
Fig. 103: Runtimes of get-1D-for-0D operations (left); runtimes of countBorderEdges operations (right)

...145
Fig. 104: Example of editing session on Piesberg dataset (visualized with ParaviewGeo) Source:

(Breunig, Butwilowski, Kuper, et al. 2013, 10)...151
Fig. 105: Net level and object level representation of building model Source: (Breunig, Butwilowski,

Golovko, et al. 2013, 102), visualized with ParaViewGeo..153
Fig. 106: Cell complex model for direct integration into DB4GeO Kernel..154
Fig. 107: Classes of dimension-independent cell model approach..155

XI

List of Tables

Table 1. Number of triangles in the Piesberg dataset...27
Table 2: Overview constructor invocation and functionality of cell iterator objects.................................108

XII

List of Source Code Samples

Listing 1: SQL statement to generate a result that pairwise lists cell-tuples that are 2-adjacent.................31
Listing 2: Dimension independent orbit traversal algorithm (pseudo code); source: (B. Lévy and Mallet

1999, 3)...35
Listing 3: Example of an instantiation of a cell net (and G-Map)...72
Listing 4: Implementation of isOriented method of FaceNet3dComp class..75
Listing 5: Implementation of getBoundaryEdges and getAllUniverseFaces methods of

FaceNet3dCompNetLevel class..78
Listing 6: Implementation of isBorder(Node) method of FaceNet3dCompNetLevel class........................80
Listing 7: Pseudocode description of the algorithm of cellBuildupOnNetLevel method............................87
Listing 8: A textual description of createCellsOfTriangle algorithm...88
Listing 9: Java code excerpt for the creation of a cell-tuple (ct6) in createCellsOfTriangle method..........89
Listing 10: Pseudocode/textual description of the algorithm of mergeFaces algorithm..............................91
Listing 11: Pseudocode/textual description of the algorithm of createUniverseFaces method...................92
Listing 12: Textual description of the algorithm of mergeSolids method...94
Listing 13: Java code example, demonstrating the usage of OrbitIterator in enhanced for-loops...............98
Listing 14: Translating dimension integer parameter value into an involutionsList in

OrbitIterator(startCt:CellTuple, dimension:int) constructor (Java code).................................99
Listing 15: Idempotent implementation of OrbitIterator.hasNext method (Java code).............................100
Listing 16: Implementation of OrbitIterator.next method (Java code)..100
Listing 17: Extension of OrbitIterator.next method to handle cell barriers (Java code)............................102
Listing 18: Usage of cell iterator API for the iteration of adjacent faces (Java code)...............................105
Listing 19: Implementation of translation between a cell iterator and orbit iterators (Java code)............106
Listing 20: Algorithm (simplified) of next method of FaceIterator (Java code)..106
Listing 21: Algorithm (simplified) of next method of FaceIterator (Java code)..107
Listing 22: Implementation of getNeighbourEdges method of Face class (Java code).............................108
Listing 23: Pseudocode description of getShortestPath method of the Dijkstra class...............................113
Listing 24: Collecting cell-tuple of shortest path in a result list..114
Listing 25: Topological node-in-face query in blended pseudo code..117
Listing 26: Checking for edge neighbourhood properties of a node (Java code)......................................121
Listing 27: Integration of a new LOD into an h-face net component by passing the object as parameter

value (Java code)..128
Listing 28: Retrieving a temporal face net as the spatial part of a geo-object...134

XIII

Glossary

BMBF Bundesministerium für Bildung und Forschung (German
Ministry of Education and Research)

CAD Computer Aided Design
cf. compare
CGI Computer Generated Imagery
DB Database
DBMS Database Management System
DEM Digital Elevation Model
DFG Deutsche Forschungsgemeinschaft (German Research

Foundation)
DLM Digital Landscape Model
E&P Exploration and Production Industry
EEA EEA Earth Energy Analytics & Development GmbH
et seq; et seqq. and the following; and those that follow
EWKB/EWKT Extended Well Known Byte/Extended Well Known Text
Geo-DBA Geodatabase architecture
Geo-DBMS Geodatabase management system
G-Map Generalized Map
G-Map-DB Database that contains G-Maps data
GI Geoinformation
GIS Geoinformationsystem
GML Geography Markup Language
HTTP Hyper Text Transfer Protocol
ID/id Identification Number
Inv-ID Identification Number of an Adjacent Cell-tuple
LHC Largest Homogeneous Cell
LoD Level of Detail
MRDB Multiple Representation Database System
MTR Multiple Topological Representation
OGC Open Geospatial Consortium
OODBMS Object-oriented Database Management System
OOM Object-oriented modelling
PM Progressive Mesh Representation
SIC Laboratoire Signal, Image, Communications
SQL Structured Query Language
STDBMS Spatio-Temporal Database Management System
STO Spatio-Temporal Object
VRML Virtual Reality Modelling Language
WEDS Winged-Edge Data Structure
XML eXtensible Mark-up Language
XSLT eXtensible Stylesheet Language Transformation

XIV

Directory of Utilized Software Tools

ArgoUML Tool for the modelling of UML diagrams
(Acquisition source: http://argouml.tigris.org/)

Autodesk® LandXplorer 3D city modelling software by Autodesk that can read and
display CityGML XML format files.

db3dcore The DB4GeO/DB3D Kernel is a completely in Java written
library of 3D geometric data types (and its methods) and it
even provides the possibility to build topologically defined nets
(for example triangle nets) as well as access to a fast spatial
index on the geometry data.
(Acquisition source: http://github.com/geodb/db3dcore)

db3d The db3d module extends db3dcore with complex operations, a
temporal component, management of versions of geomodels
etc.

Db3dRestModule Db3dRestModule is the server module of DB4GeO/DB3D. It
provides the functionality to expose geodata to a network.

DB4GeORestAdmin Tool for the administration of DB4GeO/DB3D databases
(Acquisition source: http://scc-
bilbo.scc.kit.edu:8080/db4geotest/)

Eclipse EE IDE Eclipse Enterprise Edition is an integrated development
environment, used for the development and validation of Java
programs and XML schemata.
(Acquisition source: http://www.eclipse.org/downloads/)

Mirarco ParaViewGeo Tool for visualization of geoscientific data, uses the
Visualization Toolkit (VTK), based on ParaView
(Acquisition source: http://paraviewgeo.mirarco.org/)

ParadigmTM Gocad Software Suite for the visualization, creation and manipulation
of geoscientific data
(Acquisition source: http://www.pdgm.com/)

ESRI ArcGIS/ArcScene A widely used Geoinformationsystem that is capable of
visualisation and conversion of meshed surface models
(Acquisition source:
http://www.esri.com/jumppages/buttons/arcview_eval.html)

Microsoft Office Visio Software is used for the development of various diagrams
(Acquisition source: http://office.microsoft.com/de-de/visio/)

SIC moKa The „Modeleur de Cartes“ is a CAD that has been developed at
the Laboratoire SIC (Signal, Image, Communications) at the
French Université de Poitiers. moKa internally exploits a graph
based model of G-Maps
(Acquisition source: http://www.sic.sp2mi.univ-
poitiers.fr/moka/)

Sun Java SE SDK Development package for the programming language Java
(Acquisition source: http://java.sun.com/javase/downloads/)

CHAPTER 1 INTRODUCTION AND RELATED WORK 1

1 Introduction and Related

Work

1.1 Scope, Style, and Outline

The subject of this doctoral thesis is a direct outcome of the homonymous research project
of the German Research Foundation (DFG) on which a small research group worked
during the last years.1 Since several years, research has been done in the Geodatabases
Working Group at the University of Osnabrück and at the Chair of Geoinformatics in the
Geodetic Institute of KIT on the technology of 3D data and model management for the
geosciences. During these years, a prototype of a geodatabase architecture (Geo-DBA)
known as DB4GeO/DB3D2 has been developed (Bär 2007; Breunig, Schilberg, et al. 2009;
Breunig, Butwilowski, Kuper, et al. 2013). My work bases on DB4GeO, and the results are
reintegrated into the main development tracks.

As the title of the research project/thesis mentions, this work will focus on topological and
temporal modelling. The DB4GeO Geo-DBA has some insufficiencies in these domains.
The Working Group3 already added much relevant work on this topic (Thomsen et al.
2008; Thomsen and Breunig 2007). I've already worked on this subject during my diploma
thesis (Butwilowski 2007), so I'm glad to be able to continue this work on the development
of my Ph.D. thesis. Now I aim to contribute to a more comprehensive model/architecture
of DB4GeO. The employed work items will include i.a. the design of models for the

1 Grant no. BR 2128/9-1, official German title is “3D Daten- und Modellmanagement für die
Geowissenschaften unter besonderer Berücksichtigung von Topologie und Zeit.” Group members were
my colleagues Dipl.-Math. Andreas THOMSEN, Dipl.-Geogr. M.Sc. Geoinf. Daria GOLOVKO, and others.

2 DB4GeO is the newer external/marketing name; the older and still internally (in source code) used name
is and will remain DB3D. In the following only DB4GeO is used as the term for DB4GeO/DB3D,
though DB3D may appear in source code excerpts at times.

3 Especially A. THOMSEN

2 CHAPTER 1 INTRODUCTION AND RELATED WORK

management of topology of 3D/4D geological data, the development of suitable
algorithms, runtime experiments and performance testing.

Generally, DB4GeO is developed with the ideal to be an “all-purpose” Geo-DBA at its
core. This means that the core geometry model of DB4GeO has not been developed to
serve any special application purpose but has been kept sufficiently generic to serve many
different geometry modelling/computing applications (even those that are not common to
the geosciences). Though, DB4GeO shall stay a multi-purpose Geo-DBA, it is important to
keep in mind concrete application scenarios when enhancing the system with new
functionalities in order to stay close to real-world requirements. As a consequence, the
EEA Earth Energy Analytics & Development GmbH4 was found as a partner of practice.
The EEA is a company that plans to operate on deep geothermal energy projects and thus
inherently has to be capable of managing and understanding a huge amount of
geoscientific data.5 As a company in a highly competitive market their focus lies on
effectiveness and cost reduction of the applied processes and thus they are able to provide
me with application requirements which I will mention especially in the introductory parts.
The integrated concept of the EEA is subdivided into six modules (see Fig. 1).

This service portfolio has been termed GINuSys© which is a system that employs
knowledge from the scientific disciplines geology, computer science and numerical
analysis. It is envisioned to deploy DB4GeO as the 3D/4D geodatabase management
system for spatial and temporal (3D/4D) operations on geometric objects in module 3 of

4 Company website: http://beyondwind.net/

5 The essential question that such a business venture aims to answer is whether it is possible to produce
enough hot water from a certain drill-hole to install an economically successful project. This set of
problems is seen as the biggest barrier to investment in geothermal energy production (so-called
Exploration Risk, see (Münchener Rück 2004, 44)).

Fig. 1: Integrated concept GINuSys©
Source: (EEA GmbH 2012)

CHAPTER 1 INTRODUCTION AND RELATED WORK 3

GINuSys. As such it would be the central depository for the data exchange needs of the
other modules.

This thesis consists of four main parts. It starts with a motivation for dealing with this
topic; this is especially done by giving an inside view into the current application
requirements of the geological modelling community, the relevant techniques that are used,
the technical limitations of current data modelling and management systems and a number
of use cases. This is followed by an overview of the relevant scientific literature in the field
of geometric, topological, hierarchical, and temporal modelling for geoinformation
systems. The third part describes details of the implementation of the spatio-temporal
topology component that are developed in this dissertation. Finally the last part gives an
outlook onto possible further workings/open issues.

The targeted audiences are spatial information technologists, especially those that are
concerned with geological modelling, e.g. personnel of geological surveys or company
employees in the Exploration and Production (E&P) industry, as well as GIS experts.

The style of writing generally follows the Chicago Manual of Style guide (University of
Chicago Press 2010). The employed citation style follows the guidelines of the Chicago
Manual of Style in the author-date system. If adopted figures, tables, content etc. from
other authors were modified, then the indication of source are preluded by “cf.”
Figuratively used terms are set in quotation marks only on the first appearance. In the then
following sentences, they are “used normally”. Only when a longer segment lies between
two such terms, quotes are used again. Upper/lower case spelling of adopted technical
terms is aligned on the spelling in the respective source literature.

1.2 Motivation

1.2.1 Geological Modelling in Practice

Industries that typically benefit from geoinformation are defence and intelligence, business
administration, education, government, health and human services, mapping and charting,
utilities and communication, transportation, and public safety, as well as natural resources.6

A subset of geoinformation is the information on geological features. The modelling of
geological objects is performed especially in the various fields of the natural resources
branch as in geomorphology, geophysics, nature conservancy or environmental
management.

Geological models are used for education and in business consulting (whether done by
national government agencies for geology or by private stakeholders). Geological models
are a crucial factor for cost reduction in various geoscientific applications in the E&P
industry, such as searching for oil, gas or geothermal fields. In E&P industry there
generally is a high financial risk of finding the right subsurface spots of natural resources.

6 For a comprehensive list, see (ESRI 2010)

4 CHAPTER 1 INTRODUCTION AND RELATED WORK

A better knowledge of the engineering and management of subsurface assets help to lower
the uncertainty of E&P operations. Furthermore, geometric models are also essential to
compute mechanical, hydrological or e.g. subsurface temperature models in order to make
predictions about possible processes under the earth's surface.

To create a consistent geological model of an earth's crust sector, it is inevitable to “look
below the surface of the earth” (i.e. to collect extensive data of the subsurface). There is a
large number of methods to collect data for subsurface models most of which are based on
the interpretation of rock exposures, remote sensing imaging, drillings7 etc. Geophysical
methods are applied in seismic measurements8, electrical resistivity imaging (ERI) or
gravimetry (Götze and Lahmeyer 1988).

Following the terminology of SCHAEBEN et al. (2003, 174), there is a distinction between
conventional geographic data that is modelled in “traditional” Geographic Information
Systems (GIS), and geoscientific data, which is used in fields of the natural resources
branch. Geoscientific data shows a higher complexity in terms of dimensionality, mobility,
and impreciseness, as well as a greater diversity of its types. According to SCHAEBEN,
commercial GIS (that typically process 2-dimensional, static data) are not capable of
dealing with geoscientific data adequately. Hence, geoscience specialists9 that construct
geomodels (e.g. geologists) use versatile specialized software suites10 additionally to GIS
to process subsurface data.

The subsurface data that is gathered through the above-mentioned collection methods (or
measurements), is often of considerable size, it is raw, and it has to be refined, i.e. reduced
and converted into a format that is processable by geomodelling software. Then the refined
data is interpreted by the specialists with the help of geomodelling tools and transformed
into a sensible model of the subsurface. The data formats that have to be managed by the
specialists in day-to-day workload range from typical geoscientific data such as drill-hole
files, point sets, geo-referenced remote sensing images, seismic images, Esri shapefiles,
GOCAD ASCII files etc. to “common” data such as texts in various formats11, pictures,
videos etc. A typical geomodel that emerges as a final result of a modelling process is
depicted in Fig. 2.

7 Here a lot of information/material is accumulated that can be used for interpretation such as borehole
imaging, geoelectrical imaging or the drilling mud.

8 Seismic measurements are carried out by so-called geophones during (natural or man-made) seismic
events and in principle base on the usage of the reflection and refraction of seismic waves for the
interpretation of subsurface structures.

9 Simply “specialists” hereinafter

10 Some of the well known 3D modelling tools in the E&P industry are e.g. Paradigm GOCAD,
Schlumberger PETREL, Halliburton Landmark, Seismic Micro-Technology KINGDOM or
Maptek Vulcan.

11 E.g. office suite documents and Adobe Portable Document Format

CHAPTER 1 INTRODUCTION AND RELATED WORK 5

Typically, the modelled region is a delimited sector of the earth's crust with an extension of
a few kilometres in width and depth (delimited by a bounding box of interest). Such
models normally show the distribution of rock in the subsurface as well as the location and
orientation of discontinuities in the rock. Usually, the strata solids themselves are not
modelled but only their boundary and fault layers (as seen in Fig. 2 where two strata
boundary and seven fault layers are depicted).12

In advanced projects the specialists produce volumetric strata models (in an additional
step). An example of a volumetric data block is depicted in Fig. 3.

12 The geomodel in Fig. 2 also consists of well markers (point geometry data) and drilling trajectories (line
segment geometry data); the boundary surfaces are internally structured as nets of triangles.

Fig. 2: Typical subsurface model with two strata boundary
layers, seven fault layers and visualized well data
Source:Visualization using GOCAD software, data from
GOCAD workshop 2009

Fig. 3: Exterior of the Porcupine volumetric data block (left fig.) and a “look inside” the block
(right fig.). Some layers have been removed in the foreground of right fig. to gain insight.
Source: Visualization using GOCAD software, data by (Pouliot and Fallara 2007)

6 CHAPTER 1 INTRODUCTION AND RELATED WORK

The figure shows a geomodel of the Porcupine-Destor zone, which is a one km deep earth
solid under a ~ 45 km² wide area in the Abitibi subprovince of Quebec, Canada.13 Albeit, it
is not common yet to produce consistent volumetric strata models, since the construction of
strata solids sets high demands on the quality of the refined data. But it is likely to become
more common in the future as data quality and the tools' quality improve. Volumetric data
is more intuitive and, what is more important, it provides the means for improved
analytical processing of the data (see Ch. 2.1).

As a result of conversations with personnel of the Landesamt für Bergbau, Energie und
Geologie (LBEG)14 and the EEA, one of the more pressing problems of geological
modelling in practice could be identified, which is the handling of large amounts of data
files (of the models) that occur during the modelling process. These large amounts of data
files emerge because often one geomodel is modelled by multiple specialists that work on
their own files and additionally backup significant design steps in separate files.
Furthermore, a geomodel can comprise changes of the model in time (also managed in
separate files). And of course, most organizations have to manage multiple models in
different spatial areas. The models may also be scattered over multiple organizational
domains/boundaries. In addition, the data is kept in a proprietary data format, what often
results in the necessity to acquire software only from one vendor (so called “data/vendor
lock-in”).

1.2.2 Introducing DBMS for the Management of Geoscientific Data

The above mentioned insufficiencies in day-to-day work lead to a demand for a database
(DB) server system that provides a remote access service for the management and
synchronization of geologically modelled data in an organized fashion (so that teams are
enabled to work on the geodata separated but in cooperation). A DB server acts as a central
data hub in a client-server system. In such a setting, an operator who wants to contribute to
a certain geological model connects his workstation to a central repository of geological
models over the internet or an intranet, fetches the model he wants to alter and transmits
the changes he made back to the central repository.15 It can be assumed that more users and
editors will gain access to information systems in the future, increasing the amount of data
accesses and the diversification of structured and unstructured data that have to be
managed. Under such conditions, DBMS become inevitable data integrators to keep
control on high amounts of data.

According to BRINKHOFF, a geodatabase management system (Geo-DBMS) has to fulfil the
following requirements (Brinkhoff 2008, 25):

13 Dataset source is (Pouliot and Fallara 2007), the content of the figures is described later in more detail

14 The LBEG is the geological survey of the federal-state of Lower Saxony. The conversations took place
during a visit at the LBEG offices in 2009.

15 A detailed description of such a typical application session with a particular focus on DB navigation and
querying, using the predecessor of DB4GeO (which was GeoToolKit/Corba Adapter), is given by
(Shumilov et al. 2002, 120 et seqq.)

CHAPTER 1 INTRODUCTION AND RELATED WORK 7

• provide geometric datatypes

• provide geometric functions for the geometric datatypes

• provide spatial access methods and spatial indices

• provide interfaces for spatial data interoperability

Topology in Industry-Scale Geo-DBMS

Geo-DBMS are an established topic in the information technology industry. The most
prevalent industry-scale Geo-DBMS are Oracle Spatial (Ravada and Sharma 1999),
Microsoft SQL Server (Fang et al. 2008) and Refractions Research PostGIS (Blasby 2001).
These Geo-DBMS are conceptionally similar since they internally use the object-relational
model for geodata management. Furthermore, their geometry models are based on the
Simple Feature Model16 of the Open Geospatial Consortium (OGC®/OpenGIS®).17

The topological functionalities in these DBMS are still under conceptual development or in
an early stage of implementation. The PostGIS and Oracle Spatial topology modules aim to
implement the guidelines of the ISO SQL/MM part 3 (“Spatial”) standard (ISO 2011). In
the following, the topology model of PostGIS is presented. An entity relationship diagram
of the conceptual PostGIS topology model is shown in Fig. 4.

The key element of the depicted topology model is the EDGE. Every edge is in relation to
its start point and its end point, as well as to its right and left face, and to its next left and
next right face. BRUGMAN (Brugman 2010, 17 et seq.) highlights that this model is
equivalent to the Winged Edge Data Structure (WEDS) by BAUMGART (Baumgart 1975).

PICAVET points out the practical benefits of topologically enabled models in comparison to
spaghetti structures18 in PostGIS (Picavet 2010, 14 et seqq.). The primary aim of the

16 Which is specified in (Open Geospatial Consortium 2011).

17 For more information on simple feature support of the Geo-DBMS see (Patenge 2010) for Oracle
Spatial and (Refractions Research 2012) for PostGIS.

18 Unstructured point sequences

Fig. 4: Conceptual PostGIS topology model
Source: (Santilli 2011, 19)

8 CHAPTER 1 INTRODUCTION AND RELATED WORK

development of a PostGIS topology module is to improve data quality. The topology
module

• ensures that the occurrence of duplicate boundary elements is avoided wherever
possible,

• it eases algorithmic navigation on parts of geo-objects, and

• reduces the need for geometric calculations.

However, the key assumption of WEDS is that an edge has always exactly two incident
faces. This is only true in a 2D manifold setting, not for volumetric 3D geomodels.19 Thus,
WEDS and the PostGIS topology module only work in 2D application settings. Also the
PostGIS topology module does not consider two and three dimensional net objects such as
triangle nets and tetrahedral nets that are essential for the management of complex
geoscientific objects as they were previously described.

PostgreSQL Topology Add-In for the Management of Geological Data

Therefore, members of the Chair of Geoscience Mathematics and Informatics of the TU
Bergakademie Freiberg develop a net topology module for the PostgreSQL DBMS. It is
capable of importing and managing geodata that has been created with Paradigm GOCAD.
The geodata will be exposed through a Web Feature Service (WFS) in the data formats
Geography Markup Language (GML) and GeoScience Markup Language (GeoSciML)
(Gabriel, Gietzel, and Schaeben 2010).

The geometry kernel of the PostgreSQL net topology module of GABRIEL, GIETZEL, and
SCHAEBEN is termed Geoscience spatial and temporal data (GST). GST is capable of
managing point sets, multiline sets, triangle nets, and tetrahedral nets (Gabriel et al. 2011,
4). Having a closer look at the geometry kernel, it becomes apparent that the kernel
comprises runtime issues in certain application scenarios. The relational data model of
GST for the management of triangulated irregular network (TIN) objects is shown in Fig.
5.

19 In a 3D setting, multiple faces may be aligned along an edge which leads to the Radial Edge Data
Structure by Weiler (1988).

CHAPTER 1 INTRODUCTION AND RELATED WORK 9

In GST, a TIN (gst.tin) is modelled as a collection of faces (gst.tface) which in turn

are modelled as a collection of triangles (gst.trgl). Every gst.trgl has a relation to

three vertices (gst.vrtx). Also there are some back-relations from objects of a lower

hierarchy level to the ones of a higher hierarchy level (like from every triangle to the face
it belongs to). Though, this model is more powerful than the model of the PostGIS
topology module, with such a model it still becomes complicated to navigate on the
geometry net (e.g. to compute shortest paths between two nodes of a net), especially to
navigate along the exterior of a net. For example, since node adjacencies are modelled only
indirectly, to gain node adjacencies, it is necessary to traverse the structure from node to
the triangles of the node and than from the triangles level back to the incident nodes.
Similar inconveniences are expected for the tetrahedral net model.

DB4GeO for the Management of Geoscientific Data

The above-mentioned requirements stated by BRINKHOFF are also fulfilled by the
geodatabase management system DB4GeO20. DB4GeO provides 3D geometric data types,
functions for these data types, and spatial access methods, as well as spatial indices in its
core module, which is the DB4GeO Core API.21 Some more complex operations (such as
the cross-section operation) that are built as a composite of basic geometric functions, are
gathered in a separate module which is termed just db3d22. This module also provides the
means for project management, a basic handling of thematically defined data (Breunig,

20 DB4GeO is completely developed in Java.

21 The name of the development project of the DB4GeO/DB3D core API is db3dcore. db3dcore has been
published as an opensource library under a GPL-like licence on the git hosting service “github”,
available at the project's address http://github.com/geodb/db3dcore. For the sake of simplicity, the
DB4GeO Core API is termed DB4GeO kernel or Core API or db3dcore hereinafter.

22 db3d - in contrast to db3dcore - is not published as open source.

Fig. 5: TIN part of the relational data model of GST
Source: (Gabriel et al. 2011, 5)

10 CHAPTER 1 INTRODUCTION AND RELATED WORK

Schilberg, et al. 2009, 49 te seq.), and an implementation of a model for spatio-temporal
(4D) data, as well as the interfaces for spatial data interoperability through its I/O classes.
DB4GeO exports the file types DB3D XML (which is the proprietary interchange format of
DB4GeO), GOCAD (VSet, PLine, TSurf, TSolid, SGrid23), GML, JML, VRML, and X3D
and imports DB3D XML, GOCAD, JML, and Abaqus.24

Historically, DB4GeO is a successor to GeoStore and the GeoToolKit (Balovnev et al.
2004, 10 et seqq.). GeoStore is a Geo-DBMS that has mainly been developed in the 90s at
the collaborative research centre SFB 350 of the University of Bonn. It has been developed
with the C++ programming language and is an application-specific DBMS that focuses on
the management of geological objects. Later, members of the research groups of SFB 350
realized that many of the geometric functions of GeoStore were useful in other application
domains than geological modelling as well (Cremers et al. 2000, 4). Thus, a more
generalised geometric kernel has been extracted from GeoStore and termed GeoToolKit.
GeoToolKit is a library of geometric data types, functions, and spatial access methods. The
foundations of the geometry model that was applied in GeoToolKit have been described in
detail in (Breunig 2001). GeoStore itself has been redesigned to use GeoToolKit as its
kernel for geometric computation. A custom desktop client has been developed for
GeoStore that was able to load and visualize geodata from a GeoStore DB. In the
following, other application modules such as GeoWeb (for the access on geological models
via the web) have also been developed on top of the GeoToolKit library. GeoWeb had
already been extended with such advanced functionalities as mesh decimation for a
progressive transmission of the geodata to lower the usage of bandwidth for data
transmission (Shumilov et al. 2002, 117). Also the Geo-DBMS had a spatio-temporal
model and was able to process time-dependent queries (Siebeck 2003, 41 et seqq.). The
resulting static or temporal geo-objects were visualized in a VRML browser that was
extended by the Java applet CortonaTM (Shumilov et al. 2002, 116). After the 90s, the
project “Advancement of Geoservices”25 gave project team member Wolfgang BÄR the
chance to take GeoToolKit and all the lessons learned from its development as the
inspirational basis to design and implement the next stage of the software in Java
programming language (Bär 2007); it was termed DB4GeO.

The architecture of the network interface of the DB4GeO server changed several times
during its development stages: in the first approach, when DB4GeO was developed in C+
+, the geometry objects where exposed to the net by the remote invocation framework

23 Support for SGrid (Stratigraphic Grids; also unstructured, irregular grids or “non-uniform” structured
grids) is very limited

24 An exhaustive description of the I/O interfaces of DB4GeO can be found in (Rolfs 2005, 44). The
supported file formats for import/export show that one of the main aims of DB4GeO is to bridge the gap
between geoscientific IS and geographic IS.

25 The project with the German title “Weiterentwicklung von Geodiensten” was part of the special program
GEOTECHNOLOGIEN of the Federal Ministry of Education and Research (BMBF) and the DFG.
Detailed information on the project can be found on http://www.planeterde.de.

CHAPTER 1 INTRODUCTION AND RELATED WORK 11

CORBA26. Later, when DB4GeO was ported to Java, the service architecture was changed
to the distributed systems network architecture Jini (and remote invocation framework
changed to RMI27). In the last step, the service architecture has been changed to RESTful
HTTP.

The DB4GeO REST module28 allows to expose the main functionality of the DB4GeO
DBMS through a network as a service. The module implements the geodatabase server as a
RESTful HTTP web server, which means that the operations of the DB4GeO DBMS can
simply be accessed through URL requests, using the Representational State Transfer29

(REST) architectural style and REST verbs – for call examples see (Breunig, Broscheit, et
al. 2009, 104).

The RESTful interface supports the objective of DB4GeO to operate as a distributed
spatial DBMS (or even more pointedly as a distributed GIS) to provide data selection,
retrieval and operations on complex large scale geoscientific models. DB4GeO with the
RESTful interface eases the distribution of geoscientific data across multiple virtual and
real servers. Since RESTful HTTP is stateless, individual instances of DB4GeO servers do
not have to synchronize states (cf. (Fielding and Taylor 2002, 119)).

DB4GeO has already been deployed in several research-centered application scenarios like
for the early warning of landslides (Breunig et al. 2010, 84 et seq.), and it is intended to use
DB4GeO as the central part of a distributed data system for the geosciences where data
from different geoscientific fields shall be integrated into a network-based, metadata-
driven system (Breunig et al. 2011, 15 et seq.).

Some application scenarios for DB4GeO have also been determined by the industry. For
example, the EEA has identified some functionalities of a geodatabase as vital for their
operational business. These were e.g. a “discrete access on geo-objects like aquifer, faults,
and temporally moving crevasses, and the storage, access and export of virtual (i.e.
computed) 2D profiles of 3D volume models, as well as the possibility for spatio-temporal
querying and geometric 3D/4D operations on volume models” (EEA GmbH 2012).

Typical queries and editing operations on DB4GeO (and spatio-temporal databases in
general) in application scenarios might be:

• Which stratigraphic horizons and faults are penetrated on a given drilling path
(geometric query)?

• What is the volume size of a given block of rock (geometric query)?

• What are the hydrological parameters of the rock in a given spot
(parameter/thematic query)?

26 Common Object Request Broker Architecture

27 Remote Method Invocation (Java's type of Remote Procedure Call)

28 The internal name of the service infrastructure project is RestDb3dModule.

29 For more information on REST architecture, see (Fielding and Taylor 2002)

12 CHAPTER 1 INTRODUCTION AND RELATED WORK

• Remove a certain component of a horizon surface from the whole geo-object
(editing operation).

• Did a given fault ever cut through a given rock solid (temporal geometric query)?

• What was the average speed of a given moving crevasse during the last two
decades (temporal geometric query)?

Due to the limitations of its kernel geo-object model, DB4GeO is not able or has
performance issues (i.e. is unacceptably slow) at responding to queries such as:

• What is the boundary polyline of a given fault?

• Show the polyhedral boundary surface of a rock solid.

• What is the shortest path between two drilling points on the mesh of a given
stratigraphic horizon surface?

• On a digital geologic profile section: which is the stratigraphic layer on top of the
given stratigraphic layer?

All of these queries require a powerful underlying topological model for geo-objects in the
Geo-DBA kernel.

Hitherto, the implementation state of the topology model of the DB4GeO kernel limited its
capabilities for the integration of heterogeneous spatial data models. DB4GeO is
specialized on the management of Simplicial Complexes like triangle and tetrahedral nets.
On the other hand, “classical/on-surface” GIS data utilizes a more unstructured approach to
geometric modelling – e.g. cadastre parcels are typically modelled as polygons with an
arbitrary number of support vertices.

1.3 A Generalized Geo-Model for the Integrated Modelling of Geoscientific

and GIS Data

The integration of geoscientific subsurface data and “on-surface” (cultural) GIS data, such
as 2D cadastre parcel features or 3D city models, brings forth valuable applications, cf.
(Krämer et al. 2010; IAI (Institut für Angewandte Informatik Karlsruhe) 2011). An
example of such an application is the integrated analysis of data of a geothermal field
(subsurface) and 3D city model data (cultural) to study the profitability of a geothermal
project, taking into account numbers, volumes and locations of potential customers'
buildings as well as considering the costs of competing teleheating pipe pathways and the
productivity of geothermal fields. A (simulated) visualisation example of a setting with two
subsurface stratigraphic horizon boundaries, some well paths, a digital terrain model
(DTM), combined with on-surface features like trees, drilling rigs and a city is shown on
the left side of Fig. 6.

CHAPTER 1 INTRODUCTION AND RELATED WORK 13

Another major application scenario for the combined management and analysis of
geoscientific data and cultural geodata is the planning of subsurface infrastructure, which
is depicted on the right side of Fig. 6, where a 3D city model and the model of a planned
subway track are shown. In such planning scenarios, it is useful to seamlessly integrate
geological subsurface data into the planning process in order to investigate the subsurface
stability on the basis of rock material properties directly in one common system.

A well-known data exchange format for 3D city models is CityGML, which has been
introduced by KOLBE and GRÖGER (Kolbe and Gröger 2003). CityGML since has become an
OGC standard (Open Geospatial Consortium 2008). It is likely that the standard will be
supported by several visualization clients in the future (cf. Fig. 7 for an example of a
CityGML 3D city model, rendered with Autodesk® LandXplorer).

The fundamental standard for CityGML and other OGC as well as ISO/TC211 standards is
ISO 19107 “Geographic information - Spatial schema” (ISO 2003). The geometry/topology
model laid out in ISO 19107 specifies that OGC-compliant GIS/Geo-DBMS may support
both, the modelling of geo-objects with vaulted, polyhedral surfaces (class

Fig. 7: CityGML model of Alexanderplatz, Berlin
Source: Autodesk® LandXplorer screenshot; data:
© City of Berlin; citygml.org

Fig. 6: Left: Subsurface geodata combined with 3D city model (collage/not related to
reality); Right: Subsurface infrastructure planning
Source: left: collage from the figures of (Andenmatten and Kohl 2002) and City of
Berlin dataset screenshot (© City of Berlin; citygml.org); right: (Dorffner, Ludwig,
and Forkert 2006)

14 CHAPTER 1 INTRODUCTION AND RELATED WORK

GM_PolyhedralSurface, constructed e.g. as triangle nets) as well as with arbitrary

planar polygons (class GM_Polygon) in boundary representation (B-Rep) (Andrae 2008,
117 et seqq.).

CityGML uses B-Rep for the modelling of man-made objects. CityGML buildings for
example are modelled as sets of polygons that define the buildings' boundaries. The B-Rep
of CityGML requires bounding lines of building walls to be straight lines and bounding
surfaces of building solids to be planar polygons (Open Geospatial Consortium 2008, 23).
CityGML also explicitly encourages the usage of topological data structures, for example
to model the joint use of geometries.30 To efficiently handle the B-Rep of CityGML, a
geometry/topology module has to be able to model topologically connected geometries
with arbitrary flat boundary shapes (polygons) and to efficiently retrieve boundary
geometries of geo-objects (e.g. the bounding polygons of a solid or the bounding line
segments of a polygon). Furthermore, efficient topological navigation between CityGML
geometry entities is needed (e.g. navigation from one building solid to its adjacent
building). These requirements hitherto were not satisfactorily met by the DB4GeO kernel.
This is because the concept of B-Rep is not directly consistent with the Simplicial
Complex model of the DB4GeO kernel (more on this in Ch. 2.1). To meet these
requirements, the geometry kernel needs to be extended by a topology module that is
capable of handling both, objects that are described by net representation, and objects that
are described by B-Rep, in one model.

However, the focus of this work will not be to design and implement data exchange
interfaces in DB4GeO for CityGML (or OGC geodata models in general). Nonetheless, the
topology module for DB4GeO shall enable the DBMS to internally handle such data. On
top of the topology module, specialized models and import/export interfaces for CityGML
data may be implemented (see Ch. 5.2.1 for more details).

1.4 Abstraction of Geodata

One of the key techniques of the human mind to make reality intellectually graspable is
abstraction. Humans abstract continuously in various situations. This is a necessary
consequence out of the fact that reality is too complex to be recognized in its entirety.
Thus, the human mind generates models of reduced complexity of the reality in order to
process it. This reasoning is fundamental, especially to the art of cartography and to
geoinformatics in general. Cartography and geoinformatics deal with the creation of world
models (2D maps or 3D representations) that are better graspable if provided on multiple
levels of abstraction.

However, multi-scale modelling is not only an important concept for the human mind, but
equally important for machine based processing. In fact, multi-scale modelling also is a
fundamental subject in general computer science. The reason for the wide dissemination of

30 CityGML topology is formulated with XLinks. An examination of the topic of modelling CityGML
topology with XLinks can be found in (Krimmelbein 2011).

CHAPTER 1 INTRODUCTION AND RELATED WORK 15

the topic is due to the fact that in various problem definitions of computer science, it often
is useful for performance reasons to initially compute an approximate solution on a coarse
level, and then to seek more accurate solutions in levels of increasing detail. From this
perspective, even search trees like B-trees (Bayer and McCreight 1972) can also be
regarded as methods of multi-scale modelling.

In geoinformatics and cartography literature, there are several terms for the concept of
abstraction with a similar meaning, as e.g. generalization, multiple representation, multi
resolution, hierarchy management, plurality of scales, or levels of detail (LoD). With
regard to some terms in this field, there is a confusion of tongues. In particular, the usage
of higher and lower LoD or large and small scale of a map is often ambiguous/inverse. To
avoid such confusion in this work, these terms shall explicitly be used in the following
way: a higher LoD e.g. of a city model means that there is more detail in such a
representation. For example: at a lower LoD, a city model may be missing all windows in
the buildings, whereas these are added in a higher level. A similar concept applies for map
scales: a large scale means that a map is very much “zoomed in” (much detail), a small
scale “zooms out” (less detail).

Due to the broadness of the topic, a definition of a clean taxonomy of all concepts of
hierarchy management is difficult. In geoinformatics, the topic of abstraction focuses on
geometric, attributive, and topological abstraction. In geometric modelling, there are
methods that allow for a continuous change of detail of a geo-object, like the progressive
mesh method (which is explained in Ch. 2.4). However, in many applications of hierarchy
management, it is useful to formulate certain definitions of fixed level of detail. These
level definitions can only be formulated depending on certain applications. The definition
of a certain detail level includes which types of geo-objects are assigned to that level. The
assignment of a geo-object type to a certain LoD typically not only depends on the average
size of the geo-objects of that type but also on attributive data. For example: in small scale
waterways mapping, only features of large size, like a broad channel, are of interest.
However, although waterway signs would be classified as to small in size on that LoD,
they still would be included since they thematically are of special interest in this context.

1.4.1 Early Research on Abstraction of Geodata

Research efforts in machine based generalization were already conducted as early as in the
70s, e.g. by David William RHIND (1973). The research of RHIND focused on abstraction of
geometry objects with fixed detail level definitions. Later, a greater research initiative
called “Multiple Representations” on multiple representation databases (MRDB) was
carried out by the National Center for Geographic Information and Analysis (NCGIA) in
1988. The closing report of the initiative (Buttenfield 1993) comprises an extensive
collection of literature on the topic, some of which is discussed in the theory-part of this
work.

MRDB are defined as spatial databases that are capable of maintaining several geometric
representations with different levels of detail of the same real-world phenomenon.

16 CHAPTER 1 INTRODUCTION AND RELATED WORK

Research on MRDB for a great part refers to the management and provision of 2-
dimensional maps on multiple LoD (cf. Fig. 8).

Fig. 8 shows a map excerpt from an MRDB on landuse at three different scales. The
linestrings depict boundaries of areas of different landuse. From left to right, the average
sizes of the landuse areas are increasing. With changes of the area sizes, also the assigned
land use classes change from more detailed to more general. Thus, any more generally
classified landuse area can be defined as a collection of several more precisely classified
landuse areas.

Many traditional paper maps already are published in multiple scales. In the design process
of the maps, the lower scales have to manually be derived from maps of larger scale by
techniques of generalization. While the generalization process for paper maps is solely
targeted to the visualisation, one of the major specific tasks of an MRDB is also the
management of the relations between multiple representations of a spatial object on
different scales. This allows for cross-scale navigation and cross-scale analysis on geodata.

1.4.2 Difficulties in Automated Geodata Abstraction

Hierarchy management of geodata is a broad topic. The cartographic generalisation
processes cannot easily be structured. For example, in some applications of hierarchy
management, there is a demand that a geo-object even has to change its dimensionality on
different LoD. This can be the case e.g. for a digital city model, where the city can be
modelled as a point feature at small map scales, as a planar (polygonal) feature at medium
map scales and as a volumetric buildings model at large map scales. Such cases make it
difficult to find correlations between the different LoD and complicate a sound automated
algorithmic treatment.31

31 A similar issue is found in multi-scale modelling of CityGML (Open Geospatial Consortium 2008, 9).
CityGML supports the management of up to five LoD. Although it is possible e.g. to navigate between
the LoD of a single whole building, it is not possible to navigate on parts of a building (e.g. a building
wall) between their multiple versions on different LoD. In CityGML only a reduced set of relations is
modelled between the LoD.

Fig. 8: Digital landscape model two different scales (left higher scale, right lower scale)
Source: (Haunert and Sester 2005, 14)

CHAPTER 1 INTRODUCTION AND RELATED WORK 17

It is obvious that in such cases it is not only difficult to automatically find geometric
interrelations between different LoD but that also issues arise when a geomodel is changed,
i.e. when the geomodel is edited/updated by a specialist. To stick with the city model
example given above, a multiple representation system has to incorporate rules for the
adjustment of a lower LoD to changes in a higher LoD. An example would be the
extension of a city model at its boundaries by the 3D building model of a spacious building
complex on highest LoD. In such a case, an automatic update of all lower LoD might be
necessary. On the polygon level, the base area polygon of the city might need to be
expanded. On the point level, the representative point of the city (lowest LoD) might need
to be displaced.

However, the adjustments are generally vague, since it depends on the application scenario
and purpose, which rules apply. For example, there might be no need to displace the
representative point if it is defined in a different way than as the centre of gravity of the
urban extent, or if other rules interfere.

Often, automatic updates are not possible in the opposite direction at all. This can also
clearly be shown by the above example: if the operator first manually displaces the
representative point (due to the construction of a new building complex), the system of
course cannot create a detailed building model by itself on a higher LoD. This is a general
problem: on geometric modifications at a lower LoD, obviously the missing information of
a higher LoD mostly cannot be synthesized automatically.32

The examples show that abstraction rules/mechanisms mostly have to be defined for
certain narrow application cases and are not generally applicable. Hierarchy management
systems for geodata are always restricted to one certain application or to a narrow
application field. Thus, in industry and research, there are approaches that are specialized
on clearly defined applications, or at least that strongly limit the application radius so that
it is possible to develop applicable rules and systems that are valid in their respective field.

An example of a widely used hierarchy management system with a clearly defined narrow
field of application is ATKIS33 (Anders and Bobrich 2004), which is an MRDB of multiple
digital landscape models (DLM) with a fixed amount of four LoD. ATKIS is a solely
geometric MRDB, where the generalization information is maintained by links between the
geo-objects of a larger scale and their representative of a lower scale.

This chapter explained the importance of the abstraction subject area in geoinformatics and
outlined some general concepts and issues of geometric abstraction. However, in Ch. 2.4
not only the introduced reasoning further will be further elaborated (i.e. specific methods
of geometric hierarchy management in 2D and 3D applications that are state of research
are discussed) but also a shift in focus will lead to topological modelling of multiple
representations.

32 Though, its not impossible in all cases. Synthesization can be achieved through the application of
comprehensive sets of rules.

33 German Authoritative Topographic-Cartographic Information System

18 CHAPTER 1 INTRODUCTION AND RELATED WORK

1.5 Spatio-Temporal Geodata

Spatio-temporal geodata is data that is defined with respect to space and time.34 In several
application domains, the extension of spatial data with a temporal component enables
many additional useful types of analyses that static geodata alone cannot provide.
Consequently, industries start adopting temporal geodata in their day-to-day business. In
fact, temporal geodata can be employed virtually anywhere wherever geodata is already in
use, e.g. in business management, social sciences, environmental research, geoscientific
modelling, or city planning. For example, in the environmental sciences, spatio-temporal
analysis of daily rainfall data that is measured at multiple locations, helps to understand the
processes of climate change.

1.5.1 An Example of Spatio-Temporal Modelling in City Planning

City planning places particularly high demands on the capabilities of spatio-temporal
models. Example cases of the application of spatio-temporal data in city planing are
illustrated in Fig. 9 and Fig. 10.

Fig. 9 shows state changes of a building (here: Palace of the Republic) over its lifetime
(from 1753 to the future). A spatio-temporal DBMS that is capable of managing the
chronological sequence of a building needs to handle various states and transitions. In the
example, the Berlin City Palace was constructed in 1753. In 1945 the building was
completely destroyed. Only debris remained on the lot for five years. The debris was

34 Definition according to the entry "Spatio-temporale Daten" in the GI-Lexikon of the Geoinformatik-
Service of the University of Rostock (entry link: http://www.geoinformatik.uni-rostock.de/einzel.asp?
ID=1981)

Fig. 9: Application example for the evolution of a building site over time
(Berlin City Palace/Palace of the Republic), source: presentation of
Andreas Thomsen at DFG project “Abstraction of GeoInformation”
meeting in Gengenbach 2008

CHAPTER 1 INTRODUCTION AND RELATED WORK 19

removed and the successor to the Berlin City Palace, the Palace of the Republic was build
on the same lot in 1976. The Palace of the Republic remained externally unaltered for
almost two decades, until it was constructionally extended in 1993. In 2009 the Palace of
the Republic has completely been removed, and only an empty lot remained. At present, a
reconstruction of the Berlin City Palace is under way.

This kind of complex setting is a typical case that occurs in urban planning. In the
presented setting, multiple different types of temporal changes take effect. The schematic
drawing of Fig. 10 more clearly delineates, abstracts and classifies the different change
types.

In the example of Fig. 10, at time step T i−1 , the model consists of two disjoint buildings.

A new building is added to the model at time step T i . This changes the overall geometry

of the model but not the geometries of the existing buildings. At time step T i1 another

building is added to the model that connects two of the existing buildings. This not only
changes the overall geometry of the model but also the geometry of the two existing
buildings that are affected by the constructional expansion. In the same temporal step, the
overall topology also changes, since the two buildings, which were disjoint before, now get

connected through the newly introduced central block. In time step T i2 (which is marked

as current time), there are three different types of changes that take place at the same time
step. There is a change of ownership, which is an attributive change. This is not a
geometric change, it only changes the character sequence entry of the ownership property
of the building. Furthermore, in the same step, the facade of a building is expanded by a
balcony. This induces a change of the building's own geometry and topology. In the future,

the construction of a fourth building is planned for time step T i3 , but this is only one

Fig. 10: Application example for geometric, attributive and topological
changes of a 3D city model, source: presentation of Andreas Thomsen
at DFG project “Abstraction of GeoInformation” meeting in
Gengenbach 2008

20 CHAPTER 1 INTRODUCTION AND RELATED WORK

possible version of what really might be implemented when the time step becomes the
present.

This was only one example of an application domain and its adoption of the temporal
component. With an increasing number of application domains that need to adopt temporal
geodata, also the claim to science to elaborate sophisticated spatio-temporal models and a
clean structuring of the processes and problems increases.

1.5.2 Early Research on Spatio-Temporal Modelling and its Objectives

The management and storage of spatio-temporal data is a strong observed field of research
in the geoinformation sciences already for several years. In 1990, LESTER compiled a
comprehensive overview of (still mostly valid) research problems in spatio-temporal
modelling, cf. (Lester 1990), some of which are:35

• the understanding of time,

• temporal logic,

• architecture of temporal GIS, and

• how to deal with alternative representations.

In this context, this thesis is primarily concerned with the issue of the architecture of
temporal GIS.

SHOHAM and GOYAL identify four different reasoning tasks that can be supported by
temporal GIS36, which are: prediction, explanation, learning new rules, and planning
(Shoham and Goyal 1988, 419 et seq.). Whereas prediction uses a set of existing rules and
a model of the present state to predict a future state, explanation uses the set of rules to
explain a former state from the present. In the task of learning new rules, two recorded
states of two different points in time are used to deduce the affecting rules. In planning, a
model of a present state, a model of a desired future state, and a set of rules are used to
deduce activity guidelines to achieve that state.

At first glance, the extension of a GIS to a time-integrative GIS (Ott and Swiaczny 2001)
seems straightforward, by introducing an additional time variable to the already existing
spatial variables. But the problem is more delicate, since a temporal information system
needs to hold and arrange copies of old recorded states (its versions). Thereby, questions
concerning the level of version tracking arise.37 Topologically regarded, similar rules apply
for time as for space (Langran and Chrisman 1988): neighbourhoods can be modelled
explicitly, with similar benefits as there are for the explicit modelling of topology in space.

35 This chapter presents some basic ideas of the topic in order to provide a rough overview. However, not
all presented aspects will further be covered in the thesis.

36 Real-life application examples for the usage of temporal GIS are be given by (Worboys, M.-F. 1994).

37 The topics of temporal data and version control are closely related and should be considered conjointly.

CHAPTER 1 INTRODUCTION AND RELATED WORK 21

1.5.3 Basic Considerations on Spatio-Temporal Modelling

WACHOWICZ describes two traditional, fundamental approaches regarding version control in
temporal GIS (Wachowicz 1999, 3 et seqq.): The idea of “organising space over time” is
closely related to the layer concept of GIS. Here, every step in time renders a completely
new data layer (Fig. 11).

On the other side, the idea of “representing a real-world phenomenon in space and time”
(ibid.) means to append time to the spatial unit that is indivisible in the respective
application and to perform version control on that element. This approach is more closely
related to the object-oriented perspective. An indivisible unit can be – depending on the
application – a whole geo-object (object level) or parts of the object, e.g. an object attribute
(attribute level).38 Version changes may imply a change of an attribute value, as well as
changes in the object's geometry, or in its topological configuration (more on this topic in
Ch. 2.5), or even in the schema of the object.

In temporal modelling of geo-objects, version control plays an important role. Version
control aims at the incremental update of geo-objects or their parts. With incremental
updates, versions are calculated by a combination/addition of other available versions of a
geo-object. This raises new issues that can be summarized under the “space vs. runtime”
problem field. DADAM et al. detected two types of strategies for incremental update
(Dadam, Lum, and Werner 1984), which are forward oriented versioning (non-
accumulative and accumulative), and backward oriented versioning (non-accumulative and
accumulative). In forward oriented versioning, the oldest object that has been added to the
data set, is taken as the basis on which the newer versions of the object are created. Newer
objects are thus constructed on basis of the older objects by only recording the changes to
the older objects. In contrast, in backward oriented versioning, the object that was added

38 Generally, the consideration of time aspects under the object-oriented perspective seems to be
particularly fruitful. This has especially been pointed out by Wachowitz and others active in the field.

Fig. 11: Layer concept in GIS (left) and spatio-temporal layers (right)
Source: (Wachowicz 1999, 4)

22 CHAPTER 1 INTRODUCTION AND RELATED WORK

last, is taken as the basis on which the older versions of the object are redefined. By the
non-accumulative strategy, the derivative versions of an object are always deduced from
the one base version (oldest/youngest object), whereas by the accumulative strategy, each
derivative version is incrementally deduced from its predecessor in the version history.
Each approach has its advantages and disadvantages in terms of runtime and memory
usage in certain applications. In research on spatio-temporal models, a recurring issue is
which parts of a geo-object shall transfer from an existing to a new version, respectively
what proportion of an object shall become part of its copy. Such problems are closely
related to the question, in which cases an old object ceases to exist and when a new one
begins.

In the attempt to capture temporal information in databases, it soon turned out that it is
useful to categorize the recorded time into two types. SNODGRAS and AHN framed various
approaches that were developed at that time by several research groups, under the terms
valid time and transaction time (Snodgrass and Ahn 1985). While valid time designates the
time in which an event occurs in the reality, transaction time indicates the time instant at
which the same event is recorded in the database. Based on this classification, SNODGRAS

and AHN distinguish four kinds of (chronological) databases, which are: snapshot, rollback,
historical and temporal databases. While snapshot databases do not support any concept
of time (do not store temporal data), rollback databases are capable of storing several
versions of a data unit along with its transaction time. With the help of this meta
information, previous states of the database can be restored (rollback database). In
contrast, historical databases have no rollback functionality. Instead they include valid
time to each data unit version. By this, it becomes possible to consider the real temporal
evolution of an observed item. Finally, a temporal database supports valid time and
transaction time and thus makes it possible to study the historical evolution of an object as
it happened in (or was planned for) reality, as well as the evolution of its representation in
the database (combination of rollback and historical database).

Furthermore, valid time can be modelled in a longitudinal configuration or in a branching
configuration (Lester 1990, 12) (see Fig. 12).

Fig. 12: Longitudinal and branching time
Source: (Wachowicz 1999, 21)

CHAPTER 1 INTRODUCTION AND RELATED WORK 23

The figure shows the time dimension plotted against one space dimension. The space
dimension in this figure is a representation of several space dimensions (for the sake of
simplicity) and symbolizes the physical movement of a geo-object through space. In the
longitudinal configuration (left), entity A takes only one path through time, so that at any
time instant, there is always exactly one version of the object. In the branching
configuration (right), first there is also exactly one version of entity B in the example, but

only until “present time” (cf. “Now line”). However, after this, it splits into multiple
simultaneously existing versions. Thus, at specific times, there are several versions of
entity B that differ in their attributive and/or spatial configuration (position, shape).39

In the 70s, HÄGERSTRAND proposed the usage of space-time trajectories of spatial objects for
problem solving in the geographic information domain (Hägerstrand 1975).40 Space-time
paths describe the lines that a geo-object generates in space-time over a given period
through its spatial movement. Each spatial feature moves on its own spatio-temporal path
(see Fig. 13).

During its lifetime on the space-time path, a geo-object can repeatedly change the
characteristics of its movement or of its other entity properties. Such time instants can be
considered as states (see left illustration in Fig. 13). States are triggered by events in time
(Fig. 13, right). An event can be for example an update process on the data. In information
systems, events can typically be used to store explicit versions of the geo-object (more on
this in Ch. 2.5.2).

The periods of time between states can be described by different approaches, such as by
kinematic or dynamic descriptions. Kinematic models describe the change of an object by
comparably simple rules that only consider change of the external appearance of the
object.41 Dynamic models instead describe the change of the external appearance of an
object as a result of physical forces acting on the object.

39 A well-crafted application example of 5D models that combines both, valid branching time as well as
transaction time in a realistic spatial database query, can be found in (Schaeben et al. 2003, 178).

40 Hägerstrand presented his ideas on the basis of an application-oriented example concerning the human
behaviour in urban surroundings.

41 (Alms et al. 1998, 255 et seqq.) delineates the architecture of a class library that facilitates the modelling
of change of the external appearance of geological objects.

Fig. 13: States (left) and events (right) of a geo-object during its lifetime
Source: (Wachowicz 1999, 22 et seq.)

24 CHAPTER 1 INTRODUCTION AND RELATED WORK

Based on these elementary considerations of spatio-temporal reasoning, several models for
the handling of spatio-temporal data have been developed in the last decades. As we will
see, the models focus on specific application requirements. Temporal geodata becomes
increasingly valuable in a growing number of application fields. For example, temporal
geoscientific data is recorded when an oil reservoir is tapped. As long as the oil field is in
production, the reservoir is monitored and temporal geometry models of the reservoir solid
are constantly generated. The temporal models are needed to detect changes in the
reservoir volume early in order to be able to react properly in time. Another application
field where temporal geodata becomes increasingly useful is city planning, where temporal
geodata can help to better understand the mechanics of the city's evolution.

Applications with temporal geodata put high demands on the underlying temporal
geometry model. Chapter 2.5 will present well-known spatio-temporal models and show
that they have deficiencies in modelling topology that changes in time. The extension of
the DB4GeO topology module with the capability of handling temporal data (Ch. 3.6) can
contribute to an advanced usage of topology in temporal data.

1.6 Remarks on Suitable Spatio-Temporal Testdata

Spatio-temporal 2.5D and 3D data are still rare. A remarkable spatio-temporal dataset
(Lautenbach and Berlekamp 2002) that has been compiled and developed by LAUTENBACH in
his diploma thesis, could be obtained. It is used in tests of concept implementations in this
thesis (two snapshots of the dataset are illustrated in Fig. 14 for a first impression).

Multiple datasets and informations from different sources were integrated to produce the
resulting dataset at hand. The Piesberg dataset is a combination of clipping of digital
elevation model (DEM) of the city of Osnabrück42, SICAD® drawings, and cross-section
drawings. The SICAD drawings are a top view line drawings of the breaking edges of the

42 The DEM for Osnabrück is provided by the LGN (Ordnance Survey + Geoinformation Lower Saxony),
the product is called DGM5 with a grid expanse of 10 m

Fig. 14. 3D model of Piesberg landfill site with cells of different usage (1982
and 1993).
Background image: ©2010 GeoContent, ©2009 Tele Atlas, ©2009 Google

CHAPTER 1 INTRODUCTION AND RELATED WORK 25

dumpsite. Cross-section drawings are vertical “cuts” through the dumpsite that illustrate
the local height profile. These were first only available as paper drawings and had to be
manually digitized. All drawings are available for multiple years. The “flat” SICAD
drawings were combined with the height profiles of the cross-section drawings. In this
process, the heights from the cross-section drawings have been transferred to the SICAD
drawings to generate several 2.5D geomodels. The Triangulated Irregular Network (TIN)
of the geomodel has been computed by the TIN module of Arc/Info. Finally, the DEM has
been used to expand the geomodel to its sides. After all, the whole temporal model consists
of 12 TINs – screenshots of the individual geo-objects, denoting the year of valid time of
the respective object, are depicted in Fig. 15.

The final dataset consists of twelve files (the twelve points in time). Originally LAUTENBACH

stored the data in ADF format43 that can be visualized and converted with ESRI ArcGIS
3D-Analyst. In ArcGIS 3D-Analyst the data has been converted to the more open/better

43 Arc/Info Binary Grid format; a binary format developed by ESRI for storing raster data

Fig. 15. Complete Piesberg dataset, years 1976 - 1993

26 CHAPTER 1 INTRODUCTION AND RELATED WORK

readable VRML format. In VRML format the complete dataset takes about 67 MB44. In a
point in time, the model consists of about 30K triangles (so about 300K triangles at large).
As it can be seen in Fig. 15, the configuration of the TIN changes from year to year at
large. There are parts that nearly stay unchanged (especially at the borders) and parts that
greatly change (in the centre). The amount of triangles that build up the TIN also differs
from year to year (cf. Table Table 1).

Year 1976 1978 1980 1981 1982 1983

Iteration +0 +2 +4 +5 +6 +7

Triangles 30,144 30,092 28,742 26,978 26,582 25,688

Year 1986 1987 1989 1991 1992 1993

Iteration +10 +11 +13 +15 +16 +17

Triangles 24,436 24,474 24,026 24,056 24,004 19,128

Table 1. Number of triangles in the Piesberg dataset

In general, the amount of triangles decreases at every time step (with some minor
exceptions). For a better overview, the data history are clearly presented in Fig. 16.

The decrease in the number of triangles is because the model of the landfill itself has a
lower resolution (is represented by fewer triangles) than the DEM of Osnabrück, in which
it is embedded. Since the landfill continues to expand, more and more surface of the DEM
is “covered” by the landfill model, and thus the number of triangles in total is continuously
reduced.

The meshing of the triangle model is realised with continuously fewer triangles and subject
to strong changes with each time step. Due to this dynamic properties, the data set provides
a major challenge to temporally model and keep track its geometry and topology.

44 In comparison ADF format consumes ~ 10 MB

Fig. 16: Number of triangles in the Piesberg dataset

CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA

2 Topological Concepts of

Spatio-Temporal Data Modelling

As stated in section 1.2.1 (Geological Modelling in Practice), geoinformation occurs in
diverse applications in a variety of ways. The underlying models that are used to manage
geodata are also diverse, starting with a simple model as spaghetti structure that is used as
the simplest, unstructured way to gather geoinformation in common GIS (Peuquet 1984, 76
et seq.) to the complex models that are needed to represent temporal 3D objects. This
chapter gives a summary of the common models that are most important for sophisticated
spatio-temporal modelling and outlines the current state of international research in the
field of spatio-temporal model-building for geoscientific data.

2.1 Geometry Model as Basis for the Topological Model

Within spatio-temporal data models, topological information should be supplemented by a
geometry model representing the location of geo-objects in space and time. As an example,
the db3dcore geometry model is an implementation of the Simplicial Complex model
(Alexandroff and Hopf 1935, 45:158 et seqq.). In the model of Simplicial Complex, the
considered space is completely subdivided into connected simplices, thus it is a specific
cell decomposition model, cf. (Mäntylä 1988, 72 et seqq.). The intersections between d-
dimensional simplices are the (d-1-dimensional) simplices that constitute the boundary of
the d-dimensional simplices (see Fig. 17).

28 CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING

The DB4GeO/DB3D Core API implements the Simplicial Complex model for the spatial
part of its 3D object model, see UML class diagram in (Bär 2007, 65). The Core API
defines a 3D object to be an object in 3D space that has a spatial part which can be a point
sample, a curve, a surface or a volume. These abstract geometry concepts are specified by
concrete geo-objects as follows:

• point sample as point net,

• curve as line segment net,

• surface as triangle net, and

• volume as tetrahedron net.

The triangle net is a construct that is used in application to model e.g. the strata boundary
layers of subsurface models, as depicted in Fig. 2. Tetrahedron nets can be the substructure
of blocks of volumetric geomodels, as depicted in Fig. 3. It is obvious that volumetric
objects enable more analytical evaluation in application than plain 2D objects, since e.g.
the volume size of rock blocks can only be computed with volumes that are represented by
closed surfaces. If a volume is subdivided into multiple tetrahedra, the calculation problem
for the whole geo-object can be distributed to the single tetrahedra of the net. The
calculation of the volume size of a single tetrahedron is algorithmically easier than the
calculation of an arbitrarily shaped geometric object. After calculating the volumes of the
single tetrahedra, the individual intermediate results can be added to obtain the overall
volume size. The concept of splitting a complex geometric object into multiple simple
geometric objects is applied in several methods of the API with the aim to ease code
complexity and maintenance.

All the aforementioned nets are subdivided into non-overlapping net components. A net
component itself consists of connected simplices. By the means of the Core API, it is
possible to navigate on top of net components by iterating over the explicitly stored
neighbourhood relations between simplices.45

45 This structure can be seen as the implicit topology model of the DB4GeO/DB3D Core API

Fig. 17: Example and non-example of Simplicial Complex
Source: (Weisstein 2010c)

CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING 29

2.2 Limitations of Navigation on the Geometry Model

The explicitly stored neighbourhood relations between single simplices can be visualized
in an incidence graph. Fig. 18 shows the incidence graph of the Simplicial Complex model
as it is implemented in db3dcore.

The arrows (left side) represent the connections between the simplices. Depicted is an

example of two triangles that are adjacent through the line segments S2 , S 3 (see right

side). There are directed top-down incidence relations from triangles to segments to points,
as well as “next to”-connections between multiple triangles (of a triangle net) and equally
between multiple segments (of a segment net). This incidence graph is quite usual for
geometry modelling systems (B. Lévy and Mallet 1999, 3). Obviously, there are also some
insufficiencies concerning the navigational properties of this structure. For example, there
are no back references from lower to higher dimension simplices as well as there is e.g. no

direct connection between S2 and S3 , what makes navigation quite difficult. There are

cases that force a traversal of the whole structure to do only one step in navigation.46

LIENHARDT (1989) and BRISSON (1989) proposed explicit generic topology models that
address such problems.

46 For example if it is necessary to find all neighbouring line segments to a given point.

Fig. 18: Incidence graph of Simplicial Complex model of the DB4GeO kernel (T:
triangle, S: line segment, P: point)

30 CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING

2.3 Cell-Tuple Structure and Generalized Maps

The way to the invention of the cell-tuple structure and the Generalized Maps was paved
by prior topological models that have widely been used in CAD industry. These prior
models have been BAUMGART's winged edge representation (Baumgart 1975), WEILER's half-
edge structure (Weiler 1985), and the radial edge representation (Weiler 1988). The cell-
tuple structure has finally been proposed by BRISSON (1989).

2.3.1 Cell-Tuple Structure and Adjacencies

In the cell-tuple structure, first, a geo-object of dimension N is completely divided into
arbitrarily shaped cells of dimensions N ,N−1, ,1,0 . Second, cell-tuples are defined as

ordered sequences of cells (cn) of decreasing dimension. A cell-tuple is denoted as:

C c N , c N−1 , , c1 , c0 .

From another perspective, a cell-tuple corresponds to a path in the aforementioned
incidence graph.47 A cell-tuple structure is a set of cell-tuples that represent all possible
paths in the incidence graph. In the set, all cell-tuples are unique by their tuple elements.

All cell-tuples of a set are “connected” through the concept of adjacency that is inherent to
the cell-tuple structure:

C Ai C '⇔∀ 0≤ j≠i≤N ,c j=c ' j .48

Two cell-tuples C and C ' are called i -adjacent (Ai) if exactly one cell, viz. the cell of

dimension i of the cell-tuple is exchanged (switch operation) so that another unique tuple
of the set of valid cell-tuples is obtained in return.49 This structure can easily be mapped to
a relational database. Once the cell-tuples are stored in a database table, adjacencies can
be computed elegantly through SQL statements such as:

SELECT * FROM celltuples ORDER BY Node-ID, Edge-ID

Listing 1: SQL statement to generate a result that pairwise lists cell-tuples that are 2-adjacent

Listing 1 exemplary shows an SQL statement that can be used to pairwise list all 2-

adjacencies (A2) of a set of cell-tuples. This method can be used as a basis to find any

desirable adjacency.50 Such representations are discussed in more detail in Ch. 2.5.5 in the
context of spatio-temporal modelling.

47 For example, for a 2-dimensional structure we can note F1 , E1 , N 1 , with face F 1 , edge E1 and

node N 1 . On terminology of geometry and topology primitives, cf. (Butwilowski 2007, 18 et seq.)

48 Source of this denotation is (B. Lévy and Mallet 1999, 3)

49 For instance, the following two cell-tuples are 0-adjacent: F1 , E1 ,V 1 and F1 , E1 ,V 3

50 More detail and more examples on the topic of the relational representation, particularly its
combinatorial properties, can be found in (Butwilowski 2007, 47 et seqq.)

CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING 31

In an actual implementation, for convenience and faster processing, the cell-tuples can be
explicitly linked (see Fig. 1951).

In Fig. 19, an implementation example is sketched, where the cell-tuples are realised as
nodes of a graph (depicted as rectangles) and are connected by bidirectional pointers
(arrows) that pre-calculate and make the switch operations persistent.

2.3.2 Generalized Maps and Involutions

LIENHARDT (1989) proposed the more abstract model of Generalized Maps52. A G-Map (G)
of dimension N is defined as a pair that consists of a set of darts (D) and of a set of

operations that are defined on the darts, called involutions (i):

N- G D ,0 ,... ,N−1 ,N .

The involutions have to satisfy LIENHARDT's axioms αi(αi(d))=d and

∀0≤i<i+2≤ j≤N ,αi ∘α j (B. Lévy and Mallet 1999, 4).

A dart is an abstract construct and the involutions are defined as abstract transitions
between darts, not specifying the actual realisation of a transition (for a visual
representation of an example 2-G-Map, see Fig. 20).

51 In the fig. the order of the sequence of cells is inverse, compared to the definition of Brisson.

52 Abbreviated as G-Maps or GMaps

Fig. 19: Graph representation of an oriented 3-G-Map
Source: (Thomsen et al. 2008)

32 CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING

The dimension of a G-Map (N) equals the number of involutions in the involutions set. For

example, a 2-G-Map (2- G) consists of the involutions α0 ,α1 ,α2 .

Cell-tuples are a possible realisation of darts and switch operations are a possible
realisation of involutions. In such a case, the cell-tuple structure is a realisation of G-Map.
Another viable realisation of G-Map could be to model the darts as shallow objects and the
involutions as direct references between the darts (this can also be interpreted as graph
representation of G-Maps).

Particular attention should be paid to the darts at the boundaries of the example 2-G-Map
that is depicted in Fig. 20. Since the 2-G-Map “ends” at the boundary, a special handling of

the 2 -involutions is needed: also exemplary depicted in Fig. 20, the 2 -involution of

any dart d b at the boundary is defined as d b=2d b (i.e. the dart is self-referencing for

2). Outer darts, lying in the 2D universe (face universe) or outer void, are not defined in

this case, but they can be added easily.

The realisation of G-Maps by LÉVY and MALLET (1999) is capable of modelling all kinds of
manifold geometric set-ups in 2D and 3D. Though, G-Maps are generally not capable of
modelling non-manifold situations as visualized in Fig. 21, they still are capable of
modelling some non-manifold objects that are the so-called Cellular Quasi-Manifolds53 cf.
(B. Lévy and Mallet 1999, 2)).

53 This class of objects is discussed in more detail in Ch. 3.1.5.

Fig. 20: 0-2-involutions of a 2-G-Map
Source: (B. Lévy and Mallet 1999, 4)

Fig. 21: Examples of non-manifolds
 Source: (B. Lévy and Mallet 1999, 2)

CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING 33

Manifolds are a class of geometric objects that are locally homeomorphic to a disc in 2D or
a ball in 3D.54

2.3.3 Involution Sequences Forming Orbits

A series of single involution steps can be combined to orbits.55 An orbit is defined as a

subset of darts and is denoted as 〈i1
,i2

,... ,ik
〉 d s (B. Lévy and Mallet 1999, 4), where

the part in angle brackets (〈 ...〉) is a list of involutions (involution sequence of the orbit).
Only these involutions are allowed to be traversed. The involutions in the list can generally
be traversed in an arbitrary sequence, but they have to obey the preconditions stated in

Ch. 2.3. However, at least the orbits 〈i ,i1〉 d s can also be traversed in an ordered

sequence (B. Lévy and Mallet 1999, 5). An example of such an ordered orbit is
〈0 ,1〉 d s that can be used e.g. to return all vertices of a face in an ordered sequence.

With an orbit, it is possible to traverse all darts that belong to an i-cell of arbitrary
dimension. This is done by defining an orbit that consists of all involutions but the

involution of dimension i. Such an orbit is denoted as ⟨αi⟩(ds)
56 or as i-orbit (an orbit of

dimension i), see also (Butwilowski 2007, 66 et seq.), where i determines the dimension of
the cell that is traversed by the orbit. This is the cell that is completely described by the

orbit. For example: a 0-orbit always performs a repeating sequence of 1− 2 -involutions

until it reaches the start dart, thus collecting all darts of a 0-cell (node).

LÉVY and MALLET present an algorithm to traverse darts of cells of any dimension in (B.
Lévy and Mallet 1999, 5):

1. traverse(start: Dart, i1
,i 2

, ... ,ik
 : int)

2. S : Stack;
3. mark(start);
4. push(S, start);
5. while not empty(S)
6. Dart d = pop(S);
7. DO_IT(d);
8. for j = 1 to k
9. if not marked(i j

d )
10. mark(i j

d )
11. push(S, i j

d )
12. end if
13. end for

54 For a comprehensive definition, see (Remmert 1964).

55 Orbits are discussed in greater detail in (Butwilowski 2007, 35 et seq.)

56 e.g. the orbit 〈0,1,2〉d s on a 3-G-Map traverses all cell-tuples of a 3-cell (solid) since the only

missing involution in the orbit is 3 , thus 〈3〉d s

34 CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING

14. end while
15. end traverse

Listing 2: Dimension independent orbit traversal algorithm (pseudo code); source: (B. Lévy and Mallet
1999, 3)

Fig. 22 more clearly shows the execution sequence of the introduced orbit traversal
algorithm in a flow chart diagram.

To start the process, the method user passes two parameters to the orbit traversal method:

• a start dart (dstart) and

• a list of involutions i1
,i 2

, ... ,ik
 of size k to be applied to form the orbit.

dstart is the dart with which the orbit shall start and end. First, dstart is marked as “visited”
and pushed onto a stack of darts (S) that yet have to be processed. If S is empty, then the
algorithm terminates. S is not empty in first step, since dstart is already in S. As long as S is
not empty, the top dart d is popped from S and processed by the API user. The type of
processing depends on the case of the user and can e.g. simply be a push of d onto the end
of a resulting orbit list. This arbitrary, case dependent processing is paraphrased by the
DO_IT function call in line 7.

Then j (which is the index number of the involutions list) is set to 1. Then, in a for-loop,

all involutions of the involutions list are applied on d. Every d ' (d '=i j
d ) is checked

whether it is already marked (has already been visited). If it has not been visited, it is
pushed onto S and marked. Then the next dart d is popped from S. Since, in this way, it can
be guaranteed that any dart of an N-G-Map is visited at least once, this algorithm is
dimension independent.

Fig. 22: Flow chart diagram of dimension independent orbit traversal algorithm

CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING 35

G-Maps offer a way of flexible navigation on cells. The type of manageable cells is not
restricted to simplices but they may be all kinds of connected cell subdivisions, thus this
model has a higher expressive power. For example, the G-Map representation may also be
seen as a generalisation of B-Rep (B. Lévy and Mallet 1999, 2), and therefore is also
capable of modelling B-Rep. The model facilitates simple, short algorithms, since it is
dimension neutral (though in their presentation of the model in 1999, LÉVY and MALLET

give visual examples and some details only on 2-G-Map). Due to their flexibility and
modelling power, G-Maps are used as a topological toolbox by the widely-used
geomodelling software GOCAD, as indicated in (Royer 2004, 4).

2.4 Managing Geomodels with Multiple Levels of Detail

While Ch. 1.4 introduces the basic ideas of generalization/abstraction of geodata, this
chapter will detail the concepts and present specific common methods of geometric and
topological generalization that have been developed in previous research efforts.

2.4.1 Hierarchy Relationships as Links Between LoD

In their description of ATKIS (a four LoD DLM, cf. Ch. 1.4), ANDERS and BOBRICH outline
three ways to generate the links between objects of different levels. First, by manual
linking where an operator manually and interactively sets the links between multiple
representations of the same geo-object on different scales. No automation algorithms are
involved in this process.

Second, linking by matching which is a semi-automated process that identifies geometry
objects on different scales that possibly represent the same geo-object. The matching
algorithms analyse different aspects of a geo-object which are the geo-object's geometry,
topology and semantics. More elaborate algorithms incorporate all three aspects in
integrated relational matching procedures. Still, every LoD comprises its own separate
dataset that is maintained independently of the other LoD. The process of manually
maintaining every LoD separately is error prone and cost intensive.

Therefore, a third approach is to automate or at least to semi-automate the process of
generalization in an MRDB by predictable/deterministic and thus repeatable algorithms.57

By this approach, only the dataset with the highest LoD is explicitly modelled by the user.58

All other LoD are automatically derived from the highest LoD/largest scale (this becomes
the base dataset). The links between the geo-objects of different LoD are generated
automatically during generation and later with every editing process on the base dataset.

57 In fact, Fig. 8 shows the results of a semi-automated generalization process for the abstraction of
polygon features.

58 Though, in different contexts, e.g. in building planning, a top-down approach is more suitable for the
workflow, since architects design simple building models first and then add more detail to their models
step by step.

36 CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING

This is only possible if the generalization rules are sophisticated enough so that it is always
known which geo-objects of a larger map scale have to be condensed to which geo-objects
of a lower map scale.

Subsequent research on MRDB dealt with topics such as the optimization of updates on
already existing data sets of multiple scales (Haunert and Sester 2005), which was also
termed incremental generalization. The (semi-)automated generation of small-scale maps
from larger scales is computationally intensive. The aim of the research of HAUNERT and
SESTER was to identify methods that allowed for local modifications in the base dataset
without the necessity to fully recalculate all map areas of all smaller scales.

2.4.2 Progressive Abstraction/Reduction of Geometry

As indicated in the introductory chapter, the topic of geodata generalization is not limited
to “traditional” 2D map data but encompasses other geoinformatics disciplines and
geospatial data models, such as 2.5D meshed surfaces, 3D vector data, or georaster data
(Sester et al. 2008). For example, the technique of progressive mesh representation (PM)
which has been introduced in (Hoppe 1996), is regarded as an abstraction technique (see
Fig. 23).

Fig. 23 shows an application of a PM algorithm on a geometric object that is described by
a triangulated mesh surface. The left figure shows the object in full detail, while the right
figure shows the same object with a mesh of reduced detail.

PM provides the means to represent a spatial object that is modelled as a triangulated
surface in different degrees of detail, from the least detailed mesh that still preserves some

of the main geometric characteristics of a geo-object (M 0) to the most detailed geo-object

(M n). This is achieved in two steps: first, M n is taken as a basis on which elementary

operations are applied to reduce the detail of the geo-object step-by-step by reducing the
amount of triangles (to “thin out” the geo-objects) and therefore to lower the descriptive
details of the geo-objects. The operation that is used to reduce the detail is the edge
collapse transformation that merges two vertices and two triangles and deletes the edge

Fig. 23: Application of the progressive mesh algorithm (left: a
geometric object in full detail; right: the same object with
reduced detail)
Source: (Hoppe 1996, 108)

CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING 37

between the two vertices. The edge collapse operations are conducted in such a way that
the main geometric characteristics of the geo-object are preserved. This is made possible
through the inclusion of attribute information of the geo-object into the PM algorithm.
Attribute information could comprise for example breaklines.

At the end of the PM reduction, M 0 remains. Only M 0 and all detail reduction

operations are recorded. Intermediate complete versions of the mesh are not stored. This
saves a great amount of storage space, since only the differences (deltas) between each
detail representation but not the bulky detail representations themselves are stored. Finally,

all intermediate versions of the mesh and the most detailed geo-object (M 1 , M 2 , ... , M n)

can be restored by applying the inverse operation of each recorded edge collapse operation

step-by-step on M 0 . The inverse operation of the edge collapse operation is the vertex

split operation. The vertex split operation splits one vertex into two vertices and connects
them by a new edge (which necessarily leads to the creation of two new triangles).

One of the great advantages of PM is that any reduced geometric model always remains to
be a triangulation, which is important for 3D graphics processing, since 3D graphics
hardware is optimized on efficiently handling triangle meshes. A PM algorithm has been
implemented in DB4GeO by KUPER (2010). This implementation focused on reducing the
complexity of geometric models for computational purposes. A geo-object that is reduced
in detail can more easily (faster) be processed, uses less memory and thus needs less
bandwidth when it is transmitted through a computer network.

2.4.3 Generalized Topological Approach on Multiple Representation

While the MRDB approach presented in Ch. 1.4 only aimed at managing links between
geometries of one type on different LoD (e.g. only between polygons), BRUEGGER and KUHN

(1991) integrated the cell concept and cell connectivity (i.e. topological representation)
into their considerations. One of the early attempts to structure the subject matter of
hierarchical management of topological representations – so called multiple topological
representations (MTR) – was developed by them. BRUEGGER and KUHN argue that MTR are
inevitable for multiple LoD of geodata to avoid severe performance problems in processing
topological queries. They elaborate a GIS application example that demonstrates that
unnecessary topological information is an obstacle to efficient algorithms for certain spatial
queries that refer to particular (lower) LoD. Fig. 24 shows, for an example of a 2-
dimensional cell decomposition, how detailed topological information can lead to
information overload at lower map scales.

38 CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING

Fig. 24 depicts demarcation of land area on multiple map scales. The map scale lowers
from left to right. The thick lines in the leftmost depiction show the boundaries of property
parcels of a city, the rightmost depiction shows a whole state. In this example, the parcels
are internally modelled as TIN (indicated by thin lines in left figure). A single
representation model would preserve all topological information throughout all map scales,
leading to an extensive topological information overload at the lowest map scale. In such a
case, a topological query such as “which states are neighbour states to a given state?”
would involve an iteration over all outer boundary line segments of the outer property
parcels, making this a computationally expensive query.

Assuming the usage of MTR in such applications, topological queries can be performed in
constant time. BRUEGGER and KUHN elaborate a general concept on MTR, without restricting
their approach to a specific cellular model. Their considerations apply to any cellular
model of arbitrary dimension (whether Simplicial Complex or others). They introduce
largest homogeneous cells (LHC) which are an abstraction of specific, implementable
topological cell types.59, and that are used as the basis of MTR. Cells that represent the
same point set on different LoD are linked in both directions. In an MTR, a set of cells of
one level is connected to a set of cells of another level. The inherent dimension of the cells
does not matter: e.g., a 2-dimensional cell may be represented as a 1-dimensional cell at
another LoD. All correspondence relations between all topological cells of all contained
dimensions are modelled. Fig. 25 shows a diagram representation of an MTR with 2-
dimensional LHC and all bidirectional links.

59 In Fig. 24, for example, LHC are realized as Simplicial Complex cells.

Fig. 24: Increasing number of topological cells at lower map scales
Source: (Bruegger and Kuhn 1991, 8)

CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING 39

The diagram presents a stylized profile view of the above introduced application example
of land area demarcation on multiple map scales, with districts demarcation on lowest,
towns demarcation on middle and parcels demarcation on highest map scale. All
topological elements on different LoD that represent the same point set are linked. In the
example, not only the demarcation surface elements of different LoD are linked but also all
boundary edges that represent the same boundary at different LoD, and also all nodes. The
diagram shows all links between surface elements and between node elements.60

Many links of a multi representation are not modelled explicitly but are given implicitly
through the transitivity rule. Even if two levels of detail of a multi representation are not
directly connected/adjoining, then nonetheless their geometries are linked indirectly. The
transitivity rule states that if a subgeometry on a higher LoD is part of a parent geometry
on a lower LoD, then all geometries that are part of the subgeometry on even higher LoD
are also part of the parent geometry of the lower LoD. All indirect hierarchy relations can
be derived by following all direct links from a lower LoD geometry to its higher LoD
representations through all intervening hierarchy levels.

BRUEGGER and KUHN identify two types of relations between cells of different LoD, which
are 1:m- and m:n-relations. m:n-relations allow for multiple linking in both directions of
two adjoining LoD. This implies on the one side that a cell at lower LoD is represented by
one or more cells at higher LoD. On the other side, a cell at higher LoD may partly
represent not only one but also two or more cells of a lower LoD.61 Such a constellation is
not possible with 1:m-relations, since these allow multiple linking only in one direction
from lower to higher LoD. This implies that a cell at lower LoD is represented by one or
more cells at higher LoD but that a cell at higher LoD always partly represents only exactly
one cell of a lower LoD. If all links in an MTR are modelled as 1:m-relations, then any
higher LoD is said to be a refinement of all lower LoD. Only from refinement relations
follows a clear hierarchy of abstraction. The diagram in Fig. 25 shows an example of an

60 Edges are also linked but they are not depicted only due to diagram type.

61 An example of an m:n-relation would be the hierarchical linking between countries and UTM zones. A
UTM zone may include any number of countries. In the opposite direction, a country belongs to
multiple UTM zones if the country is crossed by grid lines of the UTM system.

Fig. 25: Links between cells of multiple LoD
Source: (Bruegger and Kuhn 1991, 14)

40 CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING

1:m-relational MTR. Finally, BRUEGGER and KUHN show that only 1:m-relations preserve
connectivity relations (i.e. do not lead to contradictory topological representations) of a
cellular partition on different LoD. Therefore, in the implementation part of the thesis only
refinement relations will further be dealt with.

2.4.4 Application of Multiple Topological Representation in Subsurface Modelling

Multiple topological representations can be applied in a variety of application cases, not
only in demarcation of land area on multiple map scales but also e.g. in geological
modelling. Fig. 26 shows an example of an MTR in geological modelling.

The figure shows a geometric model that represents a subsurface fault. The level of detail
decreases in the figure from left to right. The left depiction shows a representation of the
fault at highest level of detail as a TIN. It represents the direct interpretation of the
collected raw data. Such grade of detail may comprise a large amount of data which might
be unnecessary/overwhelming in some application cases.

One of the lowest possible LoD that still preserves the overall geometry is simply the
boundary of the fault (see right depiction of Fig. 26). This “big cell” on lowest LoD is a
simplified representation of the whole fault. Even such simple representation is already
useful in some application cases, for example if only the general position and extend of a
fault is of interest.

In between these both outer stages, any number of intermediate abstraction instances are
feasible. For example, in the figure, one intermediate step of abstraction is presented in the
central depiction. In the intermediate step, the whole fault object (at lowest LoD) is
subdivided into two parts by a line segment that “cuts through” the surface and splits it into
two new connected surfaces. In geological application, this is a useful subdivision, for
example to indicate that a fault extends into two geological horizons on both sides. The
cutting line segment indicates where the borderline between the geological horizons passes
on the fault.

Fig. 26: A subsurface fault, depicted in three levels of detail

CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING 41

2.4.5 Using G-Maps for Multiple Topological Representations

An example of a concrete multiple topological representation specialized on the creation of
architectural models on the basis of G-Maps has been presented by FRADIN, MENEVEAUX, and
LIENHARDT in 2005. The definitions of G-Maps/cell-tuple structure presented in Ch. 2.3
facilitate only the modelling of geo-objects of one certain LoD. The definitions do not
make any statements on how to model multiple LoD. However, (Fradin, Meneveaux, and
Lienhardt 2005) extended the concept of G-Maps by the concept of H-G-Maps62 to add the
possibility of managing multiple LoD. Their approach is based on copies of G-Maps,
where every LoD is represented by a complete G-Map. Thus, an H-G-Map is defined as a
sequence of G-Maps:

Gi D
i ,0

i , ... ,N−1
i ,N

i
i=0,m ,

where i is a certain hierarchy level of an H-G-Map and m is the number of available
levels. Fig. 27 illustrates the process of creating a new LoD of a geometric object from an
existing LoD with H-G-Maps during an editing session.

The operator starts with a simple geometric object that consists of two rectangles (see top
left depiction in Fig. 27). This object is considered to be the object with the lowest detail.

The topology of the lowest detail object is internally modelled by a G-Map (G0). The

operator wants to edit one of the rectangles in order to add a detail. To add a detail means
to establish a new hierarchy level. Thus, in advance to the actual editing process, the
operator creates a copy of the rectangle, and the copy is labelled to be an object of a higher

LoD. All darts of G0 that model the polygon's topology are also copied. The copied darts

produce the G-Map of a new hierarchy level (G1). Consequently, the system consists of

two topological LoD (G0 and G1).

62 Hierarchical G-Maps

Fig. 27: Editing of an H-G-Map (visualized on two hierarchy
levels)
Source: Fradin et al. 2005

42 CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING

A navigation between different LoD is made possible by explicit links. First, FRADIN et al.

use a general, bidirectional link on whole G-Maps between Gi and Gi+1 . Second, a finer

graded connection between the two G-Map levels is established as a bijection (symbolised

by an η) between the newly created darts of Gi+1 and their representatives on Gi . This is

visualized in the lower depiction of Fig. 27 where the light grey arrows symbolize

bidirectional links between each dart that exists in G0 and its copy in G1 . The

bidirectional links allow to navigate between darts of different LoD. This leads to a flexible
navigation on the hierarchy since it enables instant movement between all hierarchy
representatives of any cell-type. For example if it is necessary to retrieve a certain edge at a
higher detail, the system only needs to access an arbitrary dart of the edge and follow η one
step up which will return the higher level representative of the given dart. Finally, the
higher detail edge is accessed through the returned higher level dart.

After the whole copy has been created and the bijection completely established, the
operator can start editing the object at higher LoD to add detail. In the example of Fig. 27,
the operator first adds a node to an edge (which splits the edge into two) and then adds an
edge between two nodes (which splits a face into two faces). In this process, new darts

emerge in G1 that all have no representatives in G0 and thus, there are no additional links

set between darts of both levels (see Fig. 27). Accordingly, there is no link between the
newly added node and its less detailed representative. This is correct behaviour by the
system, since this node is only available at higher detail and has no lower detail
representative.

In (Fradin, Meneveaux, and Lienhardt 2005), H-G-Maps are used exclusively for
architectural modelling. FRADIN et al. present application examples, where H-G-Maps make
it possible to manage, render and visualize comparably large and detailed models on
standard desktop hardware. They show examples of large 3D building models with several
stories, indoor spaces and detailed interior decoration. In their concept, the least detailed

model of a building (G0) is a volume that represents only the exterior walls. At the next

higher LoD (G1), the building model is detailed by indoor walls that define indoor spaces.

At highest LoD, the indoor spaces are increasingly detailed by elaborated models of the
furnishing. Since H-G-Maps are used internally, the different LoD representations of the
same volumetric object are connected by bidirectional links.

For example, an indoor room (G1) is connected by bidirectional links to the exterior shell

model of the building (G0) to which it belongs. The number of steps an algorithm needs to

navigate from higher LoD to lower LoD differ, depending on the spatial position of the dart
that is used for hierarchy navigation. If the dart is positioned at a cell that is shared by both
LoD (e.g. a face that represents an exterior wall), then only one step suffices. If the dart is
positioned at a cell that only exists at the higher LoD (e.g. a face that represents an interior
wall), then an algorithm first has to perform an orbit in order to find a dart that is shared by
both LoD. Depending on the topological situation, the orbit that is needed to find a dart
that links between LoDs, can be a 1-, 2-, or even a 3-orbit. There are even spatial

CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING 43

configurations, where no hierarchy link can be set. For example if a room of a building lies
completely inside the building and does not share any wall with the shell of the building,
then H-G-Maps do not establish a hierarchy link between the room and the building at all.
This makes finding hierarchy relation still difficult in some special cases.

Following FRADIN et al., THOMSEN and BREUNIG proposed to use H-G-Maps for other
application domains than architecture also. (Thomsen and Breunig 2007) specifically
elaborated an example in which hierarchical 2-G-Maps (see Fig. 28) are used for the
generalization of 2-dimensional land use maps.

The application example builds on the use case of HAUNERT and SESTER that has been
presented in Ch. 2.4.1. The depicted cells in Fig. 28 can be interpreted as land use areas at
two hierarchy levels that are managed in an MRDB. For example, the area on the
generalized level B could be general agricultural land. On level A, this area is subdivided
into different kinds of agricultural land like wheat fields, corn fields and so on. The
affiliated cells of the different levels are interconnected by bidirectional links between the
cell-tuples that are appended to the cells.

The last section of the chapter presented an approach that uses G-Maps to model the
hierarchy of the topological representation of geodata. The description of the concept and
application examples showed the versatility of the introduced H-G-Maps approach. In
Ch. 3.5, the presented H-G-Maps approach is used as a basis and expanded. First, it is
necessary to adjust the model to the needs of the underlying DB4GeO architecture and the
G-Maps kernel model for DB4GeO that is developed in Ch. 3.1. The adapted H-G-Maps
for the DB4GeO approach will also deal with some disadvantages of the H-G-Maps that
has been presented in this chapter. The disadvantages are discussed in Ch. 3.5 in detail.

Fig. 28: Generalisation by aggregation in a hierarchical 2-G-Map.
Source: (Thomsen and Breunig 2007, 248)

44 CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING

2.5 Modelling the Temporality of Geoscientific Data

While Ch. 1.5 presented a general introduction to the topic of spatio-temporal models and
clarified the meaning of essential terms of the subject area of temporal geodata, this section
will introduce a number of specific spatio-temporal models that mostly focus on the
management of large kinematic geo-models, and discuss their advantages and drawbacks.
The interaction of topology, geometry and net meshing is of particular importance in this
examination.

2.5.1 Concepts of Continuous and Discrete Temporality

While time is changing continuously, information on time can only be computed discrete.63

In application, during data input, usually not every (minimal) change of a geo-object is
stored, due to limited amount of storage space and limited amount of measured time steps
(in the original data). But when it comes to data retrieval, it is valuable to access the
geometry of a geo-object in a high temporal resolution. Thus, interpolation or
approximation techniques have to be employed to gain synthetic time step data in-between
the explicitly modelled time step data. This idea is conceptually illustrated in Fig. 29.

In Fig. 29, curve a) represents the actual geometric alteration/movement of a real world
object (the process to be represented). Computed models of the real object are stored at t0,
t1 and t2 in a database.

Curve C) indicates a linear interpolation between the explicitly stored temporal instances
of the geo-object. This means that a linear interpolated instance of the geo-object can be
obtained at any time instant from such a system, but the instance will probably have an

63 Since a computer is a finite-state machine, the maximum number of internally representable time steps
(temporal resolution) is always limited. Thus, there must always be a “time leap” between time steps
(discrete time computation).

Fig. 29: Continuous vs. discrete modification of
geometry in time.
Source: Drawing by Andreas Thomsen, KIT

CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING 45

offset compared to the real object (like at time step t). Other interpolation methods than
linear interpolation can be implemented as Geo-DB methods.64

In contrast, curve b) represents a stepwise approximation, where the geometry is not
interpolated but changed “abruptly” only at fixed time instants. Before the abrupt change,
the object simply constantly adopts the geometry of its temporal predecessor.

DB4GeO, for example, uses linear interpolation between 4D vertices to create synthetic
geometric representations of a geo-object in its spatio-temporal modules (see Ch. 2.5.3 and
Ch. 2.5.4). However, though interpolation with a high temporal resolution between
temporal instances of a geo-object is possible, the topology of a geo-object can only be
changed in a discrete manner of clearly distinguishable states. Thus, in order to combine
geometric and topological data in a temporal system, the underlying temporal models for
geometric interpolation and topological representation have to be integrated.

2.5.2 TimeStep, an Adaptive Time-Dependent Discretization

Relevant work on the issue of integrating geometric and topological change in a temporal
model has been done by POLTHIER and RUMPF. In (Polthier and Rumpf 1995) they propose
the notion of TimeStep, an adaptive time-dependent discretization (see Fig. 30).

The class TimeStep models the state of a geometry of a certain geo-object at a particular
time step (time instant). The geometry of an object cannot change “inside” a time step – it
is “frozen” in this state. But the topological configuration of an object (its discretization)
may change (adapt) inside a time step, between the pre-object and the post-object of the
same time step. This is indicated in the example set-up of Fig. 30, where every TimeStep

object t0, t1, t2 references a preObject and a postObject that represent the same geo-

object at a certain time step with a similar65 geometry but with a potentially different
topological description.

64 For example: morphing

65 “Similar” in the sense that the overall geometric characteristics of the object are similar but the
underlying geometry pattern that describes the object may vary.

Fig. 30: The Class TimeStep
Source: (Polthier and Rumpf 1995)

46 CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING

An alteration of the geometry of an object is possible in the time interval in-between two
time steps. The transition between two geometrically altered states of an object proceeds
between the postObject of the preceding time step and the preObject of the

succeeding time step. POLTHIER/RUMPF use linear interpolation to generate intermediate
geometric instances between a postObject and the subsequent preObject. In this
phase, the topological structure of the object must remain unaltered.

In applications that process temporal geo-data, the geo-objects are exposed to alterations of
their geometries. If the geometric changes are extensive, it becomes necessary to change
the discretization of the geo-object in order to better reflect the transformed geometry (for
example to add or reduce mesh detail in certain parts of the object). With the introduction
of TimeStep class, POLTHIER/RUMPF made it possible to model geometric change and to
model changes of the object's discretization at fixed time steps in one system. This greatly
improved the usability and applicability of the model in many application domains.

2.5.3 Temporal Point Tube Model of DB4GeO

The concept of time steps is also used by ROLFS and THOMSEN in the design of the STO
model of DB4GeO66 (Rolfs 2005) which became the first model for spatio-temporal
objects (STO) of DB4GeO. The major element of this STO model of DB4GeO is the class

of SpaceTimeElement (ste). An ste is an ordered pair of simplices (start s1 and end s2

simplex). The two simplices are extended with information on the time instant in which
they exist (“are alive”) and with rules that describe an interpolation between the point
tubes of the two simplices. An ste describes the state of a simplex at two time steps (see
lower part of UML class diagram in Fig. 3167, and cf. the UML diagram in (Rolfs 2005, 68)
for a comprehensive overview of the class structure of the space-time module).

66 Designed and implemented during the research project “Development of Component-Software for the
Internet-Based Access to Geo-Database Services”.

67 Singular simplices are of type “simple geo-object” (SimpleGeoObj) in DB4GeO/DB3D.

CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING 47

A series of ste is combined to a SpaceTimeSequence (seq) in such a way that

s2 seqi=s1 seqi1
68, i.e. the end simplex of a preceding ste equals the start simplex of

the succeeding ste. However, a seq can describe the geometric evolution of a simplex at
any number of user-added time steps.

A set of spatio-temporally non-overlapping, adjacent seq constitutes a
SpaceTimeComponent (stcomp). An stcomp does not only describe multiple user added

states of a simplex but multiple states of a whole net component of simplices (see Fig. 32
for a schematic illustration of an stcomp with two seq; cf. illustration in (Rolfs 2005, 55)
for a geometric example of this situation).

68 Where i is the index of the time step

Fig. 31: Simplified UML diagram of the
space-time model of DB4GeO/DB3D

Fig. 32: Spatio-temporal component consisting of
two spatio-temporal sequences.

48 CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING

A notable restriction in this model is that the topology of the mesh of stcomp has to stay
invariant throughout all time steps – only the geometry may change. Multiple stcomps with
varying mesh topology can be assembled successively in order to create a temporal geo-
object that changes its discretization through time. This is similar to the concept of
POLTHIER/RUMPF, in the way that the process inside an stcomp is analogue to the process
between two time steps in the model of POLTHIER/RUMPF. A valuable extension in
comparison to the concept of POLTHIER/RUMPF is that an stcomp can have not only two but
any number of user-added time steps.

The space-time module of DB4GeO is capable of computing spatio-temporal analytical
information and spatio-temporal intersection queries, such as:

• “what is the average speed of a certain volume?” or

• “do the trajectories of a line segment intersect a certain rectangle?” or

• “is a segment contained in a tetrahedron at any time step?”

It is also capable of computing artificial 3D models at user-defined time steps (snapshots)
and capable of using spatio-temporal access method (STAM).

In the taxonomy of reasoning tasks of SHOHAM and GOYAL (cf. Ch. 1.5), the point tube
model of DB4GeO is best covered by the category planning tool, since it needs explicit
geometric objects and a set of rules in order to operate properly. Furthermore, according to
the taxonomy introduced in Ch. 1.5, the system can be classified as an accumulative
forward oriented versioning system, since every new object that is added to the database is
stored fully redundant, and the first object that is added to the database, is taken as the
reference point for newer versions of the object. However, the model only provides
management of valid time in a longitudinal configuration (historical database), since it
does not additionally record transaction time nor does it support the branching of time.

2.5.4 Temporal Joint Model of DB4GeO

In order to overcome the issue of highly redundant geometry storage of the ROLFS/THOMSEN

point tube model, KUPER and THOMSEN drafted in 2010 a new spatio-temporal model for
DB4GeO. Like the model of ROLFS/THOMSEN, it also falls under the category planning tool
with a forward oriented versioning of objects in valid time in a longitudinal configuration.
The important difference is that the forward oriented versioning is implemented to be non-
accumulative., i.e. only the differences of newer versions of a geo-object are stored
explicitly; unchanged parts of an object are reused.

KUPER (2010) describes the implementation of the revised 4D model of DB4GeO. The new
4D module merges the concepts of PointTube, delta storage and POLTHIER/RUMPF in one
joint model (further referred to as Temporal Joint Model). Each of the three concepts
addresses a different issue of spatio-temporal modelling. The main objective for
implementing PointTube model is to simplify data handling for interpolation and analysis
calculation. Geometric calculations that integrate multiple time steps of the same geo-

CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING 49

object are algorithmically simpler if the passage of a net geometry through time is
perceived as separate passages of the net's points through a tube that is stretched in time.
The delta storage concept reduces the memory footprint in volatile and non-volatile
memory, since it stores only the differences between the individual time steps of a geo-
object. Finally, the model of POLTHIER/RUMPF facilitates the possibility to support temporal
changes in the meshing of a Simplicial Complex.

KUPER extended the existing DB4GeO API by the Temporal Joint Model as depicted in the
architecture overview diagram of Fig. 33.

The general approach of the Temporal Joint Model is to define a temporal object
(Object4D) on the basis of two parallel structures, the point tube and the spatial 4D

object. While the point tube comprises the point geometry of the temporal object, the
spatial 4D object models its net meshing. The API has to constantly maintain consistency
between both branches.

On the most abstract architectural level, the Temporal Joint Model allows for the
instantiation of an Object4D. An Object4D has to be populated with a list of time steps

(Date69 typed timesteps list class attribute of Object4D class). The Date objects define
the time steps at which the temporal object provides explicitly modelled geo-object
instances. Every temporal object additionally contains a list of spatial 4D objects
(SpatialObject4D) that define the meshing of the net (geometry) of the 4D object.

69 The Date class of Java operates on the basis of Java data type long (264 possible values) that stores
milliseconds. This is sufficient for a description of time for ~ 300 million years into the past and into the
future. This could already be to short for geological applications. However, since this is merely a
prototype implementation, a Date object is accepted as adequate.

Fig. 33: Architecture overview diagram of Kuper's 4D model for
DB4GeO

50 CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING

Each spatial 4D object has a start date and an end date of type Date and a set of

temporal triangle nets (TriangleNet4D).70 Each temporal triangle net owns a set of

temporal triangles (Triangle4D). Each temporal triangle includes three IDs that identify
the three points of the triangle. For each node/point ID of a Simplicial Complex, one point
tube with the same ID is defined directly at the temporal object (pointTubes). The

system has to maintain the consistency of the IDs internally. A point tube itself consists of
a set of points of type Point3D. The points of a point tube represent the same point at
several time steps; a point tube is the “spatio-temporal path” of a point.

This model allows for memory efficient management of temporal complex geo-objects
such as triangle nets as depicted in Fig. 34.

Fig. 34 shows an application example where a triangle net component moves through time
(in five time steps). The meshing of the triangle net component stays constant until step
T=3a. Until step T=3a, the triangle net component only changes the coordinates of some
of its points (the point geometry) but not its meshing. In KUPER's 4D library for DB4GeO,
this part is modelled as an Object4D with one SpatialObject4D with start value

T=1 and end value T=3a. Additionally, 14 PointTubes are created and also appended to

Object4D. Every PointTube is populated with three points (one for each time step).

“Inside” step 3, the overall geometry of the geo-object stays constant but the meshing
changes between T=3a and T=3b. Subsequently, the Object4D has to be extended by a

new SpatialObject4D with start value T=3a and end value T=5. If some support

points of the triangle net component are identical between T=3a and T=3b (e.g. by their

70 The current implementation only provides support for temporal triangle nets, not for temporal
tetrahedral nets.

Fig. 34: Application example of the 4D model of Kuper
Source: (Kuper 2010, 42)

CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING 51

geometry or by explicit IDs), then their point tubes can be reused for the points of the new
SpatialObject4D. If we assume in this example that all point identities can be

established, then the Object4D has to be extended by only four new PointTubes, since

the post-object has four more points than the pre-object. All PointTubes are populated
with three more points (one for each additional time step).

The example shows how the Temporal Joint Model makes it possible to manage the
geometry of a Simplicial Complex through time, even if the meshing of the object's net
representation changes at certain time steps. Hitherto, the Temporal Joint Model has been
implemented by KUPER in DB4GeO for the management of triangle meshes.

2.5.5 Temporal Cell-Tuple Model for Spatio-Temporal-Attribute-Objects

(Polthier and Rumpf 1995) left the question open on how to model the transition between
the preObject and postObject of a TimeStep. In such a transition the overall
geometry stays unchanged but the mesh configuration of the geometric net changes.
Though, KUPER's Temporal Joint Model is capable of managing point identity even after a
reconfiguration of the mesh, the identity of the topological objects (simplices) is lost in
such a case. This becomes obvious in the diagram of Fig. 33 that indicates that every
SpatialObject4D has its own TriangleNet4Ds with their own new Triangle4Ds.

However, in practice, it is of little value to track identity of the meshing, since it is most
often used as a meta-structure that is transparent to the user. But the situation is quite
different regarding the management of the topology characterized by “big cells” (cf.
Ch. 2.4.4). Big cells are explicitly modelled by the user and provided with certain distinct
properties71. The temporal change of big cells is of particular interest for analytical
purposes. Thus, it is of interest to provide a model that is capable of managing the spatio-
temporal change of the topology of big cells.

RAZA and KAINZ (1999) utilize the concepts of object-oriented modelling (OOM) to
generate a model for the management of Spatio-Temporal-Attribute Objects (STAO) in
generic temporal GIS (TGIS). STAO is an aggregation of three objects of the types
SpatioTemporal, Attribute and LinearTime (cf. Fig. 35).

71 For example in the geosciences domain with rock density, rock type, etc.

52 CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING

Spatio-temporal objects are represented by cell objects of dimension 0, 1 and 2 (cf. with
the classes ZeroTCell, OneTCell and TwoTCell in Fig. 35). For the modelling of the
temporal topological relationships of cell objects, RAZA/KAINZ propose a temporal cell-
tuple structure (cf. TemporalCellTuple class in Fig. 35). Therefore, they introduce the

notion of temporal cell-tuple. First they develop a concept for the management of time of
cell objects on the basis of type SystemTime72 (ST). Two essential classes of type ST are

PointTime (ST 0−T) and IntervalTime (ST 1−T) class (cf. Fig. 35). ST 0−T is a one-

value point in time (value: [TFrom]), whereas ST 1−T is a two-value time interval (values:

[TFrom] and [TUntil]). A TemporalCellTuple class is an aggregation of three cell

objects (one for each dimension 0-2) and of an object of type IntervalTime (cf. field

ST 1−T of class TemporalCellTuple in Fig. 35). Thus, a temporal cell-tuple is defined

as a cell-tuple with a time interval, i.e. a life span. Every temporal cell-tuple has a time
instant when it is born and eventually a time instant when it dies. Furthermore, the model

72 Raza and Kainz use the terms world time (at which an event occurs in reality) and database time (at
which an event is recorded in the database), which are equivalent to the terms valid time and transaction
time that have been introduced by Snodgrass and Ahn (cf. Ch. 1.5). However, Raza and Kainz
additionally introduce the notion of system time. System time is similar to database time with the
difference that it does not model the time of the whole STAO but only of single geometric/topological
objects.

Fig. 35: Cell tuple based spatio-temporal data model
Source: (Raza and Kainz 1999, 21)

CHAPTER 2 TOPOLOGICAL CONCEPTS OF SPATIO-TEMPORAL DATA
MODELLING 53

of RAZA/KAINZ provides for every temporal cell-tuple an optional child link (to the temporal
predecessor cell-tuple) and an optional parent link (to the temporal successor cell-tuple).

RAZA/KAINZ give an application example for their temporal cell-tuple structure (cf. Fig. 36).

The left side of Fig. 36 shows a temporal cell complex. Depicted are the polygons, arcs and
nodes of the cell complex with their respective IDs. The cell complex makes a transition
from T1 to T2. Between T1 and T2, new nodes P7 and P8 and a new arc a4 are inserted
that split the Poly-1 polygon and the a1 arc of T1 into the two polygons Poly-3 and Poly-4
and the three arcs a5, a6 and a7 of T2. The life span of each cell in the cell complex is also
recorded by system.

The right side of Fig. 36 illustrates the cell-tuple structure that describes the temporal cell
complex that is depicted on the left side. Throughout the transition from T1 to T2, the cell-
tuples of Poly-2 stay unchanged while the cell-tuples of Poly-1 die and are replaced
([TUntil] of dead cell-tuples is set). Also new cell-tuples are added to the set (with

existing [TFrom] value), and all required child and parent links are set.

Though, RAZA/KAINZ use an object-oriented approach to generate the STAO model, they
use an SQL-database to make the STAO data persistent. Therefore, they finally transform
the object-oriented model into a relational model for the actual processing. In the final
relational model, the cell-tuples are stored as relational tuples, of which the combinatorial
structure corresponds to BRISSON's model of cell-tuple structure (cf. Ch. 2.3).

The model is explicitly designed to manage geodata at a maximum of 2 dimensions of
space. Hence, the concept is focused on polygons that are typical for traditional 2D GIS,
not for geo-objects with a complex underlying network structure. Additionally, the concept
makes no statements on the management of geometric change (interpolation) and on
insertion of additional time steps. The insertion of additional time steps between existing
time steps is theoretically possible in the model. However, RAZA/KAINZ do not define such
an operation, thereby leaving open the questions of how to ensure consistency when
inserting intermediate time steps. The concept of RAZA/KAINZ also does not support
geometric holes in polygons. These issues are discussed in more detail and solutions are
proposed in the process of designing a hierarchy-enabled spatio-temporal GMaps model
for DB4GeO, beginning in the next chapter.

Fig. 36: Model of Temporal Cell Tuple by Raza and Kainz
Source: (Raza and Kainz 1999, 23)

54 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

3 Design and Implementation of

a Topology Module for the

Modelling of Spatio-Temporal

Objects

This section presents the design and implementation of a prototype Topology Module for
the modelling of STO (with a G-Maps based kernel) in a Spatio-Temporal Database
Architecture.73 The module works as a plug-in on top of DB4GeO. This way, the classes of
the Topology Module can reuse and extend the functionality of the already existing classes
of DB4GeO. It is a recommendable and clean approach in order to reuse as much
functionality as possible of an already application-proven API. This way, it can be avoided
to “reinvent the wheel”, and advantage can be taken of past and future bug fixes of the
DB4GeO API. Additionally, the plug-in/module approach allows for experimental
development of the G-Maps module without intervening into the already matured and well-
tested source code of DB4GeO.

The architecture of the entire system is developed in compliance with principles of
software engineering such as abstraction, decomposition, encapsulation, or modularity.74 In
a first step, a concept and implementation details for a module for the management of the
topology of 3D geo-objects are elaborated. This is done with an emphasis on the question

73 The implementation of the module is realised in an individual, separated code trunk termed
GMapsDb3dModule. The module is implemented on top of DB4GeO. Its name suffix “Db3dModule” is
in compliance with the implementation guidelines for DB4GeO plug-ins. Only modules with such
ending will automatically be identified as plug-ins by the DB4GeO server.

74 Principles as described in the SWEBOK (Abran and Moore 2001)

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 55

of how the architecture of DB4GeO can be extended by such a module. Second, it is
evaluated how the 3D topology module can be extended to a system that is capable of
modelling multi-representation and temporal topology of geo-objects.

The most of the presented and implemented source code is deliberately not optimized for
runtime performance but for readability (and thus maintainability).

3.1 Basic Class Model

3.1.1 Overview of DB4GeO Kernel

In order to realise a “conceptual symmetry” between the Topology Module and DB4GeO
(i.e. not to break already established concepts), it is inevitable to have a closer look at the
design principles and the architecture of DB4GeO first. Following (Bär 2007), the
architecture of DB4GeO, at its most abstract level, is a subdivision into three horizontal
layers, see Fig. 37.

The most basic (lowest) layer that is essential for all other layers is the Database Kernel,
which includes a set of 3D geometric data types (and its methods) as well as topologically
defined nets and a spatial index on the geometry data. The kernel provides only basic
geometric operations. More complex operations that are built as compositions of basic
operations are gathered in the Operational Layer (I/O operations are also part of the
Operational Layer). Thus, the Operational Layer is based on the Database Kernel. On top,
the Service Framework is based on the Operational Layer and exposes the complex
operations to a communication network as a network service. The following section
focuses on the Database Kernel layer.

As briefly mentioned in Ch. 2.1, the geo-object model of DB4GeO incorporates the notion
of Simplicial Complex as a model for its geometric kernel. The geometric primitives of the
Simplicial Complex model (for up to three dimensions) are point, line segment, triangle
and tetrahedron, i.e. the 0-, 1-, 2-, 3-simplices. These geometric primitives are used as
simple geo-objects in the DB4GeO kernel (see geom column in Fig. 38).

Fig. 37: Layers of software architecture of
DB4GeO, according to (Bär 2007, 58)

56 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

If a simple geo-object is part of a 3D object then it is a structural part of the 3D object's net
and of one of its net components. As depicted in Fig. 38, for every primitive type, there
also exists a corresponding net component type (see NetComp column) and a net type (see
Net column).75 If a simple geo-object is embedded into a net component, it also holds
information on its direct neighbours. A simple geo-object enriched with neighbourhood
information is a net element (see Elt column).76

3.1.2 Extended Module Functionality

While this model is suitable for many applications, it has also some shortcomings. For
example, it is not possible to distinguish regions on a net component efficiently, i.e. it is
not possible to distinguish (big) cells (e.g. faces/volumes) that are composed of multiple
simple geo-objects (triangles/tetrahedra) but still smaller than a whole net component.
From another point of view: it is not possible to define, which simple geo-objects
(thematically) belong together within a net component; every simple geo-object yields its
own separate cell (see Fig. 39, left of the arrow).

75 For example, an object of TriangleNet3D class has a reference to objects of TriangleNet3DComp class
which in turn have references to objects of Triangle3D class.

76 For example, the net element of a Triangle3D object is a TriangleElt3D object.

Fig. 38. Geometry model of DB4GeO

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 57

The left side of Fig. 39 shows an example of the Simplicial Complex model, where, in a
triangle net component, every simple geo-object is a distinct entity. As outlined in Ch. 1.3,
many applications require a model that allows for managing distinct regions that consist of
multiple simple geo-objects inside one net component, as depicted in the right side of Fig.
39. This applies also for volume models, using tetrahedral net components.

The inability to form regions is a general issue of the underlying model, predetermined by
the navigational deficiencies of the employed Simplicial Complex model, as pointed out in
Ch. 2.2. To support the creation/distinction of regions that cover multiple triangles or
tetrahedra, following a naive approach, it would be sufficient to assign to every individual
triangle or tetrahedron of the Simplicial Complex an attribute that determines to which
region the respective simplex belongs. However, with this approach it would not be
possible e.g. to navigate along the edge geometries of the regions efficiently (for example
along the boundary surface between two volumes or along the boundary segment between
two surfaces).

Right to the arrow of Fig. 39, the extended functionality of the G-Maps module for
DB4GeO is shown, where a set of simple geo-objects can be combined to a cell. In the
figure this is indicated by the common IDs of some simple geo-objects and by the tones of
grey that related cells have in common.

The following list summarizes some basic design goals of the G-Maps module for
DB4GeO (not considering the requirements for the management of hierarchy and
temporality so far):

• It should be possible to generate the cell-tuple structure directly from the Simplicial
Complexes of the DB4GeO kernel.

• The model requires to support only 2D and 3D geometries. A support of 0D is not
necessary, since a net object consisting solely of disjoint/unconnected point
geometries makes no sense in the considered application domains. Line segment
nets of DB4GeO are also not supported by Topology Module since they are not in
focus of this work.

Fig. 39. Left: simple geo-objects are separate cells; right: three simple geo-
objects are combined to a cell

58 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

• A pivotal functionality is the generation of a boundary geometry, i.e. a polyline
(consisting of segments and points) in 2D (from a surface) and a polyhedral surface
in 3D (from a volume) at any time.

• Editing of topological objects should be possible to some extent (e.g. inserting and
deleting an edge in a face).

• The editing process (e.g. the insertion of an edge) shall be supported by the system
with traversal algorithms on the object's net representation.77

• It should be possible to attach properties to any given (complex) cell.

• The editing of the underlying geometric objects of the triangular or tetrahedral net
(through the shifting of point coordinates) that changes the topological
configuration of the net needs not to be supported.

• The deletion of geometric objects of the net needs not to be supported.

In addition, it is a design goal to utilize the advantages of information hiding in the API
layout. Classes shall be encapsulated in packages wherever possible by setting class
constructors as package visible and by hiding the complex inner class structure to the API
user. Ideally, the API user accesses only “high-level” classes on a higher model abstraction
level, but has no contact with “low-level” classes that expose detail about the inner
workings of the API. In particular in G-Maps programming, the inner structure can be
notably fragile and needs some experience and extensive knowledge with Topology
Module to handle it, so information hiding becomes particularly useful here.

In the chosen approach, the first step in designing the G-Maps module for DB4GeO is to
define (on the most detailed architectural level) the mechanism by which the simple geo-
objects of DB4GeO can be accessed and processed by the G-Maps module.

3.1.3 Spatial Cells as Wrappers for Simple Geo-Objects

The G-Maps module for the management of topology of 3D geo-objects relies on the
notion of cells. As well known, cells are a means of describing a geo-object by
decomposing it, using “other kinds of basic elements than just cubes”78 (Mäntylä 1988,
72). By definition, a cell is a “finite regular polytope” (Weisstein 2014a). In our narrow
perspective, a cell may be any spatial object that is composed of a set of connected simple
geo-objects, e.g. a curved surface or a polyhedron. If the cell of a particular dimension is
indicated, it is denoted as a d-cell, where d is the dimension. In the next sections, the
following denominations of cells for dimensions 0-3 are used interchangeably:

• a 0-cell shall be denoted as a node,

77 For example by finding the shortest path for an edge: if an edge is inserted, the shortest path should be
found over the triangular or tetrahedral net. However, the concept of multi-level representations in the
Topology Module is introduced in Ch. 3.1.8.

78 Meaning that for a cell any geometric form is possible that does not contain a hole.

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 59

• a 1-cell as an edge,

• a 2-cell as a face,

• and a 3-cell as a solid.

The relations between the classes of simple geo-objects79 and the cell classes80 are depicted
in Fig. 40.

The associations between cells and simple geo-objects are directed from the classes of cells
to the classes of simple geo-objects (unidirectional). The unidirectional associations are
optional (see cardinalities in Fig. 40); the optionality theoretically81 allows for the
generation of an autonomous topological structure that exists independent of any geometry
considerations.82 Since the associations are unidirectional, there can only be references
from cells to simple geo-objects but no references from simple geo-objects back to cells.83

The cardinality from any cell object towards the corresponding simple geo-objects is
defined as 0 to unlimited, since a cell object can cover any number of simple geo-objects. A
“big cell” solid can internally be composed of many tetrahedra, a face of many triangles
and an edge of many segments. The only exception is node, where one node can

79 Implemented in the db3dcore API

80 Provided by the GMapsDb3dModule

81 “Theoretically”, since the approach is not pursued further in this treatise.

82 The paper (Ellul and Haklay 2006) identifies the need for “geometry free” topology toolkits, as they are
needed in chemistry for atomic field modelling, or in biology for protein modelling.

83 This is a necessary condition for the decoupling of GMapsDb3dModule from the db3dcore module,
since this way, the classes of db3dcore are able to exist without “knowing” anything about the Topology
Module.

Fig. 40: Correlation between classes of simple geo-objects and cell classes

60 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

geometrically only be described by no more than one point. The specific realisation of this
concept in Java code is described in the subsequent section.

As the classes Node, Edge, Face and Solid are cells, they all realise a common interface

Cell (see Fig. 41).

The Cell interface defines the methods that have to be provided by all implementing cell

classes. The diagram shows that any cell has also to be a Comparable (Comparable

interface is defined by the Java API, not by the G-Maps API). Since any Cell class is a

Comparable, Cell objects may be stored in standard Java Sets or Maps and retrieved
efficiently by their identifier.84

All methods of the Cell interface that use identical algorithms for all cell types (i.e. for

the classes Node, Edge, Face, and Solid) are gathered (and pre-implemented) in the

AbstractCell abstract class (which is a partial realisation of the Cell interface). Fig. 42

shows the methods that are defined by the Cell interface and the methods that are

implemented by the AbstractCell class (to avoid double listing of the methods, the

methods that are implemented by AbstractCell are not listed in the class diagram of

Cell interface, though the Cell interface also requires the implementation of all the

methods that are listed in the AbstractCell depiction).

84 More on the concept of the Java API interfaces Set and Map can be found in (Schildt 2011, 459 et seqq.,
482 et seqq.).

Fig. 41: Inheritance of cell classes

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 61

The AbstractCell class defines that all cells need to have an ID of type int. The

AbstractCell class provides methods to read and to set/change the cell-ID as well as a

method to compare two cells for equality (equals). The equals method first checks

whether the object type is correct (type Cell). This is necessary since – as a requirement

of the Java language – the parameter of equals method has to be of type Object).

Second, the IDs of the cells are compared.85 A compareTo method (which has to be

provided by any cell as a requirement of the Java Comparable interface) is also
implemented. In the implementation, only the cell-IDs are evaluated for comparison. Also,
any AbstractCell can report whether it is on net level or on another level through its

isOnNetLevel method. The specific concept of net level and of hierarchy levels that is

used in Topology Module is covered in Ch. 3.1.8 and Ch. 3.5.

Furthermore, an AbstractCell provides methods to count the number of neighbour i -

cells, with {i∈ℕ∣0≤i≤3} , by its countNeighbour<cells>86 methods. We state that c

is the cell for which to check the number of neighbouring cells and d is its dimension. A

countNeighbour<cells> method returns the number of i -cells that are incident to cd ,

except for d≠i . The method returns the number of adjacent i -cells if d=i , instead.

All methods mentioned so far can be implemented uniformly for all cell classes (Node,

Edge etc.) in the AbstractCell class.87 Contrariwise, the methods listed in the diagram

85 Of course, technically, this is not a comparison for equality but for identity; but since it is guaranteed by
the system that all cell-tuples inside the system are dissimilar, a real check for equality is not meaningful
and thus can be implemented trivially by an identity check.

86 This “wildcard notation” shall summarize all methods that start their name with “countNeighbour”,
regardless of which cell type completes the method's name (“Node”, “Edge”, “Face”, or “Solid”).

87 Thus simplifying maintaining and bugfixing efforts

Fig. 42: Methods of cell interface and abstract cell

62 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

of Cell interface have to be implemented individually by the Cell interface realisations

(i.e. in Node, Edge etc.).

The countSimpleGeoObjs method returns the number of simple geo-objects that are

covered by the cell. “Covered” comprises all simple geo-objects that form the geometric
embedding of the boundary and the inside of a big cell. For example, a face cell returns the
number of all triangles that are at the inner side of the boundary and all triangles that are
inside the face. The same applies to all other cell types. In the case of a Node object, the
returned number can only be 0 or 1, in all other cases 0 to unlimited (cf. Fig. 40). The
getSimpleGeoObjs method returns the simple geo-objects in an array of

SimpleGeoObj class type.

Any Cell-implementing class has also to provide a getBoundary method. This method

has to return an ordered list of cells that form the boundary of the cell cd that the method

is invoked on. The returned boundary i -cells are always of dimension i=d−1 , except for
d=0 where always an empty set is returned. The return type of the getBoundary

method is AbstractCellIterator (cell iterators are explained in Ch. 3.3.2 in detail).

Moreover, every implementation of the Cell interface has to supply

getNeighbour<cells> methods that return for any cell a list of neighbouring cells.

Analogue to the behaviour of the countNeighbour<cells> methods (see above), this

methods return incident cells if d≠i and adjacent cells if d=i . As valid for the
getBoundary method, the cells are returned in an ordered sequence. In fact, the

getBoundary method is internally implemented as an invocation of the appropriate

getNeighbour<cells> method, depending on the dimension of the respective cell:

• Edge class implements getBoundary as an invocation of getNeighbourNodes

method,

• Face class implements getBoundary as an invocation of getNeighbourEdges
method,

• Solid class implements getBoundary as an invocation of getNeighbourFaces

method.

The getNeighbour<cells> methods return different types of customized cell iterators;
these iterators will also be explained in Ch. 3.3.2.

Finally, the isNeighbourOf method returns a boolean value that indicates whether the

given parameter of type Cell is a neighbour of the invoking cell object (actually this is

also implemented through an invocation of the appropriate getNeighbour<cells>

method and a subsequent check for equality).

3.1.4 Tuples of Spatial Cells

The advanced navigation requirements that are needed by the cell methods introduced in
the last chapter can be satisfied by the cell-tuple structure, as considered in Ch. 2.3.

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 63

Therefore, it is necessary to establish a path from any cell to a cell-tuple/dart88. In order to
provide a path from cell to cell-tuple, the AbstractCell class has a reference to a cell-
tuple (cf. Fig. 42 and Fig. 43).

The reference is realised as class attribute anyCellTuple, which represents an arbitrary

cell-tuple of the cell (“of the cell” means that the respective cell-tuple back-references the
cell). Thus, any cell (e.g. a node or an edge) is able to provide a valid cell-tuple that
“belongs” to the cell. On the other hand, any cell-tuple has separate references to all its
cells (cf. Fig. 43 and Fig. 44).

The class attribute anyCellTuple is of type CellTuple. Referring to the definitions of

cell-tuple structure and G-Map of BRISSON and LIENHARDT, such as those indicated in
Ch. 2.3, the class diagram of Fig. 44 serves as a basis for the CellTuple class model of
the Topology Module.

An object of CellTuple class is a composition of incident i -cell objects of dimensions

i ,{i∈ℕ∣0≤d≤3} 89. A CellTuple can be interpreted as the instantiation of a path in an

88 For practical reasons, the terms “cell-tuple” and “dart” are identified and used interchangeably in the
following.

89 i.e. of objects of the classes Node, Edge, Face and Solid

Fig. 43: References between abstract cell, cells and cell-
tuples

Fig. 44: Model of CellTuple class

64 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

incidence graph of a certain cellular representation (cf. Ch. 2.2). A CellTuple is

explicitly modelled as a composition of cells, thus it is only valid if it provides (not-null)-
references to all its i -cells. This is a pivotal consistency requirement for the model, since
following algorithms will rely on this assumption.

Following the definition of G-Map darts (cf. Ch. 2.3), a CellTuple object is also a

composition of all its i -adjacent CellTuple objects. Thus, a CellTuple object is also

not valid if it misses to provide a reference to any of its adjacent CellTuple objects. The

i -adjacent CellTuple objects can be attained through its adjacency or involution

associations, which are denoted as alpha0, alpha1, alpha2, and alpha3 class fields
(cf. top of Fig. 44).

The presented adjacency model of cell-tuples can be interpreted as a graph representation
(cf. Ch. 2.2). However, a design goal is to ensure through the entire modelling process that
a transformation into a relational representation is possible at any point in time without
loss of consistency. In order to be able to create certain cell configurations in the relational
representation, the introduction of a polarity and additional consistency checks on the
overall cell-tuple structure are necessary, which is explained in more detail in Ch. 3.1.5 and
(Butwilowski 2007, 71 et seq.). The consistency of both associated structures is respected
at any given point in time, and thus, a model transformation can also be performed at any
given time (a “switch” between the two concepts is possible).

The CellTuple class also includes an identification number (id class attribute)90. The IDs
of cell-tuples are unambiguous throughout a net component. Conversely, cell-tuple IDs are
ambiguous in a viewpoint across multiple net components. This design decision is based
on the specification of NetComp which are always disjunct by definition. Thus, each net
component can be described by a separate G-Map and each G-Map employs its own ID
management. One 3-dimensional G-Map corresponds to one NetComp and vice versa (3-

G-Map ↔ NetComp).

Furthermore, the CellTuple provides an isAtFaceBoundary method that indicates

whether the cell-tuple (d a) is a cell-tuple at the inner side of a 2-cell universe boundary.

d a is at the inner side of a 2-cell universe boundary if α2(d a)=d U , where d U is a cell-

tuple that belongs to a 2-cell universe. This method is extensively used by the
OrbitIterator class (see Ch. 3.3.1).

Due to the principles of information hiding, the CellTuple class is encapsulated in the
package by setting the class constructors and methods only as package visible, so that the
inner cell-tuple structure is hidden to the API user. The API users are only able to access
the various Cell classes but have no contact with the cell-tuples themselves since this is a
fragile structure that needs to be protected by the API.

90 The ids of objects of CellTuple class are always greater than or equal to 0.

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 65

So far the class model of cells and cell-tuples, as it is used by the Topology Module, has
been outlined. The next section will highlight, what specific properties of geometric space
and model restrictions result from the adopted design.

3.1.5 Basic Properties of the Utilized G-Maps Approach

Properties of Utilized G-Maps Approach

The model of CellTuple class in the described configuration leads to notable properties

of the utilized G-Maps approach:

• As the d-cell classes are modelled explicitly, the maximum processable dimension
of a d-cell, provided by the API, is 3 (Solid).

• A valid CellTuple object has always to reference exactly four d-cell objects.
Thus, the only utilized G-Map type, notwithstanding the dimensions of the
managed cells, is always the 3-G-Map (cf. Ch. 2.3).91

◦ In the case that only e.g. 2-cells shall be managed in a certain application
scenario, to keep compatibility,

▪ these 2-cells will “forcefully” be embedded in a 3-G-Map. In this case, the
solid cell that is associated to all of the cell-tuples, is defined as the universe

solid (S U).

▪ The cell-tuples are not duplicated to generate mirroring cell-tuples for 3 -

involutions, instead

▪ all 3 -involutions for all darts of the 2-cell are reflective, i.e. 3d =d (

3d =id).

▪ Cell-tuples that are lying in the outer void of 2-cells (face universe: FU)

are also provided in the case that only 2-cells are modelled. Thus, for stand-

alone 2-cells 2db=db ' 92 is always true and 2db=db is never the

case, where d b is a cell-tuple at the inner side and d b ' a cell-tuple at the

outer side of the boundary of a face.

• If modelling 3-cells, a solid universe is attached to the outer void of the 3-cell. This
means that at the boundary to the outer void, outer cell-tuples are provided, i.e. that

in these cases, 3 is always defined as 3d b=d b ' , where d b is a cell-tuple at

the inner side and d b ' a cell-tuple at the outer side of the boundary of a solid.

• If a surface is used as a part of a solid, then

• U F cannot exist (in such cases, there is no face universe),

91 This keeps the overall model comparably simple, since only one type of G-Map has to be managed, thus
less code has to be implemented and less exceptional states have to be considered.

92 With d b being an inner cell-tuple at the boundary of a 2-cell

66 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

• all cell-tuples of a face have to be duplicated to generate mirroring cell-tuples

for 3 -involutions.

• Since universe definitions are used for 2- and 3-dimensional cells, there are two
“flavours” of Face and Solid class: faces and solids that are marked as universe
and such that are not (“normal” cells).

The forceful embedding of 2-cells into a 3-G-Map is essential in order to simplify the class
model and the processing algorithms. As a result, there are several cases where only one
algorithm is needed instead of employing a case distinction for 2-G-Map algorithms and 3-
G-Map algorithms. Some of these cases are presented below, when the algorithms of the
Topology Module are examined in detail.

Cell Property Identifies Universe Cells

To mark faces and solids as cells that represent the universe, the classes Face and Solid

obtain an additional isUniverse class property of boolean type (see Fig. 45).

The information, whether a given cell is a universe or not, can be accessed through the
isUniverse method, which is also available for both classes (the method returns the

value of the isUniverse instance property).

New universe cells can be created only through the createUniverse methods.93 These
methods are object factories that internally instantiate a new universe cell (i.e. a cell class
with isUniverse class attribute pre-set to true) of the respective dimension and provide

them as the return value.

The Topology Module allows to instantiate multiple universe cells in each dimension – i.e.
multiple universe faces and multiple universe solids. The usefulness of multiple universe
cells is discussed in a section below.

93 For the convenience of the class user, the createUniverse methods are static methods that follow the
factory method pattern.

Fig. 45: Face and Solid class provide the possibility
to create universe cells

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 67

Non-Manifold Set-Ups

G-Maps generally model manifold geo-objects. As LÉVY points out in his thesis (Bruno
Lévy 2000), G-Maps can also be used to model non-manifold situations in some special
cases which are called Cellular Quasi-Manifolds. LÉVY gives some examples of such set-
ups. For example, he shows that it is possible to “glue” three (or more) faces to a non-
manifold 3D “fan” with G-Maps (Bruno Lévy 2000, 63 et seqq.). To do so, LÉVY first
duplicates all cell-tuples of the faces that already exist in 2D to generate mirroring cell-

tuples for 3 -involutions and then assembles all faces to one face net. This set-up only

works if the 2-cell universe is not modelled, i.e. if 2db=id . The explicit integration of a

face universe (as realized in the Topology Module) prohibits the modelling of non-
manifold fan set-ups. A problem is, for example, that this would lead to undefined
intersections of the universe faces (see Fig. 46).

The API has to prevent the user from constructing such a topological set-up (more details
on this are given in later sections).

However, as long as the API user intends to utilize the Topology Module not in stand-alone
mode but in combination with the DB4GeO Kernel geometry, this issue cannot ever
occur.94

Minimal Cell Configurations

The minimal cell configuration that is possible in the presented model95 is

94 The Topology Module constructors that base on the DB4GeO Kernel, will reuse the already existing
construction algorithms of the DB4GeO Kernel (more on this in Ch. 3.2). Therefore, the constructors are
limited by the constructing capabilities of the kernel algorithms. The model of and the construction
algorithm for triangle nets in DB4GeO is not designed for non-manifold triangle set-ups and thus does
not allow to construct such.

95 “Presented model” means particularly: with polarity; always 3-dimensional; mapping between graph
and relational representation always possible

Fig. 46: Non-manifold face fan in 3D and the intersection of
universe faces

68 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

• a face with one edge and one node (“racket”, cf. Fig. 47, left), embedded in FU

and S U , for 2-cells, and

• a solid with two faces, one edge and one node (“nutshell”, cf. Fig. 47, right),

embedded in S U , for 3-cells.

It is considered here as the minimal configuration, since a configuration with any cell less
of any dimension would lead to an inconsistent set of cell-tuples in relational
representation, i.e. a set where the cell-tuples are not unique by their tuple elements any
more (cf. Ch. 2.3 and (Butwilowski 2007, 71 et seq.)).

In this context, the polarity is an important feature in this set-up to keep the cell-tuple
structure consistent in relational representation. The switch operation in relational
representation only works if the cell-tuples of a cell-tuple structure are unique throughout
the structure. They would not be unique any more in the examples of Fig. 47 if the
polarity property would be omitted. Then there would be multiple equal cell-tuples in

the set which would break the switch operation. Such situations cannot only occur in this
simple configuration but can also reoccur in particular set-ups of complex geo-objects.96

Since the internal graph representation of the Topology Module should be able to produce
a consistent external relational representation of the cell-tuple structure at any time instant,
the polarity property has always to be maintained by the kernel of the Topology

Module.

Though, the Topology Module can be used stand-alone to purely model the cell-tuple
structure without a connection to a geometry, the common mode of operation is in
combination with the Geometry Model of the DB4GeO Kernel. In that case, the Topology
Module has to support the geometry data structure of the DB4GeO Kernel. Then, the
actually minimal cell configuration is predetermined by triangle type for 2-cells and by
tetrahedron type for 3-cells (see Fig. 48).

96 Examples of such set-ups can be found in (Butwilowski 2007, 71 et seq.)

Fig. 47: 3-G-Map minimal cell configurations: 2-cell (left), 3-cell (right)

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 69

In the minimal cell configuration for 2-cells, the G-Map consists of 12 cell-tuples (see left
depiction of Fig. 48). Six cell-tuples lie inside the triangle. The 2-cell of these cell-tuples is

always F , their 3-cell is always the solid universe S U . The other six cell-tuples lie

outside the triangle in the 2D universe. Therefore, the 2-cell of these cell-tuples is always

the face universe FU , their 3-cell is also S U . All inner and outer cell-tuples are connected

through 2 -involutions. All cell-tuples are reflective in their α3 -involution.

The minimal cell configuration for 3-cells results in a G-Map with 48 cell-tuples (see right
depiction of Fig. 48). 24 of these 48 cell-tuples lie inside the tetrahedron and reference cell

S as their 3-cell. The other 24 cells lie outside the tetrahedron in S U . All inner and outer

cell-tuples are connected through 3 -involutions. There are no α2 -involutions that could

lead to a face universe (FU), therefore FU is not modelled.

3.1.6 Nets of Spatial Cells and Cell Net Builder Architecture

The Topology Module provides a framework that uses the above described notion of
CellTuple class to create cellular complexes from existing 3D objects97. The topological
structure of these cellular nets is internally managed in G-Maps. After a cellular net has
been created by the means of the Topology Module, the module can provide valid
CellTuple objects that describe the topological structure of the cellular net.

97 Defined in db3dcore

Fig. 48: Most simple possible cells in DB4GeO Topology Module: 2-cell (left), 3-cell
(right)

70 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

Cell Net Builder Architecture Class Model

For the consistent creation of cell nets, the net builder architecture98 is extended by the
Topology Module as exemplary depicted for the 2D case triangle and face net builder99 in
Fig. 49.

The diagram indicates the procedure for the creation of valid net objects. A builder object
(e.g. an object of TriangleNetBuilder class, see left side of Fig. 49) is used to

construct a consistent net (e.g. a TriangleNet3D object). The builder design pattern is
used here for consistent ID management, arrangement of geometry elements and spatial
index construction. A builder object “consumes” geometry objects, analyses their
geometric configuration in space, constructs the appropriate net components and
aggregates them in a net.

Through the invocation of the getTriangleNet method on the net builder object, an

object of TriangleNet3D class is returned. The TriangleNet3D class is then used to

retrieve a triangle net component (object of TriangleNet3DComp class) through the

invocation of the getComponent method on the triangle net.

The G-Map topology module bases on this architecture and extends the Simplicial
Complex net builders by cell net builders (in the example case by a face net builder, see
right side of Fig. 49). In analogy to the triangle net builder, a face net builder returns the
face net (object of FaceNet3d class) through an invocation of its getTriangleNet

method and the face net in turn returns a required face net component by the invocation of
its getComponent method.

98 Defined in db3dcore

99 The following examples describe only the situation for triangle nets, but the examples are analogous for
the case of tetrahedron nets.

Fig. 49: Face net builder architecture as an extension of the triangle net builder architecture of
DB4GeO

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 71

Cell Net Builder Instantiation Example

As a result of using this architecture, it is possible to instantiate a cell net (and thus a G-
Map) in a way that is strongly analogous to the instantiation process of a complex geo-
object in db3dcore (see Listing 3 for an example).

1. ScalarOperator sop = new ScalarOperator();
2. FaceNetBuilder build = new FaceNetBuilder(sop);
3. TriangleElt3D tri1 = new TriangleElt3D(

new Point3D(2.0, 1.0, 1.0),
new Point3D(2.0, 3.0, 1.0),
new Point3D(1.0, 2.0, 1.0), sop);

4. TriangleElt3D tri2 = new TriangleElt3D(
new Point3D(2.0, 1.0, 1.0),
new Point3D(2.0, 3.0, 1.0),
new Point3D(3.0, 2.0, 1.0), sop);

5. build.addComponent(new TriangleElt3D[] { tri1, tri2 });
6. FaceNet3d net = build.getTriangleNet();
7. FaceNet3dCompNetLevel comp = net.getComponent(0);
8. Face face1 = comp.getFace(1);
9. Face face2 = comp.getFace(2);

Listing 3: Example of an instantiation of a cell net (and G-Map)

Listing 3 shows an instantiation example, where first, two triangles are created (lines 3 and
4). The triangles are then added to a face net builder in the addComponent method

(line 5), where the main build process takes place, and where internally, first, a triangle net
is created and, second, a face net is deduced from the triangle net. Actually, in this
example, two faces100 are generated from two triangles. Inside the addComponent method,

the G-Map is generated through an evaluation of the structure of the complex geo-object.
As a result of the process, the API user has access to a face net (line 6), a face net
component (line 7) and the actual faces (lines 8 and 9). The internal algorithm inside the
addComponent method that creates the G-Map is discussed in detailed in Ch. 3.2.

Note that the methods getTriangleNet of FaceNetBuilder and getComponent of

FaceNet3d class override the respective methods of TriangleNetBuilder and

TriangleNet3D class. This approach has the advantage that a FaceNetBuilder object

can be used exchangeably everywhere in the API where a TriangleNetBuilder object

can be used. Similarly, an object of FaceNet3d can function as a substitution for an object

of TriangleNet3D class wherever sensible and useful.

Actually, the returned face net component is a face net component at net level (class
FaceNet3dCompNetLevel). The concept for handling levels of detail is introduced later
in Ch. 3.1.8. For the sake of simplicity, for now the net level component can be considered
as a cell net component that exactly reflects the object's meshing in a cell-tuple structure.

100 Two faces at net level (more information on net level in Ch. 3.5)

72 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

Fitting into Main Inheritance Hierarchy

Fig. 50 illustrates the idea of how the cell net classes fit into to the main inheritance
hierarchy and dependency relations.

Fig. 50 presents a condensed overview of a central part of the class inheritance hierarchy of
the DB4GeO Kernel. It begins with a Space3D at the top. Space3D is mounted to a

Project (not depicted in the diagram), and thus is one of the “upper”, i.e. one of the entry

objects of db3dcore. A Space3D can have an arbitrary number of Object3D (which is the
class that generally represents any kind of 3D object in DB4GeO). A 3D object in turn
always consists of exactly one object of Spatial3D type. Since Spatial3D is an

interface, the actual spatial part of a 3D object can vary, but is always a net object. Several
different realisations of Spatial3D can be used as the spatial part, like a

TriangleNet3D or a TetrahedronNet3D. By using the Topology Module, also a

FaceNet3d or a SolidNet3d can be the spatial part of a 3D object since the classes

indirectly realise the Spatial3D interface.

The chosen approach has several advantages:

• The G-Map-enabled cell net components can also be used in place of simplex net
components throughout the DB4GeO APIs by using the (implicit) class cast
technique (which is common practice in Java programming).

Fig. 50: Adaptation of cell nets (face net and
solid net) into the central class
inheritance hierarchy

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 73

• Since a G-Map cell net component is a net component, all methods of the simplex
net component can still be used on the cell net component (reuse of existing
methods).101

• Code duplication is reduced, since much of the already existing code of the
DB4GeO Kernel does not need to be rewritten. Methods of the DB4GeO Kernel
that are not overridden by the Topology Module, are easier to maintain, since
bugfixes in the DB4GeO Kernel are directly available in Topology Module.

Indices of Cell Net Components

When executing the build up process as presented in Listing 3 (line 7), a face net
component is returned that is defined as a composition of its d-cells and cell-tuples (cf. Fig.
51).

Face net components consist of separate indices for faces, edges and nodes. Solid net
components have an additional separate index for solids. The d-cell indices are needed for
fast retrieval of cells by their cell ID. A face net component does not need a solids index,
since it always references only exactly one solid which is the universe solid.

Additionally, an index for CellTuple objects is also part of the field of a cell net

component. The CellTuple index serves for fast retrieval of CellTuple objects by their

CellTuple ID. All cell-tuples of a cell net component are added to the cell-tuple index
during the component construction process. The set of cell-tuples of one cell net
component constitute a cell-tuple structure/G-Map. All d-cells in the cell net component
indices belong to one contiguous component. A cell net component is part of a cell net that
can have several disconnected cell net components.

Orientability Check of Net Component by Polarities

In the case that the Topology Module operates on top of the DB4GeO Kernel, the
polarity property of the cell-tuples has an additional important functionality. The

DB4GeO Kernel provides the possibility to orientate triangle net components. After a
triangle net component has been imported into DB4GeO, it is possible that the triangles of

101 For a final, consistent implementation, all methods of the superclasses have to be reviewed on the need
to be overridden by methods of the subclasses. However, this is not part of this work, and therefore not
yet completely accomplished.

Fig. 51: FaceNet3DCompNetLevel as composition of indices of
CellTuple objects and cells

74 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

the component are not homogeneously orientated. The orientation of a triangle is given in
DB4GeO by the sequence of numbering of its support points. The orientation is important,
since e.g. the direction vector of a triangle is deduced from the sequence of numbering. If
the triangles of a net component are not homogeneously orientated, the overall triangle net
component is inhomogeneous in its orientation, which is not wanted in many applications.

In the case of an inconsistent orientation, the TriangleNet3DComp class of the DB4GeO

Kernel provides the makeOrientationConsistent method which rearranges the
triangles' orientations to realize a homogeneously orientated triangle net component. This
is always done in the aftermath of an import operation. But not all contiguous surfaces are
orientable. A well-known example of non-orientable surfaces is the MÖBIUS strip, which
has been discovered by MÖBIUS and LISTING (Weisstein 2015b). The DB4GeO Kernel does
not consider non-orientable surfaces and thus behaves incorrect in such cases. It tries to
orientate a non-orientable triangle net component and terminates the operation in constant
time. However, after the attempt, the isOrientationConsistent method of the

TriangleNet3DComp class of the Kernel reports that the non-orientable surface is
orientated, which obviously is incorrect.

In most industrial applications as well as in the standard ISO 19107, non-orientable
surfaces are not applicable (cf. (Andrae 2008, 114)). Since ISO 19107 defines the
foundations of CityGML (see Ch. 1.3), non-orientable surfaces are also not applicable in
CityGML. As it is one goal of the Topology Module to prepare the basis for CityGML
integration, it is useful if the API is able to identify and report non-orientable surfaces.

In the process of face net component creation (as described in Listing 3), all underlying
cell-tuples and all polarity values are also internally built up and set (see Ch. 3.2 for
details). After the process has finished, it is easy to identify a non-orientable surface with
the help of the polarised cell-tuple structure. In a polarised cell-tuple structure, the

polarities of all pairs of cell-tuples that are connected through an 2 -involution, must be

opposite if the surface is orientable (cf. (B. Lévy and Mallet 1999, 8)). If the surface is

non-orientable, polarities of 2 -cell-tuple-pairs cannot always be opposite. This

verification method is used by the isOrientable method of FaceNet3dComp class,

which is presented in Listing 4.

1. public boolean isOrientable() {
2. for (CellTuple ct : this.cellTupleIndex.values()) {
3. if (ct.polarity == ct.alpha2.polarity)
4. return false;
5. }
6. return true;
7. }

Listing 4: Implementation of isOriented method of FaceNet3dComp class

In line 2 of Listing 4, all cell-tuples of the face net component are fetched and iterated. In
line 3, it is checked whether there is any cell-tuple polarity that is equal to the polarity of

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 75

its 2 -cell-tuple (pair check). If so, the surface is non-orientable, thus false is returned

by the method. Otherwise if all 2 -pairs of the component have opposite polarities, the

surface is orientable and true is returned.102

3.1.7 Handling Holes in Cell Net Components

In many application cases of geodata modelling, it is important to provide the possibility to
model holes in the geo-object's geometry, i.e. to model holes in surface and volume nets. In
subsurface modelling for example, holes are useful to model crevasses (in surface nets) or
enclosed caverns (in volume nets).

In the presented model, holes are treated as universe cells. Every universe cell has its own
cell ID. Not only holes but also the outer void itself is modelled as a universe cell with a
specific ID. Any cell net component is embedded in the outer void (cf. Ch. 3.1.5). If the
cell net component is modelled with a hole inside, then the hole is created as an additional
universe cell with an ID that is different from the ID of the universe cell that represents the
outer void. See Fig. 52 for an example of a face net component that is placed into the outer
void and which has one hole inside.

In Fig. 52, the outer void is represented by the universe face U1. A face net component,
consisting of some triangles is embedded into U1. Cell-tuples that reference face U1, i.e.
cell-tuples that lie in the outer void, are depicted in the figure. The face net has a hole
inside of it that is represented by the universe face U2. A set of cell-tuples (in this case eight
of them) reference the inner universe face U2 (these cell-tuples are also depicted in the
figure). Every inner hole of the face net results in a new universe face with a distinct ID
(though, in the example set-up, there is only one hole). Since the face net at this level is a

102 The implementation, presented in Listing 4, involves many unnecessary double checks, which degrades
runtime. The runtime could be improved by an “already-visited” list, which on the other hand impairs
memory usage.

Fig. 52: Face net component in outer void (U1) with additional inner hole (U2)

76 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

direct representation of the underlying Simplicial Complex, all faces are modelled as
triangles. However, this is not true for the universe faces. They can have any polygonal
shape that is needed to represent the particular part of the void.

Having a clear distinction between “normal” cells and cells that represent parts of the
universe, it is straightforward to implement algorithms that retrieve all cells of the cell net
component's boundaries. A boundary retrieving algorithm returns – for example – all edges
of a face net component that have contact to the universe. This is a collection of all edges
that lie at the outer void and all edges at the inner holes of the face net component.
However, the boundary retrieving algorithm needs to identify all boundaries of the cell net
component, since, if a component has multiple holes, it also has multiple boundaries. But it
is a priori unknown where the boundaries or where the universe cells are. It would be
necessary to iterate over all cells and check every cell for whether it is a universe cell in
order to sort out all universe cells.

To solve this problem, all universe cells that are created, are registered in additional
separate indices already during construction of a cell net. Each component of the cell net
maintains its own index of all universe cells of the respective component (see Fig. 53).

On the one hand, a face net component needs only an additional index on universe faces.
There is no need for an index for universe solids in a face net component, since in the case
of a face net component, there is always only exactly one solid universe, which is the solid
outer void. Inner solid holes are not possible in face nets.

On the other hand, a solid net component needs only an additional index on universe
solids. There is no need for an index on universe faces in a solid net component, since in
the case of a solid net component, it is not possible to create a universe face that represents
the 2D outer void or a 2D inner hole. This is not possible, since, when creating a solid net
component, a face net component is automatically generated as the boundary of the solid
net component. The face net component boundary forms the closure of the solid net
component. Therefore, it has no outer void and no inner holes. All further steps of editing
the faces of a solid are monitored by the editing algorithms that prohibit a manipulation

Fig. 53: Indices of universe cells are part of face net component and
of solid net component

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 77

that would lead to the creation of universe faces. Thus, since there are no universe faces in
a solid net component, there is no need to index face universe objects.

With the help of the indices, the boundary retrieving algorithms can be kept concise, clear,
and perform in a linear runtime, depending only on boundary size. Listing 5 shows, as an
example of boundary retrieving methods, the getBoundaryEdges method of

FaceNet3DCompNetLevel class that efficiently returns all boundary edges of a face net
component in an ordered sequence.

1. public Collection<Edge> getBoundaryEdges() {
2. Collection<Edge> result = new LinkedList<Edge>();
3. for (Face uFace : this.getAllUniverseFaces()) {
4. for (Edge edge : new EdgeIterator(uFace)) {
5. result.add(edge);
6. }
7. }
8. return result;
9. }

10. public Collection<Face> getAllUniverseFaces() {
11. return this.universeFaceIndex.values();
12. }

Listing 5: Implementation of getBoundaryEdges and getAllUniverseFaces methods of
FaceNet3dCompNetLevel class

The algorithm of the getBoundaryEdges method starts with the retrieval of a collection
of all universe faces of the face net component on which it is invoked. To retrieve all
universe faces, the method internally invokes the getAllUniverseFaces method

(line 3), which in turn accesses the universeFaceIndex instance property of

FaceNet3DCompNetLevel class (this index is the index of universe faces, presented in

Fig. 53). The method returns the values of this associative map, which are the universe
faces themselves (line 11). The getBoundaryEdges method then iterates through all
universe faces of the collection (line 3). For every universe face, the algorithm creates an
edge iterator on the face (see instantiation of object of type EdgeIterator in line 4). An

edge iterator is an example of a cell iterator. Cell iterators are introduced in Ch. 3.3.2 in
detail, where the meaning of cell iterators and implementation detail is given. However,
basically an edge iterator returns all edges of a face in an ordered sequence by iterating an
orbit. It is not capable of evaluating holes by itself. The getBoundaryEdges method
instantiates edge iterators of the face that represents the outer void, and edge iterators of all
faces that represent inner holes, in order to collect all boundary edges. These edges are
collected in a result collection (line 5), which is returned as the return value of the method
(line 8).

Now it becomes obvious, why holes require the creation of separate instances of universe
faces. The getBoundaryEdges method uses an edge iterator which by itself can only

78 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

collect the cells of one hole face or of the outer void universe but not of all universe faces
combined. A cell iterator needs a cell-tuple to start with, which can be received from a
universe face through the getACellTupleOfCell method (see Fig. 42). If there is only

one universe face with multiple parts (the inner holes), then it would not be possible to
gain e.g. all boundary edges of the universe face through an edge iterator, since not all cell-
tuples of the multi-part universe face would be accessible through one orbit. Only if the
multi-part universe face is modelled as multiple separate instances of universe face type, it
is possible to run orbits on all parts of the universe and thus to collect all boundary cells.

Similar methods are implemented to retrieve boundary nodes (getBoundaryNodes) and

boundary faces (getBoundaryFaces) (see Fig. 54).

These methods are not only available for face net components, but also for solid net
components. Additionally, solid net components also provide a getBoundarySolids

method that retrieves all boundary solids of a solid net component. All these boundary
retrieval methods operate on the same principle as presented in Listing 5.

FaceNet3dCompNetLevel and SolidNet3dCompLevel also have

countBorder<cells> and isBorder<cells> methods. The countBorder<cells>

methods are based on the getBoundary<cells> methods. The purpose of the

countBorder<cells> methods is to count and to return the number of cells of the

respective cell type (node, edge, face or solid) that can be found at the boundary of the cell
net component. It returns the number as the method's return value of type int. Internally, a

Fig. 54: Methods of cell net components that retrieve boundary cells

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 79

countBorder<cells> method simply invokes the suitable getBoundary<cells>
method and reads the size of the returned cell collection. The implementations of
countBorder<cells> methods override the homonymous methods of its superclass

TriangleNet3DComp (which is a class of the DB4GeO Kernel).103

The isBorder<cells> methods have the purpose to check whether a given cell is part of
the boundary of the cell net component at hand. As an example of the implementation of
the isBorder<cells> methods, Listing 6 shows the actual implementation of the

isBorderVertex(Node) method of FaceNet3dCompNetLevel class.

1. public boolean isBorderVertex(Node node) {
2. if (!nodeIndex.containsKey(node.id))
3. return false;
4. OrbitIterator orbit1 =

new OrbitIterator(node.anyCellTuple, 1);
5. for (CellTuple ct : orbit1) {
6. if (ct.isInFaceUniverse())
7. return true;
8. }
9. return false;
10. }

Listing 6: Implementation of isBorder(Node) method of FaceNet3dCompNetLevel class

The algorithms of these methods first check whether the given cell is part of the cell net
component that the method is invoked on. In the example of isBorderVertex(Node)

method, the algorithm first checks whether the given node is in the nodeIndex of the

component (line 2). If the given cell is not a cell of the component, then it cannot be part of
its border and therefore false is returned. In a second step, the algorithm collects all cell-

tuples of the given cell, which, in the case of isBorderVertex(Node) method, are all
cell-tuples “around” the given node. To gather all cell-tuples around a node, a 1-orbit is
needed (instantiated in line 4). Orbits are given in the form of iterators by the API. Orbit
iterators are described in Ch. 3.3.1 in detail. Basically, a 1-orbit iterator can be used in a
for-loop to iterate step-by-step over all cell-tuples that reference the given node (line 5).

Each cell-tuple of the 1-orbit iterator is checked whether it also references a universe face
(whether it is lying in a universe face) (line 6); if one is found, the method returns true

(line 9). All other isBorder<cells> methods of FaceNet3dCompNetLevel class
operate in a similar way, the differences only involve different orbit iterator types (line 4,
depending on the given cell) and different universe cell types (line 6, depending on the
type of the cell net component on which the method is invoked).

As the class diagram in Fig. 54 shows, this boundary finding functionality is already
provided by the superclasses TriangleNet3DComp and TetrahedronNet3DComp of the

103 This is why the denomination of these methods break with the general rules (vertices instead of nodes
etc.): these methods have to have the same name as the ones of Trianglenet3DComp that are overridden.

80 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

DB4GeO Kernel. For example, the findTinBorder1 and findTinBorder2 methods of

the DB4GeO Kernel have the same purpose as the getBoundary<cells> methods of the
Topology Module: they all retrieve the boundary elements of the net components.104

Though, these methods serve the same purposes, the underlying models and algorithms are
very much different. This is reflected in highly differing asymptotic runtimes. Since the
Topology Module makes extensive use of references between the cells, it is assumed that
these methods will have exceptional gains in asymptotic runtimes. Due to this fact, the
structure, created by the Topology Module, can also be referred to as a “topological index”.
However, this assumption is checked with runtime tests, and the results are presented in
Ch. 4.

3.1.8 Object Level and Net Level

To prepare the model for hierarchy management, a cell net component is conceptionally

further subdivided into a cell net component at network level (or just net level, C NL) and a

cell net component at object level (COL) (cf. Fig. 55).

The topology of C NL is an exact reproduction of the topology of the net structure of the

underlying net of simple geo-objects. The network level is mainly used for navigational

purposes. It eases the algorithmic navigation on the net structure. Once C NL is created

through the constructor, the topology defined by the cell-tuple structure cannot be edited by
the user on this level any more. This edit restrictions are backed by the employment of
interfaces that define editable (of type EditableCellNet3dCompLevel) and non-

editable (of type CellNet3dCompLevel) cell net levels (cf. Fig. 56).

104 The differences in functionality between the methods findTinBorder1 and findTinBorder2 are explained
in Ch. 4.

Fig. 55: Example configuration of cell net components
at net level (bottom) and at object level (top)

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 81

As soon as C NL construction has finished, COL is deduced from C NL . COL is the

boundary representation of the component object (cf. top of Fig. 55).

The cells of COL are not reused cells of C NL but completely newly instantiated cells. As

an example, this means that one new inner face and one new face that represents the “outer
void” are created on object level for a face net component on net level (without a hole).
Furthermore, for every edge and node at the boundary of the component on net level, a
new edge and node object is created on object level.

For every cell-tuple in C NL that belongs to the “outer void” (d U), a new cell-tuple in COL

is instantiated. Additionally, for all cell-tuples 2dU  of C NL , the according new cell-

tuples in COL are created. Every newly created cell-tuple of COL is linked to the

respective cell-tuple at C NL ; this references are also modelled backwards from C NL to

COL (two-way link, reversible uniquely assigned). The references between the cell-tuples

of the net level and of the object level are stored in higher and lower field properties of

CellTuple class. To accommodate this functionality, the model of CellTuple class (Fig.
44) is extended by the two new attributes as depicted in Fig. 57.

Fig. 56: Two distinctive cell net component interfaces

82 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

The lower references of all cell-tuples of COL are always set to null (because there can

be no lower level than the object level itself). The higher references of all cell-tuples of

C NL are also always set to null (because there is no higher level possible than the net

level). The higher references of all cell-tuples of COL are initially pointing to their

respective cell-tuples at C NL . A subset of the lower references of the cell-tuples of C NL

link to the respective cell-tuples at COL . Not all lower references of the cell-tuples of

C NL can be set, since not every cell-tuple at C NL has a representative at COL . For

example, directly after the construction, all the cell-tuples of C NL that are not at the

boundary of the component have no representative at COL . Thus, the lower references of

such cell-tuples are also set to null.

The key mindset of this concept is that the net level always reflects the net structure of the
underlying geometry, which is unchangeable, once build. The object level instead reflects
the geo-object (as boundary representation), which can be topologically edited/changed by
the user. To reflect this concept, the level indicating classes on net level and on object level
differ in the interfaces they implement (CellNet3dCompLevel or

EditableCellNet3dCompLevel interface) (cf. Fig. 56 and Fig. 58).

Fig. 57: Higher and lower field attributes of CellTuple class (left: class
diagram; right: example set-up)

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 83

All cell net component classes on net level (i.e. FaceNet3dCompNetLevel and

SolidNet3dCompNetLevel) implement the CellNet3dCompLevel interface which
only requires to implement methods that query the cell net structure – but it does not
require/allow for methods that modify the cell net structure on that level. In contrast, all
cell net component classes on object level (i.e. FaceNet3dCompLevel and

SolidNet3dCompLevel) implement the EditableCellNet3dCompLevel interface,

which extends the CellNet3dCompLevel interface – i.e. it requires the implementation

of all the methods of CellNet3dCompLevel interface that require the querying of the

structure, plus methods of EditableCellNet3dCompLevel that allow for a
modification of the cell net structure on that level.

To get an overview of the allocation of the methods, it is appropriate to start with the getter
methods. A cell net component, whether at net level or at object level, can be searched for a
cell object of a certain ID through its get<cell> method by passing a cell ID of type int
as a parameter. The method returns the cell with the given ID only if it actually is part of
the cell net at this level; otherwise the method returns null. Furthermore, any cell net

component can return collections that represent all cells of a certain type of the respective
component by the getAll<cells> methods. The getUniverseFaces and

getUniverseSolids methods return sets of all faces and solids that have been marked

as universe cells. The getBoundary<cells> and countBorder<cells> methods have
been discussed in detail in Ch. 3.1.7.

The insertNode method that is required by the EditableCellNet3dCompLevel

interface shall place a node onto an edge at object level. The object of type Node that is

required as the first parameter, must be a Node at net level. The insertNode method

creates a new node at object level that “mirrors” the given node of net level at object level

Fig. 58: Cell net comp level methods

84 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

(i.e. these represent the same node at net level and at object level – though both nodes are
individual objects and have differing object IDs). The insertNode method splits the edge
that is passed to the method as the method's second parameter, into two edges. Finally, the
method returns the newly created node at object level as the methods return value.

The removeNode method that is also a method of the object level (i.e. required by the

EditableCellNet3dCompLevel interface) deletes a node (that is located on an edge).

The method only requires a Node object as its parameter. This has to be the node that shall
be removed from the cell net at object level – i.e. it must be a node of object level. The
operation removes the node and thus merges the two edges, that are incident to the node,
into one edge.

The insertEdge method inserts an edge between two nodes. This method needs two

nodes as its parameters. These nodes define where the new edge shall be inserted in-
between. The method instantiates a new edge and defines the two given nodes as incident
to the new edge. Also, the insertion of a new edge splits a face into two. Thus, the method
also creates two new faces and defines them as incident to the newly created edge.

The removeEdge method deletes an edge that is located on faces. The method only

requires an Edge object as its parameter. This has to be the edge that shall be removed

from the cell net at object level – i.e. it must be an edge of object level. The operation
removes the edge and thus merges the two faces that are incident to the edge, into one face.

Before the actual algorithms of the insert<cell> and remove<cell> methods are

described in detail105, it is helpful to have an elaborated inside look into the algorithms that
are needed to create the cell nets out of nets of simple geo-objects and into the algorithms
that simplify the traversal of the darts of a G-Map.

3.2 Constructing Cell-Tuple Structure from DB4GeO Simplicial Complexes

The Topology Module provides the means to construct cell-tuple structure (G-Map) from
triangle nets and tetrahedron nets that are provided by db3dcore. First, for each component
of a simplicial net, a distinct G-Map is created. Afterwards, all components of the cell net
(FaceNet3dComp/SolidNet3dComp) are attached to the respective cell net

(FaceNet3d/SolidNet3d). The cell net is finally returned by the builder object (see

Ch. 3.1.6).

The construction process for a cell net component is subdivided into two main steps,

1. the construction of cells and cell-tuples at net level
(FaceNet3dCompNetLevel/SolidNet3dCompNetLevel) and

2. the construction of cells and cell-tuples at object level
(FaceNet3dCompLevel/SolidNet3dCompLevel).

105 Algorithms are discussed in Ch. 3.4

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 85

In fact, not a component itself but each level of a component constitutes a distinct G-Map.
After the construction of G-Maps of net level and object level completes, both levels are
attached to the respective cell net component.

The following section explains the algorithms for the construction of cells and cell-tuples
at net and at object level. The explanation is given for triangle net components first – the
differences to the algorithm for the construction out of tetrahedron net components are
described thereafter (Ch. 3.2.5).

3.2.1 Framework for Cell Complex Construction

Basically, the algorithm traverses every single triangle of the triangle net once, processing
the following two steps:

1. create all cells and cell-tuples for every triangle solemnly and

2. connect the cell-tuples of a triangle (face) with the cell-tuples of its adjacent
triangles.

The actual algorithm implements a DIJKSTRA-based106 approach for the traversal of all

triangles of a triangle net. The algorithm utilizes an ordered list LP of face-triangle-pairs,

where P=(f , te) is a pair of one face f (geometrically embedded by a triangle t f) and

a triangle element te . The algorithm has to ensure that if f and te are in P then t f

and te are geometrically adjacent to each other.

Additionally, an indexed set of already visited triangles S f is prepared. Every te that is

put on S f has to be “transformed” into a face f in advance. So in fact, S f does not

contain the triangles but the faces they have been transformed into. Every f is indexed by

the ID of the affiliated te , so that any f on S f can be retrieved through the operation

f =S f (te) .

Listing 7 describes the global frame of the algorithm of the cellNetBuildUp method (of

FaceNet3dCompNetLevel class), i.e. how a triangle net component (class

TriangleNet3DComp) is traversed and the cells and cell-tuples are created:

Method: cellNetBuildUp
Purpose: Construct cell complex on net level from triangle net
component
Parameter: A (any) triangle element te s of the triangle net component
for which the cell complex shall be constructed (the "start" triangle)
1. Push te s onto LP (this first te s has no f companion in P
2. While LP is not empty do

3. Poll (take and remove) the first P of LP

4. Extract te from P

106 The Dijkstra shortest path finding algorithm is explained later when it is shown how the path finding
algorithm can take advantage of the G-Maps structure of the Topology Module.

86 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

5. If te has not already been visited (is not already on S f)

6. Create all cells (i.e. nodes, edges and the face f current)

 and all cell-tuples for te
7. Else
8. f current=S f (te)
9. Extract f before from P (if possible)107

11. If f before exists (it does not exist for first P)

12. Merge f current with f before
108

13. For all neighbour triangle elements tei ,{i∈ℕ∣1≤i≤3} of te
14. If tei exists and is not already on S f

15. Create new PN=(f current ,te i) and push it onto the end

 of LP

16. Add te to S f

Listing 7: Pseudocode description of the algorithm of cellBuildupOnNetLevel method

The algorithm of cellNetBuildUp method of Listing 7 is also depicted in a flow chart
diagram in Fig. 59 for a better overview.

In summary, the algorithm starts with the first triangle element of the triangle net
component and “transforms” it into a face (i.e. all its cell-tuples are created). The face is
pushed pairwise with all of its neighbouring triangles onto the list of face-triangle-pairs.
Thus, the triangles of a face-triangle-pair are known to be adjacent. Then, new triangle-
face-pair elements are taken from the list of face-triangle-pairs in order to be processed.
They repeatedly undergo the same procedure (which is: create cell-tuples, build pair) but

107 This is not possible for the triangle element that is processed as the first one in the algorithm since there
has been no triangle before that was already “transformed” into a face (i.e. that all its cell-tuples were
created)

108 Merge operation is described in next sections

Fig. 59: Flow chart diagram of cellNetBuildUp method

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 87

they also merge with their (previously generated) adjacent faces. It is guaranteed that every
triangle is reached (processed) since the algorithm accesses the face-triangle-pairs in a
FIFO109 manner.

3.2.2 Creating Cells and Cell-Tuples of a Triangle

This section describes how the cells and the cell-tuples that describe the topology of a
triangle element110, are created (referred to in sixth step of Listing 7) and how two faces are
merged (referred to in twelfth step of Listing 7). The creation of cell and cell-tuple objects
for a single triangle is encapsulated in the private createCellsOfTriangle method

of the FaceNet3dCompNetLevel class (see Listing 8).

Method: createCellsOfTriangle
Purpose: Create all corresponding cell-objects (i.e. nodes, edges and a
face) for the given triangle element (TriangleElt3D) and also create
all corresponding cell-tuples
Parameter: The triangle element (TriangleElt3D) for which to create all
corresponding cell objects (i.e. nodes, edges and a face)
1. Create three Node objects for the three points of the
 triangle (link the nodes to the corresponding point objects)
2. Create three Edge objects for the three line segments of the
 triangle (link the edges to the corresponding segment
 objects)
3. Create one Face object for the triangle (link face object to
 the corresponding triangle object)
4. Register all newly created cell objects in the appropriate
 index fields of the face net component instance. The cells
 are then sorted by their ID
5. Create only the six “inside-lying”111 cell-tuple objects of
 the triangle and link each cell-tuple to its four incident
 cell objects (0-, 1-, 2- and 3-cell). Create a back-reference
 from every cell object to the respective cell-tuple
6. Put all newly created cell-tuple objects into an index field
 (face net component instance) which sorts the cell-tuples by
 their ID

Listing 8: A textual description of createCellsOfTriangle algorithm

The creation of cell-tuples (as mentioned in the fifth step of Listing 8) is implemented
straightforward: the constructor method of a cell-tuple is given all the cell objects that
constitute the path in the incidence graph that is represented by that cell-tuple (see step 1 in
Listing 9 for example set-up). A “universe” solid is given as parameter to the cell-tuple
constructor; a universe solid is a 3-cell with the ID -1 and indicates the outer space. Since

109 First in, first out

110 Implemented in db3dcore

111 In order to avoid the creation of unnecessary cell-tuple objects in the process, the “outside-lying” cell-
tuples (that reference the universe faces) are created in the end, after the creation of all “normal” faces
has finished.

88 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

the createCellsOfTriangle method of the FaceNet3DComp only regards triangle nets
(i.e. always a 2-dimensional geometry), there is always the universe solid on the “top” and
the “bottom” of the face net component. Thus, all cell-tuples that are created in the
createCellsOfTriangle method have universe as its 3-cell.

Then all the involutions (0 ,1 , 2 ,3) towards the already existing cell-tuple objects are

established by assigning the appropriate values to alpha<dim> class attributes of the cell-

tuples (see code example in Listing 9).

...
1. CellTuple ct6 =
 new CellTuple(node1, edge3,
 face, universeSolid, false);
2. ct5.alpha0 = ct6;
3. ct6.alpha0 = ct5;
4. ct1.alpha1 = ct6;
5. ct6.alpha1 = ct1;
6. ct6.alpha2 = ct6;
7. ct6.alpha3 = ct6;
...

Listing 9: Java code excerpt for the creation of a cell-tuple (ct6) in createCellsOfTriangle method

The knowledge of the cell-tuple structure, i.e. which cell-tuples are adjacent, is extracted
from the net topology structure of the underlying triangle net component of the DB4GeO
Kernel112. Instances of TriangleElt3D class of the Kernel reference adjacent and
incident geometry objects by index numbers (see Fig. 60).

The neighbourhood relations between points, segments, and triangles are codified within
the index numbers 0, 1, 2. For example, an incident point and a neighbouring triangle with

112 Which is built up and managed by the TriangleNet3DComp class of db3dcore

Fig. 60: Indexing of net topology in DB4GeO
triangle net component

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 89

the same index number oppose each other. A segment and two points with unequal index
numbers are incident.

Since it is known inside the createCellsOfTriangle method, which point is

transformed into which node, which segment is transformed into which edge, and which
triangle is transformed into which face, all relations between edges and nodes inside a face
can also be deduced.

3.2.3 Merging Cells and Cell-Tuples of Faces

After all edge, node, and cell-tuple objects of a face have been created, the face is “glued”
to its neighbouring faces (see Fig. 61), with the purpose to build one contiguous face net
component at net level.

The algorithm of Listing 7 iterates over all triangles of the triangle net component (line 2)
in order to merge all faces (cf. line 12).

In the process of merging two neighbouring faces, identical nodes and edges are identified
and unified, as well as the α2 -involutions between cell-tuples in the opposing faces are
set. This is done by the algorithm of the mergeFaces method of the

FaceNet3dCompNetLevel class (see Listing 10).

Method: mergeFaces
Purpose: Merge the cells and connect the cell-tuples of the two given
faces at the intersection areas of the corresponding triangles
Parameter: The two 2-cells that shall be merged are given as
parameters: face f 1 and face f 2 of class Face. The cells incident to

f 1 will remain after the merging process whilst the cells incident to

f 2 will be erased and replaced

1. For all edges (e f 1
) of f 1

2. For all edges (e f 2
) of f 2

3. If e f 1
 equals(is geometrically equivalent to) e f 2

4. Get all cell-tuples (d) that reference e f 1

5. Get all d that reference e f 2

6. Get the two nodes of e f 1

Fig. 61: Inspection of cell identity (left) and remapping of alpha-2 involutions during face merging
process (in mergeFaces method)

90 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

7. Get the two nodes of e f 2

8. Check which of the nodes of e f 1
 are equal to which of

 the nodes of e f 2

9. Based on the information of step 8: correctly update the
 2 -involution links of all d of e f 1

 and e f 2

10. The nodes and the edge of f 1 replace the nodes and

 the edge of f 2 . Therefore: update/replace the 0-cell

 and 1-cell references of all d of e f 2
. Remove e f 2

 and
 the nodes of the edge from the face net component's
 nodes and edges index

Listing 10: Pseudocode/textual description of the algorithm of mergeFaces algorithm

In summary, the mergeFaces method iterates over all edges of the both faces that shall be
merged (lines 1 and 2 of Listing 10). All edges are compared crosswise on geometric
equality of their line segment representatives (line 3).113 When the two equal edges are
identified, then the point representatives of their nodes are checked for geometric equality
in order to identify the correct alignment of the edges (Fig. 61, left).114 After the alignment
is known, the correct α2 -involution links between all cell-tuples of the both edges are set
(Fig. 61, right). All duplicates of identical cells (nodes and edges) that are now merged, are
removed from the structure (especially from the indices).

3.2.4 Creating Universe Faces and Object Level Structure

After merging the cells and cell-tuples of all faces of a face net component, the component
is still incomplete. In the following step, the “outside structures” are created. These are all
faces and cell-tuples that are located outside the boundary (in the 2D universe) of the face
net component (see Listing 11).

Method: createUniverseFaces
Purpose: Create a universe face for the outer void and for all inner
holes and all cell-tuples that lie “outside” the face net component
Parameter: Any cell-tuple of the face net component for which to build
the “universe structure”
1. Create a set of all cell-tuples that are located at
 component's 2-cell boundary (S ct (B))

2. While S ct (B) is not empty

3. Take a cell-tuple (ct B) from S ct (B) (memorize this

 cell-tuple also as start cell-tuple ct S)

113 This yields 3x3=9 checks on geometric equality of line segments per triangle at a maximum.

114 The gathering of all the information that is needed for merging of neighbouring faces can also be
achieved with improved runtime performance by an expanded use of the underlying triangle orientation
structure that is presented in Fig. 61. However, this would also complicate the algorithm and make its
maintenance more difficult. Thus, the presented simple approach has been favoured.

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 91

4. Create a new universe face (f U)

5. Put f U on universe face index (I f U
)

6. Do
7. Create new cell-tuple (ctU) as copy of ct B but with

 f U as 2-cell (and set all involution links as far as
 possible)
8. Set ctU as α2 of ct B (and vice versa)

9. Set ctU as α1 of ctbefore (and vice versa)

10. Remove ct B from S ct (B)

11. ct B←α0(ctB)

12. Create new cell-tuple (ctU (α 0)
) as copy of ct B with f U

 as 2-cell
13. Set α0(α2(ctB)) as α0 of ctU

14. Set ctU as α0 of α0(ctU)
15. Set ctU as α2 of ct B

17. ct before←ctU

17. Remove ct B from S ct (B)

18. Move cell-tuple iterator “coast to coast” until it
 reaches the boundary again and set the cell-tuple as ct B

19. While ct B≠ctS

Listing 11: Pseudocode/textual description of the algorithm of createUniverseFaces method

In this process, for each inside cell-tuple of the component's boundary, a new “twin” cell-
tuple is created as a copy of the inside cell-tuple with the difference that the new tuple gets
a universe face as its 2-cell entry (see line 7 and 12 in Listing 11). When generating outer
cell-tuples, it is of particular importance to consider possible holes in the component. As
discussed in Ch. 3.1.7, each hole renders a new universe face instance (with a unique face
ID).

The algorithm first creates a set of all cell-tuples of the component's boundary (line 1).
This is achieved by iterating through all cell-tuples of the component and checking each

tuple. If α2(d)=id is true for a cell-tuple then it lies at the component's boundary and

therefore is added onto the result set.

After the set is compiled, it is iterated in the next step. For each cell-tuple, a new universe
cell-tuple is created. A simple 2-orbit along the “outer” component's boundary – i.e. along
the cell-tuples that lie in the universe, is not possible so far since the outer cell-tuple
structure is not generated at this state and thus would lead to erroneous behaviour. In order
to find the inner way along the component's boundary, the iterator often needs to move
“coast to coast” (see line 18). For this purpose, a private moveToBoundary helper method
is developed that takes an inner boundary cell-tuple as parameter value, then moves “fast
forward” a 0-orbit until it reaches the boundary again (see Fig. 62) and finally returns the
other (opposite) inner boundary cell-tuple.

92 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

The condition for reaching the boundary in 0-orbit is to identify an inner boundary cell-

tuple (d b) for which α2(d b)=id 115 is still valid at this state.

Each time, a new boundary cell-tuple is processed, it is removed from the set of boundary
cell-tuples. This way, only cell-tuples remain in the set that are part of other, dissimilar
boundaries of the component. These cell-tuples are processed in the following steps of the
algorithm, until all cell-tuples are removed from the set.

In a final step, the object level of a cell net component is deduced from the now completed
net level in the cellNetBuildUp method of FaceNet3dCompLevel. This is simply
done by performing 2-orbits around all universe faces and creating object level siblings of
all encountered net level cells and cell-tuples. In the course of the process, each newly
created cell-tuple of object level is (bi-directionally) linked to its sibling cell-tuple of net
level (cf. Ch. 3.1.8).

3.2.5 Constructing Solid Complexes From Tetrahedral Nets

So far, the process of constructing cell complexes and G-Maps from DB4GeO Simplicial
Complexes has been discussed on the basis of 2-dimensional structures (triangle nets). The
construction process for 3-dimensional cell complexes (on basis of tetrahedral nets in
DB4GeO) is analogue but encompasses some minor differences.

Analogously to the FaceNet3dCompNetLevel class that represents a face net component

at net level, the SolidNet3dCompNetLevel class represents a solid net component at net

level. The cell net build up entry method cellNetBuildUp of

SolidNet3dCompNetLevel class is mostly the same as the cellNetBuildUp method

of FaceNet3dCompNetLevel class (cf. Ch. 3.2.1). The major difference for solid build

up is that the starting point of the geometric processing is not a triangle but a tetrahedron
that first has to be queried for its four incident triangles – the rest of the algorithm,
concerning the lists of visited elements (now tetrahedra instead of triangles) and the list of
element pairs, is similar.

115 This condition becomes incorrect after the universe cell-tuple are created. The condition for inner
boundary cell-tuples is then α2(d b)=d U .

Fig. 62: Navigating along “inner side” of component boundary

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 93

Accordingly to the above described createCellsOfTriangle method of the face net
component constructor (see Ch. 3.2.2), the solid net component constructor has a
createCellsOfTetrahedron method which creates all cells (nodes, edges, faces, and a

solid) and all 48 cell-tuples that describe one single tetrahedron. The mergeSolids

(Listing 12) method of the SolidNet3dCompNetLevel class has a similar purpose as the

mergeFaces method of SolidNet3dCompNetLevel class (see Ch. 3.2.3): it merges the

two given solids along their equal faces.

Method: mergeSolids
Purpose: Merge the cells and connect the cell-tuples of the two given
solids at the intersection areas of the corresponding tetrahedra
Parameter: The two 3-cells that shall be merged are given as
parameters: solid s1 and solid s2 of class Solid. The cells incident

to s1 will remain after the merging process whilst the cells incident

to s2 will be erased and replaced

1. Find the face f 1 of s1 and the face f 2 of s2 whose
 corresponding triangles are geometrically equivalent
2. Find the both cell-tuple d 1 and d 2 of f 1 and f 2 that
 match – where “match” means that the point (of the node)
 and the segment (of the edge) of d 1 and d 2 are

 geometrically equivalent. In other words, d 1 and d 2 in the

 two solids s1 and s2 are located at the same point, pointing
 along the same segment
3. Use d 1 and d 2 as start cell-tuples to instantiate

 〈α2〉 (d 1 (S)) and 〈α2〉 (d 2(S))

4. For each involution step in 〈α2〉 (d 1 (S))

5. Do an involution step in 〈α2〉 (d 2(S))

6. Link the two current cell-tuples of both sides (d 1 (C) and

 d 2 (C)) so that α3(d 1(C))=d 2(C) and α3(d 2 (C))=d 1(C)

7. Replace/update the 2-cell reference of d 2 (C)

8. Update 0-cell references of all cell-tuples of 〈α0〉 (d 2(C))

9. Update 1-cell references of all cell-tuples of 〈α1〉 (d 2 (C))

10. Remove f 2 and the edges of f 2 and the nodes of the
 edges from the solid net component's nodes, edges and
 faces index

Listing 12: Textual description of the algorithm of mergeSolids method

The algorithm first searches for the two matching faces/triangles of the solid and then the
two matching cell-tuples inside the faces. The following steps (from line 3) harness the
functionality of the OrbitIterator framework (which is explained in detail in

Ch. 3.3.1). Basically, the algorithm makes use of 2-orbits in both solids, starting with the

two matching cell-tuples d 1 (S) and d 2 (S) (see Fig. 63).

94 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

The both 2-orbits simultaneously lead along the equal faces of the two solids, cell-tuple by
cell-tuple. On each step, the cell-tuples on both sides of the faces are linked by α3 (line 6),
and cell references of all affected cell-tuples are updated properly (lines 7 ff.).

Finally, all universe solids and all cell-tuples of universe solids are instantiated and linked.
Then, the object level is deduced from net level. These processes are very similar to the
processes for 2-dimensional structures described in Ch. 3.2.4. The main difference is that
for finding cell-tuples of the inner boundary of the solid component, the condition for

identifying such cell-tuples is α3(d)=id .116

3.3 Basic Methods of the Topology Module

The previous chapters presented the basic class model of the G-Maps topology module for
DB4GeO. This was followed by an explanation of how the class model is internally used to
construct valid G-Maps. Now that valid G-Maps can be instantiated by the means of the
module, the next step is to illustrate the basic algorithms that provide the functionality to
query the topology of cells or whole geo-objects. The algorithms are implemented on a
generalized sub-level (level of iterators) from where they can be reused in concrete query
methods such as in the getNeigbour… methods of Cell objects.

3.3.1 Iterating an Orbit

The notion and usefulness of orbits on cell-tuples has been discussed in Ch. 2.3.3 and an
example algorithm of orbit traversal has been presented. However, in a naive approach,

116 In this case, simply all valid cell-tuples of the cell net component at net level (stored in cell-tuple index
of SolidNet3dCompNetLevel class) are checked for the condition.

Fig. 63: Merging cells and connecting cell-tuples of two tetrahedra (left);
confronting faces detail (only confronting faces are depicted):
simultaneous 2-orbits on both sides of faces (right)

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 95

such orbit algorithms could be implemented inside of ordinary methods that take a start
cell-tuple and an orbit dimension indicator as parameters and return all cell-tuples of the
complete i-orbit sequence in an array of cell-tuples. The disadvantage of such an approach
would be that the gathering of cell-tuples in arrays could end up in very big arrays that
have a high memory space consumption. A better approach to this issue is to create a
framework that supports the retrieval of solitary cell-tuples with each step by calculating
them “on-the-fly”. This can be achieved through the development of iterators that iterate
the cell-tuples of an orbit step by step.

The orbit framework in the Topology Module currently consists of the four classes
OrbitIterator, NodeIterator, EdgeIterator, FaceIterator and

SolidIterator117, where OrbitIterator is the main, polar class that is needed by the

other classes.118 An OrbitIterator is an appropriate approach to model orbits on a graph

based implementation of the cell-tuple structure.

An Orbit to Be Iterated and to Provide Its Iterator

To realize a clean architectural approach that leads to concise source code at the sections
where orbits have to be employed, the OrbitIterator class utilizes the iterator

framework of the Java API and thus provides a hasNext and a next method (see

Iterator class of java.util package in Fig. 64).119

117 All four classes are gathered in the edu.kit.gik.db3d.gmaps.model3d package. NodeIterator, EdgeItrator,
FaceIterator and SolidIterator are discussed in next section.

118 Since the OrbitIterator class is only package visible, an OrbitIterator object can only be
instantiated from inside its package (cf. the description of the principle of encapsulating the cell-tuple
structure in the sense of information hiding in Ch. 3.1.2).

119 Regardless of the fact that the OrbitIterator implements the Iterator interface, substantially it is a
circulator, as the start and end point of an orbit always coincide by definition.

Fig. 64: Diagram of OrbitIterator class

96 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

There are at leased three straight-forward methods to create an orbit. The most basic
method is to provide a start cell-tuple and an array of integer values that define the
involution sequence of the orbit. This is realized in a constructor of OrbitIterator

class. An example of a constructor invocation can be:
new OrbitIterator(startCt, new int[]{1, 3} for the instantiation of an

〈α1,α3〉(startCt) -orbit (see line 1 of Listing 13 for complete example).

Another method is to provide a start cell-tuple and an integer value n , {n∈ℕ∣0≤n≤3}

that defines the dimension of the orbit. This method of orbit creation can always be
translated into the basic method. The method determines an involution sequence according
to the given orbit dimension. For example, if the given n value is 1, then the orbit is
〈0,2〉 d s which translates into the basic method with int[]{0, 2}.

The third method to create an orbit is similar to the first but additionally requires another
array of cell-tuples in order to be performed. This additional array of cell-tuples is used by
the orbit as an artificial border where the orbit cannot go beyond. Application cases for this
method are introduced in a following section.

After the creation of an orbit, the dimension of the orbit cannot be queried subsequently,
since not every involution sequence (that can be provided to the creation method) yields a
defined orbit dimension.120

Since an orbit is iterable by definition, it provides several methods that facilitate, and some
that simplify the traversal of a cell-tuple orbit. An iterable orbit has to provide a method to
query whether there is a next cell-tuple in orbit (hasNext) and a method that provides the

next cell-tuple in orbit (next).121

Due to the architectural approach (an orbit is an iterator), the instantiation and usage of an
OrbitIterator is quite simple and straight-forward, as presented in Listing 13 by the
example of two different orbits:

1. OrbitIterator orbit13 = new OrbitIterator(startCt, new int[]{1, 3});
2. for(CellTuple ct : orbit13){
3. System.out.println(ct);
4. }
5. OrbitIterator orbit0 = new OrbitIterator(startCt, 0);
6. for(CellTuple ct : orbit0){
7. System.out.println(ct);
8. }

Listing 13: Java code example, demonstrating the usage of OrbitIterator in enhanced for-loops

120 e.g. ⟨α1,α3⟩ (d s) is not traversing the tuples of any cell of a certain dimension

121 These methods are required by the Iterator interface. The Iterable interface requires the
interator method that returns an object of the Orbit class itself.

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 97

In Listing 13, it is shown how orbits can elegantly be used in enhanced for-loops122.
Line 1 to line 4 of Listing 13 demonstrate an orbit invocation by involution list and print all

cell-tuples of the orbit 〈α1,α3〉(d s) to standard out. Line 5 to line 8 demonstrate an

invocation by orbit dimension and print all cell-tuples of a 0-orbit (〈0〉 d s), i.e. an orbit

around a node, starting and ending at the start cell-tuple startCt, to standard out.

Designing an Iterator On an Orbit

An iterator over an orbit consists of at least an involution list, a start cell-tuple, a set of
marked cell-tuples and a stack of collected darts. The stack of collected darts is
implemented in OrbitIterator as a field of the class (member variable ctStack is a

CellTuple typed Java Stack, cf. first member variable in Fig. 65).

In order to provide its functionality, an iterator over an orbit memorizes the involution
sequence of the orbit. Thus, the class has an involutionsList class field, modelled as

an integer array (int[]). Additionally, an iterator memorizes the start cell-tuple (class

member startCt of type CellTuple) in order to be able to reach the termination

condition. Finally, the iterator has a set of marked cell-tuples (member marked of type

Set) in order to mark all cell-tuples that have already been visited by the orbit.

The marked set contains all cell-tuples that have been “touched” by the orbit on its way.

This detail differs from the algorithm of Ch. 2.3. In Ch. 2.3, marked has been modelled as

a variable of the dart class itself. Such an approach induces the disadvantage that only one
orbit can be performed upon a cell net component at the same time. The approach of
maintaining the markings of the cell-tuples in sets, having every OrbitIterator object

posses its own set, causes the iteration of orbits to be suitable for multi-threading. This is
of particular importance especially for the implementation of orbits in a database, since
here, multiple users could wish to iterate over the same data at the same time with different
orbits.

When an orbit shall be created by using a given orbit dimension, then the dimension
integer must be translated into the matching involution sequence. This is realised by an

122 An object of the OrbitIterator can be used in an enhanced for-loop, since it is iterable (realising
the Iterable interface).

Fig. 65: Member variables of
OrbitIterator class

98 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

OrbitIterator constructor that translates the dimension integer parameter value into

the appropriate involutionsList array, the processing instructions in Listing 14:

Constructor: OrbitIterator
Parameter: The start cell-tuple for the orbit (startCt) and the
dimension (integer value) of the orbit to be computed (dimension).
1. switch (dimension) {
2. case 0:
3. this.involutionsList = new int[] { 1, 2 };
4. break;
5. case 1:
6. this.involutionsList = new int[] { 0, 2 };
7. break;
8. case 2:
9. this.involutionsList = new int[] { 0, 1 };
10. break;
11. case 3:
12. this.involutionsList = new int[] { 0, 1, 2 };
13. break;
14. default:
15. throw new IllegalArgumentException("Unsupported
 dimension!");
16. }

Listing 14: Translating dimension integer parameter value into an involutionsList in
OrbitIterator(startCt:CellTuple, dimension:int) constructor (Java code)

This algorithm simply conducts the translations: 0-orbit = 〈1,2〉d s , 1-orbit =

〈0,2〉 d s , 2-orbit = 〈0,1〉d s and 3-orbit = 〈0,1,2〉 d s . Other dimensions are

not allowed and provoke an IllegalArgumentException.

Realisation of hasNext and next method of OrbitIterator

The realisation of the hasNext and next methods of OrbitIterator are straight-

forward and analogous to the orbit traversal algorithm in Ch. 2.3. The hasNext method

returns true if there is still at least one cell-tuple in the stack, i.e. the cell-tuple stack

(ctStack) is not empty (cf. Listing 15):

return !ctStack.empty();

Listing 15: Idempotent implementation of OrbitIterator.hasNext method (Java code)

The hasNext method implementation of OrbitIterator is idempotent123.

123 The invocation of the hasNext method does not manipulate/change the state (the structure of the class
members) of OrbitIterator. This behaviour satisfies the requirement for hasNext method that is
stated by the Java Iterator interface.

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 99

In the first step of an orbit, the orbit always provides the start cell-tuple itself. Thus, there
is always a cell-tuple in the iterator in the first step (which is startCt itself), i.e.

hasNext()==true is always the case in the first invocation of hasNext.

The main functionality of an iterator over an orbit is to provide the next cell-tuple of the
orbit. This functionality is realized in the next method of the OrbitIterator class (cf.

Listing 16).

1. if (this.ctStack.empty()) {
2. throw new NoSuchElementException();
3. }
4. CellTuple result = this.ctStack.pop();
5. CellTuple currCt;
6. for (int i = 0; i < this.involutionsList.length; i++) {
7. currCt = result.getInvolution(this.involutionsList[i])124;
8. if (!this.marked.contains(currCt.getID())) {
9. this.ctStack.push(currCt);
10. this.marked.add(currCt.getID());
11. }
12. }
13. return result;

Listing 16: Implementation of OrbitIterator.next method (Java code)

The first step in iterating an orbit is to check whether the stack of collected cell-tuples is
not empty (cf. line 1). If ctStack is empty, a NoSuchElementException is thrown by

the next method. However, this will never happen if the API user always invokes

hasNext in advance (which is a mandatory convention of iterator semantics). The top cell-

tuple of ctStack is popped of the stack and assigned to be the result of this invocation

of next method (in first step, this is the startCt itself).

Afterwards, all the involution steps that are registered in the involutionsList array of

this OrbitIterator, are iterated one-by-one, conducting the appropriate involution step

(depending on the integer value in the involutionsList) on the result cell-tuple and

assigning the result of that operation to currCt (see lines 6 and 7 of Listing 16).

Finally, it is checked whether currCt is in the marked set. If currCt is not already in

the marked set (i.e. has not already been marked), then currCt is pushed on ctStack

and added to the marked set (i.e., currCt is marked). The result cell-tuple is given

back as the return value of the method.

124 The getInvolution method of CellTuple class is a helper method that simply performs the
involution which is defined by the integer number of the parameter value and returns the involution cell-
tuple as the method's return value.

100 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

Orbits With Virtual Cell Barriers

As indicated earlier, the Topology Module provides the means to create an orbit with

virtual cell barriers.125 In order to create such orbit, an additional integer value (dimOL) has

to be provided. dimOL defines the dimension of a cell at object level that cannot be

exceeded by the orbit at net level. This is achieved by prohibiting the orbit to do an
involution step that would “touch” one of the cell-tuples that lie outside the net level
representation of the cell at object level (cf. Fig. 66 for an example based on
〈α0,α1,α2〉(d S (NL))).

The left hand side of Fig. 66 shows a 2-G-Map at net level with four faces and an
0−1−2 -orbit, starting at d S (NL) . At object level, the whole complex is subdivided into

two faces F A (OL) and F B OL , with F AOL {F1 NL ,F 2 NL , F3 NL} and F B OL{F 4NL } . If

the constructor is now invoked with an arbitrary cell-tuple of F AOL (d S (OL)), then the

orbit will start with its “sibling” at net level d S (NL) . Presuming dim(OL)=2 in this

example set-up, the cell of object level that is not allowed to be left by the orbit is the 2-

cell (i.e. the face; in this example F OLA). For the algorithm this means that at the 2 -

transitions between F NL 3  and F NL 4 , the orbit simply omits the 2 -involution and thus

never can “break-through” from F NL 3  into F NL 4 (illustrated in detail view on right

hand side of Fig. 66). So in this example, only the cell-tuples of the complex that belong to
F AOL {F1 NL ,F 2 NL , F3 NL} are collected.

To implement this functionality in OrbitIterator, only some small changes in the next

method are necessary. In the for-loop of Listing 16 (line 8), it has to be checked whether

there exists a d OL for d NL . If d OL exists, then the insertion of d NL into ctStack is only

125 Realized in the third constructor of the OrbitIterator class.

Fig. 66: Example case for OrbitIterator barrier cell-tuple list

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 101

allowed (pushCurrCtOnStackAllowed=true) if α2(d OL) is not an outer boundary

cell-tuple of F AOL (see Listing 17):

1. if (this.ctStack.empty()) {
2. throw new NoSuchElementException();
3. }
4. CellTuple result = this.ctStack.pop();
5. CellTuple currCt;
6. for (int i = 0; i < this.involutionsList.length; i++) {
7. currCt = result.getInvolution(this.involutionsList[i]);
8. boolean pushCurrCtOnStackAllowed = false;
9. if (!this.marked.contains(currCt.getID())) {
10. if (this.dimForObjLevel == -1) {
11. pushCurrCtOnStackAllowed = true;
12. } else {
13. if (!ctsOnBoundary.contains(currCt.
14. getInvolution(dimForObjLevel).getID())) {
15. pushCurrCtOnStackAllowed = true;
16. }
17. }
18. }
19. if (pushCurrCtOnStackAllowed) {
20. this.ctStack.push(currCt);
21. this.marked.add(currCt.getID());
22. }
23. }
24. return result;

Listing 17: Extension of OrbitIterator.next method to handle cell barriers (Java code)

This mode of OrbitIterator becomes especially useful when it comes to the constraints
checking process of the editing algorithms (cf. Ch. 3.4).

3.3.2 Traversing Cells with the Help of Cell Iterators

To simplify the usage of the iterators over orbits that traverse all cell-tuples of a certain,
given cell, it is useful to introduce an additional abstraction layer that eases the creation of
such topological queries.

Designing Cell Iterators

A cell iterator concept can be defined on the basis of the orbit iterator notion. In analogy to
the orbit iterator, an abstract cell iterator is also iterable and provides an iterator (Fig.
67).126

126 And thus also can conveniently be used in enhanced for-loops and lead to a stepwise processing when it
comes to querying for the neighbourhood properties of cells (like demonstrated in previous section for
orbit iterator).

102 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

The AbstractCellIterator class has been designed to partially realise the Iterator

and Iterable interfaces. All cell iterators base on the same principle that they consume

an OrbitIterator instantiation as well as a dimension integer value and then process

an orbit of the given dimension. This means that cell iterators only consume a subset of all
orbit iterators, indeed only those that can be identified to be of a certain dimension.127

All concrete cell iterators can be grouped into the boundary cell iterators (that are
NodeIterator, EdgeIterator, FaceIterator and SolidIterator; cf. Fig. 68) and

the closure cell iterators (cf. Fig. 71).

All cell iterators internally forward topological queries to an orbit iterator. Cell iterators
translate topological queries on cells into suitable orbits. Thus, every cell iterator has a
reference to one instance of orbit iterator (inherited from AbstractCellIterator).

127 e.g. the orbit 〈0,3〉d  cannot be an orbit of a cell iterator since it does not traverse the cell-tuples
of a cell (of a certain dimension).

Fig. 67: AbstractCellIterator abstract class

Fig. 68: Boundary cell iterator classes

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 103

Internally, all the cell iterators always operate on an OrbitIterator. In order to create a
boundary cell iterator, a cell (i.e. a node, edge, face, or solid) has to be provided. The cell
iterators return all cells

• that are of the type that is indicated by the respective cell iterator's class designation
and

• that are adjacent or incident (depends on the cell's dimension) to the cell that is
given as parameter to the constructor of the cell iterator.128

Concept Details and Implementation Examples

A graphical representation of the cell iterators' functionalities is given in Fig. 69.129

Fig. 69 shows (for some example set-ups), which cells are provided by the different cell
iterators, depending on the type/dimension of the cell iterator and depending on the
type/dimension of the cell that is given to the cell iterator's constructor. The returned cells
are indicated by the arrows in the depiction. For example, the illustration in the last row of
the last column shows the iterating functionality of a FaceIterator that has been

instantiated with an object of type Face as constructor parameter: the resulting cell iterator

returns all faces that are adjacent to the given face. To formulate such a topological query
that iterates all faces, adjacent to a given face object, the cell iterator API allows for a
concise code (cf. Listing 18).

128 e.g. with the invocation of NodeIterator(Face) constructor, the instantiated iterator returns all nodes that
are incident to the given face in an ordered sequence, whereas the invocation of FaceIterator(Face)
constructor returns all faces that are adjacent to the given face

129 The SolidIterator has been omitted since the depiction would lead to ambiguities...

Fig. 69: Graphical representation of the respective iterating functionalities of
cell iterators

104 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

FaceIterator faceIterator = new FaceIterator(face);
for(Face adjacentFace : faceIterator){
 System.out.println(adjacentFace);
}

Listing 18: Usage of cell iterator API for the iteration of adjacent faces (Java code)

Internally, the several constructors of the cell iterators instantiate appropriate
OrbitIterators (depending on which cell iterator constructor has been invoked) and

pass it to the AbstractCellIterator constructor. This shall be exemplified by the

constructors of NodeIterator class in Listing 19130 (this is similar in all other
constructors).

public NodeIterator(Node node) {
 super(new OrbitIterator(node.anyCellTuple, 0), 0);
}
public NodeIterator(Edge edge) {
 super(new OrbitIterator(edge.anyCellTuple, 1), 1);
}
public NodeIterator(Face face) {
 super(new OrbitIterator(face.anyCellTuple, 2), 2);
}
public NodeIterator(Solid solid) {
 super(new OrbitIterator(solid.anyCellTuple, 3), 3);
}

Listing 19: Implementation of translation between a cell iterator and orbit iterators (Java code)

Any concrete extension of AbstractCellIterator has still at least to implement the

next method (of the Iterator interface).131 On net level, on each step of the cell iterator,

it needs to do two steps on the orbit and then query the cell of the demanded dimension.

For example, the iteration of faces that are adjacent to a given face f g should be executed

by instantiating a FaceIterator with f g as constructor parameter. The inner

implementation of the appropriate FaceIterator constructor instantiates the orbit

〈0,1〉d f g
 . Then, at every invocation of the next method of FaceIterator, the

algorithm of the next method (only) needs to do an 0 -involution, ignore the resulting

130 In order to convey the idea, the concept presented in this chapter explains a simple model that has been
used in an earlier version of GMapsDb3dModule. The latest procedure employs a more complex model
in order to handle holes. Basically, the new cell iterators do a complete scan of a “big cell” (with 3-orbit)
and search for all cell boundaries. This procedure is similar to the one of closure iterators, which are
addressed below in this chapter.

131 The hasNext method cannot be realised in AbstractCellIterator, because the implementation
of hasNext highly depends on the type of cell iterator.

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 105

cell-tuple and then, in the same step of next, do an 1 -involution and return the 2 -face

of the resulting cell-tuple as the result of the next method's invocation (Listing 20132):

public Face next() {
 CellTuple ct = this.orbit.next();
 Face result = ct.alpha2.face;
 this.orbit.next();
 return result;
}

Listing 20: Algorithm (simplified) of next method of FaceIterator (Java code)

This principle also works for the other cell iterator instantiations in similar ways.

Cells of Object Level in Cell Iterators

For object level cells, the situation is more complicated. On object level it has to be
considered that some incident/adjacent cells may appear more than once in an orbit. This is
explained on three examples in Fig. 70.

Illustration (1) of Fig. 70 shows a detail of a 2-G-Map, where a FaceIterator(f g)

shall iterate over all adjacent faces (f 1, f 2, f 3,...) of f g . Now the simple approach of

iterating an 〈0,1〉 startCt  orbit and returning the face of an 2 -involution at every

second step of the orbit would not produce the desired result, since f 2 is incident to

multiple edges along the orbit. A similar issue occurs if an adjacent face f 3 lies in

between another adjacent face f 2 (as in the second illustration). The third illustration

132 The algorithm in the Listing starts with 1 instead of 0 , according to the sequence, implemented in
the algorithm of OrbitIterator, as explained in Ch. 3.3.1.

Fig. 70: Examples of cell iterators where adjacent/incident cells occur more than once

106 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

shows that a similar issue occurs not only with FaceIterator but also with

EdgeIterator(f g), where 〈0,2〉 d e may return the same face f 1 on both sides of

the edge.

As a consequence, all cell iterators additionally need to maintain a set of visited cells (field
attribute visited) that has to be checked at every step of next (Listing 21 shows an

extended version of the method of Listing 20):

public Face next() {
 Face result = this.orbit.next().alpha2.face;
 while (this.visited.contains(result)) {
 this.orbit.next();
 result = this.orbit.next().alpha2.face;
 }
 this.orbit.next();
 this.visited.add(result);
 return result;
}

Listing 21: Algorithm (simplified) of next method of FaceIterator (Java code)

The various cell iterators are used by the getNeighbour<cells> methods of the cell

classes (Ch. 3.1.3). In fact, the implementation of the getNeighbour<cells> methods
consists of nothing more than an invocation of the appropriate cell iterator – as exemplified
by the implementation of the getNeighbourEdges method of Face class in Listing 22:

public EdgeIterator getNeighbourEdges() {
 return new EdgeIterator(this);
}

Listing 22: Implementation of getNeighbourEdges method of Face class (Java code)

Tabular Overview of Correlation Between Cell Iterators, Cells and Orbits

Every getNeighbour<cells> method uses a unique combination of cell iterator and
constructor parameter. An overview is compiled in Table Table 2.

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 107

NodeIterator EdgeIterator FaceIterator SolidIterator

Parameter type Node (n)

OrbitIterator
invocation

OrbitIterator(d n , 0);

Orbit definition 〈1,2〉 d n〈0〉 d n

getNeighbour<cells>
method of n

Node.getNeigh
bourNodes()

Node.getNeigh
bourEdges()

Node.getNeigh
bourFaces()

Node.getNeigh
bourSolids()

Parameter type Edge (e)

OrbitIterator
invocation

OrbitIterator(d e , 1);

Orbit definition 〈0,2〉 d e〈1〉de 

getNeighbour<cells>
method of e

Edge.getNeigh
bourNodes()

Edge.getNeigh
bourEdges()

Edge.getNeigh
bourFaces()

Edge.getNeigh
bourSolids()

Parameter type Face (f)

OrbitIterator
invocation

OrbitIterator(d f , 2);

Orbit definition 〈α0,α1〉(d f)(〈α2〉(d f))

getNeighbour<cells>
method of f

Face.getNeigh
bourNodes()

Face.getNeigh
bourEdges()

Face.getNeigh
bourFaces()

Face.getNeigh
bourSolids()

Solid (s)

OrbitIterator
invocation

OrbitIterator(d f , 3);

Orbit definition 〈α0,α1,α2〉 (d f)(〈α3〉(d f))

getNeighbour<cells>
method of s

Solid.getNeigh
bourNodes()

Solid.getNeigh
bourEdges()

Solid.getNeigh
bourFaces()

Solid.getNeigh
bourSolids()

Table 2: Overview constructor invocation and functionality of cell iterator objects

Table Table 2 shows an overview of which cell iterator is used in combination with which
cell type as its parameter in which getNeighbour<cells> method. Therefore, all cell

iterators are listed in columns, whereas the cells are listed in rows. A combination of a cell
iterator and a cell leads to a certain query for neighbouring cells (a certain
getNeighbour<cells> query). For example, the EdgeIterator with a constructor

parameter cell of type Face is used in the method Face.getNeighbourEdges (query for

all incident edges of a face). Additionally, the table shows for each cell iterator/constructor
parameter combination, which OrbitIterator constructor invocation is used and how
the respective orbit is defined. In the given example (query for all incident edges of a face),

a 2-orbit (〈α2〉 (d f)) is instantiated by invoking the constructor OrbitIterator(d f ,

2).

108 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

Closure Cell Iterator Classes

As noted earlier, some cell iterators can be classified as closure cell iterators (see Fig. 71).

The closure cell iterators are similar to the boundary cell iterators despite that they do not
iterate only the boundary cells of a given cell but also the “inner“ cells of the given cell at
net level133. For example, a NodeNetLevelIterator that is instantiated with a parameter

object of type Face iterates all nodes at net level that are inside and at the boundary of the

given object-level face (cf Fig. 72).

Fig. 72 shows a sample net configuration with nodes N OL={N 1 , N 2 , N 3 ,N 4 , N 5 , N 6 } at

object level that constitute a face F OL N OL  at object level. The thicker lines in the

illustration represent the object level while the thinner lines represent the net level. Thus,

the nodes of the net level are comprised of nNL= {n7 , n8 , n9 } as well as of the siblings of

the cells of N OL on N NL . While the boundary cell iterator NodeIterator(F OL) would

return N OL , the closure cell iterator NodeNetLevelIterator(F OL) returns nNL and

the siblings of N NL on N NL .

The closure cell iterators internally use OrbitIterator objects that are instantiated with
the third constructor, i.e. orbit iterators that operate on net level and additionally never do

133 This is the reason why the naming of these iterators always contains a “NetLevel” part.

Fig. 71: Closure cell iterator classes

Fig. 72: Sample configuration
of a face net at object and
net level

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 109

an involution step that would “breach” the boundary of the object level cell of the given
dimension (Ch. 3.3.1).

Generally, the closure or net level cell iterators provide several constructors, defined as

r jc i , {i , j∈ℕ∣i≥ j } , with c being the constructor parameter cell, r being the cell

iterator type, i being the dimension of c and j being the dimension of r . However,
some constructors are omitted since they would make no sense, such as
NodeNetLevelIterator(Node), since it makes no sense to query for all closure nodes

of a node.

The presented classes and methods operate on a very basic architectural level. They can be
used as a construction kit to create more complex, composite methods that manipulate/edit
the cellular structure of the cell complexes. However, before such complex methods can be
created, an additional level of abstraction should be conceived that allows for the
formulation of constraints that can be used in such complex editing methods.

3.3.3 Finding the Shortest Path on a G-Map

One of the primary implementation objectives of the Topology Module is the improvement
of the navigability on top of a network component. The best way to demonstrate the
improved navigation capabilities is to implement an algorithm for finding shortest paths on
top of the cell-tuple structure. Such an algorithm naturally places high demands on the
navigation capabilities on top of a network. Moreover, the discovery of a shortest path is a
relevant operation for a variety of applications – e.g. for the insertion of an edge into a
face: in this case, the framework user specifies only the two nodes (start and target)
between which an edge should be created, the framework has to determine the shortest
path on the net-level and create the edge accordingly (Fig. 73).

A fundamental algorithm to determine a cost minimizing path between a start node and a
target node is DIJKSTRA's algorithm (Dijkstra 1959) which is a search algorithm for edge-
weighted graphs. The basic idea of the algorithm is to follow at each node only those edges

Fig. 73: Finding a path on net level (light lines) between two
nodes of an object level face (thick lines)

110 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

that comprise the lowest costs so far.134 Arbitrary types of costs can be minimized by the
algorithm, e.g. the gasoline cost of a journey or the strength of curvature of a path or the
length (distance) of a path.

In the Topology Module, the determination of cost minimizing paths focuses on calculating
the minimal distance.135 The DIJKSTRA algorithm works only on edge-weighted graphs, thus
the path finding operates in two steps:

1. the minimal costs to reach any node are calculated,

2. the path with the lowest overall cost is determined.

In fact, the first step is computed “backwards”, i.e. starting at the target node and leading to
the start node, and then the second step calculates the shortest path in the “forward
direction”.

Initially, the algorithm needs an empty list136 of nodes that still have to be visited
(nodesToVisit) and an empty list of nodes that already have been visited

(visitedNodes). Furthermore, the algorithm needs an extended definition of a node.

Therefore, a class DNode (“distance-node”) is defined that extends the notion of node

(class Node) by the specification of a distance value (cf. distance attribute of type

double in Fig. 74).

Thereby, every DNode is a node that knows its path distance from the target node. In

addition, every DNode memorizes its precursor; a precursor is defined as the DNode

that the path finding algorithm identifies as the preceding node on a path. A DNode further

134 The implementation of the algorithm in the GMapsDb3dModule is loosely following (Waldura 2007).

135 The method is implemented as the (single) method of the function object class Dijkstra. A function
object class is a class that provides only one method – thus its only reason for existence is to provide the
functionality of that method. The method of the class is called getShortestPath. It takes the
parameters start and target of type Node and returns an array of cell-tuple objects (CellTuple)
that are “touched” by a sequence of involutions that represent the shortest path between the given
start and target parameters; or it returns an empty array if no shortest path could be found.

136 Also FIFO

Fig. 74: Definition of DNode

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 111

notes the “in”-cell-tuple of the node: this is the one cell-tuple of every node that shows into
the direction of the precursor.

The full algorithm of the getShortestPath method is described in Listing 23.

Method: getShortestPath
Purpose: Finds the shortest path between the given start and target
nodes
Parameter: The two nodes (of class Node) start and target between which
the shortest path is to find
1. Add the target node itself to the nodesToVisit list137

2. While the list of the nodes that still are to visit
 (nodesToVisit) is not empty
3. Poll a node from nodesToVisit and define the node as
 currentNode
4. Put currentNode into the set of visited nodes
 (visitedNodes)
5. Get all nodes that are adjacent to currentNode
6. For every adjacent node
7. If the adjacent node has not already been visited (is not
 part of the visitedNodes set)
8. Calculate the Euclidean distance between currentNode
 and the current adjacent node as incrementalDistance
9. Add incrementalDistance to the distance of currentNode
 as distanceToTargetNode
10. If the adjacent node is not part of the nodesToVisit
 set
11. Add the node to the nodes of the nodesToVisit list
12. Update the distance value of the adjacent node with
 current distanceToTargetNode value and update the
 path of the adjacent node
13. Else
14. Compare the distance value of the adjacent node with
 distanceToTargetNode value
15. If distanceToTargetNode is less than the distance
 value of the adjacent node
16. Update the distance value of the adjacent node with
 current distanceToTargetNode value and update the
 path of the adjacent node

Listing 23: Pseudocode description of getShortestPath method of the Dijkstra class

The determination of adjacent nodes in step number 5 of Listing 23 is a costly operation in
db3dcore of quadratic runtime but an inexpensive operation of linear runtime with the
help of the cell-tuple structure (cf. Ch. 2.2).

Fig. 75 shows a simple example of a path finding scenario. Each of the four single
drawings shows the state of the algorithm (and the state of the lists nodesToVisit and

visitedNodes and the nodes that are adjacent to the current node) at the second

execution step of Listing 23.

137 This is the natural precondition for the algorithm to work since it needs at least one node that has to be
visited.

112 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

In the first step (depiction 1), the algorithm starts with the target node nt (nt is active). The
node is removed from the nodesToVisit list and added to the visitedNodes list. The

adjacent nodes of nt are identified, which are n1, n2, and ns and put onto the nodesToVisit
list. Then the EUCLIDEAN distances between nt and all adjacent nodes are calculated and
memorized. The precursor of nodes n1, n2, and ns (start node) are set to nt. Next

(depiction 2), node n1 is set as the active node, it is removed from nodesToVisit list and

added to visitedNodes list. The nodes that are adjacent to n1 are identified, which are nt

and ns. Of the adjacent nodes, only the nodes that have not already been visited (that are
not already on the nodesVisited list) are further processed: in this case only ns is further
processed. The distance of ns to nt along n1 node is calculated and compared to the direct
distance between ns and nt. Since the straight distance between ns and nt is smaller than the
distance along node n1, the precursor of ns is not changed: it still directly points from ns

to nt. The same steps are undergone for node n2 (depiction 3). Finally (depiction 4), ns is
evaluated. Since all adjacent nodes of ns have already been visited, there is no processing
necessary anymore. The algorithm terminates, since there are no more elements in the
nodesToVisit list.

At this point, an edge-weighted graph has been created on top of the net component. In the
next step, the shortest path can be calculated, simply by following the precursor of every
node, starting at ns and collecting the path cell-tuples at every node in a result list:

17. Get the start node and call it currentNode
18. While currentNode is defined (not null)
19. If currentNode has a precursor node
20. Add the cell-tuple of currentNode (that is pointing to
 the precursor) to the result list
21. Add the 0 cell-tuple of the cell-tuple of step 18
 (i.e. the cell-tuple of the adjacent node of
 currentNode) to the result list
22. Assign the precursor of currentNode to currentNode

Listing 24: Collecting cell-tuple of shortest path in a result list

Fig. 75: Simple example of a path finding scenario

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 113

Once the while-loop of the 18. step of Listing 24 quits, all cell-tuples of the shortest path

from ns to nt are collected in a result array and given back as the method's return value.
To be precise, these are the cell-tuples that are “leading in and leading out” of the nodes of
the shortest path.

Due to the complexity of the geo-objects that may be modelled in DB4GeO, the writing of
an algorithm for navigation on that geo-objects is easier with the cell-tuple structure. By
introducing this structure, even the complexity of incidence/adjacency graphs138 that have
nodes with high degrees could be reduced so much that an intelligible modelling became
feasible.

3.4 Methods that Manipulate the Cellular Structure

This chapter will describe the algorithms that are used to edit the cellular structure of the
cell nets. They have already briefly been introduced in Ch. 3.1.8 as methods that are
required by the EditableCellNet3dCompLevel interface. The editing algorithms
always operate two-staged:

1. The algorithms check whether the intended editing of the cell net is permissible –
in the sense that no inconsistent state of the cell net arises from the editing
operation. This is achieved through a process that checks several constraints that
are defined individually for each editing method.

2. The actual alteration of the cell net is performed.

In the following sections these two steps are exemplary explained for the editing methods
of FaceNet3dCompLevel). A systematic evaluation of editing operations and constraints
is not provided since this is out of scope of this thesis. However, such evaluation would be
of particular value and should be performed in future.

3.4.1 Method to Insert a Node on a Face Net Component

A basic editing operation for a face net component is the operation to insert a node into an
already existing edge. In order to insert a node, two elements have to be provided which

are a node at net level (nNL) and an edge at object level (eOL). nNL is used as a

“template” to create a new node at object level (nOL) as its “sibling”. “Sibling” means here

that the geometric part of nOL shall be equal to the geometric part of nNL (cf. right

illustration of Fig. 76).

138 The graph that is meant here is the graph that is mentioned in Ch. 2.2, where the nodes are the d-cells
and the edges are the connections betweens the cells.

114 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

Fig. 76 shows an example of an insertNode operation where the left illustration shows a
face net component before editing and the right illustration shows the same face net
component after the editing process.139 In the figure, the thick lines and dots represent
edges and nodes at object level while the thin lines represent edges at net level.140

In the left illustration, eOL represents the edge that is passed to the insertNode method

as the second parameter in this example set-up. The geometric representation of eOL runs

along the shortest path (on top of the triangle net of the net level) between the nodes ne1

and ne2 (i.e. eOL ne 1 , ne2 ).

The insertNode method splits eOL into e1OLnOL , ne1 and e2 OLnOL , ne2 (cf. right

illustration of Fig. 76). This leads to a re-computation of the path of the geometric
representation of the edge. Two new shortest paths are computed (with the help of the

shortestPath method)141 – one between ne1 and nOL and one between ne2 and nOL .

These shortest paths are stored nowhere permanently but are only computed to perform
consistency checks before conducting the operation.

There are several consistency conditions that have to be verified before a node can be
inserted into an edge. Beginning with obvious and simple verifications such as

• the check whether the given nNL and eOL actually exist (i.e. are not null),

proceeding with checks

• whether nOL is already part of another edge, or

• whether nNL and eOL are part of the cell net component on which the

insertNode method has been invoked.

Such consistency requirement can be checked efficiently due to underlying model of the
Topology Module. For example, the last requirement can be checked easily and fast, since

139 Though, this could also depict two arbitrary faces somewhere inside a more complex face net
component.

140 i.e. both levels are shown here superimposed

141 c.f. Ch. 3.3.3

Fig. 76: Example of insertNode, represented on object and on net level (left:
before operation, right: after operation)

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 115

every object of a realising class of CellNet3dCompLevel interface has ordered sets of
cells – these sets can efficiently be queried for whether they contain a certain cell.

The next consistency condition to be checked is whether nOL would lie in one of the both

faces (f 1 and f 2) that are incident to eOL after the operation (cf. illustration a) in Fig.

77142).

If the node lies neither in f 1 nor in f 2 but in another face (like in f 3 in the illustration),

the insertion operation will not perform (the insertNode method aborts and returns an

Exception), since the intended operation in such set-up is actually not insertNode but

a more complex operation that is a composite operation of a sequence of editing
operations.

The presented consistency condition check is a suitable example of a complex topological
query, but yet is simple to formulate due to the well defined model of the Topology

Module. In Listing 25, for example, the boolean variable nNL
ispart ? stores the result whether

nNL is a part of the neighbour faces of eOL .

1. boolean nNL
ispart ? = false;

2. for(Face f eOL
 : eOL .getNeighbourFaces()){

 NodeNetLevelIterator nodeNlIt =
new NodeNetLevelIterator(f eOL

);
3. for(Node nodeTemp : nodeNlIt){
4. if(nodeTemp == nNL){

5. nNL
ispart ? = true;

6. break;
7. }
8. }
9. }

Listing 25: Topological node-in-face query in blended pseudo code

142 In the illustrations of Fig. 77 the underlying triangle net structure is hidden for simpler reception.
However, it should always be assumed to be given

Fig. 77: Examples of illegal states for insertNode method

116 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

To determine whether nNL is a part of the neighbour faces, first, the neighbour faces of

eOL are queried (line 2). For each neighbour face of eOL (line 3), all nodes of f eOL
 at net

level (use of closure cell iterator) are checked for equality with nNL (line 4). If an equality

is detected, the algorithm terminates successfully (line 5 and line 6), i.e. with the result that
nNL is in a neighbour face of eOL .

Another consistency condition is that the paths of the geometric representation of e1OL

and e2 OL are not allowed to intersect the geometric representation of any other edge of

the neighbouring faces (cf. illustration b) in Fig. 77), since this would also yield a
composite operation or even be impossible in the case that the new edges run through the
“outer void” (due to the underlying functionality of DB4GeO).

Furthermore, it is not permissible that two or more edges at object level share the same
geometric representation (depicted in illustration c) in Fig. 77). This is because it would
break the refinement postulate (cf. Ch. 2.4.3) and lead to a situation that cannot be
modelled as correlation between object and net level without ambiguities.

After the constraints for insertNode have been checked, the alteration of the cell net
itself is performed (Fig. 78).

During the operation of inserting a new node into an existing edge, the edge is split in two

parts by the node. For the node at net level (nNL), a new “mirror” node at object level is

created. The given node at net level is be linked to the newly created node at object level as
its higher level of detail “sibling”.

In the first step of the process, a new node at object level nOL is instantiated that is the

“sibling” of nNL . Then, two new edges e1OL and e2 OL are created at object level. An

arbitrary cell-tuple (d e) of eOL is assigned to be a cell-tuple of e1OL from now on (i.e.

before: d e=d (eOL) , after: d e=d (e1(OL)) ; cf. Fig. 78). The cell-tuple (d α) of an ɑ0-

involution of d (e1 (OL)) is assigned to be a cell-tuple of d (e2(OL)) (i.e.: before:

d α=α0(d (eOL)) , after: d α=d (e2(OL))).

Fig. 78: Adding new cell-tuples when performing insertNode method

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 117

Since the preceding edge will be deleted and instead two new edges are inserted, all 1-cell
(edge) references of affected cell-tuples need to be exchanged. Effected cell-tuples are
d (eOL) ,α0(d (eOL)) ,α2(d (eOL)) and α0(α2(d (eOL))) . For all these cell-tuples, the edges

are reset (eOL→e1 (OL) and eOL→e2 (OL)).

The splitting of an edge has the consequence that four new cell-tuples of nOL , which are

d1, d2, d3, d4 , are introduced into the structure. The cell-tuples are instantiated and

consistently linked with the appropriate cell, such that every cell-tuple represents a valid
incidence graph in the end of the process (according to the concepts introduced in Ch. 2.2
and Ch. 2.3). The newly created cell-tuples are embedded into the existing cell-tuple

structure by setting all missing involution links (such as α0(d1)=d(eOL)) and all back

references (such as α0(d (eOL))=d1).

As the situation between net level and object level also changes when a node is inserted,

the links between net and object level cell-tuples are updated. The cell-tuples of nNL are

re-linked to the cell-tuples of nOL (for example higher (d1)=d (nNL) and its back-

reference lower(d (nNL))=d1).

Finally, all newly created cells and cell-tuples are added to the appropriate component's

indices (cellTupleIndex, edgeIndex etc.), eOL is removed from the edge index and

nOL is returned as the methods return value.

3.4.2 Method to Insert an Edge on a Face Net Component

Another basic editing operation for a face net component is the operation to insert a new
edge e into an already existing face of a face net component. e is inserted between two

given nodes n1 , n2 (cf. Fig. 79).

Fig. 79 shows an example of an insertEdge operation where the left illustration shows
face net component before editing and the right illustration shows the same face net
component after the editing process. In the figure, the thick lines and dots represent edges
and nodes at object level while the thin features represent objects at net level.

Fig. 79: Example of insertEdge operation, represented on object and on net level

118 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

To perform the insertEdge operation, three parameter values are needed, one object of

type Face f and two objects of type Node n1 , n2 . n1 , n2 have to be the nodes that will

constitute the boundary nodes of the new edge. f has to be the face that is split by the

edge insertion operation into two new faces f 1 , f 2 . Obviously, n1 , n2 have to be

(boundary) nodes of the same face (f), otherwise the new edge would intersect with

existing edges. A shortest path is computed between n1 and n2 (with the help of the

shortestPath method). The shortest path is not stored permanently but is only computed
to perform consistency checks before conducting the operation.

There are several consistency conditions that have to be verified before an edge can be
inserted into a face. Beginning with obvious and simple verifications like the check

whether given n1 , n2 and e actually exist (i.e. are not null), proceeding to checks

whether n1 , n2 and e are part of the cell net component on which the insertEdge

method has been invoked.

Another consistency condition to be checked is whether e would intersect or partly
overlay any other edge (cf. Fig. 80).

The left illustration of Fig. 80 shows an example, where if e (dotted line) would be
inserted, it would (twice) intersect a boundary edge of f (which would be an illegal
operation). The right illustration shows the object level (thick lines) and the net level (thin
lines) of an example set-up. Due to the spatial configuration of the net level, e would
partly overlay an already existing boundary edge of f on object level (which would be an
illegal operation as well).

After the discussed constraints (and some other simpler tests) have been checked, the
alteration of the cell net itself is performed (Fig. 81).

Fig. 80: Examples of illegal states in insertEdge
method

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 119

In the insertion operation, first a new object e of type Edge and two new objects f 1, f 2 of

type Face are created on object level and put onto the edge and face index of face net

component of object level. Next, the shortest path on net level between start node n1 and

target node n2 is computed. The shortest path is needed in order to find the cell-tuples at

net level that are hierarchically linked to the newly created cell-tuples of e (d1, d2, d3, d4) at

object level. All cells (i.e. n1, n2, e , f 1, f 2, sU) are set on the newly created cell-tuples as well

as all involutions (i.e. α0,α1,α2,α3). For example, α1 of (n1, e2, f , sU) now points to d1

instead to (n1, e1, f , SU) (as it did before operation). Finally, all face references of all cell-

tuples of f are reset to f 1 and f 2 respectively. Therefore, a 2-orbit around f is

performed in order to distinguish cell-tuple that belong f 1 from cell-tuples that belong to

f 2 .

3.4.3 Method to Remove Node and Edge From Face Net Component

Removing Nodes From Edges

The inverse operation to adding a node into an edge is to remove an existing node from an
edge. In order to remove a node, one element has to be provided which is the node n that

has to be deleted. n lies in between (connects) exactly two edges e1 , e2 . If n is removed,

then e1 , e2 are merged into a new edge e. The removeNode method is the inverse

operation to the insertNode method. Thus the figures used in describing the

insertNode method also apply here. For an illustration of an exemplary operation
process, depicted on object and net level, you may confer to Fig. 76 and read it backwards.

As with the insertion methods, also in the removeNode method, constraints have to be

checked before the actual delete operation can be performed. First, simple constraints like
that the given Node object cannot be null or that the given node has to be part of the net

component that the removeNode method is invoked on, are checked. Then more complex
constraints are evaluated, such as that e is not allowed to intersect or partly overlay any
other edge (cf. Fig. 80), or that a node may be removed only if exactly two edges are
incident to the given node (cf. left illustration of Fig. 82).

Fig. 81: Adding new cell-tuples when performing insertEdge method

120 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

In Fig. 82, a valid spatial configuration is depicted on the left side in “delete node” section,
since here, exactly two edges are incident to n. An invalid spatial configuration is depicted
on the right side in “delete node” section, since more than two edges (here: three edges) are
incident to n. This is an important validity check for node removal, since an intersection
between two edges always causes an intersection node. Thus, a deletion of a node in an
intersection of more than two edges leads to an invalid edge intersection without an
intersection node. As an advantage of the Topology Module framework, the validity check,
whether a node is incident two exactly two edges is quite simple, following the code of
Listing 26:

boolean isExactlyTwoEdges = false;
isExactlyTwoEdges = node.getNeighbourEdges().size() == 2;

Listing 26: Checking for edge neighbourhood properties of a node (Java code)

In Listing 26, isExactlyTwoNodes variable contains BOOLEAN value that encodes

whether the node to delete is incident to exactly two edges (true) or not (false).

After the discussed constraints (and some other simpler tests) have been checked, the
alteration of the cell net itself is performed. The remove node operation performs similar
steps as the insert node operation, but in a backwards manner. Explained on the basis of

Fig. 78, first, a newly created eOL is added to the edge index. The edge references of cell-

tuples α0(d1) ,... ,α0(d4) are reset to eOL . The α0 -involution of cell-tuple α0(d1) is re-

linked such that α0(α0(d1))=α0(d2) . This process is similarly repeated for the other cell-

tuples d2, ... , d4 . Finally, all cell-tuples that contain nOL (d1, d2, d3, d4) are removed from

cell-tuple index. Then the cells nOL , e1(OL) , and e2(OL) are also removed from the indices.

Removing Edges From Faces

The inverse operation to adding an edge into a face is to remove an existing edge e from a

face. e lies in between (connects/separates) exactly two faces f 1 , f 2 . If e is removed, then

Fig. 82: Examples of valid and invalid spatial configurations for node and edge delete
operations

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 121

f 1 , f 2 are merged into a new face f . The removeEdge method is the inverse operation

to the insertEdge method. Thus, the figures used in describing the insertEdge method

also apply here. For an illustration of an exemplary operation process, depicted on object
and net level, you may confer to Fig. 79 and read it backwards.

As in the insertion method, also in the removeEdge method, constraints have to be

checked before the actual delete operation can be performed. Beside trivial constraints like
that the given Edge object cannot be null or that the given edge has to be part of the net

component that the removeEdge method is invoked on, another important constraint is
that an edge may be removed only if exactly two faces are incident to the given edge (cf.
left side in “delete edge” section of Fig. 82). In Fig. 82, a valid spatial configuration for
edge deletion is depicted on the left side in “delete edge” section. Here, exactly two faces
are incident to e. Invalid spatial configurations are depicted in the centre and on the right
side in “delete edge” section. The centre depiction shows a spatial configuration where
more than two faces (in this case: three faces) are incident to the edge that shall be deleted.
This is an important validity check for edge removal, since an intersection between two
faces always causes an intersection edge. Thus, a deletion of an edge in an intersection of
more than two faces leads to an invalid face intersection without an intersection edge.

The right depiction of Fig. 82 shows a spatial configuration where the edge e to be deleted

is part of a face that is surrounded by U f . The deletion of e converts the inner face into

U f which leads to an inconsistent cell-tuple structure (non-manifold). The cell-tuples d1

and d2 are not unique any more after the operation but represent the same cell-tuple

(n1, e1, U f , US) .

After the discussed constraints (and some other tests) have been checked, the alteration of
the cell net itself is performed. The remove edge operation performs similar steps as the
insert edge operation, but in a backwards manner. Explained on the basis of Fig. 81, first, a

newly created face f OL is added to the face index. The face references of cell-tuples

⟨α2⟩(d1) and ⟨α2⟩ (d4) are reset to f OL . The α2 -involution of cell-tuple α2(d1) is re-

linked such that α2(α2(d1))=α2(d4) . This process is similarly repeated for the other cell-

tuples d2, ... , d4 . Finally, all cell-tuples that contain e (d1, d2, d3, d4) are removed from cell-

tuple index. Then the cells e, f 1 , and f 2 are also removed from the indices.

So far, the concepts, inner design principles, construction and editing operations of the
Topology Module have been described that add an abstraction layer to the DB4GeO
database architecture to manage the topology of arbitrary 2D and 3D cells. The module
utilizes the concept of interconnected net and object levels of cell nets. However, the
concept of subdividing cell net components into net and object level is also a precursor to a
concept that allows for the modelling of arbitrary numbers of hierarchy levels – not only
two levels.

122 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

3.5 Management of Levels of Detail of Cell Net Components

The modelling of several levels of detail of data is a pivotal task, particularly in
applications dealing with geoinformation.143 The main scheme in this approach is to extend
the already implemented concepts and to reuse much of the development efforts. The
classes that are designed for the management of the LoD are based on the net and object
level architecture described in Ch. 3.1.8. The basic idea of the LoD approach of the
Topology Module is to allow for the insertion of any number of additional detail levels in
between the object and the net level. These additional detail levels behave more “object-
level-like” than “net-level-like”, since they also are editable – like the object level (cf. Fig.
83).

Fig. 83 shows a simple sample configuration of a face net component with several LoD
(the illustration can be interpreted as four layers of LoD, which are depicted
simultaneously one over the other). It is also the result of an editing session that was
performed on the different LoDs. The session is described in the following section.

At object level the face net component consists of one face f 1 (see top of illustration).

The net level shows the triangle net structure of the face net component (bottom of
illustration). The two face net components LoD 1 and LoD 2 are additional levels of detail
that are forming intermediate steps between the net and the object level.144 These
intermediate levels are derived from copies of existing levels. After the copies of existing

levels are created, they are edited. At LoD 1, a new edge is inserted that splits f 1 into the

143 For some thoughts on the application relevance of systems that are capable of managing multiple LoDs,
see Ch. 2.4 and (Butwilowski 2007, 13 et seq.)

144 Counting starts at 1 with the lowest level of detail after the object level (the object level itself is actually
defined as LoD 0)

Fig. 83: Simple face net example of several
LoD

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 123

two new faces f 2 and f 3 . So f 2 and f 3 are cells that only exist at LoD 1. At LoD 2,

again a new edge is inserted and f 2 is split into the two faces f 4 and f 6 . Thus, f 4 and

f 6 only exist at LoD 2. Although face f 5 of LoD 2 is identical to f 3 of LoD 1, this two

cells are separate instances. This behaviour is intentional by design, since it is an objective
to be able to distinguish similar cells at different LoD in order to assign different property
values to the equivalent cell on different levels.

Before the algorithmic characteristics of the model are described, an overview of the class
model145 of the chosen approach is given in the following section (cf. Fig. 84).

Fig. 84 is based on Fig. 49 of Ch. 3.1.6 and shows, how the classes of the Geometric
Model, the gmaps.model3d package and the gmaps.hierarchy package relate to each

other. While Fig. 49 only shows how the classes of the gmaps.model3d package extend
classes of the Geometric Model, Fig. 84 also shows how the classes of the
gmaps.hierarchy package further extend classes of the gmaps.model3d package and

thus reuse some of the already available functionality and extend them with LoD
functionality.146

The most important design decisions are that the HFaceNetBuilder class extends the

FaceNetBuilder class, the HFaceNet3d class extends the FaceNet3d class and the

HFaceNet3dComp class extends the FaceNet3dComp class. The same applies to curves

and solids. From this, the instantiation process of an “LoD enabled” cell net component is
analogue to the instantiation process of a “simple” cell net component; the required code
has been presented in Listing 3: at first, an HFaceNetBuilder is constructed by

providing it the triangles of a net as parameter in an array through its addComponent

method.147 The HFaceNetBuilder returns an h-face net (an instance of HFaceNet3d)

145 All classes that provide the functionality for managing several hierarchy levels of cell components are
gathered in the separate package edu.kit.db3d.gmaps.hierarchy. The set of classes of the
hierarchy package is analogue1 to the classes of the above discussed ...gmaps.model3d package

146 The class schema is similar for solid nets/tetrahedral nets

147 The addComponent method of HFaceNetBuilder overrides the homonymous methods of

Fig. 84: Architecture of hierarchical net builder as an extension of the cell net builder architecture

124 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

through its getTriangleNet method. An h-face net consists of an arbitrary (0 to

unlimited) number of h-face net components (objects of type HFaceNet3dComp).

Fig. 85 shows a more detailed view, concerning the HFaceNet3dComp class.

Fig. 85 shows that an h-face net component consists of an arbitrary number of levels of
detail (i.e. objects of type LOD). A level of detail is a face net component level (extends the

FaceNet3dCompLevel class). Since a FaceNet3dCompLevel is an editable cell net

component level (i.e. it is a realisation of the EditableCellNet3dCompLevel

interface), also a level of detail is an editable cell net component level (cf. Fig. 86).

Since HFaceNet3dComp is a FaceNet3dComp, every instance of HFaceNet3dComp

consists of exactly one FaceNet3dCompNetLevel (the net level) and exactly one

FaceNetBuilder and of TriangleNetBuilder

Fig. 85: Relationship between the classes that build the net level, object level and LoD

Fig. 86: Class LOD is a realisation of
EditableCellNet3dCompLevel
interface

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 125

FaceNet3dCompLevel (the object level) as well as an arbitrary amount of additional
LoD.

When the API user has instantiated an “LoD enabled” face net by the means of the
HFaceNetBuilder, that face net at first only consists of one net level, one object level

and no levels of detail. Only then the user may begin to create additional LoD. To do so,
the user has to utilize methods of the HFaceNet3dComp class (cf. Fig. 87).

Fig. 87 shows the methods of HFaceNet3dComp class. HFaceNet3dComp class inherits

the behaviour (i.e. all methods) of FaceNet3dComp class and adds methods for appending

and retrieving additional LoD. Furthermore, the HFaceNet3dComp class reimplements

and overrides all the count<cells>-methods of FaceNet3dComp class since these

methods return the cell numbers of the whole component – i.e. of all detail levels together.
FaceNet3dComp only had to consider net and object level when calculating cell numbers

but HFaceNet3dComp also needs to take into account the cells of all intermediate LoD.

Thus, the count<cell>-methods need to be overridden.

To insert a new LoD into an h-face net component, the HFaceNet3dComp class provides

an addLod method that takes two method parameters, an lodToCopy of LOD type (

LODmaster) and the boolean value copyOfLower. LODmaster is the LoD of which the

topological structure is copied. It is an exact copy where for every existing cell, a new cell

(a new instance) is created on the new LoD (LODcopy). The boolean parameter

copyOfLower indicates whether LODcopy is created as a copy of a lower LODmaster or as

a copy of a higher LODmaster (cf. Fig. 88).

Fig. 87: Additional methods of HFaceNet3dComp class

126 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

If copyOfLower is true, then LODcopy is created as a copy of a lower LODmaster (i.e.

LODcopy is defined as a higher LoD than LODmaster) if otherwise copyOfLower is

false then LODcopy is created as a copy of a higher LODmaster (i.e. LODcopy is defined

as a lower LoD than LODmaster).

The LOD class itself is a subclass of FaceNet3dCompLevel class and thus inherits its

behaviour but also adds some LOD class specific methods (cf. Fig. 89).

To freely navigate between levels of detail, the LOD class adds two methods getHigher

and getLower that each return an object of LOD class that represents the LoD one step

higher (i.e. with more details) or one step lower (i.e. with less details). Each LOD instance

also provides a getFaceNetComponent method that allows to navigate “back” to the

superordinate h-face net component, which in turn facilitates direct steps to the net level
(getNetLevelComp method of FaceNet3dComp class) and to the object level

(getObjectLevelComp method of FaceNet3dComp class).

The LOD class provides two constructors for instantiation (cf. Fig. 89). The first constructor

consumes a FaceNet3dCompLevel object as its objectLevel parameter. This

constructor just transforms an existing FaceNet3dCompLevel object into an object of

LOD type without making any further computations (especially there is no copy process

involved at this stage). Such an LoD object is yet not integrated into the hierarchy structure

Fig. 89: Additional methods and constructors of LOD class

Fig. 88: Effect/purpose of copyOfLower parameter (on the LoD copy process)

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 127

of any h-face net component. Thus, to complete the building of a fully functional LOD

object, the object has to be integrated into an h-face net component by passing the new LOD

object as a parameter to the addLoD method of an object of FaceNet3dCompLevel

class. This process is outlined in Listing 27, where objectLevel is the object level of a

face net component and hFaceNetComp is an object of type HFaceNet3dComp.

FaceNet3dCompLevel objectLevel;
...
LOD lodToCopy = new LOD(objectLevel);
hFaceNetComp.addLod(lodToCopy, true);

Listing 27: Integration of a new LOD into an h-face net component by passing the object as parameter value
(Java code)

In Listing 27, the object level of an existing face net component is used as the master to
create a copy LoD which then is inserted into an h-face net component as the LoD 1 – i.e.
the LoD is defined more detailed than the object level but less detailed than the net level
(analogue to the left depiction in Fig. 88).

A remarkable advantage of the outlined LoD management approach is that it is not
invasive to the non-LoD core of the Topology Module. For example, the CellTuple class
of core Topology Module had not to be manipulated in order to operate in LoD
management. The lower and higher links of CellTuples that are used to switch

between net level and object level, are also used to switch between two LoDs in LoD
management. All higher and lower links are set between CellTuples of different LoD
by the same principles as described in Ch. 3.1.8.

3.6 Implementation of a Geo-DBA For Time-Varying Topologies

The historical development of the currently utilized spatio-temporal models of DB4GeO
for the management of temporal change in geometry and the theoretical foundations of
these and related models have been outlined earlier in Ch. 2.5. The required capabilities of
a temporal topology module implementation for DB4GeO are discussed on the basis of
case studies in the following. Then a proposal for an architectural frame for a Temporal
Topology Model is developed. The model is based on the Temporal Joint Model in
DB4GeO that has been implemented by KUPER (cf. Ch. 2.5.5). Finally, it is clarified, which
adjustments have to be performed on the Piesberg data (Ch. 1.6) in order to be able to
process the data in further experiments of the Temporal Topology Module.

3.6.1 Required Capabilities of a Temporal Topology Module

The DB4GeO Temporal Joint Model is capable of managing temporal change of geometry
and also supports the functionality to switch the underlying meshing of the geo-object at

128 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

certain time steps. Fig. 90 demonstrates the functionality of the Temporal Joint Model
through an example set-up.

In the example, first, at time step t=1, a set of points SPa (Point3D objects) is added to

the temporal object (left side of Fig. 90) through the addTimeStep method of Object4D

class. This operation also prepares point tube PT a and adds the set of points as the first

entry of PT a . Additionally, a meshing for the existing set of points is appended through

the addMesh method of Object4D class. At this step, TriangleNet4D TN a also starts

to exist retroactive at time step t=1. At time step t=2, a new set of points SPb is added

through addTimeStep method of Object4D class. The points of SPb geometrically

differ from SPa , nonetheless the topological configuration of TN a stays constant.

Subsequent, another set of points (SPc) is also added at time step t=2. SPc partially

differs from SPb . SPc has more points than SPb . It is not possible any more to map all

points of SPb to the points of SPc . Thus, the already utilized point tube cannot be used

for the new points. Subsequent, a new point tube (PT b) is created.

Also, a new mesh is added for the new set of points (addMesh method). This mesh

constitutes the net topology of TN b . The meshing of TN b also partially differs from the

meshing of TN a . The new set of points, together with the new mesh, constitutes the post

object of t=2. At time step t=3, again a new set of points is added through addTimeStep
method. This set of points constitutes the pre-object of t=3 and again only differs in its
geometry from the set of points of the post-object of t=2. The pre-object of t=3 has the

same number of points as the post-object of t=2. The new points are added to PT b and

also adopt the net topology of TN b .

The example demonstrates, how it is possible to model a spatio-temporal object that
changes in geometry and in its topological net configuration through time with the built-in
spatio-temporal module of DB4GeO. As mentioned before, this spatio-temporal
component of DB4GeO uses the Simplicial Complex approach to model the geo-objects
geometry. It is not capable of modelling complex cells. Thus, the objective is to combine
the existing functionality of the built-in spatio-temporal module (Temporal Joint Model)
with the already implemented Topology Model. The intended functionality is to support the

Fig. 90: Example of creation of temporal objects with DB4GeO Temporal Joint Model

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 129

modelling of complex cells over time (spatio-temporal complex cells) as depicted in Fig.
91.

Fig. 91 shows a similar temporal object creation case as in the previous example. But this
example is extended with complex cells (i.e. non-simplicial cells) that are outlined by
thicker lines (in the depiction of the net meshes). At t=1, there is not only a
TriangleNet4D created but also a FaceNet3D and a FaceNet3DCompLevel at object

level (COL , cf. lower left side of Fig. 91). At t=1, COL consists of only one face that

extends over the whole net component (cf. left side of Fig. 91). At t=2 not only the

geometry has changed as in the previous example but also the topology of COL . The one

face of COL has been split into two new faces. The topological change occurred

somewhere in between t=1 and t=2 and is discussed below. In the transition from pre-
object of t=2 to post-object of t=2, the topology of the geo-object at net level changes, but
the topology of the object level stays constant. The change of the net level is also apparent
in the diagram of DB4GeO classes (bottom of Fig. 91). It shows that the temporal triangle
net (TriangleNet4D class) and PointTube (both represent the net level) end to exist at
time step t=2. They are both replaced by new objects of same type. However, the
FaceNetCompLevel (object level of faces) does not end live at t=2 but persists over the

entire period. This is only possible if there is a direct mapping between all cells of COL of

the pre-object and all cells of COL of the post-object.

At t=3, the geometry of the geo-object changes, as in the previous example, but the

topology of COL stays still constant. This is possible, since there is a direct mapping of all

nodes of the geo-object's mesh between the post-object of t=2 and the pre-object of t=3
(the net topology does not change between these two objects).

Fig. 92 provides a closer look at the time interval between t=1 and t=2, where a change of
the topology at object level occurs. At t=1.5, an edge is inserted into the (object level) face

of COL by the use of the insertEdge method, thus splitting the face a) into two new

faces b) and c).

Fig. 91: Example of creation of temporal “big cells” on object level with Topology Module

130 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

Editing operations of object levels (such as the performed insertEdge method) can be
conducted at any point in time (i.e. in time steps and in time intervals). Internally, the face
net component at a certain (object) level is modified. In this case, face a) is split into two
new faces b) and c). All constraint checks and changes to the cells and cell-tuple structure
of an insert edge operation that have been discussed in Ch. 3.4.2 are performed. Since all
links between net level and object level cell-tuples are known, they can be adapted to the
new structure accordingly. When a new net level topology (meshing) is introduced through
post object of time step t=2, the links have to be recomputed according to the new spatial
relation between object level and net level.

3.6.2 Architecture and Model of Temporal Topology Module

The development of the spatio-temporal model for the Topology Module is conducted in
strict compliance with object oriented principles, especially inheritance semantics. They
are used to maximize source code re-usage and modularity.

The main connector between the Temporal Joint Model and the Temporal Topology Model
is the inheritance relationship between the ServicesFor4DObjects class of Temporal

Joint Model and the CellNetServicesFor4DObjects class of the Temporal Topology
Model (see Fig. 93).

Fig. 92: Detail of Fig. 91: Interval between t=1 and t=2. An edge is inserted at t=1.5

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 131

ServicesFor4DObjects is a service class148 that is responsible for the processing of
temporal geo-objects. It currently basically provides one method that is called
getInstanceAt. The getInstanceAt method is a “processing unit” that consumes a

temporal object (Object4D) and a Date object and returns an object of type Object3D as

a result of the processing. This means that the service class creates a snapshot of a temporal
geo-object, i.e. “translates” that temporal geo-object into a 3D geo-object at a certain time
step (Date).

The CellNetServicesFor4DObjects enters at this point and specializes the

ServicesFor4DObjects class by overriding the getInstanceAt method. The

specialized getInstanceAt method consumes a temporal cell net object (object of type

CellNetObject4D) instead of an Object4D but also provides an Object3D as the
process' result. A temporal cell net object is a specialisation of a temporal object. Whereas
a temporal object only provides functionality for the management of geo-objects whose
spatial part consists of a temporal Simplicial Complex, a temporal cell net object
additionally models a temporal cell net as the spatial part of the geo-object.

A temporal cell net object in first place consists of a set of discrete temporal cell nets. In
the current implementation, temporal face nets (FaceNet4d, see Fig. 93) are the only
realisation of temporal cell nets.149 Internally, the set of temporal face nets is managed in a
(sequential) list (LinkedList) that is part of the field of the temporal cell net object (see

Fig. 94).

148 The distinctive feature between a utility/helper class and a service class is that while the former is
intended to solve typical internal issues, the latter is mainly intended to provide an access interface for
(external) clients/API users.

149 Thus the model is discussed only on the basis of temporal face nets. Temporal solid nets are still to be
developed and to be implemented.

Fig. 93: The extraction of a 3D face net from a temporal cell net object as class diagram

132 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

The fact that a temporal cell net object consists of temporal face nets is an analogy to the
Geometry Model of DB4GeO. But whereas a geo-object (Object3D) has one triangle net

as its spatial part, a temporal cell net object has several face nets as its spatial part. All
temporal face nets of a temporal cell net object in fact represent one (the same) face net
that changes in time and has a representation at several time steps (its manifestations).
Every entry in the field list is a temporal manifestation (cf. Fig. 94).

The getInstanceAt method of CellNetServicesFor4DObjects takes a temporal

cell net object. Then the method first creates a new 3D geo-object, determines the temporal
face net that is valid at the given Date, attaches this face net at the newly created geo-
object as its spatial part and returns the geo-object. Fig. 95 shows this flow of application
states exemplary on a CellNetObject4D that already has three face nets at three different

time steps.

In this example, the service class consumes the temporal cell net object with the three
temporal face nets and a Date object with t=2.5 and provides an Object3D as result. The

Object3D holds exactly one temporal face net (FaceNet4d) that is valid at t=2.5 as its

spatial part, which is the temporal face net at t=2. This is possible, since a FaceNet4D is a

Fig. 95: Service class use case, employing temporal cell net object

Fig. 94: A temporal cell net object includes a sequential list of temporal face nets

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 133

FaceNet3d which in turn is a TriangleNet3D (cf. Fig. 93); thus a FaceNet4D can
“automatically” be the spatial part of a geo-object (by the rules of polymorphism).
Object3D provides the temporal face net through its getSpatial3D method (see Listing

28).

CellNetServicesFor4DObjects services =
new CellNetServicesFor4DObjects();

Object3D geoObj =
services.getInstanceAt(obj4d, date2013);

FaceNet4d tempFaceNet = (FaceNet4d) obj3d.getSpatial3D();

Listing 28: Retrieving a temporal face net as the spatial part of a geo-object

A temporal face net is simply a 3D face net (FaceNet3d class), but additionally has an

extended class field, with the state references predecessor and successor to the

respective temporally preceding and succeeding 4D face nets. These references may also
be null if the respective temporal face net has no predecessor or no successor. So
temporal face nets may always be accessed from their parental temporal cell net object or
from another temporal face net through the state references.

Since a temporal face net (FaceNet4d) is a specialisation of face net (FaceNet3d), it not

only can be used in any context where a FaceNet3d can be used150, but it also inherits its
set of an arbitrary amount of face net components (see Fig. 96).

150 For example as the special part of a basic 3d geo-object

Fig. 96: The temporal net components (with their NL and OL) of temporal face nets in a
class diagram

134 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

Originally, a 3D face net aggregates 3D face net components. Since a temporal face net
component (FaceNet4dComp) is a face net component (FaceNet3dComp), a face net is
also capable of aggregating an arbitrary amount of temporal face net components. As a
result, it can be stated that every temporal face net (FaceNet4d) is an aggregation of

temporal face net components (FaceNet4dComp).

Originally, a face net component is a composition of exactly one face net component at
object level (one FaceNet3dCompLevel) and exactly one face net component at net level

(one FaceNet3dCompNetLevel) which are the net level and object level representations
of the same face net component (cf. Fig. 49 and top of Fig. 96). These references to object
level and net level components cannot be used here any more as a consequence of the
differing definitions of the static net component in comparison with the temporal net
component: unlike the static net component, the temporal net component may consist of
multiple net level and multiple object level components (cf. Fig. 96) that describe the
temporal progression of the net component at net and at object level. This principle is also
depicted in Fig. 97.

A temporal face net (FaceNet4dComp) provides a (sequential) list (LinkedList) of net

level components (FaceNet4dCompNetLevel) and object level components

(FaceNet4dCompLevel) of which everyone exists at a certain point in time (these are the
manifestations of the object level component and the net level component). Thus, the

original references of FaceNet4dComp to exactly one COL and exactly one C NL are not

sufficient for the modelling of a temporal net component and must be replaced by the
above-mentioned list. As a result, a FaceNet4dComp is a composition of any number of
(but at least of one) temporal face net components at net level
(FaceNet4dCompNetLevel) and of any number of (but at least of one) face net

components at object level (FaceNet4dCompLevel). The face net components at object

level are the multiple temporal object levels of a face net component and the face net
components at net level are the multiple temporal net levels of the same face net
component.

Both, the face net components (FaceNet4dComp) as well as all temporal object levels

(FaceNet4dCompLevel) of every face net component have each of them one Date object
that provides the timestep at which the object began to exist.

Fig. 97: A temporal face net component includes sequential lists of face
net components at net level and at object level

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 135

As depicted in Fig. 91, an objective of the temporal module is to establish a cell based
temporal link between the cells of the pre- and the post-cells of a time step. In the current
implementation of this doctoral thesis, this is realised for node cells. For this purpose, the
already existing basic Node class (of model3d package) has been extended with the two

reflexive references successor and predecessor that point to the nodes that are
temporally succeeding and preceding the respective node (see Fig. 98).

These references between preceding and succeeding nodes are compiled every time when a
new net meshing is added to the temporal geo-model (through the addGeometry method

of CellNetObject4D). In this case, the addComponent method of

FaceNet4dBuilder is invoked internally by the addGeometry method, and all
components are added to the face net. If actually a face net has a preceding face net, then
the object level components of both face nets are extracted at the respective Date151 and

equal nodes are identified on both nets (by their equal ID) and are assigned to each other.

3.6.3 Preparation of Piesberg Dataset

The whole process can be exemplified on the Piesberg dataset (that is introduced in
Ch. 1.6). The following examples show actual outputs of the Topology Module modelling
that is visualized with ParaviewGeo and manually labelled. To be used with temporal G-
Maps, the Piesberg dataset needs to be prepared. The dataset has exactly one version of the
meshing for every of the 12 time steps, but no pre- and post-objects. Thus, the pre- and
post-objects have to be created manually.

For a test run, two time steps are chosen from the dataset. To arrange a more catchy
example, the two chosen time steps are not two sequential time steps of the dataset but are
temporally more separated. These are the time steps of the years 1976 and 1983 (though
the sequentially following time step in the dataset to 1976 is 1978). To produce the
required pre- and post-objects, the following individual operations are carried out.

151 Pre component and post component have the same date since they are modelled at the same time step.

Fig. 98: Basic Node class (of model3d
package) extended with temporal
field

136 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

First, the geo-object of 1976 is chosen to be the pre-object of 1976. Second, the
coordinates of the points of the geo-object of 1983 are parallel projected152 onto the surface
of the pre-object of 1976. This results in the post-object of 1976. Thus, the post-object of
1976 has the meshing of the pre-object of 1983 but the surface geometry of the pre-object
of 1976. Next, the geo-object of 1983 is determined to be the pre-object of 1983. Then the
coordinates of the points of the geo-object of 1993 are parallel projected onto the surface
of the pre-object of 1983 to produce the post-object of 1983. This four prepared datasets
are imported and managed by topological 4D module as presented in Fig. 99.

Fig. 99 shows the top views of the Piesberg dataset's pre- and post-objects of the time steps
1976 and 1983. Time only elapses between the post-object of 1976 and the pre-object of
1983. This is the time frame where the geometry changes, while the topological
configuration of the triangle mesh stays constant. Thereby, it is possible to generate
“artificial” geo-objects of time steps where the geo-objects were not modelled explicitly,
such as in the Piesberg dataset e.g. in 1979 (cf. Fig. 15). The change of the geometry of the
geo-object surface is indicated in the illustration by the curly lines directly above the top
views of the geo-objects. These curly lines show the cross-section of the surface at the
continuous horizontal cross lines that are drawn onto the top views. It is evident from the
cross-sections that the surface geometry does not change between the pre- and the post-

152 By the means of the geometric operations of DB4GeO (composite operation PolyLineDrillingOperation)

Fig. 99: Top views of the Piesberg dataset pre- and post-objects of the years 1976, 1983 and 1993

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 137

object of one time step, but it changes between the post-object of a preceding time step and
the pre-object of a succeeding time step.

The changes between the depicted geo-object states of Fig. 99 are categorized into three
types of changes. These are changes in the surface geometry (“geometry” in Fig. 99),
changes in the topology of the net level (or the meshing, “net level topo”) and changes in
the topology of the object level (“object level topo”). In Fig. 99, there are links between the
depicted geo-object states that are labelled with the types of change that occur in the
respective transition. In the transition from pre-object of 1976 to post-object of 1976, the
net level topology changes while the geometry stays constant. “Constant geometry” means
in this context the constance of the “overall geometry” of the geo-object, i.e. in this case
the geometry of the whole surface. While the surface geometry stays constant, the point
objects of the surface are replaced. Though, the points are exchanged, one important
constraint of this replacement is that all “post-points” remain on the surface of the pre-
object. The net level topology (i.e. the mesh configuration of the triangle net) also changes.
The procedures on object level are discussed later. In the transition from post-object of
1976 to pre-object of 1983, the meshing of the triangle net stays constant (also the amounts
of points, edges and triangles stay constant) while the geometry of the surface geometry,
i.e. the coordinates of the points, changes. The transition from pre-object of 1983 to post-
object of 1983 is analogous in geometry and on net level.

At object level, there are at first three faces (f1, f2 and f3) in pre- and post-object of 1976
and later four faces (+f4) in pre- and post-objects of 1983. Not depicted in Fig. 99 is that a
new face has been added at object level in 1980 (see Fig. 100).

Fig. 100: Adding a new face at object level (in 1980) through insertEdge method

138 CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS

Particular attention should be paid to the fact that the faces (at object level) are preserved
through time, though in the meantime the geometry and the meshing of the geo-object
changes.

This example demonstrates the broadness of the chosen modelling approach. The model
not only allows for the temporal change of the geo-object's geometry but also permits the
temporal change of the geo-object's meshing as well as supports the management and
editing of temporal “big cells” (on object level) that even preserve when the meshing
changes.

CHAPTER 3 DESIGN AND IMPLEMENTATION OF A TOPOLOGY MODULE FOR
THE MODELLING OF SPATIO-TEMPORAL OBJECTS 139

4 Performance Measurements

and Comparisons

This chapter presents metrics on CPU runtime and memory consumption of the Topology
Module.153 Where appropriate, the measured data is compared to performance data of the
DB4GeO Kernel. The purpose is to gain a better judgement of the advantages and
disadvantages in execution performance that result from the usage of the module,
compared to the usage of the Kernel solely.

All measurements are compiled on a common desktop machine with ~ 280 MFLOP/s154.
The test data are synthetically generated by an algorithm (see Ch. 4.1). Therefore, it is
possible to easily adjust the data size for different measurement iterations. The measuring
of CPU runtime and memory consumption can be subject to random influences, due to the
characteristics of modern operating systems (OS). Since modern OS are capable of
multitasking, it is not certain, when processes are switched. Obviously, a process switch
has a negative impact on runtime. In order to reduce the effects of such unpredictable
external factors, all runtime values are calculated as an average of at least ten runtime
measurement cycles. Similar considerations apply to the measuring of memory
consumption.

153 The source code of all performance tests and the result data are documented in a separate Eclipse
development project named “Db3dProfiling”.

154 The calculation of “floating point operations per second” is considered more accurate than the provision
of the more common “instructions per second”, since FLOP/s incorporates multiple properties of a
computer's architecture like main memory, bus system etc. However, the presented value is determined
with the Java Linpack Benchmark of the Oak Ridge National Laboratory (for further information visit
http://www.netlib.org/benchmark/linpackjava/)

140 CHAPTER 4 PERFORMANCE MEASUREMENTS AND COMPARISONS

4.1 Construction of Net Components

In the first test set-up, the creation of geometry and topology structures is measured. For
this purpose, an array of triangles is prepared as synthetic geometry data. All triangles
together form a flat, contiguous net of quadratic shape. The array of triangles is passed to
the constructors of Simplicial Complex (triangle nets with DB4GeO's
TriangleNetBuilder) and G-Maps face nets (FaceNetBuilder of Topology Module).
The duration of the construction process is measured in milliseconds (ms). The averaged
results are presented in the left diagram of Fig. 101.

As can be seen in the left diagram of Fig. 101, with a rising number of triangles, the CPU
runtime of net component construction also rises proportionally. With a number of triangles
slightly below 2.000, the runtime amounts to about a quarter of a second for
TriangleNetBuilder and to about half a second for triangle and face net construction

(FaceNetBuilder). At the other end of the scale, it takes 1.5 s for

TriangleNetBuilder and 3 s for FaceNetBuilder to process about 13.000 triangles.

The right diagram of Fig. 101 presents the memory consumption of the process of triangle
net and face net creation in megabyte (MB). With a number of triangles slightly below
2.000, the memory consumption adds up to 5 MB for triangle net construction and 7 MB
for face net construction. Whereas a model with about 13.000 triangles needs 40 MB to
construct only a triangle net and 60 MB to construct a face net.

It can be concluded that the construction of a triangle net is generally faster and consumes
less memory than the construction of a face net. This result is obvious since the
construction of a face net includes the construction a triangle net. Furthermore, the face net
builder needs time and memory to generate all the additional topological links and objects
of a face net. In practice, this means that the user has to wait 1.5 s longer and provide
20 MB more main memory or permanent storage in average if he has a dataset of 13.000
triangles and he wants to construct a G-Maps face net instead of a DB4GeO triangle net.

Fig. 101: Runtimes of net component construction (left); memory consumption of net component
construction (right)

CHAPTER 4 PERFORMANCE MEASUREMENTS AND COMPARISONS 141

In the process of net component construction, each net element (i.e. triangle element or
tetrahedron element) is traversed mostly only once. Thus, the asymptotic runtime is a linear
function of n (O(n) in BACHMANN-LANDAU notation), with n being the number of elements
in the net component. The graph of Fig. 101 confirms these assumptions, since it shows a
clear linear growth in runtime behaviour as well as in memory consumption for DB4GeO
Kernel and Topology Module.

4.2 Basic Spatial/Topological Queries

In the second test set-up, the retrieval of topological information is measured. In this
measurement, larger arrays of triangles are synthetically prepared in order to get significant
test results. Apart from that, these are again flat, contiguous nets of quadratic shape. After
triangle nets and face nets are constructed, the duration of selected retrieval operations are
measured in ms. The diagrams of Fig. 102 show averaged results of boundary retrieving
operation runtimes (left diagram) and get-2D-for-0D operation runtimes (right diagram).

The boundary retrieving operations have been implemented in order to receive the
boundary geometry of a complex geo-object, for example the linestring that bounds a
surface. These operations were programmed by the means of DB4GeO Kernel
(findTinBorder methods) and by the means of Topology Module (getBoundaryEdges
method) independently.

In DB4GeO Kernel, the boundary retrieving operations have been realized in two ways.
The first algorithm (findTinBorder1 method of TriangleNet3DComp class) simply

iterates over all triangles of a surface and checks each triangle whether it is at the surface's
boundary. If so, the boundary segments are added to the result set. This algorithm returns
an unordered set of boundary segments.

The second algorithm (findTinBorder2 method of TriangleNet3DComp class) first
finds an arbitrary boundary triangle, then it follows the triangles along the boundary and

Fig. 102: Runtimes of boundary retrieving operations (left); runtimes of get-2D-for-0D operation
(right)

142 CHAPTER 4 PERFORMANCE MEASUREMENTS AND COMPARISONS

collects the boundary segments. This algorithm returns an ordered set of boundary
segments.

In Topology Module, the getBoundaryEdges method of FaceNet3dCompNetLevel

class returns all boundary edges of a face. The algorithm takes advantage of 2-orbits,
therefore it simply follows explicitly modelled links along the boundary edges. This
algorithm returns an ordered set of boundary segments.

The different boundary retrieving operations have different asymptotic runtime behaviour.
In worst case, the findTinBorder1 method has to evaluate all triangles (n) of the net
component, each once, in order to find all boundary segments. Additionally, it has to add
all boundary segments (m) to the result set. Thus, it has a linear asymptotic runtime
O(n+m) . This assumption is confirmed by the graph of findTinBorder1 method in left
diagram of Fig. 102 that shows an at least linear growth rate.

The findTinBorder2 method first needs to find a boundary segment of an arbitrary

triangle at the component's boundary in k steps. Then it iterates only along the boundary
segments. The iteration along the boundary still needs some computation, since there are
no precomputed links along boundary triangles or segments. If the number of boundary
segments is m, then the asymptotic runtime is O(m+ k) . The runtime of
findTinBorder2 method is assumed to be usually less than the runtime of

findTinBorder1 method, since the number of boundary segments m is usually less then

the total number of triangles n of a component. The supposed asymptotic runtime is backed
by the graph of findTinBorder2 method in left diagram of Fig. 102 that also shows a
generally linear growth rate. However, as also assumed, the runtime is lower than the
runtime of findTinBorder1.

The getBoundaryEdges method simply navigates along the explicitly pre-computed 2-
orbit links along the boundary segments. By this, the asymptotic runtime only depends on
the number of boundary edges m that have to be collected. Thus, its asymptotic runtime is
O(m) , which is the optimum runtime, since each boundary element needs to be visited at
least once in order to become part of the result set. Furthermore the retrieval of
neighbouring edges is fast, since boundary edge neighbourhood is precomputed and
boundary edges are linked. The graph of getBoundaryEdges method in left diagram of
Fig. 102 reassures this assumption, since the average runtime of Topology Module method
is much lower than the average runtimes of DB4GeO Kernel methods. Such evidence gives
reason to call the data structure of Topology Module a “topological index”.

Working with a geo-object with the size of about 13.000 triangles, the average runtime
gain of Topology Module against DB4GeO Kernel is 4 ms at each invocation of a
boundary retrieving method. The average runtime loss of Topology Module against
DB4GeO Kernel during the construction process is 1.3 s (cf. Fig. 101). This means that,
with a geo-object of 13.000 triangles, the usage of Topology Module starts to pay off in

CHAPTER 4 PERFORMANCE MEASUREMENTS AND COMPARISONS 143

terms of runtime consumption after approximately 300 invocations of
getBoundaryEdges method.155

The right diagram of Fig. 102 shows averaged runtimes of get-2D-for-0D operations.
These operations return the 2D geometries (surfaces) that are incident to a 0D geometry
(point). Get-2D-for-0D operations are available in both, DB4GeO Kernel and Topology
Module. The DB4GeO Kernel returns all triangles that are incident to a given point. In
order to compute the result set, the algorithm iterates over all triangles of the triangle net
component and compares all points of each triangle until an equal point is found. This has
the effect that all triangles (n) have to be visited in order to get the result. Accordingly, the
asymptotic runtime is linear (O(n)), which corresponds to the graph of get-2D-for-0D
operation of DB4GeO Kernel in right diagram of Fig. 102.

The get-2D-for-0D operation of Topology Module returns all faces that are incident to a
node. In contrast to the get-2D-for-0D operation of DB4GeO Kernel, the operation in
Topology Module simply follows the link to a cell-tuple of the node and then runs a 0-orbit
“around” the node in order to collect all incident faces. This operation has to perform only
one step for each incident face. The runtime only depends on the number of faces in the
result set (m), which is usually very small compared to n. Thus, the asymptotic runtime is
O(m) , which is the optimum runtime, since each incident face needs to be visited at least
once in order to become part of the result set. With a runtime of O(m) , the Topology
Module decouples the calculation of the result set from the total amount of triangles.
Having a geo-object of about 200.000 triangles, the Topology Module saves 200 ms with
each 2D-for-0D operation compared to DB4GeO Kernel.

4.3 Additional Performance Tests

The presented ratios in runtime behaviour can be found in a multitude operations of
DB4GeO Kernel and Topology Module, since many other methods base on the presented
fundamental methods, and since the presented algorithmic approaches are used in a similar
way in related operations. As an example, the average runtimes of get-1D-for-0D and
countBorderEdges operations are depicted in Fig. 103.

155 300 x 4 ms = 1.2 s, which is nearly 1.3 s that is needed for construction

144 CHAPTER 4 PERFORMANCE MEASUREMENTS AND COMPARISONS

The left diagram of Fig. 103 shows the average runtimes for operations that retrieve the
segments (edges) that are incident to a given point (node). These operations are similar to
the get-2D-for-0D operations presented in right diagram of Fig. 102. Actually, the
DB4GeO Kernel internally uses the same code base as get-2D-for-0D operation with the
difference that it additionally needs to check, to which segments of a triangle a given point
belongs. The get-1D-for-0D operation of the Topology Module is also similar to the get-
2D-for-0D operation of Topology Module. Internally, they also both use the same code
base that executes a 0-orbit around the given node. Since the get-1D-for-0D operations are
based on the same principles as the get-2D-for-0D operations, the resulting runtime
behaviour is also similar, which can be recognized by comparing left diagram of Fig. 103
to right diagram of Fig. 102.

The right diagram of Fig. 103 shows the average runtimes for operations that count the
number of boundary segments/edges. These operations are strictly based on the boundary
retrieval operations that have been introduced earlier in this section, since internally they
do nothing more then retrieving the boundary segments and return the size of the result set.
Thus, the resulting runtime behaviours are similar, which can be recognized by comparing
right diagram of Fig. 103 to left diagram of Fig. 102.

This chapter shows the advantages and disadvantages in terms of runtime behaviour and
memory usage of Topology Module compared to DB4GeO Kernel. While the memory
usage of Topology Module is approx. 40 % higher (due to the additional extensive
topological structure) and the construction process takes approx. 80 % more time than the
DB4GeO Kernel, the Topology Module then saves runtime, e.g. as shown in figures 102
and 103, each time the user states a spatial/topological query. As the module is used in a
Geo-DBA, this runtime behaviour becomes especially useful, since a database for geo-
applications is imported and stored in a DBMS once, but queried, retrieved, and exported
several times (eventually by multiple users).

Fig. 103: Runtimes of get-1D-for-0D operations (left); runtimes of countBorderEdges operations
(right)

CHAPTER 5 DISCUSSION 145

5 Discussion

5.1 Summary and Conclusion

The doctoral thesis at hand deals with the examination of methods for topological data
handling, as well as designing and implementing a toolkit for the geosciences for the
management of topological and temporal 3D data and models in Geo-DBA. The
conceptual work and realisation process takes into account the management of multi LoD
since it is considered to be an integral part of geo-modelling.

The first main chapter (introductory chapter) unfolds the motivation for handling
geoscientific data and employing database management systems for geodata. The current
state of processes, modelling tools, and DBMS is presented in application-oriented use
cases. Furthermore, the introduction gives a first insight into the topics of model
integration, abstraction of geodata and spatio-temporal modelling. These first insights
already include references to early pioneering and basic literature. Finally, the test dataset
of this work is presented.

In the chapter it is shown that data and model management for the geosciences is a non-
trivial, multifaceted task. Geoscientific data is characterized by a heterogeneity of models
and applications. The integration of multiple models and applications into common
systems is a striving goal of the international scientific community. It allows for new types
of analyses that have not been possible before. Geo-DBMS are a useful platform for data
management and model integration, but market (and close-to-market) solutions are still in
an early stage and leave many questions of geoscientific data management open.

As RHIND (1973), BUTTENFIELD (1993) and others have shown, multi-representation of
geodata is broad in topic so that the perspective has to be narrowed. However, a key object
of study is the adequate maintenance of linking between the geo-objects of multiple
resolutions. The question of how to generate and organize the hierarchy links greatly
influences the navigation and editing capabilities of the multi-resolution database.
Contemporary research efforts by HAUNERT and SESTER (2005), and ANDERS and BOBRICH

(2004) in the management of multi LoD of DLM are introduced.

146 CHAPTER 5 DISCUSSION

Another key topic of research in the geoinformation community is the management of
spatio-temporal data. The introductory chapter lays out the importance and application-
relevance of temporal geodata by presenting an elaborate use case in city planning. The
research range is widened by an overview of key research topics that have been compiled
by LESTER (1990) which are the understanding of time, temporal logic, architecture of
temporal GIS, and how to deal with alternative representations. The focus of his thesis is
placed on the architecture of temporal GIS. In this context, SHOHAM and GOYAL (1988)
identify four different reasoning tasks that can be supported by temporal GIS, which are
prediction, explanation, learning new rules, and planning.

According to WACHOWICZ (1999), there are two fundamental approaches on temporal GIS:
layer-based or object-oriented. Regardless of the approach, DADAM et al. (1984) identify
two types of strategies for incremental update, which are forward oriented and backward
oriented versioning. According to SNODGRAS and AHN (1985), time can be recorded in the
two types valid time and transaction time. Depending on the level of assistance of types of
time, SNODGRAS and AHN distinguish four kinds of (chronological) databases, which are
snapshot, rollback, historical and temporal databases. HÄGERSTRAND (1975) established the
notion of space-time trajectories of geo-objects that can be taken as a basis to conceptualise
longitudinal and branching configuration of valid time. Additionally, space-time paths
introduced states and events in the lifetime of geo-objects.

The second chapter gives a deeper insight into relevant literature, explains theoretical
considerations in more detail, and presents the current state of research. The chapter starts
with an introduction into the architecture of DB4GeO's geometry kernel and exposes its
capabilities and deficiencies in navigation on the geometry. The concepts of cell-tuple
structure by BRISSON (1989) and G-Maps by LIENHARDT (1989) are introduced as an
alternative approach to model the topology of complex geo-objects. Inter alia due to their
advanced navigational capabilities, these concepts are chosen as a basis for a new
topological kernel architecture for DB4GeO that promises to achieve data access in
constant time in many cases (“topological index”) and to simplify the handling of
topological information, especially in complex environments such as multi-representation
and spatio-temporal modelling. For testing purposes, the new prototype kernel is
developed as a plug-in/module for DB4GeO and not directly incorporated into the existing
DB4GeO Kernel.

The topic of multi-representation is further deepened by going into more detail of the
foundational research work on multi-representation in 2D (hierarchical DLM) by
ANDERS/BOBRICH and HAUNERT/SESTER. Another foundational abstraction technique that
applies to the geometry of 3D geo-objects, the PM by HOPPE (1996), is explained in detail.
The explanation of PM demonstrates what kind of geometric models are relevant in multi-
representation applications. After having presented concrete, application-related
approaches, the more theoretical, generalized approach MTR by BRUEGGER and KUHN

(1991) is introduced. BRUEGGER and KUHN identify two types of relations between cells of
different LoD and set the basic framework for further reflections on multi topological
representations. The H-G-Maps model of FRADIN et al. (2005) can be seen as a concrete

CHAPTER 5 DISCUSSION 147

implementation of multiple topological representations. In H-G-Maps, each level of
topological representation is modelled as a complete separate G-Map. Hierarchy links
between the multiple G-Maps are established through links between the G-Maps' darts.

The topic of spatio-temporal modelling is continued with a contrasting juxtaposition of
concepts of continuous and discrete temporality. It is identified that the geometry of a geo-
object can change continuously in time while the topology changes in discrete steps. In
order to model both, the geometry and topology of a geo-object in one joint system, it is
necessary to develop an integrative model. POLTHIER and RUMPF (1995) present such an
integrative model by introducing TimeStep, an adaptive time-dependent discretization. By
incorporating time-steps with pre- and post-objects into the model, the approach allowes to
handle continuous change of geometry and discrete change of topology in one model.

The DB4GeO Kernel has been extended by the temporal point tube model of ROLFS (2005)
that is based on the ideas of TimeStep. The temporal point tube model combines two
representatives of a simplex element at two different time steps to a space time element. A
series of space time elements is combined to a space time sequence, and a set of spatially
non-overlapping space time sequences forms a space time component. The temporal point
tube model can be categorized as an accumulative forward oriented versioning system that
manages valid time in a longitudinal configuration. Later, the temporal model of ROLFS has
been revised by KUPER (2010). The new spatio-temporal model for DB4GeO supports non-
accumulative forward oriented versioning. It merges the concepts of PointTube, delta
storage, and POLTHIER/RUMPF in one new model in order to manage continuous change of
geometry.

Though, the presented models do a great deal in modelling dynamic geometry, they do not
cover the modelling of temporal topology. 2-dimensional temporal topology has been
covered by RAZA and KAINZ (1999) in their concept of STAO. STAO introduces a concept
of temporal cells and the notion of temporal cell-tuple structure. It provides the means to
model cell complexes that change their topological configuration in discrete time instances.

The third chapter explicates the design and implementation of the Topology Module for the
modelling of spatio-temporal topological objects. Since the module is attached to the
DB4GeO Kernel, the chapter begins with an explicit description of the Simplicial Complex
geometry model of the Kernel. Generalized cells are introduced as wrappers for the simple
geo-object types of DB4GeO: nodes for points, edges for segments, faces for triangles, and
solids for tetrahedra. All cells (i.e. one cell of each dimension) are then integrated into
CellTuple class. Sets of CellTuple objects create a G-Map that represents the topology
of a cell net component. A cell net component is a collection of conjunct, non-overlapping
cells realized as an extension of simplex net components of DB4GeO. Multiple cell net
components can loosely be coupled to a cell net realized as an extension of simplex nets of
DB4GeO.

The employed cell-tuple model encompasses universe cells, cell-tuple polarity, and holes in
cell net components. The differentiation into net level and object level allows to create a
“big cell” that comprises an arbitrary number of cells. The net level is defined as the G-

148 CHAPTER 5 DISCUSSION

Map that exactly represents the topology of the Simplicial Complex. The permissible cells
at net level are identical to the simplices. At object level, instead, cells can have any
geometric representation. Usually, one big cell of the object level is detailed by multiple
cells of the net level. References between both detail levels are realised through higher

and lower links between darts of the respective levels. The topology of net level is non-
editable, since it is completely dependent upon the underlying Simplicial Complex of
DB4GeO Kernel. However, the topology of object level can be altered within some defined
restrictions.

The construction of cell complexes (and G-Maps) is based on the construction of
Simplicial Complexes of DB4GeO Kernel. So the process of cell net creation has three
stages. After the API user hands over a set of simplices, first, the DB4GeO Kernel analyses
the geometric configuration of the simplices and aggregates them based on this information
to a Simplicial Complex. Secondly, the Topology Module receives the pre-engineered
Simplicial Complex from DB4GeO Kernel and evaluates the neighbourship configuration
of the structure. From the evaluation, all information can be gathered that is needed to
construct a cell complex and the corresponding G-Map at net level. In the third step, the
cell complex at net level is taken as a basis to derive the cells and G-Map of object level.

Once a cell net and G-Map are created, the Topology Module provides the API user with a
sophisticated methodology to freely traverse the topological structure in any direction. This
is achieved in an accurate architectural approach by the means of OrbitIterator class,

which realizes the Iterator interface of standard Java. The OrbitIterator helps the
API user to create different kinds of orbits. The user only needs to provide the involution
sequence or orbit dimension of interest. The algorithms of OrbitIterator already

demonstrate the benefits of the G-Maps approach. They are comparably short, crisp, and
elegant. OrbitIterator serves as a basis for the definition of CellIterator class.
Cell iterators help the API user to iterate over the neighbours of cells. For example, with an
appropriate cell iterator the user can easily query for all faces that are adjacent to a given
face.

The advanced navigation capabilities of the Topology Module allow to easily implement
an algorithm that finds the shortest path on top of the meshing of a cell net component.
Since such an algorithm is helpful for editing methods, a DIJKSTRA-based path finding
algorithm (Dijkstra 1959) has been designed and implemented that operates on top of G-
Maps structure.

Given net level and object level, and having advanced navigation capabilities with orbit
and cell iterators, it becomes feasible to develop methods with which the topology of
cellular complexes can be edited. Editing methods have to obey sets of constraints in order
to function properly. Thus, a Constraint class is designed that allows to define custom

constraints. A constraint is represented by a stored query. The stored query is evaluated and
the query result is checked against a target value. If the query result equals the target value
then the constraint is active. An example of a constraint is that the amount of faces being
adjacent to another certain face has to equal a specific number. A number of such

CHAPTER 5 DISCUSSION 149

constraints is checked before an editing operation can be conducted. Editing operations are
implemented prototypically in order to demonstrate feasibility: insert node, insert edge,
delete node, and delete edge. The insert node method adds a new node onto an existing
edge, which can modify the course of the edge. The method splits the existing edge on
which it is inserted into two new edges. Delete node is the inverse function to insert node
and removes an existing node form an edge, which also can modify the course of the edge
and which merges the two former edges into one new common edge. The insert edge
method adds a new edge onto a face between two given nodes. The course of the new edge
has to be determined by a suitable method. The Topology Module uses the DIJKSTRA

shortest path algorithm to determine the course of the edge. The new edge splits the
existing face on which it is inserted into two new faces. Delete edge is the inverse function
to insert edge and removes an existing edge from a face, which merges the two former
faces into one new common face. Due to the concept of net level and object level, the
topological changes of all these methods are performed only on object level.

The concept of net level and object level is not only necessary to facilitate editing
capabilities, but it is also a sound preparation for the management of LoD of cell net
components. Since net level and object level already exist, there is a basis which can be
extended by additional detail levels. Additional detail levels are inserted in-between net
level and object level. They are numbered ascending from lowest to highest LoD, i.e. the
level with the lowest LoD, except for object level, has the index 1. The additional detail
levels follow the same principles as the object level, i.e. they are also editable. This is
reflected in the class model where the LOD class extends object level class. This means that

every detail level is an object level, except the net level. The connections between levels
are still established finely granulated through higher and lower links of cell-tuples. The
API user employs levels of detail in the editing process in order to add or remove detail. In
the workflow, the API user first chooses a detail level to alter. Depending on whether
intendedly to add or remove detail, the module creates a copy of the detail level above or
below the original level. Then the API user can carry out the editing operations on the
newly created level. Meanwhile, the module observes the consistency of all higher and

lower links of the cell-tuples. Following BRUEGGER and KUHN, only refinement relations
between levels of detail are permissible.

In order to demonstrate the application-side performance of LoD management, an example
test case has been set up by GOLOVKO on the basis of the Piesberg landfill dataset (Breunig,
Butwilowski, Kuper, et al. 2013, 9 et seq.). The test application has completely been set up
by the means of Topology Module. The aim was to show an application example where the
area of an initially homogeneous landfill site is subdivided into several subregions that
could represent regions with different material properties of the soil or with different land
use classes (see Fig. 104).

150 CHAPTER 5 DISCUSSION

GOLOVKO extracted the geo-object from the Piesberg dataset (at an arbitrary year) as the
starting point for the demonstration. In the first step, the Topology Module models the geo-
object as a cell net component with one net level that represents the underlying meshing
and one object level that represents the boundary (polyline) (see state (a) in Fig. 104). In a
second step, a new edge is inserted between two points of the existing boundary in order to
delimit the northern mining field of the site from the southern landfill area (b) (example
fictitious). In the next step, she added another additional edge in order to subdivide the
newly created southern field into two new fields (c). Through multiple additional edge
insertion operations, the Piesberg geo-object is stepwise subdivided into six subregions
(see (d), (e), (f)). Afterwards, two edges that subdivided the mining field, were removed
again so that the mining area is represented by one region finally (g). Please note that as a
result of the last edge removal operation, an island/hole remains insight the mining face.
Due to model specifications of the Topology Module, this hole does not lead to an
inconsistent state of the model.

The spatio-temporal model of the Topology Module builds on the foundation of the
Temporal Joint Model of KUPER that has been implemented in DB4GeO Kernel. The
Temporal Joint Model operates on Simplicial Complexes and models geometric change,
but it does not track topological change of “big cells”. Continuous geometric change is

Fig. 104: Example of editing session on Piesberg dataset (visualized with ParaviewGeo)
Source: (Breunig, Butwilowski, Kuper, et al. 2013, 10)

CHAPTER 5 DISCUSSION 151

carried out in the form of altering of the support point coordinates of the Simplicial
Complex through the Temporal Joint Model, whereas discrete topological change of “big
cells” is modelled by the spatio-temporal model of the Topology Module. Since both
models are in a loose coupling, it is possible to change the underlying meshing, while
preserving the general topological configuration of object level cells over periods of time.
Conversely, the editing of cells of object level triggers the creation of a new, different cell
complex, while the underlying meshing stays unchanged. These capabilities of the spatio-
temporal model are audited and demonstrated on the basis of a realistic temporal geo-
object that is derived from Piesberg landfill site dataset.

Finally, different aspects of runtime and memory performance of the Topology Module are
evaluated and compared to the performance of the DB4GeO Kernel. As an overall outcome
can be stated that the Topology Module consumes more memory and needs more time for
cell net construction (for details cf. Ch. 4). This is not surprising, since a cellular complex
of the Topology Module needs a fully constructed Simplicial Complex of DB4GeO Kernel
in first place. This means that runtime and memory of DB4GeO Kernel are mandatory for
construction process. But in operation mode, the Topology Module provides significant
benefits in runtime behaviour, which shows that the structure can be designated as a
“topological index”.

5.2 Outlook

In future, the Topology Module can be used as the basis for advanced developments, e.g. to
implement new high level functionalities in DB4GeO, such as a CityGML exporter.

5.2.1 The Topology Module as Basis for a DB4GeO CityGML Im-/Exporter

As noted in the introduction (especially in Ch. 1.3), the integration of multiple geometric
and topological models (especially B-Rep and Simplicial Complex) into one architecture,
can be of great value in particular application scenarios. In order to provide an example of
the added value of functionality that uses an integrated model, Daria GOLOVKO implemented
OpenGisDb3dModule. OpenGisDb3dModule mainly is a prototypical CityGML
exporter/importer for DB4GeO on the basis of the Topology Module.

GOLOVKO's module internally uses citygml4j in order to read and write the XML exchange
format of CityGML. citygml4j is a Java library that provides classes of GML and CityGML
model (e.g. MultiSurface or Building) and an XML compiler that transforms XML
data into the Java classes. In order to combine citygml4j with the Topology Module,
GOLOVKO developed a translation between the classes of both models and implemented a
polygon triangulation mechanism. For example, the topology of a CompositeSurface in

citygml4j is internally modelled as a FaceNet3dComp of the Topology Module. With this
concept, the geo-objects of CityGML can internally be represented by B-Rep of object
level and by Simplicial Complex of net level simultaneously (see Fig. 105).

152 CHAPTER 5 DISCUSSION

The depiction shows a building model which is a detail of a CityGML dataset from British
Ordnance Survey (OS) that has been made available as test data on citygml.org. The
CityGML XML file of OS (displayable by CityGML software such as Autodesk®
LandXplorer) has been imported into DB4GeO with the Topology Module installed and
then exported from DB4GeO as GOCAD format (.ts) (displayable by subsurface
visualizers such as ParaViewGeo). Though, the original geo-object stems from the field of
city models (and thus uses B-Rep), it can also be loaded into subsurface modelling
software (in the form of Simplicial Complex). The illustration in Fig. 105 shows the OS
geo-object in the subsurface visualizer ParaViewGeo. The right side shows the polygons
(B-Rep) of the geo-object that were modelled on object level by the Topology Module. The
left side illustrates the underlying triangulation (Simplicial Complex) of the same geo-
object that was modelled on net level.

5.2.2 Direct Integration of the Topology Module into DB4GeO Kernel

Currently, the Topology Module is implemented as a plug-in in order to study architectural
modifications gradually step-by-step. Now that the Topology Module matured very well, it
becomes feasible to integrate it directly into the main development repository of DB4GeO
and replace the previous kernel. The replacement process could also be used as an
opportunity to refine some architectural arrangements that were necessary as a
consequence of the plug-in approach. The plug-in approach forced a class architecture
where simplexes are part of cells. Though, the approach is feasible and leads to useful
results, it is not perfectly clean from the viewpoint of OOM. From an OOM perspective,
cell could be seen as the base interface not only for concrete cells but also for simplices
(see Fig. 106).

Fig. 105: Net level and object level representation of building model
Source: (Breunig, Butwilowski, Golovko, et al. 2013, 102), visualized with
ParaViewGeo

CHAPTER 5 DISCUSSION 153

The diagram shows a model with the Cell interface as the fundamental basis for all

geometric and topological elements. Like in the current model of the Topology Module, the
topology information of cells is managed and stored in objects of the CellTuple class.
Unlike in the model of the Topology Module, to keep things simple, the coordinates of
geometry are directly stored in the Node class (there is no intermediate Point3D class any

more).

A Simplex interface is derived from the Cell interface. This means that in this model, a
simplex is a cell, which more corresponds to the terms of the mathematical definition. The
interfaces Cell and Simplex are realized by concrete cell and simplex classes. Node,

edge, triangle, and tetrahedron are modelled as simplices. Thereby, they are indirectly also
cells. Face and solid are directly modelled as cells. Thereby, they are not simplices (since
they do not realize Simplex). This is a sensible predicate, since faces and solids can be of

any shape in this model.

If a face consists of only three nodes/points, then it is a triangle. In such cases faces can be
modelled by the Triangle class, which is a subclass of Face class, saying that a triangle
is a specialized face. The situation is similar concerning solids. If a solid consists of only
four points, then it is a tetrahedron, modelled by the Tetrahedron class (as subclass of

Solid).

All cells (and thereby all simplices) have to provide the topological methods
getNeighbour<Cell>, countNeighbour<Cell>, and getBoundary(). These
methods are internally working similar for all types of cells. A specialized method of the
Face class is getArea() that calculates the surface size of the arbitrarily shaped face.

Similarly, the Solid class has a getVolume() method for volume size calculation. The

area and volume methods can be overridden by the getArea() and getVolume()

methods of the Triangle and Tetrahedron class. By this, the simplex properties of the

Fig. 106: Cell complex model for direct integration into DB4GeO Kernel

154 CHAPTER 5 DISCUSSION

triangle and tetrahedron can be utilized to employ simpler, more cost-effective algorithms
for area and volume calculation.

It is assumed that the direct integration of this model into the kernel will render even
cleaner and consolidated source code since it will remove several currently necessary code
doublings.

5.2.3 Approach to Dimension-independent Cell Model

The present cell model of the Topology Module is limited to dimensions 0 to 3. This
limitation is “hard wired” by the class model, since the naming of the concrete cell classes
is dimension-dependent (Node for 0-d, Edge for 1-d, Face for 2-d, and Solid for 3-d see
Fig. 40). The algorithms of the Topology Module reflect the class model, so that the
dimension-dependency is also reflected in most of the topological algorithms of the
module. A limitation of the considered dimensions is a reduction of the conceptual
complexity that is helpful for the first steps. It helps to develop a first impression of the
interactions between class model and algorithms.

However, now that extensive experience could be gained with the model, it becomes
feasible to create a dimension-independent cell class model in the DB4GeO Kernel. During
the development of the Topology Module, it was remarkable that many algorithms of
individual cell types had close similarity. To be precise, many algorithms could have been
reused in different cell classes if there had been no fixed naming of cell types. It is
assumed that the utilization of a dimension-independent cell class model will additionally
reduce model and code complexity (see Fig. 107).

At a first glance it is already apparent that the class model in Fig. 107 is more concise than
the preceding model in Fig. 106, though it serves the same purpose.

Fig. 107: Classes of dimension-independent cell model approach

CHAPTER 5 DISCUSSION 155

Again, Cell is the key class of the model. The cell itself is indeed a class, not an interface

anymore, since it can realize all the needed functionality itself.156 The Cell class has a

dimension (dim) property of integer type, so that the dimension can be set as required.

Since G-Maps are used for topology modelling, the Cell class is associated to one

CellTuple. CellTuples have the ability to manage an arbitrary number of self-

referencing alpha associations in a List. Practically, the number of alpha associations

equals the maximum dim of all cells. Since the dimension of cells and cell-tuples is not
fixed, the topological algorithms can also be written dimension-independent.

The dim property of the Cell class has to be provided by the API user who intends to

instantiate a Cell object. He provides it as a parameter value of the class constructor.

Additionally, the API user also provides an array of support points for the cell's geometry
through pts constructor parameter value of type Point. Though, it is possible to provide

any number of points as support points, one Cell object can associate not more than one

Point. The idea behind this construct is that if a cell of higher dimension with more than
one support points (e.g. edge or face) shall be created, then the constructor implicitly has to
create all incident cells of all lower dimensions. In this process, only the 0-dimensional
cells (nodes) are the carriers of the geometry information, i.e. only they get a reference to a
Point object. Each Point object has an array of geometry coordinates in the coord class

field property. Finally, the constructor sets the 0-dimensional cells as part of the higher
dimensional cells.

If the API user invokes the Cell constructor with a minimum set of support points for a

given dimension (e.g. two support points for a 1-cell or three support points for a 2-cell),
then the constructor automatically sets the isSimplex class property to true, indicating

that the cell is a simplex. The Cell class also provides a getSize method that returns the

size of spatial extent of the cell. The meaning of the return value of getSize depends on
the dimension of the cell, e.g. length for 1-cell, area for 2-cell, or volume for 3-cell.
Additionally, the calculation algorithm has to consider whether the isSimplex flag is set,

since the costs for calculation of spatial extent size can be reduced in the case of a simplex.

Similar to the preceding model in Fig. 106, the dimension-independent model provides a
getNeighbourCells method in Cell class. But in this case, the method and return type
are dimension-independent. Thus, only one method and only one return type
(CellIterator) instead of four is needed. The getNeighbourCells method requires a

dim parameter of type int in order to return the neighbouring cells of the demanded

dimension. For example if the API user has a face (2-cell) and needs to retrieve all edges
(1-cells) of the face, then getNeighbourCells(1) has to be invoked on the 2-cell. Then

the resulting CellIterator will be of dimension 1, i.e. it will iterate over all
neighbouring 1-cells. Analogously to the Topology Module API, the method returns
incident cells if the dimension of the cell iterator is different than the dimension of the
invoking cell (Cell.dim != CellIterator.dim), and it returns adjacent cells if the

156 The implementation of concrete cell classes (Node, Edge etc.) can be omitted.

156 CHAPTER 5 DISCUSSION

dimension of the cell iterator equals the dimension of the invoking cell (Cell.dim ==

CellIterator.dim). The getBoundary method of Cell is based on the functionality

of getNeighbourCells method and simply invoked getNeighbourCells with a

dimension value that is 1 dimension lower than the dimension of the given cell (Cell.dim

– 1).

The fundamental classes, properties, and methods of a proposal for a dimension-
independent model have been presented. First observations suggest that such an approach
will provide a leaner cell class model with reduced and cleaner code. However, the
usefulness of higher-dimensional cell-tuples is debatable, since the growth of the cell-tuple
structure is strong in relation to dimension. The number of darts grows exponentially with
each higher dimension.

5.2.4 Comparison of the Topological Index with Classical Indices

The performance metrics in Ch. 4 already give some interesting insights into the
advantages and disadvantages of using the Topology Module, considering its runtime and
memory usage. However, the metrics only cover a comparison between data structures of
the Topology Module on the one side and unordered sequences of DB4GeO on the other
side, in order to demonstrate the index-like behaviour of the Topology Module. The
resulting metrics suggest to consider the Topology Module as a “topological index”. In the
next step, it would also be interesting to compare the runtime behaviour of the topological
index vs. the indices that are already built in into DB4GeO Kernel such as the R*-tree and
the Octree, in order to determine the performance of the topological data structure as an
index compared to “classical” indices. Test queries could be typical spatial DB queries that
search for neighbouring, incident, and adjacent geo-objects.

 Bibliography

Abran, A., and J. W. Moore. 2001. Guide to the Software Engineering Body of Knowledge (SWEBOK).
Los Alamitos, California: IEEE Computer Society Press, U.S.

Alexandroff, P., and H. Hopf. 1935. Topologie I. Edited by R. Courant, W. Blaschke, F. K. Schmidt, and
B. L. Van der Waerden. Vol. 45. Die Grundlehren der mathematischen Wissenschaften in
Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Berlin: Verlag
von Julius Springer.

Alms, R., O. Balovnev, M. Breunig, A. B. Cremers, T. Jentzsch, and A. Siehl. 1998. “Space-Time
Modelling of the Lower Rhine Basin Supported by an Object-Oriented Database.” Physics and
Chemistry of the Earth 23 (3): 251–60.

Andenmatten, N., and T. Kohl. 2002. Rapport Pour La Commission Géophysique Suisse, 2002.
http://www.sgpk.ethz.ch/jahresbericht/2002/Kohl.htm.

Anders, K.-H., and J. Bobrich. 2004. “MRDB Approach for Automatic Incremental Update.” In
Proceedings of ICA Workshop on Generalisation and Multiple Representation. Leicester.

Andrae, C. 2008. Spatial Schema. ISO 19107 und ISO 19137 vorgestellt und erklärt. OpenGIS essentials.
Die Geo-Standards von OGC und ISO im Überblick. Heidelberg: Wichmann.

Balovnev, O., T. Bode, M. Breunig, A. B. Cremers, W. Müller, G. Pogodaev, S. Shumilov, J. Siebeck, A.
Siehl, and A. Thomsen. 2004. “The Story of the GeoToolKit - An Object-Oriented Geodatabase
Kernel System.” GeoInformatica 8 (1): 5–47.

Bär, W. 2007. “Verwaltung geowissenschaftlicher 3D Daten in mobilen Datenbanksystemen.” PhD thesis,
University of Osnabrück.

Baumgart, B. G. 1975. “A Polyhedron Representation for Computer Vision.” In Proceedings of the
National Computer Conference and Exposition, 589–96. AFIPS ’75. New York, NY, USA:
ACM.

Bayer, R., and E. M. McCreight. 1972. “Organization and Maintenance of Large Ordered Indexes.” Acta
Informatica 1 (3): 173–89.

Blasby, D. 2001. “Building a Spatial Database in PostgreSQL.” presented at the Open Source Database
Summit. http://postgis.refractions.net/files/OSDB2_PostGIS_Presentation.ppt.

Breunig, M. 2001. On the Way to Component-Based 3D/4D Geoinformation Systems. Lecture Notes in
Earth Sciences 94. Berlin: Springer.

Breunig, M., B. Broscheit, A. Thomsen, E. Butwilowski, M. Jahn, and P. V. Kuper. 2009. “Towards a
3D/4D Geo-Database Supporting the Analysis and Early Warning of Landslides.” In
Cartography and Geoinformatics for Early Warnings and Emergency Management: Towards
Better Solutions, 100–110. Prague, Czech Republic.

Breunig, M., E. Butwilowski, D. Golovko, P. V. Kuper, M. Menninghaus, and A. Thomsen. 2013.
“Advancing DB4GeO.” In Progress and New Trends in 3D Geoinformation Sciences, edited by
J. Pouliot, S. Daniel, F. Hubert, and A. Zamyadi, 193–210. Lecture Notes in Geoinformation and
Cartography. Berlin Heidelberg: Springer.

Breunig, M., E. Butwilowski, P. V. Kuper, D. Golovko, and A. Thomsen. 2013. “Topological and
Geometric Data Handling for Time-Dependent Geo-Objects Realized in DB4GeO.” In Advances
in Spatial Data Handling, edited by S. Timpf and P. Laube, 1–13. Advances in Geographic
Information Science. Berlin Heidelberg: Springer.

Breunig, M., E. Butwilowski, P. V. Kuper, N. Paul, A. Thomsen, S. Schmidt, and H.-J. Götze. 2011.
“Handling of Spatial Data for Complex Geo-Scientific Modelling and 3D Landfill Applications
With DB4GeO.” In Geoinformatik 2011. Geochange, edited by A. Schwering, E. Pebesma, and
K. Behnke, 15–20. Schriftenreihe des Instituts für Geoinformatik. Heidelberg: Akademische
Verlagsgesellschaft AKA GmbH.

Breunig, M., B. Schilberg, A. Thomsen, P. V. Kuper, M. Jahn, and E. Butwilowski. 2009. “DB4GeO:
Developing 3D Geo-Database Services.” In Proceedings of the Fourth International 3DGeoInfo
Workshop, 45–52. Ghent, Belgium.

———. 2010. “DB4GeO, a 3D/4D Geodatabase and Its Application for the Analysis of Landslides.” In
Geographic Information and Cartography for Risk and Crisis Management, edited by M.
Konecny, S. Zlatanova, and T. L. Bandrova, 83–101. Berlin, Heidelberg: Springer Berlin
Heidelberg.

Brinkhoff, T. 2008. Geodatenbanksysteme in Theorie und Praxis: Einführung in objektrelationale

Geodatenbanken unter besonderer Berücksichtigung von Oracle Spatial. 2nd ed. Wichmann.
Brisson, E. 1989. “Representing Geometric Structures in D Dimensions: Topology and Order.” In

Proceedings of the Fifth Annual Symposium on Computational Geometry, 218–27. SCG ’89.
New York, NY, USA: ACM.

Bruegger, B. P., and W. Kuhn. 1991. Multiple Topological Representations. Ongoing research report.
Orono: University of Maine. http://www.ncgia.ucsb.edu/Publications/Tech_Reports/91/91-
17.pdf.

Brugman, B. 2010. “3D Topological Structure Management within a DBMS. Validating a Topological
Volume.” MSc thesis, Delft: TU Delft.

Buttenfield, B. P. 1993. Research Initiative 3: Multiple Representations, Closing Report. Closing report.
Buffalo, NY: National Center for Geographic Information and Analysis.

Butwilowski, E. 2007. “Topologische Fragestellungen bei der Kombination von 3D-Stadtmodellen mit
2D-Karten in einer Räumlichen Datenbank.” Diploma thesis, Osnabrück: University of
Osnabrück.

Cremers, A. B., A. Siehl, W. Förstner, O. Balovnev, M. Breunig, M. Pant, S. Shumilov, J. Flören, M.
Hammel, and W. Müller. 2000. Teilprojekt D4 - Objektorientiertes 3D/4D-
Geoinformationssystem. http://www.geo.informatik.uni-bonn.de/publications/2000/sfb- d4/D4-
Bericht-2000.pdf.

Dadam, P., V. Lum, and H.-D. Werner. 1984. “Integration of Time Versions into a Relational Database
System.” In Proceedings of the 10th International Conference on Very Large Data Bases, 509–
22. Singapore.

Dijkstra, E. W. 1959. “A Note on Two Problems in Connexion with Graphs.” Numerische Mathematik 1
(1): 269–71.

Dorffner, L., M. Ludwig, and G. Forkert. 2006. “Adding Another Dimension to Municipal Management.”
http://www.esri.com/news/arcuser/0706/3d-planning1of2.html.

EEA GmbH. 2012. “Earth Energy Aanalytics & Development GmbH.” Accessed March 8.
http://beyondwind.net/.

Ellul, C., and M. Haklay. 2006. “Requirements for Topology in 3D GIS.” Edited by J. P. Wilson, A. S.
Fotheringham, and D. O’Sullivan. Transactions in GIS 10 (2): 157–75.

ESRI. 2010. “GIS Mapping Solutions for Industry.” Esri - The GIS Software Leader. Accessed April 15.
http://www.esri.com/industries.html.

Fang, Y., M. Friedman, G. Nair, M. Rys, and A.-E. Schmid. 2008. “Spatial Indexing in Microsoft SQL
Server 2008.” In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, 1207–16. SIGMOD ’08. New York, NY, USA: ACM.

Fielding, R. T., and R. N. Taylor. 2002. “Principled Design of the Modern Web Architecture.” ACM
Transactions on Internet Technology 2 (2): 115–50.

Fradin, D., D. Meneveaux, and P. Lienhardt. 2005. Hierarchy of Generalized Maps for Modeling and
Rendering Complex Indoor Scenes. 2005-04. Rapport de Recherche. Poitiers: University of
Poitiers. http://xlim-sic.labo.univ-poitiers.fr/publications/files/publi790.pdf.

Gabriel, P., J. Gietzel, H. H. Le, and H. Schaeben. 2011. “A Network Based Datastore for Geoscience
Data and Its Implementation.” In Proceedings of the 31st Gocad Meeting 2011. Nancy, France.

Gabriel, P., J. Gietzel, and H. Schaeben. 2010. “A Framework for a Networkbased Datastore for Spatial
and Spatio-Temporal Geoscience Data.” In Proceedings of the 30th Gocad Meeting 2010. Nancy,
France.

Götze, H., and B. Lahmeyer. 1988. “Application of Three‐dimensional Interactive Modeling in Gravity
and Magnetics.” Geophysics 53 (8): 1096–1108.

Hägerstrand, T. 1975. “Space, Time and Human Conditions.” In Dynamic Allocation of Urban Space,
edited by A. Karlsqvist, L. Lundqvist, and F. Snickars, 3–14. Farnborough: Saxon House.

Haunert, J.-H., and M. Sester. 2005. “Propagating Updates between Linked Datasets of Different Scales.”
In Proceedings of the XXII International Cartographic Conference, 11–16. A Coruña, Spain.

Hoppe, H. 1996. “Progressive Meshes.” In Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, 99–108. New York, NY: ACM.

IAI (Institut für Angewandte Informatik Karlsruhe). 2011. “Semantische Datenmodelle für die
Geothermie.” Accessed September 9. http://www.iai.fzk.de/www-extern/index.php?id=1810.

ISO. 2003. “ISO 19107: Geographic Information - Spatial Schema.”
———. 2011. “ISO/IEC 13249-3: Information Technology -- Database Languages -- SQL Multimedia

and Application Packages -- Part 3: Spatial.”
Kolbe, T., and G. Gröger. 2003. “Towards Unified 3D City Models.” In Proceedings of the ISPRS Comm.

IV Joint Workshop on Challenges in Geospatial Analysis, Integration and Visualization II.

Stuttgart, Germany.
Krämer, M., T. Ruppert, E. Klien, and J. Kohlhammer. 2010. “DeepCity3D: Integration von 3D-

Stadtmodellen und Untergrundinformationen.” In Geoinformatik 2010. Die Welt Im Netz, edited
by A. Zipf, 72–80. Heidelberg: Akademische Verlagsgesellschaft Aka.

Krimmelbein, A. 2011. “Topologie in CityGML.” Master thesis, Karlsruhe: Karlsruhe Institute of
Technology.

Kuper, P. V. 2010. “Entwicklung einer 4D Objekt-Verwaltung für die Geodatenbank DB4GeO.” Diploma
thesis, Osnabrück: University of Osnabrück.

Langran, G., and N. R. Chrisman. 1988. “A Framework For Temporal Geographic Information.”
Cartographica: The International Journal for Geographic Information and Geovisualization 25
(3): 1–14.

Lautenbach, S., and J. Berlekamp. 2002. Datensatz Zur Visualisierung Der Zentraldeponie Piesberg in
Osnabrück. Osnabrück: Institut für Umweltsystemforschung, University of Osnabrück.

Lester, M. 1990. “Tracking the Temporal Polygon: A Conceptual Model of Multidimensional Time for
Geographic Information Systems.” In Proceedings of the The Temporal Workshop, NCGIA,
edited by R. Barrera, A. U. Frank, and K. Al-Taha. Orono.

Lévy, B., and J.-L. Mallet. 1999. Cellular Modelling in Arbitrary Dimension Using Generalized Maps.
Technical report. ISA-GOCAD (Inria-Lorraine/CNRS).
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.1323.

Lévy, B. 2000. “Topologie Algorithmique Combinatoire et Plongement.” PhD thesis, Centre National de
la Recherche Scientifique.

Lienhardt, P. 1989. “Subdivisions of N-Dimensional Spaces and N-Dimensional Generalized Maps.” In
Proceedings of the Fifth Annual Symposium on Computational Geometry, 228–36. SCG ’89.
New York, NY: ACM.

Mäntylä, M. 1988. An Introduction to Solid Modeling. Rockville, Md: W.H. Freeman & Company.
Münchener Rück. 2004. “Erneuerbare Energien. Versicherung einer Zukunftstechnologie.”

files.globalmarshallplan.org/muenchner_rueck_20040601_de.pdf.
Open Geospatial Consortium. 2008. “OpenGIS® City Geography Markup Language (CityGML)

Encoding Standard.”
———. 2011. “OpenGIS Implementation Specification for Geographic Information - Simple Feature

Access - Part 1: Common Architecture.”
Ott, T., and F. Swiaczny. 2001. Time-Integrative Geographic Information Systems - Management and

Analysis of Spatio-Temporal Data. Heidelberg: Springer.
Patenge, K. 2010. “Oracle Spatial Goes Standard.” presented at the DOAG SIG Spatial 2010.
Peuquet, D. J. 1984. “A Conceptual Framework and Comparison of Spatial Data Models.”

Cartographica: The International Journal for Geographic Information and Geovisualization 21
(4): 66–113.

Picavet, V. 2010. “State of the Art of FOSS4G for Topology and Network Analysis.” presented at the
FOSS4G 2010, Barcelona. http://2010.foss4g.org/presentations/3555.pdf.

Polthier, K, and M. Rumpf. 1995. “A Concept for Time-Dependent Processes.” In Visualization in
Scientific Computing, edited by M. Göbel, H. Müller, and P. Urban, 137–53. Heidelberg:
Springer.

Pouliot, J., and F. Fallara. 2007. 3D Geological Model of Porcupine-Destor Fault (north Québec,
Canada) Containing Surfaces and Tetrahedral Solids Built in Gocad©.

Ravada, S., and J. Sharma. 1999. “Oracle8i Spatial: Experiences with Extensible Databases.” In
Advances in Spatial Databases, edited by R. H. Güting, D. Papadias, and F. Lochovsky,
1651:355–59. Berlin, Heidelberg: Springer.

Raza, A., and W. Kainz. 1999. “Cell Tuple Based Spatio-Temporal Data Model: An Object Oriented
Approach.” In Proceedings of the 7th ACM International Symposium on Advances in
Geographic Information Systems, 20–25. GIS ’99. New York, NY, USA: ACM.

Refractions Research. 2012. “Using PostGIS: Data Management and Queries.” PostGIS 1.5.3 Manual.
Accessed March 19. http://postgis.refractions.net/documentation/manual-1.5/ch04.html.

Remmert, R. 1964. “Topologie: Topologische Mannigfaltigkeit.” In Das Fischer-Lexikon. Mathematik 1,
edited by H. Behnke, R. Remmert, H.-G. Steiner, and H. Tietz, I:307–8. Frankfurt am Main:
Fischer Bücherei.

Rhind, D. W. 1973. “Generalisation and Realism Within Automated Cartographic Systems.”
Cartographica: The International Journal for Geographic Information and Geovisualization 10
(1): 51–62.

Rolfs, C. 2005. “Konzeption und Implementierung eines Datenmodells zur Verwaltung von

zeitabhängigen 3D-Modellen in geowissenschaftlichen Anwendungen.” Diploma thesis,
Osnabrück: University of Osnabrück.

Royer, J.-J. 2004. “3D Modeling and Visualization.” In Proceedings of the 9th International CODATA
Conference: Data Visualization–Earth and Geo Science, 7–10. Berlin.

Santilli, S. 2011. “Topology with PostGIS 2.0.” PostgreSQL Sessions. PostGIS Day Paris 2011
Conference. http://www.postgresql-sessions.org/2/sandro_santilli_-_topology_with_postgis_2.0.

Schaeben, H., M. Apel, K. G. v. d. Boogaart, and U. Kroner. 2003. “GIS 2D, 3D, 4D, nD.” Informatik-
Spektrum 26 (3): 173–79.

Schildt, H. 2011. Java The Complete Reference. 8th ed. New York City: McGraw-Hill Osborne Media.
Sester, M., C. Heipke, R. Klein, and H.-P. Bähr. 2008. “Editorial: Abstraktion von Geoinformation bei der

multiskaligen Erfassung, Verwaltung, Analyse und Visualisierung.” Photogrammetrie,
Fernerkundung, Geoinformation 2008 (3): 153–55.

Shoham, Y., and N. Goyal. 1988. “Temporal Reasoning in Artificial Intelligence.” In Exploring Artificial
Intelligence: Survey Talks from the National Conferences on Artificial Intelligence, edited by H.
E. Shrobe, 419–38. San Francisco, CA: Morgan Kaufmann Publishers Inc.

Shumilov, S., A. Thomsen, A. B. Cremers, and B. Koos. 2002. “Management and Visualization of Large,
Complex and Time-Dependent 3D Objects in Distributed GIS.” In Proceedings of the 10th ACM
International Symposium on Advances in Geographic Information Systems, edited by A. Voisard
and S.-C. Chen, 113–18. GIS ’02. New York, NY, USA: ACM.

Siebeck, J. 2003. “Concepts for the Representation, Storage, and Retrieval of Spatio-Temporal Objects in
3D/4D Geo-Information-Systems.” PhD thesis, Bonn: Rheinische Friedrich-Wilhelms-
Universität.

Snodgrass, R., and I. Ahn. 1985. “A Taxonomy of Time Databases.” In Proceedings of the 1985 ACM
SIGMOD International Conference on Management of Data, 236–46. SIGMOD ’85. New York,
NY, USA: ACM.

Thomsen, A., and M. Breunig. 2007. “Some Remarks on Topological Abstraction in Multi Representation
Databases.” In Proceedings of 3rd Internat. Workshop on Information Fusion and Geographical
Information Systems IF&GIS-07, St. Petersburg, edited by V. V. Popovich, M. Schrenk, and K.
V. Korolenko, 234–51. Berlin, Heidelberg: Springer.

Thomsen, A., M. Breunig, E. Butwilowski, and B. Broscheit. 2008. “Modelling and Managing Topology
in 3D Geoinformation Systems.” In Advances in 3D Geoinformation Systems, edited by P.
Oosterom, S. Zlatanova, F. Penninga, and E. M. Fendel, 229–46. Lecture Notes in
Geoinformation and Cartography. New York, NY: Springer Science+Business Media.

University of Chicago Press, ed. 2010. The Chicago Manual of Style: The Essential Guide for Writers,
Editors and Publishers. 16th ed. Chicago: University of Chicago Press.

Wachowicz, M. 1999. Object-Oriented Design for Temporal GIS. London: Taylor & Francis.
Waldura, R. 2007. “Dijkstra’s Shortest Path Algorithm in Java.”

http://renaud.waldura.com/doc/java/dijkstra/.
Weiler, K. 1985. “Edge-Based Data Structures for Solid Modeling in Curved-Surface Environments.”

IEEE Computer Graphics and Applications 5 (1): 21–40.
———. 1988. “The Radial Edge Structure: A Topological Representation for Non-Manifold Geometric

Boundary Modeling.” Edited by M.J. Wozny, H.W. McLoughlin, and J.L. Encarnaçao.
Geometric Modeling for CAD Applications, 3–36.

Weisstein, E. W. 2014. “Cell.” MathWorld - A Wolfram Web Resource. Accessed December 1.
http://mathworld.wolfram.com/Cell.html.

———. 2015. “Möbius Strip.” Text. Wolfram MathWorld. Accessed April 6.
http://mathworld.wolfram.com/MoebiusStrip.html.

———. 2010. “Simplicial Complex.” Text. MathWorld - A Wolfram Web Resource. Accessed July 22.
http://mathworld.wolfram.com/SimplicialComplex.html.

Worboys, M.-F. 1994. “A Unified Model for Spatial and Temporal Information.” Computer Journal 37
(1): 26–34.

Subject Index

Big cells...
Big cell..........................41, 60, 63, 105, 148p.

CAD..XIII
Cell-tuple..XIII
CellTuple IX, XII, 30pp., 42, 44, 53p., 58, 62pp.,

72, 74pp., 79pp., 85pp., 106, 110pp., 117p.,
120pp., 131, 144, 147p., 150, 156p.

CityGML...VIIp., 163
Computer Aided Design. .4p., 8, 10, XIV, 25, 30,

36, 153
Computer Generated Imagery..........XIII, 15, 163
Database..

Database II, 6, 22p., 31, 45, 49, 53p., 99, 123,
145p.

Database Management System...6pp., 10p., 13p.,
19, 145p., 161

Date...
Date..3, 51, 136

DB3D.............................1, VIIIpp., XIV, 29, 47p.
DB3D.................................1, 9p., XIV, 29, 48

DB4GeO..
DB3D.......................1, VIIIpp., XIV, 29, 47p.
DB4GeO.....1pp., VIpp., 14, 24, 29p., 38, 44,
46pp., 54pp., 68pp., 73pp., 80p., 85, 89, 93,
95, 114, 117, 123, 128pp., 133, 137, 140pp.,
147pp., 151pp., 157, 159, 163
DB4GeO..123

DB4GeO Kernel...VIp., X, 56, 68p., 73pp., 80p.,
89, 140, 142pp., 147pp., 151pp., 157

DEM...XIII
Digital Elevation Model..............................25, 27
Digital Landscape Model........XIII, 17, 36, 146p.
Exploration and Production Industry......3p., XIII
EXtensible Mark-up Language. .10, XIIIp., 152p.
G-Maps...............................32, 54p., 60, 105, 111
G-Maps Database...XIII
Geo-DBA......................1p., VII, 12p., 128, 145p.
Geo-Object..

Geo-object....II, VIII, 12, 15p., 21pp., 29, 31,
36pp., 45pp., 49pp., 56pp., 72, 76, 83, 129p.,
132pp., 137pp., 142pp., 148, 151pp.

Geography Markup Language VIIp., 10, 13p., 16,
75, 152p., 163

Geoinformation.. .2pp., VIpp., 18, 20p., 25p., 28,
38, 52, 54, 123, 147, 159, 161, 163, 165

GIS..

GIS3p., VIpp., 11pp., 20p., 26, 28, 38, 52, 54,
147, 159, 161, 163, 165

Gocad..XIV, 161, 163
Hyper Text Transfer Protocol...................11, XIII
Iterator...........III, 96, 98, 100, 103, 106, 109, 149
LandXplorer..................................VIII, 13p., 153
Largest Homogeneous Cell......................XIII, 39
LoD..........II, VI, VIIIpp., XIII, 15pp., 36, 38pp.,

123pp., 146p., 150
Level of Detail..XIII

Multiple Representation Database System...XIII,
15pp., 36pp., 44, 159

Multiple Topological Representation XIII, 38pp.,
147

Open Geospatial Consortium.............7, 13p., 159
Orbit....................................VII, 80, 95p., 98, 108
Paradigm Gocad..........4p., VIII, 10, 36, 153, 163
ParaViewGeo.....................................X, XIV, 153
Piesberg....VIIp., Xp., 25pp., 128, 136p., 150pp.,

163
Progressive Mesh Representation. XIII, 37p., 147
Simplicial Complex....VIII, 14, 28pp., 39, 50pp.,

56, 58, 71, 77, 129, 132, 141, 148p., 152p.,
165

Space. VIII, 18, 21, 23p., 28p., 38, 43, 45, 47pp.,
54, 66, 71, 88, 96, 147p.

Spatio-Temporal..
Spatio-temporal...IIp., VIIIpp., 18pp., 28, 31,
45pp., 51pp., 128pp., 146pp., 151p.

Spatio-Temporal Geo-Object..............XIII, 47, 55
Spatio-Temporal Object......................XIII, 47, 55
Structured Query Language.....7p., XIIp., 31, 54,

159, 161, 165
Temporal GIS..165
Temporal Joint Model..........IIp., VI, X, 49p., 52,

128pp., 151p.
Time...

Time 6, VIII, 10, 18pp., 39, 45pp., 59, 65, 69,
75, 93, 99, 129pp., 135pp., 141, 145, 147p.,
152

Topology Module. II, VIp., IXp., 55p., 58pp., 62,
64, 66pp., 73pp., 81, 85p., 95p., 101, 110p.,
116, 121, 123, 128pp., 136, 140pp., 148pp.

Virtual Reality Modelling Language. .10, XIII, 26
Winged-Edge Data Structure...................7p., XIII

	Glossary
	Directory of Utilized Software Tools
	1 Introduction and Related Work
	1.1 Scope, Style, and Outline
	1.2 Motivation
	1.2.1 Geological Modelling in Practice
	1.2.2 Introducing DBMS for the Management of Geoscientific Data
	Topology in Industry-Scale Geo-DBMS
	PostgreSQL Topology Add-In for the Management of Geological Data
	DB4GeO for the Management of Geoscientific Data

	1.3 A Generalized Geo-Model for the Integrated Modelling of Geoscientific and GIS Data
	1.4 Abstraction of Geodata
	1.4.1 Early Research on Abstraction of Geodata
	1.4.2 Difficulties in Automated Geodata Abstraction

	1.5 Spatio-Temporal Geodata
	1.5.1 An Example of Spatio-Temporal Modelling in City Planning
	1.5.2 Early Research on Spatio-Temporal Modelling and its Objectives
	1.5.3 Basic Considerations on Spatio-Temporal Modelling

	1.6 Remarks on Suitable Spatio-Temporal Testdata

	2 Topological Concepts of Spatio-Temporal Data Modelling
	2.1 Geometry Model as Basis for the Topological Model
	2.2 Limitations of Navigation on the Geometry Model
	2.3 Cell-Tuple Structure and Generalized Maps
	2.3.1 Cell-Tuple Structure and Adjacencies
	2.3.2 Generalized Maps and Involutions
	2.3.3 Involution Sequences Forming Orbits

	2.4 Managing Geomodels with Multiple Levels of Detail
	2.4.1 Hierarchy Relationships as Links Between LoD
	2.4.2 Progressive Abstraction/Reduction of Geometry
	2.4.3 Generalized Topological Approach on Multiple Representation
	2.4.4 Application of Multiple Topological Representation in Subsurface Modelling
	2.4.5 Using G-Maps for Multiple Topological Representations

	2.5 Modelling the Temporality of Geoscientific Data
	2.5.1 Concepts of Continuous and Discrete Temporality
	2.5.2 TimeStep, an Adaptive Time-Dependent Discretization
	2.5.3 Temporal Point Tube Model of DB4GeO
	2.5.4 Temporal Joint Model of DB4GeO
	2.5.5 Temporal Cell-Tuple Model for Spatio-Temporal-Attribute-Objects

	3 Design and Implementation of a Topology Module for the Modelling of Spatio-Temporal Objects
	3.1 Basic Class Model
	3.1.1 Overview of DB4GeO Kernel
	3.1.2 Extended Module Functionality
	3.1.3 Spatial Cells as Wrappers for Simple Geo-Objects
	3.1.4 Tuples of Spatial Cells
	3.1.5 Basic Properties of the Utilized G-Maps Approach
	Properties of Utilized G-Maps Approach
	Cell Property Identifies Universe Cells
	Non-Manifold Set-Ups
	Minimal Cell Configurations

	3.1.6 Nets of Spatial Cells and Cell Net Builder Architecture
	Cell Net Builder Architecture Class Model
	Cell Net Builder Instantiation Example
	Fitting into Main Inheritance Hierarchy
	Indices of Cell Net Components
	Orientability Check of Net Component by Polarities

	3.1.7 Handling Holes in Cell Net Components
	3.1.8 Object Level and Net Level

	3.2 Constructing Cell-Tuple Structure from DB4GeO Simplicial Complexes
	3.2.1 Framework for Cell Complex Construction
	3.2.2 Creating Cells and Cell-Tuples of a Triangle
	3.2.3 Merging Cells and Cell-Tuples of Faces
	3.2.4 Creating Universe Faces and Object Level Structure
	3.2.5 Constructing Solid Complexes From Tetrahedral Nets

	3.3 Basic Methods of the Topology Module
	3.3.1 Iterating an Orbit
	An Orbit to Be Iterated and to Provide Its Iterator
	Designing an Iterator On an Orbit
	Realisation of hasNext and next method of OrbitIterator
	Orbits With Virtual Cell Barriers

	3.3.2 Traversing Cells with the Help of Cell Iterators
	Designing Cell Iterators
	Concept Details and Implementation Examples
	Cells of Object Level in Cell Iterators
	Tabular Overview of Correlation Between Cell Iterators, Cells and Orbits
	Closure Cell Iterator Classes

	3.3.3 Finding the Shortest Path on a G-Map

	3.4 Methods that Manipulate the Cellular Structure
	3.4.1 Method to Insert a Node on a Face Net Component
	3.4.2 Method to Insert an Edge on a Face Net Component
	3.4.3 Method to Remove Node and Edge From Face Net Component
	Removing Nodes From Edges
	Removing Edges From Faces

	3.5 Management of Levels of Detail of Cell Net Components
	3.6 Implementation of a Geo-DBA For Time-Varying Topologies
	3.6.1 Required Capabilities of a Temporal Topology Module
	3.6.2 Architecture and Model of Temporal Topology Module
	3.6.3 Preparation of Piesberg Dataset

	4 Performance Measurements and Comparisons
	4.1 Construction of Net Components
	4.2 Basic Spatial/Topological Queries
	4.3 Additional Performance Tests

	5 Discussion
	5.1 Summary and Conclusion
	5.2 Outlook
	5.2.1 The Topology Module as Basis for a DB4GeO CityGML Im-/Exporter
	5.2.2 Direct Integration of the Topology Module into DB4GeO Kernel
	5.2.3 Approach to Dimension-independent Cell Model
	5.2.4 Comparison of the Topological Index with Classical Indices
	Bibliography

