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Abstract. Water vapour is one of the most important green-

house gases. Long-term changes in the amount of water

vapour in the atmosphere need to be monitored not only for

its direct role as a greenhouse gas but also because of its role

in amplifying other feedbacks such as clouds and albedo.

In recent decades, monitoring of water vapour on a regu-

lar and continuous basis has become possible as a result of

the steady increase in the number of deployed global posi-

tioning satellite (GPS) ground-based receivers. However, the

Horn of Africa remained a data-void region in this regard un-

til recently, when some GPS ground-receiver stations were

deployed to monitor tectonic movements in the Great Rift

Valley. This study seizes this opportunity and the installation

of a Fourier transform infrared spectrometer (FTIR) at Ad-

dis Ababa to assess the quality and comparability of precip-

itable water vapour (PWV) from GPS, FTIR, radiosonde and

interim ECMWF Re-Analysis (ERA-Interim) over Ethiopia.

The PWV from the three instruments and the reanalysis

show good correlation, with correlation coefficients in the

range from 0.83 to 0.92. On average, GPS shows the highest

PWV followed by FTIR and radiosonde observations. ERA-

Interim is higher than all measurements with a bias of 4.6 mm

compared to GPS. The intercomparison between GPS and

ERA-Interim was extended to seven other GPS stations in

the country. Only four out of eight GPS stations included si-

multaneous surface pressure observations. Uncertainty in the

model surface pressure of 1 hPa can cause up to 0.35 mm er-

ror in GPS PWV. The gain obtained from using observed sur-

face pressure in terms of reducing bias and strengthening cor-

relation is significant but shows some variations among the

GPS sites. The comparison between GPS and ERA-Interim

PWV over the seven other GPS stations shows differences

in the magnitude and sign of bias of ERA-Interim with re-

spect to GPS PWV from station to station. This feature is

also prevalent in diurnal and seasonal variabilities. The spa-

tial variation in the relationship between the two data sets is

partly linked to variation in the skill of the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF) model

over different regions and seasons. This weakness in the

model is related to poor observational constraints from this

part of the globe and sensitivity of its convection scheme to

orography and land surface features. This is consistent with

observed wet bias over some highland stations and dry bias

over few lowland stations. The skill of ECMWF in reproduc-

ing realistic PWV varies with time of the day and season,

showing large positive bias during warm and wet summer at

most of the GPS sites.

1 Introduction

Water vapour is one of the most important greenhouse gases.

Its radiative characteristics play a great role in determining

the magnitude of the greenhouse effect and the planetary

albedo. These, together with its unique thermodynamic prop-

erties, dictate the hydrological cycle and energy budget of the
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Earth’s atmosphere. For instance, water vapour acts to am-

plify other feedbacks (e.g. cloud and albedo feedbacks). An

increase of temperature can result in an increase in total pre-

cipitable water vapour (PWV) since the equilibrium vapour

pressure increases with increasing temperature (Stevens and

Bony, 2013, and references therein). Therefore, on longer

timescales, water vapour changes are thought to contribute

to an important positive feedback mechanism for climate

change. Warming of the surface, particularly the sea sur-

face, leads to enhanced evaporation. Enhanced water vapour

in the lower troposphere results in further warming, allow-

ing a higher water vapour concentration, thereby creating a

positive feedback. Mears et al. (2007) have determined that

an increase of the temperature of 1 K will result in a 5–7 %

rise in PWV. Thus, long-term changes in the amount of water

vapour in the atmosphere need to be monitored as part of an

effort to understand and predict its complex and amplifying

role in climate change.

Atmospheric water vapour exhibits substantial diurnal

variations (e.g. Dai and Hove, 2002; Wang et al., 2007, and

references therein). These variations affect surface and at-

mospheric long-wave radiation and atmospheric absorption

of solar radiation as well as other processes, such as diur-

nal variations in moist convection and precipitation, surface

wind convergence and surface evapotranspiration. Unfortu-

nately, there is a lack of data with high temporal resolution

to investigate most of the above processes and their linkage

to water vapour in greater detail.

One way to monitor water vapour is through measure-

ments of precipitable water (PWV) using a variety of instru-

ments onboard different platforms (e.g. Ning et al., 2015, and

references therein). PWV measurements can also be used to

understand weather and improve forecasting as it is a crucial

element in the development of clouds and precipitation. In

the past, weather service centres relied on information from

radiosondes and satellites to complement analysis from mod-

els. However, the density of radiosonde observations is very

sparse and nonuniform often related to running costs. As a

result, it is rare to find more than one site per country over

many parts of the globe and the situation in Africa is even

worse. Moreover, sustainability of the radiosonde sites has

been a challenge, which is reflected in data gaps in histori-

cal time series. Satellite observations are less likely to suf-

fer from similar problems; however, the PWV estimate from

satellites is also complicated over land due to surface tem-

perature and albedo variability.

In view of these limitations, there have been efforts to de-

velop new observing systems (e.g. global positioning system,

GPS). The use of GPS has been extended to investigation of

the upper and lower atmosphere from its traditional appli-

cation of position determination in recent decades. GPS can

provide a high-resolution continuous measurement of zenith

tropospheric delay from which a near real-time total precip-

itable water vapour around a ground GPS-receiver site can

be derived. Moreover, apart from continuity and high tem-

poral resolution, a GPS receiver can run automatically once

installed. As a result, considerable effort has been devoted

to deriving PWV using ground-based GPS measurements

(e.g. Bevis et al., 1992, 1994; Rocken et al., 1993, 1997;

Bollmeyer et al., 2015) at high temporal resolutions, validat-

ing radiosonde, satellite and reanalysis data (e.g. Yang et al.,

1999; Guerova et al., 2003; Dietrich et al., 2004; Van Baelen

et al., 2005; Bock et al., 2010; Schneider et al., 2010; Buehler

et al., 2012), improving numerical weather prediction (e.g.

Vedel and Huang, 2004; Vedel et al., 2004; Gendt et al.,

2004)), creating near global and high temporal PWV data

sets (e.g. Gradinarsky et al., 2002; Wang et al., 2007, 2009),

and studying 3-D heterogeneity of the troposphere based

on tomographic methods (e.g. Braun et al., 2003; Champol-

lion et al., 2005). Despite these considerable efforts to ex-

ploit steadily expanding multi-purpose ground-based GPS

receiver networks, this capability has not been replicated over

Africa due to the lack of a GPS network, with exceptions

over southern Africa (e.g. Combrink et al., 2004, and refer-

ences therein). Most efforts to validate satellite and model

estimates of precipitable water over Africa are hindered due

to lack of GPS and other ground-based atmospheric observ-

ing systems as well as large data gaps (e.g. Fetzer et al., 2003;

King et al., 2003; Bock et al., 2007a).

However, a recent increase in the number of GPS ground

receiver sites for geodetic studies over northern Africa and

the African Monsoon Multidisciplinary Analyses (AMMA)

project over west Africa has initiated investigation of PWV

over these regions (Bock et al., 2007a; Koulali et al., 2011).

For instance, Koulali et al. (2011) have used GPS PWV and

other complementary observations to show that the monthly

mean PWV variation over Morocco is controlled by the up-

per layer zonal and meridional moisture flux. Bock et al.

(2007a) have used some scattered GPS receiver stations over

Africa and compared them to independent observations, and

to 40-year ECMWF Re-Analysis (ERA-40) and National

Centers for Environmental Prediction reanalysis 2 (NCEP2)

model simulations. While these studies hardly represent the

whole of Africa, they have made important contributions to

filling the existing data gaps and to understanding of water

vapour variability. However, there is no similar work over

the East African Rift Valley region, a region with almost

no observations until recently. A number of GPS sites have

been installed since 2007 to monitor geodetic activity either

in campaign mode or as permanent stations along the Great

Rift Valley region and adjoining Ethiopian highlands. Most

of these stations are still operating and providing data despite

interruptions at some stations. Therefore, the use of the data

from these stations for investigating PWV variability over the

region and validating reanalysis data is of considerable inter-

est.

ERA-Interim is a global reanalysis data set that provides

PWV. Moreover, ERA-Interim PWV has been found to cap-

ture the truth elsewhere in the continent from previous stud-

ies (e.g. Bock et al., 2005, 2007a; Koulali et al., 2011) which
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Figure 1. UNAVCO GPS ground receiver sites used in GPS solution using GAMIT software over the region (a) and locations of GPS

receivers used in the analysis of PWV, nearby lakes and topography of the country (altitude in metres) (b). The green circles show sites of

GPS stations used in the GAMIT network solution. The red circles represent eight GPS sites considered in the analysis. Lakes are shown by

the black contour lines. The smaller lakes appear in the map as dots due to the scale. The full names of the stations corresponding to short

names in the map are given in Table 3.

is less complex in terms of topography as compared to east-

ern Africa. This encouraged us to use ERA-Interim PWV in

this study to assess how good it is over Ethiopia with respect

to coincident measurements from GPS, Fourier transform in-

frared spectrometer (FTIR) and radiosondes. In contrast to

the radiosonde data, the ground-based GPS data have not yet

been assimilated in the reanalysis output. In this respect, GPS

PWV can serve as an independent validation data set suitable

for the evaluation of reanalysis (e.g. Bock et al., 2007a, and

references therein) and climate models (Ning et al., 2013).

For the reasons outlined above, a formal quality assess-

ment of observed PWV in Addis Ababa is performed. The

spatial and temporal variabilities of PWV in Ethiopia as cap-

tured by GPS and ERA-Interim and the consistency between

the two data sets are also investigated.

The paper is structured as follows. In Sect. 2, the data and

the methodology used in this work are presented. Results and

discussion are given in Sect. 3, and finally conclusions are

given in Sect. 4.

2 Data and methodology

The observations of atmospheric precipitable water vapour

over Addis Ababa are performed using ground-based GPS

receivers, FTIR, and radiosondes. Radiosonde observations

have been carried out daily at the Addis Ababa synoptic me-

teorological station since 1969 despite gaps due to measure-

ment interruption and problems with data quality. The FTIR

was installed in May 2009 and monitors most atmospheric

trace gases by recording solar absorption spectra. Ground-

based GPS receivers are installed not only in Addis but also

along the Ethiopian Rift Valley and neighbouring highlands

as part of monitoring tectonic movement at different times

over the last few years (see filled circles in Fig. 1). Cor-

relation coefficients, bias and root mean square deviation

(RMSD) are used to assess the level of agreement between

the different data sets. The bias is calculated as the mean

of the differences in this work. In the following, the respec-

tive data sets and methodologies used in acquiring them from

these instruments are described.

2.1 FTIR observations

The Addis Ababa FTIR site is a tropical high-altitude site at

9.01◦ N latitude, 38.76◦ E longitude, 2443 m altitude above

sea level. The FTIR instrument is a commercial Bruker

IFS-120M spectrometer. Two detectors, mercury-cadmium-

telluride (HgCdTe) and indium-antimonide (InSb) detectors,

allow wide spectral coverage and enable retrieval of several

trace species (Takele Kenea et al., 2013) from the spectra

recorded at a spectral resolution of 0.005 cm−1.

The retrieval method is a sequential procedure in which

solar lines are first retrieved, and then used in the subse-

quent retrieval of water vapour. These results are both used

in the following retrievals of N2O, CH4, O3 and other gases.

Daily pressure and temperature vertical profiles used in the

forward radiative transfer model during the retrieval of trace

gases from the FTIR spectra were taken from the automailer

system of Goddard Space Flight Center. The climatological

profiles were based on data from NCEP. The retrieved state

vector contains the retrieved volume mixing ratios of the tar-

get gas defined at 44 levels in the atmosphere from the sur-

face up to 120 km, as well as the retrieved interfering species

column amounts, and some model parameters. The model

parameters include the baseline slope and instrumental line

shape (Hase et al., 1999). The retrieval of H2O volume mix-

ing ratio (VMR) is performed on a logarithmic scale because

of the large vertical dynamic range and high variability near

the boundary layer. The PWV can be determined by integrat-

ing VMR over the whole altitude range or directly from the

column amount of water vapour. In this study, the latter was

followed to avoid error due to numerical integration.
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Figure 2. Degrees of freedom for signal for all FTIR measurements at Addis Ababa.

Table 1. The spectral microwindows used for retrieval of water

vapour and the major interfering species considered.

Microwindow (cm−1) Interfering species

2659.0–2661.0

2662.0–2664.2

2665.8–2666.8

2677.2–2678.2 HDO, O3, CH4, HCl, C2H6

2974.2–2975.6

2983.1–2985.2

2991.0–2996.0

The retrieval of vertical profile of trace gases from ground-

based FTIR spectra depends on the sensitivity of the absorp-

tion lines to pressure broadening such that the spectral line

centres provide information about the higher altitudes of the

distribution while the wings of a line give information about

the lower altitudes. This entails that the information content

of the retrieval will strongly depend on the choice of the ab-

sorption lines and use of accurate pressure and temperature

profiles (Mengistu Tsidu, 1998; Echle et al., 2000, and refer-

ences therein). The spectral microwindows used for the wa-

ter vapour retrieval include seven spectral ranges in the mid-

infrared shown in Table 1. Table 1 also shows the interfering

species jointly retrieved with water vapour. The spectral mi-

crowindows are subset of the microwindows used by Schnei-

der et al. (2012) and selected based on their strong sensitivity

to pressure broadening. However, the contribution of pres-

sure and temperature uncertainty to the overall error budget

in retrieval of trace gases from FTIR absorption spectra is

insignificant (Mengistu Tsidu, 1998).

The retrieved water vapour profiles are characterized in

terms of information content based on degrees of freedom

for signal (DOFS), vertical resolution, and different error

sources following the optimal estimation method (Rodgers,

1976, 2000). The trace of the averaging kernel matrix, the

DOFS, represents the number of independent pieces of infor-

mation retrieved from the measurements. It varies between

1.6 and 2.0 (Fig. 2) suggesting the existence of about two in-

dependent layers. This is consistent with the values found by

others (e.g. Schneider et al., 2006) although further marginal

improvement can be achieved with an increase in the number

of co-added scans during FTIR measurements.

The retrieval algorithm allows the characterization of the

error sources, such as temperature, noise, instrumental line

shape, solar lines, line of sight, baseline, and spectroscopy.

However, what is interesting in the context of this study

is to investigate how the total error due to uncertainties in

these parameters affects the PWV. The systematic and statis-

tical errors in PWV were obtained through optimal estima-

tion procedure. Figure 3 shows (a) precipitable water vapour

and (b) statistical error, and (c) systematic error in PWV for

all measurements. The statistical error in PWV is small and

lower than 0.1 mm throughout most of the measurements.

The systematic error varies between 0.2 and 0.6 mm for most

of the observations, exceeding 0.6 mm in a few cases.

2.2 GPS observations

The zenith tropospheric delay can be estimated from mea-

surements of the delay to each GPS satellite in view of a

ground station. Signals from several GPS satellites, up to 11,

can be received at any given time over a given GPS ground

receiver site. However, a network of ground GPS receivers is

required to determine GPS orbits and biases due to satellite

clocks, receiver clocks, and receiver biases. The analysis of

GPS data obtained by such a network produces an estimate of

total tropospheric zenith delay (TZD) which can be split into

dry hydrostatic (ZHD) and wet zenith (ZWD) delays. The

ZWD is that part of the range delay that can be attributed to

the water vapour in the troposphere. ZWD can be determined

from TZD GPS measurement and ZHD corrected a priori us-

ing the Saastamoinen (1972) formula.

If the vertically integrated water vapour overlying a re-

ceiver is stated in terms of PWV, then this quantity can be

related to the ZWD at the receiver by

PWV=5×ZWD, (1)

Atmos. Meas. Tech., 8, 3277–3295, 2015 www.atmos-meas-tech.net/8/3277/2015/
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Figure 3. FTIR observations: (a) PWV; (b) statistical error due to random retrieval errors in PWV; and (c) systematic error in PWV.

where the ZWD is given in units of length, and the dimen-

sionless constant of proportionality 5 is a function of Tm

given by an empirical model

5=
106

ρRv[(
k3

Tm
)+ k′2]

, (2)

where ρ is the density of liquid water at the surface, Rv

is the specific gas constant for water vapour, k′2 = 22.1±

2.2 K mb−1 and k3 = (3.739±0.012)×105 K2 mb−1 are con-

stants (Bevis et al., 1994). Tm is a weighted mean temper-

ature of the atmosphere and is usually given in terms of

surface temperature. We used Tm estimates computed from

ECMWF temperature and humidity profiles and made avail-

able at the Technical University of Vienna (http://ggosatm.

hg.tuwien.ac.at/DELAY/).

The GPS data are processed with the GPS analysis pack-

age at MIT (GAMIT) software v10.32 (King and Bock,

2006), which solves for the tropospheric and other param-

eters using a constrained least squares algorithm. The in-

put data required by GAMIT are the raw GPS observa-

tions, Earth orientation parameters, and 2 h orbit predictions

from the hourly GPS satellite orbit product generated by the

Scripps Orbit and Permanent Array Center (SOPAC). The

software is based on a method referred to as a network solu-

tion in which data from several sites are processed together.

The Global Mapping Function (Boehm et al., 2007) was used

for mapping ZHD and ZWD into the slant path directions of

the GPS satellites at each epoch. The Vienna Mapping Func-

tion based on exact ray traces through the refractivity profiles

derived from ECMWF was used. The elevation cut-off angle

was fixed to 10◦. This translates to a radius of about 28 km

at an altitude of 5 km (note that most water vapour is found

within the first 5 km layer). This implies that GPS ZWD is

close to that of a purely vertical integral measurement, and

hence it can represent PWV at the ground-based GPS re-

ceiver location. The GPS data were processed in double-

difference mode in 24 h observing sessions within the Uni-

versity NAVstar COnsortium (UNAVCO) network in the re-

gion shown in Fig. 1a.

The PWV was determined from GPS ground receivers in-

stalled along and across the Great Rift Valley. GPS stations

installed along the main rift system over Ethiopia are Semera

in the north, Nazerate in the centre and Arba Minch in the

south, while those installed across the rift systems include

Robe in the southern highlands, Addis Ababa in the central

highlands, Alemaya in the southeastern highlands, Mek’ele

in the northern highlands and Bahir Dar in the northwestern

highlands of the country as indicated in Fig. 1b. The PWV

is derived for 2007–2011 with some data gaps at all stations

but at different times as indicated in Table 2. The eight GPS

stations represent different climate regimes in the country

(Mengistu Tsidu, 2012).

www.atmos-meas-tech.net/8/3277/2015/ Atmos. Meas. Tech., 8, 3277–3295, 2015
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Table 2. The observation periods covered in the study (see also

Fig. 4 for data gaps during the period).

Station FTIR GPS Radiosonde ERA-Interim

Addis Ababa 2009–2011 2007–2011 2007–2011 2007–2011

Mek’ele 2008 2007–2011

Robe 2007–2009 2007–2011

Alemaya 2007–2009 2007–2011

Arba Minch 2007–2011 2007–2011

Bahir Dar 2007–2011 2007–2011

Semera 2007–2009 2007–2011

Nazerate 2007–2011 2007–2011

In the absence of in situ meteorological data, the best

choice of pressure and temperature for a site comes from the

global pressure and temperature (GPT) model (Boehm et al.,

2007). Since we have surface observations at only four of the

eight GPS stations (see Table 3), we used GPT as well as

observed pressure and temperature. The difference between

PWV estimates based on pressure and temperature from the

GPT model and observations is used to assess the perfor-

mance of the GPT model and the error that can be caused

by using it in places where observations are not available in

the country.

The quality of GPS PWV can be assessed from the PWV

estimation error. The estimation error is obtained from the

residual of constrained least squares solution as described

by Ge et al. (2002) and Jin and Park (2005) and references

therein. Figure 4 shows PWV estimation error for all sites.

Inspection of the estimation error shows an increase in scat-

ter at 00:00 UTC for all eight GPS sites. This has also been

reported by Bock et al. (2008). The estimation error for Addis

Ababa (Fig. 4a) remains lower than 2 mm most of the time.

However, there are also higher values which are filtered out

for future analysis. A similar error pattern is also observed

for Bahir Dar (Fig. 4f). The estimation error at most of the re-

maining GPS sites (Fig. 4b–e, g–h) is on the order of 1.2 mm

on average with varying data gaps.

The error propagation from uncertainty in zenith path de-

lay, surface pressure and atmospheric mean temperature to

PWV from the theoretical and empirical relationships used

in the linear least squares solutions has also been estimated

assuming uncertainty of 4 mm in zenith path delay, 1.65 hPa

in surface pressure and 1.3 K in mean atmospheric tem-

perature as described by Wang et al. (2007) for the Addis

Ababa GPS site. These uncertainties contribute an error of

about 1.32 mm, in agreement with the finding of Wang et al.

(2007). The surface pressure uncertainty alone contributes

about 0.35 mm hPa−1. However, the uncertainty in surface

pressure could be much higher when the surface pressure

from the GPT or reanalysis such as ECMWF is used in the

estimation of PWV. For instance, the surface pressure differ-

ence between the GPT model and the measurements within

a radius of 50 km from four of the GPS stations is found to

span a range of 1–10 hPa, suggesting that the GPT model

Table 3. The ground-based GPS receivers used in this study and

their geocoordinates.

Station Abbrev. Long. (◦) Lat. (◦) Alt. (m)

Addis Ababa1 Add 38.76 9.03 2438.94

Mek’ele1 Mek 39.48 13.39 2226.04

Robe Rob 40.03 7.07 2458.19

Alemaya Ale 42.03 9.36 2042.31

Arba Minch Arb 37.56 6.02 1199.86

Bahir Dar1 Bah 37.36 11.52 1793.12

Semera Sem 41.01 11.70 418.31

Nazerate1 Naz 39.29 8.51 1722.60

1 GPS stations for which surface observations are available.

works well at some stations and poorly at others. This differ-

ence must come from the different orography and could po-

tentially be mitigated via a high-resolution digital elevation

model. The impact of possible inaccuracy of the GPT model

data used in retrieving GPS PWV is investigated at Addis

Ababa, Bahir Dar, Mek’ele and Nazerate sites using surface

pressure measurements from nearby synoptic stations. The

surface pressure measurements were first adjusted to the alti-

tude of GPS stations by vertically interpolating them follow-

ing procedure proposed by Wang et al. (2007) before using

them in GPS PWV estimation. Only surface pressure mea-

surements with good-quality flags were used for this purpose.

This and the large gaps in the surface pressure measurements

dramatically reduced the number of GPS PWV observations

that were subsequently used in the comparison with other

instruments and reanalysis in contrast to the situation when

the GPT model was used. However, apart from this decrease

in the number coincident observations, the bias in the GPS

PWV has been reduced significantly upon using observed

surface pressure as discussed in Sects. 3.1–3.2.

2.3 Radiosonde soundings

The radiosonde sounding data at Addis Ababa are taken from

the Integrated Global Radiosonde Archive (IGRA) at the

National Climatic Data Center (NCDC). The IGRA archive

contains quality-assured data (Durre et al., 2006). However,

IGRA does not include radiative bias correction or filled data

gaps; in effect, the archive contains sounding data with a lot

of missing values. Moreover, the altitude coverage of most

measurements is not sufficient to compute PWV. As a re-

sult, only a relatively small number of observations with data

extending to altitudes above 200 hPa are available that are

used in the following intercomparisons. Dew point tempera-

ture is computed from dew point depression and temperature

sounding, which is then used to determine vapour pressure.

The vapour pressure and surface pressure are used to com-

pute specific humidity. The precipitable water vapour (PWV

Atmos. Meas. Tech., 8, 3277–3295, 2015 www.atmos-meas-tech.net/8/3277/2015/
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Figure 4. Formal GPS PWV error from GAMIT least squares solution for each GPS station shown on the top of each panel (a)–(h). The

panels are scaled to the same time axis range for the sake of comparison.
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Figure 5. Estimated solar radiation dry bias in radiosonde relative humidity. (a) Typical correction in RH due to SRDB; and (b) mean relative

humidity SRDB correction (solid line) and corresponding standard deviation (error bar).

in units of kg m−2 (mm)) is then determined from

PWV=
1

go

psurf∫
po

q(p)dp, (3)

where q(p), the specific humidity as a function of atmo-

spheric pressure p, is given in units of kg kg−1 and go =

9.80665 m s−2.

The slow response of humidity sensors and radiation ex-

posure related to temperature sensors at many stations are

sources of problems. Various methods have been devel-

oped to correct known humidity observational errors for in-

dividual types of radiosondes through either statistical ap-

proaches (Turner et al., 2003; Voemel et al., 2007) or labo-

ratory or physical correction schemes. The radiosonde data

from the Addis Ababa radiosonde station have undergone

quality checks by IGRA based on scrutiny for the pres-

ence of physically implausible values, internal inconsisten-

cies among variables, climatological outliers, and tempo-

ral and vertical inconsistencies in temperature (Durre et al.,

2006).

The type of radiosonde used is the Vaisala RS92, which

uses a capacitive sensor and the measurement, which is

carried out once per day, is taken at 12:00 UTC. The Vaisala

RS92 is found to be the most accurate from comparison

with the Cryogenic Frostpoint Hygrometer during the Atmo-

spheric Infrared Sounder (AIRS) Water Vapour Experiment-

Ground (AWEX-G), as demonstrated by mean percentage

accuracy within 5–10 % in the lower to upper troposphere

(Miloshevich et al., 2006). Despite its improvement over its

predecessors, the RS92 still suffers from solar radiation dry

bias (SRDB) since the sensors are not equipped with the

radiation/rain shielding cap installed on the RS80. Therefore,

correction of the SRDB in relative humidity (RH) measure-

ments is necessary. Bias correction of this kind has been

reported for different radiosonde types (e.g. Agusti-Panareda

et al., 2009; Miloshevich et al., 2004; Wang et al., 2013,

and references therein). Since we do not have night-time

measurements, we employed the method proposed by Wang

et al. (2013) and used the Vaisala RS92 solar radiation tem-

perature correction table (RSN2010, available at http://www.

vaisala.com/en/products/soundingsystemsandradiosondes/

soundingdatacontinuity/RS92DataContinuity/Pages/

revisedsolarradiationcorrectiontableRSN2010.aspx) to

interpolate the correction values to the pressure and ele-

vation angle of the observation. Figure 5 shows a typical

measured and corrected RH for solar radiation dry bias

(panel a) and the mean RH correction and its scatter

(panel b) from 85 soundings, taken during the study period

and covered altitude range from surface to 50 hPa. The

maximum RH correction of about 6 % is obtained near

the tropopause, while the correction in most parts of the

troposphere is lower than 2.5 % in agreement with previous

understanding (e.g. Miloshevich et al., 2006; Wang et al.,

2013). The mean SRDB RH correction implies the presence

of a mean dry bias of up to 0.51± 0.19 mm in radiosonde

PWV.

2.4 ERA-Interim data

ECMWF is currently providing ERA-Interim reanalysis data

based on cycle 31r2 of the Integrated Forecast System (IFS).

Relative to the ERA-40 system, which was based on IFS cy-

cle 23r4, ERA-Interim incorporates many important IFS im-

provements such as model resolution and physics changes,

the use of four-dimensional variational data assimilation (4-

D-Var), and various other changes in the analysis methodol-

ogy (Dee et al., 2011). The precipitable water vapour from

reanalysis data sets has been found to be in good agreement

with in situ and GPS observations, in particular, good agree-

ment between ERA-40 PWV and GPS PWV at some GPS

sites in western and northern Africa (Bock et al., 2007a). In

particular, Bock et al. (2011) indicated the presence of rela-

tively good agreement between GPS PWV and ERA-Interim

PWV with respect to those between GPS PWV and other re-

analyses (e.g. NCEP1, NCEP2) over western Africa.

For the latest ERA-Interim that is used in this work, the

agreement with observations is significantly improved for
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Figure 6. Comparison of GPS-derived and radiosonde PWV at 12:00 UTC for coincident measurements when (a) GPT surface pressure

and (b) observed surface pressure are used in GPS PWV evaluations; (c) comparison of ERA-Interim reanalysis and radiosonde PWV at

12:00 UTC when ERA-Interim PWV is adjusted to altitude of radiosonde launch site using Eq. (4).

most variables (Berrisford et al., 2009; Dee et al., 2011).

PWV has been evaluated with microwave satellite estimates

over ocean only (Dee et al., 2011) and with ground-based

GPS by Buehler et al. (2012). It needs to be noted that while

radio occultation observations by COSMIC have been as-

similated since 2006, no ground-based GPS data are incor-

porated in ERA-Interim. This has been noticed indirectly in

the large discrepancy found in a recent comparison of ERA-

Interim precipitation with observations (Mengistu Tsidu,

2012). Nevertheless, in a broader global context, ERA-

Interim analysis provides optimal humidity estimates from

high-quality observations among multi-satellite sounders,

imagers, and radiosondes through a data assimilation sys-

tem. The data quality is granted through consistency checks

among observational data sources used in the assimilation

through a series of adaptive bias correction and quality con-

trol procedures (Auligne et al., 2007).

ERA-Interim PWV has been corrected for the altitude dif-

ference between the ERA-Interim and the actual GPS site

altitude using

1PWV= ρν1h(1−
ρν1h

2PWV
), (4)

where ρν is water vapour density and 1h is altitude differ-

ence between ERA-Interim nearest vertical grid point and the

GPS site as proposed by Bock et al. (2007a). Since we have

used the high-resolution version of ERA-Interim, the correc-

tion made in this manner is insignificant as will be shown

later.

3 Results and discussion

3.1 Intercomparison of PWV from different

instruments and reanalysis over Addis Ababa

Addis Ababa is used as a case study to demonstrate the re-

liability of PWV from GPS, FTIR, radiosondes and ERA-

Interim and their consistency with each other. The FTIR and

GPS are co-located at Addis Ababa geophysical observatory

at an altitude of 2438.94 m whereas the daily radiosonde sta-

tion is only about 4 km away from the Addis Ababa geophys-

ical observatory at an altitude approximately 80 m lower.

Moreover, the radiosondes are part of the global data set as-

similated in the ERA-Interim model.

Figure 6a–b show comparison of radiosonde and GPS

PWV determined based on GPT surface pressure (panel a)

and observed surface pressure (panel b) at Addis Ababa at

12:00 UTC as described in Sect. 2.2. There is considerable

improvement in the agreement of the two data sets as re-

flected in the sharp drop in the wet bias from 3.3 mm in

GPS PWV with respect to radiosonde when GPT is used

(Fig. 6a) to 0.1 mm after observed surface pressure is em-

ployed (Fig. 6b). Moreover, the RMSD has improved from

4.3 to 2.5 mm. However, the correlation did not show sig-

nificant improvement, suggesting that inaccuracy in the sur-

face pressure used in the GPS PWV processing affects the

magnitude, not the phase of the variation, as it is part of a

systematic error. Figure 6a–b also illustrate the dry bias by

the increased difference between radiosonde and GPS PWV

for high PWV values. Almost identical coincident ERA-

Interim PWV comparison with radiosonde exhibits the dry

bias shown in Fig. 6c. Note that Fig. 6c represents ERA-

Interim and radiosonde after adjusting ERA-Interim PWV

for altitude difference between nearest horizontal ECMWF

grid point and radiosonde site. The applied correction is mi-

nor due to the proximity of the high-resolution model hor-

izontal grid (i.e. 0.75× 0.75◦ horizontal resolution) to the

Addis Ababa synoptic station from where radiosondes are

launched. The use of nearest horizontal grid point is rec-

ommended by ECMWF for verification with sparse obser-

vations (Bock et al., 2005). The radiosonde PWV dry bias

with respect to ERA-Interim is much larger than values with

respect to GPS (see Fig. 6b–c). This is not surprising since

models in general, including high-resolution regional models

(RCM) (e.g. Zeleke et al., 2013) and ERA-Interim in particu-

lar, show a wet bias over the high-altitude regions of Ethiopia

(Mengistu Tsidu, 2012) likely as a result of the convection

scheme.

FTIR observations are limited to daytime when the sun

is at a sufficiently high solar zenith angle and the sky is

www.atmos-meas-tech.net/8/3277/2015/ Atmos. Meas. Tech., 8, 3277–3295, 2015
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Figure 7. Comparison of GPS-derived and ERA-Interim reanalysis

PWV with coincident FTIR measurements.

clear. Moreover, clear sky conditions limit the observation

period to be seasonal, with more observations during rela-

tively dry periods. In addition, due to various technical is-

sues, the FTIR observations were not continuous enough

even under the above physical limitations. These constraints,

together with large gaps in the daily radiosonde observations,

led to a situation where coincident FTIR-radiosonde observa-

tions within a 1 h interval are unavailable. On the other hand,

since GPS PWV is retrieved at an interval of 2 h and ERA-

Interim is given at a temporal resolution of 6 h, it was pos-

sible to find coincident FTIR-GPS and FTIR-ERA-Interim

measurements as shown in Fig. 7. Despite GPS PWV being

retrieved at higher temporal resolution than ERA-Interim, the

number of coincident data points between FTIR and ERA-

Interim is three-fold larger than that of FTIR and GPS ob-

servations. This is also attributable to the sizable data gaps

in GPS observations in contrast to regular time step of re-

analysis data. The correlation between GPS and FTIR PWV

is 0.92 with a wet bias of 0.6 mm in GPS PWV. Previous

similar studies at Izaña (Schneider et al., 2010) and Kiruna

(Buehler et al., 2012) show a dry bias in GPS as compared to

FTIR at lower PWV values. We need to caution that Izaña is

generally dry compared to Addis Ababa from comparison of

their analysis and our results. The correlation between ERA-

Interim and FTIR PWV is 0.83 with a wet bias of 1.6 mm in

ERA-Interim. Even though these coincident observations are

different from the observations in Fig. 6, there is evidence

for a wet bias in ERA-Interim consistently against all obser-

vations from other instruments. For example, Fig. 8a shows

a wet bias of 4.6 mm in ERA-Interim PWV with respect to

GPS PWV with correlation of 0.85 (see also Table 4).

The comparison of PWV from the three observational data

sets and reanalysis model at Addis Ababa implies reason-

ably good correlation despite a wide range of variation in

PWV in the area. The differences are also consistent between

the data sets. The error characterization, data quality and

consistency of the PWV observations from different instru-

ments and reanalysis can build some level of confidence in

the ERA-Interim and GPS data sets from the region far away

from Addis Ababa site. The assumption is particularly true

for GPS PWV since GPS PWV is derived based on GAMIT

network solution involving all sites in the region (see Fig. 1).

This is indeed important to establish since GPS observations

and ERA-Interim reanalysis at other sites in the region are

the only source of PWV data. The reliability of GPS PWV

depends on the availability of surface pressure observations

and in the absence of observations on how close the surface

pressure from GPT model is to the truth. The surface pres-

sure observations with good-quality flag were used to retrieve

GPS PWV wherever possible in spite of large data gaps in the

surface pressure observations as well.

3.2 Comparison of PWV from GPS and ERA-Interim

reanalysis at other sites in Ethiopia

Figure 8 shows the comparison of ERA-Interim and GPS

PWV for eight GPS stations for all coincident observations

from 2007 to 2011. The GPS data have varying temporal cov-

erage (see Table 2 and Fig. 4). For instance, observations at

Mek’ele were taken only in 2008. Observations at Alemaya,

Semera and Robe span only 3 years from 2007 to 2009, while

observations at Addis Ababa, Nazerate, Bahir Dar and Arba

Minch cover the period from 2007 to 2011. Furthermore, the

sparsity of data at Addis Ababa, Nazerate, Mek’ele and Bahir

Dar is due to the exclusion of observations for which corre-

sponding surface pressure observations are either unavailable

or not recommended according to the NOAA NCDC data

quality flag.

Figure 8a shows ERA-Interim versus GPS PWV at the Ad-

dis Ababa GPS site covering all data for which a correction

can be made as a result of available surface pressure obser-

vations. The wet bias in ERA-Interim PWV with respect to

GPS is higher than values with respect to other instruments

as noted in Sect. 3.1 while the correlation is comparable (see

also Table 4). The wet bias is throughout the whole range

of PWV values with minor enhancement at about 20 mm

GPS PWV values. The general ERA-Interim trend of over-

estimation over highlands (e.g. at Mek’ele (Fig. 8b), Robe

(Fig. 8c), and Alemaya (Fig. 8d)) and underestimation over

lowlands (e.g. Arba Minch, Fig. 8e, with the exception of Se-

mera, Fig. 8g) is common. Apart from the topographic fea-

tures that influence reanalysis, other factors may contribute

to the discrepancies. For instance, Bahir Dar is located in

the Ethiopian northern highlands where ERA-Interim should

have a wet bias. However, as shown in Fig. 8f ERA-Interim

shows a dry bias of 4.5 mm with respect to GPS PWV. Be-

cause this difference is larger than the typical GPS uncer-

tainty (see Sects. 2.4 and 3.1) in particular as observed sur-

face pressure is used, the high GPS PWV may be attributed

to other factors. Bahir Dar GPS site is located near Lake Tana

on its southward side, the largest highland lake in the region.

The high evaporation rate from the lake may be responsi-

ble for the high PWV detected. This is also the case for Arba

Minch GPS site as it is located between two Great Rift Valley

lakes (Lake Abaya to the northeast and Lake Chamo to the

southwest) and the national park. Moreover, Lake Turkana

is located far away on southwestern side of Arba Minch,
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Table 4. Correlation, and enclosed within the bracket are bias (left) and RMSD (right) of PWV between different observations. The sign of

the bias is chosen in a way that implies the bias of the first column with respect to the first row.

Corr FTIR GPS Radiosonde ERA-Interim

(bias (mm), RMSD (mm))

FTIR 1 0.92 (−0.6,1.6) 0.83 (−1.6,2.8)

GPS 1 0.92 (0.1,2.5) 0.85 (−4.6,5.7)

Radiosonde 1 0.88 (−3.2,4.2)
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Figure 8. Comparison of GPS and ERA-Interim PWV at eight sites.

Each site is shown at the top-left corner of each panel for in

Ethiopia. The slope of the solid line from the linear fit is also in-

dicated on each panel.

from which moisture is advected into the southern part of

the Ethiopian Rift Valley by the Turkana low-level jet. The

boundaries of this lake and others over Ethiopia are shown

in Fig. 1b. However, the GPS PWV at Arba Minch is de-

termined using GPT surface pressure and the role of uncer-

tainty in GPS PWV due to uncertainty in surface pressure

could have some contribution to the overall discrepancies be-

tween ERA-Interim and GPS PWV. The impact of using GPT

model surface pressure resulted in an offset of −1.7–2.1 mm

in GPS PWV on average from station to station. As a result,

the advantage of using observed surface pressure (in terms

of reducing bias, RMSD and strengthening correlation with

ERA-Interim PWV) is significant but shows some variations

among the GPS sites (Table 5 and also see Sect. 3.1).

Figure 8h shows ERA-Interim versus GPS PWV deter-

mined based on surface pressure observations at Nazerate

ground GPS receiver site. Normally, a wet bias is expected at

Nazerate due to model sensitivity to topography since Naz-

erate is located on the escarpment of the Great Rift Valley at

a height of 1722 m above sea level. In fact, this was found to

be the case from comparison of ERA-Interim precipitation,

which exhibits a small wet bias over the Great Rift Valley

and adjoining regions as compared to large wet bias over the

central Ethiopian highlands (Mengistu Tsidu, 2012). Thus,

the dry bias in ERA-Interim reanalysis may not be solely at-

tributed to sensitive convection parameterization and topog-

raphy in the ECMWF model. To understand why the ERA-

Interim data exhibit a dry bias at this site with respect to GPS

PWV, it is important to understand the climate of Nazerate

and surrounding areas. Nazerate is located in the Great Rift

Valley regions at the upper Awash river basin, which is char-

acterized by high humidity and temperature as compared to

the dry surrounding central highlands of Ethiopia. Moreover,

the presence of the Koka dam and sugarcane plantations in

the surrounding areas could serve as a source of moisture

through direct evaporation and evapotranspiration from the

plantations and the forest in Awash National Park. Therefore,

the high temperature (not shown) together with these mois-

ture sources could explain why GPS observes higher PWV

values than ERA-Interim. Consistent with this, Bock et al.

(2005) have also found that the agreement between ERA-

Interim PWV and GPS PWV over central Europe varies with

difference in topography and presence of water body near

the GPS sites. The agreement deteriorated as reflected in a

decrease in the correlation from 0.92 to 0.89, an increase in

bias and standard deviation (SD) from −1 to −1.2 mm and

2.4 to 2.8 mm on average respectively when only GPS sta-

www.atmos-meas-tech.net/8/3277/2015/ Atmos. Meas. Tech., 8, 3277–3295, 2015



3288 G. Mengistu Tsidu et al.: Precipitable water vapour

Table 5. Summary of correlation, bias, standard deviation and RMSD of ERA-Interim PWV with respect to GPS PWV and the number of

data point pairs used in the evaluation of the statistics at the eight GPS stations.

Station Surface pressure type Corr Bias (mm) SD (mm) RMSD (mm) Number of data1

Addis Ababa Observation 0.85 4.6 3.4 5.7 3754

GPT 0.83 5.5 3.1 6.3 3754

Mek’ele Observation 0.93 1.7 2.9 3.4 286

GPT 0.93 3.9 2.8 4.8 286

Robe GPT 0.82 0.6 3.1 3.2 4850

Alemaya GPT 0.88 3.4 3.8 5.1 4818

Arba Minch GPT 0.84 −3.8 4.1 5.6 6463

Bahir Dar Observation 0.75 −4.5 4.4 6.3 528

GPT 0.74 −6.2 4.6 7.7 528

Semera GPT 0.84 2.3 5.5 6.0 3195

Nazerate Observation 0.88 −2.9 3.4 4.5 1770

GPT 0.87 −4.5 3.7 5.8 1770

1 The number of data pairs is also given in Fig. 8.
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Figure 9. Correlation coefficients of individual observations between ERA-Interim and GPS (a) and bias in ERA-Interim with respect to

GPS (b) for all eight ground GPS receiver sites.

tions located over mountain and near sea sites are used to

evaluate the statistics.

Figure 9 depicts the correlation (panel a) and bias (panel b)

between ERA-Interim and GPS PWV for all eight stations.

GPS and ERA-Interim show correlations between 0.75 and

0.93 at the different stations. With the exception of the three

GPS sites (Arb, Bah and Naz) discussed above, ERA-Interim

shows a wet bias compared to GPS PWV. The bias at individ-

ual sites ranges from −4.5 to 4.6 mm while SD and RMSD

vary from 2.9 to 4.4 mm and 3.2 to 6.3 mm (Table 5) respec-

tively in contrast to a bias with the range of −4 to 0 mm

over central Europe as reported by Bock et al. (2005). How-

ever, such comparison should be carefully interpreted since

a number of distinctions (e.g. considerable difference in to-

pography, GPS network density, availability of surface pres-

sure observations, difference in the skill of the ERA-Interim

model over different regions) between central Europe and

Ethiopia exist. For example, Bock et al. (2007a) have found

agreement between ERA-40 and GPS PWV over scattered

GPS sites over Africa with standard deviation of 2.5–4.5 mm

emphasizing the role of the above factors. In addition, recent

study (Bollmeyer et al., 2015) over almost the same Euro-

pean domain has shown the added value of data assimilation

over dynamical downscaling as exhibited by RMSD of 2 mm

in PWV obtained from models with dynamical downscaling

plus data assimilation, 2.5 mm from ERA-Interim and 4 mm

from dynamical downscaling without data assimilation from

GPS PWV. The observed advantage of data assimilation over

downscaling in this case strengthens the assertion that the

large bias and RMSD observed over Ethiopia are partly at-

tributable to poor skill of the model in conjunction with lack

of data or sparse data assimilated in ERA-Interim.

3.3 Diurnal and seasonal variability of ERA-Interim

and GPS PWV

The variation in biases in ERA-Interim PWV with respect

to GPS PWV due to local features, such as proximity of

GPS sites to water bodies and natural vegetation, and sen-

sitivity of model convection schemes to topography have

so far been discussed. However, there is also a possibility

that other factors (e.g. the land module scheme in GCM and
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Figure 10. The diurnal cycles of GPS and ERA-Interim PWV at all

GPS ground receiver sites during summer.

RCM) could also impact PWV estimates. All these factors

are expected to show marked seasonal variability, implying

that ERA-Interim exhibits similar features. Moreover, the

performance of the reanalysis can also be assessed with re-

spect to its skill in capturing diurnal variability exhibited by

GPS PWV. Figure 10 shows diurnal cycles of ERA-Interim

and GPS PWV at all GPS ground receiver sites during sum-

mer. The PWV at highland GPS sites (e.g. Addis Ababa,

Mek’ele, Robe) peaks before noon from 12:00 to 14:00 GMT

(09:11 LT) in contrast to GPS sites in the Great Rift Valley

region (Arba Minch, Semera, Nazerate) and near lake (e.g.

Bahir Dar), which attain a maximum during late afternoon

to evening from 18:00 to 22:00 GMT (15:00–19:00 LT). The

PWV observation over the highland GPS station at Alemaya

exhibits a similar peak in the late afternoon. Solar insola-

tion controls the surface energy budget and therefore evap-

otranspiration, which in turn depends on available water re-

Table 6. Dominant surface types within 50 km radius of the eight

GPS stations obtained from MODIS 0.5× 0.5 km resolution data

(Broxton et al., 2014).

Station Dominant surface type

Addis Ababa croplands/natural vegetation mosaic

Mek’ele open shrublands

Robe croplands/natural vegetation mosaic

Alemaya Grasslands

Arba Minch lakes, woody savannas

Bahir Dar lake, open shrublands

Semera closed shrublands to southwest;

barren lands to northeast

Nazerate lakes to southwest, grass/croplands

sources in vegetation and open water bodies. For instance,

the difference between PWV diurnal cycle at Alemaya and

the other highland GPS sites might be linked to difference

in topography and land surface types. The similarity in sur-

face types among some GPS sites given in Table 6 is nearly

in line with observed similar diurnal cycles of PWV among

sites described above. The highlands, with exception of Ale-

maya with grasslands, possess croplands/natural vegetation

mosaic and open shrublands which have a moderate evap-

otranspiration (Wang et al., 2012; Slazek, 2014). Moreover,

the similarity between the observed diurnal PWV variabil-

ity at Alemaya, with dominant grass surface characterized

by high evapotranspiration, and other sites, with proximity

to lakes, is also consistent with high PWV from these sites.

Bock et al. (2007b) have also observed differences in time of

occurrence of the peak PWV between GPS sites over Africa

and have attributed them to various factors ranging from dif-

ference in local breeze circulations to ocean and continental

processes. In contrast, ERA-Interim PWV does not seem to

capture the observed diurnal cycle in GPS PWV as exhib-

ited by a shift in the time of peak PWV at nearly all sites

with the exception of Bahir Dar and Alemaya. Bock et al.

(2011) have also found that ERA-Interim and other reanal-

ysis data sets have failed to capture diurnal cycle observed

in mean of PWV from seven GPS sites over western Africa

while the agreement at longer temporal scales (e.g. season,

annual mean) was good.

The minimum amplitude of the diurnal cycle (i.e. 1 mm) is

observed at Robe GPS site while the amplitude at the two

highlands stations, Addis Ababa and Mek’ele, is approxi-

mately 2 mm. The maximum amplitude of diurnal cycle of

PWV (about 6 mm) is observed at Semera followed by Bahir

Dar (approx. 4.5 mm) and Nazerate (3.5 mm).

Figure 11 shows the correlation and bias of ERA-Interim

PWV with respect to GPS PWV for spring (MAM) (panels

a–b), summer (JJA) (panels c–d), autumn (SON) (panels e–f)

and winter (DJF) (panels g–h). The correlation coefficients

between ERA-Interim and GPS are generally good, on the

order of 0.8 or greater for most sites during MAM, SON and
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Figure 11. The same as Fig. 9 for ERA-Interim versus GPS but sep-

arated into seasons: MAM (a–b), JJA (c–d), SON (e–f) and DJF (g–

h).

DJF. Moreover, the southern half of the country gets moder-

ate rainfall during MAM and SON. In contrast, the correla-

tions during the wet and warm JJA summer season are mostly

lower than 0.8. This implies a deficiency in the ERA-Interim

model convection scheme as indicated earlier since convec-

tion is the main source of moisture in the atmosphere. This

line of reasoning is also consistent with wet bias (as shown

in left panels of Fig. 11) in JJA for five of the eight GPS sites.

While the seasonal variation in PWV is externally forced due

to the solar cycle as captured correctly by both ERA-Interim

and GPS (see Fig. 12), the level of agreement between the

two data sets is mainly driven by the model skill in addition

to the role of local features discussed in Sect. 3.2.

The seasonal cycles (Fig. 12) are well captured by all data

sets. The broad PWV maximum at most GPS sites from

March to October is consistent with broad observed solar

insolation for Ethiopian latitude range. In contrast, Semera
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Figure 12. The seasonal water vapour cycle as captured by different

data sets at Addis Ababa (a), and by ERA-Interim and GPS at the

remaining seven GPS sites (b–h).

and Nazerate have relatively pronounced PWV peaks in both

GPS and ERA-Interim observations during JJA. What is per-

haps important to note on the seasonal basis is the presence

of a large discrepancy between ERA-Interim and GPS PWV

in most of the wet months from May to September. In con-

trast, the agreement improves during relatively dry months,

which is also evident from lowest RMSD of 2.2 mm at Robe

in DJF and highest RMSD of 8.0 mm at Semera in JJA.

The role of local features, such as the proximity to mois-

ture sources and variability in the extent of this influence

from season to season, can be further appreciated from in-

spection of the vertically integrated moisture flux shown

in Fig. 13. Figure 13 shows seasonal mean vertically inte-

grated moisture flux (vectors) and PWV (colour contours)

from ERA-Interim for the 2007–2011 period of our inves-

tigation. The ERA-Interim PWV (colour contours) for all

seasons shows generally dry Ethiopian highlands, wet low-

Atmos. Meas. Tech., 8, 3277–3295, 2015 www.atmos-meas-tech.net/8/3277/2015/



G. Mengistu Tsidu et al.: Precipitable water vapour 3291

PWV (mm)

10.4

14.91

19.43

23.95

28.46

32.98

37.5

42.01

46.53

La
tit

ud
e 

(d
eg

)

Longitude

(a) MAM

33 36 39 42 45 48
3

6

9

12

15

18
PWV (mm)

10.4

14.91

19.43

23.95

28.46

32.98

37.5

42.01

46.53

La
tit

ud
e 

(d
eg

)

Longitude

(b) JJA

33 36 39 42 45 48
3

6

9

12

15

18

PWV (mm)

10.4

14.91

19.43

23.95

28.46

32.98

37.5

42.01

46.53

La
tit

ud
e 

(d
eg

)

Longitude

(c) SON

33 36 39 42 45 48
3

6

9

12

15

18
PWV (mm)

10.4

14.91

19.43

23.95

28.46

32.98

37.5

42.01

46.53

La
tit

ud
e 

(d
eg

)

Longitude

(d) DJF

33 36 39 42 45 48
3

6

9

12

15

18

Figure 13. The ERA-Interim PWV (colour contours), and vertically integrated (to 500 hPa) moisture flux (vectors) over the study region. The

circle, filled with different colours according to ERA-Interim PWV bias with respect to GPS PWV (i.e. from highest negative bias (−6.9 mm)

in blue to highest positive bias in dark red (6.0 mm) for all seasons on the same scale; See also Fig. 11), represents the eight GPS sites and

the white solid line represents the boundary of Ethiopia.

lands in the west and south of the country, as well as wet Red

Sea and adjoining areas in the northeast. However, there are

some differences in both the seasonal mean PWV and direc-

tion of moisture transport from one season to the other. Since

the moisture flux is vertically integrated up to 500 hPa, this

could represent moisture transport in the lower troposphere.

For example, most of the GPS stations, with exception of

Mek’ele and Semera in the north and northeast, are under the

influence of westerly and southwesterly vertically integrated

moisture flux during MAM as shown in Fig. 13a. The south-

western part of Ethiopia lying west of these GPS sites re-

ceives rainfall during MAM, JJA, and SON (Mengistu Tsidu,

2012). Moreover, the region is covered by relatively dense

evergreen broad-leaf forest (also visible in the recent 0.5 km

resolution MODIS land cover data (Broxton et al., 2014), not

shown). This suggests that all of the GPS sites, with the ex-

ception of Mek’ele and Semera in the far north and northeast,

receive moisture from this part of the country and the adja-

cent lakes due to the prevailing winds during MAM and SON

as shown in Fig. 13a and c. The southwestern Ethiopian low-

lands and adjoining eastern South Sudan are also a source

of moisture for the southern half of the country in DJF (see

Fig. 13d).

In JJA, the moisture source in the southwestern Ethiopian

lowlands and adjoining eastern South Sudan shifted slightly

towards the northwest of the country, implying that the GPS

sites in the northern part of the country should benefit from

Table 7. The seasonal mean PWV (mm) and standard deviation

(mm) in brackets as determined from the eight ground-based GPS

receivers used in this study.

Station MAM JJA SON DJF

Addis Ababa 18.5 (5.5) 25.0 (3.5) 19.8 (5.8) 15.5 (4.5)

Mek’ele – 24.7 (3.3) 17.2 (5.4) 11.5 (2.9)

Robe 19.6 (5.1) 22.5 (3.7) 21.2 (5.3) 14.7 (4.0)

Alemaya 19.7 (6.5) 26.5 (4.2) 20.7 (7.0) 14.9 (5.4)

Arba Minch 32.0 (6.7) 35.6 (4.4) 33.4 (6.6) 25.5 (7.2)

Bahir Dar 22.1 (6.7) 32.3 (3.9) 26.4 (6.5) 16.9 (4.3)

Semera 25.4 (9.9) 31.8 (8.7) 29.7 (8.9) 24.1 (8.4)

Nazerate 23.5 (7.0) 29.0 (4.2) 24.0 (7.1) 19.4 (5.8)

the local moisture source due to convective rainfall (see

Fig. 13b). The Red Sea region also serves as a moisture

source during MAM (Fig. 13a) and DJF (Fig. 13d) as indi-

cated by northerly and northwesterly moisture flux vectors.

This is also evident from the GPS observations (see Table 7)

that exhibit high PWV for Semera during these seasons as

compared to other sites, with the exception of Arba Minch.

This is in clear contrast to PWV from ERA-Interim reanaly-

sis which captures broad features due to topographic differ-

ences but not localized differences between GPS sites that

arise due to proximity to water mass and vegetation cover

(see Sect. 3.2) as revealed in GPS observations.
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4 Conclusions

The quality and consistency of different observational and

reanalysis PWV data sets are investigated, and the different

error sources impacting the data taken over Addis Ababa are

characterized. Upon establishing confidence in the reliability

and robustness of the data from this investigation, the anal-

ysis is extended to include seven other GPS sites using GPS

and ERA-Interim PWV. This effort is aimed at filling the ob-

servational data and knowledge gaps regarding water vapour

variability in this part of the globe for the first time.

The PWV from FTIR, GPS and radiosondes is character-

ized in terms of different sources of error. The propagated un-

certainty from statistical and systematic formal retrieval error

in FTIR observations is found to be very small (i.e. approxi-

mately 0.5 mm on average). The sensitivity of GPS PWV to

uncertainty in TZD, surface pressure and surface temperature

has been estimated. The 4 mm error in TZD, 1.3 K error in at-

mospheric temperature and 1.65 hPa error in surface pressure

can lead to 1.32 mm error in PWV, which is within the max-

imum formal least squares solution error of 2 mm. The rel-

ative humidity measured by the RS92 radiosonde capacitive

sensor is known to suffer from the solar radiation dry bias,

which applies to Addis Ababa radiosondes as reflected by

the PWV dry bias with respect to ERA-Interim and GPS. On

average, the estimated solar radiation dry bias in radiosonde

PWV is 0.51±0.18 mm, which can explain the observed sys-

tematic difference of radiosonde PWV from GPS. However,

this value is much less than the observed difference between

the radiosonde and ERA-Interim PWV, suggesting other fac-

tors than solar radiation dry bias primarily linked with model

skill.

In addition to the assessment of the impact of uncertainty

in surface pressure on PWV, the impact of use of the GPT

model rather than measured pressure is evaluated at four GPS

sites. The effect on PWV varies between −1.7 and +2.1 mm

from station to station on average. As a result, the use of ob-

served surface pressure reduces the bias and the RMSD as

well as strengthens the correlation with ERA-Interim PWV

although with some variations among the GPS sites. The

variable benefit of using measured surface pressure among

GPS sites is linked to the variation in the skill of the GPT

model for different parts of the country and underlines the

importance of surface pressure observations for GPS mea-

surements of PWV.

The comparison between ERA-Interim and GPS PWV

shows differences in the magnitude and sign of bias of ERA-

Interim PWV with respect to GPS PWV from station to sta-

tion. This difference in the relationship between the two data

sets from station to station is also visible across different sea-

sons and in diurnal PWV variability. The cause of these dif-

ferences is linked to variation in model skill over different

regions, seasons and time of the day. The model convection

scheme appears to be sensitive to topography as reflected

in the generally wet bias over highlands and dry bias over

lowlands. This general tendency is consistent with previous

studies on precipitation. However, there are also other factors

such as the land surface module in the model and land surface

features including land cover type and proximity to water

bodies. For instance, evaporation at Lake Tana near the north-

ern highland GPS station at Bahir Dar might cause the wet

bias in GPS PWV with respect to ERA-Interim contrary to

the general tendency of high precipitation and PWV in ERA-

Interim over highlands. This is also the case at Arba Minch

GPS station located between two lakes. The skill of ECMWF

in reproducing realistic PWV (i.e. as characterized by good

agreement with GPS PWV) varies with season, showing a

large bias during wet summer and dry winter months. Good

agreement, as characterized by the correlation between GPS

and ERA-Interim PWV, is achieved during spring (MAM),

autumn (SON) and winter (DJF) at all stations.

In general ERA-Interim captures the seasonal PWV vari-

ability well albeit with spatial differences in the model per-

formance when compared to GPS. This weakness is also ap-

parent in PWV diurnal variability, implying the need for fur-

ther improvement in ERA-Interim through additional data

assimilation, adaptation of the convection and land surface

module schemes to the reality in the region.

Acknowledgements. The authors acknowledge NOAA NCDC for

radiosonde and surface pressure data, UNAVCO for installation,

maintenance and free access to GPS data, and ECMWF for access

to ERA-Interim data sets. The first author would also like to

acknowledge the financial support of the Humboldt foundation

through the author’s Humboldt fellowship grant during which

this work is accomplished. We acknowledge support by Deutsche

Forschungsgemeinschaft and Open Access Publishing Fund of

the Karlsruhe Institute of Technology. The authors acknowledge

the two anonymous reviewers and the handling editor, Kim-

berly Strong, for their useful comments and suggestions, which

have improved the quality of the manuscript.

The article processing charges for this open-access

publication were covered by a Research

Centre of the Helmholtz Association.

Edited by: K. Strong

References

Agusti-Panareda, A., Vasiljevic, D., Beljaars, A., Bock, O.,

Guichard, F., Nuret, M., Mendez, A. G., Andersson, E., Bechtold,

P., Fink, A., Hersbach, H., Lafore, J.-P., Ngamini, J.-B., Parker,

D. J., Redelsperger, J.-L., and Tomkins, A. M.: Radiosonde hu-

midity bias correction over the West African region for the spe-

cial AMMA reanalysis at ECMWF, Q. J. Roy. Meteorol. Soc.,

135, 595–617, doi:10.1002/qj.396, 2009.

Auligne, T., McNally, A., and Dee, D.: Adaptive bias correction for

satellite data in a numerical weather prediction system, Q. J. Roy.

Meteorol. Soc., 133, 631–642, 2007.

Atmos. Meas. Tech., 8, 3277–3295, 2015 www.atmos-meas-tech.net/8/3277/2015/

http://dx.doi.org/10.1002/qj.396


G. Mengistu Tsidu et al.: Precipitable water vapour 3293

Berrisford, P., Dee, D., Fielding, K., Fuentes, M., Kollberg, P.,

Kobayashi, S., and Uppala, S.: The ERA-Interim archive Version

1.0 Series: ERA Report Series, ECMWF, Shinfield Park, Read-

ing, Berkshire RG2 9AX, UK, 2009.

Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A.,

and Ware, R. H.: GPS meteorology-Remote-sensing of atmo-

spheric water-vapor using the Global Positioning System, J. Geo-

phys. Res., 97, 15787–15801, 1992.

Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A.,

Rocken, C., and Ware, R. H.: GPS meteorology-Mapping zenith

wet delays onto precipitable water, J. Appl. Meteorol., 33, 379–

386, 1994.

Bock, O., Keil, C., Richard, E., Flamant, C., and Bouin, M.-N.: Val-

idation of precipitable water from ECMWF model analyses with

GPS and radiosonde data during the MAP SOP, Q. J. Roy. Mete-

orol. Soc., 131, 3013–3036, doi:10.1256/qj.05.27, 2005.

Bock, O., Bouin, M. N., Walpersdorf, A., Lafore, J. P., Janicot, S.,

Guichard, F., and Agusti-Panareda, A.: Comparison of ground-

based GPS precipitable water vapour to independent observa-

tions and NWP model reanalyses over Africa, Q. J. Roy. Me-

teorol. Soc., 133, 2011–2027, 2007a.

Bock, O., Guichard, F., Janicot, S., Lafore, J. P., Bouin, M.-N., and

Sultan, B.: Multiscale analysis of precipitable water vapor over

Africa from GPS data and ECMWF analyses, Geophys. Res.

Lett., 34, 2007b.

Bock, O., Bouin, M. N., Doerflinger, E., Collard, P., Masson, F.,

Meynadier, R., Nahmani, S., Koité, M., Gaptia Lawan Bal-

awan, K, Didé, F., Ouedraogo, D., Pokperlaar, S., Ngamini, J.-

B., Lafore, J. P., Janicot, S., Guichard, F., and Nuret, M.: West

African Monsoon observed with ground-based GPS receivers

during African Monsoon Multidisciplinary Analysis (AMMA),

J. Geophys. Res., 113, 1–53, 2008.

Bock, O., Willis, P., Lacarra, M., and Bosser, P.: An inter-

comparison of zenith tropospheric delays derived from DORIS

and GPS data, Adv. Space Res., 46, 1648–1660, 2010.

Bock, O., Guichard, F., Meynadier, R., Gervois, S., Agusti-

Panareda, A., Beljaars, A., Boone, A., Nuret, M., Redelsperger,

J.-L., and Roucou, P.: The large-scale water cycle of the

West African monsoon, Atmosph. Sci. Lett., 12, 51–57,

doi:10.1002/asl.288, 2011.

Boehm, J., Heinkelmann, R., and Schuh, H.: Short note: a global

model of pressure and temperature for geodetic applications, J.

Geod., 81, 679–683, 2007.

Bollmeyer, C., Keller, J., Ohlwein, C., Bentzien, S., Crewell, S.,

Friedrichs, P., Hense, A., Keune, J., Kneifel, S., Pscheidt, I., Redl,

S., and Steinke, S.: Towards a high-resolution regional reanalysis

for the European CORDEX domain, Q. J. Roy. Meteorol. Soc.,

141, 1–15, doi:10.1002/qj.2486, 2015.

Braun, J., Rocken, C., and Liljegren, C.: Comparisons of line-of-

sight water vapor observations using the global positioning sys-

tem and a pointing microwave radiometer, J. Atmos. Ocean.

Technol., 20, 606–612, 2003.

Broxton, P., Zeng, X., Sulla-Menashe, D., and Troch, P.: A

Global Land Cover Climatology Using MODIS Data, J. Appl.

Meteor. Climatol., 53, 1593–1605, doi:10.1175/JAMC-D-13-

0270.1, 2014.

Buehler, S. A., Östman, S., Melsheimer, C., Holl, G., Eliasson, S.,

John, V. O., Blumenstock, T., Hase, F., Elgered, G., Raffalski,

U., Nasuno, T., Satoh, M., Milz, M., and Mendrok, J.: A multi-

instrument comparison of integrated water vapour measurements

at a high latitude site, Atmos. Chem. Phys., 12, 10925–10943,

doi:10.5194/acp-12-10925-2012, 2012.

Champollion, C., Masson, F., M.-N. Bouin and, A. W., Doerflinger,

E., Bock, O., and Baelene, J. V.: GPS water vapour tomography:

preliminary results from the ESCOMPTE field experiment, At-

mos. Res., 74, 253–274, 2005.

Combrink, A., Combrinck, W., and Moraal, H.: Near real-time de-

tection of atmospheric water vapour using the SADC GPS net-

work, S. Afr. J. Sci., 100, 436–442, 2004.

Dai, A., Wang, J., Ware, R. H., and van Hove, T.: Diurnal variation

in water vapor over North America and its implications for sam-

pling errors in radiosonde humidity, J. Geophys. Res., 107, 4090,

doi:10.1029/2001JD000642, 2002.

Dee, D., Uppala, S., Simmons, A., Berrisford, P., ., Poli, P.,

Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,

Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-

lot, J., Bormann, N., Delsol, C., Dragani, R. , Fuentes, M. , Geer,

A. J. , Haimberger, L. , Healy, S. B., Hersbach, H., Hólm, E. V.,

Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,

A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,

C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The

ERA-Interim reanalysis: configuration and performance of the

data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–

597, doi:10.1002/qj.828, 2011.

Dietrich, S. V. R., Johnsen, K.-P., Miao, J., and Heygster, G.:

Comparison of tropospheric water vapour over Antarctica de-

rived from AMSU-B data, ground-based GPS data and the

NCEP/NCAR reanalysis, J. Meteorol. Soc. Jpn., 82, 259–267,

2004.

Durre, I., Vose, S. R., and Wuertz, D. B.: Overview of the Integrated

Global Radiosonde Archive, J. Climate, 19, 53–68, 2006.

Echle, G., von Clarmann, T., Dudhia, A., Flaud, J.-M., Funke, B.,

Glatthor, N., Kerridge, B., Lopez-Puertas, M., Martin-Torres,

F. J., and Stiller, G. P.: Optimized spectral microwindows for

data analysis of the Michelson Interferometer for Passive Atmo-

spheric Sounding on the Environmental Satellite, Appl. Opt., 39,

5531–5540, 2000.

Fetzer, E., McMillin, L. M., Tobin, D., Aumann, H. H., Gunson,

M. R., McMillan, W. W., Hagan, D. E., Hofstadter, M. D., Yoe, J.,

Whiteman, D. N., Barnes, J. E., Bennartz, R., Vomel, H., Walden,

V., Newchurch, M., Minnett, P. J., Atlas, R., Schmidlin, F., Olsen,

E. T., Goldberg, M. D., Zhou, S. S., Ding, H. J., Smith, W. L.,

and Revercomb, H.: AIRS/AMSU/HSB Validation, IEEE Trans.

Geosci. Remote Sens., 41, 418–431, 2003.

Ge, M., Calais, E., and Haase, J.: Sensitivity of zenith total de-

lay accuracy to GPS orbit errors and implications for near-real-

time GPS meteorology, J. Geophys. Res., 107, ACL 12-1–12-15,

doi:10.1029/2001JD001095, 2002.

Gendt, G., Dick, G., Reigber, C., Tomassini, M., Liu, Y., and Ra-

matschi, M.: Near real time GPS water vapor monitoring for nu-

merical weather prediction in Germany, J. Meteorol. Soc. Jpn.,

82, 361–370, 2004.

Gradinarsky, L. P., Johansson, J. M., Bouma, H. R., Scherneck, H.-

G., and Elgered, G.: Climate monitoring using GPS, Phys. Chem.

Earth, 27, 335–340, 2002.

Guerova, G., Brockmann, E., Quiby, J., Schubiger, F., and Matzler,

C.: Validation of NWP mesoscale models with Swiss GPS net-

work AGNES, J. Appl. Meteorol., 42, 141–150, 2003.

www.atmos-meas-tech.net/8/3277/2015/ Atmos. Meas. Tech., 8, 3277–3295, 2015

http://dx.doi.org/10.1256/qj.05.27
http://dx.doi.org/10.1002/asl.288
http://dx.doi.org/10.1002/qj.2486
http://dx.doi.org/10.1175/JAMC-D-13-0270.1
http://dx.doi.org/10.1175/JAMC-D-13-0270.1
http://dx.doi.org/10.5194/acp-12-10925-2012
http://dx.doi.org/10.1029/2001JD000642
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1029/2001JD001095


3294 G. Mengistu Tsidu et al.: Precipitable water vapour

Hase, F., Blumenstock, T., and Paton-Walsh, C.: Analysis of the

instrumental line shape of high-resolution Fourier transform IR

spectrometers with gas cell measurements and new retrieval soft-

ware, Appl. Opt., 38, 3417–3422, 1999.

Jin, S. and Park, P. H.: A new precision improvement in zenith tro-

pospheric delay estimation by GPS, Curr. Sci., 89, 997–1000,

2005.

King, M. D., Menzel, W. P., Kaufman, Y. J., Tanré, D., Gao, B.-

C., Platnick, S., Ackerman, S. A., Remer, L. A., Pincus, R., and

Hubanks, P. A.: Cloud and Aerosol Properties, Precipitable Wa-

ter, and Profiles of Temperature and Water Vapor from MODIS,

IEEE Trans. Geosci. Remote Sens., 41, 442–458, 2003.

King, R. and Bock, Y.: Documentation of the GAMIT GPS Anal-

ysis Software, Release 10.3 Edition, Massachusetts Institute of

Technology and Scripts Institution of Oceanography, University

of California, San Diego, CA, USA, 2006.

Koulali, A., Ouazar, D., Bock, O., and Fadil, A.: Study of seasonal-

scale atmospheric water cycle with ground-based GPS receivers,

radiosondes and NWP models over Morocco, Atmos. Res., 104–

105, 273–291, doi:10.1016/j.atmosres.2011.11.002, 2011.

Mears, C., Santer, B. D., Wentz, F. J., Taylor, K., and Wehner,

M.: Relationship between temperature and precipitable water

changes over tropical oceans, Geophys. Res. Lett., 34, L24709,

doi:10.1029/2007GL031936, 2007.

Mengistu Tsidu, G.: Determination of optimized microwindows for

analysis of absorption spectra from ground-based FTIR spec-

trometer, MSc thesis, Addis Ababa University, Addis Ababa,

Ethiopia, 1998.

Mengistu Tsidu, G.: High-Resolution Monthly Rainfall Database

for Ethiopia: Homogenization, Reconstruction, and Gridding, J.

Climate, 25, 8422–8443, 2012.

Miloshevich, L. M., Paukkunen, A., Vomel, H., and Oltmans,

S. J.: Development and Validation of a Time-Lag correction for

Vaisala Radiosonde Humidity Measurements, J. Atmos. Oceanic

Technol., 21, 1305–1327, 2004.

Miloshevich, L. M., Vomel, H., Whiteman, D., Lesht, B.,

Schmidlin, F., and Russo, F.: Absolute accuracy of water vapor

measurements from six operational radiosonde types launched

during AWEX-G and implication of AIRS validation, J. Geo-

phys. Res., 111, D09S10, doi:10.1029/2005JD006083, 2006.

Ning, L., Trenberth, K. E., Qin, J., Yang, K., and Yao, L.: Detecting

Long-Term Trends in Precipitable Water over the Tibetan Plateau

by Synthesis of Station and MODIS Observations, J. Climate, 28,

1707–1722, doi:10.1175/JCLI-D-14-00303.1, 2015.

Ning, T., Elgered, G., Willen, U., and Johansson, J. M.: Evalua-

tion of the atmospheric water vapor content in a regional climate

model using ground-based GPS measurements, J. Geophys. Res.,

118, 329–339, doi:10.1029/2012JD018053, 2013.

Rocken, C., Ware, R. H., Hove, T. V., Solheim, F., Alber, C., and

Johnson, J.: Sensing atmospheric water vapor with the Global

Positioning System, Geophys. Res. Lett., 20, 2631–2634, 1993.

Rocken, C., Hove, T. V., and Ware, R. H.: Near real-time GPS sens-

ing of atmospheric water vapor, Geophys. Res. Lett., 24, 3221–

3224, 1997.

Rodgers, C. D.: Retrieval of atmospheric temperature and composi-

tion from remote measurements of thermal radiation, Rev. Geo-

phys., 14, 609–624, 1976.

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding – The-

ory and Practise, Vol. 2, World Scientific, Series on Atmospheric,

Oceanic and Planetary Physics, 2000.

Saastamoinen, J.: Atmospheric correction for the troposphere and

stratosphere in radio ranging of satellites, in: Geophys. Monogr.

Ser. 15, edited by: Henriksen, S. W., 247–251, 1972.

Schneider, M., Hase, F., and Blumenstock, T.: Water vapour pro-

files by ground-based FTIR spectroscopy: study for an optimised

retrieval and its validation, Atmos. Chem. Phys., 6, 811–830,

doi:10.5194/acp-6-811-2006, 2006.

Schneider, M., Romero, P. M., Hase, F., Blumenstock, T.,

Cuevas, E., and Ramos, R.: Continuous quality assessment of at-

mospheric water vapour measurement techniques: FTIR, Cimel,

MFRSR, GPS, and Vaisala RS92, Atmos. Meas. Tech., 3, 323–

338, doi:10.5194/amt-3-323-2010, 2010.

Schneider, M., Barthlott, S., Hase, F., González, Y., Yoshimura, K.,

García, O. E., Sepúlveda, E., Gomez-Pelaez, A., Gisi, M.,

Kohlhepp, R., Dohe, S., Blumenstock, T., Wiegele, A., Christ-

ner, E., Strong, K., Weaver, D., Palm, M., Deutscher, N. M.,

Warneke, T., Notholt, J., Lejeune, B., Demoulin, P., Jones, N.,

Griffith, D. W. T., Smale, D., and Robinson, J.: Ground-based

remote sensing of tropospheric water vapour isotopologues

within the project MUSICA, Atmos. Meas. Tech., 5, 3007–3027,

doi:10.5194/amt-5-3007-2012, 2012.

Slazek, M.: Analysis of evapotranspiration in the catchment of the

Nurzec River, Poland using MODIS data, Miscellan. Geogr.-

Region. Stud. Devel., 18, 44–51, doi:10.2478/mgrsd-2014-0008,

2014.

Stevens, B. and Bony, S.: Water in the atmosphere, Phys. Today, 66,

p. 29, doi:10.1063/PT.3.2009, 2013.

Takele Kenea, S., Mengistu Tsidu, G., Blumenstock, T., Hase, F.,

von Clarmann, T., and Stiller, G. P.: Retrieval and satellite inter-

comparison of O3 measurements from ground-based FTIR Spec-

trometer at Equatorial Station: Addis Ababa, Ethiopia, Atmos.

Meas. Tech., 6, 495–509, doi:10.5194/amt-6-495-2013, 2013.

Turner, D., Lesht, B. M., Clough, S., Liljegren, J., Revercomb, H.,

and Tobin, D.: Dry bias and variability in Vaisala RS80-H ra-

diosondes: the ARM experience, J. Atmos. Ocean. Tech., 20,

117–132, 2003.

Van Baelen, J., Aubagnac, J.-P., and Dabas, A.: Comparison of near-

real time estimates of integrated water vapor derived with GPS,

radiosondes, and microwave radiometer, J. Atmos. Ocean. Tech.,

22, 201–210, 2005.

Vedel, H. and Huang, X.-Y.: Impact of ground based GPS data on

numerical weather prediction, J. Meteorol. Soc. Jpn., 82, 459–

472, 2004.

Vedel, H., Huang, X.-Y., Haase, J., Ge, M., and Calais, E.: Im-

pact of GPS zenith tropospheric delay data on precipitation fore-

casts in Mediterranean France and Spain, Geophys. Res. Lett.,

31, L02102, doi:10.1029/2003GL017715, 2004.

Voemel, H., Selkirk, H., Miloshecich, L., Valverde-Canossa, J.,

Valdes, J., Kyro, E., Kivi, R., Stolz, W., Peng, G., and Diaz, A.:

Radiation dry bias of the VaisalaRS92 humidity sensor, J. Atmos.

Ocean. Tech., 24, 953–963, 2007.

Wang, J., Zhang, L., Dai, A., Hove, T. V., and Baelen, J. V.:

A near-global, 2 hourly data set of atmospheric precipitable water

from ground-based GPS measurements, J. Geophys. Res., 112,

D11107, doi:10.1029/2006JD007529, 2007.

Atmos. Meas. Tech., 8, 3277–3295, 2015 www.atmos-meas-tech.net/8/3277/2015/

http://dx.doi.org/10.1016/j.atmosres.2011.11.002
http://dx.doi.org/10.1029/2007GL031936
http://dx.doi.org/10.1029/2005JD006083
http://dx.doi.org/10.1175/JCLI-D-14-00303.1
http://dx.doi.org/10.1029/2012JD018053
http://dx.doi.org/10.5194/acp-6-811-2006
http://dx.doi.org/10.5194/amt-3-323-2010
http://dx.doi.org/10.5194/amt-5-3007-2012
http://dx.doi.org/10.2478/mgrsd-2014-0008
http://dx.doi.org/10.1063/PT.3.2009
http://dx.doi.org/10.5194/amt-6-495-2013
http://dx.doi.org/10.1029/2003GL017715
http://dx.doi.org/10.1029/2006JD007529


G. Mengistu Tsidu et al.: Precipitable water vapour 3295

Wang, J., Zhang, L., Dai, A., Immer, F., Sommer, M., and Vomel,

H.: Radiation Dry Bias Correction of Vaisala RS92 Humid-

ity Data and Its Impacts on Historical Radiosonde Data, J. At-

mos. Oceanic Technol., 30, 197–214, doi:10.1175/JTECH-D-12-

00113.1, 2013.

Wang, S., Fu, B. J., Gao, G. Y., Yao, X. L., and Zhou, J.: Soil mois-

ture and evapotranspiration of different land cover types in the

Loess Plateau, China, Hydrol. Earth Syst. Sci., 16, 2883-2892,

doi:10.5194/hess-16-2883-2012, 2012.

Wang, Y., Liu, Y., Liu, L., Guo, Z., Ge, X., and Xu, H.: Retrieval of

the change of precipitable water vapor with zenith tropospheric

delay in the Chinese mainland, Adv. Space Res., 43, 82–88,

2009.

Yang, X. H., Sass, B. H., Elgered, G., Johansson, J. M., and Emard-

son, T. R.: A comparison of precipitable water vapor estimates

by an NWP simulation and GPS observations, J. Appl. Meteo-

rol., 38, 941–956, 1999.

Zeleke, T., Giorgi, F., Tsidu, G. M., and Diro, G. T.: Spatial and

temporal variability of summer rainfall over Ethiopia from ob-

servations and a regional climate model experiment, Theor. Appl.

Climatol., 111, 665–681, doi:10.1007/s00704-012-0700-4, 2013.

www.atmos-meas-tech.net/8/3277/2015/ Atmos. Meas. Tech., 8, 3277–3295, 2015

http://dx.doi.org/10.1175/JTECH-D-12-00113.1
http://dx.doi.org/10.1175/JTECH-D-12-00113.1
http://dx.doi.org/10.5194/hess-16-2883-2012
http://dx.doi.org/10.1007/s00704-012-0700-4

	Abstract
	Introduction
	Data and methodology
	FTIR observations
	GPS observations
	Radiosonde soundings
	ERA-Interim data

	Results and discussion
	Intercomparison of PWV from different instruments and reanalysis over Addis Ababa
	Comparison of PWV from GPS and ERA-Interim reanalysis at other sites in Ethiopia
	Diurnal and seasonal variability of ERA-Interim and GPS PWV

	Conclusions
	Acknowledgements
	References

