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Abstract

The objective of this work is to study the microstructure and its influence on parameters relevant
for the performance of electrochemical cells—used for energy storage and conversion. For this,
the porous electrode microstructure of solid oxide fuel cells (SOFCs) and lithium ion batteries
(LIBs) are modeled as a binary mixture of electronic and ionic conducting particles to estimate
effective properties.

Reviewing relevant cell losses leads to the conclusion that effective transport properties and the
extent of active surface area significantly influence the cell performance. Both parameters are
dependent on connectivity of the particles to current collector and electrolyte. To investigate
the impact of microstructure on those parameters, particle packings of 10,000 spherical, binary
sized and randomly positioned particles are created numerically and densified under consideration
of the different manufacturing processes in SOFC and LIB: the sintering of SOFC electrodes
is approximated geometrically; and the calendering process and the volume change due to
intercalation in LIB are modeled physically by a discrete element approach. A combination of
a tracking algorithm and a resistor network approach is developed to predict the connectivity,
effective conductivity and active surface area for the various densified structures.

For SOFC, a systematic study of the effect of morphology on the relevant properties is performed
for a large number of assemblies with different compositions and particle size ratios between 1
and 10. In comparison to percolation theory, an enlarged percolation area is found, especially
for large size ratios. It is shown that in contrast to former studies the percolation threshold
correlates to varying coordination numbers. The effective conductivity increases with volume
fraction as well as with size ratio. The active surface area—denoted three-phase boundary (TPB)
in SOFC—decreases, on the other hand, with size ratio, and best results were achieved for
monosized mixtures of 50%:50% volume fraction of electron to ion conducting material. Further,
we found significant deviation between the numeric and the analytic results for those calculations:
the numerically determined effective conductivities were in general lower than predicted by the
analytic approaches. Conversely, the active TPB length found numerically was larger than the
one found for the analytic approach. Finally, for both effective parameters—independent of size
ratio—increasing densification is beneficial; therein, the densification is a measure for the degree of
sintering. In order to assess the impact of the two contrarily improving cell properties, an adapted
Tanner-Fung-Virkar (TFV) model was implemented, which allows to estimate the combined effect
of those on the effective cell resistance. With this model, the positive influence of densification on
the cell efficiency is pointed out as well. It appears that the choice of an appropriate combination
of volume fractions and size ratio is much more relevant for cell performance than the choice of
one of those factors itself.

Besides the composition, the effect of micromechanics, including contact forces and particle
rearrangement, on the electrode microstructure during calendering and intercalation is of relevance
in LIB: mechanical particle interactions affect the stress development in the electrode structure, this
is associated with mechanical degradation; and it affects the connectivity, which is relevant for the
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transport of the reactants. In LIB electrodes, the connectivity of the electron conducting carbon
black (CB) is in particular of interest for badly conducting active material, such as Li𝑥Mn2O4
(LMO) or Li𝑥FePO4 (LFP). The importance of the calendering process for the connectivity within
the CB network and for the connectivity of AM particle to CB was demonstrated. With a preload
correlated to a percolation probability of around 60%, the connectivity is maintained throughout
the intercalation process. For the highest studied volume fractions of 15% CB, the best results for
connectivity and free surface area were achieved; additionally, this composition is correlated to
the lowest intercalation induced stress. Further, the impact of the binder phase on the mechanical
behavior was investigated in the framework of dynamic discrete element simulations; therefore, the
binder material polyvinylidenefluoride (PVDF) was implemented in form of the Burgers’ model.
The significant impact of the PVDF distribution within the electrode and of the loading rate on
the stress development during loading was demonstrated.



Zusammenfassung

Ziel dieser Arbeit war es, die Mikrostruktur von elektrochemischen Zellen, die zur Energiewandlung
und -speicherung eingesetzt werden, zu untersuchen und deren Einfluss auf die Zellleistung zu bes-
timmen. Zu diesem Zweck wurde die poröse Elektrodenstruktur von Festelektrolyt-Brennstoffzellen
(SOFC) und Lithium-Ionen-Batterien (LIB) vereinfacht als Zweikomponenten-Mischung dargestellt,
die aus elektronisch und ionisch leitenden Partikeln besteht.

Die Betrachtung der auftretenden Zellverluste in experimentellen Arbeiten legt nahe, dass ins-
besondere die effektiven Transporteigenschaften und die reaktive Oberfläche der Mikrostruktur
von Bedeutung sind. Beide Parameter hängen wiederum von der Anbindung der Partikel zu den
Ableitern und der Elektrolytschicht ab. Um den Einfluss der Mikrostruktur auf diese Größen
zu untersuchen, wurden Partikelstrukturen generiert, die 10.000 zufällig verteilte Kugeln mit
binärer Größenverteilung enthalten. Anschließend wurden diese Kugelpackungen verdichtet,
um eine zusammenhängende Struktur zu erzeugen. Der Verdichtungsprozess war dabei an den
Fertigungsprozess angelehnt: Das Sintern der SOFC-Elektroden wird rein geometrisch angenähert;
Kalandrieren und Interkalation in LIB-Elektroden wird mittels eines Diskreten Elemente Models
physikalisch simuliert. Zusätzlich wurde ein Tracking Algorithmus in Kombination mit einem
Widerstands-Potential Verfahren implementiert, um die Konnektivität der Partikel, sowie die
effektive Leitfähigkeit der verdichteten Strukturen und deren aktive Oberfläche zu bestimmen.

Bei den Brennstoffzellen lag der Fokus dieser Arbeit auf dem Einfluss der Zusammensetzung der
Zweikomponenten-Mischung. Zur Untersuchung wurde eine Vielzahl verschiedener Mischungen mit
Partikelgrößenverhältnissen von 1 bis 10 erzeugt. Verglichen mit Resultaten der Perkolationstheorie
wurde ein vergrößerter Bereich von ausreichend zusammenhängenden Strukturen gefunden. Zudem
wurde festgestellt, dass - im Unterschied zu früheren Untersuchungen - kein Zusammenhang
zwischen Perkolationsübergang und Koordinationszahl besteht. Die effektive Leitfähigkeit beider
Phasen nimmt mit steigendem Volumenanteil der jeweiligen Phase zu, zudem sind grössere
Radienverhältnisse günstig. Im Gegensatz dazu wurde die größte aktive Oberfläche, in SOFC als
Drei-Phasen Grenze bekannt, für Strukturen ohne Größenverteilung und einem Mischungsverhältnis
von 50:50% Volumenanteile gefunden. Die numerischen Ergebnisse weichen stark von den analytisch
bestimmten Werten ab: Die effektive Leitfähigkeit ist kleiner und die Drei-Phasen Grenze ist größer
als die analytischen Resultate. Neben den vorherigen Betrachtungen ist noch zu festzustellen, dass
beide Parameter unabhängig von Mischungs- und Größenverhältnissen durch stärkeres Verdichten
positiv beeinflusst werden; die Verdichtung ist dabei ein Maß für den Versinterungsgrad. Um
den Einfluss der zwei sich gegensätzlich entwickelnden Parameter zu bestimmen, wurde ein
leicht verändertes Tanner-Fung-Virkar (TFV)-Modell eingesetzt, mit dessen Hilfe der kombinierte
Einfluss dieser Parameter auf den Zell-Widerstand bestimmt werden kann. Auch bei diesen
Untersuchungen wird der positive Effekt der Verdichtung herausgestellt. Darüberhinaus scheint es
hauptsächlich wichtig zu sein, dass Volumenanteile dem Größenverhältnis entsprechend gewählt
werden - die einzelnen Größen selbst haben weniger Einfluss.
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In LIB-Elektroden ist neben der Zusammensetzung auch die Mikromechanik, also Kontaktkräfte
und Partikelumordnung, wichtig: Zum einen wird die makroskopische Spannung dadurch beein-
flusst, die wiederum mit Zellalterung in Verbindung gebracht wird, zum anderen wirkt sich die
Mikromechanik auch auf die Konnektivität der Partikel aus. Konnektivität ist in LIB-Elektroden
insbesondere für das Elektronen leitende Leitruß(carbon black (CB)) von Bedeutung, vor allem
bei schlecht leitenden Aktivmaterialien, wie z.B. Li𝑥Mn2O4 (LMO) oder Li𝑥FePO4 (LFP). In
den durchgeführten Simulationen wurde die Bedeutung des Kalandrierens für das Entstehen
von ausreichend Transportpfaden und die Anbindung des Aktivmaterials aufgezeigt. Mit einer
Vorspannung, die zu einer Perkolationswahrscheinlichkeit der Struktur von um die 60% führt, kann
das leitende Netzwerk während der Interkalation aufrecht erhalten werden. Die besten Resultate
für Konnektivität und aktive Oberfläche wurden für die Mischungen mit dem höchsten unter-
suchten Volumenanteil von CB (15% CB) bestimmt; zusätzlich verursacht diese Mischung auch
die geringsten mechanischen Spannungen. Darüber hinaus wurde im Rahmen von dynamischen
DEM Simulationen noch der Effekt der Binderphase auf das mechanische Verhalten untersucht;
dazu wurde das Bindermaterial polyvinylidenefluoride (PVDF) in Form des Burgers-Modells zur
Beschreibung der Kontaktkräfte implementiert. Dabei wurde gezeigt, dass die PVDF- Verteilung
in der Elektrodenstuktur sowie die Belastungsrate großen Einfluss auf die Spannungsentwicklung
haben.
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1. Introduction

Limited availability of today’s primary energy resources, along with local and global negative
effects of emission of pollutants on the environment, necessitates reconsideration of our energy
consumption. Especially, energy conversion processes in gasoline engines and power plants have
been questioned: Their upper efficiency limit of heat engines is given by the Carnot cycle, which
is a theoretical process assuming an ideally reversible combustion process. In that process, the
efficiency is only dependent on the temperature difference between the injection and combustion
of the fuel. Due to materials restrictions, the possible temperature difference is limited, and
thus, the overall efficiency as well: the electricity production from natural gas varies from 33%
for gas turbine units to 55% for combined-cycle power plants [1]. Thus, in the last decade,
the search for efficient and clean alternatives for power generation and transportation has been
intensified. In that process, electrochemical cells attracted increasing attention in research, e.g.
rechargeable batteries for energy storage and transportation and fuel cells for energy conversion.
Electrochemical cells convert chemical energy directly in electric energy, without the detour of
conversion in thermal energy and mechanical work performed in conventional power plants or
combustion engines. Avoiding the Carnot cycle limitations, those cells can potentially convert
chemical stored energy in electrical energy in a highly efficient manner. Even nowadays, fuel cells
convert fuel in electric energy with an efficiency up to 65%, depending on fuel and conditions.
In the future, this may go up to more than 70% [2]. In rechargeable batteries up to 95% of the
stored energy can be regained [3]. Clearly, this is not considering the efficiency of the generation
of electric energy necessary to charge the cell.

1.1. Electrochemical cells

In general, electrochemical cells are composed of two electrodes connected by an ionically conductive
material called electrolyte. The cells use the transfer of electrons in redox reactions to produce
an electric current, by physically separating the oxidation (anode) and reduction (cathode) half-
reactions in space. When the electrodes are connected, the reaction progresses and the electrons
flow from the reductant to the oxidant over the external electrical connection. Ions move through
the electrolyte changing between the electrode compartments, thereby, maintaining the system’s
electrical neutrality. The cell voltage depends on the difference in electric potential of reductant
and oxidant materials.

The cells can be classified in two main categories: Open systems, like fuel cells, are supplied with
an external masses, whose chemical energy is converted in electrical energy. Closed systems, like
batteries, on the other hand, are thermodynamically closed systems, which convert internally stored
chemical energy in electric energy. Nevertheless, due to the similarities of the cell structure, working
principles, and cell processes, many research methods—experimentally as well as computationally—
are similar for the different kinds of electrochemical cells. The preferable system depends on the
area of application.
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Considering the conversion of fuel, fuel cells offer the cleanest possible process as they produce
much less greenhouse emission compared to heat engines. In stationary applications, like small
power plants (5 kW – 3 MW), high temperature fuel cells are often favored due to their fuel
flexibility. As most of H2 produced today comes from hydrocarbon resources (typically CH4), it is
energetically advantageous if that can be used directly without further reforming, which, on the
other hand, is required in low temperature fuel cells [4]. Additionally, no noble metal catalysts are
required at high temperatures, allowing the use of cheaper materials. Besides, the waste heat can
be used for heating in residential applications—this increases the efficiency further. A promising
representative of high temperature fuel cells is the solid oxide fuel cell (SOFC), which operates at
temperatures between 700 and 1000∘C. Additionally to highest fuel flexibility, the use of a solid
oxide electrolyte reduces corrosion problems, which are occurring in liquid electrolyte systems.
The all solid state system has high flexibility in cell design, offering possibilities for further cost
reduction and efficiency increase [5]. High temperature fuel cells are best utilized as a steady
energy source and not as power source to supply dynamic demands. SOFCs in particular start
up slowly, with times ranging from 2 to 6 hours, due to thermal shock problems of the ceramic
electrolyte in the composite structure [6].

In the future, the expected shortage of natural oil and gas resources will lead to an increasing
usage of alternative energy sources such as solar, wind, and water power. As wind and solar power
are not available on demand—they depend on wind intensity and sunshine duration—storage of
electric energy with as little as possible losses becomes more and more important. Additionally,
for applications requiring varying power demands, such as automotive propulsion, a rechargeable
battery is more suitable than a fuel cell, as it can handle regenerative breaking, acceleration
and quick initial start-up. For all transported energy supplies—from mobile phones to electric
vehicles—lightweight solutions are beneficial. Concededly, in comparison with fuel or gasoline,
which stores the energy used in combustion engines and fuel cells, the gravimetric and volumetric
energy density (Wh/kg respectively Wh/l) of batteries is still rather low, as illustrated in Fig. 1.1.
This leads to large masses (and volumes), which need to be transported, reducing the overall
efficiency of e.g. electric vehicles. For those to become comparable in range to today’s solutions,
the energy density as well as the cell durability needs to be improved. Among battery systems,
lithium ion batteries (LIBs) benefit from the properties of the element lithium, which is both
the most electropositive and lightest metal. Besides their high electrode potential, the most
relevant advantage of LIB cells is the high energy density (Fig. 1.1). This already allows for
integrating them into small electronic devices and makes them the system of choice in electric
transportation.

Even though the electrochemical cells have large potential, e.g. to reduce greenhouse gas and
increase the fuel efficiency, their potential is not yet fully exploited. In order to draw near the
theoretical potential and compete with heat engines, efficiency, energy density (especially in LIB),
and durability must be improved. Therefore, it is necessary to understand where the deviation
from the theoretically excellent performance originates. The power output is limited when the cell
supplies current to an external load: the operating voltage drops due to irreversibilites associated
with internal charge transfer, conduction and diffusion processes [8]. Additionally, cell degradation
during operating life leads to increasing losses. Hence, efficiency decreases further during life-time
until cell failure, which in many cases is defined as a certain amount of degradation.
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Figure 1.1.: Comparison of power density against energy density of energy storage systems with
lines of charge/discharge time [7]

1.2. Cell optimization

To reduce those losses, and thus, improve cell performance, there are basically two different
approaches: (i) material selection to optimize the relevant intrinsic material properties and (ii)
tuning of the electrode structure. At first, we briefly discuss the selection of materials, which has
been intensively investigated. This choice is closely related to the working principles of the cell;
therefore, those have to be understood first. Subsequently, the influence of microstructure on
electrode performance is briefly introduced.

1.2.1. Material selection

As described previously, fuel cells are open systems, in which the anode and cathode are just
charge-transfer media, and the active masses, undergoing the redox reactions, are delivered from
the outside of the cell. In SOFC, the reduction and oxidation occur spatially separated by a dense
solid electrolyte layer. At the cathode supplied molecular oxygen is reduced

1
2𝑂2 + 2𝑒− → 𝑂2−, (1.1)

consuming electrons and leading to a positive charging of the cathode. At the anode, the supplied
fuel is oxidized by reacting with the ions transported through the electrolyte

𝐻2 +𝑂2− → 2𝑒− +𝐻2𝑂, (1.2)
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as shown in Fig. 1.2. During oxidation electrons are set free, and therefore, the anode is charged
negatively. Additionally water vapor is formed. The resulting difference in potential leads to
a current through an external circuit. The material choice is therefore mainly determined by

Figure 1.2.: Schematic of solid oxide fuel cell (SOFC)

the dense electrolyte—whose oxygen ion transport properties have the largest impact on the
ohmic losses. Although various solid electrolytes with high ionic conductivities at moderate
temperatures, such as Scandium-stabilized Zirconia (ScSZ), Cerium oxide (CeO2), and Lanthanum
gallate (LaGaO3), have been explored, yttria-stabilized zirconia (YSZ) is the by far most used
solid electrolyte (see [9] for an overview of the different electrolyte materials). Even though its
conductivity is lower than in the other materials, its excellent stability in both reducing and
oxidizing environments, its processability, and its cost-effectiveness are good reasons for its use.
The selection of the electrode material—pure charge-transfer medium—is only limited due to
the elevated temperatures and required comparability to the ion-conductor. Besides a thermal
expansion coefficient similar to electrolyte, good electronic conductivity and catalytic activity
with regards to the proceeding reaction are required. This leads to a nickel (Ni)/YSZ composition
for the anode and strontium-doped lanthanum manganite (LSM)/YSZ mixture for cathode in
most cells.

Batteries or accumulators, on the other hand, are thermodynamically closed systems, converting
internally stored chemical energy in electric energy. In contrast to open systems, the choice of
electrode material determines the cell potential and the energy density of closed cells. In LIB, the
delivered current is a transport of electrons e−, from the anode to the cathode, that is correlated
with a transport of lithium ions Li+, also from the anode to the cathode. At the anode, lithium
atoms are oxidized

𝐿𝑖 → 𝐿𝑖+ + 𝑒− (1.3)

and, at the cathode, the electrons and the lithium ions, which have been transferred from the anode
via the external circuit and the electrolyte, respectively, are recombined together by reduction

𝐿𝑖+ + 𝑒− → 𝐿𝑖. (1.4)

The process is schematically depicted in Fig. 1.3. Even though a pure lithium metal anode would

Figure 1.3.: Schematic of lithium ion battery (LIB)

lead for those systems to the highest energy density, its utilization as anodic material is limited
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because of safety issues due to the high reactivity. Among the problems, the formation of dendrites
at the anode surface is most harmful: those may penetrate the electrolyte and reach the cathode,
causing a short circuit in the battery [10]. Such a short circuit in a battery causes overheating
and gives rise to thermal runaway.

There exist plenty of other potential candidates, which can be used as anode materials. Carbona-
ceous materials, like lithium graphite (Li𝑥C6), are nowadays widely used as anode material since
they provide a high delivered electrode potential. Despite a higher self-discharge rate compared to
pure lithium metal, such materials significantly improve the battery reliability in terms of safety.
Cathode materials are most commonly insertion compound materials, which allow the reversible
insertion of lithium-ions at specific locations of the crystalline host structure. This process is
referred to as intercalation. A comprehensive overview of the intercalation process as well as the
standard cathode materials can be found in [11] chapter 2 or [12]. Among those materials, LMO
and LFP are promising electrode materials for LIBs in terms of cost, high theoretical capacity
and stability; however, low electric conductivity limits the field of application. To compensate
this, the materials are combined with additives like CB to enhance electric conductivity. The
favored material for power batteries used for transportation, where safety issues are crucial, is
Li𝑥FePO4 at present time: it is the only positive electrode that can pass all safety tests [13].

As the focus of this work is on the microstructure, we used the material properties of the standard
materials of both electrochemical cell types.

1.2.2. Microstructure

Besides material selection, tuning morphological parameters is a key to improve cell performance
and thus efficiency. Regardless of optimization of bulk properties, the morphology always
significantly affects cell performance; therefore, a general understanding of the relation of electrode
microstructure and cell performance is essential for tailored cell design. In this context, effective
material properties are important parameters: they characterize the deviation from the bulk
property due to microstructure and composition with a value averaged over the complete electrode
structure (or a representative volume element).

The most important step in improvement of cell performance based on morphology was the
introduction in form of foam-like, porous electrodes, as illustrated in Fig. 1.4.

In order to increase the reactive area—the energy releasing electrochemical reactions take place
when all reactants come in contact—and reduce the diffusion path length, the electrodes are formed
of a mixture of small sized particles in the range of a few microns down to several nanometers [14,
12, 15, 16]. In SOFC, that mixture is made of ionic (YSZ) and electric (Ni in the anode, LSM
in the cathode) conducting powders [17] in both electrodes. In LIB, the anode is formed of
carbonaceous particles; the cathode is made of insertion material and, additionally, CB, which is
added to enhance the intrinsically low electrical conductivity of the insertion material [18]. While
the porous structure is implemented to increase the reactive area, the reactions can only take
place, when all reactants can be transported to the sites. This makes the connectivity within
each phase crucial, as the transport of electrons, ions, and further reactants to and from the
active sites must be sustained. In summary, the electrode structures of SOFCs and LIBs are very
similar: Both form a porous, granular structure, which contains ion conducting particles as well
as electron conducting particles. For both, the composite structure leads to the requirement of
connectivity within the different conducting phases to achieve sufficient transport of the reactants
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Figure 1.4.: LIB electrodes with section of a real electrode (left) and schematic (right) as usually
used to represent the granular microstructure

to the reaction sites. It is most likely that for both the properties relevant for performance are
the same as well. This similarities enable us to apply the same methods for the investigations of
microstructure, connectivity, and further relevant electrode parameters. It additionally allows
us to transfer knowledge from fuel cells—due to their longer history more research has been
conducted—to LIB.

Additionally, in both, the particle structure needs to be densified in some way to obtain a connected
composite structure. Besides the composition, the fabrication process chosen for densification
defines the microstructure to a large extent. Different processes are applied for the two cell types.
To take those influences into account, the fabrication processes of the electrodes will be introduced
here.

Fabrication process

At first in the design process, composition and particle sizes of the mixtures are specified;
subsequently, fabrication processes with variable process parameters enable tailored manufacturing
of microstructures.

In SOFC, we will focus on a planar, anode supported design: this means, the anode is thick
enough (usually between 0.3 and 1.5mm) to support the cell mechanically during fabrication. In
that case, electrolyte and cathode can be very thin (<20𝜇m), thus the ohmic resistance of the
dense electrolyte layer can be reduced significantly [19]. During manufacturing nickel oxide (NiO)
and YSZ are mixed according to the desired volume fraction, usually around 55% volume fraction
to 45%, respectively. Then, the mixture is die-pressed and sintered. The NiO in the sintered
anode structures is reduced to Ni metal on exposure to hydrogen. The LSM–YSZ (weight ratio of
50:50) composite cathode and the pure LSM cathode current collector layer are in turn printed
on the surface of dense YSZ film by a brush painting method, followed by a last firing step [17].
Temperature and time of the sintering steps significantly influence the final microstructure of the
electrode to a large amount [20].

In LIB, the electrodes are formed from pastes of active material powders, binders, solvents,
and additives; the pastes are fed to coating machines to be spread on current collector foils,
usually aluminum for the cathode side and copper for the anode side [21]. In a subsequent
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calendaring step the electrode material is rolled to obtain homogeneous thickness and improve
particle-to-particle contact. The components are then stacked to anode-separator-cathode stacks
and filled with the liquid electrolyte. Besides composition, also the calendering step strongly
affects the cell characteristics [22, 23]—thus, it should be considered in the investigations of the
electrode structure.

In order to tailor an optimized electrode microstructure, we need to inquire how the fabrication
processes influence connectivity and active surface area.

Operating life of LIB

Additionally, a cell microstructure defined initially by design and manufacture is expected to
evolve during its operating life in both, SOFC and LIB, electrodes [24, 25]. As degradation of
LIB, correlated to microstructural evolution among other things, is a serious issue with regard to
cell life time, the morphological changes during operating life should be examined. Mechanical
interactions, correlated with particle fracture and contact losses, are assumed to irreversibly
worsen the cell losses. The mechanical interaction occurs, as the insertion materials of the cathode
experience reversible volume changes when the LIB cell is in use: During discharge, the Li+ ions
are intercalated in the host structure, accompanied by a volume expansion of the active material.
The volume expansion varies between a few and 300%, depending on the material. This process is
reversed during charging of the cell, when the Li+ ions are deintercalated. Reversible swelling of
particles in a limited space obviously leads to mechanical interaction of the particles, which can
be accompanied by rearrangement of particles, contact loss and particle failure in the electrode.
This, in turn, is correlated with mechanical degradation of the cell [24]. Even though a change in
microstructure is assumed to influence the cell performance, the influence of contact forces and
particle rearrangement was neglected in the majority of research on mechanical degradation [26]
and will therefore be addressed in this work.

1.3. Objectives of this work

The short description of the electrochemical cells, and of the interaction of fabrication, microstruc-
ture, and performance given here provides a first impression of the complexity of the systems.
An important question for cell optimization is how tuning of the electrode microstructure allows
to improve cell performance. Hence, the main objective of the performed investigations in this
work was to study the influence of microstructural electrode properties on the cell losses for
promising electrochemical cells, namely for SOFC and LIB electrodes. Therefore, the relevant cell
losses must be singled out at first; and an adequate investigation method, which enables us to
consider the influence of varying electrode composition and different fabrication processes, has to
be established subsequently. Based on that, the impact of composition and manufacturing on
the relevant electrode properties can then be studied in order to gain general understanding and
determine optimization possibilities.

As will be shown in section 2.3, a huge number of experiments has been performed in order to
study different compositions and morphologies—and their influence on cell performance. Due
to the vast amount of process parameters and environmental factors, it has, however, proven
difficult to deconvolute individual parameters experimentally. Nevertheless, a general consensus
on the most relevant loss mechanisms was found. To investigate individual properties relevant
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for cell performance separately, modeling of the electrode structure is useful to decouple the
electrochemical cell processes.

As described previously, the electrode structures of SOFC and LIB are—besides the densification
step—very similar; and thus, the same modeling approaches are applicable for their investigation.
To find a realistic representation of the experimental findings, different approximation methods were
reviewed. There exits a vast number of such methods; they can be roughly divided into averaging
methods and approaches based on numerically generated microstructures. 3D microstructures
with randomly distributed spherical particles offer the possibility to consider varying compositions
as well as the different fabrication processes and evolution of the microstructure. For this, methods
to approximate the fabrication step have to be implemented. Additionally, a fast and flexible
calculation approach for effective electrode properties, e.g. connectivity and transport properties,
has to be established to obtain relevant information on the influence of morphology on electrode
losses for varying 3D microstructures.

Regarding SOFC electrodes, the focus is on the impact of composition, morphology, and sintering
conditions on the microstructure and transport processes of SOFC electrodes, as previous studies
suggested performance improvement with varying size ratio and composition (see section 2.3 and
3.2). Therefore, the adequate range of compositions—sufficient connectivity is required for proper
cell functioning—has to be detected; and the impact of varying fabrication conditions on effective
transport properties can be studied. Additionally, the combined effect of the most relevant cell
parameters should be investigated in order to consider the contradicting influence on cell losses.
Based on this, recommendations for electrode optimization can be obtained.

Besides the composition, the effect of micromechanical particle rearrangement on the microstruc-
ture of LIB electrodes during calendering and intercalation has to be studied. The influence of
mechanical load on connectivity has to be considered to guarantee sufficient transport of the
reactants. The amount of calendering, required for reliable cell function, can thus be determined
under consideration of the composition. In addition to the effective transport properties, also
the mechanical stress, induced by the loading processes, as the stress development is related to
mechanical degradation.

In summary, first the relevant cell losses have to be determined, and based on that, an appropriate
modeling approach has to be implemented. Comparison of analytically and numerically found
results, under consideration of experimental results, allows to assess the accuracy and sources of
error due to simplifications. With those methods, the influence of composition and fabrication
process on microstructure and on the relevant cell parameter can be studied for SOFC and LIB
electrodes in order to obtain recommendations for optimized cell design. Therefore, in chapter 2,
the typical loss mechanisms in electrochemical cells are presented. Additionally, experimental
findings are reviewed to determine the parameters most relevant for cell efficiency. Further,
analytic approximation methods for the relevant cell parameters and the findings based on those
are reviewed in chapter 3. subsequently, in chapter 4, the microstructural modeling is presented:
At first, the numerical approximation of undensified microstructures is described. The different
densification approaches—mimicking the fabrication process—are introduced later in the respective
chapters 5.1 and 6.1 separately. The algorithms to determine connectivity and further transport
properties are introduced and validated additionally in chapter 4. Subsequently, those approaches
are applied for the investigation of SOFC microstructures with focus on varying composition in
chapter 5. Then, the LIB electrode structures are studied in chapter 6 under consideration of
mechanical loading, modeled with a discrete element method.



2. Efficiency and its link to electrode structure

This theoretical chapter introduces the different loss mechanisms relevant in electrochemical cells;
thereby it establishes a first correlation of the losses and the microstructure of the electrodes.
Further, experimental studies on the relation of microstructure and efficiency are reviewed, and
the properties most relevant for cell performance are determined.

2.1. Basic characteristics of composite materials

As described in section 1.2.2, the electrodes considered here are manufactured from granular
powders of both ion and electric conducting particles, resulting in a porous composite structure.
In literature, the two types of particles are commonly referred to as ion and electron conducting
phases; this denotation was adopted in this work.

To understand the influence of morphology on loss mechanism, the most relevant characteristics
of composite materials are introduced first for more clarity. A composite can be described by its
porosity 𝜖, solid volume fraction of the components 𝜑, and particle size ratio or size distribution.
In this work, the porosity 𝜖 is defined as the ratio of pore space 𝑉 𝑝𝑜𝑟 to total volume

𝜖 = 𝑉𝑝𝑜𝑟

𝑉𝑝𝑜𝑟 + ∑︀𝑀
𝑖 𝑉𝑖

(2.1)

and the solid volume fraction 𝜑 as the ratio of the volume 𝑉 of one arbitrary phase 𝑘 to the sum
of all solid phases ∑︀𝑀

𝑖 :

𝜑𝑘 = 𝑉𝑘∑︀𝑀
𝑖 𝑉𝑖

with
𝑀∑︁
𝑖

𝜑𝑖 = 1 (2.2)

with 𝑀 as the number of solid components and 𝑖 as iteration variable.

2.2. Loss mechanisms in electrochemical cells

To get a general understanding of the loss mechanisms1, we take a look at the processes reducing
the power output from the maximum energy possible for a given reaction at equilibrium [27].
As shown in Fig. 2.1, the voltage drops off compared to the open circuit voltage when current is
drawn from the electrochemical cell.

1It should be noted the term “loss” used here is equivalent to the terms “overpotential” and “polarization”
commonly found in electrochemistry literature. In electrochemistry, all three terms refer to the potential
difference (voltage) between the thermodynamically determined potential at equilibrium conditions and the
potential that is experimentally observed
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Figure 2.1.: Losses reducing the theoretical cell voltage of electrochemical cells [19, 27]

The losses in electrochemical cells are due to kinetic limitations of reactions and other processes
taking place during cell operation and can all be related to transport phenomena [28].

The three main causes for cell losses [19, 27]: (i) ohmic polarization, (ii) activation polarization,
and (iii) concentration polarization are briefly described next.

2.2.1. Ohmic losses

The ohmic losses, describing the resistance of flow of ions and electrons, increase constantly with
increasing current density 𝑗⃗ over a large range. In general, the transport phenomena within the
cells are modeled in each phase separately and linked at the reactive surface. In an arbitrary solid
phase 𝑘, the charge transport is governed by Ohm’s law:

𝑗⃗𝑘 = −𝜅𝑘∇𝜙𝑘 (2.3)

with 𝜅𝑘 the conductivity (in S/m), 𝜙𝑘 the potential (in V) and 𝑗⃗𝑘 as current density in the solid
phase 𝑘 (A/m2). Generally, the current density is related to the current 𝐼 through an area 𝑎⃗ by
the surface integral 𝐼 =

∫︀
𝐴 𝑗⃗𝑑𝑛⃗ with 𝑑𝑛⃗ normal to the surface. In a homogeneous field this can be

reduced to 𝐼 = 𝑗𝐴, assuming the current density is normal to the surface. Under consideration of
electrode microstructure and composition, the conductivity is reduced to the effective conductivity,
which is the reciprocal of the overall ohmic resistance of the continuous composite material.

Two important characteristics for the evaluation of the conductivity in granular structures are: (i)
the percolation probability 𝑃 𝑘 and (ii) the tortuosity 𝜏𝑘 of the solid phase 𝑘. The Percolation
probability is the likelihood, that particles of the species 𝑘—either ionic or electronic conducting—
form a connected pathway through the volume element (which in this work is the electrode).
This is directly related to the conductivity: Without a percolating path through the structure
of one phase, the transport of this charge carrier is impossible and the ohmic resistance of this
phase approaches infinity. At a certain—critical—volume fraction of the phase in consideration, a
connecting path through the structure is found; at that point, conductivity within this phase is
possible. The transition from non-conducting compositions to conducting compositions is referred
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to as percolation threshold. Above the critical volume fraction, the effective conductivity of
this phase increases steadily as increasing number of connections are formed. This correlation is
depicted schematically in Fig 2.2. The analytic determination of the percolation probability 𝑃
will be explained in detail in section 3.1.2.

Figure 2.2.: Percolation probability and effective conductivity against volume fraction

The tortuosity 𝜏 describes the sinousness of the connected pathway through the volume; it was
initially defined as the ratio of the real path length 𝑙 through the composite to the Euclidean
distance 𝑥 [29]

𝜏 = 𝑙

𝑥
. (2.4)

Clearly, the actual length of the transport path influences the effective conductivity of the phase.
Owing to the direct relation between tortuosity and transport properties, the tortuosity can also
be specified in terms of the experimentally easier accessible transport properties, as discussed for
example in [30, 31, 32]. Both, percolation probability and tortuosity, strongly depend on volume
fraction, porosity, and particle size ratios of the composition.

In both, solid oxide fuel cell (SOFC) and lithium ion battery (LIB), electrons must be transported
from the current collector and ions from the electrolyte layer to the reaction site. Additionally,
in SOFC, gaseous fuels need to diffuse through the pore space and reach the active sites. As
thus three transport channels have to be in contact for the reactions, these contact zones are
called three-phase boundary (TPB) in SOFC. For a TPB to be active, the electronic conducting
phase needs to be connected to the current collector, the yttria-stabilized zirconia (YSZ) phase to
the solid electrolyte and the pore space to the gas inlet (and outlet). In LIB, the Li+-ions are
transported in the liquid electrolyte, recombine with electrons at the electrolyte-insertion material
surface and diffuse inwards due to concentration gradients. For the recombination, electrons need
to travel from external circuit to the active material—therefore a connecting path in the electron
connecting phase is required. In summary, the energy releasing reactions only take place at zones
where all reactants are in contact; thus, connectivity and good transport properties of all phases
are essential for cell performance.
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2.2.2. Activation polarization

The electrochemical charge-transfer reactions at the electrode/electrolyte interface involve energy
barriers, those must be overcome by the reacting species. That energy barrier is called the
”activation energy” and results in activation polarization2, which is due to the transfer of charges
between the electronic and the ionic phases. The flux of the reacting species, accompanied by
charge transfer, is a function of the potential difference across the local electrode-electrolyte
interface 𝑈𝑠 and the local concentration of the reacting species across the surface. Many electrode-
electrolyte systems show an exponential relation between the flux as well as the current density 𝑗⃗
and the potential drop across the surface; thus, activation losses dominate at low current densities
and decrease with increasing current density. The current density 𝑗⃗BV at the electrolyte-electrode
interface can be given by the Butler-Volmer equation as [8]:

𝑗BV = 𝑗⃗ · 𝑛⃗ = 𝑗0(𝑒𝑥𝑝( 𝐹

2𝑅𝑇 (𝑈𝑠 − 𝑈𝑜𝑐)) − 𝑒𝑥𝑝(− 𝐹

2𝑅𝑇 (𝑈𝑠 − 𝑈𝑜𝑐)), (2.5)

assuming that anodic and cathodic transfer coefficients both equal to 0.5 [33]. In here, 𝑛⃗ is
the unit vector normal to the surface, 𝐹 is the Faraday’s constant, 𝑅 as gas constant and 𝑇
the temperature. The local overpotential, which is required to overcome the reaction barrier
energies at the interface, is defined as 𝑈𝑠 − 𝑈𝑜𝑐 with 𝑈𝑠 as the potential difference across the
electrode-electrolyte interface and 𝑈𝑜𝑐 as the voltage of the cell at open circuit (= at equilibrium).
Further, the exchange current density 𝑗0 describes the anodic and cathodic current at equilibrium3

and depends on the local concentration of reactants and products [8]. In SOFC, 𝑗0 can be described
as a function of partial pressure in the gas phase [34], and in LIB, it is a function of the local
Li-concentration in electrolyte and active material [35].

In electrochemical cells, the current density at an interface is related to the flux of the reactive
species through the interface simply by the charge each reactant carries. With charge balance,
the local transport of ions and electrons is related by

𝑗⃗𝑖𝑜 · 𝑛⃗ = −𝑗⃗𝑒𝑙 · 𝑛⃗ = 𝑗BV, (2.6)

with 𝑛⃗ as vector normal to the electrode-electrolyte surface of the particles. To understand the
beneficial impact of a porous electrode structure on cell performance, let us take the specific
interfacial area per unit of electrode volume 𝑆 into account (in m2/m3). With this, the overall
charge transfer per unit of electrode volume can be calculated as 𝑆𝑗BV by considering the local
charge transfer, integrated over all reaction zones. Simplifying the model to a 1D continuous cell
level model, the ionic and the electronic conducting phase are no longer resolved separately, but
considered as superposed: each point of the electrodes has both properties of the ionic and the
electronic phase. Additionally, 𝑆𝑗BV is considered as a source term. Charge conservation for the
one-dimensional model leads to

𝜕

𝜕𝑥
𝑗𝑖𝑜 = − 𝜕

𝜕𝑥
𝑗𝑒𝑙 = 𝑆𝑗BV. (2.7)

Further, the total current density entering the electron conducting phase is equivalent to the
external usable current density of the electrode. Thus, for a constant charge-transfer rate 𝑗BV,

2also denoted as charge-transfer resistance
3At equilibrium the overpotential is zero (𝑈𝑠 − 𝑈𝑜𝑐 = 0) and the amounts of the anodic and cathodic current

densities (𝑗𝑎 and 𝑗𝑐 respectively) are the same and define the exchange current density 𝑗0 (| 𝑗𝑎 |=| 𝑗𝑐 |= 𝑗0);
thus, the net current density is zero 𝑗(𝑈𝑠 − 𝑈𝑜𝑐 = 0) = 0
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a larger specific surface area 𝑆 leads to larger external current densities. As small local current
densities can be achieved by a smaller local overpotential. This, in turn, reduces the charge-transfer
losses; hence, a large specific interfacial area is beneficial for cell performance.

2.2.3. Concentration losses

Concentration losses are associated with diffusion limitations of the reactants: concentration
gradients due to slow mass transport lead to depletion of the species at the interface and thus, a
drop in local voltage. This becomes prominent at very high current densities and can be mitigated
by providing sufficient pore space [36]. To determine the distributions of reactants, mass and
species conservation has to be solved under consideration of the charge-transfer rates. Within
the solid phases, the mass diffusion can be estimated with Fick’s law, for the gaseous transport
several other models exits, e.g. the dusty-gas model [19].

Due to the complexity and the coupled mechanism in the electrode structure, optimizing the
microstructure to improve one loss mechanism usually penalizes the other properties. As a
result, the question which cell structure leads to best performance is not easily answered and
not conclusively solved today. The variety of research on this topic can be divided roughly into
three approaches: (i) experimental methods, (ii) analytic description with averaging methods
and (iii) so-called Monte-Carlo simulations, which include all approaches that are based on the
generation of random numbers. To get an indication of important parameters, experimental
findings are shortly reviewed. Subsequently, analytic and numerical methods, which are generally
used for estimation of cell properties, are introduced, and their applicability is assessed based on
the reviewed experimental studies.

2.3. Experimental research

Huge progress has been made in experimental cell characterization during the last decade. In the
early days, SOFC and LIB experiments have been mainly empirical: certain cell design parameters
were changed and the cell voltage was monitored. The impact of torosity [37, 38, 39], volume
fractions of the solid phases [37, 40, 41, 42], particle size [40, 15, 43] and size distribution [15, 38],
electrode thickness [23, 39], and process parameters like temperature and time during sintering
in SOFC [44, 45], or pressure during the calendering process in LIB [46, 22] has been studied
in that way. Over and above the cited examples, a vast amount of work has been done in this
area. The realized studies agree on the fact that the microstructure significantly influences the
cell performance. Due to the complex system, there is, however, no consensus on the rate-limiting
morphological parameter. Even strongly simplified model experiments have difficulties to decouple
kinetic and geometrical effects. Furthermore, as discussed in the reviews by Mogensen and
Skaarup [47], Brett et al. [48], or Fergus [49], findings of different studies are difficult to compare
due to the various process routes in electrode preparation and, especially in LIB, the manifold
material compositions. Slightly more insight can be gained with electrochemical impedance
spectroscopy (EIS), which determines dynamic behavior over a large range of frequencies via
cyclic loading. Comparing the results for different cell compositions allows to correlate the losses
in electrochemical systems to certain processes.
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Finally, since Wilson et al. [50] first reported three-dimensional reconstruction of a SOFC electrode
in 2006, it is possible to directly obtain information on morphological parameters. In Fig. 2.3,
the reconstruction of an entire state-of-the-art SOFC cell is shown exemplarily [17]. Coupling

Figure 2.3.: 3D reconstruction image showing the solid phases of a SOFC structure, with cathode
on the left and anode on the right side [17]

reconstruction with numerical methods and cell performance measurements permits to correlate
certain microstructural aspects to changes in performance. The reconstruction process involves
the successive imaging (by SEM) and then milling away (by FIB) of consecutive, closely-spaced
slices of material to obtain a series of SEM micrographs, which, when aligned and stacked, form a
3D image of the material’s microstructure [51]. A detailed description of this method can be found
in [52]. For non-destructive 3D reconstruction of the electrodes, X-ray computed nanotomography
(XCT) can be used, as described in detail by Izzo et al. [53]. Further details, including a variety of
examples on all kind of energy materials are explained in a review by Cocco et al. [51]. A variety
of composite materials has been studied and properties like surface area, connectivity, tortuosity
and pore space have been characterized with that approach. Particularly for the determination of
connectivity in the phases, three-dimensional information is mandatory.

In the following we will briefly summarize the experimental findings used as a basis for the further
modeling work for SOFC and LIB separately.

2.3.1. Findings for solid oxide fuel cells

As discussed in [47], the results from empirical investigations on SOFC electrodes are not conclusive;
however, they indicate that the extent of TPB is related to cell performance. Only with 3D
reconstructions of the microstructure, the connectivity within the phases can be determined, and
thus, the active fraction of TPB—the fraction that actually participates in the energy releasing
reaction. Additionally, volume fractions, surface areas, and tortuosity of the phases can be
determined. It was demonstrated that good connectivity in combination with a large extent of
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active TPB is dominating the cell performance. Furthermore, the effective conductivity of the
YSZ phase influences the overall resistivity, whereas the electron conducting phase as well as the
gas phase show little influence—when sufficient connectivity is maintained [54, 14]. Presumably,
the little influence of the electron conducting phase is due to the fact that the electronic bulk
conductivities are orders of magnitudes larger than the ionic bulk conductivity. Further, the
influence of the gas phase is negligible as the concentration polarzation is minimal in thin electrodes.
The total amount of TPB increases with decreasing particle size; this is significantly influenced
by initial particle size and sintering conditions: higher sintering temperatures lead to coarsening
of the microstructure. This reduces, on the one hand, the total amount of TPB, but, on the
other hand, it improves the connectivity within the phases. The conflicting influence of sintering
conditions on cell properties necessitates for a trade-off of connectivity and active TPB. Besides
particle size and sintering conditions, the particle size ratio is an important parameter on the
extent of TPB and the connectivity as well. So far, it was only investigated for compositions
with the same volume fraction for different size ratios of ion conducting to electron conducting
particles. That study showed no conclusive trend for size ratios deviating from 1 [14]. Duong
and Mumm [14] recommend, however, in their study to consider various volume fractions for the
different size ratios in future research as the percolation threshold varies with size ratio.

2.3.2. Findings for Lithium ion batteries

In LIB, the empirical investigations are even more difficult to compare due to the vast variations
of cell chemistries used in research [49]. With regard to particle size, one general finding is that
small particles are favorable as they provide high surface area and short diffusion distances. When
particles become too small (<15nm), processes other than the surface reaction, e.g. diffusion of
ions in the electrolyte, become rate limiting and the cell performance is not further improved [43].
In this work, we focus on intermediate particle sizes, assuming that particle size does not play an
important role in this range. In Li𝑥FePO4 (LFP) electrodes for example, no clear dependence of
rate capacity was found for a particle size range of 50–400 nm [16]. In this way, mean particle size
effects are excluded; the important design parameters considered here are mechanical compression
during calendering and the volume fraction of additives.

In various studies on the impact of calendering via EIS, decreasing contact resistance and increasing
charge-transfer resistance (activation polarization) were detected for different cell chemistries [22,
55, 46, 56, 23]. Additionally, calendering increases the contact between particles itself as well as
between particles and current collector; it also decreases porosity and free surface area [23], as
illustrated in Fig. 2.4. Based on that, the measured decrease in contact resistance is associated

Figure 2.4.: Sketch of the influence of calendering on the electrode microstructure
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with increasing contact area, and the detected increase in charge transfer resistance is associated
with the decreasing free surface. These conflicting trends in combination led in [22] to a minimum
overall resistance of the cell in the range of 30 to 40% porosity. Nevertheless, further investigations
are necessary to evaluate the assumptions made about the correlations and subsequently, to find a
trade-off for the two opposing effects of increasing charge transfer resistance and decreasing contact
resistance. In contrast to those steadily changing cell losses, concentration polarization only
becomes relevant for porosities below 10% [22, 55]. Regarding electron conductivity, in [22] a nearly
constant value is found for all compression states, in [55], on the other hand, the compression from
the uncompressed state to 40% porosity shows large effect on electronic conductivity. Furthermore,
Chen et al. [57] reported significant changes of the electron conductivity during calendering the
microstructures to porosities between 30 to 50%. Thus, the results here are inconclusive.

With regard to the composition, we focus on standard LIB cells, which are usually composed of the
insertion material, conducting powders, such as carbon black (CB)—added to enhance electronic
conductivity of the composite electrodes—and a polymeric binder, usually polyvinylidenefluoride
(PVDF), which is used for mechanical stability and connectivity. As stated by Qi et al.[58], the cell
performance is negatively influenced by poor electronic conductivity. This is in particular relevant
for cathode materials with bad intrinsic conductivity, like LFP—its bulk conductivity is below
10−7 S/m—or Li𝑥Mn2O4 (LMO) with conductivities below 10−3 S/m. The Li-insertion process is
dependent on electron transport, as only active material particles with sufficient electron supply
participate in the intercalation process [59]. For the poorly electron conducting materials, the
relevance of CB is shown for example in [42, 59, 18]: the specific capacity (gravimetric as well as
volumetric) of the tested cells increased with increasing carbon content. Even for better conducting
LiCoO2 (LCO) materials, a dependence of cell capacity on CB content was shown in [18]. Besides
the dependence on CB content, clear percolation thresholds were shown, demonstrating that a
certain amount of additives is required for proper cell performance. The percolation threshold of
CB for LMO or LCO materials is usually found between 0 and 15 vol.% of carbon, depending on
the active particle size. In [60] for example it was determined at 3 vol. % CB (2 wt. %) in LMO
electrodes. For the badly conducting LFP material, the maximum performance is not reached for
the maximum tested amount of 15 vol. % CB [42]; the capacity increases rather with increasing
CB content. Supposedly, that is due to an increasing number of electron conducting paths; this
increases the amount of active material accessible to Li+/e− insertion. In summary, a large CB
content increases the electrical conductivity and connects the active material particles to the
electron conducting network. Nevertheless, it also decreases specific power and energy as the
nonactive material occupies volume of the electrode.

The connectivity of the electron conducting network is not only dependent on the composition, it
also depends on the calendering. Studying the impact of calendering on electrodes with additives in
a weight ratio of CB to binder of 4:5 showed different performance optima for for different amount
of additives: For a mixture of 6.4 wt. % CB, the best performance is measured at 40% porosity;
for 3.2 wt. % CB it is determined at 20% porosity for 4% binder. Thus, it appears that a lower
amount of CB requires a higher amount of densification to reach good performance [61]. Further,
comparing different amounts of CB-binder added to the electrode and different compression rates
indicates that the composition has more influence on cell capacity than compression [62].
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2.3.3. Electrode parameters relevant for performance

Summarizing the experimental findings, in both, SOFC and LIB electrodes, percolation is an
issue that has to be addressed: Proper cell performance can only be achieved, when both solid
phases in SOFC and the electron conducting phase in LIB is sufficiently connected. Furthermore,
in both cell types, inner-phase transport, associated with ohmic losses, as well as the active area,
associated with activation losses, are relevant for cell performance. The inner-phase transport,
or conductivity is more relevant for the ion conducting phase in SOFC and, in contrast, for the
electron conducting phase in LIB. As inner-phase transport properties and active area are assumed
to change in conflicting way, a trade-off has to be found. Concentration losses, on the other hand,
are negligible when sufficient porosity is maintained (> 10 - 20%). Thus, in the further course of
this work, we assume that connected pore-space is granted for porosities higher than 15%.
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3D reconstructions provide a great deal of quantitative information about the complexity of
electrodes. They offer, however, relatively little predictive capability as they only reflect on
few yet existing systems; as they are time-consuming and expensive [63], only few systems
have been studied so far. Due to the vast amount of process parameters and environmental
influence, there is little consensus as to what constitutes a good microstructure. Deconvoluting
the contributions of different variables to microstructural evolution remains challenging [36]. To
provide a more complete picture of the connection between microstructure and cell performance,
electrochemical cell modeling is an important tool. The modeling is based on charge conservation
and mass conservation in combination with the transport and charge transfer equations described
in section 2.2. Even though locally resolved, three-dimensional simulations are possible, it is
preferable to use a reduced one-dimensional approach without the explicit representation of the
microstructure to reduce computational effort. This reduction in computational effort allows to
conduct parameter studies with various compositions and electrode morphologies.

In locally resolved 3D-models the material properties are the bulk properties of the different phases;
in the reduced one-dimensional models, in contrast, the heterogeneous structure is replaced with
a hypothetical material which yields the same response for the same conditions. The equivalent
properties of this hypothetical material are referred to as effective properties [64]. Thus, the
porous composite electrode material is considered as a homogeneous one-component material with
average surface area per unit volume, effective conductivity and diffusivity, effective mechanical
properties etc. As the influence of microstructure is condensed to the effective cell properties used
as input data, a careful approximation of these parameters is essential. The experimental findings
allow to assess the theoretical approximation approaches.

Numerous models have been proposed in the last century for the estimation of effective properties
required for simplified electrochemical models of porous composite electrodes. In all kinds of
scientific fields, such approximations have been used to assess e.g. elastic properties, thermal
properties, electric and fluid transport properties. As this field is too broad to give a complete
overview, only the approaches with relevance to the scope of this work will be introduced here.
For the interested reader the reviews of Meredith [65], Choy [66] and Torquato[67] provide more
detailed information. The equations in the following are given in terms of electric conductivity,
even though they are valid for various material properties.

Regarding the approaches, it can be distinguished between averaging methods, derived analyti-
cally for simplified microstructures, or Monte-Carlo methods, determined based on numerically
generated microstructures. In this chapter, the averaging methods commonly used in research on
LIB and SOFC—effective medium theory and percolation theory, respectively—are introduced.
Furthermore, the findings based on those methods are summarized; and finally, open questions
arising thereby are be addressed.
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3.1. Averaging methods

The most basic methods allow to calculate effective properties based on the porosity and the solid
volume fractions of the different phases only. As, however, already stated by Hashin and Shtrikman
[68], volume fractions and bulk properties of the phases are not sufficient to determine effective
properties of random media exactly. Thus, for the derivation of bounds and volume averaging
approaches, the microstructure is idealized in some fashion, and exact solutions are found for these
idealizations. Calculation of the properties of layered structures in parallel and series connection
offer the upper and the lower bounds for the effective properties. Those formulations are known
as Wiener bounds or as Voigt and Reuss approximation for elastic modulus [67, 64]. Each value
above the upper or below the lower Wiener bounds is physically not sound. The upper bound for
𝑀 solid phases in parallel is determined as

𝜅eff =
𝑀∑︁
𝑖

𝜅𝑖𝜑𝑖, (3.1)

and the lower bound is found assuming the phases in series, i.e.

𝜅eff = 1∑︀𝑀
𝑖

𝜑𝑖
𝜅𝑖

. (3.2)

Obviously, those bounds allow only for a rough estimate of the effective conductivity due to the
large simplification of the microstructure. In the systems representing the electrode structures—one
phase is always isolating—the lower bound becomes zero for all cases.

It exists a large number of more rigorous bounds for binary heterogeneous composites, for example
the well-known Hashin-Shtrikman (HS) model [68]. In order to obtain more rigorous bounds, the
assumptions made about the microstructure, have to be more rigorous as well. Thus, clearly,
not all bounds are applicable for all composite materials, as the materials have to match the
assumptions made in the derivation of the bounds. Following the argumentation of Carson et
al. [69], porous composites can be divided into materials with internal porosity and materials
with external porosity. Internal porosity describes materials composed of a continuous matrix
structure, which contains enclosed pore space. Materials of external porosity, on the other hand,
describe granular materials with a continuous gas phase. The requirements of electrochemical
electrodes for sufficient gas transport in SOFC and liquid electrolyte transport in LIB demand
materials with external porosity. Carson et al. further proposed that the effective conductivity
of materials with external porosity is bounded above by the equation given in effective media
theory and below by the lower HS bound. For the derivation of the HS bounds, a two-phase
composite material is approximated as a material consisting of spherical particles with cores of
one material, surrounded by shells of the second material. The lower HS bound considers the
material of higher conductivity as the spherical cores, and the phase with lower conductivity
forms the shell. Thus, the less conducting phase is continuous, and additionally, it separates the
cores of higher conductivity. As, however, the less conducting phase is isolating in the composites
considered in this work, the lower bound is reduced to 0. For the calculation of the upper bound
the effective medium theory is introduced next.
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3.1.1. Effective medium approximations

Widely used for the estimation of effective transport properties are the effective medium ap-
proximations, which were first introduced by Bruggeman in 1935 [70]; they are based on the
mathematical solution for the disturbance of a homogeneous field due to a spherical inclusion,
as for example derived by Maxwell. To do so, a single sphere of radius 𝑟𝑝 and conductivity
𝜅2 is considered to be in an infinite matrix with conductivity 𝜅1, as sketched in Fig. 3.1. An
unidirectional and constant intensity field 𝐸⃗0 is applied at great distance of the sphere. The

𝑟𝑝

𝜅2

𝜅1
𝑟⃗

𝐸⃗0

Figure 3.1.: Single spherical inclusion of conductivity 𝜅2 in an infinite matrix of conductivity 𝜅1
and an intensity field 𝐸⃗0 applied at large distance

potential distribution can be determined with Laplace’s equation

∇2𝜙 = 0, (3.3)

as continuity must be satisfied everywhere, including the boundaries of the spherical inclusion.
The mathematical solution for the potential distribution inside and around the sphere can be
found in e.g. [67], chapter 17. With 𝑟⃗ as the position vector originating in the center of the sphere
(see Fig. 3.1), the potential can be given as

𝜙 =
{︃

−𝐸⃗0 · 𝑟⃗ + 𝛽21𝐸⃗0 · 𝑟⃗( 𝑟𝑝

𝑟 )3, if 𝑟 ≥ 𝑟𝑝,

−𝐸⃗0 · 𝑟⃗ + 𝛽21𝐸⃗0 · 𝑟⃗, if 𝑟 ≤ 𝑟𝑝.
(3.4)

with 𝑟 ≡| 𝑟⃗ | and 𝛽21, denoted as the polarizability, defined by

𝛽21 = 𝜅2 − 𝜅1
𝜅2 + 2𝜅1

. (3.5)

The intensity field 𝐸⃗ = −∇𝜙 can be given as

𝐸⃗ =
{︃
𝐸⃗0 + 𝛽21𝑟

3
𝑝

3𝑛⃗𝑛⃗−I
𝑟3 𝐸⃗0, if 𝑟 > 𝑟𝑝,

𝐸⃗0 − 𝛽21𝐸⃗0, if 𝑟 < 𝑟𝑝.
(3.6)

with 𝑛⃗ as radial unit normal and I as unity tensor. The field outside the sphere is equivalent
to the applied field 𝐸⃗0 plus the field of the dipole induced by the sphere with dipole moment
𝛽21𝑟

3
𝑝𝐸0, with 𝐸0 as the absolute value of the homogeneous field 𝐸⃗0.

Ongoing from the solution for a single spherical inclusion in a infinite matrix, the influence of
an arbitrary number of small spherical inclusions—as sketched in Fig. 3.2—can be calculated.
Therefore, the spherical inclusion is replaced by a composite sphere with radius 𝑟𝑒 composed of N
smaller spheres with conductivity 𝜅2 and a combined volume fraction 𝜑2 within the sphere 𝑟𝑒 and
matrix material with conductivity 𝜅1 (see Fig. 3.2). The disturbance of the intensity field at large
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𝑟𝑒

𝜅1

𝜅1
𝑟⃗
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𝜅2 𝜅2

𝐸⃗0

Figure 3.2.: Composite sphere of radius 𝑟𝑒, composed of spherical particles of conductivity 𝜅2 in
matrix of conductivity 𝜅1, embedded in an infinite matrix with conductivity 𝜅1

distance of the composite sphere can be calculated from the superposition of the effect of each
small sphere. When the large sphere with radius 𝑟𝑒 is considered as homogeneous material with
an effective conductivity 𝜅eff , it is assumed to have the same effect on the intensity field far from
its origin. Thus, the polarizabilties can be related through the volume fractions of the smaller
spheres as 𝛽𝑒1 = 𝜑2𝛽21 [67, 66], which allows to determine the effective conductivity of dilute
dispersions as

𝜅eff − 𝜅1
𝜅eff + 2𝜅1

= 𝜑2
𝜅2 − 𝜅1
𝜅2 + 2𝜅2

. (3.7)

Based on this equation, different approximations can be derived to estimate the effective conduc-
tivity of composite materials. Two will be introduced here, as they are considered in the further
course of this work. The first is the so-called self-consistent approach, which is assuming unbiased
mixtures, in which both phases are added in such a way that the perturbation is zero on average.
This approximation was used by Carson et al. [69] to determine the upper limit of the effective
conductivity of granular materials with external porosity. The second, denoted as the differential
approximation, is the mathematical derivation of the Bruggeman equation, which is widely used
to determine the effective conductivity of LIB electrodes for cell level modeling.

Self-consistent effective-medium approximation

For the self-consistent approach, the composite at a certain, arbitrary mixing ratio is considered as
a homogenized matrix phase with an effective conductivity 𝜅eff,0. At first, a small amount Δ𝜑 of
one phase is added to that mixture, and the new effective conductivity 𝜅eff,Δ𝜑 is considered as the
new matrix property. Next, such an amount of the other phase is added to this new matrix that
the properties of the matrix are changed back to the initial value of 𝜅eff,0. Supposing that thus
little by little the mixing ratio of a given composite can be attained, the effective conductivity
can be calculated implicitly from

𝑀∑︁
𝑖

𝜑𝑖
𝜅𝑖 − 𝜅eff
𝜅𝑖 + 2𝜅eff

= 0, (3.8)

as derived mathematically in Appendix A.1 for a binary mixture (𝑀 = 2). The derivation implies
that this approach is only valid for symmetric composites. Symmetry in binary mixtures means
in this context, that the results are invariant to the simultaneous exchange of the conductivities
𝜅1 and 𝜅2 plus the volume fractions 𝜑1 and 𝜑2. In binary mixtures of spherical particles, this is
only valid for monosized assemblies. Further, the approximation yields unsatisfactory results for
compositions with widely different conductivities: It predicts a spurious percolation threshold
independent of microstructure. The percolation threshold is, however, strongly influenced by the
microstructure, as will be discussed in section 3.1.2.
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Differential effective-medium approximation

For the derivation of the differential approximation, on the other hand, an infinitesimal small
amount of inclusion phase 1 is replaced by phase 2 in an arbitrary, homogenized mixture with
phase 1 as matrix phase and phase 2 as inclusion phase. For the derivation, it is assumed that
the effective conductivity 𝜅eff(𝜑2) at one value of 𝜑2 is known. The calculation of 𝜅eff(𝜑2 + Δ𝜑2)
leads to a differential equation of Eq. 3.7, as shown in Appendix A.2:

(1 − 𝜑2)𝑑𝜅eff
𝑑𝜑2

= 3𝜅eff
𝜅2 − 𝜅eff
𝜅2 + 2𝜅eff

. (3.9)

Further, analytic integration (presented in Appendix A) leads to

(𝜅2 − 𝜅eff
𝜅2 − 𝜅1

)( 𝜅1
𝜅eff

)1/3 = 1 − 𝜑2. (3.10)

Under the assumption, that the inclusion phase 𝜑2 is isolating1, this can be reduced to
𝜅eff
𝜅1

= 𝜑
3/2
1 , (3.11)

which is known as Bruggeman’s equation. This equation is the equivalent of the experimentally
found relationship known as Archie’s law [71].

Effective medium theory (EMT) in electrochemical cell modeling

Assuming a binary mixture of active material and pore space in lithium ion battery (LIB), the
Bruggeman equation (Eq. 3.11) is widely used to determine the effective transport properties of
the microstructure. If, however, the heterogeneous material is composed of conducting material
and quasi-isolating material—as the electrodes in consideration—then it is always possible that
the conducting phase is not connected throughout the volume: As described in section 2.3, the
conductivity drops drastically when the volume fraction of the conducting phase is below a certain
volume fraction of the conducting phase; this was shown for example by Wilson et al. [54] for
yttria-stabilized zirconia (YSZ) and strontium-doped lanthanum manganite (LSM) in SOFC
cathodes or by Dominko et al. [59] for Li𝑥Mn2O4 (LMO)-carbon black (CB) compositions. In solid
oxide fuel cell (SOFC), both ions and electrons are transported within the solid phase, therefore
it is essential to ensure the percolation of both ion conducting and electron conducting species. In
LIB, the ion transport takes place in the electrolyte and the active material, and hence, it may
not be a major issue [12]. To ensure electron conduction, however, a connected network of the CB
phase is required.

In those studies, electron conduction was never an issue, as, the usually applied bulk properties are
calculated based on conductivity values experimentally obtained for complete electrode structures
as described in [72]. Neglecting the influence of the different phases, in particular the effect
of carbon black, the electronic bulk conductivities obtained for the active material in this way
are unrealistic high. For LMO as an example, electronic conductivities of 100 S/m [73] and
3.8 S/m [74] are used in cell modeling; in contrast, more realistic values for the bulk conductivity
of LMO are in the range of 10−3 to 10−4𝑆/𝑚 [28, 75]. Most likely, cell modeling with the more
realistic values should point out the impact of electron conduction.

1𝜅2 = 0
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As the different solid phases is in the models not resolved separately, the Bruggeman equa-
tion (Eq. 3.11) is applicable even though it does not consider percolation. For more detailed
microstructural studies, however, percolation of CB has to be considered, as its relevance was
experimentally demonstrated. Hence, the Bruggeman approach, or EMT, is not applicable to
investigate morphological parameters such as mixing ratio or distribution of additives. The
derivation of the probability 𝑃 is described within the framework of percolation theory and is
presented now.

3.1.2. Percolation theory

Percolation processes were first described by Flory (1941) and Stockmayer (1943) studying the
reaction of small branching molecules to form very large macromolecules [76]. Formally introduced
was the concept by Broadbent and Hammersley [77] in 1957; they demonstrated the existence of
a threshold for flow of a fluid through a porous, random media, which depends on the amount
of blocked pores. Percolation phenomena arise in a vast field of applications: besides transport
properties, they can also be found in mechanical properties of composite materials, phase transition,
fracture processes in heterogeneous rock formation, glass transition, spread of fire and diseases,
etc. [67]. The exact determination of the percolation threshold has been possible to date only
for one dimensional structures (𝑝𝑐 = 1) and few simple two dimensional lattices: for example,
the critical volume fraction of a two-dimensional triangular lattice structure is 0.5 [78]. For
more complicated cases, the percolation threshold has to be determined numerically [79]. A
comprehensive introduction in the percolation theory was written for example by Stauffer and
Aharony [76]. For similarity to the considered electrode microstructures, we focus on three-
dimensional structures of binary mixtures with randomly distributed, spherical particles: for
those, no analytic solution exists for the percolation probability.

Percolation in binary granular mixtures

Randomly packed powder structures can be generated numerically or built by filling hard spheres
in a container. For details of the numerical packing algorithms see section 4.1.1. Translated to the
language of percolation theory, spheres are equivalent to lattice sites and the contacts between
spheres are bonds [80]. Typically in percolation theory, it is distinguished between occupied and
unoccupied sites—this correlates to conducting and nonconducting particles in the electrode. The
volume fraction 𝜑𝑘 of the conducting phase thus matches the probability that a site is occupied.
With increasing volume fraction 𝜑𝑘—starting from zero—the system properties segue at some
point from non-conducting to conducting in a sharp transition, as was previously sketched in
Fig. 2.2. That transition point is called the percolation threshold. The determination of the
critical volume fraction 𝜑𝑘,𝑐 of the conducting phase, for which the transition takes place, is
an essential question of percolation theory. Mathematically, it is only precisely defined for an
infinitely large system: only there do volume fractions larger than 𝜑𝑘,𝑐 guarantee the existence of
infinitely large clusters spanning the system, and volume fractions smaller than 𝜑𝑘,𝑐 guarantee
that no connection spans through the system [81]. As obviously the investigation of infinite
lattice structures would require infinite time, finite structures have to be studied in the numerical
approach. For volume elements smaller than infinity, the sharp transition at the percolation
threshold becomes more diffuse—an effect, that becomes more pronounced with a decreasing ratio
of particle size to volume element length. The impact of that ratio was thoroughly investigated by
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Roussenq et al. [78] for two-dimensional lattice structures, as reprinted in Fig. 3.3: In Fig. 3.3a, the
percolation probability in the transition range is shown for different lattice lengths 𝑛. Additionally,
the percolation probabilities 𝑃 of 0.1 and 0.9 are given in Fig. 3.3b as functions of volume fraction
and lattice size. This illustrates clearly, how the accuracy of the determined percolation threshold

Figure 3.3.: (a) percolation probability against volume fraction for different lattice sizes and (b)
lattice size vs volume fraction for percolation probabilities of 0.1 and 0.9 [78]

increases with increasing lattice size. Further, with regard to random structures, Powell [80] found
that periodic boundary conditions reduce the size dependence of the percolation threshold, in his
studies he recommended a volume element size of 10 × 10 × 10 of particle diameter. Nevertheless,
as even the biggest structure is smaller than infinity, the results will always entail some uncertainty.
Therefore, it seems advisably to study always several configurations of the same composition.

Critical volume fraction in binary granular mixtures

In the following, findings relevant for the further course of the work—with no claim to be
exhaustive—of the percolation threshold in random spherical structures are presented. Experi-
mentally, the threshold can be determined via measuring the conductivity of various mixtures of
conducting and isolating spheres [82, 83]. Oger et al. [83] apply small pressure repetitively, which
leads to reproducible results after 15 cycles. They use roughly 50 × 106 particles per assembly,
and study 10 assemblies per composition. Fitzpatrick et al. [82] test systems of 500, 2500 and
5000 spheres, which are shaken and compressed to reach a stable, dense configuration.

For numerical studies, random structures have to be generated at first and subsequently, connected
clusters have to be determined in those structures. Those methods will be explained in detail in
section 4.1 and 4.2, respectively. Finally, if a detected cluster spans from one boundary of the
volume element to the opposite side, the structure is considered as percolated and the percolation
probability can be determined from the fraction of conducting particles within the spanning
cluster. The random structures are usually generated in such a way that they have a fixed number
of particle contacts, referred to as overall coordination number 𝑍0, of 6 [84, 83, 80]. Based on
their experimental findings, Oger et al. [85] noted, however, that a fixed coordination number
of 6 is an artificial constraint inhibiting ”real randomness”, especially for larger size ratios. In
their experiments, overall coordination numbers between 6.5 and 7 were reported. With the
numerical approach, Bouvard and Lange [84] performed simulations with 10 000 particles to
achieve a significant amount of large particles for the larger size ratios. For the largest size ratio,
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they simulated several assemblies per composition. Further, Oger et al. [85] studied 10 assemblies
per composition. In the monosized case, a box volume of 15 × 15 × 15 of particles diameter was
implemented. The maximum size ratio was chosen to be smaller than 4.45 in order to prevent
segregation.

Fig. 3.4 summarizes the findings of numerical and experimental studies: For monosized assemblies
and particle size ratios smaller than 1 the numerical results for the critical volume fraction are in
good agreement with the experimental data. For larger size ratios, however, the values found by
Bouvard and Lange [84] deviate significantly from the numerical and the experimental findings
of Oger et al. [83]. To ascertain the tendency of the percolation threshold in that range, further
studies would be required.

Figure 3.4.: Numerical and experimental data found in literature for the critical volume fraction
at percolation threshold for several size ratios [84, 86, 83, 87]

Critical coordination number in binary granular mixtures

Ongoing from the pure determination of the critical volume fraction at percolation threshold,
pioneering work was done by Bouvard and Lange [84]: They were the first to relate the percolation
threshold to one certain coordination number 𝑍𝑘,𝑘 independent of the size ratios —the investigated
range of size ratios was between 1/3 and 3. The coordination number 𝑍𝑘,𝑘 denotes in this the
number of contacts a particle of species 𝑘 has with particles of the same species. In [84], the
percolation threshold was found for all size ratios for a coordination number 𝑍𝑘,𝑘 of 2. Based on
that, they found the empirical formula for percolation probability

𝑃 = (1 − (4 − 𝑍𝑘,𝑘

2 )2.5)0.4 (3.12)

to describe their results satisfactorily. For 𝑍𝑘,𝑘 < 2 the equation has no solution in the realm
of ”real numbers”, for 𝑍𝑘,𝑘 = 2 the percolation probability equals zero, and 𝑃 increases fast
with increasing coordination number. The coordination number 𝑍𝑘,𝑘, for which the percolation
threshold takes place, is denoted as critical coordination number 𝑍𝑐 in here. In order to determine
the critical volume fraction in binary granular mixtures analytically, Eq. 3.12 can be combined with
a description of the coordination number, which allows for the prediction of the the coordination
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number 𝑍𝑘,𝑘 analytically from size ratio and volume fraction. An overview of the different
approaches is given in [88]. As only the approach by Chen et al. [89] satisfies the contact number
conservation requirement [34], only this approach is introduced.

Concept of coordination numbers

Assuming a binary mixture of spheres of either phase 𝑘 or 𝑗, the contact number conservation
principle means that the net contact between all 𝑘 particles with 𝑗 particles must be equal to the
contact of 𝑗 particles with 𝑘 particles:

𝑛𝑘𝑍𝑘,𝑗 = 𝑛𝑗𝑍𝑗,𝑘, (3.13)

where 𝑛𝑖 is the number of particles of phase 𝑖. It is assumed that the coordination number 𝑍𝑘,𝑘 is
proportional to the surface-area fraction 𝜁𝑘 of all 𝑘 particles and the overall coordination number
𝑍0 [90]

𝑍𝑘,𝑘 = 𝜁𝑘𝑍0. (3.14)

Eq. 3.14 is equally applicable for 𝑘 and 𝑗. The surface-area fraction 𝜁𝑘 is defined in terms of the
volume fractions 𝜑:

𝜁𝑘 = 𝑛𝑘4𝜋𝑟2
𝑘∑︀𝑀

𝑖 𝑛𝑖4𝜋𝑟2
𝑖

= 𝜑𝑘/𝑟𝑘∑︀𝑀
𝑖 𝜑𝑖/𝑟𝑖

, (3.15)

with the volume fraction 𝜑𝑘 of phase 𝑘:

𝜑𝑘 = 𝑛𝑘4/3𝜋𝑟3
𝑘∑︀𝑀

𝑖 𝑛𝑖4/3𝜋𝑟3
𝑖

= 𝑛𝑘𝑟
3
𝑘∑︀𝑀

𝑖 𝑛𝑖𝑟3
𝑖

(3.16)

In a binary mixture, 𝜁𝑗 + 𝜁𝑘=1 and 𝜑𝑗 + 𝜑𝑘=1.

Combining Eqs. 3.14 and 3.15 leads to

𝑍𝑘,𝑘 = 𝑍0𝜁𝑘 = 𝑍0
𝜑𝑘/𝑟𝑘∑︀𝑀
𝑖 𝜑𝑖/𝑟𝑖

. (3.17)

𝑍𝑘,𝑗 can be derived from the sum over all contacts:

𝑛𝑔𝑒𝑠𝑍0 = 𝑛𝑘𝑍𝑘,𝑘 + 𝑛𝑘𝑍𝑘,𝑗 + 𝑛𝑗𝑍𝑗,𝑗 + 𝑛𝑗𝑍𝑗,𝑘. (3.18)

Under consideration of the contact number requirement (Eq. 3.13) and the derived expressions for
𝑍𝑘,𝑘 and 𝑍𝑗,𝑗 , the coordination number 𝑍𝑘,𝑗 can be determined as described in appendix B in
dependence of the volume fraction and particle radii as:

𝑍𝑘,𝑗 = 0.5𝑍0(1 + 𝑟2
𝑘

𝑟2
𝑗

) 𝜑𝑗/𝑟𝑗∑︀𝑀
𝑖 𝜑𝑖/𝑟𝑖

. (3.19)

The overall coordination number 𝑍0 of a particular composite electrode depends upon details of
the fabrication process. Regardless of the fabrication process, 𝑍0 is widely assumed to be equal to
6 in accordance with the simulations of random structures [84, 85, 80]. Even though this is in
good agreement with the experimentally determined coordination number of 6.24 for monosized
hard spheres [91], the particle size ratio shows an effect on the overall coordination number [88,
91, 92]. Furthermore, different studies indicate that sintering and compression of the electrode
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structures further influences the coordination number: Investigating the near contacts, Powell
showed that with fixed particles centers and increasing radii (up to 1.9 times the initial radius)
the overall coordination number increases from 6 to 30. Moreover, with increasing radii, the
critical volume fraction at percolation threshold decreases from 0.183 to 0.051 [87]. This coincides
with the more recent results of Bertei et al. [93]. Considering uniaxial compression, decreasing
percolation threshold [83] and increasing coordination numbers [94] were found experimentally [94]
and numerically [92].

Assuming a valid choice for 𝑍0, the concept of coordination numbers enables us to calculate the
critical coordination number with Eq. 3.17 based on the critical volume fraction. Considering
the results of different researchers, as summarized in Fig. 3.4, different values of the coordination
number correlated to the percolation threshold have been found: The findings of Powell [80]
lead to a critical coordination number 𝑍𝑐 of 1.86 for monosized assemblies. With a size scaling
relationship, as introduced in [76], Kuo and Gupta [86] determine the percolation threshold for
infinite random packings to be at volume fractions of 0.294 based on the experimental findings of
Fitzpatrick et al. [82]. This is in good agreement with the threshold reported by Oger et al. [83];
it corresponds to a critical coordination number 𝑍𝑐 = 1.764. In contrast to those works, it was
impossible to ”establish any simple relationship between the values of the threshold and the
co-ordinances of each type of spheres” for Oger et al.’s [83] results. Especially for large size ratios,
the coordination numbers corresponding to the the critical volume fractions shown in Fig. 3.4
are ambiguous. Nevertheless, modifications of the approach of Bouvard and Lange (Eq. 3.12) are
wildly used to determine the percolation probabilities of various compositions and morphologies
in modeling SOFC electrodes [33, 89, 34, 95], whereas—to the best of my knowledge—it has not
been applied to study LIBs.

3.2. Effective properties based on percolation theory

As described previously, the percolation probabilities of a binary granular mixture can be calculated
based on volume fraction and size ratios of the particles. Subsequently, the effective conductivity
of the phases as well as the reactive surface area can be determined based on the percolation
probability. This approach, typically used in SOFC modeling, as well as the findings, based on it,
are summarized in the following.

3.2.1. Percolation probability

For the calculation of the percolation probability, Eq. 3.12 was modified in order to reflect on the
critical coordination number 𝑍𝑐 = 1.764, determined by Kuo and Gupta [86] as well as Oger et
al. [83] in more recent research. In accordance with [89, 34], the slightly modified form will be
used in the following to determine percolation probability 𝑃 as

𝑃 = (1 − (
3.764 − 𝑍𝑘,𝑘)

2 )2.5)0.4. (3.20)

For 𝑍𝑘,𝑘 = 𝑍𝑐, the percolation threshold is assumed to take place. In analogy to Eq. 3.12, Eq. 3.20
has no real solution for 𝑃 when 𝑍𝑘,𝑘 < 𝑍𝑐. Further, 𝑃 is zero for 𝑍𝑘,𝑘 = 𝑍𝑐 and increases with
increasing coordination number 𝑍𝑘,𝑘. As was shown previously, Eq. 3.17 allows to express the
coordination number as function of particle size ratio and volume fraction only. Thus, inserting
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Eq. 3.17 in Eq. 3.20 allows for the determination of the percolation probability as a function of
volume fraction and size ratio. Additionally, the critical volume fraction, at which the percolation
threshold takes place, can be determined based on Eqs. 3.20 and 3.17 as a function of size ratio
only.

SOFC electrodes, considered as binary mixture of ionic conducting and electronic conducting
particles, require the connectivity of both phases. To obtain the range in which both electron
conducting particles and ion conducting particles are percolating, the percolation probability 𝑃
must be calculated for 𝑍𝑘,𝑘 and for 𝑍𝑗,𝑗 separately. Those probabilities, denoted 𝑃𝑘 and 𝑃𝑗 , are
then multiplied. The percolation probability for the size ratios 𝑟𝑘/𝑟𝑗 = 1 and 𝑟𝑘/𝑟𝑗 = 5 are shown
in Fig. 3.5a.

(a)

(b)

Figure 3.5.: Percolation probability 𝑃 for (a) two size ratios and (b) as contour plot for size ratios
from 0.1 to 10

For monosized assemblies, the maximum percolation probability is found for 50% volume fraction
of both phases. For larger size ratios, the maximum is shifted towards smaller volume fractions
of the smaller species [89, 34]. A valuable instrument to demonstrate the dependencies of the
effective properties on volume fraction and size ratios are contour plots, as shown in Fig. 3.5b.
There, the percolation probability is given for all volume fractions in the range from 0 to 1 and
size ratios from 0.1 to 10. A general shift of percolation threshold to smaller volume fractions of
the smaller species is found for all size ratios. This clearly demonstrates the need to adapt the
used volume fractions under consideration of the size ratio.
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3.2.2. Effective conductivity

To determine the effective conductivity under consideration of the connectivity within the phase,
the Bruggeman equation (Eq. 3.11) is extended by the percolation probability 𝑃 , which leads for
an arbitrary phase 𝑘 to [34]

𝜅eff,k
𝜅bulk,k

= ((1 − 𝜖)𝜑𝑘𝑃𝑘)1.5. (3.21)

Obviously, below the critical volume fraction no conductivity is found. Above the percolation
threshold, the effective conductivity, plotted in Fig. 3.6, increases in general with volume fraction.

(a) (b)

Figure 3.6.: Effective conductivity relative to bulk conductivity for (a) 𝑘 and (b) 𝑗-type particles
for size ratios from 0.1 to 10

Fig. 3.6a shows the effective conductivity of the particles 𝑘, whose size is kept the same for all
calculations. For that phase, the influence of size ratio is negligible. For particles 𝑗, whose size
is varied to obtain the different size ratios, there is a more noticeable influence of the size ratio
(Fig. 3.6b). Furthermore, the effective conductivity of 𝑘 increases with increasing volume fraction
𝑘, and the conductivity of 𝑗 decreases with increasing volume fraction of 𝑘. This clearly leads
to contrary improvement in effective electronic and ionic conductivity. As stated in section 2.3,
the ion conductivity in SOFC is in general lower than the electron conductivity; therefore, this
parameter is more critical in modeling SOFCs.

3.2.3. Active area

It was demonstrated experimentally, as described in section 2.3, that, besides transport in the
solid phase, the size of the active area is relevant for the overall cell performance: in both, SOFC
and LIB, a large active area reduces the activation losses. To identify the total active area per unit
volume, the first step is to specify the active area for a single electrode-electrolyte contact. The
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path of reactants, and thus, the active area differs significantly for cells with liquid electrolytes
(LIB) and all-solid-state systems (SOFC).

Reaction path in LIB

In a liquid cell system, the Lithium is dissolved and oxidized at the surface of the positive
electrode, transported as Li-ion within the electrolyte and absorbed and reduced in the negative
electrode during charging and vice versa during discharging. As the electrolyte is usually both
ionic conductor and solvent, the electrochemical reactions (Eqs. 1.3, 1.4) occur at the active
material-electrolyte two-phase boundary [96]: The active area is the free surface area of the
insertion material. The free surface area is assumed to be reduced during calendering [23];
and that is assumed to be accountable for increasing activation losses monitored during EIS
experiments (see section 2.3). Nevertheless, to the best of my knowledge, in cell modeling the
change of surface area during calendering or cell cycling was neglected so far.

Reaction path in SOFC

In contrast to liquid systems, in SOFCs, the electrolyte phase is usually no solvent of the gaseous
oxygen (cathode) or the 𝐻2 containing fuel (anode). A simple exchange reaction between the
gaseous phase and the solid oxide ion conductor will hardly be found, as elementary oxygen or
𝐻2 do not dissolve in most oxides [97]. As a consequence, the reaction can occur along different
possible paths; those are sketched in Fig. 3.7.

electrodesurface path

electrolyte

𝑂2

𝑂𝑎𝑑 cathode
2𝑒−

𝑂𝑎𝑑

𝑂2−

bulk path

electrolyte

𝑂2

𝑂2−2𝑒−

𝑂2−

cathode

electrolyte
surface path

electrolyte

𝑂2

𝑂𝑎𝑑 𝑂𝑎𝑑
2𝑒−

2𝑒−
𝑂2−

Figure 3.7.: Sketches of three possible reaction paths of the oxygen reduction and incorporation
reaction and some possible rate-determining steps, redrawn from [98]

In general, it can be distinguished between surface and bulk path for the reaction; both are
explained in detail in [96] for cathode materials and in [97] for anodes materials. The surface
path includes adsorption the reactants—oxygen at the cathode and hydrogen at the anode—
and diffusion along the surface of electrode material toward the three-phase boundary (TPB),
where the reactants are ionized and incorporated into the electrolyte. Diffusion of the ionized
species on the surface or within the interface could lead to a certain broadening of the active
zone [98]. Considering the bulk path, the reactants are adsorbed into the electrode material and
transported within the bulk to the contact zone. The ionization can take place either within the
bulk or at the electrode-electrolyte interface followed by spillover to the electrolyte phase [96].
In LSM cathodes the bulk path dominates the reaction rate [98]; for anodes the reaction path
seems less clear. Furthermore, even though one path is predominant, surface and bulk processes
occur parallel. Finally, microstructural properties of the system (e.g. particle size, porosity and
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electrode thickness) as well as the conditions in the cell (e.g. temperature, pressure, doping of
material) significantly influences, which path is energetically favorable. Consequently, as the
reactive zone depends on the reaction path, which is difficult to determine, the relation between
contact geometry and the active area is hitherto poorly known.

Approximation of the active zone of one TPB contact

This uncertainties lead to different approaches found in cell modeling for the calculation of the
reactive area 𝑎𝑥 of a circular contact. Those are compared in [34]. For the geometric calculation
of the contact area, overlapping spheres are assumed—usually with a contact angle 𝜃 of 15∘ for
the smaller particle, as shown in Fig. 3.8. The contact radius 𝑟𝑐 of two overlapping spheres can
be calculated as min(𝑟𝑗 , 𝑟𝑘)sin𝜃. Ongoing from the geometric description of the contact zone, the

𝑟𝑐𝑟𝑙
𝑟𝑠

𝜃

Figure 3.8.: Definition of contact angle 𝜃 for particles with different radii, of which the larger is
denoted with 𝑟𝑙 and the smaller with 𝑟𝑠

active zone can be determined with the following approaches: Considering the active zone to be
one-dimensional, the TPB length is determined as the circumference of the contact [89, 95]

𝑎line = 2𝜋𝑟𝑐 = 2𝜋min(𝑟𝑗 , 𝑟𝑘)𝑠𝑖𝑛𝜃. (3.22)

Further studies assume a two dimensional expansion of the active zone. The TPB area is calculated
either considering the area within the contact [33]

𝑎bulk = 𝜋𝑟2
𝑐 = 𝜋(min(𝑟𝑗 , 𝑟𝑘)𝑠𝑖𝑛𝜃)2 (3.23)

or a finite distance 𝜓 from the contact on the surface [34] (sketched in Fig. 3.9)

𝑎surf = 2𝜋𝑟2
𝑗 (𝑐𝑜𝑠𝜃𝑗 − 𝑐𝑜𝑠(𝜃𝑗 + 𝜓𝑗

𝑟𝑗
)) + 2𝜋𝑟2

𝑘(𝑐𝑜𝑠𝜃𝑘 − 𝑐𝑜𝑠(𝜃𝑘 + 𝜓𝑘

𝑟𝑘
)) (3.24)

to be active. Considering these approaches, the first (Eq. 3.22) neglects any extension of the active

Figure 3.9.: Schematic of the active area (blue) of two contacting particles according to Eq. 3.24
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zone around the direct contact zone of the three phases, Eq. 3.24 assumes a certain extension
length 𝜓 of the active surface zone, as it is found considering both electrolyte and electrode surface
path for the reactions, as shown in Fig. 3.7. Moreover, Eq. 3.23 is based on the consideration of
a bulk reaction path. Ge et al. [99] suggested even a three-dimensional expansion of the active
zone, combining the different possibilities. As the true reaction path in the cells is not known,
all approaches for the calculation of the active zone are justifiable, even though stated otherwise
in [34].

Active zone within the microstructure

Based on the contact zone of a single contact, the total active zone is calculated by multiplying
it with the average number of contacts 𝑍𝑘,𝑗 a 𝑘 particle has with 𝑗 particles (Eq. 3.19) and 𝑁𝑘,
which is the number of 𝑘 particles per unit volume. The total number 𝑛𝑘 of particles can be
determined as

𝑛𝑘 = (1 − 𝜖)𝜑𝑘 × 𝐿3

4/3𝜋𝑟3
𝑘

, (3.25)

with 𝐿 as length of the unit volume element. With 𝑁𝑘 = 𝑛𝑘/𝐿
3, the number of particles per

unit volume can then be calculated. The porosity 𝜖 is usually assumed to be constant for all
compositions—even though it is well known, that the packing density depends strongly on the
size ratio [92]. As number conservation is satisfied, 𝑛𝑘 × 𝑍𝑘,𝑗 equals 𝑛𝑗 × 𝑍𝑗,𝑘. Further, for the
three phase boundary to be active it is necessary that both ion and electron conducting phases
are percolating. Therefore, the total active zone is multiplied by the probabilities that phase 𝑘
and phase 𝑗 are connected. This leads to an active TPB of

TPB = 𝑎𝑥𝑁𝑘𝑍𝑘,𝑗𝑃𝑘𝑃𝑗 , (3.26)

where 𝑎𝑥 stands for the active zone of two contacting spheres, determined with the different
approaches, considering line (Eq. 3.22), bulk (Eq. 3.23) and surface (Eq. 3.24) reactions [34].
Considering the one-dimensional extension of the active zone of one contact, TPB is given in
m/m3, and the two-dimensional extensions lead to m2/m3.

Active area of monosized assemblies

For monosized assemblies, all studies agree on the beneficial effect of small particle sizes [95, 89, 33,
34], independent of the description of the TPB of one contact. Apart from that, the approaches
lead to very different values for the extent of TPB, as shown in Table 3.1 for compositions of
𝜑𝑙 = 𝜑𝑘 = 0.5. For a radius of 500nm, Eq. 3.22 leads to a TPB length of several orders of
magnitude larger than Eq. 3.23 and Eq. 3.24. Further, Eq. 3.24 strongly depends on the length of
extension 𝜓 of the reactive zone along the surface. 𝜓 was determined in [34] from experimental
values to be 30nm for 𝑟𝑝=500 nm.

Presumably, the general increase of TPB with decreasing particle size is related to the increase of
the total surface area within a volume unit. To investigate this, we calculate the total surface area
per unit volume 𝑆total, assuming non-overlapping spheres in the microstructures for simplification,
as

𝑆total = 𝑛4𝜋𝑟2

𝐿3 , (3.27)
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TPBmax unit
𝑎line 1.296 × 1012 [𝑚/𝑚3]
𝑎bulk 8.38 × 105 [𝑚2/𝑚3]
𝑎surf , 𝜓 = 30𝑛𝑚 8.64 × 105 [𝑚2/𝑚3]
𝑎surf , 𝜓 = 60𝑛𝑚 18.99 × 105 [𝑚2/𝑚3]

Table 3.1.: Maximum of TPB for monosized particles with 𝑟𝑝=500 nm found for volume fractions
of 50%:50% with the different approaches

with 𝑛 as the total number of particles of radius 𝑟 within a cubic volume of size length 𝐿. To
estimate the number of particles in the volume element, we consider a simplified case of particles
arranged on a cubic lattice. This allows to calculate the number of particles as 𝑛 = (𝐿/2𝑟)3,
leading to

𝑆total =
( 𝐿

2𝑟 )34𝜋𝑟2

𝐿3 ∝ 1
𝑟
. (3.28)

this approximation demonstrates that the total surface area increases with decreasing particle
radius. The reduction of particle size, however, is limited by production processes and pore size
requirements—smaller particles lead to smaller pore sizes, and thus hinder the gas transport.
Therefore, it is of large interest, to determine if the TPB can be increased by changing the size
ratios while choosing the smallest still reasonable particle size as a lower radius limit.

Active area of binary sized assemblies

To study the impact of particle size ratios, the active TPB was calculated analytically with
Eq. 3.26 for different ratios between 1 and 10, where 1 is assumed to be the smallest reasonable
particle size. To obtain comparable results for the different definitions of the active zone, the
values of the different approaches were normalized, as done by Völker and McMeeking [34]: The
results of each TPB description were calculated relative to the maximum value found with this
description; those values are given in Table 3.1. Thus, the monosized assemblies have the same
normalized values, and the impact of size ratio can be determined regardless of the differences
introduced by the approach. The results in Fig. 3.10 demonstrate for size ratios exceeding 1 that
the normalized values differ only marginally for the methods, when the small particle is kept
constant. The trends found for the extent of TPB are in good agreement with values found by [95,
34, 33]. Chen et al. [89] use normalized values of the TPB and show the result only in dependence
of size ratio 𝑟min/𝑟max. Therefore, the values are difficult to compare to the other studies, as it is
not clear, whether the variation is done by keeping a mean radius fixed, or increasing one particle
while the other is kept constant.

For monosized microstructures, we assumed that the total surface area is correlated to the active
TPB. If this assumption is also valid for binary sized mixtures, the total surface area will decrease
with increased size ratio. To assess this, we derived the dependence of surface area on particle
size for binary mixtures. The surface area of a binary mixture can be determined from

𝑆total =
𝑛𝑗4𝜋𝑟2

𝑗 + 𝑛𝑘4𝜋𝑟2
𝑘

𝐿3 , (3.29)
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(a)

(b) (c)

Figure 3.10.: Three-phase boundary length for different size ratios from 1 to 10 calculated from
(a) 𝑎line , (b)𝑎bulk and (c) 𝑎surf . Normalization with the maximum value of monosized assemblies
of each approach (see Table 3.1) allows the same legend for all calculations.
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with 𝑛𝑖 as the number of particles of the phase 𝑖. Using Eq. 3.25 leads to

𝑆total =
(1−𝜖)𝜑𝑗𝐿3

4𝜋𝑟3
𝑗 /3 4𝜋𝑟2

𝑗 + (1−𝜖)𝜑𝑘𝐿3

4𝜋𝑟3
𝑘

/3 4𝜋𝑟2
𝑘

𝐿3 , (3.30)

which can be simplified to
𝑆total = 3(1 − 𝜖)(𝜑𝑗

𝑟𝑗
+ 𝜑𝑘

𝑟𝑘
). (3.31)

Assuming in accordance with the considered studies that the porosity 𝜖 is the same for all size
ratios and applying 𝜑𝑘 = 1 − 𝜑𝑗 , this leads to

𝑆total ∝ 𝜑𝑗

𝑟𝑗
+ 1 − 𝜑𝑗

𝑟𝑘
. (3.32)

Further, the size ratio 𝜒 relates the radii with 𝜒𝑟𝑗 = 𝑟𝑘. With a fixed radius 𝑟𝑘, the surface area
is proportional to 𝜑𝑗

𝑟𝑗
+ 1−𝜑𝑗

𝜒𝑟𝑗
. Thus, with a size ratio 𝜒 > 1, the total surface area decreases; and

with 𝜒 < 1 the surface area increases as shown in Fig. 3.11a. This explains the increasing TPB
found with decreasing size ratio 𝜒 < 1 in [34]. A monosized assembly with both particle sizes
equal to the small particle would most likely still lead to better results.

Figure 3.11.: Total surface area 𝑆total calculated for particles without overlap for different particle
size ratios with (a) the radius 𝑘 kept constant (Eq. 3.32) and (b) the mean radius (𝑟𝑘 + 𝑟𝑗)/2
kept constant (Eq. 3.33)

In contrast to that, in the comparison of the different approaches for the active area of one contact
in [34], the mean particle size was kept constant. This leads to largely different results for the
extent of TPB: in particular, the previously shown trend of decreasing TPB with increasing size
ratio (Fig. 3.10) is reversed, as shown in Fig. 3.12 exemplarily for the approach 𝑎line for the active
zone. To examine, if also this tendency is related to the overall surface area, 𝑆total is recalculated
with a constant mean radius 𝑟𝑚 = (𝑟𝑗 + 𝑟𝑘)/2 and a size ratio 𝜒 = 𝑟𝑘/𝑟𝑗 as

𝑆total ∝ 𝜑𝑗(1 + 𝜒)
2𝑟𝑚

+ (1 − 𝜑𝑗)(1 + 𝜒)
2𝜒𝑟𝑚

, (3.33)

As shown in Fig. 3.11b, this leads—regardless of the influence of percolation probability—to very
different results for the total surface area, which influences the amount of TPB length.

This, in combination with the previous results obtained for e.g. the TPB length, is a strong
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Figure 3.12.: Normalized three-phase boundary length for different size ratios from 1 to 10
calculated from 𝑎line while mean radius kept constant

indication that the amount of total surface area is more relevant than the size ratio itself. For the
interpretation and comparison of future results, this should be considered. Moreover, finding a
correlation between free surface area and active area would be helpful—especially as it can be
accessed more easily in experiments.

3.3. Resulting concerns investigated in this work

The most common estimations for the effective transport properties in LIB and SOFC—effective
medium theory and percolation theory, respectively—have been introduced in this chapter; and
the active zones of the two types of electrochemical cells were studied.

The Bruggeman approach, a variation of the EMT, is widely applied in LIB modeling—even though
it neglects the impact of percolation; in contrast, percolation in the electron conducting phase
was demonstrated experimentally to be relevant. Thus, the Bruggeman approach is considered as
inapplicable for the modeling of the impact of composition and fabrication on effective transport
properties; and thus, this method is unsuitable to study the parameters of interest. The question
arising here is: would percolation theory, which is usually applied for SOFC modeling, lead to
better results?

In combination with the concept of coordination number, the percolation theory considers
connectivity within the phases; hence, it allows to reflect on the percolation thresholds found
experimentally for both, LIB and SOFC. Nevertheless, due to simplifications made in this approach,
further questions remain: While studying the influence of size ratio of electrode structures, porosity
and the overall coordination number were assumed as fixed values—even though they most likely
vary with size ratio [92]. This lead to the questions: How do those parameters vary for different
compositions and fabrication processes? Is the variation marginal and therefore, negligible? Or, is



38 3. Effective properties of granular media

the variation more significant, but negligible as it has no influence on the parameters relevant for
cell performance?

Further, the coordination number of 𝑍𝑐 = 1.764, as determined by Kuo and Gupta [86], is widely
used to determine the percolation threshold regardless of the size ratio. Apart from the fact that
several different values were found in literature for large size ratios, the value was determined
for hard spheres in contact. It has not been investigated so far, if this approach is applicable
to sintered or calendered microstructures without further amplifications. Those issues need to
be addressed: Is a fixed 𝑍𝑐 valid for all size ratios? Is it applicable regardless of the fabrication
process, or is it only valid for hard spheres?

The calculations of the the effective conductivity and TPB are based on the concept of coordination
number and percolation probabilities as well. The concerns with regard to the percolation theory
reflect on those values as well. Further, besides contact numbers, also contact areas, influenced by
the fabrication process are most likely an impact factor. This poses the questions: In which way
does the fabrication process affect the contact area and the free surface area? And how does that,
in turn, affect the transport within the phase and the charge-transfer area?

To find answers to those questions, a vast number of numerically generated microstructures was
studied in this work. Generation of the random mixtures of particles, and the possibilities to
determine connectivity and effective transport properties of those, are introduced in the next
chapter.
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Pioneering work in the investigation of electrochemical cells with Monte-Carlo methods was done
by Sunde, who was the first to use random number generators in this field of work. As described
in [100], he started to populate a cubic lattice with randomly placed electrode, electrolyte and pore
space particles to mimic SOFC electrodes before he changed to random placement of spherical
particles [101]. Comparison of his findings with percolation theory led him to recommend Monte-
Carlo approaches as better suited for the investigation of electrode structures [102]. Especially
for large size ratios, the two approaches show different results, indicating that the analytic
determination of percolation might not be exact for larger particle size ratios. Further studies with
Monte-Carlo methods on the effect of microstructure on parameters relevant for cell performance
have been performed: general aspects [103], sintering conditions [104, 105], and polydispersity [106,
107] were investigated.

Different researchers studied the deviation between averaging methods and Monte-Carlo sim-
ulations: Sanyal et al. [105] as an example compared the effective parameters of monosized,
sintered structures, generated with 2 different approaches to results obtained by percolation
theory. With regard to the microstructure, they found a mean coordination number 𝑍0 of 6.7
for the numerically generated structures. This differs—already for monosized assemblies—from
the assumed value of 6, the deviation is most likely caused by the simulated sintering process.
Further, the numerically determined percolation threshold is found for smaller volume fractions
than in the analytic approach.

Additionally, comparing volume averaging methods and Monte-Carlo methods in the investigation
of LIB electrodes, Gupta et al. [103] found a significant difference between the results for
the effective ion conductivity of the electrolyte and the active material: In the solid phase,
the Bruggeman equation strongly overestimates the transport properties; in the electrolyte it
underestimates it slightly. Sanyal et al. [105] determined numerically an effective conductivity
which can be approximated with a Bruggeman approach weighted with percolation probability
when a factor of 3.5 instead of 1.5 is used. In [104], the effect of porosity—which is in numerically
generated assemblies correlated to the contact size—on effective transport properties as well
as on the three-phase boundary (TPB) is pointed out. Further, Sanyal et al. [105] found a
smaller amount of active TPB for the numerical generated structures in comparison to analytic
results. Furthermore, the extent of TPB varies for two different packing methods, which were
applied—this demonstrates the impact of microstructure and emphasizes the relevance of a realistic
approximation of the microstructure to obtain meaningful results.

Those results provide a first picture on the deviation between numerically and analytically obtained
results. In results found for microstructure, transport properties, and active area, the impact of
manufacturing process becomes apparent; Monte-Carlo methods allow us to gain further insight
into this influence factor. As, in general, a deviation between numerical and analytic results
were determined, it is of interest to study causes of that. Further, it arises the question: can the
analytic method be adapted to reflect better on the numerical results?
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In order to further investigate the deviation and the applicability of analytic and numerical
methods, a large number of Monte-Carlo simulations were performed in this work. Before those
results are presented, the steps relevant for those simulations are introduced in this chapter:
At first, assemblies with randomly distributed particles are generated; next, those are densified
further with sintering or micromechanial simulations for solid oxide fuel cell (SOFC) and lithium
ion battery (LIB), respectively. Subsequently, the effective properties are determined based on
the densified structures and compared with results of previously introduced methods. As in both,
SOFC and LIB, the methods for the initial microstructure generation and for the determination
of effective transport properties are the same, I will introduce those here. Densification processes,
however, differ for the two cell types; therefore, they are introduced in the respective sections.

4.1. Generation of initial microstructure

As seen in the FIB-SEM reconstructions, the particles of the electrodes have various shapes and
are not ideally spherical. Although those structures provide very detailed descriptions of the
electrode structure, they offer little predictive capabilities [105], which, contrarily, numerical
generated structures can offer. Even simplified shapes allow already large insight into the influence
of certain parameters on microstructure and characteristic parameters. Spheres are computational
the least expensive 3D-shapes, as information on centers (coordinates) and radii are sufficient to
describe the configuration.

For the generation of randomly packed microstructures exist several algorithms, which can be
divided in (i) algorithms using sequential addition of particles [108] and (ii) algorithms starting
from a random distribution of points [109, 110, 111, 108].

Widely used, especially in research on SOFC electrodes, is the first group in form of the drop-
and-roll algorithm [104, 84, 107]. Particles are added one by one (droped), and moved until they
build three contacts with the previously inserted ones (roll). This leads to microstructures with a
defined coordination number of 6. As discussed by Oger et al. [85], this is an artificial constraint
obstructing ”real randomness”—that, in contrast, would imply varying coordination numbers,
in particular with larger size ratios. Moreover, the drop-and-roll algorithm produces a weak
anisotropy caused by the insertion direction; furthermore, the generated assemblies have a loose
structure [104] with packing densities below 60% [112]. In addition, periodic boundary conditions
can only be achieved in all three directions by removing several layers of wall boundary particles.
As only periodic boundaries allow for modeling bulk material, the second type of methods is more
suitable for this work.

Also a hard-sphere approach can be found in research for the generation of initial packings:
Starting from randomly distributed particles, the particles are moved under the consideration of
contact forces. At first, particle centers are randomly placed into the volume, and initial overlaps
are removed by applying repulsive forces at the contact points. Afterwards, either the particle size
is increased step-by-step [105], or the size of the container volume is reduced [113]. During both
processes, repulsive forces are placed at the contact areas to prevent overlapping. The densification
process is, in general, stopped, when (i) the forces exceed a certain limit or (ii) the predetermined
box size is reached. The second stop criterion causes most likely a slight anisotropy in the packing
as usually the box volume is reduced only in one direction. A comprehensive overview of this and
further packing algorithm can be found in [114], chapter 7.
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More effective than the above described approaches are mathematical algorithms like the one first
suggested by Jodrey and Tory [109] for the generation of random close packings. Close packings
have a higher density of around 64% [115]—this is comparable to packing densities achieved by
shacking or mixing an assembly. In the electrode preparation process, the granular materials are
mixed thoroughly before applied to the current collector to achieve homogeneous distribution of the
different components. Hence, we assume that the manufacturing process generates close packings
(unless purposely prevented). Among the mathematical algorithm, the algorithm described in [109]
allows for controlling the packing factor (PF) by a single parameter [116]. We used in this work a
version adjusted and implemented by Gan [117] for binary sized packings. The algorithm will be
referred to as random close packing (RCP) algorithm in the following. The method is explained
in detail in [116] and is introduced here only briefly.

4.1.1. Random Close Packing algorithm

Besides the PF, the solid volume fractions 𝜑𝑖, particle size ratio and overall number of particles 𝑛
are defined in advance. Then, in a first step, random values for the center coordinates of the 𝑛
spherical particles are generated within a given volume of size 𝐿𝑎 × 𝐿𝑏 × 𝐿𝑐—this is often a cube
with 𝐿𝑎 = 𝐿𝑏 = 𝐿𝑐. Two radii are assigned to each particle: an outer radius 𝑟out, which is initially
set to yield a nominal packing factor of 100%, and an inner radius 𝑟in defined by the worst overlap
found within the assembly. For monosized assemblies, all particle radii correspond directly to
the calculated values, whereas for binary packings the individual particle radii are scaled by a
factor ℎ(𝐼) in dependence of the size ratio. This results for a particle 𝐼 in 𝑟𝐼

out = ℎ(𝐼)𝑟out and
𝑟𝐼

in = ℎ(𝐼)𝑟in. To generate a microstructure from this initial distribution, two steps are carried
out iteratively: First, the worst overlap is reduced by moving those two particles apart, who had
it. This leads mostly to a smaller overlap elsewhere and therefore a larger inner radius. As a
second step, all outer radii are reduced slightly with a contraction rate depending on the number
of particles, the packing factors calculated with the actual inner and outer radii, and a predefined
variable 𝑄. The parameter 𝑄 is the only variable control-parameter of the contraction rate, and
hence, the final packing factor can be influenced by changing 𝑄 [116]. The iteration process stops
when the difference between outer and inner radius is smaller than a given tolerance. With the
implementation of periodic boundary conditions (PBCs), the assemblies represent bulk regions
inside the electrodes [118]. An exemplary microstructure with a particle size ratio of 3 and a solid
volume fraction of 40% of small particles is shown in Fig. 4.1.

4.1.2. Densification process

As the RCP algorithm results in assemblies which, in an ideal case, just contain one contact, the
structures need to be densified to a certain amount. This allows to form connected electrode
structures and mimics sintering, calendering or intercalation. In the simplest case—geometric
sintering—this is done by increasing the radii to a certain amount while the particle centers are
kept fixed (section 5). More complicated approaches consider mechanical interaction between the
particles, which is required to model calendering or the intercalation process (chapter 6). The
densification leads to overlapping particles, and based on the overlap the contact between two
particles can be described. As previously said, the densification process vary for the two cell types,
and therefore, they are introduced in the respective chapters.
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Figure 4.1.: Example for numerically generated structure with a particle size ratio of 3 and a
solid volume fraction of 40% of small particles

4.2. Cluster detection for percolation studies

A complex step in the determination of effective transport properties in mixtures of orderless
particles is to obtain information on the connectivity of the particles of each phase separately.
Based on that information, the percolation probabilities and the effective conductivity can be
determined. The importance of percolation probability 𝑃 of electrode structures formed by a
mixture of ion conducting and electron conducting particles was already discussed in detail in
sections 2.3 and 3.1.2. To summarize this briefly: No percolation in one phase is synonymous for
no conductivity of this phase within the electrode; and thus, it inhibits proper cell functionality.

4.2.1. Criteria for connectivity and percolation

For the determination of percolation probability 𝑃 in arbitrary structures, we first need to define
criteria for pairs of particles to be connected and for the volume to be percolating. For the
description of the electrode microstructure in terms of percolation problems, particle centers are
considered as sites, and their connection are the bonds. Each particle is assigned with certain bulk
properties, e.g. a particle is either ion conducting or electron conducting. In the studies of this
work, those properties were assigned to the particles based on their size, e.g. all large particles of
a binary mixture are defined as ion conducting. Subsequently, a site is defined as occupied if the
corresponding particle is either ion conducting or electron conducting, respective of whether ionic
or electronic transport is studied. Further, two occupied sites are considered connected when
the particles overlap, that is to say, if the Euclidian distance of their centers is smaller than the
sum of their radii. Finally, two criteria for percolation can be distinguished: Isotropic percolation
means that all boundaries are connected by one cluster; and directional percolation is given if
there is a connecting cluster from one side of the box to the opposite side in each direction (x,y,z)
separately. To investigate possible anisotropic characteristics, we applied the later definition.
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4.2.2. Hoshen-Kopelman algorithm (HK)

The next step is to determine connected particles, referred to as a cluster, within the orderless
microstructure. The straightforward way for this is to go from one particle directly to the next
contacting neighbors and from there to the next contacts and so on. Algorithm based on this
scheme are called Spanning-Tree algorithm, such as Depth-First- or Breadth-First-algorithm—they
build, originating from the starting point, a tree-like construct [119]. As the effort raises linearly
with the number of elements (and the proportionality coefficients are usually large), they are
unsuited for large systems [120]. The Hoshen-Kopelman algorithm (HK), originally developed for
lattice structures [121], is more adequate, as it is very low in memory usage and computation
time.

For comprehensibility, the algorithm is first explained on lattice structures, before the details
required for adaption to random systems are pointed out. Considering a lattice structure as shown
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Figure 4.2.: (a) Lattice with randomly assigned occupation (dark) to each site (b) Cluster found
with Hoshen-Kopelman algorithm considering the sites as connected if they share an edge

in (Fig. 4.2), a counter passes through the structure only once and assigns each occupied site (e.g.
blue in Fig. 4.2) to a cluster. If thereby two yet existing clusters are found to be connected, this
information is stored separately in a vector of much smaller size. After the run through the lattice
is completed, the connected clusters are relabeled based on the information stored in the vector.
Thus, as the relabeling operation is only performed on the much smaller sized vector, the time
and memory space requirements are reduced in comparison to the other methods [118].

We extended the algorithm further to account for PBC, as they allow to eliminate wall effects
and reduce volume size in the investigation of percolation probability as discussed in section 3.1.2.
First, the extension of the lattice structure with PBC is explained, before the implementation of
the extended HK for non-lattice structures is presented. Again, for illustration purpose only, the
possible change in connectivity through periodic boundaries is explained on a lattice structure.

4.2.3. Extension of HK for periodic boundary conditions (PBC)

To illustrate the effect of periodic boundaries, those are generated by copying the original lattice
structure in all directions (Fig. 4.3a). For the illustration, it is already labeled. Even though the
copied lattice structure is cut off, e.g. as shown in Fig. 4.3a after the first layer, computational
it is continued at the opposite side of the original lattice. Thus, it allows to mimic an infinite
volume element. Too small original volume elements would, however, induce artificial patterns in
the endless assembly. The copied versions of the cluster contain information of the position in
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Figure 4.3.: Connectivity through periodic boundary conditions: (a) implementation of the
periodic boundary conditions (PBC), (b) connectivity through the boundaries for cluster 1, (c)
definition of percolation criterion for PBC

the original cluster additionally to its new location. The PBC lead to a state where lattice sites
belonging originally to cluster 1 are in direct contact with cluster 5 or 6 and vice versa. Clearly
these particles also belong to the clusters they are directly connected to. This leads to a combined
cluster 1 containing the former cluster 5 and 6 (Fig. 4.3b). In contrast to cluster 1 found in the
structure without PBC, now it connects the opposite edges horizontally. Based on this, we define
an assembly to be percolating in one direction, when a cluster contains original sites on one side
of the lattice and the periodic copies of these sites on the opposite side of the lattice as shown in
Fig. 4.3c. This is done for all three directions separately.

4.2.4. Adaption of HK to non-lattice structures with PBC

The adaption of the original algorithm for non-lattice environments by [122, 123], was extended to
account for PBC and implemented in C++ in order to investigate random electrode microstruc-
tures.

For adapting the algorithm to a non-lattice approach, the binary mixtures are first separated into
the two phases, e.g. based on the particle size. Each phase is transformed in a random graph
containing information on particle location (nodes) and contact information (links). The nodes
are randomly numbered consecutively, and the algorithm runs once through this array of numbers
sequentially, assigning each node to a certain cluster. After each particle within the assembly and
the periodic boundaries is assigned to a certain cluster, the clusters connected through PBCs are
merged. To do so, the periodic boundary particles perpendicular to the direction of examination
(x, y, or z) are assigned to the cluster of the related original particles, which has the smallest
number. Afterwards, the clusters have to be relabeled in order to consider all connections found
after the first labeling, as explained previously. If a merged cluster now contains the original
particle at on side of the box and the copy at the opposite side of the box in the direction of
examination, the cluster is considered as percolating. Subsequently, the percolation probability is
calculated from the ratio of percolated particles of one species to the overall number of this species
within the assembly [84]. As we have chosen a directional definition of percolation, the probability
is calculated separately for the different directions. Nevertheless, we also calculate an average
probability: To do so, we mark particles, which are determined as being part of a percolating
cluster when we determine the connectivity for each direction separately. Afterwards, we can
identify all marked particles as part of one (or more) percolating cluster and obtain the ratio
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of their sum over the overall number of particles of this species. In anisotropic assemblies, the
directional percolation probabilities might deviate from the average one. In isotropic assemblies,
on the other hand, no preferential direction is expected, and thus, both values should be similar.

4.3. Determination of effective transport properties

Based on the information of percolation probability, the effective ion and electron transport
properties of a system can be determined. In the following, the different methods for this are
introduced, before a more detailed description of the approach used within the scope of this work
is given.

Only few studies exist, which solve the complete system of coupled partial differential equations
given by the electrochemical processes and transport equations given in section 2.2 on artificial
generated microstructures. As the field of variables, e.g. concentration of reactants, temperature
etc. can be determined within the complete microstructure exactly, this approach allows to
demonstrate, how inhomogeneities in geometry influence the field of variables and performance [57,
106, 124, 125, 105]. It is the most exact approach for static systems, however, different time- and
length-scales have to be considered, which makes it computational most expensive, as discussed in
section 2.3. Further, changes within the microstructure—either during calendering or operating
life of the cell—are excluded. For this reasons, decoupled models, using parameters determined
at the scale of the microstructure as input data for cell-level models, are an elegant alternative.
Focusing on the determination of effective transport properties of porous composite electrodes in
this section, the methods can be roughly divided into continuum theory, random-walk calculations
and resistor-network approaches.

4.3.1. Continuum analysis

Continuum theoretical approaches usually use finite element simulations to determine the effective
transport properties by solving the steady-state continuity equation

∇𝑗⃗ = 0 (4.1)

on the discretizised microstructure with mostly commercial software, such as ABAQUS [75].
The required discretization and subsequent solving of the transport equation is computationally
expensive for complex microstructures, such as the herein used electrode structures. The precision
of the results strongly depends on the discretization, which, however, increases the computational
time. Therefore, this method is usually applied to study assemblies with only few hundred
particles [105, 113]. As for larger size ratios more particles are required to obtain representative
results, this approach is disadvantageous.

4.3.2. Random-Walk simulation

Another method to determine transport coefficients of porous structures—in particular, diffusion
coefficients—is the random-walk calculation. It is based on the measurement of distance traveled
by tracer particles performing random movements within a phase of the structure [126]. The
method is widely used in SOFC modeling, as it is applicable for investigations of both pore space
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and solid phase. The mean square displacement ⟨𝑢2⟩ of a large number of tracer particles in the
relevant phase 𝑘 is monitored over time. According to the basic principles of Brownian movement,
as formulated by Einstein [127], the self-diffusivity 𝐷 of a gas is related to the mean square
displacement ⟨𝑢2⟩ of a large number of gas particles. Assuming three dimensional space this is
given by

𝐷 = ⟨𝑢2⟩
6𝑡 (4.2)

where 𝑡 is the travel time. In a porous medium, the local microstructure causes the movement of
gas particles to deviate from the straight path. To consider this in form of an effective diffusivity
𝐷eff , the unimpeded diffusivity 𝐷0 of a gas in a volume element with 100% porosity has to be
corrected with the tortuosity. Theory suggests that 𝐷0 scales with the tortuosity [29]:

𝐷eff = 𝐷0𝜖

𝜏2 . (4.3)

A discussion of the different definitions of tortuosity can be found in [29]. It is assumed, that the
tortuosity affects the effective conductivity with a similar functionality [32]:

𝜅eff,k = 𝜅bulk,k𝜑𝑘

𝜏2 . (4.4)

Additionally considering the connectivity within the phase, Tobochnik et al. [126] stated an
effective conductivity scaled by 𝑃𝑘

𝜅eff,k = 𝜅bulk,k𝜑𝑘𝑃𝑘

𝜏2 . (4.5)

This is a commonly used approach in SOFC, e.g. in [104], however, the discretization of the
complex microstructure usually required for its application is computationally expensive. Also, the
precision depends on the number of tracer particles and performed time steps, which additionally
influences the computing effort. Moreover, to my knowledge, it has not been used to determine
anisotropic transport properties without further adaption. LIB electrodes, however, are expected
to have anisotropic microstructure after the calendering step. Thus, even though this approach is
widely used, it is not completely suitable for the studies performed in this work. Nevertheless, as
it is an established method, we used it for comparison of some exemplary results to validate our
approach.

4.3.3. Resistor-Network approach

The resistor-network approach (RN) is a comparably fast and flexible approach, which can also
be combined with changing electrode structures. It was used in this work to study effective
transport properties in the electrodes. Thereby, the particle structure is converted in an electrical
equivalent circuit by replacing particle-to-particle contacts with resistors 𝑅 and particle centers
with nodes [102]. A system of linear equations is then set up by using Kirchoff’s current law [128]
in combination with Ohm’s law, which can be solved with the node potential method [129]. As
no discretization is required with this approach, it is computational less expensive, and therefore,
it is more suitable for systematic studies of the influence of microstructure. The downside of
this approach is that for densities exceeding 85% the effective conductivity is overestimates, as
discussed in [118]. As both, SOFC and LIB, require connected pore space to sustain transport in
the fluid phase, we only consider structures with porosities > 15% in order to ensure this. Thus,
the application of the RN approach is justified. The individual steps are explained in detail next,
starting with the conversion of particle contacts in resistors.
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Resistance between two contacting particles

As previously mentioned, the microstructures generated with the RCP algorithm are densified
in order to form a connected electrode structure—this leads to overlapping particles. The
densification process applied for SOFC electrodes is purely geometric. Therefore, it is used here
for the derivation of a fit law for the resistance between two contacting particles. Determination
of the conductivity between particles under mechanical load, as found in LIB electrodes, requires
the consideration of deformation. Therefore, the calculation of the inter-particle resistance in LIB
electrodes will be explained in chapter 6 in connection with the considered force law.

A numerical approach similar to Argento and Bouvard’s [130] was chosen to calculate the one-
dimensional resistance of two overlapping, equal-sized particles of the same material. The ohmic
resistance 𝑅𝜄,ϒ between two contacting spheres 𝜄 and ϒ can be determined in analogy to its
thermal resistance, which is defined as

𝑅𝜄,ϒ = 𝑇𝜄 − 𝑇ϒ
𝐼

(4.6)

with 𝑇𝜄 and 𝑇ϒ as temperatures at the extremities of the volume and 𝐼 as the resulting flux. The
steady state calculations of the thermal resistance were performed with Ansys CFX. Because of
periodicity, the FE-calculations need only to be performed for two half spheres, as sketched in
Fig. 4.4a. The resistance 𝑅𝜄,ϒ was determined for several particle radii 𝑟𝑝, while the extremities
were kept as a constant distance 𝑑𝜄,ϒ.

(a)

cylinder

𝑃𝜄 𝑃ϒ

𝑟𝜄 𝑟ϒ

𝑟𝑐

𝑑𝜄,ϒ

(b)

Figure 4.4.: (a) Sketch of the model of two overlapping spheres with the reference cylinder in
light blue (b) Fit found for several contact configuration with increasing particle radius size. Two
of the configurations are shown as example

In analogy to [130], the following linear relation was found to calculate the resistance between
two particles relative to the resistance of a cylinder 𝑅𝑐𝑦𝑙 of radius 𝑟𝑝 and length 𝑑𝜄,ϒ (light blue in
Fig. 4.4a) in dependence of the contact geometry:

𝑅𝜄,ϒ
𝑅cyl

= 0.952 𝑟𝑝

𝑟SOFC
𝑐

, (4.7)

with the contact radius 𝑟SOFC
𝑐 of the two overlapping spheres equal to

𝑟SOFC
𝑐 =

√︃
𝑟2

𝑝 − 𝑑2

4 . (4.8)
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Two exemplary configuration for different particle radii and constant delta are shown in Fig. 4.4b
in addition to the linear relation obtained by fitting the obtained data.

Network and node-potential method

Based on the fit law, the particle contacts can be converted into resistors 𝑅𝜄,ϒ in accordance with
the geometry of the contact. The centers of neighboring particles 𝜄 and ϒ are considered as nodes
in the following. After the particle assembly is converted in a resistor network, the node-potential
method is used to calculate the overall conductivity of this network.

The node-potential method transforms electric circuits according to a well defined pattern into a
system of linear equations; therefore it is well suited for software solutions. Detailed explanation
can be found in e.g. [129]. It’s derivation and implementation will be demonstrated on a small
example for the circuit given in Fig. 4.5.

𝑖𝑞

A
𝑅1

𝑖𝐴𝐵

B
𝑅2

𝑖𝐵𝐶

𝑅3

𝑖𝐵𝐷

D

𝑅4

𝑖𝐴𝐷

𝑅5

𝑖𝐷𝐶

𝑅6
𝑖𝐴𝐶

C

Figure 4.5.: Electric circuit of the exemplary calculation

First, the potentials of each node are calculated relatively to an arbitrary chosen node, whose
potential is set to zero. To do so, a system of linear equations is set up using Kirchhoff’s current
law and Ohm’s law. Thus, for node 𝜄, we obtain

𝐼𝜄 =
∑︁
ϒ
𝐼𝜄,𝑖 =

∑︁
𝑖

𝜙𝑖 − 𝜙𝜄

𝑅𝜄,𝑖
, (4.9)

with 𝐼𝜄 as the sum of currents at node 𝜄, 𝐼𝜄,𝑖 the current in a branch between node 𝜄 and 𝑖 caused
by the difference in 𝜙𝜄 and 𝜙𝑖, which are the potentials at site 𝜄 and 𝑖, respectively, and 𝑅𝜄,𝑖 is the
resistance between nodes 𝜄 and 𝑖. The sum of currents is zero for all internal nodes. Replacing the
resistance with conductivity values 𝐺𝜄,ϒ = 1/𝑅𝜄,ϒ this leads in the here considered example to

B : (𝜙𝐵 − 𝜙𝐴)𝐺1 + (𝜙𝐵 − 𝜙𝐶)𝐺2 + (𝜙𝐵 − 𝜙𝐷)𝐺3 = 0
C : (𝜙𝐶 − 𝜙𝐴)𝐺6 + (𝜙𝐶 − 𝜙𝐵)𝐺2 + (𝜙𝐶 − 𝜙𝐷)𝐺5 = 𝐼𝑞

D : (𝜙𝐷 − 𝜙𝐴)𝐺4 + (𝜙𝐷 − 𝜙𝐵)𝐺3 + (𝜙𝐷 − 𝜙𝐶)𝐺5 = 0

for the nodes B, C and D relative to the reference node A with the potential 𝜙𝐴 = 0. This
can be rewritten in matrix form [𝐺][𝑉 ] = [𝐼], where [𝐺] is a symmetric matrix containing the
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conductivities between percolated particles in contact, vector [𝑉 ] the unknown particle potentials
and the vector [𝐼] the sum of currents for each particle—including the source terms.⎡⎢⎣𝐺1 +𝐺2 +𝐺3 −𝐺2 −𝐺3

−𝐺2 𝐺2 +𝐺5 +𝐺6 −𝐺5
−𝐺3 −𝐺5 𝐺3 +𝐺4 +𝐺5

⎤⎥⎦
⎡⎢⎣𝜙𝐵

𝜙𝐶

𝜙𝐷

⎤⎥⎦ =

⎡⎢⎣ 0
𝐼𝑞

0

⎤⎥⎦ . (4.10)

In general, the conductivity matrix [𝐺] can be determined for an arbitrary system with k nodes
as ⎡⎢⎢⎢⎢⎣

𝐺11 𝐺12 . . . 𝐺1(𝑘−1)
−𝐺21 𝐺22 . . . 𝐺2(𝑘−1)

...
−𝐺(𝑘−1)1 −𝐺(𝑘−1)2 . . . 𝐺(𝑘−1)(𝑘−1)

⎤⎥⎥⎥⎥⎦ (4.11)

with 𝐺𝜄,𝜄 as the sum of the conductivities to all neighboring nodes and 𝐺𝜄,𝑖 as the negative
conductivity between node 𝜄 and node 𝑖. When there is no direct contact between two nodes, the
conductivity is set to zero.

By considering the particles centers as nodes and calculating the resistance between two particles
determined as described in section 4.3.3, every assembly can be transformed into an equivalent
circuit; and then, based on this scheme it can be transformed into matrix form. As a particle
has only few contacting particles in the assembly compared to the total amount of particles, the
matrix contains a lot of elements that are zero; and therefore, [𝐺] is best saved in sparse form to
reduce memory space.

To solve the complete system, potentials 𝜙1 and 𝜙2 are imposed on the opposing sides in the
considered direction as boundary conditions. Thus, [𝐺] and the [𝐼] are known, which allows [𝑉 ] to
be calculated. This is done with an iterative stabilized bi-conjugated gradient method (BICGSTAB)
of EIGEN [131]. The potential distribution for one phase of an exemplary microstructure is shown
in Fig. 4.6.

Figure 4.6.: Potential distribution of one phase with an applied potential difference in x-direction,
particles colored according to their potential
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The currents within the network can be found from back substituting particle potentials and
solving Ohm’s law for each contact. The total current 𝐼 entering or leaving the network is then
calculated by adding all currents of the boundaries. Finally, the effective conductivity 𝜅eff,k of
phase 𝑘 can then be calculated in S/m

𝜅eff,k = 𝐼

𝜙1 − 𝜙2

𝐿

𝐴
, (4.12)

with 𝐿 as the box length in the considered direction and 𝐴 as the area of the cross section
perpendicular to the considered direction. In the numeric calculation of the current 𝐼 through the
system, the bulk conductivity 𝜅bulk,k of the particle bulk material is applied. Due to the linearity
of Ohm’s law, the effective conductivity can be normalized by the bulk conductivity 𝜅bulk,k to
obtain material independent results:

𝜅eff,k
𝜅bulk,k

= 1
𝜅bulk,k

𝐼

𝜙1 − 𝜙2

𝐿

𝐴
. (4.13)

4.3.4. Validation of the RN approach

As already published in [118], the RN method was compared with calculations performed with
an established Random-Walk simulation (RW) (section 4.3.2) and effective media theory (EMT)
(section 3.1.1).

Therefore, a cubic lattice structure of 5 × 5 × 5 equally sized particles was densified by uniformly
increasing the particle size. The self-consistent approach of the effective medium approximation
used here, can be simplified for composites with only one conducting phase to 𝜅eff,k/𝜅bulk,k =
1.5𝜑𝑘 − 0.5. The effective conductivities normalized to the bulk conductivity obtained with the
different methods for several stages of densification is shown in Fig. 4.7. Below densities of 80%,

Figure 4.7.: Comparison of effective conductivity from different approaches, RW: Random-Walk
(section 4.3.2), RN: resistor network (section 4.3.3), EMT: effective medium theory (section 3.1.1)

the difference of the results between RW and RN is marginal, rendering the RN approach suitable.
For densities exceeding 85%, RN overestimates conductivity with respect to RW, and also exceeds
the values of EMT.

As described in [130], the notion of touching particles is no longer valid at densities approaching a
packing factor of 100% due to interaction of the multiple contacts. Such structures rather should
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be modeled as a dense matrix with distributed pores. According to Carson et al. [69], the effective
conductivity of material with open, continuous pore-space, as required in the electrode structures,
is bounded above by the self-consistent effective-medium approximation. The results found with
the RN approach exceed this upper bound already for densities of 85% (Fig 4.7)—this indicates
that already for that amount of densification the notion of touching particles is no longer valid.
The resistor network approach (RN) therefore overestimates the effective conductivity for high
packing factors as the particle overlaps intersect. Nevertheless, as both, LIB and SOFC, require
connected pore space to sustain electrolyte or gas transport, it is justified to investigate their
structures with RN as we only consider assemblies with densities below 85%.

As an further example, the effective conductivities of the two phases of numerically generated,
binary structures with a size ratio of 5 are shown in Fig. 4.8. Ten assemblies of each volume
fraction were analyzed for statistical purpose, and the mean values of the conductivity of the
large and small particles (referred to as 𝑙 and 𝑠, respectively, in the following) were calculated.
Let us first compare in Fig. 4.8a and 4.8b the mean conductivities found with RW and RN
approach to assess the systematic deviation due to methodical differences. The predicted tendency

Figure 4.8.: Effective conductivity calculated with resistor network approach (RN) compared to
results from a Random-Walk (RW) approach, effective medium approximation (EMT) and an
adjusted Brueggeman equation (PT) for (a) small and (b) large particles for assemblies with a
size ratio of 5

of increasing conductivity with increasing volume fraction is similar. The relative deviation
|𝑘eff,RN − 𝑘eff,RW|/𝑘eff,RW is 5 to 9% for the large particles and 5 to 7% for the small ones. Such
a small deviation between the mean values of the two approaches confirms that the results
found are in reasonable agreement. Thus, RN is suitable for the determination of the effective
conductivities of separate phases in densified structures. Additionally, the results are compared
to values obtained with EMT (Eq. 3.8, EMT) and the Bruggeman equation, adjusted with the
percolation probability [84] (Eq. 3.21, PT). As expected, the EMT approach is not well suited
to determine the effective properties of non-symmetric assemblies, like it is here because of the
size ratio. The adjusted Bruggeman approach (PT), on the other hand, predicts the effective
conductivity adequately for the small particle phase 𝑠; however, it underestimates the percolation
threshold and the effective conductivity for large particles significantly. The possible causes of the
large deviation will be discussed in detail in section 5.3. But even now, the large deviation shows
the relevance of choosing an appropriate approach to achieve meaningful results and understanding
of the microstructure’s impact on effective transport properties.
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In Fig. 4.9, the variations of the results calculated from the maximum and minimum value of the
10 assemblies of each composition are illustrated. The deviation obtained for the RN method is
slightly shifted to the right for better visibility. The deviation in the conductivities of the same
composition is due to the variation in microstructure of the randomly generated distributions.
The standard deviation for RW is in most cases insignificantly larger than the values of the RN
approach. That difference might be caused by the averaging over a certain number of time steps
in RW, and we assumed it would vanish with increasing time. For the large particles, the error is
below 2% for most compositions; for few errors up to 5% were found. For the small particles, it is
an order of magnitude smaller. The difference between the deviation of large and small particles
is due to the fact that the amount of small particles is large in comparison to the number of large
particles within the structure. As, however, the error is reasonably small for both species, the
assembly size in terms of number of particles can be considered to be sufficient.

Figure 4.9.: Deviation in the results found for different microstructures with RW and RN approach
for (a) small and (b) large particle phase
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Based on the previously described methods, the impact of size ratio, volume fraction, and
sintering on effective properties in solid oxide fuel cells (SOFCs) is studied in this chapter. Under
consideration of the questions in section 3.3, the numerically obtained results are compared to
the analytic ones. As described, SOFC electrodes are considered in this work as a mixture of ion
and electron conducting spheres, which are randomly distributed in a volume element. The most
common materials for the cells are yttria-stabilized zirconia (YSZ) as ion conducting phase and
nickel (Ni) and strontium-doped lanthanum manganite (LSM) as electron conducting phase of
anode and cathode, respectively. We will focus on the anode in the following; nevertheless, the
findings are also applicable for cathodes when densified to the same amount.

For the systematic investigation of the microstructures, a multitude of assemblies is generated
for size ratios from 1 to 10 and solid volume fractions of small particles between 0 and 1. For
statistics, 10 assemblies per composition, with 10 000 particles each, are set up. First, we will
describe the densification step, and then, study percolation probability and effective properties
for different mixtures. For generality, the properties of small particles will be referred to with a
subscript 𝑠 and these of large particles with a subscript 𝑙. Obviously, small and large particles
can be electron conducting and ionic conducting, respectively—or vice versa.

5.1. Sintering in SOFC

As described in [17], the anodes are first sintered to nearly 100% density and subsequently, the
nickel oxide (NiO) within is reduced, creating sufficient porosity to enable gas transport. Starting
with mixtures of 65:35 vol.% NiO:YSZ leads to porosities around 25.6% and solid volume fractions
of 50:50 vol.% Ni:YSZ. The sintering process itself can best be simulated with a diffusion based
discrete element model, as used e.g. by Schneider et al. [132]. The reduction of NiO, however, is not
considered in those approaches. Due to the many unknown quantities in sintering and reduction,
even complicated models do not exactly reflect the microstructure. Therefore, we consider a
purely geometric approach to be sufficiently exact for the densification. In accordance with [107,
105, 104], the densification is done by increasing the radii to a certain amount, and the particle
centers are kept fixed. In those studies, different contact angles between two contacting particles
represent different sintering stages [107] and allow to adjust the porosity [104]. Typical values of
the contact angle used in percolation approaches are around 15∘ for the smaller particle [89] (see
Fig. 3.8). As in Monte-Carlo structures the contact situation depends upon the local configuration,
Sanyal et al. [105] allowed contact angles between 0 and 30∘.
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5.1.1. Stop criteria for densification

In the implementation of densification, the selection of a stop criterion that allows for modeling
realistic properties of the electrode structure is necessary. Besides a given contact angle, packing
factor (PF) or densification rates can be chosen. The packing factor allows to easily compare
modeled parameters to values found for real microstructures in focused ion beam scanning electron
microscopy (FIB-SEM). But, for size ratios unequal to one, the PF of uncompacted assemblies
generated with random close packing (RCP) algorithm varies significantly, as shown in Fig. 5.1.
Within an arbitrary size ratio, the packing factor is dependent on the volume fraction. Usually,

Figure 5.1.: Packing factor of undensified random close packings vs. solid volume fraction of
small particles for different size ratios

the maximum PF of a certain size ratio is found between 25 and 30% solid volume fraction of
small spheres 𝜑𝑠 [133], which is in good agreement with the results shown in Fig. 5.1. Up to this
value, the small amount of smaller particles is filled into the interstices of the mechanical stable
network of larger particles. Thus, they are just added to the packing factor of a stable, monosized
assembly. Above the maximum value, on the other hand, the amount of small particles becomes
so large that the network of large particles is destructed.

Since a fixed PF as densification criterion neglects this variation in the initial PF, it is unsuitable
for the investigation of the influence of size ratio. As the internal processes during sintering
and subsequent reduction in the electrode fabrication are not yet fully understood, two different
densification approaches will be investigated.

Densification ratio

First, assuming that the densification rate is independent of the composition, a densification ratio,
which is always the same, is applied in form of Δ PF to the different assemblies. In [54], the
packing factor PFexp is experimentally determined as 74%, the numerically generated structures
with monosized spheres, on the other hand, have a packing factor PFRCP of 63%. We determined
the amount of densification from the ratio of those two values to be Δ𝑃𝐹 = 𝑃 𝐹exp

𝑃 𝐹RCP
= 1.175.
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With this, the radii within the assembly are increased step-by-step; and the new packing factor is
calculated under consideration of the new particle radii minus the volume of the spherical caps in
overlapping regions. Several structures with different size ratios are densified by the determined
ΔPF, which leads to packing factors between 74% for monosized and around 86% solid fraction
for a large size ratio of 8. As, according to Bertei et al. [104], a porosity of 10% is sufficient to
ensure a connected gas phase, the packing factor of large size ratio are still in a suitable range.

Mean contact angle

Second, assuming that contacting during sintering is independent of the composition, a specified
mean contact angle 𝜃 will be applied as stop criterion. In contrast to the value usually used in
the analytic percolation studies, the mean contact angle of monosized assemblies densified to
74% is 17.9∘. A mean contact angle of 15∘, on the other hand, leads to a packing factor of 70.8%
for monosized structures. The different packing factors due to the different mean contact angles
mimic different sinter conditions, which cause different amount of densification. In order to have
the same conditions for monosized assemblies, a mean contact angle of 17.9∘ is chosen as further
stop criterion for different size ratios. Following the analytic approach in section 3.2, the contact
angle of the smaller particle is taken into consideration for the calculation (Fig. 3.8). Additionally,
results for a mean contact angle of 15∘ are given to study the influence of densification and enable
the comparison to the analytic approach.

5.1.2. Microstructure of densified structures

The influence of the two criteria, ΔPF and mean contact angle 𝜃, on the respective value is shown
in Fig. 5.2. Applying the first approach leads to a variation of the mean contact angle in binary

Figure 5.2.: (a) Mean contact angle for assemblies densified with a PF ratio of 1.175 and (b) ratio
of packing factor to initial packing factor for assemblies densified to a mean contact angle of 17.9∘

sized mixtures with volume fraction and size ratio, as shown in Fig. 5.2a. The second approach
leads to a variation in ΔPF = PF/PFRCP with volume fraction and size ratio (see Fig. 5.2b). This
shows that the second approach leads to less densification for binary sized mixtures. Further, the
mean contact angle of binary mixtures densified with constant ΔPF is higher than in monosized
assemblies (Fig. 5.2a).
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Contact angles

To examine the difference in contact angle between monosized and binary sized assemblies, we
calculated the probability distribution of contact angles, determined for the small particles in the
microstructures. This is shown exemplary in Fig. 5.3 for a monosized and a binary sized assembly
of size ratio 8 with solid volume fraction of 50:50%.

Figure 5.3.: Probability of the contact angles 𝜃 of the small particles of an assembly of solid
volume fractions of 50:50 for (a) a monosized assembly and (b) a assembly with size ratio of 8

The probability distribution is very similar for all 10 generated structures of the same composition.
To calculate the contact angle of two overlapping, equal sized particles, one particle of the
contact pair is randomly assigned as small and the other as large particle. Comparison of the
probability distribution within the binary and the monosized assemblies shows that the small
particles have a very similar probability distribution for the range of contact angles smaller than
20∘. Additionally, a certain amount of significantly larger angles is found for the binary sized
structures. Most probably, the smaller angles are found for small particles in contact with small
particles—equivalent to a monosized structure—the large contact angles, in contrast, are found
for small particles in contact with large ones.

As illustrated in Fig. 5.4, the maximum contact angle, correlating to the second peak in Fig. 5.3b,
is dependent on size ratio and mean contact angle. The ratio of maximum contact angle to mean
contact angle of the assemblies, on the other hand, is independent of the densification approach.
An maximum 𝜃max of 58∘ is found for a size ratio of 8. This greatly exceeds the maximum
allowable contact angle suggested by Sanyal et al. [105] of 30∘; however, that value would led
to porosities of 47%. As those porosities are much higher than the experimentally determined
values [54], we consider this as too little densification. Finally, as only for a maximum contact
angle above 90∘, absorption of small particles by the large ones is expected—causing physically
not sound structures and numerical difficulties—values around 60∘ are still acceptable.
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Figure 5.4.: Maximum contact angle divided by the mean contact angle 𝜃 found in the assemblies,
which are densified (a) with a PF ratio of 1.175 and (b) to a mean contact angle of 17.9∘

Coordination Numbers

As described in section 3.1.2, the overall coordination number 𝑍0 is expected to affect the relevant
effective cell properties, such as percolation probability, effective conductivity and reactive area.
Consequently, it is significant for the analytic determination of those parameters. As the drop-
and-roll algorithm (section 4.1) specifies a constant overall coordination number of 6 in advance,
this value is usually used in analytic studies. Such a target value, however, reduces the degree of
freedom in the ”randomness” of the microstructure. In contrast to this, the RCP algorithm, in
combination with the densification, does not specify 𝑍0 in advance. As shown in Fig 5.5, an overall
coordination number of 𝑍0= 6 is only found for very few compositions. In monosized assemblies,
the values are found to be around 7.8 contacts per particle, regardless of the composition. For
binary sized mixtures, on the other hand, 𝑍0 depends on the volume fraction, as was also reported
by Bertei and Nicolella [88].

Figure 5.5.: Overall coordination number 𝑍0 in assemblies, which are densified (a) with a PF
ratio of 1.175 and (b) to a mean contact angle of 17.9∘

Both densification approaches lead to similar results: binary sized mixtures with large amounts
of small particles (𝜑𝑠 → 1) have overall coordination numbers like monosized assemblies. From
there, the coordination number decreases slowly with decreasing amount of small particles until it
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starts dropping more drastically in the range of 25 to 30%—this is similar to the range of the
maximum packing factor (Fig. 5.1). The drop is more drastically for a larger size ratio. Probably,
the drop in coordination number is induced by the small particles: ongoing from the point of
maximum packing factor down to lower volume fractions, the small particles are no longer part of
the mechanical stable network. They rather fill the interstices in form of so-called rattlers, which
have less than three contacts. Therefore, the amount of particles with a low number of contacts
increases. The larger amount of small particles in larger size ratios intensifies this effect. To verify
this, the number of contacts the particles have with particles of the same species 𝑘 divided by the
amount of particles of this species (i.e. 𝑍𝑘,𝑘) is presented in Fig. 5.6. For small volume fractions
𝜑𝑠, the large particles in binary mixtures have an internal coordination number of 5 and higher.
Thus, they form a mechanical stable network. The decreasing amount of contacts within the
smaller species confirm that these are loosely filling the interstices. That tendency is reversed for
large volume fractions of 𝜑𝑠. Further, at the threshold from a mechanical stable network of large
particles to a network of small particles, both species have a similar amount of contacts with
themselves.

Figure 5.6.: Number of contacts of particles of the same species divided by the number of particles
of this species for different size ratios

A comparison of the numerically found values for 𝑍𝑘,𝑘 to the analytically determined values
(Eq. 3.17) is given exemplary for the size ratio of 8 in Fig. 5.7. As the original assumption—𝑍0
equals 6, regardless of size ratio and volume fraction—does not reflect on the conditions in
the numerically generated microstructures, we adjusted Eq. 3.17 with numerically determined
parameters and compare the different results in Fig. 5.7. First, the value of 𝑍0 = 7.8, as found for
monosized particles, was considered in Eq. 3.17 ( denoted as 𝑍0 = 7.8 in Fig. 5.7). That leads to
relatively good agreement for the contacts within the small particles 𝑍𝑠,𝑠; in contrast, a significant
deviation is found for the large particle contacts 𝑍𝑙,𝑙. Also using the numerically determined
values 𝑍0 found for the size ratio of 8 in Eq. 3.17 (𝑍0,𝑛𝑢𝑚) leads to good agreement for the small
particle contacts 𝑍𝑠,𝑠; however, for the large particles a significant variation between numerically
determined and analytic results is found as well. The curvature of the function 𝑍0,𝑛𝑢𝑚:𝑙,𝑙, on the
other hand, shows similarity to the numerically determined values (num: 𝑙, 𝑙). This indicates
that scaling of 𝑍0,𝑛𝑢𝑚:𝑙,𝑙 allows to approximate the numerical results. Indeed, a relative close
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Figure 5.7.: Number of contacts of particles of the same species divided by the number of particles
of this species for a size ratio of 8

approximation of the numerically found values is obtained by scaling 𝑍0,𝑛𝑢𝑚:𝑙,𝑙 with the square
root of the size ratio

√︀
𝑟𝑙/𝑟𝑠. This holds true for the large particles of different size ratios as well.

Thus, such a scaling should be considered for further adaption of the concept of coordination
number: it represents a possibility to analytically predict the coordination number 𝑍𝑙,𝑙 of large
particles more accurate, taking size ratio and an overall coordination number dependent on volume
fraction into account.

Free surface area and contact area

Another relevant parameter for cell performance is the amount of specific surface area 𝑆 of a
porous structure, as was indicated in section 3.2. Most likely, 𝑆 influences the total extent of
three-phase boundary (TPB) within an electrode structure and also contains information on the
amount of connected area within the electrode. Therefore, it is assumed that a large specific
surface area is beneficial for cell performance, which will be investigated in the following sections.
Further, calculating 𝑆 for the numerically generated structures enables us to examine to which
part the analytic approximations in section 3.2 predict the numerical calculated values (Eq. 3.28
for monosized and Eq. 3.32 for binary sized structures).

The surface area per unit box volume 𝑆RCP of the undensified structures generated with the
RCP algorithm is largest for the monosized assemblies and decreases with size ratio, as shown in
Fig. 5.8a. For different size ratios, the minimum moves to smaller values of 𝜑𝑠, in a similar range
as the maximum of the initial packing factor is. The analytic approximation, derived in section 3.2
(see Fig. 3.11), predicts a decrease of surface area in comparison to monosized assemblies; it does,
however, does not show that minimum.

During densification, two contradicting effects influence the surface area: on the one hand, the
free specific surface area is assumed to decrease due to the contact zone between the increasing
particles; on the other hand, the particle radii increase, and thus, the total surface of the particles.
Calculating the free surface area of densified structure shows a reduction of around 30% for
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Figure 5.8.: (a) Specific surface area SRCP of the initial, non-densified packings and (b) specific
surface area of the different densified packings relative to their initial values SRCP

monosized structures in Fig. 5.8b for the free specific surface area of the densified packings relative
to its initial value. For the constant packing factor ratio ΔPF approach, the reduction is more
severe for larger size ratios. In contrast, in comparison to the monosized values, the binary
mixtures densified with the mean angle approach undergo less reduction during the densification.
Nevertheless, comparing the total numbers instead of the relative ones, the largest amount of
free surface area is achieved with monosized assemblies. A smaller mean contact angle of 15∘

reduces the reduction of the specific surface area due to the densification process. As previous
considerations suggested a correlation between TPB and specific surface area 𝑆, we expect the
largest extent of TPB for monosized assemblies with a low densification rate. This is further
examined in section 5.4.

Additionally, based on the previous results, the total contact area can be calculated approximately
from the difference of initial free surface area SRCP minus the free surface area of the densified
structures ( see Fig. 5.9a).

As expected, the tendency found for the specific surface area, is reversed for the contact area: In
comparison to the values found for monosized assemblies, a constant densification rate ΔPF leads
to larger contact areas relative to the initial specific surface area; the constant mean contact angle
approach, on the other hand, causes a smaller area relative to SRCP. Looking at the total size of
contact area per box volume, the highest one is found for the binary structures densified with the
ΔPF approach. Assuming that the effective conductivity is correlated to the overall contact area,
those results predict improved effective conductivities with higher densification.

Further, one might assume that the contact area of a structure is correlated to its overall
coordination number 𝑍0 and mean contact angle 𝜃. To study that, we calculated the mean contact
area per particle surface by

𝐴𝑐 = 𝜋𝑟2
𝑐𝑍0

4𝜋𝑟2
𝑝

= 𝑠𝑖𝑛2(𝜃)𝑍0
4 , (5.1)

which is presented in Fig. 5.9b. Comparing these results to the numerically determined contact
area shows that the approximated results underestimate the relative contact area in general.
Further, for the constant mean contact angle approach, the results are dominated by the overall
coordination number. Nevertheless, the predicted tendency for the contact area is correct for
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most compositions. Thus, this simplification is applicable to obtain a rough estimation, but it is
invalid to approximate the contact area properly.

Figure 5.9.: (a) Contact area per box volume within the different assemblies, normalized to the
specific surface area SRCP of the initial packing, which is shown in Fig. 5.8(a); (b) mean contact
area per particle surface, calculated by Eq. 5.1

Summary

Comparing the basic geometrical parameters obtained from the numerically generated structures
to the analytic assumptions and findings, described in section 3.1.2, we already found significant
discrepancies:

• In undensified structures, the PF varies significantly with size ratio; however, in the analytic
approach the porosity 𝜖 = 1 − 𝑃𝐹 is usually assumed to be constant.

• Experimentally determined and thus numerically generated PF of monosized structures are
74%; this is contrasted by 60% PF in the analytic approach.

• A mean contact angle of 15∘, widely used in literature, leads to a PF of 70.8% for monosized
microstructures.

• The overall coordination number 𝑍0 is dependent on size ratio and volume fraction. Only for
monosized assemblies, a constant value of 7.8 was found. Conversely, the analytic approach
is based on the assumption of a constant value of 6 for all structures.

• The numerically found coordination number 𝑍𝑘,𝑘 differs significantly from the analytic
values, in particular for the large particles. For those, the best fit was found by adapting
Eq. 3.17 with the numerically found values of 𝑍0,𝑛𝑢𝑚 ×

√︀
𝑟𝑙/𝑟𝑠. 𝑍𝑠,𝑠, on the other hand, can

be approximated based on 𝑍0,𝑛𝑢𝑚.

• The analytic solution of the specific surface area predicts the same trend as the numerical
one, however, deviates in some details.

• The contact area found numerically is larger than the one found with an analytic approxi-
mation under consideration of numerically determined coordination numbers 𝑍0 and mean
contact angle 𝜃.
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These discrepancies provoke the assumption that predictions made based on the analytic approach
might be inaccurate; and thus, they result in inaccurate predictions of the effective properties. To
investigate this further, we determined the percolation probability and the effective conductivity
as well as the TPB; those are presented in the next steps.

5.2. Percolation probability

The importance of percolation in SOFC electrode structures was described in section 3.1.2: only
when both, electron conducting and ion conducting phases, are connected sufficiently, the cell can
function properly. Information on the connectivity of particles within the numerically generated
microstructures was obtained with the adapted Hoshen-Kopelman algorithm (HK) algorithm
described in section 4.2. Based on this information, the percolation probability is calculated as
the ratio of percolated particles of one phase 𝑘 to the overall number of 𝑘 particles within the
assembly [84]. In order to consider both phases, the overall percolation probability 𝑃 is calculated
by multiplying the probabilities of both phases, as it is done in the analytic investigations of 𝑃 .
We continue to distinguish between small and large particles, assuming that one size is either ion
conducting or electron conducting.

5.2.1. Percolation for different densification approaches

First, the percolation probabilities obtained for the different densification steps are compared.
As shown in Fig. 5.10a, the percolation probability of monosized assemblies is independent of
the densification approach. This also holds true for size ratios up to 5. For larger size ratios
the low densification with a constant mean contact angle of 15∘ reduces the range of percolating
compositions slightly, as can be seen in Fig. 5.10b for a size ratio of 8. the difference in the
percolation probability for the two other approaches is marginal.

Figure 5.10.: Percolation probability 𝑃 obtained for (a) monosized structures and (b) binary
sized structures with a size ratio of 8 for all three densification approaches

Comparing the percolation threshold in Fig. 5.10a and 5.10b shows the influence of size ratio on
the percolation probability: similar to the analytic findings, the percolated region between upper
and lower limit moves with increasing size ratios 𝑟𝑙/𝑟𝑠 to smaller volume fractions 𝜑𝑠. For better
insight, the volume fractions of the percolation threshold, denoted as critical volume fraction
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𝜑𝑐,𝑖 with 𝑖 as percolating phase, are given in Tables 5.1 and 5.2 in comparison to analytically
determined values for different size ratios. Since the critical volume fraction 𝜑𝑐,𝑖 is given as the
volume fraction of small particles 𝜑𝑠, 𝜑𝑐,𝑠 is the volume fraction of small particles above which
percolation of the small particles is most likely (Table 5.1), and 𝜑𝑐,𝑙 denotes the volume fraction
of small particles above which the large particle are no longer percolating (Table 5.2). The finite
size of the volume element most likely broadens the percolation threshold to a threshold range, as
discussed in section 3.1.2 (Fig. 3.3) [78]. Therefore, we did not consider the volume fraction of
the first percolated assembly but a percolation probability of 50%. The analytic values are exact
solutions of Eq. 3.20 for P=0.5. For the numerical solutions, in contrast, only a number of discrete
values of 𝜑𝑠 were investigated. Hence, most likely none of the compositions has a percolation
probability of exactly 50%; and thus, the volume fraction of the first mixture with a percolation
probability higher than 50% will be considered here.

𝑃ratio 𝑃angle 𝑃analytic

𝜑𝑐,𝑠(𝑟𝑙/𝑟𝑠 = 1) 0.29 0.29 0.319
𝜑𝑐,𝑠(𝑟𝑙/𝑟𝑠 = 3) 0.19 0.19 0.135
𝜑𝑐,𝑠(𝑟𝑙/𝑟𝑠 = 5) 0.15 0.15 0.086
𝜑𝑐,𝑠(𝑟𝑙/𝑟𝑠 = 8) 0.11 0.11 0.055

Table 5.1.: Volume fraction 𝜑𝑐,𝑠 at the percolation threshold of the the small particles 𝑟𝑠 for the
different densification approaches. For volume fractions 𝜑𝑠 smaller than this value, no percolation
is found in the 𝑠 phase.

𝑃ratio 𝑃angle 𝑃analytic

𝜑𝑐,𝑙(𝑟𝑙/𝑟𝑠 = 1) 0.71 0.71 0.681
𝜑𝑐,𝑙(𝑟𝑙/𝑟𝑠 = 3) 0.59 0.59 0.416
𝜑𝑐,𝑙(𝑟𝑙/𝑟𝑠 = 5) 0.53 0.53 0.299
𝜑𝑐,𝑙(𝑟𝑙/𝑟𝑠 = 8) 0.51 0.51 0.211

Table 5.2.: Volume fractions 𝜑𝑐,𝑙 at the percolation threshold of the large particles 𝑟𝑙 for the
different densification approaches. For volume fractions 𝜑𝑠 larger than this value, no percolation
is found in the 𝑙 phase.

The numerical results for the critical volume fraction coincide for the two densification approaches,
as demonstrated in Table 5.1 and 5.2. This allows to consider only one densification approach in
the further discussion on percolation probability. Comparison to the analytic values, derived with
Eq. 3.20, shows a significant deviation in the results. To emphasize those differences, in Fig. 5.11
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the numerical results obtained with the densification approach ΔPF for size ratios from 0.1 to
10 (Fig. 5.11a) are compared to the contour plot of the analytic solutions in Fig. 3.5b, depicted
here again for the readers convenience. With increasing size ratio, the difference between the two
solutions becomes more pronounced; especially the percolation threshold of the large particles 𝑟𝑙

is moved to larger volume fractions 𝜑𝑠.
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Figure 5.11.: Percolation probability for (a) numerically generated microstructures and (b) for
comparison the analytic derived solution as already shown in Fig. 3.5b for size ratios from 0.1 to
10

5.2.2. Analysis of the deviation from analytic results

The deviation of the numerical results from the analytically determined, as shown in Fig. 5.11, can
be caused by different factors, which are discussed in this section. The possible influence factors
are (i) inappropriate assumptions made in the analytic approach and (ii) insufficient size of the
numerically generated structures. The differences between the assumptions made in the analytic
approach and the geometrical parameters of the numerically generated structures were already
discussed in section 5.1.2. It was shown in Fig. 5.1 and Fig 5.5 that the packing factor as well as
the overall coordination numbers 𝑍0 deviate even for monosized assemblies from the assumptions
made in the analytic solution. Furthermore, the numerical values are strongly dependent on the
size ratio and volume fraction of the composition. Also, the numerically determined coordination
number 𝑍𝑘,𝑘 varies significantly from the analytic solution. To assess those factors, the influence
of an adapted 𝑍0 on the percolation probability is studied next. Further, the relationship between
𝑍𝑘,𝑘 and the percolation threshold is examined next. Additionally, the influence of the finite size
of the modeled structure is investigated.
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Influence of the coordination number 𝑍0 on the percolation probability

To examine the impact of an adapted coordination number 𝑍0, we first use the numerically derived
constant value 𝑍0 = 7.8 of monosized assemblies in the analytic approach (Eq. 3.17) to determine
an adapted threshold 𝑃Z0=7.8. The resulting values of 𝑃Z0=7.8 show a shift of 𝜑𝑐,𝑠 to smaller
volume fractions 𝜑𝑠, and of 𝜑𝑐,𝑙 to larger 𝜑𝑠 (Table 5.3 and 5.4). This induces a broadening of
the percolated area, as it is seen with the numerically generated assemblies. Nevertheless, the
agreement between numerical and analytic results has barely improved, as now 𝜑𝑐,𝑠 is even lower
than the numerical values, and the 𝜑𝑐,𝑙 remains below the numeric value.

𝑃ratio 𝑃Z0=7.8 𝑃analytic

𝜑𝑐,𝑠(𝑟𝑙/𝑟𝑠 = 1) 0.29 0.243 0.319
𝜑𝑐,𝑠(𝑟𝑙/𝑟𝑠 = 3) 0.19 0.097 0.135
𝜑𝑐,𝑠(𝑟𝑙/𝑟𝑠 = 5) 0.15 0.060 0.086
𝜑𝑐,𝑠(𝑟𝑙/𝑟𝑠 = 8) 0.11 0.038 0.055

Table 5.3.: Volume fractions 𝜑𝑐,𝑠 at the percolation threshold of the small particles 𝑟𝑠 for the
adapted analytic approach in comparison to the previous values. For volume fractions smaller
than this value, no percolation is found in the 𝑠 phase.

𝑃ratio 𝑃Z0=7.8 𝑃analytic

𝜑𝑐,𝑙(𝑟𝑙/𝑟𝑠 = 1) 0.71 0.757 0.681
𝜑𝑐,𝑙(𝑟𝑙/𝑟𝑠 = 3) 0.59 0.509 0.416
𝜑𝑐,𝑙(𝑟𝑙/𝑟𝑠 = 5) 0.53 0.384 0.299
𝜑𝑐,𝑙(𝑟𝑙/𝑟𝑠 = 8) 0.51 0.280 0.211

Table 5.4.: Volume fractions 𝜑𝑐,𝑙 at the percolation threshold of the large particles 𝑟𝑙 for the
adapted analytic approach in comparison to the previous values. For volume fractions 𝜑𝑠 larger
than this value, no percolation is found in the 𝑙 phase.

In that, the dependence of 𝑍0 on size ratio and volume fraction was neglected—even though
the coordination number varies significantly. In particular for large size ratio and small volume
fractions of 𝜑𝑠 (𝜑𝑠 → 0), the coordination number decreases substantially. To estimate the
influence of the numerically determined coordination numbers, we applied values more adequate
for the expected volume fraction of the percolation threshold in Eq. 3.17: for 𝜑𝑐,𝑠, 𝑍0 equals
approximately 4 and for 𝜑𝑐,𝑙, 𝑍0 is 7. The results for the percolation threshold based on those
coordination numbers are given in Table 5.5 and 5.6 for 𝜑𝑐,𝑠 and 𝜑𝑐,𝑙, respectively.

𝑃ratio 𝑃Z0=4 𝑃Z0=7.8 𝑃analytic

𝜑𝑐,𝑠(𝑟𝑙/𝑟𝑠 = 5) 0.15 0.155 0.060 0.086
𝜑𝑐,𝑠(𝑟𝑙/𝑟𝑠 = 8) 0.11 0.103 0.038 0.055

Table 5.5.: Volume fractions 𝜑𝑐,𝑠 at the percolation threshold of the small particles 𝑟𝑠 for 𝑍 = 4
in comparison to the previous values. For volume fractions smaller than this value, no percolation
is found in the 𝑠 phase.
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𝑃ratio 𝑃Z0=7 𝑃Z0=7.8 𝑃analytic

𝜑𝑐,𝑙(𝑟𝑙/𝑟𝑠 = 5) 0.53 0.347 0.384 0.299
𝜑𝑐,𝑙(𝑟𝑙/𝑟𝑠 = 8) 0.51 0.250 0.280 0.211

Table 5.6.: Volume fractions 𝜑𝑐,𝑙 at the percolation threshold of the large particles 𝑟𝑙 for 𝑍 = 7 in
comparison to the previous values. For volume fractions 𝜑𝑠 larger than this value, no percolation
is found in the 𝑙 phase.

Applying those values, leads to good agreement with the numerical found threshold values for
𝜑𝑐,𝑠. Conversely, the new adaption impairs the agreement further for 𝜑𝑐,𝑙.

Those adaptions demonstrate the effect of a size ratio dependent coordination number 𝑍0 on the
percolation threshold. The large deviation for 𝜑𝑐,𝑙 at large size ratios between the numerically
and analytically determined percolation thresholds, however, remains.

Critical coordination number 𝑍𝑐

Further, the analytic approach is based on the assumption that the percolation threshold is—
independent of size ratio—correlated to a certain coordination number 𝑍𝑘,𝑘, denoted as critical
coordination number 𝑍𝑐. As discussed in section 3.1.2, there is, however, no consensus on a
threshold values, especially for size ratios larger than 1. Nevertheless, in the analytic investigation
of SOFC percolation, the value of 𝑍𝑐 = 1.764, as determined by Kuo and Gupta [86], is widely
applied.

To examine this relationship, the percolation probabilities found for the numerical assemblies
in this work are plotted versus the coordination number 𝑍𝑘,𝑘 in Fig. 5.12 for several size ratios.
For the small particles 𝑠, the percolation threshold correlates to critical coordination numbers

Figure 5.12.: Percolation probability 𝑃 versus coordination number (a) 𝑍𝑠,𝑠 and (b) 𝑍𝑙,𝑙 for
several size ratios from 𝑟𝑙/𝑟𝑠 = 1 to 𝑟𝑙/𝑟𝑠 = 8

𝑍𝑐,𝑠 between 2 and 3, whereby the value distinctly increases with size ratio. In contrast to that,
the critical coordination number for larger particles 𝑍𝑐,𝑙 scatters diffusely around 2— with a
significant spread for larger size ratios. This indicates that the assemblies contain too few large
particles for higher size ratios. At a radius ratio of 8, for example, the assemblies contain 156 large
particles at the critical solid volume fraction of 0.1 for percolation of the small particles, and only
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16 large particles at the critical volume fraction of 0.55 for percolation of the 𝑙 phase. Comparing
the results to the findings of Roussenq et al. [78] with regard to lattice size, shown in Fig. 3.3a,
corroborates this. The possible effect of the investigated volume element size should also be
considered for small particles: with increasing size ratio, the number of small particles within the
assembly increases and thus, the ratio of particles per box length as well. Nevertheless, the distinct
increase of percolation threshold with size ratio suggests that the correlation of the percolation
threshold to a single coordination number 𝑍𝑐, as done so far, is an oversimplification. Rather, a
dependence on further parameters such as size ratio, method for generation, and densification
should be taken into account in future studies of effective properties.

Influence of the finite size of volume element

In order to compensate the finite size of the structures, 10 assemblies of each composition were
generated. So far, we only examined the mean of the 10 assemblies for each composition. The
deviation in the results helps to further examine the effect of size on the results: In infinite
volume elements, the percolation threshold takes place at one critical volume fraction 𝜑𝑐; below,
no connectivity is found (percolation probability = 0), and above, the percolation probability is 1.
At the critical volume fraction itself, a large deviation within the percolation probability of the 10
different assemblies of that composition is most likely. When the volume element size becomes
smaller, the percolation threshold is no longer a peak—rather, it is broadened to a range.

To study this, in Fig. 5.13, the standard deviation of the percolation probability for all 10
assemblies of the same composition is shown—for all volume fractions for radius ratio 1 and radius
ratio 8. Within the range of percolation threshold, the percolation probabilities of the 10 different

Figure 5.13.: Standard deviation in percolation probability versus volume fraction for (a) small
and (b) large particles for two size ratios 𝑟l/𝑟s = 1 and 𝑟l/𝑟s = 8

assemblies of each composition deviates significantly. A single peak in the standard deviation of
percolation probability, as found for the small particles in 𝑟𝑙/𝑟𝑠 = 8 (Fig. 5.13a), indicates a high
accuracy of the determined percolation threshold. For the other cases in the example, the values
scatter about a median. In an infinite volume, the percolation threshold for monosized assemblies
is expected to be symmetric, when the particles are randomly assigned as large or small in order
to achieve the target volume fraction of each composition. Due to the finite size of the volume
element—in combination with the random nature of the structures—the standard deviation differs
at the upper and lower limit of the percolation range. Further, for the large particles in 𝑟𝑙/𝑟𝑠 = 8
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(Fig. 5.13b), the dispersion with respect to the volume fraction is wide. Although the dispersion
could be reduced with larger assemblies, 10 assemblies of 10,000 particles were considered to be
sufficient as a trade of between accuracy and computational costs. The standard deviation of the
percolation probability is very similar for the mean contact angle approach. For 15∘ slightly larger
values are found.

In conclusion, all of the three studied parameters have an impact on the deviation between
numerically and analytically determined values of the percolation probability. Consideration of
numerical coordination numbers 𝑍0 positively influenced the accuracy of the analytic solution
at the lower limit 𝜑𝑐,𝑠. It seems, however, that for a higher accuracy of the upper limit 𝜑𝑐,𝑙, the
correlation of critical coordination number 𝑍𝑐 and percolation threshold must be revaluated. The
numerical results indicate a dependence of 𝑍𝑐 on the size ratio. Additionally, the influence of the
ratio of particle size to box volume size on the percolation threshold could not be ruled out. As
the effective conductivity and the TPB are determined under consideration of the percolation
probability, the scattering of the numerical results should be kept in mind—in particular for larger
size ratios.

5.3. Effective conductivity

The effective conductivities 𝜅eff of the assemblies was determined with the resistor-network
approach (RN) approach, as introduced in section 4.3.3, based on the information on connectivity
within the clusters. For generality, the effective properties, indexed with eff, are given relative to
the bulk values, which are indexed with bulk.

5.3.1. Comparison of numerical and analytic results

Comparing monosized assemblies (Fig. 5.14), and the ones with a large size ratio of 8, (Fig. 5.15)
to the averaging approaches—introduced in section 3.1—clearly demonstrates the necessity of
explicit consideration of the microstructure to obtain reliable results for cell modeling:

Figure 5.14.: Effective conductivity relative to the bulk conductivity for size ratio 1 with averaging
theories from section 3 and the different densification approaches for phase 𝑠 and its complementary
phase 𝑙
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As shown in Fig. 5.14, the averaging methods overestimate the effective conductivity already for
monosized assemblies. While the effective conductivity based on the analytic determination of
percolation probability 𝑃analytic (Eq. 3.21) shows a similar onset of conductivity, the curve of the
effective medium approach EMT (Eq. 3.11) reflects better on the conductivity found in the densified
microstructures - except for the percolation threshold. Adapting the analytic percolation approach
with the microstructural parameters 𝑍0 = 7.8 and 𝑃𝐹 = 0.74, as determined in section 5.1.2,
further worsens the agreement between the averaging approach and the results of the densified
microstructures (𝑃analytic,VAR). Furthermore, the impact of the degree of densification—symbolic
for different sinter conditions—can be seen: with increasing volume fraction of the conducting
phase, the conductivity of the differently densified assemblies varies more. This supports the
assumption that a larger contact area, which is equivalent to larger mean contact angles, is
correlated to elevated conductivity. The averaging approaches neglect the impact of fabrication
process so far.

For assemblies with a large size ratio of 8, presented in Fig. 5.15, the effect of different mean
contact angles increases further. Also a deviation between the mean contact angle of 17.9∘ and
the ΔPF ratio densification can be seen, which, however, is less significant. This affirms the
assumption of a correlation between mean contact angle and effective conductivity. In contrast to

Figure 5.15.: Effective conductivity relative to the bulk conductivity for size ratio 8 with av-
eraging theories from section 3.2 and the different densification approaches for phase 𝑠 and its
complementary phase 𝑙

the results for monosized structures, the conductivities found for binary sized assemblies vary for
the small and the large phase for the analytic percolation approach as well as for all densification
methods. The conductivities of the small phase are in relatively good agreement with EMT for
the higher amounts of densification; the curves of the large phase rather show similarities with the
analytic percolation approach for those two densification approaches. The percolation threshold,
however, varies significantly—the possible causes for that were already discussed in the previous
section. The values found for the smaller mean contact angle of 15∘ are significantly lower for
both phases; this emphasizes the relevance of the process conditions.

5.3.2. Influence of the size ratio

Further, to study the influence of size ratio, the effective conductivities of microstructures with
different size ratios are compared in Fig. 5.16. In the left column (Fig. 5.16a and 5.16c) results
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for assemblies densified with constant ΔPF as stop criterion are shown, while in the right column
(Fig. 5.16b and 5.16d) the mean contact angle approach was used. The upper row shows the
effective conductivities 𝜅eff of the small phase 𝑠 and the lower row the values of large phase 𝑙. All
show the same—and expected—trend of increasing conductivity with increasing volume fraction
of the respective phase. For all but the large phase in the mean contact angle approach, shown in
Fig. 5.16d, the effective conductivity improves with larger size ratio. In the mean contact angle
approach, however, the monosized assembly leads to highest conductivities for the large particles;
and the size ratio of 3 provides the lowest values. Apparently the smaller densification of this
approach significantly effect the contacts within the large particle phase.

Figure 5.16.: Effective conductivity relative to the bulk conductivity found in assemblies, which
are densified with a PF ratio of 1.175 ((a), (c)) and with a mean contact angle of 17.5∘ ((b),(d))
for several size ratios. The upper row shows the results for the smaller particles, while the lower
contains the larger particles.

Considering the relevant range of volume fraction, in which both phases are conducting (0.11 <𝜑𝑠 <
0.71), given in Table 5.1 and 5.2 for the different size ratios, the effective conductivities obtained
for the large sized particle phase 𝑙 are larger than the values found for small particles. In the
experimental studies (section 2.3), it was suggested that the effective conductivity of YSZ is more
critical for cell performance since the bulk value of the ion conductivity is small in comparison
to the electron conductivity. Based on this, it is reasonable to choose a configuration, which
achieves optimized transport properties for the YSZ phase, while the Ni phase is still sufficiently
connected to sustain electron transport. As the bulk values of the electron conductivity are high in
comparison to the ionic bulk values, a smaller ratio of effective conductivity to bulk conductivity
is tolerable. As the first approach achieves higher effective values (Fig. 5.16a and 5.16c), it is
considered in the following. Thus, the requirements are best met when small sized Ni-particles are
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combined with large sized YSZ particles: The highest effective conductivity relative to the bulk
conductivity is achieved for large particles in compositions with large size ratios and small volume
fractions of small particles. Thus, large sized YSZ particle allow to optimize the ionic transport.
Furthermore, a small volume fraction of small particles is sufficient in such compositions to allow
for a connected pathway through the volume.

5.4. Three-Phase boundary

In addition to sufficient transport in all phases, the three reaction components, which are oxygen
ions, electrons, and gas molecules, need to be in contact to allow for the energy releasing reactions
to take place, as described in section 3.2. Besides geometrical information on the contact, the
connectivity of the three phases has to be taken into account to distinguish between the overall
contact area and the electrochemical active region. In literature [95, 89, 33, 34], both the
circumference and the area of the triple contacts are denoted as TPB. As was shown in Fig. 3.10,
the different approaches for the calculation of the extent of the TPB of a single contact predict
the same impact of morphology on the overall TPB. When normalized to the respective maximum
extent of TPB determined for the monosized mixtures, the variation of the results is negligible
for the three descriptions of TPB. Therefore, we consider it sufficient to calculate only the TPB
length given by Eq. 3.22 for the numerically generated assemblies. In the numerical calculations,
only particles connected to a percolating cluster were considered; this means that only the active
amount of TPB was determined.

To enable comparison with the analytic results found in section 3.2 with Eq. 3.26, the numerical
results shown in the following are normalized with 𝑎line = 1.296 × 1012 m/m3; this is the
maximum value found for monosized assemblies in section 3.2. In Fig. 5.17, the results determined
with the different approaches are given for monosized (Fig. 5.17a) and binary sized assemblies
with a size ratio of 8 (Fig. 5.17b). First, comparing the different densification approaches to
the analytic approach shows that—even though predicting the same tendencies—the analytic
approach underestimates the extent of TPB significantly for monosized assemblies. In binary
sized assemblies with a size ratio of 8, the amount of active TPB found for the mean contact angle
of 15∘ is in good agreement with the analytic results. The differences of the volume fractions, for

Figure 5.17.: Comparison of the three phase boundary length normalized with TPB length
introduced in section 3.2 of the different approaches for (a) monosized and (b) binary sized
assemblies with size ratio 𝑟𝑙/𝑟𝑠 = 8.
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which active TPB is detected, is caused by the deviation between the numerically and analytically
determined percolation thresholds. Further, comparing the results of the different densification
approaches at an arbitrary size ratio, it indicates that a higher degree of densification is correlated
to a larger active TPB. Finally, comparing the extent of TPB for monosized assemblies and the
assemblies with a size ratio of 8, it shows that the TPB decreases substantially with increasing
size ratio.

In order to predict the extension of the active TPB, the assumption was made that, in general,a
larger extent of active TPB is obtained for larger free surface area (section 3.2). The examination
of the specific surface area 𝑆 in section 5.1.2, Fig. 5.8, showed that a larger size ratio leads
to a smaller free surface area. As also the active TPB decreases significantly with size ratio,
this supports the assumption. Conversely, within an arbitrary size ratio, a higher amount of
densification corresponds to a lower specific surface area—and to a larger extension of TPB.
As this contradicts the assumption, we revaluate the correlation, which only seems partially
true. It appears that the initial free surface area allows to predict the tendency—or potential—a
microstructure has for the formation of active TPB. In an undensified structure, a large free
surface area offers the possibility to form a large number of contacts, and thus, a large active TPB.
The actual extension of the TPB is then correlated to the densification process, which emulates
the degree of sintering: with large contact radii (i.e. higher densification), the extent of TPB per
contact is enlarged as well.

5.5. Effective electrode resistance

As stated in section 2.3, the two effective parameters 𝜅eff,YSZ and TPB were experimentally
identified to be mainly responsible for cell performance. Both, high effective ionic conductivity
and large TPB lead to improvements in cell performance [134]. Investigating the two parameters
separately led to contradicting recommendation for an improved microstructure: For an optimized
effective conductivity 𝜅eff,YSZ, large size ratios and small volume fractions of the electron conducting
phase are beneficial; however, for large TPB monosized composition with 50:50% of solid volume
fraction are advantageous.

To predict a tendency for an optimized overall cell performance, the combined effect of the two
parameters on the effective cell resistance has to be considered. This can be done with a modified
Tanner-Fung-Virkar (TFV) model, which was shown e.g. in [54, 134] to be in good agreement with
the experimentally determined overall cell resistance. The TFV model [135] is based on a simplified
geometry, illustrated in Fig. 5.18, for which an analytic solution for the cell resistance can be
derived. Further, considering the effective conductivity 𝜅eff,YSZ, as determined in section 5.3, as
bulk conductivity and the active TPB (section 5.4) to scale the activation polarization at the
surface, allows to adapt the model in such a way that it takes the microstructure into account.
First, I briefly explain the derivation of the original model, for which a more comprehensive
explanation can be found in [134, 136]. Subsequently, the different adaptions are introduced, and
the influence of the two parameters is assessed.
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5.5.1. The Tanner-Fung-Virkar model

For the derivation of the analytic solution of the cell resistance 𝑅cell, several assumptions were
made regarding the electrode structure and the relevant transport processes [136, 135]; those are
introduced next.

Simplified electrode structure

The simplified electrode structure (Fig. 5.18) approximates the randomly distributed ion conducting
phase of the electrodes as columns. Important geometric electrode parameter, such as porosity,
electrode thickness and YSZ particle size are still considered in the calculation. In this work, the
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Figure 5.18.: Simplified electrode structure of the TFV model [135] with the repeat-unit, which
is considered in the derivation of the model, on the right

heights of the dense electrolyte layer is denoted as 𝑑, and the heights of the electrode as ℎ. The
thickness of the cell is obtained by extending Fig. 5.18 into and out of the page by a constant
distance 𝑡. Further, the YSZ columns, normal to the dense electrolyte layer, are of width 2𝑤. A
reasonable choice for the width 𝑤 is the mean radius of YSZ particles [135]. The corrugation
length 𝑙 of a characteristic element of the structure can be calculated from 𝑙 = 𝑤/(1 − 𝜖), with 𝜖
the porosity of the system. The electron conducting phase is represented in the left part of the
picture as spheres on the surface.

Taking the symmetry of the structure into account allows to further simplify the geometry to a
single repeat-unit of length 𝑙, which is shown in the dashed clipping in Fig 5.18. The electrode
area normal to the column is then given by 𝑙𝑡 and 𝑤𝑡 for electrolyte and electrode, respectively.

Transport properties

Besides the simplifications of the geometry, several assumptions are made for the transport
properties: Full connectivity of all three phases is implied tacitly. Further, the resistance to
electron transport is comparably small, and therefore, neglected. Additionally, the concentration
polarization (section 2.2.3), associated with gas transport, is neglected, which is consistent with
the assumptions made in this work. Hence, the influence of the ion transport and the charge
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transfer reactions at the TPB are considered as the relevant parameters. Both are approximated
by ohmic behavior, as given in Eq. 2.3.

The charge transfer reaction, or activation polarization (described in section 2.2.2), usually is not
ohmic, it behavior can be described by the more complicated Butler-Volmer equation (Eq. 2.5).
For low current densities, however, Eq. 2.5 predicts ohmic behavior [8, 135], which can be described
by a charge transfer resistance 𝑅𝑐𝑡 for the electrode surface with

𝑅𝑐𝑡 = 𝑈𝑠 − 𝑈𝑜𝑐

𝑗
= (𝑈𝑠 − 𝑈𝑜𝑐)𝐴

𝐼
. (5.2)

Therein, 𝑈𝑠 −𝑈𝑜𝑐 is the overpotential at the surface and 𝑗 the current density normal to the surface.
It should be noted that the charge transfer resistance of a surface is given as an area specific
resistance in Ωm2. Generally, the resistance of an arbitrary body of length Λ and cross-section
area 𝐴 can be calculated as

𝑅 = 𝜌Λ/𝐴, (5.3)

with 𝜌 as the material specific resistivity. For measured values of the resistance across a surface,
the variables 𝜌 and Λ are both unknown, and therefore, can not be obtained separately. To work
around the problem, an area specific resistance 𝑅𝑐𝑡 is determined by multiplication with the area
𝐴 in form of 𝑅𝑐𝑡 = 𝑅𝐴 = 𝜌Λ [136]. In [135], 𝑅𝑐𝑡 is given as 0.00012 Ωm2 at 800∘𝐶; this value was
used in here as well.

For the YSZ transport, it was demonstrated in [136] that ohmic behavior is a valid description
for the oxygen transport through the YSZ scaffold. Additionally, as demonstrated by Tanner
et al. [135], the potential distribution 𝜙 can be approximated as invariant in x-direction, which
allows to reduce Ohm’s law (Eq. 2.3) to

𝑗𝑦 = −𝜅bulk,YSZ
𝑑𝜙(𝑦)
𝑑𝑦

. (5.4)

with 𝑗𝑦 as the current density in y-direction of the electrode. Finally, as the resistance to electron
transport is neglected, the potential at the electrode surface 𝜙𝑠 is the same at all surfaces of the
electrode.

Boundary conditions

The spatial boundary conditions of the repeat-unit are given in Fig. 5.18: At facets 1, 2 and 3, the
potential 𝜙 is defined by an arbitrary potential 𝜙𝑠, which is the same at all surfaces, as explained
previously. For simplicity, the potential at facet 4 was chosen to be 0. The boundary conditions
of the additional facets are defined by the invariance of of the potential in x-direction.

Further, steady-state conditions are applied1, which lead to∑︁
𝐼 = 0. (5.5)

This is valid for an arbitrary volume within the repeat unit, as well as for entire unit. For the
repeat-unit element, this can be written as

𝐼1 + 𝐼2 + 𝐼3 = 𝐼4, (5.6)
1As mentioned in section 2.2, this is valid in SOFC after start up.
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with the subscripts indicating the boundaries through which the currents enter or leave the
electrode, as shown in Fig. 5.18 [135]. Additionally, it is stated that the current across facet 1 is
equal to the one immediately inside the column:

𝐼1 = 𝐼 |𝑦=ℎ+ 𝑑
2
. (5.7)

Derivation of the electrode resistance

In general, the resistance of the repeat-unit, 𝑅RU, consists of the resistance of the electrode column
𝑅c and the resistance of the dense electrolyte layer 𝑅𝑒𝑙

𝑅RU = 𝑅c + 1
2𝑅𝑒𝑙. (5.8)

Multiplication with the geometric electrode area 𝐴 turns each resistances into an area specific
resistance (ASR), in accordance with the surface resistance previously introduced. Assuming a
rectangular geometric cell with depth 𝑡 and length 𝑙 leads to an area for the repeat unit of 𝑙𝑡, and
thus,

𝑅RU𝑙𝑡 = 𝑅c𝑙𝑡+ 1
2𝑅𝑒𝑙𝑙𝑡. (5.9)

By defining the area specific resistance of the electrode as 𝑅eff , and rearranging the equation, this
can be rewritten as

𝑅eff = 𝑅RU𝑙𝑡− 1
2𝑅𝑒𝑙𝑙𝑡. (5.10)

For the dense solid electrolyte layer, the definition of resistance (Eq. 5.3) can be applied

𝑅𝑒𝑙 = 𝑑

𝜅bulk,YSZ𝑙𝑡
, (5.11)

with 𝑑 as heights of the electrolyte layer. By inserting 𝑅𝑒𝑙, Eq. 5.10 becomes

𝑅eff = 𝑙𝑡𝑅RU − 𝑑

2𝜅bulk,YSZ
. (5.12)

Next, 𝑅RU can be calculated based on Ohm’s law as

𝑅RU = 𝜙𝑠 − 𝜙 |𝑦=0
𝐼4

= 𝜙𝑠

𝑗𝑙𝑡
(5.13)

In order to determine 𝐼4, the currents through facets 1 to 3 must be known. The derivation of the
current components, depending on potential distribution, geometric properties and 𝑅𝑐𝑡, is given
in appendix C. Finally, substituting 𝐼4 in Eq. 5.13 and with this expression 𝑅RU in Eq.5.12 leads
to the area specific resistance of the electrode 𝑅eff

𝑅eff = 𝑙𝑅𝑐𝑡

𝑤 1+𝛽

1+𝛽𝑒−2 ℎ
𝑎
𝑒− ℎ

𝑎 + 1+𝛽𝑒− ℎ
𝑎

1+𝛽𝑒−2 ℎ
𝑎
𝑎(1 − 𝑒− ℎ

𝑎 ) + 𝜖𝑙
(5.14)

with 𝜖 as porosity,
𝑎 =

√︁
𝜅bulk,YSZ𝑤𝑅𝑐𝑡 (5.15)

and
𝛽 = 𝜅bulk,YSZ𝑅𝑐𝑡 − 𝑎

𝜅bulk,YSZ𝑅𝑐𝑡 + 𝑎
. (5.16)

This expression allows to estimate the overall electrode resistivity based on easily accessible,
geometrical properties only.
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5.5.2. Adaption of TFV with effective properties

In order to estimate the area specific resistance of an electrode, 𝑅eff (Eq. 5.14), we started by
using the original TFV model, as derived in the previous section. Subsequently, the constant
input parameters 𝜅bulk,YSZ and 𝑅𝑐𝑡 are replaced under consideration of the effective properties,
calculated in section 5.3 and 5.4, in order to reflect on electrode microstructure. The results are
summarized in Fig. 5.19.

The geometric parameters of the repeat-unit, summarized in Table 5.7, were chosen in accordance
with the microstructural parameters of Wilson et al. [54]. The electrode thickness ℎ is 10 𝜇m, and
the column width 𝑤 is set to match the YSZ particle size of 0.5 𝜇m for monosized structures. The
porosity 𝜖 of the electrode structure is calculated by 1 − PF, considering the PF of the densified
structures (section 5.1.2). In monosized assemblies, which were studied first, the PF is 74% for
all compositions. Based on this, the length 𝑙 of a repeat unit is calculated as 𝑙 = 𝑤/(1 − 𝜖).
For the bulk properties 𝜅bulk,YSZ and 𝑅𝑐𝑡, the values used by Tanner et al. [135] were applied
(Table 5.7).

value unit
ℎ 10 𝜇m [54]
𝑤 0.5 𝜇m [54]
𝜖 1-PF -
𝑙 𝑤/(1 − 𝜖) -
𝜅bulk,YSZ 2.1 S/m [135, 54]
𝑅𝑐𝑡 0.00012 Ωm2 [135]

Table 5.7.: Parameters used in the calculation of the specific area resistance 𝑅eff (Eq. 5.14) of
the electrode

The resulting area specific resistance 𝑅eff , calculated with the original TFV model in the percolating
range only, is shown in Fig. 5.19 as TFVori. With the original model, the calculated resistance
is found to be the same for all volume fractions 𝜑𝑒𝑙 of the electron conducting phase. This is
in contrast to the experimental findings, e.g. [54], reported in section 2.3. As, however, the
model so far only considers the simplified microstructure and neglects the influence of effective
transport parameters, this kind of results was expected. It clearly demonstrates the need for
further adaptions, which are introduced next one by one. The applied effective properties were
gained for monosized assemblies, unless stated otherwise.

Influence of the effective conductivity

The effective conductivity, determined in section 5.3 for varying compositions, can be employed by
replacing 𝜅bulk,YSZ in Eq. 5.14 with 𝜅eff,YSZ, as done in [54]. As the values given in section 5.3 were
normalized by its bulk value, the effective conductivity 𝜅eff,YSZ was determined by multiplying
those values with the bulk conductivity 𝜅bulk,YSZ. That straightforward adaption is referred to as
TFVkeff in Fig. 5.19a.

As the effective conductivity is always smaller than the bulk conductivity, the increase of the
resistance 𝑅eff for all percolating volume fractions is reasonable. Additionally, a dependence of



5.5. Effective electrode resistance 77

Figure 5.19.: (a) Overall area specific electrode resistivity 𝑅eff determined with different adaption
of the TFV-model for monosized structures, with the lower section replotted in (b) for better
visibility

volume fraction is introduced due to the consideration of 𝜅eff,YSZ: With an increasing volume
fraction of the electron conducting phase, the effective ionic conductivity decreases and thus, the
cell resistance 𝑅eff increases significantly.

Influence of the active TPB

As previously explained, the simplification of the Butler-Volmer equation (Eq. 2.5) allows to
describe the charge transfer at a reactive surface as ohmic with a resistance 𝑅𝑐𝑡. In SOFC, the
charge transfer takes place at the active TPB (section 3.2). Thus, to consider the influence of
microstructure on the active TPB length, 𝑅𝑐𝑡 needs to be adapted in order to account for the
extent of TPB in the electrode structure. In the original TFV model, the active surface is only at
the facets 1, 2 and 3 of the column, with a combined length of 𝑙+ ℎ. Taking the originally porous
electrode structure into account, the active area is enlarged in comparison to the active area of
the columnar structure. To consider this, the length of the columnar surface is scaled accordingly.
To do so, we replace 𝑅𝑐𝑡 in Eq. 5.14 with an effective area specific resistance 𝑅ct,eff , defined as

𝑅ct,eff = 𝑅𝑐𝑡

𝑙𝑠𝑡
𝐴 (5.17)

with 𝑙𝑠 as the active surface length, 𝑡 the electrode thickness and 𝐴 the column surface area.
Considering the simplified structure exemplarily, this leads to

𝑅ct,eff = 𝑅𝑐𝑡

(𝑙 + ℎ)𝑡(𝑙 + ℎ)𝑡 = 𝑅𝑐𝑡. (5.18)

For an active TPB of total length 𝑙𝑠, the effective area specific resistance is

𝑅ct,eff = 𝑅𝑐𝑡

𝑙𝑠
(𝑙 + ℎ). (5.19)

As the TPB lengths calculated in section 5.4 were determined as length per volume, the TPB per
volume of column (𝑉𝑐 = 𝑙 × ℎ× 𝑡) has to be considered in form of 𝑙𝑠 = 𝑇𝑃𝐵 × 𝑉𝑐. Therefore, the
column thickness is assumed as 10 𝜇m, equal to the column heights.
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In Fig. 5.19, the results calculated with an adapted charge transfer resistance 𝑅ct,eff in combination
with the bulk conductivity 𝜅bulk,YSZ are denoted as TFVTPB. Fig. 5.19b depicts a lower section
of Fig. 5.19a for better visibility, in particular for TFVTPB. The enlarged active surface due to
the numerical obtained values, considered in 𝑅ct,eff , reduces the effective cell resistance. Even
though the extent of the active TPB depends on the volume fraction (Fig. 5.17), the effective cell
resistance (TFVTPB) changes little with varying different microstructures.

Combined consideration of 𝜅eff and TPB

Finally, in a combined approach (TFVcombi in Fig. 5.19), both parameters, 𝑅ct,eff and 𝜅eff , were
applied for the calculation of 𝑅eff . This allows to estimate how the cell efficiency is affected by
the contradicting parameters.

It indicates that considering only the effective conductivity overestimates the electrode resistance
significantly. Conversely, the separate implementation of the effective charge transfer resistance
underestimates the cell resistance. Additionally, the second adaption lacks the influence of the
varying composition, which, however, was observed experimentally [54]. Based on the combined
approach, a composition at the percolation threshold of the electron conducting phase (𝜑𝑒𝑙 → 0.29,
compare Table 5.1) appears favorable in terms of cell efficiency.

5.5.3. Influence of the composition on 𝑅eff

With the combined TFV model (TFVcombi), derived in the previous section, the influence of
densification approach and size ratio were studied next. As the column width 𝑤 reflects on
the particle size of the YSZ phase, the initial value of 𝑤1=5𝜇m is changed in accordance with
the size ratio: 𝑤 = 𝑤1𝑟YSZ/𝑟𝑒𝑙. As discussed, a size ratio larger 1 is beneficial for the effective
ionic conductivity of the structure. Therefore, compositions with size ratio of 𝑟YSZ/𝑟𝑒𝑙 = 8 are
compared to the monosized assemblies.

The resulting effective electrode resistance is given for the different densification approaches for
monosized assemblies in Fig. 5.20a, and for the binary sized assemblies in Fig. 5.20b. In both

Figure 5.20.: Overall electrode resistivity determined with combined adaption of the TFV-model
(a) monosized assemblies and (b) a size ratio of 8 for the different densification approches

cases, a reduction of electrode resistivity can be observed for higher densification, which is more
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pronounced for the large size ratios. For monosized assemblies, the densification had very little
influence on the effective conductivity in the here considered range of volume fractions. (Fig. 5.14).
Thus, the—only slightly—higher electrode resistance of the less densified structures is due to the
differences in active TPB (Fig. 5.17a). For the binary sized assemblies, both, effective conductivity
(Fig. 5.15) and active TPB (Fig. 5.17b), differed significantly with the degree of densification. This
explains the much higher electrode resistance for 𝜃=15∘. In contrast to the monosized assemblies,
in binary assemblies the curvature of the electrode resistance reflects more on the curvature of the
active TPB (or, to be exact 1/TPB) and less on the effective conductivity. Further, even though
the active TPB found for monosized structures was more than twice the size compared to the
binary assemblies, the effective electrode resistivities of the higher densified structures are similar
for both size ratios. Generating structures in an optimized range, concededly, allows to obtain
slightly better results for monosized structures.

5.6. Conclusion

In this chapter, the SOFC microstructure and its influence on effective transport properties
relevant for cell performance were studied based on numerically generated microstructures. First,
it was shown that the geometric characteristics of the numerically generated microstructure
deviate significantly from the assumptions made in the analytic approaches (section 5.1.2).

Further, as shown in section 5.2, the numerically determined percolation probability deviates
significantly from the analytic findings based on the assumed values: the percolation area
determined numerically was larger, especially for large size ratios. Application of numerically
determined, geometric characteristics in the analytic solution had little influence on that deviation.
The findings of this section led to reasonable doubt regarding the correlation between coordination
number 𝑍𝑘,𝑘 and the percolation threshold. Concededly, the ratio of particle size to volume
element size should be studied additionally, in the future, to rule out its impact on the percolation
threshold.

As stated in section 2.3, the two effective parameters, 𝜅eff,YSZ and active TPB, were experimentally
identified to be mainly responsible for cell performance. Based on the percolation probability of
the structures, these values were determined numerically in section 5.3 and section 5.4. We found
significant deviation between the numeric and the analytic results for those calculations as well:
the numerically determined effective conductivities were in general lower than predicted by the
analytic approaches. Conversely, the active TPB length found numerically was larger than the
one found for the analytic approach. Nevertheless, the tendencies of increase with volume fraction
(𝜅eff) and decrease with size ratio (TPB) were predicted correctly with the analytic approach.

Both effective parameters, 𝜅eff,YSZ and TPB, improve—independent of size ratio—with increasing
densification, which is a measure for the degree of sintering. But, due to the necessity of a
connected pore space, the densification is restricted. Assuming a minimal pore space of 15% as
required, the monosized assemblies offer more potential for densification, as their initial PF is lower
than the one of binary sized assemblies (see Fig. 5.1). Further, compositions with a large size ratio
and large YSZ particles, in combination with small volume fractions of the electron conducting
phase, are favorable in order to achieve high ionic conductivity of the structure. Conversely, the
largest extent of active TPB was found for monosized assemblies with a mixture of 50:50% volume
fraction; and, a large size ratio reduces the extent of active TPB significantly.
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In order to assess those contradicting trends, an adapted TFV model was implemented, which
allows to assess the combined effect of those two parameters on the effective cell resistance. With
this model, the positive influence of densification on the cell efficiency is pointed out as well.
Additionally, the negative influence of size ratio on the cell resistance seems less pronounced as
it was assumed based on the results for active TPB. Those result indicate that an appropriate
combination of volume fraction and size ratio is much more relevant than the size ratio or the
volume fraction itself. Considering an optimized mixture for each size ratio, monosized assemblies
with a volume fraction of the electron conducting phase slightly above 30% are the most promising.
Clearly, the TFV model is a very simplified approach, and thus, the revaluation of these findings
with more advanced cell level models is recommendable. Additionally, the implementation of
numerically determined effective transport properties in advanced cell level models implies the
possibility to obtain enhanced insight in the absolute effect of morphological variations. The
studies based on the analytically determined effective properties, as usually found in the literature,
might be influenced by the overestimation of the effective conductivity and the underestimation
of the active TPB.



6. Micromechanical Modeling of Electrode
Structures

As explained in section 2.3, lithium ion battery (LIB) electrodes are influenced by composition and
morphology. Additionally, mechanical loads during cell fabrication and cycling play an important
role in cell optimization and degradation: In the course of cell manufacturing, porosity and
inter-particle contacts are adjusted mechanically with a calendering process. Subsequently, while
charging and discharge the cell, the intercalation process leads to volume change of the particles,
inducing stress within the electrode. Both processes influence the electrode microstructure
mechanically; and they cause rearrangement of the particles, which is coupled with the formation
and the loss of contacts. As discussed in sections 2.3 and 3.2, the internal surface and the contact
area strongly influence the performance due to its effects on conductivity and surface reactions.
Thus, the mechanically caused changes in the microstructure are relevant for the investigation
of cell performance. To consider those changes, we chose a densification step reflecting on the
inter-particle mechanics to model the LIB electrode structures based on the assemblies generated
with the random close packing (RCP) algorithm (section 4.1.1). Due to the granular nature of
the electrodes, this can best be done with a discrete element approach, which will be introduced
next.

6.1. Discrete Element Modeling

Continuum modeling of the described mechanical processes would require sophisticated constitutive
models to capture the complexity of the granular material behavior to some extent. Discrete
element modeling (DEM), on the other hand, has the unique feature that it considers the individual
particles, their interactions and contact formation or dissolution explicitly. Thus, many of the
mechanical response features associated with the granular nature of the material can be covered
more accurately than with continuum approaches, even if only simplified contact laws are adopted.
Originally described by Cundall and Strack [137] in the field of geomechanics, the method is
nowadays used in various disciplines. I will briefly describe here the basic principles of a DEM
simulation. A more comprehensive introduction to the topic can be found in [114]. Prior to
modeling the mechanical response, the microstructures, generated as described in section 4.1.1,
loading and boundary conditions, and inter-particle force laws have to be defined. Further, in
dependence of the force law, either a quasi-static approach1 or a time-dependent2 discrete element
approach has to be choosen.

After initial set-up of the simulation, the load is applied incrementally. In each loading step Δ𝑡 a
sequence of calculations has to be performed, as shown schematically in Fig. 6.1: First, a contact
search is performed to determine all contacting particles within the assembly. The repetition

1equivalent to stationary simulation in FEM
2equivalent to dynamic simulations in FEM
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Figure 6.1.: Schematic diagram of sequences of calculations in DEM

of this step for each loading step allows to consider the changes in contact situation. Then, in
accordance with the defined contact law, the contact forces 𝑓 𝜄,ϒ between all particles 𝜄 and their
contacting particles ϒ are calculated based on the distance 𝑑𝜄,ϒ between the particles and their
material properties. The particles itself do not deform during the loading, only the contact law
𝑓 𝜄,ϒ reflects the material behavior of the particles’ bulk material, e.g. whether it is considered as
elastic, viscous or elastic-plastic. Subsequently, based on the inter-particle forces 𝑓 and moments
Γ⃗, the acceleration 𝑎⃗ and angular acceleration ˙⃗𝜔 of each particle 𝜄 with mass 𝑚 and moment of
inertia 𝐽 can be calculated with Newtons law of motion∑︁

ϒ
𝑓 𝜄,ϒ = 𝑚𝜄𝑎𝜄,

∑︁
ϒ

Γ⃗𝜄,ϒ = 𝐽 𝜄 ˙⃗𝜔𝑖𝑜𝑡𝑎. (6.1)

Motion integration leads to translational velocities ˙⃗𝑥 and rotational velocities 𝜔⃗ and displacements,
and thus, to updated particle positions 𝑥⃗𝜄 depending on the time-step size.

For the quasi-static approach, the kinetic energy is minimized for each loading step by repeated
rearranging of the particles before the loading continues, as indicated in Fig. 6.1. For the time-
dependent approach, such a loop is not practical, as the loading history is considered to determine
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damping, which is necessary for modeling of time-dependent forces, e.g. visco-elasticity. For each
time step, the average stress 𝜎𝑖𝑗 developed in the microstructure can be calculated by summing
up the forces of all existing contact pairs

𝜎𝑖𝑗 = 1
𝐿𝑥𝐿𝑦𝐿𝑧

(
∑︁
𝜄<ϒ

𝑑𝜄,ϒ𝑓 𝜄,ϒ
𝑁 𝑛𝑖𝑛𝑗 +

∑︁
𝜄<ϒ

𝛿𝜄,ϒ𝑓 𝜄,ϒ
𝑇 𝑛𝑖𝑡𝑗). (6.2)

Here, 𝑓 𝜄,ϒ
𝑁 and 𝑓 𝜄,ϒ

𝑇 are the magnitude of normal and tangential forces applied from particle ϒ on
particle 𝜄, as shown in Fig. 6.2, 𝑑𝜄,ϒ denotes the distance between the centers of the particles and
the unit vectors 𝑛𝑖 and 𝑡𝑗 are the normal and tangential unit vectors of the contact, respectively.

𝑃𝜄

𝑟𝜄

𝑃ϒ

𝑓𝑇

𝑓𝑁

Figure 6.2.: Contacting particle

Even with simplified contact laws the mechanical response features, associated with the granular
nature of the material, can be captured more accurate with DEM than with continuum models.
Hence, the particle contacts are often represented with basic rheological models, which contain
various combinations of spring and dashpot elements to represent the material behavior; and they
relate a contact displacement to a contact force 𝑓 in DEM. Unless stated otherwise, we used a
classic Hertz-Mindlin contact law for spherical particles [138, 139], assuming nonlinear elastic
material behavior. The normal contact force 𝑓𝑁 between two arbitrary sized particles 𝜄 and ϒ
can be calculated as

𝑓𝑁 = 4
3𝐸

*𝛿
√
𝑟*𝛿𝑛⃗𝜄,ϒ (6.3)

with 𝑛⃗ as contact normal, 𝛿 as overlap (𝛿 = 𝑑𝜄,ϒ − (𝑟𝜄 + 𝑟ϒ)), 𝐸* defined by

1
𝐸* = 1 − 𝜈2

𝜄

𝐸𝜄
+ 1 − 𝜈2

ϒ
𝐸ϒ

(6.4)

where 𝐸𝑖 is the Young’s Modulus and 𝜈𝑖 the Poisson’s ratio of the 𝑖 particle, and 𝑟*:

1
𝑟* = 1

𝑟𝜄
+ 1
𝑟ϒ
. (6.5)

The tangential force 𝑓𝑇 = 𝜇𝑓𝑁 , with 𝜇 as friction coefficient, has to be smoothed to avoid a
singularity for sliding velocities of zero. This leads to a tangential contact force of

𝑓𝑇 = − Δ𝑣⃗𝑇

| Δ𝑣⃗𝑇 |
𝑚𝑖𝑛(𝜇𝑓𝑁 , 𝑘𝑠𝑟𝑐 | Δ𝑥𝑇 |) (6.6)

with 𝑣⃗𝑇 as sliding velocity, 𝑘𝑠 as shear stiffness and 𝑟𝑐 as contact radius.

For the simulations in this work, the DEM code developed by Gan [116, 138] was used. As we
are only modeling a segment of the electrode’s inner microstructure, we always applied periodic
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boundary conditions. Periodic boundary conditions are obtained by copying the assembly and
arranging these copies in all directions around the volume element. Further, a particle that leaves
the original box volume due to its displacement enters the box on the opposite side again in form
of its copied version [116].

6.2. Calendering of LIB electrodes

Similar to solid oxide fuel cell (SOFC), the microstructure and composition of LIB electrodes is
important for cell performance. Hutzenlaub et al. [124], for example, demonstrated the influence
of the different phases on the electric potential, based on three-dimensional cell reconstructions
coupled with numerical investigations. In contrast to that, the often applied effective media
approach considers neither the different phases nor their distribution. Especially the widely used
effective conductivity values, which had been derived based on complete electrodes as described
in [72], are unfit to investigate effects of composition.

Only few Monte-Carlo simulations exist, which study the influence of composition and compaction
on the effective transport parameters: Sastry et al. [75, 57, 103, 113] used an event-driven hard
sphere approach3, as described in section 4.1 and [113], to generate initial microstructures. The
electrode structure contains active material (AM) coated with a conducting layer, composed of
carbon black (CB) and binder, and graphite as additional conduction aid. Investigating different
compositions and surface coatings, they found the ratio of CB to binder within the coating to be
the most important influence parameter on the overall electron transport properties of the cell [75].
Studying different porosities [57], under consideration of the effect on electron conductivity in
the solid phase as well as the effect on ion conductivity in the liquid electrolyte, demonstrates
that a trade-off is required for a maximum of specific energy. They found a composition of 36.2%
AM with 10% surface coating as optimal. This indicates, however, a packing factor below 50%,
which is too low to be mechanically stable. Further, Gupta et al. [103] compared the values of
ionic conductivity in the solid and the liquid phase, found with Monte-Carlo simulations, to the
widely used Bruggeman’s equation (section 3.1.1, Eq. 3.11). They showed that the Bruggeman’s
equation overestimates the conductivity in the solid phase, and it underestimates it in the liquid
phase. Thus, using this equation in macroscale simulations might lead to inaccurate results.

A similar packing approach is implemented by Awarke et al. [140] to study different size ratio’s of
AM to CB in assemblies with either bare or coated active material particles in combination with
CB particles. For the bare particles, the size ratio is found to be important as it influences the
percolation threshold: In monosized assemblies, percolation is only achieved for a solid volume
fraction of CB of 15%, while for larger size ratios percolation can already be found for 10% of
CB. A uniform coating of the particles, on the other hand, enables sufficient electron transport
already for 1% solid volume fraction of CB for all particles sizes. In real electrode structures,
however, such a distribution is improbable, unless the electrode production process is adapted. A
further drawback is, as stated by Hutzenlaub et al. [124], that a uniform coating might hinder the
Li+-ion transfer from the liquid electrolyte to the active material; thus, it drastically reduces cell
performance.

3A hard-sphere approach does not allow overlap of the particle, hard refers to the neglect of deformation during
the impact of particles. The contact itself is not necessarily of interest, the collision may be assumed to be
instantaneous, and just the change in velocity is considered [114].
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In summary, those studies demonstrated the importance of considering the effect of microstructure,
particle size ratio, packing factor, and composition on the overall transport properties relevant
for cell performance. None of those, however, investigates the effect of calendering on the
microstructure and the related changes in electrode parameters relevant for cell performance.

Due to the material components studied in here, the size ratio of electron to ion conducting
particles is considered as a fixed parameter in the following: For high rate applications, a particle
size of several 100 nm is recommended for AM [140], and CB is usually fabricated in a size of about
40 nm. Therefore, we chose a radius ratio of 10 for AM to CB, bearing in mind, that for other
applications and material compositions the active material particles may be in a different size
range. Knowledge on the influence of size ratio on the properties can be gained from section 5.3
for SOFC materials.

Additionally, the calendering process during cell fabrication affects the cell microstructure—
therefore, it should be considered in those investigations. The calendering step—the thin cells
with a thickness between 50 and 300 𝜇m passes through pairs of rolls in the assembled state— is
performed to obtain homogeneous thickness and to improve particle-to-particle contact [11, 21]. In
experimental investigations of calendering, the cells are usually compressed uni-axially [22]. It is
assumed that with decreasing porosity the contact resistance decreases, due to increasing contact
area; at the same time the charge transfer resistance increases, most probably resulting from a
decreasing free surface [46, 56, 23], as discussed in section 2.3. There is, however, no consensus
about the effect of calendering on effective conductivity and the trade-off point [22, 55].

6.2.1. Micromechanics of calendering

To study the effect of calendering on the microstructure and the effective transport properties in
this work, the assemblies, generated with RCP, are compressed uni-axially in DEM simulations.
To do so, a strain 𝜀𝑥𝑥, 2.5% in total,is applied gradually by moving each particle at the beginning
of each loading step by

Δ𝑥𝑥 = Δ𝜀𝑥𝑥𝑥𝑥, (6.7)

with 𝑥𝑥 as the x-component of the position of the particle center [138]. The box size is adapted
according to the applied strain, and the periodic boundaries are regenerated. In the directions
perpendicular to the loading direction the periodic boundaries are kept fixed for uni-axial loading.

In the following sections, the influence of mechanical properties, initial packing factor, and
composition of the assemblies on the mechanical response during calendering and its effect on
transport properties will be studied.

Material properties

First, we will examine the influence of mechanical properties of the bulk material on the microme-
chanical response for assemblies of pure active material, as well as for compositions containing
AM and CB. Reviewing literature, a large amount of different mechanical bulk properties of AM
is found. Especially for Li𝑥Mn2O4 (LMO), the values found for the Young’s modulus 𝐸 range
from 10 GPa [141] to 200 GPa [142]. The lower values of 10 GPa [141] and of 25 GPa have been
found for blocks of polycrystalline, sintered structures in the size range of mm with porosities
around 40%. Even though these values are widely used in simulations of mechanical stress in
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single-particle models (e.g. [103, 143, 75, 144]), it was discussed in [145] that the values deviate
largely from values found for materials of the same kind (spinels), presumably due to microcracks
in the large, sintered samples. Values around 100 GPa were determined by nanoindentation for
particles embedded in real electrode structures [146, 147, 148], whereas a Young’s Modulus of up
to 200 GPa [142] was measured for large, electrodeposited structures. As the values in [148] were
identified in conditions relevant for LIB, these values are assumed to be the most realistic me-
chanical properties of LMO. To better illustrate the influence of Young’s Modulus on macroscopic
stress and effective transport parameters, we started by using additional values as well, which are
summarized in Table 6.1.

Young’s modulus 𝐸 [GPa] Poisson’s ratio 𝜈

LMOlow 10 [141] 0.3 [141]
LMO 93 [148] 0.3 [145]
LFP 125 [149] 0.22 [149]
Graphite 32.5 [150] 0.315 [150]
CB 6 [146] 0.3

Table 6.1.: Material properties used in the DEM simulation of LIB electrodes

In the first instance, we conducted simulations with structures containing active material only.
The active material of the electrode is represented by same sized particles, thus, we generated
three different assemblies with 5,000 monosized particles each. To choose a suitable packing factor
for those monosized assemblies, we have to calculate the volume occupied by active material in
composite electrodes, as information on the packing factor is only available for complete electrodes:
based on experimental investigations on the effect of the electrode porosity, a value of about
70% was recommended as packing factor for electrode structures [22]. Due to restrictions of the
RCP algorithm, this PF was not exactly matched by the numerically generated assemblies of
the electrode composite. In those, which represent the composite as a binary mixture of spheres,
the medium packing factor is of about 69.4% for assemblies containing a solid volume fraction of
12.5% CB (see Table 6.2). Applying the relationship introduced by Kyrylyuk et al. [133] for the
packing factor (PF) of binary sized packings

𝑃𝐹 = 𝜑𝐴𝑀 + 𝜑𝐶𝐵 (6.8)

allows to calculate the remaining PF after removing the volume fraction 𝜑𝐶𝐵 of CB from the
existing assemblies. A solid volume fraction of 12.5% CB corresponds to a total volume fraction
of 8.7% CB which leads to a packing factor of approximately 60.73% for the monosized assemblies.
This led to packing factors in the range of 60.73% to 60.81% for the three assemblies, with the
deviation caused by the random nature of the granular structures.

The macroscopic stress induced by the calendering process was calculated for different material
properties, as given in Table 6.1. The stress components in the main directions x, y, and z
are shown in Fig. 6.3 for the smallest and the highest considered Young’s Modulus (LMOlow
and Li𝑥FePO4 (LFP) respectively). Obviously, the stress is strongly dependent on the material
properties: the assemblies composed of LFP show a ten times larger stress at the end of the
calendering process than the once with LMO. Further, the uni-axial compression in x-direction
leads to anisotropic material response: as expected, the stresses in loading direction are much
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higher than the stresses perpendicular to it. We assume that the mechanically induced anisotropy
will affect the anisotropy of the transport properties.

(a) (b)

Figure 6.3.: Macroscopic stress components of monosized assemblies during uni-axial compression
for (a) Young’s Modulus =10GPa and (b) Young’s Modulus =125GPa

Next, to determine the effect of CB on the mechanical response, the calendering process is
simulated with binary assemblies (PF: 69,4%, CB: 12.5% vol. frac). As discussed in section 5.1.1,
adding CB to the mechanically stable monosized assemblies of active material leads to an increasing
PF, as the much smaller CB particles are filled into the interstices of the AM network [92]. The
influence of size ratio on initial packing factor was shown in section 5.1.1. The CB phase is
assigned with a Young’s Modulus of 6 GPa (see Table 6.1). Also for the binary assemblies, three
different assemblies, each containing 10,000 particles, were generated per composition.

To compare binary and monosized assemblies, the mean hydrostatic macroscopic stresses 𝜎ℎ are
shown in Fig. 6.4 for different material properties. The binary mixture induces a significant
increase of the average macroscopic stress 𝜎ℎ for all materials (Fig. 6.4b). For the LFP material,
the relative difference (𝜎binary − 𝜎mono)/𝜎binary is 28.54% for a strain of 2.5%; for a Young’s
Modulus of 10 GPa, the difference is 36.26%. The error bars indicate the range of the results

(a) (b)

Figure 6.4.: Hydrostratic macroscopic stress for different active material properties in (a) mono-
sized, one-component materials and (b) binary composites with 12.5% solid volume fraction CB
during uni-axial compression
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found for the three different structures, which can vary due to the random distribution of particles.
The variation is small for the monosized (Fig. 6.4a) and increases for binary mixtures (Fig. 6.4b).
The larger error bars found for binary mixtures demonstrate the importance to study several
microstructures per composition.

As derived by Zhao [139](p.74), the hydrostatic stress 𝜎ℎ of structures with two different material
properties 𝐸1 and 𝐸2 is related via

𝜎ℎ(𝐸1) = 𝐸1
𝐸2
𝜎ℎ(𝐸2), (6.9)

with 𝜎ℎ(𝐸1) as the hydrostatic stress found for material 1. This could be validated for the
monosized assemblies; however, it does not hold true exactly for the binary composite. The
discrepancy of the normalized stresses, obtained for binary assemblies with different material
parameters, can be seen in Fig. 6.5. Most likely this deviation is due the different material
parameters used for CB and AM. Nevertheless, the difference between the normalized stresses
is small in comparison to the deviation between the three different assemblies, induced by the
random distribution of the particles. Thus, also for binary mixtures, the stress in assemblies with
different material parameters can be estimated relatively accurate with Eq. 6.9. Therefore, we
will focus on one set of material parameters in the following.

Figure 6.5.: Average macroscopic stress of binary composite electrodes normalized to a Young’s
Modulus of 125GPa in accordance with relation 6.9

In addition to the hydrostatic stress, the anisotropy, induced by the calendering process, might
influence the effective transport parameters of the electrodes. To assess it, a degree of anisotropy
can be determined as 𝜎𝑖𝑖/𝜎ℎ. For both, monosized and binary assemblies, the influence of material
properties on the anisotropy is negligible (Fig. 6.6). In comparison with monosized assemblies,
binary compositions (Fig. 6.6b) lead to an increased degree of anisotropy.
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Figure 6.6.: Degree of anisotropy during uni-axial compression of (a) monosized, one-component
materials and (b) binary composites with 12.5% solid volume fraction CB

Packing Factor

Further, the influence of packing factor on the mechanical response of the system is investigated.
Therefore, further assemblies with lower and higher packing factor are generated with the same
composition (CB: 12.5%). Again, three assemblies per group will be studied. Due to the random
structure, the PF of two packings are never exactly the same. Hence, the assemblies are classified
in groups of low, medium and high PF; the deviation of the PF can be seen in Table 6.2.

No low PFini [%] medium PFini [%] high PFini [%]
1 67.32 69.36 71.01
2 67.31 69.49 70.87
3 67.23 69.41 70.88

Table 6.2.: Initial packing factor of the different assemblies divided into three groups.

The average hydrostatic stress of the different PFs is shown in Fig. 6.7a. As expected, a higher
packing factor leads on average to a higher stress. The difference between the maximum and
minimum values of the assemblies of a group of PFs—indicated by the errorbars—is, however,
larger than the difference between mean values of the different groups. Thus, even though a
general trend is shown in Fig. 6.7a, an assembly with high packing factor can still be found with
less stress than an assembly with medium packing factor.

Composition

Finally, we analyze the influence of different solid volume fractions of CB on the overall macroscopic
stress. For better comparability, assemblies with similar—medium—packing factors are generated,
three for each composition. This leads—in accordance with Eq. 6.8—to different amounts of
active material within the assembly. The hydrostatic stress decreases with increasing solid volume
fraction of CB, as shown in Fig. 6.7b for LFP as active material.
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(a) (b)

Figure 6.7.: Hydrostratic macroscopic stress for (a) different initial packing factor and (b) different
solid volume fractions of carbon black (CB) during uni-axial compression

The decrease, however, is nonlinear: While the difference between assemblies with 12.5% and 15%
is negligible, the difference between assemblies with 10% CB and 12.5% is more significant. Again,
the deviation between the assemblies of one composition is large in comparison to the deviation
between the mean values.

In summary, the addition of CB to monosized assemblies of pure active material leads to a
significant increase in stress and anisotropy. Additionally, the binary assemblies show larger
deviation between the three assemblies of a composition, most likely due to the random structure
of the assemblies. The influence of further variations of packing factor and composition on the
macroscopic stress is negligible in comparison to that.

6.2.2. Influence of calendering on connectivity

As discussed in 2.3, the percolation of the CB phase and connection of AM particles to a percolated
CB network affect the cell performance significantly. Both are expected to be changed by the
mechanical calendering process and by the rearrangement of particles in the microstructure result-
ing from the applied load. The percolation of microstructures at different stages of compression
was determined with the methods described in section 4.3. The percolation probabilities 𝑃 was
calculated from the number of percolating CB particles to the total number of CB particles. Sub-
sequently, based on the connectivity of the CB network, the amount of AM particles connected to
a percolating CB network can be determined. This is of importance as only sufficiently connected
AM particles take part in the overall cell reaction. If a AM particle is isolated from the electron
transport, no energy releasing reactions can take place. Thus, the particle is ”dead weight”. Ion
transport, on the other hand, mainly takes places in the liquid electrolyte within the pore space.
Even though the pore space will change during calendering, it can be assumed that concentration
losses are not significantly influenced when the porosity is kept larger than 20% (section 2.3).
Therefore, in this chapter, we focus on the electron transport only.

As shown in the previous section 6.2.1, the influence of the Young’s Modulus on the overall
mechanics is assessable from relation 6.9 for the considered mixtures. Thus, the more interesting
question is: how do the different mechanical properties of AM affect the microstructure, percolation,
and effective conductivity of the CB phase? To evaluate this, the percolation probabilities 𝑃 of
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the lowest and highest of Young’s Modulus are compared in Fig 6.8a: the percolation probability
during the calendering process is not significantly influenced by the elastic properties of the active
material. The percolation threshold, defined as 50% percolating CB particles, takes place for
1.0% of compression for both compositions. This strain corresponds to hydrostatic stresses 𝜎ℎ of
-0.43MPa and -5.3MPa for the lowest and highest value of Young’s Modulus, respectively. This
indicates that the percolation probability is independent of the average mechanical stress within
the assembly.

Additionally, for percolating CB clusters, the amount of AM particles connected to percolating
CB networks was determined. As can be seen in Fig. 6.8b, the amount of connected AM particles
increases drastically for a compression of 1.0%. Comparing the change of percolation probability
and the amount of connected AM during calendering, it demonstrates the correlation of those
parameters very clearly. This emphasizes the importance of percolation within CB for LIB
electrodes—especially for badly electron conducting active material—for proper cell performance.

Figure 6.8.: (a) percolation probability of CB phase and (b) the fraction of AM particle connected
to a percolating CB network for the lowest and highest value of Young’s Modulus during calendering

Next, the influence of different initial packing factors is studied for compositions with a solid
volume fraction of 12.5%. The different packing factors are given in Table 6.2. The variation in
PF leads for both low and high PF to a broad range with large differences between the individual
assemblies as can be seen in Fig. 6.9a. Thus, no clear percolation threshold can be determined in
those cases. This behavior is reflected in the amount of AM connected to the percolating CB

Figure 6.9.: (a) percolation probability of CB phase and (b) the fraction of AM particle connected
to a percolating CB network for different packing factors
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network, shown in Fig. 6.9b: a large difference between the individual assemblies over a broad
range is found for that as well.

Finally, the effect of different volume fractions of CB on the connectivity is examined. As described
previously, the PF is kept constant—this leads to an amount of active material varying relative to
the amount of CB. As can be seen in Fig. 6.10, the percolation threshold clearly depends on the
composition: For 15% solid volume fraction of CB, the percolation threshold already takes place
for 0.5% compression. In contrast, for 10%, a large deviation between the different assemblies is
found, and only for 2.5% of strain the percolation probability of 50% is surpassed on average. In
contrast to the sudden increase of percolation probability—found for 12.5% and 15%—a broad
range with undefined behavior can be seen for 10% CB. The same correlation as seen in Fig. 6.8b
and Fig. 6.9b for the connectivity of active material to a percolating CB network can be found for
10% and 15% of CB in Fig. 6.10b.

Figure 6.10.: (a) Percolation probability of CB phase and (b) the fraction of AM particle connected
to a percolating CB network for different solid volume fractions of CB

Critical coordination number 𝑍𝑐

As suggested in the analytic approach of the percolation theory described in section 3.1.2, the
percolation threshold is correlated the coordination number 𝑍CB,CB, which describes the number
of contacts a CB particle has with other CB particles. Additionally, the overall coordination
number 𝑍0, which is relevant for the analytic derivation of 𝑍CB,CB, was assumed to be 6 It was
shown in section 5.2.2 for SOFC that the theoretic assumptions do not hold true for sintered
structures. To examine the relation of percolation threshold and coordination number during
mechanical loading, first the coordination numbers 𝑍0 and 𝑍CB,CB are considered. In contrast to
the sintering approach, with constant coordination numbers for each assembly, here they change
with the load: Starting from the undensified structure, 𝑍0 and 𝑍CB,CB increase steadily with the
applied strain up to 2.5 and 2, respectively, as shown exemplarily in Fig. 6.11 for the different
compositions. The overall coordination number 𝑍0 is too low to be considered as a mechanically
stable.Thus, we assume that the active material is load carrying throughout the process. This is
supported by the coordination number 𝑍AM,AM

4, which increases, e.g. for 12.5% CB from 4.8
to 5.5, during the calendering process (Fig. 6.12). The overall coordination number, however,
is strongly influenced by the low values of 𝑍CB,CB, as the amount of CB particles is dominant5.

4In analogy to 𝑍CB,CB, 𝑍AM,AM is the number of contacts an AM particle has with further AM particles.
5e.g. an assembly of 12.5% CB contains only 70 AM particles and 9930 CB particles
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Figure 6.11.: (a) overall coordination number 𝑍0 and (b) coordination number 𝑍CB,CB versus
compression for different solid volume fractions of CB

Figure 6.12.: Coordination number 𝑍AM,AM for different composition

The low number 𝑍CB,CB is mostly caused by a large amount of so-called rattlers, i.e. particles
with only 1 or 2 contacts. The analysis of further microstructures showed that the coordination
numbers are independent of the elastic properties, whereas an increase with increasing PF could
be seen.

Looking at the correlation between coordination number and percolation probability for different
initial packing factors (Fig. 6.13a) and different solid volume fractions of CB (Fig. 6.13b) does

Figure 6.13.: Percolation probability 𝑃CB versus coordination number 𝑍CB,CB for (a) different
packing factors and (b) different solid volume fractions of CB
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not allow to correlate a single critical coordination number to the percolation threshold. This
indicates that the percolation theory as described in section 3.1.2 is inapplicable for structures
under mechanical loading.

Free surface area

In analogy to the active three-phase boundary (TPB) area of the SOFC electrodes, the energy
releasing reactions take place at the surface between active material and electrolyte, as discussed
in section 3.2. Thus, it is beneficial for cell performance to maintain a large free surface area
during cell production: a larger surface area allows to maintain a small local overpotential at
higher charging and discharging rates. A small local overpotential, in turn, is beneficial in terms
of activation polarization (section ??). In analogy to the active TPB in SOFC, only the section
of the surface area, where all reactive species come into contact, takes part in the cell reaction.
Thus, only when the active material is electronically connected to the current collector, it is part
of the active free surface area (FSA) of the cell. Therefore, we assume that the FSA is directly
correlated to the amount of connected AM phase. Further, it was assumed (section 2.3) that an
increase in cell resistance—observed with electrochemical impedance spectroscopy (EIS) during
calendering—is caused by a decrease of free surface area, as sketched in Fig. 2.4.

To investigate this, the free surface area was calculated as the surface area of the active material,
considering only the particles connected to a percolated CB cluster, minus the contact area
within the solid phase. Packing factor and composition affect the FSA significantly, whereas
the influence of mechanical properties is negligible. As shown in Fig. 6.14, the active surface
area increases drastically at the percolation threshold—this is correlated to the amount of active
material connected to the percolating CB network. The increase in FSA, as seen e.g. for low PF
in Fig. 6.14a, with further compression is due to a higher amount of connected AM particles. Its
decrease, found e.g. for the high PF at around 1.7% of compression, however, is not correlated to
a reduced amount of connected AM. Thus, it might indicate a significant increase of contact area
within the solid phase. Decreasing FSA with increasing compression can also be seen for assemblies
of medium PF with 12.5% and 15% solid volume fraction of CB in Fig. 6.14b. In accordance with
the decrease for the high PF, the amount of connected AM remains unchanged. This corroborates
the hypothesis of an increasing solid contact area, as predicted in the experimental studies [56, 46,
23].

Figure 6.14.: Change in free surface area per volume during calendering for assemblies with (a)
different packing factors and (b) different solid volume fractions
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Of particular interest in the investigation of FSA is the—unexpected—significant larger amount of
active free surface area found for 15% of CB. As the solid volume fraction of AM material is low
in comparison to the other mixtures, a possible reason for the large FSA is a small inter-particle
contact area. To estimate the solid-solid contact area, the coordination numbers as well as the
mean contact radii of the different compositions have to be considered. The mean contact radii
are given in Table 6.3 for the maximum strain of 2.5%. Obviously, the contact radii of AM-AM
contacts 𝑟𝑐(AM,AM) dominate the overall solid-solid contact area, as they are one order of
magnitude larger than 𝑟𝑐(AM,CB) and two orders of magnitude larger than 𝑟𝑐(CB,CB). The
radii 𝑟𝑐(AM,AM) themselves show no significant deviation for the different assemblies. Thus, the
difference in FSA is most likely due different coordination numbers 𝑍AM,AM, which are shown in
Fig. 6.12 for the varying volume fractions of CB. As the larger amount of CB reduces the number
of AM-AM contacts, it also reduces the solid-solid contact area. This, in turn, can be correlated
to a bigger free surface area, and finally, to lower activation polarization.

𝑟𝑐(AM,AM) 𝑟𝑐(CB,CB) 𝑟𝑐(AM,CB)
LFP (125 GPa) 0.0109 0.00052 0.0013
LMO (10 GPa) 0.0110 0.00034 0.0010
PF low 0.0108 0.00045 0.0011
PF high 0.0108 0.00050 0.0012
10% CB 0.0101 0.00044 0.0011
15% CB 0.0117 0.00060 0.0014

Table 6.3.: Mean contact radius of AM-AM, CB-CB and AM-CB contacts normalized to a box
length of 1

6.2.3. Influence of calendering on effective conductivity

Besides the percolation of the CB phase and its connectivity to the active material, the effective
electron conductivity within the CB network is relevant for the overall cell performance. Based on
the information on connectivity, it was determined via the node-potential method, as described in
section 4.3.3.

Inter-particle resistance

The contact resistance between two particles is so far only derived for geometrically overlapping
particles (section 4.3.3). To perform similar calculations of the conductivity with two elastically
deformed particles in contact, a different geometry is required. The deviation of the particles
from the completely spherical shape is described with Hertz theory [151]. The Hertzian contact
radius 𝑟𝑐 can be determined in dependence of the overlap 𝛿

𝑟𝑐 =
√
𝑟*𝛿. (6.10)

with the reduced radius 𝑟*, as given in Eq. 6.5. Computing the displacement of Hertz contact
showed that the deformation only takes place in the direct contact zone without any pile up [151].
Therefore, we approximate the deformed spheres in numerical calculations of the conductivity as
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ellipsoids— with the axis vertical to the contact normal equal to the undistorted particle radii 𝑟𝜄

and 𝑟ϒ, respectively (Fig. 6.15). The second radius of the ellipsoid, 𝑟Hertz, is calculated based on
the contact radius 𝑟𝑐 and the distance between the particle centers of the two ellipsoids. For this
geometry, the ohmic resistance 𝑅𝜄ϒ between the deformed spheres 𝜄 and ϒ can be determined as
described section 4.3.3 via

𝑅𝜄ϒ = 𝑇𝜄 − 𝑇ϒ
𝐼

(6.11)

with 𝑇𝜄 and 𝑇ϒ as temperatures at the extremities of the volume and 𝐼 as the resulting flux.
The calculations for the ellipsoids were also performed with Ansys CFX for a variety of overlaps.
Fitting the data leads to the following relationship for the contact resistance 𝑅𝜄ϒ:

𝑅𝜄ϒ
𝑅cyl

= 0.821𝑟
*

𝑟𝑐
(6.12)

with
𝑅cyl = 1

𝑘𝑏𝑢𝑙𝑘

𝑑

𝜋𝑟*2 . (6.13)

cylinder

𝑃𝜄 𝑃ϒ

𝑟𝜄 𝑟ϒ

𝑟𝑐

𝑙Hertz

𝑟Hertz

Figure 6.15.: Exaggerated drawing of the deformed spheres in contact, with the blue shape as
reference cylinder

Evolution during calendering

With the relationship developed in Eq. 6.12, the conductivity of the electrode structures during
calendering can be calculated based on the previous determined information of connectivity with
the node-potential approach (section 4.3.3). As the uni-axial compression leads to anisotropy in
stress tensor, microstructure, and densification of the structure, the directional information of
conductivity is of importance. To study this, the conductivities of the three main directions are
shown in Figs. 6.16, 6.17, and 6.18.

First, the influence of material properties on the effective conductivity is examined, considering the
lowest and highest Young’s Modulus given in Table 6.1. As can be seen in Fig. 6.16, the effective
conductivity of both compositions increase steadily with increasing strain—–for values larger than
the strain at the percolation threshold. Comparing the effective conductivity of assemblies with
the low Young’s Modulus in Fig. 6.16a and the high Young’s Modulus in Fig. 6.16b shows that a
higher Young’s modulus of the active material leads to higher effective conductivity within the
CB phase, even though the material properties of CB are the same for all calculations. As the
percolation probability was shown to be independent of the elastic properties, a higher conductivity
due to an increasing number of conducting paths within the assembly can be ruled out. Thus, this
indicates an influence of the overall macroscopic stress. Presumably, the higher stress (Fig. 6.4)
leads to larger contact forces between CB particles, which are correlated to increased inter-particle
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Figure 6.16.: Directional effective conductivity for Young’s Modulus of (a) 10GPa and (b) 125GPa
with medium PF and a solid volume fraction of 12.5% CB

Figure 6.17.: Directional effective conductivity for (a) low initial PF and (b) high initial PF for
comparison to medium PF see Fig. 6.16(b)

Figure 6.18.: Directional effective conductivity for (a) 10% CB and (b) 15% CB for comparison
to 12.5% CB see Fig. 6.16(b)
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contacts. The mean contact radius between two CB particles 𝑟𝑐(CB,CB) is, e.g. for the maximum
load, slightly smaller for the lower Young’s Modulus, whereas the contact radius between two AM
particles 𝑟𝑐(AM,AM) is almost the same (Table 6.3). As the resistivity between two particles is
inversely proportional to the contact radius (see Eq. 6.12), an increasing inter-particle contact area
is correlated to an increasing effective conductivity. This most likely also explains the anisoptropy
in the effective conductivity: The calendering leads to higher stress in loading direction (Fig. 6.3)
as well as higher effective conductivity in this direction, as can be seen in Fig. 6.16; the two
effective conductivities in the directions perpendicular to the loading direction are both smaller
and similar. The conductivity-strain relationships, however, show significantly different behavior
for the two compositions. In contrast to the stress-strain relationship, which can be scaled by the
elastic properties, a normalization seems impossible.

Comparison of the influence of different packing factors in Fig. 6.17—calculated for LFP—shows
that the high PF (Fig. 6.17b) leads to higher conductivities than the low PF (Fig. 6.17a). This
might correlate to the increasing macroscopic stress with increasing PF, as was shown in Fig. 6.7a,
or to a larger total amount of CB for a constant solid volume fraction. The mean contact radius
between two CB particles 𝑟𝑐(CB,CB) of the high PF is similar to the medium PF and smaller
for the low PF—as shown in Table 6.3. Further, the low PF shows no preferential direction for
the effective conductivity during calendering, whereas a clear anisotropy can be found for the
high PF. Considering the previously described concept of the filled interstitial spaces leads to
the following interpretation: The lower packing factor is further away from the jammed state;
thus, more rearrangement in the microstructure is possible. As the CB particles are not part of
the force carrying mechanical stable network, they are more likely to rearrange. Calculation of
the mean displacement of the small particles, however, showed that the displacement is similar
for the assemblies with low and high PF. The large particles of assemblies with low PF, on the
other hand, show larger displacement. Further comparison to the medium PF showed similar
displacement in all cases; hence, this is insufficient to explain the directional variation.

Furthermore, the results of the different mixtures are in contrast to the previous findings for
correlation of stress and effective conductivity: Even though the highest stress is found for
compositions with 10% of CB (Fig. 6.7b), the according effective conductivity is the lowest and
vice versa for 15%, as can be seen in Fig. 6.18. This can be explained as follows: The higher
amount of the soft CB in the compositions of 15% solid volume fraction CB softens the mechanical
response during loading; additionally, it increases the amount of conducting paths within the
assembly, resulting in improved effective conductivity. Similar to the results for low PF, no
clear preferential direction is found for the effective conductivity of the different compositions
(Fig. 6.18). The mean displacement of the different compositions, however, is as inconclusive as
the displacement of the low PF: all structures have very similar displacement in loading direction.
In the directions perpendicular to the loading direction only for composition of 15% CB the
displacement is significant larger in comparison to the reference case of 12.5% CB: The difference
Δ𝑥 − Δ𝑥ref/Δ𝑥ref is around 40%, while the other compositions show deviations of around 5%.
This might be reason for the larger deviation in the directional components of the effective
conductivity.

Subsuming, it appears that a higher Young’s Modulus of the active material, higher PF, and
also a higher amount of CB is beneficial for the effective conductivity of structure. Concededly,
the mean effective conductivities, relative to the material’s bulk value, are all in the range of
0.001 to 0.008 for a strain of 2.5%, i.e. they all have the same order of magnitude. Considering
the total volume fractions of the compositions, the Bruggeman approach would lead to relative
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effective conductivities in a range from 0.018 (for 10% CB) to 0.033 (for 15% CB). Those
approximations strongly overestimate the effective conductivities found with the RN-approach.
Furthermore, the conflicting results of this section demonstrated the difficulties in finding a direct
correlation to predict the effective conductivity during mechanical loading. Apparently, only the
explicit consideration of rearrangement in the microstructure allows to predict the conductivities
properly.

6.2.4. Summary

In this section was shown that DEM is a appropriate tool to predict the microstructural rear-
rangement due to mechanical loading. It allows to reproduce the anisotropy induced by the
calendering process— simulated as uni-axial compression. The macroscopic stress in binary
microstructures—representing compositions of AM and CB—varies significantly for the three
different assemblies generated per composition. Its dependence on material properties was shown
to be described quite accurately by Eq. 6.9 for the mixtures. The variation in stress found for the
different groups of PF and the different compositions is small in comparison to the variation due
to the random nature of the assemblies—at least in the here considered range.

The percolation probability and other relevant transport properties in this section were given as
function of strain, not as function of the solid volume fraction—as it was done in the previous section.
It was shown that the percolation threshold is independent of the elastic material properties;
yet it is reduced to lower strain values for increasing amount of CB as well as for increasing
packing factor. Studying the coordination numbers during loading showed that the concept of
coordination number is inapplicable for the here considered systems: no critical coordination
𝑍𝑐 could be identified. Further, a direct correlation between the percolation probability of CB
and the amount of connected active material was found. This demonstrates how important
a connected CB network is for proper cell function. Not only the amount of connected AM,
but also the free surface area—relevant for the reaction rates—was shown to be dependent on
the percolation threshold. A decrease of the free surface area with compression, suggested in
experimental studies [23], was only found in some cases. It should be noted that the highest
values of connectivity and of active free surface area were found for the highest amount of CB.
Hence, a lower amount of AM seems to be beneficial for cell performance in terms of connectivity
as well as in terms of possible charge rates.

In contrast to the percolation probability, the effective conductivity seems to depend on the overall
state of stress—reflecting on the contact forces. The mechanically induced anisotropy, however,
is not consistently transferred to the effective conductivity. Increased rearrangement of the CB
particles might influence the deviations in anisotropy; however, the displacement could not explain
all preferential directions found for the effective conductivity. Additionally, it was shown that the
Bruggeman equation overestimates the effective conductivity. Thus, further insight in the effective
transport properties can best be obtained with a coupled approach of DEM and RN-models, as
implemented here.
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6.3. Cell operation of LIB

Applying LIB as power sources for electric vehicles or stationary energy storage, requires improved
long-term properties of the cells: In terms of cycle life, a life-time up to 1000 cycles at 80%
depth-of-discharge (DOD) is demanded [24]. Capacity decrease and power fading with each
loading cycle6 are, however, often observed. Due to the complexity of the system, ageing does
not originate from a single cause but from a number of processes and their interaction. This
includes processes like electrolyte decomposition, solid-electrolyte interface conversion and growth,
side reactions, and mechanical degradation. A comprehensive overview of those different ageing
mechanism can be found in [24]. Even though most of the processes are largely coupled in the
cell, and thus, can not be studied independently in experiments, it is important to decouple them
in numeric investigations to obtain a general understanding.

6.3.1. Intercalation and degradation

In this work, we focus on mechanical aspects of material degradation in the electrode. The
intercalation-deintercalation of Li-ions in the host structure is accompanied by local volume
changes due to changes in lattice parameters and due to changes in crystal structure caused by
phase change. Thus, concentration gradients result in stress within the particle [152]. The volume
change is additionally constrained by neighboring particles and non-active cell components such
as additives, current collector, and cell housing [26]. Mechanical degradation is often manifested
in fracture and disintegration [153, 154, 155], as shown in Fig. 6.19 exemplary for two different
active materials.

(a) (b)

Figure 6.19.: Crack formation in (a) LFP particle after 60 cycles [64] and (b) LMO particles by
courtesy of R. Moenig [156]

In combination with loss of contact to the current collector or the electron conducting network, a
part of the the host material might become isolated. Additionally, particle fracture results in solid-
electrolyte interface (SEI)7 formation on the newly build surface, consuming Li-ions irreversibly.
Both aspects reduce the amount of active material and thus, decrease cell capacity [26].

6charge and discharge
7 SEI is a passivation layer that forms on the free surface of the electrode material in contact with the electrolyte,

usually during the first cycle [24].
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Intercalation induced stress

Besides monitoring the crack growth during cycling, only few experimental studies exist on
the intercalation induced stress in the electrodes. Substrate curvature tests have been used to
determine the macroscopic stress in simplified thin film electrodes [157] or porous composite
electrode materials [158, 159]. To do so, the electrode material is deposited on a stiff substrate and
then cycled. The deflection of the stiff substrate—caused by constraining dimensional changes of
the active film during cycling—is measured in order to determine the overall stress level. For thin
film graphite electrodes, a maximum stress up to -1 GPa was reported [157]; and for composite
electrodes of the same material, the maximum stress was reduced to -10 MPa [159]. This indicates
the effective role of the binder phase on buffering stress development.

Besides the experimental studies of the intercalation induced stress, several numerical investigations
have been performed. So far, mostly single particle models exist, which determine the stress
distribution due to concentration gradients [144] and phase change [143] within the particle.
Only few consider a 2 or 3 dimensional distribution of the particles within the cell; and those
state that particles close to the electrolyte layer undergo more severe mechanical loading [73,
160, 161]. Of those, only Wu et al. [161], and Rahini and Shenoy [160] take the interaction of
particles in form of mechanical constraints into account. They considered the interactions of active
material particles with each other as well as their interaction with binder as mechanical constraints.
Resulting inhomogeneous stress profiles within the particles are caused by inhomogeneous contact
distribution. This indicates that—for the determination of a realistic stress profile—knowledge of
the contact distribution is of importance. Nevertheless, they used finite element modeling (FEM)
and studied the stress development for geometrical fixed microstructures. Further, Awarke et
al. [162] consider the effect of microstructural changes during cycling on effective conductivity
and mechanical properties as input parameters for mechanical continuum cell modeling. Particle
rearrangements, contact losses, and contact formations, however, have not been considered so
far.

6.3.2. Micromechanics of intercalation

As discussed in section 6.1, DEM is ideally suited to consider the particle rearrangement, changing
contact forces, and the influence of that on macroscopic cell stress.

To simulate the intercalation process, the radii of AM particles within the electrode structure have
to be correlated to the lithium-concentration 𝑐𝑥 (in mol/m3). This correlation can be determined
based on the relationship of particle strain and concentration [152, 144]

𝜀𝑖𝑗 = 𝑐𝑥 − 𝑐0
𝑐max

Ω
3 𝛿𝑖𝑗 . (6.14)

In this, the concentration 𝑐0 is the concentration at the low-concentration state, 𝑐max is the
maximum allowed lithium concentration; Ω is the dimensionless partial molar volume, which can
be approximated linearly as [152]:

Ω = 1
𝑎3

max

𝑎3
𝑓 − 𝑎3

0
(𝑐𝑓 − 𝑐0)/𝑐max

. (6.15)

In there, 𝑎𝑓 and 𝑎0 are the lattice parameter of the low and the high lithium-concentration
state, respectively, and 𝑎3

max denotes the lattice parameter of the maximum allowable lithium
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concentration. By relating the lattice parameter directly to the volume changes, Eq. 6.15 can be
calculated based on measured volume changes as

Ω =
Δ𝑉

𝑉max
𝑐𝑓 −𝑐0
𝑐max

. (6.16)

Assuming in the definition of Ω—as a simplification—𝑐𝑓 equal to 𝑐max and 𝑐0 as zero8, allows to
define the partial molar volume based on the volume change only.

The present volume change 𝜀𝑉 of the particles for a certain intercalation state can be calculated
from the tensor trace of 𝜀𝑖𝑗

𝜀𝑉 = 𝑆𝑝𝜀𝑖𝑗 = 𝑐𝑥 − 𝑐0
𝑐max

Ω = 𝑉𝑥 − 𝑉0
𝑉0

(6.17)

with 𝑉𝑥 as the current volume and 𝑉0 the volume before intercalation. This can be rewritten as

𝑉𝑥 − 𝑉0 = 𝑉0
𝑐𝑥 − 𝑐0
𝑐max

Ω,

𝑉𝑥 = 𝑉0 + 𝑉0
𝑐𝑥 − 𝑐0
𝑐max

Ω = 𝑉0(1 + 𝑐𝑥 − 𝑐0
𝑐max

Ω). (6.18)

With the volume of a sphere 𝑉 as 4/3𝜋𝑟3, this leads to

𝑟3
𝑥 = 𝑟3

0(1 + 𝑐𝑥 − 𝑐0
𝑐max

Ω). (6.19)

Hence, the present radius 𝑟𝑥 can be calculated as

𝑟𝑥 = 𝑟0
3

√︃
1 + 𝑐𝑥 − 𝑐0

𝑐max
Ω, (6.20)

which can be simplified by series expansion to

𝑟𝑥 = 𝑟0(1 + 1
3
𝑐𝑥 − 𝑐0
𝑐max

Ω). (6.21)

Following from that, the radius increase can correlated to the current Li concentration by

𝑟𝑥 − 𝑟0
𝑟0

= 1
3
𝑐𝑥 − 𝑐0
𝑐max

Ω. (6.22)

An overview of the relative volume change and the related radius change is given in Table 6.4 for
the standard electrode materials.

During operation, the intercalation and deintercalation process is mostly restricted from complete
charge or discharge in order to maintain the material’s integrity. Therefore, we conducted the
calculations considering a volume increase of 6% (=2% radius increase), which is slightly below
the given values. In order to keep the results universal, they are given in dependence of 𝑐0 and
𝑐max rather then in terms of the actual Li-concentration.

8For LMO, this is a deviation from the actual values of 𝑐𝑓 = 0.995𝑐max and 𝑐0 = 0.2; however, for the given volume
changes of LFP and graphite, determined for 𝑐0 = 0 and 𝑐𝑓 = 𝑐max, this is valid.
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Δ V/Vmax [%] Δ r/rmax

LMO [144] 6.5 0.0212
LFP [163] 6.5 0.0212
Graphite [150] 9 0.03

Table 6.4.: Volume change during Li+-ion intercalation

Material properties

The material properties of LMO and LFP are assumed to be constant during the intercalation
process, as they only undergo insignificant changes with lithium concentration [149, 150]. For
the standard anode material—graphite—on the other hand, a threefold increase of the Young’s
Modulus with Li-intercalation is reported in [150]. The Young’s modulus changes from 32.47 GPa
for graphite to 108.67 GPa for LiC6, and the Poisson’s ratio changes from 𝜈=0.315 to 𝜈=0.24,
respectively.

In the simulation of the intercalation process, the boundaries of the volume element are constrained
by 𝜀𝑖𝑗 = 0. Thus, the swelling of the particles is constrained by the surrounding particles, which
themselves are swelling, too. Those constraints cause macroscopic stress in the volume element,
which was calculated first for monosized assemblies of pure AM. Additionally, the macroscopic
stress was calculated for a binary mixture with medium PF, containing 12.5% solid volume fraction
of CB. The compositions were chosen in analogy to the assemblies used in the simulations of the
calendering process. The PF of the binary mixture was chosen based on the findings of Zheng et
al. [22], and the PF for monosized assemblies was calculated accordingly.

The components of the macroscopic stress, developing during the intercalation process, are shown
in Fig. 6.20a for monosized and in Fig. 6.20b for binary assemblies of LFP electrodes. The volume
increase of active material during intercalation leads to an isotropic stress distribution. The
addition of CB to the monosized assembly of pure AM induces a stress increase of 24.2% for the
maximum Li-concentration. The significant deviation, found for the three different assemblies of

(a) (b)

Figure 6.20.: Components of macroscopic stress during intercalation process within (a) monosized
assemblies of pure active material with PF around 60.8% and (b) binary mixtures of active
material and 12.5% solid volume fraction CB with PF around 69.4%; calculated for LFP
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each binary composition during calendering, is reduced. We assume, this is related to reduced
rearrangement in the particle structure.

In a next step, material properties depending on the lithium concentration, occurring e.g. in
graphite anodes, are applied. To model those, we assume a linear change during the intercalation
process. The influence of varying elastic properties (𝐸𝑣𝑎𝑟) on the macroscopic stress is shown in
Fig. 6.21 for monosized assemblies, containing active material only. For comparison, calculations
with constant properties of graphite and LiC6 are shown additionally. The stress found for the
varying material properties is between the results found for the initial and final material properties.
It was shown in section 6.2.1 that Eq. 6.9 correlates the hydrostatic stresses found for structures

Figure 6.21.: Influence of changing material properties during the intercalation process modeled
for assemblies of graphite as standard anode material

with different material properties. Assuming a linear change of 𝐸𝑣𝑎𝑟 in Eq. 6.9 allows to calculate
𝜎ℎ(𝐸𝑣𝑎𝑟) based on the hydrostatic stress found for assemblies with either graphite and LiC6
material properties. The results are in good agreement for the complete intercalation process. As
the effect of different material properties—even changing material properties—can be calculated
based on Eq. 6.9, we will use only one set of material properties in the following—those of LFP.

The macroscopic stress obtained numerically in [159] with substrate curvature tests for porous
graphite composite electrodes, however, is with -10 MPa one order of magnitude smaller than
the numerical results found for graphite anodes. Possible reasons for such a significant deviation
between simulation and experiment can, on the one hand, be found in the simplifications made in
the modeling approach—this will be discussed in detail in section 6.4. On the other hand, also the
stress in the substrate curvature experiment is not measured directly, but it is calculated based
on the deflection of the electrode-substrate composition. In their calculations, Sethuraman et al.
assume a constant Young’s Modulus of graphite of 10 GPa. Thus, not only the maximum stress
deviates by one order of magnitude but also the elastic properties considered to determine the
stress. Scaling the numerically obtained, hydrostatic stress with a Young’s Modulus of 10 GPa in
accordance with Eq. 6.9 leads to 𝜎ℎ around -10 MPa for the maximum intercalation. This is in
the same order of magnitude as the experimental determined values.
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Influence of morphology and composition

To study the influence of the packing factor on the stress during intercalation, the different PF
groups, introduced in section 6.2.1 (Table 6.2), are examined. An increase of stress with increasing
PF can be seen in Fig. 6.22a, as it was already observed during calendering (Fig. 6.7a). As only the
active material is undergoing volume change, this effect is most likely amplified by the larger total
amount of AM found in the electrodes with high PF. In contrast to the calendering simulations,
the deviation between the three assemblies per group is less significant as the variation between
the groups.

(a) (b)

Figure 6.22.: Hydrostatic stress during the intercalation process of (a) different PF and solid
volume fractions CB of 12.5% and (b) assemblies with PF around 69.4% and different volume
fractions of CB

Further, examining the influence of the different solid volume fraction of CB—the same were
already studied in section 6.2.1—on the macroscopic stress (Fig. 6.22b) shows that a decreasing
amount of AM is correlated to lower stress development during intercalation. The effect a lower
amount of the stiffer AM component in mixtures with higher volume fractions of CB—observed for
calendering (Fig. 6.7b)—is intensified by the overall lower amount of volume change in structures
with high volume fractions of CB, in accordance with the findings for the different PF groups.

6.3.3. Connectivity during intercalation

To study the influence of the intercalation process on the connectivity, the percolation probability
of CB is calculated for different packing factors (Fig. 6.23a) and different volume fractions of CB
(Fig. 6.24a).
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Figure 6.23.: (a) Percolation probability of the CB phase and (b) the fraction of AM particles
connected to a percolating CB network for different packing factors during intercalation

Figure 6.24.: (a) Percolation probability of the CB phase and (b) the fraction of AM parti-
cles connected to a percolating CB network for different solid volume fractions of CB during
intercalation

In all here considered cases, the initial percolation probability is zero, and thus, no conducting
connection exists. Even for the most favorable composition with 15% CB, the percolation threshold
is only found for a Li-concentration higher than 50%. In accordance with the results found in
section 6.2.2, the amount of connected active material is directly correlated to the percolation
probability (Fig. 6.23a and 6.24b).

As explained previously (section 6.2.2), only those active material particles take part in the cell
reaction, which are connected to the current collector through a percolated CB network. As
also only those would—under real conditions—change their volume, at the beginning of the
intercalation process no swelling would occur. Connectivity, however, is only obtained for a
certain amount of volume change in the uncalendered assemblies. Thus, in the initial state, no
swelling can take place, and therefore, no connectivity can build up. Based on this, we assume
that uncalendered electrodes do not function properly. On this account, the intercalation process
is studied further for pre-calendered electrodes.
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6.3.4. Pre-calendered electrodes

To simulate pre-calendered electrodes, the microstructures were at first compressed uni-axially
in x-direction; subsequently, the intercalation was modeled by a radius increase of the active
material, as described in section 6.3.2. During the intercalation process, the compression strain
in x-direction was maintained. The mechanical response to the combined loading process is
shown in Fig. 6.25 exemplarily for the assemblies with a medium PF around 69.4% and a solid
volume fraction of CB of 12.5%. The calendering strain is −0.015 and the radius increases 2%
of 𝑟0. The stress induced during calendering is in accordance with the findings of section 6.2;

Figure 6.25.: Macroscopic stress for a complete loading process of calendering and intercalation
for assemblies with PF around 69.4% and a solid volume fraction of CB of 12.5%, calendering
strain of -0.015 and radius increase of 2% of 𝑟0

however, the results for the intercalation differ from the findings in section 6.3.2: The anisotropy,
induced by the calendering step, is preserved during the swelling of the intercalation process.
Furthermore, the intercalation induced stress is larger for the pre-calendered structure. In the
uncalendered electrodes, the swelling process leads to a maximum hydrostatic stress of 140 MPa;
in the pre-calendered assemblies, the swelling process leads to a maximum 𝜎ℎ of 182 MPa. The
difference in the intercalation induced stress is due to the non-linearity of the granular system: for
currently higher stress level, the slope of the stress-concentration relationship increases further.

Micromechanics in pre-calendered electrodes

To study this further, we calculated the macroscopic stress during intercalation for different
pre-calendering loads on microstructures of a medium PF around 69.4% and a solid volume
fraction of CB of 12.5%. The stress developing during the intercalation process is shown in
Fig. 6.26 for different preloads. The total stress induced by the intercalation (𝜎ℎ(𝑐max) − 𝜎ℎ(𝜀cal))
is summarized in Table 6.5. Clearly, larger preloads result in larger amounts of intercalation
induced stress in the structures. The difference between the non-calendered structures and the
structures pre-compressed with 2.0% is almost 40% of stress increase during intercalation only.
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Figure 6.26.: Intercalation induced stress for different pre-compression loads in assemblies with
medium PF around 69.4% and a solid volume fraction of CB of 12.5%

−𝜀𝑥𝑥 [%] −𝜎h,Li [MPa]
0.0 140.52
1.0 169.70
1.5 182.44
2.0 194.75

Table 6.5.: Total stress increase during the intercalation process 𝜎h,Li for non-calendered and
differently pre-calendered cases

Inevitably, the particle constraints and contact forces during intercalation aggravate the mechanical
load acting on the particles, and thus, particle failure might be advanced. To reduce the
macroscopic stress caused by intercalation to a minimum, it is preferable to choose the lowest
possible calendering strain; sufficient percolation of the CB network and connectivity of the active
material, however, still needs to be ensured.

Percolation in pre-calendered electrodes

To investigate which preload allows for sufficient connectivity in the structure during intercalation,
the percolation probabilities and the connectivities of active material of the composition—pre-
loaded with the different compression rates—were calculated (Fig. 6.27). It appears that percolation
during intercalation is best preserved when calendering led to initial percolation probabilities of
around 60%. Further, the deviation in percolation probability after calendering should be minimal;
this indicates that the percolation threshold is reliably exceeded. This is found for the pre-loadings
of -1.5 and -2.0%, for which the percolation probability as well as the connectivity is relatively
constant throughout the intercalation process. For lower pre-compression, the percolation is not
steady, especially for low Li concentrations, as can be seen in Fig. 6.27a. Again, the connectivity
of active material to a CB cluster is closely related to the percolation probability (Fig. 6.26b).

Similar results were found for further configurations and varying preloads. In order to reduce the
macroscopic stress during intercalation, the lowest sufficient calendering loads were chosen—based
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Figure 6.27.: (a) Percolation probability of CB phase and (b) the fraction of AM particle connected
to a percolating CB network for a structure of medium PF and 12.5% CB with different preloads

on the results in section 6.2.2. The values applied in the following for the different compositions
are summarized in Table 6.6.

PF [%] 𝜑𝐶𝐵 [%] −𝜀𝑥𝑥 [%]
69.4 10.0 2.5
69.4 12.5 1.5
69.4 15.0 1.0
67.3 12.5 2.0
70.9 12.5 1.5

Table 6.6.: Pre-calendering load for the different microstructures, necessary to achieve percolation
in the CB phase

Influence of PF and composition on micromechanics of preloaded cells

The stress developing during intercalation in the preloaded assemblies is given in Fig. 6.28a for
the different packing factors and in Fig. 6.28b for different volume fractions of CB. Comparison of
the different packing factors shows that the higher initial stress due to the higher preload required
for low packing factors is counterbalanced by the lower stress increase during intercalation. The
small variation of stress during intercalation, found for the different PFs in uncalendered cells,
is removed by the different preloads applied before the intercalation Examining different solid
volume fractions, it is shown that a low concentration of CB is detrimental in terms of stress
development: Besides the higher preload required, the stress increase during intercalation is higher
for a larger amount of active material. Thus, the lowest stress is found for the highest amount of
CB.

Regarding the stress only, it can be summarized that it is preferable to choose the lowest possible
calendering strain, which still allows for sufficient connectivity. Further, a smaller amount of
active materials leads to smaller intercalation induced stress. In terms of cell efficiency, however,
a larger amount of CB correlates to a larger amount of ”dead material”, which is assumed to
derogate the power density.
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(a) (b)

Figure 6.28.: Hydrostatic stress during the intercalation process of (a) different PF and solid
volume fractions CB of 12.5% and (b) assemblies with PF around 69.4% and different volume
fractions of CB

Connectivity in preloaded electrodes

In addition to the amount of additives, the amount of unconnected AM further impairs the power
density. Hence, to estimate the influence of preload and composition on that, the percolation
probability of CB and connectivity of AM have to be determined. As illustrated in Fig. 6.29
and Fig. 6.30, the applied preloads allow to preserve sufficient and nearly constant percolation
probability throughout the intercalation process for medium and high PFs with 12.5% CB, as well
as for a medium PF with 15% CB. Comparing those results with the ones found for uncalendered
structures in Fig. 6.23 and Fig. 6.24, it clearly demonstrates the positive influence of calendering
with regard to cell performance.

For assemblies with low PF as well as for microstructures with only 10% solid volume fraction
CB, on the other hand, the percolating clusters disintegrate during the intercalation process.
Recalculating the percolation probability for those structures—densified with higher preloads—did
not improve the connectivity within the CB-phase. This indicates that a too low amount of

Figure 6.29.: (a) Percolation probability of CB phase and (b) the fraction of AM particle connected
to a percolating CB network for different packing factors
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Figure 6.30.: (a) Percolation probability of CB phase and (b) the fraction of AM particle connected
to a percolating CB network for solid volume fractions of CB

additives (i.e.”dead material”) is rather detrimental for cell performance, even though it might
seem advantageous at first glance.

Free surface area in preloaded electrodes

We further analyzed the effect of pre-calendering on the active free surface area, which is an
important factor for the reaction rate and activation losses, as explained section 6.2.2. The free
surface area decreases in all preloaded cases during the intercalation process, as shown in Fig. 6.31.
Since the connectivity of the AM particles to conducting CB networks is maintained during the

Figure 6.31.: Active free surface area per unit volume during intercalation for (a) assemblies with
different packing factor and (b) different solid volume fractions of CB

intercalation process—for the volume fractions of 12.5% and 15% CB (Fig. 6.30b) with medium
and high PF (Fig. 6.29b)—the decrease is most likely induced by enlarging solid-solid contacts.
The contact area of AM-AM contacts is large in comparison to AM-CB contacts (Table 6.3,
section 6.2.2), and thus, it is more relevant for the decrease in free surface area. Therefore,
the coordination number 𝑍AM,AM—the number of contacts of one AM particle with other AM
particles—is calculated for the intercalation process. The development during intercalation is
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exemplarily displayed for the different compositions in Fig. 6.32. The increasing number of
contacts is most likely the reason for the decrease in free surface area. In accordance with the
findings for calendering (section 6.2.2), the lower amount of AM in the composition of 15% solid
volume fraction CB seems beneficial for the amount of active free surface area, and thus, also for
the reaction rates.

Figure 6.32.: Increase of coordination number 𝑍AM,AM during intercalation exemplary for com-
positions with different solid volume fraction CB

Effective conductivity in preloaded electrodes

As a reliable connectivity of the CB network is required for satisfactory cell performance, we
considered in the following only those compositions, which ensure constant percolation throughout
the whole intercalation process: the effective conductivities for the low packing factors as well as for
the low volume fractions of CB are not presented here. The directional effective conductivities of the
remaining structures are given in Fig. 6.33. The higher preload required for the compositions with
12.5% CB and medium (Fig. 6.33a) or high (Fig. 6.33b) PF lead to larger effective conductivities
and more pronounced anisotropy at the beginning of the intercalation process. The anisotropy is,
however, mostly evened out during the intercalation process. The composition with 15% CB starts
with lower conductivity—due to the lower preload required to obtain percolation—yet it shows
the highest increase during the intercalation process. Similar to the directional variation found
during calendering (section 6.2.3), no consistent preferential direction could be determined.

The reduction of the—only partially occurring—initial anisotropy might be either due to the
isotropic mechanical loading during the swelling or, as discussed in section 6.2.3, due to relatively
unconstrained movement of CB particles in the interstices. To investigate this, the displacement of
the particles is calculated, relative to the volume length 𝐿. In Fig. 6.34 the displacement of large
(Fig. 6.34a) and small (Fig. 6.34b) particles is shown exemplarily for the compositions of 12.5%
CB and medium PF. The displacement found for the other structures is very similar. During
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Figure 6.33.: Directional effective conductivity for (a) medium PF with 12.5% CB, (b) high PF
with 12.5% CB and (c) medium PF with 15% CB

the first 15 time steps, the assembly is compressed uni-axially; this causes large displacement
in loading direction. During intercalation, on the other hand, the displacement in the direction
perpendicular to the loading direction is more pronounced, in particular for the small particles.
The particles are packed more densely in the loading direction and hence, displacement in this
direction is suppressed. The larger rearrangement of the small particles in the perpendicular
directions can result in larger variation in the effective conductivity and is most likely the reason,
why no clear preferential directions can be seen. Again, this effect is hardly predictable with
averaging methods.

Figure 6.34.: Mean displacement of a (a) large and (b) small particle during calendering (time
step < 15) and intercalation (time step > 15) in the assemblies of medium PF and 12.5% CB



114 6. Micromechanical Modeling of Electrode Structures

6.3.5. Summary

In this section, the connection between intercalation, macroscopic stress, and its influence on the
effective transport properties was examined. The importance of an adequate calendering load,
applied previously to the intercalation process, was demonstrated in section 6.3.3. The adequate
amount of this could be determined based on the investigations of the influence of calendering in
connectivity in section 6.2.2. Additionally to an adequate preload, a sufficient amount of CB is
required to enable reliable connectivity for the whole intercalation process. For the here examined
examples, a preload correlated to 60% percolation probability shows good results. Considering
effective conductivity and free surface area, which are both relevant for the cell performance, the
microstructure with the highest amount of CB showed the best results, as already indicated for
the calendering process (section 6.2). The low preload required in combination with the larger
amount of CB softens the mechanical constraints, which the AM particles mutually apply on each
other. This reduces not only to lower macroscopic stress but the solid-solid contact area, and
thus, in turn, it results in an larger active surface. Here, an optimum between the positive effect
on cell properties and its negative effect on power density needs to be found.

6.4. Assessment of simplifications in the model

The large amount of coupled influence parameters in LIB makes it difficult to study single
parameters experimentally, as described in section 2.3. Simplified numerical models, on the other
hand, allow to study influence parameters separately to gain a better understanding of their
effect on cell performance. Due to the simplifications, comparison of experiments and modeling
results is difficult; and thus, the accuracy of the simulations is hardly to estimate without tailored
experiments. Hence, a critical reflection on the model’s assumptions and simplifications is necessary.
The most relevant simplifications are summarized here and are discussed in the sections 6.4.1
to 6.4.6:

• initial configuration:

– The particle shape is idealized in form of a sphere.

– The size distribution of the particles within one species is neglected.

• loading conditions:

– The bounding box of the volume element is constrained in direction perpendicular to
the calendering direction.

– The intercalation is assumed to be uniform within the representative volume element.

• particle interaction:

– Particle fracture is neglected.

– The particle contact is assumed to be elastic.

– The binder phase is neglected.
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6.4.1. Particle shape

So far, the granular electrodes are approximated by mixtures of spheres, which are the simplest
possible 3D representation of the granular materials. The initial configurations, generated with
the RCP algorithm, contain randomly distributed, monosized or binary sized particles. In reality,
however, the shape varies for the different materials and processing steps: LFP particles for
example, are almost sphere-like [164], LMO particles are rather angular [156], and graphite
particles are flake-like [159]. In short, all kinds of shapes can be found or formed in the wide
variety of materials investigated as cathode materials for LIB. Thus, the assumption of spherical
particles is not incorrect and was considered as sufficient. Finally, as discussed in section 6.1, the
discrete element modeling is more accurate than continuum models—even with simplified shapes,
such as spheres.

6.4.2. Particle size distribution

Furthermore, the particles have been assumed to be of the same size within each species of the
mixtures, leading to binary sized assemblies. With the binary size distribution, the most significant
size variation of the two components of the electrode is represented. Nevertheless, the particles of
each species have varying particle sizes.

In order to consider those, the RCP algorithm, introduced in section 4.1.1, was modified to
enable the generation of polydispers packings. Therefore, a method based on the Box-Muller
algorithm [165, 166, 167] was implemented to obtain a Gaussian distribution for the particle
radii based on uniformly distributed, random numbers Ψ𝑖 in the range from 0 to 1. First, those
numbers are converted to a rectangular distribution in the range from -1 to 1 by 𝜓𝑖 = 2.0Ψ𝑖 − 1.
Subsequently, pairs of independent random numbers 𝜓1 and 𝜓2 are transformed in polar coordinates
with radius 𝑠 =

√︁
𝜓2

1 + 𝜓2
2 limited to the interval ]0, 1] and two independent variables 𝑄1 and 𝑄2

are calculated from this pair

𝑄1 = 𝜓1

√︃
−2𝑙𝑛(𝑠)

𝑠
, 𝑄2 = 𝜓2

√︃
−2𝑙𝑛(𝑠)

𝑠
. (6.23)

To generate a particle size distribution with the target mean particle radius 𝑟mean and a Gaussian
distribution of a predefined standard deviation 𝑆𝐷, the variables 𝑄𝑖 are multiplied with the
distribution width 𝑆𝐷 and scaled with the mean particle radius:

𝑟𝑖 = 𝑟mean(1 + 𝑆𝐷𝑄𝑖). (6.24)

In Fig. 6.35, two binary assemblies with a Gaussian distribution of 𝑆𝐷 = 0.1 for the particle size
are depicted, with the particles colored accordingly to their size. In the left assembly (Fig. 6.35a),
the large particles have a size distribution and the small particles are of equal size—and vice versa
in Fig. 6.35b.
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(a) (b)

Figure 6.35.: Binary assemblies with Gaussian distribution of (a) the large particles and (b) the
small particles with particles colored accordingly to their size

To examine the influence of size distribution on the mechanics of the system, different binary
assemblies were generated, with size distribution of either the large AM particles (Fig. 6.35a), or
the small CB particles (Fig. 6.35b), or packings with both AM and CB phase with size distribution.
For each of those three possible systems, standard deviations 𝑆𝐷 of 0.05 (denoted as 𝑑1) and 0.1
(𝑑2) were realized, and three assemblies per configuration were generated. For comparability to
the previous calculations, the size ratio of the mean particle radii remained 10 and the packing
factor was set around 69.4% for all structures. The probability density functions of the size
distributions are shown in Fig. 6.36 exemplarily for both standard deviations in the CB phase.

Figure 6.36.: Probability density of CB particle radii in structures with two different Gaussian
size distributions

The hydrostatic stress due to uni-axial compression is shown in Fig. 6.37 for all configurations,
considering LFP as active material (Table 6.1). Obviously, in none of the considered cases varies
the stress response due to different size distributions. Further, comparing the results to the
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Figure 6.37.: Hydrostatic stress during calendering for assemblies with size distribution either
within the AM phase, the CB phase or both phases, considering 2 different standard deviations;LFP
as active material

stress response of binary sized mixtures without particle size distribution within the phases
(Fig. 6.4b) indicates that the size distribution can be neglected, as it does not influence the results
significantly.

6.4.3. Flexible boundary conditions

With regard to the loading conditions, two scenarios have been simulated so far: the calendering
and the intercalation process. For both scenarios, the surfaces of the volume element, which
are not in loading direction, have been constrained to zero displacement (𝜀𝑖𝑖 = 0). This may
replicate an electrode in a fixed casing. Assuming soft casings, as for example given in mostly
experimentally used pouch cells—this assumption is no longer valid. Therefore, the influence of
elastic boundary conditions, deforming due to the stress within the assembly, are examined in
this section. Especially the influence on the stress development during cycling is of interest, as
that is related to mechanical degradation. Hence, we focused on the mechanical response of the
representative volume element during intercalation.

In order to develop more realistic boundary conditions, the surrounding electrode of the simulated
volume element (RVE) has to be considered, as shown in Fig. 6.38. First, the implementation
of flexible boundary conditions in in-plane direction of the current collector (y- and z-direction)
is introduced with constrained boundaries in x-direction (𝜀𝑥𝑥 = 0). Subsequently, flexible
boundaries were additionally implemented for the direction perpendicular to the current collector
(x-direction).

Constraints due to current collector

Assuming ideal contact between electrode material and current collector, the deformation of
electrode in y- and z-direction is constrained by the elastic properties of the current collector9, as
the material is stiffer than the granular electrode composite. This means that the macroscopic
forces 𝑓el,yy and 𝑓el,zz, emerging during intercalation in the electrode structure, are equal to the

9a thin layer in y- and z-direction
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Figure 6.38.: Volume element (RVE) simulated with DEM constrained by the surrounding
electrode structure

forces exerting on the current collector 𝑓cc,yy and 𝑓cc,zz in y- and z- direction respectively. Under
consideration of the area 𝐴 of the current collector and the volume element in the x-y plane, this
leads to

𝜎cc,yy = 𝜎el,yy
𝐴el
𝐴cc

, 𝜎cc,zz = 𝜎el,zz
𝐴el
𝐴cc

. (6.25)

with 𝐴𝑖 = 𝐿𝑖 ×𝐻𝑖. Assuming the same box length 𝐿 for the current collector and electrode volume
element, the fraction of areas 𝐴el

𝐴cc
reduces to the fractions of heights: 𝐻el

𝐻cc
. Typically, the heights of

the current collector is in a range of 15 to 25 𝜇m, and the heights of the electrode is—depending
on the cell application—in the range from 50 to 300 𝜇m [11]. For the following calculation we
chose 25 𝜇m for 𝐻cc and 250 𝜇m for 𝐻el. Based on that, the deformation of the current collector
in in-plane direction of the thin layer can calculated for plane stress conditions [168], p. 500 ff:

𝜀𝑦𝑦,𝑐𝑐 = 1
𝐸𝑐𝑐

(𝜎𝑦𝑦,𝑐𝑐 − 𝜈𝑐𝑐𝜎𝑧𝑧,𝑐𝑐)

𝜀𝑧𝑧,𝑐𝑐 = 1
𝐸𝑐𝑐

(𝜎𝑧𝑧,𝑐𝑐 − 𝜈𝑐𝑐𝜎𝑦𝑦,𝑐𝑐) .
(6.26)

Here, 𝜎𝑦𝑦,𝑐𝑐 and 𝜎𝑧𝑧,𝑐𝑐 are the macroscopic stress components of the current collector calculated
with Eq. 6.25 from the stress within the electrode caused by intercalation process. 𝐸𝑐𝑐 and 𝜈𝑐𝑐

are the elastic properties of the current collector; in cell manufacturing, the materials are chosen
to obtain electrochemical stability of the system. Thus, a thin aluminium layer is usually used
in cathode and a copper current collector in the anode. The material properties are given in
Table 6.7.

Young’s modulus 𝐸 [GPa] Poisson’s ratio 𝜈

aluminium 70 0.34
copper 130 0.343

Table 6.7.: Material properties of the current collector used in the DEM simulation of LIB
electrodes according to [169]
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Subsequently, the calculated deformation of the current collector is applied to calculated the new
dimensions of the bounding box of the granular system—assuming linear displacement of the
boundaries without tilting or bending:

𝜀𝑥𝑥,𝑒𝑙 = 0, 𝜀𝑦𝑦,𝑒𝑙 = 𝜀𝑦𝑦,𝑐𝑐, 𝜀𝑧𝑧,𝑒𝑙 = 𝜀𝑧𝑧,𝑐𝑐. (6.27)

Based on the new dimensions of the volume element, the particles in the box are moved accordingly,
as described for the calendering in section 6.2.1 and the balanced state is determined. The complete
process is sketched in Fig. 6.39: For each loading step, the macroscopic stress 𝜎𝑒𝑙 within the
electrode structure is calculated with constrained boundaries. Ongoing from the stress, the
deformation of the volume element is calculated with Eqs. 6.25, 6.26 and 6.27. Subsequently, the
deformations in y- and z-direction are applied as boundary conditions, and the macroscopic stress
in the relaxed volume element is calculated before the next intercalation step.

swelling of AM
with 𝜀𝑥𝑥,𝑒𝑙 = 0 &

Δ𝜀𝑦𝑦,𝑒𝑙 = Δ𝜀𝑧𝑧,𝑒𝑙 = 0

macroscopic
stress 𝜎𝑒𝑙

applying strain Δ𝜀𝑦𝑦,𝑒𝑙 = Δ𝜀𝑧𝑧,𝑒𝑙

(Eq. 6.27) calculated based
on deformation of cur-

rent collector (Eq. 6.26)

macroscopic
stress 𝜎𝑒𝑙 after

relaxation

in y- & z-direction

t=t+Δ t

Figure 6.39.: Schematic diagram of the implementation of flexible boundary conditions in y- and
z-direction

In order to reduce influence factors due to varying compositions, we chose monosized assemblies
for the simulations. For comparability to simulations with constrained boundaries, the initial
configurations have a PF of around 60.75, as previously used. The macroscopic stress shown
in Fig. 6.40a is obtained for LFP as active material and aluminium as current collector. For
comparison, the results for the same configurations simulated with fixed boundary conditions are
given in Fig. 6.40b.

Due to the flexible boundary conditions, the maximum macroscopic stress is reduced by around 15
% for the maximum lithium concentration. Additionally, the isotropy—observed for intercalation
with fixed boundaries (Fig. 6.40b)—is lost by enabling displacement of the boundaries in in-plane
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(a) (b)

Figure 6.40.: Macroscopic stress in LFP cathodes during intercalation for (a) flexible boundary
conditions with aluminium as current collector and (b) fixed boundary conditions for comparison.

direction of the current collector: the stress in y- and z-direction is smaller than in x-direction due
to the relaxation in this directions. Further simulations with copper as current collector material
showed only little influence of the different material properties on the stress response.

The displacement causing the relaxation in y- and z-direction is equivalent in both directions, as
can be seen in Fig. 6.41a. The strain introduced by the current collector is small compared to
the loading applied during calendering. Further, a linear stress-strain relationship between the
relaxation of the electrode volume and the macroscopic stress of the assembly is found, as shown
in Fig. 6.41b. As the granular systems considered in here usually show a non-linear behavior (see

Figure 6.41.: (a) Relaxation of the electrode during Li intercalation and (b) macroscopic stress
within the electrode vs relaxation strain

section 6.2.1), this might indicate the influence of the linearity of the current collector’s elasticity.
Interestingly, studying this stress-strain relationship for a soft LMO material (E=10 GPa) leads to
the same linear relationship: The stiffness 𝜎𝑦𝑦/𝜀𝑦𝑦 = 𝜎𝑧𝑧/𝜀𝑧𝑧 is equal for both systems throughout
the whole intercalation process (Fig. 6.42) and around 1/4 of the Young’s Modulus of the current
collector. The scaling law (Eq. 6.9), which relates the stress to the systems bulk Young’s Modulus,
however, does no longer hold true.
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Figure 6.42.: Stiffness 𝜎𝑦𝑦/𝜀𝑦𝑦 during the intercalation process for different active material
properties

Unconstrained volume element

As described, the deformations in y- and z-direction are constrained by the elastic properties of
the current collector. In x-direction, on the other hand, the possible deformation depends on the
surrounding electrode structure as well as the opposing electrode. To estimate the maximum
possible deformation—coinciding with the lower stress limit—we consider a free-standing electrode,
unconstrained by the opposing electrode, casing, or further cell layers. The assumption of a
free-standing assembly in x-direction leads to

𝜎𝑥𝑥,𝑒𝑙 = 0, (6.28)

and in y- and z-direction
𝜀𝑦𝑦,𝑒𝑙 = 𝜀𝑦𝑦,𝑐𝑐, 𝜀𝑧𝑧,𝑒𝑙 = 𝜀𝑧𝑧,𝑐𝑐 (6.29)

as boundary conditions. Stress-controlled simulations in DEM, however, have to be realized
through displacement controlled calculations [114]: the strain is adjusted in order to achieve a
specified stress condition. As in this type of calculation the stress has to be readjusted for each
swelling step, we require a numerically efficient approach. The servo-controlled approach—this
means iteratively readjusting the strain step-wise until the target stress level is reached—is
numerically rather expensive. To approximate the strain required to reach 𝜎𝑥𝑥, 𝑒𝑙 = 0 after a
previous intercalation step, we assume that a linear stress-strain relationship for small strains. In
analogy to thermal strains [168], the intercalation induced strain 𝜀𝐿𝑖

𝑥𝑥 is given by

𝜀𝐿𝑖
𝑥𝑥 = 𝑐𝑥 − 𝑐0

𝑐max

Ω
3 , (6.30)

as described in section 6.3.2. The total strain 𝜀𝑥𝑥 comprises additionally an elastic part 𝜀𝑚
𝑥𝑥, which

is related to the macroscopic stress 𝜎𝑥𝑥

𝜀𝑥𝑥 = 𝜀𝐿𝑖
𝑥𝑥 + 𝜀𝑚

𝑥𝑥. (6.31)

With the constraining boundary condition 𝜀𝑖𝑗 = 0, applied for the intercalation process, 𝜀𝑚
𝑥𝑥 can

be considered as a counter strain for the intercalation process and is related to the intercalation
induced stress by

𝜀𝐿𝑖
𝑥𝑥 = −𝜀𝑚

𝑥𝑥 = 𝜎𝑥𝑥

𝐸𝑥𝑥
. (6.32)
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Applying a relaxing strain 𝜀𝑚,𝑟𝑒
𝑥𝑥 , equivalent to the absolute value of 𝜀𝑚

𝑥𝑥 = 𝜎𝑥𝑥/𝐸𝑥𝑥, in the opposite
direction of 𝜀𝑚

𝑥𝑥:
𝜀𝑥𝑥 = 𝜀𝐿𝑖

𝑥𝑥 + 𝜀𝑚
𝑥𝑥⏟  ⏞  

=0

−𝜀𝑚,𝑟𝑒
𝑥𝑥 (6.33)

leads to stress relaxation in the electrode. For a linear elastic material, the stress 𝜎𝑥𝑥 can be
reduced to 0 with this approach.

In order to calculate 𝜀𝑚,𝑟𝑒
𝑥𝑥 , the Young’s Modulus of the electrode structure must be determined

in addition to the macroscopic stress. The elastic properties of granular materials are not only
dependent on the state of intercalation, but they also depend on the stress level within the
structures. Hence, they change during the simulation as a result of the intercalation as well as the
applied strain. Therefore, for each loading step, two separate calculations are necessary: First,
the elastic properties of the system have to be determined for the current state. Subsequently,
the possible deformation can be estimated based on that material properties.

Elastic properties of the granular structure The mechanical response of granular material
is usually non-linear. Nevertheless, when the deformation around an arbitrary state of the
configuration is small, the material response in this narrow range can be assumed as linear. Thus,
Hook’s law is applicable. In Einstein notation this is written as

𝜎𝑖𝑗 = C𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (6.34)

with C𝑖𝑗𝑘𝑙 as the 𝑖𝑗𝑘𝑙-component of the fourth-rank elasticity tensor. Considering the symmetry,
with Voigt notation this can be reduced to⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16
𝐶12 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26
𝐶13 𝐶23 𝐶33 𝐶34 𝐶35 𝐶36
𝐶14 𝐶24 𝐶34 𝐶44 𝐶45 𝐶46
𝐶15 𝐶25 𝐶35 𝐶45 𝐶55 𝐶56
𝐶16 𝐶26 𝐶36 𝐶46 𝐶56 𝐶66

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜀11
𝜀22
𝜀33
𝜀23
𝜀13
𝜀12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.35)

containing 21 independent components in the elasticity tensor [170]. To determine all components
the strain Δ𝜀𝑘𝑙 has to be applied in all 6 directions, and the corresponding changes in 𝜎𝑖𝑗 allow
for calculation of Cijkl with

Δ𝜎𝑖𝑗

Δ𝜀𝑘𝑙
= Cijkl. (6.36)

In the here considered case, only the direction perpendicular to the current collector is relevant,
as only this direction (x-direction) is unconstrained. Hence, the stress-response for strain in
x- direction, 𝜀𝑥𝑥, has to be calculated. To obtain these information from DEM simulations, I
implemented an additional routine: the assembly in an arbitrary state, for which the elastic
properties are required, is compressed by a small amount (Δ𝜀𝑥𝑥 = −0.00005). The macroscopic
stress 𝜎𝐸 of the balanced state is then calculated and subsequently, the system is relaxed to its
previous state (Δ𝜀𝑥𝑥 = +0.00005). Finally, the stress difference Δ𝜎𝑖𝑗 of 𝜎𝐸 and the current stress
𝜎𝑡 is determined and applied in Eq. 6.36 to calculate the relevant elements of the elasticity tensor
C𝑖𝑗𝑘𝑙, i.e. 𝐶13, 𝐶23 and 𝐶33.
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As previously shown in section 6.3.1, the granular composite material is isotropic for the intercala-
tion process. For isotropic material, the elasticity tensor C𝑖𝑗𝑘𝑙 can be reduced to [170]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶11 𝐶12 𝐶12
𝐶12 𝐶11 𝐶12
𝐶12 𝐶12 𝐶11

𝐶44
𝐶44

𝐶44
,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.37)

with only 3 independent components. Based on that, the two independent material properties 𝐸𝑡

and 𝜈𝑡 [170] at loading time step 𝑡 can be calculated according to

𝐶11 = 𝐸𝑡(1 − 𝜈𝑡)
(1 + 𝜈𝑡)(1 − 2𝜈𝑡)

𝐶12 = 𝐸𝑡𝜈𝑡

(1 + 𝜈𝑡)(1 − 2𝜈𝑡)

(6.38)

as
𝜈𝑡 = 𝐶12

𝐶11 + 𝐶12
𝐸𝑡 = (𝐶11 + 2𝐶12)(𝐶11 − 𝐶12)
.

(6.39)

Unconstrained deformation of the electrode With the calculated properties of the electrode
material, the deformation of the volume element in x-direction can be calculated according to
Hook’s law

Δ𝜀𝑚,𝑟𝑒
𝑥𝑥 = 𝜎𝑡

𝑥𝑥 − 𝜎𝑡−1
𝑥𝑥

𝐸𝑡
. (6.40)

with 𝜎𝑡
𝑥𝑥 as the current macroscopic stress and 𝜎𝑡−1

𝑥𝑥 the macroscopic stress at the end of the
previous loading step. Due to the non-linearity of the stress-strain relationship in granular
materials and the stress dependence of its material properties, the boundary condition 𝜎𝑥𝑥=0 is
most likely not met exactly. Especially overestimation of Δ𝜀𝑚,𝑟𝑒

𝑥𝑥 can lead to tensile stress in the
microstructure, and the simulations can become numerically unstable. To suppress this instability,
the calculated strain is not applied completely. Rather, Δ𝜀𝑥𝑥 is multiplied by a factor 𝑏, slightly
smaller than 1. That factor has to be adjusted based on the configuration to ensure numerical
stability. In here 𝑏 is 0.95.

Results for unconstrained volume elements As in the previous section, the intercalation process
is simulated for monosized assemblies of LFP particles. Here, the volume element is constrained
by the current collector in y- and z direction and unconstrained in x-direction.

As shown in Fig. 6.43a, the target stress of 𝜎𝑥𝑥 = 0 is not met exactly, stress around 1 MPa are
obtained in x-direction. The deviation from 𝜎𝑥𝑥 = 0 has two causes: (i) as explained previously,
the applied strain is reduced slightly from the calculated value to maintain numerical stability; and
(ii) due to the non-linearity of the system, the system’s response is only approximated with the
applied linear stress-strain relationship. In y-and z-direction of the unconstrained assembly the
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stress is reduced enormously: It drops from values around 90 MPa, obtained for the intercalation
process with 𝜀𝑥𝑥 = 0, to values around 4 MPa. Even though the stress 𝜎𝑥𝑥 does not comply
exactly with the boundary condition of 𝜎𝑥𝑥 = 0, the results provide a good approximation of an
unconstrained structure.

The almost stress-free boundary in x-direction leads to significant strain in this direction, as can
be seen in Fig. 6.43b. The deformation of the current collector (y- and z-direction) is reduced

Figure 6.43.: (a) Macroscopic stress and (b) strain due to Li-intercalation within the electrode
for a Young’s Modulus of 125 GPa

in comparison to the previous results (Fig. 6.41a) due to the low macroscopic stress within the
assemblies. Further, the previously small deviation between the results of three different assemblies
increases significantly, especially for the stress. Probably, the large expansion of the volume
element, corresponding to larger particle movement, affects this: the more displacement the
particles experience, the more likely it is, that a deviation between two initially similar assemblies
of randomly distributed particles occurs. This effect is most likely amplified by the influence
of the present state on the stress dependent effective material properties. Determined for the
present configuration, they are used to calculate the future expansion, which then will vary due
to previous variations in stress.

Examining the stress-strain relationship for the unconstrained simulations, illustrated in Fig. 6.44,
shows different behavior for the different directions: For the directions constrained by the current
collector (Fig. 6.44b), a linear relationship is found in the whole range, as in the previously
simulated situation. The deformation in x-direction shows, after an initially non-linear range,
a linear relationship for 𝜀𝑥𝑥 > 1%. It should be noted, that the gradient of the stress-strain
curves—equivalent to the Young’s Modulus in the linear range—is much smaller in x-direction,
reflecting on the the softer material behavior in this direction.

This is additionally illustrated in Fig. 6.45; for comparison results for a softer bulk material are
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Figure 6.44.: Macroscopic stress vs strain during Li intercalation for (a) the unconstrained
direction and (b) directions constrained by the current collector for a Young’s Modulus of 125 GPa

given as well: In Fig. 6.45a, the stiffness of the system in y-direction is given for a bulk Young’s
Modulus of 125 GPa as well as of 10 GPa. Those results show little difference to the stiffness

Figure 6.45.: Stiffness 𝜎𝑖𝑖/𝜀𝑖𝑖 during the intercalation process for different material properties (a)
in y-direction and (b) in x-direction, plus the intrinsically calculated Young’s Modulus 𝐸𝑖𝑛

of systems constrained in x-direction (𝜀𝑥𝑥 = 0), as shown in Fig. 6.42. As expected from the
stress-strain relationship, the free deformation in x-direction leads to a much softer material
response in x-direction, which is shown in Fig. 6.45b. Here, we distinguish between the extrinsic
stiffness (or secant modulus), calculated as 𝜎𝑥𝑥/𝜀𝑥𝑥, and an intrinsic stiffness 𝐸𝑖𝑛. The intrinsic
stiffness denotes in this work the stiffness 𝐸𝑡 determined within the DEM simulation for the each
intercalation step by the additional loading loop as the current stiffness of the assembly. Both,
the intrinsic and the extrinsic stiffness, are comparatively low. For the extrinsic stiffness, the
influence of the bulk material is negligible; the intrinsic stiffness, on the other hand, is affected by
the material properties.

6.4.4. Uniform intercalation

A further assumption with regard to loading conditions is that the intercalation process is uniform
within the volume element. Harris et al. [171], however, showed experimentally that during
cycling an intercalation front passes through the electrode, starting with swelling particles near
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the separator. This effect is especially pronounced in thick electrodes. Nevertheless, as long as
the simulated volume element is small compared to the dimensions of the electrode10, it can
be considered as representative volume element (RVE), with equal spacial conditions within.
As the volume elements studied in this work are, in particular with regard to thick electrodes,
small in comparison to the electrode dimensions, it is valid to consider the intercalation process
as uniform. Based on the performed simulations, the stress distribution within the continuous
electrode, as an example, can be represented by the macroscopic stresses of the RVE at different
states of Li concentration. If, in contrast, a bigger volume element—corresponding to the whole
electrode—would be modeled, the intercalation gradient should be considered.

Furthermore, all active material particles are taking part in the intercalation process. This
requires that they all are sufficiently connected to the current collector, assuming a percolating
CB network. As was shown in section 6.3.3, this is not valid for insufficiently calendered electrode
structures. The calculations are only valid, when the AM particles are fully connected. Based on
the assessment made in section 6.3.3, I decided to focus on sufficiently pre-calendered electrodes;
and for those, the simulations are considered as sufficiently accurate. Nevertheless, the influence of
non-connected particles on the microstructure and the mechanical response of the system during
the intercalation process would be interesting to study in future work.

6.4.5. Particle fracture

The microstructure of electrodes is additionally influenced by particle fracture, as monitored
experimentally in e.g. [156]. It is widely assumed that the particle fracture is caused by internal
particle stress due to concentration gradients and/or phase segregation during intercalation
(e.g. [172, 152]). As to date, however, no general description for particle cracking in LIB exists, it
is not considered in the scope of this work. Nevertheless, DEM allows for the consideration of
particle fracture [139]; and thus, it will be a useful tool to study the influence of particle failure
on the microstructure once a failure criterion is defined.

6.4.6. Binder

With regard to particle interactions, the contacts are so far only described in form of Hertz-Mindlin
contacts (section 6.1), assuming elastic material behavior. As most cathode materials are brittle
and do not deform plastically, this is a valid assumption for active material in direct contact. The
binder phase is neglected so far; however, it is employed to maintain a stable microstructure and
preserve the connectivity of the solid components. Furthermore, the stress absorbing effect of
the soft binder material was discussed in [26, 159]. Therefore, it seems probable that the binder
influences the mechanics of the system; this influence will be examined here.

The binding material used in LIB electrodes is a polymer, which has to possess flexibility,
insolubility in the electrolyte, compactness, chemical and electrochemical stability, and easy
application in the production process—besides the actual binding [11]. This leads to the use of
polyvinylidenefluoride (PVDF) and styrene-butadiene copolymer (SBR) in the anode, and in
the cathode mainly PVDF is used. In the operational temperature range of LIB, PVDF shows
visco-elastic behavior—this means that the material response to stress contains a spontaneous
elastic component as well as an irreversible, time- and rate-dependent viscous component. Hence,
10and, of course, still large enough to represent the electrode structure statistically
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in order to study the effect of the binder phase on the microstructure, an additional visco-elastic
force law has to be implemented in DEM to consider the stress absorbing effect of the binding
phase in LIB.

Rheological models for visco-elasticity

In DEM, the force-displacement relation of two contacting particle are often displayed in form of
rheological models. To simulate visco-elastic behavior, the models comprise massless Hookean
springs for the elastic part and Newtonian dashpots for the viscous components. The stress-strain
behavior of a spring is given as

𝜎 = 𝐸𝜀 (6.41)

while the stress of the dashpot element depends the time derivative of the strain 𝜀̇:

𝜎 = 𝜂𝜀̇ (6.42)

with 𝜂 as viscosity. The most basic models are known as Maxwell model, depicted in Fig. 6.46a,
and Kelvin model (Fig. 6.46b) [114]. The Maxwell model reacts to a continuously applied strain

(a)

𝑃1

𝐸𝑀

𝑃2

𝜂𝑀

(b)

𝑃1

𝐸𝐾

𝜂𝐾

𝑃2

Figure 6.46.: Rheological model of (a) Maxwell’s contact law and (b) Kelvin’s contact law

with stress-relaxation (equilibrium module 𝐸𝑒𝑞 = 0); and the Kelvin model reproduces creep
behavior (spontaneous module 𝐸𝑠𝑝𝑜𝑛 → ∞): the application of constant stress leads to an increase
of strain with time [173]. Both creep and stress-relaxation are, however, necessary to describe the
time-dependent material behavior for most polymers, including PVDF. In order to consider both
effects in a material model, the Maxwell model and the Kelvin model are combined in series as
shown in Fig. 6.47. This formulation is known as Burgers law, and it allows for the consideration
of the relevant visco-elastic material characteristics. For the derivation of the constitutive Burgers

𝑃1

𝐸𝐾

𝜂𝐾

Kelvin

𝐸𝑀

𝑃2

𝜂𝑀

Maxwell

Figure 6.47.: Rheological model of Burgers contact law
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model, the deformation is divided in its three parts: the displacement in the Kelvin section (𝜀𝐾),
the deformation of the Maxwell spring, and the Maxwell dashpot (𝜀MS and 𝜀MD)

𝜀 = 𝜀𝐾 + 𝜀MS + 𝜀MD. (6.43)

Due to the series connection, the stress is equal in the Kelvin and the Maxwell section. The
stress-strain relationship of the Kelvin section is

𝜎 = 𝐸𝐾𝜀𝐾 + 𝜂𝐾 𝜀̇𝐾 , (6.44)

and of the Maxwell section it is:

𝜎 = 𝐸𝑀𝜀MS = 𝜂𝑀 𝜀̇MD. (6.45)

Considering first and second derivatives of the equations leads to

𝜎̈
𝜂𝐾𝜂𝑀

𝐸𝐾𝐸𝑀
+ 𝜎̇(𝜂𝑀 + 𝜂𝐾

𝐸𝐾
+ 𝜂𝑀

𝐸𝑀
) + 𝜎 = 𝜀

𝜂𝑀𝜂𝐾

𝐸𝐾
+ 𝜂𝑀 𝜀̇. (6.46)

As shown in [174], the experimentally derived, time-dependent material behavior of PVDF can
be fitted accurately with Burgers law when temperature dependent parameters are considered.
The parameters relevant in the temperature range of LIB are given in Table 6.8, and were used
in the calculations in here. Further, for the active material, the properties of LFP were used
(Table 6.1).

𝐸𝑀 [MPa] 𝐸𝐾 [MPa] 𝜂𝑀 [1012Pas] 𝜂𝐾 [1012Pas]
1200 280 1 28

Table 6.8.: Fit parameter found for Burgers contact law [174]

Core-shell model

To implement the binder phase in the discrete element model, we chose a core-shell approach as
model representation. As sketched in Fig. 6.48, the purely elastic active material is surrounded
by a visco-elastic shell, representing the binder phase. The shell is only implemented as model
to guarantee a buffering effect for each contact, it should not be considered as a closed shell.
Furthermore, in this approach, the CB is assumed to be dissolved in the polymer phase, and thus,
it was not included as a separate phase in the following section.

Based on the initial RCP configuration, with the particles just in contact with almost no overlap,
two possible layouts were considered, depicted in Fig. 6.48: the shell of 𝐿shell can be added at the
outside of the particle, as sketched in Fig. 6.48a, or, as in Fig. 6.48b, it can be added half inside
and half outside of the initial particle surface. The first configuration, denoted as configuration A,
has the Hertz contact of the active material and the visco-elastic contact of the binding material
in parallel.The second possibility, denoted as configuration B, reduces the initial active material
radius in order to generate a gap between the active material particles. This gap, then, is filled
with binder phase, as shown in Fig. 6.48b. For this approach, the initial particle radii is reduced
by half of the shell thickness, while the other half of the shell thickness is added on top of it in
order to create an initial overlap. In both cases, the contact radius 𝑟c,shell depends on the overlap
and affects the visco-elastic contact forces. Further, the shell thickness 𝐿shell can be used as a
measure of the volume fraction of the polymer.
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(a)

𝑟𝑝

Burger

(b)

𝑟𝑝

𝑟c,shell

𝐿shell

Figure 6.48.: Core-shell model of particles in contact with (a) Burgers model and Hertz contact
in parallel and (b) visco-elastic material only. Dark spheres represent the active material, lighter
shell the polymer phase, assuming CB to be distributed within the polymer matrix

Burgers model as force law

In discrete element modeling the contact behavior is given in terms of force and displacement;
thus, the Burgers model (Eq. 6.46) must be reformulated in those terms for its implementation in
the existing code. Speaking generally, the force is related to the stress by the relevant area 𝐴,
which allows to rewrite the stress-strain relationship for Hookean springs (Eq. 6.41) as

𝑓 = 𝐸𝐴Δ𝑙
𝑙0

(6.47)

with 𝑙0 as the initial length and Δ𝑙 = 𝑙 − 𝑙0. The force-displacement relationship of the dashpot
element can be given as

𝑓 = 𝜂𝐴
Δ𝑙

Δ𝑡𝑙0
. (6.48)

Those terms are adapted for the core-shell approach of two overlapping binder particles by
considering 𝐴 = 𝑎𝑐 = 𝜋𝑟2

c,shell as contact area, 𝑙0 = 𝐿shell,P1 + 𝐿shell,P2 as the uncompressed shell
thickness, and Δ𝑙 = 𝛿 as the overlap. To rewrite Eq. 6.46 as force-displacement relationship, the
stress terms are replaced by

𝜎 = 𝑓

𝐴
= 𝑓𝑁

𝑎𝑐
(6.49)

and the strain terms by
𝜀 = Δ𝑙

𝑙0
= 𝛿

𝐿shell,P1 + 𝐿shell,P2
. (6.50)

The time derivatives in Eq. 6.46 are approximated by

(̇) = ()𝑡+1 − ()𝑡

Δ𝑡 (6.51)

with () replaced by the contact force or the change in overlap. In accordance with [175], the
normal force 𝑓 𝑡+1

𝑁 can then be calculated as

𝑓 𝑡+1
𝑁 = 𝑓 𝑡

𝑁 + Δ𝑡𝐸𝑀𝑎𝑐

𝑙0
(𝛿̇𝑡+1

total + 𝐸𝐾

𝜂𝐾
𝛿𝑡+1

𝐾 − 𝑓 𝑡
𝑁

𝜂𝑀 + 𝜂𝐾

𝜂𝑀 * 𝜂𝐾
). (6.52)
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The total overlap of the current configuration is given as 𝛿𝑡+1
total, while 𝛿𝑡+1

𝐾 gives the part of the
displacement, which is in the Kelvin section:

𝛿𝑡+1
𝐾 = 𝛿𝑡

𝐾 + Δ𝑡 * 1
𝜂𝐾𝑎𝑐/𝑙0

(𝑓 𝑡
𝑁 − 𝛿𝑡

𝐾

𝐸𝐾𝑎𝑐

𝑙0
). (6.53)

The rate-dependence of the visco-elastic force law manifests in the dependence of 𝑓𝑁 and 𝛿𝐾 on
the loading history. For newly build contacts (𝑡 = 0) it is assumed, that the initial overlap only
effects the spontaneous deformation, taking place in the elastic part of the Maxwell section. For
𝑡 = 0, this leads to the following initial conditions for the Kelvin section of the overlap:

𝛿𝑡=0
𝐾 = 0 (6.54)

and for the contact force 𝑓𝑁

𝑓 𝑡=0
𝑁 = 𝐸𝑀𝑎𝑐

𝑙0
𝛿𝑡=0

total, (6.55)

with 𝛿𝑡=0
total as the total initial overlap. For the sake of simplicity, the visco-elastic tangential force

𝑓 𝑡+1
𝑇 is calculated in analogy to the normal force in accordance with Liu et al. [176], as sketched

in Fig. 6.49.

𝑃1 𝑃2

Burger
𝑓𝑁

B
urger
𝑓

𝑇

Figure 6.49.: Combination of normal and tangential force in core-shell model

To demonstrate the rate-dependence of the force law with a basic example, the force-response of
two pure PVDF particles in contact is calculated for increasing overlap. Approaching particle
centers with different loading rates 𝜀̇ = Δ𝛿

Δ𝑡 allow to demonstrate the rate-dependence of the
force, as can be seen in Fig. 6.50: For low loading rates, the force response can be described

Figure 6.50.: Force calculated for two binder particles loaded with different rates

by a hysteresis with decreasing maximum force for decreasing loading rate. With increasing
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loading rate, on the other hand, the material response approaches almost linear behavior, as it is
dominated by the elastic part of the Burgers model.

In order to consider that rate-dependence of the visco-elastic material behavior, we can no longer
use the quasi-static approach in the discrete element modeling. As explained in section 6.1, in a
quasi-static approach, the particle positions are rearranged in an iterative loop after each loading
step until the kinetic energy is minimized. For a time-dependent approach, such a loop is not
practical, as the loading history is considered to determine the viscous part of the Burgers model.
In order to represent the rate-dependence of the forces, a dynamic approach was used for the
following calculations. In this, after each loading step only one step of rearrangement of the
particles is performed. The omission of the iteration steps of the quasi-static approach leads most
likely to configurations further away from equilibrium, unless very small time steps are chosen.
Thus, a higher macroscopic stress within the assembly is likely.

Micromechanical simulations

In the following section, possible configurations, volume fractions, and loading rates are studied in
order to get a basic understanding of the newly introduced influence parameters. For comparability
to previous calculations, we chose monosized assemblies with a PF of around 60%. As the CB
phase is assumed to be dissolved in the binder phase, its explicit consideration, as in the binary
assemblies previously used, is no longer necessary. For the material properties of the active
material, LFP was chosen (see Table 6.1). Uni-axial compression in x-direction (𝜀𝑥𝑥 = −2.5%
in total) is applied in combination with constrained boundaries in the perpendicular directions
(𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 0).

Influence of the configuration To study the viscous effect of the configurations in particular, a
low strain rate of 𝜀̇𝑥𝑥 = 0.0001 was chosen. This correlates to a total loading time of 250 seconds
for the calendering process. Obviously, this is very slow; as, however, for faster loading rates
spontaneous response of the Burgers law dominates the material behavior (𝑓 ∼ 𝐸𝑀𝛿), we apply
slow rates to study the impact of viscosity in proximity to the equilibrium response. A shell
thickness 𝐿shell of 10% of the initial particle radii (0.1 r𝑝) is applied; this corresponds to a total
volume fraction of 0.15 for the assumption of a closed shell, when neglecting the overlaps.

To examine the influence of the different configurations A and B, the directional stress response
for the uni-axial compression is shown in Fig. 6.51. Comparison of the results for configuration A
(Fig. 6.51a) with dynamic calculations without binder phase showed that by considering the binder
in parallel to Hertz contacts, the active material clearly dominates the stress responds—with
only marginal impact of the binder phase. Further, the difference to the stress in previous results
in section 6.2.1, (Fig. 6.3b) shows the deviation of quasi-static and dynamic calculations: the
dynamic approach induces higher stresses in loading direction, while the response in directions
perpendicular to the loading directions are similar. The quasi-static stress response can be
considered as the lower limit of the stress for the considered model. In contrast to the macroscopic
stress found for configuration A, configuration B reduces the stress enormously, as illustrated in
Fig. 6.51b. This clearly demonstrates the stress absorbing effect of binder in all contacts.

The 3D reconstruction of a cathode by Hutzenlaub et al. [63], which resolved active material
and binder phase separately, suggests, however, that both type A and type B contacts can be
found in the electrode structure. Even though this information exists only for one example, it is
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Figure 6.51.: Macroscopic stress response for structures with a polymer shell thickness of 10% of
the particle radii for (a) configuration A and (b) configuration B; simulated with a strain-rate
−𝜀̇ = 0.0001

unlikely that all particles of an electrode are exclusively of type A or of type B due to the random
distribution of particles and binder phase during electrode manufacturing. Further, an electrode
with solely type A would suppress the stress absorbing effect of the binder phase completely;
and thus, it would lead large stress. Type B particles, on the other hand, would hinder the
ion transport within in the cell; and thus, they would result in insufficient cell performance.
Consequently, we assume that both, type A and type B contacts, exist in a realistic electrode
structure. As only little information on the binder phase distribution exists, exemplary percentage
portions of type A and B particles were considered in the next simulations.

The effect on the hydrostatic stress is illustrated in Fig. 6.52. As the difference between low and
high percentage of type A contacts is significant, the simulations with low percentage of type A
are replotted in Fig. 6.52b for better visibility. Already for 10% of type B contacts, the binder
phase reduces the stress by 40% and shows its stress absorbing influence. Further, for 50% and
higher, the stress is drastically reduced to values of below 4 MPa.

Figure 6.52.: Hydrostatic stress response for structures with a polymer shell thickness of 10%
and −𝜀̇ = 0.0001 with different percentage portions of configuration A and B in (a) given as
percentage of type B contacts. For better visibility the low stress values are additionally plotted
in (b)
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As the effect of parameter variation is especially pronounced for configurations of 100% type B
particles, those were chosen to study the influence of further parameter. Of interest are the shell
thickness 𝐿shell, reflecting on the amount of binder phase, and the influence of loading rate.

Influence of the shell thickness Assuming a closed shell of constant thickness around the active
material core, the shell thickness can be used to estimate the solid volume fraction 𝜑PVDF of the
binder phase as

𝜑PVDF = 𝑟3
out − 𝑟3

𝑖𝑛

𝑟3
out

(6.56)

with 𝑟out as the outer radius of the shell and 𝑟𝑖𝑛 the inner radius. This neglects the overlap of
the polymer shells, and thus, it overestimates the volume fraction to some extent. Taking the
porosity into account, the total volume fraction can be determined as well. The values are given in
Table 6.9. In Fig. 6.53, the impact of different shell thicknesses on the macroscopic stress is shown

𝐿shell 𝜑PVDF 𝜑PVDF(1 − 𝜖)
0.1 0.259 0.156
0.01 0.030 0.018
0.005 0.015 0.009

Table 6.9.: Volume fractions of the binder phase calculated from the shell thickness 𝐿shell under
the assumption of a closed shell around the core

for a strain rate of 𝜀̇ = 0.0001. Decreasing volume fractions of PVDF reduce the macroscopic

Figure 6.53.: Hydrostatic stress response for structures for different shell thicknesses and loading
rate 𝜀̇=0.0001

stress, and the thickest shell induces the highest stress. As half of the shell thickness is applied
outside the initial radii, which are just in contact at the beginning of the calculation, the overlap
and the contact area generated by a thicker shell is obviously larger than by a thin shell. This,
is turn, results in larger contact forces and allows to explain the larger macroscopic stress. It
was expected that—at least for smaller volume fractions—the polymer is pressed out of the gap
during the loading process at some point. Thereby, the active material particles come in direct
contact, which would induce higher stress. This most likely causes the increase of stress at the
end of the loading process for the smallest volume fraction of PVDF; with further loading this
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effect probably becomes more pronounced. For the parameters considered here, however, the
stress remains smaller than the values found for higher volume fractions of PVDF.

Influence of the loading rate Next, the influence on loading rate is studied. As already demon-
strated in Fig. 6.50 for two approaching particles, the mechanical response depends significantly
on the loading rate: For fast loading, the elastic part of the Burgers model dominates the behavior;
for slow loading rates, the viscous parts affects the results. This behavior was also determined
for the assemblies considered here, as illustrated in Fig. 6.54. The fastest loading rate in this
corresponds to a calendering time of 5 seconds and the slowest to 500 seconds. In experimental
cell production, the loading times are around 1 second for simple compression and for calendering,
the loading velocity is around 1 m/min. The subsequent relaxation process is not considered in
the simulations [177].

Figure 6.54.: Hydrostatic stress response obtained for different loading rates for structures with
𝐿shell=0.1

For loading rates larger than 𝜀̇=0.0001, the stress-strain response is linear. This linearity is in
contrast to non-linear behavior found for Hertz-Mindlin contacts—this is due to the linear spring
within the Burgers model. The slope of the linear relationship increases with increasing loading
rates. For 𝜀̇=0.0001 and smaller, the stress response is influenced by the viscous part of the
Burgers law; this reduces the stress further for lower loading rates.

Calendering, however, is a rather fast performed loading process—so, the stress-response is in the
elastic regime of the Burgers model; and the stress reduction in comparison to the simulations
in section 6.2 is probably due to the softer material. Due to the subsequent relaxation process,
the internal stress is in general further reduced. The mechanical stress building up during the
intercalation process is of more relevance, as it is assumed to influence the mechanical degradation.
Here, it is interesting to determine the range of loading rate, for which spontaneous material
response of the Burgers law starts to dominate the material behavior (𝑓 ∼ 𝐸𝑀𝛿), as this leads
to increasing stress in the electrode structure. For the intercalation process, the loading rate
can be related to the charge rate or the total time required for charging in accordance with the
C-rates. In Fig. 6.55, the total time required for a complete intercalation process is given, as
those values are more meaningful than loading rates. Relatively high charging rates are applied in
order to determine the threshold from viscous to the spontaneous elastic material response. The
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Figure 6.55.: Hydrostatic stress response during intercalation for structures with shell thickness
𝐿shell=0.1 for different intercalation rates, given in form of the total loading time

highest rate—corresponding to complete intercalation in 1 min or C= 1/60—clearly shows a linear
response; in contrast, the two slower rates (with 5 min corresponding to C= 1/12 and 10 min to
C= 1/6) show the impact of the viscous phase on the response. Hence, it is valid to assume that
for usually applied charging rates (C ≥ 1/20), the material response is in the visco-elastic range
of the PVDF.

6.4.7. Summary

In this final section, the impact of the simplifications of the initial modeling approach were
evaluated.

With regard to the initial microstructure, the particle size distribution was found to be negligible
as the impact on the stress response was marginally.

Regarding boundary conditions, two scenarios were implemented: (i) deformation of the volume el-
ement was applied in accordance with the deformation of the current collector, and (ii) additionally
in direction perpendicular to the current collector, the volume element was unconstrained. The
first approach reduces the stress of the intercalation process by around 10%. The second approach,
on the other hand, allows to determine the expansion, which would occur in an free-standing
electrode: 8% deformation is correlated to a nearly stress-free state.

Further, the binder phase is considered to have a significant influence on the stress-response
on the material. To investigate this, the Burgers model was implemented in a dynamic DEM
approach to reflect on the visco-elastic behavior of the PVDF. Based on that, different contact
configuration, volume fractions of binder, and loading rates were studied. The exact distribution
of the binder phase in electrodes is to date not known; however, it is of large relevance for the
stress response: For the binder phase in parallel to the Hertz contact of AM particles (Fig. 6.48a),
it only shows marginal influence on the stress-response; and the stress obtained was similar to
the results without its consideration. For the binder phase in a gap between the AM particles
(Fig. 6.48b), a large stress reduction was observed. Even if only 10% of the contacts are filled
with polymer layer in the gap between active material particles, the stress is reduced by around
35%. Besides the configuration, the loading rate is of significance: As for high loading rates, the
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elastic part of the Burgers law dominates the stress response, the loading has to be slow enough
to benefit most of the stress absorbing effect of the visco-elastic material. The dominance of the
elastic part is relevant for calendering or very fast charging rate. For usually applied charging- or
discharging-rates, on the other hand, the impact of the viscous material response was shown.



7. Conclusion

The objective of this work was to study the electrode microstructure and its influence on parameters
relevant for the performance of solid oxide fuel cells (SOFCs) and lithium ion batteries (LIBs),
as it is a determining factor to improve the actual cell efficiency. For performance optimization,
porous electrode structures, formed by random mixtures of ion conducting particles and electron
conducting particles, are already applied widely; in this way, the transport path lengths are
reduced and the active surface areas are increased.

Reviewing the experimental findings, percolation of both phases in SOFC and of the electron
conducting additives in LIB was determined as an important parameter for cell performance.
Additionally, the active surface area and the effective conductivity—in SOFC in particular the ion
conductivity—are significant for electrode efficiency. Variation in composition and morphology,
however, has contradicting impact on those parameters: Improving effective conductivity usually
reduces the active area and vice versa. Thus, a trade-off between high effective conductivity
and increased active surface area is beneficial for high cell performance. Beyond this general
recommendation, there remains little consensus on what constitutes a good microstructure.

To provide a more complete picture of the connection between microstructure and cell performance,
reduced one-dimensional models are commonly used to study the electrochemical cell behavior . In
those models, the heterogeneous electrode structure is replaced with a hypothetical material which
yields the same response for the same conditions. The equivalent properties of this hypothetical
material are referred to as effective properties [64]. As the influence of microstructure is condensed
to the effective cell properties used as input data, a careful approximation of those parameters
is essential. To find an adequate approach for the approximation, several models were reviewed
and compared. As the effective media approach and the analytic calculation of the percolation
probability based on the concept of coordination numbers, neglect important microstructural
factors, Monte-Carlo simulations were chosen in this work. In those, the microstructure is
represented by a three-dimensional assembly of randomly distributed, spherical particles, which
are either ion or electron conducting. Based on this, different methods were developed and
implemented to simulate the fabrication process and the relevant effective properties for those
three-dimensional structures.

For the generation of the microstructures, a random close packing (RCP) algorithm was used,
leading to a densely packed structure with very few contacting particles. In contrast to the widely
used drop-and-roll algorithm, the overall coordination number is not predefined. To obtain a
more realistic electrode structure, further densification steps were performed in accordance with
the fabrication process: The sintering process during the manufacturing of SOFC electrodes is
mimicked by increasing the particle radii without rearranging the particle centers. The calendering
during LIB fabrication is simulated with a discrete element approach, which allows for the
consideration of mechanical interaction of the particles and their rearrangement as consequence.
Further, the intercalation process during cycling of LIB electrodes was modeled with discrete
element modeling (DEM) as well.
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To determine the percolation probabilities of the structures, the Hoshen-Kopelman algorithm (HK)
was adapted for the conditions of the electrode microstructures and implemented in the scope of
this work. Subsequently, a resistor-network approach was implemented in order to determine the
effective conductivity of the electrode structures based on the information on connectivity obtained
with the HK algorithm. For the resistor-network approach, different fit-laws were developed
in here to calculate the resistance between two contacting particles under consideration of the
different contact types resulting from the different fabrication processes.

To study the impact of electrode composition in SOFCs, a vast amount of numerically generated
microstructures was generated, considering a wide range of volume fractions and particle size
ratios varying from 1 to 10. Especially for the investigation of SOFC microstructures the
analytic percolation approach—based on the concept of coordination number—is widely used.
Therefore, the results obtained for the numerically generated microstructures were compared to
the assumptions made in the analytic method. This comparison enabled us to demonstrate how
the geometric characteristics of the numerically generated microstructure deviate significantly from
the assumptions made in the analytic approaches for PF and coordination numbers. Additionally,
the numerically determined percolation probabilities differ significantly from the analytic findings:
the percolating range was larger in the numerical examination, especially for large size ratios.
Further, the findings of that section led to reasonable doubt regarding the correlation between
the critical coordination number 𝑍𝑐 and the percolation threshold. The results indicate that 𝑍𝑐 is
not a constant value, it rather seems to be influenced by size ratio or the ratio of box length to
particle radius.

As the effective conductivity 𝜅eff,YSZ and the active three-phase boundary (TPB) were experi-
mentally identified to be mainly responsible for cell performance, those values were investigated
next. The numeric and the analytic results deviate significantly for those parameters as well: the
numerically determined effective conductivities were in general lower than the values predicted by
the analytic approaches. Conversely, the active TPB length found numerically was larger than the
one found for the analytic approach. Nevertheless, the tendencies of an increase of the effective
conductivity with volume fraction and a decrease of the active area (TPB) with size ratio were
predicted correctly with the analytic approach. Both effective parameters improve—independent
of size ratio—with increasing densification, which is a measure for the degree of sintering. But, due
to the necessity of a connected pore space, the densification is restricted. Assuming a minimum
pore space of 15% as required, the monosized assemblies offer more potential for densification,
as their initial PF is lower than the one of binary sized assemblies. A study on the impact of
the size ratio with assemblies densified to the maximum allowable packing factor might offer
further insight in the influence of densification. Further, compositions with a large size ratio
and large YSZ particles, in combination with small volume fractions of the electron conducting
phase, are favorable in order to achieve high ionic conductivity of the structure. Conversely, the
largest extent of active TPB was found for monosized assemblies with a mixture of 50:50% volume
fraction. Additionally, a large size ratio reduces the extent of active TPB significantly. In order
to assess those contradicting recommendations, an adapted Tanner-Fung-Virkar (TFV) model
was implemented, which enables us to estimate the combined effect of those two parameters on
the effective cell resistance. The positive influence of densification on the cell efficiency—which
is inversely proportional to the overall cell resistance—is pointed out by those results as well.
Additionally, the negative influence of size ratio on the cell resistance seems less pronounced,
as assumed based on the results for active TPB. It appears that the choice of volume fractions
appropriate for an arbitrary size ratio is much more relevant. Considering an optimized mixture
for each size ratio, monosized assemblies with a volume fraction of the electron conducting phase
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slightly above 30% are the most promising. Clearly, the TFV model is a very simplified approach,
and thus, the revaluation of these findings with more advanced cell level models is recommendable.
Additionally, the implementation of numerically determined effective transport properties in
advanced cell level models implies the possibility to obtain enhanced insight in the absolute effect
of morphological variations. The studies performed so far based on the analytically determined
effective properties might be influenced by the overestimation of the effective conductivity and
the underestimation of the active TPB.

The LIB electrode structures were approximated as a mixture of active material (AM) and carbon
black (CB) with a size ratio of 10. The densification of the microstructures was performed via DEM,
which is an appropriate tool to predict microstructural rearrangement due to mechanical loading.
A comparison of the macroscopic stress during intercalation process to values obtained from
substrate-curvature experiments showed a good agreement. During calendering as well as during
intercalation, the stress-load response is non-linear. For a combined calendering-intercalation
process, this results in a higher stress increase during intercalation for larger applied preloads.
Thus, a low preload is beneficial in terms of stress development during intercalation. Further, a
dependence of the macroscopic stress on the material properties of active material can be seen.
Varying PFs and volume fractions of CB show little influence on the stress-load relationship.
Their effect on macroscopic stress increases slightly for the intercalation process, as a variation
in composition is correlated to a varying amount of AM and thus, a varying amount of overall
volume change.

Studying the percolation probability of the densified structures as function of the applied load
demonstrated clearly the necessity of an adequate calendering load: only insufficient connectivity
is found for uncalendered cells, this results most likely in unreliable cell performance. For the here
considered cases, a preload correlated to 60% of percolation seems to ensure constant connectivity
during the intercalation process. Regardless of the preload, a sufficient amount of CB (around
8.7% of total volume fraction) is required. Besides the electron conductivity, also the amount of
connected active material and the free surface area are correlated to the percolation probability.
A decrease of the free surface area with compression, as supposed in experimental studies [23],
was only found in few cases. During intercalation, the decrease becomes more pronounced, most
likely due to increasing solid-solid contacts between AM particles. Even though the percolation
probability is neglected in today’s research, its importance should be revaluted considering the
findings of this work, in particular for active material of poor electron conductivity (e.g. LMO
and LFP). A determination of the percolation probability based on the concept of coordination
number is unfeasible, as no universal critical coordination number was found.

Above the percolation threshold, the effective conductivities found numerically for the different
assemblies were in a similar range and one order of magnitude smaller than the values predicted
by Bruggeman’s equation. Further, no clear correlation could be found to the directional
macroscopic stress: the anisotropy, induced during calendering, does not necessarily reflect on
the effective conductivity. Thus, a realistic estimation of effective transport properties for further
microstructures can best be obtained with the Monte-Carlo methods as implemented in this work
in form of a coupled approach of DEM and RN-models.

Considering all performed simulations, the microstructure with the highest amount of CB showed
the best results: the low percolation threshold allows for low preloads, and thus, the stress increase
during intercalation is the smallest. Further, smaller amounts of active material in combination
with lower stress leads to a reduced solid-solid contact area, which, in turn, maintains a larger
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active surface area. Here, an optimum between the positive effect on cell properties and its
negative effect on power density needs to be found.

Finally, the simplifications in the modeling of the LIB electrode microstructure and their microme-
chanics were examined, and the influence of the most relevant ones were investigated further.
Besides the main particle size distribution of AM and CB, size distributions within each phase
seem to have negligible influence on the stress-load relationship. Additionally, the impact of
more flexible boundary conditions was investigated. The difference in the stress development
during intercalation in a completely constrained and a quasi free-standing electrode structure was
demonstrated to be significant. This indicates the importance to further consider the relevant
casing conditions in order to estimate the stress-development as well es the electrode expansion
accurately. Furthermore, the impact of the visco-elastic material behavior of the binder phase was
studied: Therefore, Burgers law was implemented as additional force law. Here, the distribution
of the binder phase in the electrode structure and the loading velocity showed significant influence.
Thus, for a more realistic stress-strain relationship, further knowledge regarding the distribution
of this additional phase would be helpful. Concerning the loading rates, the elastic part of the
Burgers law dominates the stress response for high rates; thus, the loading has to be slow enough
to benefit most of the stress absorbing effect of the visco-elastic material. The dominance of the
elastic part is relevant for calendering or very fast charging rate. For usually applied charging- or
discharging-rates, on the other hand, the impact of the viscous material response was shown.

In conclusion, it can be said that the approach developed in the scope of this work offers a
powerful tool to study the microstructural impact on parameters relevant for cell performance
in detail. Comparison to the often applied analytic solutions demonstrated the importance of
the more detailed consideration of the microstructure for the estimation of those parameters.
Especially the variations caused by the manufacturing processes were significant, and those are
only poorly represented with the standard methods. In addition to the more frequently performed
microstructure modeling of the SOFC structures, the coupling with DEM enables us to reflect
on the micromechnical changes, occurring in LIB electrodes. The importance of the percolation
of CB was pointed out and can only be recommended for consideration in future LIB research.
Further adaption of the DEM allows to additionally consider flexible boundary conditions, similar
to experimental cells, as well as the influence of binder on the microstructure—properties which
have been mostly neglected so far in research.



A. Derivation of Effective-Medium
Approximations

For the derivation of the different effective-medium approximations used in this work, we consider
a mixture of matrix phase with volume fraction 𝜑1 and spherical inclusions of with volume fraction
𝜑2, as described in section 3.1.1. We assume, that for a certain composition 0 the effective
conductivity of this composition 𝜅eff,0 is known. Thus it can be treat as a homogeneous medium
and will be considered as matrix material in the following reflection.

Now, this medium 0 is slightly changed by substituting matrix material with a small volume
fraction 𝜑𝑖, where 𝑖 can be either denoting phase 1 or 2. The changed effective conductivity 𝜅eff,Δ𝜑i

can be determined via Eq. 3.7, considering 𝜅eff,0 as the conductivity of the matrix respectively
the initial medium 0:

𝜅eff,Δ𝜑i − 𝜅eff,0
𝜅eff,Δ𝜑i + 2𝜅eff,0

= 𝜑𝑖
𝜅𝑖 − 𝜅eff,0
𝜅𝑖 + 2𝜅eff,0

, (A.1)

with 𝜅𝑖 as the bulk conductivity of the added volume fraction. Rewritten explicitly for 𝜅eff,Δ𝜑i ,
this leads to

𝜅eff,Δ𝜑i = 𝜅eff,0
1 + 2𝜑𝑖

𝜅𝑖−𝜅eff,0
𝜅𝑖+2𝜅eff,0

1 − 𝜑𝑖
𝜅𝑖−𝜅eff,0
𝜅𝑖+2𝜅eff,0

. (A.2)

By expanding Eq. A.2 in a Taylor’s series about 𝜑𝑖 = 0 considering only the the first two terms
we obtain

𝜅eff,Δ𝜑i = 𝜅eff,0(1 + 3𝜑𝑖
𝜅𝑖 − 𝜅eff,0
𝜅𝑖 + 2𝜅eff,0

). (A.3)

Based on this expression, both the self-consistent approximation (Eq. 3.8) as well as the differential
approximation (Eq. 3.11) can be derived—based on different assumptions on the construction of
the composite, as will be shown in the following.

A.1. Self-consistent approximation

For the sake of clarity, the volume fractions of an arbitrary binary mixture are denoted as 𝜑1 and
𝜑2 thereby. Due to the symmetry of the system, however, 𝜑1 and 𝜑2 can be interchanged with
each other.

First, following Bruggeman’s approach [70] to derive the self-consistent effective-medium approxi-
mation (Eq. 3.8), the volume fractions, 𝜑1 and 𝜑2, of the binary mixture are divided in arbitrary
small subunits with the requirements that

𝜑*
1 + 𝜑**

1 + 𝜑***
1 + ... = 𝜑1

𝜑*
2 + 𝜑**

2 + 𝜑***
2 + ... = 𝜑2,

(A.4)
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and 𝜑1 + 𝜑2 = 1.

Replacing a small amount of a homogeneous medium with an effective conductivity 𝜅eff,0 by 𝜑*
1

leads according to Eq. A.3 to

𝜅eff = 𝜅eff,Δ𝜑1 = 𝜅eff,0(1 + 3𝜑*
1
𝜅1 − 𝜅eff,0
𝜅1 + 2𝜅eff,0

). (A.5)

Subsequently, such an amount of 𝜑*
2 is used to replace matrix material, that the previous

conductivity 𝜅eff,0 is restored

𝜅eff,Δ𝜑2 = 𝜅eff,0 = 𝜅eff,Δ𝜑1(1 + 3𝜑*
2
𝜅2 − 𝜅eff,Δ𝜑1

𝜅2 + 2𝜅eff,Δ𝜑1

). (A.6)

Inserting Eq. A.6 in Eq. A.5 leads to

1 = (1 + 3𝜑*
2
𝜅2 − 𝜅eff
𝜅2 + 2𝜅eff

)(1 + 3𝜑*
1
𝜅1 − 𝜅eff(1 + 3𝜑*

2
𝜅2−𝜅eff
𝜅2+2𝜅eff

)
𝜅1 + 2𝜅eff(1 + 3𝜑*

2
𝜅2−𝜅eff
𝜅2+2𝜅eff

)
). (A.7)

Under the assumption of 𝜑*
2 × 𝜑*

1 ≪ 𝜑*
𝑖 , this can be simplified to

0 = 𝜑*
1
𝜅1 − 𝜅eff
𝜅1 + 2𝜅eff

+ 𝜑*
2
𝜅2 − 𝜅eff
𝜅2 + 2𝜅eff

. (A.8)

This step is repeated until the complete initial matrix is replaced by volume fractions 𝜑1 and 𝜑2
(assuming that this adds up to the final volume fractions). Summing up the equations of the type
of Eq. A.8 leads for a binary, unbiased and symmetric composition on average to Eq. 3.8.

A.2. Differential approximation

To derive the differential approximation (Eq. 3.11), the influence of an infinitesimal increment
of 𝜑𝑖 on the effective conductivity is considered and calculated with Eq. A.3 [67]. To do so, we
suppose that the effective conductivity 𝜅eff,0(𝜑2) of a two-phase composite is known for a certain
value of 𝜑2, and then, we can treat 𝜅eff,0(𝜑2) as the composite host conductivity.

To calculate the influence of an infinitesimal increase of 𝜑2 on the effective conductivity, we need
to replace a certain amount of phase 1 with phase 2. In a random and homogeneous composition,
however, removing randomly a certain amount of the composition—to replace it with phase 2
material—always removes a part of the present phase 1 and phase 2. Under consideration of
proportions, by adding Δ𝜑2 only the amount Δ𝜑2 * 𝜑1 is changed. To actually increase the
volume fraction 𝜑2 to 𝜑2 + Δ𝜑2 (by randomly replacing composite material with phase 2 material),
the required amount of phase 2 material has to be calculated relative to 𝜑1; and thus, Δ𝜑2/𝜑1
(=Δ𝜑2/(1 − 𝜑2)) of the composite has to be replaced by phase 2 material in order to obtain a
composite with 𝜑2 + Δ𝜑2.

Inserting this in Eq. A.3

𝜅eff,Δ𝜑 − 𝜅eff,0 = 3𝜅eff,0
𝜅2 − 𝜅eff,0
𝜅2 + 2𝜅eff,0

Δ𝜑2
1 − 𝜑2

. (A.9)
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This becomes a differential equation for an infinitesimal small amount of inclusion (Δ𝜑2 → 0).

(1 − 𝜑2)𝑑𝜅eff
𝑑𝜑2

= 3𝜅eff
𝜅2 − 𝜅eff
𝜅2 + 2𝜅eff

(A.10)

Separation of variables (Eq. A.11) and transforming (Eq. A.12) leads to an expression that can
be integrated analytically:

𝜅2 + 2𝜅eff
3𝜅eff(𝜅2 − 𝜅eff)𝑑𝜅eff = 1

1 − 𝜑2
𝑑𝜑2 (A.11)

(𝜅2 − 𝜅eff) + 3𝜅eff
3𝜅eff(𝜅2 − 𝜅eff) 𝑑𝜅eff = ( 1

3𝜅eff
+ 1
𝜅2 − 𝜅eff

)𝑑𝜅eff = 1
1 − 𝜑2

𝑑𝜑2. (A.12)

Integration of the indefinite expressions leads to

𝑙𝑛(3)
3 − 𝑙𝑛(𝜅2 − 𝜅eff) = −𝑙𝑛(1 − 𝜑2) + 𝐶 (A.13)

with an constant of integration 𝐶. With the initial condition 𝜅eff(𝜑2 = 0) = 𝜅1 C is defined as

𝐶 = 1
3(𝑙𝑛(𝜅1) − 3𝑙𝑛(𝜅2 − 𝜅1)). (A.14)

Insert C and using exponential function leads to

(𝜅2 − 𝜅eff
𝜅2 − 𝜅1

)( 𝜅1
𝜅eff

)1/3 = 1 − 𝜑2. (A.15)

Finally, for phase 2 being isolating this can be transformed to Archie’s law:
𝜅eff
𝜅1

= 𝜑
3/2
1 . (A.16)





B. Coordination Number 𝑍𝑘,𝑗

The coordination number 𝑍𝑘,𝑗 for 𝑘 ̸= 𝑗 can be derived from the sum over all contacts in a binary
composition of particles of phase 𝑘 and 𝑙:

𝑛𝑔𝑒𝑠𝑍0 = 𝑛𝑘𝑍𝑘,𝑘 + 𝑛𝑘𝑍𝑘,𝑗 + 𝑛𝑗𝑍𝑗,𝑗 + 𝑛𝑗𝑍𝑗,𝑘. (B.1)

Writing 𝑛𝑖/𝑛𝑔𝑒𝑠 as 𝜉𝑖 and considering the contact number conservation (Eq. 3.13), this leads to

𝑍0 = 𝜉𝑘𝑍𝑘,𝑘 + 𝜉𝑗𝑍𝑗,𝑗 + 2𝜉𝑘𝑍𝑘,𝑗 . (B.2)

With Eq. 3.17 this can be rewritten as

0.5𝑍0(1 − 𝜉𝑘𝜁𝑘 − 𝜉𝑗𝜁𝑗) = 𝜉𝑘𝑍𝑘,𝑗 . (B.3)

With 𝜁𝑘 = 1 − 𝜁𝑗 this is

0.5𝑍0(1 − 𝜉𝑘(1 − 𝜁𝑗) − 𝜉𝑗𝜁𝑗) =
0.5𝑍0(1 − 𝜉𝑘 + 𝜉𝑘𝜁𝑗 − 𝜉𝑗𝜁𝑗) = 𝜉𝑘𝑍𝑘,𝑗 , (B.4)

and with 𝜉𝑘 = 1 − 𝜉𝑗 follows

0.5𝑍0(𝜉𝑗 + 𝜉𝑘𝜁𝑗 − 𝜉𝑗𝜁𝑗) =
0.5𝑍0(𝜉𝑗 + 𝜁𝑗(𝜉𝑘 − 𝜉𝑗) =

0.5𝑍0(𝜉𝑗 + 𝜁𝑗(1 − 𝜉𝑗 − 𝜉𝑗) =
0.5𝑍0(𝜉𝑗 + 𝜁𝑗(1 − 2𝜉𝑗) =

0.5𝑍0𝜁𝑗(𝜉𝑗

𝜁𝑗
+ 1 − 2𝜉𝑗) = 𝜉𝑘𝑍𝑘,𝑗 . (B.5)
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Substituting the surface-area fraction 𝜁𝑗 with 𝜉𝑗𝑟2
𝑗∑︀𝑀

𝑖
𝜉𝑖22

𝑖

leads to

0.5𝑍0𝜁𝑗( 𝜉𝑗

𝜉𝑗𝑟2
𝑗∑︀𝑀

𝑖
𝜉𝑖𝑟2

𝑖

+ 1 − 2𝜉𝑗) =

0.5𝑍0𝜁𝑗(
∑︀𝑀

𝑖 𝜉𝑖𝑟
2
𝑖

𝑟2
𝑗

+ 1 − 2𝜉𝑗) =

0.5𝑍0𝜁𝑗(
∑︀𝑀

𝑖 𝜉𝑖𝑟
2
𝑖 + 𝑟2

𝑗 − 2𝜉𝑗𝑟
2
𝑗

𝑟2
𝑗

) =

0.5𝑍0𝜁𝑗(
∑︀𝑀

𝑖 𝜉𝑖𝑟
2
𝑖 + 𝑟2

𝑗 − 2𝜉𝑗𝑟
2
𝑗

𝑟2
𝑗

) =

0.5𝑍0𝜁𝑗(
𝜉𝑗𝑟

2
𝑗 + 𝜉𝑘𝑟

2
𝑘 + 𝑟2

𝑗 − 2𝜉𝑗𝑟
2
𝑗

𝑟2
𝑗

) =

0.5𝑍0𝜁𝑗(
𝜉𝑘𝑟

2
𝑘 + 𝑟2

𝑗 − 𝜉𝑗𝑟
2
𝑗

𝑟2
𝑗

) =

0.5𝑍0𝜁𝑗(𝜉𝑘𝑟
2
𝑘

𝑟2
𝑗

+ 1 − 𝜉𝑗) = 𝜉𝑘𝑍𝑘,𝑗 . (B.6)

With 𝜉𝑘 = 1 − 𝜉𝑗 this leads to

0.5𝑍0𝜁𝑗(𝜉𝑘(𝑟
2
𝑘

𝑟2
𝑗

+ 1)) = 𝜉𝑘𝑍𝑘,𝑗

0.5𝑍0𝜁𝑗(𝑟
2
𝑘

𝑟2
𝑗

+ 1) = 𝑍𝑘,𝑗 (B.7)



C. Tanner-Fung-Virkar Model

In this chapter, the derivation of the effective cell resistance for a simplified electrode structure is
given, closely following the calculations of Tanner et al. [135, 136]: As described, steady-state
conditions lead for the simplified electrode structure shown in Fig. 5.18 to

𝐼1 + 𝐼2 + 𝐼3 = 𝐼4, (C.1)

with the subscripts indicating the boundaries through which the currents enter or leave the
electrode. To derive an analytic expression of the effective cell resistance based on Eq. C.1, the
current through each surface first needs to derived separately based on Ohm’s law.

The current through facet 1 of length 𝑤 = (1 − 𝜖)𝑙 and thickness 𝑡 is

𝐼1 = Δ𝜙
𝑅1

= − 𝑤𝑡

𝑅𝑐𝑡
(𝜙(ℎ+ 𝑑/2) − 𝜙𝑠), (C.2)

with 𝜙(ℎ+ 𝑑/2) as the potential slightly below facet 1. The resistance 𝑅1 is converted in the area
specific resistance 𝑅𝑐𝑡 of the surface in accordance with 𝑅1 = 𝑅𝑐𝑡/(𝑤𝑡).

The current through facet 3 can be determined in analogy to 𝐼1:

𝐼3 = − 𝜖𝑙𝑡

𝑅𝑐𝑡
(𝜙(𝑑/2) − 𝜙𝑠), (C.3)

with 𝜖𝑙 as length of facet 3 and 𝜙(𝑑/2) as the potential slightly below it.

For calculation of the current through facet 2, the variation of the potential along the left side
of facet 2 has to be considered. To do so, the electrode is divided in small volume elements of
heights Δ𝑦, as shown in Fig. C.1. The currents 𝐼𝐶 of all elements have to be determined and
added up to 𝐼2. For the small volume element, steady-state conditions lead to

A
C

B

Δ𝑦

𝑤

𝑅𝑐𝑡

𝜙𝑠

(𝑦 − Δ𝑦
2 , 𝜙(𝑦 − Δ𝑦

2 )

(𝑦, 𝜙(𝑦))

(𝑦 + Δ𝑦
2 , 𝜙(𝑦 + Δ𝑦

2 ))
𝐼𝐴

𝐼𝐵

𝐼𝐶

Figure C.1.: A section of the electrode shown in Fig. 5.18, considered to derive the current through
facet 2
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𝐼𝐴 + 𝐼𝐵 + 𝐼𝐶 = 0, (C.4)

with the subscripts denoting the facets through which the current crosses. Again, the currents
have to be determined separately for each facet. The ohmic behavior leads for facet 𝐴 to

𝐼𝐴 = 𝜙(𝑦 + Δ𝑦/2) − 𝜙(𝑦)
𝑅𝐴

. (C.5)

Since the inner part of the columns is dense material, the resistance 𝑅𝐴 can be calculated in
accordance with Eq. 5.3 as

𝑅𝐴 = 𝜌ℎ𝐴

𝐴𝐴
= Δ𝑦/2
𝜅bulk,YSZ𝑤𝑡

, (C.6)

which leads to
𝐼𝐴 = 𝜅bulk,YSZ𝑤𝑡

𝜙(𝑦 + Δ𝑦/2) − 𝜙(𝑦)
Δ𝑦/2 . (C.7)

For Δ𝑦/2 → 0, this leads to the differential equation

𝐼𝐴 = 𝜅bulk,YSZ𝑤𝑡
𝑑𝜙

𝑑𝑦
|𝑦+Δ𝑦/2 . (C.8)

The differential equation for 𝐼𝐵 can be derived in analogy:

𝐼𝐵 = −𝜅bulk,YSZ𝑤𝑡
𝑑𝜙

𝑑𝑦
|𝑦−Δ𝑦/2 . (C.9)

Since we also assume ohmic behavior for the surface reactions, 𝐼𝐶 is

𝐼𝐶 = 𝜙𝑠 − 𝜙(𝑦)
𝑅𝐶

= 𝐴𝐶

𝑅𝑐𝑡
(𝜙𝑠 − 𝜙(𝑦)) = 𝑡Δ𝑦

𝑅𝑐𝑡
(𝜙𝑠 − 𝜙(𝑦)), (C.10)

with 𝑅𝑐𝑡 as the area specific charge-transfer resistance. Inserting Eqs. C.8, C.9 and C.10 in Eq. C.4
leads to

𝜅bulk,YSZ𝑤𝑡(
𝑑𝜙

𝑑𝑦
|𝑦+Δ𝑦/2 −𝑑𝜙

𝑑𝑦
|𝑦−Δ𝑦/2)) + 𝑡Δ𝑦

𝑅𝑐𝑡
(𝜙𝑠 − 𝜙(𝑦)) = 0. (C.11)

Dividing by 𝑡Δ𝑦
𝑅𝑐𝑡

gives

𝜅bulk,YSZ𝑤𝑅𝑐𝑡

(𝑑𝜙
𝑑𝑦 |𝑦+Δ𝑦/2 −𝑑𝜙

𝑑𝑦 |𝑦−Δ𝑦/2)
Δ𝑦 + 𝜙𝑠 − 𝜙(𝑦) = 0. (C.12)

With the definition
𝑑2𝜙

𝑑𝑦2 =
(𝑑𝜙

𝑑𝑦 |𝑦+Δ𝑦/2 −𝑑𝜙
𝑑𝑦 |𝑦−Δ𝑦/2)

Δ𝑦 , (C.13)

this can be written as
𝜅bulk,YSZ𝑤𝑅𝑐𝑡

𝑑2𝜙

𝑑𝑦2 + 𝜙𝑠 = 𝜙(𝑦). (C.14)

Integration of Eq. C.14 leads in general form to

𝜙(𝑦) = 𝜙𝑠 + 𝐶1𝑒
−(𝑦−𝑑/2)

𝑎 + 𝐶2𝑒
𝑦−𝑑/2

𝑎 (C.15)

with
𝑎 =

√︁
𝜅bulk,YSZ𝑤𝑅𝑐𝑡 (C.16)
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As defined by the boundary conditions, immediately beneath facet 1 at ℎ+ 𝑑
2 , the current across

the surface 𝐼1 (Eq. C.2) must be identical to the current inside the column 𝐼𝐴 |𝑦=ℎ+𝑑/2 (Eq. C.8):

− 𝑤𝑡

𝑅𝑐𝑡
(𝜙(ℎ+ 𝑑

2)) = 𝜅bulk,YSZ𝑤𝑡
𝑑𝜙(𝑦)
𝑑𝑦

|𝑦=ℎ+𝑑/2 . (C.17)

Under consideration of Eq. C.15, 𝜙(ℎ+ 𝑑/2) is 𝜙0 + 𝐶1𝑒
−ℎ/𝑎 + 𝐶2𝑒

ℎ/𝑎. Further, 𝑑𝜙(𝑦)
𝑑𝑦 |𝑦=ℎ+𝑑/2 is

− 1
𝑎𝐶1𝑒

−ℎ/𝑎 + 1
𝑎𝐶1𝑒

ℎ/𝑎. Solving for 𝐶2 gives

𝐶2 = 𝐶1𝛽𝑒
−2ℎ/𝑎, (C.18)

with
𝛽 = 𝜅bulk,YSZ𝑅𝑐𝑡 − 𝑎

𝜅bulk,YSZ𝑅𝑐𝑡 + 𝑎
. (C.19)

This leads to
𝜙(𝑦) = 𝜙0 + 𝐶1𝑒

−(𝑦−𝑑/2)
𝑎 + 𝐶1𝛽𝑒

−2ℎ+𝑦−𝑑/2
𝑎 . (C.20)

The current through a differential element of facet 2 is

𝑑𝐼2 = − 𝑡

𝑅𝑐𝑡
(𝜙(𝑦) − 𝜙0)𝑑𝑦 (C.21)

With 𝜙(𝑦) given in Eq. C.20 inserted in Eq. C.21, integration over the height ℎ of the electrode
leads to

𝐼2 = 𝐶1𝑡𝑎

𝑅𝑐𝑡
(𝑒−ℎ/𝑎 − 1)(1 + 𝛽𝑒−ℎ/𝑎) (C.22)

Finally, the current through facet 4 is determined from the current density 𝑗4, as the facet is not
a surface, but in the middle of the dense electrolyte layer:

𝐼4 = 𝑙𝑡𝑗4 = 𝑙𝑡𝜅bulk,YSZ∇𝜙4. (C.23)

Because of the assumption of horizontal equipotential lines, the electrolyte behaves like a dense
block of material with a constant gradient in potential from 𝑦 = −𝑑/2 to 𝑦 = +𝑑/2. Therefore
∇𝜙 at facet 4 is the same as (𝜙(𝑑/2) − 𝜙(0))/𝑑/2 [136], which leads to

𝐼4 = 𝑙𝑡𝜅bulk,YSZ
𝜙(𝑑/2) − 𝜙(0)

𝑑/2 . (C.24)

For simplicity, 𝜙(0) was defined as 0. With 𝜙(𝑦) defined by Eq. C.20 this leads to

𝐼4 = 𝜅bulk,YSZ𝑙𝑡

𝑑/2 (𝜙𝑠 + 𝐶1(1 + 𝛽𝑒−2ℎ/𝑎)). (C.25)

Further, Eq. C.2 and Eq. C.3 can be rewritten with 𝜙(𝑦), defined by Eq. C.20, to

𝐼1 = − 𝑤𝑡

𝑅𝑐𝑡
(1 + 𝛽)𝐶1𝑒

−2ℎ/𝑎 (C.26)

for facet 1, and to
𝐼3 = − 𝜖𝑙𝑡

𝑅𝑐𝑡
𝐶1(1 + 𝛽𝑒−2ℎ/𝑎) (C.27)

for facet 3.

Substituting the terms C.22, C.26, C.27 and C.25 into Eq. C.1 allows to determine 𝐶1. Due to
the complexity of the equation, Mathematica was used to solve for 𝐶1. Finally, substituting 𝐼4 in
Eq. 5.13 in section 5.5.1 allows to determine the area specific resistance of the electrode 𝑅eff , as
given in Eq. 5.14.





Bibliography

[1] M. Granovskii, I. Dincer, and M. A. Rosen. “Economic and environmental comparison of
conventional, hybrid, electric and hydrogen fuel cell vehicles”. In: Journal of Power Sources
159.2 (206), pp. 1186–1193.

[2] J. Kunze and U. Stimming. “Electrochemical Versus Heat-Engine Energy Technology: A
Tribute to Wilhelm Ostwald’s Visionary Statements”. In: Energy & Environmental Science
4 (2011), pp. 9230–9237.

[3] http://de.statista.com: Wirkungsgrad von ausgewählten Stromspeichern. Apr. 2014.
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