
WORKING PAPER SERIES IN PRODUCTION AND ENERGY

KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association www.iip.kit.edu

Two-stage stochastic, large-scale 
optimization of a decentralized 
energy system – a residential 
quarter as case study

Hannes Schwarz, Valentin Bertsch, Wolf Fichtner

No. 10 | October 2015



Two-stage stochastic, large-scale optimization of a decentralized 
energy system – a residential quarter as case study

Hannes Schwarz, Valentin Bertsch, Wolf Fichtner

Chair of Energy Economics, Institute for Industrial Production (IIP)
at the Karlsruhe Institute for Technology (KIT),
Hertzstr. 16, building 06.33, 76187 Karlsruhe, 
tel.: +49 721 608-44694, email: hannes.schwarz@kit.edu

The trend towards decentralized energy systems with an emphasis on renewable 
energy sources (RES) causes increased fluctuations and non-negligible weather-related 
uncertainties on the future supply side. Stochastic modeling techniques enable an 
adequate consideration of uncertainties in the investment and operation planning 
process of decentralized energy systems. The challenge is that modeling of real energy 
systems ends up in large-scale problems, already as deterministic program. In order to 
keep the stochastic problem feasible, we present a module-based, parallel computing 
approach using decomposing techniques and a hill-climbing algorithm in combination 
with high-performance computing (HPC) for a two-stage stochastic optimization 
problem. Consistent ensembles of the required input data are simulated by a Markov 
process and transformed into sets of energy demand and supply profiles. The approach 
is demonstrated for a residential quarter using photovoltaic (PV) systems in combination 
with heat pumps and storages. Depending on the installed technologies, the quarter is 
modeled either as stochastic linear program (SLP) or stochastic mixed-integer linear 
program (SMILP). Our results show that thermal storages in such a decentralized 
energy system prove beneficial and that they are more profitable for domestic hot water 
than for space heating. Moreover, the storage capacity for space heating is generally 
larger when uncertainties are considered in comparison to the deterministic 
optimization, i.e. stochastic optimization can help to avoid bad layout decisions.
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Abstract  

 

The trend towards decentralized energy systems with an emphasis on renewable energy 

sources (RES) causes increased fluctuations and non-negligible weather-related 

uncertainties on the future supply side. Stochastic modeling techniques enable an adequate 

consideration of uncertainties in the investment and operation planning process of 

decentralized energy systems. The challenge is that modeling of real energy systems ends 

up in large-scale problems, already as deterministic program. In order to keep the stochastic 

problem feasible, we present a module-based, parallel computing approach using 

decomposing techniques and a hill-climbing algorithm in combination with high-performance 

computing (HPC) for a two-stage stochastic optimization problem. Consistent ensembles of 

the required input data are simulated by a Markov process and transformed into sets of 

energy demand and supply profiles. The approach is demonstrated for a residential quarter 

using photovoltaic (PV) systems in combination with heat pumps and storages. Depending 

on the installed technologies, the quarter is modeled either as stochastic linear program 

(SLP) or stochastic mixed-integer linear program (SMILP). Our results show that thermal 

storages in such a decentralized energy system prove beneficial and that they are more 

profitable for domestic hot water than for space heating. Moreover, the storage capacity for 

space heating is generally larger when uncertainties are considered in comparison to the 

deterministic optimization, i.e. stochastic optimization can help to avoid bad layout decisions. 

 

 

1. Introduction 

 

At the current time, our provision of energy is moving from a conventional centralized 

towards a decentralized energy supply with a significant expansion of renewable energy 

sources (RES). This fundamental, structural rearrangement of the energy system introduces 

an increased fluctuation and non-negligible uncertainties on the future supply side. The 

resulting challenge is the actual technical and economical realization of the transition 

process. The challenging task is also modeling such energy systems taking into account their 

uncertainties to support a reliable, cost-efficient and technically feasible transition. In this 

context, energy systems with decentralized energy provision and load shift potentials by 

integrated, intelligent home energy management applications or energy storages are 

becoming increasingly important. The research need is to develop an approach for 

determining optimal dimension and usage of the decentralized energy system’s components, 

i.e. to support long-term investment and short-term operation decisions under uncertain 

conditions. 

In this paper, we model a residential quarter with photovoltaic (PV) generators and load 

flexibilities using heat pumps in combination with thermal storages based on a general 

framework. Our target is to support the investment and operation process of the quarter’s 

energy system. The calculations are based on real data for a new residential quarter located 

in Germany. 
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a. Problem setting and related work 

 

Numerous decentralized as well as national and international centralized energy system 

models are designed for a specific system describing the interaction between energy 

suppliers, consumers and storages (for a thorough overview see, e.g., Ventosa, Baíllo, 

Ramos, and Rivier (2005) or Connolly, Lund, Mathiesen, and Leahy (2010)). Depending on 

the scope of time, the majority is based on time slices from 10 up to 35040 slices per year, 

which already leads to large-scale problems when realistic energy systems are considered 

(e.g., see Jochem, Schönfelder, and Fichtner (2015) who need to consider the optimal 

operation of micro combined heat and power (micro-CHP) units in households in a temporal 

resolution of 15 minutes to model the physical system properties adequately). Here, the term 

‘large-scale’ does not refer to the geographic size of such a system, but to the number of 

decision variables which contours the complexity of the optimization model. According to 

Ventosa, Baíllo, Ramos, and Rivier (2005), large-scale problems have more than 10 000 

variables and their computational expenses are already high. 

The economic profitability of energy systems principally depends on optimal energy 

management, i.e. on finding the optimal capacity of individual components at the first stage 

and, at the second stage, on their optimal operation over their lifetimes. The energy 

management and thus the economic profitability are subject to manifold uncertainties, 

associated with the future development of electricity prices, the electrical and thermal 

demand and the energy supply. This is especially true, given that the determined capacities 

should be optimized over at least a 20-year period. In practice, the impact of uncertainties is 

often considered by using average values or estimated by sensitivity or scenario analyses 

since the variation of parameters by such analyses does not increase the problem size. 

However, such analyses can only provide an estimation of the effect on the optimization 

results, but the complex impact cannot be captured entirely. Stochastic modeling techniques 

enable an adequate consideration of various uncertainties in the investment and the 

operation planning processes, thus supporting the assessment of the system’s performance 

in both the short-term and long-term. There are several individual models for real energy 

systems that support optimal investment and operation decisions and allow for taking into 

account uncertainties by stochastic programs (SP) (see for example Möst and Keles (2010), 

Wallace and Fleten (2003), Kelman, Barroso, and Pereira (2001) and Göbelt (2001)). Most of 

them deal with continuous or mixed-integer decision variables and linear objective functions 

and constraints. But there is a gap of a general approach with a comprehensive modeling 

chain that generates the required energy profiles under consideration of their mutual 

dependencies and which are used for the resulting large-scale SP with millions of variables 

to take into account the uncertain conditions. 

 

 

b. Methodological approach of the case study 

 

As conceptual framework, we present a module-based approach for (a) simulating 

consistent ensembles of the required input data by a stochastic process, (b) transforming 

these initial profiles into consistent sets of energy supply and demand profiles and (c) using 

the generated profiles in a two-stage SP optimization. Since RES supply, such as PV 

generation, and energy demand depend essentially on fluctuating and uncertain 

meteorological data, a Markov process is used to generate profiles of the required 

meteorological parameters considering their stochastic nature. As mentioned above, our 



3 
 

focus is not only on operation, but also on investment optimization. Therefore, our approach 

needs to take into account the short-term (intra-daily) and long-term (annual and seasonal) 

variations, since both can affect the optimal investment decision. The resulting 

meteorological profiles are transformed into PV supply and energy demand profiles for the 

subsequent optimization of the stochastic program. Depending on the different installed 

technologies, the quarter is modeled either as a stochastic linear program (SLP) or a 

stochastic mixed-integer linear program (SMILP) ending up in an extreme large-scale energy 

system model with more than 100 million variables. Besides analyzing the dimensions and 

usage of the system’s components, the optimization model can be used, for instance, to 

evaluate the impact of different tariffs or to compare other technologies, e.g., wind turbines 

on the supply side or electrical storages as load shifting units. In general, the framework 

serves as modeling and optimizing concept for a wide variety of decentralized energy 

systems with various energy supply and demand components, all under consideration of 

uncertain conditions. Making use of SP instead of deterministic programming leads to the 

expected best solution with respect to the uncertainties. The resulting large-scale stochastic 

problem is decomposed into numerous subproblems and computed in parallel on high-

performance computing (HPC) systems to keep the problem feasible. A commercial solver is 

used for the inner optimization of the subproblems. The entire problem is heuristically solved 

by a hill-climbing algorithm that coordinates the optimization of the outer masterproblem on 

the HPC system within an acceptable period of time. 

The theoretical background is summarized in section 2 and the approach itself is 

described in section 3. The focus of the paper is on the presentation of a real-world case 

study in section 4. In this context, we demonstrate our approach for a residential quarter 

including approx. 70 households, a 240kWp PV system and heat pumps and heat storages 

to cover the energy demand. Subsequently, the results are discussed at the end of section 4 

and the approach is separately discussed in section 5. The paper finishes with a conclusion 

and an outlook. 

 

 

2. Theoretical background – two-stage stochastic programming 

 

Two-stage stochastic programming enables an adequate consideration of different sources 

of uncertainties in the investment and operation planning process of decentralized energy 

systems. Generally, uncertainties can be defined as information not exactly known (or 

neglected) at the time when the decision has to be made. There are manifold ways to 

classify uncertainties; they can be generally categorized as either aleatory or epistemic (see 

e.g., Goldstein (2012), Mustajoki, Hämäläinen, and Lindstedt (2006), Bedford and Cooke 

(2001), French (1995) as well as Morgen and Henrion (1992)).1 In our context, model results 

are subject to three different sources of uncertainties: 

 (Raw) Input data 

 Preparatory transformation of the (raw) input data 

 System modelling 

 

Each optimization model requires input data, for example weather, prices, supply or demand 

categorizable as aleatory, fraught with uncertainties. Additional aleatory or epistemic 

                                                           
1
 Uncertainties are characterized as epistemic, if there is a possibility to reduce them by gathering 

more data or by refining models. They are aleatory, if the modeler does not foresee the possibility of 
reducing them (Kiureghian & Ditlevsen, 2007). 
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uncertainties are introduced by the transformation process of input data to data required for 

the optimization. (For example, further uncertainties are attached by transforming weather 

data into electricity supply of renewable energies like wind or PV). Finally, uncertainties are 

induced by the model itself, mostly epistemically: the more it differs from the real system the 

more uncertainty could be induced. The optimization results and the consequent decision 

depend on all these sources of uncertainties. Stochastic modeling techniques can be used to 

account for the associated uncertainties of input and transformed data, resulting in a robust-

sufficient solution that is expectedly optimal. 

An optimization under uncertainties has been initially considered about 60 years ago by 

Dantzig (1955) and by Beale (1955), where values of model parameters were considered as 

not exactly known. Those parameter uncertainties are incorporated by their probability 

distributions through stochastic programming (SP).2 Since economic profitability of an energy 

system depends predominantly, at the first stage, on the investment decision and, at the 

second stage, on its operation, the problem can be adequately formulated as a two-stage 

stochastic program with recourse (Dantzig & Infanger, 2011; Kalvelagen, 2003): 

 min
𝑥

     𝑐𝑇𝑥 + 𝐸𝜔𝑄(𝑥, 𝜔) 

 𝑠. 𝑡.     𝐴𝑥 = 𝑏, 

             𝑥 ≥ 0, 

(1) 

where 

 Q(x, ω) ≔  min
𝑦

𝑞𝜔
𝑇 𝑦 

 𝑠. 𝑡.     𝑇𝜔𝑥 + 𝑊𝜔𝑦 ≤ 𝑑𝜔 

             𝑦 ≥ 0. 

(2) 

 

The first stage is expressed by (1) with the (first-stage) vector 𝑥 of the decision variables. 

The objective function coefficients 𝑐𝑇, the matrix of constraint coefficients 𝐴 and the right-

hand side vector 𝑏 of the first stage are assumed to be known with certainty. The expectation 

𝐸 of the second-stage objective function 𝑄, a product of the (second-stage) decision 

variables of 𝑦 and the objective function coefficients 𝑞, is restricted by the transition matrix 𝑇 

and the first-stage variables of 𝑥, the technology matrix 𝑊 and the right-hand side vector 𝑑. 

Because 𝑇, 𝑊, 𝑑 and 𝑞 are not known with certainty, 𝜔 denotes a possible scenario with 

respect to the probability space (𝛺, P). 

Two-stage SLP without integer requirements in (2) are well-studied (Schultz, 2003). In this 

case, 𝑄 is a piecewise linear convex function. A number of algorithms have been developed 

for that problem classes (see Ruszczynski (1999)). Most of these algorithms use an 

extension of the Benders decomposition introduced by Van Slyke and Wets (1969) which in 

the case of SP is known as the L-shaped method. But for many cases, some decisions of the 

first and second stage can only be made on the basis of a stepwise selection. Then the main 

challenge arises when integer variables have to be involved and the convexity is not present 

anymore (Schultz (2003), see also Haneveld and Vlerk (1999) for some major results in the 

area). 

Birge and Louveaux (1997) have shown a branch-and-cut approach with the L-shaped 

method for the simplest form of two-stage stochastic integer programs: first-stage purely 

                                                           
2
 At about the same time, the principle of robust optimization was introduced by Wald, A. (1945) next 

to stochastic programming. It is an alternative approach to counteract uncertainties by minimizing the 
maximum risk, later termed as optimizing the worst case (Ben-Tal, Ghaoui, & Nemirovski, 2009). 
Furthermore, fuzzy or parametric programming can be used as other opportunities to incorporate such 
uncertainties into the optimization model (see Zhou (1998), Verderame, Elia, Li, and Floudas, (2010) 
and Metaxiotis, K. (2010)). 
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binary and second-stage continuous variables. For the most challenging class, having 

integer and continuous variables in both stages and the uncertain parameter can appear 

anywhere in the model, only few algorithms can be quoted in the existing literature. When 

integer variables are involved in the second stage, the L-shaped method (that requires 

convex subproblem value functions) cannot be directly applied. See Escudero, Garín, 

Merino, and Pérez (2010a) for a thorough review of this subject. 

Carøe and Tind (1998) and Carøe and Schultz (1999) presented a generalized L-shaped 

method for models having integer variables on the second stage and either some continuous 

or some discrete first-stage variables. The dual-decomposition-based method focuses on 

using Lagrangian relaxation to obtain appropriate bounds. For large number of mixed-integer 

variables in both stages, Nurnberg and Römisch (2002) have used stochastic dynamic 

programming (SDP) techniques. Sherali and Fraticelli (2002), Sen and Sherali (2006) and 

Zhu (2006) have developed a branch-and-cut decomposition by modifying the L-shaped 

method by a relaxation in combination with a special convexification scheme called 

reformulation-linearization technique (RLT). Yuan and Sen (2009) and Sherali and Smith 

(2009) have enhanced this approach using Benders decomposition on the first stage and a 

stochastic branch-and-cut algorithm on the second. Alonso-Ayuso, Escudero, and Ortuño 

(2003) have introduced a branch-and-fix coordination (BFC) methodology with the main 

difference to the common branch-and-bound algorithm that the search tree evaluates many 

subproblems and the decision to branch, prune or bound depends on all these subproblems 

at each step. This approach has been continually upgraded up to using the twin node family 

(TNF) concept in combination with Benders decomposition schemes (to solve a given 

relaxed program at each TNF integer set) and parallel processing for continuous and binary 

variables in both stages (Alonso-Ayuso, Escudero, Garín, Ortuño, & Pérez, 2005; Escudero, 

Garín, Merino, & Pérez, 2007, 2010a, 2010b, 2012; Pagès-Bernaus, Pérez-Valdés, & 

Tomasgarda, 2015). 

Besides these exact algorithms for solving SMILP, there are also heuristic approaches: 

For instance, Till, Sand, Urselmann, and Engell (2007) propose a hybrid algorithm that is 

similar to our approach. It solves two-stage stochastic integer programs with integer and 

continuous variables in any stage. Based on stage-decomposition, the decomposed second-

stage scenario problems are solved by a MILP solver. An evolutionary algorithm performs 

the search of the first-stage variables. This procedure as well as exact algorithms is not 

practically applicable for extremely large-scale problems due the high computational 

expenses of each iteration step. In contrast, we present a module-based approach where a 

well-performing, hill-climbing algorithm finds an optimal solution of the first-stage variables in 

few steps. Furthermore, a necessary decomposition of the second stage is applied to 

achieve solutions with an acceptable accuracy within an acceptable period of time. Because 

of the extreme problem size, the decomposed second stage is computed in parallel. 

 

 

3. The developed approach for two-stage stochastic, large-scale problems 

 

In practice, an approach is needed for the economic optimization of decentralized energy 

systems under uncertainties, such as a residential quarter with storages and its own PV 

energy provision. To support the investment and operation decisions, the problem is 

formulated as stochastic program. In the context of a decentralized energy system, optimal 

decisions are achieved by an optimal consolidation of its energy supply and demand with the 

objective of, for instance, maximal profits or minimal costs. Furthermore, the objective can 
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depend on parameters as prices, efficiencies and many others. Some of these cannot be 

used directly for the optimization, but have to be derived from raw data that are transformed 

into the required format for the optimization. As the entire model chain is subject to the 

different uncertainties mentioned above, we propose a comprehensive approach that is 

structured into three subsystems (see Fig.1): 

a) Input data subsystem (IDS) 

b) Data transformation subsystem (DTS) 

c) Economic optimization subsystem (EOS) 

 
Fig.1: Conceptual structure of the developed comprehensive modeling approach (Bertsch, Schwarz, & Fichtner, 

2014). 

 

For the optimization of the energy system, data of energy demand, supply and prices are 

needed which can be either directly acquired as input data or are deduced from raw input 

data by the DTS. The approach accounts for the associated uncertainties by generating 

consistent ensembles of raw input parameters (e.g. weather, prices) and transformed data 

(e.g. electrical and thermal supply or demand) in dependency of their probabilistic properties, 

i.e. it includes the fundamental relationships between these input parameters and energy 

demand as well as supply. These profiles are used in the subsequent optimization. 

 

 

a. Input data subsystem (IDS) 

 

The main task of the IDS consists in generating input parameter profiles (e.g., 

meteorological profiles, such as global solar radiation and temperature) considering their 

fluctuating and stochastic nature as well as the interdependencies between them. Our 

ultimate target in this paper is the two-stage optimization of decentralized energy systems. 

On the one hand, this implies that our approach for simulating input profiles needs to take 

into account both, the short-term fluctuations and uncertainties of the different load profiles 

as well as the long-term variations, e.g., ‘good’ and ‘bad’ solar years, since both variations 

may affect the choice of adequate dimensions for the components of a decentralized energy 
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system. On the other hand, the decentralized energy system includes components on the 

supply and the demand side. Therefore, our approach needs to be able to consider the 

interdependencies between the supply and demand profiles and the meteorological 

conditions, i.e. an independent stochastic simulation of the profiles would not be appropriate. 

For instance, the electricity generation from solar PV panels does not only depend on the 

global solar radiation but also on the temperature, which affects the panels’ efficiency. 

Moreover, the heat demand depends on the temperature as well as the cloudiness. We 

therefore need to simulate the meteorological conditions, such as the cloudiness, and its 

interdependencies with temperature and global solar radiation. 

The stochastic characterization of solar radiation and other meteorological parameters 

has been studied intensely in literature. The approaches can generally be divided into two 

categories: First, regression based models draw random variables applying an estimate of 

the probability distribution functions of the observations (see Diagne et al. (2013) for an 

overview for instance). Second, Markov processes draw a random variable applying a 

transition matrix which represents the probabilities of future states depending on past 

realizations. For instance, focussing on the long-term variations, Amato et al. (1986) model 

daily solar radiation using a Markov process. Ehnberg and Bollen (2005) simulate solar 

radiation on the basis of cloud observations available in three-hour intervals. Focussing on 

the short-term variations in a high temporal resolution, Morf (1998) proposes a Markov 

process aimed at simulating the dynamic behaviour of solar radiation. 

Overall, Markov processes have proven suitable to meet the above-mentioned 

requirements, e.g., to consider interdependencies between cloudiness, temperature and 

global solar radiation. While our approach is similar to the one by Ehnberg and Bollen (2005), 

we additionally include seasonal information in our Markov process, i.e. the corresponding 

transition probabilities may vary from month to month (see below). Moreover, we simulate 

temperature profiles, which are consistently compatible with the simulated radiation profiles. 

In order to address the challenge of considering long-term as well as short-term 

variations, we suggest a two-step approach. In the first step, we start by modeling the daily 

cloudiness index 𝜁 ∈ {0, … ,8} as a Markov process in order to take the long-term variations 

into account. The cloudiness is considered in Oktas, describing how many eighths of the sky 

are covered by clouds, i.e. 𝜁 = 0 indicates a completely clear sky while 𝜁 = 8 indicates a 

completely clouded sky (Jones, 1992). The following transition matrix is defined for the 

Markov process used for simulation the cloudiness 𝜁: 

 

Θ𝜁
𝑚 = (

𝜋00
𝜁,𝑚

… 𝜋08
𝜁,𝑚

⋮ ⋱ ⋮

𝜋80
𝜁,𝑚

… 𝜋88
𝜁,𝑚

). (3) 

 

The transition probabilities 𝜋𝑖𝑗
𝜁,𝑚

 in equation (3) are derived on the basis of publicly 

available weather data provided by Germany’s National Meteorological Service (‘Deutscher 

Wetterdienst (DWD)’), which are available for a variety of locations across Germany for 

periods of often more than 50 years. A transition probability 𝜋𝑖𝑗
𝜁,𝑚

 denotes the conditional 

probability that, in month 𝑚, the cloudiness 𝜁 on day 𝛿 equals 𝑗 knowing that the cloudiness 

on day 𝛿 − 1 was 𝑖: 

 𝜋𝑖𝑗
𝜁,𝑚

= 𝑃(𝜁𝛿 = 𝑗 | 𝜁𝛿−1 = 𝑖); ∑ 𝜋𝑖𝑗
𝜁,𝑚

𝑗

= 1  ∀𝑚 ∀𝑖. (4) 
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An additional Markov process is used for modeling the daily global solar radiation on the 

basis of the cloudiness. The transition probabilities of the transition matrix Θ𝜌
𝑚,𝜁

 

corresponding to the daily global solar radiation 𝜌𝛿 on day 𝛿 can be expressed as a function 

of the month 𝑚, the cloudiness 𝜁𝛿 on day 𝛿 and the global solar radiation 𝜌𝛿−1 on day 𝛿 − 1: 

 𝜋𝑘𝑙
𝜌,𝑚,𝑗

= 𝑃(𝜌𝛿 = 𝑙 | 𝜌𝛿−1 = 𝑘 ∩ 𝜁𝛿 = 𝑗); ∑ 𝜋𝑘𝑙
𝜌,𝑚,𝑗

= 1

𝑙

  ∀𝑚 ∀𝑗 ∀𝑘. (5) 

 

The starting values of the Markov processes can be chosen arbitrarily since the influence 

is negligible in the long run. On the basis of the simulated daily cloudiness, the values for 

daily global solar radiation and average daily temperature are derived. Our analysis shows 

that deriving the transition probabilities on a monthly basis delivers more accurate results 

than using yearly transition probabilities. Overall, a backtesting of our simulation approach 

shows satisfying results, not only concerning the bandwidth and distribution (e.g., of the 

average yearly cloudiness) but also concerning the volatility (e.g., of the daily cloudiness 

values). 

In the second step, a stochastic process is used to generate hourly profiles on the basis of 

the daily simulation results of step 1. This second step accounts for the short-term 

fluctuations. While in general, the seasonal and daily variations of global solar radiation, for 

instance, can be described in a deterministic way, the stochastic short-term variations are 

related to the state of the atmosphere (e.g. the cloudiness). These short-term variations are 

simulated by an empirically determined, statistically varying term under the constraint that a 

given daily global solar radiation (determined in step 1) is achieved. The Markov process 

generates time series of the required input parameters for the following subsystems and is 

applied to obtain the desired number of scenarios 𝜔 ∈ {1 … 𝑁} that are the basis of the case 

study in section 4. 

 

 

b. Data transformation subsystem (DTS) 

 

The DTS transforms the output of the IDS into data required for the subsequent 

optimization: energy supply and demand profiles of the decentralized energy system. A PV 

supply profile module provides the energy supply profiles of the PV system taking into 

account the physical relationships. Main components of a PV system are solar modules 

which transform light into electrical energy by the photovoltaic effect. Their electrical energy 

yield primarily depends on incident light, module efficiency and its orientation described by 

longitude, latitude, tilt and azimuth of the module. This dependency is formulated by a 

physical model on the basis of Ritzenhoff (2006). The global solar radiation coming from the 

IDS is split into direct and diffuse solar radiation on the module and is used as well as 

ambient temperature to determine accurate module efficiency.3 Outputs are electrical energy 

supply profiles for the EOS. Concerning the energy demand, we use a reference load profile 

approach in the DTS. The generation of heat demand profiles for space heating (SH) and 

domestic hot water (DHW) is based on the VDI guideline 4655 (2006), using parameters 

such as season, temperature, cloudiness, insulation, location and occupancy. To generate 

                                                           
3
 The model also includes the albedo effect, averaged losses like shadowing, module miss matching 

cable or inverter losses for a certain PV system and the dependency of performance on low lighting 
and temperature for a certain module technology and manufacturer. 



9 
 

electricity demand profiles, the DTS process uses the so-called ‘standard load’ or H0 profile.4 

Figure 2 illustrates energy demand and supply profiles of a residential quarter having a PV 

system and energy need of 70 households for electricity, SH and DHW. The electricity can 

also be taken from an external supplier, while heat demand is covered by heat pumps, 

heating elements and heat storages within the quarter. 
 

 
Fig.2: Illustrative energy demand and PV supply profiles of a residential quarter for a typical day. 

 

With respect to Fig.2, the optimization task is to shift the energy demand for SH (dashed 

line) and DHW (dotted line) to times when a PV surplus is available or energy costs from the 

grid are low by using heat pumps in combination with heat storages. In addition, minimization 

of storage losses and ramp-up losses of the heat pumps as well as avoiding the use of the 

inefficient heating elements will lower the energy costs. 

 

 

c. Economic optimization subsystem (EOS) 

 

Within the EOS, the problem is formulated as SLP or SMILP by different optimization 

modules tailored to the specific needs of the problem that allow for carrying out optimal 

economic decisions. Hereby the profiles of the DTS can be used as possible scenarios with 

the probability of occurrence 𝑝. The stochastic program is decomposed into feasible and 

manageable subproblems. In order to keep the computation time acceptable, the 

optimization of the decomposed subproblems is executed in parallel on HPC systems, 

referred to as inner optimization. Within the masterproblem that is referred to as outer 

optimization, the first-stage variables are optimized by a hill-climbing algorithm. 

 

i. Mathematical modeling of the optimization problem 
 

Generally, finding economic optimal investment and operation decisions under uncertain 

parameters can be formulated as a two-stage stochastic program on the basis of equations 

(1) and (2). Their analytical solution, however, is only possible for few simple cases. In order 

to solve the two-stage stochastic problem numerically, it can be formulated as one large 

                                                           
4
 Our analysis has shown a strong convergence of aggregate household load towards the H0 profile 

even for numbers of households much lower than 70. 
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linear program known as its deterministic equivalent (Dantzig & Infanger, 2011; Ruszczyński 

& Świętanowski, 1977): 

 min
𝑥,𝑦𝜔

     𝑐𝑇𝑥 + 𝑝1𝑞1
𝑇𝑦1 + ⋯ + 𝑝𝜔𝑞𝜔

𝑇 𝑦𝜔 + ⋯ + 𝑝𝑁𝑞𝑁
𝑇 𝑦𝑁 (6) 

 
  𝑠. 𝑡.     𝐴𝑥 ≤ 𝑏,  (7) 

 
              𝑇1𝑥 + 𝑊1𝑦1                                                                                     ≤ ℎ1, 

               ⋮                         ⋱                                                                                  ⋮ 
            𝑇𝜔𝑥                               + 𝑊𝜔𝑦𝜔                                                     ≤ ℎ𝜔 , 
               ⋮                                                           ⋱                                                ⋮ 
            𝑇𝑁𝑥                                                              + 𝑊𝑁𝑦𝑁                      ≤ ℎ𝜔, 

(8) 

 
                  𝑥,           𝑦1      ⋯                𝑦𝜔 ,     ⋯               𝑦𝑁                      ≥ 0. (9) 

 
Hereby, each scenario ω  is element of the set of scenarios 𝛺 = {1,2, … , 𝑁} occurring with 

probabilities 𝑝1, … , 𝑝𝑁, respectively.5 In case of mixed-integer decision variables, 𝑥 and 𝑦 are 
defined as (Ahmed, 2011): 

              𝑥 ∈ ℝ+
𝑘1−𝑙1 × ℤ+

𝑙1 ,              𝑦 ∈ ℝ+
𝑘2−𝑙2 × ℤ+

𝑙2 . (10) 

 

where 𝑘1, 𝑘2, 𝑙1 and 𝑙2 are non-negative integers with 𝑙1 ≤ 𝑘1 and 𝑙2 ≤ 𝑘2. 

The scenarios have to be generated adequately in dependency of the probability 

distribution of the uncertain parameters. In the case of stochastic programs with integer 

recourse, Schultz (1995) has shown that, under mild conditions, discrete distributions can 

effectively approximate continuous ones to any given accuracy. If all scenarios, derived from 

historical data of N observations or generated by Monte Carlo sampling techniques, have the 

same probability of occurrence 
1

𝑁
, then the expected value of the objective function of (6) can 

be estimated by: 

 

min
𝑥,𝑦𝜔

     𝑐𝑇𝑥 +
1

𝑁
∑ 𝑞𝜔

𝑇

𝑁

𝜔=1

𝑦𝜔 , (11) 

 

leading to the so-called sample average approximation (SAA) of the problem (Shapiro, 

Dentcheva, & Ruszczyński, 2009). By the law of large numbers, the approximated 

expectation converges pointwise to the exact value as 𝑁 → ∞ assuming that each scenario is 

independent of other scenarios. 

 

ii. Decomposition and inner parallel optimization 
 

Because of the extreme problem size, most problems have to be decomposed to keep the 

stochastic program feasible. In principle, each program can be decomposed when knowing 

the connecting constraints within and between scenarios. Variables between the scenarios 

are connected by the so-called non-anticipativity constraint: The decisions has to be made on 

the first stage, like PV, storage or heat pump investments, without anticipating the actual 

realization of the scenario on the second stage and has thus hold for all possible scenarios.6 

Relaxing of the non-anticipativity constraint leads to the scenario-wise decomposition. On the 

                                                           
5
 In usual practical applications 𝑊 and 𝑞𝑇 do not depend on 𝜔. 

6
 When the stage-variable formulation of equation (1) and (2) is transformed into the scenario-variable 

formulation where the decision vector 𝑥 is an result for each scenario 𝜔, then the non-anticipativity 
constraint 𝑥1 = . . . = 𝑥𝜔 emerges. 
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other hand, a stage-wise decomposition, like the L-shaped method, results in a relaxation of 

the second-stage constraints that contain first-stage variables. Similar to the approach of Till 

et al. (2007), we do not relax, but fix those connected variables to decompose the stochastic 

program without violating the model constraints. Therefore, equation (11) is written in its 

implicit form as a function of the first-stage decisions: 

 
(Master): min

𝑥
     𝑓(𝑥) = 𝑐𝑇𝑥 +

1

𝑁
∑ 𝑄𝜔(𝑥)

𝑁

𝜔=1

 

𝑠. 𝑡.     𝐴𝑥 ≤ 𝑏, 

(12) 

 

and for a given 𝑥, the evaluation of the implicit second-stage value function 𝑄𝜔(𝑥) requires 

the solution of 𝑁 independent subproblems: 

(Sub): 𝑄𝜔(𝑥) =  min
𝑦𝜔

 𝑞𝜔
𝑇 𝑦𝜔  

𝑠. 𝑡.     𝑇𝜔𝑥  + 𝑊𝜔𝑦𝜔 ≤ ℎ𝜔  ∀𝜔 = 1, … , 𝑁.  
(13) 

 

If necessary, the second stage itself can also be decomposed in 𝑀 subproblems by 

determining the ties within the scenario. In energy systems, those are mostly the investments 

(first-stage decisions) and variables that are linked over time steps like the storage level or 

losses. 

The large-scale stochastic program is decomposed between and within the scenarios into 

𝑀𝑥𝑁 mixed-integer subproblems by fixing their connected variables. Each decomposed 

second-stage subproblem 𝑠𝑝𝑚𝑛 is solved by the standard MILP solver CPLEX 12 with a 

relative gap < 1%. The optimization is executed in parallel using HPC nodes to reduce the 

computation time. The process is designed to solve the subproblems not only on one, but on 

computing nodes of different HPC systems. After the optimization of the subproblems, their 

solution is composed to calculate the minimal value of 𝑓(𝑥) for the specific fixed variables 𝑥𝑖. 

An outer hill-climbing optimization performs the search on the first stage variables. Fig.3 

depicts the whole optimization process. 

 

Fig.3: Parallel optimization process (POP) for large-scale, two-stage stochastic programs. 
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iii. Outer hill-climbing optimization 

 

A hill-climbing algorithm is a local optimization approach that attempts to improve a given 

initial solution to a problem by incrementally altering its solution-dependent variables 

(Taborda, & Zdravkovic, 2012). In the optimization process, a steepest-ascent hill-climbing 

(SAHC) method attempts to minimize the objective function 𝑓(𝑥) by adjusting a single 

element of the first-stage vector 𝑥 representing an investment as continuous and/or discrete 

value 𝑥𝑖. Standardly, all components of 𝑥 are sequentially modified in the direction that 

improves the value of 𝑓(𝑥) at each iteration. The one leading to the greatest increase is 

accepted (see for example Forrest, S., & Mitchell, M. (1993)). We adapt the steepest-ascent 

search to reduce the risk of overstepping the global optimum: At each iteration, each first-

stage variable 𝑥𝑖, is increased and decreased sequentially by a certain step size 𝑠𝑖. Then the 

minimal objective values of 𝑓(𝑥 ± 𝑠𝑖𝑒𝑖) are computed by the parallel optimization process 

(POP) as shown in Fig.3. In this way, the hill-climbing approach can start at any initial 

solution without knowing the ascending direction beforehand. The step with the best 

improvement is accepted and the adapted steepest-ascent search is repeated. When there is 

no improvement, then the step size is divided in half. The process continues until the relative 

change of 𝑓(𝑥) is smaller than a given stopping criterion 𝑎 ∈ ℝ+. The whole procedure is: 

 

Step 0:  (Initialization) compute 𝑓(𝑥0) for an initial 𝑥 (e.g. 𝑥 = 0) by using POP and set step 

size 𝑠𝑖 for each investment 𝑥𝑖 of vector 𝑥. Let 𝑒𝑖 ∈ ℝ+
𝑘1 be the 𝑖-th unit vector. 

 

Step 1a:  Add 𝑠𝑖 to 𝑥𝑖 and compute 𝑓(𝑥 + 𝑠𝑖𝑒𝑖) by using POP and subsequently subtract 𝑠𝑖 

from 𝑥𝑖 for each investment 1 ≤ 𝑥𝑖 ≤ 𝑘1. 

 

Step 1b:  Subtract 𝑠𝑖 from 𝑥𝑖 and compute 𝑓(𝑥 − 𝑠𝑖𝑒𝑖) by using POP and subsequently add 𝑠𝑖 

to 𝑥𝑖 for each investment 1 ≤ 𝑥𝑖 ≤ 𝑘1. 

 

Step 2: Select 𝑥∗ ∈ {𝑥 ± 𝑠𝑖𝑒𝑖 | ∀ 1 ≤ 𝑖 ≤ 𝑘1} with 𝑓(𝑥∗) = min
𝑖

 {𝑓(𝑥 ± 𝑠𝑖𝑒𝑖)}. 

 

Step 3: Define ∆𝑓(𝑥)𝑟𝑒𝑙 = (𝑓(𝑥0) − 𝑓(𝑥∗))/𝑓(𝑥0). 

 

Step 4: If ∆𝑓(𝑥)𝑟𝑒𝑙 ≤ 0, then 𝑠 =
𝑠

2
 and go to step 1a. Otherwise continue. 

 

Step 5: If ∆𝑓(𝑥)𝑟𝑒𝑙 > 𝑎, then accept 𝑓(𝑥0) = 𝑓(𝑥∗) and 𝑥0 = 𝑥∗ and go to step 1a. 

Otherwise continue. 

 

Step 6: (End) Stop. The local optimal solution value is 𝑓(𝑥∗) with the vector 𝑥∗. 

 

 

4. Application of the developed approach to a residential quarter 

 

We demonstrate the described approach for a real-world case study: a residential quarter 

that is introduced in Section 4a. Its mathematical model and the corresponding 

computational results are presented in Sections 4b and 4c. 
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a. Residential quarter 

 

We focus on a residential quarter including 70 households on 7700m2 in multi-family or 

row houses that are clustered in several building groups 𝑔 ∈ {1, … , 𝐺}.7 Fig.4 shows the 

energy setup of the quarter that shall be optimized under uncertain conditions. 

 
Fig.4: Energy setup of building group 𝑔 ∈ {1, … , 𝐺} of the quarter. 

 

On the energy supply side, there are a 240kWp PV system and the possibility to obtain 

electricity, that cannot be covered by own production, from an external energy supplier at an 

assumed electricity price of 𝑝𝑔𝑟𝑖𝑑 = 0,25€/kWh. If the PV supply exceeds the electricity 

demand of the quarter, the surplus can be fed into the external grid by a compensation 

of 𝑝𝑓𝑖 = 0,10€/kWh. On the energy demand side, there are the electrical and thermal 

consumption of each building group 𝑔. In this case study, the quarter totally consists of 𝐺 = 4 

building groups. The thermal consumption, i.e. demand for space heating (SH) and for 

domestic hot water (DHW), of one building group is covered by two air-water heat pumps in 

combination with heat storages for each building group. Both heat storages are carried out 

as hot water tanks having their own electrical heating elements to ensure thermal supply 

security in times of peak demand and disinfection function. The heating system is separated 

into two cycles, because it allows the heat pump for SH to run at lower temperatures 

resulting in a higher coefficient of performance (COP) and lower heat losses of the storage 

and, thus, in less energy costs. Because of the lower temperatures, underfloor heating 

systems are installed to exchange the required heat by a larger heat exchanger surface.  

                                                           
7
 The corresponding project is aimed at developing energy-efficient, environmentally friendly 

residential quarters where a large part of the required energy will be provided by PV systems within 
the quarters, the energy consumption is reduced by modern passive house technology. An increased 
PV self-consumption is achieved by heat pumps with storages and intelligent load shifting within the 
quarter. 
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SH storages are implemented in a closed cycle and its temperature can be assumed as 

thoroughly mixed that can drop from 35°C up to 10K. In contrary, due to the fresh water 

requirements, the loop from the heat pump through DHW storages is separated from the 

fresh water cycle by a heat exchanger in the tank. The temperature of the fresh water 

amounts to 10°C and needs to heat up to 50°C.8 The higher temperature difference results in 

a larger energy content at the same volume in comparison to SH storages. 

 

The concrete task is to determine optimal storage sizes for SH and DHW of each building 

group including their optimal operation leading to minimal energy costs. In this case study, 

two different air-water heat pumps can be installed: one type referred as inverter heat pumps 

can provide heating power at each level below or equal to their maximum power. The other 

one, with less investment needs, can only run stepwise at idle, half or full load. Their maximal 

available heating power and their COP also depend on the ambient air temperature. Further 

uncertain parameters that vary with weather conditions are PV generation and thermal as 

well as electrical demand. To determine the economically optimal sizes of the different 

components and their operation, such as the storage sizes for SH and DHW of each building 

group, under these uncertain parameters, the energy setup illustrated in Fig.4 is modeled as 

SLP and SMILP depending on the installed heat pump technology. 

 

 

b. Mathematical model of the quarter 

 

Corresponding to equation (6), the objective function of the deterministic equivalent for 

scenario 𝜔 that represents the minimization of the total energy costs of the quarter for one 

possible outcome of Ω can be formulated as: 

 

𝑐𝑜𝑠𝑡𝑠𝜔
∗ = min

𝑐𝑔,𝑖,𝑒𝜔,𝑡
𝑔𝑟𝑖𝑑

, 𝑒𝜔,𝑡
𝑓𝑖

 𝐴𝑁𝐹 ∑ ∑ 𝑐𝑜𝑠𝑡𝑖 ∙ 𝑐𝑔,𝑖 

𝑘1

𝑖=1

𝐺

𝑔=1

+ ∑ 𝑒𝜔,𝑡
𝑔𝑟𝑖𝑑

∙ 𝑝𝑔𝑟𝑖𝑑 − 𝑒𝜔,𝑡
𝑓𝑖

∙ 𝑝𝑓𝑖

𝑇

𝑡=1

, 

(14) 

 

where annual capital cost of each investment 𝑖 of building group 𝑔 are included by using a 

discounted cash flow investment evaluation, the equivalent annual cost (EAC) method: 

Investments are converted into an equivalent series of uniform amounts per period 𝑇 (Jones, 

& Smith, 1982).9 The integrated annuity factor (ANF) takes into account the lifetime of the 

investment and the possibility that the capital could be invested elsewhere at a certain 

interest rate. The EAC is often used for investment decisions of (decentralized) energy 

systems, see for example Silveira and Tuna (2002), Korpaas, Holen, and Hildrum (2003), 

Hawkes and Leach (2005) or Schicktanz, Wapler, and Henning (2011). In this case study, an 

interest rate of 10% and a technical lifetime of 20 years is assumed. The period 𝑇 includes 

one year with a temporal resolution of 15 minute steps. Further predefined components (in 

the context of the presented case study) are: 

- the installed PV capacity of the quarter: ∑ 𝑐𝑔,𝑖=𝑃𝑉
4
𝑔=1 = 240, 

                                                           
8
 By using the density and heat capacity of water, the volume storage level is converted into an energy 

storage level required by the optimization model. 
9
 The costs for each component 𝑐𝑜𝑠𝑡𝑖 ∙ 𝑐𝑔,𝑖 are assumed as linear function composed of fix and size-

dependent variable investments referring to market prices. 
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- the number of heat pumps for SH within a building group: 𝑐𝑔,𝑖=𝐻𝑃𝑆𝐻
= 1, 

- the number of heat pumps for DHW within a building group: 𝑐𝑔,𝑖=𝐻𝑃𝐷𝐻𝑊
= 1, 

- the number of heating elements for the SH storage: 𝑐𝑔,𝑖=𝐻𝐸𝑆𝐻
= 4, 

- the number of heating elements for the DHW storage: 𝑐𝑔,𝑖=𝐻𝐸𝐷𝐻𝑊
= 4. 

 

The whole nomenclature is explained in the appendix in Table 1.Technically, the used 

heating elements can provide heating power continuously below or equal to their maximum 

power 𝑑ℎ𝑒,𝑚𝑎𝑥. Similar, the air-water heat pumps, designed as inverter heat pumps, can 

provide heating power at each level below or equal to their maximum power 𝑑𝜔,𝑡
ℎ𝑝,𝑚𝑎𝑥

. The 

other option is a heat pump that can only run at discrete power output levels. In this case 

study, the storage size for SH 𝑐𝑔,𝑖=𝑆𝑆𝐻
 and for DHW 𝑐𝑔,𝑖=𝑆𝐷𝐻𝑊

 shall be optimized for inverter 

heat pumps and for heat pumps that can only run idle, half or full load. 

Essential constraints of the system are that the demand and supply need to be balanced 

at any time: 

 

𝑒𝜔,𝑡
𝑝𝑣 + 𝑒𝜔,𝑡

𝑔𝑟𝑖𝑑
= 𝑑𝜔,𝑡

𝑒𝑒 + ∑ ∑(𝑑𝜔,𝑔,𝑢,𝑡
ℎ𝑝 + 𝑑𝜔,𝑔,𝑢,𝑡

ℎ𝑒 )

2

𝑢=1

4

𝑔

+  𝑒𝜔,𝑡
𝑓𝑖

               ∀𝜔 ∀𝑡, (15) 

 

 𝑑𝜔,𝑔,𝑢,𝑡
ℎ𝑝 ∙ 𝐶𝑂𝑃𝜔,𝑢,𝑡 + 𝑑𝜔,𝑔,𝑢,𝑡

ℎ𝑒 ∙ 𝜂 + 𝑠𝜔,𝑔,𝑢,𝑡

= 𝑑𝜔,𝑔,𝑢,𝑡
𝑡ℎ + 𝐿𝜔,𝑔,𝑢,𝑡 + 𝑠𝜔,𝑔,𝑢,𝑡+1                 ∀𝜔, ∀𝑔, ∀𝑢,  ∀𝑡. 

(16) 

 

The supplied PV energy depends on the size of the PV system: 𝑒𝜔,𝑡
𝑝𝑣

= ∑ 𝑐𝑔,𝑖=𝑃𝑉
4
𝑔=1 ∙ 𝑒𝜔,𝑡

𝑝𝑣,𝑘𝑤𝑝
. 

In equation (16), storage heat losses 𝐿𝜔,𝑔,𝑢,𝑡 are integrated by a constant loss factor 𝑙𝑢 in 

dependency of the heat storage level: 

 𝐿𝜔,𝑔,𝑢,𝑡 = 𝑠𝜔,𝑔,𝑢,𝑡 ∙ 𝑙𝑢                                                                ∀𝜔, ∀𝑔, ∀𝑢,  ∀𝑡. (17) 

 

The storage possibility 𝑠𝜔,𝑔,𝑢,𝑡  is limited by: 

 𝑠𝑔,𝑢
𝑚𝑖𝑛 ≤ 𝑠𝜔,𝑔,𝑢,𝑡 ≤ 𝑐𝑔,𝑖=𝑆𝑢

                                                          ∀𝜔, ∀𝑔, ∀𝑢,  ∀𝑡. (18) 

 

The heat supply for each building group is limited by the number of heating elements 𝑐𝑔,𝑖=𝐻𝐸𝑢
 

and their maximal power values 𝑑ℎ𝑒,𝑚𝑎𝑥: 

 𝑑𝜔,𝑔,𝑢,𝑡
ℎ𝑒 ∙ 𝜂 ≤ 𝑐𝑔,𝑖=𝐻𝐸𝑢

∙ 𝑑ℎ𝑒,𝑚𝑎𝑥                                              ∀𝜔, ∀𝑔, ∀𝑢,  ∀𝑡, (19) 

 

and the number of heat pumps 𝑐𝑔,𝑖=𝐻𝑃𝑢
 and their maximum power values 𝑑𝑡

ℎ𝑝,𝑚𝑎𝑥
: 

 
 𝑑𝜔,𝑔,𝑢,𝑡

ℎ𝑝 ∙ 𝐶𝑂𝑃𝜔,𝑢,𝑡 = 𝑧𝜔,𝑔,𝑢,𝑡 ∙
1

𝑚
∙ 𝑑𝜔,𝑡

ℎ𝑝,𝑚𝑎𝑥                           ∀𝜔, ∀𝑔, ∀𝑢, ∀𝑡, (20) 

 

 𝑧𝜔,𝑔,𝑢=𝐷𝐻𝑊,𝑡 ≤ 𝑚 ∙ 𝑐𝑔,𝑖=𝐻𝑃𝐷𝐻𝑊
                                                        ∀𝜔 ∀𝑔 ∀𝑡, (21) 

 

 

∑ 𝑧𝜔,𝑔,𝑢,𝑡

2

𝑢=1

≤ 𝑚 ∙ ∑ 𝑐𝑔,𝑖=𝐻𝑃𝑢

2

𝑢=1

                                                       ∀𝜔, ∀𝑔, ∀𝑡. (22) 

 

Here, constraints (20)-(22) ensure that both heat pumps can be used to cover the demand 

for space heating, but only one for domestic hot water. This specific set-up is reasoned by a 

higher demand for space heating than for domestic hot water (up to ten times on winter 
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days). In case that heat pumps can run only at idle, half or full load, then 𝑚 = 2, representing 

the possible modes minus the idle mode, and the variables 𝑧𝜔,𝑔,𝑢.𝑡 have to be integers with 

𝑧𝜔,𝑔,𝑢=𝑆𝐻,𝑡 ∈ {0,1,2,3,4} and 𝑧𝜔,𝑔,𝑢=𝐷𝐻𝑊,𝑡 ∈ {0,1,2}, otherwise continuous variables. 

Practically, positive load changes result in higher thermal and mechanical energy 

consumption of the heat pumps and reduce the COP. Therefore, one further constraint is 

needed to differentiate linearly between positive and negative load changes of the heat 

pumps achieved by positive auxiliary variables: 

 𝑧𝜔,𝑔,𝑢,𝑡+1 − 𝑧𝜔,𝑔,𝑢,𝑡 = 𝑝𝑜𝑠𝜔,𝑔,𝑢,𝑡 − 𝑛𝑒𝑔𝜔,𝑔,𝑢,𝑡                     ∀𝜔, ∀𝑔, ∀𝑢,  ∀𝑡. (23) 

 

To take into account energy losses during positive ramp up times, an additional term 

𝑝𝑜𝑠𝜔,𝑔,𝑢,𝑡 ∙ 𝑟𝑢 is added to the right side of constraint (16) avoiding permanent load changes of 

the heat pumps. The ramp-up loss of heat pumps is modeled by a loss factor 𝑟𝑢 with 5% loss 

of the positive load change at time 𝑡. Additionally, the left side of the constraints (16) can be 

relaxed by a further auxiliary variable 𝑞𝜔,𝑔,𝑢,𝑡, in the event that heat supply below the 

demand is acceptable. Then this variable is multiplied by a compensation factor 𝑓 =

100 000€/kWhel and added, as an economic penalty term, to the objective function (14). 

For all variables that are connected by a constraint over two time steps, the following 

constraints equal the element of the first and last time step 𝑡: 

 𝑠𝜔,𝑔,𝑢,𝑡=𝑇 = 𝑠𝜔,𝑔,𝑢,𝑡=1                                                                    ∀𝜔, ∀𝑔, ∀𝑢,   

𝑧𝜔,𝑔,𝑢,𝑡=𝑇 = 𝑧𝜔,𝑔,𝑢,𝑡=1                                                                    ∀𝜔, ∀𝑔, ∀𝑢.   
(24) 

 

All presented variables need to be positive. Since the scenarios are generated by a Markov 
process, the entire stochastic program, minimizing the expected costs, can be solved 
numerically by adapting (14) analogously to (11): 
 

𝑐𝑜𝑠𝑡𝑠∗ = min
𝑐𝑔,𝑖,𝑒𝜔,𝑡

𝑔𝑟𝑖𝑑
, 𝑒𝜔,𝑡

𝑓𝑖
 𝐴𝑁𝐹 ∑ ∑ 𝑐𝑜𝑠𝑡𝑖 ∙ 𝑐𝑔,𝑖 

𝑘1

𝑖=1

𝐺

𝑔=1

+
1

𝑁
∑ ∑ 𝑒𝜔,𝑡

𝑔𝑟𝑖𝑑
∙ 𝑝𝑔𝑟𝑖𝑑 − 𝑒𝜔,𝑡

𝑓𝑖
∙ 𝑝𝑓𝑖

𝑇

𝑡=1

𝑁

𝜔=1

. 

(25) 

 
The model dimension of one scenario is shown in Table 2 for one building group and for the 
entire quarter. In order to allow for an appropriate consideration of the uncertainties, a 
problem containing hundreds to thousands of such scenarios need to be solved. 
 
Table 2: Model dimension of one scenario 𝜔. 

 Continuous Integer variables 
Constraints 

 variables (continuous if SLP) 

for building group 𝑔 420 486 70 084 946 080 

for the entire quarter 1 681 941 280 336 3 048 480 

    

 

c. Computational results 

 

For this case study, 100 weather scenarios were generated by a Markov process 

representing the uncertain global solar radiation, temperature and cloudiness. These profiles 

are transformed into PV supply and energy demand profiles for electricity, SH and DHW that 

are used in the described SLP and SMILP. According to (12) and (13), equation (25) of the 

stochastic program is decomposed into 100 subproblems each representing one scenario. 
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Because of the extreme problem size of one scenario, the one year period 𝑇 of each 

scenario is also decomposed into periods of two weeks leading to 27 subproblems per 

scenario.10 The resulting 2700 subproblems are solved in parallel by using POP within half 

an hour. The storage optimization is done for the quarter that is located in Germany. About 

20 steps of the outer optimization are needed to find the optimal storage sizes. If the 

optimization was carried out sequentially on one computer, the computation time would 

amount to 432 000 hours (𝑎𝑏𝑜𝑢𝑡 50 years). Due to the POP, the problem is solved within one 

week. For a better illustration, only the results for building group 1 are presented in the 

following and subsequently discussed to the end of this paper. 

 
Fig.5: Density function of minimal costs and optimal storage size including the stochastic solution and the deterministic solution 

using expected values of the uncertain parameters of the SLP (a) and SMILP (b) of building group 1. 

 

                                                           
10

 The chosen period of two weeks results in problem size for an efficient utilization of the HPC systems with 
respect to computation requirements and total computation time. 
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Fig.5 shows the density function of minimal costs and optimal storage sizes of all 

scenarios as program with continuous variables (a) or with mixed-integer variables (b) of 

building group 1. The optimal storage size in kWhth is plotted on the abscissa (lateral wide 

axis) for SH (< 20kWhth) and for DHW (> 30kWhth) versus the minimal costs on the ordinate 

(lateral depth axis) for each scenario independently. The applicate (vertical height axis) 

contains the information of the frequency of occurrence for the optimal storage size with 

class intervals of 2kWhth and their according minimal costs within class intervals of 200€. 

When each scenario is optimized separately and inverter heat pumps are in use, i.e. all 

variables are continuous meaning that the heat pumps can run completely flexibly (Fig.5a), 

the optimal storage size for SH varies between 1-17kWhth and for DHW between 40-

55kWhth for building group 1 with 29 households. The frequency peak of occurrence is at the 

class interval of 0-2kWhth for SH and of 48-50kWhth for DHW. The minimal costs amount to 

30 164 - 31 957€ for the SLP. Thereof, approximately 60% can be attributed to the capital 

costs of the energy system’s components. The remaining 40% can be attributed to the 

variable energy costs. Fig.5 also includes the stochastic solution and the deterministic 

solution of the expected value problem (EV). The optimal solution of the SLP amounts 

to 17,7kWhth for SH and 45,3 kWhth for DHW with 31 147€ minimal expected costs. The 

solution of the EV is achieved by using expected values of the uncertain input parameters to 

determistically determine the optimal storage sizes. Then the optimal storage sizes are 

1,6kWhth and 55,3kWhth for SH and DHW, respectively, leading to 3% lower minimal costs. 

Fig.5b analogously shows the results for the SMILP. The frequency peak of occurrence is 

at the class interval of 14-16kWhth for SH and of 44-60kWhth for DHW. The optimal solution 

amounts to 17,7kWhth for SH and48,6kWhthfor DHW. When expected values of the input 

data are used for the optimization, the storage for SH amounts to 16,6kWhth and for DHW 

to 58,1kWhth. 
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 Fig.6: Characteristic values and measures of dispersion of 100 scenarios for the optimal solution of SLP and SMILP for 

building group 1, also shown as box-and-whisker (the whiskers represent the minimum and maximum of the values). 

 

For the optimal investment solution of the SLP and SMILP, Fig.6 shows variations of 

characteristic values of the 100 scenarios: minimum, 0.25 quantile, median, 0.75 quantile and 

maximum of the values are listed as measures of dispersion. Besides, the values are 

illustrated as box-and-whisker plot rotated through 90°. These values indicate the variations 

that can be expected when the investment decision is made, i.e. when the first-stage 

variables are set. The minimum and maximum of the minimized costs for the given optimal 

storage sizes range between 30 258€ and 32 629€. Note that these values are slightly higher 

than those of 100 separate (deterministic) optimizations of the storage sizes, in which the 

first-stage variables are still alterable. 

The annual PV supply varies between 56 914kWhel and 62 500kWhel. The electrical 

demand of the heating system, the heat pumps and heating elements, amounts to 

50 144 kWhel-54 619kWhel for the SLP and is approximately 1500kWhel higher for the 

SMILP. 

model minimum
0.25 

quantile
median

0.75 

quantile
maximum

minimized costs (in €/a) SLP 30 258 30 898 31 141 31 398 32 048

SMILP 30 844 31 478 31 723 31 982 32 629

PV supply* (in kWhel) SLP 56 914 58 739 59 212 60 116 62 500

SMILP 56 914 58 739 59 212 60 116 62 500

elect. demand of the SLP 50 144 51 522 51 994 52 778 54 619

heating system (in kWhel)

SMILP 51 530 52 888 53 372 54 140 55 984

storage losses (in kWhth) SLP 1 677 1 751 1 783 1 805 1 866

SMILP 3 193 3 282 3 301 3 327 3 410

ramp-up losses (in kWhth) SLP  653  666  670  676  688

SMILP 2 642 2 815 2 870 2 907 3 087

COP** (-) SLP 3,38 3,40 3,41 3,42 3,44

SMILP 3,33 3,36 3,36 3,37 3,39

PV self-consumption (-) SLP 0,51 0,53 0,54 0,55 0,56

SMILP 0,51 0,53 0,54 0,54 0,56

autarky (-) SLP 0,34 0,35 0,35 0,35 0,37

SMILP 0,33 0,34 0,34 0,35 0,36

 *  PV supply is illustratively caclulated for buildiung group 1 in relation of the system area occupied on the building group to the total are of the 240 kWp system.

** COP is calculated for both heat pumps as overall efficiency of provided thermal energy for SH and DHW in relation to demanded elctrical energy of the heat pumps.
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The higher demand results from different thermal storage losses and ramp-up losses of 

the heat pumps that are 2-5 times lower when inverter heat pumps are used. The overall 

COP which is related to the total thermal supply and total electrical demand of both heat 

pumps is around 3.4 and only marginal better in the case of SLP. Further quantities of 

interest are the PV self-consumption rate (51-56%) and the actual autarky rate (33-37%). 

With a marginally varying electricity demand of the households around 40 000kWhel, the 

annually balanced autarky ranges between 60-70%. Also not listed in Fig.6, the electrical 

load of the external grid ranges between 39-56kW for the SLP and between 44-57kW for the 

SMILP. 

 

 

d. Discussion of the results 

 

The general result is that the usage of thermal storages in such a decentralized energy 

system with PV supply and energy demand of several households proves beneficial, despite 

the uncertainties. The DHW storage is larger than the SH storage due to the non-simultaneity 

of PV generation and heating demand. In winter, the complete PV supply is almost entirely 

used to cover the electrical demand. In summer, there is high PV supply, but a negligible 

need for SH. The energy demand for DHW, however, is more or less constant over the year. 

Consequently, the load flexibility provided by DHW storages is also distributed more 

constantly over the year than the flexibility of SH storages, i.e. DHW storages provide a 

noteworthy load flexibility also in times of high PV supply. Hence, larger storages for DHW 

enable a higher self-consumption of the PV system and are, thus, more profitable than 

storages for SH, because of obtaining less energy from the external grid. The value of the 

SH storage is less in load shifting, but more in covering peak demands in winter, when the 

heat supply of the air-water heat pumps is also low due to low ambient temperatures of the 

air. The storage size of at least 17,7kWhth is caused by scenarios with very cold winters. 

Implicitly, the optimal storage size depends on the system component’s capacities, i.e. the 

installed PV system and used number of heat pumps. For example, a larger PV system 

makes a larger storage more attractive, because more heat demand can be shifted to times 

when PV energy is supplied and the price for electricity is low. A heating system with more 

heat pumps could cover peak demands with smaller SH storages. 

It could have been expected that the storage size for SH is more sensitive to uncertain 

meteorological parameters than for DHW. But there is a higher variation of the DHW storage 

in comparison to SH storage in both cases SLP (a) and SMILP (b), when the scenarios are 

optimized separately. The fact that the daily energy demand for DHW is more or less 

constant over the year and the demand for SH is mainly in winter indicates that the 

uncertainties on the supply side (i.e. PV generation) lead to this higher sensitivity in 

comparison to the uncertainties on the demand side (i.e. heat demand). However, in this 

case, it is not only the uncertain PV supply that influences the storage size. But it is the load 

shifting potential in general, which depends on the complex combination of time-depending 

PV supply and electrical and thermal energy demand. Furthermore, storage losses and 

ramp-up losses of the heat pumps influence the profitability of load shifting. If integer 

variables are involved, this influence is higher than with continuous heat pump power supply 

resulting in an increased sensitivity to uncertainty and a higher variation of the DHW storage 

in SMILP (Fig.5b) in comparison to SLP (Fig.5a). 

The optimal storage sizes differ notably from the results when using expected values. 

However, if the investments were based on the results of the EV or even on the frequency 
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peak of occurrence, there would be scenarios that are very expensive or, when the heat 

constraint is not relaxed, even infeasible. In contrast, the optimal solutions of the SLP and 

SMILP take all scenarios into account and result in a storage size that is not optimal for the 

specific scenario, but feasible for all scenarios and cost-minimal in expectation. 

 

The variations of the costs are mainly driven by the PV supply and the thermal demand, 

both depending on uncertain, stochastic weather conditions: the higher the global solar 

radiation and temperatures of one year, the lower the minimal costs because of a higher PV 

supply and a lower thermal demand. The residual PV surplus of at least 44% up to 49% has 

to be fed into the external grid. Similarly, the autarky rate indicates which share of the total 

energy demand can be covered by the decentralized energy sources and how much energy 

is needed from an external supplier. In this residential quarter, an autarky rate of one third is 

achieved, meaning that two thirds need to be covered externally for the given energy system. 

Concerning the grid layout, it is important to know the maximal electrical load. Almost 

independent of the used heat pump technology, this maximal load is 57kW. The total 

electrical net consumption from the external grid approximately amounts to 60 000MWhel and 

varies by ±5%. If inverter heat pumps are used, the total electrical demand can be reduced 

by around 2%. The reason for that is the higher COP, because of less numbers of heat pump 

switches resulting in lower ramp-up losses. Such model results can, inter alia, be very useful 

to support contract designing with external energy suppliers or distribution grid operators. 

When heat pumps can only run with a technically limited flexibility at half or full load, i.e. 

integer variables are used, then the minimal costs increase by about 600€, because the heat 

pump is restricted by stepwise instead of continuous power supply. This inflexibility is 

compensated by larger storages which is the main reason for the higher minimal costs. The 

difference to the SLP solution delivers a lower bound amounting to a relative gap of less than 

2%. The SLP can also be used to determine the ranges of the optimal storage sizes by 

maximizing and minimizing the sizes on the hyperplane with the same optimal objective 

value of the SMILP: At the fixed objective value of 31 729€, the SH storage can range 

between 17,7-87,1kWhth and the DH storage between 23,8-160,6kWhth. 

 

 

5. Discussion of the methodology 

 

Commonly, when SP is applied for problems with uncertain data, the expected value of 

perfect information (EVPI) is indicated. It gives an economic value for obtaining perfect 

information about the future, so it is a proxy for the value of accurate forecasts. The EVPI is 

calculated as difference between minimal expected costs of the stochastic solution and 

minimal expected costs which are possible in the best case. ‘In the best case’ means that 

perfect information about future scenarios would be available and the storage size could still 

be adapted for each occurring scenario. Mathematically, these minimal costs can be 

determined by relaxing the non-anticipativity constraints. For the SLP and the SMILP, the 

difference is less than 1% meaning that the savings are marginal when the occurring 

scenario is known exactly and the storage size could be optimally adapted. Because each 

scenario is optimized separately by an exact branch & cut approach, that information can be 

used as an better relative gap for the SMILP. 
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The advantage of modeling the problem not deterministically, but as an SLP or SMILP, 

can be expressed by the value of stochastic solution (VSS): Thereby, the expected result of 

the EV solution (EEV) is subtracted from the optimal solution of the SP (Birge, 1981). The 

EEV is calculated by the optimization of the stochastic program using the EV solution, i.e. by 

minimizing the expected costs of the stochastic program using the storage sizes that are 

deterministically determined for the expected values of the uncertain input parameters. In 

both SLP and SMILP, the EV solution is not feasible for all scenarios without a relaxed heat 

constraint. Thus, the VSS is not quantifiable, but from a qualitative viewpoint, very valuable. 

If the decision was made on the basis of an optimization with expected values, there would 

be possible scenarios in the future with constraints that could not be satisfied. In the worst 

case, that could lead to a collapse of the real energy system. In this case study, constraints 

for the thermal demand could not be always satisfied meaning that there are time steps in 

the year where the room temperature is below the desired temperature of the inhabitants. 

Therefore, compensation terms, as proposed in chapter 4.b, are incorporated resulting in a 

VSS for the SLP of 56 196€ (177% more than the optimal solution of the SLP) and for the 

SMILP of 3 725€ (12% more than the optimal solution of the SMILP). 

 

Critically reviewing our approach, SP is only applicable, when probability distributions of 

the uncertain parameters are known. The difficulty is to determine a distribution that 

adequately represents the actual distribution of the uncertain parameter. For the case study, 

a Markov process is used for simulating the uncertain parameters. The required transition 

probabilities are derived from historical data. On this basis, the computed solution is only 

optimal in expectation, when the future occurs as it is statistically derived from historical data 

base of over 50 years. Ahistorical occurrences or trends, e.g. the future climate development, 

could be taken into account by using model-derived forecasts or, if available, expert 

judgments. Besides determining the probability distribution, the number of scenarios, which 

represent the distribution sufficiently well, is difficult to choose. 

For correct decision making, we should be aware that the optimal decision under 

uncertainties can also depend on risk preferences of the decision maker (Pflug & Misch, 

2007). We wish to acknowledge that our results are purely based on economic 

considerations without accounting for subjective criteria. 

 

For reasons of computational feasibility, each scenario is decomposed into 27 

subproblems by fixing the heat storage sizes and the heat storage levels between the 

subproblems. The SH storage level between the subproblems is set to zero reasoned by the 

fact that this storage is not in use approximately in 5 of 12 months. For the DHW storage, a 

good estimation cannot be derived for the storage level. For this reason, the level is set to 

50% of the storage size. These storage levels are not optimized to not increase the 

compositional effort needlessly. Thus, the solution is not exactly optimal. However, the error 

is negligible in this case study (error less than 0.1%). A SDP technique is not applied, 

because it disadvantageously results in a step-dependent optimization process and the 

possibility to independently optimize all 2700 subproblems in parallel would be dropped out. 

Another option to deal with the problem size could be to reduce the temporal resolution of 

the problem. Our analysis shows that a reduction of the temporal resolution has a crucial 

impact on the optimal solution. For example, using time steps of one hour, the optimal 

storage sizes differ by more than 50% reasoned by a completely changed load shift potential 

within an hour instead of 15 minutes. It can be an option for handling large-scale stochastic 

programs, but this is very case-dependent. In general, it must be assumed that reduction of 



23 
 

temporal resolution leads to an insufficient solution that is too inaccurate for an application. 

On the opposite view, a temporal resolution of below than 15 minutes can even be required 

to achieve the needed accuracy. In principle, the developed approach and model can also be 

applied for smaller time steps. But besides the problem of an increased computational effort, 

there are nearly no consistent data available in a higher temporal resolution. In the case 

study with thermal storages as load shifting component, a temporal resolution of 15 minutes 

should be sufficient, because the profiles of thermal supply, demand and storing are smooth 

in comparison to electrical profiles, and there is no need to balance them at exactly the same 

time. When electrical storages are used for instance, then the sizes of the storages usually 

tend to be underestimated. 

It should also be noted that continuous variables are used for the storage sizes for illustrative 

purpose. On the common market, only discrete sizes are available as economically 

reasonable investment. Then, integer variables have to be used that could even fasten the 

optimization process, because the hill-climbing approach searches only a finite number of 

combinations in comparison to infinite combinations of continuous storage sizes. 

 

The advantage of the outer hill-climbing approach is that it needs few steps to come close 

to an optimum. In case of the SMILP, the disadvantage is that it can end in a local optimum 

when integers are involved. Even a more time-intensive evolutionary algorithm used by Till et 

al. (2007) as outer optimization can end in a local optimum. A global optimum can be 

guaranteed by either a complete enumeration or an exact algorithm like the mentioned 

branch-and-cut approach of Carøe et al. (1998, 1999) or Sherali et al. (2002, 2006, 2009) 

and the BFC methodology of Alonso-Ayuso, Escudero et.al (2005), Escudero et al (2007, 

2010a, 2010b, 2012) and Pagès-Bernaus et al. (2015). But these approaches are prohibited 

by the problem size. For example, Pagès-Bernaus et al. (2015) apply their developed 

approach to two real instances with 447 771 variables (thereof 13 338 binary) and 56 700 

variables (thereof 34 479 binary). An application to the case study of this paper with more 

than 100 Million variables would result in a non-performable computational effort that 

exceeds the current commonly available computing resources. At least, the solution of the 

SLMIP, relaxed either to a SLP or a program where the capacity can be adapted for each 

scenario separately, gives the gap to the minimal possible costs that indicates the 

applicability of the solution. 

 

 

6. Conclusion and outlook 

 

Within the paper, the optimization of the investment and operation planning process of a 

decentralized energy system is considered that is subject to different sources of 

uncertainties. Because of the complex impact of uncertain parameters on the solution, the 

investment decisions, such as the choice of an optimal storage capacity, derived from the 

stochastic solution can be very different from the solution based on expected values of the 

input data or the frequency peak of occurrence. Using two-stage stochastic programming 

leads to a solution that is optimal in expectation. This solution is much more reliable with 

respect to the parameter uncertainties than deterministic solutions which are not always 

feasible for all possible future scenarios. In general, thermal storages in such a quarter prove 

beneficial. The storage for domestic hot water is more profitable than for space heating due 

to the more constantly provided flexibility, particularly in events when heat demand can be 

shifted to times of PV peaks. A further key finding is that the beneficial effect of the storage 
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for space heating is the fulfillment of all energy system restrictions, i.e. the covering of the 

heat demand, even in very cold winters. Therefore, the capacity for space heating is 

generally larger than the result of the deterministic optimization, e.g., with expected values. 

This added value can be expressed by the value of stochastic solution, which amounts to 

56 196€ (177% more than the optimal solution), when inverter heat pumps are used, and to 

3 725€ (12% more than the optimal solution), when heat pump can only run stepwise at idle, 

half or full load. 

 

The presented module-based, parallel computing approach accounts for the uncertainties 

by generating and transforming consistent ensembles of data required for the stochastic 

optimization problem. Thereby, mutual dependencies of the uncertain parameters are taken 

into account and propagated consistently through the complete model chain. Although the 

problem ends up in a large-scale two-stage stochastic program, the used parallel 

optimization process and an outer hill-climbing optimization find an optimum in few steps 

reliably. It is also not anymore an issue of the problem size, but more of the available 

computer capacity. The approach is applied for a residential quarter with 70 households 

having a PV system and heat pumps in combination with heat storages. 

The developed approach is used to support optimal decisions of investment in the long-

term and their optimal operation in the short-term. In this context, an optimization with a high 

temporal resolution is required for an optimal operation of the investments in the short-term. 

As a consequence, the approach can also be applied for the real-time optimization of the 

operating energy management of the system. The investments are fixed and a rolling time 

horizon of the stochastic program is executed for a short-term period. Therefore, the scenario 

generation has to be adapted using current weather forecast services for generating required 

weather profiles considering their probabilistic forecast error. 

Besides optimizing the storage size, other components, such as the PV capacity, can be 

optimized by the approach for further quarters. Additionally, technologies that are not yet 

integrated can be considered by adapting the optimization module. For instance, the 

economic value of an electrical storage and the optimal size could be determined. 

Furthermore, complex relationships and impacts could be analyzed as the electrical storage 

influences the decisions for the thermal storage. The conceptual framework can be also 

adapted to decentralized energy systems that have, for example, wind power or micro-

combined heat and power systems or different types of energy demand. It gives the 

possibility to easily exchange the modules that generate ensembles of the uncertain 

parameters or that transfer these ensembles into energy supply and demand profiles. 

 

We aim at further improvements in enhanced modules for energy demand profiles of the 

data transformation subsystem. In the current state, energy demand is derived by reference 

load profile approaches that cause further uncertainties. To reduce the introduced 

uncertainties, the load profiles could be extended by an additional error correction method. 

An alternative can be to supplement the standard load profiles with their statistical deviations. 

So the simulated weather profiles will be transformed into electrical and thermal demand 

profiles plus a simulated deviation based on measured data. 

The conservative, robust consideration of satisfying all model constraint is relaxed by 

accepting heat supply below the demand with a high penalty term in the objective function. If 

the abidance of this restriction and the robustness of the solution have less priority, the 

approach of Good, Karangelos, Navarro-Espinosa, and Mancarella (2015) can be used that 

values the violation of heat demand constraints as ‘price of discomfort’. 
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Risk preferences can be incorporated by adding an additional term to the objective 

function: Instead of minimizing or maximizing an expected value, a combination of 

expectation and a measure of risk-preference is optimized. 

The performance of the developed approach for SLP and SMILP can be improved by, 

e.g., a gradient decent instead of the hill climbing method and by using scenario reduction 

techniques. In case of SMILP, the approach could be extended by a subsequent stochastic 

search of the first-stage variables to ensure a globally optimal solution. 

 

 

Appendices 

 
Table 1: Nomenclature 

Parameters  

𝐴𝑁𝐹 annuity factor 
𝑐𝑜𝑠𝑡𝑖 variable capacity costs of component 𝑖 plus a fix amount 
𝐶𝑂𝑃𝜔,𝑢,𝑡 COP of the heat pump in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡 

𝑑𝜔,𝑡
ℎ𝑝,𝑚𝑎𝑥

 maximal heating power of the heat pump at time 𝑡 

𝑑ℎ𝑒,𝑚𝑎𝑥 maximal heating power of the heating element  
𝑑𝜔,𝑡

𝑒𝑒  electricity demand for electrical usage in scenario 𝜔 of building group 𝑔 at time 𝑡 
𝑑𝜔,𝑔,𝑢,𝑡 thermal demand in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡  

𝑒𝜔,𝑡
𝑝𝑣,𝑘𝑤𝑝

 supplied electrical energy per kilowatt-peak of the PV system in scenario 𝜔 at time 𝑡   

𝑒𝜔,𝑡
𝑝𝑣

 supplied electrical energy from the PV system in scenario 𝜔 at time 𝑡   

𝑓 compensation factor for not-covered heat demand  
𝑙𝑢 loss factor of heat storage for use 𝑢 
𝑚 possible power modes of the heat pump  
𝑟𝑢 ramp-up loss factor of heat pump for use 𝑢 

𝑝𝑔𝑟𝑖𝑑 price of electricity from grid 

𝑝𝑓𝑖 price of feed-in compensation 
𝜂 efficiency of the heating element  

Variables 

𝑐𝑔,𝑖 capacity of building group 𝑔 of component 𝑖 

 𝑐𝑔,𝑖=𝑃𝑉  installed PV capacity of building group 𝑔 

 𝑐𝑔,𝑖=𝐻𝑃𝑆𝐻
 number of heat pumps of building group 𝑔 for SH 

 𝑐𝑔,𝑖=𝐻𝑃𝐷𝐻𝑊
 number of heat pumps of building group 𝑔 for DHW  

 𝑐𝑔,𝑖=𝐻𝐸𝑆𝐻
 number of heating elements of building group 𝑔 for SH storage 

 𝑐𝑔,𝑖=𝐻𝐸𝐷𝐻𝑊
 number of heating elements of building group 𝑔 for DHW storage 

 𝑐𝑔,𝑖=𝑆𝑆𝐻
 maximal capacity of heat storage of building group 𝑔 for SH 

 𝑐𝑔,𝑖=𝑆𝐷𝐻𝑊
 maximal capacity of heat storage of building group 𝑔 for DHW 

𝑑𝜔,𝑔,𝑢,𝑡
ℎ𝑝

 used electricity of heat pump in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡 

𝑑𝜔,𝑔,𝑢,𝑡
ℎ𝑒  used electricity of heating element in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡 

𝑒𝜔,𝑡
𝑔𝑟𝑖𝑑

 used electricity from the grid in scenario 𝜔 at time 𝑡 

𝑒𝜔,𝑡
𝑓𝑖

 fed-in energy of the PV system in scenario 𝜔 at time 𝑡 

𝐿𝜔,𝑔,𝑢,𝑡 losses of the heat storage in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡 

𝑝𝑜𝑠𝜔,𝑔,𝑢,𝑡 pos. variable for positive shift of heat pump in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡 

𝑛𝑒𝑔𝜔,𝑔,𝑢,𝑡 pos. variable for negative shift of heat pump in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡 

𝑞𝜔,𝑔,𝑢,𝑡 not-covered heat demand in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡 

𝑠𝜔,𝑔,𝑢,𝑡 stored heat in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡 

𝑠𝑔,𝑢
𝑚𝑖𝑛 minimal heat storage level of building group 𝑔 for use 𝑢 

𝑧𝜔,𝑔,𝑢,𝑡 integer/continuous heating power level in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡 

Indices 

𝑔 building group 1, . . , 𝐺 of the quarter with 𝐺 = 4 
𝑖 component 𝑖 ∈ {𝑃𝑉, 𝐻𝑃𝑆𝐻, 𝐻𝑃𝐷𝐻𝑊, 𝐻𝐸𝑆𝐻, 𝐻𝐸𝐷𝐻𝑊, 𝑆𝑆𝐻, 𝑆𝐷𝐻𝑊} of the energy system with |𝑖| = 𝑘1 = 7 
𝑢 use 𝑢 ∈ {𝑆𝐻, 𝐷𝐻𝑊} for space heating or domestic hot water with |𝑢| = 2 
𝑡 time index 1, . . , 𝑇 indicating the time step of the year 
𝜔 scenario index 1, . . , 𝑁 
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