KIT | KIT-Bibliothek | Impressum | Datenschutz

Designing Fail-Safe and Traffic Efficient 802.11p-based Rear-End Collision Avoidance

An, Natalya; Mittag, Jens; Hartenstein, Hannes

An essential, but nevertheless often neglected, objective for the design of safety-critical IEEE 802.11p-based application is: fail-safety. A fail-safe application is an application that incorporates features that automatically counteract the effect of anticipated sources of failure. In the context of a rear-end collision avoidance application two main possible sources of failure exist: an unpredictable human behavior and unreliable communication. This paper presents mechanisms that, when integrated into the design of rear-end collision avoidance application, counteract these failure cases and thus ensure fail-safety. However, fail-safety comes at a cost: either large inter-vehicle distances have to be kept to ensure that all drivers have enough time to react or the application has to take over vehicle control to allow smaller inter-vehicle distances and thus higher traffic efficiency. In this paper we analyze this tradeoff and quantify what part of drivers population has to be deprived of vehicle control in order to achieve acceptable traffic efficiency when deploying IEEE 802.11p-based rear-end collision avoidance application.

Open Access Logo

DOI: 10.1016/j.adhoc.2015.08.006
Zitationen: 7
Web of Science
Zitationen: 7
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Steinbuch Centre for Computing (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2016
Sprache Englisch
Identifikator ISSN: 1570-8705, 1570-8713
KITopen-ID: 1000049823
Erschienen in Ad hoc Networks
Verlag Elsevier
Band 37
Heft P1
Seiten 3-13
Nachgewiesen in Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page