

Reliable Software for Unreliable Hardware
 – A Cross-Layer Approach

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Semeen Rehman

aus Mardan, Pakistan

Tag der mündlichen Prüfung: 15. Juli 2015

Erster Gutachter: Prof. Dr. Jörg Henkel, Karlsruhe Institute of Technology (KIT),
Fakultät für Informatik, Chair for Embedded Systems (CES)

Zweiter Gutachter: Prof. Dr. Sri Parameswaran, University of New South Wales (UNSW),
School of Computer Science and Engineering

 Prof. Dr. Wolfgang Karl, Karlsruhe Institute of Technology (KIT),
Fakultät für Informatik, Chair for Computer Architecture and Parallel
Processing (CAPP)

Semeen Rehman
Adlerstr. 3a
76133 Karlsruhe

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbständig verfasst
habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig angegeben
habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen – die
anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden
Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

 S e m e e n R e h m a n

v

Acknowledgement

I would like to present my cordial gratitude to my advisor Prof. Dr. Jörg Henkel for his continuous
supervision, support, motivation, and scientific feedback during the course of my Ph.D. Without his vision
and guidance, I would have not got this far in my PhD study and I thank him wholeheartedly. I would also
like to thank my co-advisors Prof. Dr. Sri Parameswaran and Prof. Dr. Wolfgang Karl for their support
and technical feedback.

I would like to present my sincere gratitude to my colleague and project leader Dr. Muhammad
Shafique for his erudite guidance, continual motivation, and critical feedback throughout my research
time that helped me towards my research accomplishments. Without his technical guidance and
motivation, the work of this quality would have not been possible. He kept my morals high and motivated
me in times when needed. Besides technical guidance, I have learned from him how to stay unaffected
with both success and failure, and most importantly to remain humble.

I would also like to pay my special thanks to my colleague and team member Mr. Florian Kriebel for
all the technical discussions and continuous support throughout the project work and paper submissions.
He has been a great colleague and co-worker throughout these years. My special thanks also go to
Mr. Arun Subramaniyan for discussions and support with the research paper submissions in the last 6
months that was a great help in keeping me focused to timely finish my thesis.

I would like to thank all my colleagues from the Chair for Embedded Systems (CES) who supported
me during my Ph.D.

I thank all my project collaborators Prof. Jian-Jia Chen, Kuan-Hsun Chen, Prof. Siddharth Garg, Tuo
Li, Bruno Zatt, Anas Toma, and Mohammad Salehi for their fruitful discussions, exchange of knowledge
and data.

Finally, I would like to pay my utmost gratitude to my parents (Dr. Rahman Ullah and Shaheen Qazi)
and my siblings (Cirus Rehman and Susan Rehman) for their unconditional love, never-ending support,
sincere prayers, and exceptional sacrifices throughout my Ph.D. studies and since ever. I would like to pay
my deepest gratitude to Azeem Rehman for the light of guidance and sincere unconditional support
throughout my Ph.D. process.

vii

List of Own Publications Included in This Thesis
Transactions/Journals (blind peer reviewed)

[T.1] S. Rehman, K.-H. Chen, F. Kriebel, A. Toma, M. Shafique, J.-J. Chen, J. Henkel, “Cross-Layer
Software Dependability on Unreliable Hardware”, in IEEE Transactions on Computers (TC), 2015.

[T.2] S. Rehman, F. Kriebel, M. Shafique, J. Henkel, “Reliability-Driven Software Transformations for
Unreliable Hardware”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), Volume 33, Issue 11, pp. 1597–1610, 2014.

[T.3] M. Shafique, P. Axer, C. Borchert, J.-J. Chen, K.-H. Chen, B. Döbel, R. Ernst, H. Härtig, A. Heinig,
R. Kapitza, F. Kriebel, D. Lohmann, P. Marwedel, S. Rehman, F. Schmoll, O. Spinczyk, “Multi-
Layer Software Reliability on Unreliable Hardware”, in Information Technology (IT), 2015.

Conferences (double-blind/blind peer reviewed)

[C.1] S. Rehman, F. Kriebel, D. Sun, M. Shafique, J. Henkel, “dTune: Leveraging Reliable Code
Generation for Adaptive Dependability Tuning under Process Variation and Aging-Induced
Effects”, ACM/IEEE/EDA 51st Design Automation Conference (DAC), 2014. Received a
'European Network of Excellence on High Performance and Embedded Architecture and
Compilation' (HiPEAC’14) Paper Award.

[C.2] J. Henkel, L. Bauer, H. Zhang, S. Rehman, M. Shafique, “Multi-Layer Dependability: From
Microarchitecture to Application Level”, ACM/IEEE/EDA 51st Design Automation Conference
(DAC), 2014, Invited Paper for the Special Session: “Embedded Resiliency: Approaches for the
Next Decade”. Received a 'European Network of Excellence on High Performance and Embedded
Architecture and Compilation' (HiPEAC’14) Paper Award.

[C.3] S. Rehman, F. Kriebel, M. Shafique, J. Henkel, “Compiler-Driven Dynamic Reliability
Management for On-Chip Systems under Variabilities”, IEEE/ACM 17th Design Automation and
Test in Europe Conference (DATE), 2014.

[C.4] M. Shafique, S. Rehman, P. V. Aceituno, J. Henkel, “Exploiting Program-Level Masking and
Error Propagation for Constrained Reliability Optimization”, ACM/IEEE/EDA 50th Design
Automation Conference (DAC), 2013, Received a 'European Network of Excellence on High
Performance and Embedded Architecture and Compilation' (HiPEAC’13) Paper Award.

[C.5] S. Rehman, A. Toma, F. Kriebel, M. Shafique, J.-J. Chen, J. Henkel, “Reliable Code Generation
and Execution on Unreliable Hardware under Joint Functional and Timing Reliability
Considerations”, 19th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pp. 273-282, 2013.

[C.6] S. Rehman, M. Shafique, P. V. Aceituno, F. Kriebel, J.-J. Chen, J. Henkel, “Leveraging Variable
Function Resilience for Selective Software Reliability on Unreliable Hardware”, IEEE/ACM
16th Design Automation and Test in Europe Conference (DATE), pp. 1759-1764, 2013.

[C.7] S. Rehman, M. Shafique, J. Henkel, “Instruction Scheduling for Reliability-Driven Compilation”,

List of Own Publications Included in This Thesis

viii

ACM/IEEE/EDA 49th Design Automation Conference (DAC), pp. 1288-1296, 2012, Received a
'European Network of Excellence on High Performance and Embedded Architecture and
Compilation' (HiPEAC’12) Paper Award.

[C.8] M. Shafique, B. Zatt, S. Rehman, F. Kriebel, J. Henkel, “Power-Efficient Error-Resiliency for
H.264/AVC Context-Adaptive Variable Length Coding”, IEEE/ACM 15th Design Automation
and Test in Europe Conference (DATE), pp. 697-702, 2012.

[C.9] S. Rehman, M. Shafique, F. Kriebel, J. Henkel, “RAISE: Reliability-Aware Instruction
SchEduling for Unreliable Hardware”, 17th IEEE/ACM Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 671-676, 2012.

[C.10] S. Rehman, M. Shafique, F. Kriebel, J. Henkel, “Reliable Software for Unreliable Hardware:
Embedded Code Generation aiming at Reliability”, IEEE International Conference on Hardware-
Software Codesign and System Synthesis (CODES+ISSS), pp. 237-246, 2011, Received the
CODES+ISSS’11 Best Paper Award.

[C.11] S. Rehman, M. Shafique, F. Kriebel, J. Henkel, “ReVC: Computationally Reliable Video Coding
on Unreliable Hardware Platforms: A Case Study on Error-Tolerant H.264/AVC CAVLC Entropy
Coding”, IEEE 18th International Conference on Image Processing (ICIP), pp. 405-408, 2011.

Ph.D. Forum Presented at Conferences

[F.1] “Reliable Software for Unreliable Hardware”, ACM/SIGDA Ph.D. Forum at the
ACM/IEEE/EDA 50th Design Automation Conference (DAC), 2013.

[F.2] “Reliable Software for Unreliable Hardware”, ACM/SIGDA Ph.D. Forum at the IEEE/ACM
16th Design Automation and Test in Europe Conference (DATE), 2013.

ix

List of Other Co-Authored Publications
(that partly used the output of this thesis)

Transactions/Journals (blind peer reviewed)

[T.1] F. Kriebel, S. Rehman, M. Shafique, S. Garg, J. Henkel, “Variability- and Reliability-Awareness in
the Age of Dark Silicon”, IEEE Design and Test (D&T), 2015.

Conferences (double-blind/blind peer reviewed)

[C.1] F. Kriebel, A. Subramaniyan, S. Rehman, S. J. B. Ahandagbe, M. Shafique, J. Henkel, “R2Cache:
Reliability-Aware Reconfigurable Last-Level Cache Architecture for Multi-Cores”, IEEE
International Conference on Hardware-Software Codesign and System Synthesis
(CODES+ISSS), (accepted), October, 2015, Nominated for the CODES+ISSS’15 Best Paper
Award (The final award decision will be made in the first week of Oct.2015).

[C.2] M. Salehi, M. Shafique, F. Kriebel, S. Rehman, M. K. Tavana, A. Ejlali, J. Henkel, “dsReliM:
Power-Constrained Reliability Management in Dark-Silicon Many-Core Chips under Process
Variations”, IEEE International Conference on Hardware-Software Codesign and System
Synthesis (CODES+ISSS), (accepted), October, 2015.2015.

[C.3] M. Salehi, M. K. Tavana, S. Rehman, F. Kriebel, M. Shafique, A. Ejlali, J. Henkel, “DRVS:
Power-Efficient Reliability Management through Dynamic Redundancy and Voltage Scaling
under Variations”, ACM/IEEE International Symposium on Low Power Electronics and Design
(ISLPED), July 2015.

[C.4] F. Kriebel, S. Rehman, D. Sun, P. V. Aceituno, M. Shafique, J. Henkel, “ACSEM: Accuracy-
Configurable Fast Soft Error Masking Analysis in Combinatorial Circuits”, IEEE/ACM 18th
Design, Automation and Test in Europe Conference (DATE), March 2015.

[C.5] D. Gnad, M. Shafique, F. Kriebel, S. Rehman, D. Sun, J. Henkel, “Hayat: Harnessing Dark
Silicon and Variability for Aging Deceleration and Balancing”, ACM/EDAC/IEEE 52nd Design
Automation Conference (DAC), June 2015. Received a 'European Network of Excellence on
High Performance and Embedded Architecture and Compilation' (HiPEAC’15) Paper Award.

[C.6] F. Kriebel, S. Rehman, D. Sun, M. Shafique, J. Henkel, “ASER: Adaptive Soft Error Resilience
for Reliability-Heterogeneous Processors in the Dark Silicon Era”, ACM/IEEE/EDA 51st Design
Automation Conference (DAC), 2014. Received a 'European Network of Excellence on High
Performance and Embedded Architecture and Compilation' (HiPEAC’14) Paper Award.

[C.7] T. Li, M. Shafique, S. Rehman, J. A. Ambrose, J. Henkel, S. Parameswaran, “DHASER: Dynamic
Heterogeneous Adaptation for Soft-Error Resiliency in ASIP-based Multi-Core Systems”,
IEEE/ACM 31st International Conference on Computer-Aided Design (ICCAD), San Jose, CA,
USA, November 2013, pp. 646-653.

[C.8] T. Li, M. Shafique, J. A. Ambrose, S. Rehman, J. Henkel, S. Parameswaran, “RASTER: Runtime

List of Other Co-Authored Publications

x

Adaptive Spatial/Temporal Error Resiliency for Embedded Processors”, ACM/IEEE/EDA 50th
Design Automation Conference (DAC), 2013, Received a 'European Network of Excellence on
High Performance and Embedded Architecture and Compilation' (HiPEAC’13) Paper Award.

[C.9] T. Li, M. Shafique, S. Rehman, S. Radhakrishnan, R. Ragel, J. A. Ambrose, J. Henkel, S.
Parameswaran, “HW/SW Methodology for Configurable Soft-Error Resilient Application Specific
Instruction-Set Processor”, IEEE/ACM 16th Design Automation and Test in Europe Conference
(DATE), pp. 707-712, 2013.

xi

List of Co-Supervised Student Projects

Master Theses (Diplomarbeiten)

[D.1] Florian Kriebel, “Analysis and Design of Hybrid Hardware/Software Reliability Techniques for
Embedded Processors”, Received the Hermann-Billing-Preis 2012 for Best Master Thesis.

[D.2] Pau Vilimelis Aceituno, “Leveraging Algorithmic Resilience for Software Reliability
Optimization”.

[D.3] Duo Sun, “Resilient Hardware Architecture for Many-Core Systems”.

xiii

Abstract
Embedded systems have become an important part of our day to day life because of their pervasive

deployment in various application domains such as consumer electronic devices like smart phones and
tablets, medical healthcare, telecommunication, automotive, aircrafts and space-applications, etc. Due to
the shrinking transistor dimensions, embedded computing hardware is getting increasingly susceptible to
different reliability threats like transient faults (such as soft errors due to high energy particle strikes) and
permanent faults due to design-time process variations and run-time aging effects. Therefore, reliability
has emerged as one of the primary design criteria in the nano-era. Soft errors manifest as spurious bit flips
in the underlying hardware that may jeopardize the correct software execution. However, design-time
manufacturing process variability manifests as frequency and leakage power variations in different cores
in a multi-/manycore processor, while run-time aging effects result in frequency degradation over the
period of time. A majority of state-of-the-art hardware-level reliability techniques employ full-scale
redundancy or error correction blocks in processor components that result in significant overhead in terms
of area, performance and/or power/energy, which may be prohibitive within the stringent design
constraints of embedded systems. To alleviate the overhead of hardware-level techniques or targeting the
low-cost unreliable hardware, several software-level reliability improving techniques have evolved that
are based on the concept of full-scale redundancy at the code or data level and therefore, incur significant
performance and memory overhead (≥2x–3x). In general, state-of-the-art software-level reliability
techniques have, by far, not exploited their potential since the common belief, so far, was that reliability
problems when occurring at the hardware level should be addressed at the hardware level. However, a lot
of hardware-level faults can potentially be masked at the higher software layers. Furthermore, a manycore
processor is subjected to multiple reliability threats that need to be considered when providing functional
and timing correctness.

To enable a highly reliable software system for embedded computing, this Ph.D. work develops novel
concepts, strategies, and implementations to leverage multiple system layers in an integrated fashion for
reliability optimization under user-provided tolerable performance overhead constraints. To enable this,
this work addresses the key challenge of bridging the gap between the hardware and software by
quantifying the effects of hardware-level faults at the software level, while accounting for the knowledge
of the processor architecture and layout. It is important to understand which instructions lead to which
type of errors in the application software program when faults happen in the underlying hardware and how
these faults are masked/propagated to higher system layers. In particular, this work develops novel
techniques for cross-layer software program reliability modeling and optimization at different levels of
granularity (e.g., instruction and function) and at different system design abstractions in order to compose
and execute application software programs in a reliable fashion. Important highlights of the novel
contributions of this Ph.D. Thesis are:

Cross-Layer Software Program Reliability Modeling and Estimation: This work develops cross-
layer reliability analysis, modeling, and estimation concepts, techniques, and tools. An extensive program
reliability analysis is performed to understand the manifestation of hardware-level faults at the software
level. This analysis is leveraged to devise software-level reliability models that account for the hardware-
level knowledge in order to bridge the gap between the hardware and software for accurate reliability
estimation at the software level. At the instruction granularity, the following models are developed to
capture key reliability aspects of a software program

1) The Instruction Vulnerability Index estimates the probability of an instruction’s output being
erroneous due to soft errors. It accounts for spatial vulnerabilities (i.e. area-wise error probabilities)
and temporal vulnerabilities (i.e. time-wise error probabilities) of different instructions executing in
different pipeline stages of a given processor while accounting for hardware-level information, e.g.,
the probability of faults in different processor components obtained through a detailed gate-level
soft error analysis.

Abstract

xiv

2) The Instruction Error Masking Index estimates the probability that an error at an instruction will
ultimately be masked until the final program output, i.e. does not become visible at the application
output and therefore is denoted as ‘masked’.

3) In case the error is not masked, the Error Propagation Index estimates how many outputs will be
affected by the unmasked error.

These instruction-level estimates are then used to obtain the reliability estimates at basic block and
function/task levels. In the optimization flow, these models are leveraged to quantify the reliability-wise
importance of different instructions, basic blocks, and functions to enable selective reliability-
optimization at different system layers under tolerable performance overhead constraints.

Cross-Layer Software Program Reliability Optimization: This thesis develops concepts and
techniques for cross-layer reliability optimization and leverages multiple system layers for reliable
composition and execution of application software programs. First multiple versions of a software
program are obtained that enable run-time tradeoffs between reliability and performance properties. This
is done through the following two means.

1) Different reliability-driven software transformations and instruction scheduling techniques are
proposed that lower spatial/temporal vulnerabilities and probabilities of software program failures
and Incorrect Outputs by reducing the number of executions of critical instructions (like load, store,
branches, jumps, and calls). Applying these transformations in constrained scenarios provides on
average 60% lower software program failures (i.e. crashes, halt, hang, abort), and thus increased
software reliability.

2) Reliability-driven selective instruction redundancy is proposed that selects a set of reliability-wise
important instructions in different functions for redundancy-based protection depending upon the
instruction vulnerabilities, instruction-level error masking and propagation, and protection overhead
under user-provided tolerable performance overhead constraint. The key is to give more protection
to the less-resilient part of the software program and less protection to more-resilient part to achieve
a high degree of reliability in constrained scenarios. Compared to state-of-the-art, the proposed
selective instruction protection provides 4.84x improved reliability at 50% tolerable performance
overhead constraint.

Afterwards, multiple reliable versions are exploited by a reliability-driven run-time system that
enhances the reliability of multiple concurrently executing applications in a manycore processor, while
accounting for the frequency variations and degradation due to design-time process variation and run-time
aging induced effects. It performs the following key operations to facilitate reliable software program
execution.

1) Adaptively activating and deactivating the redundant multithreading for different applications in a
manycore processor in area-constrained scenarios. It accounts for variable resilience properties and
deadline requirements of different applications along with a history of the encountered errors.

2) Dynamically selecting an appropriate reliable version for each application considering cores’
frequency variations due to design-time process variations and run-time aging-induced performance
degradation.

3) Mapping the selected application version on the cores used for redundant multithreading at run time
such that, the execution properties of the redundant threads closely match the frequency properties
of allocated cores considering core-to-core frequency variations.

Compared to state-of-the-art single-layer reliability optimizing techniques, the proposed cross-layer
approach achieves 16%-57% improved software reliability on average for different chip configurations,
various process variation maps, and different aging years.

In addition to the above-discussed scientific contribution, several tools for gate-level soft error
analysis, aging analysis, an integrated fault generation and injection system for instruction set simulators
have been developed in the scope of this work and are made available at http://ces.itec.kit.edu/846.php.

xv

Zusammenfassung
Eingebettete Systeme sind aufgrund ihrer weiten Verbreitung in verschiedenen Anwendungsbereichen

wie Konsumelektronik (d.h. Smartphones, Tablets), Medizin, Telekommunikation, Automobile,
Flugzeuge und Raumfahrt ein wichtiger Teil unseres täglichen Lebens geworden. Aufgrund kleiner
werdender Transistordimensionen wird die Hardware eingebetteter Systeme zunehmend anfälliger für
verschiedene Gefährdungen der Zuverlässigkeit wie transiente Fehler (wie beispielsweise Soft Errors,
die von energiereichen Partikeln hervorgerufen werden) und permanente Fehler aufgrund von
Herstellungsschwankungen zur Entwurfszeit und Alterungseffekten zur Laufzeit. Deshalb hat sich die
Zuverlässigkeit zu einem der Hauptentwurfskriterien in der Nano-Ära entwickelt. Soft Errors
manifestieren sich als fehlerhaftes Kippen von Bits in der darunterliegenden Hardware, was die korrekte
Ausführung der Software gefährden kann. Herstellungsschwankungen zur Entwurfszeit manifestieren sich
als Abweichungen in der Frequenz und Leckleistung von verschiedenen Kernen eines Mehr-/Viel-Kern-
Prozessors, während Alterungseffekte zur Laufzeit in einer Verringerung der Frequenz innerhalb eines
Zeitabschnitts resultieren. Die Mehrzahl der modernsten Zuverlässigkeitstechniken auf Hardwareebene
verwendet volle Redundanz oder Blöcke zur Fehlerkorrektur in den Prozessorkomponenten, was zu einem
signifikanten Mehraufwand bezüglich Fläche, Performanz und Leistung/Energie führt. Dies könnte
innerhalb der strikten Entwurfsbeschränkungen von eingebetteten Systemen nicht tragbar sein. Um den
Mehraufwand der Techniken auf Hardwareebene zu verringern oder um kostengünstige unzuverlässige
Hardware zu verbessern, wurden auf Softwareebene verschiedene Techniken zur Steigerung der
Zuverlässigkeit entwickelt. Diese Techniken basieren ebenfalls auf dem Konzept der vollen Redundanz
auf Code- oder Datenebene und bringen deshalb einen signifikanten Mehraufwand hinsichtlich
Performanz und Speicherverbrauch (≥2x–3x) mit sich. Generell haben die modernsten
Zuverlässigkeitstechniken auf Softwareebene ihr Potenzial bei weitem nicht ausgeschöpft, da bisher die
Ansicht vorherrschte, dass Zuverlässigkeitsprobleme, falls sie auf der Hardwareebene auftreten, auch auf
der Hardwareebene gelöst werden sollten. Jedoch können viele Fehler auf Hardwareebene potenziell auf
den höheren Softwareebenen maskiert werden. Zudem ist ein Viel-Kern-Prozessor vielfachen
Zuverlässigkeitsgefährdungen ausgesetzt, welche berücksichtigt werden müssen, um sowohl funktionelle
als auch zeitliche Korrektheit bereitzustellen.

Um ein zuverlässiges Softwaresystem für eingebettete Systeme zu ermöglichen, wurden im Rahmen
dieser Dissertation neue Konzepte, Strategien und Implementierungen entwickelt, um mehrere
Systemschichten in integrierter Art und Weise zur Optimierung der Zuverlässigkeit unter
Berücksichtigung von benutzerdefinierten Performanzbedingungen wirksam einzusetzen. Um dies zu
ermöglichen, behandelt diese Arbeit die Kernherausforderung die Lücke zwischen Hardware und Software
zu schließen, indem die Effekte der Fehler auf Hardwareebene auf der Softwareebene unter
Berücksichtigung der Kenntnisse über Prozessorarchitektur und Prozessorlayout quantifiziert werden. Es
ist wichtig zu verstehen welche Instruktionen zu welchem Typ von Fehlern in den Applikationen führt,
wenn Fehler in der darunterliegenden Hardware auftreten, und wie diese Fehler maskiert werden oder sich
auf höhere Systemebenen ausweiten. Im Speziellen wurden im Rahmen dieser Arbeit neue Techniken für
die schichtenübergreifende Modellierung und Optimierung der Softwarezuverlässigkeit auf verschiedenen
Granularitätsebenen (z.B. Instruktion und Funktion) und verschiedenen Abstraktionen des
Systementwurfs entwickelt, um Anwendungen in zuverlässiger Art und Weise zusammenzustellen und
auszuführen. Als neue Beiträge dieser Dissertation sind folgende hervorzuheben:

Schichtenübergreifende Modellierung und Abschätzung der Softwarezuverlässigkeit: In dieser
Arbeit wurden schichtenübergreifende Zuverlässigkeitsanalyse-, Zuverlässigkeitsmodellierungs- und
Zuverlässigkeitsabschätzungskonzepte, -techniken und -werkzeuge entwickelt. Eine umfangreiche
Programmzuverlässigkeitsanalyse wird durchgeführt, um die Manifestation von Fehlern auf
Hardwareebene auf die Softwareebene zu verstehen. Diese Analyse wird verwendet, um

Zusammenfassung

xvi

Zuverlässigkeitsmodelle auf Softwareebene zu entwickeln, die die Kenntnisse der Hardwareebene
berücksichtigen, um die Lücke zwischen Hardware und Software für eine genaue
Zuverlässigkeitsabschätzung auf der Softwareebene zu schließen. Auf Granularitätsebene von
Instruktionen wurden die folgenden Modelle entwickelt, um die entscheidenden Zuverlässigkeitsaspekte
eines Softwareprogramms zu erfassen:

1) Der Instruction Vulnerability Index schätzt die Wahrscheinlichkeit für eine fehlerhafte Ausgabe
einer Instruktion aufgrund von Soft Errors ab. Er berücksichtigt die räumliche Verwundbarkeit
(d.h. flächenmäßige Fehlerwahrscheinlichkeiten) und zeitliche Verwundbarkeit (d.h. zeitliche
Fehlerwahrscheinlichkeiten) von unterschiedlichen Instruktionen, die in verschiedenen
Pipelinestufen eines Prozessors ausgeführt werden. Dabei werden Hardwareinformationen
berücksichtigt wie zum Beispiel die Wahrscheinlichkeit von Fehlern in verschiedenen
Prozessorkomponenten, welche aus einer detaillierten Soft Error Analyse auf Gatterebene
gewonnen werden kann.

2) Der Instruction Error Masking Index schätzt die Wahrscheinlichkeit ab, dass ein Fehler in einer
Instruktion bis zur letztendlichen Programmausgabe maskiert wird (d.h. dieser wird in der
Programmausgabe nicht sichtbar und wird deshalb als ‚maskiert‘ gekennzeichnet).

3) Wird ein Fehler nicht maskiert, schätzt der Error Propagation Index ab, wie viele Ausgaben von
dem nicht maskierten Fehler beeinträchtigt werden.

Diese Abschätzungen auf Instruktionsebene werden dann verwendet, um die
Zuverlässigkeitsabschätzungen auf Basic Block- und Funktions-/Taskebene zu erhalten. Während der
Optimierung werden diese Modelle verwendet, um die zuverlässigkeitsmäßige Wichtigkeit von
verschiedenen Instruktionen, Basic Blocks und Funktionen zu quantifizieren, um eine selektive
Zuverlässigkeitsoptimierung auf verschiedenen Systemschichten unter Berücksichtigung von zulässigen
Performanzbeeinträchtigungen zu ermöglichen.

Schichtenübergreifende Zuverlässigkeitsoptimierung von Programmen: Im Rahmen dieser
Arbeit werden Konzepte und Techniken zur schichtenübergreifenden Zuverlässigkeitsoptimierung
entwickelt. Zudem werden mehrere Systemschichten eingesetzt, um zuverlässige Applikationen
zusammenzustellen und auszuführen. Zuerst werden mehrere Versionen eines Programms erstellt, die zur
Laufzeit unterschiedliche Kompromisse zwischen Zuverlässigkeit und Performanz ermöglichen. Dies
wird durch die folgenden zwei Mittel erreicht:

1) Verschiedene zuverlässigkeitsgesteuerte Softwaretransformationen und Techniken zum
Instruktionsscheduling werden vorgeschlagen, die die räumlichen/zeitlichen Verwundbarkeiten und
Wahrscheinlichkeiten für Fehlschläge und fehlerhafte Ausgaben eines Programms verringern,
indem die Anzahl der Ausführungen von kritischen Instruktionen (wie Lade-, Speicher-, Sprung-
und Aufrufinstruktionen) reduziert wird. Die Verwendung dieser Transformationen in Szenarien
mit Beschränkungen bietet durchschnittlich 60% weniger Programmfehlschläge (d.h. Abstürze,
Abbrüche, Stillstand) und damit eine verbesserte Softwarezuverlässigkeit.

2) Zuverlässigkeitsgesteuerte selektive Instruktionsredundanz wird vorgeschlagen, welche eine Menge
von für die Zuverlässigkeit wichtigen Instruktionen in verschiedenen Funktionen für die
redundanzbasierte Absicherung auswählt. Diese Absicherung hängt von den
Instruktionsverwundbarkeiten, der Fehlermaskierung und -ausbreitung auf Instruktionsebene und
dem Mehraufwand zur Absicherung unter Berücksichtigung von nutzerabhängigen
Beschränkungen ab. Es ist wichtig, weniger robusten Teilen eines Programms eine bessere und
robusteren Teilen eine geringere Absicherung zur Verfügung zu stellen, um einen hohen
Zuverlässigkeitsgrad in Szenarien mit Beschränkungen zu erreichen. Verglichen mit dem Stand der
Technik, bietet die vorgeschlagene selektive Instruktionsredundanz eine um Faktor 4.84 verbesserte
Zuverlässigkeit, wenn die Verringerung der Performanz auf 50% beschränkt ist.

Im Anschluss werden mehrere Versionen mit unterschiedlichen Zuverlässigkeitseigenschaften von
einem zuverlässigkeitsgesteuerten Laufzeitsystem genutzt, das die Zuverlässigkeit von mehreren
gleichzeitig ausgeführten Applikationen in einem Viel-Kern-Prozessor verbessert. Dabei werden
Schwankungen und Verschlechterungen der Frequenz aufgrund von Herstellungsschwankungen zur

Zusammenfassung

xvii

Entwurfszeit und Alterungseffekten zur Laufzeit berücksichtigt. Es führt folgende Aufgaben aus, um eine
zuverlässige Programmausführung zu ermöglichen:

1) Adaptive Aktivierung und Deaktivierung von redundantem Multithreading für unterschiedliche
Applikationen in einem Viel-Kern-Prozessor in flächenbeschränkten Szenarien. Dabei werden
variable Robustheitseigenschaften und Anforderungen an die Deadline von unterschiedlichen
Applikationen und eine Historie von beobachteten Fehlern berücksichtigt.

2) Dynamische Auswahl einer geeigneten zuverlässigen Version für jede Applikation unter
Berücksichtigung der Frequenzschwankungen einzelner Kerne aufgrund von
Herstellungsschwankungen zur Entwurfszeit und Performanzverschlechterung aufgrund von
Alterungseffekten zur Laufzeit.

3) Zuordnung der ausgewählten Applikationsversion zu Kernen, die zur Laufzeit für redundantes
Multithreading verwendet werden, so dass die Ausführungseigenschaften der redundanten Threads
zu den Frequenzeigenschaften der zugeordneten Kerne passen, wobei Frequenzschwankungen
berücksichtigt werden.

Im Vergleich zu den modernsten Techniken zur Zuverlässigkeitsoptimierung, die nur eine Schicht
berücksichtigen, kann mit dem vorgeschlagenen schichtenübergreifenden Ansatz eine Verbesserung der
Softwarezuverlässigkeit von durchschnittlich 16%-57% für verschiedene Chipkonfigurationen,
Herstellungsschwankungen und Alterungszustände erreicht werden.

Zusätzlich zu dem oben angeführten wissenschaftlichen Beitrag wurden im Rahmen dieser Arbeit
verschiedene Werkzeuge für die Soft Error Analyse auf Gatterebene, Alterungsanalyse und ein
integriertes Fehlergenerierungs- und -injektionssystem für Instruktionssatzsimulatoren entwickelt, welche
unter http://ces.itec.kit.edu/846.php verfügbar sind.

xix

Contents

Acknowledgement .. v

List of Own Publications Included in This Thesis ... vii

List of Other Co-Authored Publications .. ix

List of Co-Supervised Student Projects .. xi

Abstract ... xiii

Zusammenfassung .. xv

Contents .. xix

List of Figures ... xxv

List of Tables ... xxxi

List of Algorithms .. xxxiii

Acronyms .. xxxv

Chapter 1 Introduction .. 1

1.1 Reliability Threats .. 1

1.2 Increasing Trends for Soft Errors ... 3

1.3 Research Challenges for Enabling Cross-Layer Software Reliability 6

1.4 Novel Thesis Contribution ... 8

1.4.1 Cross-Layer Software Program Reliability Modeling and
Estimation... 8

1.4.2 Cross-Layer Software Program Reliability Optimization 9

1.5 Orientation of this Thesis in the SPP 1500 Priority Research Program
on Dependable Embedded Systems ... 11

1.6 Thesis Outline .. 13

Chapter 2 Background and Related Work .. 17

2.1 Soft Error ... 17

2.1.1 Transistor Structure .. 17

2.1.2 Soft Errors in Transistors ... 17

2.1.3 Masking Sources for Soft Errors .. 19

2.2 NBTI-Induced Aging ... 20

2.3 Manufacturing-Induced Process Variations and Other Variability
Sources ... 21

Contents

xx

2.3.1 Process Variation Model ... 23

2.4 State-of-the-Art Soft Error Estimation Techniques 24

2.4.1 Circuit-Level Techniques .. 24

2.4.2 Architecture-Level Techniques ... 25

2.4.3 Software Program-Level Techniques .. 26

2.4.4 Fault Injection Methodologies .. 26

2.5 State-of-the-Art Soft Error Mitigation Techniques 27

2.5.1 Hardware Level Soft Error Mitigation Techniques 27

2.5.2 Software Level Soft Error Mitigation Techniques 31

2.6 Summary of Related Work .. 35

Chapter 3 Cross-Layer Reliability Analysis, Modeling, and Optimization 37

3.1 Cross-Layer Reliability – System Overview ... 38

3.2 Software Program-Level Reliability Analysis .. 41

3.2.1 Error Characterization ... 42

3.2.2 Error Distribution Analysis ... 43

3.2.3 Instruction Classification: Critical and Non-Critical Instructions 45

3.2.4 Spatial and Temporal Vulnerability .. 45

3.2.5 Summary of Software Program Reliability Analysis and Relevant
Parameters .. 47

3.3 Cross-Layer Reliability Modeling: A Soft Error Perspective 48

3.3.1 Estimating the Probability of Fault for Different Processor
Components through Gate-Level Soft Error Masking Analysis ... 49

3.3.2 Estimating Reliability at the Instruction-Granularity as a
Function of Vulnerability, Error Masking and Propagation 50

3.3.3 Function-Level Reliability Models ... 51

3.3.4 Consideration for Timing Correctness .. 52

3.4 Consideration of Aging Faults .. 52

3.5 Reliability-Driven Compilation Flow ... 52

3.5.1 Reliability-Driven Software Transformations 53

3.5.2 Reliability-Driven Instruction Scheduling 54

3.5.3 Reliability-Driven Selective Instruction Protection 54

3.5.4 Generating Multiple Function Versions Providing Tradeoff
between Performance and Reliability ... 55

3.6 Reliability-Driven System Software ... 55

3.6.1 Reliability-Driven Offline System Software 56

3.6.2 Reliability-Driven Adaptive Run-time System Software 56

Contents

xxi

3.6.3 Comparing Cross-Layer vs. Single-Layer Reliability Optimizing
Techniques .. 57

3.7 Chapter Summary .. 57

Chapter 4 Software Program-Level Reliability Modeling and Estimation 59

4.1 Instruction Vulnerability Index .. 60

4.1.1 Estimation of Vulnerable Periods .. 61

4.1.2 Estimation of Vulnerable Bits .. 62

4.1.3 Estimation of Component-Level Fault Probabilities 63

4.1.4 IVI Results for Different Applications... 66

4.2 Instruction Error Masking Index .. 67

4.2.1 Parameter Identification ... 67

4.2.2 An Example .. 67

4.2.3 Parameter Estimation ... 68

4.2.4 Instruction Error Masking Index Results for Different
Applications ... 70

4.3 Instruction Error Propagation Index... 72

4.4 Function-/Task-Level Reliability Estimation Models 73

4.4.1 Function Vulnerability Index ... 74

4.4.2 Reliability-Timing Penalty ... 74

4.5 Chapter Summary .. 75

Chapter 5 Software Program-Level Reliability Optimization for
Dependable Code Generation ... 77

5.1 Reliability-Driven Software Transformation ... 78

5.1.1 Reliability-Driven Data Type Optimization 79

5.1.2 Reliability-Driven Loop Unrolling .. 81

5.1.3 Reliability-Driven Common Expression Elimination and
Operation Merging ... 83

5.1.4 Reliability-Driven Online Table Value Computation 87

5.1.5 Impact of Reliability-Driven Transformations on Error
Distributions ... 88

5.1.6 Selection of Transformations ... 91

5.1.7 Impact on Critical ALU Instructions ... 92

5.1.8 Impact on Performance Overhead when Employed Together
with Error Detection and Recovery Techniques 93

5.1.9 Impact on FVI Reductions ... 94

5.1.10 Summary of Reliability-Driven Transformations 94

5.2 Reliability-Driven Instruction Scheduling ... 94

Contents

xxii

5.2.1 Soft Error-Driven Instruction Scheduling 96

5.2.2 Formal Problem Modeling .. 97

5.2.3 Lookahead Instruction Scheduling Heuristic 98

5.2.4 Results for the Reliability-Driven Instruction Scheduling 99

5.2.5 Summary of Reliability-Driven Instruction Scheduling 101

5.3 Reliability-Driven Selective Instruction Protection 101

5.3.1 Reliability Profit Function for Choosing Instructions for
Protection ... 102

5.3.2 Flow of the Selective Instruction Protection Heuristic 103

5.3.3 Results for Selective Instruction Protection 103

5.3.4 Summary of Selective Instruction Protection 106

5.4 Multiple Function Version Generation and Selection 106

5.5 Chapter Summary .. 107

Chapter 6 Dependable Code Execution using Reliability-Driven System
Software ... 109

6.1 Reliability-Driven Offline System Software ... 109

6.1.1 Optimization Objective ... 112

6.1.2 Optimizing for the Reliability-Timing Penalty 112

6.2 Reliability-Driven Function Scheduling for Single Core Processors 115

6.3 Reliability-Driven System Software for Multi-/Manycores 118

6.3.1 Soft Error Resilience in the presence of Process Variations and
Aging Effects ... 118

6.3.2 Dependability Tuning System for Soft Error Resilience under
Variations .. 120

6.3.3 Dynamic RMT Adaptations and Core Allocation 122

6.3.4 Dynamic Reliable Code Version Selection 123

6.4 Chapter Summary .. 125

Chapter 7 Results and Discussion .. 127

7.1 Processor Synthesis and Performance Variation Estimation 127

7.1.1 Processor Synthesis ... 127

7.1.2 Processor Aging Estimation .. 127

7.1.3 Process Variation Maps ... 128

7.2 Benchmark Applications ... 129

7.3 Comparison Partners and Evaluation Parameters 129

7.3.1 Comparison Partners ... 129

7.3.2 Parameters Considered for the Evaluation 131

7.3.3 An Overview of the Comparison Results 131

Contents

xxiii

7.4 Overview of Savings Compared to State-of-the-Art 132

7.5 Detailed Comparison Results ... 135

7.6 Detailed Analysis of Comparison Results for Two Chips for a 6x6
Processor .. 138

7.7 Chapter Summary .. 140

Chapter 8 Conclusion and Future Outlook ... 143

8.1 Thesis Summary and Conclusions ... 143

8.2 Future Outlook ... 145

Appendix A Simulation Infrastructure ... 147

A.1 Reliability-Aware Manycore Instruction Set Simulator and Fault
Injection ... 148

A.2 ArchC Architecture Description Language ... 148

A.3 Reliability-Aware Simulation and Analysis Methodology 150

Appendix B Function-Level Resilience Modeling .. 155

B.1 Definition ... 155

B.2 Modeling Function Resilience ... 155

B.3 Results .. 157

Appendix C Algorithms .. 160

C.1 Algorithm for Computing the Error Masking Probability PDP(I, p) 160

C.2 Algorithm for Computing the Instruction Error Propagation Index........ 161

C.3 Algorithm for FVI-Driven Data Type Optimization 162

C.4 Algorithm for FVI-Driven Loop Unrolling ... 163

C.5 Algorithm for Applying Common Expression Elimination 164

C.6 Algorithm for Soft-Error-Driven Instruction Scheduler.......................... 165

C.7 Algorithm for Selective Instruction Protection Technique 166

C.8 Algorithm for Offline Table Construction... 167

C.9 Algorithm for Hybrid RMT Tuning .. 168

C.10 Algorithm for Reliable Code Version Tuning ... 169

C.11 Algorithm for Core Tuning and Version Update 170

Appendix D Notations and Symbols .. 171

Bibliography ... 175

xxv

List of Figures

Figure 1.1: (a) Moore’s Law: Transistor Count and the History of Processors (adapted
from [1]-[4]); (b) ITRS Scaling Trends for Memory and Processors [5].1

Figure 1.2: Intel’s Trends for Soft Error Failures [10]. ..3

Figure 1.3: (a) SRAM Scaling and Power Trends; (b) Bit and System Soft Error
Rates (SER) for SRAM [18]. ...4

Figure 1.4: (a) System Soft Error Rates with Increasing Number of Chips [18]; (b)
Silent Data Corruptions from Vulnerable Latches for Different Levels of
Protections [22]. ...4

Figure 1.5: (a) Voltage Dependence of Upset Rates of 32 nm planar and 22 nm Tri-
Gate Latches. (b) Measured 32 nm and 22 nm Combinational Cosmic SER
per Logic Gate expressed as a Fraction of Latch SER [32].5

Figure 1.6: Overview of the Novel Contributions of this Thesis. ...8

Figure 1.7: Pyramid for Dependable Embedded Systems and Focus of SPP 1500
[157]. ..12

Figure 1.8: Different Research Facets of SPP 1500 and the Orientation of this Thesis’
Contributions [157]. ...12

Figure 2.1: Structure of an NMOS Transistor. ...17

Figure 2.2: Soft Error Mechanism illustrating Different Phases of Charge Generation,
Collection, and Diffusion. ..18

Figure 2.3: Soft Error Masking Effects [87]. ..19

Figure 2.4: (a) NBTI-Induced Aging (adapted from [137]); (b) Impact of
Temperature on the NBTI-Aging [19]. ..20

Figure 2.5: Short-Term and Long-Term Aging [138]. ...21

Figure 2.6: Frequency variation in an 80-core processor within a single die in Intel's
65nm technology [42]. ...22

Figure 2.7: (a) Power variation across five 512MB DDR2-533 DRAM parts; (b)
Variation in sleep power (Psleep) with temperature across five instances of
an ARM Cortex M3 processor [26][43]. ..22

Figure 2.8: Design Time Process Variation [144]. ...23

Figure 2.9: (a) SOI MOSFET Device; (b) TW NMOS FET Structure.28

Figure 2.10: A simple 5-stage Pipelined Processor with Razor Flip Flop and Error
Recovery [59]. ..28

Figure 2.11: Razor Flip Flop and Timing Diagram [59][60]. ...29

Figure 2.12: Dual, Triple and Triplicated Triple Modular Redundancy [36][33][104].29

Figure 2.13: Fault Detection via Lockstepping (HP Himalaya) [36].30

List of Figures

xxvi

Figure 2.14: Fault Detection via Simultaneous Multithreading – Left: Scheduling
Different Instructions on Different Functional Units; Right: Sphere of
Replication with Input and Output Replication [36][67].30

Figure 2.15: Chip-Level Redundant Threading [36][67]. ...31

Figure 2.16: N-Version Programming. ...31

Figure 2.17: An Example for EDDI [27]. ...32

Figure 2.18: (a) Control Flow Checking using Software Signatures [34]; (b) Enhanced
Control Flow Checking [28]. ..33

Figure 2.19: Software Implemented Fault Tolerance (SWIFT) [28].34

Figure 3.1: Cross-Layer Reliability Modeling and Optimization: Contributions at
Different System Layers. ..39

Figure 3.2: System Overview for Reliable Code Generation and Execution engaging
Different System Layers. ..39

Figure 3.3: Illustrating the Impact of Faults in Different Processor Components and
their Impact on the Program Execution (layout of LEON2 from [35]).41

Figure 3.4: Different Types of Manifested Errors. ...42

Figure 3.5: Analyzing the Error Distribution at Different Fault Rates.43

Figure 3.6: Detailed Error Distribution at a Fault Rate of 10f/MCycles for Different
Applications and the Corresponding Instruction Distribution.44

Figure 3.7: Spatial and Temporal Vulnerabilities: Different Instructions using Diverse
Processor Components in Pipeline Stages. ...46

Figure 3.8: Cross-Layer Software Reliability Modeling: An Example Illustration for
the case of Soft Errors. ...49

Figure 3.9: An Abstract Example Illustrating the Concept of Error Probability, Error
Masking and Propagation at the Instruction Granularity.50

Figure 3.10: Reliability-Driven Compilation Framework. ...53

Figure 3.11: Reliability-Driven Offline System Software and Run-Time Adaptive
System Software. ..56

Figure 4.1: An Abstract Example illustrating the Vulnerable Periods of Operands.62

Figure 4.2: Computing the Vulnerable Periods for Operand Variables of the ADD
Instruction in the B4 Basic Block under Changing Control Flow.62

Figure 4.3: Example for Vulnerable Bits Computation of the for Operand Variables of
the AND Instruction. ..63

Figure 4.4: Different Pipeline Stages Exhibit Distinct Masking during the Instruction
Execution due to Combinatorial Logic. ...64

Figure 4.5: Distribution of Instruction Vulnerability Index for Different Instructions
inside each Application. ...66

Figure 4.6: Flow of Steps to Compute the Instruction-Level Masking Probabilities and
Error Propagation Index. ..67

List of Figures

xxvii

Figure 4.7: An Example Control & Data Flow Graph showing the Error Masking due
to Successor Instructions and Changing Control Flow.68

Figure 4.8: Impact of different Instruction Types on the total Masking Probability
along the Instruction Path. ..69

Figure 4.9: An Example showing the Computation of Error Masking Probabilities
illustrating the Effect of Consecutive Instructions of type B in the Path on
the Total Masking Probability. ...69

Figure 4.10: Flow of Computing the Error Masking Probability PDP(I, p).70

Figure 4.11: Distribution for the Instruction Error Masking Indexes.71

Figure 4.12: Flow of Computing the Instruction Error Propagation Index.72

Figure 4.13: Distribution of the Instruction Error Propagation Index (EPI)73

Figure 5.1: (a) Example Code showing Data Type Optimization Transformation, (b)
Corresponding Data Flow Graphs. ...79

Figure 5.2: Flow of FVI-Driven Data Type Optimization. ...80

Figure 5.3: IVI w.r.t. Different Registers: Character (8-bit) Vs. Integer (32-bit) Data
Type. ...81

Figure 5.4: Example: An Abstract Code showing Increased Temporal and Spatial
Vulnerabilities of Variables as a Consequence of Loop Unrolling.81

Figure 5.5: Flow of FVI-Driven Loop Unrolling. ...82

Figure 5.6: Comparing the average IVI w.r.t. the Register File Component for the Un-
Transformed Code (Loop Rolled) vs. Transformed Code (Loop Unrolling
by Factors 4 and 8) for the “SATD” Application. ..83

Figure 5.7: Common Expression Elimination in the Hadamard Transformation.83

Figure 5.8: Impacts of Different Strategies for Exploitation of Common Expressions.84

Figure 5.9: Flow of Applying Common Expression Elimination. ..85

Figure 5.10: Instruction Histogram and IVI of each Register: Common Expressions
Elimination and Operation Merging. ..86

Figure 5.11: Effect of Common Expression Elimination and Operation Merging on
Reliability and Performance. ..86

Figure 5.12: Comparing Pre-Computed Table and Online Table Value Computation
Methods for the “ADPCM” Application. ...88

Figure 5.13: (a) Error Distribution for “ADPCM” and “CAVLC” when applying FVI-
Driven Online Table Value Computation; (b) Temporal Vulnerability (in
cycles) of the Entries Requested for First 10,000 Table Accesses.88

Figure 5.14: Comparing the Error Distribution of Baseline and the Reliability-
Optimized Functions. ...89

Figure 5.15: Comparing the Distribution of Different Error Types for Baseline and the
Reliability Optimizations for SHA and SATD. ..90

List of Figures

xxviii

Figure 5.16: Illustrating the Impact of Calculation Re-Ordering for the SAD
Application. ..91

Figure 5.17: Reduction of Critical ALU Instructions w.r.t. to Baseline Implementation
for “SATD”. ...93

Figure 5.18: Comparing Instruction-Redundancy Techniques with and without the
Proposed Reliability-Driven Software Transformations.93

Figure 5.19: FVI Reductions of the Reliability-Optimized Functions after Applying the
Reliability-Driven Software Transformations. ...94

Figure 5.20: Comparing the Performance and Reliability of Different Scheduling
Heuristics. ...95

Figure 5.21: An Example of the Soft-Error Driven Instruction Scheduler with
Lookahead Heuristic. ..98

Figure 5.22: Flow of the Soft-Error-Driven Instruction Scheduler. ...99

Figure 5.23: Comparing the Error Distribution of the Proposed Reliability-Driven
Instruction Scheduler (at Three Different Tolerable Performance Overhead
Constraints) with the Performance-Driven and State-of-the-Art ISSE [81]
and Register File Reliability Improving [133] Instruction Schedulers for
Three Different Faults Rates. ...100

Figure 5.24: Comparing the Function Reliability Weight Reductions to ISSE [81].101

Figure 5.25: An Example showing the Effect of Different Parameters on the Reliability
Efficiency of the Selective Instruction Protection. ...102

Figure 5.26: Flow of the Selective Instruction Protection Technique.103

Figure 5.27: Comparing the Reliability Efficiency Improvement of the Proposed
Selective Instruction Protection Technique over (a) Unprotected Case; and
three State-of-the-Art Techniques namely (b) SWIFT-R [71] under
Constraint; (c) Instruction Vulnerability Factor (IVF)-Based Selective
Protection [76]; and (d) Instruction Dependency based Selective
Protection [134]. ...104

Figure 5.28: Different Algorithms have Different FVI and Average Execution Time:
(a) Comparing Different Sorting Algorithms; (b) Comparing Different
Functions of the Same Application. ...106

Figure 5.29: Performance and Vulnerability of Different Compiled Versions of
Different Applications. ...107

Figure 6.1: Offline Schedule Table Construction. ..110

Figure 6.2: (a) Design-time Schedule Tables (b) Run-time Execution of the Schedule.111

Figure 6.3: Finding the best Schedule after Table Construction at Design-time.114

Figure 6.4: RTP Optimization and Selection of Multiple Functions Versions inside the
Table. ..116

Figure 6.5: The Cumulative Probability Distribution (CDF) for Two Example
Applications from the MiBench Suite. ...116

List of Figures

xxix

Figure 6.6: Expected RTP under different Fault rates. ...117

Figure 6.7: Expected RTP under different Fault rates by comparing to the static
version selections when α =0.5. ...118

Figure 6.8: RMT without Frequency Variation. ...119

Figure 6.9: Effects of Core-to-Core Frequency Variations on the RMT in Timing-
Constrained Scenarios. ...120

Figure 6.10: The Proposed dTune System for Dependable Application Execution.120

Figure 6.11: Operational Flow of the Proposed dTune System. ...121

Figure 6.12: Exploit Slack and Leverage Multiple Reliability-Driven Compiled Task
Versions ..124

Figure 7.1: (a) Processor Aging in terms of Critical Path Delay Degradation (Absolute
and Percentage Degradation Values) for Different Years considering 300
MHz 125°C. (b) Aging of a NOR Gate at 125 °C. ..128

Figure 7.2: An Abstract Illustration of the Box Plot. ..132

Figure 7.3: Box Plot Results showing the overall RPF Improvements of dTune, RTO
and CRT Normalized to TO [Each Box Plot shows the Summary of
31,500 Experiments Considering All Cases of Different Chip Sizes,
Scenarios of Application Mixes, and Process Variation Maps over
Different Aged States of the Chips]. ..133

Figure 7.4: Individual Box Plot Results of RPF Improvements of dTune, RTO and
CRT Normalized to TO for Different Chip Sizes and Different Aging
Years. [Each Box Plot shows the Summary of 3,500-12,000 Experiments
Considering All Cases of Application Mixes and Process Variation Maps].135

Figure 7.5: Detailed Reliability Savings Compared to Different State-of-the-Art
Techniques for the 6x6 Core Processors with Different Process Variation
Maps considering Different Application Mixes and Aging Years [Each
Bar corresponds to an Averaged RPF Saving Value of 500 Experiments
considering Different Process Variation Maps]. ..136

Figure 7.6: Detailed Reliability Savings Compared to Different State-of-the-Art
Techniques for the 8x8 Core Processors with Different Process Variation
Maps considering Different Application Mixes and Aging Years [Each
Bar corresponds to an Averaged RPF Saving Value of 500 Experiments
considering Different Process Variation Maps]. ..137

Figure 7.7: Detailed Reliability Savings Compared to Different State-of-the-Art
Techniques for the 10x10 Core Processors with Different Process
Variation Maps considering Different Application Mixes and Aging Years
[Each Bar corresponds to an Averaged RPF Saving Value of 500
Experiments considering Different Process Variation Maps].137

List of Figures

xxx

Figure 7.8: Detailed Reliability Savings Compared to Different State-of-the-Art
Techniques for the 12x12 Core Processors with Different Process
Variation Maps considering Different Application Mixes and Aging Years
[Each Bar corresponds to an Averaged RPF Saving Value of 500
Experiments considering Different Process Variation Maps].138

Figure 7.9: CHIP19 – Size 6x6: Core-to-Core Frequency Distributions for Different
Aging Years. ...139

Figure 7.10: CHIP19 – Size 6x6: Detailed Reliability Savings Compared to Different
State-of-the-Art Techniques for Different Application Mixes and Aging
Years. ..139

Figure 7.11: CHIP41 – Size 6x6: Core-to-Core Frequency Distributions for Different
Aging Years. ...140

Figure 7.12: CHIP41 – Size 6x6: Detailed Reliability Savings Compared to Different
State-of-the-Art Techniques for Different Application Mixes and Aging
Years. ..140

Figure A.1: Tool Flow for Processor Synthesis, Processor Aging Estimation, and
Reliability Simulation and Evaluation for Manycore Processors.147

Figure A.2: ArchC Simulator Generation [128]. ...149

Figure A.3: Flow of the Reliability-Aware Simulation and Analysis.150

Figure A.4: Modeling Hardware-Level Faults in Different Processor Components at
the ISS-Level (An Example for the Case of SPARC v8 Architecture).151

Figure A.5: Format and an Excerpt of a Fault File. ...151

Figure A.6: Flow of the Fault Simulation Process. ..152

Figure A.7: Detailed error characterization in different applications using our
methodology and SymPLFIED [98]. ..153

Figure B.1: Markov Chain for Instruction Output with State Transition Probabilities.155

Figure B.2: Flow of Estimating the Mutual Information for Function Resilience.156

Figure B.3: Flow of Steps to Compute Basic Block & Function Resilience.........................157

Figure B.4: Resilience of various application functions (inverse values in log scale):
resilience is shown separately for Incorrect Output and Application
Failure, and Combined. ..158

xxxi

List of Tables

Table 5.1: Overview of the Application Versions Created (the Reliability-Wise Best
Version is Highlighted). ...90

Table 5.2: Best Selected Version for the Case of 1f/MCycles. ...92

Table 5.3: Best Selected Version for the Case of 5f/MCycles. ...92

Table 5.4: Best Selected Version for the Case of 10f/MCycles. ...92

Table 5.5: Detailed example for SATD. ..92

Table 6.1: An Example Illustration for Generating Function Schedules (Selected
Function Versions are highlighted in Filled Rows). ...110

Table 7.1: Processor Synthesis Results for Area and Power for 300 MHz127

Table A.1: Different Parameter for Fault Scenario Generation. ..148

xxxiii

List of Algorithms
Algorithm C.1: Computing the Error Masking Probability PDP(I, p) ..160

Algorithm C.2: Computing the Instruction Error Propagation Index ..161

Algorithm C.3: Algorithm for FVI-Driven Data Type Optimization ..162

Algorithm C.4: Algorithm for FVI-Driven Loop Unrolling. ...163

Algorithm C.5: Algorithm for Applying Common Expression Elimination164

Algorithm C.6: Pseudo-Code of the proposed Soft-Error-Driven Instruction Scheduler.165

Algorithm C.7: Pseudo-Code of the Selective Instruction Protection Technique166

Algorithm C.8: Offline Table Construction ...167

Algorithm C.9: Pseudo-code for the Hybrid RMT Tuning..168

Algorithm C.10: Pseudo-code for the Reliable Code Version Tuning ..169

Algorithm C.11: Pseudo-code for the Core Tuning and Version Update170

xxxv

Acronyms
(See Notations / Symbols and their Description in Appendix D)

AES Advance Encryption Standard

AGU Address Generation Unit

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

CAVLC Context Adaptive Variable Length Coding

CDF Cumulative Density Function

CDFG Control and Data Flow Graph

CEE Common Expression Elimination

CPU Central Processing Unit

CRAFT CompileR Assisted Fault Tolerance

CRC Cyclic Redundancy Check

DCT Discrete Cosine Transform

DM Data Memory

DMR Dual Modular Redundancy

ECC Error Correcting Codes

EDDI Error Detection by Duplicated Instructions

EPI Instruction Error Propagation Index

f / MCycles Faults per Million Cycles of Execution

FPU Floating Point Unit

FVI Function Vulnerability Index

GB Giga Byte

GCC GNU Compiler Collection

HT Hadamard Transformation

H.264 The Advanced Video Coding Standard H.264 by MPEG and ITU

ID Instruction Decoder

IEU Instruction Execution Unit

IF Instruction Fetch

IPRED Intra Prediction

IM Instruction Memory

IMI Instruction Error Masking Index

ISS Instruction Set Simulator

IVI Instruction Vulnerability Index

Acronyms

xxxvi

ISA Instruction Set Architecture

IW Instruction Word

MB Mega Byte

MC-FIR Motion Compensated FIR Filtering

MCycle Million Cycles

NMOS N-type Metal-Oxide-Semiconductor Logic

NPC Next Program Counter

PC Program Counter

PMOS P-type Metal-Oxide-Semiconductor Logic

RAM Random Access Memory

RMT Redundant Multithreading

RTP Reliability-Timing Penalty

SAD Sum of Absolute Differences

SATD Sum of Absolute Transformed Differences

SDC Silent Data Corruptions

SIMD Single Instruction Multiple Data

SRAM Static Random Access Memory

SWIFT Software Implemented Fault Tolerance

TCL Tool Command Language

TMR Triple Modular Redundancy

TSMC Taiwan Semiconductor Manufacturing Company

- 1 -

Chapter 1 Introduction
Embedded computing systems are ubiquitous and have been widely deployed in many application
domains like security, consumer, internet-of-things, mission-critical and airborne applications. The current
and emerging generations of embedded computing systems pose stringent design constraints in terms of
performance, area, power, and cost. Furthermore, there has been an increasing trend of applications’
functionality and even the number of applications on these computing systems. To cope with these trends
and constraints, Moore’s Law has paved the path of technological development for semiconductor
industries, according to which, the number of transistors double every 18 months [1]; see Figure 1.1.
Shrinking transistor features, like gate size and channel length, results in low power consumption, high
performance, low cost per transistor, and high transistor density per chip. This miniaturization has
facilitated the realization of powerful (embedded) computing architectures that provide high performance-
per-power efficiency, which is evident from the processor roadmap, current generation of commercial
processors with tens to hundreds of compute cores (like Intel Xeon Phi [3] and Nvidia GPUs [4]), and
roadmap of the International Technology Roadmap for Semiconductor (ITRS) [5]. However, as a
consequence of this aggressive miniaturization, these computing devices fabricated with nano-scale
transistors (i.e. beyond 65 or 40 nm) now face serious reliability threats (like soft errors, aging, thermal
hot spots, and process variations) and robustness challenges at various abstraction levels. This challenges
the feasibility and sustainability of further cost-effective technology scaling [5]-[8]. These reliability
threats arise from multiple sources, as discussed below, and may result in faults in the hardware that have
catastrophic effects on the correctness of applications’ execution, thus raising inevitable challenges and
concerns for the system designers, architects, and technology vendors [5], [9]-[12].

103

104

105

106

107

108

109

1010

1970 19801975 1985 19951990 2000 20102005 2015

Tr
an

si
st

or
 C

ou
nt

4004
8080

8086

80286
i386

i486
Pentium

AMD K5
Pentium II

Pentium IIIAMD K6

Pentium IV
AMD K7 Barton Atom

AMD K8
Itanium 2 Core 2 Duo

Cell

AMD
K10

Power 6
8 core Xeon(Nehalem)

Core i7 (quad)

62 core Xeon Phi
GM 200 (Nvidia)

Core M

Apple
A8

Transistor count doubling
every 18 months

(a)

0

1000

2000

3000

4000

5000

6000

7000

0

50

25

5

10

15

20

45

30

35

40

Lo
gi

c,
 M

em
or

y
Si

ze
 (N

or
m

al
iz

ed
 t

o
20

11
)

N
um

be
r

of
 p

ro
ce

ss
in

g
en

gi
ne

s

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
26

Number of processing engines
Total Logic Size (Normalized to 2011)
Total Memory Size (Normalized to 2011)

(b)

Figure 1.1: (a) Moore’s Law: Transistor Count and the History of Processors (adapted from

[1]-[4]); (b) ITRS Scaling Trends for Memory and Processors [5].

1.1 Reliability Threats
The nano-scale transistors are subjected to various reliability threats that can be broadly categorized into
the following classes.

Permanent and Intermittent Faults: There are two key sources: (1) manufacturing and structural
faults like stuck-at faults (i.e. stuck-at-zero, stuck-at-one) and delay faults; and (2) aging faults, like
Negative-Bias Temperature Instability (NBTI), Hot Carrier Injection, Time-Dependent Dielectric
Breakdown, and Electromigration. Aging faults manifest as delay/timing faults or frequency degradation
if ensuring timing. Aging faults in the early years typically manifest as intermittent faults and in the later
years as permanent faults. Other sources of intermittent faults are burst faults resulting from process
variations, noise, voltage fluctuations, etc. The NBTI-induced aging is one of the most prominent aging
threats and it occurs in PMOS transistors when negative stress is applied at the gate [13]. An equivalent
process called Positive-Bias Temperature Instability happens in NMOS transistors. The NBTI-induced

Chapter 1 Introduction

- 2 -

aging manifests as an increase in the threshold voltage Vth by an amount ∆Vth, resulting in an increase in
transistor delay leading to timings errors or a loss in the operating frequency over a period of time,
typically in months to years. Considering a minimum operating frequency constraint for the lifetime of the
chip, aging may result in a decrease in the lifetime if the delay degradation leads to a frequency drop
beyond the required frequency level.

Process Variation is a design-time issue caused by the manufacturing induced process variability.
The variability challenge arises from the fact that nano-scale transistors are also more difficult to precisely
manufacture. Thus the physical and electrical parameters of the transistors that come back from the
foundry are different from the design intent. For instance, these transistors vary in terms of their doping,
channel length, gate size, oxide thickness, transistor width, electron mobility, threshold voltage, etc. [14].
As a consequence of process variations, even identical transistors in two different locations on a chip can
have different delay and leakage power properties, as can two transistors in the same location on different
chips. Therefore, process variations result in variability in the operating frequency and leakage power
consumption of processing cores on a chip (i.e. core-to-core variations, where all the cores comply to the
same (micro)-architecture) and across different chips of the same or different wafers, (i.e. chip-to-chip or
die-to-die variations) [14][15]. This can result in potential yield loss if a fraction of the chips does not
meet the frequency and/or power specifications [16][17], [25].

Transient Faults are manifested as single or multiple event upsets in the memory/sequential and
combinational logics for single or multiple cycles [18]. Beside the electrical-noise, a major source of
transient faults is radiation-induced soft errors that has emerged as one of the key reliability threats. Soft
errors are transient faults due to low-energy or high-energy particle strikes1 on the transistors [18]. If an
energetic particle strikes the transistor, it creates charges (in the form of electron-hole pairs) that can
switch on the transistor for a short time before the charges are diffused, thereby flipping the state of the
logic element (i.e. logic gates) or the memory element (i.e. SRAM cells). These soft errors are manifested
as spurious bit flips in the underlying hardware that may jeopardize the correct software execution. The
number of bit flips and their duration depends upon the amount of charge produced by the particle strike
(function of the incident particle’s energy) and the physical/electrical properties of the transistor (affects
the collection charge and the critical charge required to produce a bit flip). The bit flips in the memory
elements (e.g., pipeline registers, register files, and caches) are latched unless over-written, while in logic
elements could be of transient nature and may get masked due to subsequent gates [18][19]. Although the
low-energy particles can be avoided by using materials with low-levels of impurity, the high-energy
particles from the cosmic rays stay as a potential threat towards soft errors [18]. Due to the shrinking
transistor dimensions and increased power densities, the critical charge to produce soft errors follows a
decreasing trend, i.e. increased susceptibility to soft errors [19]. Intel predictions state that the bit Soft
Error Rate will increase at a compounding rate of 8% [20]. Although some studies still show that bit Soft
Error Rate is almost constant or may even slightly decrease in FinFETs, due to the high integration
density, the system Soft Error Rate is rapidly increasing as it is proportional to the number of transistors in
the chip.

In summary, technology scaling in the nano-era leads to several reliability threats like soft errors,
aging, and process variations that are expected to worsen significantly in the upcoming technology nodes
[20][21]. Furthermore, temperature serves as a catalyst for several reliability threats (like aging and soft
errors). Therefore, reliability/dependability has emerged as one of the major design criteria in embedded
computing systems. These reliability threats result in a variety of system errors ranging from Silent Data
Corruptions to Application Program Failures (like crash, hang, and abort) that can have a catastrophic
impact depending upon the application domain and the final system deployment [7][22]. Industrial
standards mainly rely on introducing excessive guardbands to mitigate aging and process variations [23]
[24] in order to prolong the Mean-Time-To-Failure. The mainstream research efforts mainly explore

1 Low-energy particles are typically alpha particles from the packaging materials while the high-energy particles are

typically neutrons and protons from cosmic rays.

1.2 Increasing Trends for Soft Errors

- 3 -

aging mitigation techniques to lower these guardbands [23] or exploit variability as an opportunity to
have a pool of architecturally similar cores with varying performance and power levels [25] or to tolerate
variation errors [26]. Mitigating soft errors is, however, very challenging due to their random and
transient nature [22] and most of the techniques are based on full-scale architectural redundancy [22] or
program redundancy [27][28]. Nonetheless, in order to achieve a cost-effective reliable design of modern
embedded computing systems, all of the above-discussed reliability threats are important to be mitigated
in one or the other way as they affect the system failure rates in all phases of chip lifetime.

This thesis primarily targets soft errors, which are one of the most important reliability threats in the
nano-era. Towards this end, this thesis aims at leveraging multiple software layers to achieve high soft
error resilience on unreliable or partially-reliable hardware, while exploiting the inherent error masking
characteristics and soft error mitigation potential at different software layers, which has not yet been
explored. Since a real-world system is subjected to multiple reliability threats, this thesis will also present
concepts to improve soft error resilience in the presence of aging and process variations. However,
mitigation of aging, temperature-dependent effects, and the variability problem is out of the scope of this
thesis. In the following, a major focus of discussion will be kept on the soft error problem, while aging
and process variations will be discussed to the level of detail, which is necessary to understand the novel
contributions of this thesis related to soft error resilience under process variation and aging effects.

Before proceeding to the research challenges and novel contributions of this thesis, increasing trends
of soft errors are presented to highlight the importance of this issue.

1.2 Increasing Trends for Soft Errors
Soft errors have emerged as a non-
negligible design challenge in
hardware/software systems and its
importance is likely to increase with
each upcoming technology generation
[19]. The number of soft errors per unit
time is termed as Soft Error Rate (SER).
The unit of measuring the SER is
Failure-In-Time (FIT). One FIT is
equivalent to one failure in one billion
device hours [18]. According to [18], the
failure rates that are produced by soft
errors are significantly higher than other
reliability threats, i.e. up to 50,000
FIT/Chip compared to 50-200 FIT which
is the collective failure rate that comes from other reliability threating mechanisms, such as, metal oxide
breakdown and electromigration. The SER has accelerated with each upcoming technology node. Though
for the newer technologies (like FinFETs), the trend of SER increase is different, prediction from
technology vendors show that soft errors will still be an important issue and soft error rate will increase by
a rate of 8% per bit per technology generation as shown in Figure 1.2 [29]. However, some studies also
show that while the bit SER has saturated (i.e. either stays constant across different technologies or even
slightly lower for the upcoming technologies), the system SER is increasing exponentially due to the high
integration density, as discussed below.

Figure 1.3 (a) presents the device scaling trends by Texas Instruments for the SRAMs that exhibit
reduced cell (charge) collection efficiency. It is due to the fact that reduction in the cell depletion size is
cancelled out by the lower operating voltage and reduced node capacitance [18]. Figure 1.3(b) shows that,

0

50

100

150

22180 130 90 65 45 32 16
Technology node (nm)

Re
la

tiv
e

nu
m

be
r o

f
tr

an
si

en
t e

rr
or

s

Transient errors

Figure 1.2: Intel’s Trends for Soft Error Failures [10].

Chapter 1 Introduction

- 4 -

although initially the SRAM single bit SER was increasing with every new technology node, in the deep
submicron regime (< 0.25 μm), the SRAM bit SER has saturated and may even be decreasing. This can be
attributed to the saturation in voltage scaling, reductions in the junction collection efficiency, and
increased charge sharing with the neighboring nodes due to the reduced channel lengths. However, high
integration density leads to an increased number of memory elements and logic gates on the chip, which
results in an exponential increase in the system SER as it is proportional to the number of transistors on
the die. Similar prediction trends can also be found in more recent studies by [30].

N
or

m
al

ize
d

Ca
pa

ci
ta

nc
e

an
d

Vo
lu

m
e

Technology (nm)

O
pe

ra
tin

g
Vo

lta
ge

N
or

m
al

ize
d

So
ft

 E
rr

or
 R

at
e

Technology (nm)

Figure 1.3: (a) SRAM Scaling and Power Trends;
(b) Bit and System Soft Error Rates (SER) for SRAM [18].

SE
R

(e
rr

or
s p

er
 m

on
th

)

Integrated SRAM (megabit)

12
x

GA
P

20
03

20
04

20
05

20
12

20
07

20
08

20
09

20
10

20
11

20
06

Year

1

10

100

1000

10000

20% Vulnerable 100% Vulnerable 1000 year MTBF goal

Si
le

nt
 D

at
a

Co
rr

up
tio

n
FI

T
fr

om
 V

ul
ne

ra
bl

e
La

tc
he

s

1 processor system
Source: Mukherjee@HPCA’05

Figure 1.4: (a) System Soft Error Rates with Increasing Number of Chips [18]; (b) Silent Data

Corruptions from Vulnerable Latches for Different Levels of Protections [22].

Besides the complex microprocessor design, further increase in the system SER can also be attributed
to the growing number of cores in an on-chip system and increasing trends of on-chip memory integration
as shown in Figure 1.4(a). Besides SRAMs, due to the reduced critical charges and high integration
density, there has also been increasing trends of soft errors in the combinational circuits, where soft errors
in the gates can ultimately propagate to the output latch of the circuit [18]. Figure 1.4(b) shows the studies
conducted by S. Mukherjee [22] that even after assuming 1000 years of Mean-Time-Between-Failures as
adopted by IBM [31]. It shows that considering only 20% vulnerable latches, i.e. 80% latches are
protected using ECC, a practical case of this is Fujitsu SPARC that had 20% of 200k latches vulnerable,
the lifetime constraint can no longer be met in the modern systems due to the increasing number of cores.
However, in more cost-constrained scenarios, the number of vulnerable latches is very high. The gap
between the required reliability level and Silent Data Corruptions is about 12x if 100% latches are

1.2 Increasing Trends for Soft Errors

- 5 -

considered vulnerable, i.e. a pessimistic design option in cost-constrained scenarios. The gap may even
exceed to 100x for an 8 processor system [22]. These studies showed that a data center with over 300
multi-core processors experiences a data corruption almost every week.

Soft Error Trends for FinFETs (i.e. Tri-Gate technology): Figure 1.5 presents the SER for SRAM
and combinational logic for 32 nm planar and 22 nm Tri-Gate (FinFET) devices [32]. It is shown that the
FinFET devices have low susceptibility to soft errors compared to the planar CMOS devices, for instance,
SRAMs using FinFETs at 22nm yield an approximately 3.5x reduction in the SER compared to SRAMs
fabricated using a 32nm planar CMOS technology. The work in [32] performed scaling of 32nm planar to
22nm planar and speculated that SER for FinFETs at 22nm is still less than that in the 22nm planar
devices. It is shown that the SER per logic gate as a fraction of the Latch SER is increasing at higher
operating frequency, though the SER of 22nm FinFETs is still less than the SER in 32nm planar devices.

22 nm Latch

32 nm Latch

Voltage (V)

Co
sm

ic
 S

ER
/L

at
ch

 (n
.u

)

32 nm S6 at 0.75 V
22 nm S6 at 0.7 V

Figure 1.5: (a) Voltage Dependence of Upset Rates of 32 nm planar and 22 nm Tri-Gate Latches.

(b) Measured 32 nm and 22 nm Combinational Cosmic SER per Logic Gate expressed as a Fraction
of Latch SER [32].

To address the non-negligible soft error issues, there have been extensive investigations to devise soft
error mitigation techniques both at the hardware and at the software levels. State-of-the-art hardware-level
reliability techniques are primarily relying on full-scale architectural redundancy (i.e. dual/triple modular
redundancy and parity protection) [33] and often incur significant overhead in terms of area and
power/energy. To alleviate this overhead or to complement the existing hardware-level techniques in
(area/power)-constrained scenarios, several software-level reliability techniques have evolved, for
instance, Error Detection using Duplicated Instructions [27] and Software Implemented Fault Tolerance
[28]. These software-level techniques are also based on data/code redundancy and control flow checking
[34] and may also incur significant performance and memory overhead (≥2x–3x), which is prohibitive
within the stringent design constraints of embedded computing systems. The compiler-level techniques
[72][73] primarily target only the register file component (which is a small part of the processor [35]), and
do not consider the complete processor perspective during reliability estimations and optimization, thus
leading to only limited reliability improvements (about 2%-7%). Soft error resilience in multi-/manycore
processors is mainly achieved by redundant multithreading that exploit idle cores to execute redundant
threads and comparison/voting. Prominent examples of such works are Intel’s Chip-level Redundant
Threading [36], Process-Level Redundancy [37], and Reunion [38]. However, these techniques do not
account for core-to-core frequency variation knowledge from the hardware layer during the soft error
resilience. Consequently, these techniques may lead to either significant synchronization delays that can
violate the performance constraints (i.e. degraded timing) of different critical tasks or excessive
mismatches/rollbacks because the result of the redundant thread is delayed and not available at the same
time instant. In general, a majority of hardware/software-level techniques do not exploit the soft error
masking potential available at different software layers and therefore, may lead to an over-design, which
may be cost-inefficient. Furthermore, most of the software-level reliability techniques lack knowledge

Chapter 1 Introduction

- 6 -

from the hardware layers (i.e. where faults occur) and may lack reliability efficiency and fault coverage.
This instantiates the need for a cross-layer reliability solution where knowledge from different hardware
and software layers must be leveraged to achieve cost-effective reliability in constrained scenarios.

To summarize, traditionally, reliability is mainly addressed at the hardware level. However, due to
the unavoidable hardware errors, designing cost-effective solutions to resolve these reliability issues is,
nowadays, a task that must also be considered at software levels by exploiting inter-layer error masking
properties, as will be discussed in Chapter 3 and Chapter 4. State-of-the-art software-level reliability
techniques have, by far, not exploited their potential since the common belief, so far, was that reliability
problems when occurring at the hardware level should be addressed at the hardware level and such
techniques have not explored the knowledge and masking potential available at different software and
hardware layers in a synergistic way. Furthermore, in a real-world scenario the susceptibility of the on-
chip multi-/manycore system towards multiple reliability threats is inevitable, thus joint consideration of
aging and process variation-induced effects during the soft error resilience is crucial. In short, to enable a
highly reliable software system for embedded computing, it is crucial for system designers to leverage
multiple system layers in an integration fashion for joint optimization of reliability under constrained
scenario, i.e. given user-provided tolerable performance overhead. Designing such a multi-layer software
reliability system however, poses several research challenges in terms of modeling and estimation as
discussed in the following section.

1.3 Research Challenges for Enabling Cross-Layer Software
Reliability

One way to solve the reliability threats is at the lower layers (i.e. device/transistor level) from where
these faults are stemming. However, handling these problems at the device level may require significant
amount of design effort, verification and validation time, and cost that may jeopardize sustaining the
Moore’s Law with completely fault-free transistors in a cost-effective way. Furthermore, as discussed
above, a lot of transistor level faults get masked at the architecture and software level, or may not even
matter for the current execution context at a given time instance. Therefore, the semiconductor and
hardware/software communities have recently experienced a shift towards mitigating these reliability
threats at higher hardware/software design abstractions and exploiting their masking potentials, rather
than completely mitigating these at the device level.

The software-level reliability optimization may even be more important in case the available
processor lacks full scale protection against soft errors (and potentially also against other reliability
threats) or may even be unreliable. In such cases, the challenge is how to enhance the reliability at
multiple software layers in order to reduce the software programs’ susceptibility to soft errors and to
improve the reliability of the overall system while accounting for the knowledge/information exchange
across multiple system layers. It is even more challenging when considering the stringent design
constraints for embedded computing systems, for instance, reliability optimization under tolerable
performance overhead constraints. However, handling the hardware-level faults at the software-level is
not straightforward and poses several research challenges regarding reliability modeling and optimization
at the software layers, as outlined below.

Research Challenges for Enabling Accurate Reliability Estimation at the Software Level: To
enable software-level reliability models, it is important to analyze the effects of hardware level faults at
the software level in terms of functional and timing correctness, the corresponding masking effects, and
error manifestations (i.e. incorrect program output or program execution failures like crash and abort).
Faults in different processor components during the execution of different instructions may result in
different types of faults. Such a study is important to be made to devise effective models for quantifying
software program’s reliability. Traditional software-level reliability models ignore the hardware-level

1.3 Research Challenges for Enabling Cross-Layer Software Reliability

- 7 -

knowledge (like fault distributions and microarchitectural properties) that may lead to inaccurate
reliability analysis and estimation at the application software level. Hence, there is a need to bridge the
gap between the hardware and software by quantifying the effects of hardware-level faults at the software
level, while jointly considering the processor knowledge (like layout/area, logical masking properties of
different processor components that depends upon their microarchitecture, and fault distribution) and
software properties (like error probabilities of different instructions in different pipeline stages, masking
effects due to varying data and control flow). Furthermore, it is also important to identify the appropriate
granularity of software-level reliability models to enable optimizations at different software layers.

Research Challenges for Enabling Cross-Layer Software Reliability Optimization: Software
reliability optimization under constrained scenarios needs to account for the knowledge from different
system layers, for instance, (1) resilience or error masking properties of different functions and even of
different instructions within a given function; (2) space- and time-wise error probabilities of different
instructions; (3) fault distributions and masking properties of the underlying hardware components; (4)
knowledge about the hardware-level protection, e.g., instruction decoder and program counters are
protected, but execution units and register files not; and so on. There exists a significant potential for
reliability optimizations at the compiler and system software layers that has not yet been fully exploited
due to the unavailability of the instruction-level reliability models. In order to employ compiler-level
reliability optimization, it is important to quantify the reliability-wise importance of different instructions
and identify a set of the most reliability-wise important instructions. Furthermore, such reliability
estimation needs to be performed using static methods. Therefore, a key question that this thesis aims at
addressing is: if and how can code generation be exploited to improve the reliability of the generated code
of a given application software program executing on unreliable hardware under tolerable performance
constraints.

Another related challenge is to determine the granularity of applying the optimization methods, i.e.
whether reliability optimization at the instruction granularity is more beneficial or at the function
granularity or even both can be employed considering different software layers. For instance, employing
instruction-level reliability optimizations during reliable code generation, and function-/task-level
reliability optimization during reliable program execution. Such a cross-layer optimization flow needs to
account for the reliability potential available from different layers. For instance, different reliable code
versions may be available for the system software to execute for the same function/task. In such cases, the
reliability-driven system software need to analyze the functional and timing reliability properties of such
reliable code versions to select an overall reliability-optimizing solution for the current execution context.

Besides the above-mentioned challenges or as part of them, this thesis targets the following research
challenges at different software layers:

1) Characterizing the reliability-wise importance of different instructions and functions.

2) Enabling dependable code generation and dependable application program execution.

3) Enabling interactions between reliability-driven compilation and reliability-driven system
software.

4) Enabling reliability-performance tradeoffs at compile and run time.

5) Improving the software error resilience in multi-/manycore processors under core-to-core
frequency variations due to manufacturing-induced process variability and aging.

6) Jointly accounting for functional reliability (i.e. correctness of program’s output in the presence of
faults) and timing reliability (i.e. deadline misses in the presence of faults, for instance, due to
reliable application execution with performance loss).

Chapter 1 Introduction

- 8 -

1.4 Novel Thesis Contribution
In order to address the above-discussed research challenges, this thesis introduces a novel cross-layer

approach where the key goal is to leverage multiple layers in the system design abstraction to exploit the
available reliability enhancing potential at each system layer and to exchange this information across
multiple system layers. In particular, this thesis aims at reliable code generation and execution on an
unreliable or partially-reliable embedded hardware that is subjected to multiple reliability threats. To
enable this, the following novels concepts and techniques for cross-layer reliability modeling and
optimization under user-provided tolerable performance overhead constraints are proposed. Figure 1.6
illustrates an overview of the proposed novel contributions.

Cross-
Layer

Reliability
Modeling

and
Estimation

(Chapter.4)

Program-Level Reliability
Optimization for Dependable
Code Generation (Chapter.5)

Reliability-Driven Offline
System Software (Chapter.6)

Cross-Layer Reliability Modeling and Optimization Flow

Reliability-Driven Adaptive Run-
 Time System Software (Chapter.6)

Reliability
Analysis and

Error
Characteri-

zation
(Chapter.3)

Reliability-Aware Many-Core Simulator and Evaluation Setup (Appendix A)

Figure 1.6: Overview of the Novel Contributions of this Thesis.

1.4.1 Cross-Layer Software Program Reliability Modeling and Estimation

Novel cross-layer reliability analysis, modeling, and estimation concepts, techniques and tools are
proposed in this thesis that exploit the knowledge from both software and hardware layers to efficiently
model the reliability factors at the corresponding system layers adapted to the appropriate granularity
(e.g., instruction and function/task level). First, an extensive reliability analysis of application software
programs is performed to understand (1) which instructions lead to which type of errors in the software
programs when faults occur in different processor components; and (2) how different errors get masked at
the software layers. This analysis is leveraged to develop cross-layer software reliability models for
quantifying the effects of hardware-level faults at the software level, while accounting for the knowledge
of the processor architecture, layout, and fault probabilities of different processor components, in order to
bridge the gap between the hardware and software. This has not yet been considered by state-of-the-art
software-level reliability modeling approaches [73], [74]-[76].

The proposed software reliability models aim at quantifying error probability, error masking, and
error propagation effects at different granularity, to enable reliability optimization at the corresponding
granularity in different system layers. In particular, this thesis introduces the following novel
models/metrics to quantify software reliability in the presence of hardware-level faults.

1) The Instruction Vulnerability Index (IVI) model estimates the probability of an instruction’s
output being erroneous due to soft errors. It jointly accounts for spatial vulnerabilities (i.e. area-
wise error probabilities) and temporal vulnerabilities (i.e. time-wise error probabilities) of different
instructions executing through different pipeline stages of a given processor. Quantifying these

1.4 Novel Thesis Contribution

- 9 -

vulnerabilities for a given application software program requires: (A) spatial vulnerability analysis
w.r.t. different pipeline components (like register file and ALU) considering their area and fault
probabilities; and (B) temporal vulnerability analysis for different instructions that exhibit varying
vulnerable residency in different processor components.

2) The Instruction Error Masking Index (IMI) model estimates the probability that an error at an
instruction as a result of fault during its execution will ultimately be masked until the final visible
output of an application software program. Estimating IMI requires error masking analysis
depending upon the data flow properties (e.g., instruction type and value of operands variables) and
control flow properties (e.g., execution probabilities of basic blocks).

3) The Instruction Error Propagation Index (EPI) model quantifies the error propagation effects at
the instruction granularity, i.e. if an error at an instruction is not masked until the final visible output
of the application software program, then to how many program outputs will it propagate and affect.
This requires an analysis of non-masking error probabilities in multiple instruction paths in the data
and control flow graph.

4) The Function Vulnerability Index (FVI) and Function Resilience models estimate the reliability
at the function granularity. The FVI model estimates the function reliability as a function of IVIs of
its instructions. However, the function resilience is a black-box model that estimates resilience of a
function to hardware-level faults as a probabilistic measure of function’s correctness. The function
resilience model is beneficial in cases, where designers do not want to dive into in-depth program
analysis.

5) The Reliability-Timing Penalty (RTP) model is beneficial in cases where besides functional
correctness, timing reliability plays also an important role, e.g., in timing-conscious embedded
systems. The Reliability-Timing Penalty is defined as given as a linear combination of the
functional reliability penalty (e.g., quantified as FVI) and timing reliability penalty (e.g., quantified
as probability of deadline misses).

These reliability models are leveraged by different techniques in a cross-layer reliability optimization
flow for quantifying the reliability-wise importance of different instructions and functions/tasks and to
perform constrained reliability optimization.

1.4.2 Cross-Layer Software Program Reliability Optimization

Novel cross-layer software reliability optimization concepts and techniques are proposed in this thesis
that leverage multiple system layers for dependable code generation, application composition, and
application execution. Dependable code generation for a given application software program is enabled
through applying different reliability-driven transformations, instruction scheduling, and selective
instruction protection techniques in a reliability-driven compilation flow. Whereas, dependable
application composition and execution is enabled via reliability-driven system software that accounts for
core-to-core frequency variations as a result of design-time process variations and run-time aging. It
manages application execution in redundant multithreading mode while considering reliable code
versions. The proposed cross-layer software reliability optimization aims at improving the reliability of
application software programs through two important means: (1) reducing the error probabilities by
lowering the spatial and temporal vulnerabilities of different instructions; and (2) error detection and
recovery in constrained scenarios through selective instruction and task-level redundancy. The proposed
techniques improve reliability under user-provided tolerable performance overhead constraints.

In particular, this thesis introduces the following novel concepts and techniques for cross-layer
reliability optimizations at different granularity at different system layers as summarized below.

Chapter 1 Introduction

- 10 -

1) The Reliability-Driven Code Generation optimizes the reliability of application software program
by employing several reliability-driven software transformations, instruction scheduling, and
selective instruction redundancy techniques under tolerable performance overhead constraints. The
reliability-driven transformations and instruction scheduling technique aim at reducing error
probabilities while selective instruction redundancy target error detection and recovery support at
the instruction granularity. These code generation techniques are leveraged to generate a set of
different compiled versions for each application function, such that, different function versions
differ in terms of their reliability and performance properties. A brief overview of the proposed
novel concepts and techniques for dependable code generation is presented below.

A. Reliability-Driven Software Transformations: The following four reliability-driven
transformations are proposed in this thesis that lower the error probabilities by reducing the
instruction vulnerabilities and number of critical instruction executions.

i. Reliability-Driven Data Type Optimization reduces the number of executions of critical
instructions (like load, store, branches, calls, and address computing instructions) by
transforming the smaller bit-width data types into larger bit-width data types for given data
structures, while minimizing the function vulnerabilities.

ii. Reliability-Driven Loop Unrolling determines an ‘appropriate’ unrolling factor such that the
spatial and temporal vulnerabilities of different instructions are jointly reduced under
performance and code size constraints. It explores the tradeoff between reduced loop
evaluation instructions and vulnerabilities of live register variables.

iii. Reliability-Driven Common Expression Elimination and Operation Merging reduces the
vulnerabilities by removing identical expressions and/or merging partially common sub-
expressions. It investigates the reliability effects of recomputation and register variables with
increased lifetime while also accounting for the register spilling.

iv. Reliability-Driven Online Table Value Computation evaluates whether precomputed table
values with increased memory vulnerability would be beneficial from the overall function
reliability perspective or the online computation with increased instruction vulnerabilities in
the pipeline.

B. Reliability-Driven Instruction Scheduling determines the instruction execution sequence that
influences the vulnerabilities of different instructions in different processor components, for
instance, the variable vulnerable residency in register file or instruction’s vulnerable residency
in the pipeline stages. The proposed instruction scheduler prioritizes instructions with the
highest reliability weight, which is a joint function of instructions’ vulnerabilities, probabilities
of different error types during their execution, and their dependent instructions. To account for
the knowledge of the reliability weights of dependent instructions, a lookahead-based heuristic
is employed.

C. Reliability-Driven Selective Instruction Protection selects a set of reliability-wise important
instructions in different functions for employing redundancy-based protection under tolerable
performance overhead. For achieving high reliability in constrained scenarios, the proposed
technique prioritizes instructions based on their vulnerabilities, error masking and propagation
effects, and the protection overhead. The key is to give more protection to the less-resilient
functions of an application software program and less protection to more-resilient functions,
when considering a performance overhead constraint.

D. Multiple Reliable Compiled Function Versions: The above-discussed code generation
techniques are used to generate multiple versions for each functions of an application software
program. These functions are identical in terms of their functionality and final output, but differ

1.5 Orientation of this Thesis in the SPP 1500 Priority Research Program on Dependable
Embedded Systems

- 11 -

in terms of their reliability properties and performance properties. This enables the realization
of a reliability-performance optimization space that will be leveraged by the system software
layers for dependable application composition and execution in constrained scenarios, as
discussed below.

2) The Reliability-Driven System Software exploits the multiple reliable function versions for
dependable application execution on single core and multi-/manycore processors. It aims at
improving the soft error resilience while accounting for other reliability threats like aging and
process variations. Two novel contributions are made at the system software layers.

A. Reliability-Driven Offline System Software generates multiple offline function schedules for
reliability-driven application composition. It constructs function schedule tables, such that each
function schedule represents a particular dependable application composition using different set
of reliable function versions. The goal of the offline system software is to minimize the total
Reliability-Timing Penalty of the complete function schedule. For this, it picks an appropriate
reliable version for a function considering the reliability and execution time properties of the
previously executed functions and the remaining time until the application deadline.

B. Reliability-Driven Run-Time System Software: The run-time system software for single core
processors dynamically selects an appropriate schedule from the offline generated function
schedule tables depending upon the current execution context and the application deadline. In
case of multi-/manycore processors, different cores may operate at different frequencies due to
the design-time process variations and/or run-time aging-induced frequency degradation.
Therefore, the run-time system software for manycore processors aims at achieving soft error
resilience considering core-to-core frequency variations. It employs an adaptive Dependability
Tuning technique that performs three operations for dependable application execution. (1) It
adaptively activates/deactivates the redundant multithreading for different concurrently
execution applications under resource constraints (e.g., available cores) while accounting for
variable resilience properties of different applications, their deadlines, and a history of the
encountered errors. (2) It performs variation-aware thread-to-core mapping for tasks with and
without redundant multithreading to ensure both functional and timing reliability. The key idea
is to find a set of cores for tasks in the redundant multithreading mode such that the redundant
threads finish execution at almost the same time before the deadline, thus reducing the
synchronization overhead and avoiding deadline misses. (3) It selects an appropriate reliable
function version depending upon the frequency of the allocated core and the deadline.

Note that these software-level techniques may be employed in conjunction with hardware-level
techniques to further improve the system reliability.

1.5 Orientation of this Thesis in the SPP 1500 Priority
Research Program on Dependable Embedded Systems

This thesis contributes towards the sub-project GetSURE – Generating and Executing Dependable
Application Software on UnReliable Embedded Systems as part of the German Science Foundation
(DFG)-funded priority research program SPP 1500 – Dependable Embedded Systems [157]. The goal of
SPP 1500 is to provide improved error resilience and online adaptivity in order to address various
dependability threats, like soft error and aging, which arise from the fabrication imperfection, transistor
miniaturization, thermal hot spots, and other side effects of the continuous technology scaling; see
Figure 1.7. The aim of this priority program is to devise novel modeling and optimization techniques
across various layers in the system design abstraction ranging from circuits to all the way up to the
application level in order to improve the reliability of the overall hardware/software system. One of the
key goals of this SPP is to enable support for cross-layer reliability to achieve cost-effective reliability by

Chapter 1 Introduction

- 12 -

exploiting the knowledge from multiple hardware and software layers. This thesis covers the cross-layer
software reliability aspects within this SPP while considering the knowledge from the underlying
hardware layers as an input.

Figure 1.7: Pyramid for Dependable Embedded Systems and Focus of SPP 1500 [157].

Figure 1.7 and Figure 1.8 show different research facets of the SPP 1500 program highlighting the
involvement of different system layers like hardware architecture and software sub-system covering
design, monitoring, and management aspects. This SPP aims at enhancing the dependability through
various means, amongst many, few are discussed below.

1) Technology Abstraction: The aim is
to provide a clean interface between
the technology-related research and
higher abstraction layers in order to
facilitate independent yet effective
research of novel techniques/methods
at multiple hardware and software
layers.

2) Dependable Hardware Architectures:
This ranges from the lower logic to
the microarchitecture and
architectural-level hardware and all
the way up to the system-on-chip
hardware architectures is
investigated. Other sub-projects like
OTERA [154][155] aim at achieving
high fault tolerance through reconfiguration and self-organization.

3) Dependable Embedded Software: This covers research and development of novel concepts and
methodologies for generating reliable code, managing reliable execution of application code on
different architectures, and analyzing the impact of different hardware-level faults on the software
level. A key goal is to enable soft error tolerance of the embedded software (including both the
application program and operating system) to the reliability threats emerging in the hardware and
manifesting at the software layers.

Dependable Embedded Software
(Thesis Focus)

Dependable Hardware Architectures

Technology Abstraction

O
pe

ra
tio

n/
O

bs
er

va
tio

n/
A

da
pt

at
io

n

D
es

ig
n

M
et

ho
ds

Figure 1.8: Different Research Facets of SPP 1500 and

the Orientation of this Thesis’ Contributions [157].

1.6 Thesis Outline

- 13 -

4) Operation, Observation, and Adaptation: Overall dependability of an on-chip system is a joint
function of the reliable hardware architecture and reliable embedded software, which cannot be
viewed in an isolated way. Therefore, efficient mechanisms for observation of erroneous scenarios
and adaptation of different components of the hardware/software sub-systems are important to
achieve cost-effective dependability in unpredictable scenarios. Key goals are to explore techniques
like error recovery and failure avoidance.

This thesis makes contributions to the following columns of SPP 1500: (1) Dependable Embedded
Software; and (2) Operation, Observation and Adaptation; see filled box in Figure 1.8. In particular, this
thesis aims at cross-layer reliability modeling and optimization techniques to enable dependable code
generation and execution on unreliable hardware. Both offline and online software techniques are
proposed in this thesis in case the underlying hardware components are unreliable or partially protected.
In order to bridge the gap between hardware and software techniques for achieving a high degree of
reliability, this thesis will perform a detailed characterization of the impact of hardware-level faults at the
software layer and will leverage this program reliability analysis to develop various reliability models at
the instruction and function granularity. These models will be employed to guide different software layers
for reliability optimization.

1.6 Thesis Outline
The thesis is organized in eight chapters, where Chapter 1 introduces the reliability problems,

challenges and novel contributions of this thesis. Chapter 2 provides the necessary background on
different reliability threats and state-of-the-art techniques in reliability modeling and optimization at both
hardware and software levels. Chapter 3 provides a comprehensive overview of the proposed cross-layer
reliability modeling and optimization flow along with a detailed program reliability analysis using fault
injection. Chapter 4, Chapter 5, and Chapter 6 provide detailed techniques, algorithms, and evaluation of
novel contributions of this thesis. Results for the cross-layer optimization are presented in Chapter 7.
Chapter 8 concludes the thesis and presents some visions on potential future works. A brief outline of
each chapter is given below.

Chapter 2 – Background and Related Work: This chapter discusses background knowledge on
different reliability threats, for instance, the preliminaries on soft errors, aging, and process variations,
their sources and basic mechanisms (see Section 2.1, 2.2, and 2.3). Section 2.4 will present state-of-the-art
soft error analysis, modeling, and estimation techniques at different hardware/software layers highlighting
their limitations and benefits. Afterwards, hardware-level soft error mitigation techniques are discussed in
Section 2.5.1 along with their benefits and associated overheads and limitations. To alleviate the overhead
of different hardware-level techniques, related works have devised several software-level soft error
mitigation techniques that will be discussed in Section 2.5.2 highlighting their basic limitations. The
ignorance of hardware-level information renders these techniques as inefficient.

Chapter 3 – Cross-Layer Reliability Analysis, Modeling, and Optimization: This chapter presents
the system overview of the proposed cross-layer reliability analysis, modeling and optimization flow in
Section 3.1, highlighting the novel modeling and optimization techniques at different system layers and
their interactions. The novel concept of bridging the gap between the hardware-level (where the faults
occur) and the software-level (where the reliability is aimed to increase) is presented, while highlighting
its importance for efficient reliability modeling and optimization. A detailed program-level error analysis
is performed in Section 3.2 using fault injection experiments and an output error characterization is
presented. A characterization of instructions w.r.t. their relationship to the output error types is performed
in Section 3.2.1 and 3.2.3. This analysis also helps in understanding the effects of hardware-level faults at
the software-level and thereby identifying different parameters for cross-layer software reliability
modeling. Afterwards, a high level overview of the proposed cross-layer reliability modeling flow is

Chapter 1 Introduction

- 14 -

presented in Section 3.3 highlighting how different parameters from both the hardware and software
levels are considered to devise multiple software reliability models at different levels of granularity. The
detailed techniques and results of these models are discussed in Chapter 4. Towards the end, a novel
cross-layer software reliability optimization flow is presented in Section 3.5 and 3.6 that employs several
novel techniques at different system layers for dependable code generation, application composition and
execution. The detailed techniques and results of these reliability optimizing techniques are discussed in
Chapter 5 and Chapter 6.

Chapter 4 –Software Program-Level Reliability Modeling and Estimation: This chapter presents
the details on the proposed cross-layer software reliability modeling and estimation that are developed at
different granularity, i.e. instruction and function/task-level. First, the instruction-level models will be
presented, namely, Instruction Vulnerability Index (Section 4.1), Instruction Error Masking Index
(Section 4.2), and Instruction Error Propagation Index (Section 4.3) that quantify the error vulnerabilities,
error masking probabilities, and error propagation effects at the instruction granularity, respectively.
Besides discussing the parameter estimation and information from both hardware and software levels,
results for these models will be presented for different applications and their variations will be discussed
w.r.t. the diversity in the instruction profiles. Afterwards, two different function-level reliability models,
namely Function Vulnerability Index and Function Resilience, will be introduced in Section 4.4. In
Section 4.4.1, the Function Vulnerability Index will be discussed in detail as it will be used for the
reliability optimizing techniques proposed in this thesis. Function resilience provides an alternate
modeling solution and will be discussed in Appendix B. Afterwards, the Reliability-Timing Penalty model
will be presented in Section 4.4.2 that provides a joint function for functional and timing reliability and
will be beneficial for timing-conscious embedded systems.

Chapter 5 –Software Program-Level Reliability Optimization for Dependable Code Generation:
This chapter presents several novel techniques for dependable code generation to improve the application
software program’s reliability under user-provided tolerable performance overhead constraint. First, four
novel reliability-driven software transformations are presented in detail in Section 5.1 along with concept
explanation, examples, and algorithms. For each transformation, its impact on the software reliability is
analyzed. Afterwards, detailed error distribution results for different versions generated after applying
these transformations are presented and analyzed. Based on these results, selection of appropriate
transformations for different applications is discussed. Furthermore, the impact of these transformations
on the critical address generation arithmetic instructions, overhead reduction for instruction redundancy
techniques, and function vulnerability reduction is analyzed. In Section 5.2, the reliability-driven
instruction scheduling technique is explained in detail along with examples, cost function, and algorithm
discussions. The proposed technique is compared with state-of-the-art instruction schedulers that ignore
the instructions’ vulnerabilities from the full processor perspective. The comparison is made for different
error types after extensive fault injection campaigns. Moreover, reduction in function vulnerability is also
analyzed and discussed. Section 5.3 will present the reliability-driven selective instruction protection
technique with the help of an example explaining the concept, detailed algorithm and cost function
discussions, and comparison results with state-of-the-art highlighting the benefits of considering the
proposed reliability models for this optimization. Towards the end, Section 5.4 will present the concept of
multiple reliable function versions and selection of versions lying on the pareto-frontier. These function
versions enable the reliability-performance optimization space for the reliability-driven system software
of Chapter 6.

Chapter 6 –Dependable Code Execution using Reliability-Driven System Software: This chapter
presents the techniques to enable dependable application composition and execution using the system
software layers that exploit the concept of multiple reliable function versions. First, a reliability-driven
offline system software is discussed in Section 6.1 that constructs reliable function schedules considering
different execution contexts. Examples and algorithm details are presented along with the Reliability-
Timing Penalty evaluation of the proposed techniques. Afterwards, reliability-driven function scheduling

1.6 Thesis Outline

- 15 -

for single core processors is presented in Section 6.2 that selects an appropriate reliable function schedule
at run time based on the deadline and execution properties of the previously executed functions. Finally,
Section 6.3 presents the reliability-driven system software for manycore processors that employs a novel
Dependability Tuning technique to improve the soft error resilience in the presence of core-to-core
frequency variations due to process variations and aging. Since the proposed Dependability Tuning
technique integrates the novel contributions of this thesis, a comprehensive evaluation of it is performed
in Chapter 7 as it will also demonstrate the benefits of cross-layer software reliability optimization
compared to single-layer reliability optimization techniques in constrained scenarios.

Chapter 7 – Results and Discussions: This chapter presents the results and benefits of the proposed
cross-layer reliability approach when compared with different single-layer reliability optimizing
techniques. First the processor synthesis, aging estimation, and process variation maps are presented in
Section 7.1. Section 7.2 briefly presents the benchmark applications from MiBench suite that are
evaluated for reliability and for fault injection campaigns. A summary of comparison results over different
chip sizes, numerous process variation maps, and various application scenarios are presented for different
aging years in Section 7.4. Afterwards, detailed comparison results are presented in Section 7.5 and 7.6
for different chip sizes, and some selected chips, respectively.

Chapter 9 – Conclusion and Future Outlook: This chapter presents a short summary of the thesis
followed by a set of visions on how the output of this thesis can be exploited and can be extended further
in future works.

Appendix A – Simulation Infrastructure: This appendix presents the integrated tool flow and
simulation setup which is developed under the scope of this work. First, the reliability-aware manycore
simulator is discussed which is based on ISA-simulators for cores with SPARC v8 instruction set
architecture generated using ArchC tool chain. The simulator has integrated fault generation and injection
modules that are discussed along with different parameters.

Appendix B – Function-Level Resilience Modeling: This appendix presents the function resilience
modeling, which is a black-box model to estimate the degree of output correctness for a given function.

Appendix C – Algorithms: This appendix presents detailed algorithms for different modeling and
optimization techniques proposed in this thesis.

Appendix D – Notations and Glossary: This appendix presents a table of notations/symbols used in
this thesis and their definitions/descriptions. Furthermore, a glossary of important terms is also presented.

- 17 -

Chapter 2 Background and Related Work
This chapter presents the background knowledge regarding different sources of the emerging

reliability threats (i.e. soft errors, process variation and aging induced effects), the related work on soft
error modeling and their mitigation techniques. In particular, Section 2.1 provides the background
regarding soft errors, starting with the basic transistor structure and its functionality, followed by various
soft error sources and the soft error mechanism. Section 2.2 presents the basics of the NBTI-induced aging
phenomena. Section 2.3 presents different variability sources and manufacturing induces process variation
effects along with the process variation model explained in Section 2.3.1. Section 2.4 discusses the related
work on soft error modeling and estimation at both the hardware and software layers. Starting from the
traditional to more advanced approaches, Section 2.5 presents state-of-the-art soft error mitigation
techniques at both hardware and software levels. As the focus of this thesis is on soft errors, therefore
most of the background discussed is related to soft errors. Towards the end, Section 2.6 summarizes the
related work.

2.1 Soft Error
2.1.1 Transistor Structure

Before going into the details of
how soft error becomes an issue in
the transistors, it is important to have
a basic knowledge of the transistor’s
structure and functionality. The
fundamental unit of the CMOS
(Complementary Metal-Oxide-
Semiconductor) microprocessor’s
underlying structure is the n-type
(NMOS) and p-type (PMOS)
transistors. The n-type transistor carries the electrons, whereas the p-type transistor carries the holes from
source to drain. Figure 2.1 shows the structure of the NMOS transistor. A metal gate is attached to a thin
layer of a silicon dioxide (SiO2) which forms the interface with the silicon substrate. Channel formation is
necessary for the flow of mobile charge carries (i.e. electrons/holes) through the transistor. A channel will
be formed from source to drain and the transistor will be considered as ON, when the gate-source voltage
Vgs becomes larger than the threshold voltage Vth. Otherwise, the transistor remains OFF as no channel is
formed and no electrons/holes are travelling from source to drain.

2.1.2 Soft Errors in Transistors

Soft errors may be caused due to external events like energetic particle strikes, and/or internal
disruptive events like noise transients at circuit, chip or system level, cross-talks, and electromagnetic
interference [39]. As compared to alpha particles and low energy thermal neutrons, the high energy
cosmic neutrons produce huge amount of energy (e.g., in the range of 80MeV – 1GeV) when it strikes the
nuclei of a silicon substrate in the chip [18][135]. Figure 2.2 illustrates the soft error mechanism that can
be explained in form of following three main phases [18].

1) Phase-1: Ion Track Formation: When an energetic particle (like high-energy neutron from
cosmic rays) strikes the semiconductor material (e.g., substrate of a transistor), the energy transfer
results in the generation of numerous electron-hole pairs and a high carrier concentration along
the ion’s path. This is called the ion track. The high energy cosmic neutron produces 80 MeV to 1

Drain

n+ Channel

P-substrate

P-well

n+

Source
Gate

Metal
Oxide

Vth-Threshold voltage

Vdd-Supply voltage

Vgs-Gate-Source
voltage

Vds-Drain-Source
voltage

Figure 2.1: Structure of an NMOS Transistor.

Chapter 2 Background and Related Work

- 18 -

GeV of energy with a single strike and every 3.6eV of energy the ion loses, produces one
electron-hole pair.

2) Phase-2: Ion Drift and Current Pulse Generation: The produced charge is collected within a
few microns at the junction. In this ion drift phase, when the ions come close to the depletion
region, the electric field collects the carriers that results in a generation of a current spike (or
voltage transient). This process is called “funneling”. Collection of charge near the depletion
region can result in a temporary formation of a channel (even if the transistor is originally in the
OFF state) and consequently leads to the flow of electrons from source to drain. This sudden
current glitch may result in an instantaneous power-on of the transistor for a very short period of
time (typically for tens of pico-seconds).

3) Phase-3: Ion Diffusion: Over the period of time, the ions are diffused in the transistor for
instance in the depletion region. This illustrates the transient nature of soft errors. In this process,
additional charge is collected until all excess carriers are captured, recombined or diffused away.

n+ n+

p+

N-W
ell

P-Well

P-Substrate

Isolation

Gate

+-
+-

+-
+- +-

+- +- +-

+-

+- Depletion
Region

High-Energy Particle
(Neutron or Proton)

n+
---- -

--- --
- -
-- -- --
-

-
-

--
-

- -
-
-

-
- -

++++
+
+
+++

+++++++
+
++
+++
++
+
++

++

n+

-
-

--

-

-
- --

- -

- -

-

-
-

-

--

+

+
+

+

++
++ +

+
+

++

3

2

1

0
10-13 10-12 10-11 10-10 10-9

Time (seconds)

C
ur

re
nt

(a
rb

itr
ar

y
un

it)

Phase-1: Ion
Track

Formation
Phase-3: Ion

Diffusion
Phase-2:

Current Pulse
Generation

Figure 2.2: Soft Error Mechanism illustrating Different Phases of
Charge Generation, Collection, and Diffusion.

With sufficient amount of collected charge, bit flips may result in logic devices and get latched into
memory elements. These bit flips may corrupt the state of the processor (i.e. content in pipeline registers,
register files, caches, etc.) and jeopardize the correct application software program execution. With the
miniaturization of transistors, close spacing, and reduced critical charges, increasing trends of multi-bit
upset (even from a single particle strike) have recently been reported in the literature [84][85].

Critical Charge and Collection Charge: There are two important factors related to the soft error
mechanism: 1) collection charge QCollection, and 2) critical charge QCritical. As transistor dimensions reduce,
the critical charge also decreases along with the operating and threshold voltages. The QCollection is the
amount of charges (i.e. electrons/holes) collected in the conducting path of the transistor (i.e. between
source and drain) to form a channel. Whereas, the QCritical is the specified number of accumulated charges
which are required to form a channel between source and drain. When the QCollection ≥ QCritical, the channel
can form and the electron/holes start flowing from source to drain. Now as the QCritical reduces, a lesser
number of accumulated charge is required to form a channel between the source and drain [135]. Thus,
the chances for experiencing a soft error becomes higher, because a higher number of electron/hole pairs
are generated upon a particle strike that can rapidly accumulate to form a channel in the conducting path
between the source and drain. In short: lower QCritical means, fewer number of collected electrons/holes
can form a strong channel. Furthermore, the QCritical becomes lower with higher temperature and further
aggravates the soft error rate [117]. When an energetic particle strikes the silicon substrate, the QCollection is
modeled using Eq. 2.1:

c
collection all

max

xQ Q exp
L Eq. 2.1

2.1 Soft Error

- 19 -

Typically, the QCollection is in the range of 1 to several 100 fC, and its exact amount depends upon the
type of the energetic particle, its path, and the dissipated energy along the path. Likewise, from the
transistor perspective there are several factors upon which the amount of QCollection is dependent, i.e. size,
substrate structure, location of the strike, device state, etc. The transient current pulse for ion-track charge
collection typically has a double exponential form with rapid rise time and gradual fall time as shown
below in Eq. 2.2 [105].

tt
collectionQI(t) e e Eq. 2.2

The parameters τα and τβ denote the collection time constant and the time constant for the ion-track
formation respectively. Both these parameters are dependent upon the process with typical values for τα =
164ps, and τβ = 50 ps. The QCritical denotes the amount of the critical charge required to change the data
state. Its value can be expressed as Eq. 2.3 [86].

FT

critical D
0

Q I (t)dt Eq. 2.3

The parameter ID denotes the time-dependent drain transient current and TF denotes the flipping time,
which is the time when both the voltages at the drain and at the gate become same [86]. The above model
works well for simple circuits like DRAM storage cells. However more complex circuits like SRAM cells
experience an upset when the recovery time of the cell τr (time taken for the struck node voltage to return
to its pre-strike value) exceeds the feedback time τf (time taken for the struck node voltage to become
latched as incorrect data) [106]. Therefore, for the computation of QCritical, TF = τr if the cell recovers and
TF = τf if the cell upsets. In general, TF = min (τr, τf).

2.1.3 Masking Sources for Soft Errors

In combinational circuits, not all soft errors in the underlying hardware propagate to the output due to
different masking effects. Masking means the ability of a logic circuit to prevent soft errors from
occurring/appearing at the final output. Figure 2.3 illustrates the three major masking effects namely
Logical Masking, Electrical Masking and Latch-Window Masking.

Input

I2

I1
“1” “1” Output

Output

Vth

“0”

-Vth Vth
-Vth

“1” “0” “1”

Logical Masking Electrical Masking

“0” Output

Latch-window

Q=D
Q hold

“0”

CLK

INPUT D Q

CLK Q

Latch-Window Masking

Figure 2.3: Soft Error Masking Effects [87].

The logical masking effect is defined as the capability of a logic circuit to prevent soft errors from
affecting the final output. For instance, in the figure it is shown that the output of the OR gate will always
be “1”, as long as I1 maintains a logic high state (“1”). The blue pulse is caused upon a radiation event,
and this will not affect the final output. In the second figure, there is an electric pulse caused by the
radiation event. However, the amplitude of the pulse is not strong enough to trigger a bit-flip on the input
signal. The pulse will be attenuated when it passes through each gate and finally dies out. This
phenomenon is called electrical masking. In the third figure, there is a D-latch. The value of output Q
depends on the clock, if the clock is high, the value of D is set to Q, if the clock is low, Q will hold its

Chapter 2 Background and Related Work

- 20 -

previous value. The latch-window is defined as “this” interval, during which the clock is high. If the pulse
misses the window, it will not affect the final output, due to the so called latch-window masking.

However, logic circuits still face a lot of soft error threats inspite of the masking effects, and many
state-of-the art reliability estimation and optimization techniques are proposed at both the hardware and at
the software-levels (discussed in Sections 2.4 and 2.5) to protect the logic circuit from soft errors or make
sure that even if a soft error happens, the circuit can detect the errors and give the correct output.

2.2 NBTI-Induced Aging
There are different mechanisms for aging like Negative-Bias Temperature Instability (NBTI), Hot

Carrier Injection, and Time Dependent Dielectric Breakdown. NBTI-induced aging has emerged as one of
the most crucial aging phenomenon that happens in the PMOS transistor. An equivalent process called
Positive-Bias Temperature Instability happens in NMOS.

Figure 2.4(a) illustrates the NBTI mechanism in a PMOS transistor which is under stress, i.e. the gate
voltage is minus Vdd. When this voltage is applied it creates a force at the inversion layer resulting in the
breakdown of the silicon and hydrogen bond at the interface of the silicon and oxide layer (as negative
stress attracts the positive hydrogen ion). The hydrogen ion is released in the oxide layer and at the broken
bond a trap is created which can trap any free ions or charges, thus making the insulation imperfect. Even
two neutral H atoms can combine together into an H2 molecule, which can escape from the surface of the
oxide [65]. At a higher abstraction layer, the NBTI-induced effect is manifested as an increase/shift in the
threshold voltage, thereby making the transistor slower. Note, the exact phenomenon is still not precisely
known and is an actively researched area in device physics [143].

DrainSource

p+ p+

n – substrate

Gate
Oxide Layer

Vg= – Vdd

Si HTR
AP

OH+

x

Figure 2.4: (a) NBTI-Induced Aging (adapted from [137]);

(b) Impact of Temperature on the NBTI-Aging [19].

The temperature plays an important role in further accelerating the NBTI-induced aging effects, i.e.
increase in the threshold voltage shift. Figure 2.4(b) shows different curves for the threshold voltage shifts
over a period of time for different operating temperatures [19]. As the temperature increases, the shift in
threshold voltage aggravates and therefore increases the delay, and thus the aging effects become more
prominent [151]. When estimating the change in the threshold voltages for two temperatures, i.e. 75°C
and 50°C, the ΔVth is approximately 50% higher at 75°C than 50°C. It can be seen that the NBTI effects
for two alternating temperatures, i.e. between 100°C and 25°C are worse than that at 75°C [151]. This
shows that the shift in threshold voltage ΔVth will be determined by the higher temperature.

As soon as the negative stress is removed, a recovery phase is triggered but 100% recovery happens
only in infinite time. Figure 2.5 shows an abstract view of the stress phase (causing Vth increase) and
recovery phase (causing Vth decrease) along with the short-term and long-term aging effects. The stress and

2.3 Manufacturing-Induced Process Variations and Other Variability Sources

- 21 -

recovery phase can be explained using the reaction-diffusion model [40]. One reason for the partial recovery
could be that the hydrogen ion again tries to re-bond with the silicon, but this behavior is not fully
understood [142]. However, 100 % recovery is not possible as re-bonding is a random process and the same
hydrogen and silicon atoms will never always perfectly re-bond. It is reported that the recovery is probably
better at higher temperatures. However, higher temperatures also aggravate the threshold voltage shift in the
stress phase.

If aging is not properly taken care of
then the cores’ safe operating frequency
(i.e. to ensure correct execution) and
system clock frequency become different
and may lead to timing errors. To
compensate the increase in the threshold
voltage Vth by an amount ∆Vth, the circuit
needs to execute at a lower frequency by a
factor of ∆f that may violate the
performance constraints, otherwise the
circuit output may be faulty due to the
timing errors. The industrial practice to
solve this issue is via guard banding, i.e.
running all the cores at the slowest
frequency, which will lead to a system-wide performance loss. The aging-induced performance/delay
degradation varies depending upon the stress produced due to workload and operating conditions [19].
During the first year, the aging of the core is expedited and dependent upon the core usage, whereas in the
years onwards the long-term aging happens which is in times of months and years and is more dependent
on the temperature [19][138]. The device-level NBTI aging model (Eq. 2.4) employed in this paper is
obtained together with an industrial partner and the VirTherm-3D group [153] as a part of the
collaborative research effort in the DFG SPP1500 program [118]. It is based on the measured sample data
from 65nm to 22nm following the reaction-diffusion theory [40].

1500 T 4 1/ 6 1/ 6
th ddV 0.05 e V y d Eq. 2.4

∆Vth is the mean threshold voltage shift in volts, T is the temperature in kelvin, Vdd is the supply
voltage in volts, y is the age of the transistor in years, and d is the duty cycle, i.e. probability that the
transistor is stressed.

Note: the aging model adopted in this work is based on the reaction-diffusion theory but another aging
model based on trapping-detrapping theory [143] can also be employed because the proposed algorithms
and concepts are orthogonal to the aging models. The aging values (in form of core-to-core frequency
degradation) serve only as an input to the proposed cross-layer reliability modeling and optimization flow
for evaluating concepts related to soft error resilience under frequency variations.

2.3 Manufacturing-Induced Process Variations and Other
Variability Sources

The magnitude of the process variations (e.g., in the channel length/geometry and random dopant
fluctuations) increases with the scaling technology trends, as it is more difficult to precisely manufacture
smaller transistors with exactly the specified dimensions [25][45][139]. One source of variability comes
from the manufacturing side which manifests in the form of core-to-core frequency variations. Figure 2.6
shows the frequency variations in the Intel’s 65 nm 80-core test chip, where at 1.2 V the maximum core
frequency is 7.3 GHz and the minimum is 5.7 GHz. This corresponds to 25% frequency variation on the

Time

V t
h S

hi
ft

[V

ol
t] ...

-1

0
V g

 [V
ol

t] ...

Long-Term Aging

Stress
Phase

Recovery
Phase

Varying
Duration

Short-
Term
Aging

Figure 2.5: Short-Term and Long-Term Aging [138].

Chapter 2 Background and Related Work

- 22 -

same chip, whereas across different chips the variation will be more [42]. The cores running at different
clock frequencies may lead to timing errors. To address this issue, the major industry practice is to do
guard banding by running every core with the minimum frequency on the chip, i.e. in this case it is 5.7
GHz which is the slowest of all the cores. In synchronous system design the core’s performance is
determined by the slowest critical path, and process variations may introduce severe design-time
performance degradation.

Another source of variability comes
from different vendors. This is because
different vendors use different design
rules and cell libraries to fabricate the
same specification, ultimately leading to
variations in the leakage and dynamic
power across different chips. Figure 2.7
(a) presents the variations in the
maximum active and max idle power for
five 5 different vendors fabricating the
same standard, i.e. DDR2 533 DRAM
chips. The standard is fixed which is the
DDR2 533 but as the vendors are
different there are variations in the
maximum active/dynamic power and
maximum idle/leakage power across different vendors.

There are also ambient conditions dependent variabilities. This comes with the variations in the
temperature e.g. as the temperature is increased the leakage power also increases. In a single 80 core chip,
different cores might have different temperatures, resulting in different leakage power and performance
properties. Figure 2.7(b) shows the measurement of the leakage power for different temperature for
different variants of five ARM cortex M3 processors. It can be seen that at the same temperature different
processors will have different leakage powers. Furthermore, a single processor shows variations in the
leakage power as the temperature varies. This can be explained due to the fact that at higher temperatures,
the electron mobility increases making it easier for them to escape from source to drain or from source to
substrate, causing current leaks.

Sl
ee

p
Po

w
er

 (m
W

)

Temperature (°C)

Vendor Differences

Vendor 1 Vendor 2 Vendor 3 Vendor 4 Vendor 5

N
or

m
al

ize
d

Cu
rr

en
t/

Po
w

er

Ambient Conditions

Figure 2.7: (a) Power variation across five 512MB DDR2-533 DRAM parts; (b) Variation in sleep

power (Psleep) with temperature across five instances of an ARM Cortex M3 processor [26][43].

Figure 2.8 shows the trend of design-time variability that comes from random dopant fluctuations in
the transistor. Doping is done in silicon semiconductors by implanting additional doped atoms, i.e. p+ and
n+ in the transistor substrate. In the nano-scale transistors it becomes increasingly difficult to manufacture

Core ID

Fr
eq

ue
nc

y
(G

H
z)

7

6

5

4

3

2

1.2V

0.8V

7.3
GHz 5.7

GHz

25%

50%

0 10 20 30 40 50 60 70 80

x

Semiconductor Manufacturing

Figure 2.6: Frequency variation in an 80-core processor

within a single die in Intel's 65nm technology [42].

2.3 Manufacturing-Induced Process Variations and Other Variability Sources

- 23 -

every transistor with precisely the same number of dopant atoms, and with exactly the same dimensions,
i.e. gate thickness, channel length, etc. Earlier in one micron technology, there were more than 5000 of
these dopant atoms which basically meant that minor variations of 4-5 atoms (0.001%) had negligible
effect on the electrical properties of the transistor. However, in the recent 32nm technology the number of
dopant atoms is approximately 40 [19], and slight variations in the number of dopant atoms will
significantly affect the properties of the transistor, e.g., a variation of 4 dopant atoms will become 10% of
the total that may result in performance degradation by approximately 10%. The variations at the
transistor level will ultimately reflect at the gate-level, e.g., see the delay distribution for an inverter as
shown in Figure 2.8. In earlier technologies the inverter was having a deterministic delay value which
meant that all the inverters on the chip had exactly the same delay, e.g., 1 ps. But now due to process
variations, inverters made from different transistors typically have different delay properties. For instance,
some transistors may have a delay value of 1 ps while some others have 1.1 ps or 0.9 ps.

Average Number of dopant atoms in the channel

x

Pr
ob

ab
ili

ty
 →

Delay →

Latency of inverter

Figure 2.8: Design Time Process Variation [144].

2.3.1 Process Variation Model

This thesis employs the process variation model proposed in [25] that models the chip surface as a fine
grid of dimensions Nchip×Nchip. The process parameter value pij(i; j ϵ [1; Nchip]) at a grid cell (i, j) can be
modeled as a Gaussian random variable with mean μp and standard deviation σp. The correlation between the
process parameters at two different grid points is given as the correlation coefficient ρij,kl that reduces with
increasing distance. Based on the experimentally validated model of [44], ρij,kl is given as Eq. 2.5.

2 2(i k) (j l)
ij ,kl chipe , i, j,k ,l [1,N] Eq. 2.5

The parameter α determines the reduction rate of ρij,kl. The frequency of a digital circuit can be
modeled as the worst-case delay of the Ncp identical critical paths. According to [25][45], the maximum
frequency of core Ci (i ϵ [1; N]) in a multi-/manycore processor is modeled using Eq. 2.6, where K' is a
technology dependent constant and SCP,i denotes the set of NP grid cells in Ci .

,

'
,

1min
CP i

MAX
i

k l S kl
f K Eq. 2.6

As discussed in Chapter 1, since the primary focus of this work is on the soft error related issues, in
the following sections, related work for the soft error modeling and mitigation techniques will be
discussed in more detail.

Chapter 2 Background and Related Work

- 24 -

2.4 State-of-the-Art Soft Error Estimation Techniques
In literature, extensive research has been conducted for analyzing and modeling the soft error impacts

at various granularities, i.e. at circuit-/architecture-level [47][88][93][94] and program-level [73][74][76].
The standard techniques are either based upon fault injection simulations or analytical/mathematical
models developed to estimate the soft error propagation across multiple gates in the combinatorial
circuits. In the following an overview of these approaches at different design abstraction layers is given.

2.4.1 Circuit-Level Techniques

In circuits, the fundamental entity in both the logic and memory parts are the NMOS and PMOS
transistors which are prone to soft errors and its sensitivity grows when fabricated in scaled technology
nodes [10]. The soft errors are of major concern in memories because of their large footprint in the chips.
Furthermore, the soft error induced bit flips inside memories stay unless overwritten. To handle soft errors
in memories, ECC based techniques are prominent [62][63]. In contrast, the soft error effects in the logic
part of the combinatorial circuits are relatively less frequent due to various circuit-level error masking
effects (i.e. logical, electrical and latch window masking [87]) that prevent the errors to appear at the final
output in several cases. However, despite these error masking effects, the soft error failure rate in the
combinational logic is becoming more crucial for transistors fabricated in the scaled technology nodes.
This is primarily due to their reduced sizes and critical charges which makes them more prone to soft
errors [21]. Moreover, achieving soft error detection and recovery in a cost-effective way is relatively
difficult in combinational circuits compared to that in memories (typically protected with parity or ECC)
because of the random and transient nature of these faults and a high degree to propagation to multiple
memory elements. In general the soft error rate measurement in circuits is in accordance with the potential
error masking effects. A model is developed in [21] to measure the Soft Error Rate (SER) in the
microprocessors while taking into account the effects of electrical and latch window masking effects. At
first, the SER is computed via simulating the mechanism when a particle strikes the gate till the drain of
the gate. This behavior is simulated using charge to voltage pulse modes, and then the electrical model is
used to check the characteristics of the voltage pulse reaching the latch input. Afterwards, for checking the
pulse strength at the latch input, a pulse latching model is developed that checks the amplitude and
duration to cause a soft error.

IBM developed the Soft-Error Monte Carlo Modeling program to check if the chip designs meet SER
specifications [46]. Work in [47] only focuses on the electrical masking effects and has developed a
mathematical model to analyze the soft error propagation across multiple gates in a combinational circuit.
In [88] an analysis and modeling approach has been proposed to measure the SER while taking into
account the error masking effect. Low level HSPICE simulation is performed to obtain the electrical
masking computation for each path, and logical masking computation is carried out by flipping the logic
value at each input vector and each path independently. Works in [48][49] present a reliability evaluation
where in [49] different error masking factors are separately computed for investigating the soft error
tolerance of the circuit. In [48] probabilistic transfer matrices are used where each gate is represented as a
matrix and for each input combination, the probability of its output value is explicitly known. However,
the work presented in [48] focuses only on the logical masking effect of the circuit for given gate output
probabilities without considering electrical and latching-window masking.

In [95], fault injection techniques are utilized which are based upon Monte-Carlo simulations which
are time-consuming because numerous experiments are performed to achieve certain accuracy. In [50], an
electrical masking model is proposed in which soft error rate estimation is performed at chip level while
taking into account the impact of voltage fluctuations, and it is reported that ignoring the voltage
fluctuation in electrical masking can lead to inaccurate estimates of the soft error rate. Furthermore, the
chances of experiencing both single and multiple bit flips are higher in the recent technologies along with
the possibilities of multiple correlated bit flips. Hence it is important to account for such a correlation

2.4 State-of-the-Art Soft Error Estimation Techniques

- 25 -

during soft error rate estimation, as proposed in [21]. In [51], a circuit-level technique is proposed which
is based upon the error propagation probability. This technique uses a path based analysis to check the
error propagation from source to the outputs, which is a very useful and fast technique for reasonably
accurate identification of the vulnerable parts of the design. In [52] a hybrid technique is proposed to
compute the soft error vulnerability of the entire microprocessor system consisting of regular and irregular
structures. The techniques at the architectural and logic-level are integrated for estimating the soft error
vulnerability of regular (address based structures, i.e. register file, cache, etc.) and irregular structures (i.e.
logic, functional units) within a microprocessor. In general, the circuit-level technique cannot account for
the soft error masking factors at the higher system layers like architecture and software program.
Therefore, a large body of research has investigated soft error estimation techniques at both architecture
and software program levels.

2.4.2 Architecture-Level Techniques

The Architectural Vulnerability Factor (AVF) model is developed in [31] which is employed by
different state-of-the-art to estimate the soft error impacts at the architectural level. The AVF of a
processor component is the probability that a fault in that component will result in a visible error in its
final output. It is the fraction of faults that can appear at the output in the form of user visible errors. For
AVF estimation of a processor component, the Architecturally Correct Execution (ACE) analysis [31] is
performed for all the bits in the processor component. ACE bits are the bits which are deemed necessary
for architecturally correct execution, meaning that any fault in these bits will affect the correct program
output when no error correction techniques are employed. All other bits are termed as un-ACE bits,
because a fault in these bits will not cause a user visible erroneous program output. A bit is said to be un-
ACE for a fraction of time if a fault at its value does not affect the final output of the program otherwise it
is ACE. In case of storage cells, the AVF is the percentage of the time that it holds ACE bits, whereas in
case of logic structures, the AVF is the fraction of time (percentage of total execution cycles) that the
ACE bits or instructions are processed. It is assumed that all bits are ACE unless proven unACE and this
may lead to overestimating the vulnerability of the target processor component. It is reported in [89] that
ACE analysis overestimates the vulnerability up to 7x. Furthermore, the circuit-level masking factors such
as electrical and latch-window masking in a hardware component cannot be ignored during the soft error
rate analysis of a hardware component. However, the ACE analysis ignores error masking, making this
approach inappropriate for irregular hardware structures (e.g., functional units) and only suitable for
regular structures such as cache, register file, and reorder buffer in microprocessors [90]. It is reported
that different processor components and microarchitectures have distinct AVF values, e.g., a fault in an
ALU might affect the final output whereas, a fault in branch predictors might incur performance penalty
but will leave no impact to the final output. The work in [73] proposed the Register Vulnerability Factor
(RVF) model which considers the register bits required for architecturally correct execution. Extending
the concept of AVF, the RVF models considers the fact that soft errors in the register file can be
overwritten and will have no impact on the final program output if read after being written. RVF is the
probability that a soft error in registers can be propagated to other processor components (i.e. functional
units, memory). While AVF concepts focus on the effect of soft error propagation, the RVF presents the
probability of soft error propagation to other hardware components. The authors in [91] quantified the
impact of transient faults on the Alpha 21264 microprocessor by estimating the fault masking and
identifying the vulnerable portions of the processor. Enhancements of the AVF are discussed in
[31][89][90]. The AVF is primarily used to make decisions between two reliability implementations of a
processor component, but cannot be used to compare different programs at instruction and function
granularity for a given architecture. A program level reliability model is required to consider the program
properties, i.e. instructions, control flow and data flow, and program-level error masking effects. A
program designer also requires an error characterization from the program’s perspective. Furthermore,
hardware-level reliability analysis and estimation techniques [31][91][96] require significant development
time and a long experimental duration. To address these limitations, software program-level techniques
[27][28][77][80][75][81][92] can be used.

Chapter 2 Background and Related Work

- 26 -

2.4.3 Software Program-Level Techniques

Several software program reliability estimation techniques have been proposed which are analogous
to AVF. In [76], an Instruction Vulnerability Factor model is developed to assess the criticality of the
instruction through fault injection experiments but this technique lacks in-depth knowledge of vulnerable
bits, time-wise error probabilities, and explicit quantification of program-level masking effects. Due to the
coverage issues of fault injection (especially under varying inputs) the Instruction Vulnerability Factor
inherently limits accuracy of soft error analysis and estimation. Vilas et al. in [74] introduced the concept
of Program Vulnerability Factor (PVF) as a micro-architecture independent metric. PVF is fundamentally
an adaptation of the AVF by shifting the Architecturally Correct Execution (ACE) analysis from micro-
architecture to the program level, i.e. in a software resource (e.g. compiler-visible architectural registers).
Besides PVF’s inaccuracy due to ignorance of the underlying hardware properties (i.e. the layer where
fault happens), PVF’s consideration of only the number of ISA-visible ACE bits does not provide a
comprehensive knowledge of the program reliability, and thus further limits its accuracy. The reliability of
a program also depends upon the type of instructions, its data/control flow properties, and temporal effects
as discussed in Chapter 3. For a same number of ACE bits, a fault in one program might cause Incorrect
Output or no effect (i.e. correct output), but in another program it might cause a program failure (e.g.
crash) due to the use of a different instruction. Moreover, a particle strike at a certain location in the
processor may manifest as a different error compared to a strike in other parts. ACE analysis by PVF
ignores different types of the manifested error that may incur different reliability cost. PVF, however
considers all bits as ACE unless proven un-ACE which might lead to an overestimate of the program
vulnerability. However, not all bits are of same vulnerability as some bits are more important for the
correct execution and some might be less important. For example, faults in some bits may result in a crash
and faults in some other bits may lead to data corruption, which is within the tolerable limit of the
program user. A case of the tolerable limit of the program user has been demonstrated by the authors in
[97] where the most significant bits are more vulnerable compared to the least significant bits. Since not
all ACE bits lead to the same type of errors with the same intensity, program reliability analysis without
the characterization of the manifested errors is incomplete. This instantiates the need for error
characterization at the program level, given faults are injected in the underlying hardware at varying rates.
Overall, the state-of-the-art approaches [31][74][75][91] did not analyze the effects of changing fault rates
on the program behavior when estimating the program reliability for a given system scenario.
Furthermore, these reliability estimation models do not consider the knowledge of hardware-specific
details, like chip footprint with processor details (e.g. area of different components, number of physical
registers, fault probabilities of different processor components, etc.) for fault distribution and fault
injection under different fault rates. Moreover, these techniques do not consider the time-wise error
probabilities of different instructions in different components of a pipeline. Therefore, these software
program-level techniques are based on abstract fault models and they will lead to over- or under-
estimation of the reliability.

2.4.4 Fault Injection Methodologies

Engineers typically employ fault injection to analyze and estimate the system reliability [96]. The
‘saboteur’ or ‘mutant’ [100] techniques are based on modifying the VHDL code. These VHDL-based
techniques require precise processor models and timing details, thus requiring significant development
time. Therefore, these techniques cannot be deployed in the initial design phases for the application
designer. High-level simulator-based techniques typically produce the errors at the program layer in the
early design phases. The technique of [101] uses a command-based injection of single-bit faults (from a
fault database) in ASICs using its SystemC model. Authors in [99] propose a fault injection technique for
digital signal processors. SymPLFIED is a program-level fault injection and error detection framework
[98]. It enumerates transient faults in registers, memory, and computation blocks of hardware. However, it
does not consider the knowledge of chip footprint in its machine model, which may lead to an inaccurate
program reliability analysis. Moreover, due to its complex model evaluation it suffers from long

2.5 State-of-the-Art Soft Error Mitigation Techniques

- 27 -

experimental duration. The performance and analysis accuracy comparison is made against SymPLFIED
in Appendix A.

2.5 State-of-the-Art Soft Error Mitigation Techniques
In order to mitigate the soft error effects, extensive research to develop reliability improvement

techniques has been conducted at both the hardware-level and the software-level. In the following, some
prominent hardware and software-level techniques are discussed.

2.5.1 Hardware Level Soft Error Mitigation Techniques

The hardware-level soft error mitigation techniques are tackled at the device level by adopting
specialized process technology (e.g., using SOI process [55]) and materials during fabrication, at the
circuit-level by adopting specialized radiation hardened cells or redundant logic, and at the architecture
level through redundancy in time or in space.

Device-Level Techniques: A major practice has been on exploring the possibilities of mitigating the
soft error at the transistor/device level since it appears at the lower layers. The transistor-level solutions
are primarily relying on the process technology, i.e. the way in which transistors are manufactured such
that it becomes shielded against the radiation events like alpha particles and neutron strikes. Shielding
against soft error means that the amount of collected charge Qcollection at a transistor node once exposed to a
radiation event is reduced, thus minimizing the chances of soft errors. Note, to prevent the soft error event
it is important that the QCollection < QCritical. Adopting specialized fabrication processes and usages of some
special material for fabricating soft error immune transistors is very effective, but it has a substantial
overhead (in terms of, for instance, area and cost) when deployed throughout the processor. Moreover the
validation and verification costs of such approaches are considerable [19][71][116].

To overcome the soft errors due to the alpha particles, the semiconductor industry adopted various
shielding techniques against the alpha particle-induced soft errors, e.g., by deploying thick polyimide (100
μm as stated in [53]) as an alpha-particle protection layer because of their efficient thermal and electrical
characteristics. With shielding, the alpha particle-originated SER is reduced to around 20% [54].
However, such shielding solutions are typically not adopted in case of high energy neutron-induced soft
errors, because for shielding against neutron strikes, the thickness of the protection layer is required to be
a minimum of approximately 10 feet in concrete, which is not feasible for almost all computing devices.
As the neutron-induced SER is becoming increasingly common in the current technology, the shielding
solutions do not completely eradicate the susceptibility of the device against all sources of soft error.
Furthermore, deploying these techniques even for reducing the alpha particle-induced soft error is
unaffordable because of the strict cost constraints.

Silicon-On-Insulator (SOI) has evolved as a promising technology for MOS/CMOS fabrications to
protect against soft errors and in this way, has become superior to the conventional bulk CMOS process
technology. In SOI technology, a thin-film layered insulator called buried oxide or silicon-insulator (see
Figure 2.9(a)) is placed in the substrate, instead of the conventional silicon substrate [55].The transistor
with SOI technology has the capability to reduce the Qcollection upon the radiation event, because the
silicon-insulator layer keeps the bulk silicon isolated, thus preventing the excess charge in the bulk silicon
(induced by the radiation event) from propagating towards the source/drain, or device channel. It is
reported by IBM, that usage of the SOI process technology enables 5x reductions in SER for SRAM [56].
Although, the SOI technology appears to be an attractive option for reducing the SER and also in low
power application [102], nevertheless, their high manufacturing costs have made them less famous in the
products that have strict design constraints. Another, well known device level solution is the Triple well
(TW) process technique [57] which is different from the conventional CMOS process where twin-well

Chapter 2 Background and Related Work

- 28 -

transistor is constructed. This process technology alleviates the device sensitivity towards single event
upsets. A TW device has a buried n-well layer (“deep n-well”) that separates the p-well from the p-
substrate; see Figure 2.9(b). The idea of burying the n-well layer is to collect the electrons generated in the
p-well region of the NMOS device upon a particle strike before they are collected at the surface of the
NMOS (source-drain channel). The gathered electrons below the p-well and at the deep n-well junction do
not have an impact on the device state.

n+ gate
Source Drain

n+ Channel

Buried Oxide

p-substrate

p-well

n+

p-substrate
Deep n-well

p-well
n-well

Figure 2.9: (a) SOI MOSFET Device; (b) TW NMOS FET Structure.

x

CLK Recover Recover Recover Recover

PC IF ID EX MEM
WB
(reg/
mem)

Ra
zo

r F
F

Ra
zo

r F
F

Ra
zo

r F
F

Ra
zo

r F
F

Error ErrorError Error

ST

IF ID EX MEM ST
IF ID EX* MEM* MEM ST WB

IF ID EX Stall MEM ST WB

IF ID Stall EX MEM ST

Time (in cycles)

In
st

ru
ct

io
ns

Razor latch gets correct
EX value

Correct value provided to MEM
St

ab
ili

ze
r F

F

Figure 2.10: A simple 5-stage Pipelined Processor with Razor Flip Flop and Error Recovery [59].

Circuit-Level Techniques: At the circuit level, the soft error problem is addressed either by
deploying the radiation hardened cells [66], changing the device parameters [58], or introducing
redundant circuits [59]. The radiation hardened cells are in practice and are prevailing in the electronic
devices deployed in the space and military missions. Changing or tuning the device parameters may help
in reducing the soft error rate, e.g., increasing the supply voltage which makes the QCritical higher, hence
the SER becomes lower [58]. The introduction of redundant or error detection/correction circuits into the
target design have been well explored in order to recover from soft errors. A prominent example is the
RAZOR approach that introduces shadow flip flops in the pipeline to recover from errors. The recovery is
accomplished using a global clock gating of the pipeline and an error detection through shadow flip flops
that receive a delayed clock. Figure 2.10 shows (a) organization of a processor pipeline with RAZOR flip
flops (FF) after each pipeline stage, and (b) the timing of the pipeline for an error that happens in the
execute (EX) stage (asterisk denotes an error in the pipeline stage computation). The detailed structure of
the RAZOR flip flop is shown in Figure 2.11 that employs a shadow latch controlled by a delayed clock.
Deploying additional hardware structures, however, makes the circuit level solutions more costly due to
the incurred overheads in terms of area/power and verification cost, that may become prohibitive
especially in the embedded systems.

2.5 State-of-the-Art Soft Error Mitigation Techniques

- 29 -

Logic
Stage

L2

Main flip-
flop

0
1

ErrorShadow
Latch

Logic
Stage

L1

CLK_delayed

CLK

Razor FF

D1 Q1

Error_L

Comparator

Cycle 1 Cycle 2 Cycle 3 Cycle 4

CLK
CLK_

delayed

D

Error

Q

Instr 1

Instr 1

Instr 2

Instr 2

Figure 2.11: Razor Flip Flop and Timing Diagram [59][60].

Architecture-Level Techniques: At the architectural-level, the availability of different functional
units with distinct structures and diverse functional and timing properties makes a wider design problem
when compared to device/circuit levels. The techniques at this level are based upon the redundant
executions either in space (using the duplicated functional units) or in time (using the same hardware
multiple times for redundant execution and comparing the outputs). Furthermore, keeping the redundant
information can also help in recovering, for instance, from the corrupted state in memory. The traditional
architectural redundancy approaches are: Dual Modular Redundancy (DMR), Triple Modular Redundancy
(TMR), Error Correcting Code (ECC), and parity protection. The DMR approach shown in Figure 2.12 is
used for error detection where two hardware modules are used to execute the redundant copy of a code
and after the execution a comparator checks the output. In case of a mismatch the error is detected and the
rollback execution is performed for recovery.

HW Module-1

HW Module-2

DMR

HW Module-1

HW Module-2

HW Module-3

Voter

TMR TTMR

HW Module-1

HW Module-2

HW Module-3

Voter

Voter

Voter

Comparator

Figure 2.12: Dual, Triple and Triplicated Triple Modular Redundancy [36][33][104].

Figure 2.12 also shows TMR which is used for error detection and recovery and that employs three
hardware modules for executing three copies of the code. After the execution is finished, a majority voter
compares the final outputs and selects the best two out of three to determine the correct output. Besides
the large area/power overhead, the voter in TMR is the single point of failure. To overcome this,
triplicated voters are deployed. The increased power overhead of TMR systems may potentially increase
the temperature. Increased temperatures lead to higher SER due to the reduction in the critical charge
[117] and increased aging. Due to their high overhead costs, these techniques are more practical and
beneficial for the space-based applications. Furthermore, ECC and parity techniques are used to protect
memories and caches. ECC protected caches is a well-established practice in various research and
industrial projects like IBM [62], AMD [63], and [35]. However, in case of register files, ECC is avoided
due to high area and power overhead under frequent usage scenarios [27][28][73][76], and consequently
they remain vulnerable to soft errors. An approach to reduce this overhead by using the unused bits of
registers is proposed in [152] but it has limited optimization potential in case of applications using full
register widths and due to low soft error susceptibility of register file due to its very small footprint
compared to the full pipeline. An alternate solution is employing parity-protected register files, but the
error coverage is low, especially in case of multi-bit faults. Note, the contributions proposed in this this
thesis are applicable to both protected and unprotected register files. Although the architecture level
solutions may not have the same precision and accuracy that the device level solutions can offer, their
efficiency is high because these solutions are independent from the underlying hardware-level details, i.e.
process technology and transistor/cell structure. It is reported in [22], that when compared to the circuit
level hardening techniques, the ECC-based techniques [64] incur low area overhead. Besides the ASIC

Chapter 2 Background and Related Work

- 30 -

based systems, techniques for improving the reliability of reconfigurable architectures have been proposed
in [154][155].

Redundant Multithreading Techniques: Multi-/manycore architectures facilitate soft error
tolerance through excessive cores availability, i.e. the cores originally reserved for performance
improvements can now be exploited to improve the reliability through spatial and temporal redundancy
[38][83]. The works like fault detection via lock stepping [82], Simultaneous Redundant Threading (SRT)
[67], Chip-level Redundant Threading (CRT) [36], and other works like [37] have focused on multi-
/manycore based soft error
mitigation where free cores are
exploited to provide
redundancy either at the
hardware-level (using
redundant instructions or
redundant threads) or operating
system-level (using redundant
thread processes). Figure 2.13
presents fault detection via
replicated microprocessors that
are cycle-by-cycle lockstepped.
This means that both the
processors are synchronized
with each other and have
identical states at any point in
time. At the same time, both processors receive same inputs and deliver the output at the same time. If an
error happens in one processor, then the difference amongst the processor states will be detected and an
error will be identified by the system monitor upon the output mismatch. The SRT [67] approach adapts
the philosophy of the Simultaneous Multithreading (SMT) [68] approach, that was originally proposed to
improve the performance via executing the program codes of different applications in a simultaneous
multithreaded fashion on multiple functional units inside a given processor; see Figure 2.14. Instead of
executing different application threads, SRT executes two redundant threads of the same application on
multiple functional units (e.g., two adders, multipliers, etc.) inside the same core and then performs the
output comparison. In contrast, the CRT approach executes redundant threads on two different processor
cores; see Figure 2.15.

Functional
Units

Thread1 Thread2

Instruction Scheduler

Trailing
Thread

Leading
Thread

Memory System (incl. L1 $)

Sphere of Replication

Input
Replication

Output
Comparison

Figure 2.14: Fault Detection via Simultaneous Multithreading – Left: Scheduling Different

Instructions on Different Functional Units; Right: Sphere of Replication with Input and Output
Replication [36][67].

The SRT approach has an advantage of lower time-to-market and cost, as it exploits the existing well-
established SMT architecture with little extra hardware. Moreover, it offers better performance than the
complete replication. However, the challenge is the careful fetch/schedule of the redundant threads in a

R1 (R2)

Input
Replication

Output
Comparison

Memory covered by ECC
RAID array covered by parity

Servernet covered by CRC

R1 (R2)

microprocessor microprocessor

Replicated Microprocessors + Cycle-by-Cycle Lockstepping
Figure 2.13: Fault Detection via Lockstepping (HP Himalaya) [36].

2.5 State-of-the-Art Soft Error Mitigation Techniques

- 31 -

lockstepped fashion. The SRT combines both space and time-wise redundancy. However, it prefers the
space-wise redundancy due to its better coverage of permanent/long-duration faults. The CRT approach
combines the best of SRT and lockstepping. Besides the conventional redundancy-based approaches,
recent trends have evolved to explore flexible approaches, i.e. adaptive control of TMR/DMR [103], cores
with heterogeneous error recovery functionalities [83], and the hardware-level checkpointing and recovery
approaches [140].

The aforementioned approaches
primarily target soft errors and may not
address aging and process variation
related problems during the soft error
mitigation. For example, in CRT, two
processor cores are executing redundant
threads. In the presence of performance
variations, one core may produce the
output later than the other core. Hence,
both the outputs may not synchronize for
the comparison that will eventually lead
to output errors. Alternatively, providing
a large synchronization time may lead to
performance degradation and potential
deadline misses. Another limitation of
these techniques is that they assume
excessive area is available in the multi-
/manycore system. However, in case of area-constrained embedded systems, there may be scenarios
where not all applications may be supported with full DMR or TMR due to resource competition.

Summary: Within the scope of the hardware based approaches, the soft error mitigation techniques
have been explored at different abstractions in the system layers, i.e. device, circuit and architectural level.
Because of the prevailing facts that these hardware level techniques have more area, therefore more power
overhead and also high verification/validation costs, reliable hardware design and development using
these techniques is both expensive and time consuming [19][33][71][107][116]. As a result various soft
error mitigation techniques at the software-level have evolved. These software-level approaches are
developed in various design abstraction layers which are hereby discussed in the following.

2.5.2 Software Level Soft Error Mitigation Techniques

The classic soft error mitigation techniques
(amongst many others) are: N-version
programming, code redundancy, control flow
checking, and checkpoint recovery. The N-
version programming [69] relies on
implementing multiple program versions of the
same specification. Depending upon the
memory requirements, the number of program
versions varies, however, N should not be less
than 2. These N program versions are
functionally identical but have diverse
implementations leading to different failure
characteristics such that not all versions fail in
the same way under a given fault scenario.

CPU A

Leading
Thread A

Trailing
Thread B

CPU B

Trailing
Thread A

Leading
Thread B

LVQ

Stores

LPQ

Stores

LPQ

LVQ

Figure 2.15: Chip-Level Redundant Threading [36][67].

Version i

Version i+1
Version i+n

Inactive Waiting

Running

Supervisory
Program

Invoke

Terminate

Cross-Check
Service
request

Figure 2.16: N-Version Programming.

Chapter 2 Background and Related Work

- 32 -

Figure 2.16 shows the working of N-version programming in a TMR model. For managing the execution,
this technique demands a mechanism to synchronize the three outputs and to compare their results.

The software based checkpoint recovery techniques [70] do not require a modification in the hardware
and thereby restrict the area/power overhead. However, modification in the software is required in terms
of additional implementations for the functionality. Such techniques place checkpoint instructions inside
the code, typically before the critical instructions which have a high error probability. The program state is
saved in reliable storage during normal execution (data checkpointing), so that in case of errors, the
program can be resumed from the last checkpointed state. In [145], a compiler-assisted checkpointing
scheme is proposed that inserts additional checkpointing code into user programs. An adaptive scheme is
used to identify potential checkpoints in order to amortize the storage overhead of checkpointed data. The
Libckpt [146] and libFT [147] checkpointing libraries provide routines to enable applications to dump
critical data and/or states but require user intervention for maximum benefits. Efforts in [148] propose a
reliable microkernel for application checkpointing that utilizes OS support to guarantee consistency
between the current system state and process image. Besides checkpointing, a large body of work has
been conducted at the software-/compiler-level that can be categorized in two major classes, (1)
redundancy-based and control flow protection techniques, (2) vulnerability reduction-based techniques, as
discussed below. These techniques offer new opportunities for constrained optimizations such that the
cost budgets remain intact by exploiting the application characteristics.

The state-of-the-art redundancy-based techniques, such as Error Detection using Duplicated
Instructions (EDDI) [27] and Software Implemented Fault Tolerance (SWIFT) [28], provide software
reliability by duplicating the instructions, and inserting the comparison and checking instructions before
the store and/or conditional branches. As a result, these techniques incur a significant performance
overhead. An example is presented in Figure 2.17 to explain the EDDI approach. In this example, the load
from a global constant address is duplicated as instruction 1. In order to avoid conflicts between the
original and duplicate instructions, the duplicated load reads its data from a different source address and
stores its result into a different register. In a similar way, the add instruction is also duplicated as
instruction 2 in order to create a redundant chain of computation. Finally, the store instruction is a point of
synchronization, and instructions 3 and 4 compare the store’s operands (the address and the computed
data) with their redundant copies. In case a difference is detected, instruction 5 will report an error.
Otherwise, the original and its duplicate store instruction 6, will execute storing values to non-conflicting
addresses.

As demonstrated in Figure 2.17, this technique
incurs a significant performance and memory
overhead due to redundant instruction execution
and shadow memory locations to store redundant
data, respectively. Furthermore, performance
overhead can also be attributed to the increased
cache usage to hold redundant data for computation
of original and duplicated instructions, generating
additional memory traffic. With EDDI, although
the input operands for branch instructions are
verified, there is the possibility that a program’s
control flow gets erroneously misdirected without
detection. The corruption can happen during the
execution of the branch or register corruption after branch check instructions.

A well-established control flow technique is signature-based protection [34]. In order to verify that the
control transfer is in the appropriate or intended basic block, each block will be assigned a signature [34].
For that, a designated general purpose register, named as GSR (General Signature Register) is employed

Original code Transformed Code [EDDI]
ld r12 = [GLOBAL]

1: ld r22 = [GLOBAL+offset]

add r11 = r12, r13
2: add r21 = r22,r23
3: cmp.neq.unc p1,p0 = r11,r21

4: cmp neq.or p1,p0 =r12,r22

5: (p1) br faultDetected

st m[r11] = r12

6: st m[r21+offset] = r22

ld r12 = [GLOBAL]

add r11 = r12, r13

st m[r11] = r12

Figure 2.17: An Example for EDDI [27].

2.5 State-of-the-Art Soft Error Mitigation Techniques

- 33 -

that holds these signatures which are later used to detect faults. The GSR holds the signature value for the
currently executing block. As soon as there is an entry to any block, the GSR will be xor’ed with a
statically determined constant in order to transform the previous block’s signature into the current block’s
signature. Once it is done then the value inside the GSR can be compared with the statically assigned
signature for the block to ensure that an authorized control transfer has occurred. In cases where two basic
blocks have a control flow to a common block, both the blocks can jump to a common block (a control
flow merge) while sharing the same signature. In such cases, using a statically-determined constant to
transform the GSR from the previous basic block signature to the current basic block signature might not
cover control flow errors. With the statically determined constant, faults which transfer control to or from
blocks having the same signature will remain undetected; this is undesirable. In order to avoid this, the
signatures should be determined dynamically.

Original Code (a) EDDI+ECC+CF Code (b) EDDI+ECC+ECF Code
add r11 = r12, r13

1: add r21 = r22, r23
cmp.lt.unc

p11, p0 = r11,r12
2: cmp.lt.unc

p21, p0=r21, r22
3: mov r1 = 0
4: (p11) xor r1=r1, 1
5: (p21) xor r1=r1, 1
6: cmp.neq.unc

p1,p0 = r1, 0
7: (p1) br faultDetected

(p11) br L1
.
L1:

8: xor GSR=GSR,L0_to_L1
9: cmp.neq.unc

p2,p0 = GSR, sig.1
10: (p2) br faultDetected

11: cmp.neq.unc
p3,p0=r11, r21

12: cmp.neq.or
p3,p0=r12, r22

13: (p3) br faultDetected

st m[r11] = r12

add r11 = r12, r13

cmp.lt.unc
p11, p0 = r11,r12

(p11) br L1
.
L1:

st m[r11] = r12

add r11 = r12, r13
1: add r21 = r22, r23

cmp.lt.unc
p11, p0 = r11,r12

2: cmp.lt.unc
p21, p0=r21, r22

3: (p21) xor RTS=sig0, sig1

(p11) br L1
.

4: xor RTS=sig0, sig1
L1:

5: xor GSR=GSR, RTS
6: cmp.neq.unc

p2,p0 = GSR, sig.1
7: (p2) br faultDetected
8: cmp.neq.unc

p3,p0=r11, r21

9: cmp.neq.unc
p3,p0=r12, r22

10: (p3) br faultDetected

st m[r11] = r12
Figure 2.18: (a) Control Flow Checking using Software Signatures [34];

(b) Enhanced Control Flow Checking [28].

Figure 2.18(a) highlights this technique, where instruction 1 and 2 are the redundant duplicates for the
add and compare instructions, respectively. Recall that, in the EDDI transformation, branches are the
synchronization points. The redundant instructions from 3 through 7 are introduced in order to compare
the predicate p11 to its duplicate p21 and branch to error code if a fault is detected. At instruction 8, the
control flow additions start that transform the GSR from the previous block signature to the signature for
the currently executing block. The instructions 9 and 10 confirm if the signature is correct, in case an
incorrect signature is detected the error code is invoked. Finally, instructions 11 through 13 are inserted to
handle the synchronization point induced by the later store instruction. This transformation will detect
faulty control flow transfers between two blocks which are not unauthorized. Any such control transfer
will result in an incorrect signature no matter if the erroneous transfer jumps to the middle of a basic
block. These issues have led to the enhanced control flow protection approach [28]; see example in
Figure 2.18(b). In this technique, for all the blocks a dynamic equivalent of a run-time adjusting signature
is used (also for the basic blocks which are not control flow merges). Each block asserts its target while
using the run-time adjusted signature, and in response each target confirms the transfer by checking the

Chapter 2 Background and Related Work

- 34 -

GSR. Figure 2.18(b) demonstrates how the enhanced control flow checking works. Similar to the previous
control flow checking example, in this example instructions 1 and 2 are the redundant duplicates for the
add and compare instructions, respectively. The run-time signature for the target of the branch is
computed via Instruction 3 by xor’ing the signature of the current block with the signature of the target
block. As the branch is predicated, the assignment to RTS (Run-Time Signature) is also predicated using
the redundant register for the predicate. Instruction 4 is the equivalent of instruction 3 for the fall through
control transfer. To compute the signature of the new block, instruction 5 at the target of a control transfer
xors RTS with the GSR. Afterwards, at instruction 6 this signature is compared with the statically
assigned signature, in case of mismatch an error code is invoked with instruction 7. Just as before,
instructions 8 through 9 implement the synchronization checks for the store instruction.

The SWIFT approach [28] is demonstrated in
Figure 2.19 where all the instructions are duplicated and
before the store, the comparison instructions for fault
detection are placed. In this case, it is only the store
instructions which ultimately sends data out of the SoR
(Sphere of Replication). The system will function correctly,
as long as it is ensured that store instructions execute only if
they are “meant to” and the store instructions write the
correct data to the correct address. This observation is used
to restrict enhanced control flow checking only to blocks
having the store instructions. In this scenario, the updates to
the GSR and RTS are performed in all blocks, however, the
comparisons for signatures are restricted to blocks with
store instructions. With this optimization, if the signature check instructions are eradicated, this will further
alleviate the overhead for fault tolerance with no reduction in the reliability. Since signature comparisons are
computed at the beginning of every block that contains a store instruction, any deviation from the valid
control flow path to that point will be detected before memory and output is corrupted. This optimization has
relatively lesser negative impact on the performance compared to the EDDI. Both the branch checking and
enhanced control flow checking are somewhat redundant. While branch checking makes sure that branches
are taken in the proper direction, the enhanced control flow checking ensures that all control transfers are
made to the proper address. However, verifying all control flow includes the notion of branching in the right
direction. Therefore, performing the control flow checking alone is adequate to detect all control flow errors.

Besides fault detection, a reliable system requires fault recovery, too. The SWIFT transformation can be
seen as a DMR-like implementation that provides fault detection, but not recovery. For recovery, a TMR-
like implementation SWIFTR (Software Implemented Fault Tolerance with Recovery) approach is presented
in [71] that employs triplicated instructions and majority voting. Such full scale redundancy solutions
however, incur significant power, area and performance overheads. To alleviate these overheads, there are
some techniques that offer enhanced control flow protection like CRAFT [28][71] and Instruction
Vulnerability Factor-based techniques [76] via duplicating only the critical instructions, i.e. instructions that
have a relatively high probability to lead to a software failure/crash in case of a soft error, for instance, load,
store, jump, branches, calls, etc. However, these techniques incur additional >40% performance loss,
increased register pressure due to more register usage, and excessive memory overhead because of
instruction and data redundancy [28]. Furthermore, an increased number of critical instruction executions
may lead to excessive rollbacks during recovery because of an increased probability of software failures and
fault propagation to/from memory, when a fault occurs in the hardware of the memory pipeline stage [28].
Besides offering protection only at the instruction-level, some advanced work of [77] exploits the unused
bits of a register for in-register duplication, while [80] performs both the instruction and data duplication.
These redundancy-based techniques incur a significant performance/memory overhead (>2x-3x)
[28][27][77][80][92], which is typically prohibitive for embedded systems.

Original Code Transformed Code [SWIFT]
add r1 = r2, r3
1: add r1’ = r2’, r3’

mul r1 = r1, 8
2: mul r1’ = r1’, 8
3: br faultDet, r1 != r1’

4: br faultDet, r2 != r2’
st [r1] = r2

add r1 = r2, r3

mul r1 = r1, 8

st [r1] = r2

Figure 2.19: Software Implemented Fault
Tolerance (SWIFT) [28].

2.6 Summary of Related Work

- 35 -

Besides excessive performance overhead, one of the primary issues of instruction redundancy and
scheduling techniques, like [27][28][72][73], is that they treat all instructions in the same way. This is
because, their software-level reliability estimation models (Register Vulnerability Factor2 [73] or Program
Vulnerability Factor3 [74][75]) do not distinguish between different types of errors in the software caused
by the hardware-level faults during the execution of different instructions that use diverse processor
components in different pipeline stages. Moreover, these models are computed without considering the
processor architecture. As a result, software-level reliability techniques of this kind are not very efficient.
For vulnerability reduction, different compile-time approaches have evolved that seem to have promising
effects on lowering the error probability of the software programs. For example, the instruction scheduling
phase during the compilation can impact the instruction vulnerability by affecting the vulnerable periods
of instructions and their operands in different pipeline resources. Towards this, several compile-time
reliability-aware instruction scheduling approaches have been proposed [27][76] that reorder the
instruction profile of a program while incurring relatively limited performance degradation and almost no
memory overhead compared to instruction redundancy techniques. The work of [77] minimizes the
residency cycles of vulnerable bits inside the issue queue of superscalar processor by performing
instruction scheduling at run time. However, this technique requires architecture modification of the
hardware scheduler and introduces a significant hardware overhead. In contrast, ISSE [81] reschedules a
program’s assembly code to minimize the operands’ vulnerable periods via exploiting the slack time. The
works in [78][79] perform instruction re-scheduling after the performance-optimized scheduling in order
to reduce the vulnerable periods of registers. The slacks are identified after a performance-driven
instruction scheduling, which already tries to minimize the slacks as much as possible to avoid pipeline
stalls to improve performance. As a result, state-of-the-art instruction scheduling techniques [27] and [76]
provide limited reliability improvements of 2% and 9%, respectively. Furthermore, the error probability is
reduced by lowering the vulnerability of register file [80] or software program [28] through minimizing
the register lifetime. These state-of-the-art solutions offer limited reliability improvements as they
primarily improve the reliability of the register file, which typically covers a small portion of the
processor layout compared to the pipeline and instruction execution unit, thus ignoring the complete
processor perspective.

2.6 Summary of Related Work
In this chapter, the background related to various reliability threats, i.e. soft error, NBTI-induced

aging effect and process variation is discussed. The mechanisms of these reliability threats, their sources
and how they are modeled are presented. Since the focus of this thesis is on soft errors, a detailed
literature survey regarding the soft error estimation and mitigation techniques is presented at various
levels of system abstraction, i.e. circuit-level, architecture-level and program-level.

Although there has been plenty of hardware-level software mitigation works at the device, circuit and
architectural layers, these techniques are not area- and power-wise cost effective as they incur extra
circuitry besides their high verification/validation costs [19][33][71][107][116]. To alleviate this
overhead, various soft error mitigation techniques at the software-level have evolved. The control flow
checking and instruction/register value duplication result in significant performance and memory
overhead, while register vulnerability reduction techniques provide limited reliability improvement. In
contrast, instruction scheduling for reliability reorders the instructions of a software program without
costing memory overhead and with limited/no performance overhead [73][81]. However, these techniques
ignore the complete processor perspective, as they only try to reduce the vulnerability of the register file
that covers only a small portion of the processor layout compared to the complete pipeline. As a result,
these techniques [73][81] provide limited reliability improvement (2%-9%). State-of-the-art compiler-

2 Register Vulnerability Factor considers the register live period as a measure for the reliability.
3 Program Vulnerability Factor relates the software reliability to the bits for Architecturally Correct Execution in different programmer-visible

architectural components (Register File, ALU, etc.), but hides the physical components (e.g., there are 256 physical registers, but 32 are visible to
the programmer).

Chapter 2 Background and Related Work

- 36 -

level reliability techniques have not exploited the prospective opportunities which exist at the compiler
front-/middle-end optimizations that may impact the software code for improving reliability with reduced
performance overhead. Furthermore, the slacks for reliability improvement are identified after a
performance-driven instruction scheduling that already minimized slacks to avoid pipeline stalls to
improve performance. As a result, state-of-the-art instruction scheduling techniques [73] and [81] provide
limited reliability improvements of 2% and 9%, respectively.

In the following chapter, a comprehensive view of the novel contributions of this thesis is presented
along with details on the developed concepts, techniques, different design challenges, and motivating
error analysis at the application software program level while considering the hardware-level faults.

- 37 -

Chapter 3 Cross-Layer Reliability Analysis,
Modeling, and Optimization

The main problem targeted in this thesis is to reduce the software programs’ susceptibility to soft
errors on unreliable or partially-reliable hardware, and to improve the reliability of the overall system.
This needs to account for the knowledge/information from both the hardware level (i.e. where the faults
occur) and the software level (i.e. where the errors are observed). The problem gets even more
challenging when considering optimization under tolerable performance overhead constraints, as typical
for embedded computing systems. However, mitigating the hardware-level faults at the software-level is
not straightforward and poses several research challenges with respect to modeling and optimization at the
respective software layers. This chapter presents a comprehensive overview of the proposed cross-layer
reliability analysis, modeling and optimization flow (Section 3.1) to address these research challenges. In
particular, the goal is to enable reliable code generation and execution on unreliable hardware. The
techniques at different system layers along with their interactions are highlighted.

In order to enable a cross-layer modeling and optimization flow, important information at different
system layers needs to be identified and exchanged across layers in order to improve the accuracy of
reliability modeling and efficiency of reliability optimization at the corresponding abstraction. State-of-
the-art software reliability analysis and optimization techniques ignore the hardware-level knowledge (i.e.
fault distribution, fault probabilities, and spatial/temporal effects for different instruction types) and do not
analyze fault impact on instructions’ execution in pipeline stage by stage, and thus lack potential for
optimization at the corresponding levels of granularity. Therefore, a key challenge is to bridge the gap
between hardware and software for quantifying hardware-level faults at the software-level and enabling
corresponding optimization potential. An associated challenge is to understand different reliability related
factors and to identify different types of errors when faults are injected in different processor components
during the execution of different types of instructions and different application software programs. This
analysis would help in establishing a relationship between different instruction types and faults in
different processor components. Towards this end, this chapter presents detailed error characterization and
a comprehensive software program-level reliability analysis (Section 3.2), which is performed using the
fault injection experiments at different fault rates. The goal is to analyze the execution of different
instructions in the presence of faults in different hardware components, and to understand the
spatial/temporal aspects of reliability and the distribution of different types of program errors when
instructions execute through different pipeline stages. Further, the error analysis for different applications
is performed to study the impact of different instruction profiles. The important observations from this
analysis help in identifying several important parameters which will be leveraged to devise cross-layer
software reliability models (Section 3.3) considering the hardware-level knowledge and thereby bridging
the gap between hardware and software.

In order to enable reliability optimization at different system layers, these reliability models need to
quantify the software programs’ reliability at different levels of granularity (i.e. instruction and
function/task) that are adapted to the respective levels of the system design abstractions. For instance,
instruction-level reliability quantification will enable reliability optimizations at the compiler level, while
function/task-level reliability quantification will enable optimizations at the system software level. State-
of-the-art has not fully explored the reliability optimization potential at the compiler and system software
layers due to the unavailability of the instruction-level reliability models. Towards this end, a cross-layer
reliability optimization flow is proposed that facilitates interactions between the reliability-driven
compiler (Section 3.5) and the reliability-driven system software (Section 3.6) to provide reliable code
generation and execution. For reliable code generation, the goal is to enhance the reliability of application
software programs through (1) reducing error probabilities by lowering the instructions’ vulnerabilities to
soft errors; and (2) selective error detection and recovery enabled by instruction level redundancy under

Chapter 3 Cross-Layer Reliability Analysis, Modeling, and Optimization

- 38 -

constrained scenarios. Multiple reliable code versions for a given application program can be generated
that provide diverse reliability and performance properties. This can be leveraged by the reliability-driven
system software for reliable application execution. Further reliability improvements can be obtained by
exploiting the architecture-level support for redundant multithreading. The scenario becomes more
challenging when multiple concurrently-executing applications compete for resources in a manycore
system to provide redundant threading support. In this context a key challenge is to jointly account for
redundant multithreading, multiple reliable versions, and resilience properties of different applications. To
address this, a novel reliability-driven run-time system is presented towards the end of this chapter.

Note, this chapter provides a comprehensive overview of the proposed contributions, their interactions
in a cross-layer flow, discussion on the associated challenges, and enabling program reliability analysis.
The detailed techniques, algorithms, and an in-depth reliability analysis of proposed cross-layer modeling
and optimization techniques will be discussed in Chapter 4 and Chapter 5, respectively. Furthermore, in
Chapter 5, individual reliability optimization techniques will be evaluated by comparing these with state-
of-the-art, while the overall cross-layer reliability optimization methodology will be compared to different
single-layer solutions in Chapter 7.

3.1 Cross-Layer Reliability – System Overview
Considering the increasing reliability threats with technology scaling and the growing mitigation

costs, cross-layer reliability optimization is important to achieve cost-effective reliability such that
different system layers contribute their best towards it [19][107]. Furthermore, different system layers
exhibit inherent error masking capabilities that can be leveraged in a cross-layer optimization flow to
achieve cost-effective reliability. Cross-layer approaches engage two or more, adjacent or non-adjacent,
hardware and/or software layers to mitigate reliability threats, such that, different layers exchange
information or adapt each other at design-/run-time to achieve high efficiency in terms of resources,
performance, power/energy, and/or cost. Different layers may contain faults and avoid propagation to the
upper system layers by exploiting their inherent error masking capabilities and reliability mitigation
techniques amenable to these layers, such that these errors do not get visible to the application/device
user. The key challenge is to identify those error masking potentials, model reliability at appropriate
granularity and system abstraction level, and to devise efficient reliability optimization techniques while
leveraging the information exchange across multiple layers. Furthermore, to enable cross-layer reliability
optimizing techniques, there is a need for cross-layer software reliability modeling and program-level
error manifestation analysis to understand how these hardware-level faults manifest at the software
program level. In the following, a novel cross-layer reliability analysis, modeling, and optimization flow
is proposed and discussed in detail in the later sub-sections of this chapter.

Figure 3.1 presents a high-level overview of the proposed cross-layer reliability modeling and
optimization system and Figure 3.2 presents the interactions between the components of different layers.
The novel contributions of this thesis are highlighted, i.e. cross-layer reliability model and estimation,
dependable code generation through reliability-driven compiler, and dependable application execution
through reliability-driven offline and run-time system software. In the proposed cross-layer reliability
modeling and optimization flow, different layers interact with each other and exchange information for
reliable code generation and execution on an unreliable or partially-reliable hardware. The goal is to
leverage multiple system layers in an integrated fashion for reliability optimization under user-provided
tolerable performance overhead constraints. Enabling efficient reliability optimizing techniques also
require appropriate models that exploit the knowledge from both software and hardware layers to
efficiently model the reliability factors at the corresponding system layers adapted to the appropriate
granularity, for instance, instruction and function/task level.

3.1 Cross-Layer Reliability – System Overview

- 39 -

(μ
)-

Ar
ch

i-
te

ct
ur

e
C

irc
ui

t

Aging
Estimation of

Logic Elements

Critical Path Analysis

Signal Activities

Gate-Level Error
Masking and

Propagation Analysis

Device-Level Fault Models and Process Variation Maps

Pipeline Aging
Estimation

Spatial and Temporal
Vulnerabilities in Pipeline

Components

C
om

pi
le

r
an

d
To

ol
s Instruction Error

Masking and
Propagation

Transformations,
Scheduling,
Instruction

Redundancy

Instruction
and Function
Vulnerability
Estimation

R
un

-
Ti

m
e

Sy
st

em Adaptive
RMT Tuning

Variation and
Aging Aware Core

Assignment
Code Version

Selection

Figure 3.1: Cross-Layer Reliability Modeling and Optimization:

Contributions at Different System Layers.

Reliability-Driven Code Generation and Execution

Software Program-Level Reliability
Optimization for Dependable Code

Generation (Chapter 5)

Reliability-Driven Adaptive
Run-Time System Sofware

(Chapter 6)

Reliability-Driven Offline
System Software

(Chapter 6)

Reliability

Deadline

Offline Function
Schedules

Error Logging and
Reliability, Performance

Analysis
Error Distr. RTP

IVI Perf. Traces

...

Multiple Compiled Versions with
different reliability levels and performance

Cross-Layer
Reliability Modeling

and Estimation
(Chapter 4)

Applications

Processor
Synthesis Area

Results

Low Level
Fault Models

Constraints

Slacks

Reliability-Aware Manycore Processor Simulation with
Integrated Fault Injection (Appendix A)

Reliability-aware application composition and variation aware core assignment

Tolerable Performance
Overhead;

Number of Task Versions

Reliability
Models

at different
granularities

Figure 3.2: System Overview for Reliable Code Generation and Execution engaging Different

System Layers.

In the following, a brief overview of the overall flow is presented with more details in the subsequent
section.

1) Cross-Layer Software Program Reliability Modeling (Chapter 4): In order to enable efficient
cross-layer software reliability optimization, there is a need for accurate reliability modeling at the
appropriate granularity. In a cross-layer software reliability modeling flow, there is a need to bridge
the gap between the hardware and software by quantifying the effects of hardware-level faults at the
software level, while accounting for the knowledge of the processor architecture and layout. This
thesis performs a cross-layer reliability analysis and leverages this to devise novel cross-layer
software reliability modeling and estimation techniques. The analysis helps in understanding how
hardware-level faults manifest at the software layer, especially considering their relationship to the
fault location (i.e. in which processor components a fault occurs) and the instruction type (i.e.

Chapter 3 Cross-Layer Reliability Analysis, Modeling, and Optimization

- 40 -

during the execution of which instruction a fault occurs); see Section 3.2 for detailed reliability
analysis and error characterization. This analysis and characterization will be exploited to identify
different reliability-affecting hardware and software-level parameters and to formulate different
software-level reliability models for quantifying error probabilities, error masking and propagation
effects.

2) Software Program-Level Reliability Optimization for Dependable Code Generation
(Chapter 5): In the proposed cross-layer reliability optimization flow, first, the application software
code is compiled using a traditional compiler flow with performance optimizations. Afterwards, the
application binaries are executed on a reliability-featured manycore processor simulator, where the
application program is analyzed for reliability using the above-discussed reliability metrics,
different error types obtained after extensive fault injection experiments, and performance
properties. The reliability-driven code generation optimizes the application code for reliability
using different reliability-driven transformations, instruction scheduling, and selective instruction
redundancy techniques. These reliability-driven code generation techniques may incur additional
performance overhead due to, for instance, redundant instructions. Therefore, these reliability-
driven transformations and instruction redundancy are employed under tolerable performance
constraints that can either be provided by the user or obtained through slack analysis done at the
system software layer for different functions. The tolerable performance overhead is distributed
among different application functions depending upon their resilience/vulnerability properties. The
reliability-driven transformations and instruction scheduling aim at reducing the error probability
while the selective instruction redundancy technique target error detection and recovery. A set of
different compiled versions for each application function is generated, such that, different functions
differ in terms of their reliability and performance properties. Optionally, a multi-pass optimization
loop can be employed, where these reliable function versions can be forwarded again to the offline
system software for iterative improvement and slack analysis to prune/optimize the reliability-
performance design space of multiple function versions. These reliable function versions are then
forwarded to the reliability-driven offline and run-time system software layers for dependable
application execution.

3) Reliability-Driven System Software (Chapter 6): First, the reliability-driven offline system
software performs reliability-driven application composition and function scheduling. It generates
multiple offline function schedules, where each function schedule represents a particular dependable
application composition using different set of reliable function versions. It estimates the Reliability-
Timing Penalty of different function versions and selects the one that minimizes the overall
Reliability-Timing Penalty considering the reliability and execution time of the previously executed
functions and the remaining time until the application deadline. These function schedules are then
forwarded to the reliability-driven run-time system software that manages dependable application
execution on single core or multi-/manycore processors considering core-to-core frequency
variations. Towards this end, the proposed cross-layer reliability optimization flow employs
adaptive Dependability Tuning at the run-time system software layer. The Dependability Tuning
enables dependable application execution through resilience-driven adaptive control of redundant
multithreading, variation-aware thread-to-core mapping, and reliable function version selection.

Summary: In order to enable cross-layer reliability solutions (with a focus on software program),
reliability modeling and optimization techniques are developed across different layers. To devise efficient
reliability models and optimization techniques, in the following, detailed program error analysis is
presented. This analysis is important to understand how the hardware-level faults are manifested at the
software-level and helps in identifying the vulnerability properties of different instructions (or in other
words, vulnerable regions inside the program code) and their relationship to different types of errors when
faults occur in different processor components. This analysis helps in exposing various important
parameters that contribute towards developing cross-layer reliability models.

3.2 Software Program-Level Reliability Analysis

- 41 -

3.2 Software Program-Level Reliability Analysis
In order to analyze the effects of hardware-level faults at the application software program level, it is

important to understand how these hardware-level faults occur and how their effects propagate to the
program level and how do they manifest in the form of different types of errors. To illustrate this, various
fault injection experiments were performed (see Appendix A for details on the experimental setup), such
that bit flip faults are injected in different hardware components during the execution of different
instructions and the resulting errors in the program’s output are monitored. Figure 3.3 illustrates two
example fault injection experiments for the ADPCM application executing on an embedded LEON2
processor (SPARC v8 architecture [35]). The faults are injected in the register file and the pipeline as
shown in Figure 3.3.

Fault Injection Experiment 1: A fault is injected in the register file during the execution of
“instruction 0x18c”. In case the particle strikes the register g2 during the execution of this instruction, a
corrupted register value did not affect the correctness of this final output of a program. This hints towards
the inherent error masking capabilities of an application software program. In case of other applications,
where such an error in the register file propagates to the final output of a program, the error can be
tolerable or non-tolerable. For instance, in case of image/video processing applications this may be
tolerable while for security applications
like AES this may not be tolerable.

Fault Injection Experiment 2: In
this experiment, the fault is injected in
the Pipeline + Instruction Execution Unit
part of the processor as highlighted in
Figure 3.3. In this case, the particle
strike causes a bit flip in the instruction
decoder that can have one of the
following potential effects: (1) The add
instruction may be interpreted as any
other instructions, e.g., load or store
instruction due to the corruption of the
opcode in the instruction word. (2) The
add instruction may be interpreted as a
non-decodable instruction due to the corruption of the opcode in the instruction word. (3) Different
operands for the add instruction may be selected in case the operand bits of the instruction word are
corrupted. Such error may lead to potential Application Failure (like crash, hang, and abort; see error
characterization in Section 3.2.1), for instance, in case (1) the load/store instructions may lead to memory
access errors; in case (2) the non-decodable instruction lead to processor stall or application hang due to
unrecognizable instruction type; and in case (3) if the add instruction corresponds to an address
computing instructions, then its corresponding load/store instructions may experience a memory access
error (e.g., out of bound memory access) due to accessing a potentially incorrect address.

The above-discussed experiments illustrate that a corrupted register value for an output data
computing instruction may have a less severe impact compared to a corrupted opcode or corrupted
address value. Which part of the program is affected by soft errors and what type of error manifests at the
program layer depend upon the following factors: (1) the fault location at the hardware layer, i.e. in
which processor component a fault has happened; (2) fault distribution, i.e. the probability of fault in
different processor components; and (3) the instruction type, i.e. during the execution of which instruction
a fault has happened. This in turn depends upon the instruction profile of different applications. Therefore,
different applications exhibit varying susceptibility to soft errors even under the same processor hardware
and same fault scenario.

0x194: add g1, g2, g1
0x198: ld [g1+(0xc00)], g1
0x19c: xor g4, g1, g1
0x1a0: xor i5, g1, g1

0x180: ld [fp+(0xfdc)], g1
0x184: and g1, (0xff), g3
0x188: sethi 0x3e, g1
0x18c: or g1, (0x334), g2
0x190: sll g3, (0x2), g1

[Photo: Gaisler @ IEEE DSN’02]

Instruction
Cache/

Memory
(IM)

Data
Cache/

Memory
(DM)

Instruction
Execution
Unit (IEU)

+
PipelineRe

gi
st

er
 F

ile

Figure 3.3: Illustrating the Impact of Faults in Different
Processor Components and their Impact on the Program

Execution (layout of LEON2 from [35]).

Chapter 3 Cross-Layer Reliability Analysis, Modeling, and Optimization

- 42 -

In Section 3.2.2, detailed error distribution analysis is performed to study the impact of hardware-
level faults on the software program level in detail. This analysis will provide several observations for
investigating different software-level reliability models and for categorizing instructions with respect to
their importance to different error types. Towards this, different types of errors are defined below.

3.2.1 Error Characterization

Following the well-established error characterization in the literature [91], the following error types
are adopted in this thesis that are then further classified into more detailed error sub-categories.

Application Output

Correct OutputIncorrect OutputApplication Failure

Wrong Load from
Data Memory (DM)

Wrong Store
to DM

Wrong
Branch/Call

Non-Decodable
Instruction

Wrong Access to
Instruction Memory (IM)

Figure 3.4: Different Types of Manifested Errors.

After the execution under a given fault scenario, the output of an application can be classified in one
the following three main categories (see Figure 3.4).

1) Correct Output: The application output matches 100% with that of a ‘golden run’, i.e. a fault-free
application execution.

2) Incorrect Output: The application output does not match 100% with the output of a ‘golden run’.
The errors in the Incorrect Output could be due to the following reasons: (i) Silent Data Corruptions
that correspond to errors which are not detected even in the presence of a certain error detection
mechanism and corrupt the final program output; and (ii) Detected Unrecoverable Errors that
correspond to errors which are detected but not recovered due to, for instance, unavailability of a
recovery mechanisms. For the ease of discussion, all errors that propagate to the final output of an
application software program are treated as Incorrect Output errors.

3) Application Failure: The application software program did not finish its execution successfully
due to a potential abort, crash, hang, or exception. This corresponds to a fatal application behavior,
which is in particular not acceptable in critical embedded systems. The Application Failure is
further categorized in the following different error sub-categories.

i. Wrong Load from Data Memory (DM): A segmentation fault occurs because a corrupted load
address is accessed from the data memory.

ii. Wrong Store to Data Memory: A segmentation fault occurs because a corrupted store address
is accessed in the data memory.

iii. Wrong Access to Instruction Memory (IM): This is due to a segmentation fault which occurs
because of a faulty Program Counter (PC) or Next Program Counter (NPC).

iv. Wrong Branch/Call: The result of the jump/branch/call target calculation is erroneous and
therefore a jump/branch/call is made to an incorrect address that halts or aborts the
application executions.

v. Non-Decodable Instruction: A fault in an opcode field of an instruction word, that may leads
to a non-existing opcode that leads to a potential abort of the application execution.

Note, this error categorization follows the application user perception, which is relatively important
from the software perspective, i.e. the user gets correct output, the user gets Incorrect Output that may or
may not be acceptable depending upon the application type (e.g., multimedia or security), or the user

3.2 Software Program-Level Reliability Analysis

- 43 -

experiences an application execution failure that can either be an unintended termination of the
application or a non-terminating execution run. From the software perspective, Application Failures
basically means that the application software fails to continue further execution due to different reasons,
e.g., a crash, hang, abort, etc. and the result of the application execution is always unacceptable, i.e.
describing the fatal application behavior. Both Application Failures and Incorrect Outputs are important
and need to be detected/corrected for a highly reliable system. Considering the availability and quality of
service issues, in several cases, avoiding Application Failures is one of the most desirable features to
improve the system dependability and these failures should be avoided/handled first to keep the
application execution alive [28][92]. Moreover, recovery from Application Failures is typically very time-
consuming (i.e. high Mean-Time-To-Recovery) and affects the users’ desired responsiveness and may
even violate the performance constraints/deadlines [120]. Such cases may even be more critical in safety
related applications (e.g., delay in the anti-lock braking system in automotives due to application
restarting from a failure state). In such scenarios, it is highly inefficient to face several Application
Failures. Similar explorations and observations can be found in state-of-the-art works like [28][91][92].
Furthermore, an erroneous output of an instruction can propagate to the inputs of multiple instructions and
subsequently to multiple outputs of the software program. This in turn leads to more or less Incorrect
Outputs with higher or lower error magnitudes or Application Failures in case of, for instance, address
corruption.

In the following, a detailed error distribution analysis for different applications under three different
fault rates is presented. The details on the fault injection parameters and fault injection procedure can be
found in Appendix A.

3.2.2 Error Distribution Analysis

This section presents a detailed error distribution analysis for different applications from MiBench
[111]. The analysis is performed using a reliability-driven processor simulator with an integrated fault
injection module. To realize scenarios under various operational conditions, several parameters are taken
into consideration leading to different fault rates (see parameters details in Appendix A). In this analysis,
three fault rates are used: 1, 5, and 10 f/MCycles considering an embedded processor with SPARC v8
architecture operating at a frequency of 100 MHz. Figure 3.5 illustrates the distribution of different errors
for various applications executing on a LEON2 embedded processor subjected to different fault rates.
Figure 3.6 shows the instruction execution profile and detailed distribution of different types of
Application Failures and Incorrect Outputs for some example applications.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

VERS
ION_

ORIG
INAL

VERS
ION_

ORIG
INAL TEST

_A

TEST
_A

VERS
ION_

1C

VERS
ION_

3C

VERS
ION_

ORIG
INAL TEST

_A

VERS
ION_

ORIG
INAL

VERS
ION_

ORIG
INAL

VERS
ION_

ORIG
INAL

ADPCM_DERIV CRC_DERIV DCT HT4x4 IPredHDC MCHZ SAD SATD SHA_DERIV SUSAN_DERIV SUSAN_C

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

VERS
ION_

ORIG
INAL

VERS
ION_

ORIG
INAL TEST

_A

TEST
_A

VERS
ION_

1C

VERS
ION_

3C

VERS
ION_

ORIG
INAL TEST

_A

VERS
ION_

ORIG
INAL

VERS
ION_

ORIG
INAL

VERS
ION_

ORIG
INAL

ADPCM_DERIV CRC_DERIV DCT HT4x4 IPredHDC MCHZ SAD SATD SHA_DERIV SUSAN_DERIV SUSAN_C

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

VERS
ION_

ORIG
INAL

VERS
ION_

ORIG
INAL TEST

_A

TEST
_A

VERS
ION_

1C

VERS
ION_

3C

VERS
ION_

ORIG
INAL TEST

_A

VERS
ION_

ORIG
INAL

VERS
ION_

ORIG
INAL

VERS
ION_

ORIG
INAL

ADPCM_DERIV CRC_DERIV DCT HT4x4 IPredHDC MCHZ SAD SATD SHA_DERIV SUSAN_DERIV SUSAN_C

100%
80%

40%
60%

20%

100%
80%

40%
60%

20%

100%
80%

40%
60%

20%
0%

0%

5
f /

 M
Cy

cl
es

1
f /

 M
Cy

cl
es

0%
ADPCM MC-FIR SAD SHA

10
 f

/
M

Cy
cl

es

Application Failure Incorrect Output Correct Output

CRC HT IPRED SATDDCT SUSAN S SUSAN C

Figure 3.5: Analyzing the Error Distribution at Different Fault Rates.

Chapter 3 Cross-Layer Reliability Analysis, Modeling, and Optimization

- 44 -

00%

10%

20%

30%

40%

50%

60%

70%

80%

wrong access to
IM

wrong
branch/call

non-decodable wrong load wrong store INCORRECT

w
ro

ng
ac

ce
ss

to
IM

w
ro

ng
br

an
ch

/c
al

l
no

n-
de

co
da

bl
e

w
ro

ng
lo

ad
fro

m
DM

w
ro

ng
st

or
e

to
DM

In
co

rr
ec

to
ut

pu
t

80%

40%

0%

ADPCM

0

200000

400000

600000

800000

1000000

1200000

1400000

CALL/BR/JMP LD LOGIC

ar
ith

m
et

ic
lo

gi
c

st
or

e
lo

ad
se

th
i/n

op
ca

ll/
br

an
ch

/j
um

p

12
8
4
0

in

st
ru

ct
io

ns
[x

10
5] ADPCM

relatively high amount of “wrong
branch/call” failures due to the high
number of instructions of this category

00%

10%

20%

30%

40%

50%

60%

70%

80%

wrong access to
IM

wrong
branch/call

non-decodable wrong load wrong store INCORRECT

w
ro

ng
ac

ce
ss

to
IM

w
ro

ng
br

an
ch

/c
al

l
no

n-
de

co
da

bl
e

w
ro

ng
lo

ad
fro

m
DM

w
ro

ng
st

or
e

to
DM

In
co

rr
ec

to
ut

pu
t

80%

40%

0%

CRC

0

200000

400000

600000

800000

1000000

1200000

1400000

CALL/BR/JMP LD LOGIC

ar
ith

m
et

ic
lo

gi
c

st
or

e
lo

ad
se

th
i/n

op
ca

ll/
br

an
ch

/j
um

p

12
8
4
0

in

st
ru

ct
io

ns
[x

10
5] CRC

high amount of “wrong load” failures
due to the high number of load
instruction executions

0

200000

400000

600000

800000

1000000

1200000

1400000

CALL/BR/JMP LD LOGIC

ar
ith

m
et

ic
lo

gi
c

st
or

e
lo

ad
se

th
i/n

op
ca

ll/
br

an
ch

/j
um

p

12
8
4
0

in

st
ru

ct
io

ns
[x

10
5] SAD

00%

10%

20%

30%

40%

50%

60%

70%

80%

wrong access to
IM

wrong
branch/call

non-decodable wrong load wrong store INCORRECT

w
ro

ng
ac

ce
ss

to
IM

w
ro

ng
br

an
ch

/c
al

l
no

n-
de

co
da

bl
e

w
ro

ng
lo

ad
fro

m
DM

w
ro

ng
st

or
e

to
DM

In
co

rr
ec

to
ut

pu
t

80%

40%

0%

SAD

low amount of “Application Failure”
due to low number of critical
instruction executions

0

200000

400000

600000

800000

1000000

1200000

1400000

CALL/BR/JMP LD LOGIC

ar
ith

m
et

ic
lo

gi
c

st
or

e
lo

ad
se

th
i/n

op
ca

ll/
br

an
ch

/j
um

p

12
8
4
0

in

st
ru

ct
io

ns
[x

10
5] SHA

00%

10%

20%

30%

40%

50%

60%

70%

80%

wrong access to
IM

wrong
branch/call

non-decodable wrong load wrong store INCORRECT

w
ro

ng
ac

ce
ss

to
IM

w
ro

ng
br

an
ch

/c
al

l
no

n-
de

co
da

bl
e

w
ro

ng
lo

ad
fro

m
DM

w
ro

ng
st

or
e

to
DM

In
co

rr
ec

to
ut

pu
t

80%

40%

0%

SHA

high amount of “Output Incorrect”
due to the high number of
arithmetic/logic instruction executions

0

200000

400000

600000

800000

1000000

1200000

1400000

CALL/BR/JMP LD LOGIC

ar
ith

m
et

ic
lo

gi
c

st
or

e
lo

ad
se

th
i/n

op
ca

ll/
br

an
ch

/j
um

p

12
8
4
0

in

st
ru

ct
io

ns
[x

10
5] SUSAN S

00%

10%

20%

30%

40%

50%

60%

70%

80%

wrong access to
IM

wrong
branch/call

non-decodable wrong load wrong store INCORRECT

w
ro

ng
ac

ce
ss

to
IM

w
ro

ng
br

an
ch

/c
al

l
no

n-
de

co
da

bl
e

w
ro

ng
lo

ad
fro

m
DM

w
ro

ng
st

or
e

to
DM

In
co

rr
ec

to
ut

pu
t

80%

40%

0%

SUSAN S

high amount of “wrong load” failures
due to the high number of load
instruction executions

0

200000

400000

600000

800000

1000000

1200000

1400000

CALL/BR/JMP LD LOGIC

ar
ith

m
et

ic
lo

gi
c

st
or

e
lo

ad
se

th
i/n

op
ca

ll/
br

an
ch

/j
um

p

12
8
4
0

in

st
ru

ct
io

ns
[x

10
5] SUSAN C

00%

10%

20%

30%

40%

50%

60%

70%

80%

wrong access to
IM

wrong
branch/call

non-decodable wrong load wrong store INCORRECT

w
ro

ng
ac

ce
ss

to
IM

w
ro

ng
br

an
ch

/c
al

l
no

n-
de

co
da

bl
e

w
ro

ng
lo

ad
fro

m
DM

w
ro

ng
st

or
e

to
DM

In
co

rr
ec

to
ut

pu
t

80%

40%

0%

SUSAN C

low amount of “Output Incorrect” due
to masking effects

Figure 3.6: Detailed Error Distribution at a Fault Rate of 10f/MCycles for Different Applications

and the Corresponding Instruction Distribution.

The summary of key observations from the above analysis of Figure 3.5 and Figure 3.6 is given
below.

1) Different applications exhibit varying computational properties and instruction execution profiles
and thereby exhibit dissimilar distribution of error categories. For example, the Application Failure
due to a wrong load from the data memory or due to a wrong store to the data memory increases in
a distinct way for the growing fault rate. In ADPCM and SAD, when going from 1f/MCycles to
5f/MCycles, the Incorrect Output cases grow. This is because of a large number of arithmetic/logic
instructions. There are fewer failures due to the reduced number of load and store instructions.
However, when going from 5f/MCycles to 10f/MCycles, the share of Incorrect Output reduces
because the amount of Application Failures increases due to instruction decoder faults, i.e. non-
decodable instructions. Moreover, a large number of Application Failures are caused by corrupted
loop exit conditions due to more control flow instruction executions.

2) For SHA and SusanC, the “wrong load” category is fairly prominent because of more load
instruction executions, while the failures due to “wrong store” vary.

3) The failures for “wrong load from the data memory” happen primarily due to: (i) the bit flips in the
operand containing the address during the memory pipeline stage, or (ii) the bit flips in the Address
Generation Unit during the address computation in the execute pipeline stage.

4) Since all instructions use instruction fetch unit and instruction decoder, the failures during the
instruction-fetch (i.e. wrong access to instruction memory) and instruction-decode stages occur with
similar probability for all instructions. For instance, if a bit flips in the opcode field of an instruction
word, this may lead to a non-decodable instruction.

3.2 Software Program-Level Reliability Analysis

- 45 -

5) The key difference in the usages of the processor components comes from other pipeline stages, like
execute and memory. Bit flips in the operands containing the address of a branch/call, load/store
from/to a corrupted location (e.g., due to address corruption) of data memory, and wrong access to
the instruction memory are typically not tolerable as these events may result in an Application
Failure. In contrast, bit flips in the operands of arithmetic instructions (except address generation)
may lead to an Incorrect Output error that may or may not be tolerable depending upon the
resilience of a functional block [108][109]. For instance, it may be tolerable in some functional
blocks of a multimedia application (like pixel difference computation in SAD or frame/picture
buffer [108][109][110]), but may not be tolerable in sensitive functional blocks like bitstream
processing blocks.

Summarizing the above analysis and discussion, it is important to identify the reliability-wise
importance of different instructions, which may vary in two different aspects: (1) instruction classification
w.r.t. the type of error due to a fault during its execution; and (2) quantification of error probabilities for
different instructions w.r.t. the area of processor components used by these instructions and the amount of
time spent in these components. In the following, these two key reliability aspects of instructions are
discussed in detail.

3.2.3 Instruction Classification: Critical and Non-Critical Instructions

Depending upon the type/severity of an error (i.e. Application Failure or Incorrect Output) as a result
of faults in the pipeline stages (other than instruction-fetch and instruction-decode) during its execution,
an instruction is categorized as a “critical instruction” or “non-critical instruction”.

Non-Critical Instructions: If a fault during an instruction’s execution leads to an Incorrect Output
value but does not terminate or halt the software program execution, it is classified as a non-critical
instruction. Examples of such non-critical instruction are: arithmetic and logical data computing
instructions except address generation ALU instructions (for instance, add, sub, and, or, etc.).

Critical Instructions: In contrast, an instruction is categorized as a critical instruction if a fault
during its execution leads to an Application Failure, which depends upon the application control and data
flow, instruction dependencies, and the associated error types. Potential examples of such critical
instructions are: control flow instructions (for instance, jump, branches, calls, etc.), memory-related
instructions (like load and store), and all of their associated predecessor instructions (like arithmetic and
logical instructions used for address generation) [112]. For a given fault rate, a relatively large number of
critical instruction executions may lead to a high susceptibility towards Application Failures. In general,
even for multimedia applications, faults in the execution of critical instructions cannot be tolerated.
Similar observations are also made by several other works like [28][91][92]. Therefore, the protection of
critical instructions is relatively more important.

Besides the knowledge of the critical and non-critical instructions, it is important to understand which
instruction leads to which type of error in the application software. As discussed above, the error type is
dependent upon the processor component in which the fault occurs and the instruction type that uses the
pipeline resources in distinct ways for a different amount of cycles. Towards, this end, the next Section
will introduce the notion of spatial vulnerability and temporal vulnerability as the area-wise and time-
wise error probabilities, respectively, while relating to the area of processor components and the amount
of time spent by different instructions in these components.

3.2.4 Spatial and Temporal Vulnerability

In order to quantify the application software program’s reliability considering the underlying
hardware, the following two parameters need careful investigation.

Chapter 3 Cross-Layer Reliability Analysis, Modeling, and Optimization

- 46 -

Spatial Vulnerability: Different
processor components (i.e. register file,
instruction and data memories, instruction
decoder, execution units, etc.) cover
different area of the chip footprint.
Considering the case of soft errors where the
number of particle hits is proportional to the
surface area, the probability of a fault in a
certain processor component is function of
its area, i.e. a processor component with a
bigger area is more susceptible to particle
strikes. Figure 3.3 illustrates that the
probability of a particle strike on the Pipeline
+ Instruction Execution Unit is higher than
that on the register file. This denotes the
area-wise vulnerability of an instruction
towards soft error. Therefore, the Spatial
Vulnerability of an instruction is defined as
the probability of the occurrence of a fault
during the execution of an instruction
depending upon the area of the specific
processor components that it uses.

Temporal Vulnerability: Different
instructions spend varying amount of time
(in terms of cycles) in different pipeline
stages due to their distinct execution latency,
instruction dependencies, different number
of operands, and potential pipeline stalls. This manifests as varying vulnerable time periods in different
pipeline stages. Therefore, the Temporal Vulnerability is defined as the probability of occurrence of a
fault during the execution of an instruction depending upon the vulnerable time periods it spends in
different processor components considering the above factors.

An Example: Figure 3.7 demonstrates the above-discussed concepts of spatial and temporal
vulnerabilities with the help of three instructions add, multiply, and load instructions and their execution
in different pipeline stages considering a 5-stage integer unit pipeline of the LEON2 processor. The
components used by different instructions in different pipeline stages are denoted as light-blue filled
boxes. Note that unlike the load instruction, the add and multiply instructions are not vulnerable in the
memory stage. The vulnerability of load/store instructions in the execute stage is primarily due to the
address calculation. The spatial vulnerability of the load instruction is higher compared to that of the add
instruction due to the usage of more processor components.

Furthermore, the spatial vulnerability of the multiply instruction is higher compared to that of the add
instruction due to bigger area of the multiplier unit compared to that of the Arithmetic and Logical Unit
(ALU). However, simply considering the area of different processor components is not sufficient for
accurate spatial vulnerability quantification because the probability that a particle strike manifesting as a
soft error also depends upon the circuit characteristics of the processor component. For instance, a fault at
a particular gate may be masked by the subsequent gates in the circuit; this is called circuit-level logical
masking. A component with high probability of fault denotes that a particle strike will most likely
manifest as a bit flip. Moreover, a fault may be latched in a register but in a combinational circuit, it may
be over-written in the subsequent clock cycle (see further details on the gate-level soft error masking
analysis details in Chapter 4). In short, the quantification of error probability as a function of spatial

Decode

A
dd

iti
on

Fetch

Instr. Cache Reg.File

ins

Decoder

Execute

rs1

op2

ins

Memory Write
ins ins

ALU

Mult./
Div.

res

Data Cache

y

res

yPC

Decode
M

ul
tip

lic
at

io
n

Fetch

Instr. Cache Reg.File

ins

Decoder

Execute

rs1

op2

ins

Memory Write
ins ins

ALU

Mult./
Div.

res

Data Cache

y

res

yPC

Decode

Lo
ad

Fetch

Instr. Cache Reg.File

ins

Decoder

Execute

rs1

op2

ins

Memory Write
ins ins

ALU

Mult./
Div.

res

Data Cache

y

res

yPC

Figure 3.7: Spatial and Temporal Vulnerabilities:

Different Instructions using Diverse Processor
Components in Pipeline Stages.

3.2 Software Program-Level Reliability Analysis

- 47 -

vulnerability in different processor components (i.e. underlying hardware) depends upon their area and
circuit-level error masking characteristics. The temporal vulnerability of the multiply instructions is also
more than add instruction because the multiply instruction requires 3 cycles or more for execution, while
the execution latency of an add instruction is 1 cycle.

Further Considerations for Spatial and Temporal Vulnerabilities from the Application
Software Program’s Perspective: When considering the complete instruction profile of an application,
varying execution latencies have impact on the preceding instructions as multi-cycle instructions stall the
pipeline, thus increasing the temporal vulnerability of preceding instructions. Furthermore, the longer
execution time of instructions also results in longer intervals between the variable usages (stored in the
register file), which results in an increased temporal vulnerability w.r.t. the register file. From the
application’s perspective, increased spatial vulnerability can also be accounted by the usage of more
variables stored in more live registers. Furthermore, it is important to consider that not all bits of operand
variables are vulnerable for ensuring the correct software execution due to architecture-level or software-
level error masking. That is, a fault in the hardware does not necessarily lead to an erroneous output of the
application software program (or at least not in the user-visible error range) depending upon the
instruction type, operand values, and control flow properties. A bit of an operand is characterized as a
vulnerable bit if a bit flip in this bit leads to an error in the program’s output; otherwise, it is characterized
as a non-vulnerable bit. To demonstrate this concept of vulnerable bits, let us consider the following
example.

R0 = R1 & R2; R1 = 32'bit x; R2 = 0x0000FFFF;

In the above example, it is assumed that a fault may occur in R1 or R2, but not in both. Note that a
fault in the upper 16 bits of R1 will not affect the value of R0. However, a fault in R2 will affect the value
of R0. Therefore, bits 0-15 of R1 are vulnerable bits, while bits 16-31 of R1 are non-vulnerable bits. In
contrast to this, all 32 bits of R2 are vulnerable bits. Therefore, besides the above-discussed parameters in
spatial and temporal vulnerabilities, the knowledge from the vulnerable bit analysis is also important for
devising the software program-level reliability models.

In Summary, the reliability of a software program is a complex function of spatial and temporal
vulnerabilities of its instructions and different error types that depends upon the instruction profile and
application execution behavior. For instance, long vulnerable periods of register variables result in an
increased temporal vulnerability, while using more live variables results in an increased spatial
vulnerability. Moreover, even for the same overall performance, an increased temporal vulnerability of a
critical instruction leads to a higher susceptibility towards Application Failures compared to that of a non-
critical instruction. The above-discussion and analysis provide hints and motivation towards consideration
of different hardware and software parameters (like area and fault probabilities for different processor
components, spatial and temporal vulnerabilities, and the knowledge about the critical and non-critical
instructions) for software-level reliability modeling and optimization in constrained scenarios. In
particular, since the spatial and temporal vulnerabilities are affected by the instruction profile, the
reliability-driven code-generation techniques exhibit a potential towards software program’s vulnerability
reduction, as exploited in this thesis (see Chapter 5).

3.2.5 Summary of Software Program Reliability Analysis and Relevant Parameters

The analysis in Figure 3.5 and Figure 3.6 illustrated that the Application Failures (for instance, branch
errors due to wrong branch/call, memory access errors, non-decodable errors due to opcode bit flips, etc.)
are critical program errors. Therefore, these errors need to be avoided (or at least minimized) as they may
potentially terminate or block the application execution that may not be acceptable in various embedded
systems deployed in critical application domains. The memory access errors can also be due to an
erroneous execution of the predecessor critical ALU instructions for address generation that may lead to a

Chapter 3 Cross-Layer Reliability Analysis, Modeling, and Optimization

- 48 -

wrong load/store to the data memory or a wrong access to the instruction memory. Therefore, reducing
control flow and memory related critical instructions also leads to reduction in their dependent critical
arithmetic and logical instructions used for address generation. A fault in the operand fields of the
instruction word or the contents of the source and destination registers of branch, call, load, or store
operations may lead to a potential abort/exception due to, for instance, out of bound memory access.
Moreover, failures due to “INFINITE Loop” could be due to corruption of loop conditions and loop jump
instruction. The Incorrect Output errors are mostly due to bit flips (in ALU, multiplier, etc.) occurring
during the execution of arithmetic and logical instructions in the execute pipeline stage. As discussed
above, the output error types vary depending upon the instruction type and the pipeline stage in which
they occur. Therefore, in order to quantify the reliability at the instruction level, spatial vulnerability and
temporal vulnerability of different instructions need to be considered. For a given fault rate, the
probability of Application Failures is directly proportional to the number of critical instruction executions
and their spatial and temporal vulnerabilities.

In short, the above analysis is leveraged to derive different parameters for characterizing the
reliability-wise importance of different instructions. The key parameters from the hardware and software
perspective are: (1) the knowledge of critical and non-critical instructions, and (2) spatial and temporal
vulnerabilities considering area of different processor components used by different instructions,
probability of fault for different processor components depending upon their circuit design, and program
level knowledge of vulnerable bits and vulnerable periods that depends upon the instruction profile and
schedule. The above-discussed parameters serve as an input for developing application software program-
level reliability models at different granularity (i.e. instruction and function/task), which are adapted to the
granularity of applying an appropriate reliability optimization technique. Furthermore, the software-level
reliability techniques need to jointly account for the above-discussed hardware and software-level
information/parameters. Note that our fault injection experiments and fault modeling at the Instruction Set
Simulator level also accounts for the above-discussed notion of spatial and temporal vulnerabilities and
the respective values of the parameters.

3.3 Cross-Layer Reliability Modeling: A Soft Error Perspective
In the previous section, an extensive reliability analysis is performed to understand which instructions

lead to which type of errors in the software program considering faults in different processor components
and what their error masking behavior is. This analysis is leveraged to develop software program-level
reliability models that account for both the hardware- and software-level knowledge. Towards this end,
this thesis addresses the key challenge of bridging the gap between hardware and software through a
cross-layer reliability modeling flow that enables quantifying the effects of hardware-level faults at the
software level, while accounting for the knowledge of the processor architecture and layout.

Figure 3.8 presents the proposed cross-layer reliability modeling flow with the information exchange
across different layers for accurate estimation of reliability at the software-level. The information from
different layers of the system design abstraction (i.e. circuit, micro-architecture, and application) are used
to devise important parameters required for developing accurate software program reliability models.
These reliability models are then used to develop software program-level reliability optimization
techniques. Therefore, these software program-level reliability models need to be adapted to different
granularity (e.g., instruction and function/task levels) so that they can be applied at different system
layers. The reliability threats such as soft errors and aging occur at the lower layer (i.e. at the device level)
and their effects propagate upward through various system layers and finally appear at the application
layer. Therefore, this thesis adopts a bottom-up approach for reliability modeling and estimation. To
bridge the gap between hardware and software, the proposed cross-layer reliability modeling flow
leverages various parameters from both hardware and software layers. The identification of some
important hardware-/software-level parameters has already been discussed above in Section 3.2. In the

3.3 Cross-Layer Reliability Modeling: A Soft Error Perspective

- 49 -

following, different parameters for reliability models are discussed, followed by an overview on the
proposed reliability models at different granularity.

ABSTRACTION LAYER RELIABILITY MODELS

Application

Compiler

System Software
(Offline and Online)

Hardware
(Architecture and
Microarchitecture)

Device

Function Resilience (Appendix B)

Instruction Vulnerability Index
(Section 4.1); Instruction Masking

Index (Section 4.2); Error
Propagation Index (Section 4.3)

Function and Task
Vulnerability Index

(Section 4.4)

Error Propagation and
Masking Analysis

(Section 4.1.3)

Bit Error Probabilities;
Variability Models

LAYER STATISTICS

Application Workload
Statistics

OS Statistics
(power states,

DVFS, etc.)

Generation of Faults

Pr
op

ag
at

io
n

of
Fa

ul
ts

an
d

M
as

ki
ng

at
D

iff
er

en
tS

ys
te

m
La

ye
rs

Figure 3.8: Cross-Layer Software Reliability Modeling:

An Example Illustration for the case of Soft Errors.

At the hardware-level, the following important parameters are considered: (1) Gate-Level Error
Masking Probabilities that are used to obtain the probability of fault (Pfault) for different processor
components; and (2) Spatial and Temporal Vulnerabilities. At the software-level, the following important
parameters are considered: (1) Basic Block Execution Probabilities that are used to determine the error
masking behavior at the application software program level. (2) Instruction Type which denotes the
average-case error masking probabilities of different instructions, e.g., a bit-wise and / or instructions will
mask 50% of errors considering the input probability = 0.5 for ‘1’ and ‘0’. (3) Register Live-In and Live-
Out Information is used for static estimation of temporal vulnerable periods for variables used in the static
estimation of instruction vulnerabilities.

In order to provide an overview of the proposed cross-layer modeling flow, in the following, we
present a brief description of different modeling efforts performed and parameters considered in this
thesis. Detailed techniques, methods, and results for these different models are discussed in Chapter 4.

3.3.1 Estimating the Probability of Fault for Different Processor Components
through Gate-Level Soft Error Masking Analysis

Probability of fault for different processor components is obtained through a detailed gate-level soft
error masking analysis. The inputs to this analysis are: circuit netlist, particle strike-to-error probabilities

Chapter 3 Cross-Layer Reliability Analysis, Modeling, and Optimization

- 50 -

for logic and memory elements in the netlist, and signal probabilities. For a logic gate or memory element,
particle strike to soft error probability is typically denoted as logic element error probability or bit error
probability, respectively; as shown in the circuit-layer in Figure 3.8. These error probabilities are typically
vendor specific and depend upon various technology parameters [113] and are typically unavailable under
an open-access program. Finding these probabilities typically requires detailed SPICE-level simulations
and can be done using the Predictive Technology Model [114] data. Since this is beyond the scope of this
thesis, without the loss of generality, in this thesis these probabilities are considered as 1 due to the
unavailability of this technology data. The signal probabilities can be obtained through gate-level
simulations using, for instance, ModelSim [124] software.

It is important to note that not all faults in a logic element (i.e. gates) of a combinatorial circuit affect
its output because a fault may be masked due to the logical masking effects of the subsequent gates.
Pfault(c) for a processor component c can be estimated as the average-case fault probability by considering
an error at different gates in the circuit netlist of the component c and estimating the probability of an
error at the circuit’s output. For this, a conditional probability analysis of error propagation through
multiple gates for a given circuit netlist is performed considering the signal probabilities at each gate
which vary depending upon the input data. An alternate way is to perform the analysis for average-case
signal probabilities. First the masking probabilities of individual gates in the netlist are estimated.
Afterwards the error masking probability at a gate along a path (i.e. a set of connected gates leading to an
output) is estimated. It is given as the probability that an error at this gate will not affect the correct output
of this path, and it is calculated based upon the gate input signal probabilities and error probabilities. After
finding the masking probabilities for all the paths, the final masking probability at the circuit output is
obtain as the product of each of the paths masking probability values. An exhaustive analysis of the netlist
is typically very time consuming. The work in [115] proposes an approximation based technique that
trades off the analysis time with analysis accuracy.

Note, Pfault(c) basically serves as an input to our software-level reliability models discussed below.
Due to the unavailability of an open-source gate-level soft error analysis tool, a simple approach is
developed in the scope of this thesis to obtain this data. Other approaches like [50]-[52] can also be
deployed to obtain this fault probability information as this is orthogonal to our software-level reliability
models and our cross-layer reliability modeling flow provides a clean interface for incorporating this
information in the form of a parameter Pfault(c) for a given processor component c.

3.3.2 Estimating Reliability at the Instruction-Granularity as a Function of
Vulnerability, Error Masking and Propagation

In order to quantify the reliability of a
software program, three important characteristics
need to be captured: (1) What is the probability
that an instruction execution gets erroneous? (2)
What is the probability that an erroneous
instruction’s output ultimately propagates to the
final output of an application software program?
(3) If the error is not masked, to how many final
outputs does this error propagate to? In order to
estimate the software program reliability
considering the above three characteristics at the
granularity of instruction, i.e. the granularity
which is important to develop instruction-level
reliability optimizing techniques as adopted in
compiler or application levels, this thesis introduces three novel metrics, namely (1) Instruction
Vulnerability Index, (2) Instruction Error Masking Index, and (3) Instruction Error Propagation Index.

Store

&

+

–

+ x

... ...

IVI denotes how
probable it is that this

instruction gets
erroneous

Error
propagated
to multiple

outputs

Error is
masked

Figure 3.9: An Abstract Example Illustrating

the Concept of Error Probability, Error Masking
and Propagation at the Instruction Granularity.

3.3 Cross-Layer Reliability Modeling: A Soft Error Perspective

- 51 -

Figure 3.9 presents an abstract illustration of these three reliability metrics. In the following, we briefly
describe the fundamental concept of these three instruction-level reliability metrics; further details on
concept, methods, and results are discussed in Chapter 4.

IVI – Instruction Vulnerability Index: This model quantifies the error probability at the instruction
level by jointly accounting for the spatial vulnerability (i.e. area-dependent error probability) and temporal
vulnerability (i.e. time-dependent error probability) and the above-discussed probability of fault in
different processor components. Quantifying these vulnerabilities for a given application software
program requires the following two analysis: (1) vulnerable bit analysis for different pipeline components
considering the fault probabilities and area of different processor components (like register file, ALU, and
cache controller); and (2) vulnerable time period analysis because different instructions spend different
time in processor components.

IMI – Instruction Error Masking Index: The output errors for several instructions may be masked
due to data flow properties (depending upon the instruction type and the value of the operand variables)
and changing control flow properties. To quantify these effects, an Instruction Error Masking Index
model is developed that estimates the probability of an error at an instruction being masked until the
visible output of an application software program.

EPI – Instruction Error Propagation Index: In case the error is not masked at an instruction, it can
propagate to multiple outputs of the software program. The EPI model quantifies these error propagation
effects for an error at an instruction using the non-masking error probabilities of the successor
instructions. EPI provides a statistical estimate in form of an accumulating function of non-masking
probabilities.

The three above-discussed models jointly provide a measure of severity of an error at the instruction
granularity. For instance, an instruction with a high IVI is not necessarily the reliability-wise most
important instruction because it could also has a very high IMI and very low EPI value and most of the
errors for this instruction may be masked due to the control and data flow properties. Therefore, the
above-discussed models need to be jointly leveraged to determine the reliability-wise importance of
different instructions in a given data flow graph for an application software program. It is important to
note that in order to facilitate compiler-level reliability optimizations (see Chapter 5), IVI, IMI, and EPI
are estimated statically using the control and data flow graph (CDFG) of an application software program.
The static analysis accounts for basic block execution probabilities, average-case masking probabilities
for different instructions, and register live-in and live-out information.

3.3.3 Function-Level Reliability Models

Furthermore, in order to facilitate function/task level reliability optimization, there is a need for
reliability models at the corresponding granularity. Towards this end, two different reliability models were
developed in this thesis: (1) Function Vulnerability Index (FVI), which is based on the IVI; and (2)
Function Resilience model, which defines the resilience of a function as a probabilistic measure of the
function’s correctness (output quality) in the presence of hardware-level faults. The function resilience is
a black-box model and relies on fault injection experiments to estimate the program reliability without
exposing the software program details to the designers, and thus can also not be estimated statically.
Besides this, to stay consistent with the IVI model, for the reliability optimizations and evaluations, the
FVI metric will be used in the rest of thesis. The details of the function resilience model and its
applicability will be discussed in Appendix B. The function resilience model is beneficial in cases where
designers do not want to dive into static analysis and in-depth program analysis.

Chapter 3 Cross-Layer Reliability Analysis, Modeling, and Optimization

- 52 -

3.3.4 Consideration for Timing Correctness

Besides functional correctness, this thesis also accounts for timing reliability in timing-conscious
systems. In order to account for the timing effects, this thesis introduces a Reliability-Timing Penalty
(RTP) model which is the linear combination of functional reliability (i.e. the reliability penalties in terms
of the vulnerability indexes like FVI) and timing reliability (i.e. the timing penalty in terms of deadline
misses). The RTP metric will be employed in run-time reliability optimization techniques in Chapter 6.

3.4 Consideration of Aging Faults
Besides soft errors, an on-chip system is also subjected to aging faults. Similar to the cross-layer

reliability modeling flow for the soft error case presented in Figure 3.8, a reliability modeling flow for the
aging faults can also be obtained. There has recently been research going on in this area [116][117]. Since
this thesis investigates soft error resilience in the presence of process variation and aging-induced effects,
it requires input data on process variation maps and processor aging estimates for different workload
scenarios. Towards this end, this thesis developed a basic aging estimation technique (see details in
Chapter 7) to validate the aging-aware soft error optimization concepts proposed in Chapter 6. The
proposed aging estimation technique leverages accurate low-level aging estimates of different logic and
memory elements obtained through detailed SPICE simulations (provided as an input by the VirTherm-
3D group as a part of the collaborative research effort in the DFG SPP1500 program [118]). Besides this
data, the technique requires the top x% critical paths from the circuit netlist and signal probabilities from
the gate-level ModelSim simulations. The initial delay estimates are obtained from the Standard Delay
Files, which are obtained as an output of the logical synthesis. The proposed technique generates aging
estimates for x% critical paths by applying the delay degradation (obtained from low-level aging
estimates) to individual logic elements in the Standard Delay Files and re-performs the critical path
analysis. Finally, the aging of the processor’s critical path is estimated as the accumulated delay of all
logic elements considering their respective duty cycles over several years. Note that developing low-level
aging models, consideration of temperature effects, thermal management and thermal-aware processing
are beyond the scope of this thesis. Therefore, this thesis considered aging estimates corresponding to the
maximum operating temperature scenario. Details on the temperature-related optimizations can be found
in works from other SPP1500 sub-projects [149][150][151][156].

The above-mentioned software program-level reliability models are leveraged to enable cross-layer
reliability optimization across multiple system layers, i.e. at compiler and system software layers, that are
briefly discussed in the following. Detailed discussions on the proposed techniques, experimental
analysis, and results at different system layers are presented in Chapter 5 and Chapter 6.

3.5 Reliability-Driven Compilation Flow
A reliability-driven compiler offers significant opportunities to generate reliable application code for

unreliable or partially reliable hardware platforms. For effective reliability improvements, both hardware
knowledge (e.g., number of available registers, area and fault probabilities of different processor
components) and software characteristics (e.g., variable lifetime, instruction types and dependencies,
basic block execution probabilities) need to be considered. The proposed reliability-driven compilation
flow aims at improving the reliability of fault-susceptible software programs executing on unreliable
hardware under user-provided tolerable performance overhead constraint. It improves the software
program’s reliability through two orthogonal and equally important ways: (1) Reducing the probabilities
of Application Failure and Incorrect Output errors by reducing the spatial and temporal vulnerabilities and
critical instruction executions. (2) Error detection and recovery through selective instruction protection.

3.5 Reliability-Driven Compilation Flow

- 53 -

Figure 3.10 presents the block diagram of the proposed reliability-driven compilation flow where the
novel contributions of this thesis are highlighted in the dark blue boxes, and the light blue boxes represent
the compile-time information that is exploited for static estimation of the reliability. The inputs to the
compilation flow are: (1) application code; (2) application analysis for reliability and performance after
profiling, for instance, the number of registers which are used and their vulnerable period in terms of
lifetime; (3) the above-discussed software program-level reliability estimation models; and (4) the user-
provided constraints for tolerable performance overhead. Reliability-Driven Software Transformations,
Instruction Scheduling, and Selective Instruction Protection are proposed in the scope of this thesis that
can be applied in the front-/middle-/back-end of a reliability-driven compiler. The reliability-driven
transformations and instruction scheduler lower the error probabilities by reducing the spatial/temporal
vulnerabilities and the critical instruction executions. The selective instruction protection technique
improves the software program’s reliability through error detection and recovery. Using the above
techniques, multiple iso-functional code versions are generated for different functions of an application
software program, each exhibiting distinct performance and reliability properties. These multiple versions
facilitate the run-time system to explore the reliability-performance optimization space at run time
considering varying fault rates and resilience/performance properties of the concurrently executing
applications.

Figure 3.10: Reliability-Driven Compilation Framework.

3.5.1 Reliability-Driven Software Transformations

The key goal of the reliability-driven transformations is to minimize the error probabilities towards
Application Failures and Incorrect Outputs through the following two means under user-provided
performance overhead constraints: (1) Reducing the execution probability and vulnerabilities of critical
instructions like branches, calls, load/stores, address generation and condition evaluation ALU
instructions. (2) Reducing instructions’ spatial and temporal vulnerabilities with respect to distinct usage

Chapter 3 Cross-Layer Reliability Analysis, Modeling, and Optimization

- 54 -

patterns of various processor components (e.g., by reducing the register content and control flow
vulnerabilities). In this thesis, the following four reliability-driven transformations are proposed.

1) Reliability-Driven Loop Unrolling determines an 'appropriate' unrolling factor that jointly
minimizes the spatial and temporal vulnerabilities of different instructions under performance and
code size constraints. It explores the tradeoff between reduced loop evaluation instructions and
vulnerabilities of live register variables.

2) Reliability-Driven Data-Type Optimization targets reducing number of critical instruction
executions by transforming the smaller bit-width data types into larger bit-width data types for
given data structures, while minimizing the function vulnerabilities.

3) Reliability-Driven Common Expression Elimination and Operation Merging reduces the
vulnerabilities by removing identical expressions and/or merging partially common sub-
expressions. It investigates the reliability effects (e.g., reduced Incorrect Outputs) of re-
computation and register variables with increased lifetime while also accounting for the register
spilling.

4) Reliability-Driven Online Table Value Computation evaluates whether precomputed table
values with increased memory vulnerability would be beneficial from the overall function
reliability perspective or the online computation with increased instruction vulnerabilities in the
pipeline.

When comparing to performance-optimized transformations, these reliability-driven transformations
result in 60% reduced Application Failures and on average 57% reduced application vulnerabilities
leading to reduced Incorrect Outputs; see detailed evaluation in Section 5.1.

3.5.2 Reliability-Driven Instruction Scheduling

A performance-driven scheduler may degrade the software reliability, for instance, by scheduling
critical instructions after a pipeline stalling instruction or increased spatial vulnerability due to increased
register usages. In this thesis a reliability-driven instruction scheduling technique is proposed that
determines the instruction execution sequence under a user-provided tolerable performance overhead and
directly influences the vulnerabilities of different instructions in different processor components, e.g.,
variable values in the register file or pipeline stage residency. The reliability-driven instruction scheduler
improves the software reliability by prioritizing the instructions with the highest reliability-weight, which
is a joint function of the statically estimated spatial and temporal vulnerabilities, instruction's criticality,
probabilities of different types of software program errors, and number of dependent instructions. It
employs a lookahead-based heuristic to evaluate the reliability weights of different scheduling candidate
instructions in conjunction with their dependent instructions, thus minimizing the risk of scheduling a
critical instruction after a multi-cycle or a pipeline stalling instruction (if possible). The proposed
scheduler reduces Application Failures by 22% on average compared to state-of-the-art instruction
schedulers; see detailed evaluation in Section 5.2.

3.5.3 Reliability-Driven Selective Instruction Protection

Full-scale instruction redundancy techniques like [27] incur significant energy, code size/memory,
and performance overhead, and thus cannot be applied in resource-constrained (embedded) systems.
Moreover, different instructions in an application software program exhibit varying reliability importance
due to their diverse error vulnerability and masking properties as a result of changing data and control
flow behavior. For such scenarios, this thesis introduces a selective instruction protection technique that
applies redundancy to a subset of instructions with the highest reliability profit value under a given
performance overhead constraint. The reliability profit is computed as a joint function of IVI, IMI, EPI,

3.6 Reliability-Driven System Software

- 55 -

and protection overhead. In case of sequential dependencies, it may be beneficial to jointly protect a group
of instructions as the voting and checking is only required at the end of the sequential group, thus
incurring a reduced protection overhead. In constrained scenarios, the proposed selective instruction
protection technique improves the software reliability by 30%-60% on average compared to different
state-of-the-art techniques which do not jointly account for instruction-level vulnerability, error masking,
error propagation, and hardware-level parameters; see detailed evaluation in Section 5.3.

3.5.4 Generating Multiple Function Versions Providing Tradeoff between
Performance and Reliability

The techniques explained in Section 3.5.1, 3.5.2, and 3.5.3 are leveraged to generate multiple
compiled function versions that are identical in terms of their functionality and the output but differ w.r.t.
their execution time and FVI properties. These versions can be generated in two ways: (1) after applying
only reliability-driven transformations and instruction scheduling, such that, these versions differ in their
properties w.r.t. the reduced error probability; and (2) after additionally applying the selective instruction
protection, so that these versions also exhibit some error detection and recovery. These multiple function
versions generated through reliability-driven compilation enable a reliability-performance optimization
space for the system software layers.

The number of different function versions would highly depend upon the range of tolerable
performance overhead provided by the user. Note, the tolerable performance overhead per function can
also be obtained from the system software layers after a slack analysis in a multi-pass cross-layer
optimization flow. Furthermore, there may exist several non-optimal points in the reliability-performance
optimization space of multiple versions. Therefore, in Section 5.4, function version generation and
selection is discussed. The Pareto-optimal function versions in the reliability-performance optimization
space are selected after applying different code-level reliability enhancing techniques. Furthermore,
function versions with appropriate transformations will be selected in Section 5.1.6 to further curtail the
design space and non-benefiting combinations of different transformations will be discarded. Curtailing
the number of function versions is important to reduce the overhead of the contributions at the system
software layers. These multiple versions for different functions are then forwarded to the offline and run-
time system software for further reliability optimization as discussed below.

3.6 Reliability-Driven System Software
Figure 3.11 presents the overall flow for the reliability-driven system software which consists of the

following two main steps: (1) Reliability-driven offline system software; and (2) Reliability-driven run-
time system software. After multiple function versions are generated, the reliability-driven offline system
software generates the offline function schedule for different versions, such that, each schedule denotes a
distinct combination of different function versions representing a distinct reliability and execution time
profile for the complete function schedule for a given application. The offline prepared schedule aim at
reducing the total system expected Reliability-Timing Penalty (RTP). These offline prepared tables of
function schedules are given as an input to the reliability-driven run-time system software that manages
dependable application execution on a single core or multi-/manycore processors.

The run-time system software for the single core processors chooses a certain function version from
the appropriate schedule table depending upon the so far achieved system reliability and the remaining
time to deadline considering the previously executed functions. Its goal is to minimize the total expected
RTP for the complete function schedule. The run-time system software for the multi-/manycore processors
performs three key operations: (1) it dynamically selects the redundant multithreading mode for different
concurrently execution application tasks in order to improve their soft error resilience under resource
constrained scenarios. (2) Afterwards, it selects an appropriate set of cores for the tasks with or without

Chapter 3 Cross-Layer Reliability Analysis, Modeling, and Optimization

- 56 -

redundant threads. (3) Then, it determines an appropriate compiled versions for each of the task
depending upon the cores’ frequency, versions’ execution time, and the deadline. This run-time system
performs soft error resilience in the presence of design-time process variations and run-time aging induced
frequency degradations.

In the following, both offline system software and run-time system software are briefly explained; see
details on techniques and algorithms in Chapter 6.

...

Multiple compiled Task VersionsReliability-Driven Offline
System Software

(Section 6.1)
Multiple Function Schedules; each
schedule with min. expected RTP

Reliability

D
eadline

Reliability-Driven Function Version
Selection for Single Core
Processors (Section 6.2)

Multiple Functions
Execute on a
Single Core

Function Version
Selection for Reliability-

Driven Application
Composition

Minimize the overall System's expected
Reliability-Timing Penalty

Estimate Reliability
of each Function

Version

Adpative RMT
Control

Variation-Aware
Core Assignment

Reliable Application
Version Tuning

Reliability-Driven Function Version
Selection for Manycore Processors

(Section 6.3)

Reliability-Driven
Compiler

Figure 3.11: Reliability-Driven Offline System Software and Run-Time Adaptive System Software.

3.6.1 Reliability-Driven Offline System Software

The proposed offline system software performs reliability-driven application composition/function
scheduling. Given multiple reliable function versions generated from the reliability-driven compiler, each
with a distinct reliability-performance tradeoff option, the reliability-driven offline system software
constructs the scheduling table for all the functions using a dynamic programming approach. For different
reliability and timing values, the RTP for all the function versions is estimated and the version with the
minimum RTP is placed inside the table. The same process is done for all the functions and their
corresponding versions depending upon the distributions of their execution time and vulnerabilities. A
certain point across these tables presents a specific function schedule (as a solution for dependable
application execution) that has a distinct combination of function versions improving the reliability in a
certain execution context. The proposed technique constructs the schedule tables with the objective to
minimize the overall RTP, therefore, the deadline misses versus the functional reliability tradeoff is
exploited. Probability distribution of the task execution time is taken into account while constructing the
schedule tables to exploit the dynamic execution behavior. The constructed tables of multiple
function/task versions are given as an input to the run-time system software to dynamically select a certain
schedule from the table that minimizes the overall system’s RTP depending upon the current execution
behavior (i.e. the reliability penalty and the remaining time to the deadline).

3.6.2 Reliability-Driven Adaptive Run-time System Software

After generating the dependable code in form of multiple compiled versions and multiple function
schedules, the proposed reliability-driven run-time system software manages the applications’ executions
considering the reliability/performance properties of different versions, the frequency variations in the
underlying hardware and the history of encountered errors. Towards this end, two different systems are
proposed: (1) a reliability-driven run-time system software for the single core processors, and (2) an
adaptive Dependability Tuning system for manycore processors subjected to core-to-core frequency
variations as a result of process variations and aging-induced frequency degradation. The run-time system
for the single core processors performs reliability-driven dynamic application composition by dynamically
selecting an appropriate task version from the offline-constructed schedule tables depending upon the
current execution behavior and reliability level while considering the remaining time to the final deadline.
However, this run-time system software only targets soft error resilience in single core processors. When
considering multi-/manycore processors, different cores in the on-chip system may exhibit different

3.7 Chapter Summary

- 57 -

properties (e.g., operating frequency) due to design-time process variations and run-time aging. Therefore,
the run-time system software for manycore processors needs to perform soft error resilience under process
variations and aging-induced effects.

Towards this end, an adaptive Dependability Tuning (dTune) system for manycore processors is
proposed in this thesis. The dTune system performs the following key operations:

1) Hybrid Redundant Multithreading Tuning: Redundant threading is a well adopted resiliency
method in multi-/manycore processors, where redundant threads of different applications execute
on different cores. In resource constrained scenarios where multiple application tasks execute
simultaneously, it may happen that there are not sufficient free cores for executing three
redundant copies of each application task. In such cases, the resilience properties of different
applications tasks and the history of encountered errors can be leveraged to selectively activate or
deactivate redundant multithreading modes for these tasks.

2) Variation-Aware Core Allocation: Considering the existence of core-to-core frequency
variations, a key challenge is to allocate cores to different redundant threads of different
application tasks, such that, the voting at the end of redundant multithreading can be performed
with reduced synchronization overhead to ensure functional and timing reliability. For this, dTune
employs a variation-aware core allocation strategy that finds cores with frequencies that match the
execution properties of the redundant threads while considering the application tasks’ deadlines.

3) Reliable Code Version Selection: Given multiple reliable code versions for different tasks,
dTune selects an appropriate version considering the time to deadline and the frequency of the
core.

Jointly considering multiple compiled versions and core-to-core frequency variations for soft error
resilience enable our dTune system to achieve on average 44% (maximum 63%) improved system
reliability compared to different state-of-the-art single-layer soft error optimization techniques, for
different chip configurations with numerous variability maps at different aging years.

3.6.3 Comparing Cross-Layer vs. Single-Layer Reliability Optimizing Techniques

The proposed dTune system integrates the novel reliability optimizing techniques proposed in this
thesis to realize a cross-layer soft error optimization flow. Therefore, in order to illustrate the benefits of a
cross-layer software reliability optimization over single-layer soft error optimization techniques,
Chapter 7 will present a comprehensive comparative evaluation of the proposed dTune system for
different chip configurations with numerous process variation maps and aging years. These experiments
would illustrate what the chip configurations and application scenarios are in which a cross-layer
technique would be beneficial, and under which configurations and execution scenarios a single-layer
reliability optimization technique is beneficial. In summary, the proposed cross-layer optimization flow is
beneficial in most of the cases, but in particular, for the cases which are resource constrained.

3.7 Chapter Summary
This chapter presented the overview of the proposed cross-layer reliability analysis, modeling, and

optimization flow and discussed the information exchange across multiple software layers. The necessary
hardware knowledge is taken into consideration for software reliability modeling and optimization in
order to bridge the gap between hardware and software to improve the effectiveness of the models and
techniques. In order to devise efficient reliability models, a detailed software program-level reliability
analysis is performed using the fault injection experiments. The error distributions during the execution of
different instructions are analyzed when faults are injected in different processor components. This study

Chapter 3 Cross-Layer Reliability Analysis, Modeling, and Optimization

- 58 -

helps in understanding the impact of hardware-level faults at the software layer and their relationship to
different instruction types and different processor components.

Also, different parameters for software-level reliability models are identified. Based on this analysis,
instructions are classified into critical instructions (i.e. load, store, jump, call, and arithmetic/logical
instructions used for address generation) and non-critical instructions (add, sub, and, or, etc.). Depending
upon the usage of different processor components and time spent in these components by different
instructions, the notion of spatial vulnerability and temporal vulnerability is introduced that define the
space- and time-wise error probabilities, respectively. This analysis provides hints and motivation to
consider different hardware and software parameters (i.e. area and fault probabilities for different
processor components, spatial and temporal vulnerabilities, and the knowledge about the critical and non-
critical instructions) for software-level reliability modeling and optimization. The message from this
analysis is: the spatial and temporal vulnerabilities depend upon the instruction profile and processor
architectural features. Therefore, both hardware and software knowledge need to be considered for
reliability modeling at the software layers. Furthermore, different compiler and system software level
techniques can affect the instruction profile and execution on processor, respectively and thereby will
affect the spatial/temporal vulnerabilities. Also, minimizing the number of critical instruction executions
bears the potential of lowering the number of Application Failures that can be targeted through reliability-
driven software transformations, as will be discussed in Chapter 5. Afterwards, an overview of the cross-
layer reliability modeling flow is presented along with an introduction of novel reliability metrics
proposed in this thesis; see details of these models (that are adapted to the granularity of appropriate
system layers where these models are employed) and their evaluation in Chapter 4. Towards the end,
novel software reliability optimization techniques at different system levels are proposed for dependable
application code generation and execution. These techniques will be explained in detail in Chapter 5 and
Chapter 6.

Since this chapter only provided a high level overview to connect all of the novel contributions of this
thesis in a cross-layer modeling and optimization flow, detailed discussion of results and achievements are
presented in the Chapter 4-Chapter 6, while the evaluation of benefits of cross-layer reliability
optimization compared to the single-layer reliability optimization is discussed in Chapter 7.

- 59 -

Chapter 4 Software Program-Level Reliability
Modeling and Estimation

In order to estimate the reliability at the software program level while accounting for the knowledge
from the underlying hardware layers, this chapter presents different reliability estimation models that are
developed at different levels of granularity, i.e. instruction and function/task-level. Since each system
layer may employ distinct reliability optimization techniques that can operate at either the instruction or
function/task level, it is important to devise reliability models for the appropriate granularity adapted to
these optimization techniques. For example, a metric at an instruction granularity will be useful for
enabling reliability optimization during compilation. However, at the system software layer the notion of
function/task is more appropriate. A key challenge to develop efficient software program-level reliability
models is to identify important hardware and software level parameters that affect the reliability of a
software program executing on an unreliable hardware. For this, the analysis of Chapter 3 is important to
be considered, i.e. the knowledge of critical and non-critical instructions, spatial and temporal
vulnerability, and error masking can be leveraged to develop accurate software program-level reliability
models. These models are then used to analyze the reliability properties of different applications at the
instruction and function granularity.

In particular, this chapter first introduces three novel reliability models at the instruction granularity,
namely Instruction Vulnerability Index, Instruction Error Masking Index, and Instruction Error
Propagation Index that quantify three key reliability characteristics of the software program. The
Instruction Vulnerability Index model (Section 4.1) estimates the probability of an instruction’s output
being erroneous. Quantifying instruction vulnerabilities poses several challenges to analyze and estimate
(1) spatial vulnerabilities due to vulnerable bits of different operands of the instruction, area of different
processor components, and their respective fault probabilities; and (2) temporal vulnerabilities due to the
vulnerable residency of an instruction in different pipeline stages that also depends upon the previously
executing instructions in the pipeline. In case the output of an instruction is erroneous, the Instruction
Error Masking Index model (Section 4.2) estimates the probability that this error will ultimately be
masked until the final visible output of the application software program. This poses several challenges to
characterize the masking potential of different types of instructions and analyzing the impact of other
factors related to the data and control flow graph, for instance, control flow probabilities. In case the error
is not masked, the Instruction Error Propagation Index model (Section 4.3) estimates that how many final
outputs of the software program will be affected. This poses challenges related to control flow graph
analysis for different instruction paths until the program output. In order to employ these metrics for
devising reliability-driven techniques at the compiler and offline system software layers, it is also
important to characterize these reliability properties (i.e. vulnerability, error masking and propagation)
statically. In summary, the key scientific challenges for all these models are fast estimation, parameter
identification, impact and estimation of hardware-/software-level parameters, etc. Furthermore, detailed
analysis for different applications is performed and interesting observations are derived that are leveraged
in the cross-layer reliability optimization flow. For instance, it is not necessary that an instruction with a
high vulnerability also has a low masking probability. Also, modifying the vulnerabilities for some
instructions during the optimization may have an impact on the vulnerabilities of the other instructions.
Therefore, these program reliability models need to be carefully employed in the optimization flow.

Once these instruction-level models are obtained, at the function granularity, Function Vulnerability
Index, Function Resilience, and Reliability-Timing Penalty models are proposed in Chapter 4 to quantify
the error vulnerability, resilience to soft errors, and susceptibility to functional and timing errors,
respectively. In particular, the Function Vulnerability Index model jointly accounts for the vulnerabilities
of all instructions inside a given function, while the Function Resilience is more like a black box model to
provide a probabilistic measure of a function’s correctness (in terms of amount of correct output) in the

Chapter 4 Software Program-Level Reliability Modeling and Estimation

- 60 -

presence of hardware-level faults. Unlike the Function Vulnerability Index, the Function Resilience model
does not expose the detailed low-level program analysis to the designers and is therefore beneficial in case
a fast analysis is required. Towards the end, the Reliability-Timing Penalty model is presented that
estimates the reliability of a software program as a joint function of its functional correctness and timing
correctness. It is, in particular, beneficial for timing-conscious systems where both function and timing
reliability are important.

The above-discussed models are discussed in the following sections in detail and will be leveraged in
Chapter 5 and Chapter 6 to design and evaluate different reliability optimization techniques for reliable
code generation and execution.

4.1 Instruction Vulnerability Index
The Instruction Vulnerability Index (IVI) of an instruction i is defined as its accumulated vulnerability

during its execution in pipeline stages using different processor components (Proc) while considering
their respective area, for instance, in terms of vulnerable gates; see Eq. 4.1.

ic c faultc Pr oc
i

cc Proc

IVI A P (c)
IVI

A
 Eq. 4.1

where c is a particular processor component and Ac is its area in gate equivalents. The parameter
Pfault(c) is the probability of a fault observed at the output of the component c. The parameter IVIic denotes
the individual vulnerability of the instruction i at a certain processor component c and it is defined as the
normalized product of the vulnerable period (vulPic) and vulnerable bits (vulBitsic) of a component c of an
architecturally-defined size TotalBitsc; see Eq. 4.2.

ic ic
ic

ic cc Proc

vulP vulBitsIVI
vulP TotalBits

 Eq. 4.2

To bridge the gap between the hardware and software, the IVI model considers the knowledge from
both the software and the hardware layers. The software-level knowledge is incorporated through
vulnerable period and vulnerable bits in the IVIic, which are the ISA-visible state to the application
software program. The parameter vulPic denotes the temporal vulnerability, whereas the parameters
vulBitsic and Ac denote the spatial vulnerability. The vulBitsic is obtained by performing comprehensive
software-level vulnerable bit analysis that captures the vulnerable portions of the architectural components
by exploiting the read/write dependencies w.r.t. the register file and instruction dependencies, i.e. without
considering fault injection and the underlying microarchitecture details. For instance, in case of a register,
the bits written in a certain cycle but not read are denoted as non-vulnerable bits. For hardware-level
knowledge, the parameter Ac and Pfault(c) are considered in the total vulnerability estimation in Eq. 4.1.
The number of particle strikes depends upon the area of a component, for instance, a 32-bit register and a
multiplier will experience different number of particle strikes over the period of time. To incorporate this
factors, the parameter Ac is employed as it captures the actual physical area-wise spatial vulnerability and
it is obtained through the hardware synthesis results using Synopsys Design Compiler. The parameter
Pfault(c) is employed to incorporate the logical masking effects. The value of Pfault(c) depends upon the
microarchitecture of the component c, i.e. how different types of gates are connected in its circuit. It is
obtained after performing a detailed gate-level analysis. Note, in case of the register file, the Pfault(register
file) is considered 100% because a fault in the register will be latched until re-written. Furthermore, in
case a processor component is fully-protected using some hardware-level protection mechanism like ECC
or TMR, then its Pfault(c) is considered to be 0. For design-time/compile-time optimizations, the IVI and
the corresponding parameters, i.e. vulnerable period and vulnerable bits are statically estimated. For

4.1 Instruction Vulnerability Index

- 61 -

evaluation, these parameters and IVI are obtained using the execution trace of an application software
program. In the following sections, the estimation of the above-mentioned parameters is explained.

4.1.1 Estimation of Vulnerable Periods

The vulnerable period can be estimated both statically and dynamically depending upon how the IVI
is estimated. For static IVI estimation, the vulnerable period is determined using the compile-time
knowledge like control and data flow graph (CDFG) with basic block execution probabilities, and
instructions’ latencies in different processor components considering 100% cache hit. However, for
dynamic estimation of IVI, the run-time knowledge like the actual vulnerable periods of an instruction for
a given software program’s execution trace are considered. In the following, both methods are discussed
for the register file and pipeline components.

Vulnerable Period Estimation for the Pipeline Components: The CDFG presents the instruction
dependency graph which presents the execution sequence of instructions inside the pipeline. This gives an
idea of the vulnerable period of an instruction inside the pipeline since the vulnerable period of an
instruction in different pipeline stages depends upon the residency time of instructions in the succeeding
pipeline stages (i.e. the previous instruction in the execution flow). Therefore, the vulnerable period
highly depends upon (1) execution latency of the instructions, e.g., multi-cycle instructions such as
multiply and divide instructions that may stall the pipeline for several cycle in the execute stage4; and (2)
the instruction schedule. In case a multi-cycle instruction stalls the pipeline during the execution (e.g., a
multiply instruction), the temporal vulnerability of the instruction in the preceding pipeline stage (i.e. the
decode stage) is increased. Statically, the vulnerable period of an instruction is the residency time (or in
other words the occupancy cycle) of an instruction inside a certain pipeline stage. A 100% cache hit rate is
considered such that the vulnerable periods of instructions can be estimated in a predictable way, i.e. the
time that each instruction takes inside a certain pipeline stage, for instance, a multiply instruction is
considered take 3 cycles in the execute stage and a load/store instruction is considered to take 2 cycles.
The instruction types and their execution sequence are known during compile time from the CDFG.
Therefore, the vulnerable period for all instructions in different processor components can be statically
estimated using the CDFG and the architectural model of the pipeline. For run-time estimation of IVI,
actual execution trace needs to be taken into account because the vulnerable periods will vary depending
upon the branches and the cache misses. For example, latencies due to the cache miss in the memory stage
will result in an increase in the vulnerable periods of all the instructions in the preceding pipeline stages.

Vulnerable Period Estimation for the Register File: The vulnerable period of an instruction w.r.t.
the register file depends upon the number of operand variables (stored in registers) which are used by an
instruction and the time when these registers are set and are used. Figure 4.1 demonstrates an example
scenario illustrating the procedure of computing the vulnerable periods for operand variables stored in
registers. The two operand variables of an instruction have different vulnerable periods (i.e. lifetime of the
operand variables in terms of cycles). For an instruction, the vulnerable periods of its operand variables
depend upon the latency of previously executed instructions and instruction dependencies because a
pipeline stalling instruction increases the vulnerable period of the operand variables. For example, for the
5th instruction at cycle#9, the vulnerable periods for R0 and R2 are 4 and 6 cycles, respectively. In case the
operand variables are alive from the previous basic block, besides the previously scheduled instructions
(i.e. predecessor instruction in CDFG), static estimation of the vulnerable periods w.r.t. the register file
also depends upon the execution probability of the previous basic blocks.

Figure 4.2 illustrates the computation of vulnerable periods (VPR1 and VPR2) of two operand variables
(R1 and R2) of an add instruction in the basic block B4. This instruction uses the variable values which are

4 Furthermore, multiplier and divider exhibit higher spatial vulnerability due to their increased area. Temporal and

spatial vulnerabilities of these functional units depend upon the microarchitecture.

Chapter 4 Software Program-Level Reliability Modeling and Estimation

- 62 -

alive from the previous basic blocks B1, B2, and B3. When following the control flow through basic block
B2, the vulnerable period of R1 (i.e. VP12) is less than that of R2 (i.e. VP22), as the value of R1 is overwritten
in the basic block B2. In contrast, the vulnerable period of R2 (i.e. VP21) is less than that of R1 (i.e. VP11) in
case the control flow passes through B3 as the value of R2 is overwritten in the basic block B3. This
demonstrates that, in case an instruction uses the operand variables alive from previous basic blocks, the
effective vulnerable period depends upon the execution probability of the previous basic blocks.
Therefore, for static IVI estimation, the vulnerable periods of the two operand variables R1 and R2 are
scaled according to the basic block execution probabilities relative to other previous basic blocks (see
computation of VPR1 and VPR2). In this thesis, the branch prediction feature of the GCC framework is
employed to obtain the execution probability of each basic block relative to the previous basic blocks.
This feature is activated using option -fguess-branch-prob and it uses different heuristics [121]. For every
branch a probability is estimated that it will be taken.

Cycle # Instr. #

3 load R2

1 load R1

5 R0 = R1 + R2

6 R3 = R0 * R1

9 R4 = R0 – R2

2

1

3

4

5

R1

R2

R0

VulnerablePeriod = (Cycle of Current Usage – Last Write Cycle)
for i= 5; VulnerablePeriodR0 = 4 Cycles; VulnerablePeriodR2 = 6 Cycles

Vulnerable Period
(operand lifetime)

Figure 4.1: An Abstract Example illustrating the Vulnerable Periods of Operands.

......
R1 = ...

......
R2 = ...

B1

B2 B3

B4

...
R2 = ...

......

......

......

R1 =

...

...

......
R1 = R1+R2

...

......

VP11

P2

P1+P2=1

P1

VP21

VP22

VP12

P1 and P2 are the probabilities to
execute B3 and B2, respectively

VPR2 = (P1 x VP21) + (P2 x VP22)
VPR1 = (P1 x VP11) + (P2 x VP12)

In case of control flow switches
to B3, the vulnerable period of R1
is greater than that of R2.
In case of control flow switches
to B2, the vulnerable period of R1
is less than that of R2.

Figure 4.2: Computing the Vulnerable Periods for Operand Variables of the ADD Instruction in

the B4 Basic Block under Changing Control Flow.

The dynamic estimation of IVI w.r.t. register file requires the execution trace analysis for set and use
of different registers used for storing operand variables, i.e. for how much time each operand variable is
alive inside a register and when is its value (re-)written. This will vary depending upon the input data for
the application software program.

4.1.2 Estimation of Vulnerable Bits

It is important to consider that not all bits of operand variables are vulnerable for the correct software
execution due to inter-layer masking from microarchitecture-state to the ISA-visible state [31][74] (i.e. a
fault in the hardware does not necessarily lead to an erroneous output after the instruction execution). If a
bit is necessary to stay correct for an error-free instruction execution (i.e. a fault in this bit will corrupt the
output of the instruction), it is classified as a vulnerable bit. All other bits are non-vulnerable bits. To

4.1 Instruction Vulnerability Index

- 63 -

demonstrate this effect, Figure 4.3 presents an example code of a bitwise and instruction with operand
variables R1 and R2. This instruction extracts the lower 16 bits of R1. Let us assume that a fault may occur
either in R1 or R2, but it is less probable that a fault can occur in both. If a fault happens in the upper 16
bits of R1 (Fault Scenario-1), this will not affect the value of R3. However, if a fault occurs in any bit of R2
or in the lower 16 bits of R1 (Fault Scenario-2), this will affect the value of R3. Therefore, bits 0-15 of R1
are vulnerable bits, while bits 16-31 of R1 are non-vulnerable bits. In contrast to this, all 32 bits of R2 are
vulnerable. So in total out of 64 bits (i.e. R1 and R2), 48 bits are vulnerable whereas 16 bits are non-
vulnerable.

R1 = 0xABCD1234; R2 = 0x0000FFFF; R3 = R1 & R2;

R1 = 0xAFCD1234, R2 = 0x0000FFFF; R3 = 0x00001234

R1 = 0xABCD9234, R2 = 0x0000FFFF; R3 = 0x00009234

Example Code

Execution: Fault Scenario-1

Execution: Fault Scenario-2
Figure 4.3: Example for Vulnerable Bits Computation of the for Operand Variables of the AND

Instruction.

For an application software program, a potential method for estimating the vulnerable bits is fault
injection experiments. However, as the number of instructions grows, it may not be possible to inject the
faults in every bit of the operand variables for every instruction and analyze its effects at the
corresponding instruction’s output in a realistic time. Moreover, it is extremely time consuming to do this
analysis when considering different input stimuli for the software program because as soon as the input
values change, the number of vulnerable bits will also vary. To alleviate this analysis overhead, another
method is to statically estimate vulnerable bits, as adopted in this work. Given one or both of the input
operands for an instruction are constant value(s), the vulnerable bits are estimated w.r.t. the constant value
and the instruction type, which can be obtained from the assembly code or CDFG, as explained above
with the help of an example in Figure 4.3. In case input operands are variables, all 32 bits are considered
vulnerable for the ease of evaluation and static estimation. It is important to note that for static estimation,
considering all 32 bits of operand variables is anyway the solution, because the exact values of these
variables are unknown at the compile time. Further, the IVI model is independent of this simplification
and any complex/comprehensive vulnerable bit analysis technique can be employed to achieve even more
accuracy.

4.1.3 Estimation of Component-Level Fault Probabilities

This section illustrates the procedure of estimating the Pfault(c) for different processor components.
Figure 4.4 illustrates an example of an instruction i executing through different pipeline
stages/components (PC) and corresponding masking probabilities PEM(i,PC), s.t., PC={F,D,E,M,W}. An
example of microarchitecture-level logical masking for an adder circuit (which is a part of the ALU) is
shown. It is shown in Case-2 that an error at the “AND” gate is blocked/masked by the subsequent “OR”
gate. However, the error at the “XOR” gate is propagated to the output (Case-1). Note that only “OR” and
“AND” gates may mask the error with a theoretical average-case probability of 0.5 (the masking
probabilities change depending upon the inputs of the logic gates), while “XOR” and “NOT” gates do not
mask an error. After obtaining the masking probability, the Pfault(c) will be computed using Eq. 4.3.

Pfault(c) = 1 – PEM(c) Eq. 4.3

Where, PEM(c) is the error masking probability in pipeline component c due to microarchitecture-level
logical masking effects, i.e. the error within a pipeline component (combinatorial logic) is not visible at
the output latch as the error propagation through different logic elements/gates is blocked due to
subsequent logic element(s) and the output of the pipeline component remains correct. This can either be

Chapter 4 Software Program-Level Reliability Modeling and Estimation

- 64 -

obtained through a gate-level error propagation analysis of the netlist of a given processor component or
an estimate can also be obtained through extensive fault injection experiments. The logical masking
properties of a pipeline component depend upon its microarchitecture; therefore, the logical masking
properties of, for instance, a carry-lookahead adder are different from a ripple-carry adder.

Case-1

Error
Blocked by
„OR“ Gate

Case-2

Error
Propagated

E

Fetch

I-Cache
Controller

Instr. Cache

Decode
Instruction

Decoder
Register

File

Execute
ALU/SHIFT

(1 cycle)

Multiplier

Write Back

write result
to Register

File

Memory
D-Cache

Controller
Data Cache
(2 cycles)

Instr. Fetch

PEM(i,F) PEM(i,D) PEM(i,E) PEM(i,M) PEM(i,W)

PEM(XOR) = 0
PEM(AND) = 0.5
PEM(OR) = 0.5

Case-1: Error in the “XOR”
gate is propagated.
Case-2: Error in the “AND”
gate is blocked by the
subsequent “OR” gate.

Figure 4.4: Different Pipeline Stages Exhibit Distinct Masking during the Instruction Execution

due to Combinatorial Logic.

To estimate the fault probability, first, an error masking analysis is performed for each path in the
component. A path is defined as a series of connected gates in a component which starts with an input
gate and ends with an output gate such that, at each step there is only one gate. This facilitates
independent analysis of all paths while still considering the error propagation across different paths. The
inputs to the error masking analysis are: circuit netlist, particle strike-to-error probabilities for logic and
memory elements in the netlist, and signal probabilities. For a logic gate or memory element, particle
strike-to-error probability is typically denoted as logic element error probability or bit error probability,
respectively. These error probabilities are typically vendor specific and depend upon various technology
parameters [113] and are typically unavailable under an open-access program. Finding these probabilities
typically require detailed SPICE-level simulations and can be done using the Predictive Technology
Model [114] data. Since this is beyond the scope of this thesis, without the loss of generality, in this thesis
these probabilities are considered as 1 due to the unavailability of this technology data. This somehow
leads to a more pessimistic estimate of component-level fault probabilities. The signal probabilities are
obtained through gate-level simulations using ModelSim [124] software. It is important to note that not all
faults in a logic element (i.e. gates) of a combinatorial circuit affect its output because a fault may be
masked due to the logical masking effects of the subsequent gates. The fault probability for a processor
component can be estimated using the average-case fault probabilities of different gates in its circuit
netlist and performing a conditional probability analysis of error propagation through multiple gates until
the circuit output using the following procedure.

At first the masking probabilities of individual gates in the netlist are estimated. Afterwards the error
masking probability at a gate along a path (i.e. a set of connected gates leading to an output) is estimated.
It is given as the probability that an error at this gate will not affect the correct output of this path, and it is
calculated based upon the gate input signal probabilities and error probabilities. Following are the number
of steps for calculating the error masking of a component:

4.1 Instruction Vulnerability Index

- 65 -

1) Finding all Paths: The first step is to extract all the paths in the netlist of a given processor
component, which is obtained after the processor is synthesized. A depth first search algorithm is
implemented which takes a graph of nodes and edges as an input, where nodes and edges represents
the gates and their connections. The algorithm traverses all the paths starting from the first node (i.e.
which has no predecessor node that passes an input) and ending with the node which has no successor
to which it outputs. In case of loops, the algorithm only takes the path for one iteration. Once all the
paths branching from the same start gate are found, the algorithm will move to the next starting gate
and finds all the paths which emerge from that starting gate.

2) Gate-level Error Masking Calculation: After the paths are extracted, the masking probabilities are
computed at the gate-level. The masking calculations for different types of gates are different and are
computed using the input signal probabilities and input error probabilities. For example, for a two-
input AND gate, the signal probabilities for both input signals are assumed to be 0.5, denoting that the
two input state signal probability (i.e. “1” and “0”) is 50%. However, in case of the output of a two-
input AND gate, the state signal will be ‘1’ only when both the input signals are ‘1’ else it will be ‘0’,
which means that the total output probability for signal ‘1’ is 0.25, whereas for signal ‘0’ its 0.75. See
the output signal probability computation below in Eq. 4.4.

0, 0 0, 1

1, 0

0, 0 0, 1 1, 0

1, 1

(0) (0)

(0)

(0) (0) (0) (0)

(1)

0.5 0.5 0.25; 0.5 0.5 0.25

0.5 0.5 0.25

0.75

0.5 0.5 0.25

A B A B

A B

A B A B A B

A B

sig sig

sig

sig sig sig sig

sig

P P

P

P P P P

P

Eq. 4.4

If an error occurs at any of the input signals, it is important analyze how it will affect the final output.
Now let us assume that two inputs are 01 and a bit flip occurs at the input “0”, this will result in a
corrupted output value “1” instead of “0” which is the correct value. There are 4 erroneous states out of
the 8 total numbers of states, therefore, the basic error masking probability of a two-input AND gate is
as ாܲெିீ௔௧௘ = ସ଼ = 0.5. Finally, after computing the input signal probabilities and multiplying with
the error masking probability (0.5), the gate-level error masking probability is computed using Eq. 4.5.

0, 1 1, 0 1, 1(0) (0) (1)1 P P 0.625
A B A B A BEM EM Gate EM Gate EM Gatesig sig sigP P P P P Eq. 4.5

3) Path-level Error Masking Calculation: Once the error masking probability for each gate is obtained,
the masking probability for the complete logical path in the circuit is computed staring from the last
gate of the path, i.e. in the reverse direction. The masking probability of a path is: if a soft error occurs
at the first gate of the path, the probability that the error is masked until the final circuit output. After
finding the masking probabilities for all the paths, the final masking probability at the circuit output
PEM(c) for a component c is obtain as the product of the masking probabilities of all the paths. The
probability values tell how many errors are masked and how many are propagated at the final circuit
output. For the complete path, the calculation of the masking probability is very time intensive, since
the paths in the graph of a complex circuit could be long enough. To minimize the computation time,
the idea of reverse order masking computation is employed. An approach to speed up this analysis is
proposed in [115]. Therefore, the masking probability is computed starting from the last gate.

4) Fault Probability: The component level fault probability, i.e. Pfault(c) for a component c, is obtained
by subtracting PEM(c) from 1.

1 EMfault c cP P Eq. 4.6

Chapter 4 Software Program-Level Reliability Modeling and Estimation

- 66 -

4.1.4 IVI Results for Different Applications

Figure 4.5 shows varying distribution for the instruction vulnerabilities for different instructions;
horizontal axis shows the instruction ID (from the assembly code) and the vertical axis shows the IVI
value. The variations in the instruction vulnerabilities are due to the unique instruction profiles of different
applications and the corresponding variations in instructions’ vulnerable periods in different pipeline
components. For example, when comparing SusanC with ADPCM, it is observed that the instruction
vulnerabilities in SusanC are relatively higher compared to that of ADPCM. Though SusanC has a
relatively sparse distribution, the reason for high vulnerability of its instructions (even close to 1) is:
several instructions are either dependent upon the global register variables that may be alive throughout
the lifetime of a software program or their predecessor instructions were executed much earlier that led to
an increased lifetime and consequently higher temporal vulnerability of dependent operand variables.
Furthermore, even considering 100% cache hits, there are more pipeline stalling multi-cycle instructions
in SusanC (e.g. multiply and load/store instructions) which tend to increase the vulnerable periods for the
instructions in the preceding pipeline stage. This would even worsen in the presence of pipeline stalls due
to cache misses. Similar reasons also hold for other applications and result in varying IVI distributions.

In case of SHA, the reason for the instruction with similar vulnerability values is: these instructions
experience similar execution flow determining similar temporal vulnerabilities, e.g., operating on a new
register value with typically a vulnerable period of 1 cycle, instructions with a single cycle execution
latency without any stalls, etc. However, the instructions with high vulnerabilities are the ones which are
operating on the register values that are alive for a longer time and they are scheduled after the pipeline
stalling instructions like a multi-cycle instruction. Similar behavior can also be noticed for the CRC and
ADPCM applications.

0

100

200

300

400

500

600

700

800

900

0x
b9

8_
sa

ve
_i

m
m

0x
c1

8_
bl

0x
c6

c_
ad

d
_i

m
m

0x
cb

c_
b

le
0x

d0
c_

ld
_r

eg
0x

51
9

4_
bn

e
0x

52
1

c_
an

d
cc

_
i…

0x
5a

b
c_

su
b

_r
eg

0x
5b

0c
_s

t_
im

m
0x

5b
5c

_l
d

ub
_r

eg
0x

5b
ac

_l
d

u
h

_r
e

g
0x

5b
fc

_
sm

u
l_

re
g

0x
5c

4c
_

ld
ub

_
re

g
0x

5c
9c

_
ad

d
_r

eg
0x

5c
ec

_a
d

d
_r

eg
0x

5e
c8

_a
d

d
_i

m
m

0x
5f

18
_s

u
b

_r
eg

0x
5f

68
_s

m
u

l_
re

g
0x

5f
b

8_
an

d
_i

m
m

0x
60

0
8_

ad
d

_
re

g
0x

60
5

8_
sr

l_
im

m
0x

60
a8

_a
d

d
_r

eg
0x

60
f8

_s
t_

im
m

0x
61

4
8_

o
r_

im
m

0x
61

9
8_

st
_

im
m

0x
61

e
8_

ld
_r

e
g

0x
62

3
8_

an
d

_
im

m
0x

62
8

8_
sl

l_
im

m
0x

65
c0

_s
e

th
i

0x
66

1
0_

ld
_i

m
m

0x
66

6
0_

st
_

im
m

0x
69

6
8_

sd
iv

_r
e

g
0x

9e
d

0
_a

d
d_

im
m

0x
b1

34
_s

rl
_i

m
m

0x
b2

10
_s

u
b

cc
_i

…
0x

b2
c4

_s
u

bc
c_

i…
0x

cf
fc

_o
r_

im
m

0x
d0

b
c_

su
b

cc
_r

e
g

0x
d2

7c
_s

rl
_i

m
m

0x
d3

94
_b

e
0x

d3
f4

_s
ub

cc
_i

…
0x

d5
fc

_
an

d
cc

_i
…

0x
d8

54
_o

r_
re

g
0x

d9
c0

_j
m

p
l_

im
m

In
st

ru
ct

io
n

Vu
ln

er
ab

ili
ty

0

0.2

0.4

0.8

0.6

(SusanC)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0x
10

0_
sa

ve
_i

m
m

0x
10

c_
or

_i
m

m

0x
11

8_
sl

l_
im

m

0x
12

4_
ld

_r
eg

0x
13

0_
or

_r
eg

0x
13

c_
or

_i
m

m

0x
14

8_
or

_i
m

m

0x
15

4_
se

th
i

0x
16

8_
sr

l_
re

g

0x
17

4_
ad

dc
c_

re
g

0x
18

0_
su

bc
c_

im
…

0x
19

0_
su

bc
c_

im
…

0x
19

c_
su

bc
c_

re
g

0x
1a

8_
an

d_
im

m

0x
1b

4_
be

0x
1c

0_
su

bc
c_

re
g

0x
1c

c_
or

_i
m

m

0x
1d

8_
bg

0x
1e

4_
ad

d_
re

g

0x
1f

0_
su

bc
c_

re
g

0x
1f

c_
ad

d_
re

g

0x
20

8_
sr

a_
im

m

0x
21

4_
su

bc
c_

im
…

0x
22

0_
bn

e

0x
22

c_
su

bc
c_

re
g

0x
23

c_
su

bc
c_

re
g

0x
27

4_
su

bc
c_

im
…

0x
28

0_
ld

_r
eg

0x
28

c_
or

_r
eg

0x
29

8_
su

bx
_i

m
m

0x
2a

4_
bn

e

0x
2b

0_
be

0x
2c

0_
jm

pl
_i

m
m

0x
2c

c_
ba

In
st

ru
ct

io
n

Vu
ln

er
ab

ili
ty

0

0.2

0.3

0.5

0.4

0.1

(ADPCM)

0

100

200

300

400

500

600

700

800

900

1000

0x
14

c_
fi

0x
19

c_
st

_
re

g
0x

1e
c_

an
d

cc
_i

m
m

0x
23

c_
an

d
_

im
m

0x
28

c_
xo

r_
re

g
0x

2d
c_

an
d

cc
_

im
…

0x
32

c_
an

d
_

im
m

0x
37

c_
xo

r_
re

g
0x

3c
c_

an
d

cc
_

im
m

0x
41

c_
an

d
_

im
m

0x
46

c_
xo

r_
re

g
0x

4b
c_

an
d

cc
_

im
…

0x
50

c_
an

d
_

im
m

0x
55

c_
xo

r_
re

g
0x

5a
c_

an
d

_i
m

m
0x

5f
c_

ld
_r

eg
0x

8d
0_

se
th

i
0x

d8
c_

se
th

i
0x

ec
4_

ca
ll

0x
f4

4_
o

r_
re

g
0x

13
8

8_
su

b
cc

_i
…

0x
14

0
0_

o
r_

re
g

0x
17

6
4_

jm
p

l_
im

…
0x

18
0

c_
jm

pl
_i

m
m

0x
18

7
c_

sl
l_

im
m

0x
1a

58
_b

n
e

0x
1a

a8
_

be
0x

1a
fc

_s
t_

im
m

0x
1b

e0
_s

rl
_i

m
m

0x
1d

1c
_s

u
bc

c_
re

g
0x

1f
38

_a
d

d_
re

g
0x

23
1

c_
ad

d
_i

m
m

0x
23

6
c_

st
_i

m
m

0x
27

c8
_l

d
_

im
m

0x
28

4
0_

ld
u

h_
im

…
0x

28
c0

_b
n

e
0x

29
8

8_
ld

u
b_

re
g

0x
2a

88
_o

r_
re

g
0x

74
5

c_
st

_i
m

m
0x

8d
ac

_j
m

p
l_

im
m

0x
8e

a8
_m

u
ls

cc
_…

0x
8f

c0
_s

ub
cc

_r
eg

0x
90

8
8_

ad
d

_
im

m

In
st

ru
ct

io
n

Vu
ln

er
ab

ili
ty

0

0.2

0.4

0.8

0.6

1.0 (CRC)

0

100

200

300

400

500

600

700

800

0x
11

4_
fi

0x
26

8_
ld

_i
m

m
0x

36
4_

ad
d_

re
g

0x
46

0_
an

dn
_r

eg
0x

55
c_

ad
d_

re
g

0x
65

8_
an

dn
_r

eg
0x

75
4_

ad
d_

re
g

0x
85

0_
ad

d_
re

g
0x

94
c_

ld
_i

m
m

0x
a4

8_
or

_r
eg

0x
b4

4_
ad

d_
re

g
0x

c4
0_

sr
l_

im
m

0x
d3

c_
or

_r
eg

0x
e3

8_
an

d_
re

g
0x

f3
4_

ld
_i

m
m

0x
10

30
_x

or
_r

eg
0x

11
2c

_o
r_

re
g

0x
12

28
_s

rl
_i

m
m

0x
13

24
_s

ll_
im

m
0x

15
60

_o
r_

im
m

0x
16

90
_s

rl
_i

m
m

0x
17

c8
_s

ub
cc

_i
…

0x
19

68
_o

r_
im

m
0x

1a
ac

_c
al

l
0x

1b
b0

_o
r_

im
m

0x
1d

48
_l

d_
im

m
0x

20
74

_s
t_

im
m

0x
28

f4
_l

ds
h_

im
m

0x
2a

88
_s

ub
cc

_r
eg

0x
2e

08
_c

al
l

0x
30

38
_r

es
to

re
…

0x
32

58
_o

r_
re

g
0x

33
c0

_j
m

pl
_i

m
m

0x
37

78
_s

t_
im

m
0x

3a
90

_l
d_

im
m

0x
3b

9c
_l

d_
im

m
0x

3e
0c

_a
nd

cc
_i

…
0x

4b
84

_l
ds

b_
re

g
0x

5d
24

_s
ub

cc
_i

…
0x

75
7c

_a
nd

cc
_i

…
0x

78
94

_o
r_

re
g

0x
7b

88
_b

ne
0x

93
00

_m
ul

sc
c_

…
0x

95
0c

_s
ub

cc
_r

eg

In
st

ru
ct

io
n

Vu
ln

er
ab

ili
ty

0

0.2

0.4

0.8

0.6

(SHA)

Figure 4.5: Distribution of Instruction Vulnerability Index for Different Instructions inside each

Application.

Summary and Observations from the above Results: The variation in the vulnerability distribution
of different applications and instructions hints towards their reliability-wise higher or lower impacts. For
example, SusanC has some instructions which have higher vulnerability and therefore these instructions
are more important for correct execution and need to be protected first, whereas in ADPCM, the
distribution is smooth, therefore all the instructions have equal reliability-wise importance and are

4.2 Instruction Error Masking Index

- 67 -

required to be protected. For a given tolerable performance overhead, an instruction with a higher
vulnerability would be a good candidate for protection first.

However, Instruction Vulnerability Index only covers one reliability aspect for software programs. It
may happen that an instruction with a high vulnerability (i.e. with a high error probability) produces an
erroneous output which is later masked due to subsequent instructions and control flow. Similar an
instruction with a relatively low vulnerability may have a high error propagation probability to the final
output of the software program. Therefore, it is important to quantify the error masking and propagation
effects. In the following sections, two novel models Instruction Error Masking Index and Instruction
Error Propagation Index are presented that quantify the error masking probability and error propagation
effects at the instruction granularity.

4.2 Instruction Error Masking Index
The program-level error masking is quantified as the Instruction Error Masking Index IMI(I) of an

instruction I, which is defined as the total probability of an error at instruction I being masked until the
last instruction of all of its instruction paths, p (i.e. leaf nodes), such that the output of p is correct.

4.2.1 Parameter Identification

The masking of an error at an instruction I can occur due to the following factors that constitute the
parameters of the IMI(I) model.

1) Error masking due to data flow properties – PDP(I,p): The error at an instruction I may be
masked due to the successor instruction in path p depending upon two factors: (i) instruction type,
and (ii) value of the operand variables.

2) Error masking due to the changing control flow properties: A highly probable execution path
may exhibit masking instructions that block the propagation of the error to the relevant output of
the software program. It may also happen that a highly probable execution path does not even use
the erroneous value from the preceding basic block(s).

Figure 4.6 provides an overview and flow of steps to estimate the error masking probabilities at
instruction level (for the ease of reader, Appendix D provides the complete list of notations/symbols).

Compute
PD(I)

Fault Injection
Experiments

(Error Traces)
Obtain Error

Statistics Compute
PDP(I, P)

Compute
IMI(I)

CFG/DFG Basic Block
Execution

Probabilities
User-defined Tolerable

Error Range Compute EPI(I)

Figure 4.6: Flow of Steps to Compute the Instruction-Level Masking Probabilities and Error
Propagation Index.

4.2.2 An Example

Figure 4.7 illustrates an example of error masking with the help of a control flow graph showing
different basic blocks and the control flow probabilities. The error in basic block B1 may be blocked in B3
due to the “&” and/or “or” instructions. However, if the control flow follows B2, the error will propagate
to B4 and ultimately to the visible output of the software program. Note that B3 has a higher probability of
execution compared to B2. The error masking occurs only in case of the “&” and “or” instructions due to
the value of the other operand, while “+” does not mask the error.

Chapter 4 Software Program-Level Reliability Modeling and Estimation

- 68 -

P1=0.2

P1 and P2 are the
probabilities to execute
Basic Blocks B3 and B2

P2=0.8

B2

B3

B4
B1

+

−

&or

B3

Output of
B1 = 0x0021 0x0110

0x0131

0x00FF 0xFF00

0x01000x01FF

0x00FF

Correct Output
of B1 = 0x0020(a) (b)

Figure 4.7: An Example Control & Data Flow Graph showing the Error Masking due to

Successor Instructions and Changing Control Flow.

4.2.3 Parameter Estimation

From the software program’s perspective the most important parameters that need to be estimated are
the masking probabilities PDP(I,p) and IMI(I), as discussed in the following.

Estimation of PDP(I,p): For each instruction I, the masking probability depending upon the data flow
can be modeled through Eq. 4.7.

() () ()D D ex I .O.BitsP I P x,I P x Eq. 4.7

O is the set of operands of instruction I with a set of Bits. PD(x,I) is the probability of masking of each
bit depending upon the instruction type. Pe(x) is the error probability of each bit, which can be simplified
to 1/NBits by assuming the same error probability for all bits, where NBits is the bit-width of the operand
registers. In case the user specifies a tolerable range th for the error in the output value (log2(th) provides
the number of bits), Eq. 4.7 can be modified as Eq. 4.8.

()() () () () /
2D D e 2 Bitsx I .O.Bits\log thP I P x,I P x log th N Eq. 4.8

In a given instruction path p, the error masking depends upon the individual instructions as well as the
combination of consecutive instructions. Depending upon their masking behavior, instructions can be
classified into two categories that are explained below with the help of examples in Figure 4.8.

Type A: For the instructions like “&” and “or” with a variable value, assuming a random bit masking,
the theoretical average-case masking probability is given as 0.5 (i.e. 50% cases error is masked). If there
are two consecutive “&” instruction in an instruction path, the total masking probability along the path
PDP is 0.75 (i.e. in 75% cases errors are masked), as the first “&” instruction will mask 50% of the errors
and the second “&” instruction will mask the remaining errors by 50%.

Type B: For the instructions like “shift left” or “shift right” by a constant value (such that, the
masking bits can be inferred from the assembly code or CDFG), the computation of masking probabilities
for the predecessor instruction is affected in a different way. If there are two consecutive shift instructions
with a shift amount of 16 bits in an instruction path (e.g., “sll”), the total masking probability along the
path PDP is 1 (i.e. 100% errors are masked), as after two consecutive 16 bit shift instructions all the 32 bits
are shifted out. This observation hints that different combination of the instruction types can have a
different influence on the total masking probability along the instruction path PDP(I,p). In case the joint
masking effects of consecutive instructions are ignored, the total masking probabilities are under-
estimated.

4.2 Instruction Error Masking Index

- 69 -

In the following, the step/by-step process for computing the masking probabilities is explained with
the help of an example.

&

&

sll

sll

PD=50%

PDP=75% PDP=100%

PD=50% PD=50%
16 bits

PD=50%
16 bits

PD=50%

P
D

P
=5

0%

PCDM=75%

sll

sll

&

PD=25%

PD=25%

(a) (b)
Figure 4.8: Impact of different Instruction Types on the total Masking Probability along the

Instruction Path.

An Example Illustrating the Process of Computing Masking Probabilities for Consecutive
Instructions: Figure 4.9 illustrates an example showing the computation of error masking probabilities
for different instructions in a given instruction graph, while showing the effect of consecutive instructions
of type B on the total masking probability. It is shown that for instruction-1, the total masking probability
is equal to “0.803” when considering the masking effects of consecutive instructions of type B (i.e.
instruction-1 and instruction-2). If the masking effects of consecutive instructions are ignored, the total
masking probability of instruction-1 would be “0.770”, i.e. a difference of “0.033” compared to the earlier
case. This shows that ignoring the effects of consecutive instructions may lead to an under-estimation of
masking probabilities. Therefore, accurate estimation of instruction-level error masking needs to account
for the joint error masking effects due to the combination of consecutive successor instructions of type B
in the path p.

A B

B

A

B

PD=
0.25

PD=
0.3

PD=
0.125

1

2

3

5

4

A

B PD=
0.125

3

5

Step-1
PDP(5)=0.125

PDP(3)=PD(3)+
(1-PD(3))*PDP(5)
=0.5+0.5*0.125
=0.5625 A

A

B PD=
0.125

3

5

4

Step-2
PDP(4)=PD(4)
+(1-PD(4))*PDP(3)
=0.5+0.5625*0.5
=0.78125

B

A

B

PD=
0.3

PD=
0.125

2

3

5

Step-3
PDP(2)=PD(2)
+(1-PD(2)) *PDP(3)
=0.3+0.7*0.5625
=0.69375

B

B

A

B

PD=
0.25

PD=
0.3

PD=
0.125

1

2

3

5

Step-4

PD'(1)=PD(1)+PD(2)
=0.25+0.3=0.55

PDP(1)=PD'(1)
+(1-PD'(1)) *PDP(3)
=0.55+0.45*0.5625
=0.803125

Figure 4.9: An Example showing the Computation of Error Masking Probabilities illustrating the

Effect of Consecutive Instructions of type B in the Path on the Total Masking Probability.

Computing the PDP(I,p): Figure 4.10 presents the flow of computing the error masking probability
PDP(I,p) for instruction I of path p in an iterative manner starting from the leaf nodes (see detailed
algorithm in Appendix C). The inputs are the function graph G (V, E), set of leaf nodes LG, set of
predecessors and successors for each instruction (P, S). First, for all instructions in G, the error masking
probability PD(I) is computed using Eq. 4.7 and Eq. 4.8. Afterwards, PDP(I,p) is initialized for all the leaf
nodes with their corresponding PD(I), as they represent the last nodes of the graph. The list L of ready
nodes (i.e. instructions for which PDP(I,p) can be computed) is initialized with the predecessors of leaf
nodes. The process to compute the PDP(I,p) is iterated until the list is empty. In each iteration, first, the set

Chapter 4 Software Program-Level Reliability Modeling and Estimation

- 70 -

of all possible instruction paths is generated from every instruction until the leaf nodes. Afterwards, for all
possible paths of every instruction, the number of consecutive instructions of type B (NB) is computed and
the masking probabilities PDP(I,p) are computed. If there are 2 or more consecutive instructions of type B,
their cumulative masking probabilities are considered to compute PDP(I,p); otherwise, the independent
masking probabilities are considered. Afterwards, the instruction under evaluation is removed from the
list and its predecessors are added to the list.

Compute Error
Masking Probability

PD(I) for all instructions
in function graph G

Assign Error Masking
Probability PDP(I,p)

for all leaf nodes in G

Add all predecessors of
leaf nodes in G to list of

ready nodes L

Get instruction I
and generate all

paths I.Paths

L empty? yes

no

All paths
traversed? no

yes

Compute number NB
of consecutive

instructions of type B

NB < 1?

PDP(I,p) ← PD(I)
+ (1 - PD(I)) PD(I.s)

PDP(I,p) ← PD’(I)
+ (1 - PD’(I)) PD(I.s);

noyes
Remove current

instruction I from L

Add all predecessor
instructions of I to L

Figure 4.10: Flow of Computing the Error Masking Probability PDP(I, p).

Estimation of IMI(I): For each instruction I, the Instruction Error Masking Index IMI(I) is modeled
using Eq. 4.9 as the error masking probability due to both data and control flow. IMI(I) can be modeled as
the weighted masking probability due to data flow PDP(s,p) for all the successor instructions s of
instruction I and in all the corresponding instruction paths s.Paths while considering the execution path
probabilities PCF(ep|I); see Eq. 4.9.

() () ()CF DPep|I ep s I .S; p s.PathsIMI I P ep | I P s, p Eq. 4.9

The execution path probabilities PCF(ep|I) are estimated using the GCC framework with option
“-fguess-branch-prob”. The IMI(I) is computed using the breadth-first search starting from the leaf nodes
and explores G in a bottom-up fashion.

4.2.4 Instruction Error Masking Index Results for Different Applications

Figure 4.11 shows the distribution of masking probabilities for SusanC, ADPCM, DCT, and SAD
applications. The horizontal axis shows the instruction address in the execution sequence and the vertical
axis shows the IMI value. It is important to note that for many instructions the IMI values are close to 0,
0.5, and ≈1. This primarily reflects the following three important cases.

4.2 Instruction Error Masking Index

- 71 -

1) Case-1 with IMI close to 1: an instruction is reliability-wise not important because almost all
errors in its output will be masked before the final output of this software program, thus an error
in the output of this instruction will not matter. This happens mostly for instructions that have
several successor instructions with very high masking probabilities.

2) Case-2 with IMI close to 0.5: This indicates the cases where there are a few successor
instructions like comparison or logical instructions that have a masking probability of 0.5.

3) Case-3 with IMI=0: This indicates the cases where either there is no control flow or an
instruction does not have any error masking successor instruction in all the possible paths from
this instruction until the final output. An example could be a sequence of arithmetic instructions
leading to an output value as in the case of DCT application for many instructions.

0.4

1.2

0

0.8

0x100 … 0x1cfc

SAD

Instruction Address

0.4

1.2

0

0.8

0x100 … 0x484

DCT

SusanC

0.4

1.2

0

0.8

0x100 … 0x832 0x100 … 0x2bc

ADPCM

Instruction Address

0.4

1.2

0

0.8

Figure 4.11: Distribution for the Instruction Error Masking Indexes.

In Figure 4.11, in case of SAD application, the case-2 is dominant due to comparison instructions of
the absolute operation. However, case-3 is dominant in DCT due to dependent arithmetic instructions. The
SAD application has a homogenous distribution showing that many instructions can mask the errors due to
the existence of more logic operations. The SusanC application exhibits the instructions which have a
higher error masking potential and the reason is that SusanC has concatenated branch instructions and if
an error occurs in the first branch, the next branch instruction masks the error. The ADPCM application
has a relatively less number of logical instructions (i.e. “&” and “or”) that can mask the errors. There are
more non masking instructions (e.g., arithmetic, call, jump and branch) which once affected by the errors,
propagate this error to the output.

Summary and Observations from the above Results: Besides consideration of Instruction
Vulnerability Index, Instruction Error Masking Index is also important to be taken into consideration
because several erroneous outputs can be masked in the CDFG. In case the errors are not masked, these
unmasked errors may propagate to their successor instructions in different execution paths and can
potentially corrupt several output values. In several application cases, error propagation to multiple
execution paths and multiple outputs will be considered as a more reliability-worse situation.
Furthermore, for fault containment, reducing the error propagation is also important. In the following, a
novel Instruction Error Propagation Index model is proposed that quantifies the error propagation effects
for different instructions in the CDFG, which provides a metric for the severity of the unmasked errors.

Chapter 4 Software Program-Level Reliability Modeling and Estimation

- 72 -

4.3 Instruction Error Propagation Index
Definition: The Instruction Error Propagation Index EPI(I) is defined as the product of the non-

masking probability (i.e. the probability that an error is visible at the program output) of all the successor
instructions of a given instruction I for all possible instruction paths.

Estimation Procedure: Figure 4.12 shows the flow for estimating the EPI(I) for each instruction in a
given function graph G (see detailed algorithm in Appendix C). First the EPI for all the leaf nodes
(outputs) is initialized with 1, as the errors in the leaf nodes are considered as propagated to the next
stages of the program execution. A list C is used in order to track the traversed instructions for which EPI
is computed. Moreover, a FIFO based queue Q is used to store the instructions for which EPI can be
computed considering all successors are completed. Initially, the predecessors of the leaf nodes are
inserted in Q and the EPI(I) is computed for all the instructions whose successors are in the C list.
Otherwise, the instruction I is inserted back into the queue Q. For EPI(I) computation for an instruction I,
all of its successors instructions I.S and their corresponding non-masking probabilities are considered.
Note that the EPI(I) computation accounts for the probability of Application Failures PAF(I) and
probability of Incorrect Output PIO(I); see Eq. 4.10 and Eq. 4.11. COB(I) is the number of critical opcode
bits that lead to a “non-decodable instruction” error. PeOP(b,I) and PeAd(b,I) are the error probabilities in
the opcode and address bits. CAB(I) is the number of critical address bits that lead to a “memory
segmentation” error due to an access to the invalid or restricted memory region. After computing the
EPI(I) for instruction I, all of its predecessors I.P are added into the queue Q.

() ()() () () ()AF eOP eAdb COB I b CAB IP I P b,I 1 IMI I P b,I ; Eq. 4.10

() () () + () ()IO AF AFP I 1 IMI I P I IMI I P I Eq. 4.11

Initialize EPI of all
leaf nodes with 1

Q empty?

Enqueue predecessor
instructions of all leaf

nodes in Queue Q

no

List of traversed
instructions C

Dequeue instruc-
tion I from Q

Initialize EPI
with 0

All succ.
of I in C? yes

All succ.
of I visited? no

yes

Update EPI considering
the EPI of successor s

Enqueue I in Q no

yes

 Update EPI depending
upon PIO(I) Add I to C Enqueue all pre-

decessors of I in Q

Figure 4.12: Flow of Computing the Instruction Error Propagation Index.

EPI Results for Different Applications: Figure 4.13 shows that in ADPCM and DCT, several
instructions have zero value for EPI. This denotes that either these instructions do not have any dependent
instructions or the dependent instructions mask the errors completely. Such masking dependent

4.4 Function-/Task-Level Reliability Estimation Models

- 73 -

instructions can be identified by comparing the plots of EPI in Figure 4.13 and IMI in Figure 4.11
corresponding to the same instruction address. These instructions are relatively less important for
protection compared to those instructions which exhibit high EPI value. In ADPCM and SAD applications,
the EPI value is much lower compared to the EPI plot of the DCT application. In case of the DCT
application, the EPI value for many instructions is low and the number decreases exponentially as the
value grows the same way. This is due to the butterfly form of the instruction dependencies in the DCT
data flow graph. This illustrates that it is important to protect earlier executing instructions compared to
the later ones. In case of the SAD application, the EPI value is low and the distribution is homogeneous.
This is due to the fact that there are many parallel instruction paths with similar dependency structure in
the data flow graph. Note that in case of the SAD application, the loops are completely unrolled; therefore,
the EPI plot is very dense. The SusanC application exhibits few instructions with high error propagation
index having varying distribution and at the same time high IMI and high IVI.

Summary and Observations from the above Results: The above-discussed IVI, IMI and EPI
models capture the probability of an instruction getting erroneous, error masking and error propagation
properties in a given application software program. For selective instruction protection (see Chapter 5) all
three models can be jointly taken into account to prioritize instructions for constrained reliability
optimization. In case of the ADPCM and SAD applications, the instructions selected for protection can be
dominated by the value of IVI, whereas in case of the SusanC application, the EPI values may determine a
more feasible instruction selection for protection.

0x100 … 0x1cfc
Instruction Address

…

0x100 … 0x832 0x100 … 0x2bc

Instruction Address

3.0

1.5

4.5

0

SAD

0x100 … 0x1cfc

8.0
6.0

10.0

0

DCT

0x100 … 0x484

4.0
2.0

2.0

1.0

3.0

0

ADPCM

0x100 … 0x2bc

20
15

25

0

SusanC

0x2cbc … 0x3a64

10
5

Figure 4.13: Distribution of the Instruction Error Propagation Index (EPI)

4.4 Function-/Task-Level Reliability Estimation Models
The above-discussed instruction-level models are beneficial for fine-grained reliability optimizing

techniques that operate at the instruction granularity, e.g., techniques for reliability-driven compilation.
However, in order to enable coarse-grained reliability optimizing techniques that operate at the
function/task granularity, e.g., techniques for reliability-driven system software, there is a need for
function-level reliability models. Towards this end, this thesis introduces two reliability models that
quantify the reliability at the function-level, namely Function Vulnerability Index and the Function
Resilience (see Appendix B).

Chapter 4 Software Program-Level Reliability Modeling and Estimation

- 74 -

4.4.1 Function Vulnerability Index

As discussed in Section 3.2, faults occurring during the execution of critical instructions typically
lead to Application Failures, which are more severe compared to Incorrect Output (from the user
perspective). Therefore, the Function Vulnerability Index (FVI) is computed as the weighted average of
function’s vulnerability to Application Failures (FVIFailures) due to critical instructions and function’s
vulnerability to Incorrect Output (FVIIncorrectOP) due to data errors in the critical and non-critical
Instructions.

Failures i Failuresi CI

IncorrectOP i IncorrectOP nCIi nCI

i IncorrectOP CIi CI

FVI IVI * P FaultRate

FVI IVI * P FaultRate
IVI * P FaultRate

Eq. 4.12

1 Failures 2 IncorrOP

F

w FVI w FVIFVI
I Eq. 4.13

∑IF is the number of instructions in a function F. CI and nCI are the critical and non-critical
instructions, respectively. PFailures(), PIncorrectOP-CI(), and PIncorrectOP-nCI(), are the probabilities for Application
Failure, Incorrect Output due to critical instructions, and Incorrect Output due to non-critical instructions,
respectively, at a certain fault rate. These probabilities are obtained through fault-injection. Note, the
parameters w1 and w2 are provided for the designers to prioritize the severity of different error types. This
thesis considers the values of w1 and w2 equal to “1” to avoid any kind of weighting effects, i.e.
vulnerabilities for both Application Failures and Incorrect Output are considered equally important. The
FVI model is used to quantify the effects of several reliability optimizations in this thesis. Reduced FVI
hints towards the effectiveness of the applied reliability optimization technique that in turn reduces the
number of Application Failures and/or Incorrect Output, thus achieving an improved software program’s
reliability.

So far all the above mentioned reliability metrics quantified the reliability in terms of functional
correctness. However, in safety-critical systems, a correct functional output delivered after the deadline
represents a degraded time-wise reliability and may not be acceptable or could even be catastrophic. In
order to improve the overall reliability, it is important that the correct functional output be delivered
within the deadline. Towards this end, the following Reliability-Timing Penalty model is devised.

4.4.2 Reliability-Timing Penalty

This model is beneficial for reliability optimizing techniques that target improving the functional
reliability while meeting the timing constraints and can explore the tradeoff between the deadline misses
versus the functional reliability. The Reliability-Timing Penalty (RTP) is defined as the linear combination
of the functional reliability (i.e. the reliability penalties as given as FVI in this thesis, but they could be
any other function-level reliability metric like function resilience), and the timing reliability (i.e. the
probability of deadline misses). Specifically, for a user-defined parameter 0 <= α <= 1, the RTP for a
given function is defined using Eq. 4.14.

RTP R 1 miss rate Eq. 4.14

Where, miss rate is the percentage of deadline misses for the application and R is the function
reliability. When α is closer to 0, the timing satisfaction is more important; however, when α is closer to 1,
the functional reliability in presence of faults in the underlying hardware is more important. This metric

4.5 Chapter Summary

- 75 -

can be used in scenarios where the objective of a reliability optimizing technique is to improve the
reliability while meeting the timing constraints, i.e. meeting the deadlines. That is, targeting the
minimization of the RTP.

4.5 Chapter Summary
This chapter presented different instruction-level reliability models like Instruction Vulnerability

Index, Instruction Error Masking Index, and Instruction Error Propagation Index that quantify the error
probability, error masking probability and error propagation effects at the instruction-level granularity.
Unlike the proposed models, state-of-the-art does not facilitate comprehensive quantification of these
three key reliability properties at the application program granularity. Moreover, state-of-the-art program-
level reliability models do not jointly account for the hardware-level knowledge (i.e. where faults occur)
and the software-level knowledge (i.e. where errors are observed) in a holistic way. In contrast, the
proposed Instruction Vulnerability Index model quantifies error probabilities of instructions when the
software program is executed in a processor pipeline stage by stage, while considering spatial and
temporal effects from both hardware and software perspectives. State-of-the-art program-level reliability
techniques do not provide this level of detail and therefore cannot optimize for it. The contributions in this
chapter further advance the state-of-the-art by statically quantifying the error masking and propagation
effects through a comprehensive analysis of data and control flow graph.

Now the question arises, whether and how these models can be leveraged for software program
reliability optimization. The answer to this question is motivated by a detailed experimental analysis of
these three reliability models for different application programs. This analysis illustrates that, besides
across different applications, even different instructions inside the same application exhibit varying
vulnerability, error masking, and error propagation properties due to their distinct utilization of pipeline
components, dependent instructions, and control flow. This knowledge can be exploited to quantify the
reliability-wise importance of different instructions, which opens a pool of opportunities to devise and
employ instruction-level reliability optimization techniques that has not been explored earlier. For
instance, transformations and instruction scheduling inside a compiler can be re-designed towards
reliability optimization by modifying the instruction profile considering the spatial/temporal
vulnerabilities of instructions and reducing the number of critical instruction executions (as will be shown
in Chapter 5).

Afterwards, a function-/task-level reliability model Function Vulnerability Index is introduced which
jointly accounts for the vulnerabilities of all instructions in the given function along with the probability
of Application Failures and Incorrect Outputs. In order to incorporate the deadline effects in timing-
critical systems, the Reliability-Timing Penalty model is introduced that jointly considers the functional
and timing reliability (i.e. probability of deadline misses). Note, joint consideration of functional and
timing reliability has not been explored by existing state-of-the-art techniques.

The above-discussed models enable prioritization of different instructions and functions/tasks and will
be leveraged in Chapter 5 and Chapter 6 to design and evaluate reliability optimization techniques at
different software layers of the system design abstraction under tolerable performance overhead
constraints.

- 77 -

Chapter 5 Software Program-Level Reliability
Optimization for Dependable Code

Generation
State-of-the-art has primarily exploited the compiler-level techniques for improving the performance

and energy. This chapter aims at enabling reliability-driven compilation enabled by the instruction-level
reliability models of Chapter 4 that quantify the reliability-wise importance of different instructions and
the impact of their inter-dependencies on the vulnerability variations. This chapter presents several novel
techniques for reliable code generation in order to increase software program’s reliability under user-
provided tolerable performance overhead constraints. Improved software reliability can be achieved in
two orthogonal and equally important ways: (1) Reducing the error probabilities by reducing the
vulnerabilities to soft errors and critical instruction executions; and (2) Error detection and recovery
through instruction duplication or triplication, where selective redundancy can be applied to reduce the
performance overhead.

In order to reduce the error probabilities, first, four different reliability-driven transformations
(Section 5.1) are employed that reduce the spatial and temporal vulnerabilities of instructions in different
pipeline stages along with reducing the critical instruction executions. These four transformations are: (1)
Reliability-Driven Data Types Optimization that transforms data types with smaller bit-widths into data
types with larger bit-widths in order to curtail the number of critical instruction executions. (2) Reliability-
Driven Loop Unrolling that determines an appropriate unrolling factor such that the total function
vulnerability is minimized while considering the impact of unrolling on the spatial and temporal
vulnerabilities w.r.t. different processor components, for instance, more/less live registers with more/less
vulnerable lifetime. (3) Reliability-Driven Common Expression Elimination and Operation Merging that,
unlike traditional common expression elimination, reduces the vulnerabilities of large-sized sub-
expressions and analyzes the impact of recomputation vs. reusing the result of complex common sub-
expressions on the spatial and temporal vulnerabilities. (4) Reliability-Driven Online Table Value
Computation that optimizes the codes with heavy usage of static arrays (i.e. so-called tables stored
statically) w.r.t. the memory vulnerability. State-of-the-art has not yet explored the employment of
reliability-driven transformations inside the compilers due to the unavailability of precise instruction-level
reliability quantification models and the notion of spatial/temporal vulnerability w.r.t. different processor
components. This thesis aims at making contributions towards this end. The key challenge is to determine
how appropriate transformations should be applied (e.g., what is a reliability-wise good unrolling factor)
such that spatial and temporal vulnerabilities for all the instructions inside a given function are
collectively minimized. Therefore, a comprehensive vulnerability analysis for different transformations is
also required, which is performed in the corresponding sections to understand the reliability-performance
tradeoffs of these transformations.

Since an instruction schedule determines the sequence of instructions to be executed while
considering their inter-dependencies, this can potentially affect the vulnerabilities of different instructions
(in particular temporal vulnerabilities). However, reducing the vulnerability of an instruction may lead to
an increase in the vulnerability of another instruction. Therefore, a reliability-driven instruction scheduler
needs to account for such factors from a global perspective, rather than a local one. Existing instruction
scheduling techniques for reliability improvement only reorder the code after performance-driven
scheduling, which due to the reduced slack (already optimized in the first scheduling phase) have limited
potential (typically 2%-7%). These techniques lack in-depth knowledge of vulnerability inter-
dependencies of different independent and dependent instructions. Towards this end, a lookahead-based
reliability-driven scheduler (Section 5.2) is proposed in this chapter that prioritizes instructions for
scheduling based on their vulnerabilities, their categorization w.r.t. the knowledge of critical and non-

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 78 -

critical instruction, and the number of dependent instructions with their corresponding reliability profits.
To further improve the reliability, error detection and recovery features are provided through selective
instruction redundancy under performance overhead constraints. Unlike state-of-the-art techniques that
employ full-scale instruction redundancy, the proposed reliability models in this thesis enable
characterizing different instructions based on their vulnerability, error masking and propagation
properties. This enables selecting the reliability-wise most important instructions first, thereby leading to
high reliability efficiency in constrained scenarios. A selective instruction redundancy technique is
presented in Section 5.3 that prioritizes different instructions in a data flow graph w.r.t. their reliability
importance (characterized as a joint function of instruction vulnerabilities, error masking and propagation
indexes) under a performance overhead constraint.

These reliability-enhancing techniques are applied to generate a set of multiple compiled versions for
each application function (Section 5.4), such that, different functions exhibit distinct reliability and
execution time properties. This provides a reliability-performance optimization space, which is later
exploited by the system software layers to achieve high reliability efficiency during application execution
under constrained scenarios.

In the following sub-sections, these different software-level reliability optimizing techniques are
explained in detail.

5.1 Reliability-Driven Software Transformation
The traditional software transformation techniques mainly perform code optimization from the

perspective of high performance and low power consumption. This thesis aims at re-thinking the
traditional software transformation techniques from the reliability perspective, i.e. to increase the
reliability of fault-susceptible hardware/software systems through modifying the instruction profile. For
reliability quantification, these techniques employ the proposed software reliability metrics of Chapter 4,
i.e. Instruction Vulnerability Index (IVI) and Function Vulnerability Index (FVI) that quantify the
reliability at instruction and function granularity while jointly accounting for software program-level and
hardware-level knowledge.

The application error analysis mentioned in Section 3.2 illustrates that an increased number of critical
instruction executions and high spatial/temporal vulnerabilities during the instruction executions lead to
increased applications’ susceptibility towards Application Failures. The reliability-driven software
transformations modify the instruction profile and aim at reducing the number of critical instruction
executions and instruction vulnerabilities in order to minimize the application’s susceptibility towards
Application Failures under a tolerable performance overhead constraint. The following four reliability-
driven software (source-level) transformations are proposed that can be applied in the front-/middle-end
code optimization stage of a compiler to generate reliable assembly code under a given set of constraints.

1) Reliability-Driven Data Type Optimization transforms the data types for a given data structure
and affects the amount of data to be loaded from and/or stored into the memory along with the
number of instruction executions to use this data. It reduces the number of critical instruction
executions while minimizing the function vulnerability (Section 5.1.1).

2) Reliability-Driven Loop Unrolling determines an 'appropriate' unrolling factor such that the
function vulnerability is minimized while reducing the number of critical instruction executions.
It aims at reliability optimization under tolerable performance overhead and code size constraints
(Section 5.1.2).

3) Reliability-Driven Common Expression Elimination and Operation Merging determine the
decision for each occurrence of a common expression whether it will be eliminated and its result

5.1 Reliability-Driven Software Transformation

- 79 -

will be reused, or it will be recomputed. The goal is to minimize function vulnerability under
constraints of tolerable performance overhead and code size increase (Section 5.1.3).

4) Reliability-Driven Online Table Value Computation determines whether using values from the
pre-computed table or online table value computation will minimize the function vulnerability
(Section 5.1.4).

These reliability-driven software transformations reduce both Incorrect Output and Application
Failures through minimizing the spatial and temporal vulnerabilities for all types of instructions. In
particular, these transformations reduce the FVI for a given application software through the following
means: (1) Lowering the PFailures and PIncorrectOP-CI probabilities is achieved by reducing the number of
critical instruction executions. (2) Lowering the PIncorrectOP-nCI and IVIi is achieved by modifying the
instruction profile that leads to a different usage pattern of the processor components by means of
executing alternative instructions. A detailed vulnerability analysis is performed for all of the above-
mentioned transformations to illustrate their impact on the vulnerability w.r.t. different processor
components, different design points, and tradeoff between performance and reliability. Afterwards,
detailed fault injection experiments and error distribution results are presented for various reliable code
versions.

5.1.1 Reliability-Driven Data Type Optimization

Definition: Data type optimization is a method to transform the data types with smaller bit widths
(like 8-bit unsigned char) into the data types with larger bit widths (16-bit unsigned short or 32-bit
unsigned int) for a given data structure to reduce the number of critical instruction executions, while
minimizing the FVI. It affects the amount of data to be loaded from and/or stored to the memory that
impacts the instructions executed, thus resulting in a different instruction histogram.

short int ref[16];
short int cand[16];
…
r00=ref[0];
r01=ref[1];
r10=cand[0];
r11=cand[1];
…
d0=r00-r10;
d1=r01-r11;
…
…

1
2
3
4
5
6
7
8
9
10
11
12

int ref[4];
int cand[4];
…
r0=ref[0]; r1=cand[0];
r00=r0&0x0000FFFF;
r01=r0>>16;
r10=r1&0x0000FFFF;
r11=r1>>16;
…
d0=r00-r10;
d1=r01-r11;
…

1
2
3
4
5
6
7
8
9
10
11
12

Transformed CodeOriginal Code

Load Load

-
Store

Benfits: Save 2 Loads and 1 Store

x11x01

Extraction
Code

d01

Load Load

-
Store

x10x00

d00

Load

x00x01

&

0x0000FFFF

>>16

-

Load

x10x11

>>16&

-

… … …

<<16
||

d0d1

StoreRe-Merging
Code

Data Structures
in Memory

…

Performance
Overhead

Performance Overhead: 3 Shifts, 3
Logical instructions due to
extraction and re-merging code

(a)

(b)

Figure 5.1: (a) Example Code showing Data Type Optimization Transformation,

(b) Corresponding Data Flow Graphs.

Example: Figure 5.1 shows an example with original and transformed codes with their data flow
graphs. The original code executes 2x more load/store instructions due to 16-bit data loading into one 32-
bit register at a time. In contrast, in the transformed code, two 16-bit data values are loaded into a 32-bit

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 80 -

register in a packed format. The reduced number of load/store and their dependent ALU instruction
executions results in a reduced probability of Application Failures. There could be error masking cases: in
line 5 of the transformed code, the lower 16 bits of a 32-bit data load result r0 are extracted. In case a fault
corrupts one/multiple bits in the upper 16 bits of r0 while the data resides in the input register of the ALU,
it is masked by the AND operation. Similarly, in case the second operand is corrupted (i.e. 0x0000FFFF)
the fault is masked in case the corresponding value in r0 is ‘0’.

This transformation comes with certain side-effects, as shown by the additional extraction and
merging code in Figure 5.1b. Since after unpacking the data, variables and instructions are still in 32-bit
format, the overflow of signed values is avoided. Additional instructions for packing and unpacking of
data incur a performance penalty in addition to a relatively higher vulnerability w.r.t. ALU. Therefore, this
overhead needs to be amortized by the vulnerability reduction due to reduced number of executions of
load and store instructions. Load instructions may incur stalls due to cache misses. Therefore, a reduced
number of load instruction executions may even amortize the performance overhead of additional
extraction and merging code. In case of VLIW architectures, this transformation may even be better due to
the availability of the SIMD instructions.

Get all
arrays A
from G

All a in A
processed?

yes

no
Save loads
targeting
a in list L

DataType
==INT?

yes

no

Set FVIBest to
original FVI L empty?

Get current
and next loads

from L
no Merge loads

Insert
extraction

code

Compile and
ExecuteEstimate FVISpill checking

yes

Tolerable
perf.?

no

FVI < FVIBest
and !Spill?yes

Update FVIBest
and accept

changes
yes

no

Figure 5.2: Flow of FVI-Driven Data Type Optimization.

Applying FVI-Driven Data Type Optimization: Figure 5.2 presents the flow for applying the
optimization targeting load merging; for store instructions, the procedure is similar (see detailed algorithm
in Appendix C). It operates on a function graph G (V, E) given a tolerable performance overhead Pτ, FVI
and performance of the original code (FVIOrig, POrig). The output of this optimization is a transformed
function fd with merged loads and extraction code as a result of the data type optimization. First, all arrays
are extracted from the function graph. For each array a, a list L of all load vertices is obtained. For
evaluation, a temporary copy G' of the graph is created. Then, two consecutive load vertices are extracted
from the load list, merged, and inserted into the temporary graph G' along with the extraction code.
Afterwards, the function is compiled and simulated to estimate the performance and reliability. If the
given constraints are satisfied and a better solution is found, the vertices under evaluation are removed
from the original graph G and the merged load vertex is inserted along with the extraction code.

5.1 Reliability-Driven Software Transformation

- 81 -

Vulnerability Analysis of the Transformation: Figure 5.3 presents the average IVI comparison
w.r.t. the register file component for the un-transformed code (i.e. with character data type) and the
transformed code (i.e. with integer data type). In both cases 31 registers are used. However, the IVI w.r.t
the register file for the transformed code is slightly higher compared to that of the un-transformed code
(i.e. 8.20% vs. 7.92%). The total vulnerable period is increased from 4752 cycles to 4963 cycles (i.e. a 4%
increase) for a single function execution. The reason is, in case of the transformed code, 4 data bytes are
loaded into a 32-bit register using only one instruction and the data stays longer in the register until it is
(re)-used/overwritten. Furthermore, the IVI in the execute stage is more due to the additional shift and
logic instructions required for the 'data unpacking'. However, this transformation significantly reduces the
IVI w.r.t. the cache controller and the number of Application Failures.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

G0 G1 G2 G3 G4 G5 G6 G7 W0 W2
08

W2
09

W2
10

W2
11

W2
12

W2
13

W2
14

W2
15

W2
16

W2
17

W2
18

W2
19

W2
20

W2
21

W2
22

W2
23

W2
24

W2
25

W2
26

W2
27

W2
28

W2
29

W2
30

W2
31

W2
32

W2
33

W2
34

W2
35

W2
36

W2
37

W2
38

W2
39

W2
40

W2
41

W2
42

W2
43

W2
44

W2
45

W2
46

W2
47

W2
48

W2
49

W2
50

W2
51

W2
52

W2
53

W2
54

W2
55

100%

0%

50%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

G0 G1 G2 G3 G4 G5 G6 G7 W0 W2
08

W2
09

W2
10

W2
11

W2
12

W2
13

W2
14

W2
15

W2
16

W2
17

W2
18

W2
19

W2
20

W2
21

W2
22

W2
23

W2
24

W2
25

W2
26

W2
27

W2
28

W2
29

W2
30

W2
31

W2
32

W2
33

W2
34

W2
35

W2
36

W2
37

W2
38

W2
39

W2
40

W2
41

W2
42

W2
43

W2
44

W2
45

W2
46

W2
47

W2
48

W2
49

W2
50

W2
51

W2
52

W2
53

W2
54

W2
55

100%

0%

50%

G7

W
21

6

W
25

5

W
23

2

W
22

4

W
24

0

W
24

8…

G0

Av
er

ag
e

IV
I w

.r.
t.

th
e

Re
gi

st
er

 F
ile

 C
om

po
ne

nt total
registers:

31

G7

W
21

6

W
25

5

W
23

2

W
22

4

W
24

0

W
24

8…

G0

UnTrans-
formed
(8-bit

data type)

total
registers:

31

Trans-
formed
(32-bit

data type)

Figure 5.3: IVI w.r.t. Different Registers: Character (8-bit) Vs. Integer (32-bit) Data Type.

5.1.2 Reliability-Driven Loop Unrolling

Definition: Loop unrolling is a method to expand/unroll the source code loops by determining an
appropriate unrolling factor (among several options), such that, the Function Vulnerability Index (FVI) is
minimized, while reducing the number of critical instruction executions. The unrolling factor is defined as
the number of loop body replications after unrolling. The problem of finding an appropriate unrolling
factor has not yet been explored from the reliability perspective.

x[1]= y[0]+y[1]+y[2];
…
…
y[1]= y[1]…
x[2]= y[1]+y[2]+y[3];
…
…
y[2]= y[2]…
…
}

for(i=1;i<20;i++)
{

x[i]= y[i-1]+y[i]+y[i+1];
…
…
y[i]= y[i]+…

}

Original Code Transformed Code

Variable y[2]
has longer
vulnerable
period, i.e.,

longer
lifetime

Figure 5.4: Example: An Abstract Code showing Increased Temporal and Spatial Vulnerabilities

of Variables as a Consequence of Loop Unrolling.

Example: On the one hand loop unrolling reduces the number of critical instruction executions, loop
counter update and the condition evaluation operations that lower the error probability and execution
probability of backward jumps to the loop condition. On the other hand it may result in an increased FVI
due to the following two reasons: (1) Increased temporal vulnerability of variables stored in the register
file as they are typically kept for a relatively longer time inside the registers until the relevant instructions
are executed. The example code in Figure 5.4 shows an increase in the vulnerable period of variable y[2].
In contrast, the original code reloads y[2] while exhibiting a reduced vulnerable period. (2) Increased

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 82 -

spatial vulnerability as more registers may be required for storing live variables. The example code shows
that more y[i] data values are alive, thus requiring more registers.

FVI-Driven Loop Unroller: The challenge in this case is to determine an appropriate unrolling
factor which is driven by the FVI to optimize for reliability while considering the relative increase in
execution time and code size. In order to address the above-discussed reliability-related concerns of loop
unrolling, an FVI-driven Loop Unroller is proposed that determines an appropriate unrolling factor for
each given loop of a function while minimizing the following two factors: (1) FVI considering utilization
of different processor components by different instructions; and (2) Performance loss compared to the
maximum achievable performance when using a performance-based unrolling. It aims at avoiding spilling
and incurring a relatively small increase in code size (i.e. number of assembler instructions). The FVI-
Driven Loop Unroller discards the unrolling factors that cause register spilling, as it may incur additional
critical instructions such as store and then load (thus, an increased probability for Application Failures)
due to the spill code. The goal is to maximize the following profit function (Eq. 5.1). {FVIOrig, POrig, COrig}
and {FVI, P, C} denote the FVI, performance, and code size of the original code and the transformed
code, respectively. The parameter μ activates the normalization effect due to code expansion in case of
unprotected instruction cache or deactivates in case the instruction cache is protected by ECC or parity.

Orig Orig Orig

Orig Orig Orig

FVI FVI C C P P
Profit +

FVI C P
 Eq. 5.1

Applying FVI-Driven Loop Unrolling (Figure 5.5): The proposed FVI-driven Loop Unroller
requires the loop iteration counts. This is known for fixed-sized and input-invariant loops and unknown
for variable-sized loops where the loop iterations depend upon the input data5. For each loop of a given
function, the maximum unrolling factor is then determined as the Greatest Common Divisor of all the
corresponding loop iterations obtained through profiling for varying input data. The inputs are: a set of
maximum unrolling factors for all loops, the FVI, performance, and code size of the original function F.
The output is the transformed function fd with loop unrolling applied by an FVI-minimizing unrolling
factor. First, all loops are extracted and stored in a list L. Afterwards, all loops of the function are
processed and an appropriate unrolling factor is determined.

Get all loops
L from

function

All l in L
processed?

Get maximum
unroll factor

maxUF for loop l
no

Initialize
ProfitBest,

UFBest and UF

UF ≤
maxUF?

yes

Unroll l by
factor UF yes

Compile
and

Execute

Estimate
FVI

Spill
check

Calculate FVI benefit,
performance loss and

code size increase

Calculate
Profit

Profit >
ProfitBest and

!Spill?

Update ProfitBest

and UFBest
yes

Increment UFno

Assign
UFBest

to loop l
no

Apply loop unrolling
with best unrolling

factor for every loop
Figure 5.5: Flow of FVI-Driven Loop Unrolling.

5 Identifying fixed loops and variable loops is out of the scope of this work; see [78][92] for further details on such

a static loop analysis.

5.1 Reliability-Driven Software Transformation

- 83 -

For each loop, the corresponding maximum unrolling factor is extracted from the input set of
maximum unrolling factors. Then, for each loop, the profit for all possible values of the unrolling factors
is computed. For each case of the unrolling factor, the FVI reduction, performance loss, and code
expansion are estimated to compute the profit value and the one with the highest profit is selected as the
FVI-driven best unrolling factor. Afterwards, the next loop is analyzed. Note that the proposed approach
discards the spilling cases. The detailed algorithm is provided in Appendix C.

Vulnerability Analysis of the Transformation: Figure 5.6 presents the average IVI comparison
w.r.t. the register file component for the un-transformed code (i.e. with rolled loop) and the transformed
code (i.e. with loop unrolling by factors 4 and 8). In case of unrolling by a factor 4, the vulnerability of
registers G1-G4 is increased as they are used for a longer time for storing the temporary values (see label

). Furthermore, it uses 2 less registers compared to the un-transformed code, i.e. 20 vs. 22 that leads to a
slightly reduced spatial vulnerability. Label shows the high IVI of registers W221 and W223 in case of
un-transformed code. These registers are used to store the loop counters and memory addresses. Unrolling
by a factor of 4 results in a reduction from 6% to 5.63% for the IVI w.r.t. the register file. Increasing the
unrolling factor from 4 to 8 increases the register usage from 20 to 31 that leads to an increased spatial
vulnerability (see label). Consequently, the overall IVI of the complete unrolling case is worse
compared to the unrolling by a factor of 4, i.e. 8.20% vs. 5.63%. In this example, 4 is the reliability-wise
best unrolling factor.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

G0 G1 G2 G3 G4 G5 G6 G7 W
0

W
20

8
W

20
9

W
21

0
W

21
1

W
21

2
W

21
3

W
21

4
W

21
5

W
21

6
W

21
7

W
21

8
W

21
9

W
22

0
W

22
1

W
22

2
W

22
3

W
22

4
W

22
5

W
22

6
W

22
7

W
22

8
W

22
9

W
23

0
W

23
1

W
23

2
W

23
3

W
23

4
W

23
5

W
23

6
W

23
7

W
23

8
W

23
9

W
24

0
W

24
1

W
24

2
W

24
3

W
24

4
W

24
5

W
24

6
W

24
7

W
24

8
W

24
9

W
25

0
W

25
1

W
25

2
W

25
3

W
25

4
W

25
5

100%

0%
20%
40%
60%
80%

Rolled Loop

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

G0 G1 G2 G3 G4 G5 G6 G7 W
0

W
20

8
W

20
9

W
21

0
W

21
1

W
21

2
W

21
3

W
21

4
W

21
5

W
21

6
W

21
7

W
21

8
W

21
9

W
22

0
W

22
1

W
22

2
W

22
3

W
22

4
W

22
5

W
22

6
W

22
7

W
22

8
W

22
9

W
23

0
W

23
1

W
23

2
W

23
3

W
23

4
W

23
5

W
23

6
W

23
7

W
23

8
W

23
9

W
24

0
W

24
1

W
24

2
W

24
3

W
24

4
W

24
5

W
24

6
W

24
7

W
24

8
W

24
9

W
25

0
W

25
1

W
25

2
W

25
3

W
25

4
W

25
5

100%

0%
20%
40%
60%
80%

G7

W
21

6

W
25

5

W
23

2

W
22

4

W
24

0

W
24

8…G0

Unrolling Factor 4
total registers: 20

G7

W
21

6

W
25

5

W
23

2

W
22

4

W
24

0

W
24

8…G0

total registers: 22

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

G0 G1 G2 G3 G4 G5 G6 G7 W
0

W
20

8
W

20
9

W
21

0
W

21
1

W
21

2
W

21
3

W
21

4
W

21
5

W
21

6
W

21
7

W
21

8
W

21
9

W
22

0
W

22
1

W
22

2
W

22
3

W
22

4
W

22
5

W
22

6
W

22
7

W
22

8
W

22
9

W
23

0
W

23
1

W
23

2
W

23
3

W
23

4
W

23
5

W
23

6
W

23
7

W
23

8
W

23
9

W
24

0
W

24
1

W
24

2
W

24
3

W
24

4
W

24
5

W
24

6
W

24
7

W
24

8
W

24
9

W
25

0
W

25
1

W
25

2
W

25
3

W
25

4
W

25
5

100%

0%
20%
40%
60%
80%

G7

W
21

6

W
25

5

W
23

2

W
22

4

W
24

0

W
24

8…G0

Complete Unrolling
total registers: 31

1
2 3

Av
er

ag
e

IV
I w

.r.
t.

th
e

Re
gi

st
er

 F
ile

 C
om

po
ne

nt

Figure 5.6: Comparing the average IVI w.r.t. the Register File Component for the Un-

Transformed Code (Loop Rolled) vs. Transformed Code (Loop Unrolling by Factors 4 and 8) for
the “SATD” Application.

5.1.3 Reliability-Driven Common Expression Elimination and Operation
Merging

Definition: Operation Merging and Common Expression Elimination is a method to identify and
eradicate identical expressions with multiple operations and to merge the execution of two identical
operations into one such that the total function vulnerability is minimized.

= *

z00=x00*y00 + x01*y10 + x02*y20 + x03*y30
z01=x00*y01 + x01*y11 + x02*y21 + x03*y31
z02=x00*y02 + x01*y12 + x02*y22 + x03*y32
z03=x00*y03 + x01*y13 + x02*y23 + x03*y33

Matrix Multiplication Matrix Expansion
…
…
…
…

1
1
1
1

1
1

-1
-1

1
-1
-1
1

1
-1
1

-1

Y=

z00=x00+x03+x01+x02
z01=x00-x03+x01-x02
z02=x00+x03-(x01+x02)
z03=x00-x03-(x01-x02)

m0=x00+x03
m3=x00-x03
m1=x01+x02
m2=x01-x02

z00=m0+m1
z01=m3+m2
z02=m0-m1
z03=m3-m2

Hadamard Transformation Matrix Expansion Common Expression Elimination
…
…
…
…

…
…
…
…

48 ADD + 64 MULT

48 ADD/SUB 32 ADD/SUB

Z X Y

z00 … z03

z30 … z33

… … x00 … x03

x30 … x33

… … y00 … y03

y30 … y33

… …

y00 … y03

y30 … y33

… … =

Figure 5.7: Common Expression Elimination in the Hadamard Transformation.

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 84 -

Example-1: Figure 5.7 shows an example for the matrix multiplication in “Hadamard
Transformation”. The matrix multiplications are expanded and converted into expressions such that only
add and shift instructions are used and multiply instructions are completely replaced. Afterwards, the
expressions are re-arranged in a way that common expressions are identified and eliminated, and the
common operations are merged.

Reliability Effects of the Transformation: This transformation can affect the spatial and temporal
vulnerabilities in different ways. On the positive side, it reduces the FVI through the following three
means: (1) reducing excessive computation of arithmetic/ALU instructions that lead to a reduced number
of Incorrect Outputs or Silent Data Corruptions, thus reducing vulnerability w.r.t. ALU; (2) reducing
multiply instructions, thus reducing both spatial and temporal vulnerabilities in the execute stage; and (3)
reducing load instructions due to fewer accesses to the input variables stored inside the memory that were
earlier used to compute the common expressions, thus reducing PFailures. On the negative side, an excessive
number of common expressions can increase the spatial vulnerability w.r.t. the register file due to the
excessive usage of temporary register variables holding the common values for re-usability. Moreover, it
may lead to increased temporal vulnerability if the register storing the result of the common expression is
used much later in the instruction schedule. A high register pressure may even lead to register spilling
resulting in an increased number of critical instruction executions. In such cases, re-computation may be
beneficial.

x=a+b

z1=x*c
v=z1|c

z2=x*d

...
load r5 x

w=z2|d
...
q=a-b
...

r1 r2 r3 r4 r5
a b c d
a b c d x

a b d x
a b c d z1
a b v d z1

a b v d x

a b v w z2

...

store MEM x c

a b v d z2

a b v w q

Code

Register Usage

Cyc.

1

5
7

8
10

13

12

3
x=x>>22 a b c d x

x=a+b

z1=x*c
v=z1|c

z2=x*d

...
x=a+b

w=z2|d
...
q=a-b
...

r1 r2 r3 r4 r5

a b c d x

a b c d z1
a b c d v

a b x d v

a b z2 d v
a b w d v

a b w q v

... a b c d
Code

Register Usage

1

3
5

6
7

10

11

x=x>>2
8

a b x d v

x=x>>22 a b c d x

Cyc.

x=a+b

z1=x*c
v=z1|c

z2=x*d

...
load r3 d

w=z2|d
...
q=a-b
...

r1 r2 r3 r4 r5
a b c d
a b c d x

a b d x
a b c z1 x
a b v z1 x

a b v d x

a b v w z2

...

store MEM d c

a b v d z2

a b v w q

Code

Register Usage

Cyc.

1

5
7

8
10

13

12

3
x=x>>22 a b c d x

Without CEE (no register spilling): With CEE (register spilling):

With CEE (register spilling):

5 registers available, x is recalculated
+ corrupted calculation of x doesn’t

affect z1 and z2
- increased execution time

5 registers available, x is calculated once
- spilling of variable d

5 registers available, x is calculated once
- spilling of the Common Expression (x)

A B

C

x=a+b

z1=x*c
v=z1|c

z2=x*d
...

w=z2|d
...
q=a-b
...

r1 r2 r3 r4 r6r5

a b c d x

a b c d x
a b c d x

a b z2 d x
a b w d x

a b w q x

... a b c d

z1
v

v
v

v

Code

Register Usage

Cyc.

x=x>>2 a b c d x
1

3
5

6
8

9

2

With CEE:

6 registers available, x resides in a register
+ decreased execution time
- higher spatial vulnerability

D

Figure 5.8: Impacts of Different Strategies for Exploitation of Common Expressions.

5.1 Reliability-Driven Software Transformation

- 85 -

Example-2: Figure 5.8 presents different scenarios showing the possible impacts of common
expression elimination (CEE). The functionality of the example codes is the same for all cases. For the
cases (A)-(C) 5 registers can be used, while in case (D) 6 registers are available. In example (A) the
possibility to remove the common expression is not exploited. Therefore a potentially corrupted
calculation of the variable x does not affect multiple computations. In examples (B) and (C) the common
expression is eliminated, however this results in register spilling. The difference is the spilled register: in
example (B) the register storing the variable d is spilled that results in a longer execution time. However
in example (C) the register storing the result of the common expression (i.e. variable x) is spilled. This
leads to a high potential of affecting a large amount of dependent calculations in case the storing/loading
process is corrupted.

The spilling can be avoided in case one additional register is available resulting in a shorter execution
time, but the spatial vulnerability is increased. The complier needs to be judicious, from the reliability
perspective, about whether to perform the common expression elimination or not. The challenge, in this
case, is to find out a decision for each occurrence of a common expression whether it will be eliminated
and its result will be reused, or it will be recomputed. The goal is to minimize the FVI under constraints of
tolerable performance overhead and increase in the code size.

Extract common
sub-graphs CG

from G

All c in CG
evaluated?

Get occurrences of
C and save in Ono

yes

All o in O
processed?

Compute FVI with and
without replacing the

common expression at o
no

Select the FVI-
wise beneficial

option

Update G

yes
Compute FVI, performance

and efficiency

Sort list of
common expr.

LCE by efficiency

All l in LCE
processed?

Tolerable
perf? no

Get occur-
rences of l in G
and save in O

yes

All o in O
processed?

o to be
replaced and

!Spill?

Remove o and
insert common

variable
no yes

no

no
yes

yes

Figure 5.9: Flow of Applying Common Expression Elimination.

Applying FVI-Driven Common Expression Elimination: Figure 5.9 shows the flow for evaluating
the reliability benefit of replacing common expressions in a given function graph G under a tolerable
performance overhead Pτ (see detailed algorithm in Appendix C). The process operates in two phases: An
evaluation phase and an elimination phase. In the evaluation phase, all common expressions and their
respective occurrences are extracted. Afterwards the potential for replacing each individual occurrence of
a common expression is evaluated by comparing the function vulnerability with and without replacement.
Before the elimination phase, the common expressions extracted are sorted by their reliability efficiency
in descending order. If a given solution of the commen expression elimination satisfies the constraints and

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 86 -

register spilling is avoided, it is accepted and the common variable is inserted. Finally the resulting code
with expression elimination is returned.

Vulnerability Analysis of the Transformation: Figure 5.10 presents the average IVI comparison
w.r.t. the register file component with and without the common expressions, respectively. As an example,
we have analyzed the SATD application. This transformation replaces the common expressions related to
the redundant multiply instructions with add and shifts instructions. This results in a reduced number of
multiply instructions that has a high spatial and temporal vulnerability due to its multi-cycle nature and
large chip area footprint of the multiply unit. It results in the vulnerability reduction of registers W221,
W224, W235, W236, W237 from 87% to 48% (see label). This transformation reduces the spatial
vulnerability by using 2 less registers. The overall IVI w.r.t. the register file is reduced from 7.24% to
6.05%.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

G0 G1 G2 G3 G4 G5 G6 G7 W
0

W
20

8
W

20
9

W
21

0
W

21
1

W
21

2
W

21
3

W
21

4
W

21
5

W
21

6
W

21
7

W
21

8
W

21
9

W
22

0
W

22
1

W
22

2
W

22
3

W
22

4
W

22
5

W
22

6
W

22
7

W
22

8
W

22
9

W
23

0
W

23
1

W
23

2
W

23
3

W
23

4
W

23
5

W
23

6
W

23
7

W
23

8
W

23
9

W
24

0
W

24
1

W
24

2
W

24
3

W
24

4
W

24
5

W
24

6
W

24
7

W
24

8
W

24
9

W
25

0
W

25
1

W
25

2
W

25
3

W
25

4
W

25
5

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

G0 G1 G2 G3 G4 G5 G6 G7 W
0

W
20

8
W

20
9

W
21

0
W

21
1

W
21

2
W

21
3

W
21

4
W

21
5

W
21

6
W

21
7

W
21

8
W

21
9

W
22

0
W

22
1

W
22

2
W

22
3

W
22

4
W

22
5

W
22

6
W

22
7

W
22

8
W

22
9

W
23

0
W

23
1

W
23

2
W

23
3

W
23

4
W

23
5

W
23

6
W

23
7

W
23

8
W

23
9

W
24

0
W

24
1

W
24

2
W

24
3

W
24

4
W

24
5

W
24

6
W

24
7

W
24

8
W

24
9

W
25

0
W

25
1

W
25

2
W

25
3

W
25

4
W

25
5

100%

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

G
7

W
21

6

W
25

5

W
23

2

W
22

4

W
24

0

W
24

8…G
0

Av
er

ag
e

IV
I w

.r.
t.

th
e

Re
gi

st
er

 F
ile

 C
om

po
ne

nt total registers: 24

G7

W
21

6

W
25

5

W
23

2

W
22

4

W
24

0

W
24

8…G0

total registers: 22

Untransformed
(without CEE)

Transformed
(with CEE)

1

Figure 5.10: Instruction Histogram and IVI of each Register: Common Expressions Elimination

and Operation Merging.

Instruction Histogram

0

200

400

600

800

1000

1200

CALL/BR/JMP SETHI/NOP LD ST LOGIC ARITH

12

0

4

in

st
ru

ct
io

ns
[x

10
2]

arlostldsncb
j

8

Avg. IVI w.r.t. different processor components

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

PVF_REG[%] PVF_CC_MC[%] PVF_ALU[%] PVF_IM_ADDR[%]

80%

0% Register
File

40%

60%

20%

Memory
Controller

ALU AGU
0

500

1000

1500

2000

2500

PERF

Performance
25

0

20

cy

cl
es

[x
10

2]

cbj: call/branch/jump sn: sethi/nop ld: load st: store lo: logic ar: arithmetic

15

FDwithout_CEE
FDwith_CEE

10
5

Figure 5.11: Effect of Common Expression Elimination and Operation Merging on Reliability and

Performance.

Figure 5.11 shows the instruction histogram, IVI for different processor components, and performance.
This transformation reduces the number of arithmetic/logic instructions. The load instructions can also be
reduced due to fewer accesses to the input variables stored in memory. Reduced instruction executions lead
to reduced temporal vulnerability but at the cost of a higher potential for propagation in case a common
variable is corrupted. Nevertheless, the IVIs with respect to all processor components are reduced.

5.1 Reliability-Driven Software Transformation

- 87 -

5.1.4 Reliability-Driven Online Table Value Computation

Definition: Online table value computation is a method that calculates values in the table entries
indexed in a program during the execution, rather than loading the values from pre-computed table
entries.

Reliability Effects of Pre-Computed Tables: On the positive side, this method has a better
performance compared to the online value computation. Moreover, it requires less registers that benefit in
two ways: (1) reduced IVI w.r.t. the register file, (2) reduced risk of register spilling (one register is used
for storing the base address). On the negative side, this method executes more load instructions that lead
to a high PFailures. Moreover, in case the cache or on-chip memory is not protected, the table will be
vulnerable for a long time. This leads to increased spatial and temporal vulnerability of instructions in the
memory stage. Due to similar reasons, in case of security based applications, it may be beneficial to
perform online table value computation.

Reliability Effects of Online Table Value Computation: On the positive side, this method requires
lesser memory and provides a reduced IVI in the memory stage. Moreover, due to the reduced number of
load instruction executions, this method lowers the PFailures. On the negative side, this method incurs
performance overhead due to additional arithmetic instructions and also leads to a higher IVI in the
execute stage (w.r.t. the ALU) compared to the pre-computed table method. However, due to program-
level masking effects, the faulty result may not propagate to the final result. Another side effect of this
method is increased spatial and temporal vulnerability w.r.t. the register file due to high register usage and
lifetime. This may also increase the risk of spilling. In online value computation, the data memory is not
used. The only possibility from where the faults could come is either from instruction memory, where a
corrupted instruction results in an Application Failure, or the fault might come during online computation.
In a pre-computed table value, the fault can come from a corrupted data memory. The challenge is to
determine whether using values from the pre-computed table minimizes FVI or the online table value
computation. To address this, the FVI values of both versions of the function are computed and the one
with the lowest FVI value is selected.

Example and Experimental Analysis: Figure 5.12 shows an example for the ADPCM application
comparing the pre-computed table and online table value computation. In case of the pre-computed table,
the number of executions of the load instruction is greater compared to the other case. It results in a higher
IVI w.r.t. the memory controller. Moreover, the base address along with the index value of the table is
used to compute the load address. The base address is kept inside a register throughout the execution of
the application. Consequently, this results in keeping a register alive throughout the execution of the
application. Therefore, a slightly higher IVI w.r.t. the register file can be observed. In case of the online
table value computation, the number of critical instruction executions is decreased due to the run-time
computation of table entries, thus leading to a reduced IVI w.r.t. the memory controller. However, this
slightly increases the IVI w.r.t. the ALU due to more arithmetic operations. The IVI w.r.t. the register file
is quite similar in both cases, because the register usage patterns for both function versions of ADPCM are
similar.

Benefits in case of Unprotected Memories: Figure 5.13 (a) compares the pre-computed table, i.e.
the baseline case (B), and online table value computation (V1) for ADPCM and CAVLC (Context
Adaptive Variable Length Coding) applications. The tables are placed in unprotected memory areas.
Besides the reduction of Application Failures, the amount of Incorrect Outputs is also reduced after
applying the proposed transformation. Furthermore, Figure 5.13(b) shows that in case of the pre-computed
table in the ADPCM, the data remains vulnerable for a long time. The temporal vulnerability of the
respective table entries requested for the first 10,000 accesses is recorded. The vulnerable time for the
table entries is increasing with longer execution runs and entries used by the later accesses are more
susceptible to soft errors. In contrast, when replacing the table by online calculations, the vulnerable time

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 88 -

of two registers used g1 and g2 is only a few cycles, as no constant stays in a register or in the memory for
the complete application execution and no base address for the table has to be maintained leading to a
reduced temporal vulnerability for the calculated values.

Pre-Computed Table Online Table Value Computation
C-Code

#define TAB 0x97530000

…
tmp=TAB>>((index&0x7)<<2);
table_val=(tmp&0xF)-1;
…

1
2
3
4
5
6
7
8

C-Code
Table[16] = {

-1, -1, -1, -1, 2, 4, 6, 8,
-1, -1, -1, -1, 2, 4, 6, 8,

};
…
table_val=Table[index];
…

1
2
3
4
5
6
7
8

Assembler
sll g3,0x2,g2
sethi 0x25d4c0,g1
srl g1,g2,g1
and g1,0xF,g1
add g1,0x1FFF,g1

1
2
3
4
5
6
7
8

Assembler
sll g3,0x2,g2
ld [o2+g1],g1

1
2
3
4
5
6
7
8

-1 -1 -1 -1 2 4 6 8 -1 -1 -1 -1 2 4 6 8

<<

2index

Load

table_val

<<

2index

Sethi

0x25d4c0

>> 0xF

& 0x1FFF

+

table_val

Benefits: Save 1 Load per table
access, table not kept in memory

Performance Overhead: 1 Sethi, 1 Shift,
1 Logical instruction, 1 arithmetic
instruction for value calculation

Instruction Histogram

0

5000

10000

15000

20000

25000

CALL/BR/JMP SETHI/NOP LD ST LOGIC ARITH

25

15

0
5

in

st
ru

ct
io

ns
[x

10
3]

arlostldsncb
j

10

20

Avg. IVI w.r.t. different processor components

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

PVF_REG[%] PVF_CC_MC[%] PVF_ALU[%] PVF_IM_ADDR[%]

80%

0% Register
File

40%

60%

20%

Memory
Controller

ALU AGU

FDTAB
FDCOM

0

10000

20000

30000

40000

50000

60000

PERF

Performance
60

0

40

cy

cl
es

[x
10

3]
cbj: call/branch/jump sn: sethi/nop ld: load st: store lo: logic ar: arithmetic

20

Figure 5.12: Comparing Pre-Computed Table and Online Table Value Computation Methods for

the “ADPCM” Application.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

V
E

R
S

I
O

N
_

O
R

IG
IN

A
L

V
E

R
S

I
O

N
_

1

V
E

R
S

I
O

N
_

O
R

IG
IN

A
L

V
E

R
S

I
O

N
_

1

ADPCM_DERIV ADPCM_DERIV CAVLC_DERIV CAVLC_DERIV

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

V
E

R
S

I
O

N
_

O
R

IG
IN

A
L

V
E

R
S

I
O

N
_

1

V
E

R
S

I
O

N
_

O
R

IG
IN

A
L

V
E

R
S

I
O

N
_

1

ADPCM_DERIV ADPCM_DERIV CAVLC_DERIV CAVLC_DERIV

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

V
E

R
S

I
O

N
_

O
R

IG
IN

A
L

V
E

R
S

I
O

N
_

1

V
E

R
S

I
O

N
_

O
R

IG
IN

A
L

V
E

R
S

I
O

N
_

1

ADPCM_DERIV ADPCM_DERIV CAVLC_DERIV CAVLC_DERIV

100%
80%

40%
60%

20%
0%

5 f / MCycles1 f / MCycles 10 f / MCycles

B V1 B V1 B V1 B V1 B V1 B V1

Application Failure Incorrect Output Correct Output

ADPCM CAVLC ADPCM CAVLC ADPCM CAVLC(a)
1

10

100

1000

10000

100000

1000000

1 1001 2001 3001 4001 5001 6001 7001 8001 90011
0

1E2

1E4

1E6

2000 4000 6000 8000 10000
Table Access Number

Te
m

po
ra

l V
ul

ne
ra

bi
lit

y
of

 T
ab

le
 E

nt
ry

 [C
yc

le
s] ADPCM

(b)

Figure 5.13: (a) Error Distribution for “ADPCM” and “CAVLC” when applying FVI-Driven
Online Table Value Computation; (b) Temporal Vulnerability (in cycles) of the Entries Requested

for First 10,000 Table Accesses.

5.1.5 Impact of Reliability-Driven Transformations on Error Distributions

Figure 5.14 presents detailed error distribution for different application versions listed in Table 5.1.
To provide a fair comparison, the original code (i.e. the baseline case B) is optimized using basic
performance optimizations done by the programmer (like, replacing the multi-dimensional arrays with
single-dimensional arrays to avoid multiple-indirections in the memory access and replacement of integer
multiply with shift and add where possible) and the traditional compiler optimizations (like common sub-
expression elimination).

5.1 Reliability-Driven Software Transformation

- 89 -

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

VERS
ION_

ORIG
INAL

VERS
ION_

1

VERS
ION_

2

VERS
ION_

4

VERS
ION_

5

VERS
ION_

ORIG
INAL

VERS
ION_

1

VERS
ION_

4

TEST
A REF

A

REF_
B

CORE
OPT_

A

TEST
A REF

A

REF_
B

CORE
OPT_

A

VERS
ION_

1C

VERS
ION_

1CLU
4

VERS
ION_

1I

VERS
ION_

2C

VERS
ION_

2I

VERS
ION_

3C

VERS
ION_

3I

ADPCM_DERIVADPCM_DERIVADPCM_DERIVADPCM_DERIVADPCM_DERIVCRC_DERIVCRC_DERIVCRC_DERIV DCT DCT DCT DCT HT4x4 HT4x4 HT4x4 HT4x4 IPredHDCIPredHDCIPredHDCIPredHDCIPredHDCIPredHDCIPredHDC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

VERS
ION_

ORIG
INAL

VERS
ION_

1

VERS
ION_

2

VERS
ION_

4

VERS
ION_

5

VERS
ION_

ORIG
INAL

VERS
ION_

1

VERS
ION_

4

TEST
A REF

A

REF_
B

CORE
OPT_

A

TEST
A REF

A

REF_
B

CORE
OPT_

A

VERS
ION_

1C

VERS
ION_

1CLU
4

VERS
ION_

1I

VERS
ION_

2C

VERS
ION_

2I

VERS
ION_

3C

VERS
ION_

3I

ADPCM_DERIVADPCM_DERIVADPCM_DERIVADPCM_DERIVADPCM_DERIVCRC_DERIVCRC_DERIVCRC_DERIV DCT DCT DCT DCT HT4x4 HT4x4 HT4x4 HT4x4IPredHDCIPredHDCIPredHDCIPredHDCIPredHDCIPredHDCIPredHDC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

VERS
ION_

ORIG
INAL

VERS
ION_

1

VERS
ION_

2

VERS
ION_

4

VERS
ION_

5

VERS
ION_

ORIG
INAL

VERS
ION_

1

VERS
ION_

4

TEST
A REF

A

REF_
B

CORE
OPT_

A

TEST
A REF

A

REF_
B

CORE
OPT_

A

VERS
ION_

1C

VERS
ION_

1CLU
4

VERS
ION_

1I

VERS
ION_

2C

VERS
ION_

2I

VERS
ION_

3C

VERS
ION_

3I

ADPCM_DERIVADPCM_DERIVADPCM_DERIVADPCM_DERIVADPCM_DERIVCRC_DERIVCRC_DERIVCRC_DERIV DCT DCT DCT DCT HT4x4 HT4x4 HT4x4 HT4x4 IPredHDCIPredHDCIPredHDCIPredHDCIPredHDCIPredHDCIPredHDC

100%
80%

40%
60%

20%

100%
80%

40%
60%

20%

100%
80%

40%
60%

20%
0%

0%

5
f /

 M
Cy

cl
es

1
f /

 M
Cy

cl
es

0%

ADPCM CRC DCT HT IPRED

10
 f

/
M

Cy
cl

es

B V1 V2 V3 V4 B V1 V2 B V1 V2 V3 B V1 V2 V3 B V1 V3 V4 V5 V6V2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

VERS
ION_

3C

VERS
ION_

3I

VERS
ION_

2C

VERS
ION_

2I

VERS
ION_

1C

VERS
ION_

1I

VERS
ION_

B

VERS
ION_

ORIG
INAL

VERS
ION_

A

VERS
ION_

C

VERS
ION_

D

TEST
_A

REF_
AC

REF_
AI

REF_
BC

REF_
BI

COR
EOPT

_AC

COR
EOPT

_AI

VERS
ION_

ORIG
INAL

VERS
ION_

1

VERS
ION_

2

VERS
ION_

3

VERS
ION_

4

VERS
ION_

5

VERS
ION_

ORIG
INAL

VERS
ION_

2

VERS
ION_

3

MCHZ MCHZ MCHZ MCHZ MCHZ MCHZ SAD SAD SAD SAD SAD SATD SATD SATD SATD SATD SATD SATDSHA_DERIVSHA_DERIVSHA_DERIVSHA_DERIVSHA_DERIVSHA_DERIVSUSAN_DERIVSUSAN_DERIVSUSAN_DERI

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

VERS
ION_

3C

VERS
ION_

3I

VERS
ION_

2C

VERS
ION_

2I

VERS
ION_

1C

VERS
ION_

1I

VERS
ION_

B

VERS
ION_

ORIG
INAL

VERS
ION_

A

VERS
ION_

C

VERS
ION_

D

TEST
_A

REF_
AC

REF_
AI

REF_
BC

REF_
BI

COR
EOPT

_AC

COR
EOPT

_AI

VERS
ION_

ORIG
INAL

VERS
ION_

1

VERS
ION_

2

VERS
ION_

3

VERS
ION_

4

VERS
ION_

5

VERS
ION_

ORIG
INAL

VERS
ION_

2

VERS
ION_

3

MCHZ MCHZ MCHZ MCHZ MCHZ MCHZ SAD SAD SAD SAD SAD SATD SATD SATD SATD SATD SATD SATDSHA_DERIVSHA_DERIVSHA_DERIVSHA_DERIVSHA_DERIVSHA_DERIVSUSAN_DERIVSUSAN_DERIVSUSAN_DERI

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

VERS
ION_

3C

VERS
ION_

3I

VERS
ION_

2C

VERS
ION_

2I

VERS
ION_

1C

VERS
ION_

1I

VERS
ION_

B

VERS
ION_

ORIG
INAL

VERS
ION_

A

VERS
ION_

C

VERS
ION_

D

TEST
_A

REF_
AC

REF_
AI

REF_
BC

REF_
BI

COR
EOPT

_AC

COR
EOPT

_AI

VERS
ION_

ORIG
INAL

VERS
ION_

1

VERS
ION_

2

VERS
ION_

3

VERS
ION_

4

VERS
ION_

5

VERS
ION_

ORIG
INAL

VERS
ION_

2

VERS
ION_

3

MCHZ MCHZ MCHZ MCHZ MCHZ MCHZ SAD SAD SAD SAD SAD SATD SATD SATD SATD SATD SATD SATDSHA_DERIVSHA_DERIVSHA_DERIVSHA_DERIVSHA_DERIVSHA_DERIVSUSAN_DERIVSUSAN_DERIVSUSAN_DERI

100%
80%

40%
60%

20%

100%
80%

40%
60%

20%

100%
80%

40%
60%

20%
0%

0%

5
f /

 M
Cy

cl
es

1
f /

 M
Cy

cl
es

0%

10
 f

/
M

Cy
cl

es

Application Failure Incorrect Output Correct Output

MC-FIR
B V1 V2 V3 V4 V5

SAD
B V1 V2 V3 V4

SATD
B V1 V2 V3 V4 V5 V6

SHA
B V1 V2 V3 V4 V5

SusanC
B V1 V2

Figure 5.14: Comparing the Error Distribution of Baseline and the Reliability-Optimized

Functions.

A general observation is that for the majority of applications, the amount of Application Failures can
be reduced. However the application executions resulting with an Incorrect Output are partially increasing
in a few cases. The focus of the above-discussed transformations is to reduce the number of critical
instruction executions to avoid Application Failures. For ADPCM and SAD the improvements are not as
significant as for the other applications. The reason is that for both applications the number of critical
instruction executions are admittedly reduced, however more arithmetic/logic instructions are executed
resulting in e.g., a higher potential for non-decodable instructions. For ADPCM, online table computation
brings slight reliability benefit for higher fault rate cases, i.e. 5 and 10f/MCycles. To achieve further
reliability other transformations need to be applied on top of it. Moreover, for ADPCM, V2 is better than
V1 and B due to data type optimization (for 10f/MCycles, V4 is better than V3). However, when changing
from 32-bit to 16-bit, the benefit is not significant. Therefore, this exploration states that data type
optimization using 32-bit is better in this particular scenario. In general, data type optimization is more
beneficial in cases, where the program has a lot of memory-related operations and even more beneficial if
there is a support for SIMD operations. For CRC, the data type transformation effectively reduces both the
Incorrect Outputs and Application Failures. The modified table implementation increases the table size
and executes online calculations aiming at increasing the performance and reduced number of table

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 90 -

accesses. Therefore, it does not provide the desired effects especially regarding the Incorrect Output
results that can be attributed to the larger table and additional online calculations.

Appl. Ver. Description
ALL B Baseline
ADPCM V1 B+Online table value computation

V2 V1+Data type optimization (32bit loads instead of
16bit)

V3 V2+Data type optimization (storing 16bit data
instead of 8bit), Loop Unrolling (Factor 4)

V4 V3+Data type optimization (storing 32bit data
instead of 16bit)

CRC V1 B+Data type optimization (32bit loads instead of
16bit)

V2 V1+larger lookup table for 16bit data instead of
8bit with 8192 entries+online calculation

DCT V1 B+Common Expression Elimination
V2 V1+Loop Unrolling (Factor 2)
V3 V1+Complete Loop Unrolling (Factor 8)

HT V1 B+Common Expression Elimination
V2 V1+Loop Unrolling (Factor 2)
V3 V1+Complete Loop Unrolling (Factor 8)

IPRED V1 B+Loop Unrolling (Factor 4)
V2 Data type optimization (32bit loads instead of 8bit)
V3 B+Loop Unrolling (Factor 16+4)
V4 V1+Loop Unrolling (Factor 16)
V5 V2+calculation reordering*
V6 V3+calculation reordering

MC-FIR V1 B+Data type optimization (32bit loads instead of
8bit)

Appl. Ver. Description
MC-
FIR
(contd.)

V2 B+Common Expression Elimination
V3 V1+Common Expression Elimination
V4 V2+Loop Unrolling (Factor 8+4)
V5 V3+Loop Unrolling (Factor 8+4)

SAD V1 B+ Data type optimization (32bit loads instead of 8bit)
V2 V1+Loop Unrolling (Factor 16)
V3 B+calculation reordering
V4 V3+Loop Unrolling (Factor 16)

SATD V1 B+Common Expression Elimination, Loop Unrolling
(Factor 4)

V2 V1+Data type optimization (32bit loads instead of 8bit)
V3 V1+additional Loop Unrolling (Factor 4+4)
V4 V2+additional Loop Unrolling (Factor 4+4)
V5 V3+Complete Loop Unrolling (Factor 4+16)
V6 V4+Complete Loop Unrolling (Factor 4+16)

SHA V1 B+Loop Unrolling (Factor 80)
V2 V1+additional Loop Unrolling (Factor 80+80)
V3 V1+Common Expression Elimination
V4 V3+additional Common Expression Elimination
V5 V2+V4

SusanC V1 B+Common Expression Elimination, Loop Unrolling
(Factor 2)

V2 V1+additional Common Expression Elimination, Data type
optimization (storing 16bit data instead of 8bit)

* The “calculation reordering” refers to a modified order in which the
different algorithm/calculation steps are executed.

Table 5.1: Overview of the Application Versions Created
(the Reliability-Wise Best Version is Highlighted).

Pe
rc

en
ta

ge
of

 To
ta

l A
pp

lic
at

io
n

O
ut

pu
ts

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

wrong access to
IM

wrong
branch/call

non-decodable wrong load wrong store INCORRECT

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

wrong access to
IM

wrong
branch/call

non-decodable wrong load wrong store INCORRECT

60%

30%

Baseline 'SHA'

0%

'SHA' With Our
Transformations

w
ro

ng
ac

ce
ss

to
IM

w
ro

ng
br

an
ch

/c
al

l

no
n-

de
co

da
bl

e

w
ro

ng
lo

ad
fro

m
DM

w
ro

ng
sto

re
to

DM

In
co

rr
ec

t
ou

tp
ut

60%

30%

0% 0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

wrong access to
IM

wrong
branch/call

non-decodable wrong load wrong store INCORRECT

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

wrong access to
IM

wrong
branch/call

non-decodable wrong load wrong store INCORRECT

60%

30%

Baseline 'SATD'

'SATD' With Our
Transformations

60%

30%

0%

w
ro

ng
ac

ce
ss

to
IM

w
ro

ng
br

an
ch

/c
al

l

no
n-

de
co

da
bl

e

w
ro

ng
lo

ad
fro

m
DM

w
ro

ng
st

or
e

to
DM

In
co

rr
ec

t
ou

tp
ut

0%

Figure 5.15: Comparing the Distribution of Different Error Types for Baseline and the Reliability

Optimizations for SHA and SATD.

For DCT and HT, a significant improvement can be observed when applying the transformations
stepwise. The reason for that is twofold: On the one hand the number of critical instruction executions is
significantly reduced and on the other hand the vulnerable periods are decreased. Same observations hold
true for SATD and MC-FIR. In case of IPRED, the highest improvement is achieved through stepwise
reduction of the control flow and store instructions for the first two versions. The remaining loop

5.1 Reliability-Driven Software Transformation

- 91 -

unrolling and computation sequence changes also reduce the Application Failures. For SHA the
combination of (excessive) loop unrolling and common expression elimination turns out to be a
reasonable combination. For SusanC the common expression elimination aiming at reducing the number
of critical instruction executions (particularly load/store in this case) done in the first step improves the
behavior of the application. While the second application version still shows a beneficial behavior
compared to the baseline implementation, the overhead for control flow instructions is significantly
increasing. This results in a worse alternative even though the number of load/store instructions could be
reduced further. Figure 5.15 provides the detailed distribution of different types of Application Failures
for SATD and SHA. A comparison between the baseline and a version with all transformations is shown.
For SATD it can be seen that for almost all error types the Application Failures can be reduced
significantly due to the reduction of load/store and control flow instructions. The remaining Application
Failures are mainly due to non-decodable instructions, which is not solvable by the transformations.
Figure 5.14 shows that the proposed transformations provide on average 63.8%, 81.9%, and 67.8%
reduced Application Failures for 1, 5, 10 faults/MCycles, respectively. Furthermore, these transformations
provide on average 43.7%, 16.2%, and -38.6% reduced (negative value denotes an increase) Incorrect
Outputs for 1, 5, 10 faults/MCycles, respectively.

SAD Baseline SAD V3
C-Code

c=cMB[0]; r=rMB[0];
SAD+=ABS((int)c-(int)r));
c=cMB[1]; r=rMB[1];
SAD+=ABS((int)c-(int)r));
c=cMB[2]; r=rMB[2];
SAD+=ABS((int)c-(int)r));
c=cMB[3]; r=rMB[3];
SAD+=ABS((int)c-(int)r));

1
2
3
4
5
6
7
8

C-Code
char c00, c01, c02, c03;
char r00, r01, r02, r03;
c00=cMB[0]; c01=cMB[1];
c02=cMB[2]; c03=cMB[3];
r00=rMB[0]; r01=rMB[1];
r02=rMB[2]; r03=rMB[3];
SAD+=ABS((int)c00-(int)r00)+

ABS((int)c01-(int)r01)+
ABS((int)c02-(int)r02)+
ABS((int)c03-(int)r03);

1
2
3
4
5
6
7

Assembler
ldub [%o0+%g0],%g2
ldub [%o1+%g0],%g1
sub %g1,%g2,%g3
subcc %g2,%g1,%g2
bpos,a 0x120
mov %g2,%g3
add %g3,%g4,%g4
...

1
2
3
4
5
6
7
8

Assembler
ldub [%i0+(0x1)],%i5
ldub [%i0+(0x2)],%i3
ldub [%i0+(0x3)],%o7
ldub [%i1+(0x1)],%g3
ldub [%i1+(0x2)],%i4
ldub [%i0+%g0],%g2
ldub [%i1+%g0],%g1
subcc %g2,%g1,%g4
bpos 0x138
ldub [%i1+(0x3)],%i2
sub %g1,%g2,%g4
and %i5,(0xff),%g2
and %g3,(0xff),%g1
subcc %g2,%g1,%g3
bneg,a 0x14c
sub %g1,%g2,%g3
add %g4,%g3,%g4
...

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Figure 5.16: Illustrating the Impact of Calculation Re-Ordering for the SAD Application.

Note that, the “calculation reordering” applied for SAD in V3 (see Table 5.1) refers to a modified
order in which the different algorithm/calculation steps are executed. The SAD Baseline (B)
implementation is compared with the SAD V3 implementation in Figure 5.16. For ‘SAD Baseline’, in the
first step, the data is extracted from an array (c00-c03; r00-r03) and stored in variables, which are used
afterwards for the calculation of the absolute difference results which are finally summed up. As presented
in the assembly code, the compilation result follows this sequence as the memory loads are executed first
and the calculations of the absolute values and the addition are done afterwards. For ‘SAD V3’, the values
are extracted pairwise and the absolute value and sum calculation is done immediately afterwards.
Summarizing, the idea is to reduce the time the “r” and “c” values reside in registers and adding the result
of the “absolute difference”-calculation earlier to the final result (i.e. the sum of absolute differences).

5.1.6 Selection of Transformations

Different transformations have different impact on different applications due to their diverse data and
control flow. It is not necessary that every transformation will bring the best reliability benefit to for every
application. Among these various transformed versions, the set of versions that are on the Pareto-optimal
frontier should be selected. This way only the effective/appropriate function versions are selected per
application. Table 5.2 – Table 5.4 present a general overview of the transformed reliable code versions
that are selected for a given specific fault rate. Table 5.5 shows the detailed properties of different
versions of the SATD application.

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 92 -

Application Performance of the
Baseline Version [Cycles]

Best Selected
Version Number

Data
Type

Unrolling OM+
CEE

Online
Table

Performance
[Cycles]

ADPCM 49481 V3 49222
CRC 2794826 V1 1740773
DCT 2385 V3 217
HT 2329 V3 164
IPRED 485 V5 224
MC-FIR 311 V3 119
SAD 2124 V4 2173
SATD 2306 V6 231
SHA 2765231 V2 1728195
SUSAN 2755035 V1 2405534

Table 5.2: Best Selected Version for the Case of 1f/MCycles.

Application Performance of the
Baseline Version [Cycles]

Best Selected
Version Number

Data
Type

Unrolling OM+
CEE

Online
Table

Performance
[Cycles]

ADPCM 49481 V3 49222
CRC 2794826 V1 1740773
DCT 2385 V3 217
HT 2329 V3 164
IPRED 485 V5 224
MC-FIR 311 V3 119
SAD 2124 V2 2373
SATD 2306 V5 229
SHA 2765231 V5 1698891
SUSAN 2755035 V1 2405534

Table 5.3: Best Selected Version for the Case of 5f/MCycles.

Application Performance of the
Baseline Version [Cycles]

Best Selected
Version Number

Data
Type

Unrolling OM+
CEE

Online
Table

Performance
[Cycles]

ADPCM 49481 V4 49481
CRC 2794826 V1 1740773
DCT 2385 V2 396
HT 2329 V3 164
IPRED 485 V5 224
MC-FIR 311 V4 124
SAD 2124 V4 2173
SATD 2306 V5 229
SHA 2765231 V5 1698891
SUSAN 2755035 V1 2405534

Table 5.4: Best Selected Version for the Case of 10f/MCycles.

 Cycles #Executed
Instructions

Binary Size
(#Instructions)

Data Type Unrolling OM+
CEE

Online
Table

B 2306 1738 121 8 bit loads (100%) L1: 0 | L2: 0 | L3: 0 0% -
V1 704 528 168 8 bit loads (100%) L1: 4 | L2: 2 | L3: 2 100% -
V2 706 554 194 32 bit loads (100%) L1: 4 | L2: 2 | L3: 2 100% -
V3 425 313 136 8 bit loads (100%) L1: 4 | L2: 4 | L3: 4 100% -
V4 427 339 162 32 bit loads (100%) L1: 4 | L2: 4 | L3: 4 100% -
V5 229 197 197 8 bit loads (100%) L1: 4 | L2: 16 | L3: 16 100% -
V6 231 223 223 32 bit loads (100%) L1: 4 | L2: 16 | L3: 16 100% -

Table 5.5: Detailed example for SATD.

5.1.7 Impact on Critical ALU Instructions

5.1 Reliability-Driven Software Transformation

- 93 -

Reliability improvement along with reduced performance overhead can be achieved by employing
reliability-driven software transformations. Conservatively applying redundancy to various parts of the
code [27][28][77][80][92] may increase the spatial and
temporal vulnerabilities, thus worsening the reliability.
Furthermore, the total sum of the critical instructions becomes
higher with the introduction of redundant critical instructions,
which may ultimately lead to excessive rollbacks and
increased performance/memory overhead due to an increased
probability of Application Failures [28]. This overhead can be
alleviated by employing reliability-driven transformations
which transform the instruction profile with reduced number
of critical instructions, thus reducing the error probability.
Moreover, reducing the control flow and memory instructions
also reduces the number of executions for critical ALU
instructions used for address generation. These critical ALU instructions may cause Silent Data
Corruptions. Figure 5.17 presents a detailed analysis for the SATD application, illustrating that the
proposed transformations reduce >80% of the critical ALU instructions (i.e. address generation, condition
instructions, etc., that denote the predecessor instructions of critical memory and control flow instructions)
for different versions compared to the baseline implementation. Note that critical ALU instructions in the
baseline implementation represent 58% of the total arithmetic instructions in the SATD application, i.e.
732 critical ALU instructions out of 1248 total ALU instructions.

5.1.8 Impact on Performance Overhead when Employed Together with Error
Detection and Recovery Techniques

0

0,5

1

1,5

2

2,5

3

3,5

4

DCT TEST_A SAD
VERSION_B

HT4x4 TEST_A MCHZ
VERSION_3C

IPredHDC
VERSION_1C

SATD TEST_A
0

0,5

1

1,5

2

2,5

3

3,5

4

DCT TEST_A SAD
VERSION_B

HT4x4 TEST_A MCHZ
VERSION_3C

IPredHDC
VERSION_1C

SATD TEST_A

0

0,5

1

1,5

2

2,5

3

3,5

4

DCT TEST_A SAD
VERSION_B

HT4x4 TEST_A MCHZ
VERSION_3C

IPredHDC
VERSION_1C

SATD TEST_A
0

0,5

1

1,5

2

2,5

3

3,5

4

DCT TEST_A SAD
VERSION_B

HT4x4 TEST_A MCHZ
VERSION_3C

IPredHDC
VERSION_1C

SATD TEST_A

4

3

0

Pe
rfo

rm
an

ce

(N
or

m
al

ize
d

to
 th

e
Pe

rfo
rm

an
ce

-
O

pt
im

ize
d

Co
de

) [
x]

SA
TD

IP
RE

D

M
C-

FI
RHTDC
T

2

SA
D

SA
TD

IP
RE

D

M
C-

FI
RHTDC
T

SA
D

EDDI EDDI_ECC_CFE

4

3

0

SA
TD

IP
RE

D

M
C-

FI
RHTDC
T

2

SA
D

SA
TD

IP
RE

D

M
C-

FI
RHTDC
T

SA
D

SWIFT CRAFT

Without Reliability-Driven Transformations With Reliability-Driven Transformations

1

1

Pe
rfo

rm
an

ce

(N
or

m
al

ize
d

to
 th

e
Pe

rfo
rm

an
ce

-
O

pt
im

ize
d

Co
de

) [
x]

Figure 5.18: Comparing Instruction-Redundancy Techniques with and without the Proposed

Reliability-Driven Software Transformations.

The current state-of-the-art error detection and recovery techniques can be applied after applying
reliability-driven transformations. This leads to a reduced performance overhead of applying redundancy.
Figure 5.18 shows the performance of instruction redundancy techniques with and without the proposed
reliability-driven transformations normalized to the performance-optimized code. It demonstrates that
employing these transformations in conjunction with state-of-the-art instruction-redundancy based
techniques (like EDDI [27], SWIFT [28], and CRAFT [28]) provides up to 39.5% (average 21.8%) lower

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

V1 V2 V3 V4 V5 V6

Re
du

ct
io

n
of

 c
rit

ic
al

AL

U
 in

st
ru

ct
io

ns

100%

20%
0%

40%
60%
80%

V1 V2 V3 V4 V5 V6
Figure 5.17: Reduction of Critical
ALU Instructions w.r.t. to Baseline

Implementation for “SATD”.

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 94 -

performance penalty compared to when not applying these transformations. One of the primary reasons
for this reduced penalty is the reduction in branches and store instructions that are used as
synchronization points for inserting the check instructions in SWIFT and CRAFT techniques. In
application programs with extensive load/store instructions (like DCT, IPRED, SATD, and MC-FIR),
instruction redundancy techniques with the proposed transformations incur significantly reduced
performance overhead compared to instruction redundancy without these transformations.

5.1.9 Impact on FVI Reductions

The effects of transformations are also visible as FVI reduction in Figure 5.19. The FVI does not only
affect Application Failures but also Incorrect Outputs for the evaluation. The experiments show that the
proposed transformations are effective to reduce the number of Application Failures, thus improving
software reliability.

0

10

20

30

40

50

60

70

80

90

100100

60

80

Pe
rc

en
ta

ge
 F

VI

Re
du

ct
io

n
[%

]

HT MC-FIRIPRED SATD

40

0

20

DCT SHA

V1 V2 V3 V1 V2 V3 V1 V2 V3 V4 V5 V1 V2 V3 V4 V5 V1 V2 V3 V4 V5 V6 V1 V2 V3 V4 V5

Figure 5.19: FVI Reductions of the Reliability-Optimized Functions

after Applying the Reliability-Driven Software Transformations.

5.1.10 Summary of Reliability-Driven Transformations

In Section 5.1, four different reliability transformations are proposed, namely: (1) Reliability-Driven
Data Type Optimization; (2) Reliability-Driven Loop Unrolling; (3) Reliability-Driven Common
Expression Elimination and Operation Merging; and (4) Reliability-Driven Online Table Value
Computation. These transformations reduce the number of critical instruction executions and
spatial/temporal vulnerabilities. In this way, these transformations reduce the probability of errors. The
detailed experimental evaluation demonstrates that these transformations lead to 60% reduced Application
Failures while reducing the FVI by 57%. Furthermore, when employed in conjunction with different error
detection and recovery techniques, the proposed transformations curtail the performance overhead of
these techniques by 39%. After employing reliability-driven transformations, the instruction
vulnerabilities can be further reduced by optimizing the instruction execution sequence that affects the
temporal vulnerabilities. Towards this end, a reliability-driven instruction scheduler is proposed in this
work as discussed below in Section 5.2.

5.2 Reliability-Driven Instruction Scheduling
An instruction schedule determines the instruction execution sequence which can highly affect the

temporal vulnerability, i.e. vulnerable time periods of an instruction in different processor components
like variable values in the register file or pipeline stage residency. An instruction scheduler optimizing
only for performance may result in degraded reliability due to (1) increased program’s susceptibility to
Application Failures because it scheduled a critical instruction after a pipeline stalling instructions in
order to increase the performance; and/or (2) increased spatial vulnerability because it used more registers
or instruction execution units to achieve a higher performance. Alternatively, an instruction scheduler
optimizing only for reliability may lead to degraded performance due to data hazards occurring due to the

5.2 Reliability-Driven Instruction Scheduling

- 95 -

data dependencies between different instructions, for instance, read-after-write, write-after-write, and
write-after-read. The reliability-driven instruction scheduling turns even more challenging in case of
structural hazards6 because the residency of instructions in the pipeline is longer due to frequent pipeline
stalls and therefore increasing the probability of an Application Failure.

load r1 a
load r2 b
NOP
r2 r2 * r1
load r3 c
load r4 d
store r2 e
r3 r3 * r4
NOP
NOP
store r3 f

load r1 a
load r2 b
load r3 c
r2 r1 * r2
load r1 d
NOP
r3 r3 * r1
store r2 e
NOP
store r3 f

Issue
Cycle

1 load r1 a
2 load r2 b
3

(S1) Performance-
Driven

load r3 c
4 load r4 d
5 r2 r1 * r2
6 r4 r3 * r4
7 NOP
8 store r2 e
9 store r4 f

load r1 a
load r2 b
NOP
r2 r1 * r2
NOP
NOP
store r2 e
load r1 c
load r2 d
NOP

load r1 a
load r2 b
load r3 c
r2 r1 * r2
load r1 d
NOP
store r2 e
r3 r3 * r1
NOP
NOP
store r3 fr2 r1 * r2

NOP
NOP
store r2 f

10
11
12
13
14

(S2) Register File
Reliability-Driven

(S3) Reliability-
Driven under
Performance

Overhead
Constraint

τP1 (reduce area-
wise vulnerability)

(S4) Reliability-
Driven under
Performance

Overhead
Constraint

τP1 (reduce time-
wise vulnerability)

(S5) Reliability-Driven
under Performance

Overhead Constraint
τP2

3

#Reg = 4,
#Cycles = 9
Vulnerable

Periods = 18

4 3

2

3

3

3 2

4

2

3

4

3 2

53

3

3

3 2

3

3 2

3

3 2

3

2

3

3

Arrows show
the Vulnerable

Periods

#Reg = 2,
#Cycles = 14
Vulnerable

Periods = 16

#Reg = 3,
#Cycles = 11
Vulnerable

Periods = 19

#Reg = 4,
#Cycles = 11
Vulnerable

Periods = 16

#Reg = 3,
#Cycles = 10
Vulnerable

Periods = 18
Figure 5.20: Comparing the Performance and Reliability of Different Scheduling Heuristics.

We investigate these issues and motivate the need of considering both reliability and performance in
instruction scheduling with the following example scenarios as shown in Figure 5.20. The assumptions
are: execution cycles (execute stage residency) of load/store = 2 (two load-store units are available),
multiply = 3 (considering a dedicated multiply hardware unit), NOP = 1.

S1. Performance-driven instruction scheduling (GCC List Scheduler [131][132])7: This scheduler
provides the best performance by prioritizing the instructions on the critical path of a software program.
However, it does not consider the spatial vulnerability (dependent upon the number of live registers) and
the temporal vulnerability (i.e. their vulnerable periods) in the scheduling decision function. It thereby
results in increased spatial and temporal vulnerabilities. The S1 schedule uses 4 registers and results in a
total vulnerable period of 18. Moreover, considering the critical instruction nature, four consecutive loads
may lead to an increased susceptibility towards Application Failures due to increased pipeline residency
of critical instructions (e.g., due to a cache miss).

S2. Register file reliability-driven instruction scheduling [133]: This scheduler aims at reducing
the vulnerable periods between different register usages. Assuming the register allocation has been
determined before instruction scheduling, it will also incur a reduced spatial vulnerability (only 2 registers
are used). However, to avoid data hazards, several NOPs are inserted that introduce a performance
overhead of 5 cycles (i.e. 55%) compared to S1 (14 cycles of S2 vs. 9 cycles of S1). As a side effect, this
schedule also avoids the critical instructions to enter in the pipeline during the execution of multi-cycle

6 Occur due to resource conflicts in case the hardware cannot support simultaneous overlapped execution of

instructions. For instance, only one register-file write port is available and the pipeline wants to perform two
writes in the same cycle.

7 Here the Haifa List Scheduler of GCC is used, where an instruction gets into the ready queue once the
dependencies are resolved and all the resources to execute this instruction are available. In GCC, the instruction
scheduling is done in a two-pass fashion; the second pass is applied after the register allocation stage.

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 96 -

instruction (multiply) or blocking instruction (load), thus it reduces the pipeline residency. If a pipeline
stalling instruction (like a multi-cycle multiply instruction or a blocking load instruction) precedes a
critical instruction (load, store, address generation instructions), the critical instruction spends more time
in the pipeline, i.e. increased pipeline residency. This results in an increased susceptibility towards
Application Failures. Therefore, it might be beneficial to avoid scheduling a critical instruction right after
an instruction that may potentially stall the pipeline.

S3. Reliability-driven instruction scheduling under tolerable performance overhead τP1
reducing only spatial vulnerability: Unlike S2, this scheduler reduces the spatial vulnerability of
instructions for all processor components (and not only register file), while keeping the performance
overhead under the tolerable limit (τP1=20%). However, this schedule results in significantly high
temporal vulnerability, i.e. a vulnerable period of 19.

S4. Reliability-driven instruction scheduling under tolerable performance overhead τP1
reducing only temporal vulnerability: Unlike S3, this scheduler optimizes for temporal vulnerabilities
under the tolerable performance overhead of τP1=20%. It reduces the temporal vulnerability of variable 'c'
(stored in register r3) by moving the load instruction right after the first multiply instruction. The S4
schedule results in a total vulnerable period of 16 with an execution time of 11 cycles (similar
performance as of S3). The reduction in temporal vulnerability comes at the cost of an increased spatial
vulnerability (4 registers are used in S4 instead of 3 registers used in S3). However, as a side effect it
increases the program’s susceptibility towards Application Failures by scheduling critical instructions like
load and store right after the multi-cycle multiply instruction.

S5. Reliability-driven instruction scheduling under tolerable performance overhead τP2: Unlike
S3 and S4, this scheduler optimizes for both spatial and temporal vulnerabilities under the tolerable
performance overhead of τP2=10% (i.e. even a tighter performance overhead constraint compared to S3
and S4). This schedule reduces both spatial and temporal vulnerabilities compared to S4 and S3
schedules, respectively, while achieving a performance close to the performance-driven S1 schedule.
Unlike S4, in order to reduce the susceptibility towards Application Failures, it avoids scheduling load
and store instructions after the multiply instruction. Among the five schedules, S5 provides a good
compromise between performance overhead and reliability improvement.

Summarizing the above scenarios: Since an instruction scheduling algorithm determines the
execution sequence of instructions, it also affects the spatial and temporal vulnerabilities of instructions in
different processors components. A performance-driven instruction scheduler may provide reduced
temporal vulnerability for instructions on the critical path, but it may lead to a significantly higher spatial
vulnerability by using more resources or even longer vulnerable periods of the operands of the critical
instruction if they do not lie on the critical path. Therefore, it may lead to an overall higher vulnerability.
A reliability-driven instruction scheduler on the other hand would not only balance the spatial and
temporal vulnerabilities, but also account for critical instructions to improve the software reliability,
though it may incur a performance loss. Therefore, given a user-provided performance overhead, a
reliability-driven instruction scheduler needs to optimize the software reliability which is a complex
function of spatial and temporal vulnerabilities of different instructions w.r.t. different processor
components/resources used during their execution. Finally, a reliability-driven instruction scheduler needs
to incorporate the knowledge of critical and non-critical instructions in order to reduce the program’s
susceptibility towards Application Failures.

5.2.1 Soft Error-Driven Instruction Scheduling

Towards this end, a soft-error driven instruction scheduler is proposed in this thesis that schedules the
instructions with the objective to enhance a software program’s reliability against soft errors under a user-
provided tolerable performance overhead. As mention in Section 3.2, the instructions are classified as
critical and non-critical depending upon the severity of potential program errors due to the hardware level

5.2 Reliability-Driven Instruction Scheduling

- 97 -

faults. As a comprehensive reliability cost function, the proposed soft-error driven instruction scheduler
incorporates the idea of instruction reliability weight, which is a joint cost function of the statically-
estimated instruction vulnerability (spatial and temporal vulnerabilities of various processor components
used during the execution of a certain instruction) along with instruction’s criticality, probabilities of
different error types, and number of dependent instructions. The scheduler employs a lookahead-based
heuristic for evaluating the reliability weights of various scheduling candidate instructions while taking
into account the reliability weights of the successor instructions. The lookahead property reduces the risk
of scheduling a critical instruction after a pipeline stalling instruction.

The proposed scheduler operates at the basic block level and the input is an instruction dependency
graph with the estimated IVI of each instruction, processor model, and the predicted probability of
execution of each basic block. It outputs a reliability-enhanced assembly code with a soft-error-driven
instruction schedule. The scheduler employs a lookahead-based instruction scheduling heuristic that
maximizes the reliability weight of a basic block. In the following, the input, output, and optimization
goal are discussed on a formal basis followed by the novel scheduling heuristic.

5.2.2 Formal Problem Modeling

Input: A Basic Block (BB) is given as a directed acyclic graph G= (V, E), where V is a set of nodes
representing instructions, such that V={n1,…, nN}, where N is the number of instructions in the BB. Each
node is given as a tuple ni={Si, Pi, IVIi, Ti, eTi, di, oi}. Ti, eTi, di, oi= {o1,…, om} are instruction execution
time, earliest time an instruction can be scheduled, and destination/source operands, respectively. For a
node i, Si={s1,…, sx} and Pi={p1,…, py} are the sets with successor and predecessors nodes, respectively. E
is a set of edges representing the instruction dependencies, such that E= {eni nj | ni, nj ϵ V}, where eni nj
denotes the latency of moving from instruction ni to nj. The execution frequencies and probabilities of
basic blocks are predicted using the GCC framework [121][129].

Output: A reliability-optimized instruction schedule GS.

Constraint: A user-provided tolerable performance overhead Pτ, i.e. tolerable performance loss
compared to the performance-driven instruction schedule. In this work, we use the instruction scheduler of
the GCC framework as a basis. It schedules the instruction with the maximum delay (δMAX) first.

Optimization Goal: An Instruction Reliability Weight (ψ) is employed as the objective function, such
that the instruction with the highest reliability weight (ψMAX) is scheduled first in case the performance
loss introduced by scheduling that instruction is below Pτ. In addition to the estimated Instruction
Vulnerability Index (IVI), ψ incorporates the criticality of an instruction w.r.t. Application Failures and the
number of dependent instruction in the same and subsequent dependent basic blocks as discussed below.

Program error types: Considering the type of an instruction, i.e. critical instruction (CI) or non-
critical instruction (nCI), probabilities of an Application Failure and an Incorrect Output (PFailures,
PIncorrectOP-CI, PIncorrectOP-nCI) are employed in the ψ computation as shown in Eq. 5.2 and Eq. 5.3. These
probabilities are obtained using fault injection experiments at a certain fault rate 'f'.

nCIi c Proc IncorrectOP nCI iP c IVI Eq. 5.2

CIi c Proc Failures c Proc IncorrectOP CI i1 P c P c IVI Eq. 5.3

Dependent instructions: The reliability weight of an instruction ψ also depends upon the number of
dependent/successor instructions (ID) in the same basic block (BB, with N instructions) because an
instruction with several successors exhibits a higher potential for fault propagation (see Eq. 5.4). It
illustrates that an instruction might become (reliability-wise) important if it has dependent critical

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 98 -

instructions. Some dependent instructions may also exist in other basic blocks. It may result in fault
propagation to those dependent basic blocks (DB). In this case, the goal is to keep such an instruction near
the end of the basic block. This incurs a negative cost (Eq. 5.5). This observation motivated a lookahead-
based instruction scheduling heuristic.

i ji Djj { CI ,nCI }' I / N Eq. 5.4
i i ji Djk kj { CI ,nCI } k DB' I / N Eq. 5.5

The reliability weights of the complete basic block and software function are quantified as basic block
reliability weight (ψB) and function reliability weight (ψF), respectively.

ii 1...NB / N Eq. 5.6
nExecj

jk Fj { BB } k 0F B / T Eq. 5.7

nExecj is the number of predicted executions of BBj and TF is the execution time of the function 'F'.

5.2.3 Lookahead Instruction Scheduling Heuristic

Due to its lookahead property, the soft-error-driven instruction scheduling heuristic evaluates the
reliability weight of an instruction in conjunction with the reliability weights of its successor instructions
in order to determine a scheduling decision. Moreover, it keeps track of the performance loss compared to
a performance-driven instruction scheduler.

*Store *

+

+

+

… …

Level j-1

Level j

Level j+1

Schedule-2: LookAhead Reliability-Driven
+, +, store, +, *, *;

…… …

Level j

c1

b

a

c

Level j-1

Level j+1 cmb1 bk

d

d1 dn

Schedule-1: Reliability-Driven
+, +, +, *, *,store;

Long Vulnerable Period Short Vulnerable Period
Figure 5.21: An Example of the Soft-Error Driven Instruction Scheduler with Lookahead

Heuristic.

An Abstract Example: Figure 5.21 shows an abstract example of the lookahead scheduling concept.
Let an instruction node ‘a’ be scheduled at level ‘j-1’. Next choices at level ‘j’ are instruction nodes ‘b’,
‘c’, and ‘d’. However, it might be reliability-wise beneficial, if another level ‘j+1’ is explored, as the
dependent instructions of, for instance, ‘b’ are critical instructions and 'c' and 'd' are non-critical
instructions. An example scenario is shown, where a soft-error driven schedule leads to a schedule of “+,
+, +, *, *, store”. However, scheduling the left-side add instruction after the right-side add and scheduling
store after the multiply instruction will result into two reliability issues: (1) the vulnerable period of the
store input operand is increased, (2) the vulnerable period of the address value of the store instruction is
significantly longer. Therefore, when jointly considering the reliability of two levels ‘j’ and ‘j+1’, the
following schedule is obtained “+, +, store +, *, *”, where the left-side add and store instructions are
scheduled before the right-side add. The second schedule exhibits a higher reliability weight (ψB)
compared to the first case. In the above example, only two levels are explored by the lookahead heuristic.
Similarly, further levels could also be explored, but that would exponentially increase the scheduling
complexity. Although the proposed lookahead is generic in its concept, we adopted exploring two levels
in the lookahead as a compromise between complexity and reliability improvement.

5.2 Reliability-Driven Instruction Scheduling

- 99 -

Considering the above example and lookahead for two levels, the optimization goal is:

Maximize [(ψb+maxi=1,…,l ψbi), (ψc+maxj=1,…,m ψcj), (ψd+maxk=1,…,n ψdk)] Eq. 5.8

Due to the lookahead into the subsequent scheduling levels, the instruction scheduler avoids selecting
locally best solutions at a certain scheduling level. It is due to the fact that the reliability weights of the
dependent instructions on the subsequent scheduling levels are also incorporated in the optimization goal.

Lookahead Heuristic: Figure 5.22 presents the flow of the lookahead heuristic for instruction
scheduling (see detailed algorithm in Appendix C). First, the sets of scheduled and scheduling-candidate
instructions are initialized. The successor and predecessor instructions for each instruction are obtained
and the ready list is initialized. Afterwards, initialization of earliest time and current time is performed.
The process iterates until the ready list is empty and all scheduling candidates are processed. As shown in
Figure 5.20, the vulnerable periods of instructions depend upon the scheduled instruction. Therefore, in
every iteration, the reliability weights of all instructions are re-estimated. If within the tolerable
performance overhead constraint, the instructions in the candidate set are evaluated for reliability using a
lookahead approach that selects an instruction with the highest value of the sum of the reliability weights
of the instruction and its successor instruction. Otherwise, the performance-wise best solution is adopted.
Afterwards, the sets of scheduled instructions and scheduling candidates are updated accordingly
considering the resolved dependencies.

Initialize set of
scheduled instr. GS and

candidate instr. GSC

no

All instr. n in V
processed?

Save successors
and predecessors

of n
no

n ready?
Add n to the set

of candidate
instructions GSC

yes

yes

Initialize earliest
time for all in-

structions in GSC

GSC !=

Estimate
reliability weight

All i in GSC
processed?

no

no
Obtain instruc-

tion considering
performance

Pτ > 0?

yes

Evaluate
candidates with

lookaheadSelect perf.-
wise best
solution

Select
reliability-wise
best solution Reliability-

maximizing
instr. found?

yes

no

Select perf.-wise
best solution

no

Update the set
of scheduling

candidates

yes

yes

Figure 5.22: Flow of the Soft-Error-Driven Instruction Scheduler.

5.2.4 Results for the Reliability-Driven Instruction Scheduling

Comparison of Error Distribution Results with State-of-the-Art Scheduling Techniques:
Figure 5.23 presents the comparison of error distribution of the proposed reliability-driven instruction
scheduler (under three different tolerable performance overhead constraints, for three different fault rates)

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 100 -

with the performance-driven scheduler [131] and state-of-the-art reliability-driven schedulers ISSE [81]
and register-file reliability improving scheduler [133]. Compared to state-of-the-art [81] and [133], the
proposed reliability-driven scheduler provides reduction in Application Failures of up to 15% at 5%
performance loss and up to 45% at 20% performance loss, as it incorporates the knowledge of critical and
non-critical instructions in the reliability weight. Specifically, the reduction in Application Failures is due
to a lesser number of corrupted address operands of the critical instructions (load/store instructions) as a
result of reduced temporal vulnerability of these critical instructions that are not on the critical path.
Compared to the scheduler of [133], the proposed scheduler achieves a reduced number of Application
Failures due to reducing the pipeline residency of critical instructions. The primary reason of performance
loss is because of reducing the spatial vulnerability at the cost of temporal vulnerability, such that the
overall vulnerability is reduced.

It is visible by the reduced number of Application Failures when moving from 5% to 10% to 20%
performance loss cases. For ADPCM and AES applications, when moving from 10% to 20% performance
loss, the reliability improvement is small. It is because of the balancing of spatial and temporal
vulnerabilities. Moreover, with an increasing tolerable performance, the percentage of Application
Failures decreases due to the lookahead nature, that prefers scheduling a critical instruction of the
upcoming scheduling level first to reduce its vulnerable periods. However, this may incur a slight increase
in the percentage of Incorrect Outputs, which may be less severe compared to the Application Failures.
On overall, the proposed scheduler provides an increase in the correct output cases by average 22%
(averaged over various tolerable performance overheads), when compared to state-of-the-art instruction
schedulers [81][133]. For fairness, all schedulers were evaluated using the same reliability model.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Perf-Opt

DataFlow

RVF Our@5%

Our@10%

Our@20%

Perf-Opt

DataFlow

RVF Our@5%

Our@10%

Our@20%

Perf-Opt

DataFlow

RVF Our@5%

Our@10%

Our@20%

H.264H.264H.264H.264H.264 H.264 H.264H.264H.264H.264H.264 H.264 H.264H.264H.264H.264H.264H.264

Pe
rf.

80%

40%
60%

20%
0%

IS
SE

Re
g.

Re
l

O
ur

@
5%

O
ur

@
10

%

O
ur

@
20

%

Pe
rf.

IS
SE

Re
g.

Re
l

O
ur

@
5%

O
ur

@
10

%

O
ur

@
20

%

Pe
rf.

IS
SE

Re
g.

Re
l

O
ur

@
5%

O
ur

@
10

%

O
ur

@
20

%

H.264 Video Encoder

100%
1f / MCycles10f / MCycles 5f / MCycles

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Perf-Opt

DataFlow

RVF Our@5%

Our@10%

Our@20%

Perf-Opt

DataFlow

RVF Our@5%

Our@10%

Our@20%

Perf-Opt

DataFlow

RVF Our@5%

Our@10%

Our@20%

ADPCMADPCMADPCMADPCMADPCMADPCMADPCMADPCMADPCMADPCMADPCMADPCMADPCMADPCMADPCMADPCMADPCMADPCM

Pe
rf.

80%

40%
60%

20%
0%

IS
SE

Re
g.

Re
l

O
ur

@
5%

O
ur

@
10

%

O
ur

@
20

%

Pe
rf.

IS
SE

Re
g.

Re
l

O
ur

@
5%

O
ur

@
10

%

O
ur

@
20

%

Pe
rf.

IS
SE

Re
g.

Re
l

O
ur

@
5%

O
ur

@
10

%

O
ur

@
20

%

ADPCM

100%
1f / MCycles10f / MCycles 5f / MCycles

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Perf-Opt

DataFlow

RVF Our@5%

Our@10%

Our@20%

Perf-Opt

DataFlow

RVF Our@5%

Our@10%

Our@20%

Perf-Opt

DataFlow

RVF Our@5%

Our@10%

Our@20%

AES AES AES AES AES AES AES AES AES AES AES AES AES AES AES AES AES AES

Pe
rf.

80%

40%
60%

20%
0%

IS
SE

Re
g.

Re
l

O
ur

@
5%

O
ur

@
10

%

O
ur

@
20

%

Pe
rf.

IS
SE

Re
g.

Re
l

O
ur

@
5%

O
ur

@
10

%

O
ur

@
20

%

Pe
rf.

IS
SE

Re
g.

Re
l

O
ur

@
5%

O
ur

@
10

%

O
ur

@
20

%

AES Encryption

100%
1f / MCycles10f / MCycles 5f / MCycles

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Perf-Opt

DataFlow

RVF Our@5%

Our@10%

Our@20%

Perf-Opt

DataFlow

RVF Our@5%

Our@10%

Our@20%

Perf-Opt

DataFlow

RVF Our@5%

Our@10%

Our@20%

SusanSSusanSSusanSSusanSSusanSSusanSSusanSSusanSSusanSSusanSSusanSSusanSSusanSSusanSSusanSSusanSSusanSSusanS

Pe
rf.

80%

40%
60%

20%
0%

IS
SE

Re
g.

Re
l

O
ur

@
5%

O
ur

@
10

%

O
ur

@
20

%

Pe
rf.

IS
SE

Re
g.

Re
l

O
ur

@
5%

O
ur

@
10

%

O
ur

@
20

%

Pe
rf.

IS
SE

Re
g.

Re
l

O
ur

@
5%

O
ur

@
10

%

O
ur

@
20

%

Susan Smoothing (SusanS)

100%
1f / MCycles10f / MCycles 5f / MCycles

Application Failure Incorrect Output Correct Output

Figure 5.23: Comparing the Error Distribution of the Proposed Reliability-Driven Instruction

Scheduler (at Three Different Tolerable Performance Overhead Constraints) with the
Performance-Driven and State-of-the-Art ISSE [81] and Register File Reliability Improving [133]

Instruction Schedulers for Three Different Faults Rates.

5.3 Reliability-Driven Selective Instruction Protection

- 101 -

Figure 5.24: Comparing the Function Reliability Weight Reductions to ISSE [81].

Analyzing the Impact on Function Reliability Weight: Figure 5.24 presents the reduction in the
function reliability weight (ψF) of the proposed reliability-driven instruction scheduler (under different
tolerable performance overheads) and ISSE [81] compared to a performance-driven instruction scheduler
[131] for different kernels of the H.264 video encoder application. The proposed scheduler reduces the ψF
value by up to 79% (on average 53%) at the cost of a 30% performance loss. For a 5% tolerable
performance loss, the proposed scheduler reduces the ψF value by up to 58% (on average 33%). Note,
when moving from 20% to 30% tolerable performance loss, in some cases (DCT, MC-FIR) there is
limited reliability improvement, because the potential for reliability improvement at the software level for
these applications has already been exploited. In case of SAD, due to excessive load instructions, the
reliability improvement potential is limited. Therefore, it is fully exploited for a 5% tolerable
performance, and there is negligible reliability improvement by the instruction scheduler after the 10%
case. Still in these cases, the reliability improvement of the proposed scheduler is better compared to that
of ISSE [81]. For large-sized programs (like SATD), the proposed scheduler provides consistent reliability
improvements.

5.2.5 Summary of Reliability-Driven Instruction Scheduling

A reliability-driven instruction scheduler is presented that employs a lookahead-based heuristic to
schedule instructions under tolerable performance overhead constraints. It evaluates the reliability of
dependent instructions considering the impact of spatial and temporal vulnerabilities w.r.t. various
processor components. The proposed reliability-driven instruction scheduler provides on average a 22%
reduction of Application Failures compared to state-of-the-art. Furthermore, it reduces the function
vulnerability by 33%-53% on average compared to the state-of-the-art ISSE technique [81]. The above-
discussed reliability-driven transformations and instruction scheduling reduce the error probabilities,
especially related to control flow and memory related instructions, thus leading to a reduced number of
Application Failures. However, for data computing instructions, there is still a need to apply instruction
redundancy to obtain a high degree of software reliability. Therefore, this work also proposes a novel
selective instruction redundancy technique that leverages a detailed program analysis to identify error
propagation paths in the data and control flow along with vulnerabilities, error masking, and error
propagation probabilities. It then applies instruction-level redundancy on selected reliability-wise
important instructions under a user-provided tolerable performance overhead constraint. Such a technique
is complementary and orthogonal to the reliability-driven transformations and instruction scheduling, and
can be applied in conjunction with them to achieve a high degree of reliability.

5.3 Reliability-Driven Selective Instruction Protection
The instruction-level Error Masking Index (IMI) and Error Propagation Index (EPI) capture the error

masking and propagation properties of the software program. These models are used to enable
constrained software reliability optimization on unreliable hardware considering software-level error
detection and recovery feature. These models are used for prioritizing the instructions in basic blocks with
respect to reliability and facilitate the tradeoff between performance loss and reliability improvement.

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 102 -

Towards this end, a selective instruction protection technique is proposed that selectively protects
instructions or group of consecutive instructions in different execution paths in a given function. For this,
it leverages the EPI and IVI to compute the instruction reliability profit.

5.3.1 Reliability Profit Function for Choosing Instructions for Protection

The proposed instruction protection heuristic employs a reliability profit function (RPF, Eq. 5.9)
which is defined as the accumulated reliability efficiency of a group of instructions g, such that the
reliability efficiency is given as the product of EPI and IVI divided by the protection overhead ω. The
overhead of the instruction group g is computed using Eq. 5.9; csi is the set of consecutive instructions
and ci is the checking instruction inserted only at the end of g or at the point of multiple outputs.

(() ()) / +g g csi cicsi g ci gRPF EPI g IVI g ; s.t., t t Eq. 5.9

A Comprehensive Example Comparing Different Potential Solutions: Figure 5.25 shows an
excerpt from an example instruction graph with 13 instructions and the effect of different parameters in
the optimization goal on the efficiency of selective instruction protection under a tolerable overhead
budget of 20 cycles. The table in Figure 5.25 provides IVI, EPI, and ω of each instruction I.

13

5 6 7 8

9 10 11 12

1

3 4

2

...

... ...

(a)

I IVI(I) EPI(I) ω(I)
1 1.0 4.0 4
2 0.90 3.5 3
3 0.85 3.5 8
4 0.65 2.5 3
5 0.40 2.0 5
6 0.85 2.5 2
7 0.85 3.0 3
8 0.95 1.5 8
9 0.95 3.3 5
10 0.65 1.7 2
11 0.85 2.5 3
12 0.60 2.0 2
13 0.80 1.8 3

1, 9, 8, 2, 3, 6, 7, 11, 13, 4, 10, 12, 5

1, 2, 9, 3, 7, 6, 11, 10, 13, 8, 4, 12, 5

6, 2, 1, 7, 11, 9, 12, 10, 4, 13, 3, 8, 5

2, 6, 7, 11, 12, 13, 1, 4, 10, 3, 9, 8, 5

(IVIxEPI)-Based

(IVIxEPI)/ω-Based

Group-Based

IVI-Based

(b)
(c)
(d)

Group BGroup A

Values in the filled-block area
denote the protected instructions

Overhead
Budget

= 20
Cycles

Figure 5.25: An Example showing the Effect of Different Parameters on the Reliability Efficiency
of the Selective Instruction Protection.

IVI-based Selection: Figure 5.25(a) illustrates that when considering only instruction vulnerabilities,
only four instructions are chosen for protection. There may be cases, where an instruction’s vulnerability
to error is quite high, but the probability that this error will be masked until the visible output is also high.

(IVIxEPI)-based Selection: Figure 5.25(b) illustrates that when jointly accounting for IVI and EPI,
instruction 3 is chosen instead of instruction 8. However, still a total of 4 instructions are protected due to
the high protection overhead of instruction 3 and 9. In such scenarios, it might be beneficial to choose
several instructions with a slightly lower IVIxEPI profit and low protection overhead, rather than
protecting only few instructions with high protection overhead. Note, depending upon the instruction
types and protection mechanism, the protection overhead may vary significantly for different instructions.

Instruction Reliability Efficiency-based Selection: Figure 5.25(c) shows that 6 instructions are
protected, while the total reliability efficiency is 0.854 (computed using Eq. 5.9 and values in the table),
which is 46% and 29% better compared to the case (a) having a reliability efficiency of 0.585 and case (b)
having a reliability efficiency of 0.663, respectively. Note, the protection overhead depends upon the

5.3 Reliability-Driven Selective Instruction Protection

- 103 -

protection mechanism. In case, the underlying protection mechanism is simple software level error
detection (like SWIFT [28]) or recovery (like SWIFT-R [71]), the checking or voting instructions are
inserted at the store instructions or leaf nodes of the groups. Therefore, protection overhead may be
curtailed by computing the group reliability efficiency, i.e. cumulative reliability efficiency for a group of
consecutive instructions.

Group Reliability Efficiency-based Selection: Figure 5.25(d) shows the marked regions in the graph
as groups of protected instructions. Note, using group reliability efficiency, 9 instructions are protected,
while the overall reliability efficiency is 0.966, which is 13% better compared to that of the case (c).

5.3.2 Flow of the Selective Instruction Protection Heuristic

Figure 5.26 shows the flow of the proposed selective instruction protection heuristic (see detailed
algorithm in Appendix C) that protects a set of reliability-wise critical instructions in a given instruction
graph G, using a user-defined reliability method R, under a user-provided tolerable performance overhead
budget Pτ. It aims at maximizing the total reliability profit function of a group of instructions to avoid
excessive checking/voting instructions. First, the reliability profit function for each instruction is
individually computed and inserted into a list that is then sorted in the descending order. Since the
generation of all groups of all instructions leads to a significant complexity, the heuristic starts with
protecting individual instructions and incrementally builds instruction groups for protection considering
the predecessor and successors of the protected instructions. Afterwards, it re-estimates their combined
protection overhead and inserts the check/voting instructions at the appropriate locations, e.g., group
boundaries. The reliability profit function is computed for all the groups and the list of instruction is re-
sorted such that the instructions of current best group with the highest reliability profit appear first in the
list, which is later evaluated for protection.

Compute the relia-
bility profit RPF(i) for

all instructions i

Sort list of instr. L
by RPF in

descending order

L != or
Pτ > 0 ?

Get
instruction I

from L

yes

ω(I) ≤ Pτ
Protect(I)

and update
Pτ

yes

no

All I.P and I.S
processed?

Generate
groups

no

Compute
overhead of all

instr. groups

Compute
RPF(i)

Resort L by RPF
in descending

order

yes

no

Insert check
instr. on group

boundaries
Figure 5.26: Flow of the Selective Instruction Protection Technique.

Note, in this work, it is assumed that the control flow is protected using standard techniques like basic
block signature [34]. This work employs SWIFT-R [71] as the basic protection mechanism. However, the
proposed technique for constrained program reliability optimization and models for error propagation and
masking are equally beneficial for selective applicability of other protection mechanisms and orthogonal
to improvements in such program-level recovery mechanisms.

5.3.3 Results for Selective Instruction Protection

The proposed selective instruction protection technique for constrained program reliability
optimization is compared for reliability efficiency with different state-of-the-art program-level protection

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 104 -

techniques [71][76][134] (Figure 5.27 b, c, d) and the baseline unprotected case (Figure 5.27a) for varying
number of tolerable performance overhead cases for different applications. For fairness, all comparison
partners are evaluated for the same fault scenarios, same compiler options, thus same application binaries,
control and data flow graph, same input data, and same basic protection mechanism, i.e. instruction level
TMR and voting. The results solely represent the effect due to difference in the protection cost function
and selection technique.

0

10

20

30

40

50

60

70

80

90

100

10% 20% 30% 40% 50% AVG

0

10

20

30

40

50

60

70

80

90

100

10% 20% 30% 40% 50% AVG

0

10

20

30

40

50

60

70

80

90

100

10% 20% 30% 40% 50% AVG

0

10

20

30

40

50

60

70

80

90

100

10% 20% 30% 40% 50% AVG

SA
D

80
60
40
20

0

DC
T

AD
PC

M
SU

SA
N

SA
D

DC
T

AD
PC

M
SU

SA
N

SA
D

DC
T

AD
PC

M
SU

SA
N

SA
D

DC
T

AD
PC

M
SU

SA
N

SA
D

DC
T

AD
PC

M
SU

SA
N

SA
D

DC
T

AD
PC

M
SU

SA
N

80
60
40
20

0
100

100

10% 20% 30% 40% 50% AVG

SA
D

80
60
40
20

0

DC
T

AD
PC

M
SU

SA
N

SA
D

DC
T

AD
PC

M
SU

SA
N

SA
D

DC
T

AD
PC

M
SU

SA
N

SA
D

DC
T

AD
PC

M
SU

SA
N

SA
D

DC
T

AD
PC

M
SU

SA
N

SA
D

DC
T

AD
PC

M
SU

SA
N

80
60
40
20

0
100

100

10% 20% 30% 40% 50% AVG

(a) Compared to the
Unprotected Case

(b) Compared to the
SWIFT-R-Based

Constrained Protection

(c) Compared to the IVF-Based
Selective Protection

(d) Compared to the Instr. Depen-
dency Based Protection

Tolerable Performance Overhead

Tolerable Performance Overhead

Re
lia

bi
lit

y
Ef

fic
ie

nc
y

Im
pr

ov
em

en
t [

%
]

Re
lia

bi
lit

y
Ef

fic
ie

nc
y

Im
pr

ov
em

en
t [

%
]

Figure 5.27: Comparing the Reliability Efficiency Improvement of the Proposed Selective

Instruction Protection Technique over (a) Unprotected Case; and three State-of-the-Art Techniques
namely (b) SWIFT-R [71] under Constraint; (c) Instruction Vulnerability Factor (IVF)-Based

Selective Protection [76]; and (d) Instruction Dependency based Selective Protection [134].

Overall Comparison with all State-of-the-Art Techniques: First, the experimental observations
that are common in all comparisons are discussed. For the SusanC application, the proposed selective
protection technique obtains a high reliability improvement (average 30%-60%) over all comparison
partners because the SusanC application exhibits instructions with high IMI and EPI indexes having
varying distribution. Due to the joint consideration of error propagation/masking probabilities and
vulnerability in the cost function (Eq. 5.9), the proposed technique stays superior compared to all state-of-
the-art protection techniques and achieves a reliability efficiency improvement of up to 60%-99%
(average 30%-60%). For 50% tolerable overhead, the reliability of the SusanC application reaches close to

5.3 Reliability-Driven Selective Instruction Protection

- 105 -

100%, because all the important non-masking instructions are protected within this tolerable overhead
budget, while masking instructions are left un-protected as errors during these instructions do not affect
the correct program output. This illustrates the benefit of the proposed selective protection technique since
it accounts for error masking and propagation probabilities in the protection cost function. The
improvements are also high in case of the ADPCM application for overhead cases of 30% and higher
(average 30%-40% reliability efficiency improvement). Below 20% the efficiency is low, as important
instructions require more overhead than the tolerable overhead budget due to their high execution
frequency. The improvements in the SAD application are also noticeable, up to 45% and average 10%-
30% reliability efficiency improvement. However, the improvements for the DCT application are
relatively low, due to limited masking probability of instructions and dependency on the earlier
instructions of the algorithm, on average 8%-10% reliability efficiency improvement. For low overhead
cases, for several applications like in DCT and SAD, the savings of the proposed technique are below
10%. This is because of the fact that important instructions, that typically occur in loops, have many
executions and their required protection overhead cannot be fulfilled under the cap of 5% or 10% tolerable
performance overhead. In the following, specific observations for different comparison cases are
discussed.

Comparing with the Unprotected Case: Comparison with the unprotected case shows the best
possible reliability efficiency improvement of the proposed selective protection technique. The proposed
technique provides up to 25%-99% and average 30%-70% improvement in the reliability efficiency
compared to the unprotected case for different applications.

Comparing with the SWIFT-R Technique [71]: SWIFT-R [71] is the most prominent program-
level instruction protection technique that employs TMR with majority voting for protecting all
instructions. Compared to the original SWIFT-R (which is unconstrained to performance overhead), the
proposed technique achieves >3x better reliability efficiency, since the overhead of SWIFT-R is >5x-6x.
For fairness of comparison, the SWIFT-R implementation is modified towards constrained optimization,
such that the overhead constraint is used to determine the number of instructions that can be protected.
Afterwards, the instructions are selected for protection in a sequential manner, i.e. first execute, first
protect. The proposed technique provides up to 20%-97% and on average 10%-60% improvement in the
reliability efficiency compared to the constrained SWIFT-R variant.

Comparing to the Instruction Vulnerability Factor-based Selective Protection Technique [76]:
This technique computes the instruction vulnerability and protects the instruction with the highest
vulnerability factor first. However, this technique does not account for the error propagation properties
and instruction dependencies. Therefore, it works only well for cases where vulnerability is dominant and
error propagation is very low with smooth distribution. In contrast, the proposed selective protection
technique accounts for both vulnerability and error propagation properties. As a result, the proposed
technique provides up to 20%-70% (average 10%-30%) improvement in reliability efficiency compared to
the Instruction Vulnerability Factor-based protection technique of [76].

Comparing to the Instruction Dependency based Selective Protection Technique [134]: This
technique prioritizes and protects the instructions with the highest number of dependent instructions.
However, it ignores the error masking probabilities and instruction vulnerabilities. As a result, in some
cases like for the SusanC application, the technique of [134] provides significantly less protection.
However, in cases like for the DCT application where error propagation is crucial and dominant over
vulnerability, this technique provides good reliability. In contrast, the proposed selective protection
technique provides high reliability efficiency in all cases, as it jointly accounts for error propagation and
masking probabilities, vulnerabilities, and overhead of different instructions individually or jointly in a
group. The proposed protection technique thereby achieves up to 12%-99% (average 7.5%-80%)
improved reliability efficiency compared to the technique of [134].

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 106 -

5.3.4 Summary of Selective Instruction Protection

In Section 5.3, a novel selective instruction protection technique for software program reliability
optimization under tolerable performance overhead constraints is proposed. This technique exploits
program-level error masking and propagation properties to perform reliability-driven prioritization of
instructions and selective protection during compilation. This leverages the statistical models for
estimating error masking and propagation probabilities. The proposed selective protection technique
provides significant improvement in reliability efficiency (on average 30%-60%) compared to different
state-of-the-art program-level protection techniques.

5.4 Multiple Function Version Generation and Selection
Different functions of the same application exhibit distinct instruction profile and control flow

resulting in unique reliability and performance properties, as shown by the varying FVI and execution
time values in Figure 5.28. Moreover, the same function when implemented using different algorithms
exhibits distinct performance and reliability properties. An example in Figure 5.28(b) illustrates that
different sorting algorithms and even different implementations by different programmers have different
FVI and execution time values. Similarly, enabling different transformation options may also result in
significant impacts on the FVI and execution time of the same function. The goal is to select a
representative set of function versions to cover a wide range of possible FVIs and average execution times
for the resulting binary code of a function version.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.00

0.05

0.10

0.15

0.20

0.25

DCT MC-FIR SAD SATD

FV
I

DCT FIR Filter SAD SATD

Execution TimeFVI

4

00.00
0.05
0.10

2

6

8

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

[K
Cy

cl
es

]

0.15
0.20
0.25 (b)

FV
I

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.00

0.05

0.10

0.15

0.20

0.25

Bubble Sort1 Merge Sort1 Merge Sort2 Quick Sort1 Quick Sort2 Selection SortBubble
Sort

Merge
Sort 1

Merge
Sort 2

Quick
Sort 1

Quick
Sort 2

Selection
Sort

Execution TimeFVI

0.00

0.05

0.10

0.15

0.20

0.25

4

0

8

12

16

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

[K
Cy

cl
es

]

(a)

Figure 5.28: Different Algorithms have Different FVI and Average Execution Time: (a) Comparing

Different Sorting Algorithms; (b) Comparing Different Functions of the Same Application.

In the following, the flow for generating up to Ki versions of binary codes is explained. Given is the
function implementations, the code transformation methods, instruction scheduling method, and selective
instruction redundancy technique under a user-specified tolerable performance overhead. Here, the tolerable
performance overhead is defined as an upper bound of the increase in the average-case execution time,
compared to the best performance version under the average-case execution time. As discussed in earlier
sections, it is usually better to first adopt the transformation methods to explore potential reliability
improvement. Following that, these transformation methods are adopted to obtain the corresponding FVI
and average execution time. Among the obtained binary translations, the set of binary version
implementations for RTP Pareto frontier is taken, i.e., none of any two binary version implementations
will dominate each other in both FVI and the average execution time. Then, among all the binary version

5.5 Chapter Summary

- 107 -

implementations, the instruction rescheduling method is further considered to additionally exploit some
local improvement. The set of binary version implementations for RTP Pareto frontier is updated. These
two reliability-driven transformation steps reduce the error probability. Afterwards, the selective
instruction redundancy is applied for software-level error detection and recovery. Figure 5.29 illustrates
different selected versions with reliability-performance tradeoffs. Finally, the obtained pareto-optimal
functions versions are forwarded as an input to the reliability-driven system software for dependable
execution of application software programs.

0.01

0.1

1

VE
RS

IO
N_

OR
IG

IN
AL

VE
RS

IO
N_

1

VE
RS

IO
N_

2

VE
RS

IO
N_

3

VE
RS

IO
N_

OR
IG

IN
AL

VE
RS

IO
N_

1

VE
RS

IO
N_

4

VE
RS

IO
N_

OR
IG

IN
AL

VE
RS

IO
N_

A

VE
RS

IO
N_

B

VE
RS

IO
N_

C

VE
RS

IO
N_

D

VE
RS

IO
N_

OR
IG

IN
AL

VE
RS

IO
N_

1

VE
RS

IO
N_

2

VE
RS

IO
N_

3

VE
RS

IO
N_

4

VE
RS

IO
N_

OR
IG

IN
AL

VE
RS

IO
N_

2

VE
RS

IO
N_

3

ADPCM CRC SAD SHA SUSAN_DERIV

FV
I (

Lo
g 10

Sc
al

e)

1.0

0.1

0.01

v0 v1 v2 v3 v0 v1 v2 v0 v1 v2 v3 v4 v0 v1 v2 v3 v4 v0 v1 v2

FVI – Function Vulnerability Index

ADPCM CRC SAD SHA SUSAN

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

VE
RS

IO
N_

OR
IG

IN
AL

VE
RS

IO
N_

1

VE
RS

IO
N_

2

VE
RS

IO
N_

3

VE
RS

IO
N_

OR
IG

IN
AL

VE
RS

IO
N_

1

VE
RS

IO
N_

4

VE
RS

IO
N_

OR
IG

IN
AL

VE
RS

IO
N_

A

VE
RS

IO
N_

B

VE
RS

IO
N_

C

VE
RS

IO
N_

D

VE
RS

IO
N_

OR
IG

IN
AL

VE
RS

IO
N_

1

VE
RS

IO
N_

2

VE
RS

IO
N_

3

VE
RS

IO
N_

4

VE
RS

IO
N_

OR
IG

IN
AL

VE
RS

IO
N_

2

VE
RS

IO
N_

3

ADPCM CRC SAD SHA SUSAN_DERIV

2
0

v0 v1 v2 v3 v0 v1 v2 v0 v1 v2 v3 v4 v0 v1 v2 v3 v4 v0 v1 v2

Average Execution Time

ADPCM CRC SAD SHA SUSAN

4
6

Av
g.

 E
xe

cu
tio

n
Ti

m
e

[x
10

6
Cy

cl
es

]

Figure 5.29: Performance and Vulnerability of Different Compiled Versions of Different

Applications.

5.5 Chapter Summary
Overall the proposed reliability-driven transformations, instruction scheduling, and selective

protection techniques comprehensively exploit the instruction-level vulnerabilities, error masking and
error propagation properties along with the knowledge of critical and non-critical instructions and their
inter-dependencies. These transformations reduce the number of critical instruction executions and
spatial/temporal vulnerabilities, thereby lowering the error probability during the application execution.
The reliability evaluations of these transformations demonstrate a reduction of 60% in Application
Failures and 57% in the overall vulnerability compared to a performance-optimized code. However, these
transformations do not provide error detection and recovery features. Therefore, additional techniques are
required for instruction-level redundancy to achieve error detection and recovery in order to ensure further
reliability improvements. Towards this end, it is also analyzed that conservatively applying redundancy to
the code without the information of the varying reliability properties of different instructions may increase
the total number of critical instruction executions ultimately leading to increased Application Failures,
excessive rollbacks and increased performance/memory overhead. When these transformations are
employed in conjunction with different error detection and recovery techniques, the proposed
transformations curtail the performance overhead of these techniques by 39%. Furthermore, the
reliability-wise impact of these transformations is distinct for different applications due to the varying
potential attributed to applications’ diverse data and control flow. Therefore, among various transformed
versions, the set of versions that are on the Pareto frontier are selected. Afterwards, a reliability-driven
lookahead-based instruction scheduler is employed that schedules instructions by evaluating the reliability
of dependent instructions while reducing spatial and temporal vulnerabilities and considering the
knowledge of the critical and non-critical instructions. The proposed reliability-driven instruction
scheduler reduces Application Failures by 22% on average compared to state-of-the-art instruction

Chapter 5 Software Program-Level Reliability Optimization for Dependable Code Generation

- 108 -

schedulers. Since the above-discussed transformations and instruction scheduler only reduce the error
probabilities, to achieve further reliability improvements, additional instruction-level protection
techniques are developed that deploy selective instruction redundancy for error detection and correction in
constrained scenarios. The selective protection technique jointly accounts for instruction-level
vulnerability, masking, and error propagation knowledge to prioritize different instructions and selects a
group of most reliability-wise beneficial instructions for applying redundancy under a tolerable
performance overhead constraint. The proposed technique offers significant improvement in reliability
efficiency (on average 30%-60%) compared to different state-of-the-art program-level protection
techniques. In short, the above-discussed software program-level reliability optimization techniques for
dependable code generation supersede state-of-the-art software-level reliability techniques.

The software transformations and selective instruction redundancy techniques presented in this
chapter aim at enhancing software program’s reliability under tolerable performance overhead constraints.
State-of-the-art techniques try to incur no performance overhead or provide full redundancy with a very
high overhead, whereas the techniques presented in this thesis leave it up to the user to specify a tolerable
performance overhead that may be associated with a gain in reliability. Often, a small performance loss
may enable a high reliability gain. The proposed techniques can exploit those scenarios, state-of-the-art
techniques do not.

The techniques proposed in this chapter are leveraged in a reliability-driven compilation flow in order
to generate multiple reliable versions for different application programs/functions that enable various
tradeoff options between reliability and performance. These multiple reliable function versions are
leveraged by other system layers, for instance, by offline and online system software as shown in
Chapter 6, to optimize the reliability under constrained scenarios.

- 109 -

Chapter 6 Dependable Code Execution using
Reliability-Driven System Software

The multiple compiled function versions generated in Chapter 5 are leveraged by the reliability-driven
system software to exploit the vulnerability vs. performance tradeoffs for optimization under constrained
scenarios. This chapter presents several system software level reliability optimization techniques in order
to enable dependable execution of applications on single core processors and multi-/manycore processors,
while exploiting the concept of multiple reliable versions. In case of timing-conscious systems, besides
functional correctness, it is also important to consider the timing correctness (i.e. whether a correct output
is delivered within the deadline or not). To account for both functional reliability (i.e. correctness of
program’s output in the presence of faults) and timing reliability (i.e. deadline misses in the presence of
faults, for instance, due to reliable application execution with performance loss), the system software layer
employs the Reliability-Timing Penalty as the optimization function. First, a novel offline system software
is presented in Section 6.1 that constructs a schedule table for different function versions such that these
schedules offer minimum Reliability-Timing Penalty. Each schedule represents a particular dependable
application composition under a timing scenario. At run-time, in order to provide dependable application
execution for single core processors, a reliability-driven run-time system (Section 6.2) selects appropriate
reliable versions depending upon the execution properties of different functions, deadline, and the
achieved reliability levels.

In case of multi-/manycore systems, further reliability improvements can be obtained by leveraging
the architectural support for redundant multithreading. However, ensuring high soft error resilience in
manycore processors needs to account for other reliability threats (like process variations and aging), too.
Since process variations and aging induce core-to-core frequency variations, employing redundant
multithreading will require synchronization of the outputs of redundant threads executing on different
cores. This may potentially lead to deadline misses, which are undesirable. State-of-the-art redundant
multithreading techniques ignore the core-to-core frequency variations and consider chip-level
guardbanding, which results in a significant loss in the performance potential of the overall chip.
Furthermore, in resource-competing or resource-constrained scenarios, it may not be possible to execute
all of the concurrently executing applications in the redundant multithreading mode. Therefore, it may be
important to prioritize applications depending upon their functional and timing reliability. Towards this
end, this chapter introduces a novel Dependability Tuning system for manycore processors (Section 6.3)
that manages reliable execution of multiple concurrently executing applications considering support for
redundant multithreading, core-to-core process variations, varying resilience properties of different
applications, and multiple reliable code versions. It thereby combines the novel contributions of the whole
thesis in a holistic optimization flow. In particular, the proposed Dependability Tuning system
dynamically adapts the dependability mode at the hardware level through resilience-driven redundant
multithreading tuning and at the software level through variation-aware thread-to-core mapping, and the
selection of reliable code versions under given performance constraints, while considering the core-to-
core frequency variations resulting from the manufacturing induced process variations and run-time aging.
Holistically considering knowledge from multiple system layers enables the proposed Dependability
Tuning system to surpass state-of-the-art single-layer reliability optimizing solutions, as will be
demonstrated using extensive comparison results in Chapter 7.

6.1 Reliability-Driven Offline System Software
Since the execution time of different function versions vary depending upon the input data, the

reliability-driven offline system software determines schedule tables for all the functions such that, these
tables have appropriate function versions across all possible values of the execution time (i.e. remaining
time to final deadline) and the reliability. These versions are selected while considering the already

Chapter 6 Dependable Code Execution using Reliability-Driven System Software

- 110 -

selected versions of the previous functions which collectively offers a reduced Reliability-Timing Penalty
(RTP) when compared to other version combinations. At a certain time, selection of an appropriate
version for a function to be executed next would depend upon the so-far selected function versions, their
execution time, reliability properties, and the application deadlines. To solve this problem, the proposed
reliability-driven offline system software determines a function schedule table such that the resulting
schedules minimize the overall RTP under different execution scenarios.

Figure 6.1 shows an abstract example of the schedule table for a function Fi where the x-axis and the
y-axis show different values of the execution times and reliability, respectively. A single entry G*(i, r, t)
inside the table stores the minimum RTP value of a certain version, and this value contributes to optimize
the overall RTP (i.e. the case where the summation of the RTP values of all the function versions in a
schedule gives the minimum RTP value). In the end, only the version indexes of the selected versions are
stored in another table at an entry j*(i, r, t) which also corresponds to the reduced RTP value at an entry
G*(i, r, t) in the previous table. Therefore, only table j*(i, r, t) is maintained that has the version indexes
that reduces the memory footprint. For instance, 2 bits may be required to store the indexes in contrast to
storing the RTP values that may require more bits.

These tables are constructed using dynamic programming. In the following, an abstract example is
presented to explain how these tables are constructed. Note, for simplification, in this example the
execution time is considered fixed (i.e. not varying which is typically not the case at run-time). Assume
that an application is composed of three functions, i.e. F1, F2 and F3 that have multiple versions as shown
in Table 6.1, each with a certain value of Rij, and the execution time t. The table construction starts from
backwards, i.e. from the last function which in this example is function F3 because if more reliable
versions are selected for the previous functions that have longer execution times then this may lead to
deadline misses, and thus should be avoided (see more details in Section 6.2).

(a) A table for function
version Fi

(b) Version index of function Fi with
the minimum expected RT penalty

Time

Re
lia

bi
lit

y

Figure 6.1: Offline Schedule Table Construction.

Table 6.1: An Example Illustration for Generating Function Schedules
(Selected Function Versions are highlighted in Filled Rows).

Fi Version (j) Reliability (RT) (Rij) Execution Time (t)

F1
1 3 7
2 4 3

F2
1 7 4
2 2 6
3 1 5

F3
1 3 2
2 5 1

6.1 Reliability-Driven Offline System Software

- 111 -

The first step is to find the minimum and maximum range of the reliability values, i.e. Rmin and Rmax,
for every function except F1. In order to obtain this for the function F3, it is required to add up the
minimum and maximum reliability values found in the versions of previous functions, i.e. F1 and F2.
Formally, the Rmin values for the two-dimensional table for F3 is: ܴ݉݅݊ = ∑ ݉݅ ௝݊ ܴ௜௝௡௜ୀଵ , that leads to Rmin=4.
Similarly the Rmax=11 which is computed as: ܴ݉ܽݔ = ∑ ௝ܴ௜௝௡௜ୀଵݔܽ݉ . So the range of the reliability obtained
is between Rmin and Rmax, i.e. 4, 5, …, 11. Now this range means that, at run time if the previously
executed versions of F1 and F2 were the ones with the minimum Rij values (i.e. version F11=3; F23=1),
then the so far achieved reliability, before F3 is executed, will be 4. Therefore, the reliability min/max
range for the function F3 will not go below 4, and above 11 (see Figure 6.2(a), case of F3). In a similar
way, the Rmin and Rmax for the function F2 can be computed by looking at the minimum and maximum Rij
values in function F1, which are 3 and 4, respectively (see Figure 6.2(a), case of F2). However in case of
F1, no previous function is executed yet, therefore, the Rmin and Rmax both are equal to 0 which means that
at the time when the execution starts for function F1, the so far achieved reliability is 0 and the remaining
time is the total time to the deadline. The reliability value denotes the so far achieved system reliability
after these versions are executed.

t1 15tr
Rmin/
max=0

F1

t1 ... 8 15tr

Rmax= 4

Rmin=3

F2
t1 153

Rmax=11

r =8

Rmin=4

F3

F23

...
...

F31F11

D=15r=0; t_remaining = D

F11 (r=3; t=7)

r=3; t_remaining = 8

F23(r=1; t=5)

r=4; t_remaining = 3

F31(r=3; t=2)

(a) Schedule Tables

(b) Run-time Selection of the Function Versions

Figure 6.2: (a) Design-time Schedule Tables (b) Run-time Execution of the Schedule.

The value of the execution time relates to the remaining time to the deadline. Prior to starting the
execution, the elapsed time is 0 as no function has executed so far, which is the minimum time value on
the table. However, the maximum time is the total time which is the final deadline D. The min/max range
for the execution time of all the functions is the same, i.e. from 0 to D. Although the earlier functions are
expected to finish before the deadline, at run-time the execution behavior might change and therefore
version options for all possible values of the execution times are required. For F1, the remaining time to
the final deadline is the complete deadline time, in this case the best function version can be selected with
minimum RTP. However, its execution time still needs to be considered because if the reliability-wise
best version is selected that has a longer execution time, it may affect the version selection decisions for
the subsequent functions. The probability distribution of the execution time of a function is taken into
consideration so that the system can exploit the dynamic execution behavior by selecting suitable versions
for the subsequent functions. Now given that the RTP values for all the function versions are pre-
computed, these RTP values are taken into account while deciding about an appropriate function version
that should be placed inside a table entry across certain r and t values. Figure 6.2(b) denotes how at run-
time these function versions are selected from the schedule tables for execution to compose a reliable
application. D-t denotes the remaining time until the deadline. Depending upon the current execution
behavior of F1 (i.e. its reliability penalty and the remaining time to the deadline), a suitable version for F2
and similarly for F3 is selected to dynamically link the corresponding binary codes of different functions

Chapter 6 Dependable Code Execution using Reliability-Driven System Software

- 112 -

and compose an application. In the following, the optimization objective and the RTP optimization for an
application with one function and for multiple functions are explained.

6.1.1 Optimization Objective

The optimization objective is the Reliability-Timing Penalty (RTP) as explained in Section 4.4.2. Eq.
4.14 is repeated here as Eq. 6.1 for the ease of discussion, where R denotes the reliability function and
miss rate denotes the percentage of deadline misses for the application, and the parameter α is a user-
defined weight to tradeoff the importance of functional reliability and timing reliability depending upon
the system requirements.

RTP R 1 miss rate Eq. 6.1

The objective of the studied problem can be described as follows: Given an application with n
sequential functions, the objective is to generate and execute the application software such that the total
RTP is minimized. If function Fi already misses the deadline, it is clear that the application will miss its
deadline no matter how the rest of the functions are executed. However, it is the users' choice to further
improve the reliability or further improve the performance. Suppose that the performance is preferred, the
version with the minimum average execution time should be chosen. Suppose that the reliability
improvement is preferred, the version with the minimum reliability penalty (hence, higher reliability)
should be chosen. For the rest of the cases, we suppose that ߠi is the preferred version of function Fi when
Fi has already missed the deadline. For notational brevity, we define ߩ௜ = ∑ ܴ௟,ఏ௟௡௟ୀ௜ for the total reliability
penalty from Fi to Fn when function Fi already misses the deadline. Note, here the aim is to minimize the
probability of program errors as a means of improving the overall system reliability. The proposed
approach is orthogonal to other means like error detection and error recovery. Furthermore, a reduced
probability to program errors also corresponds to a reduced number of recovery operations.

6.1.2 Optimizing for the Reliability-Timing Penalty

This section presents the system software-level optimization, given multiple compiled function
versions from Chapter 5, that aim at minimizing the total RTP for a set of functions. Let us start with the
simplest case by considering applications with only one function and then moving further to consider
multiple functions.

Case of One Function: When the application has only one function, we can evaluate the probability
ϕ1,j of deadline misses for a version j of function F1, i.e. ϕ1,j = 1 - C1,j(D), where C1,j(D), is the probability
that the execution time is less than or equal to the deadline D. Therefore, by selecting the version j, the
RTP for the application with one function is defined as αR1,j + (1-α) ϕ1,j. It is clear that the version j* that
minimizes the RT penalty αR1,j* + (1-α) ϕ1,j* should be selected for execution.

Case of Multiple Functions: This subsection explores the minimization of the RTP when the
application has multiple functions. The simplest way is to select the versions statically. However, finding
the optimal selection with the minimum RTP statically is in general NP-hard8. The optimal static version
selection with the minimum expected RTP may still be too pessimistic. Consider the following
motivational example with two functions. Suppose that function F1 is executed with one specific version
with high variability in the execution time, in which R1,1=0.1, P1,1(1)=0.5, and P1,1(9)=0.5. The function
F2 has two versions with fixed execution time, in which R2,1=0.1, P2,1(9)=1, R2,2=0.3, and P2,2(1)=1.
Suppose that the value of D is 10. There are only two options for the static version selection, i.e. with
{F1,1, F2,1} or {F1,1, F2,2}. For the case {F1,1, F2,1} as the deadline miss rate is 50%, the expected RTP is
0.2α + 0.5(1-α). For the case {F1,1, F2,2}, as the deadline miss rate is 0%, the expected RTP is 0.4α. Since

8 It can be reduced from the multiple-choice knapsack problem.

6.1 Reliability-Driven Offline System Software

- 113 -

0.4α > 0.2α + 0.5(1-α) when α > 5/7, for the above example, the following versions for F1 and F2 should
be selected. {F1,1, F2,1} if α > 5/7, and {F1,1, F2,2}, otherwise.

However, the above static assignment is pessimistic, as the function F2 can react according to
different execution behaviors of the function F1. When the function F1 finishes very early, i.e. at time 1,
the function F2 can adopt the high-reliability version F2,1 with longer execution time if the remaining time
to the deadline is sufficiently large. Moreover, when the function F1 finishes very late (i.e. at time 9), the
function F2 has to run the low-reliability version F2,2 with shorter execution time if the remaining time to
the deadline is too small. The above dynamic version selection of function F2 is with expected RTP equal
to 0.35α, which is lower than the expected RTP 0.4α of the optimal static version selection {F1,1, F2,2},
when α ≤ 5/7. Therefore, for the rest of this section, the dynamic version selection will be presented, in
which a schedule table is prepared offline and the scheduler adopts the suitable versions of the functions
according to the run-time execution behavior in an online fashion. Note that, here the timing behavior is
analyzed based on the estimated probability functions to minimize the expected RTP.

The selection of the execution version for function Fi depends on (1) the execution behavior up to
now for the previously executed functions F1, F2, …., Fi-1; and (2) the reaction for the upcoming functions
Fi+1, Fi+2,…,Fn according to the execution behavior of function F1, F2, …., Fi. To capture the properties in
the first part, it is important to know the total reliability penalty of functions F1, F2, …., Fi-1 and how much
execution time that the functions F1, F2, …., Fi-1 have elapsed. All possible scenarios for these properties
are considered by exploring possible values. The properties in the second part will be captured by
referring to a table entry which stores the reactions of Fi+1, Fi+2,…,Fn. The proposed approach builds a 3D
table G() for the execution behavior. Let G(i, r, t) be an entry that stores the minimum expected RTP for
the given n functions under the following conditions: F1, F2, …., Fi-1 has finished at time ‘D-t’, and
F1, F2, …., Fi-1 has total reliability penalty ‘r’.

Furthermore, the decision of G(i, r, t) also depends upon how the functions of Fi+1, Fi+2,…,Fn will
react according to the execution behavior of function Fi. According to the above structure, G(i+1, r', t')
has to be built for all possible r and t values first so that the entries can be used when G(i, r, t) is
considered. Therefore, the procedure starts from the last function Fn. The entries for Fn-1, Fn-2, …, F1 are
built later sequentially. To build G(n, r, t), first find j*(n, r, t) which is the version of function Fn with the
minimum expected RTP, defined as follows; see Eq. 6.2.

݆∗(݊, ,ݎ (ݐ = ቊ ݎ൫ߙ ௝݊݅݉ ݃ݎܽ + ܴே,௝൯ + (1 − (ߙ ቀ1 − ቁ(ݐ)ே,௝ܥ , ݐ > ݐ ,௡ߠ 0 ≤ 0 Eq. 6.2

Therefore, ܩ(݊, ,ݎ (ݐ = ݎ൫ߙ + ܴே,௝∗ ൯ + (1 − (ߙ ቀ1 − ቁ, where j* is j*(n, r, t). Now, let us(ݐ) ∗ே,௝ܥ
consider the case to build an entry G(i, r, t) where i=n-1, n-2,…, 1. When t ≤ 0, j*(i, r, t) is ߠi and G(n, r, t)
is α(r + ρ(i)) +(1- α). Let us now consider the other case when t > 0. If that function Fi selects version j,
the following is known.

 The probability that Fi finishes with execution time x (when x ≤ t) is Pi,j(x);
 The minimum expected RTP for the n functions has been calculated and stored in G (i+1, r+Ri,j, t-

x) when the execution time of Fi is x, where x ≤ t; and
 The probability when x > t is (1- Ci,j(t)) by executing all the functions Fi+1, Fi+2, …, Fn with the

default versions ߠi+1, ߠi+2, …, ߠn, respectively.

For notational brevity, let us define Hj (i, r, t) as the expected penalty by using the above properties,
where,

,݅)௝ܪ ,ݎ (ݐ = ቈන ௜ܲ,௝(ݔ) . ܩ൫݅ + 1, ݎ + ܴ௜,௝, ݐ − ௧ݔ൯݀ݔ
௫ୀ଴ ቉ + ቂቀ1 − ቁ(ݐ)௜,௝ܥ . ߙ) ቀݎ + ܴ௜,௝ + ݅)ߩ + 1)ቁ + (1 − ቃ Eq. 6.3(ߙ

Chapter 6 Dependable Code Execution using Reliability-Driven System Software

- 114 -

The first part in the right hand side in Eq. 6.3 for the integration considers the convolution when the
execution time of Fi,j is no more than t, while the second part considers the impact that Fi,j already misses
the deadline. Suppose that j*(i, r, t) is the index of j which minimizes Hj (i, r, t) in the above equation.
Therefore, for i = n-1, n-2,…,1, ܩ(݅, ,ݎ (ݐ = ,݅)∗௝ܪ ,ݎ .where j* is j*(i, r, t) ,(ݐ

An Example: Figure 6.3 gives an abstract idea of the design space of multiple versions of function
F1, F2 and F3 and the best selected versions during the table constructions. This is a simplified example
scenario to show how suitable function versions are selected which contribute to the minimum RTP of the
complete schedule while also considering the RTP of the previously selected function versions. Note, for
illustrative purposes, some example numbers of the RTP and the execution time are considered. It is
shown that how multiple function versions are selected statically when the execution time is fixed. One
potential way to solve this is using exhaustive search. However, to solve this problem with low
complexity a dynamic programming algorithm can be employed to break the problem into sub-problems,
i.e. first finding the suitable version with reduced RT value for F1, then for F3+F2 and finally for
F3+F2+F1. The algorithm also stores the version of the function F1 with the minimum expected RTP for
each sub-problem inside the table entry j*(i, r, t). Finally, we backtrack the j* table from the entry that
achieves the minimum RTP for the complete problem in order to retrieve the version of each function. The
initial pivot and the red arrows show one schedule comprising of versions F12, F23 and F31, which can also
be retrieved by backtracking. Now depending upon how the run-time execution scenario changes, e.g.,
due to the varying execution times of versions, the run-time system will choose suitable versions from the
lookup table j* that offers a reduced RTP while meeting the deadline. Note, in this work, soft real time
applications are considered. This example of generating and executing the statically determined schedule
is for the case when the execution times of the function versions are not changing (i.e. no variation in the
execution time due to changing inputs). However, at run-time the execution time typically varies.
Therefore, in order to consider these scenarios, the schedule tables are built offline using the dynamic
programming algorithm for all possible combinations of execution time and reliability.

F3

RT3/Exe3 values

F2
3/2 5/1

10/6 5/8 4/7
RT2+RT3/

Exe2+Exe3 values12/5 7/7 6/6

13/13

RT1+RT2+RT3/
Exe1+Exe2+Exe

3 values14/9 8/15 9/11 8/107/14 16/810/14 11/10 10/99/1315/12

F1

For Deadline=15; the versions (Vi) that are selected at run-time are F12, F23 and F31

V2

V3

V1

Pivot

xx xx x x x

Figure 6.3: Finding the best Schedule after Table Construction at Design-time.

Complexity: Building the table G(i, r, t) requires time complexity O(Kit) = O(KiD). Therefore, by
building G(i, r, t) from i=n to i=2, G(1, 0, D) can be built and j*(1, 0, D) can be found, which gives the
solution on how the first function F1 should be executed. Clearly, the function F1 uses only one version
j*(1, 0, D). The other functions may require multiple versions to fully exploit the dynamic behavior of
function executions. Let Rmax be the maximum reliability penalty that the system can achieve, i.e. ∑ ௝ܴ௜,௝௡௜ୀଵݔܽ݉ .The above procedure requires time complexity ܱ(ܭ௜ܦଶܴ௠௔௫) for building G(i, r, t) for r
in the range of 0 and Rmax and t in the range of 0 and D. As a result, the total time complexity is: ܱ(∑ ଶܴ௠௔௫௡௜ୀଵܦ௜ܭ). When all the possible values of execution time and reliability penalties are

6.2 Reliability-Driven Function Scheduling for Single Core Processors

- 115 -

discretized, it is not difficult to see that the above procedure can optimally minimize the expected RTP.
This can be proven by using the mathematical induction hypothesis, where the base case starts from
function Fn. The above presentation requires to build the table for all possible values of t and r. However,
it is not necessary to build some non-achievable entries in the table. For notational brevity, suppose that
Rmax(i) is: ∑ ௝ܴ௟,௝௜ିଵ௟ୀଵݔܽ݉ and Rmin(i) is: ∑ ݉݅ ௝ܴ݊௟,௝௜ିଵ௟ୀଵ . For building G(i, r, t), only r in the range of
Rmin(i) and Rmax(i) have to be considered. Moreover, the units of the time and the reliability penalties can
be changed. For example, one can build the table based on the timing unit of 0.1 msec or 0.01 msec. The
larger the timing unit and the reliability unit are adopted, the more the loss of the accuracy and the less the
complexity for the table construction (see Algorithm C.8). The procedure is the same as the flow
presented above. The time complexity of the offline table construction is, ܱ(∑ ௜ (஽ఋ)ଶ௡௜ୀଵܭ (ோ೘ೌೣఙ)) and the

space complexity is ܱ(݊ ஽ఋ ோ೘ೌೣఙ).

Summary: The schedule tables are prepared offline and an appropriate schedule is determined via
backtracking. After the tables are constructed, the next step is to select an appropriate schedule at run time
that gives reduced RTP. Once this schedule is determined, the run-time system software will perform an
application composition that selects different function versions from the schedule table, depending upon
the current execution behavior (i.e. the reliability penalty and the remaining time to the deadline) and
dynamically links the corresponding binary codes of different functions. Unlike the table construction
procedure, the function executions start from the first function till the last. In the following sections, the
function’s execution scheduling for single core and multi-/manycore processors is presented.

6.2 Reliability-Driven Function Scheduling for Single Core
Processors

Multiple functions are scheduled for execution in a sequential order on a single core processor
architecture, such that the expected RTP for the overall system is minimized. The run-time system
software performs version selection at run time by determining which function version Fi should be
executed. Now the question is how the run-time system software finds a suitable Fi version for all the
functions inside the offline generated tables. The first function version is executed by the version j*(1, 0,
D). But, the other functions Fi may have different versions, depending upon the achieved reliability
penalty of functions F1, F2… Fi-1 and the remaining time to the deadline of this execution instance of the
application. According to Algorithm C.8, when the remaining time to the relative deadline is t and the
reliability penalty for the first i-1 functions is r, the run-time system software looks up the table entry j*(i,
r, t). However, by considering the timing unit δ and the unit σ of the reliability penalties, the run-time
system software instead looks up the entries with j*(i, ⌊r/σ⌋σ, ⌊t/δ⌋δ). Therefore, the binary version
implementation Fi, j* is selected, where j* is j*(i, ⌊r/σ⌋σ, ⌊t/δ⌋δ).

Figure 6.4 presents an example execution scenario that explains the run-time version selection
procedure. Before the execution starts, the overall systems RTP is 0 and the remaining time to the final
deadline is the complete execution time, i.e. D, since no function has been executed so far. For the first
function F1, there is only one entry in the table for the coordinates of reliability 0 and execution time D,
therefore, there is only one function version option, i.e. j*(1, 0, D), which gives minimum RTP. After the
first function F1 is executed, the run-time system software has to find an entry for the subsequent function
versions. Let us suppose function F2 and F3 are also executed and the run-time system software is
selecting a suitable function version for function F4. After F3 is executed, at 60 time units the run-time
system software first analyses the remaining time to the deadline which is 40 time units and the so far
achieved total system reliability, which is the accumulated RTP of all the previously executed function
versions F1, F2 and F3, i.e. r=2.2. The run-time system software will select an entry for function F4, i.e.
j*(4, 2.2, 40), inside the table across for the coordinates r=2.2 (i.e. so far achieved system RTP) and t=40
execution time units (i.e. the remaining time to the final deadline D). The value for the RTP across the

Chapter 6 Dependable Code Execution using Reliability-Driven System Software

- 116 -

reliability 2.2 and execution time 40 is given in table G(i, r, t), whereas the function version index is
stored in j*(i, r, t).

F1 F2 F3

0 10 40 60
remaining time t=40

D

Reliability
penalty

total reliability penalty r=2.2
1.3 0.8 0.1

Which version to
choose for F4?

j*(4,2.2,40)

F5

Figure 6.4: RTP Optimization and Selection of Multiple Functions Versions inside the Table.

After the table j* is built, the entries of j* should be stored in the main memory as a look-up table.
With such a mechanism, deciding a version to be executed requires only O(1) time. However, the space
complexity becomes a problem. Moreover, this may result in many redundant entries. It is not necessary
to keep all the entries of j*. For example, when j*(i, r, t) remains the same within the range of [r1, r2] and
within the range of [t1, t2], the run-time system software only needs to keep one entry for the index.
Therefore, only the representative entries are stored. Moreover, some entries can further be removed if the
difference of the RTP is too small between two entries to reduce the memory overhead. In general, the
system designers can decide the tolerable overhead for the resulting table. Note that the table j* should be
protected so that the run-time system software can select the correct versions for minimizing the RTP. By
removing the sparse entries, as discussed above, the memory protection overhead can be reduced.

Results and Discussion: Following the prominent industrial and research trends of AMD [63] and
IBM [62], for the experiments, it is considered that the memory and caches are protected. The
performance overhead is at most (n-1) times the overhead of fetching one table entry from the main
memory. This is considered negligible, compared to the execution time of one application iteration.
Multiple function versions are profiled on the reliability-aware processor simulator using various different
input data sets to obtain the distributions of errors, vulnerabilities, and execution time (see Section 5.4 for
details on the generated function versions and their reliability/performance properties). The cumulative
distribution function (CDF) of the execution time is generated and partitioned into 10 different steps. The
CDFs for different compiled versions of two applications are shown in Figure 6.5.

Execution Time Execution Time

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

(b) The CDF
of ADPCM

(a) The CDF
of SAD

Figure 6.5: The Cumulative Probability Distribution (CDF) for Two Example Applications from

the MiBench Suite.

For evaluation, various functions of different applications from MiBench are used, for instance, the
H.264 video encoder with three key functions SAD, DCT, and SATD, and other applications like ADPCM,
CRC, SusanS, and SHA. In order to realize a complex real-world application scenario for reliable code
generation and execution, all these applications were integrated into one big application of “secure video
and audio processing”. The following ordering of these 7 functions is used: “SAD, SATD, DCT, SusanS,
CRC, ADPCM, and SHA”. Figure 6.6 presents the results for the “secure video and audio processing”

6.2 Reliability-Driven Function Scheduling for Single Core Processors

- 117 -

application simulated under three different settings of the fault rates, i.e. 10-6, 10-7 and 10-8. According to
the obtained FVIs of the functions and the fault rates, the corresponding reliability penalties are derived.
When the relative deadline increases, the expected RTP decreases, since the timing constraint is less
stringent. Therefore, when the relative deadline is too small, i.e. less than 40 msec, the miss rate is almost
100% for all the version selections, and, hence, the most reliable versions will be selected (or the default
versions will be enabled). On the other hand, when the relative deadline is large, i.e. more than 240 msec,
the miss rate becomes nearly 0%. A proper version selection will have almost no deadline misses, and will
try to minimize the reliability penalties as well. In all the three plots, the RTP values change more in the
range when the relative deadline is between 40 msec and 240 msec, and the algorithm tries to balance the
miss rate and the reliability penalties.

In Figure 6.6, for one given α under a given deadline D, when the fault rate is high, it can be noticed
that the expected RTP is also higher due to the fact that Rij is larger. When α=0.01, the reliability penalties
Rij do not play a very significantly role in our settings, while the deadline miss rate matters. As a result,
similar trends for α=0.01 can be seen in all the above sub-plots. In other words, the RTP trend for α=0.01
is similar to the miss rate. When the fault rate is 10-6, the setting with α=0.5 is the one with the maximum
expected RTP in the simulated cases, but it becomes the one with the minimum when the fault rate is 10-8.
The main reason comes from the settings of Rij. When fault rate is 10-6, the achievable reliability penalty is
between 1.65 and 2.72. When fault rate is 10-8, the achievable reliability penalty is between 0.0165 and
0.0272. Therefore, compared to the deadline miss rates, the reliability penalties play a very significantly
role when the fault rate is 10-6, and play a comparable role when the fault rate is 10-7, and play a very
minor role when the fault rate is 10-8. In Figure 6.6(a), even though the proposed run-time system tries to
minimize the expected RTP, the values of αRij are still too significant, so that the RTP remains very high,
especially when α is large. In Figure 6.6(b), the system tries to make a balance between the reliability
penalties and the miss rate. However, since ∑i minj Ri,j is 0.165 (approximately) when the fault rate is 10-7,
the minimum expected RTP for α=0.5 is still about 0.1.

Fault Rate
= 10-6

Fault Rate
= 10-7

Fault Rate
= 10-8

(a) (b) (c)

Re
lia

bi
lit

y-
Ti

m
in

g
Pe

na
lty

Re
lia

bi
lit

y-
Ti

m
in

g
Pe

na
lty

Re
lia

bi
lit

y-
Ti

m
in

g
Pe

na
lty

Figure 6.6: Expected RTP under different Fault rates.

In addition to the evaluation for the dynamic version selection, the evaluation for the system software
for the following two static version selections is also presented:

 Min. R: is to choose the version j with the minimum Rij for each function Fi to improve the
reliability.

 Min. Avg: is to choose the version j with the minimum average execution time for each function Fi
to improve the performance.

Figure 6.7 presents the simulation results when the fault rate is 10-6 and 10-7 with α=0.5 by
considering the static version selections (Min. R and Min. Avg) and the dynamic version selections based
on Algorithm C.8. Both of the static version selections are worse than the dynamic version selection.
When the fault rate is high (i.e. 10-6), the static version selection with the minimum average execution
time is the worst, since the reliability penalties play an important role for reducing the RTP. This also

Chapter 6 Dependable Code Execution using Reliability-Driven System Software

- 118 -

explains why the static version with the minimum Rij for each function Fi is better. When the fault rate is
low (i.e. 10-7), the difference between the two static version selections is very limited.

(a) (b)

Re
lia

bi
lit

y-
Ti

m
in

g
Pe

na
lty

Re
lia

bi
lit

y-
Ti

m
in

g
Pe

na
lty

Fault Rate
= 10-6

Fault Rate
= 10-7

Figure 6.7: Expected RTP under different Fault rates by comparing to the static version selections

when α =0.5.

Summary: The functional and timing reliability is taken into account to improve the overall
reliability at multiple system layers, i.e. offline system software and run-time system software. At offline,
multiple schedule tables are built for different function versions, such that the expected RTP is minimized.
At run time, reliability-driven function scheduling is performed for a single core processor to minimize
the overall RTP for the complete function schedule. The run-time system software selects suitable
function versions for executions in a sequential fashion depending upon the so far achieved system
reliability (due to previously executed functions) and the remaining time to the application deadline
(considering the time elapsed by the execution of previous function versions). The contributions in this
section targeted the soft error resilience for single core processors. However, the real-world multi-
/manycore processors are also subjected to multiple reliability threats, i.e. soft errors, aging, and process
variations. In such cases, the challenge is to achieve high soft error resilience (i.e. low RTP) while
considering the process variation and aging induced effects on the cores’ frequencies. The contributions in
the following Section 6.3 address this issue while accounting for the concept of multiple function versions
and their varying reliability and execution time properties. In this way, Section 6.3 integrates the works
from the Chapter 4 and Chapter 5 in an integrated cross-layer reliability optimization flow, while also
leveraging the analysis observations from Chapter 3.

6.3 Reliability-Driven System Software for Multi-/Manycores
6.3.1 Soft Error Resilience in the presence of Process Variations and Aging Effects

In a real-world scenario, an on-chip manycore system is subjected to multiple reliability threats like
soft errors, aging and process variations. As discussed in Chapter 2, due to the design-time process
variation and run-time aging, different cores on a chip or different chips on the same/different wafers run
at different frequencies [19][25]. The amount of aging (i.e. frequency degradation induced due to
threshold voltage shift) varies depending upon the stress produced due to the workload and operating
conditions [19][117]. Since different cores in a manycore system are subjected to different amount of
stress as a result of varying workloads, the aging imbalance (i.e. frequency degradation of different cores
at different rates) may further aggravate core-to-core frequency variations.

The current state-of-the-art in soft error resilience for multicores mainly employ redundant
multithreading (RMT) [36][67] that enable execution of redundant threads on different cores and perform
the corresponding comparison and rollback/voting. However, such RMT techniques [36][67] do not

6.3 Reliability-Driven System Software for Multi-/Manycores

- 119 -

account for the process variations and aging effects during the soft error mitigation process, which may
lead to either excessive mismatches/rollbacks because the result of the redundant thread is not available at
the same time instant or significant synchronization delays that can violate the performance constraints
(i.e. degraded timing reliability) of different critical tasks.

Figure 6.8 presents an example scenario illustrating the basic RMT process which is performed
without any frequency variations. Three redundant tasks are executed on three different cores and all the
three outputs are received at the same time t1. Afterwards, considering a TMR-based RMT, the voting is
performed and the final output is received within the deadline (alternatively, a comparison and rollback is
performed in a DMR based RMT implementation). This represents the nominal case that may not exist in
the current manycore processors due to the presence of core-to-core frequency variations. Figure 6.9
presents three different scenarios when the RMT is realized in the presence of core-to-core frequency
variations, which may lead to unaligned arrivals of the outputs and output mismatch at the voter.

Scenario 1 in Figure 6.9(A): Let us assume that we have three different cores (Core1, Core2, and
Core3) exhibiting different performance properties and three redundant copies of the task T1 are
executing on these cores. If the voter is placed considering the performance properties of the Core3, i.e.
after all the task finishes their executions, this may lead to a deadline miss due to the synchronization
issue and may ultimately lead to the timing errors because of the misaligned outputs of the cores.

Scenario 2 in Figure 6.9(B): This scenario shows the case when the voter is placed near the deadline
such that the voting is performed just before the
deadline. However, this may lead to functionally
Incorrect Outputs because the Core3 produces the
output later than the deadline due to its slower
performance. The delayed output in case of Core3
may lead to timing errors. However, in case of
Core1 and Core2, a functionally Incorrect Output
may be delivered because of soft errors since the
remaining time before the voting is higher. The
soft error rate on different cores can be different
due to the process variations and aging effects.
Now the question is: how to perform the core
allocation for the redundant tasks such that the outputs are received synchronously to avoid such issues
while still ensuring both functional and timing reliability?

Scenario 3 in Figure 6.9(C): One potential solution to the above challenge could be to allocate the
cores to the redundant tasks with similar/matching performance properties in order to reduce the
performance gaps between the task execution properties and the cores’ frequency. Such a solution is
illustrated in this scenario, where Core3 has a higher operating frequency (that fulfils the timing
requirements of the redundant task of T1) compared to the Core3 of the scenario 1 and 2. Another
interesting observation can be made when the tasks on the Core1 and Core2 finish much earlier than the
deadline resulting in the slack9. In such cases, a more soft error resilient compiled version can be selected
for these redundant tasks, which may have a longer execution time but still fulfilling the deadline
constraint, to further improve the soft error resilience. This would be beneficial especially in cases of
DMR-based redundant multithreading because a more soft error resilient compiled version would have a
reduced probability of errors and will consequently lead to a reduced number of rollbacks, thus a reduced
performance overhead to ensure a reliable operation. The challenge here would be to select an
appropriate compiled version depending upon the core’s frequency, deadline, and the execution
properties of the selected version that would result in a particular slack value.

9 If the actual execution time is less than the estimated worst-case execution time, the unused time is called slack.

C2

T1 T1

t0
t1
t3...

Buff

Deadline

Buff

C1 C3

T1

Buff

Voter

Figure 6.8: RMT without Frequency Variation.

Chapter 6 Dependable Code Execution using Reliability-Driven System Software

- 120 -

time

Deadline

T1

Voter

0 2 4 8 10 11 1312

Deadline

T1

Voter

0 2 4 8 10 11 1312

T1

Voter

0 2 4 8 10 11 1312

Deadline

time

time

Core1

Core2

Core3

slack

slack

time

Deadline

T1
0 2 4 8 10 11 1312

Deadline

T1
0 2 4 8 10 11 1312

T1
0 2 4 8 10 11 1312

Deadline

time

time

Voter

Voter

Voter

Core1

Core2

Core3

time

Deadline

T1
0 2 4 8 10 11 1312

Deadline

T1
0 2 4 8 10 11 1312

T1
0 2 4 8 10 11 1312

Deadline
time

time

Voter

Voter

Voter

Core1

Core2

Core3

(A) (B) (C)
Figure 6.9: Effects of Core-to-Core Frequency Variations on the RMT in Timing-Constrained

Scenarios.

6.3.2 Dependability Tuning System for Soft Error Resilience under Variations

In order to address the above-discussed challenges and to achieve efficient soft error resilience in
manycore processors under process variation and aging-induced core-to-core frequency variations, this
thesis presents a novel Dependability Tuning (dTune) system; see Figure 6.10. The dTune system
leverages the knowledge of variable vulnerability and error masking properties of different applications
and multiple reliable code versions, that provides important means to compensate for the process variation
and aging induced frequency variations, while at the same time providing distinct soft error resilience.
Furthermore, our detailed error analysis and varying vulnerability/masking profiles in the earlier chapters
illustrated that not all applications may require the same level of dependability. Furthermore, different
compiled versions for different application functions exhibit distinct reliability and execution time
properties. Hence the diversity in the error distribution and masking properties of different application
function versions is exploited for dependability tuning at the hardware and software levels, especially
under resource competing scenarios.

Hybrid RMT Tuning

Reliable Application Version
Tuning and Variation-Aware

Core Assignment

Processor Aging Estimation

In-House
Low-Level

Aging
Estimator

dTune: Adaptive Dependability
Tuning

Reliability-
Driven

Compiler

Performance Overhead Constraint
and number of Task Versions

For each
Task

T1

Tn

...

T2

T3

...

Multiple
compiled

Task
versions

Choose
Performance-
wise Better

Tasks Version

Core-to-Core Process
Variation Map

(a)

pp
Core1 Core2

Core9 Core10

Core17 Core18

Core25 Core26

Core33 Core34

Core41 Core42

Core49 Core50

Core57 Core58

Core3 Core4 Core5 Core6 Core7 Core8

Core11Core12 Core13 Core14Core15 Core16

Core19 Core20Core21 Core22Core23 Core24

Core27 Core28Core29 Core30Core31 Core32

Core35 Core36Core37 Core38Core39 Core40

Core43 Core44 Core45 Core46Core47 Core48

Core51 Core52 Core53 Core54Core55 Core56

Core59Core60 Core61 Core62Core63 Core64

Fastest
Processor

Slowest
Processor

Figure 6.10: The Proposed dTune System for Dependable Application Execution.

The problem of compiler-driven dependability tuning poses the following challenges:

6.3 Reliability-Driven System Software for Multi-/Manycores

- 121 -

1) Dynamically selecting an appropriate dependability mode (e.g., activation or deactivation of
redundant multithreading – RMT) in manycore processors for different applications under
different performance and area constraints. Such an RMT tuning (or in other words, RMT mode
selection) needs to account for (a) diverse soft error vulnerability, error masking, and performance
properties of different applications, and (b) the encountered error rates.

2) Dynamically selecting an appropriate reliable code version for each application considering the
core-to-core frequency variations due to design-time process variations and run-time aging-
induced performance degradation.

3) Mapping the selected version on the allocated set of cores at run time such that, in case of RMT,
the execution properties of the redundant threads are closely matched considering the frequency
variations in the underlying hardware.

To evaluate such a dependability tuning system, there is also a need for a processor aging estimation
framework (see details in Chapter 7).

Figure 6.11 shows the detailed operational flow and overview of the proposed dTune system. The
inputs are: process variation map and aging estimates for all cores under a given run-time scenario, a set
of concurrently executing tasks along with their multiple reliable code versions, and their execution time
and reliability properties. Our dTune system improves the system dependability through the following two
key operations (explained in detail in the subsequent sections): (1) Dynamic RMT Adaptations and Core
Allocation, and (2) Dynamic Reliable Code Version Selection.

Hybrid Redundant Multithreading (RMT) Tuning

Reliable Code Version Tuning and Variation-Aware Core Assignment

Estimate Perf. & RTP for all Tasks Sort Tasks w.r.t RTP

Initialize Core Allocation

Activate RMT for the Tasks with
highest RTP

RMT Activation Decisions

Calculate Max # Cores available for RMT Select Performance-wise best Compiled Code Version

Monitor Errors & Update RMT
Outcome Histogram

High error
rate.?

Deactivate RMT

Reliable Code Version Tuning
Check RMT Mode
RMT

Activated?
Perf.wise

best
version

Select Version with min
RTP (i.e. highest reliability),

meets the task deadline

Variation-Aware Core Assignment

Sort task list
w.r.t RTP

Select un-mapped task
with highest RTP

Find best core considering
variations, perf. of selected task

version & communication overhead

Assign the Core to the selected task

Reliable Code Re-Tuning
Check RMT Mode

Keep
Perf.wise

best version

Return code version
considering core’s frequency

and providing the best reliability

RMT
Activated?

Figure 6.11: Operational Flow of the Proposed dTune System.

Formal Notations: Before proceeding to the algorithms of different components of the dTune
system, the formal notations for hardware and application are presented.

Hardware Architecture: We consider a manycore processor C={C1, C2, … CN} with N ISA-compatible
homogenous RISC cores (e.g., a pipelined LEON3 embedded processor), but heterogeneous w.r.t. their
performance capabilities due to the design-time process variations or run-time NBTI aging effects. Each
core has a private instruction and data cache. Due to the varying workloads, different cores execute at

Chapter 6 Dependable Code Execution using Reliability-Driven System Software

- 122 -

different frequencies to ensure correct execution and to avoid delay faults, i.e. each Ci is associated with a
frequency fi. In this work, RMT can be activated in the DMR or TMR modes.

Application: An application is given as a task graph G=(T, E), where T is a set of M nodes representing
tasks, such that T={t1, t2, …, tM}. E is the set of edges denoting task dependencies: E={exy | (tx,ty)ϵT}. Each
task tj is compiled using the reliability-driven compiler that generates Kj task versions: ti={t(i,1), t(i,2), …, t(i,Kj)}.
Each t(i,k) version has distinct reliability and performance properties (in terms of execution time) L(i,k). The
task reliability is quantified using the Reliability Timing Penalty (RTP) metric that jointly accounts for the
functional and timing reliability. The functional reliability is quantified as the Function Vulnerability Index
(FVI). For a given version, the timing reliability is given as the probability of deadline miss (ϕ(i,k)), e.g., due
to a slow core as a result of process variation and/or aging. For a given raw error rate ERraw, The formula of
RTP in Eq. 6.1 can be revised as Eq. 6.4 to obtain the net error probability for a given function version. A
small value of RTP corresponds to a more reliable task execution.

() () () ()()i,k i,k raw i,k i,kRTP t FVI ER L 1 Eq. 6.4

6.3.3 Dynamic RMT Adaptations and Core Allocation

To enable hardware-level dependability tuning, the concept of hybrid RMT tuning is employed. For
different concurrently executing application tasks, the RMT activation/deactivation decisions and variation-
aware core allocation to all the redundant tasks are performed at run time. It jointly accounts for the
applications’ reliability and performance properties along with the history of encountered errors at run time
under given area constraints and task deadlines. An appropriate RMT mode is selected at run time depending
upon the RTP and the performance requirements of the currently executing tasks, available number of cores,
and the history of encountered errors. The RMT is activated for the reliability-wise critical tasks (i.e. tasks
with the highest RTP) while considering their deadlines. Figure 6.11 illustrates the key steps for hybrid RMT
tuning. Detailed algorithms are provided in Appendix C to ensure reproducibility.

Hybrid RMT Tuning: It accounts for both application-level knowledge of RTP and the hardware-
level monitored error history. The goal is to assign an appropriate RMT mode to the tasks based on their
RTP, performance properties, and performance variations in the underlying hardware. In the first step, the
tasks’ RTP and performance are estimated, a task list is created and sorted by the RTP, and the number of
free cores is calculated. In order to adapt the RMT mode, a history of outcomes of RMT, i.e. error or no
error after the comparison of redundant threads, is maintained. Since the task with the highest RTP is the
most reliability-wise critical task, it is always executed in the RMT mode. In case errors are encountered,
the history is updated and the RMT mode of other tasks is adapted. The underlying rational is: in case of
intermittent or transient faults, other tasks may also get affected. Since the critical task has the highest
vulnerability, it is more likely to experience errors during its execution (this may change depending upon
the fault location). However, if the vulnerability of another task is increasing, its RTP will also increase
and this task will be put in the RMT mode. In order to facilitate baseline execution for each task, at least
one core is allocated to every task. In case of resource deficiency, the RMT mode is selectively turned-off
and the tasks with RMT are downgraded to free the cores for other demanding tasks in the priority order
determined by RTP. Afterwards, the remaining cores are allocated to the other reliability-wise important
tasks (i.e. with respect to their RTP values). In this case, the history of encountered errors is evaluated in a
weighted manner giving a higher importance to recently conducted comparisons. Note, in case of
dependent tasks where the previous output gives a mismatch, it is assumed that the error is recovered by
task re-execution before its output is served as an input to its dependent task.

6.3 Reliability-Driven System Software for Multi-/Manycores

- 123 -

6.3.4 Dynamic Reliable Code Version Selection

To enable software-level dependability tuning, a dynamic reliable code version selection technique is
employed. It selects an appropriate reliable code version for different tasks and their redundant task copies
considering the selected RMT mode. Afterwards, an appropriate core, from the allocated set of cores to a
task, is assigned for its execution. The core assignment takes core-to-core frequency variations into
account such that the performance capabilities of the assigned core match the average-case execution time
properties of the selected code version. A suitable core with distinct attributes (i.e. frequency) is
considered while activating the redundant execution. For instance, if a task has a high RTP, a slower core
may not be a suitable option as it may increase the number of program errors during single execution or it
may increase the number of mismatches in case of RMT. Similarly, a relatively less-aged core may be
beneficial to be assigned to a task with high RTP while relatively more-aged cores with performance
degradation may be allocated to tasks with low RTP. After the variation-aware core assignment, the
performance capabilities of the assigned core are known. Therefore, the reliable code version can be re-
tuned, i.e. a more reliable code version can be executed within the time budgets due to the available slack
while still meeting the task deadline. Figure 6.11 illustrates key steps for reliable code version tuning and
the variation aware core assignment. Details of methods adopted for these steps are explained below and
the corresponding algorithms are provided in Appendix C.

The reliable code version tuning is performed in the following three steps (see details below). First, an
initial version selection is performed based on the task deadline and RTP properties. Afterwards, an
appropriate core from the task’s allocated pool of cores (considering process variation and aging-induced
effects) is assigned to this task version such that the performance capabilities of the assigned core match
the execution time properties of the task version. In the last step, the version re-tuning is performed, i.e.
the version selection is refined to match the assigned core’s performance capabilities as much as possible
in order to compensate for the aging-induced effects. Note that such a selection cannot be performed at
design-time because the amount of frequency variation due to aging and the decision of which task
executes on which core cannot be predicted at design-/compile-time.

Step 1 – Reliable Code Version Tuning: It determines an appropriate soft-error resilient compiled
version depending upon the task deadline and its RTP. It differentiates between the tasks with and without
RMT mode assigned. For tasks with RMT (i.e. having more than two cores supporting TMR based RMT),
the performance-wise best version is selected as faults can be detected and corrected, thus meeting
deadline is the utmost priority. In other cases, the reliable code version with the lowest RTP (i.e. best
reliability) is selected that can meet the deadline constraint when running on the slowest free core as the
initial step and then refines in the following Step-3 considering frequency variations of different allocated
cores.

Step 2 – Variation-Aware Core Assignment: It accounts for process variations and aging-induced
frequency degradation by assigning a specific core to given tasks and its redundant copies. The
assignment starts with the reliability-wise critical task first, i.e. tasks are sorted w.r.t. their RTP. It is
beneficial for tasks with the highest reliability and deadline demands to acquire the fastest cores. For the
RMT case, three performance-wise best free cores are evaluated for matching the task execution time
(considering its communication time and performance on the core) and the core offering the best solution
is selected. The aim is to balance the communication overhead and the performance that the particular
core provides. In case a task executes in the RMT mode, the cores selected for the redundant threads of
the task are the ones having the smallest distance to the core already selected. This is important for
avoiding any unnecessary performance penalty while comparing the results of the redundant threads. For
example, in case of RMT, the core(s) executing the redundant thread(s) is/are situated farther than the core
executing the original thread, it may happen that the communication overhead of a farther core is too high
and may cause a delay in determining the final result. In this case, a relatively slower core but near to the
core with the original thread may be a better option to avoid the communication overhead. However, if a

Chapter 6 Dependable Code Execution using Reliability-Driven System Software

- 124 -

farther core has the best speed and the task version running on it is also the best from the performance
perspective, then it may happen that the output is delivered well in time. In this case it may be beneficial
to select the best core which may be farther away.

Step 3 – Reliable Code Version Re-Tuning: In the last step, the potential for task version
improvements based on the individual performance characteristics of the selected core is exploited. For
tasks running in the RMT mode, the performance is balanced based on the slowest core, i.e. selecting a
reliability-wise better version on a faster core that still finishes at the same time as the task on the slowest
core running the fastest available task version. Otherwise, it is analyzed if the task version can be
improved from the reliability perspective while meeting the deadline, as the actually selected core is now
known.

An Example: Figure 6.12 shows an example illustrating the basic procedure of the dTune system
highlighting the hardware-level and software-level dependability tuning. At first the cores with similar
performance properties are selected to minimize the performance gaps. However, still there are some
available slacks which are exploited to select an appropriate task version that finishes before the deadline.
The two major steps of the dTune system are shown in the figure: (1) Cores allocated with approximately
similar performance properties, (2) Exploiting the slacks to execute more reliable compiled task versions
in RMT which will lead to an aligned output at the voting before the deadline, thus minimizes the output
mismatches.

time

Core1
Deadline

T1
0 2 4 8 10 11 1312

Core2

T1
0 2 4 8 10 11 1312

Core3

T1
0 2 4 8 10 11 1312

time

time

Slack

Voter

Voter

Voter

Deadline

Deadline

Slack

Slack

time

Core1

T1a
0 2 4 8 10 11 1312

Core2

T1b
0 2 4 8 10 11 1312

Core3

T1c
0 2 4 8 10 11 1312

time

time

Deadline

Deadline
Voter

Voter

Deadline

T1a

T1b

T1c

Voter

(A) (B)
Figure 6.12: Exploit Slack and Leverage Multiple Reliability-Driven Compiled Task Versions

Summary: In this section, an adaptive Dependability Tuning (dTune) system for manycore processors
is presented that leverages the knowledge of varying RTP and execution time properties of different
compiled versions of different tasks along with the core-to-core frequency variations (resulting from the
manufacturing induced process variations and run-time aging). The dTune system dynamically adapts the
dependability mode at the hardware level through hybrid redundant multithreading tuning and at the
software level through selection of reliable code version under given performance constraints.

Since the dTune system combines all the novel techniques proposed in this thesis to realize a cross-
layer reliability optimization flow, the detailed results and experimental evaluation and comparison to

6.4 Chapter Summary

- 125 -

different state-of-the-art single-layer techniques under constrained scenarios is presented in Chapter 7.
Furthermore, the experimental setup and implementation details along with different inputs are provided
in Appendix A.

6.4 Chapter Summary
This chapter presented three key contributions that leverage multiple system layers (i.e. compiler,

offline and online system software, and partly hardware to obtain monitored statistics) to enhance the soft
error resiliency in single core processors and in multi-/manycore processors subjected to process
variations and aging. An offline system software generates multiple function scheduling tables
considering the varying vulnerability and execution time properties of different compiled versions of
different functions/tasks in an application while minimizing the Reliability-Timing Penalty. Afterwards, a
run-time system for single core processors is proposed that selects appropriate function versions for
dependable application composition in order to improve the overall soft error resilience. It accounts for
the so-far achieved reliability and the remaining time until the deadline depending upon the previously
executed functions. Experimental results demonstrate that the proposed techniques balance the miss rate
and the reliability penalties. However, this technique cannot be employed in multi-/manycore systems as
the overhead of the schedule table for each core will be very high. Also, in a manycore system, other
reliability threats (like process variations and aging) need to be considered during the soft error resilience,
because these threats manifest as core-to-core frequency variations that will modify the execution time
properties of different functions. Furthermore, a manycore processor may feature architectural support for
redundant multithreading that is not exploited by this run-time system for the single-core processors.

To address these limitations, a novel Dependability Tuning system is proposed for multi-/manycore
processors that dynamically adapts the dependability mode (1) at the hardware level by selectively
activating and deactivating the redundant multithreading mode for different concurrently executing
applications; and (2) at the software level by selecting an appropriate compiled version for each task and
its redundant thread, and mapping these compiled versions to appropriate cores that match the
performance requirements of the threads. The proposed Dependability Tuning system aims at improving
the soft error resilience by minimizing the accumulated Reliability-Timing Penalty for all the concurrently
executing applications under core-to-core frequency variations.

The proposed contributions surpass the state-of-the-art redundant multithreading techniques by
holistically accounting for the multiple reliability threats during soft error resilience, interactions between
compiler and system software through exchange of multiple reliability versions, and joint consideration of
functional and timing reliability. Since the Dependability Tuning system integrates the novel techniques
of this thesis in an integrated optimization flow, the detailed evaluation and comparison to state-of-the-art
is provided in Chapter 7 that will demonstrate the benefits of employing a cross-layer software reliability
optimization flow compared to single-layer solutions. The detailed experimental setup is explained in
Appendix A.

- 127 -

Chapter 7 Results and Discussion
This chapter presents reliability improvement results of the proposed cross-layer reliability

optimization flow (integrating all the novel contributions of this thesis) compared to state-of-the-art
single-layer reliability optimizing techniques. Evaluation of individual contributions compared to their
relevant state-of-the-art techniques has already been presented in the respective chapters, i.e. Chapter 4
and Chapter 5. First the processor synthesis, aging estimation, and process variation maps are presented in
Section 7.1. Section 7.2 presents different benchmark applications from the MiBench benchmark suite
[111]. Section 7.3 presents an overview of comparison partners, parameters considered for evaluation, and
an overview of the results explained in subsequent sections. Section 7.4 presents the summary of
comparison results for various chip sizes, numerous process variation maps, and various scenarios of
simultaneously executing applications. Section 7.5 and Section 7.6 present more in-depth results for
different chip sizes, different application scenarios, and selected chips, respectively.

7.1 Processor Synthesis and Performance Variation Estimation
7.1.1 Processor Synthesis

To analyze the reliability of a circuit, the target design needs to be synthesized first to obtain the gate-
level netlist where the characteristics of individual gates originating from a technology library can be
considered afterwards. The Synopsys Design Compiler [122][123] is used to synthesize the LEON3
processor and to obtain a netlist file. The Synopsys Design Compiler is a logic synthesis tool and is part of
the Synopsys EDA tool chain. Prior to logic synthesis, the behavior-level target design needs to be
verified in order to examine if the design is fulfilling the requirements. For that the ModelSim [124]
simulation tool is used. The LEON3 processor is synthesized with the system clock frequency of 300
MHz, 0.81 Volt, and the junction temperature of 125°C. The input to the Design Compiler are the VHDL
files of the target design, a TSMC 45nm low-power standard cell library file and an execution TCL script.
Depending upon the technology library, the characteristics and process corners vary, e.g., gate length of
the transistors, operating temperatures and voltages, timing properties, etc. For the Instruction Cache (I-
Cache) and Data Cache (D-Cache), the configuration setting is 1 set, 4Kbyte/set and 32Byte/line. For the
Memory Management Unit (MMU), the configuration setting is 8 instruction TLB entries, 8 data TLB
entries, fast write buffer and 4k MMU page size. The output of the Design Compiler is the gate-level
netlist file of the target design, standard delay files, and a report of area, power and timing estimation
result for the target design. The area and power results are shown in Table 7.1. ModelSim [124] is used for
gate-level simulations and to generate the signal probabilities that are later used for aging estimation.

Component Area [#Gate Equivalents] Component Power [mW]
 Leakage Dynamic

Pipeline 7.77E+03

Pipeline 7.34E-02 7.88E-01
Cache 4.40E+03 Cache 3.89E+00 7.48E+01
Register 2.87E+03 Register 2.60E-01 4.29E+00

Others 4.38E+03 Others 1.01E-01 1.14E+00
Total 19.42E+03 Total 8.53E+01

Table 7.1: Processor Synthesis Results for Area and Power for 300 MHz

7.1.2 Processor Aging Estimation

The processor aging tool chain, developed in this thesis, estimates the aging of a processor’s critical
path under varying activities/workloads. The inputs to the developed processor aging estimator are the
netlist and aging estimates of various logic elements obtained from an accurate in-house low-level aging
estimator (developed together with an industrial partner and the Virtherm-3D team from SPP1500 [118])

Chapter 7 Results and Discussion

- 128 -

that considers the NBTI-induced aging. As discussed in Section 2.2, NBTI-aging manifests as the increase
in the threshold voltage Vth by an amount ∆Vth. To compensate this effect, the circuit needs to execute at a
lower frequency by a factor of ∆f, otherwise the circuit output may be faulty due to the timing errors. The
device-level NBTI aging model (Eq. 7.1) is obtained together with an industrial partner and it is based on
the measured sample data from 65nm to 22nm following the reaction-diffusion theory [13].

1500 T 4 1/ 6 1/ 6
th ddV 0.05 e V y d Eq. 7.1

∆Vth is the mean threshold voltage shift in Volts, T is the temperature in Kelvin, Vdd is the supply
voltage in Volts, y is the age of the transistor in years, and d is the duty cycle (i.e. probability that the
transistor is stressed). The aging estimator for logic elements is based on ngspice-23 and requires device
parameters (like transistor dimensions, gate structure from TSMC data sheets, activity, temperature, and
load capacitance). The low-level aging results for an example NOR gate for different signal probabilities
are shown in Figure 7.1(b).

10% 20% 30% 40% 50%
60% 70% 80% 90% 100%

Signal ProbabilitiesΔD
el

ay
 [s

]

0%
5%
10%
15%
20%
25%
30%
35%

0,0
1,0
2,0
3,0

0 1 2 3 4 5 6 7 8 9 10

Delay Aging Over Year Aging Factor
A

gi
ng

 F
ac

to
r

10%
20%
30%

0 1 2 3 4 5 6 7 8 9 10
Year

0.0
1.0
2.0
3.0

D
el

ay
 A

gi
ng

Aging FactorDelay Aging Over Year

(a) (b) 10987654321
Year

2.0E-13
4.0E-13

6.0E-13
8.0E-13
1.0E-12

Figure 7.1: (a) Processor Aging in terms of Critical Path Delay Degradation (Absolute and

Percentage Degradation Values) for Different Years considering 300 MHz 125°C.
(b) Aging of a NOR Gate at 125 °C.

In order to obtain the frequency degradation of a processor based on the delay degradation values of
different logic elements (like SRAM cells, latches, and gates), in the first step its synthesized netlist is
parsed and transformed into a graph-based data structure that simplifies traversing. Afterwards, a critical
path analysis is performed and the delay degradation of the top x% critical paths of the given processor are
estimated over 10 years, where x denotes a user-provided parameter. Note that the consideration of the
temperature effects of thermal management and thermal-aware processing is beyond the scope of this
thesis and therefore the worst-case temperature (i.e. 125°C in this case) is taken into account here. The
switching activities/signal probabilities are obtained through ModelSim simulations. The initial delay
estimates are obtained from the Standard Delay Files, which are obtained as an output of the logical
synthesis. The developed tools generate aging estimates for the top x% critical paths, by applying the
delay degradation to individual logic elements and re-performing the critical path analysis. Finally, the
aging of the processor’s critical path is estimated as the accumulated delay of all logic elements
considering their respective duty cycles over several years (see Eq. 7.2):

() () ()le CPDelay CP Delay le Delay le,d ,y Eq. 7.2

where Delay(le) is the un-aged delay of the logic element (in particular gates) while ∆Delay(le,d,y) is
the delay degradation which is proportional to a logic elements’ ∆Vth. The aging results after analyzing a
LEON3 processor are shown in Figure 7.1(a). The highest increase of the delay of the critical path is
observed in the first year, while over the period of ten years an aging factor of more than 30% is possible.

7.1.3 Process Variation Maps

Several chip process variation maps were generated for the experiments using the methodology and
model explained in Section 2.3. These variation maps serve as an input to the reliability-aware manycore

7.2 Benchmark Applications

- 129 -

simulator, where each process variation map is represented as an individual file containing a grid with Y x
Y grid points that define the frequency variation at its specific position, where Y is a flexible parameter
determining the granularity of the grid (in this work Y=80). Each variation map is overlayed with the
layout of the processor architecture that is planned to be analyzed in the following simulations allowing to
investigate the impact of intra- and inter-chip frequency variations. Section 7.6 presents the core-to-core
frequency distribution for two example variation maps (out of 100 different maps used in the experiments)
when being overlayed with a 6x6 core processor consisting of homogeneous LEON3 cores. To determine
the frequency of each individual core in the first step, the position and dimension of each individual core
of the processor have to be defined. Afterwards, the grid is overlayed and for each core the grid points
being mapped to it are determined, and their minimum is calculated that defines the frequency that can be
assigned to this specific core.

7.2 Benchmark Applications
For evaluation, various applications from MiBench [111] (i.e. ADPCM, CRC, SHA, and SusanC) and

an entire H.264 video encoder [130] that exhibits various compute-intensive functional blocks (e.g., SAD,
SATD, DCT, HT, MC-FIR, IPRED) with diverse computational properties are used. Several mixes of
these applications are generated to realize competing scenarios of concurrently executing applications like
a real world scenario of secure video conferencing and random mixes. For each application, various
thread instances are created that process a completely different set of data. Note that the selected
applications have significantly varying vulnerability and error masking properties.

7.3 Comparison Partners and Evaluation Parameters
The subsequent sections present the evaluation and results for the proposed adaptive Dependability

Tuning (dTune) system for manycore processors, which employs a cross-layer reliability optimization
flow. In particular the results will illustrate the benefits of a cross-layer software reliability optimization
(i.e. dTune) over software program-level and architecture-level single-layer soft error resilience
techniques. The reliability evaluations will be performed for manycore processors of different sizes (i.e.
number of cores) considering core-to-core frequency variations due to manufacturing variability and
aging-induced effects. To realize reliability optimization under resource- and timing-constrained
scenarios, evaluations are done for a large set of application mixes such that providing Redundant
Multithreading (RMT) in the TMR mode for all the concurrently executing applications is not feasible for
the given chip sizes. In such cases, it is more beneficial to provide RMT for the less-resilient applications
while executing more-resilient applications without RMT.

In the following, a short overview of different comparison partners is presented, followed by a brief
discussion on different parameters used for evaluations and highlights on the comparison results that will
be discussed in the subsequent sections.

7.3.1 Comparison Partners

The proposed dTune system integrates the novel reliability optimizing techniques at different system
levels as proposed in this thesis. In summary, it employs the following information and methods at
different system levels to realize cross-layer reliability optimization.

 Hardware-Level: process variation map, aged core frequencies at different years,
microarchitecture-level analysis of spatial and temporal vulnerabilities for different instructions to
obtain function vulnerabilities, area and fault probabilities of different processor components, and
architectural support for redundant multithreading (RMT).

 Compiler-Level: multiple compiled versions for each task with varying reliability (quantified as
RTP) and performance properties (quantified as execution time).

Chapter 7 Results and Discussion

- 130 -

 System Software-Level: resilience-driven core allocation for RMT, mapping of redundant tasks on
different cores considering core-to-core frequency variations, selection of appropriate code
versions.

 Application-Level: deadline and workload information of different applications.

The reliability-timing results of the dTune system are compared to the following state-of-the-art
techniques.

1) CRT – Chip-Level Redundant Threading Technique [36]: This technique targets maximizing
the functional reliability by activating RMT in the TMR mode for all tasks while the tasks with the
earliest deadline get the fastest cores. However, if all cores are utilized upcoming tasks have to wait
for other tasks to finish before they can start executing their redundant threads.

2) RTO – Reliability-Timing Optimizing Technique [141]+[142]: This technique jointly optimizes
for functional reliability (in terms of vulnerability) and timing (performance) considering individual
applications [141] extended with the proposed concepts of different versions [142] to realize a more
fair comparison.

3) TO – Timing Optimizing Technique: This approach aims at minimizing the probability of
deadline misses by assigning the fastest core to the task with the earliest deadline. In order to avoid
deadline misses it does not activate RMT for the tasks and preserves free cores for the upcoming
tasks.

The TO is a performance optimizing solution while RTO and CRT are single-layer reliability
optimizing solutions. RTO is program-level soft error resilience technique that uses reliable code versions,
i.e. leveraging the compiler-layer for reliability optimization. CRT is an architecture-level soft error
resilience technique that employs redundant multithreading in the TMR mode, leveraging the architecture-
layer for reliability optimization.

Beyond the Comparison with CRT: Note, there exist similar concepts to CRT like Process-Level
Redundancy (PLR) [37] and Reunion [38]. PLR is a system software-level technique for redundant
multithreading that employs data structures in the memory managed by the operating system, instead of
special voting hardware/cores and data buffers. In general, comparison of our dTune system to CRT would
reflect potential reliability benefits compared to PLR and Reunion techniques due to the conceptual
similarities between CRT, PLR and Reunion. However, since developing operating system features is out
of the scope of this thesis, we rely on architecture-level support for redundant multithreading which is
easier to implement in the simulation environment at the core granularity. Therefore, detailed comparison
results are only provided for the CRT [36] technique.

Extra Information Provided to State-of-the-Art for Fairness of Comparison: The above-
mentioned state-of-the-art techniques do not account for process variation and aging during their soft error
optimization process. However, for a fair comparison, these techniques are provided with the information
regarding the cores’ frequencies and compiled application binaries.

Evaluation Metric: As an evaluation metric, we employ the Reliability Profit Function (RPF) with
TO as a baseline for comparison. It demonstrates the collective reliability savings in the form of
Reliability-Timing Penalty (RTP) improvements for all application tasks t ϵ T. Consideration of RTP
accounts for both functional reliability (i.e. FVI as the task’s vulnerability to soft errors) and timing
reliability (as the probability of deadline misses). Note, a high RPF value is reliability-wise better.

7.3 Comparison Partners and Evaluation Parameters

- 131 -

Z

TO

()

()
t T

t T

RTP t
RPF 100 1 ; Z { RTO,CRT ,dTune }

RTP t Eq. 7.3

7.3.2 Parameters Considered for the Evaluation

For comprehensive evaluation, RPF savings of dTune are compared to different techniques for
different chip sizes, numerous process variation maps, different aging years, and various number of
application mixes that will demonstrate the range of reliability savings of the proposed cross-layer
approach compared to single-layer techniques. In particular, different values of the following parameters
are considered for a wide-coverage and comprehensive evaluation.

1) Different Chip Sizes: In order to account for the different chip sizes (in terms of number of cores)
of a manycore processor, different architectures are analyzed ranging from a 6x6 core processor to
a 12x12 core processor.

2) Chip Maps with Process Variations: Due to the design-time process variations, cores of different
chips have different performance characteristics (in terms of their operating frequency) even for the
same architecture, i.e. chip-to-chip frequency variations. Additionally, the performance
characteristics of cores on the same chip vary, i.e. core-to-core frequency variations. In the
experiments, 100 different process variation maps are evaluated for each chip size, where the
frequency of each individual core on the chip is extracted for every map. This in practice would
correspond to an evaluation for 100 different processor chips of a given size (i.e. 6x6, 8x8, 10x10,
or 12x12).

3) Scenarios of Application Mixes: To account for different workload scenarios and to consider
dependent application sequences with distinct reliability, execution time and deadline requirement
characteristics, different scenarios with diverse application mixes are generated and used for
evaluation. Application mixes differ in terms of concurrently executing application tasks, their
execution sequence and interdependencies. Among these mixes, many represent real world use
cases, for instance, secure video conferences. Besides this, several random mixes of applications are
considered. These mixes exhibit different number of parallel executing applications that require a
varying number of cores for concurrent execution (e.g., 5-55 application scenarios being executed
in parallel on an 8x8 core architecture).

4) Aging Years: For showing the influence of run time aging on the soft error resilience decisions of
the proposed dTune system, RPF results are compared for the initial state of the processor and after
1, 5 and 10 years of aging.

7.3.3 An Overview of the Comparison Results

In the subsequent sections, following comparison results will be presented at different abstractions for
detailed discussion. Starting with the summary results in Section 7.4, more details are presented in Section
7.5 and Section 7.6.

1) Analyzing Overall Savings for Different Aging Years: A box plot showing the overall summary of
the Reliability Profit Function (RPF) of RTO, CRT and dTune compared to TO summarizing all
cases of different chip sizes, scenarios of application mixes, and process variation maps over
different aging years.

Chapter 7 Results and Discussion

- 132 -

2) Analyzing Overall Savings for Different Chip Sizes and Aging Years: Individual box plots show the
RPF improvements of different comparison partners for different chip sizes and different aging
years, summarizing all cases of application mixes and process variation maps.

3) Analyzing Detailed Savings for Different Application Mixes, Chip Sizes and Aging Years: Detailed
bar graph plots for different chip sizes and different aging years, where each bar graph plot
illustrates the RPF improvements of different comparison partners for different application mixes
with different number of parallel executing applications. Each bar in the plot represents an averaged
RPF value over all process variation maps.

4) Analyzing Detailed RPF Savings for Two Chips with Different Core-to-Core Frequency
Distributions: Detailed RPF savings are shown in form of bar graphs for two selected process
variation maps for a 6x6 processor chip. Moreover, core-to-core frequency distribution is also
shown for different aging years to relate variations in the RPF savings to the frequency variations
and thus highlighting the available optimization potential.

Box Plots: A box plot corresponds to a
distribution of results and represents the
following five important evaluations as shown
in Figure 7.2. (1) Minimum corresponds to the
0% Quartile, i.e. the minimum value of the
complete set of results. (2) Maximum
corresponds to the 100% Quartile, i.e. the
maximum value of the complete set of results.
(3) The 1st Quartile corresponds to the result
for which 25% data points in the complete
result set are equal to or smaller than this
result value. (4) The 2nd Quartile corresponds to the result for which 50% data points in the complete
result set are equal to or smaller than this result value. This is also the median value of the complete data
set. (5) The 3rd Quartile corresponds to the result for which 75% data points in the complete result set are
equal to or smaller than this result value. Additionally, the Average Value is overlayed with the box plot in
form of the diamond symbol.

7.4 Overview of Savings Compared to State-of-the-Art
Figure 7.3 shows the box plots illustrating the overall RPF results of dTune, RTO and CRT normalized to
TO summarizing all cases of different chip sizes, scenarios of application mixes, and process variation
maps for different aged states of the chips (i.e. in the initial unaged state and after 1, 5 and 10 years). A
more detailed chip-level view of the box plot results is presented in Figure 7.4. RPF of 100 denotes the
ideal case with full protection and no deadline misses, which is hard to guarantee in resource-constrained
scenarios because the number of cores is less than the required number to fullfil the RMT requirements of
all the concurrently executing tasks. Moreover, in the presence of process variations, some cores will
operate at a low frequency and thus it may not be feasible to ensure 0% deadline misses for all the
concurrently executing tasks. The evaluations for a wide set of values for different parameters (as
discussed above) cover a broader range of use cases and resource-constrained scenarios.

In summary, for the year 0 (i.e. no aging) considering core-to-core frequency variations due to only
process variations, the proposed cross-layer dTune system provides RPF savings of 57% and 11% on
average compared to RTO and CRT, respectively. For the aging year 10, compared to RTO and CRT, the
dTune system achieves RPF savings of 37% and 16% on average, respectively. In the following, detailed
discussions are provided for individual comparisons.

Minimum

3rd Quartile (75%
of the values are
smaller)

1st Quartile (25%
of the values are
smaller)

Median (50%
of the values
are smaller)

Maximum

Average

Figure 7.2: An Abstract Illustration of the Box Plot.

7.4 Overview of Savings Compared to State-of-the-Art

- 133 -

Discussing dTune vs. TO at Year 0: In general, the reduced RPF in case of TO is given by the fact
that the dTune system considers reliability and timing in a combined way instead of focusing on timing
only. The minimum and maximum RPF improvements of dTune over the TO technique are due to the
dynamic resilience-aware RMT tuning decisions, i.e. the highly vulnerable tasks get the cores first for
redundant thread execution which is in particular beneficial in cases of application mixes with a large
number of concurrently executing tasks. In case the system load is high, the RMT for highly resilient
application tasks (i.e. task with low FVI values) is deactivated in order to facilitate other tasks and to
preserve the timing reliability. As a result, dTune shows a significant improvement compared to TO. Note,
a full protection without deadline misses cannot be achieved in many cases, as for a higher number of
application mixes being executed the number of cores available is not sufficient to execute all tasks in the
redundant multithreading mode. The minimum RPF values correspond to the cases of chips that have a
higher number of cores with low operating frequency leading to more deadline misses and a reduced
potential for reliable code version upgrades. The spread of the box plot is concentrated as most of the
chips offer a possibility for RMT activation for the highly vulnerable tasks and version upgrades without
deadline violations. Compared to TO, dTune achieves an average reliability improvement of 73%
(maximum 82%).

Year 0

-10

90

10

30

50

70

dTune RTO CRT

Year 1

-10

90

10

30

50

70

dTune RTO CRT

Year 5

-10

90

10

30

50

70

dTune RTO CRT

Year 10

-10

90

10

30

50

70

dTune RTO CRT

Re
lia

bi
lit

y
Pr

of
it

Fu
nc

tio
n

(R
PF

)
N

or
m

al
iz

ed
 to

 T
O

Figure 7.3: Box Plot Results showing the overall RPF Improvements of dTune, RTO and CRT
Normalized to TO [Each Box Plot shows the Summary of 31,500 Experiments Considering All

Cases of Different Chip Sizes, Scenarios of Application Mixes, and Process Variation Maps over
Different Aged States of the Chips].

Discussing dTune vs. TO at Year 1, 5, and 10: In the later years when cores are aged, the minimum
reliability improvement of dTune compared to TO decreases significantly compared to year 0. It is
attributed to the aging of the slower cores of a subset of chips resulting in the decrease of the processing
capabilities of the chip that lead to more deadline violations, i.e. degradation of the timing reliability. Note
that the aging degradation from year 0 to year 1 is higher than, e.g., between year 1 and 5. However, the
maximum and average improvements are only slightly reduced that illustrate the benefits of considering
knowledge from multiple system layers and adaptive RMT tuning for tasks with variable resilience
properties. The spread of the box plot between maximum and minimum increases noticeably when core
aging proceeds. It can be attributed to the lower optimization potential for the chips with an increased
number of cores with low operating frequencies that are further degraded due to aging.

Discussing RTO vs. TO: The overall improvements of RTO compared to TO show the potential of
the joint consideration of reliability and timing. However, as the RTO technique only uses the compiler
layer and does not account for the knowledge from the hardware and redundant multithreading, its RPF

Chapter 7 Results and Discussion

- 134 -

improvements are significantly smaller than that of the dTune system. The spread of the box plot for RTO
is very low as for most of the chips the reliability maximizing function versions can be selected without
violating the deadline. Only for a limited set of chips either relatively more vulnerable versions for several
tasks have to be selected in order to avoid deadline misses or the deadline is violated when the decrease in
vulnerability offered by a version provides a better tradeoff between reliability and timing. For the aged
chips (i.e. at year 1, 5, and 10), the average RPF improvement decreases while the spread between
minimum and maximum increases due to the reduced potential of version upgrades or increasing deadline
misses that are caused by the changed chip characteristics. It can also be noticed that the difference
between year 5 and 10 is low due to the flattening of the aging curve. In general, however, RTO performs
better than TO, but it is significantly worse compared to the dTune system due to the ignorance of the
hardware-level knowledge.

Discussing dTune vs. RTO and CRT: RTO benefits from the reliable code version adaptation but
the potential decreases due to ongoing aging. Compared to RTO, the dTune system still benefits from
variation- and aging-aware core assignment and resilience-driven dynamic activation/deactivation of
RMT, i.e. exploiting the low-level hardware knowledge. As a result, dTune achieves significant reliability
improvements compared to the RTO technique, i.e. on average 57% RPF improvement. For year 10 the
minimum of dTune and RTO are similar, however the maximum and average of dTune is significantly
higher showing that dTune is capable of adapting to the different characteristics of the chips.

Compared to CRT, for only few applications, CRT and the dTune system show a similar behavior.
Highest cases of reliability savings denote the execution scenarios where sufficient cores are available to
facilitate RMT for all the concurrently execution applications in the TMR mode with the fastest version.
However, CRT does not adapt to an increasing number of tasks where timing and reliability-based
selection need to be taken into account. Due to availability of multiple reliable code versions from the
compiler layer, the dTune system has an additional benefit for matching core variations with soft-error
resilient code versions. The minimum RPF improvement for the CRT technique in year 10 is lower
compared to that for the dTune system and the RTO techniques so that CRT does not provide an
improvement over TO any more. It is due to the fact that the aged cores are not accounted for because still
all tasks are executed with RMT which leads to a significant number of deadline misses. This lower
ability of CRT to adapt to the different chip characteristics (regarding the avoidance of deadline misses) is
also reflected in the relatively high spread between minimum and maximum improvements in Year 0.
This can also be seen when analyzing the maximum of CRT for year 1, 5 and 10. While for the unaged
state of the chip the maximum improvement is almost as high as the one achieved by dTune, for the
following years the number of deadline violations increases significantly for CRT. The decrease in the
average improvements for dTune is lower than that of CRT when comparing year 0 and year 1. Even
though dTune does not activate RMT for all tasks when the system load is high, the better average
improvement compared to the improvement of CRT shows that the combination of the RMT selection for
most vulnerable tasks and the possibility to select less vulnerable versions for tasks not being executed in
RMT is effective, and thus demonstrating the benefits of a cross-layer reliability optimization technique.
Overall, compared to the CRT, dTune achieves an average reliability improvement of 37%.

Comparing CRT and RTO the improvements of CRT are significantly higher, especially for the
unaged chips. The reason for this behavior is that RTO does not consider running tasks in RMT which
would be possible for a low number of application mixes without a significant increase in the number of
deadline violations.

Figure 7.4 shows individual box plots for different chip sizes and different aging years, where each
box plot shows the RPF improvements of dTune, RTO and CRT normalized to TO summarizing all cases
of application mixes and process variation maps. Note that the general observations described above for
Figure 7.3 hold true for Figure 7.4 as well. However, additional observations can be made when analyzing
the box plots for different chip sizes individually. In general, in architectures where more cores are

7.5 Detailed Comparison Results

- 135 -

available the minimum, maximum and average reliability improvements compared to the TO technique
are higher for all approaches. The reason for that is that even if the application mixes are growing in
proportion to the number of cores available, for the lower and medium range of application mixes, there
are more candidate cores with higher performance, that can be taken advantage of in order to avoid
deadline misses (in RTO, dTune), for RMT activation (in dTune, CRT) and for version selection (in RTO,
dTune). In summary, for the year 0 (i.e. no aging), the proposed cross-layer dTune system provides RPF
savings of 5%-63% for different chip sizes compared to different comparison partners. For the aging year
10, dTune provides RPF savings of 12%-18% for different chip sizes compared to different comparison
partners.

Year 0

-10

90

10

30

50

70

dTune RTO CRT

Year 1

dTune RTO CRT

Year 5

dTune RTO CRT

Year 10

dTune RTO CRT

-10

90

10

30

50

70

dTune RTO CRT dTune RTO CRT dTune RTO CRT dTune RTO CRT

-10

90

10

30

50

70

dTune RTO CRT dTune RTO CRT dTune RTO CRT dTune RTO CRT

-10

90

10

30

50

70

dTune RTO CRT dTune RTO CRT dTune RTO CRT dTune RTO CRT

6x
6

Co
re

s
8x

8
Co

re
s

10
x1

0
Co

re
s

12
x1

2
Co

re
s

Re
lia

bi
lit

y
Pr

of
it

Fu
nc

tio
n

(R
PF

) -
N

or
m

al
iz

ed
to

TO

Figure 7.4: Individual Box Plot Results of RPF Improvements of dTune, RTO and CRT

Normalized to TO for Different Chip Sizes and Different Aging Years. [Each Box Plot shows the
Summary of 3,500-12,000 Experiments Considering All Cases of Application Mixes and Process

Variation Maps].

7.5 Detailed Comparison Results
Figure 7.5 – Figure 7.8 show detailed bar graph plots for different chip sizes (i.e. 6x6, 8x8, 10x10, and

12x12) with various process variation maps considering different application mixes with varying number
of parallel executing tasks and different aging years. Each bar shows the reliability improvements of
dTune, RTO and CRT normalized to TO averaged over all process variation maps. Again, the general
observations, reasoning, and discussion points described above for Figure 7.3 and Figure 7.4 hold true for
Figure 7.5 – Figure 7.8 as well and only additional observations are discussed in the following when

Chapter 7 Results and Discussion

- 136 -

analyzing the bar graph plots for different application mixes for different chip sizes and aging years
individually. It is important to note that, for a given chip size, as the number of tasks grows the RPF
savings decrease. This can be attributed to two facts: (1) not all tasks can be fully supported in the RMT
mode, and (2) insufficient fast cores are available to meet the deadlines of all the tasks. Adaptive RMT
tuning, reliable code version selection and adaptations enable the dTune system to adapt to different
scenarios of application mixes. The resilience-driven core allocation for redundant multithreading enables
dTune to achieve higher reliability savings in the competitive scenarios. Furthermore, variation-aware
thread-to-core mapping facilitates meeting deadlines of timing critical tasks while accounting for the tasks
requiring cores for RMT. In contrast to dTune, the CRT technique performs significantly worse as the
number of concurrently executing applications increase. This is primarily attributed to unavailability of
cores to fulfill the RMT requirements of all applications. The RTO technique stays consistent and low in
terms of its reliability improvements due to the unavailability of the RMT feature and the only potential is
using the reliable code versions trading reliability with timing. The trend of decreasing reliability profit of
the dTune and CRT techniques with increasing number of applications stays consistent through different
chip sizes and different years, while the dTune system being better than CRT in almost all cases.
Compared to CRT, for a 6x6 chip, the reliability savings range from 0% – 31%, 4% – 43%, 8% – 34%,
and 9% – 21% for year 0, 1, 5, and 10, respectively. The ranges of reliability savings for a 12x12 chip are
-7% – 14%, 2% – 34%, 3% – 31%, and 5% – 28% for year 0, 1, 5, and 10, respectively.

Figure 7.5 – Figure 7.8 illustrate that the reliability profit of the proposed dTune system improves or
stays consistent across different chip sizes, multiple simulated years of chip aging, and a wide range of
application mixes. In contrast, state-of-the-art techniques degrade severely due to the unawareness of
applications’ resilience properties, multiple reliable code versions, and low-level knowledge about the
aging-induced frequency degradation and variability during their core allocation decisions.

0

100

20

40

60

80

Ye
ar

 0

5 15 25

0

100

20

40

60

80

Ye
ar

 5

155 25

dTune RTO CRT

0

100

20

40

60

80

Ye
ar

 1

155 25

0

100

20

40

60

80

Ye
ar

 1
0

155 25
Application scenarios

Re
lia

bi
lit

y
Pr

of
it

Fu
nc

tio
n

(R
PF

)
N

or
m

al
iz

ed
 to

 T
O

Figure 7.5: Detailed Reliability Savings Compared to Different State-of-the-Art Techniques for
the 6x6 Core Processors with Different Process Variation Maps considering Different Application

Mixes and Aging Years [Each Bar corresponds to an Averaged RPF Saving Value of 500
Experiments considering Different Process Variation Maps].

7.5 Detailed Comparison Results

- 137 -

0

100

20

40

60

80

Ye
ar

 0

5 15 25

0

100

20

40

60

80

Ye
ar

 5

155 25

dTune RTO CRT

0

100

20

40

60

80

Ye
ar

 1

0

100

20

40

60

80

Ye
ar

 1
0

155 25
Application scenarios

Re
lia

bi
lit

y
Pr

of
it

Fu
nc

tio
n

(R
PF

)
N

or
m

al
ize

d
to

 T
O

35 45 55

35 45 55

5 15 25 35 45 55

35 45 55

Figure 7.6: Detailed Reliability Savings Compared to Different State-of-the-Art Techniques for
the 8x8 Core Processors with Different Process Variation Maps considering Different Application

Mixes and Aging Years [Each Bar corresponds to an Averaged RPF Saving Value of 500
Experiments considering Different Process Variation Maps].

0

100

20

40

60

80

Ye
ar

 0

5 15 25 35 45 55 65 75 85

0

100

20

40

60

80

Ye
ar

 1

155 25

0

100

20

40

60

80

Ye
ar

 5

155 25

0

100

20

40

60

80

Ye
ar

 1
0

155 25 35 45 55 65 75 85

dTune RTO CRT

35 45 55 65 75 85

35 45 55 65 75 85Re
lia

bi
lit

y
Pr

of
it

Fu
nc

tio
n

(R
PF

) -
N

or
m

al
iz

ed
to

TO

Application scenarios

Figure 7.7: Detailed Reliability Savings Compared to Different State-of-the-Art Techniques for

the 10x10 Core Processors with Different Process Variation Maps considering Different Application
Mixes and Aging Years [Each Bar corresponds to an Averaged RPF Saving Value of 500

Experiments considering Different Process Variation Maps].

Chapter 7 Results and Discussion

- 138 -

0

100

20

40

60

80

Ye
ar

 0

5 15 25 35 45 55 65 75 85

0

100

20

40

60

80

Ye
ar

 1

155 25

0

100

20

40

60

80

Ye
ar

 5

155 25

0

100

20

40

60

80

Ye
ar

 1
0

155 25 35 45 55 65 75 85

dTune RTO CRT

35 45 55 65 75 85

35 45 55 65 75 85Re
lia

bi
lit

y
Pr

of
it

Fu
nc

tio
n

(R
PF

) -
N

or
m

al
ize

d
to

TO

Application scenarios

95 105 115

95 105 115

95 105 115

95 105 115

Figure 7.8: Detailed Reliability Savings Compared to Different State-of-the-Art Techniques for

the 12x12 Core Processors with Different Process Variation Maps considering Different Application
Mixes and Aging Years [Each Bar corresponds to an Averaged RPF Saving Value of 500

Experiments considering Different Process Variation Maps].

7.6 Detailed Analysis of Comparison Results for Two Chips
for a 6x6 Processor

In the following section, a detailed analysis of the comparison results for two chips with different
core-to-core variations (out of 100 chip process variation maps) is presented. The core-to-core frequency
variations are shown for different years that are provided as an input to the proposed dTune system
followed by the reliability savings. In the following, the results are discussed chip by chip.

Chip 1: Figure 7.9 shows the frequency distribution of different cores for the case of a 6x6 core chip
where the average frequency of the unaged cores (i.e. 496MHz) is already lower than the nominal
frequency (i.e. 500MHz). After 10 years the average core frequency is only 371MHz. In Figure 7.10 the
RPF improvements over TO are shown for the three different comparison partners. Although the average
core frequency of the unaged chip is already lower than the nominal frequency, the savings compared to
TO for dTune and CRT are still high. However, after 1 year, in case of CRT, the deadline violations

7.6 Detailed Analysis of Comparison Results for Two Chips for a 6x6 Processor

- 139 -

increase, such that even for the 5 application mixes case, deadlines are violated, while dTune achieves full
protection without any deadline violation. For 5 and 10 years, dTune and CRT both cannot avoid deadline
violations when activating RMT or executing highly reliable versions due to the decreased core
performances. However, still a significant improvement can be achieved when comparing with TO for
both years. For RTO it is also shown that with the ongoing aging, relatively less reliable versions can be
selected, and the resulting improvement decreases.

Year 0

1 10 3020

700

500

300

100
0

1 10 3020

700

500

300

100
0

Year 5

Fr
eq

ue
nc

y
[M

Hz
]

1 10 3020

700

500

300

100
0

Year 1

1 10 3020

700

500

300

100
0

Year 10

Core Number
Figure 7.9: CHIP19 – Size 6x6: Core-to-Core Frequency Distributions for Different Aging Years.

0

100

20

40

60

80

Ye
ar

 0

5 15 25

0

100

20

40

60

80

Ye
ar

 5

155 25

dTune RTO CRT

0

100

20

40

60

80

Ye
ar

 1

155 25

0

100

20

40

60

80

Ye
ar

 1
0

155 25
Application scenarios

Re
lia

bi
lit

y
Pr

of
it

Fu
nc

tio
n

(R
PF

)
N

or
m

al
ize

d
to

 T
O

Figure 7.10: CHIP19 – Size 6x6: Detailed Reliability Savings Compared to Different State-of-the-

Art Techniques for Different Application Mixes and Aging Years.

Chip 2: Figure 7.11 shows the frequency distribution of the different cores for a different 6x6 chip
where the average frequency of the unaged cores (512MHz) is higher than the nominal frequency
(500MHz). After 10 years the average core frequency is only 382MHz. Analyzing Figure 7.12, both
dTune and CRT achieve in general significantly better improvements compared to the cases in
Figure 7.10, especially for year 5 and year 10 due to cores having a higher performance. For the 5
application mixes case in year 5, dTune can still provide a full protection without deadline misses. This is

Chapter 7 Results and Discussion

- 140 -

also reflected in the results of RTO, where the improvements are higher compared to Figure 7.10, as the
faster cores allow reliability-wise better versions to be selected.

Year 0

1 10 3020

700

500

300

100
0

1 10 3020

700

500

300

100
0

Year 5

Fr
eq

ue
nc

y
[M

Hz
]

1 10 3020

700

500

300

100
0

Year 1

1 10 3020

700

500

300

100
0

Year 10

Core Number
Figure 7.11: CHIP41 – Size 6x6: Core-to-Core Frequency Distributions for Different Aging Years.

0

100

20

40

60

80

Ye
ar

 0

5 15 25

0

100

20

40

60

80

Ye
ar

 5

155 25

dTune RTO CRT

0

100

20

40

60

80

Ye
ar

 1

155 25

0

100

20

40

60

80

Ye
ar

 1
0

155 25
Application scenarios

Re
lia

bi
lit

y
Pr

of
it

Fu
nc

tio
n

(R
PF

)
N

or
m

al
iz

ed
 to

 T
O

Figure 7.12: CHIP41 – Size 6x6: Detailed Reliability Savings Compared to Different State-of-the-

Art Techniques for Different Application Mixes and Aging Years.

7.7 Chapter Summary
Compared to the single-layer approaches, i.e. Reliability-Timing Optimizing technique and Chip-

Level Redundant Threading technique, the cross-layer approach provides savings of 57% and 11% on
average for year 0 and 37% and 16% on average for year 10, respectively. When only considering the
application-level knowledge of the different compiled versions in case of Reliability-Timing Optimizing
technique, an improvement of 16% compared to Timing Optimizing technique can be achieved. However,
to achieve full soft-error resilience, redundant multitasking is important to be considered in combination
with process variation and timing aspects. When considering only architecture-level knowledge (like in

7.7 Chapter Summary

- 141 -

the Chip-Level Redundant Threading technique), in case not all tasks can be protected using redundant
multithreading, the application-level knowledge of resilience is important and the process variation needs
to be considered for synchronizing the outputs of redundant threads and to perform the voting without
significant timing penalties. In such scenarios, the multiple reliable versions can also be exploited.
Towards this end, the proposed Dependability Tuning system employs the information from different
layers as mentioned in Section 7.3.1 in a cross-layer fashion. As a result it provides improved reliability
efficiency (16%-57%) compared to different state-of-the-art single-layer techniques.

In summary, this work leverages multiple system layers and exploits the interaction between these
layers to achieve an overall improved system reliability considering both functional and timing
correctness under constrained scenarios, while state-of-the-art does not.

- 143 -

Chapter 8 Conclusion and Future Outlook
8.1 Thesis Summary and Conclusions

Scaling down the transistor dimensions has led modern systems to become more and more susceptible
towards various types of reliability threats such as soft errors, design-time process variation and run-time
aging effects. In an on-chip manycore system, different cores may become subjected to diverse reliability
threats, thereby ignoring one threat while mitigating the other threat might lead to designing a system with
reliability inefficiencies. This thesis aims to mitigate the soft error issue at the software layers targeting
unreliable (or partially-reliable) embedded hardware while taking into account the run-time aging and
design-time process variation effects. To enable this, a novel cross-layer reliability analysis, modeling,
and optimization approach is proposed in this thesis that leverages multiple layers in the system design
abstraction (i.e. hardware, compiler, system software, and application program) to exploit the available
reliability enhancing potential at each system layer and to exchange this information across multiple
system layers. In order to achieve enhanced reliability in constrained scenarios, the proposed cross-layer
reliability modeling and optimization flow employs various concepts and techniques at different software
layers (i.e. where errors are observed) while accounting for the hardware level knowledge (i.e. where
faults occur) and software-level error masking properties.

The design of the cross-layer reliability modeling and optimization flow is enabled by a
comprehensive reliability analysis of software programs when faults are injected in the hardware. This
analysis helps in understanding how hardware-level faults manifest at the software layers and establishes a
relationship between faults in different processor components and different types of instructions to
different types of resulting errors. Furthermore, this analysis also exposes the potential of software-level
masking, i.e. how different errors get masked due to data and control flow properties and do not get
visible at the output of the application software program. Towards this end, one of the key novel
contribution of this thesis is to bridge the gap between hardware and software for cross-layer reliability
modeling and optimization, i.e. considering the hardware level knowledge while quantifying the effects of
hardware-level faults at the software-level. The accuracy of software-level reliability analysis is evaluated
against the state-of-the-art SymPLFIED [98] approach where the latter provides 27% over-estimation of
Application Failures w.r.t wrong access to Instruction Memory due to an increased number of faults in the
program counter. The program-level reliability analysis helped in identifying different parameters
important from the software perspective, i.e. the notion of critical and non-critical instructions, spatial and
temporal vulnerabilities, and the consideration of area and fault probabilities of different processor
components for software reliability estimation. This analysis is leveraged to develop cross-layer software
reliability models at various levels of granularity (i.e. instruction, basic block, and function/task) for
quantifying the effects of hardware-level faults at the software level, while accounting for both the
hardware and the software-level parameters as discussed above.

The second key contribution of this thesis is software reliability models to quantify three key
important reliability aspects at the instruction granularity, i.e. (1) Instruction vulnerability Index (IVI) that
estimates the instruction’s vulnerability to soft errors by jointly accounting for the spatial and temporal
effects, (2) Instruction Error Masking Index (IMI) that estimates the masking probabilities for each
instruction, and (3) Instruction Error Propagation Index (EPI) that estimates the error propagation effects
at the software program level. These instruction-level reliability estimates are then used to obtain
reliability estimates at the function/task levels. Furthermore, in order to account for the timing aspects, a
Reliability-Timing Penalty (RTP) metric is introduced. A comprehensive analysis of IVI, IMI, and EPI is
performed for various applications to demonstrate their varying reliability properties and relationship to
their instruction profiles. In the cross-layer optimization flow, these reliability models are leveraged by
different techniques at different system levels to quantify the reliability-wise importance of different

Chapter 8 Conclusion and Future Outlook

- 144 -

instructions and functions/tasks and to perform selective/adaptive reliability-optimization under tolerable
performance overhead constraints.

This thesis presents different concepts and techniques for cross-layer reliability optimization that
leverage multiple system layers for reliable code generation and execution of application software
programs. The aim is to first reduce the error probability by reducing the spatial and temporal
vulnerabilities of instructions in different pipeline components and the number of critical instruction
executions (for instance, load/store, call, branch, critical ALU instructions, etc.) through different
reliability-driven software transformations. Under the scope of this thesis, the following reliability-driven
software transformations are proposed: (1) reliability-driven loop unrolling, (2) reliability-driven common
expression elimination and operation merging, (3) reliability-driven data type optimization, and (4)
reliability-driven online table value computation. Afterwards, a reliability-driven instruction scheduler
determines the instruction execution sequence that influences the vulnerabilities of different instructions
in different processor components. These techniques primarily aim at reducing the spatial/temporal
vulnerabilities of instructions and number of critical instruction executions in order to reduce the
probabilities of Application Failures and Incorrect Outputs. Applying these reliability-driven
transformations and instruction scheduler provides on average 60% lower Application Failures, hence
enhancing the software reliability. The reliability is further improved by applying redundancy to only the
critical instructions. Toward this end, a selective instruction redundancy approach is proposed which
selects a set of reliability-wise important instructions (identified using the reliability models discussed
above) in different functions for redundancy-based protection under user-provided tolerable performance
overhead constraint. This enables a constrained reliability optimization where applying an expensive full
scale redundancy to the software code parts is avoided. The key is to give more protection to the less-
resilient part of the software program and less protection to the more-resilient part in order to achieve a
high degree of reliability in constrained scenarios. Compared to state-of-the-art protection schemes
[71][76][134], the proposed selective instruction protection provides on average 30%-60% improved
reliability at 50% tolerable performance overhead.

To enable run-time tradeoffs between the reliability and performance properties of applications,
multiple reliable versions of a software program are generated using the proposed transformations and
selective protection techniques. Once multiple reliable code versions are generated, reliable execution of
the code is facilitated through a reliability-driven run-time system, that takes into account the core-to-core
frequency variations due to design-time process variation and run-time aging induced frequency
degradation. Soft error resiliency is enhanced by adaptively activating/deactivating the Redundant
Multithreading (RMT) for different applications while accounting for their distinct resilience properties
and deadline requirements along with a history of the encountered errors under an area constrained
scenario. Depending upon the cores’ frequency variations, a suitable reliable version for each application
is selected. Finally the task to core mapping is performed for redundant thread execution at run-time such
that, the execution properties of the redundant threads are closely matched to the frequency properties of
allocated cores considering core-to-core frequency variations. Compared to state-of-the-art single-layer
reliability optimizing techniques (i.e. CRT – Chip-Level Redundant Multithreading [36] and RTO –
Reliability-Timing Optimizing Technique [141][142]), the proposed cross-layer approach achieves 16%-
57% improved software reliability on average for different chip configurations, various process variation
maps, different aging years, and wide-range of application mixes with concurrently executing
applications.

In addition to the above-discussed scientific contribution, several tools for gate-level soft error
analysis, aging analysis and an integrated fault generation and injection system for instruction set
simulators have been developed in the scope of this work and are made available at
http://ces.itec.kit.edu/846.php. Besides the tools, this Ph.D. has provided an initial foundation for a spin
off project under the name of ‘GetSURE’ which is a joint collaborative project under the DFG funded
Special Priority Program (SPP) 1500.

8.2 Future Outlook

- 145 -

In summary, a robust and dependable embedded system design needs to consider the reliability at all
abstraction levels. This Ph.D. work develops a cross-layer reliability modeling and optimization flow that
incorporates novel reliability-driven compiler, reliability-driven system software, and application-guided
fault tolerant mechanisms to achieve effective reliability optimization under constrained scenarios. These
techniques are enabled by accurate software program reliability models. State-of-the-art software
reliability schemes by principle cannot achieve the level of reliability that the proposed cross-layer
approach can, because of the following conceptual differences:

• This work jointly accounts for the temporal and spatial vulnerabilities in the underlying reliability
modeling and fault injection flow along with program-level error masking and propagation
properties at different abstraction levels, i.e. instruction and function level (state-of-the-art
techniques do not).

• This work leverages multiple system layers and exploits the interaction between these layers to
achieve an overall improved system reliability considering both functional and timing correctness
under constrained scenarios, while state-of-the-art does not.

• The proposed techniques consider Application Failures based on soft errors observed when the
software program is executed in a processor pipeline stage by stage (state-of-the-art techniques do
not provide these details and therefore cannot optimize for it).

• State-of-the-art techniques try to incur no performance overhead or provide full redundancy with a
very high overhead, whereas the techniques presented in this thesis leave it up to the user to specify
a tolerable performance overhead that may be associated with a gain in reliability. Often, a small
performance loss may enable a high reliability gain. The proposed techniques can exploit those
scenarios, state-of-the-art techniques do not.

8.2 Future Outlook
The different aspects of the proposed novel conceptual contributions can be extended in various

different ways. An outlook of potential future works is given below.

1) Power-Reliability-Performance Design Space: The reliability-driven transformation techniques
proposed in this work improve the reliability under a user given tolerable performance overhead
constraint. The highly reliable transformed version from the soft error perspective might also incur
more power due to which the temperature increases and may result in aging effects. Further at
higher fault rates the voltage underscaling is avoided to keep a high value for the QCritical. This also
leads to an increase in power consumption, temperature and subsequently aging of the device.
Furthermore, increased temperature will also aggravate soft error rates (due to decreased QCritical).
Therefore, understanding the synergies between different reliability threats, power, and temperature
is extremely important and it would require a holistic design and optimization flow that should
leverage multiple hardware and software layers to exploit the best potential of each layer.

2) Aging-Aware Transformations: Present day compile time instruction scheduling approaches
perform power optimizations via scheduling the instructions such that the switching activity/bit
toggling gets reduced. Both the NBTI and Hot Carrier Injection (HCI)-induced aging effects
increase exponentially with temperature, while the HCI-induced aging also increases sub-linearly
with the activity factor and runtime. For instance, to reduce switching activity and the
corresponding HCI-induced aging effects, instructions that use the same components in different
pipeline stages may be scheduled in sequence. However this may lead to the creation of
temperature “hotspots” and aggravate NBTI-induced aging. By interleaving the instructions that use
the same pipeline components, NBTI-recovery is triggered at the cost of increased switching and
HCI-induced aging. Therefore, a tradeoff between the NBTI and HCI-induced aging can be

Chapter 8 Conclusion and Future Outlook

- 146 -

explored for creating more balanced aging profiles in different pipeline components. By analyzing
the power consumption and switching activity of the application code over different pipeline
components, their relative importance with regard to susceptibility towards different aging effects
and program correctness may be identified.

3) Dependability and Dark Silicon: The concept of generating multiple compiled versions each with
a certain level of reliability can also be adapted to the hardware-level. In order to exploit the new
dark silicon problem and turn it into a solution, multiple reliability-levels may also be realized with
reliability-heterogeneous processors which are ISA compatible but with different levels of
protection against reliability threats (like soft errors). Now given that there are different hardening
levels at the hardware layer, an interesting analysis would be to find how much the reliability at the
software level can be increased such that the overall system reliability is enhanced under power
constraints. Moreover, adaptive dependability tuning can also be explored in power-constrained
scenarios.

4) Cache Reliability: Today’s mainstream multi-cores employ large multi-level on-chip caches
making them highly susceptible to soft errors. In this work, ECC protected caches are assumed
which may not be cost-effective especially against multi-bit soft errors. As an extension to this
work, a cost-effective soft-error mitigation technique for the on-chip cache hierarchy is under
investigation. Since cache vulnerability to soft errors is also highly dependent upon the parameters
of different levels of the cache hierarchy, techniques like multi-level cache hierarchy
reconfiguration can be leveraged to achieve soft error tolerance by exploring the interdependencies
amongst the parameters of different cache levels w.r.t. soft error vulnerability and performance.

5) Reliability-Driven Compilation for Super-Scalar Processors: This work extensively analyzes
the soft error vulnerability of in-order processors and proposes several soft error reliability metrics.
A 100% cache hit rate is assumed to guide compile-time reliability optimizations. As a part of
future work, the effect of pipeline stalling cache misses on the temporal vulnerability of instructions
in the pipeline can be analyzed. Further, the concepts and methodologies proposed in this work can
also be extended towards analyzing multi-core superscalar processors which have more functional
units, stage buffers, advanced forwarding/bypassing mechanisms, deeper pipelines and several
other hardware structures to enable out-of-order execution. After performing an extensive soft-error
vulnerability analysis and characterizing the vulnerability of instructions in different hardware
structures, the observations made can be used to extend the instruction vulnerability model, i.e.
from the perspective of the superscalar processor architecture.

6) Reliability in Invasive Computing [158][159]: The Transregional Collaborative Research Center
Invasive Computing (InvasIC) is an emerging resource-aware paradigm for the design and
management of future manycore systems with 100s – 1000s cores supporting a high degree of
parallelism. The core idea of employing resource-awareness is to achieve high utilization with
improved power efficiency. This can also be extended towards improved reliability efficiency. The
contributions of this thesis can be beneficial for InvasIC in different ways, for instance, adaptive
activation control of RMT for multi-threaded applications executing on different cores.
Furthermore, it may also be beneficial to provide programming and compiler level support for
specifying reliability requirements as part of the resource-aware paradigm, for instance, request in
terms of redundant cores and function resilience knowledge can be integrated in the application
code that can then be exploited by the hardware/software sub-systems of the InvasIC. A potential
future work is to extend the contributions of this thesis towards heterogeneous cores of the InvasIC
hardware platform in conjunction with multiple reliable code versions for heterogeneous tiles and
developing a corresponding extended optimization space w.r.t. reliability, performance, and power
consumption.

- 147 -

Appendix A Simulation Infrastructure
This chapter presents the integrated tool flow, simulation environment and fault injection setup that

are developed in this work. The reliability analysis and evaluations of the individual techniques compared
to state-of-the-art approaches are already discussed in the previous chapters, i.e. Chapter 4, Chapter 5, and
Chapter 6. The complete overview of the developed tool chain and infrastructure is shown in Figure A.1.

Our In-house Reliability-Aware Many-Core Simulator

Configurable Fault
Generation and

Injection

Manycore ISS

Core1 Core2

Core9 Core10

Core17 Core18

Core25 Core26

Core33 Core34

Core41 Core42

Core49 Core50

Core57 Core58

Core3 Core4 Core5 Core6 Core7 Core8

Core11Core12 Core13 Core14Core15 Core16

Core19 Core20Core21 Core22Core23 Core24

Core27 Core28Core29 Core30Core31 Core32

Core35 Core36Core37 Core38Core39 Core40

Core43 Core44 Core45 Core46Core47 Core48

Core51 Core52 Core53 Core54Core55 Core56

Core59Core60 Core61 Core62Core63 Core64

Variation Map

Aging Estimates
Reliability Analysis

Perf. Traces

FVI Traces

Error Distribution

Our In-house Processor Aging EstimatorLogic
Simulation
(Model Sim)

Pr
oc

es
so

r
Sy

nt
he

si
s

Application
Activity

Activity file /
Signal

Probabilities
(.vcd)

Standard
Delay File

(.SDF)

0%
5%
10%
15%
20%
25%
30%
35%

0,0
1,0
2,0
3,0

0 1 2 3 4 5 6 7 8 9 10

Delay Aging Over Year Aging Factor

D
e

la
y

A
gi

n
g

O
ve

r
1

0
 Y

e
a

rs

A
gi

n
g

Fa
ct

o
r

10%
20%
30%

0 1 2 3 4 5 6 7 8 9 10
Year

Applications

Gate-Level Netlist VHDL Files

RTP Traces

NetList
Parser

Circuit Graph Generator
Estimation
of Aging

Find all Gate Paths
Find

Critical
Path

Techn.
Library
(TSMC
45 nm)

Low-Level Aging
Estimation using

SPICE (ngspice-23)

Logic Synthesis
(Synopsys Design

Compiler)

Performance
Estimation

Other
Compiler
Blocks

Quota
Calculation

Instruction
Selection

Protection

Error Logging &
Characterization

FVI Estimation

Instruction
Masking

Probability
Resilience of

BBs and
Functions

Modeling & Estimation
Setup on MATLAB

Instruction
Masking

R2
R1

R3
R4R5

BB/Function
Resilience

System Software

Reliability-
Driven

Compiler

St
at

is
tic

al
An

al
ys

is

PTM

Figure A.1: Tool Flow for Processor Synthesis, Processor Aging Estimation, and Reliability

Simulation and Evaluation for Manycore Processors.

Based on a processor description (e.g., of LEON3) in the form of VHDL files and a technology
library containing different gates, the processor is synthesized using the Synopsys Design Compiler in
order to obtain the netlist and a set of critical paths. This data is then used to estimate the area and fault
probabilities of different processor components, and the aging of the critical paths. Additionally, logic
simulations using ModelSim are performed executing different applications on the synthesized processor
for extracting their respective activity and signal probabilities. The information about the area and fault
probabilities of different processor components, which is obtained after the processor synthesis, is used to
estimate the program reliability. In the reliability-aware manycore simulator, the run-time aging
estimation results are finally used jointly with the design time process variations (that are input into the
infrastructure as variation maps) to account for varying performance characteristics of different cores. The
simulation environment is based on an Instruction Set Architecture (ISA)-simulator for LEON3 cores
generated using the ArchC tool chain [119]. For reliability analysis and estimation, different applications
are simulated and the required data for devising the models and for parameter estimation is obtained.
Furthermore, the simulator is equipped with a configurable fault generator, fault injector and error logging
modules for characterizing the impacts of the reliability threats on different applications. Different
benchmark applications from the MiBench benchmark suite [111] are used for evaluation, which form the
input to the reliability-driven compilation setup that generates versions with different reliability and

Appendix A

- 148 -

performance characteristics by employing different techniques. In the following, the individual parts and
tools of the infrastructure are discussed.

Several tools developed in the scope of this thesis are made available online for download at
http://ces.itec.kit.edu/846.php.

A.1 Reliability-Aware Manycore Instruction Set Simulator and
Fault Injection

The reliability-aware Instruction Set Simulator (ISS) is based on the ArchC architecture description
language and related tools [119] (described in Section A.2). It simulates a SPARC v8 pipelined
architecture with 16 KB of ECC-protected instruction and data caches; see area details in Table 7.1 and
processor layout in Figure 3.3. The simulation environment is extended with a configurable fault
generation and injection module that injects faults in different processor components during the
application execution; see different input parameters in Table A.1.

Parameter Description Properties/Values
Distribution Distribution models for fault generation random, uniform
Bit Flips Min/Max number of bits flipped 1/1, 1/2, 1/3,…
Fault Probability Probability that strike becomes a fault Output of Section 4.1.3
Fault Location List of target processor components Register file, PC, IW, IM, DM, etc.
Processor Layout/Area Size of the complete target device in mm² (Output of Section 7.1.1)

Component Area Area of different processor components given
as percentage of processor area 0%-100%

Place and Altitude City and altitude at which the device is used
to determine the flux rate Karlsruhe, Germany; 1- 20km

Frequency Operating frequency of the processor 100-500MHz

Table A.1: Different Parameter for Fault Scenario Generation.

The fault rate (in #faults/MCycles) is obtained using the neutron flux calculator [126] and city
coordinates which determine the geographical location and altitude where the device will be used.
Considering various locations, we obtained three different fault rates in our experiments (1, 5, 10
faults/MCycles) to cover a wide range of cases (terrestrial to aerial), which conforms to the test conditions
opted by prominent related work [77][80] and as such eases comparison. The errors are observed at the
application software layer and are classified in different error categories. Numerous fault injection
campaigns were performed with different configurations like flux rate, operating frequency, fault models
(single or multiple bit flips), and distribution models; see fault injection parameters in Table A.1. The
complete methodology of the reliability-aware simulation and analysis is done in two major steps:
(1) Fault generation and injection during simulation, (2) error analysis and estimation.

A.2 ArchC Architecture Description Language
ArchC [119] is an Architecture Description Language (ADL) which is based on SystemC and is used

to define processor architectures following the C++/SystemC syntax style. ArchC facilitates the designers
to model new architectures and also to experiment with existing ones. Furthermore, the architecture can
be described on various abstraction levels (e.g., functional or cycle-accurate description of an architecture)
and afterwards the generation of software tools (e.g., simulators, assemblers, and linkers) can be
performed automatically. For various architectures, the ArchC descriptions are available in [127], for

Appendix A

- 149 -

instance, MIPS, Intel 8051 and SPARC v8 (which is adopted for evaluation in this research and described
in the following), that can be used to generate functional simulators. Furthermore, ArchC offers a co-
verification mechanism that enables checking the consistency of a refined model against a reference
model.

AC_ISA
Description

AC_ARCH
Description

ArchC
Simulator
Generator

SystemC
Model GCC Executable

Specification

Figure A.2: ArchC Simulator Generation [128].

For the simulator generation two basic input descriptions are required:

 Architecture Resources (AC_ARCH): the information regarding the resources, e.g., pipeline
structure, memory hierarchy, etc. needs to be defined (see sparcv8.ac for the SPARC v8
architecture).

 Instruction Set Architecture (AC_ISA): details about every instruction such as the format, opcode,
behavior, etc. need to be described (see sparcv8_isa.ac for the instruction declarations).

These descriptions serve as an input to the ArchC Simulator Generator (acsim), which outputs the
C++ classes and SystemC modules required to build the simulator. Additionally, the ArchC Simulator
Generator uses a decoder generator and a pre-processor for lexical analysis and parsing of the language,
which extracts information from the description files. The following files are created; only the important
ones for a SPARC v8 architecture are listed below.

 main.cpp: this file provides the facility to instantiate the model and several features can be set
here. It can be extended for the usage of additional SystemC modules.

 sparcv8.cpp: the processor module is implemented in this file. Amongst others, it contains a loop
in which the decoding and the appropriate instruction behavior are called.

 sparcv8_isa.cpp: the behavior description for all instructions of the SPARC v8 architecture is
presented here. This file is created as a template and the behavior method for every instruction is
placed inside by the designer. The description of an instruction behavior comprises of a general
instruction behavior, which is common for all instructions, a format behavior, which is common
for all instructions that have the same instruction format, and a specific instruction behavior for
each individual instruction.

Figure A.2 shows the complete flow for the ArchC simulator generation. A GCC compiler is used to
compile (i.e. by running 'make -f Makefile.archc') the created model or to extend the existing ones and
produces an executable specification of the target architecture. The generated simulator executes
instruction decoding (that can be speeded up using a cache for decoded instructions), scheduling and
behavior dynamically. Moreover, it supports operating system (OS) call emulation so that it is possible to
simulate applications which contain I/O operations.

This step outputs a file sparcv8.x which is used for an application simulation that has been compiled
using the automatically generated tools. Further detailed descriptions of ArchC and the related tools can
be found in [119] and [128].

Appendix A

- 150 -

A.3 Reliability-Aware Simulation and Analysis Methodology
Figure A.3 shows an overview of the developed simulation and analysis methodology for evaluating

different software program reliability techniques. It works in two main phases that operate in an
automated flow.

Processor Specific
Details (e.g. Chip
Area information

from Layout)

Fault Scenario Generation
Fault Model

Configurations
(e.g. fault rate)

Application
Software

Input Data,
Workload

Golden Execution Run

Fa
ul

tI
nj

ec
tio

n
&

Si
m

ul
at

io
n

Ph
as

e

Analyzing the Program Properties
(Vulnerable Period, Vulnerable Bit

Analysis)

Characterizing the Manifested
Errors and Corresponding

Instructions

IVI, FVI, IMI, EPI Estimation

R
el

ia
bi

lit
y

A
na

ly
si

s
&

Es
tim

at
io

n
Ph

as
e

Erroneous Execution Run

Fault Injection Engine

Instruction Set
Simulation Error Logging

Figure A.3: Flow of the Reliability-Aware Simulation and Analysis.

Fault Injection and Simulation Phase: The fault injection technique integrated in the instruction set
simulator (ISS) is equipped with a configurable fault generation engine (described below in detail). The
fault generator generates different fault scenarios considering different fault models (e.g., number of bit
flips and distribution), fault rates and faults in different architectural components (e.g., register file,
Program Counter (PC), Instruction Word (IW)). Processor-specific details (chip footprint, component
area, number of registers, etc.) and fault model configurations are passed as input (Table A.1).

The number of injected faults per component is determined by the component area (obtained after
RTL synthesis) to incorporate spatial vulnerability. For example, fewer faults are injected in the PC
compared to the ALU/Multiplier. The fault modeling procedure at the ISS level is illustrated in
Figure A.4. For example, a fault in the instruction decoder or in the IW is modeled as corrupting
one/multiple fields of the IW in the ISS that results in a wrong opcode or wrong operand. The faults are
injected during the application execution. If a fault is injected into the multiplier while an add instruction
is being executed, it will have no effect on the application output. Note that the modeling procedure and
fault injection are generic and independent of a particular architecture implementation. In case of a
protected component, the correct state is resumed immediately after the fault injection. In the following,
the fault generation and fault injection steps are explained in more detail.

Configurable Fault Generation Engine: This component generates a set of fault files, that contain
the information about the faults to be injected later (see Figure A.5 for an excerpt) providing details on
when (i.e. in which cycle) and where (i.e. in which processor component) a fault is to be injected. The
fault generation module works independent from the fault injection module. The reasons for this are:
(1) to reuse the same fault scenarios for different applications for comparison and for reproducibility of
the results, (2) to extend (if required) the fault generation module with additional parameters. Depending
upon the input test conditions (e.g., number of bit flips and fault rates), the input parameters are
configured.

Appendix A

- 151 -

Hardware Component

Instruction Fetch & Decode +
Instruction Word (IW)
(Sparcv8, different pipeline
stages)

Program Counter (PC),
Next Program Counter (NPC)

Integer Execution Unit (IEU),
Floating Point Unit (FPU)

Register File
(windowed, 264x32 bit)

Instruction Memory (IM) +
Data Memory (DM), 16 Kbyte

Others (peripheral units, …)

Fault Symptom

one/multiple fields of
an instruction word
are corrupted

wrong instruction(s)
are executed

result of the
Execution unit is
corrupted

data in the register
file is corrupted

data in the caches is
corrupted

not simulated

Modeling

opcode field(s) is
corrupted

source/destination register
field(s) is corrupted

immediate value is
corrupted

PC is corrupted

NPC is corrupted

sources (input values) of
the Execution Units are
corrupted

destination (output value)
of the Execution Unit is
corrupted

register in current window
is corrupted

register not in current
window is corrupted

corrupted data

corrupted instruction

Fault Impact

wrong instruction is executed
instruction format is changed
instruction is not decodable

data is fetched from wrong register(s)
data is written to wrong register(s)

wrong input value for calculation

single instruction is fetched from the wrong location
no access to designated region

multiple instructions are fetched from the wrong location
no access to designated region

Area

not simulated

wrong result because of incorrect source register content

wrong result because of wrong computation

wrong result because of incorrect destination register content

wrong result because of wrong computation

wrong content is fetched if window does not move,
corrupting source operands

wrong content is fetched when window is moved, corrupting
source operands

load instruction fetches incorrect content

same impact as fault in IW

not simulated

Pipeline
and

Integer
Unit

(0.86mm²)

Floating
Point Unit
(0.86mm²)

0.19mm²

2.59mm²

0.45mm²

Instruction Memory (IM) +
Data Memory (DM), 16 Kbyte

Figure A.4: Modeling Hardware-Level Faults in Different Processor Components at the ISS-Level

(An Example for the Case of SPARC v8 Architecture).

226668: ,1,1,6,131074,2,;
4458402: ,1,1,4,32768,0,;
5271986: ,1,1,3,65602,227,;
94276206: ,1,1,1,71680,1,;

...

[Cycle]: ,[Duration],[Type],[Location],[Vector],[Address],;
Cycle: In which cycle the fault should be injected
Duration: How long the fault should stay
Type: Type of fault (e.g. transient fault, stuck-at fault, etc.)
Location: In which component the fault should be injected
Vector: # of bits and their positions for bit flips
Address: sub-address of fault location (e.g. register number in case

of the register file)

Figure A.5: Format and an Excerpt of a Fault File.

Once the Fault Generation Engine finishes its execution, it outputs a fault file which comprises of two
parts: (1) a header, which summarizes the information regarding the configuration settings for the fault
file generation module; (2) the content, which shows the detailed information regarding the faults, where
each line has the cycle information, i.e. the start cycle of a fault. The fault injection related entries are
divided into blocks of five comma-separated fields. Each block represents one fault with its duration, type
of fault, the fault location (i.e. the component in which the fault should be injected), a fault vector which
specifies the number and the exact position of the bits where the faults are injected, and a specific address
within a fault location (e.g., memory/register address) where the faults are injected. Figure A.5 shows the
content section of the fault file. Numerous fault files are generated representing different scenarios and
configuration settings using a script. For every script execution a separate directory is created which
contains a set of fault files. These fault files are finally given as an input to the fault injection engine that
injects faults during the program execution.

Fault Injection Engine: The step-by-step operational flow of the fault injection engine is shown in
Figure A.6. The compiled application versions are executed on an Instruction-Set Simulator which is
enhanced with the capability to trace the application execution. During the simulation of the application,
the fault scenarios are applied using a fault injector and the errors triggered are logged. For fairness of
comparison and reproducibility, the same fault scenarios are used for the evaluation of all applications and
their versions. The results of the fault injection experiments are obtained later by analyzing the effects of
hardware level faults on the application software program level for each individual simulation.

Appendix A

- 152 -

Afterwards, the program output errors are categorized and the reliability for the different application
versions is computed using different reliability metrics. The following steps are taken:

1) The faults for the current cycle are read from the fault file and are stored in a fault list which
contains all faults that are currently injected.

2) If the fault injection is activated (a functionality implemented to be able to inject faults only in
specific functions/parts of a program), the fault list is updated and bit flips are injected in the
respective components.

3) Afterwards the current instruction is executed.

4) Then, the fault list is inspected for entries whose target is overwritten. Those entries are removed
from the fault list.

5) If the fault injection is deactivated, only the instruction is executed.

Note that the fault injection does not introduce any unwanted side effects like changing performance
counters. The application program is additionally simulated without fault injection to obtain a ‘golden
run’ (i.e. correct execution). It is later used for comparison with the ‘erroneous run’ to identify the
potential errors in the program output.

read
faults

for
current

cycle

store
fault in
“fault
list”

fault
injection
activated

?
update
“fault
list”

injection in
PC/NPC, IM,
DM, register
file and IW

execute instruction
behavior

injection in IEU
destination

registers

injection in IEU
source registers remove

“fault list”
entries if
target is

overwritten

execute instruction
behavior

Figure A.6: Flow of the Fault Simulation Process.

Error Analysis and Reliability Estimation: An error analysis is performed for application reliability
analysis while considering the application properties (e.g., histograms of the executed instructions). The
error characterization and the properties of an application are used to obtain reliability metrics at different
levels of granularity (i.e. the instruction and function/task level), which are used to quantify the
susceptibility of an application program towards Application Failures.

Different scripts are used to automatically analyze the results of the application simulations that
output a set of files, i.e. application output, a log file containing a trace of all executed instructions and
summary file containing the execution time of the application and potential warning/error messages.
Afterwards, the set of files obtained from the fault injection simulation of an application are compared to
the set of files obtained after the fault free simulation, i.e. the ‘golden run’ output and the results are
grouped into different categories. The category Correct Output is assigned in case the application
terminates successfully and the output matches with that of the ‘golden run’. In case the faulty and fault
free application simulations produce different or no output, a more detailed error analysis is presented in
Section 3.2. In case of an Application Failure, an abnormal termination has to be detected. Furthermore,
an error or a warning message can be seen inside the summary file. However, the log file is required to be
analyzed for some special subcategories of Application Failures, e.g., in order to identify the reason for a
Segmentation Fault, the last executed instruction is required to be identified that is responsible for this

Appendix A

- 153 -

type of Application Failure. In case the application is not terminated in an abnormal way, the output files
have to be inspected in detail. In case the comparison shows incorrect data in the output, the category
Incorrect Output is labeled.

The same procedure is repeated to generate all the simulation results and their outcome, i.e. the error
distribution categories, which are produced on the basis of the created fault files with the same
configuration settings and are stored in a comma-separated list. This format makes it easier to use the data
for plotting the results in a graphical representation. The error characterization distribution shows the
impacts that are caused by the injected faults. However, the reason for a certain application behavior (i.e.
erroneous/error-free category) cannot be explained with this, therefore, a thorough analysis of the
application source code and the log file is required in order to explain the reasons for a certain error
category. The log file produced after the golden run is inspected to obtain the application characteristics,
i.e. instruction profile, which is computed by counting the number of times each instruction type is
executed. For completeness, the instructions are categorized: call/branch/jump, sethi/nop, load, store, and
logic and arithmetic instructions. Furthermore, an average instruction profile over all executions can also
be generated for a certain function. This information can be used to decide if an application is more data
dominant or more control-flow dominant, and also provides an insight about the usages of the hardware
components (e.g., multiplier, ALU). Additionally the value of the susceptible time for each register is
calculated, which is the sum of the times between a register write and the respective last read access.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ADPCM AES CRC DCT SAD SHA Susan C Susan S

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ADPCM AES CRC DCT SAD SHA Susan C Susan S

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ADPCM AES CRC DCT SAD SHA Susan C Susan S

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ADPCM AES CRC DCT SAD SHA Susan C Susan S

100
80
60
40
20

0

AD
PC

M

AE
S

CR
C

DC
T

SA
D

SH
A

Su
sa

nC

Su
sa

nS

5 f / MCycles

100
80
60
40
20

0

Application Failure Incorrect Output Correct Output

AD
PC

M

AE
S

CR
C

DC
T

SA
D

SH
A

Su
sa

nC

Su
sa

nS

1 f / MCycles

Using SymPLFIED without the
knowledge of the processor layout

Using the Developed Methodology with
the knowledge of the processor layout

Er
ro

r D
ist

rib
ut

io
n

[%
]

Er
ro

r D
ist

rib
ut

io
n

[%
]

Figure A.7: Detailed error characterization in different applications using our methodology and

SymPLFIED [98].

Performance Evaluation of the Developed Reliability Analysis Methodology: The reliability
analysis methodology and campaigns were performed using a 24-core (2.4 GHz) Opteron processor 8431
with 64 GB memory. The average performance of our fault injection and simulation is 72x103 SIPS
(simulated instructions per second) with extensive error logging (40MB/MCycles). The performance of
SymPLFIED [98] program-level fault injection is 15.2 SIPS. It shows that the proposed reliability analysis
methodology provides significant performance improvement (>4K times) compared to the state-of-the-art
approach, i.e. SymPLFIED, which is mainly due to the extensive model computation in SymPLFIED.

Figure A.7 illustrates the comparison of the reliability estimation accuracy of the proposed
methodology and tool flow with SymPLFIED [98]. This comparison illustrates the benefits of bridging
the gap between the hardware and the software to obtain accurate reliability analysis. In case of

Appendix A

- 154 -

SymPLFIED, the number of application software crashes due to wrong access to Instruction Memory
increases significantly. This is due to an increased number of faults in the PC. The main reason is the
ignorance of the processor layout with several architecture-specific features in SymPLFIED’s machine
model. Therefore, the percentage of fault in the PC increases from 0.1% to 7.1%, which leads to an
average 27% over-estimation of Application Failures. The comparison in Figure A.7 demonstrates that
when using the SymPLFIED technique, the probabilities for Application Failures and Incorrect Outputs
are over-estimated, which lead to an inaccurate FVI estimation. It thereby demonstrates the improved
accuracy of the proposed reliability analysis methodology and tool flow.

Reliability-Driven Compilation: In order to compile the applications and their different versions the
GNU Compiler Collection (GCC) [129] is used. In this work, GCC is used due to its compatibility with
the ArchC tool chain. In GCC several optimization options exist ranging from ‘O0’, which enables a fast
compilation and expected debugging results, to ‘O3’, where many optimizations are activated that target
performance improvement but lead to a longer compilation time. Besides that, the optimization option
‘Os’ targets a reduction of the code size. Consequently, it is possible to create different application
versions using the basic optimization options of GCC, whose impact on the software reliability can be
analyzed using the presented analysis models and tools. The compiler-level reliability optimizing
techniques are implemented at the source-code or assembly level or using the CDFG. The reliability
analysis and estimation are done on CDFG or assembly code. In the following, potential ways for
automatic application inside the integrated compiler flow are discussed.

Besides the standard optimization options, for the Reliability-Driven Software Transformations
several additional, already existing compiler optimization passes can be used to analyze their impacts on
the reliability of an application. Different application and function versions can be generated by
activating/deactivating certain (optimization) options of the compiler. In GCC this can be done by either
using ‘-f{optionName}’ for activation or ‘-fno-{optionName}’ for deactivation of an option. For example,
the loop unrolling can be turned off using ‘-fno-unroll-loops’. Additionally, several compiler
constants/parameters can be changed using ‘- -param name=value’, e.g., by setting ‘max-unroll-times’ to a
certain value the maximum amount of unrolling of a single loop can be defined [129]. Consequently,
taking the example of the Reliability-Driven Loop Unrolling, the different versions that are used for the
fault injection analysis can either be (1) generated automatically using GCC (using the above mentioned
options and parameters) or can be (2) implemented in a high-level language at the source-code level.

To enable the Selective Instruction Protection and Reliability-Driven Instruction Scheduling two
alternatives can be selected: (1) After the compilation stage is finished or in case the high-level language
source code is not available, the assembly code can be used as an input for, e.g., duplicating certain
instructions, changing register allocations and adding check instructions based on the instruction
vulnerabilities. Afterwards, the modified assembly code can be assembled and linked. (2) The compiler
can be enhanced by adding an additional optimization pass with additional input data, e.g., the instruction
vulnerabilities. As an alternative, the vulnerability model at the required granularity can also be integrated
in the compiler, e.g., using information on instruction dependencies and register allocation, as a static
vulnerability estimation at compile time. Taking the example of the Reliability-Driven Instruction
Scheduling the basic block separations and the corresponding branch probabilities available in GCC can
be taken advantage of.

- 155 -

Appendix B Function-Level Resilience Modeling
In this appendix, a function-level resilience modeling technique is presented that was developed in the

scope of this thesis. The proposed resilience model quantifies the resilience of a given application function
against the hardware-induced errors. This model can be used for characterizing the reliability importance
of different functions and employing function-level reliability optimization techniques.

B.1 Definition
The resilience of an application function is defined as the probabilistic measure of functional

correctness (output quality) in presence of faults.

B.2 Modeling Function Resilience
Modeling resilience requires error probabilities for basic blocks outputs. There are two possible error

types: Incorrect Output and Application Failure. Therefore, output of each instruction in a given basic
block can be modeled as a Markov Chain with three states: SC, SIC, and SF denoting Correct Output,
Incorrect Output and Application Failure states, respectively (see Figure B.1). Considering that the
execution of a program is a stochastic process, we adopt the Markov Chain technique for output modeling
as it provides a good tradeoff between the model complexity and accuracy when compared to exhaustive
Monte-Carlo Simulations, Fault-Tree Analysis, and Principal Component Analysis based reliability
models.

Assuming that each state depends upon the previous instructions’ output and the error state can only
be observed at the end or at the time of Application Failure, the execution path can be modeled as a
Hidden Markov Chain, with the above-discussed three states as hidden states and the observation state as
“application failed” or “not-failed”. The parameters of this model are the state transition probabilities as
given in the matrix T and shown in Figure B.1. These probabilities depend upon the executed instructions.
Note, the Markov Chain is non-homogeneous as the transition probabilities change depending upon an
instruction Iijk.

1 32

p11

p21

p12

p13

p22

p23

p33

1: SC 2: SIC 3: SF

11 12 13

21 22 23

() () ()
() () () ()

0 0 1

p i p i p i
T i p i p i p i

Figure B.1: Markov Chain for Instruction Output with State Transition Probabilities.

Once these probabilities are estimated (see parameter estimation later in this section), we can compute
the final state probability for a given basic block Bij using Eq. 8.1, where ξ is the final state probability
vector containing the probability of three states: pC, pIC, and pF.

ijijij C IC F ij 1 x IB(B) p p p (B) T(x) Eq. 8.1

Following the information theory concepts, we model the resilience of a function as the normalized
mutual information between the required correct result (from a golden execution run X) and the result at
the end of a function execution (from a potentially faulty execution under a given fault rate), i.e. amount
of useful function output. Mutual information is a measure of the amount of information which can be

Appendix B

- 156 -

inferred from the true result of the function/basic block, if we have an execution that may be faulty;
Figure B.2 explains this concept. A large value of mutual information illustrates that more information
about the correct output can be inferred, i.e. high resilience.

The mutual information between an always correct execution X and a real execution Y that may have
some errors, is represented as I(X;Y) = H(X) – H(X|Y). The function H(X) is the information we have from
the correct execution, which is 1 since the correct execution contains all the information possible. The
conditional entropy is the information lost which is H(X|Y) out of H(X) which is the correct information.
These concepts are used to quantify the resilience of a basic block Bij which can be computed as R(Bij)=1–
H(X|Y)/H(X), where H(X) is the information about the correct execution, i.e. H(X)=bLive, where bLive
denotes the bits of live output registers of Bij.

X YMutual
Information

Basic Block

Correct
Execution

Real
Execution

Error

Information
lost

Figure B.2: Flow of Estimating the Mutual Information for Function Resilience.

The conditional entropy H(X|Y) is now the information lost in Bij and given as Eq. 8.2, where pC(x)
denotes the probability of correct value being x; and p[IC,F](x, y) is the conditional probability of faulty
output being Incorrect Output or Application Failure.

ij Live

[IC,F] 2 C [IC,F]x X ,y Y

R(B) 1 – H(X |Y) / H(X); H X b

H(X |Y) p (x, y) log p (x) p (x, y) Eq. 8.2

Assuming, resilience of a basic block R(Bij) can be characterized as resilience to Incorrect Output and
resilience to Application Failures, we can compute the conditional entropy separately for both cases.
H(X|Y)F is given as pF(Bij) using Eq. 8.1, while H(X|Y)IC is given by Eq. 8.3.

ij

n
IC IC 2 IC IC 2 IC

B
H(X |Y) p log (p (2 1)) (1 p) log (1 p) Eq. 8.3

By replacing the terms of Eq. 8.2 with Eq. 8.3, we can compute the resilience of a basic block against
Application Failures and Incorrect Outputs where the second term in Eq. 8.4 denotes the combined
information loss.

ij IC F IC FR(B) 1 H(X |Y) H(X |Y) H(X |Y) H(X |Y) / H(X) Eq. 8.4

Given the resilience values of all basic blocks Bi of a function fi, resilience R(fi) can be computed
using Eq. 8.5.

i i ib Bi b Bi, fi FR(f) R(b) / eF (b) eF (b) Eq. 8.5

Appendix B

- 157 -

Parameter Estimation: For estimating the model parameters, i.e. transition probabilities given in Eq.
8.1, the following few assumptions are made:

1) observation of faulty output is made at the end of function

2) no recovery mechanism and no error protection is available, i.e. starting from a base case of
unreliable hardware => p33=1; p21=0.

3) Initial state and input is error-free; [pC pIC pF](t=0)f1=[1 0 0].

Moreover, p11+p12+p13=1 and p21+p23=1. To expedite the parameter estimation process, we have
grouped instructions in NT primitive instruction categories (like arithmetic, multiply, divide, logical,
load/store, calls/jumps, and floating point) such that all instructions in a given category share the same
transition probabilities. The parameter can be estimated using fault injection campaigns. Consider there
are NS different fault-injection experiments at a given fault rate, NC and NIC are the number of cases with
Correct Output and Incorrect Output, respectively. For a particular fault injection experiment s, for a
certain instruction category tk, the transition probability p11 can be estimated using the maximum
likelihood, thus deriving Eq. 8.6. NI(t,s) denotes the number of instructions of type t in simulation s.

T

k

N
S C 11

s S t 0,t t
11 k k 2

k
s S

log N N s NI t,s log p t
log p t NI t ,s

NI t ,s
 Eq. 8.6

Assuming p23(t) = p13(t), Eq. 8.6 is utilized to obtain the probability p22(tk). In this way all the remaining
transition probabilities are computed, such that, p23(tk)=p13(tk)=1–p22(tk); and p12(tk)=p22(tk) –p11(tk).

Execution
Traces

(Golden Run)
Extract

Instruction
Statistics

Parameter Estimation (Solving a system of equations,
linear regression, and maximum likelihood)

C
om

pu
te

Fu
nc

tio
n

R
es

ili
en

ce

Fault Injection
Campaigns

(Traces & Error
Logs)

Extract
Error

Statistics

Compute Transition
Probability Matrix

Compute Output
Probability Vector

Compute Conditional
Entropy

Compute Basic Block
Resilience

Figure B.3: Flow of Steps to Compute Basic Block & Function Resilience

Figure B.3 shows a simplified flow of different steps of our scheme towards modeling and estimation
of function resilience along with parameter estimation and computation of conditional entropy.

Complexity: The complexity of resilience estimation is O(|Bi| NT log(|Iij|), which is much smaller
than the complexity of fault tree based methods (i.e. O(|Bi| |Iij|3) and Monte-Carlo simulations (i.e. O(|Bi|

|Iij|2)) for each basic block

B.3 Results
The resilience model quantifies the reliability properties at a coarse-grained level, i.e. function and

basic block that can be used to facilitate in prioritizing different functions and basic blocks for selective

Appendix B

- 158 -

protection/constrained reliability optimization. For example, allocating the performance quotas to
different functions/basic block depending upon their higher/lower resilience values.

ln
(1

-R
es

ili
en

ce
)

-8

-10

-12

-14

Q
uo

ta

25%

20%

10%

0%

A
D

PC
M

CR
C

D
CT

SA
D

SH
A

SU
SA

N

A
D

PC
M

CR
C

D
CT

SA
D

SH
A

SU
SA

N

A
D

PC
M

CR
C

D
CT

SA
D

SH
A

SU
SA

N

Incorrect
Output

Application
Failure

Combined
= (Incorrect Output +
Application Failure)

Figure B.4: Resilience of various application functions (inverse values in log scale): resilience is

shown separately for Incorrect Output and Application Failure, and Combined.

In this work the resilience is used as a metric to quantify the coarse grained reliability, i.e. at
function/basic block level and then using the resilience values for distributing the tolerable performance
overhead quota among different functions and different basic blocks inside the application program. A
more resilient function would get a less quota for protection compared to a less-resilient function that may
not tolerate more errors. Figure B.4 illustrates the resilience (in log scale) and the performance overhead
quota for different application functions. The resilience and quota are provided separately for the Incorrect
Output and Application Failure cases along with the combined case. Note, here Incorrect Output and
Application Failure are both treated as information loss. Due to the high resilience, DCT gets lesser quota
compared to the ADPCM, SHA, and SAD. The resilience of DCT is high because it is an unrolled version,
with a relatively lesser number of branches, i.e. critical instructions, compared to other applications that
lead to fewer control flow errors in DCT.

- 160 -

Appendix C Algorithms
C.1 Algorithm for Computing the Error Masking Probability

PDP(I, p)
Error Masking Probability Computation
Input: G (V, E), LG, (P, S)
Output: Masking probabilities due to data flow for each instruction I for path p, PDP (I, p)
1. FOR all I ∈ G DO
2. PD (I) ← computePD (I); // Eq. 4.7
3. END FOR
4. FOR all I ∈ LG DO
5. PDP (I, p) ← PD (I) // for all leaf nodes
6. END FOR
7. List L();
8. FOR all x ∈ LG.P DO
9. L.add(x); // list of ready nodes
10. END FOR
11. WHILE (!L.isEmpty()) DO
12. FOR all I ∈ L DO
13. I.Paths ← generatePaths(I); // generate all instruction paths
14. FOR all p ∈ I.Paths DO
15. NB ← 0; p’ ← p;
16. FOR all x ∈ p’ DO // compute number of consecutive instructions of Type B
17. IF (x == typeB) THEN
18. NB ← NB + 1; p’.remove(x);
19. ELSE
20. NB ← 0; p’.remove(x);
21. END IF
22. END FOR
23. IF (NB < 1) THEN // compute masking probabilities
24. PDP (I, p) ← PD (I) + (1 - PD (I)) × PD (I.s);
25. ELSE
26. PD’ (I) ← ∑ ஽ܲ(ݔ)ூାேಳ௫ୀூ ;
27. PDP (I, p) ← PD’ (I) + (1 - PD’ (I)) × PD (I.s);
28. END IF
29. END FOR
30. L.remove(I);
31. FOR all ip ∈ I.P DO
32. L.add(ip);
33. END FOR
34. END FOR
35. END WHILE

Algorithm C.1: Computing the Error Masking Probability PDP(I, p)

Appendix C

- 161 -

C.2 Algorithm for Computing the Instruction Error Propagation
Index

Instruction Error Propagation Index Computation
Input: Instruction flow graph G (V, E), set of leaf nodes LG, masking probabilities due to dataflow PDP(I, p),
 control flow probabilities PCF (p | I).
Output: set of error propagation indices for each instruction I, EPI (I).
1. FOR all I ∈ LG(G) DO
2. EPI (I) ← 1; // initialization to consider error propagation of leaf nodes
3. END FOR
4. List C(LG); Queue Q();// list of traversed instructions and queue of evaluated instructions
5. FOR all I ∈ LG(G) DO
6. FOR all i ∈ I.P DO
7. Q.Enqueue(i);
8. END FOR
9. END FOR
10. WHILE (!Q.isEmpty()) DO
11. I ← Q.Dequeue(I);
12. IF (∀ s ∈ I.S, s ∈ C) THEN // compute EPI for all instructions with successors in C
13. EPI ← 0;
14. FOR all s ∈ I.S DO
15. IF (IMI(s) == 0) THEN // if successor is a non-masking instruction
16. EPI ← EPI + (EPI(s) × PExecution(s | I));
17. ELSE
18. EPI ← EPI + ∑ (൫1 − ஽ܲ௉(ݏ, ൯(݌ ×∀௣ ∈௦.௉௔௧௛௦ ஼ܲி(ܫ | ݌) × ; (((݌)ீܮ)ܫܲܧ
19. END IF
20. END FOR
21. EPI(I) ← EPI × (PIO(I) / (PIO(I) + PCr(I))); C.add(I);
22. FOR all I ∈ I.P DO
23. Q.Enqueue(I);
24. END FOR
25. ELSE
26. Q.Enqueue(I);
27. END IF
28. END WHILE

Algorithm C.2: Computing the Instruction Error Propagation Index

Appendix C

- 162 -

C.3 Algorithm for FVI-Driven Data Type Optimization
Algorithm C.3 presents the pseudo-code targeting load merging (for store instructions, the procedure

is similar).

Input: Graph G (V, E) of the function F, Pτ as the tolerable performance overhead, Data Type, FVI
and performance of the original code (FVIOrig, POrig).

Output: Transformed function fd with merged loads and extraction code as a result of the data type
optimization.

FVI-Driven Data Type Optimization
Input: G (V, E), Pτ, FVIorig, Porig, DataType
Output: Transformed function fd
1. A ← getAllArrays(G);
2. FOR all a ∈ A DO
3. List <V> L ← getLoads(a, G);
4. IF (DataType == INT) THEN
5. continue;
6. END IF
7. FVIBest ←FVIOrig;
8. WHILE L ! = ∅ DO
9. G’ ← G;
10. (l1, l2) ← getCurrent&NextLoads(L);
11. l ← Merge(l1, l2);
12. G’.remove(l1, l2); G’.insert(l); G’.insertExtractionCode();
13. (FVI, P, Spill) ← Evaluate(G’); // compile and execute, estimate FVI, performance, and
 check for spilling
14. IF ((P/POrig – 1) > Pτ) THEN
15. break;
16. END IF
17. IF ((FVI < FVIBest) && (!Spill)) THEN
18. FVIBest ← FVI; L.remove(l1,l2);
19. G.remove(l1,l2); G.insert(l);
20. G.insertExtractionCode();
21. END IF
22. END WHILE
23. END FOR
24. fd ← G;
25. return fd;

Algorithm C.3: Algorithm for FVI-Driven Data Type Optimization

Appendix C

- 163 -

C.4 Algorithm for FVI-Driven Loop Unrolling
Input: a set of maximum unrolling factors for all loops, the FVI, performance, and code size of the

original function F.

Output: the transformed function fd with loop unrolling applied by an FVI-minimizing unrolling
factor.

FVI-Driven Loop Unrolling
Input: Function F, Set of maxUnrollFactors, FVIOrig, POrig, COrig, μ.
Output: Transformed function fd
1. list< Loop > L ← getLoops(F);
2. FOR all l ∈ L DO // determine unrolling factor for each loop
3. maxUF = getFactor(l, maxUnrollFactors);
4. unrollProfitBest ← minINT; uFBest ← 1;
5. FOR uFi = 1 to maxUF DO
6. ltemp ← l; // create a temporary copy of the loop
7. FuFi ← Unroll (F, ltemp, uFi); // Unroll by a factor uFi
8. (FVI, P, C, Spill) ← Evaluate(FuFi); // compile. execute, estimate FVI and
 performance, and check for spilling.
9. FVIBenefit ← (FVIOrig – FVI)/FVIOrig;
10. PLoss ← (P - POrig)/POrig; // Performance loss
11. CLoss ← (C – COrig)/COrig; // Code size increase
12. unrollProfit = computeProfit(FVIBenefit, PLoss, CLoss, μ);
13. IF ((unrollProfit > unrollProfitBest) && (!Spill)) THEN
14. unrollProfitBest ← unrollProfit; uFBest ← uFi;
15. END IF
16. END FOR
17. setBestUnrollFactor(l, uFBest);
18. END FOR
19. FOR all l ∈ L DO // generate the transformed function using the best unroll factors
20. UFBest = getBestUnrollFactor(l);
21. fd ← Unroll(fd, l, UFBest);
22. END FOR
23. return fd;

Algorithm C.4: Algorithm for FVI-Driven Loop Unrolling.

Appendix C

- 164 -

C.5 Algorithm for Applying Common Expression Elimination
Algorithm C.5 shows the pseudo-code of the algorithm to evaluate the reliability benefit of replacing

common expressions.

Input: Graph G (V, E) of the function F, Pτ as the tolerable performance overhead, FVI and
performance of the original code (FVIOrig, POrig).

Output: Transformed function fd where the common expressions are (partially) replaced.

Common Expression Elimination
Input: G (V, E), Pτ, FVIOrig, POrig
Output: Transformed function fd
1. CG ← getCEs(G); // get all common sub-graphs/expressions in G
2. FOR all c ∈ CG DO // Evaluation Phase
3. O ← getOccurrences(c, G);
4. FOR all o ∈ O DO
5. f1 ← computeFVI(replace CE at o in G);
6. f2 ← computeFVI(keep CE at o in G);
7. ∆ ←f2 – f1;
8. IF (∆ ≥ 0) THEN
9. o.mode ← set(replace_CE);
10. ELSE
11. o.mode ← set(keep_CE);
12. END IF
13. END FOR
14. G’ ← updateGraph(G); // replace occurrences based on o.mode
15. FVIc ← computeFVI(G’); // FVI
16. Pc ← computePerformance(G’); // performance
17. εc ← (FVIOrig – FVIc)/(Pc – PBest); // efficiency
18. END FOR
19. sort(LCE); // sort common sub-graphs/expression by their efficiency
20. FOR all l ∈ LCE DO // Elimination Phase
21. IF (l.Pc – PBest ≤ Pτ) THEN
22. O ← getOccurences(l.c, G);
23. FOR all o ∈ O DO
24. IF ((o.mode == replace_CE) && (!Spill)) THEN
25. G.remove(o); G.insert(CE_variable);
26. Pτ ← Pτ – o.latency();
27. END IF
28. END FOR
29. END IF
30. END FOR
31. fd ← G
32. return fd; // return the code with expression elimination

Algorithm C.5: Algorithm for Applying Common Expression Elimination

Appendix C

- 165 -

C.6 Algorithm for Soft-Error-Driven Instruction Scheduler
Soft Error Driven Instruction Scheduler
Lookahead (): Input: Instruction Graph G = (V, E), Tolerable performance overhead Pτ.
 Output: Instruction Schedule GS.
33. GS ← ∅; GSC ← ∅; // set of scheduled and candidate instructions
34. FOR all n ∈ V DO
35. S[n] ← n.getSucc(); P[n] ← n.getPred();
36. IF (ready(n)) THEN
37. GSC ← GSC ∪ n; // add to the ready list
38. END IF
39. END FOR
40. FOR all n ∈ GSC DO
41. eT[n] ← 0; // initialization of the earliest time
42. END FOR
43. Tcurr ← 0; iPSel ← ∅ ; iRSel ← ∅ ; // Performance and reliability maximizing instruction
44. Ψmax ← - ∞; δmax ← - ∞
45. WHILE (GSC != ∅) DO
46. FOR all i ∈ GSC DO
47. Ψ[i] ← estimateReliabilityWeight(i); // Eq. 5.2–Eq. 5.5;
48. IF ((δ[i] > δmax) && eT[i] ≤ Tcurr) THEN // obtain instruction considering performance
49. δmax ← δ[i]; iPSel ← i ;
50. END IF
51. IF (Pτ > 0) THEN
52. FOR all j ∈ (GSC – {i}+ j.getSchedulableSN()) DO// evaluate candidates with lookahead
53. Ψij ← Ψ[i] + Ψ[j]; δLoss ← δmax - δ[i];
54. IF ((Ψij > Ψmax) && (δLoss < Pτ)) THEN
55. Ψmax ← Ψij; iRSel ← i;
56. ELSE IF ((Ψij == Ψmax) && (δLoss < Pτ) && (δ[i] > δ[iRSel]) && (eT[i] ≤ Tcurr)) THEN
57. Ψmax ← Ψij; iRSel ← i;
58. END IF
59. END FOR
60. IF (iRSel != ∅) THEN
61. iSel ← iRSel; Pτ ← Pτ – (δmax - δ[iSel]); // select reliability-wise best solution
62. ELSE
63. iSel ← iPSel; // select performance-wise best solution
64. END IF
65. ELSE
66. iSel ← iPSel;
67. END IF
68. END FOR
69. Tcurr ← Tcurr + T[iSel]; GSC← GSC - iSel; GS ← GS ∪ iSel;
70. FOR all s ∈ S[iSel] DO// update the set of scheduling candidates
71. IF (∀ m ∈ P[s] ∃ t | VGS[t] = m) THEN
72. GSC ← GSC∪ s; eT[s] ← Tcurr + eT[iSel];
73. END IF
74. END FOR
75. END WHILE
76. return GS;

Algorithm C.6: Pseudo-Code of the proposed Soft-Error-Driven Instruction Scheduler.

Appendix C

- 166 -

C.7 Algorithm for Selective Instruction Protection Technique
Selective Instruction Protection
Input: Unprotected function F from the software program as G = (V, E), user provided tolerable performance

overhead in cycles Pτ, set of instruction vulnerabilities IVI, set of error propagation indices for all
instructions EPI, user provided program reliability method R (for instance, SWIFT-R [71])

Output: Function with selective instruction protection F’.
1. List L;
2. FOR all i ∈ G DO// compute the reliability profit for all instructions
3. RPF(i) ← (EPI(i) × IVI(i))/ω(i);
4. END FOR
5. Sort(L, RPF, Descending order);
6. WHILE (!L.empty() && (Pτ > 0)) DO
7. I ← L.pull();
8. IF (ω(I) ≤ Pτ) THEN
9. Protect(I); Pτ ← Pτ - ω(I);
10. FOR all i ∈ (I.S ∪ I.P) DO
11. GI ← generateGroups(I, i); // groups of consecutive instructions
12. FOR all g ∈ GI DO // compute overhead of instruction groups
13. g' ← g;
14. FOR all i ∈ g DO
15. IF ((i.S > I) && (∃௦∈௜.ௌinGroup(s,g’) == False)) THEN
16. setCheckInstructionPt(i, g’);
17. END IF
18. setCheckInstructionPt(Leaf(g), g’);
19. END FOR
20. ω(i, g’) ← getOverload(g’, R);
21. END FOR
22. RPF(i) ← (EPI(i) × IVI(i))/ω(i, g’);
23. END FOR
24. Sort(L, RPF, DescendingOrder);
25. END IF
26. END WHILE // end while loop if budget is over or all instructions are protected

Algorithm C.7: Pseudo-Code of the Selective Instruction Protection Technique

Appendix C

- 167 -

C.8 Algorithm for Offline Table Construction
Algorithm C.8 describes the procedure of offline table construction by adopting the approximations
explained in Section 6.1, and by using ߜ as the timing unit and ߪ as the reliability penalty unit.

Offline Table Construction
Input: n functions, CDF and PDF of the functions, units δ and σ, weighted parameter α, and the default

versions θ () after observing the deadline misses;

1. FOR r ← maxmin ()()
,,....,

R nR n
stepped by σ DO

2. FOR t ← 0,...., ,D
stepped by δ DO

3. Calculate j*(n, r, t) and G(n, r, t) by using Eq. 6.2
4. END FOR
5. END FOR
6. FOR i ← n-1, n-2,…., 2 DO

7. FOR r ← maxmin ()()
,,....,

R iR i
stepped by σ DO

8. FOR t ← 0,...., ,D
stepped by δ DO

9. IF (t == 0) THEN
10. j*(i, r, t) ← θi ; G(i, r, t) ← α (r + ρ(i)) + (1 – α)
11. ELSE
12. FOR each j = 1, 2,…., Ki,

13. Calculate Hj ←
,

,
0

(). 1, ,
t

i j
i j

x

r R t xP x G i dx

 + , ,(1 ()).(((1)) (1));i j i jC t r R i

14. j*(i, r, t) ←argmin j=1,2,….,Ki Hj ;
15. G(i, r, t) ← *(, ,)j i r tH

16. END IF
17. END FOR
18. END FOR
19. END FOR
20. Calculate j*(1, 0, D) and G (1, 0, D) using the same procedure as in Steps 14 and 15.
21. Return the table j*.

Algorithm C.8: Offline Table Construction

Appendix C

- 168 -

C.9 Algorithm for Hybrid RMT Tuning
Hybrid RMT Tuning
Input: set T of tasks; a list of available/free cores Listc ; list of different compiled versions {t1 = {t(1,1),…,

t(1,K1)},…, tM = {t(M,1), …, t(M,KM)}; history H of last SH RMT comparison results; list TR{RMT,NR} of
running tasks (sorted by RMT level and RTP).

Output: performance-wise sorted version lists Vt1,…, VtM containing different reliability performance
tradeoffs per task, list L of tasks with a protection type pt and number of allocated cores rc used for
RMT.

1. FOR all t ∈ T DO // estimate performance and RTP for all task versions
2. FOR all cv ∈ t DO // loop over all task versions
3. cv.L = estimatePerformance(cv);
4. cv.RTP = calculateRTpenalty(cv);
5. Vt.insert(cv);
6. END FOR
7. Vt.sort(cv.L);
8. END FOR
9. List TL;
10. FOR all t ∈ T DO
11. t.v = Vt.head(1); TL.insert(t);
12. END FOR
13. TL.sort(t.RTP); // sort task list by RTP
14. NFC = Listc.size(); // number of free cores
15. IF (TRRMT.size() == 0 && NFC > 1) THEN // at least one task with RMT
16. t = TL.pop_front(); t.pt = RMT; TRRMT.push_back(t);
17. rc = min (coreDemandRMT, NFC); NFC = NFC - rc; t.rc = rc;
18. END IF
19. WHILE (NFC > 0 && TL.size() > 0) DO // allocate a core to each task
20. t = TL.pop_front(); t.pt = NR; TNR.push_back(t);
21. NFC -- ; t.rc = 1;
22. END WHILE
23. WHILE (TL.size() > 0) DO // preemption for tasks running with RMT
24. IF (TRRMT.size() > 1) THEN
25. tr = TRRMT.back();
26. ELSE
27. break;
28. END IF
29. IF (tr.rc == 2) THEN // 2 is the required number of cores for RMT
30. tr.pt = NR; TNR.push_front(tr); TRRMT.pop_back();
31. END IF
32. tr.rc = tr.rc – 1;
33. t = TL.pop_front(); t.pt = NR; TRNR.push_back(t); t.rc =1;
34. END WHILE
35. h = ∑ [݅]ܪ ∗ ݅ ହ௜ୀଵ ; // evaluate RMT comparison history
36. IF (h> SH) THEN // activate RMT mode based on comparison history
37. WHILE (NFC ≥ coreDemandRMT – 1) DO
38. t = TNR.pop_front(); t.pt = RMT; t = TRRMT.insert();
39. NFC = NFC – coreDemandRMT – 1; t.rc = coreDemandRMT;
40. END WHILE
41. END IF

Algorithm C.9: Pseudo-code for the Hybrid RMT Tuning

Appendix C

- 169 -

C.10 Algorithm for Reliable Code Version Tuning
Version Tuning
Input: lists Tpt of tasks with protection levels pt ∈ {NR, RMT}; performance-wise sorted version lists

Vt1,….,VtM; list of available/free cores Listc.
Output: tasks T with set of selected versions {t(i,j), ∀ i ∈ T, j ∈ Ki }
1. FOR all t ∈ TRMT ∪ TNR DO
2. t.c = Listc.tail(1);
3. END FOR
4. FOR all t ∈ TRMT ∪ TNR DO // loop over all tasks
5. v = Vt.head(1);
6. FOR all j ∈ {1,…,t.rc} DO // initialize with performance-wise best version
7. t.vj = v;
8. END FOR
9. IF (t.rc ≤ 2) THEN // tasks running with no redundancy
10. FOR all v ∈ Vt DO
11. IF (v.RT > t.v1.RT && v.L < t.D) THEN // select the version with best reliability within the

deadline constraint
12. FOR all j ∈ {1,…,t.rc} DO
13. t.vj = v;
14. END FOR
15. END IF
16. END FOR
17. END IF
18. END;
19. FOR all t ∈ TRMT ∪ TNR DO
20. t.c = ∅;
21. END FOR

Algorithm C.10: Pseudo-code for the Reliable Code Version Tuning

Appendix C

- 170 -

C.11 Algorithm for Core Tuning and Version Update
Core Tuning and Final Version Tuning
Input: task graph G, lists Tpt of tasks with protection levels pt ∈ {NR, RMT}; performance-wise sorted

version lists Vt1,…,VtM; performance-wise sorted list of available/free cores Listc.
Output: tasks T with set of selected versions {t(i,j), ∀ i ∈ T, j ∈ Ki } and set of assigned cores {t.c1,…,t.ct.rc}
1. List L = TRMT ∪ TNR; L.sort(t.RTP);
2. FOR all t ∈ L DO // loop over all tasks
3. List LdC = t.getDependentTasks(G); // list of dependent cores
4. List Lexec;
5. FOR all c ∈ Listc.head(3) DO // analyze 3 performance-wise best cores
6. comm = 0;
7. FOR all tdep ∈ LdC DO // analyze communication overhead
8. dist = computeDistance(c, tdep.c);
9. comm += estimateCommOverhead(dist, tdep.data);
10. perf = estimatePerformance(c,t.v);
11. END FOR
12. t.exec = comm + perf;
13. Lexec.insert(pair< c,t.exec >);
14. END FOR
15. t.c1 = getCore(min(∀ t.exec ∈ Lexec)); // select core with lowest combination of execution time

and communication
16. Listc.remove(t.c1);
17. i = 2;
18. WHILE (i ≤ t.rc) DO // find close cores for redundant executions
19. t.ci = min (∀ c ∈ Listc {calcDistance(t.c1,c)});
20. Listc.remove(t.ci); i + +;
21. END WHILE
22. END FOR
23. FOR all t ∈ L DO
24. tuneVersion(t);
25. END FOR

Algorithm C.11: Pseudo-code for the Core Tuning and Version Update

- 171 -

Appendix D Notations and Symbols
This appendix presents the table of notations/symbols/terms and their descriptions used in this thesis.

The parameters / symbols are listed in the alphabetic order in the following table.

Parameter/Symbol Description
Ac Area of the processor component c
BB Basic Block

CAB(I) Number of critical address bits of the instruction I that lead to “memory
segmentation” errors

ci Checking instructions
CI Critical Instruction

COB(I) Number of critical operand bits of the instruction I that lead to “non-decodable
instruction” errors

Ci,j(D) Probability in which the execution time of jth version of function i is less than or
equal to the deadline D

COrig Code size of the of the Original Code without reliability-driven transformations
csi Consecutive instructions
D Application Deadline
DB Dependent Basic Blocks
E Set of edges in an application graph G
ep Execution Path
EPI Instruction Error Propagation Index
ERraw Raw error rate
f Fault rate
FVI Function Vulnerability Index
FVIFailures Function’s vulnerability to Application Failures
FVIIncorrectOP Function’s vulnerability to Incorrect Outputs
FVIOrig FVI of the of the Original Code without reliability-driven transformations
G Application graph with a set of vertices V (or T as a set of Tasks) and edges E

G*(i, r, t) A single function version entry in the table of function schedules corresponding
to the instruction i, with reliability level r and time t.

I.Paths A set of paths p for an instruction I
ID Dependent instruction
IMI Instruction Error Masking Index
IMI(I) Instruction Masking Index of instruction I
iPSel Performance-maximizing selected instruction during instruction scheduling

iRSel
Reliability-maximizing (i.e. vulnerability minimizing) selected instruction
during instruction scheduling

IVI Instruction Vulnerability Index
IVIi Instruction Vulnerability Index of instruction i

Appendix D

- 172 -

Parameter/Symbol Description
IVIic Instruction Vulnerability Index of instruction i in processor component c

j*(i, r, t) Index of the function version entry in the table of function schedules
corresponding to the instruction i, with reliability level r and time t.

maxUnrollFactor maximum value of the unrolling factor for a given function
miss rate Percentage of deadline misses for a given application
nCI Non-Critical Instruction
P A set of predecessor instructions for a given instruction

p An instruction path, such that each instruction in the path has exactly one
successor and one predecessor instruction.

PC
Set of different pipeline stages PC={F,D,E,M,W}, where F=Instruction Fetch,
D=Instruction Decoder, E=Execute, M=Memory, W=Writeback stage in a 5-
stage pipeline processor like LEON2.

Proc Set of processor components, i.e. c Proc

PAF(I) Probability of Application Failures in case a fault occurs during the execution of
the instruction I

PCF(ep|I) Execution Path Probability for an instruction I given an execution path ep

PD(I) Error Masking Probability during the execution of an instruction I with O as a
set of operands

PD(x, I) Error Masking Probability for the operand bit x during the execution of
instruction I

PDP(I, p) Error Masking Probability, due to data flow properties, for an instruction I
along the path p until the final visible program output at the end of the path

Pe(x) Error Probability in an operand bit x
PeAd(b, I) Error Probability in the address bits b of the instruction I
PEM(c) Error Masking Probability of a processor component c
PEM(i, PC) Error Masking Probability for an instruction i in the pipeline stage PC
PeOP(b, I) Error Probability in the opcode bits b of the instruction I

PExecution(s|I) Execution probability of a successor instruction s corresponding to an
instruction I

PFailures Probability of Application Failures
Pfault(c) Probability of Fault in a processor component c
PIncorrectOP-CI Probability of Incorrect Outputs due to critical instructions
PIncorrectOP-nCI Probability of Incorrect Outputs due to non-critical instructions

PIO(I) Probability of Incorrect Outputs in case a fault occurs during the execution of
the instruction I

POrig
Performance (in terms of execution time given as cycles) of the Original Code
without reliability-driven transformations

Psig Signal probability
Pτ Tolerable performance overhead
Q Queue

Appendix D

- 173 -

Parameter/Symbol Description

R Reliability function for quantifying the functional correctness. It can either be
FVI or function resilience or any other function reliability metric.

Rmax Maximum range of the RTP value for a given function.
Rmin Minimum range of the RTP value for a given function.
RTP Reliability-Timing Penalty
S A set of successor instructions for a given instruction

TotalBitsc
Total Bits representing the architecturally-defined size of the processor
component c

ω Protection overhead
vulBitsic Vulnerable Bits of the processor component c executing instruction i
vulPic Vulnerable Period of instruction i in processor component c
V Set of vertices in an application graph G

ψ Instruction Reliability Weight as a joint function of IVI, criticality and
dependent instructions

ψF Function Reliability Weight of a function F
ϕi,j Probability of deadline misses for a given function version j of a function i

- 175 -

Bibliography

[1] G. Moore, “Cramming more components onto integrated circuits”, Electronics, vol. 38, no. 8, 1965.
[2] Intel, http://www.intel.com/pressroom/kits/quickref.htm [Online; accessed: Apr 2015].
[3] Intel, http://ark.intel.com/products/80555/Intel-Xeon-Phi-Coprocessor-7120A-16GB-1_238-GHz-61-core

[Online; accessed Apr 2015].
[4] Nvidia, http://www.nvidia.com/object/white-papers.html [Online; accessed Apr 2015].
[5] International Technology Roadmap for Semiconductors, in ITRS 2013 Edition – Process Integration,

Devices, and Structures, 2014.
[6] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif, E. J. Nowak, D. J. Pearson, and

N. J. Rohrer, “High-performance CMOS variability in the 65-nm regime and beyond”, IBM Journal of
Research and Development - Advanced silicon technology, vol. 50, pp. 433–449, Jul. 2006.

[7] S. Mitra, K. Brelsford, Y. Kim, H. Lee, and Y. Li, “Robust System Design to Overcome CMOS Reliability
Challenges”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 1, pp. 30–
41, 2011.

[8] A. W. Strong, E. Y. Wu, R. P. Vollertsen, J. Sune, G. La Rosa, T. D. Sullivan, and S. E. Rauch III,
“Reliability Wearout Mechanisms in Advanced CMOS Technologies”, Wiley-IEEE Press, vol. 12, ISBN:
978-0471731726, 2009.

[9] S. Borkar and A. A. Chien, “The Future of Microprocessors”, Communications of the ACM, vol. 54, no. 5,
pp. 67–77, 2011.

[10] S. Borkar, “Designing Reliable Systems from Unreliable Components: The Challenges of Transistor
Variability and Degradation”, IEEE Micro, vol. 25, no. 6, pp. 10–16, 2005.

[11] A. Leon, B. Langley, and J. Shin, “The UltraSPARC T1 processor: CMT reliability”, in Proceedings of the
Custom Integrated Circuits Conference, pp. 555–562, 2006.

[12] T. Austin, V. Bertacco, S. Mahlke, and Y. Cao, “Reliable Systems on Unreliable Fabrics”, IEEE
Transactions on Design & Test of Computers, vol. 25, no. 4, pp. 322–332, 2008.

[13] M. A. Alam, S. Mahapatra, “A comprehensive model for PMOS NBTI degradation”, Microelectronics
Reliability, pp. 71–81, 2005.

[14] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De., “Parameter variations and impact
on circuits and microarchitecture”, in Proceedings of the 40th Annual Design Automation Conference
(DAC), pp. 338-342, ACM, 2003.

[15] K. Bowman, A. Alameldeen, S. Srinivasan, and C. Wilkerson. “Impact of die-to-die and within-die
parameter variations on the clock frequency and throughput of multi-core processors”, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 12, pp.1679-1690, 2009.

[16] R. Rajeev, A. Devgan, D. Blaauw, and D. Sylvester, “Parametric yield estimation considering leakage
variability”, in Proceedings of the 41st Annual Design Automation Conference (DAC), pp. 442-447, ACM,
2004.

[17] D. Cheng and S. K. Gupta, “Maximizing yield per area of highly parallel cmps using hardware
redundancy”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 33, no. 10, pp. 1545–1558, Oct 2014.

[18] R. Baumann, “Radiation-induced soft errors in advanced semiconductor technologies”, IEEE Transactions
on Device and Materials Reliability, vol. 5, no. 3, pp.305-316, 2005.

[19] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M.Tahoori, and N.Wehn, “Reliable on-chip
systems in the nano-era: Lessons learnt and future trends”, in Proceedings of the 50th Annual Design
Automation Conference (DAC), pp.99, ACM, 2013.

[20] “Firmware-based Platform Reliability”, Intel Corporation, 2004.
[21] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Modeling the effect of technology trends

on the soft error rate of combinational logic”, in Proceedings.of the IEEE International Conference on
Dependable Systems and Networks (DSN), pp. 389-398, 2002.

Bibliography

- 176 -

[22] S. Mukherjee., J. Emer, and S. Reinhardt, “The soft error problem: An architectural perspective”, In the
11th International Symposium on High-Performance Computer Architecture, 2005. HPCA-11., pp. 243-
247, 2005.

[23] R. Lefurgy, A. Drake, M. Floyd, M. Allen-Ware, B. Brock, J. Tierno, and J. Carter, “Active management of
timing guardband to save energy in POWER7”, in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 1-11, ACM, 2011.

[24] M. Agarwal, B. C. Paul, M. Zhang, and S. Mitra, “Circuit Failure Prediction and Its Application to
Transistor Aging”, in Proceedings of the VLSI Test Symposium, pp. 277–286, 2007.

[25] B. Raghunathan, Y. Turakhia, S. Garg, and D. Marculescu, “Cherry-picking: exploiting process variations
in dark-silicon homogeneous chip multi-processors”, in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE), pp. 39-44. EDA Consortium, 2013.

[26] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R. Gupta, R. Kumar, S. Mitra, A. Nicolau, T.Rosing, M.
Srivastava, S. Swanson, and D. Sylvester, “Underdesigned and opportunistic computing in presence of
hardware variability”, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 32, no.1, pp. 8-23, 2013.

[27] N. Oh, P. Shirvani, and E. McCluskey, “Error detection by duplicated instructions in super-scalar
processors”, in IEEE Transactions on Reliability, vol. 51, no.1, pp. 63-75, 2002.

[28] G. Reis, J. Chang, N. Vachharajani, R. Rangan, D. August, and S. Mukherjee, “Software-controlled fault
tolerance”, in ACM Transactions on Architecture and Code Optimization (TACO), vol.2, no. 4, pp.366-396,
2005.

[29] S. Borkar, “Microarchitecture and design challenges for gigascale integration”, in MICRO, vol. 37, pp. 3-3,
2004.

[30] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Impact of Scaling on Neutron-Induced Soft
Error in SRAMs From a 250 nm to a 22 nm Design Rule”, in IEEE Transactions on Electron Devices, vol.
57, no. 7, pp. 1527–1538, 2010.

[31] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A systematic methodology to compute the
architectural vulnerability factors for a high-performance microprocessor”, in Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). pp.29, 2003.

[32] N. Seifert, B. Gill, S. Jahinuzzaman, J. Basile, V. Ambrose, Q. Shi, R. Allmon, and A. Bramnik, “Soft error
susceptibilities of 22 nm tri-gate devices”, in IEEE Transactions on Nuclear Science, vol. 59, no.6, pp.
2666-2673, 2012.

[33] R. Vadlamani, J. Zhao, W. Burleson, and R. Tessier, “Multicore soft error rate stabilization using adaptive
dual modular redundancy”, in IEEE Design, Automation and Test in Europe Conference & Exhibition
(DATE),pp. 27-32, 2010.

[34] N. Oh., P. Shirvani, and E. McCluskey, “Control-flow checking by software signatures”, in IEEE
Transactions on Reliability, vol. 51, no. 1, pp.111-122, 2002.

[35] J. Gaisler, “A portable and fault-tolerant microprocessor based on the SPARC v8 architecture”, in
Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks(DSN), pp.
409-415, 2002.

[36] S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed design and evaluation of redundant multi-threading
alternatives”, in Proceedings of the 29th Annual IEEE International Symposium on Computer Architecture
(ISCA), pp. 99-110, 2002.

[37] A. Shye, J. Blomstedt., T. Moseley, V. Reddi, and D. Connors, “PLR: A software approach to transient
fault tolerance for multicore architectures”, in IEEE Transactions on Dependable and Secure Computing,
vol. 6, no.2, pp.135-148, 2009.

[38] J. Smolens, B. Gold, B. Falsafi, and J. Hoe, “Reunion: Complexity-effective multicore redundancy”, in
Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
IEEE Computer Society, pp. 223-234, 2006.

[39] C. Constantinescu, “Trends and challenges in VLSI circuit reliability”, in IEEE Micro, vol. 23, no. 4, pp.14-
19, 2003.

[40] H. Kufluoglu and M. Alam, “A Generalized Reaction–Diffusion Model With Explicit H–Dynamics for
Negative-Bias Temperature-Instability (NBTI) Degradation”, in IEEE Transactions on Electron Devices,
vol. 54, no. 5, 1101-1107, 2007.

[41] H. Hanson, K. Rajamani, J. Rubio, S. Ghiasi, and F. Rawson, “Benchmarking for Power and Performance”,
in SPEC Benchmarking Workshop, 2007.

Bibliography

- 177 -

[42] S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob, K. Bowman, J. Howard, J. Tschanz, V. Erraguntla, N.
Borkar, V. De, and S. Borkar, “Within-die variation-aware dynamic-voltage-frequency scaling core
mapping and thread hopping for an 80-core processor”, in IEEE International Solid-State Circuits
Conference, 2010.

[43] L. Wanner, C. Apte, R. Balani, P. Gupta, and M. Srivastava, “Hardware variability-aware duty cycling for
embedded sensors”, in IEEE Transactions on VLSI, 2012.

[44] J. Xiong, V. Zolotov, and L. He, “Robust extraction of spatial correlation”, in IEEE Transactions on
Computer Aided Design (TCAD), vol. 26, no. 4, pp. 619 –631, 2007.

[45] S. Herbert and D. Marculescu, “Characterizing chip-multiprocessor variability-tolerance”, in IEEE Design
and Automation Conference, pp. 313–318, 2008.

[46] P. Murley and G. Srinivasan, “Soft-error Monte Carlo modeling program, SEMM”, in IBM Journal of
Research and Development, vol. 40, no. 1, 1996.

[47] M. Omana, G. Papasso, D. Rossi, and C. Metra, “A Model for Transient Fault Propagation in Combinatorial
Logic”, in Proceedings of the 9th IEEE International On-Line Testing Symposium,(IOLTS), pp. 11-115,
2003.

[48] S. Krishnaswamy, G. F. Viamonte, I. L. Markov, and J. P. Hayes, “Accurate Reliability Evaluation and
Enhancement via Probabilistic Transfer Matrices”, in Proceedings. of Design, Automation and Test in
Europe (DATE), pp. 282-287, 2005.

[49] Y. Dhillon, A. Diril, and A. Chatterjee, “Soft-Error Tolerance Analysis and Optimization of Nanometer
Circuits”, in Proceedings of Design, Automation and Test in Europe (DATE), pp. 288-293, 2005.

[50] S. Kiamehr, M. Ebrahimi, F. Firouzi, and M. Tahoori, “Chip-level modeling and analysis of electrical
masking of soft errors”, in the 31st IEEE VLSI Test Symposium (VTS), pp. 1-6, 2013.

[51] H. Asadi, and M. Tahoori, “An Accurate SER Estimation Method Based on Propagation Probability”, in
Proceedings of Design, Automation and Test Conference. in Europe (DATE), 2005.

[52] M. Ebrahimi., L. Chen, H. Asadi, and M. Tahoori, “CLASS: Combined logic and architectural soft error
sensitivity analysis”, in 18th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 601-
607, 2013.

[53] K. Itoh, R. Hori, H. Masuda, Y. Kamigaki, H. Kawamoto, and H. Katto, “A single 5v 64k dynamic ram”, in
IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, vol. 23, pp 228-
229, 1980.

[54] M. Kohara, Y. Mashiko, K. Nakasaki, and M. Nunoshita, “Mechanism of electromigration in ceramic
packages induced by chip-coating polyimide”, in IEEE Transactions on Components, Hybrids, and
Manufacturing Technology, vol. 13, no. 4, pp.873-878, 1990.

[55] M. Bruel, “Silicon on insulator material technology”, in Electronics Letters, vol. 31, no. 14, pp.1201-1202,
1995.

[56] E. Cannon, D. Reinhardt, M. Gordon, and P. Makowenskyj, “Sram ser in 90, 130 and 180 nm bulk and soi
technologies”, in Proceedings of 42nd Annual IEEE International Reliability Physics Symposium, pp. 300-
304, 2004.

[57] D. Burnett, C. Lage, and A. Bormann, “Soft-error-rate improvement in advanced bicmos srams”, in
Proceedings of 31st Annual Reliability Physics Symposium, pp. 156-160, 1993.

[58] S Mitra, T. Karnik, N. Seifert, and M. Zhang, “Logic soft errors in sub-65nm technologies design and cad
challenges”, in Proceedings of 42nd Design Automation Conference (DAC), pp. 2-4, 2005.

[59] D. Ernst., S. Das, S. Lee., D. Blaauw, T.Austin, T. Mudge, N. Kim, and K. Flautner, K, “Razor: circuit-
level correction of timing errors for low-power operation”, in IEEE Micro, vol. 24, no.6, pp. 10-20, 2004.

[60] S. Das, C. Tokunaga, S. Pant, M. Wei-Hsiang, S. Kalaiselvan, K. Lai, D. Bull, and D. Blaauw, “RazorII: In
situ error detection and correction for PVT and SER tolerance”, in IEEE Journal of Solid-State Circuits,vol.
44, no. 1, pp.32-48, 2009.

[61] H. Wunderlich and M. Tahoori, “Tutorial Workshop in the frame of the DFG SPP 1500: Defects, Faults,
and Errors - Approaches to Cross-Layer Fault-Tolerance”, in GMM/GI/ITG-Fachtagung Zuverlässigkeit
und Entwurf (ZuE), 2011.

[62] IBM® XIV® Storage System cache: http://publib.boulder.ibm.com/infocenter/ibmxiv/r2/index.jsp. [Online;
accessed Apr. 2015].

[63] AMD PhenomTM II Processor Product Data Sheet 2010.

Bibliography

- 178 -

[64] R. Hamming, “Error detecting and error correcting codes”, in Bell System Technical Journal, vol.26, no. 2,
pp.147-160, 1950.

[65] K. Kang, S. Gangwal, S. Park, and A. Roy, “NBTI Induced Performance Degradation in Logic and Memory
Circuits”, in Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC), 2008.

[66] Aeroflex, http://aeroflex.com/ams/, [Online; accessed Apr 2015]
[67] S. Reinhardt and S. Mukherjee, “Transient Fault Detection via Simultaneous Multithreading”, in

Proceedings of the International Symposium on Computer Architecture (ISCA), pp. 25-34, 2000.
[68] D. Tullsen., S. Eggers, and H. Levy, “Simultaneous multithreading: Maximizing on-chip parallelism”, in

ACM SIGARCH Computer Architecture News, vol. 23, no. 2, pp. 392-403, ACM, 1995.
[69] A. Avizienis, “The N-version approach to fault-tolerant software”, in IEEE Transactions on. Software

Engineering, vol. 11, no. 12, pp.1491-1501, 1985.
[70] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for distributed systems”, in IEEE Transactions

on Software Engineering, vol. 1, pp. 23-31, 1987.
[71] G. Reis, “Software modulated fault tolerance”, Ph.D. Thesis, Princeton University, 2008.
[72] J. Lee and A.Shrivastava, “A compiler optimization to reduce soft errors in register files”, in ACM Sigplan

Notices vol. 44, no. 7, pp. 41-49, ACM, 2009.
[73] J. Yan and W. Zhang, “Compiler-guided register reliability improvement against soft errors”, in

Proceedings of the 5th ACM International Conference on Embedded Software, pp. 203-209, 2005.
[74] V. Sridharan, “Introducing Abstraction to Vulnerability Analysis”,Ph.D. Thesis, March 2010.
[75] V. Sridharan and D. Kaeli, “Eliminating Micro-architectural Dependency from Architectural

Vulnerability”, in IEEE International Symposium on High Performance Computer Architecture, pp. 117-
128, 2009.

[76] D. Borodin and B. Juurlink, “Protective redundancy overhead reduction using instruction vulnerability
factor”, in Proceedings of the 7th ACM International Conference on Computing Frontiers, pp. 319-326,
2010.

[77] J. Hu, S. Wang, and G. Ziavras, “In-register duplication: Exploiting narrow-width value for improving
register file reliability”, in IEEE International Conference on Dependable Systems and Networks (DSN
2006), pp. 281-290, 2006.

[78] P. Lokuciejewski and P. Marwedel, “Combining worst-case timing models, loop unrolling, and static loop
analysis for WCET minimization”, in 21st IEEE Euromicro Conference on Real-Time Systems (ECRTS),
pp. 35-44,2009.

[79] V. Sarkar, “Optimized Unrolling of Nested Loops”, in International Journal on Parallel Programing, vol.
29, no. 5, pp. 545–581, 2001.

[80] J. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. Irwin, “Compiler-directed instruction
duplication for soft error detection”, in Proceedings of the Conference on Design, Automation and Test in
Europe (DATE), pp. 1056-1057, 2005.

[81] J. Xu, Q. Tan, and R. Shen, “The Instruction Scheduling for Soft Errors based on Data Flow Analysis”, in
IEEE Pacific Rim International Symposium on Dependable Computing, pp. 372-378, 2009.

[82] L. Spainhower and T. Gregg, “IBM S/390 parallel enterprise server G5 fault tolerance: A historical
perspective”, in IBM journal of Research and Development, vol. 43, no. 5/6, 1999.

[83] T. Li, M. Shafique, S. Rehman, J. A. Ambrose, J. Henkel, and S. Parameswaran, “DHASER: Dynamic
Heterogeneous Adaptation for Soft-Error Resiliency in ASIP-based Multi-core Systems”, in IEEE
International Conference on Computer Aided Design (ICCAD), pp. 646-653, 2013.

[84] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization of multi-bit soft error events in
advanced SRAMs”, in Electron Devices Meeting (IEDM), pp. 21.4.1–21.4.4, 2003.

[85] K. Osada, K. Yamaguchi, Y. Saitoh, and T. Kawahara, “SRAM immunity to cosmic-ray-induced
multierrors based on analysis of an induced parasitic bipolar effect”, in IEEE Journal of Solid-State
Circuits, vol. 39, no.5, pp. 827–833,2004.

[86] J.-M. Palau, G. Hubert, K. Coulie, B. Sagnes, M.-C. Calvet, and S. Fourtine, “Device simulation study of
the seu sensitivity of srams to internal ion tracks generated by nuclear reactions”, in IEEE Transactions on
Nuclear Science, vol. 48, no. 2, pp.225-231, 2001.

[87] N. Miskov-Zivanov and D. Marculescu, “Circuit reliability analysis using symbolic techniques”, in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 12, pp. 2638-
2649, 2006.

Bibliography

- 179 -

[88] M. Zhang and N. Shanbhag, “A Soft Error rate Analysis (SERA) Methodology”, in Proceedings of
ACM/IEEE International Conference on Computer Aided Design (ICCAD), pp. 111-118, 2004.

[89] N. George, C. Elks, B. Johnson, and J. Lach, “Transient fault models and AVF estimation revisited”, in
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),pp. 477-486, 2010.

[90] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. Mukherjee, and R. Rangan, “Computing architectural
vulnerability factors for address-based structures”, in Proceedings of the 32nd Annual International
Symposium on Computer Architecture (ISCA), pp 532–543, 2005.

[91] N. Wang, J. Quek, T. Rafacz, and S. Patel, “Characterizing the effects of transient faults on a high-
performance processor pipeline”, in IEEE International Conference on Dependable Systems and Networks
(DSN), pp. 61-70, 2004.

[92] R. Venkatasubramanian, J. Hayes, and B. Murray, “Low cost online fault detection using control flow
assertions”, in Proceedings of 9th IEEE On-Line Test. Symposium. (IOLTS), pp. 137–143, 2003.

[93] P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson, “On latching probability of particle induced transients
in combinational networks”, in Proceedings of Fault-Tolerant Computing Symposium, pp. 340–349, 1994.

[94] J. Ziegler, H. Curtis, H. Muhlfeld, J. Montrose, and B. Chin, “IBM experiments in soft fails in computer
electronics (1978–1994)”, in IBM journal of research and development, vol. 40, no. 1, pp.3-18, 1996.

[95] L. Chen, M. Ebrahimi, and M. Tahoori, “CEP: Correlated Error Propagation for Hierarchical Soft Error
Analysis”, in Journal of Electronic Testing:Theory and Applications (JETTA), Springer, 2013.

[96] H. Ziade, R. Ayoubi, and R. Velazco, “A survey on fault injection techniques”, in International. Arab
Journal of. Information. Technology, vol. 1, no. 2, pp. 171-186, 2004.

[97] V. Chippa, D. Mohapatra, A. Raghunathan, K.Roy, and S. Chakradhar, “Scalable effort hardware design:
exploiting algorithmic resilience for energy efficiency”, in Proceedings of the ACM 47th Design
Automation Conference (DAC), pp. 555-560, 2010.

[98] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and R. Iyer, “SymPLFIED: Symbolic program-level fault
injection and error detection framework”, in IEEE International Conference on Dependable Systems and
Networks (DSN), pp. 472-481, 2008.

[99] R. Velazco, A. Corominas, and P. Ferreyra, “Injecting bit flip faults by means of a purely software
approach: a case studied”, in IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), pp. 108-116, 2002.

[100] J. Coppens, D. Al-Khalili, and C. Rozon, “VHDL Modelling and Analysis of Fault Secure Systems”, in
Proceedings of the IEEE Conference on Design Automation and Test in Europe (DATE), pp.148-152, 1998.

[101] R. Shafik, P. Rosinger, and B. Al-Hashimi, “SystemC-Based Minimum Intrusive Fault Injection Technique
with Improved Fault Representation”, in IEEE International On-Line Testing Symposium (IOLTS), pp.99-
104, 2008

[102] P. Simonen, A. Heinonen, M. Kuulusa, and J. Nurmi, “Comparison of bulk and SOI CMOS Technologies
in a DSP Processor Circuit Implementation”, in Proceedings of. the 13th International Conference on
Microelectronics (ICM), pp. 107-110, 2001.

[103] J. Yao, S. Okada, M. Masuda, K. Kobayashi., and Y. Nakashima, “DARA: A low-cost reliable architecture
based on unhardened devices and its case study of radiation stress test”, in IEEE Transactions on Nuclear
Science, vol. 59, no. 6, pp. 2852-2858, 2012.

[104] C. Weaver and T. Austin, “A fault tolerant approach to microprocessor design”, in IEEE International
Conference on Dependable Systems and Networks(DSN),pp. 411-420, 2001.

[105] G. Messenger, “Collection of Charge on Junction Nodes from Ion Tracks”, in IEEE Transactions on
Nuclear Science, vol. 29, no. 6, pp.2024–2031, 1982.

[106] P. Dodd and F. Sexton, “Critical charge concepts for CMOS SRAMs”, in IEEE Transactions on Nuclear
Science, vol. 42, no. 6, pp. 1764-1771, 1995.

[107] J. Henkel, L. Bauer, H. Zhang, S. Rehman, and M. Shafique, “Multi-Layer Dependability: From
Microarchitecture to Application Level”, in ACM/IEEE/EDA 51st Design Automation Conference (DAC),
2014.

[108] C. Nguyen and G. R. Redinbo, “Fault tolerance design in JPEG 2000 image compression system”, IEEE
Transactions on Dependable and Secure Computing, vol. 2, no. 1, pp. 57-75, 2005.

[109] M. A. Makhzan, A. Khajeh, A. Eltawil, and F. J. Kurdahi, “A low power JPEG2000 encoder with iterative
and fault tolerant error concealment”, IEEE Transaction on Very Large Scale Integration (TVLSI), vol. 17,
no. 6, pp. 827-837, 2009.

Bibliography

- 180 -

[110] A. K. Djahromi, A. Eltawil, and F. J. Kurdahi, “Exploiting fault tolerance towards power efficient wireless
multimedia applications”, IEEE Consumer communications and networking conference, pp. 400-404, 2007.

[111] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown, “MiBench: A free,
commercially representative embedded benchmark suite”, IEEE 4th Annual Workshop on Workload
Characterization, 2001.

[112] S. Rehman, F. Kriebel, M. Shafique, and J. Henkel, “Reliability-Driven Software Transformations for
Unreliable Hardware”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), Volume 33, Issue 11, pp. 1597–1610, 2014

[113] V. Kleeberger, C. G.-Dumont, C. Weis, A. Herkersdorf, D. M.-Gritschneder, S. R. Nassif, U. Schlichtmann,
and N. Wehn, “A Cross-Layer Technology-Based Study of How Memory Errors Impact System
Resilience”, IEEE Micro, vol. 33, no. 4, pp. 46-55, 2013.

[114] S. Sinha, G. Yeric, V. Chandra, B. Cline, and Y. Cao, “Exploring sub-20nm FinFET design with Predictive
Technology Models”, ACM/EDAC/IEEE Design Automation Conference (DAC), pp.283-288, 2012.

[115] F. Kriebel, S. Rehman, D. Sun, P. V. Aceituno, M. Shafique, and J. Henkel, “ACSEM: Accuracy-
Configurable Fast Soft Error Masking Analysis in Combinatorial Circuits”, IEEE/ACM 18th Design,
Automation and Test in Europe Conference (DATE), March 2015

[116] F. Oboril, “Cross-Layer Approaches for an Aging-Aware Design of Nanoscale Microprocessors”, Ph.D.
Thesis, 2015.

[117] H. Amrouch, V. M. van Santen, T. Ebi, V. Wenzel, and J. Henkel, “Towards interdependencies of aging
mechanisms”, IEEE International Conference on Computer Aided Design (ICCAD),pp. 478-485, 2014.

[118] DFG SPP1500 Program on Dependable Embedded Systems: http://spp1500.itec.kit.edu/.
[119] R. Azevedo, S. Rigo, M. Bartholomeu, G. Araujo, C. C. de Araujo, and E. Barros, “The ArchC Architecture

Description Language and Tools”, International Journal of Parallel Programming, vol. 33, no. 5, pp. 453–
484, 2005.

[120] C.-C. Han, K. G. Shin, and J. Wu, “A fault-tolerant scheduling algorithm for real-time periodic tasks with
possible software faults”, IEEE Transactions on Computers (TC), vol. 52, no. 3, pp. 362-372, 2003.

[121] T. Ball and J. R. Larus, “Branch Prediction for Free”, ACM SIGPLAN, vol. 28, pp. 300-313, 1993.
[122] Synopsys, “Synopsys Design Compiler User Guide”, [Online].

Available: https://solvnet.synopsys.com/dow_retrieve/latest/dcug/dcug.html.
[123] Synopsys, “Accelerate Design Innovation with Design Compiler®”, Synopsys, [Online].

Available: http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/default.aspx.
[124] ModelSim, “ModelSim - Leading Simulation and Debugging”, Mentor, [Online].

Available: http://www.mentor.com/products/fpga/model.
[125] Synopsys, “TSMC 45nm High Speed Tapless Standard Cell Logic Library”, TSMC, [Online].

Available: http://www.synopsys.com/dw/ipdir.php?c=dwc_logic_ts45nkkslogcassst000f.
[126] Flux calculator: www.seutest.com/cgi-bin/FluxCalculator.cgi.
[127] http://www.archc.org; The ArchC Website.
[128] http://downloads.sourceforge.net/archc/ac_lrm-v2.0.pdf; The ArchC Architecture Description Language

v2.0 Reference Manual
[129] GCC: https://gcc.gnu.org/.
[130] M. Shafique, L. Bauer, and J. Henkel, “Optimizing the H.264/AVC Video Encoder Application Structure

for Reconfigurable and Application-Specific Platforms”, Journal of Signal Processing Systems (JSPS), vol.
60, no. 2, pp. 183-210, 2010.

[131] Haifa Scheduler: http://gcc.gnu.org/, http://opensource.apple.com/ source/gcc_os/gcc_os-1660/gcc/haifa-sched.c.
[132] A. Parikh, S. Kim, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Instruction scheduling for low-

power”, Journal of VLSI Signal Processing systems, vol 37, no. 1, pp. 129-149, 2004.
[133] J. Yan and W. Zhang, “Compiler guided register reliability improvement against soft errors”, IEEE

International Conference on Embedded Software (EMSOFT), pp. 203-209, 2005.
[134] J. Cong and K. Gururaj, “Assuring Application-Level Correctness Against Soft Errors”, IEEE International

Conference on Computer Aided Design (ICCAD), pp. 150-157,2011.
[135] R. Baumann, “Soft errors in advanced computer systems”, in IEEE Design & Test of Computers, vol. 22,

no. 3, pp. 258-266, 2005.

Bibliography

- 181 -

[136] R. Heald, “How cosmic rays cause computer downtime”, in IEEE Reliability Society Meeting (SCV), pp.
15-21, 2005.

[137] K. Kang, S. Gangwal, S. Park, and K. Roy, “ NBTI induced performance degradation in logic and memory
circuits: how effectively can we approach a reliability solution?”, in Proceedings of Asia and South Pacific
Design Automation Conference, pp. 726-731, 2008.

[138] M. Shafique, M. U. K. Khan, O. Tuefek, and J. Henkel, “EnAAM: Energy-Efficient Anti-Aging for On-
Chip Video Memories”, in ACM/EDAC/IEEE 52nd Design Automation Conference, San Francisco, CA/
USA, June 8-12, 2015.

[139] S. Herbert, S. Garg, and D. Marculescu, “Exploiting process variability in voltage/frequency Control”,
IEEE Transactions Very Large Scale Integration (VLSI) Systems, on 20, no.8, pp.1392-1404, 2012.

[140] T. Li, R. Ragel, and S. Parameswaran, “Reli: Hardware/software Checkpoint and Recovery scheme for
embedded processors”, in IEEE Design, Automation & Test in Europe Conference & Exhibition, pp.875-
880, 2012.

[141] M. Demertzi, M. Annavaram, and M. Hall, “Analyzing the effects of compiler optimizations on application
reliability”, IEEE International Symposium on Workload Characterization (IISWC), pp. 184-193, 2011.

[142] S. Rehman, A. Toma, F. Kriebel, M. Shafique, J.-J. Chen, and J. Henkel, “Reliable Code Generation and
Execution on Unreliable Hardware under Joint Functional and Timing Reliability Considerations”, 19th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pp. 273-282, 2013.

[143] J. B. Velamala, K. Sutaria, T. Sato, and Y. Cao, “Physics matters: statistical aging prediction under
trapping/detrapping”, in 49th IEEE/ACM Annual Design Automation Conference (DAC), pp. 139-144, 2012.

[144] K. Kuhn, C. Kenyon, A. Kornfeld, M. Liu, A. Maheshwari, W. Shih, S. Sivakumar, G. Taylor, P.
VanDerVoorn, and K. Zawadzki, “Managing Process Variation in Intel's 45nm CMOS Technology”, In
Intel Technology Journal, vol. 12, no. 2, 2008.

[145] C. Li and W. Fuchs, “Catch-compiler-assisted techniques for checkpointing”, in 20th International
Symposium of Fault-Tolerant Computing (FTCS-20), Digest of Papers, pp. 74 –81, 1990.

[146] J. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent Checkpointing under Unix”, in
Proceedings of Usenix Technical Conference, pp. 213—223, 1995.

[147] Y. Huang and C. Kintala, “Software implemented fault tolerance: Technologies and experience”, in
Proceedings of the IEEE Fault-Tolerant Computing Symposium (FTCS), vol. 23, pp. 2-9, 1993.

[148] L. Wang, Z. Kalbarczyk, W. Gu, and R. Iyer, “An OS-level framework for providing application-aware
reliability”, in Proceedings of the 12th Pacific Rim International Symposium on Dependable Computing
(PRDC), pp. 55–62, 2006.

[149] T. Ebi, M. A. Al Faruque, and J. Henkel, “TAPE: Thermal-aware agent-based power econom multi/many-
core architectures”, in IEEE International Conference on Computer Aided Design (ICCAD), pp. 302-309,
2009.

[150] H. Khdr, T. Ebi, M. Shafique, H. Amrouch, and J. Henkel, “mDTM: Multi-Objective Dynamic Thermal
Management for On-Chip Systems”, in IEEE/ACM 17th Design Automation and Test in Europe Conference
(DATE), 2014.

[151] J. Henkel, T. Ebi, H. Amrouch, and H. Khdr, “Thermal management for dependable on-chip systems”, in
Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 113-118, 2013.

[152] H. Amrouch, T. Ebi, and J. Henkel, “RESI: Register-Embedded Self-Immunity for Reliability
Enhancement”, IEEE Transactions on CAD of Integrated Circuits and Systems (TCAD), vol. 33, no. 5,
pp. 677-690, 2014.

[153] H. Amrouch, T. Ebi, and J. Henkel, “Stress balancing to mitigate NBTI effects in register files”, IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 1-10, 2013.

[154] L. Bauer, C. Braun, M. E. Imhof, M. A. Kochte, E. Schneider, H. Zhang, J. Henkel, and H.-J. Wunderlich,
“Test Strategies for Reliable Runtime Reconfigurable Architectures”, in IEEE Transactions on Computers
(TC), vol. 62, no. 8, pp. 1494-1507, 2013.

[155] H. Zhang, M. A. Kochte, M. E. Imhof, L. Bauer, H.-J. Wunderlich, and J. Henkel, “GUARD: GUAranteed
Reliability in Dynamically Reconfigurable Systems”, in IEEE/ACM Design Automation Conference (DAC),
pp. 32:1-32:6, 2014.

[156] D. Gnad, M. Shafique, F. Kriebel, S. Rehman, D. Sun, and J. Henkel, “Hayat: Harnessing Dark Silicon and
Variability for Aging Deceleration and Balancing”, in ACM/EDAC/IEEE 52nd Design Automation
Conference (DAC), 2015.

Bibliography

- 182 -

[157] J. Henkel, L. Bauer, J. Becker, O. Bringmann, U. Brinkschulte, S. Chakraborty, M. Engel, R. Ernst, H.
Härtig, L. Hedrich, A. Herkersdorf, R. Kapitza, D. Lohmann, P. Marwedel, M. Platzner, W. Rosenstiel, U.
Schlichtmann, O. Spinczyk, M. B. Tahoori, J. Teich, N. Wehn, and H. J. Wunderlich, “Design and
architectures for dependable embedded systems”, in IEEE International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pp. 69-78. 2011.

[158] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R.K. Pujari, A. Grudnitsky, J. Heisswolf, A. Zaib,
B. Vogel, V. Lari, and S. Kobbe, “Invasive Manycore Architectures”, in 17th Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 193-200, 2012.

[159] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W. Schröder-Preikschat, and G. Snelting,
“Invasive Computing: An Overview”, in Multiprocessor System-on-Chip – Hardware Design and Tool
Integration, M. Hübner and J. Becker (Eds.), pp. 241-268, Springer, 2011.

