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Abstract 

In this paper we present an efficient two-stage hierarchical decomposition 
algorithm aiming at determining economically improved operation 
schedules for residential proton exchange membrane fuel cell micro-
combined heat and power (PEMFC micro-CHP) units and optimising local 
charging of electric vehicles (EV) in the same household. Based on an 
individual short-term load forecasting (STLF) approach (imperfect forecast) 
for households implemented as an adaptive network-based fuzzy inference 
system (ANFIS), a mixed-integer linear program (MILP) and a two-stage 
greedy algorithm are used for determining optimised schedules based on a 
rolling-window approach. The results of the case study performed for eight 
variants in exemplary German households reveal that with both the MILP and 
the algorithmic approach, significant economic savings can be achieved 
compared to the standard heat-led strategy. Compared to the MILP, however, 
the two-stage algorithm has the additional advantage of a reduced computing 

time of only about . Deviations from the MILP solutions are mostly smaller 
than 3 % regarding the annual supply costs. Moreover, the comparison 
between the use of perfect and imperfect demand forecasts quantifies 
additional average losses due to forecasting errors of 2 % and 3.3 % at the 
maximum. Altogether, the algorithmic approach seems to be convincing for 
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real applications in households due to its good results, high reliability, easy 
implementation, and short computing times. The combination of a micro-
CHP unit and an EV is highly synergetic. 

Keywords: OR in Energy, PEMFC Micro-Combined Heat and Power, 

Predictive Scheduling and Optimisation, Mixed-Integer Programming, 

Algorithmic Approach 

 

1. Introduction 

Ongoing extensive research, development, and funding activities 
regarding micro-combined heat and power units (micro-CHP units) are likely 
to enhance their distribution in small and medium-sized households. In 
Germany this is supported by legal measures designed to leverage the 
governmental target of doubling the share of CHP electricity generation from 
about 12 % in 2012 to 25 % by 2020 (Federal Republic of Germany, 2012). 
The target will only be reached if the share of domestic micro-CHP units will 
grow above average compared to large-scale and industrial CHP (Westner 
and Madlener, 2011). To reach this ambitious goal, profitable micro-CHP 
solutions have to be developed. These are also highly efficient in terms of 
emission reduction. With proton exchange membrane fuel cell (PEMFC)-
based micro-CHP units, the coupled generation of electricity and heat allows 
for a more efficient use of primary energy due to their comparably high 
power to heat ratio (ρ). A PEMFC micro-CHP includes a reformer for 
generating hydrogen and a PEMFC for generating electricity and heat (cf. 
Figure 2). While PEMFC systems reach values of ρ ≈ 0.6, other technologies 
like mostly applied gas engines (ρ ≈ 0.4) or Stirling engines (ρ ≈ 0.3) only 
reach lower values (Thomas, 2011; Pehnt and Colijn, 2006). However, 
especially the promising and efficient PEMFC systems suffer from a limited 
operational flexibility (Hawkes et al., 2009) leading to economic 
disadvantages and, hence, to the necessity of special methods to address the 
challenge of reaching economically optimized operation. 

1.1. Problem Setting 

The key advantages of domestic micro-CHP mentioned above are only 
valid, if two important aspects are fulfilled: 
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1. The unit is operated to such an extent only that all thermal energy 
produced can be used in the local building either directly or with the 
help of a thermal buffer storage and 

2. the electricity generated on-site is used by the household to the largest 
possible extent (which also is economically reasonable). 

The legal framework in Germany accounts for these two key requirements by 
funding the whole electricity generated with micro-CHP units via a CHP-
bonus within the first half of the expected lifetime of 20 years, while the co-
produced thermal energy is to be used locally and not allowed to be dumped 
(Federal Republic of Germany, 2012). From the micro-CHP operator’s point 
of view, it is therefore economically reasonable to maximize the own 
consumption rate of self-generated electricity. This is due to the CHP-bonus 
payments and the generated savings that correspond to the electricity 
purchase price (≈ 0.25 e/kWh, estimated conservatively) which are higher 
than the total feed-in tariff (≈ 0.11 e/kWh) paid to the unit’s owner, if the 
electricity produced is fed into the grid. However, most micro-CHP units in 
Germany are still operated in heat-led based modes (cf. section 2), because 
there is a lack of intelligent control algorithms providing for an optimized 
operation with respect to the time-dependent local demand of electric 
energy, which is not necessarily correlated perfectly with the local heat 
demand (particularly in times of low heat consumption). 

Beyond scheduling the operation of a PEMFC micro-CHP unit tailored to 
the temporal characteristics of the local electricity demand, the presence of 
an electric vehicle (EV) which is mainly charged at home can influence the 
unit’s profitability. The latter might possibly become more common due to a 
predicted increasing market share of EV between 3 and 30 % until 2030 (Kay 
et al., 2013). As a result of the vehicle’s commonly high electricity demand 
and long parking times at home, significant degrees of freedom are 
generated, which may be utilized by a load shifting approach in order to 
maximize own consumption of locally produced electricity (Grässle et al., 
2011). The methods used in the following case study take all these case-
specific aspects into account by an integrated modeling approach which 
includes both the optimization of PEMFC micro-CHP operation and the 
charging time of an EV aiming at minimizing a household’s total supply costs. 
To do so, an online optimization of the operating strategy is developed. 
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1.2. Related Work 

Based on the specific problem setting described, we present a concept for 
the determination of improved operating strategies through an auto-
adaptive approach which individually takes each household’s customs into 
account. Standard methods of optimizing the operation of micro-CHP units 
are mostly based on deterministic optimization models, which neglect the 
lack of perfect information in reality (cf. e.g. Oh et al. (2012); Hawkes et al. 
(2006); Pehnt et al. (2012)). Therefore, without additional effort, they are not 
suited for the online optimization of the operating strategy. Extended by an 
adaptive method of load forecasting in the first stage, delivering the most 
likely single realization (so called point forecast) of the short-term 
development of the household’s demand, however, the optimization methods 
may also be used online. Successful works are presented in Wille-Haussmann 
et al. (2010); Thoma (2007) on a more aggregated level and in Collazos et al. 
(2009); Yun et al. (2011); Cho et al. (2009) for single households. The latter 
works, however, are non-generic at least referring to the households 
considered, as they are based on detailed building models which are highly 
complex to implement for every household under consideration. Besides, 
some works (Hawkes and Leach, 2007; Boait et al., 2006) could be identified, 
which try to implement rule-based control, which, however, is also fairly 
limited to the special circumstances assumed in the development process. 
Other authors developed methods for scheduling interconnected fleets of 
micro-CHP units (e.g. Bosman et al. (2012); Hu et al. (2010)) and large CHP 
power plants (e.g. Rong and Lahdelma (2007); Rong et al. (2008a,b)). 

Closely connected to our problem setting is classical literature for unit 
commitment problems, which, however, mostly deals with larger energy 
systems and multiple units with heterogeneous characteristics regarding 
outputs and flexibility, that apply a multitude of different methods (cf. Padhy 
(2004); Sheble and Fahd (1994)). An extensive overview of works focusing 
on the short-term operation planning on cogeneration systems can be found 
in Salgado and Pedrero (2008), where the authors argue that the scheduling 
problem is frequently addressed in the form of a mixed-integer programming 
(MIP) problem. In addition, several works regarding unit commitment can be 
found, which account for demand uncertainties by using multi-stage 
stochastic programming methods separating decisions into long-term 
policies and short-term corrective actions, e.g. Handschin et al. (2006); 
Nowak and R¨omisch (2000); Carøe and Schultz (1998). Due to the 
computational effort, decomposition techniques like those described in 
Carøe and Schultz (1999) are frequently used. More methodological aspects 
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are addressed in Sahinidis (2004); Ruszczynski and Shapiro (2003), for 
example. Further work regarding unit commitment applies stochastic multi-
objective models (Chang and Fu, 1998), chance-constrained programming 
techniques (Ozturk et al., 2004), and multi-objective particle swarm 
optimization (Wang and Singh, 2008). 

 
1.3. Methodological Approach of the Case Study 

An optimized operation of independent decentralized systems, such as 
the PEMFC micro-CHP unit investigated in our case study, is a highly complex 
problem (cf. Kim and Edgar (2014); Rieder et al. (2014) and section 5). 
However, our units are equipped neither with powerful computers nor with 
sophisticated solver software. Hence, our goal is to provide for an 
encapsulated modeling approach which tackles the problems described in a 
computationally manageable way without requiring additional computing 
power and also satisfying the need of incorporating demand uncertainties. 
The methodological approach used in our case study focuses on applicable 
integrated methods to find a cost-minimized schedule for both the operation 
of a given domestic PEMFC micro-CHP unit and the charging of an EV. In a 
preliminary step, this is achieved by load forecasting for each individual 
household and deterministic optimization methods based on these 
individual point forecasts. The methodological approach is also outlined in 
Figure 1. 

1.3.1. Short-term Load Forecasting Approach 

The first task is to address household-specific demand uncertainties, 
which is achieved by using a short-term load forecasting (STLF) approach 
based on the neuro-fuzzy model ANFIS (Adaptive Network Based Fuzzy 
Inference System) (Jang, 1993). It is aimed at overcoming the lack of perfect 
information regarding near-future (day-ahead) demand patterns in reality 
by daily generating household individual (thermal and electric) point 
forecasts based on both historic data and exogenous influencing factors 
(weather, type of day, holiday indicator, etc.). Hence, the STLF approach 
addresses the uncertainties already in a preliminary stage, which keeps the 
following optimisation manageable even in highly decentralized systems 
with low computing power and avoids the use of computationally expensive 
stochastic programming methods which would also cause the forecasting 
procedure to be much more complex. Our problem-specific implementation 
of ANFIS is described in Sch¨onfelder et al. (2012). Various other works 
successfully use ANFIS (cf. e.g. Ying and Pan (2008); Yun et al. (2008)) or 
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other methods, such as neural networks (Hsu and Chen, 2003) or support 
vector machines (Pai and Hong, 2005) for STLF purposes, mostly on a more 
aggregated level. 

1.3.2. Optimization of Operation and Charging Schedules 

The second task of our methodological approach is to create the 
optimized operation and charging schedules based on forecasted demand 
patterns. For 

 

Figure 1: Overview of the methodological approach used in our case study 

this purpose, a MILP (cf. section 3.1) is defined and implemented in a rolling 
window optimisation fashion (cf. section 3.2). Due to the common lack of 
sophisticated solver software in embedded systems, an additional 
algorithmic approach is developed, which is easy to implement and less 
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computationally expensive than the optimization approach (cf. section 4). 
Consequently, it is better suited for the direct integration into real 
applications. Both methods integrate (energetic) model-endogenous 
simulation to fix storage levels deviating from reality in case of the 
occurrence of thermal forecasting errors after each iteration. This procedure 
is not necessary in reality, because the actual storage level can be measured 
directly before each iteration of the optimization. Due to the at least near-
optimal solution generated by the MILP, it can also serve as a benchmark for 
the algorithmic approach. Furthermore, both methods can be also used with 
actual demand patterns instead of forecasted ones to define an upper bound 
for achievable savings for both of the optimization methods used 
(benchmark solution). 

1.3.3. Simulation in Order to Consider Operation in Reality 

Final results for each method are obtained in a third step by simulation 
runs in which the application of optimized schedules 2  is simulated using 
actual demand patterns. Therefore, simulation represents the performance 
which could have been reached in an actual application. The simulation also 
includes rule-based application of short-term corrective actions, such as 
additional use of the backup (peak load) system in case of unforeseen 
thermal shortages or emergency shutdowns of the micro-CHP unit, if the 
thermal buffer storage system is filled unexpectedly, which very rarely 
happens due to forecasting errors (max. five times per year in our analysis). 
Hence, the simulation also represents online control in reality. To further 
improve the accuracy of simulation, actual demand patterns are synthesized 
to a temporal resolution of 1 minute (maintaining the boundary conditions 
given by the real demand patterns and using profiles in high resolution from 
VDI (2008)). This corrects averaging effects due to the use of discrete 
demand data in larger temporal resolution (cf. section 3). 

As a synopsis, the methods are finally compared with respect to their 
economic results within the framework of our case study (cf. section 5). The 
results are additionally assessed with respect to their solutions’ quality 
depending on the method and quality of information (use of actual vs. 

                                                        

2  Schedules are optimised under partly uncertain demand conditions, if forecasted 

demand data are used. If actual demand data are used, the results of the simulation give an 

upper bound for the savings which may be generated by the optimisation method applied. 
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forecasted demand patterns). Section 6 concludes our findings and gives a 
critical review of our work. 

2. Micro-CHP Operating Strategies 

The following section describes different approaches to scheduling 
micro-CHP units and their usability in real applications with the focus on 
PEMFC units. At first, we introduce the heat-led strategy, which serves 
together with equalized EV charging as the reference case in our case study. 

2.1. Heat-led Strategy 

In the case of a heat-led strategy, the operation of the micro-CHP unit is 
solely triggered by the thermal load of the building in which the unit is 
located. Assuming the presence of a thermal storage system, the signal for 
starting the operation of the CHP-unit is the drop of the thermal storage 
temperature below a specified lower temperature limit. Then, the unit works 
until the storage temperature reaches a specified upper limit again. 

The heat-led strategy is the most common operating strategy of micro-
CHP units today (Schönfelder, 2013), as it meets the primary goal of covering 
the household’s thermal demand rather than delivering electricity to it. 
However, the legal situation in Germany favors own consumption of self-
produced electricity in a direct (CHP bonus payment) and an indirect way 
(feed-in tariffs below purchase price of electricity) (Federal Republic of 
Germany, 2012). 

2.2. Cost-minimizing Strategy 

The economically optimized operating strategy is to provide for the 
supply of a local building with thermal energy and electricity at minimum 
total operation costs 3 . The main variables of the optimization are the 
electrical and thermal output power of the micro-CHP unit at each time step 
t within the period under consideration T. Several parameters may be 
defined within an optimization model, such as variable electricity prices and 
feed-in tariffs, varying fuel prices, and technical restrictions of the unit like 
maximum cycles per time period, minimum up- and downtimes, ramp rates, 
and efficiency functions. However, as regards the level of technical detailing, 

                                                        

3 Simply following the local electric load with the electric output power of the microCHP 

unit is, however, not possible due to technical reasons (Thomas, 2011). 
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a good compromise between accuracy of the results and the duration of the 
optimization has to be found in order to allow for an application in reality. 

Apart from the parameters mentioned, the knowledge of the future 
temporal development of thermal and electrical demand of the considered 
household is crucial for the optimization. This is a major problem in practice, 
as these values vary as a function of the day, time, habits of the occupants, 
and many other properties of the household. Due to the lack of information, 
the cost-minimized strategy is often proclaimed in literature (Oh et al., 2012; 
Hawkes et al., 2006) but not yet implemented in practice. Our approach to 
STLF is based on demand patterns forecasted by our neuro-fuzzy model 

 

Figure 2: Outline of the PEMFC micro CHP unit integration 

ANFIS. All parameters of the adaptive nodes are part of the fuzzy inference 
system and modifiable during the learning procedure. As the accuracy of 
STLF increases with decreasing time horizon and term of the learning data, 
one iteration (learning based on recent load profiles and forecast of future 
load profile) per day seems to be suitable for our application. The scope of 
each forecasting iteration is at least 2 days. We use a multi-model approach 
(Hippert et al., 2001) with separate models for each type of day (regular 
working days, Fridays, Saturdays, Sundays, holidays). Training is based on 
historic data collected iteratively after the system’s installation. The scope of 
the training data set was determined by sensitivity analyses and is 12 days of 
the same type per model in our examples. More detailed information on our 
forecast model is given by Schönfelder (2013) and Schönfelder et al. (2012). 
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3. Economic Optimisation of the Unit Operation 

The economically optimized operation of the CHP unit under 
consideration is defined to be the strategy with minimal operating costs that 
respects all techno-economic constraints. For the determination of the 
optimal unit operation, we use initially a MILP. The objective function 
comprises all relevant economic factors which are influenced by unit 
operation. The driving force of the MILP is (forecasted) local demand for 
thermal energy and electricity. Further constraints are formulated regarding 
technical properties of the PEMFC micro-CHP unit below. An outline of the 
system is given in Figure 2 and a comprehensive description can be found in 
Schönfelder (2013). 

3.1. Mathematical Description 

The following notations are introduced to formulate the problem. 

Variables 

B1CHP,t ) binary variable for the first (second) operating point of CHP in t 
Bton binary variable indicating unit startup in t 
Btoff binary variable indicating unit shutdown in t 
Btc binary variable for counting operation cycles of CHP 
C total costs for household supply during T [e] 
DtEV electric demand of the EV in t [kWh] 
Fecu,,tu′ 

LTSth,t 

energy/material flow of ec from u ∈ U to u′ ∈ U in t [kWh] 

level of thermal storage TS in t [kWh] 

 energy supply ec in t at node node [kWh] 

Parameters  process efficiency at node u regarding ec maximum count 

of cycles per time period demand for energy carrier ec in time step t 
[kWh] length of each time step t [h] minimum downtime of the unit 
(given as number of timesteps) minimum uptime of the unit (given as 
number of timesteps) 
Pecu,max maximum power at node u regarding ec [kW] 
pec,t price of ec in t [e/kWh] 
ρ power to heat ratio 
σec,type,t subsidy type regarding ec in t [e/kWh] 
Indexes  Nodes 

ec energy carrier  BS thermal backup system 
el electric  D demand node 
fit feed-in tariff  EV electric vehicle 
ng natural gas  CHP PEMFC micro-CHP unit 
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oc own consumption  Gr electricity grid 
sl charging slot (EV)  NG natural gas source 
st start  TS thermal buffer storage 
stp stop Index Sets 
t time step  EC set of energy carriers ec 
tax energy taxes  T set of time steps t 
th thermal  SL set of charging slots sl 
u node  U set of nodes u 

Then the MILP can be formulated as follows. 
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The objective function of the MILP (equation (1)) minimizes the sum of 

all system-relevant costs of the operator in each time step t ∈ T, where T is 

the set of all time steps within the time horizon. Energy flows are denoted as 

Fec,tu,u′, where ec ∈ EC indicates the energy carrier (ng=natural gas, 

el=electricity, th=thermal energy). The model’s nodes to which the 

superscripts u, u′ ∈ U of energy flows refer are NG for the natural gas source, 

Gr for the electricity grid, BS for the backup system, CHP for the PEMFC 

micro-CHP unit, TS for the thermal storage system, EV for the electric vehicle, 

and D for the demand. Time-flexible prices of energy carriers are labeled pec,t 

and specific subsidies from the operation of the unit are referred to as σec,type,t 

(type: oc=own consumption, fit=feed-in tariff, tax=tax savings). The 

operation of the micro-CHP unit is restricted in multiple respects. Besides the 

driving force of covering the thermal demand (constraint (2)), the model also 

has to ensure the coverage of the electrical demand either through local 

production or through the grid (constraint (3)). Concerning the demand 

restrictions, it is to be noted that the electrical demand of a possibly present 

EV DtEV is not a parameter, but a decision variable. Constraint (4) makes the 

model shift the charging process of the vehicle in an optimal manner with 

respect to individual temporal limits of each charging slot sl ∈ SL = {sl1,...,sln} 

while covering the slot demand DslEV . The total charging demand DslEV of each 

charging slot sl ∈ SL as well as the individually associated quantity of time 

steps Tsl are exogenous parameters. 

Thermal demands may be covered directly or through the storage system 
TS. The model has to consider both the upper and lower (energetic) limit of 
the storage level (constraints (6) and (7)) as well as the (dis-)charging rate 

and storage efficiency ( out and ) according to constraint (5). The output 
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power of the thermal storage system is not restricted due to the assumption 
that it is designed to meet the maximum thermal loads in the considered 
household. 

Technical restrictions are defined regarding the power constraints of the 
micro-CHP unit and the backup system (constraint (8)) as well as in terms of 
maximum EV charging power (constraint (9)) for all time steps under 
consideration of time step’s duration ht. Further technical and physical 
constraints are subject to the energy and material balances for all nodes u 
and each energy carrier (constraint (10)). 

A major cost driver is fuel consumption that depends on the operation 
and the efficiency ηtotCHP of the PEMFC micro-CHP and the backup system 
(constraints (11) and (12)). Due to the limited flexibility of PEMFC micro-
CHP units, it is assumed that the unit allows for two fixed operating points 
(for our reference system these are 50 % and 100 % of nominal electrical 
power) apart from being switched off (constraint (13)). For modeling, binary 
variables B1CHP,t and B2CHP,t are implemented. The assumption of a fixed 
relation of electrical to thermal power (power to heat ratio (ρ), constraint 
(14)) leads to the simplification that it is sufficient to limit the process level 
of one output energy carrier only (constraint (15)). Of course, these 
constraints can be adjusted easily when other micro-CHP technologies are 
studied. 

The technological based minimum up- (¯τ) and downtimes (τ) of the 
PEMFC micro-CHP are defined in constraints (18) and (19) with the help of 
the binary variables Bton and Btoff indicating the start (in t = tst) and stop (in t 
= tstp) of the CHP operation (constraints (16) and (17)). Because minimum 
downtimes of the PEMFC micro-CHP are very low (τ = 1) (cf. Wakui and 
Yokoyama (2015)), constraint (19) was never binding. Therefore, we do not 
consider minimum downtimes τ in the following. Additionally, the technical 
restricted maximum number of cycles B¯c is considered where one cycle is 
defined as switch-on and complete switch-off (Btc) (constraint (20)). 

3.2. Implementation as Rolling Window Optimisation 

In the real application of the optimization problem defined in the 
previous section, several special circumstances have to be considered. 
Firstly, there is a considerable uncertainty regarding the future demand 
patterns of the household in which the PEMFC micro-CHP unit is located. This 
is addressed via the household individual load forecast (cf. section 2.2). 
However, even when utilizing point forecasting methods, there is only a short 
time horizon in which the demand is approximately known. Second, in case 
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of an implementation of the methods described in an embedded system 
(preferably at low costs), limited computing power must be expected. This is 
mainly due to the goal of not significantly increasing the necessary 
investments for unit control. The solution of both problems is to perform the 
optimization in a repeated manner, e.g. once per day. This leads to 
permanently updated demand data and to a decreasing problem size 
(depending on the time horizon chosen). Technically, this way of optimizing 
corresponds to a time-based decomposition of the global optimization into 
several static sub-problems (Bassett et al., 1996). Other decomposition 
techniques, e.g. disassembling the problem into multiple stages (cf. section 
4), are likely to have higher negative effects, because the interdependencies 
between all parts of the problems are considerably strong. Also the global 
optimization for 1 year would neither be reasonable due to lacking 
information nor practicable, because the number of binaries (more than 
140,000 binaries for one year in quarter-hourly resolution) would exceed 
common computing resources. 

In connection with the given type of problem, there are two different 
ways of time-based decomposition: 

(1) Construct several static and distinct sub-problems, e.g. daily 
optimization with the data of one day, or 

(2) construct several overlapping sub-problems, e.g. daily optimization 
with a time horizon longer than 1 day. 

Alternative (1) corresponds to the so-called myopic optimization (Chu, 
1995; Ball, 2006) which neglects any data beyond the time horizon for which 
the operation is to be optimized. Hence, any influence of future demand 
patterns is ignored, which will obviously lead to suboptimal behavior in the 
sense of the global problem. For example, the optimization might stop CHP 
operation as soon as all remaining thermal loads can be covered by the 
storage system, which leads to thermal shortages at the very beginning of the 
following day. However, in Chu (1995) some other cases are discussed, in 
which a myopic approach does lead to global optimality or at least to the so-
called near-optimality. Another problem of the myopic approach is that a 
small time window might cause infeasibilities although the global problem 
actually has feasible solutions (Bassett et al., 1996). 

Alternative (2) describes the principle of a rolling window optimization 
(also called receding horizon optimization). Every sub-problem comprises 
several days and determines optimal operation for the given time horizon. 
However, only the schedule of the actual day remains as a fixed solution and 
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the subsequent sub-problem will partly overwrite the solution determined 
the day before. Hence, consistency is achieved, because each optimization 
also takes future demand patterns into account (at least to the extent these 
are already known). The principle of rolling window optimization has been 
widely and successfully used in many areas (Li and Ierapetritou, 2010; 
Ovacik and Uzsoy, 1994; Zhang et al., 2007). An extensive overview and 
classification of works on rolling window optimization and control is given 
in Chand et al. (2002). 

4. Two-stage Algorithm for the Determination of Cost-effectiveUnit 
Operation 

Due to the necessity of binary variables in the optimization model, the 
time and algorithmic effort to solve the model increase significantly 
compared to a purely linear problem. As the objective is to provide for an 
approach which is easily transferable to real applications, however, a simpler 
approach is desirably. Moreover, the long-term objective of an embedded 
system at low costs, which schedules the operation of the PEMFC micro-CHP 
unit, is associated with limited computing power and a lack of sophisticated 
solver4software in real applications. Therefore, we developed a two-stage 
algorithm, which allows for the computation of a good operating strategy in 
a daily repeated manner, is easy to implement, and modest regarding the 
necessary computing power. In section 5 the results of both approaches 
(MILP and two-stage algorithm) are compared. Like the MILP, the two-stage 
algorithm can be used as a myopic or n-day rolling window approach (cf. 
section 3). The first stage of the algorithm is to determine an improved 
operation of the PEMFC micro-CHP unit (section 4.1). The second stage 
assigns an economically improved charging strategy for an EV. A complete 
integration of both scheduling tasks (micro-CHP and charging of EV) in one 
single stage is not reasonable in the algorithmic approach, as this would 
significantly increase the iterations necessary to compute a feasible solution. 

The algorithm is designed to use the household individual load forecasts 
based on ANFIS (cf. section 2.2). To also demonstrate the unaltered quality 
of results, however, besides forecasted demand patterns, also perfectly 
known actual data is used in the later analysis. This enables a detailed 
comparison of all variants and, hence, investigating both the influences of 
forecasting errors and the quality of the algorithm in comparison to the MILP. 

                                                        

4 Open-source solvers could, however, be used if sufficient computing power was given. 
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Furthermore, all techno-economic constraints described in section 3.1 are 
fully integrated in the algorithmic approach, although they are partly not 
mentioned again in the following sections. The following notations are used 
in the algorithm. 

b time block of CHP operation PelCHP,t electrical power of CHP at time t 
BtCHP level of CHP-operation PthCHP,t thermal power of CHP at time t 
d set of days per iteration PthCHP,maxmax. thermal power of CHP [kW] 
Dth,t thermal demand in t [kWh] Rt rate of t (Del,t · pel,t) 

 level of thermal 
storage in t [kWh] 
T set of time steps 
t 

4.1. Stage 

1: PEMFC Micro-CHP Operation 

The algorithm’s first stage is designed to determine the daily operation of 
the PEMFC micro-CHP unit and consists of the mathematical implementation 
of rules which are easy to formulate in linguistic form. According to the 
number of days d considered and the applied temporal resolution of 15 
minutes (ht = 0.25h), the count of set members in set T equals to d · 96. 
Furthermore, in all calculations within our case study we use a 2-day rolling 
window (i.e. we consider the actual and the following day). 
However, the algorithm is also compatible with higher 
resolutions, e.g.. 

In the following sections the variable BtCHP represents the operation level 

of the CHP-unit. As valid points of operation, three different levels (0 %, 50 

%, and 100 % of maximum power) are assumed, which are represented by 

BtCHP ∈ {0,0.5,1}. The resulting electricity supply SelCHP,t is then calculated 

depending on the maximum electric power of the unit PelCHP,t and the length 

of the time steps ht (equation 23). Thermal supply SthCHP,t is determined 

accordingly (equation 24). Hence, BtCHP also represents the fraction of fullload 

Del,t electric demand in t [kWh] Rstb rate of block starting with tstb 
DslEV total EV electric demand in sl Rmax highest rate of blocks considered 
DtEV electric demand of EV in t [kWh] SthCHP,t thermal supply by CHP in t [kWh] 
DEV,minmin. EV electric demand for each t SelCHP,t electrical supply by CHP in t [kWh] 
DEV,maxmax. EV electric demand for each t SL set of charging slots in T 
ht length of time step t [h] sl charging slots sl ∈ SL 

LTSth ,max max. level of thermal storage in t tstb first t of block b 
LTSth ,min min. level of thermal storage in t teb last t of block b 
¯τ min. operating time of CHP [h] tstsl first t of slot sl 
pel,t electricity price in t [e/kWh] tesl last t of slot sl 
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operation in time step t. The number of full-load hours can therefore be 

computed as 

 

The first step of the algorithm is to determine whether the thermal demand 

of the following time steps t ∈ T minus the current thermal storage level does 

exceed the maximum thermal supply of the micro-CHP unit (in equation 25). 

If this is true, the unit is operated at maximum power for the next d · 96 hours 

(equation 26). LTSth,0 is the storage level at the beginning of time step t = 1 and 

LTSth ,min is the minimum level of thermal storage in t. If additional thermal 

energy is needed temporarily, the backup system has to be put in operation 

as well (ensured with the last step of the algorithm). 

 

 

If the first condition is false, there are degrees of freedom in the unit’s 
operation. Hence, the stored operational values BtCHP are initialized as zero 
(equation 27). 

Now, it is to be checked whether a t∗ ∈ T ∗ exists, in which a thermal energy 
shortage occurs. Accordingly, the whole considered time period is split up 
into (at least) two parts with part 1 ending in t∗ (cf. expression 31). Now, we 
compute a ranking of the technically valid temporal blocks of operation 
within this first part equal to the minimum operation time ¯τ (given as a 
number of time steps). The minimum downtime is not binding and therefore 
not considered here. As depicted above, minimum downtimes τ of the PEMFC 
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micro-CHP units are neglected here, as they are not relevant for this 
technology. The blockwise rates Rstb, which are based on the stepwise rates 
Rt, are derived as the sum of all time step’s rates, starting at time step tstb ∈ T˜ 
with T˜ = {t ∈ T|t + ¯τ ≤ t∗} and ending at teb = tstb + ¯τ. The stepwise rates Rt are 
defined as the product of the entire local electricity demand in time step t and 
the (possibly time-dependent) electricity price pel,t. This considers already 
the simplified equalized electricity demand by EV during the charging slot 
(SL starting at time step tstsl and ending at tesl) (cf. expression 34). This way of 
deriving the stepwise rates ensures the compatibility of the algorithm with 
time-flexible electricity prices. Based on the block ranking of all eligible 
blocks in this first part of the considered time period, we choose the best 
rated one (maximum rate) to run the micro-CHP unit (expressions 32-37). 
Hence, the variable BtCHP, indicating the operation level of the unit, is 
increased for the best rated block beginning in time step tstb (BtCHP is 
restricted to a maximum value of 1). Then, the values of BtCHP are stored to 

Bˆ
tCHP and the procedure is repeated iteratively. The rates and ranks are 

updated before the next iteration until no further shortage occurs or no 
further degrees of freedom exist. The algorithm is not only able to add new 
blocks of operation, but also to extend those blocks already planned in 
previous steps (which then means a block of operation longer than ̄ τ). In case 
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of missing degrees of freedom, the backup system is used to provide the 
thermal energy lacking (determined in the last step of the algorithm). 
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The following step of the algorithm (expressions 38-43) is applied, if no or 
no further thermal energy shortage occurs but the minimum total operating 
time is not yet reached and, hence, degrees of freedom still exist. This step is 
especially relevant, if high degrees of freedom exist, e.g. in summer months. 
Together with the previous step, this is the key difference to the heat-led 
strategy commonly used today. 

In this situation, where the minimum total operating time is not yet 
reached, a block ranking is calculated again. However, now the entire time 
horizon is considered. Based on the ranking, those operating times are 
preferred, which promise a high rate of own consumption of locally produced 
electricity or which have the highest ranking based on time-flexible 
electricity prices. This is equivalent to the goal of economic improvements 
from the investor’s point of view. 

Once more, an iterative approach is selected to supplement the blocks of 
operation with further time steps or to add whole blocks of operation. The 
iteration ends as soon as the minimum operating time, necessary to cover the 
heat demand of the considered days, is reached. 

 

then calculate for all t ∈ T the corresponding rates Rstb 
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In the last step of the first stage all remaining thermal shortages are treated 
through the operation of the backup system. Furthermore, it is checked 
whether one or more time steps t¯exist, in which the maximum thermal 
storage level LTSth ,max is exceeded. In this case, the operation of the PEMFC 
micro-CHP unit is adapted accordingly. In an iterative approach the 
algorithm sanctions the time steps t ≤ t¯ with the lowest stepwise rates so 
that the operation is shifted to the time after the storage level is exceeded. By 
a repetition of the algorithm’s first stage, the validity of the new solution is 
ensured. 

After the completion of the algorithm’s first stage, the second one is 
applied to determine an improved charging strategy for the EV compared to 
the equalized strategy assumed in algorithm one. This second stage is 
described in the following section. 

4.2. Stage 2: EV Charging 

Monotonous charging of the EV (i.e. charging the required electricity 
during the whole parking time at constant (low) load) assumed in the first 
stage of the algorithm is not necessarily economically advantageous. 
However, a simultaneous determination of optimal operation of the micro-
CHP unit and optimal charging of the EV is highly complex and requires high 
computing time. Hence, a simple stepwise approach is selected on the 
algorithmic level. The first assumption of monotonous charging increases the 
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probability of the unit operating in times when the EV is present. Possible 
degrees of freedom regarding the charging process are generated and now 
utilized with the second stage of the algorithm. 

In the first step of stage 2 the number of charging slots SL in the 
considered time horizon is detected. If the number is higher than zero, the 
limits (begin tstsl and end tesl) of each temporal slot are determined and the 
aggregated electrical demand of the EV DslEV of each slot sl ∈ SL is calculated 
with the assumption of full charging, if possible (equation 45). If |SL| = 0, the 
algorithm ends, because either the household is not equipped with an EV or 
the EV is not present in the considered time horizon or there is no need for 
charging, because the battery already is fully charged. Again, for algorithmic 
reasons, the slot demands are stored in the auxiliary variables DˆslEV . 

 
 

The second step of the algorithm calculates the times to charge the EV for 
every slot sl in a way which maximizes the own consumption of the locally 
produced electricity SelCHP,t in each time step t ∈ {tstsl,...,tesl}. Potentially time-
flexible electricity prices are only considered, if no further own consumption 
can be generated. This is due to the assumption, that own consumption is 
generally preferable, if possible. The algorithm now plans the charging 
process of the EV with respect to technical constraints, such as minimum and 
maximum charging power (expressed by minimum DEV,min and maximum 
DEV,max energy per time step) as well as in accordance with the requirement 
of charging the vehicle as soon as possible, if no further economic advantages 
can be generated (p′el respresents the lowest possible charging tariff in 
compliance with technical constraints). Again, the algorithm is implemented 
as an iterative approach performed for each charging slot sl ∈ SL according 
to the equations below (expressions 47-53). The iterations are stopped when 
the maximum electricity demand by EV DslEV is satisfied for all charging slots. 
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Since the results of the algorithm are valid integer solutions, they can also be 
used as starting solution for the MILP described in section 3. Usually, this 
accelerates the solution process of the MILP, especially if long time horizons 
for the sub-problems are applied. In contrast to the first stage of the 
algorithm (cf. section 4.1), the second stage (EV charging) assumes a perfect 
foresight for the availability of the EV. The resulting costs could be therefore 
interpreted as a lower bound. 

5. Application and Results 

The application of both the two-stage algorithm and the MILP in our case 
study is to analyze the economic benefits from both methodologies and to 
compare them to the results from the standard heat-led strategy and 
monotonous charging of the EV. Furthermore, we compare the computing 
time of both approaches. For the results of the case study to be perfectly 
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comparable, the analysis is performed both based on forecasted demand 
patterns (based on our STLF approach) and under the assumption of 
perfectly knowing future demand patterns in advance (each in quarter-
hourly temporal resolution). Using forecasted demand patterns as input for 
the optimisation represents the realistic case, while the use of actual demand 
data prevents disturbing influences of possible forecasting errors and allows 
for a principle statement regarding the solution quality of the two-stage 
algorithm. The quality measure is the percentage deviation from the 
benchmark solution which is calculated by solving the MILP. In total, there 
are four different methodological variants to be analyzed per household: 

1. MILP (act): MILP based on actual demand data to calculate a schedule 
representing a benchmark for all other versions, 

2. MILP (fc): MILP based on forecasted demand patterns to present the 

MILP’s results under realistic uncertainty conditions (benchmark for 

4.), 

3. Alg. (act): two-stage algorithm based on actual demand data to 
calculate the best possible schedule delivered by the algorithm (can be 
compared to 1. to evaluate the quality of the algorithm), 

4. Alg. (fc): two-stage algorithm based on forecasted demand patterns 
topresent the algorithm’s results under realistic demand uncertainty. 

The MILPs are implemented in the modeling system GAMS (General 
Algebraic Modeling System (Corporation, 2012)). The solver used is CPLEX 
12.0 (IBM, 2012) which applies the branch-and-cut algorithm for the solution 
of the MILP sub-problems. Every sub-problem includes 2,075 real-valued 
variables, 760 binaries, and 1,592 restrictions. As the proof of optimality for 
MIP problems can be very expensive because they are NP-hard (Karp, 1972; 
Tseng, 1996), we applied a relative optimality criterion oc = 0.01 as a good 
compromise between quality of the solution and computing time. This means 
that an integer-feasible solution with a deviation of 1 % from the actual dual 
bound is accepted as optimal. To illustrate the effects of the selection of the 
optimality criterion, we varied it in a typical application for household 2, as 
presented in Figure 3. While the value of the objective function decreases 
approximately linearly, the computing time ct increases rapidly for very 
small values of the optimality criterion. In our test runs no solution was found 
after 20 hours of computing time with oc < 0.005. Hence, we found oc = 0.01 
to be the best compromise between quality of the solution and computing 
time. We carried out all experiments in a 64 bit Windows 7 environment on 
a 3.3 GHz Quad Core machine with 16 GB of RAM. The computing time with 
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the applied relative optimality criterion oc = 0.01 amounts to about 66 
minutes for the MILP. 

 

Figure 3: Annual supply costs for an illustrative household and computing time for one 
year depending on the relative optimality criterion. 

The rolling window approach (cf. section 3.2) with a time horizon of two 
days shows significantly lower annual supply costs of households as a time 
horizon of one day and only very marginal higher costs as larger time 
horizons. Simultaneously, the computing time and the number of binaries per 
sub-problem both increase linearly with increasing numbers of days 
considered (Sch¨onfelder, 2013). We, therefore, applied the 2-day rolling 
window approach. 

Final results for all variants are derived using the simulation as described 
in section 1.3 and including all additional short-term corrective actions 
necessary due to forecasting errors. To evaluate economic effects, all results 
are compared with those of the standard case of the heat-led strategy. The 
definition of error and quality measures capturing all dimensions of the 
comparison of different variants is given in section 5.2 in connection with the 
results. 

5.1. Assumptions and Data 

Our case study comprises the two exemplary households defined in Table 
1. Each of these households is represented with thermal and electrical 
demand data of 1 year. These two households are chosen to represent the 
main target group of PEMFC micro-CHP units in Germany, namely small and 
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medium-sized households with average heat demand (Federal Republic of 
Germany, 2009). Besides the different sums of yearly electricity demand, the 
yearly heat demand is given per household, which results in slightly differing 
degrees of freedom for the unit commitment. The system specifications of the 
PEMFC micro-CHP unit has been defined before and satisfies all 
requirements (cf. Scho¨nfelder (2013)). The operation of the CHP in both 
households are once optimized with the presence of an EV and once without. 
Its electricity demand is derived from a measured driving profile and 
amounts to 2,549 kWh per year (IIP, 2012). This corresponds to an annual 
mileage of approx. 13,000 km. The mobility pattern is compliant with 
representative German mobility surveys (KIT and TNS, 2012; Infas et al., 
2010). The thermal demand patterns are derived using actual weather data 
from Germany’s meteorological service (DWD) and according to the 
calculation rules from VDI (2008) indicating values with a temporal 
resolution of up to one minute. Electric load profiles were measured in 66 
real German households over one year with quarter-hourly temporal 
resolution (IIP, 2012). Out of this data set we selected two profiles matching 
the average annual electricity demand of households of the considered size. 
Furthermore, the variants defined are analyzed both with constant and time-
flexible electricity tariffs. The latter is to demonstrate the optimization 
methods’ ability of utilizing time-dependent differences in electricity prices 
by adapting both the operation and the charging schedule. In total, the two 
different households, the distinction between the presence or absence of an 
EV, and the differentiation of a constant and time-flexible tariff structure lead 
to a total of eight variants (cf. Table 2) which are investigated with two 
different optimization methods (MILP and Algorithm) and two different 
qualities of information (actual and forecasted demand patterns). 

Demand forecasting with the ANFIS model (cf. section 2.2) results in 
overall median absolute percentage errors (MdAPE) of MdAPEel,hh1 = 13 % 
and MdAPEel,hh2 = 22 % for the electrical forecasts and MdAPEth ≈ 15 % for 
both thermal forecasts. Compared to STLF on an aggregated level, these error 
values, which also nearly represent the range of errors in the whole case 
study considering four households in total5, are not completely satisfying. 
However, they are due to the highly fluctuating demand structure of single 
households and, hence, have to be judged according to these special circum- 

Table 1: Definition of two test households with hh2 being better insulated than hh1. 

                                                        

5 The worst MdAPE is about 29 % for the electrical demand forecasts. 
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   Heat demand Electricity demand 

Household Living space Residents per year per year 

hh1 90 m2 2 13,538 kWh/a 2,845 kWh/a 

hh2 120 m2 3 10,891 kWh/a 4,385 kWh/a 

stances. Nevertheless, the following analyses will show that the forecasting 
quality is good enough to allow for major improvements in the operation of 
the micro-CHP unit. This is mainly due to the fact that exactly meeting 
absolute values is not as important as correctly anticipating rough times of 
high household demand in our application. Yet, it is clear that positive effects 
are finally dependent on the overall forecasting quality. Certainly, there are 
households in which the proposed methods fail when they are not adapted 
to special circumstances. For example, this could be necessary in shift 
workers’ households with a stochastic shift distribution. Further limitations 
of our approach are discussed in section 6 in the form of a critical review. 

The reference system considered for both households is a PEMFC-based 
micro-CHP unit with a maximum electric power of 1.2 kWel. The system’s 
output power is chosen to fit the annual thermal demand of both houesholds, 
resulting in approx. 5,000 annual full load hours. This corresponds to well-
established dimensioning rules for fuel cell-based micro-CHP units in 
Germany (Thomas, 2011). The PEMFC unit used in our case study is highly 
efficient compared to other technologies like CHP systems based on gas 
engines for example, but still suffers from its high price and its limited 
flexibility which is mainly due to the necessity of decentralized conversion of 
natural gas into hydrogen (Thomas, 2011; Pehnt et al., 2012). This is reflected 
by a minimum operation time which is assumed to be 2 hours (= 8 time steps) 
as well as by fixed operating points at 0, 50, and 100 % of the nominal power. 
The overall efficiency of the unit is ηchp = 0.91. As described above, household 
electricity prices are estimated conservatively and assumed to be either 
constant over the entire time horizon (pel,t = 0.25 e/kWh ∀t ∈ T) or time-
dependent (pel,t ∈ {0.18,0.25,0.32} e/kWh) with a tariff structure inspired by 
Gerpott and Paukert (2013) and exogenously given depending on the 
residual grid load (grid load minus feed-in of non-controllable renewable 
energy sources). The latter tariffs are likely to become more common in the 
near future due to the necessity of better integrating fluctuating feed-ins 
from renewable energy sources (Hirsch et al., 2010). Other economic 
parameters like natural gas prices (png = 64.3 e/MWh) or CHP bonus 
payments (σel,oc = 0.0541 e/kWh) (Federal Republic of Germany, 2012) 
correspond to current market values for residential customers in Germany. 
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5.2. Numerical Results 

The following sections describe numerical results for the two illustrative 
households defined in Table 1. Computing times for the MILP and the 
algorithmic approach are rather constant for all scenarios due to similar 
problem sizes. The differences between energy economic values are, 
however, substantial. 

5.2.1. Yearly Absolute Savings due to the Optimisation 

The absolute values of the results given in Table 2 show that the coupled 
generation of heat and electricity is advantageous for both households 
considered, even with the heat-led strategy compared to the uncoupled 
supply (Cuc, representing household supply with electricity solely from the 
grid and thermal energy from a decentral heating based on natural gas). 
However, this does not guarantee any positive net present value (NPV) in 
total, because only operational costs, but not the investments are considered 
in this analysis. Furthermore, the analysis reveals that the schedules 
determined by the MILP or by the two-stage algorithm result in lower annual 
costs than in case of the heat-led strategy. Obviously, the positive effects 
strongly depend on the degrees of freedom in the unit commitment. The 
slightly lower total thermal energy demand of hh2 combined with its higher 
electricity demand results in the possibility of larger improvements than in 
hh1. Consequently, slightly oversized units will profit more from the 
optimization, while undersized units might be better driven heat-led, 
because no significant improvements are to be expected. Summing up the 
results of our case study with the well-dimensioned system, yearly savings 
(∆C) of about 7.5 to 16.9 % are possible, which mainly depends on the 
method and the quality of information (actual vs. forecasted data) used. Here, 
all short-term corrective actions (determined in the simulation of the 
schedules) which would have been necessary in a real application are already 
included. For example, for hh2 and the schedule derived by the algorithmic 
approach based on forecasted demand patterns, the simulation calculates an 
increase of the backup system’s application due to thermal forecasting errors 
of approx. 5 % compared to the value originally stated by the two-stage 
algorithm. Furthermore, compared to unaltered algorithmic results (where 
forecasts are assumed to be 
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Figure 4: Developed and applied error measures. The values of π and ϵ are defined as 
relative values as defined in the equations 55a,b and 56a,b. 

correct), the simulation shows increasing electricity purchase from the grid 
of approx. 7 % which results in an equivalent unexpected feed-in of locally 
produced electricity and, hence, a decrease of own consumption. The latter 
is the main reason for the difference of economic results between 
optimisation based on actual and forecasted demand patterns. 

5.2.2. Assessment of Scale-transformed Results 

 

Beside absolute values, Table 2 also provides energy economic performance 
indicators regarding the scale-transformed (percentage scale) loss of the 
solution’s quality due to the use of a non-optimal algorithm and due to 
forecasting errors. The latter also includes economic impacts of all short-
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term corrective actions described above. Consequently, error measures are 
introduced as depicted in Figure 4. Starting point for the calculation of the 
change of annual costs (∆C) is the reference case of heat-led strategy. ∆C is 
given separately for each combination of method and quality of information. 
The loss due to forecasting errors is expressed by π as a percentage for both 
methods. However, the comparison of πMIP and πAlg does not necessarily 
reveal whether one of the two methods handles forecasting errors better 
than the other due to the different reference values. Nevertheless, it gives 
interesting information on each method’s individual sensitivity to the 
forecast errors. The third error measure ϵ is defined relatively to the MILP 
solution serving as a benchmark for the given quality of information. ϵact and 
ϵfc express to what an extent the annual costs calculated in the simulation of 
the schedule determined by the algorithm deviate from the corresponding 
value of the MILP schedule. Together, π and ϵ explain the overall loss due to 
imperfect information on future demand patterns and the non-optimal 
solution of the two-stage algorithm. Furthermore, a measure ζ is used to 
evaluate the overall goal achievement of one method relative to the ex-post 
optimal solution given by the MILP’s solution based on actual demand data. 
Mathematical definition of all measures mentioned is given in the following 
set of equations. 

The values of πMIP range between 1.2 and 4.0 %, while πAlg lies between 0.52 
and 3.0 % (cf. Table 2) and therefore the two-stage algorithm perform similar 
with forecasting errors than the MILP. However, due to its non-optimal 
solution in general, its total performance is, as expected, slightly worse than 
for the MILP. The latter is expressed by the values of ϵact between 1.1 and 3.8 
% and ϵfc ranging between 0.64 and 2.94 %. The presence of an EV increases 
these differences because the two-stage algorithmic planning approach is, 
compared to the MILP, less able to take interdependencies between CHP 
scheduling and EV charging into account. While the relative goal achievement 
of the algorithm is at least closer to the result of the MILP than to the heat-
led strategy (ζAlg,fc between 64.3 and 80.7 %), the value is considerably higher 
for the perfect foresight scenario (ζAlg,act between 81.05 and 90.78 %). The 
average computing time on a desktop computer could be reduced from about 
66 minutes for the MILP (cf. section 5) to about four minutes for one year 
optimization on the average for the algorithm for all eight variants 
considered. Even though the computing time might be somewhat higher for 
low-cost embedded systems, our approach seems to be very promising for 
real applications. 
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Comparing the standard case of the heat-led strategy and the operation 
based on the algorithmic optimization on a monthly basis in hh2 with the 
assumption of a constant tariff, it becomes obvious, that the amount of 
electricity produced each month strongly depends on the corresponding 
thermal demand which directly determines the maximum time of CHP 
operation. A rough classification of the months leads to three substantially 
different phases 

Table 2: Comparison of the energy economic results for different methods and different 
qualities of information (actual=using actual demand patterns, forecasted=using forecasted 

demand patterns). End of the funding period according to Germany’s CHP Act (Federal 
Republic of Germany, 2012) is marked as y∗. 

 
 
Cuc: annual costs of uncoupled supply; C(y ≤ y∗)/C(y > y∗): annual costs before/after the end of funding period (10 

years of bonus payments according to CHP act (Federal Republic of Germany, 2012)); ∆C: change of C(y ≤ y∗) 

compared to heat-led operation; ∆NPV: change of NPV compared to heat-led operation; φel,tot: fraction of the 

household’s total el. demand covered by the micro-CHP unit; φel,prod: fraction of the micro-CHP’s total el. production 

used locally. 
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which are mainly weather-dependent. The first one is the winter period with 
a high thermal demand, mainly due to the requirement of heating the 
household. The micro-CHP unit normally operates at full power throughout 
this period. There are hardly any degrees of freedom to be exploited by the 
optimization, which is why only few positive effects can be generated. 
Another period in which the optimization is barely able to generate 
improvements is the summer period. This is due to a thermal household 
demand near to zero (only for warm water), which means that the CHP-unit 
is hardly run and, hence, does not produce much electricity. The third period 
may be classified as transition period and is characterized by constantly 
decreasing (between winter and summer) or increasing (between summer 
and winter) thermal demand. This period provides significant degrees of 
freedom regarding the operation and, hence, the potential for generating 
positive effects in terms of increasing the share of own consumption (marked 
as φel,prod in Table 2). Furthermore, the presence of an EV seems to have 
positive effects on the own consumption rate in all seasons due to the 
increase of the household’s total electricity demand. 

6. Conclusions and Critical Review 

We presented a case study based on a comprehensive approach to 
determining improved residential PEMFC micro-CHP operating strategies. 
As information about the short-term local demand patterns is imperfect in 
real applications, we used an STLF model (cf. section 2.2). It is based on 
ANFIS addressing the demand uncertainty in a first stage via so-called point 
forecasts representing the most likely realization of the short-term local 
demand. Subsequently, both an MILP and a two-stage algorithmic method 
were presented. They use the point forecasts to derive economically 
optimized schedules in a rolling window optimization fashion. Hence, we 
address demand uncertainty by load forecasting instead of using stochastic 
programming, as it is more realistic for real applications. The schedules 
derived in a daily repeated manner are then analyzed in a simulation using 
actual demand patterns in a temporal resolution of one minute to derive all 
necessary short-term corrective actions and, hence, the performance which 
could have been realized in the real application. The results obtained with 
the schedule generated by the algorithmic approach in our case study mostly 
deviated by less than 3 % from those of the MILP’s integer optimal solution 
and computing time could be reduced by a factor of 15. Furthermore, the 
two-stage algorithm might have further advantages in being implemented in 
current PEMFC micro-CHP units and not to be dependent on sophisticated 
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hardware and solver software and therefore operating more reliable than 
MILP based systems during the unit lifetime of about 20 years. 

However, the absolute advantages generated by both approaches 
compared to the standard case of heat-led operation strongly depend on the 
individual household’s characteristics. If only few degrees of freedom in unit 
operation exist, it might be easier to apply the heat-led strategy (e.g. in winter 
months). Nevertheless, especially in transition periods and with the presence 
of an EV, the methods developed yield significantly improved solutions. For 
example, for an illustrative household in our case study, overall discounted 
savings of approximately 2,500 e were reached compared to the heat-let 
strategy using forecasted load patterns under the assumption of time-flexible 
electricity prices. This is equivalent to nearly twice the current governmental 
funding for PEMFC micro-CHP units at 1.2 kWel in Germany (BMUB, 2012), 
while the electricity prices used in our case study were estimated very 
conservatively. As the results are quite sensitive to the electricity price, 
increasing prices will further enhance the positive effects achieved. 

It should be noted that the effects achieved by the application of the 
methods used depend on the quality of the forecast demand patterns. In turn, 
the quality of the forecast strongly depends on the individual household’s 
characteristics (Scho¨nfelder, 2013). Certainly, some households are not 
suited for the application due to highly differing demand patterns which are 
not predictable with the STLF models. This may be a household in which all 
residents are shift workers who do not always follow fixed shift plans. The 
analysis also revealed, however, that the rough prediction of household-
specific peak load times often already allows to significantly improve the 
operation of the PEMFC micro-CHP unit. Nevertheless, further enhancement 
of the forecast quality is likely to intensify positive economic effects. The 
upper bound of these positive effects is given by the assumption of perfectly 
knowing the actual demand in advance. 

Another weakness of the developed methods is the fact that the results 
obtained, even if they are positive, do not necessarily mean that the 
installation of a PEMFC micro-CHP unit generally is economically 
advantageous compared to uncoupled supply. Moreover, due to the case 
study character of our investigation, the results are not necessarily 
generalizable. 
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