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By using the GRACE-Loop system, we calculate the full O(α) electroweak radiative corrections to the 
process e+e− → e+e−γ , which is important for future investigations at the International Linear Collider 
(ILC). With the GRACE-Loop system, the calculations are checked numerically by three consistency tests: 
ultraviolet finiteness, infrared finiteness, and gauge-parameter independence. The results show good 
numerical stability when quadruple precision is used. In the phenomenological results, we find that 
the electroweak corrections to the total cross section range from ∼−4% to ∼−21% when 

√
s varies 

from 250 GeV to 1 TeV. The corrections also significantly affect the differential cross sections, which 
are a function of energies and angles of the final state particles. Such corrections will play an important 
role in the high-precision program at the ILC.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The goals of the International Linear Collider (ILC) are not only 
to precisely measure the properties of the Higgs particle, the top 
quark, and vector boson interactions but also to search for physics 
beyond the Standard Model. The high-precision measurements are 
expected to have a typical statistical error of less than 0.1%. This 
requires a very precise determination of the luminosity.

At the ILC, the integrated luminosity is measured [1] by count-
ing Bhabha events and comparing the result with the correspond-
ing theoretical cross section:

∫
dt L = Nevents − Nbgk

ε · σtheory
. (1)

In this formula, Nevents (Nbgk) is the number of the observed 
Bhabha events (the estimated background events); σtheory is the 
Bhabha scattering cross section, which is calculated by using the 

E-mail address: khiemph@post.kek.jp (P.H. Khiem).
http://dx.doi.org/10.1016/j.physletb.2014.11.048
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
perturbation theory; ε is the total selection efficiency for the 
events and 

∫
dt L is the integrated luminosity.

A precise calculation of Bhabha scattering is important for 
a high-luminosity measurement, because the determination of all 
other cross sections depend on it. Thus, the one-loop electroweak 
corrections to Bhabha scattering are of considerable interest to 
many researchers. The full one-loop electroweak corrections to 
the e+e− → e+e− reaction were calculated many years ago in 
Refs. [2–5] and confirmed independently in Refs. [6,7]. The cor-
rections contribute significantly to the total cross section; about 
O(10%) at high energy.

It is clear that the high-precision program at the ILC must 
consider the two-loop electroweak corrections to Bhabha scatter-
ing; many researchers have worked at these calculations for many 
years. However, the calculations were mostly performed at the 
level of two-loop QED corrections. To date, full two-loop elec-
troweak corrections are not available. We refer here to several 
typical papers for two-loop QED calculations. A two-loop photonic 
correction to this process was calculated in Refs. [8,9]. In addition, 
two-loop QED corrections that maintain the electron mass in the 
squared amplitude are presented in Ref. [10]. In a later publication, 
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the same group included the soft-photon-emission contribution to 
the differential cross section, as presented in Ref. [11]. We also 
want to mention the calculation of two-loop QED corrections to 
the Bhabha process which involves vacuum polarization by heavy 
fermions of arbitrary mass in Refs. [12,13], two-loop QED cor-
rections related to virtual hadronic and leptonic contributions to 
Bhabha scattering also performed in Refs. [14,15]. An approxima-
tion of the two-loop electroweak corrections to Bhabha scattering 
was computed in Ref. [17]. In this calculation, the authors consid-
ered the dominant logarithmically enhanced two-loop electroweak 
corrections to the differential cross section in the high-energy limit 
and at large scattering angles. Moreover, a two-loop weak correc-
tions contributed from a heavy top quark to Bhabha scattering 
were found in Ref. [18].

The perspectives of the present calculation are as follows: To 
correct the number of Bhabha events, a precise evaluation of its 
background is required. Experiments may misidentify e+e−γ as 
e+e− events because (i) the photon is a hard bremsstrahlung 
photon that can escape the detector, (ii) the photon is a soft 
bremsstrahlung photon that has a small opening angle with re-
spect to the final electron (or positron), or (iii) the photon is 
emitted in parallel to the beam axis. With these misidentifications, 
the process e+e− → e+e−γ is one channel that contributes signif-
icantly to the background of Bhabha events. Hence the precise cal-
culation of the process is of great importance. Furthermore, in the 
framework of calculating the full two-loop corrections to Bhabha 
scattering, one-loop electroweak corrections to e+e− → e+e−γ
with a soft bremsstrahlung photon are necessary; they should can-
cel against the infrared divergences which appear at the level of 
two-loop corrections to Bhabha scattering. Last but by no means 
least, the process will be a good candidate for luminosity mea-
surements at the ILC, provided these theoretical calculations are 
well under control.

We refer to a few additional papers that should be mentioned. 
The lowest-order calculation of the soft-bremsstrahlung process is 
reported in Ref. [19]. Moreover, the one-loop QED corrections to 
the hard-bremsstrahlung process e+e− → e+e−γ is available in 
Ref. [16]. An analytical calculation of one-loop QED corrections to 
the process e+e− → e+e−γ is also calculated in Ref. [20].

To achieve our eventual target, the calculation of two-loop cor-
rections to Bhabha scattering, several steps are involved, the first 
of which is to consider the process as a candidate for luminosity 
measurements at the ILC, because it provides a useful framework 
for our final objective. This is what we present in this paper. In 
particular, we focus on studying the impact of electroweak correc-
tions to the total cross section and to the relevant distributions 
such as the cross sections that are a functions of energies, and 
angles of the final state particles. We will incorporate the soft pho-
ton bremsstrahlung and subsequently the two-loop corrections to 
Bhabha scattering in future publications.

The layout of the paper is as follows: In Section 2, we present 
a short introduction to the GRACE-Loop system and the numerical 
tests of the calculation. In Section 3, we present the phenomeno-
logical results of the calculation. Conclusions and plans for future 
work are presented in Section 4.

2. GRACE Loop and the e+e− → e+e−γ process

2.1. GRACE Loop

GRACE Loop is a generic program that automates the calcula-
tion of high-energy physics processes at the one-loop level. The 
program is described in detail in Ref. [21], where a variety of 
electroweak processes with two particles in the final state are 
presented and compared with other papers. The GRACE-Loop sys-
tem was also used to calculate processes with three particles in 
the final state, such as e+e− → Z H H [22], e+e− → tt̄ H [23], 
and e+e− → νν̄H [24]. These calculations were performed inde-
pendently by several groups; for example, the processes e+e− →
Z H H [25], e+e− → tt̄ H [26–28], and e+e− → νν̄H [29,30]. In ad-
dition, the e+e− → νμν̄μH H [31] reaction was calculated by using 
the GRACE-Loop system.

In the GRACE-Loop system, the renormalization is performed 
with the on-shell renormalization condition of the Kyoto scheme, 
as described in Ref. [32]. Ultraviolet (UV) divergences are regu-
lated by dimensional regularization, and infrared (IR) divergences 
are regularized by giving the photon an infinitesimal mass λ. In 
the current version there are no soft external gluons.

The GRACE-Loop system uses the symbolic-manipulation pack-
age FORM [33,34] to handle all Dirac and tensor algebra in n di-
mensions. It symbolically reduces all tensor one-loop integrals to 
scalar integrals. Eventually, the amplitude of the given processes 
will be written in terms of FORTRAN subroutines on a diagram-by-
diagram basis.

Ref. [21] describes the method used by the GRACE-Loop system 
to reduce tensor one-loop five- and six-point functions to one-loop 
four-point functions. The tensor one-, two-, three-, and four-point 
functions are then reduced to scalar one-loop integrals that are 
numerically evaluated by one of the FF [35] or LoopTools [36]
packages.

The GRACE-Loop program uses so-called nonlinear gauge fixing 
terms [37] in the Lagrangian, which are defined as

LGF = − 1

ξW

∣∣(∂μ − ieα̃Aμ − igcW β̃ Zμ)W μ+

+ ξW
g

2
(v + δ̃H + iκ̃χ3)χ

+∣∣2

− 1

2ξZ

(
∂ · Z + ξZ

g

2cW
(v + ε̃H)χ3

)2

− 1

2ξA
(∂ · A)2. (2)

We are working in the Rξ -type gauges with the condition ξW =
ξZ = ξA = 1 (also called the ’t Hooft–Feynman gauge) in which 
there is no longitudinal contribution to the gauge propagator. This 
choice not only has the advantage of making the expressions much 
simpler but also avoids unnecessarily large cancellations, high ten-
sor ranks in one-loop integrals, and extra powers of momenta 
in the denominators, which cannot be handled by the FF and 
LoopTools packages. The implementation of nonlinear gauge-fixing 
terms provides a powerful tool to check the results in a consistent 
way. After all, the results must be independent of the nonlinear 
gauge parameters, as will be discussed in greater detail in Sec-
tion 2.2.

In its latest version, the GRACE Loop system can use the axial 
gauge in the projection operator for external photons. This resolves 
a problem with large numerical cancellations, which is very useful 
when calculating processes at small angle and energy cuts for the 
final-state particles. Moreover, it provides a useful tool to check 
the consistency of the results, which due to the Ward identities, 
are independent of the choice of the gauge. This method was ap-
plied to the process e+e− → tt̄γ in Ref. [38], and we apply it 
here as well. For the integration steps, we use a parallel version 
of BASES [40] with a message-passing interface [41] to reduce the 
calculation time.

2.2. The e+e− → e+e−γ process

The full set of Feynman diagrams with the nonlinear gauge 
fixing, as described in the previous section, consists of 32 tree dia-
grams and 3456 one-loop diagrams. This includes the counterterm 
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Fig. 1. Typical Feynman diagrams for the reaction e+e− → e+e−γ as generated by the GRACE-Loop system.
diagrams. In Fig. 1, we show some selected diagrams. For this cal-
culation, we apply an axial gauge for the external photon by using 
the polarization sum of the photons as follows:

P(λ) =
3∑

λ=0

ε
μ
λ (p)ε

μ
λ (p) → −gμν + nμpν + nν pμ

n · p
− n2 pμpν

(n · p)2
,

(3)

where pμ and εμ
λ correspond to the 4-momentum and the polar-

ization vector of the external photon respectively. The axial vector 
n takes the form

n = (
p0,−�p)

. (4)

With this choice, the third term in Eq. (3) vanishes, which means 
that we are working in the light-cone gauge for the photon. The 
advantage of using the axial gauge for the external photon is 
that the worst numerical cancellations between the diagrams are 
avoided.

Before running the Monte Carlo integration for the process, the 
calculation is checked numerically by three consistency tests. These 
are UV and IR finiteness and gauge-parameter independence. The 
general idea of these tests is now described.

The full O(α) electroweak cross section considers the tree 
graphs and the full one-loop virtual corrections as well as the soft 
and hard bremsstrahlung contributions. In general, the total cross 
section in full one-loop electroweak radiative corrections is given 
by
σ
e−e+γH
O(α) =

∫
dσ

e−e+γH
T +

∫
dσ

e−e+γH
V

(
CUV , {α̃, β̃, δ̃, ε̃, κ̃}, λ)

+
∫

dσ
e−e+γH
T δsoft(λ ≤ EγS < kc)

+
∫

dσ
e−e+γHγS
H (EγS ≥ kc). (5)

In this formula, σ e−e+γH
T is the tree-level cross section, σ e−e+γH

V
is the cross section due to the interference between the one-loop 
(including counterterms) and the tree diagrams. The contribution 
must be independent of the UV-cutoff parameter (CUV ) and the 
nonlinear gauge parameters (α̃, β̃, ̃δ, ̃ε, κ̃ ). Because of the way we 
regularize the IR divergences, σ

e−e+γH
V depends on the photon 

mass λ. This λ dependence must cancel against the soft-photon 
contribution, which is the third term in Eq. (5). The soft-photon 
contribution can be factorized into a soft factor, which is calcu-
lated explicitly in Ref. [39], and the cross section from the tree 
diagrams.

In Tables 2, 4, and 3 in Appendix A, we present the numeri-
cal results for the checks of UV finiteness, gauge invariance, and 
the IR finiteness for one random point in phase space, calculated 
with quadruple precision. The results are stable over a range of 20 
digits. The different precisions are due to the ways in which these 
parameters occur in the formulas: CUV occurs only linearly as an 
extra term, and the nonlinear gauge parameters occur as products 
in terms that are by themselves typically much larger than the re-
maining terms. The IR regulator λ contributes mainly because of 
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its appearance in the denominators and hence occurs inside loga-
rithms. Consequently, the CUV checks show an agreement in more 
digits than the other checks.

Finally, we consider the contribution of the hard photon 
bremsstrahlung, σ e−e+γH γS

H (kc). This part is the process e+e− →
e−e+γHγS with an added hard bremsstrahlung photon. The pro-
cess is generated by the tree-level version of the GRACE sys-
tem [42] with the phase space integration performed by BASES. 
By adding this contribution to the total cross section, the final re-
sults must be independent of the soft-photon cutoff energy kc . 
Table 5 in Appendix A shows the numerical result of the check of 
kc stability. By changing kc from 10−3 GeV to 0.1 GeV, the results 
are consistent to an accuracy better than 0.04% (this accuracy is 
better than that in each Monte Carlo integration). For the check 
of kc stability, note that we have two photons at the final state. 
One photon is the hard photon to which we apply an energy cut 
of Ecut

γH
≥ 10 GeV and an angle cut of 10◦ ≤ θ cut

γH
≤ 170◦ . The sec-

ond photon is the soft photon whose energy is greater than kc and 
smaller than the energy of the first photon.

Having verified the stability of the results, we proceed to com-
pute the physics of the process. Hereafter, we use λ = 10−21 GeV, 
CUV = 0, kc = 10−3 GeV, and α̃ = β̃ = δ̃ = κ̃ = ε̃ = 0. To reduce 
the calculation time, we neglect the diagrams that contain the 
coupling of the Higgs boson to the electron and positron in the 
integration step because its contribution is less than the statistical 
error of the Monte Carlo integration.

3. Results of the calculation

We used the following input parameters for the calculation:
The fine structure constant in the Thomson limit is α−1 =

137.0359895.
The mass of the Z boson is M Z = 91.1876 GeV and its decay width 

is ΓZ = 2.35 GeV.
The mass of the Higgs boson is taken to be MH = 126 GeV.

In the on-shell renormalization scheme we like to take the 
mass of the W boson as an input parameter. Because of the 
limited accuracy of the measured value, we take the value that 
is derived from the electroweak radiative corrections to the 
muon decay width (�r) [43] with Gμ = 1.16639 ×10−5 GeV−2. 
Therefore, MW is a function of MH . This results in MW =
80.370 GeV as explained in Section 3.1, corresponding to �r =
2.49%.

For the lepton masses we take me = 0.51099891 MeV, mμ =
105.658367 MeV and mτ = 1776.82 MeV.

For the quark masses, we take mu = 63 MeV, md = 63 MeV, mc =
1.5 GeV, ms = 94 MeV, mt = 173.5 GeV, and mb = 4.7 GeV.
Because the process considered in this paper is a candidate for 

luminosity measurements, the full O(α) electroweak corrections 
to e−e+ → e−e+γ are evaluated by applying cuts that are suitable 
for this purpose. For the final-state particles, we apply an energy 
cut Ecut ≥ 10 GeV and an angle cut 10◦ ≤ θ cut ≤ 170◦ with respect 
to the beam axis. Moreover, to isolate the photon from the electron 
(or positron), we apply an opening angle cut between the photon 
and the e− (e+) of 10◦ . Finally, to distinguish e−e+γ events from 
γ γ events, we apply an angle cut of 10◦ between the electron 
and the positron in the final state. The results for this case are 
presented in the following subsection.

3.1. Total cross section and electroweak corrections

The total cross section is calculated by using Eq. (5). The relative 
correction is then defined in the α scheme as

δEW = KEW − 1 (6)
Table 1
The total cross section and the electroweak corrections as a function of the center-
of-mass energy.

√
s

[GeV]
σT
[pb]

σ QED
O(α)

[pb]
σO(α)

[pb]
δQED

[%]
δEW

[%]
δW

[%]
δ

Gμ

W
[%]

250 9.746 9.269 9.317 −4.89 −4.40 0.49 −4.49
350 5.684 5.244 5.254 −7.74 −7.57 0.17 −4.81
500 3.175 2.839 2.811 −10.58 −11.47 −0.89 −5.87
700 1.817 1.564 1.534 −13.92 −15.58 −1.66 −6.64
1000 1.001 0.828 0.789 −17.28 −21.18 −3.90 −8.88

= σO(α)

σtree
− 1, (7)

where the term KEW is the ratio of the full cross section up to 
one-loop radiative corrections to the cross section from tree-level 
contributions.

In the GRACE-Loop system, the QED corrections can be calcu-
lated separately by selecting individual QED diagrams and their 
counterterms. As expressed in the following equation, the total 
QED cross section is then normalized to the cross section of the 
full tree diagrams to extract the QED corrections:

δQED = σ QED
V+S+H

σtree
. (8)

The next equation gives the genuine weak correction in the α
scheme:

δW = δEW − δQED. (9)

Having subtracted the genuine weak corrections in the α scheme, 
one can express the correction in the Gμ scheme. This approach is 
also called the improved Born approximation, where the fine struc-
ture constant runs from the Thomson-limit condition to the M2

Z
scale. Some of the high-order corrections are related to two-point 
functions, which are connected to light fermions and absorbed into 
the tree-level calculation. To obtain the corrections in this scheme, 
we subtract the universal weak correction obtained from �r as fol-
lows1:

δ
Gμ

W = δW − 2�r, (10)

with �r = 2.49% for MH = 126 GeV.
Table 1 shows the total cross section and the electroweak cor-

rections as a function of 
√

s. The center-of-mass energy ranges 
from 250 GeV (which is near the threshold of MH + M Z ) to 1 TeV.

We find that the electroweak (QED) corrections in the α
scheme vary from ∼−4% (∼−5%) to ∼−21% (∼−17%) as 

√
s varies 

from 250 GeV to 1 TeV. The results given in Table 1 show clearly 
that the QED corrections make the dominant contribution com-
pared with the weak corrections. The weak corrections in the Gμ

scheme vary from ∼−4% to ∼−9% as 
√

s varies from 250 GeV
to 1 TeV. The weak corrections in the high-energy region are at-
tributed to the enhancement contribution of the single Sudakov 
logarithm. Its contribution can be estimated as follows:

δ
Gμ

W ∼ − α(M2
Z )

πsin2θW
log

(
s

M2
Z

)
∼ O(−10%) at

√
s = 1 TeV. (11)

It is clear that the corrections make a sizable contribution to the 
total cross section and cannot be ignored for the high-precision 
program at the ILC.

1 The order of α, which comes from the coupling of real photons to fermions, 
must be calculated under the conditions of the Thomson limit. The order α2 runs 
from the Thomson limit to the M2

Z scale. Overall, these considerations lead to the 
factor 2 in Eq. (10).
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Fig. 2. Differential cross sections as a function of photon energy and cos θγ at (left panel)
√

s = 250 GeV and (right panel)
√

s = 1 TeV.
3.2. Relevant distributions

We now generate the relevant distributions such as the cross 
sections, which are a function of energies, and angles of the fi-
nal state particles. In these distributions, the solid lines represent 
the tree-level calculation, and the points with error bars include 
the full radiative corrections. The left (right) figures show the 
given distributions at 

√
s = 250 GeV (1 TeV). The term KEW is 

also shown with these distributions to estimate the electroweak 
corrections to the differential cross sections. Fig. 2 presents the 
cross-section distributions as a function of the photon energy for √

s = 250 GeV and 
√

s = 1 TeV. Overall, the cross section decreases 
with increasing photon energy. At 

√
s = 250 GeV, two peaks ap-

pear, one at Eγ = s−M2
Z

2
√

s
and one at 

√
s

2 . The first peak corresponds 
to the photon energy recoiling against an on-shell Z boson, and 
the right peak corresponds to the photon energy recoiling against 
a virtual photon that creates a small-mass electron–positron pair. 
Due to the high energy the peaks overlap within our resolution at √

s = 1 TeV. The distributions also clearly show that the radiative 
corrections make a sizeable impact and are important for the lumi-
nosity monitor at the ILC. The lower part of Fig. 2 shows the angu-
lar distributions of the photon at 

√
s = 250 GeV and 

√
s = 1 TeV. 

The cross section is symmetric with respect to cos θγ . The radiative 
corrections make a more significant contribution at 

√
s = 1 TeV

compared with their contribution at 250 GeV center-of-mass en-
ergy.

Fig. 3 presents the differential cross sections as a function of the 
positron energy for 

√
s = 250 GeV and 

√
s = 1 TeV. The cross sec-

tion increases with increasing positron energy. Two peaks appear 
in the distributions; the first of which is attributed to the highest-

energy positron Ee+ ∼
√

s
2 (or the smallest invariant mass of the 

photon and electron). The second peak corresponds to a minimum-
energy photon emitted from the electron. This peak appears at 
Ee+ ∼

√
s

2 − Emin
γ . Within our resolution at 

√
s = 1 TeV, the two 

peaks overlap. The positron angular distributions in the final state 
are shown at 

√
s = 250 GeV and 

√
s = 1 TeV in the lower part of 

Fig. 3. Again, the radiative corrections make a sizeable impact.

4. Conclusions

Using the GRACE-Loop system, we calculated the full O(α)

electroweak radiative corrections to the e+e− → e+e−γ process 
for energies to be expected at the International Linear Collider.

The GRACE-Loop system incorporates a generalized nonlinear 
gauge-fixing condition that includes five gauge parameters. Com-
bined with UV, IR finiteness and cutoff stability tests, they provide
a powerful tool for testing the consistency of the results. The tests 
indicate that the numerical results are stable when quadruple pre-
cision is used.

We show that the full electroweak radiative corrections vary 
from ∼−4% to ∼−21% for a center-of-mass energy ranging from 
250 GeV to 1 TeV. These corrections have a sizeable impact on the 
differential cross sections. Therefore, this calculation is important 
for determining the luminosity at the ILC.

In future work, we plan to incorporate the process with a soft 
bremsstrahlung photon and to consider the calculation for full 
two-loop corrections to Bhabha scattering when the system for 
two-loop functions library is available.
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Fig. 3. Differential cross sections as a function of the positron energy and cos θe+ . In the left (right) panel
√

s = 250 GeV (
√

s = 1 TeV).
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Appendix A

The calculation is checked numerically at a point in phase 
space where the four components of the particles’ momentum, 
pμ(px; p y; pz; E), are

pμ
1 (0;0;499.999999999738879960679048216325;500)

pμ
2 (0;0;−499.999999999738879960679048216325;500)

pμ
3 (−103.078628242427254979669506380205;
−114.633210803542408648432443344924;
−471.180628984259439976275161034772;
495.759177171207049330152475391965)

pμ
4 (8.55713405427702202967532141788216;
−14.8872000707485148244530094120855;
72.9130813076746195344593973796190;
Table 2
Test of independence of CUV with respect to amplitude. For the results given in 
this table, the nonlinear gauge parameters are 0 and λ = 10−21 GeV, and we use 
1 TeV for the center-of-mass energy.

CUV 2	(MLoopM+
Tree)

0 −0.142224672059345022803237910656998
102 −0.142224672059345022803237910656997
104 −0.142224672059345022803237910657050

Table 3
Test of IR finiteness of amplitude. For the results given in this table, the nonlinear 
gauge parameters are 0 and CUV = 0 and the center-of-mass energy is 1 TeV.

λ [GeV] 2	(MLoopM+
Tree) + soft contribution

10−21 −3.570620888259806801441498543829971 · 10−2

10−25 −3.570620888259806801404094882895954 · 10−2

10−30 −3.570620888259806801404090885240872 · 10−2

74.9077478983986818304861899869219)

pμ
5 (94.5214941881502329499941849623225;
129.520410874290923472885452757010;
398.267547676584820441815763655153;
429.333074930394268839361334621113)

Tables 2–4 present the numerical results for the tests of the UV 
and IR finiteness and the gauge-parameter independence at this 
point in phase space. The results of the test of kc-stability are pre-
sented in Table 5.
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Table 4
Gauge invariance of amplitude. For the results shown in this table, we set CUV = 0, 
the photon mass is 10−21 GeV, and the center-of-mass energy is 1 TeV.

(α̃, β̃, δ̃, κ̃, ε̃) 2	(MLoopM+
Tree)

(0, 0, 0, 0, 0) −0.142224672059345022803237910656998
(10, 20, 30, 40, 50) −0.142224672059345022803237910657197
(100,200,300,400,500) −0.142224672059345022803237910505800

Table 5
Test of kc -stability. The photon mass is 10−21 GeV and the center-of-mass energy 
is 1 TeV. The second column presents the soft-photon cross section and the third 
column presents the hard-photon cross section. The final column is the sum of both.

kc [GeV] σS [pb] σH [pb] σS+H [pb]

10−3 7.873 ± 0.004 2.506 ± 0.002 10.379 ± 0.004
10−2 8.401 ± 0.004 1.980 ± 0.001 10.381 ± 0.004
10−1 8.932 ± 0.004 1.453 ± 0.001 10.385 ± 0.004
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