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Zusammenfassung

Moderne Strömungsmaschinen weisen strömungsinduzierte Vibrationen auf, deren Minderung eine große

Herausforderung für das Design der Maschine darstellt. Um diese zu meistern, können hochaufgelöste,

dreidimensionale, gekoppelte CFD/CSD-Simulationen eingesetzt werden. Kommerzielle Softwarepakete

unterliegen für den Fall, dass große Modelle berechnet oder spezielle Erweiterungen aus der Forschung im-

plementiert werden müssen, einigen Einschränkungen. Um diese Nachteile zu umgehen, wurde ein Tool

zur Fluid-Struktur-Interaktion auf Basis des in-house CFD-Codes SPARC, des quelloffenen CSD-Lösers

CalculiX sowie des eigen entworfenen Kopplungsmanagers FSIM entwickelt. Obwohl bereits existierende

Löser in der Regel nicht speziell für gekoppelte Anwendungen konzipiert wurden, ist es mit Hilfe des

in dieser Arbeit präsentierten Tools möglich, von der Funktionalität und Leistungsfähigkeit der in vie-

len Anwendungen bewährten und hochspezialisierten Löser zu profitieren. Das Tool kann darüber hinaus

flexibel um andere Anwendungsbereiche wie z.B. dem Wärmeübergang erweitern werden. Die neue En-

twicklung nutzt die jeweiligen Vorteile blockstrukturierter Netze im Bezug auf das Mehrgitterverfahren, der

transfiniten Netzanpassung, einer blockweisen Netzanpassungskontrolle sowie eines effizienten Volumen-

zu-Oberflächen-Mappings. Im Rahmen der Verifizierung wurden jeweils ein spezifischer Testfall für das

Phänomen des Flatterns sowie der erzwungenen Oszillation analysiert. Schließlich wurde eine geeignete

Formulierung für die Kompatibilität rotierender Fluid- und Strukturmodelle entwickelt und anhand eines

einfachen Beispiels das Potenzial des neuen Tools zur Untersuchung von fluidinduzierten Vibrationen in

rotierenden Systemen diskutiert.
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Abstract

Modern turbomachinery exhibit flow-induced vibrations, whose reduction has become a challenging de-

sign issue. To cope with it, high-resolution three-dimensional, coupled CFD/CSD simulations can be em-

ployed. Commercial simulation software packages show some limitations when the computation of very

large models is intended or special extensions resulting from research are required. To overcome them, a

tool for Fluid-Structure-Interaction simulation was developed on the basis of the in-house CFD code SPARC,

the open-source CSD solver CalculiX and the specially designed coupling manager FSiM. Although already

existing solvers have usually not been conceived for coupled use, the tool presented in this work makes

it possible to profit from the functionality and capability of well-proven, highly specialized solvers. The

tool is therefore flexible and can be easily expanded to account for other applications such as coupled heat

transfer. The new development exploits the advantages of block-structured meshes related to the multigrid

acceleration technique, the transfinite mesh adaption method, a block-wise mesh adaption control and an ef-

ficient volume to surface mapping. A verification has been performed for tests cases representing flutter and

forced oscillations. Finally, the appropriate formulations for the compatibility of the fluid and structural ro-

tating models have been developed, and the capabilities of the new tool for the investigation of fluid-induced

vibrations in rotating machinery are discussed on a simple test case.
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Nomenclature

Latin symbols

b Volume forces

C Constitutive tensor

C Damping coefficient

c Convective velocity

d Node displacement

e Internal energy

E Total energy, Green-Lagrange tensor

f Node force

f Frequency

F Deformation gradient tensor, exciting force

I Moment of inertia

K Stiffness coefficient

M Torque

n Surface unit normal vector

p Pressure

q Heat flow

R Gas constant

S Area vector, second Piola-Kirchhoff tensor

t Time

T Temperature

u Velocity

U Reference flow velocity

w Weighing factors for interpolation

W Fluid solution vector

x Node coordinates
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Greek symbols

δ Decay rate

η Normalized exciting frequency

γ Isentropic exponent

Γ Interface between fluid and structural domains

µ Laminar viscosity

λ Tip-speed ratio

ω Rotational speed

ω0 Natural angular frequency

Ω Oscillation angular frequency, fluid domain interior

φ Rotation angle

ρ Density

σ Stress tensor

τ Deviatoric stress tensor

θ Torsional displacement

ϑ Damping degree

ζ Phase angle

Superscripts

f Fluid

s Structural

0 Reference configuration

Abbreviations

ALE Arbitrary Lagrangian Eulerian

CAD Computer Aided Design

CFD Computational Fluid Dynamics

CSD Computational Structural Dynamics

DOF Degree of freedom

FEM Finite Element Method

FSI Fluid-Structure Interaction

FSM Institute of Fluid Machinery (Fachgebiet Strömungsmaschinen)

FVM Finite Volumes Method

IBM Immersed Boundary Method

Int. Surf. Interaction Surface

PDE Partial Differential Equation

PIV Particle Image Velocimetry
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1 Introduction

Turbomachinery is a key mechanical component of today’s society, both for power generation and han-

dling of fluids. In order to design more efficient, cheaper and reliable turbomachinery, a deeper understand-

ing of diverse physical phenomena is required. One of these are flow-induced vibrations, which have a great

influence on the life-time and stability of a turbomachine [5]. Challenging issues in this area are found in

three important types of turbomachinery: thermal, hydraulic and wind turbines.

In the field of thermal turbomachines, new aggressively lightweight blade designs are pushing current

aeroelastic analysis to its limits [6]. Large efforts are being done through research projects such as FU-

TURE (Flutter-Free Turbomachinery Blades) to improve flutter prediction tools. As regards hydraulic tur-

bomachines, new developments of sea-current turbines show that the dominating flow conditions are highly

fluctuating [7], inducing vibrations whose amplitude is not negligible in new slender blades for improved

hydraulic performance. Other difficulties include hydroelastic instabilities of flows in deforming gaps and

the lock-in phenomenon resulting in large amplitude vibrations and fatigue problems [8].

Particularly for wind power, aeroelasticity is becoming an issue, as evidenced by European research

projects such as STABCON. Indeed, the increasing use of aeroelastic tailoring in innovative blade designs,

wherein the blade twists as it bends under the action of aerodynamic loads [9], [10] together with the

increasing sizes of projected offshore turbines [11], turn the prevention of flutter a challenging task [12]. As

reference, the predicted flutter speed of a MW-sized blade is slightly greater than twice the operational speed

of the rotor, while for a smaller rotor with relatively stiff blades the predicted flutter speed is approximately

six times the operating speed [13]. Cracks due to edgewise vibrations were observed on stall-regulated

rotors as a result of negative aerodynamic damping [14], [15]. Unlike structural damping, which can be

measured quite accurately if the blade exists, aerodynamic damping cannot be included as a simple model

parameter [16].

Experimental investigations can provide many answers to these issues, but exhibit some shortcomings as

well. For example, resonant vibrations cannot be appropriately reproduced in reduced scale setups [7]. For

this reason, theoretical methods to analyse flow-induced vibrations have evolved in parallel. Depending on

the type of turbomachinery, different approaches can be applied. For example, in the case of gas turbine

blades, energy methods [17] and linearized structural dynamics equations [18] have been used, while for

wind turbines linearized fluid dynamics models [19] [20] have been preferred. Such methods provide fast

and robust means of addressing the vibrations and stability problems, but their accuracy is limited. For

example, linear structural models are too conservative and therefore hinder optimization [21], [19]; two-

dimensional models cannot reproduce some important effects in wind turbine blades as induced flow [22]

and delayed stall [23]; the fluid damping properties can only be accurately reproduced with unsteady two or

three-dimensional models [7], [8].

With the growth of computing capacity, the alternative of costly but highly detailed three-dimensional,

time-resolved, coupled simulations has regained interest. For example, May et al. [6] and Doi [24]

investigated the flutter problem in thermal turbomachinery whereas Lippold [7] and Bazilevs [11]

1



1 Introduction

applied such methods to hydraulic and wind turbines respectively. Particularly this last kind of numerical

method is described in the literature with the term Fluid-Structure Interaction (FSI).

In principle it would be possible for a research group to create a new computational tool for the spe-

cial purpose of Fluid-Structure Interaction. It is, however, often more convenient to make use of existent,

well-proven software packages, which already include many advanced modeling features. In this perspec-

tive, the Institute of Fluid Machinery is developing the Computational Fluid Dynamics (CFD) code SPARC

(Structured PArallel Research Code) [25] [26] since more than 15 years, and an extension to investigate

flow-induced vibrations eventually became relevant. An in-house development such as SPARC provides a

series of advantages in comparison with commercial simulation tools:

1. Allows the researcher to access and improve any internal routines

2. Avoids the cost of licenses, which effectively limits the number of cores and therefore the size or

resolution of the examined models

3. Bestows on the researcher the full control over acceleration and stabilization procedures, which might

complicate the separation of numerical from physical effects

These advantages can be extended to Fluid-Structure-Interaction simulations taking advantage of an ap-

propriate Computational Structural Dynamics (CSD) solver and devising a mechanism to synchronize the

time solutions and to solve the communication between the two solvers. In the present investigation, the

work of some researchers [27], [28] which have dealt with these issues is taken as basis, but the focus is

now placed on two additional aspects:

• The development of a tool for Fluid-Structure Interaction that takes advantage of the benefits of block-

structured meshes

• The application of Fluid-Structure-Interaction to rotating systems, i.e., for turbomachinery

While the use of existing solvers promises a powerful coupled simulation tool, some implementation issues

might be expected due to the fact that existent codes have not been conceived for modular use.

The objective of the present work is therefore, to design a computational tool that provides an efficient

and high-accurate solution of Fluid-Structure-Interaction phenomena for turbomachinery, taking advantage

of existent, well-proven, non-commercial solvers. In particular, the benefits of the block-structured meshes

are to be exploited along the different stages of the coupling process.

This work is outlined in the following way: Chapter 2 presents the theoretical background of flow-induced

vibrations, Computational Fluid Dynamics, Computational Structural Dynamics and the methods for Fluid-

Structure Interaction. Along the chapter, the state of the art is given to put the chosen methods in context;

Chapter 3 exposes the details of the undertaken implementation; Chapter 4 discusses the test cases used to

verify the developed tool; in Chapter 5 the capabilities of the new tool are presented with an example; in

Chapter 6, finally, conclusions are drawn and outlook is given.
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2 Theoretical Basis

2.1 Introduction

Real-life physics is complex by its nature. An engineer’s task is to identify the decisive aspects and select

the simplest mathematical models that describe those aspects accurately enough. In this chapter, the theo-

retical basis for the study of flow-induced vibrations in turbomachinery is presented. In the first section, the

behavior of oscillating systems with concentrated parameters is discussed. Then the mathematical models

for the accurate solution of three-dimensional flow and structural dynamics are exposed. The last part of the

chapter deals with the solution of the general coupled fluid-structural problem.

2.2 Physics of flow-induced vibrations

When studying flow-induced vibrations, two dangerous mechanisms can be clearly identified: aeroelastic

instabilities and forced oscillations. As a starting point, the mathematical models that rule such behaviors

are exposed, in order to acquire a first understanding with the help of simple cases.

2.2.1 Aeroelastic instabilities

Aeroelastic instabilities are the result of a highly coupled fluid-structure system and are potentially very

dangerous. The basic mechanism is illustrated for the particular case of classical flutter. In classical flutter,

a coupling between the bending and torsional degrees of freedom of a turbomachinery blade or airplane’s

wing lead to vibrations. This happens because the torsional motion is associated with a change in angle of

attack and consequently of aerodynamic forces and, simultaneously, the motion is associated with elastic

deformations of the blade structure, leading to an oscillating system. For small angles of attack, this is a

linear phenomenon since the flow surrounding the blade is attached, and it can be then adequately described

with non-viscous formulations [15]. Every airfoil has a flutter boundary at some speed; for wind turbines,

for example, the boundary is defined as the rotational speed at which the blade will flutter [10].

Figure 2.1: Single DOF flutter system. Taken from [1]
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2 Theoretical Basis

For the single degree-of-freedom (DOF) system of figure 2.1, representing a wing, the equation of motion

reads:

I θ̈ +K θ = M (2.1)

where K is the stiffness of the equivalent torsional spring representing the wing’s torsional rigidity, I is the

polar moment of inertia of the wing, θ is the torsional displacement and M is the fluid torque. In classical

flutter the motion is presumed harmonic:

θ = θ̂sin(Ω t)

M = M̂sin(Ω t)
(2.2)

where the hat means amplitude of the corresponding variable. The distinctive characteristic of an aeroe-

lastic instability is that the amplitude of the load depends on the amplitude of the displacement:

M̂ = L(U,ρ∞,b,K,Ω, ...) θ̂ (2.3)

where L is a model constant related to the aerodynamic load which is, in turn, a function of physical and

geometrical parameters such as the undisturbed fluid density ρ∞, the airfoil size b, the stiffness K, the

frequency of oscillation Ω, among others. This helps to distinguish instabilities from forced oscillations. In

the former, the applied force is coupled with the system (self-excited) and grows exponentially, while in the

latter the forces are independent of the system, leading to a linear growth. More complex forms of classical

flutter appear in real systems, for which more DOF are considered, for example for the flapping motion.

Other types of instabilities which might occur are:

Panel flutter This type of flutter takes place in thin elastic structural panels, for example in a plane’s

fuselage.

Divergence Divergence is a quasi-static condition where the blade or wing twists in response to increasing

load in a direction that further increases the load. If this condition exists on a blade, an operating

speed can be found at which the increase in loads caused by the deformation exceeds the ability of the

blade to resist the load. This is called divergence [10].

Stall flutter Also called “stall-induced vibrations”. For airplane wings, this is the non-linear extension

of classical flutter, when the amplitude of variation in the angle of attack is so high that the stall

region is reached. In the context of wind turbine blades, it is associated with a translatory movement

of a blade section rather than a rotation, as in classical flutter. Furthermore, the flap and edgewise

oscillations are usually analysed simultaneously [21]. For that reason, this kind receives also the name

of “Flap-lead/lag flutter”. For example, recent investigations [29] showed for a particular case, that

the vibrations of the blades for the backward and forward edgewise whirling modes are not equally

damped. The forward edgewise motion is coupled with a flapping motion of greater amplitude than

the corresponding for the backward edgewise motion. Therefore, the damping of the coupled flapping

motion is decisive for the apparent damping of the edgewise motion. Stall flutter is mostly found in

stall-regulated rotors [30].

Unlike classical flutter, this phenomenon is dominated by dynamic-stall, a strongly viscous case [15].

Dynamic stall occurs on a blade section when the local angle of attack rapidly increases through the
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2.2 Physics of flow-induced vibrations

static stall point [31]. The fast shift in the angle of attack is driven by the unsteady nature of wind in

form of turbulence, shifts in wind direction or magnitude, wind shear, etc. In dynamic stall, extremely

large suction peak values are found at or near the leading edge, leading to cyclic de- and reattachment,

either on part or the whole wing surface. Dynamic stall exhibits hysteresis [32], which contributes to

its non-linear character.

2.2.2 Forced oscillations

To study the resonance phenomenon, the case of forced oscillations with damping is explained. For a

linear, single DOF system like the one in figure 2.2, the equation of motion reads:

m ẍ(t)+ c ẋ(t)+ k x(t) = F(t) (2.4)

The oscillatory motion results of the solution of equation 2.4 and consists of the superposition of the

homogeneous and an inhomogeneous solution. The latter describes the transient response, while the former

describes the steady-state oscillatory motion. In the case of a harmonic exciting force, the particular solution

is also harmonic and of the same frequency as the force:

x(t) = x̂ sin(Ωt−ζ ) f or F(t) = F̂ sin(Ωt) (2.5)

where x̂ and F̂ are the amplitude of the displacement response and exciting force respectively, and ζ is

the phase angle. The response function x can be further characterized with the help of the the normalized

exciting frequency:

η =
Ω

ω0
(2.6)

the damping degree:

ϑ =
δ

ω0
(2.7)

and the amplification factor:

V1 =
x̂

x̂stat
(2.8)

where δ is the decay rate, ω0 is the natural frequency of the system and x̂stat is the static deflection. Figure 2.3

shows the variation of the amplitude and phase with respect to the aforementioned parameters. A particularly

Figure 2.2: Single DOF oscillatory system. Taken from [2].
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(a) (b)

Figure 2.3: Response amplitude and phase of the single DOF system. Taken from [2].

dangerous case, called resonance, occurs for η = 1. Under these conditions, the amplitude grows to infinity

if no damping is present.

In the case of more complex systems with many DOF, equation 2.4 can be analogously rewritten in matrix

form. From the system matrix the eigenfrequencies and deformation eigenmodes can be obtained. If the

equation of motion allows modal decoupling, which is the case for many common engineering applications,

the eigensolutions provide the basis for the modal decomposition [33]. In that method, the eigenmodes

are used as an algebraic basis to express the steady-state system deformation to an exciting harmonic load.

Theoretically, there can be as many eigensolutions as original DOF, but for most applications only the

lowest modes are relevant. In this way, a reduction of DOF is achieved. The solution of the new algebraic

system consists in obtaining the contribution of each eigenmode to the deformation. A load with a spatial

distribution that coincides with a particular eigenmode, will only trigger a deformation with that eigenmode.

Loads with a general spatial distribution will trigger many eigenmodes. The amplitude and phase of each

eigenmode behave analogously as for the 1-DOF system, figure 2.3. The response history results from

the superposition of contributions of all triggered eigenmodes. Since this method computes the forced

response, the oscillation frequency is determined by the harmonic load. Periodic but not harmonic loads can

be additionally expressed as a Fourier series and, again for linear systems, the superposition method allows

to obtain the total response by summing up the particular solutions of each term.

2.3 Flow dynamics

2.3.1 Physical model

Flow physics can be modeled with different approaches such as the Lattice Gas Method, the Panel and

Vortex Panel Methods and the solution of the Navier-Stokes equations. The model choice depends on the

required level of accuracy and detail, and the available computing resources. In this work, the flow dynamics

are solved with the compressible Navier-Stokes equation since, despite their high computational cost, they

are quite general and offer a high degree of detail. This is implemented in the in-house CFD solver SPARC.

Unlike the previous section, we deal now with models with distributed parameters, belonging to the field

of continuum mechanics. This implies the formulation of partial differential equations (PDEs) which are

to be solved in a volume. The accurate manipulation of these equations requires tensor analysis [34]. The

general solution of PDEs is done through the application of specialized numerical methods and require the
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2.3 Flow dynamics

(a) (b)

Figure 2.4: Numbering scheme of structured and unstructured meshes.

partition of the problem geometry, i.e. a “space discretization”. There are three major methods to deal

with space discretization: the Finite Differences (FD), the Finite Volumes (FV) and the Finite Element (FE)

method.

The partition of the simulation domain is known as mesh. According to Löhner et al. [35], the are

two ways how a mesh resolves the geometry:

Body-Fitted approaches Here the boundaries are defined by adapting the mesh around them, so that no

physical boundaries cross the cells. This is more accurate but demands some effort for designing the

mesh. The term “Interface Fitting” is also used in this context.

Immersed Boundary Method (IBM) The computational domain is filled with a cartesian grid and the

physical boundaries are “captured” within the mesh cells, requiring interpolation procedures [36].

These methods are alternatively known as “Embedded Approaches”.

As regards its topology, a mesh can be classified into:

Unstructured mesh Here, the cells and nodes are numbered without any prescribed pattern (figure 2.4a).

A connectivity matrix is needed to resolve the relationship between cells and nodes. A greater flex-

ibility is achieved at the cost of less regular meshes. The application of multigrid strategies is less

efficient in unstructured meshes since agglomeration algorithms are required to generate a coarser

mesh. Regarding parallelization, although a very good load balance can be achieved, the domain

partition is not straightforward and require additional data structures and mapping algorithms.

Block-structured mesh Here, the cells and nodes are numbered with the help of indexes (figure 2.4b).

The cost of generation is high since the process of adapting the block-topology to the boundaries

is difficult to automate, but more regular grids can be achieved. Regular grids are normally less

distorted and better aligned with the dominating flow direction, which improves the conditioning

of the coefficient matrix of the algebraic system of equations. Additionally, the index-based data

organization results in a structured form of the coefficient matrix. This has an important positive

impact on the computational performance:

• Particularly efficient methods can be used to solve the system of equations

7



2 Theoretical Basis

(a) H-Grid (b) C-Grid (c) O-Grid

Figure 2.5: Different types of structured meshes. Taken from [3].

• The data storage requires less memory, since no connectivity matrix is needed, and is more

contiguous, which leads to a faster memory access.

Block-structured meshes also simplify the task of dividing the domain for parallel solution. The block

boundaries provide a natural partition of the simulation domain, and the structured data arrays allow

for a direct exchange of dummy cells. Finally, geometric multigrid strategies are particularly efficient

on block-structured meshes since the generation of coarser meshes is trivial. Three types of basic grid

are typically found: C-, O- and H-Grids (figure 2.5).

In the context of Fluid-Structure Interaction, the fluid domain does not remain static but moves and

deforms. For the IBM no additional treatment is needed in the equations. For Body-Fitted approaches, a

series of methods has been developed to deal with moving meshes, among which the most notable are the

Dynamic Meshes approach [37], the Co-rotational approach [38], [39], the Space-Time formulation [40]

and the Arbitrary-Lagrangian-Eulerian (ALE) formulation [41]. The Space-Time formulation fulfills the

GCL (see section 2.3.2) automatically [42] but has the disadvantage of a significantly increased size of the

resulting equation systems [40]. In particular, when higher order accuracy in time is desired, sequential

discretization is preferred [43].

Van Loon et al. [44] and Dam et al. [45] performed a comparison between Body-Fitted and

Immerserd Boundary approaches, confirming that Body-Fitted approaches are the best methods when too

large deformations are not expected (as is the case for turbomachinery). When large deflections are present,

however, techniques using Body-Fitted grids may have to deal with distorted meshes or even be hindered

if the structural surfaces come in contact with each other [46]. The IBM, on the other hand, demand no

computational effort for the determination of a new mesh, but calculations are needed for the interpolation

procedures for each new geometry.

The ALE approach is by far the most common method used in Fluid-Structure Interaction and is also used

in this work. This method (and all Body-Fitted approaches) demands Mesh-update procedures, which can

be classified according to [47]:

Mesh regularization techniques The strategy of these procedures is to avoid changing the mesh dra-

matically, in particular, to maintain the number of cells. The existent mesh is “regularized”, that is,

adapted to new boundaries, by means of smooth displacement of its nodes. The most representative

methods are the Transfinite Mapping [48], the Delaunay graphs [7], Elastic Analogy methods [49] and
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2.3 Flow dynamics

the Elliptic Mesh movement [50]. Glück [51] remarks that algebraic methods, like the Transfinite

Mapping, have the advantage that they are robust and fast as compared with Elastic Analogy methods.

Mesh adaptation techniques These techniques rely on the partial or complete regeneration of the mesh,

by which the number of cells can increase or decrease. These methods are almost only suitable for

unstructured meshes. An interpolation of the solution to the new mesh is required.

In SPARC and along the present work, the Navier-Stokes equations are discretized in space using the FV

method on block-structured, body-fitted grids. The ALE formulation is then applied to deal with the moving

boundaries. For the derivation of the ALE equations, a spatial and a reference configuration are identified,

after Donea et al. [47]. The reference configuration, indicated with the “0” superscript, is identical

with the global coordinate system, and the spatial configuration is given by the mesh. The integral form is

needed as a starting point for a FV discretization. The compressible Navier-Stokes equations in conservative

variables can be then written as:

∂

∂ t

∣∣∣∣
x0

∫
Vt

ρ f dV +
∫

St

ρ f c ·ndS = 0

∂

∂ t

∣∣∣∣
x0

∫
Vt

ρ f udV +
∫

St

ρ f uc ·ndS =−
∫

St

pndS+
∫

St

τ ·ndS+
∫

Vt

ρ f b f dV

∂

∂ t

∣∣∣∣
x0

∫
Vt

ρ f EdV +
∫

St

ρ f E c ·ndS =−
∫

St

pu ·n+
∫

St

uτ ·ndS−
∫

St

q ·ndS

c = u−ug

(2.9)

where u is the fluid velocity, c is the convective velocity, ug is the grid velocity, ρ f is the fluid density,

p is the static pressure, τ is the deviatoric stress tensor, b f are the body forces, E is the total energy and q
is the heat flux, and Vt and St are the time-varying volume and surface of the control space. Equation 2.9

requires the following additional relationships:

qi = k
∂T
∂xi

T =
p

ρ f R

E =
u ·u

2
+ e e =

p
ρ f (γ−1)

τ = µ
∇u+∇uT

2
+λ (∇ ·u)I

(2.10)

where qi is the heat flux, k is the thermal conductivity, T is the thermodynamic temperature, R is the gas

constant, e is the internal energy, γ is the isentropic exponent, µ is the laminar viscosity and λ is a coefficient

that takes the value −2
3 for some common gases.

2.3.2 Discretization of the ALE equations

The discretization method applied to the ALE equations has an influence on the stability and accuracy of

the numerical solution. Two issues have been investigated in the literature in order to assess the quality of

discretization: the Geometric Conservation Law (GCL) and the Time-Averaging Method.

The terminology “Geometric Conservation Law” [52] is used to characterize geometrically conservative

schemes, as algorithms that preserve the entire state of a uniform flow. The importance of the GCL was
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adverted by Trulio and Trigger as early as 1961 [53]. Good reviews of this topic can be found, for

example, in Förster [54] and Donea et al. [47].

The continuous GCL can be derived by taking the ALE equation of mass balance and assuming uniform

fields of material velocity and density:

∂

∂ t

∣∣∣∣
x0

∫
Vt

dV =
∫

St

ug ·ndS (2.11)

The GCL influences the way the grid velocity ug is computed. The calculation of the grid velocity is

not solely determined by the position of the grid points in the different time stages (determined in turn, by

the mesh update algorithm), but also by the finite differences scheme used. The structural solver does only

determine the position of the interface, but the discrete velocity used by the fluid and structural solver at the

interface need not be the same, due to the different time integration schemes. Besides, the structural velocity

is not transferred as variable to the fluid field, but remains as an internal information for the structural solver.

As noted by Lesoinne et al. [42], second order finite differences rules were initially used in an

intuitive manner for the calculation of the grid velocity. For example, this Backward-Second-Order Finite

Differences (BDF2) scheme:

uwall
n+1 =

3xn+1−4xn +xn−1

2∆t
(2.12)

is used in SPARC to compute the velocity for the interaction walls. If the same scheme is applied to the

grid velocities, fictive fluxes appear due to the violation of the GCL. To overcome this problem, Ferziger

et al. [55] and Lai et al. [56] proposed methods where the volume swept by a finite-volume

cell-face is introduced in the GCL to compute the grid velocity:

un+1
g,c =

3δV n+1
c −δV n

c

2∆t Ac
c = f aces o f f inite volume cell (2.13)

where δVc is the volume swept by a cell face c and Ac is the area of face c. This scheme ensures the

fulfillment of the Geometry Conservation Law and is the approach implemented in SPARC.

Despite the successful implementations, some controversy still exists regarding the necessity and suffi-

ciency of the GCL to guarantee stability [43], [47], [57].

The second issue is about the Time-Averaging Procedure, as designated by Farhat et al. [58]. In

the ALE equations 2.9, the first term requires the evaluation of a flux on a time dependent volume. The other

terms, conversely, contain surface and volume integrals which do not change because they do not contain

time derivatives, and are therefore determined at a certain time point, in which S and V can be looked upon

as constant [51]. The evaluation of the first term depends on what time discretization scheme is used, i.e. on

the Discrete Geometric Conservation Laws (DGCL).

To address this problem, a sequence of carefully chosen mesh configurations must be identified and

evaluated, from where the name originates. The design of an ALE time-integrator that preserves the order

of accuracy of its fixed-grid counterpart and simultaneously fulfills the DGCL is no trivial matter [57]. For

incompressible flows, an alternative is proposed by Förster et al. [54], by applying the Continuos

GCL before the discretization, thus avoiding the need of time-averaging procedures. In this way, equation

2.12 can be applied without violating the GCL and preserving the order of accuracy of the fixed-grid variant.
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2.3 Flow dynamics

A last word must be said as regards the boundary conditions in the ALE formulation. For the calculation

of prescribed velocities at the interaction surface, a scheme consistent with the overall time integration must

be used, as given for SPARC by equation 2.12. This is independent of the abovementioned considerations

for the GCL.

2.3.3 Numerical solution

In SPARC, a highly efficient solution of steady-state problems is achieved by the combination of the two

schemes: a Runge-Kutta-based iterative solver, after Jameson et al. [59], and the multigrid strategy,

particularly efficient on block-structured meshes. In SPARC, the “Full Multigrid” scheme has been imple-

mented [60], [61]. The basic concept is to use coarser versions of the computational grid to make the high

wave-length components of the error converge faster. For this purpose, a so-called “V-cycle” is performed,

which consists of “restriction” and “prolongation” operations, as shown with the double lines in figure 2.6.

n2, n3 and n4 indicate the number of V-cycles in each multigrid level. n1 is not indicated since for initializa-

tion in the coarsest level no V-cycle is possible. The restriction transfers the solution and residuals of a fine

grid to a coarser grid, where a computation is carried out. This last solution is used to correct the one on the

finer grid in the prolongation step. This basic scheme can be combined in several different ways to achieve

an acceleration factor between 2 and 10 in comparison with a single-grid computation. An additional ad-

vantage of the Full Multigrid scheme is that computations can be started on the coarsest grid, MGL=1 in

our example. In that case, an interpolation is performed (dashed lines) from coarse to fine grid to provide an

initial solution, since the V-cycle starts on a fine grid. Due to the fact that in a block-structured mesh every

coarsening step produces an 8-times smaller grid, very fast computations can be performed in the beginning

of a simulation, where a high resolution is still not necessary. The fast computations also allow to easily

check the model assumptions in a short time.

Figure 2.6: The Full Multigrid scheme.

These efficient methods can be extended to unsteady solutions by means of a dual-time stepping scheme

[62] with second-order accuracy in time.
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2.3.4 Rotating models

There are basically two ways to handle fluid rotating models:

Rotating mesh A transformation is applied to the coordinates of all mesh points to account for the rotation

of the model. Rotating accelerations can be easily taken into account. All forces resulting from the

rotation are naturally computed.

Rotating frame of reference The mesh coordinates remain constant but a rotating coordinate system is

used. Due to this, the body forces due to the rotation must be added as extra source terms. This is

usually applied to steady-state computations, for which constant rotating speeds are normally used.

When stationary and rotating domains are simulated together, a series of techniques are to be applied

to connect the two domains. For example, in SPARC a sliding interface [63] can be applied to unsteady

computations. Liu et al. [64] compared some common techniques used for industrial applications

showing the different results they produce.

2.4 Structural dynamics

2.4.1 Nonlinear dynamic analysis

The formulations presented here correspond to standard FE methods implemented in the structural solvers

used in this work, ADINA and CalculiX. In a fully-coupled Fluid-Structure-Interaction problem, it is in

general considered that the change in geometry of the structure cannot be neglected. An appropriate for-

mulation to account for large displacements is then required. The corresponding kinematics in Lagrangian

formulation are derived with the help of two configurations, the reference configuration and the material

configuration. The first refers to some known state of the structure (usually the initial) and the second to any

other state. The position of every particle of the structure is described with the vectors x0 and x, as seen in

figure 2.7. The displacement vector is therefore defined as the difference between the position of a particle

in the two configurations: d = x−x0. The deformation gradient tensor can then be readily defined as:

F =
∂x
∂x0

(2.14)

From the deformation gradient, the more convenient Green-Lagrange deformation tensor can be con-

structed:

E =
1
2
(FT ·F− I)

E =
1
2
(∇d+∇dT)+

1
2

∇d ·∇dT
(2.15)

The Green-Lagrange tensor is a nonlinear deformation measure which reduces to the well-known in-

finitesimal deformation measure when the displacement gradient tends to zero:

lim
∇d→0

=
1
2
(∇d+∇dT) =: ε (2.16)

A formulation that uses the Green-Lagrange strain measure is known as a “large displacements” formu-

lation whereas one which uses the infinitesimal deformation measure is known as a “small displacements”
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Figure 2.7: Reference and material configurations.

formulation. The necessity of a large displacements formulation depends on how fast the rigidity of the

structure changes with the deformation. For beam type structures, for example, the increase of rigidity with

deflection is slow. For a flat panel, conversely, a slight deflection produces an enormous increase in the

rigidity. Therefore, a trade-off between computational cost and accuracy is to be made for each particular

case.

Other types of nonlinearities include inelastic material behaviour due to high-strains, contact and fracture,

which are seldom considered in a Fluid-Structure-Interaction problem.

For nonlinear dynamics, the equations ruling the structural deformation correspond to Newton´s second

law of motion, which are naturally posed on a Lagrangian frame:

D
Dt

(
ρs

D d0)

Dt

)
−∇ ·σs = ρsbs in Ω (2.17)

where d0 are the displacements, ρs is the structural density, σs is the Cauchy stress tensor and bs is the

body force.

This equation is posed in the material configuration and, therefore, contains physically meaningful, mea-

surable quantities. For the numerical solution it is, however, more convenient to rewrite it in the reference

configuration:

ρ
0
s d̈0−∇0 · (F ·S) = ρ

0
s bs in Ω

0 (2.18)

where the introduction of the second Piola-Kirchhoff stress tensor S allows for the use of the St.Venant-

Kirchhoff material model:

S = C : E (2.19)

where C is the constitutive tensor which depends on the material.
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Equation 2.18 is discretized in CalculiX according to the Finite Element Method on unstructured meshes

and integrated in time with the alpha Hilber-Hughes-Taylor method. The solution of the system of equa-

tions is carried out by means of the sparse direct solver SPOOLES [65]. Further CalculiX implementation

details can be read in the book by Dhont [66]. For a deeper discussion on the mathematical formulation

the reader is referred to specialized texts in the Finite-Element Method and continuum mechanics such as

Ibrahimbegovic [67] and Dvorkin [34].

2.4.2 Rotating models

Similarly as described for CFD, there are also two ways to handle rotating models and, in particular, the

rotor of a turbomachine:

Rotating mesh This is only possible if large displacements are accounted for in the formulation. All

forces resulting from the rotation are then naturally computed. This includes the Coriolis force which

is usually neglected in the rotating frame of reference approach. There are two possibilities:

Constant rotation speed (prescribed rotation): the rotational DOFs of the nodes on the rota-

tion axis are prescribed with a time-dependent function, normally a linear function with constant

slope (constant velocity). The translatory DOFs, conversely, are fixed.

Free rotor: The translatory DOFs of the nodes on the rotation axis are fixed as in the previous case.

The rotational DOFs, however, are left free. The additional resisting (generator) or driving

(motor) torque from the shaft must be provided through external calculations. In this way the

effect of the attached electrical machine and other mechanical components is modeled and the

velocity of the rotor is determined by the balance between fluid, dynamic, and shaft forces.

Rotating Frame of Reference In this case, the shaft is modeled with zero-displacement boundary con-

ditions on some chosen nodes that represent the shaft. The body forces due to a constant rotating

velocity are included in the source term bs in equation 2.18. These forces can be of two types: the

centrifugal force and the coriolis force. The first contributes with a stiffening effect and adds a con-

siderable load on the rotor. The contribution of the coriolis forces is normally not taken into account

since for rigid rotors the relative velocity is negligible. The term due to rotating accelerations i.e., due

to the change of rotating velocity, is, in general, not included in the formulations for a rotating frame

of reference.

2.5 Fluid-Structure Interaction

The term Fluid-Structure Interaction refers to a very broad spectrum of physical phenomena where an

object is in contact with some sort of flow, and both the object and the flow are examined together. Besides

turbomachinery, reliable FSI solvers are demanded in areas as diverse as civil engineering [51], fabric-like

structures such as windsocks, parachutes and sails [68], hemodynamics [69] or noise control in flow ducts

[70]. The mutual influence that takes place between the flow and the object might be of very different kind,

thus defining different fields of research. The solution methods applied to each of them might therefore be

also very different. So, for example, in a rigid water pump the vibrations might be solely determined by

the pressure loads, the deformation of the vanes having no influence on the flow. In contrast, in medical

applications a strong coupling exists between the vein tissues and the blood flow through it. For some
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applications, zero- or one-dimensional models might be accurate enough, while for others expensive three-

dimensional simulations are required. This section describes only methods that match the formulations for

the solution of flow and structural dynamics presented previously. The focus is placed on the additional

conditions that result from the interaction, and how the resulting coupled system of equations can be solved.

To gain more insight, the section begins with a classification of the different approaches that can be found

in the literature.

2.5.1 Classification of FSI approaches

The work of Felippa et al. [71] provides a good starting point to characterize the existing FSI

approaches, with the identification of the four components that are found in any computational FSI approach:

1. Fluid solver

2. Structural solver

3. Time stepping approach

4. Interface treatment.

For the remaining discussion, the term part-solver is introduced to refer to either the fluid or structural

simulation software packages. The first two components have already been presented in the previous sec-

tions. The other two can be used to classify most of the existing FSI approaches:

1. Time-stepping approach:
An important classification, introduced by Park et al. [72], is in terms of Monolithic or Par-

titioned approaches. This differentiation has been traditionally understood related to the way the

algebraic system of equations is solved: as a whole, or fluid, structure and interface separately. More

currently, Felippa et al. [71] presents it as a means of understanding how the time is advanced.

a) Monolithic approaches:
In these approaches, a single spatial and time discretization method is applied to both the fluid

and structural fields, leading to a single coupled system of equations, which is also solved simul-

taneously. Since a single time-integration scheme is applied to the whole system of equations,

a certain degree of inefficiency is implicit. Monolithic approaches have a number of draw-

backs like loss of software modularity, limitations with respect to the application of different

sophisticated solvers in the different fields, and challenges with respect to the problem size and

conditioning of the overall system matrix [73]. Some implementation examples of the Mono-

lithic approach can be found in the works of Hron et al. [74], Dunne [75], the interesting

platform by Heil [76] and the commercial software package ADINA [77].

b) Partitioned approaches:
Here, specific discretization methods are applied separately to the fluid and structural fields,

leading to independent systems of equations that are also solved separately. This can in practice

be achieved by completely independent software packages. The two solutions are to be coupled

through appropriate interaction boundary conditions and synchronized by appropriate coupling

schemes. Partitioned approaches exhibit, according to Farhat et al. [78], the following

advantages:
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• Reduce the computational complexity per time step

• Simplify explicit/implicit treatment

• Different time-integration schemes and time steps (sub-cycling) can be used for each of the

fields, leading to a possibly more optimal solution

• Ease computational load balancing (better work load distribution among CPUs)

• Achieve software modularity, making replacement relatively simple

• Enable the use of specialized and well tested pre-existent software packages for the indi-

vidual fields

Some disadvantages can also be found in the literature, such as a more difficult treatment of the

interface [74] and convergence problems for strongly-coupled problems.

For a comparison between Monolithic and Partitioned approaches in terms of computational cost the

reader is referred to the work of Heil et al. [79].

2. Interface treatment:

If the meshes at both sides of the interface match, then the transfer of variables from one field to the

other is a relatively trivial task. In most realistic applications, however, the fluid and structure meshes

are incompatible along the fluid/structure interface, either because they have been designed by differ-

ent analysts or because the fluid and structure problems have different resolution requirements [80].

For example, in aeroelastic computations, the fluid grid is typically finer than the structure mesh [81].

Furthermore, matching meshes might be impossible for some combination of discretization meth-

ods (in the partitioned approach) or mesh types. For example, if hexahedral finite-volume cells are

used for the fluid mesh and parabolic hexahedral elements are used for the structural mesh, an inter-

face treatment is needed even if both meshes might look identical. Actually, parabolic elements have

midside-nodes which are not automatically matched with the finite-volume mesh nodes. Additionally,

the finite-volume cells deform in a bilinear manner, while the finite-element hexahedra can assume a

curvature.

The Monolithic approach does not automatically exclude the necessity of interface treatment either,

since fluid and structural meshes need not be matching.

Other classification criteria

Another classification can be done in terms of two- or three-field formulation. FSI usually comprises the

solution of two fields of mechanics, namely, the fluid and the structure. Lesoinne and Farhat [82]

solved the FSI problem on unstructured meshes and used an elastic analogy method to deal with the fluid

grid adaption. Therefore, they considered the addition of this third set of partial differential equations to

lead to a three-field formulation.

FSI methods can be further classified according to the direction of coupling. The most simple way to

couple the fluid and structural mechanics fields is to transfer only the loads calculated with a CFD solver

into a CSD solver. In this case, the fluid problem receives no influence of the structural deformation, saving

the interpolation of displacements and the adaption of the fluid mesh. This is known as one-way coupling and

is widely used for turbomachinery simulations, for example, in the work of Filsinger et al. [83].
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This is accurate enough as long as the structure is stiff, but rigorously, this does not represent a coupling

in the sense of the general definition coined by Zienkiewicz et al. [84], according to which, “no

field can be solved independent of the other”. This last definition is, therefore, often referred to as two-way

coupling.

2.5.2 Partitioned approaches

Due to the already exposed advantages, this work follows the partitioned approach. In order to solve the

Fluid-Structure-Interaction problem accordingly, the non-linear systems of algebraic equations presented in

the previous sections are to be coupled so as to fulfill the interaction conditions. The different alternatives

are referred to as partitioning types. Once the interaction conditions have been applied, the second step is

the solution of the resulting coupled nonlinear system of equations. These two steps are detailed along the

section.

Partitioning type

The predominant partitioning type in FSI solvers and also used in the present work is the Dirichlet-

Neumann partitioning [85]. Other possibilities are described in the works of Von Scheven [49] and Mok

[86].

In a Dirichlet-Neumann partitioning, a Dirichlet boundary condition is imposed to the fluid field at the

interaction boundary by means of prescribed displacement and velocity, and a Neumann boundary condition

is applied to the structural field by means of interaction forces [49]. Consequently, the interaction condition

is the continuity of displacements and surface tractions [74], whereby the slip or no-slip condition might

apply. For viscous flows (no-slip condition) [80] the continuity of surface tractions across the fluid-structure

interface is expressed as:

σs ·n = τ ·n−pn (2.20)

and the continuity of displacements:

ds|Γ = d f |Γ (2.21)

where ds|Γ and d f |Γ are the displacements of the fluid and structural meshes at the interface respectively.

These kinematic conditions also imply the respective time derivatives.

The accuracy in the fulfillment of the above equations depends not only on the interface treatment, (see

section 2.5.5), but also on the time integration schemes described in the next two sections. An accurate

solution near the interface is crucial for the overall exactness and performance of the coupling. Indeed, the

order of accuracy of the whole partitioned method is determined by the order of the method with lower

accuracy [43]. Consequently, a poor handling of the interaction conditions might degrade the spatial and

time order of accuracy of the part-solvers.

Solution of the nonlinear system

Despite being solved separately, it is convenient to think of the whole coupled system as a system of non-

linear algebraic equations, where not only the part-solvers are included but also the algorithms for interface

treatment. The approaches for the solution of this nonlinear system are usually divided into loosely coupled

or strongly coupled. In both cases, an implicit or explicit time integration scheme can be used, either in
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the fluid or structural solver. Whether the overall coupled behaviour is described as explicit or implicit,

however, also depends on the type of coupling:

• Loosely coupled
In loosely coupled approaches, also called “simple staggered”, “weak coupled” or “explicit” [81],

only one data exchange takes place per time step [87], making them particularly efficient [49].

• Strongly coupled schemes
These are also called “iterative staggered” or “implicit”. In these methods, the data is exchanged

between solvers iteratively until the coupling conditions are fulfilled.

The existing approaches are presented in the next two sections.

2.5.3 Loosely coupled schemes

Despite their efficiency, some authors [86] argue that loosely coupled schemes exhibit an inherent insta-

bility, which cannot be avoided by small time steps (actually increases). Other authors [78], on the contrary,

sustain that the instability is not inherent to the loosely coupled approach but rather results due to inappro-

priate time integrators.

The reported instability appears as an error in the transferred fluid forces which act as an extra mass on

the structural interface degrees-of-freedom. Since the instability highly depends on the ratio between fluid

and structural density ρ f /ρs it has been called “artificial added mass effect”. As explained by Idelsohn

[88], in fluid mechanics, added mass or virtual mass is the inertia added to a system because an accelerating

or decelerating body must move some volume of surrounding fluid, as it moves through it, since the object

and fluid cannot occupy the same physical space simultaneously. The instability typically appears in incom-

pressible fluids whose density is close to the structure density, such as in biomechanics applications. Some

analyses show that the instability is caused by too large eigenvalues of the amplification operator of the

explicit time step [89], [90]. Therefore, for some authors, the instability effectively prevent stable computa-

tions by means of staggered algorithms, and an iterative coupling is necessary [73]. Other authors [90] point

out that when the added-mass effect is important, even the iterative process in the strongly coupled scheme

may be non-convergent, and a monolithic scheme might be necessary to avoid numerical instabilities. For

typical turbomachinery applications such as aeroelasticity, the added-mass effect is not a problem, since the

density ratio is low enough [88].

Depending on whether the part-solvers are executed sequentially or simultaneously, loosely coupled ap-

proaches can be divided into serial or parallel:

Serial

A number of algorithms have been proposed:

Conventional Sequential Staggered (CSS) A classical algorithm is the Conventional Sequential Stag-

gered, proposed by Farhat et al. [91], which has merely first order accuracy in time even if a

second order accuracy scheme is used for the fluid and structural solvers [92]. The original algorithm,

also implemented in the present development, is depicted in figure 2.8, where X are the coordinates of

the fluid mesh, W is the fluid solution vector (a combination of pressure, velocity, density and energy,
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that depends on the particular form used of the Navier-Stokes equations), F are the forces determined

from the fluid solution, u is the structural displacement vector, and the subscripts indicate the time

step. An alternative of the same algorithm is used by Massjung et al. [93], where the structure

is solved first. The CSS introduces a one time-step lag between the fluid and structure solution and

therefore, the displacement continuity is not fulfilled. This can lead, for example, to a misprediction

of panel flutter period as high as 24% [93] if the time-step size is too large. In this algorithm, the

time-step size is the same for the fluid and structural solver. The determination of the appropriate

time-step size depends on the numerical properties of each solver and physics of the particular prob-

lem. Depending on the case, either the fluid or structural problem might dominate the time-integration

resolution.

Figure 2.8: The Conventional Sequential Staggered (CSS) procedure.

Improved Serial Staggered (ISS) The previous method is synchronous, since both the fluid and the

structural solver begin and end at the same time point. Farhat et al. [94] proposed an asyn-

chronous method, with which continuity in displacement and velocity can be achieved. According

to these authors, the allowed time step for this algorithm is five times larger than for the CSS. In

connection with incompressible fluids it shows, however, poor stability behaviour [86].

Generalized Sequential Staggered (GSS) The most recent advance in loosely coupled algorithms is

represented by the Generalized Sequential Staggered (GSS) algorithm [78]. This advanced method is

second-order in time and must be implemented together with advanced ALE time integration schemes.

Parallel

Conventional Parallel Staggered (CPS) The basic scheme of this algorithm is shown in figure 2.9.

Farhat et al.[94] report that the CPS requires relatively small time-steps in order to be numer-

ically stable and sufficiently accurate. A variant of CPS is also reported by Von Scheven [49].

Improved Parallel Staggered (IPS) Steindorf [81] and Farhat et al. [94] present similar im-

proved versions of the parallel staggered algorithm. Despite performing better than the CPS, it is

reported to be 1.6 times slower than the ISS [94].

Further improvements Further improvements can be achieved with the use of a prediction step, as

proposed for example by Massjung et al. [93], Farhat et al. [94] and Piperno et al.

[95]. The prediction is usually and most effectively done on the loads.
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Figure 2.9: The Conventional Parallel Staggered (CPS) procedure.

Another possibility is the so called “subcycling”. Different time characteristics often exist in the fluid

and structural fields. This leads to the need of different time-step sizes for each time-integration scheme.

The fluid field needs usually smaller time steps [96]. Despite the advantage of allowing larger coupling

time-steps, some measures are required to avoid instabilities [92], [96]. Subcycling is usually applied when

explicit time integration is used for the fluid solver, due to the small time steps needed.

2.5.4 Strongly coupled schemes

These methods are based on the iterative data exchange between solvers until the coupling conditions are

fulfilled, which improves the stability and energy conservation properties of these algorithms [97]. There

exists a great variety of methods and no generally accepted classification can be found in the literature. A

thorough work was done by Zhang and Hisada [98], who derived several algorithms using the mono-

lithic approach as a starting point. The following is a short review of the most important alternatives. Since

each author uses a different platform, a direct performance comparison is difficult.

Semi-implicit The use of this method is reported in the works of Grandmont [99], Badia and Codina

[100] and Fernández [101]. Grandmont [99] shows that, for a simplified, one-dimensional case,

this method is consistent and stable and consequently convergent.

Full-implicit Le Tallec and Mani [102, 97] present a full-implicit iterative staggered algorithm and

perform an analysis on the energy conservation and convergence properties.

Predictor-corrector Examples of this kind are the works of Mouro [103], Schäfer et al. [104] and

Lippold [7]. Schäfer et al. [104] show that, for a given case, an acceleration factor of more

than 5 can be achieved.

Block iterative methods Von Scheven [49] classified several methods into Block-iterative or Newton-

Krylow. The simplest block-iterative method is a block-Gauss-Seidel iteration scheme [105] which is

easy to implement since it can be obtained by simply adding outer iterations to the CSS. An nonlinear

improvement (NLBGS) has been proposed by Barcelos and Maute [106].

Newton-Krylow methods Although simple, coupling strategies based on fixed-point or Gauss-Seidel it-

erations are known to converge poorly or fail to converge for some specific configurations. Newton-

Krylow, also called “block-newton methods” [107] provide a radical improvement. An “exact” New-

ton strategy requires the calculation of all coupling terms (cross-derivatives) between the different
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fields. The corresponding expressions are often difficult to derive, difficult to implement and costly

to evaluate. For this reason, “inexact block-Newton methods” have been developed, which are based

on the approximation or neglect of selected coupling terms [108]. Von Scheven [49] provides a

thorough description of the different alternatives. Examples of applications can also be found in the

works of Tezduyar et al. [109], [110], Steindorf [81] and Vierendeels[111]

An additional important component of strongly coupled schemes are the “underrelaxation methods”. This

is a common technique applied to iterative schemes in order to improve stability, in contrast to “overrelax-

ation methods” whose objective is to improve convergence rate. In a Dirichlet-Neumann partitioning, the

underrelaxation can be applied either to the displacements, or to the loads (or both), or to the change of these

variables [7]. A widely extended method is the “Aitken iterations”, successfully applied to FSI by Mok [86].

Another important aspect is an appropriate “convergence criterion”, which is needed whenever an iterative

scheme is used. Some alternatives can be found in the works of Lippold [7] and Von Scheven [49].

2.5.5 Interface treatment

When non-matching grids are used, some sort of mechanism for the exchange of data between meshes is

to be devised. This takes place in two directions:

• From fluid mesh to structure mesh for the load transfer

• From structure mesh to fluid mesh for the displacement transfer

For more accuracy, the condition that the virtual works are to be conserved through the interface can be

applied [71], [112]. This leads to a direct dependency of the two data exchange procedures. The lack of

conservation properties does not, however, automatically lead to a worse performance [80], but is rather

only necessary when strong discontinuities are present in the solution, such as pressure shocks [113].

The classification proposed by Felippa [71], based on the presence or absence of additional interface

variables as well as their type, is adopted here to introduce some important existing interface treatment

methods:

Primal

There are no additional interface variables. The prototype for this group is the Direct Force-Motion

Transfer (DFMT), which corresponds to the most intuitive approach. These methods can be additionally

classified as local or global, depending on whether only adjacent or all degrees-of-freedom take part in the

interaction. Two stages are usually needed, namely, a neighbour-search stage and an interpolation stage. In

the former, groups of cells or nodes at each side of the interface are formed with a certain criterion. Some

alternatives have been proposed by Löhner [114], Maman and Farhat [115] and Ahrem et al.

[112]. It is worth noting that different neighbour-search procedures are usually needed for the load and

displacement transfer.

The second stage makes use of the previously formed groups to perform the interpolation itself. The

interpolation stage also comprises two different procedures for the load and displacement transfer. Some

authors [51], [116] divide the interpolation schemes depending on whether the interpolated quantities are
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conservative and non-conservative. Conservative quantities are, for example, the heat flux through an el-

ement area and the force exerted on an element area. The integral of such quantities must be preserved

during interpolation. Non-conservative interpolated quantities are functions of the spatial coordinates and

time, such as temperature, pressure and displacement.

There are two classical primal interpolation schemes:

Consistent interpolation This procedure can be better understood if a source and a target domain are

identified first. For example, if pressure is being transferred, the target can be a Gauss integration

point on a structural element face, and the source would be the projection of that point on the fluid

cell face. If the “natural” interpolation functions for the pressure in the fluid mesh are used to get

the value of pressure in the source point, this is said to be “consistent” [80], [113]. This is the

approach followed in the present work for the transfer of pressure loads. Conversely, to interpolate

the displacements, the consistent choice would be the structural interpolation functions (FEM form

functions). The bilinear interpolation described by Glück [51] can be understood as a particular case

of the consistent interpolation. This method has been adopted in the present work for the interpolation

of displacements.

Conservative interpolation This method was developed by Farhat et al. [80] in order to ensure

the conservation of forces and virtual works through the interface. Despite its conservation proper-

ties, Bardossy [117] points out that for certain mesh combinations this method might lead to an

unphysical distribution of forces, since a force is not assigned to every structural node.

Dual

In the second group, we find as prototype the Mortar methods [118], which resort to Lagrange multipliers.

The Mortar method has the advantage, against the consistent interpolation scheme, that the global error of

disretization of the coupled problem does not become worse than the local discretization error in the part

problems [119], [80]. A disadvantage of the Mortar method is that at each time step an expensive linear

system of equations is to be solved [81].

2.5.6 Other considerations

Several authors [49],[120],[121] have devoted efforts to extend the advantages of the multigrid method

(usually applied only to the fluid solver) to the whole coupled solution. The matter is non-trivial since the

multigrid strategies in both solvers might be very different. Additionally, the multigrid method is not very

widespread among structural solvers.

The conservation of energy plays an important role in the development of efficient partitioned meth-

ods, given its close relationship to the stability of numerical methods [96], [97]. Different authors [78],

[122] have investigated the energy properties of coupling algorithms. For example, Farhat et al.

[78] showed that monolithic and strongly coupled schemes conserve energy transfer at the fluid-structure

interface boundary, whereas loosely-coupled algorithms introduce a certain amount of artificial energy.

Lastly, appropriate modelling assumptions are required for coupled problems, which might differ from

those applied to the single field case [73]. A typical example is an appropriate initilization of the fluid field

before the interaction starts, to avoid undesirable vibrations in the structure.
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3.1 Introduction

In the previous chapter, the corresponding formulations of the underlying physics for a Fluid-Structure-

Interaction problem have been presented. This chapter is devoted to exposing the approach followed for

the implementation of the computational tool for the analysis of Fluid-Structure-Interaction problems. As

already stated, a partitioned approach is followed to take advantage of well-proven part-solvers. For such an

approach to work, an efficient software-wise solution must be found. This solution provides the framework

for the development of the numerical methods that are needed at the different stages of an FSI computation.

3.1.1 Alternatives for the coupling of existing codes

In this section, the focus is placed on the issue of linking two simulation software packages in an efficient

and flexible way. This problem goes beyond the particular application of FSI. It is indeed, an issue for

many research groups that seek to extend the functionality of their codes. Different strategies have been

considered:

• Use a scripting language such as python or bash to call the executable files making all communication

through text files. Here, it is assumed that the solvers are compiled independently. This approach has

been used at FSM for an optimization program, since it is fast to implement, but has the disadvantage

of a sequential workflow and a slow communication.

• Embed the simplest code into the more complex one. This strategy had been followed at FSM for

previous developments in FSI [4], [123] and for spray modeling. This approach has the advantage of

an easy debugging, since a single executable is compiled, but has a series of drawbacks: works only

for strictly sequential workflow, makes the handling of dissimilar data types cumbersome, complicates

the compilation and the task of updating the third party source code after each new release, and does

not facilitate a modular handling. The code structure asymmetry between the CSD and CFD solvers

hinders flexible management of loops, needed for implementation of advanced features.

• Develop an interface using the idea of an “Algorithmic Skeleton”, as proposed by Jürgens [124].

This alternative requires much more insight in the code structure and appears impractical for existing

solvers.

• Use a coupling manager based upon the Message-Passing Interface [125], [126] to account for the

communication between programs. This alternative provides a great degree of modularity, a fast

communication and a relatively straightforward implementation, since little intervention in the codes

is required. The only disadvantage is that it results in a more complex software solution, for example,

for debugging. Some research groups [7], [51] have resorted to commercial alternatives, such as

the de-facto standard software package MpCCI [116], developed by the Fraunhofer Institute SCAI.
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This however, prevents the developer from accessing and modifying important parts, such as the

interpolation between meshes. To avoid that, some research groups have developed their own tools,

such as CoMA [27], preCICE [28] and MATCHER [115].

Although the last approach requires some additional software provisions, it was judged to be very advan-

tageous, leading to the creation of FSiM, the Fluid-Structure-Interaction Simulation Manager. This frame-

work provides great advantages for the long-run code development at FSM, since other kind of couplings

can be easily accommodated, such as fluid-structure heat transfer.

3.1.2 Structural solver

The choice of an appropriate structural solver is a delicate issue, since a wrong choice might lead to

cumbersome data process or insufficient capabilities of the resulting coupled tool. For this reason, a variety

of codes have been examined in order to asses how adequate they are for the proposed objective. The

software packages Calculix, OOFEM, FEAP and Code Aster have been assessed, considering the following

aspects:

Modeling features Features required for FSI simulations in turbomachinery include large-displacements

formulation, explicit/implicit nonlinear dynamics, anisotropic and composite material modeling, cen-

trifugal forces for the rotating reference frame approach, and structural (Rayleigh) damping.

Parallelization Parallel-solution support is desired, mainly for large models.

Pre- and post-processing The straightforward use of professional programs for model definition and

solution evaluation is an important complement of any simulation tool.

Element library Different element types are necessary to fit particular models. A large element library

provides greater flexibility.

Analysis types Apart from the main time-dependent simulation, a static analysis is useful for a fast de-

termination of the stationary deflection and a modal analysis is desired to determine the vibration

frequencies and modes.

Programming language This is important because MPI only supports Fortran, C and C++.

Place of development For possible cooperations, an accessible development group is preferred.

Cost and availability An open-source and cost-free program matches our development strategy better.

References A solver that has already been used in previous publications provides better chances of a

successful implementation.

After a careful assessment, the open-source software package CalculiX was found to be the best candi-

date for the coupling with SPARC and FSiM. One of the greatest advantages CalculiX provides is an input

format compatible with the commercial program ABAQUS® [127], ensuring a user-friendly model gener-

ation. Additionally, CalculiX has been used successfully in a similar development [7]. The lack of the

structural damping feature was deemed uncritical, since that is a rather advanced modeling feature that can

be neglected in many practical cases, for example in hydraulic turbomachinery [7]. The source code and

documentation can be found in the official website [128].
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3.2 General approach in FSiM

Once the members of the coupled solution are defined, a general approach to handle the different data

sets is to be devised. Indeed, each part-solver makes use of very different data structures which must be

made compatible in some way. To get an overview of how the data is organized, table 3.1 summarizes the

terminology used for both types of meshes.

Table 3.1: Nomenclature for fluid and structural meshes.

Figure 3.1: Example case. Left: Geometry. Right: block topology and structural mesh.

An example is introduced now to help visualize the procedures explained in this chapter. Figure 3.1

shows a flexible obstacle fixed on the ground and subjected to a flow parallel to it. The right figure shows a

reduced computational domain to analyse this case, where the fluid block topology and the structural mesh

are displayed. It must be taken into account, that CalculiX only allows for three-dimensional models, and

that the two-dimensional SPARC models retain a three-dimensional data structure. For this reason, even

when two-dimensional test cases are simulated, an internal three-dimensional logic exists.

One possibility to match the data sets at both sides of the fluid-structure interface is to generate a pair of

unstructured, finite-element-ordered interface meshes, as done in MpCCI and CoMA. In this case, data is

handled within the coupling interface exclusively in an unstructured manner. While this is a more general

approach, it has the disadvantage that an extra mapping is needed between the interface and the original

meshes. Since this mapping is to be repeated in two directions (from and to FSiM) for every coupling

iteration, its efficiency is relevant. An alternative, more straightforward, approach is to duplicate the data

structures of SPARC and CalculiX within FSiM. In this case, a hybrid unstructured/block-structured data

structure is created within FSiM. Care must be taken not to duplicate unnecessary information. For that

reason, the CFD mesh is not entirely transferred to FSiM, but rather only the block-sides that participate

25



3 Development of the coupling tool

in the interaction. The mapping from volume to surface mesh and back is particularly efficient for block-

structured meshes, since the surface mesh has an analogous structure, as can be inferred from figure 3.2.

For the fluid blocks data, convenient structures ensure contiguous data storage for cache optimization. The

structural mesh is, conversely, entirely transferred to FSiM. This is not inefficient for the CSD meshes,

because they are much smaller, and it has the advantage that FSiM can manipulate the whole structural

model for scaling, rotating or to produce output. The CalculiX nomenclature was adopted in the FSiM data

structures to account for the different kinds of elements.

Figure 3.2: Mapping from volume to surface structured mesh.

Once the meshes are appropriately allocated in the coupling manager, provisions must be made to indicate

to both solvers which part of the mesh bounds with the interaction surface. It is in general convenient to

divide the interaction surfaces into sections, where a pair of interaction surfaces is formed from the fluid and

structural side. These are called Interaction Surface Pairs. This has the advantage that the neighbour-search

algorithm does not have to do an all-to-all search, and discontinuities in the geometry can be handled better.

The fluid input files are generated using ANSYS ® ICEM-CFD TM Release 14.0 [129] where a special

routine is embedded to generate the SPARC input files. For FSI, a wall-velocity boundary condition must be

applied to the block-sides on the interaction surface. Apart from the type of boundary condition, a family

number can be defined in such a way that several block-sides can be grouped into a single interaction-

boundary-condition family. Each family defines the fluid member of an Interaction Surface Pair, as depicted

in figure 3.3. This must be matched from the structural side with a group of element-faces, in such a way that

the edges of those elements enclose a similar region, i.e. a structural element-face must belong to one and

only one Interaction Surface Pair. In the example, the Interaction Surface Pair 1 consists of two block-sides

and the element-faces depicted on the area 1 in the figure. For the generation of the structural mesh, the use

of ABAQUS is preferred. The most general way of defining an interaction surface in the ABAQUS format is

to create the so-called Node Sets, with all the nodes that lie on an Interaction Surface Pair. This information

is later used to apply a boundary condition for the structural solver. This can be of two types: a pressure

distributed load applied to the element-faces, or a concentrated force load on the nodes. This is elaborated

upon in section 3.5.
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3.2 General approach in FSiM

Figure 3.3: Surface interaction pairs. Left: In fluid. Right: In structure

Figure 3.4: Face-numbering convention for hexahedron elements.

The output of the preprocessors ICEM-CFD and ABAQUS, provides only basic information to identify

the Fluid-Structure-Interaction boundary condition. Therefore, before the neighbour search is done at the

beginning of the computation, FSiM performs a series of sorting routines.

First of all, the Node Sets are converted into a list of elements and face numbers. The face numbering

follows a convention that defines a precise sequence of element nodes, as shown exemplarily for hexahedron

elements in figure 3.4. When the nodes that define a face are later needed, the information is obtained

through an array with the face numbering convention and the connectivity matrix.

Secondly, to optimize the neighbour search, an array is created where, for each structural node in each

Interaction Surface Pair, the adjacent elements are stored. This initial sorting reduces the computational

effort compared to an all-to-all search.

3.2.1 Multigrid

In the SPARC fluid solver the use of multigrid 1 allows the user to initialize the computation with a coarse

mesh and gradually switch to finer meshes. In this way, long and uninteresting transients can be quickly

1The discussed feature does not mean the use of restriction and prolongation operation for the coupling computations, as described
in section 2.3.3.
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Figure 3.5: Sequence of an FSI computation with the CSS procedure.

skipped. For an FSI computation, this is a desirable feature, but two additional issues must be dealt with

when the mesh is refined:

• The displacements must be interpolated to allocate values in the new nodes. This happens in an

analogous way as for the solution variables.

• The neighbour search must be done again for every finer mesh. Since the neighbour relations remain

unchanged along the computation, this can be done either in the original or in the current (deformed)

configuration. In FSiM this is done in the original configuration.

3.3 Implementation in MPI

So far, the software framework and the general strategy of the coupling tool have been presented. This

section exposes the most important details related to the implementation in MPI. In coincidence with the

partitioned approach, it is in general desirable to handle both part-solvers’ code as much as possible as a

black-box. Nevertheless, depending on how modularly the source code is structured, the modification of

some core routines might be unavoidable. In general, the more efficient a program is intended, the deeper

the modifications have to be. Figure 3.5 shows the implementation in FSiM of the CSS algorithm presented

in section 2.5.3. As shown there, unlike CalculiX, SPARC runs a single time along the whole computation,

avoiding recurrent reads of input files and memory allocation. This spawning scheme is not fully consistent

with the black-box paradigm and a deeper intervention in the SPARC code was needed. This, however, was

not problematic since enough experience was available. Fortunately, since structural models have usually

relatively few cells, it is not critical to spawn CalculiX several times.

The modular approach should be exploited also as regards the input files. It would be senseless to have

the coupling manager read in the input files again; that task belongs to each part-solver. Rather, the arrays

where the required data (mainly mesh and boundary conditions) is stored are identified in the part-solvers

and transferred to the manager.
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Some other tasks, however, which might be thought to be part of the FSI and therefore to correspond to

the coupling manager, do actually belong naturally to one of the part-solvers. This is the case of the mesh

adaption, which must be dealt with within the fluid solver, for two reasons:

• The parallelization of the fluid solver implies the distribution of all data along the computing cluster

nodes memory. To gather all geometric data of the fluid mesh, process it centrally in the manager

and redistribute it again, would cost extra communication and would increase memory demand on the

manager due to the duplicated data.

• The mesh update procedure is highly dependent on the numerical method of the particular fluid solver.

An heterogeneous framework resulted: on the one hand, SPARC and FSiM are programmed in FORTRAN

whereas CalculiX has been developed in C. On the other hand, SPARC has a pure MPI parallelization while

CalculiX takes advantage of the multithreaded version of the SPOOLES solver.

Once FSiM is running, SPARC is spawned first with the desired number of processes, returning a handle

to the new communicator between FSiM and SPARC. The communicator is an abstract construct of MPI

to group up processes for the communication. For the use in network clusters, an info object needs to be

created to account for the machine files:

CALL MPI_INFO_CREATE(info, ierror)

CALL MPI_INFO_SET(info,’hostfile’,’./sparc_mf’,ierror)

CALL MPI_COMM_SPAWN(sparc.bin,MPI_ARGV_NULL,4, &

info,0,MPI_COMM_SELF,intercomm,array_of_errcodes,ierror)

Within SPARC, a pure MPI parallelization has been developed throughout the years, using a collection of

blocking, non-blocking and collective communication. A master-worker approach had been followed, i.e.,

the master process is in charge of all input and output and therefore distributes and collects data from all other

processes. It is then natural to have only the master communicate with FSiM. In the SPARC code, right after

the MPI_INIT line MPI_COMM_GET_PARENT is executed to retrieve the communicator between SPARC

and FSiM. Since SPARC might also work independent from FSiM, it is practical to inquire the value of the

communicator. A value MPI_COMM_NULL marks standalone operation.

The blocking synchronous send is adopted for all communication between SPARC and FSiM, for safety

and simplicity reasons. For a parallel staggered algorithm, non-blocking communication might be of con-

venience.

Finally, before MPI_FINALIZE the communicator must be freed from both sides using MPI_COMM_DIS-

CONNECT.

In CalculiX the same strategy is followed, but an additional control variable is passed from FSiM to

let CalculiX know if mesh and boundary conditions, or the displacement of the current time are to be

transferred, as shown in figure 3.5. Although CalculiX introduces a multithread section due to the SPOOLES

equation solver, there is no need for the special command MPI_INIT_THREAD. This is because no MPI

commands take place during the execution of SPOOLES.

Despite the successful implementation, some issues result from the fact that existing solvers have not

been designed to be coupled with other programs. One aspect is related to the text output. With the above

described MPI implementation, it is not possible to control the output appropriately and the messages of

SPARC, FSiM and CalculiX are printed in a non-deterministic way. The other aspect is the error handling.
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3 Development of the coupling tool

Since this is solved in each code in a different, non-centralized way, it is not possible to inform the other

two programs if one of them has encountered an error and stops. A more detailed discussion of this issues

has been done by the author in a separate publication [130].

3.4 Mesh adaption

Along the Fluid-Structure-Interaction process, the fluid mesh must be continuously adapted to the defor-

mation of the structure. Block-structured meshes present a series of advantages in this regard:

• Fast and robust algebraic algorithms can be used. The basic algorithm used for the present work is

the Transfinite Mapping, already introduced in section 2.3.1

• The blocks allow to easily define different zones to reach a good control over the mesh deformation

• Some blocks can be completely excluded from the mesh deformation, saving computational effort

Although it is intended to obtain modified coordinates for the mesh, the whole interpolation is done on the

displacements. This is more convenient, for example, to combine FSI with other mechanisms that modify

the mesh, such as rotations. The kinematic continuity, eq. 2.21, provides the displacements of the fluid mesh

at the interface d f |Γ. With the Transfinite Mapping, the displacements in the interior nodes of the fluid mesh

d f |Ω are computed thus obtaining:

d f = d f |Γ
⋃

d f |Ω (3.1)

where d f are the displacements at every fluid node. To obtain the updated mesh coordinates at an arbitrary

time tn, the displacements at time tn are added to the original mesh coordinates at t0:

tnx f = t0x f + tnd f (3.2)

Since almost any fluid mesh consists of more than one block, a strategy is needed to determine how the

deformation of the structure is propagated from the interaction wall to the blocks away from it, in the correct

sequence. The first step is to sort out the blocks that participate in the mesh adaption. For this purpose, the

concept of block generations, introduced by Bardossy [4], is adopted, as depicted in figure 3.6. The different

block generations are defined in the following way:

First generation: blocks facing the interaction surface

Second generation: blocks that do not belong to the first generation, and have a face connection to a first

generation block

Third generation: blocks that belong neither to the first nor to the second generation, and have a face

connection to a second generation block

Fourth generation: blocks that belong neither to the first nor to the second and third generation, and have

a face connection to a third generation block

The remaining blocks do not participate in the mesh adaption. This approach has proven very flexible

and can accommodate many different topologies. Three variants have been developed to control the mesh

deformation:
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3.4 Mesh adaption

• For simple cases, like the one in figure 3.7, it is sufficient that the deformation of the structure be

“absorbed” by the block layer next to the interaction surface. In this example, the first block layer is

designed broad enough to avoid a too high cell-volume change.

• In some topologies, it might be convenient that the first block layer be thin to resolve only the bound-

ary layer. The thickness of this block layer is then not enough to accommodate the deformation of the

structure. To solve this problem, Bardossy [4] introduced the possibility that every block-side op-

posite to the interaction surface move parallel to the latter, thus preventing the thin blocks to collapse,

as can be appreciated in figure 3.8. The deformation of the interface is then absorbed by the second

block layer.

• For complex three-dimensional block topologies as the ones required by turbomachinery, enhanced

mesh control is necessary. A turbomachine’s blade is typically meshed with the help of a “C-Grid”.

Figure 3.9 illustrates this with the example of a wind turbine blade. The blade profile is resolved with

a “C-Grid” and two “O-Grids” around it, an “H-Grid” filling the rest of the computational domain,

see figure 3.9a. Since only the yellow blocks (Figure 3.9b) would move with the blade, the trailing

edge part of the “C-Grid” (red line in Figure 3.9c) would be quickly distorted. The solution is to

force the yellow-striped blocks to belong to the first generation and the creation of a fictive interaction

surface, as shown in figure 3.9c. This block-side receives the displacement of the node in the trailing

edge. Additionally, the block-sides between the second and third “O-Grids” (blue line in figure 3.9c)

are assigned the displacement of the interaction surface with a relaxation factor. In this way a proper

behaviour in the mesh adaption is achieved, as can be appreciated in figure 3.10.

The Transfinite Mapping algorithm needs information of one dimension lower than the geometrical object

to be modified. To modify the coordinates of a block-edge, two points are needed; to modify a block-side,

the four bounding edges are needed; to modify a block, the six block-sides are required. For this reason,

the global mesh adaption algorithm works in a sequential way, first adapting edges, then block-sides, and

then the block interior coordinates. This also requires sorting out the block-edges and block-sides that

Figure 3.6: Block generations. 1st gen.: yellow; 2nd gen.: green; 3rd gen.: blue; 4th gen.: red
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Figure 3.7: Simple mesh deformation treatment. Only the first block layer absorbs the interface movement.

Figure 3.8: Improved mesh deformation treatment. Boundary layer resolution is preserved.

do not need to be adapted. A certain degree of parallelization is easily given, due to the fact that for

each block of a certain generation, only information of the previous generation is needed, allowing all

other blocks of the current generation to be updated in parallel. Between one generation and the next, the

modified coordinates are transferred taking advantage of the dummy cells. This is done using a simultaneous

global communication that exchanges the content of the dummy cells for every block. A synchronization

happens then naturally, preventing any process from beginning with the next generation before the other

processes have finished. Figure 3.11 illustrates the mesh update mechanism. Initially, only the displacements

d f |Γ at the interface are available (a). The necessary edges of the first generation blocks are then updated

(b), followed by the sides and interior nodes (c). The displacements on the corresponding block-sides are

transferred from first to second generation blocks (d). The necessary edges of the second generation blocks

are updated (e), followed by the sides and interior nodes (f). The process continues with the third and fourth

generation blocks in the same manner.

3.5 Interface treatment

As introduced in section 2.5.5, the interface treatment can be divided into a neighbour-search and an in-

terpolation stage. These are most conveniently placed in the coupling manager, since data from both solvers

is needed for that purpose. Additionally, with the condition that virtual works are to be conserved, both

directions of data exchange are not independent and must be dealt with centrally. There is a paralleliza-

tion potential in these interpolation algorithms which is, however, only of secondary importance since the

computational cost is relatively small.
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3.5 Interface treatment

(a) Overview of H-Grid. (b) Detail of O-Grid with block generations.

(c) Detail of block-boundaries motion.

Figure 3.9: Mesh deformation treatment for a complex blade topology

33



3 Development of the coupling tool

(a) Undeformed blade. Overview. (b) Undeformed blade. Detail.

(c) Deformed blade. Overview. (d) Deformed blade. Detail.

Figure 3.10: Mesh deformation treatment for a wind turbine blade.

3.5.1 Neighbour search

The neighbour search needs to be done only once at the beginning of the computation because, unlike

for example a contact problem in structural mechanics, in FSI there is no relative motion between meshes.

Because of this, the efficiency of this stage is not a crucial issue. The corresponding weight factors for

the later interpolation are most conveniently obtained at this stage, since all necessary arrays are already

present. For the calculation of the weight factors two geometries have been considered: triangular faces and

quadrilateral faces.

In the present work, a local neighbour-search initially developed by Bardossy [117] is applied. De-

pending on how the interpolation is performed, different data sets relating the fluid and structural meshes

are required. This gives rise to two search methods: one based on the fluid nodes, and one based on the

structural element faces.
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3.5 Interface treatment

(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Propagation of interface displacements across the block structure.
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Fluid-node-based search

For the displacement interpolation (see section 3.5.2) the same matching information is needed as for

the conservative force interpolation. Figure 3.13a illustrates the algorithm. For each node in the CFD

mesh, a structural element is to be found. For this purpose, a previously created data array is used, which

contains the adjacent elements to every structural node in the corresponding Interaction Surface Pair. Then,

the CFD node is projected onto the structural element-face using the element-face normal, and the weight

factors ws
i for the structural nodes i are obtained using linear or bilinear FE form functions, for triangular or

quadrilateral element-faces respectively, as shown is figure 3.13b. The resulting association can be clearly

visualized by lines linking the fluid nodes and the structural element-face midpoint, as shown in figure 3.15.

Structural-face-midpoint-based search

For the pressure interpolation (see section 3.5.2), the approach is to obtain a pressure to be applied to the

midpoint of a structural element-face. The weight factors w f
j for the fluid nodes j are obtained using bilinear

quadrilateral FE form functions, as shown in figure 3.14. The resulting association can be clearly visualized

by lines linking the structural element-face midpoint and the corresponding fluid cell-face midpoint, as

shown in figure 3.16.

Figure 3.12: Algorithm to find a point in a triangle. Taken from [4]

Geometrical search

A central component of the neighbour-search is the algorithm to determine if a point is contained in a

triangle, based on determinant comparison. The algorithm can be better understood with help of figure 3.12,

and consists of the following steps:

1. Determine the mid-side points of the triangle. Choose one of them.

2. Create r1 and r2 from the mid-side point to the other two, and to point c.

3. Calculate ∆1 = r1× r2, which defines the area of a parallelogram.

4. Calculate ∆2 = r1× c.

5. If ∆2 <= ∆1, the point lies at most h = |r2| ·sin(ϕ) away from r1 . Otherwise, c is outside the triangle.
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3.5 Interface treatment

(a) (b)

Figure 3.13: Fluid-node-based neighbour search.

6. If the point is not outside, the same procedure must be repeated with the other mid-points.

The procedure has proven very robust and can be easily extended to cope with any geometry by triangu-

lation of the mesh.

3.5.2 Interpolation

Once the mesh objects (nodes and cell- and element-faces) that participate in the interpolation have been

matched, the interpolation of variables from one mesh to the other can be dealt with. Three kinds of inter-

polation are implemented in FSiM:

• Conservative force interpolation

• Pressure interpolation

• Displacement interpolation
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Figure 3.14: Structural-face-midpoint-based neighbour search

Conservative force interpolation

The first kind of load interpolation which is implemented in FSiM is the Conservative Force Interpolation

introduced in section 2.5.5, whose algorithm is shown in figure 3.17. The first step, done within SPARC,

is to determine the fluid stress tensor σm on every cell-face midpoint on the interaction surface. For that

purpose, the static pressure is obtained by averaging the pressure in the last cell and the dummy cell, and

the shear stresses by computing the appropriate velocity gradients. Then, the force in the midpoint of the

cell-face is obtained as:

f f
m = σm ·Sm (3.3)

where Sm is the area vector of the fluid cell-face. This force is then distributed into the four fluid corner

nodes of the cell as:

f f
c =

f f
m

4
(3.4)

Finally, the forces in the structural nodes are computed using the already determined weight factors:

fs
i = ws

i f f
c (3.5)

where i=[1 to number of face nodes].
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Pressure interpolation

The conservative force interpolation presents some problems when the fluid cells are larger than the

structural elements, as happens when coarser meshes are used with the multigrid method. In that case, not

every structural element would receive forces, leading to an unphysical load distribution. For that reason, a

pressure interpolation was developed, shown in figure 3.18.

For simplicity, a constant pressure distribution acting on the whole structural element-face is assumed.

The stress tensor in the element-face midpoint is used as a representative value for the face. This can be

interpreted as using a single Gauss point for the integration of the load distribution on the FE face. More

Gauss points could be used to achieve a higher accuracy. The process then begins by projecting the structural

face midpoint onto the fluid mesh. The fluid stress tensor in the projected point P is interpolated from the

stress tensors in the surrounding fluid nodes as:

σp = ∑
j

w f
j σ j (3.6)

With the representative constant tensor σp and the area vector of the structural element-face Sp, the

resulting force acting on the element-face is calculated as:

fs
m = σp ·Sp (3.7)

Due to the large-displacements assumption, the change in geometry cannot, in general, be neglected. This

affects the calculation of the area, because of what the current and not the original coordinates must be used

for this.

The last step is to compute the finite element consistent forces in the face nodes. An accurate computation

takes into account the distortion of the element face. For simplicity, it is assumed that the element faces are

undistorted. In that case the nodal forces result [33]:

(a) Overview (b) Detail

Figure 3.15: Neighbour associations. Linking lines between fluid nodes and structural element-face mid-point.
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For triangular linear elements:

fs
m/3 for all nodes

For quadrilateral linear elements:

fs
m/4 for all nodes

For triangular parabolic elements:

0 for corner nodes

fs
m/3 for mid-side nodes

For quadrilateral parabolic elements:

−fs
m/12 for corner nodes

fs
m/3 for mid-side nodes

3.5.3 Displacement interpolation

Lastly, the algorithm for displacement interpolation is presented in figure 3.19. The displacement d f of

one fluid node is interpolated from the displacements of the neighbouring structural nodes ds
i by means of

the weighing factors ws
i :

d f = ∑
i

ws
i ds

i (3.8)

3.6 Rotating models

The simulation of Fluid-Structure Interaction on rotating models comprises several techniques that must

be combined in a physically meaningful way. Depending on the degree of accuracy of the intended investi-

gations, simple or complex models can be applied. Table 3.2 summarizes the physics that can be resolved

(a) Overview (b) Detail

Figure 3.16: Structural-face-midpoint-based neighbour search. Linking lines between structural element-face mid-
point and fluid cell-face midpoint.
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Figure 3.17: Conservative force interpolation.

Figure 3.18: Pressure interpolation.
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Figure 3.19: Displacement interpolation.

Table 3.2: Resolved physics for the different model complexity.
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3.6 Rotating models

with the different models applicable to Fluid-Structure Interaction on rotating machinery. With the exception

of rotational accelerations, all of these modeling capabilities are supported by the present implementation.

Once the part-solvers have been equipped with the appropriate formulations to handle rotations, it must be

ensured that the motion of both fields is made compatible. Two kinds of rotating models can be considered

for turbomachinery:

Constant rotating velocity In most investigations of a turbomachine, the motor or generator can be as-

sumed to impose a constant rotating velocity. This information is given separately to each part-solver,

no synchronization being needed between them. For an FSI model, this requires little additional im-

plementations in the fluid solver in comparison with an uncoupled CFD computation. This is the

approach used in the present work.

Free rotation A more accurate analysis requires an FSI simulation, whereby the balance between the fluid

loads, the structural elasticity and inertia, and the effect of external forces (to account for the motor or

generator) results in an instantaneous acceleration. Meaningful transient phenomena can be captured

in this way. However, some technique must be devised in order to communicate the (non-constant)

rotation to the fluid domain, resulting in a more complex implementation.

For the loads, the compatibility means to ensure they are applied to the structure with the correct direction.

For the displacements, the compatibility means that for the adaption of the fluid mesh, the displacements

are to be transferred without the rotational component. This is because in SPARC, the rotation is handled

separate from the FSI displacements.

As explained in previous sections there are two ways to handle rotating models: a rotating mesh or a

rotating frame of reference. These two alternatives can be combined resulting in four different cases:

Fluid: Rotating Frame of Reference / Structure: Rotating Frame of Reference (RFR/RFR)
This is the easiest variant. The only changes needed for FSI with respect to a non-rotating system is

the addition of the rotational velocity to the velocity due to the FSI deformation of the interactions

walls.

Fluid: Rotating Mesh / Structure: Rotating Frame of Reference (RM/RFR)
Here the structural deformations must be “rotated forward” to match the fluid configuration. Either

the fluid stress tensor or the structural nodal forces must be transformed back to the non-rotated (but

deformed) position.

Fluid: Rotating Frame of Reference / Structure: Rotating Mesh (RFR/RM)
In this case, the structure has to be “rotated back” to match the fluid configuration. Either the fluid

stress tensor or the structural nodal forces must be transformed to the rotated (and deformed) position.

Fluid: Rotating Mesh / Structure: Rotating Mesh (RM/RM)
The rotation has to be subtracted from the structural displacements for the purpose of fluid mesh

adaption and is added again to obtain the rotated and deformed fluid mesh.

For a better understanding, the case RM/RFR is elaborated upon with the example of a 2D-rotor, figure

3.20. For simplicity, only one section of the rotor is considered in figure 3.21. The structural displacements,

figure 3.21b, are used to update the fluid mesh (c). Within SPARC, the deformed mesh is rotated (d) by
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Figure 3.20: Block topology and meshes for a rotor

(a) (b) (c)

(d) (e) (f)

Figure 3.21: Sequence to handle rotating models
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means of applying a rotation transformation to the deformed fluid mesh coordinates (assuming a rotation

around the z-axis):

tnx f
rot = R · tnx f (3.9)

where R =

cosφ −sinφ 0

sinφ cosφ 0

0 0 1

 and φ = ω t.

Then, one time step is solved and the forces are calculated (e). Finally, the forces are rotated back in

FSiM to be applied to the structure (f), using a similar transformation:

tnfs = R · tnfs,rot (3.10)

with φ =−ω t.

The rotation of the stress tensor could also be used, but is more costly than the rotation of the force vector.
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3.6.1 Measurement of moments

Torsional vibrations that affect mechanical components such as bearings and gears play a major role in the

life-time of a turbomachine. From the standpoint of an FSI simulation, it is possible to predict the torsional

loads with a high degree of accuracy. In a torsional system, the relevant load for the study of vibrations

is the moment in the shaft of the turbomachine MR, which the drive has to provide, as shown in figure

3.22a. In the drive, all mechanical elements and the motor or generator are found. For most applications,

the drive can be considered to prescribe a constant rotating speed to the shaft of the turbomachine. The

vibration displacements d are then measured with respect to a reference coordinate system η and ξ that

rotates with the same constant velocity as the drive. The shaft moment is a result of the FSI process and

therefore, the relationship between the exciting moment MF and the reaction moment MR on the shaft is

not self-evident. A simplified torsional model with a single DOF, presented in figure 3.22b, can help to

understand the behaviour of the real system. There, the physical rotor and shaft are modeled as a rigid part,

a torsional spring and a damping element, so that the only remaining DOF is the torsional displacement θ .

A moment balance can then be made:

MD +MF +MS = θ̈ I (3.11)

where

MD =−θ̇C

MS =−θK
(3.12)

and C and K are the damping and stiffness coefficients respectively.

The fluid moment MF is obtained by integration of the fluid loads within the fluid solver, or by integration

of the loads applied to the structure, in the coupling manager. The difference between the two lies on the

(a) (b)

Figure 3.22: Torsional system for a turbomachine. a) Real system. b) Simplified equivalent system.
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accuracy of the interface treatment.

In a simulation, the reaction moment MR is directly obtained from integration of the reaction forces in the

fixed DOF of the structural model, but as seen in figure 3.22b, it can also be related to the spring moment

and therefore to the torsional displacement θ :

MR = MS =−θK (3.13)

Therefore, in general, the reaction moment is a result not only of the acting fluid moment but also of the

rotor dynamics, which determine the instantaneous value of θ . In the particular case of a rigid rotor, the

terms MD and MS can be disregarded, and equations 3.11 and 3.13 then result in:

MR =−MF (3.14)

That means, when rotor dynamics are neglected the shaft reaction can be directly obtained from the fluid

solver output.

All of these effects can be captured by an unsteady, one-way FSI, since the structural dynamics is solved.

A two-way FSI additionally accounts for the variations of MF produced by the deformation of the rotor,

as the fluid domain geometry is updated. This becomes important only when the deformation of the rotor

is significant or when even small geometrical changes alter the flow significantly. This might happen, for

example, when small gaps are present or when self-exciting configurations result, as in flutter.
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4 Verification and performance of FSiM

4.1 Alternatives for benchmarking

In the course of development of a simulation tool, there are two instances to check for errors:

1. Verification: Verification means to ensure that the tool works as intended, that is to say, that there are

no implementation errors.

2. Validation: In this second stage, it must be ensured that the used models do not depart too much from

physics, in other words, to test the prediction capability of the tool.

A true validation can only be done by contrasting the implementation results against experimental data.

Particularly in the context of Fluid-Structure Interaction, the design of an appropriate test case is challenging.

From the numerical standpoint, two-dimensional test cases are desired but two-dimensional measurements

are generally very difficult. Side-wall effects in experiments, such as those conducted by Schäfer et

al. [121] and Gomez [131], are hardly numerically reproducible. Also, care must be taken as where the

boundary conditions can be applied, and that material properties and behavior be accurately reproduced.

Furthermore, for the particular case of a compressible flow solver like SPARC, too low velocities, below

Ma = 0.01 (~4 m/s for air at standard conditions), are problematic. On this account, most cases conceived

for incompressible flow are not applicable.

A single experimental test case was found in the literature, by Cerqueira et al. [132], dealing with

compressible flows. Thereby, a wave propagation in a shock-tube with a flexible obstacle is reproduced with

an FSI simulation. Although the experimental set-up meets the numerical requirements, it was not deemed

sufficiently adequate for a verification. In the first place, the publication provides limited information to

reproduce the case. Additionally, although the pressure in a reference point and some qualitative comparison

of the shock-wave propagation show good agreement, the computed deflection of the obstacle panel departs

considerably from the measurements. Finally, the short duration of the experiment does not allow to test a

code implementation deeply enough.

An attempt was made at our institute by Mattern et al. [133] to produce appropriate experimental

data, taking advantage of the PIV (Particle Image Velocimetry) technology available at FSM. In that case,

the difficulties for validation are related with the modeling of the fixities between the plexiglas parts, and

the cost of a three-dimensional computation required to appropriately reproduce the flow.

Due to the abovementioned obstacles, it was opted for a verification against numerical test cases. In this

procedure, there is an implicit trust that the tool against which the comparison is done does not contain

implementation errors itself. In spite of its limitations, this form of verification has the advantage that un-

modeled physics can be excluded and a more accurate agreement between the two solutions can be expected.

In this way, implementation errors become more obvious.

This strategy has been indeed followed in previous works of Fluid-Structure Interaction. The different

authors choose test cases that match the particular requirements of their implementations. For that reason,
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4 Verification and performance of FSiM

(a) Panel properties. (b) Air properties.

Table 4.1: Properties for the panel flutter problem.

many of the test cases found in the literature [43], [49], [51], [134] are also not suitable for the verification

of the present development, either because they deal with very low speed flow, they require costly three-

dimensional simulations, require a strongly coupled algorithm, or the structure exhibits only rigid body

motion, which is not representative of a general flexible structure.

Under the previous considerations, the following two non-rotating test cases were chosen. Each is con-

ceived to test the implemented tool in one of the two dominating mechanisms of fluid-induced vibrations

introduced in section 2.2, namely, aeroelastic instabilities and forced oscillations.

Due to the nature of SPARC’s compressible formulation, the time-integration resolution is dominated by

the fluid solution. As explained in section 2.5.3, in the CSS algorithm the same time-step size is used for

both the fluid and structural solver. In all simulations performed, the time-step size was set so as to reach a

convergence of the fluid solver within around 20 inner iterations.

4.2 Panel flutter problem

The panel flutter problem is a known case from the aeronautic industry, which can be addressed with a

simple two-dimensional geometry. It is a high-speed test case and, therefore, well suited for a compressible

flow solver. Figure 4.1 shows the geometry of the problem, resembling a fuselage side panel.

The flexible aluminum panel is pivoted at its ends and its properties are displayed in table 4.1a. One side

of the panel is surrounded by air at aeronautic normal conditions at sea level, whose properties are detailed

in table 4.1b. A constant pressure P0 acts on the other side, so that the forces are initially balanced. A

transonic, non-viscous flow of Ma = 0.95, with a velocity U , exists parallel to the panel, which is initially at

rest. If a small perturbation is applied, a traveling wave appears in the panel after a short transient. A shock

wave travels with the panel as shown in figure 4.4, indicating a close correlation between the two phenomena

that can only be resolved with a two-way FSI. The fluid domain is discretized with approximately 40,000

Figure 4.1: Geometry of the panel flutter test case.
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4.2 Panel flutter problem

Figure 4.2: Data extraction location for panel deformation.

Table 4.2: Computational time fraction for each coupling component.

cells and extends 20 times the chord length in all three directions, namely, after, before and above the

panel, to minimize the influence of wave reflection on the boundaries. The structure is resolved with 160

8-node solid bilinear elements. Two layers of elements were used in the thickness to resolve the bending

mode better. The deflection is taken at three points along the panel, at one-quarter, one-half and three-

quarters of the chord, as displayed in figure 4.2. The simulation with FSiM is compared with the reference

computation by Massjung et al. [93], resulting in a 3% shorter period and 5% smaller amplitude. For

a better comparison, the FSiM results are stretched 3% in time, as shown in figure 4.3, from where it can

be concluded that both simulations are in very good agreement. Massjung et al. in turn, compared

their own results with those of Bendiksen et al.[135], reporting a 6.4% longer period. Our results,

therefore, lie between those of the cited sources.

In order to reach steady-state oscillations several periods need to be resolved, which demands 30,000

time steps of 2.5e-5 s. That computation takes around 30 hours on 4 Intel i5 @ 3.4 GHz CPUs, 2 for

SPARC, 1 for FSiM and 1 for CalculiX. Table 4.2 shows the fraction of the total computation time needed

for SPARC, CalculiX, FSiM and for the communication between FSiM and the two solvers. The time needed

for MPI communication within SPARC is already included in its time fraction. The time analysis shows that

overhead due to the Fluid-Structure Interaction is non-negligible but still remains in a tolerable level. Larger

models tend to deliver better time ratios since the computing time grows with the model volume whereas

the interaction operations grow with the model surface.

Finally, a comment is made regarding the use of this test case to identify implementation errors. During

the code development, an error was introduced, due to which, the velocity at the wall was computed two

times greater. This had produced a period deviation of around 25%. Since, as explained at the beginning

of this chapter, a higher accuracy levels could be expected from the comparison with a numerical test case,
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4 Verification and performance of FSiM

Figure 4.3: Comparison of results against the reference data.

that large deviation pointed out clearly a bug in the code.

4.3 Flexible obstacle

The second case is conceived to test FSiM in forced oscillations and to compare the performance with a

commercial software package. The commercial solver ADINA® [77] has been used to generate the reference

data. Unlike the previous case, viscous effects and a relatively low-Mach number are to be considered.

The problem consists of a flexible obstacle in a half-open flow, whereby the tip deflection is examined.

The corresponding geometry is presented in figure 4.5 whereas the properties of the beam and flow are

summarized in Table 4.3. These properties have been chosen under following considerations:

1. A low-Mach number flow is desired to be able to compare against a common incompressible flow

solver.

2. A laminar flow is convenient to exclude the influence of turbulence models in the comparison.

3. The deformation of the beam must be large enough to influence the flow but must be kept small

enough to prevent excessive distortion of the mesh.

4. The density of the flow, ruling the acting forces, and the elasticity module, ruling the reacting forces,

are to be chosen so as to fulfill the previous point.

5. The tapered form of the beam minimizes the contribution of higher order modes in the deflection.
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4.3 Flexible obstacle

(a) t=0.29875 (b) t=0.2900

(c) t=0.2925 (d) t=0.2950

(e) t=0.2975 (f) t=0.3000

(g) t=0.3025 (h) t=0.3050

Figure 4.4: Mach number distribution, showing a traveling pressure shock.
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Figure 4.5: Geometry of the flexible obstacle test case.

Table 4.3: Properties of the beam obstacle.

6. The slip-wall boundary condition before the obstacle allows to prescribe a block velocity profile. In

this way it is easier to ensure that both solvers handle the inflow boundary condition in a similar

manner.

7. Due to the impossibility of introducing structural damping in CalculiX, a fictive, high viscosity fluid

is required to reach a steady-state amplitude in a reasonable computing time.

8. The frequency of the excitation must be chosen so as to achieve a moderate amplitude with the avail-

able damping, taking into account the characteristic of the amplification function, figure 2.3.

The two simulations were done using exactly the same geometry, mesh, boundary conditions and physical

parameters. The only difference is that the incompressible formulation of ADINA was selected whereas

SPARC uses a compressible formulation. Due to the large number of possible combinations, the selection

of parameters was a very time consuming task. The boundaries are located 24 h above, 12 h before and 30

h after the obstacle, as can be appreciated in figure 4.6. Due to the high viscosity used, the domain should

be chosen even larger, leading to a larger computing time. This is, however, not a problem for a numerical

comparison, as long as the domain is equal for both solvers.

For the discretization of the obstacle, 80 8-node solid bilinear elements were used, whereas the fluid field

was resolved with 20,000 finite-volume cells. Due to the strong diffusive fluxes a very small time step of

0.3125e-5 s was required.

A reference pressure is used for the calculation of the structural forces, which is equal to the static pressure

at the outlet. To minimize reflections at the boundaries, the fluid domain is initialized with a steady-state

solution of the pure CFD-model. The FSI computation begins with the beam at rest, and a pulsating block
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4.3 Flexible obstacle

(a) Overview (b) Detail

Figure 4.6: Simulation domain.

Figure 4.7: Comparison of tip deflection.

velocity profile is applied to the inlet. The beam then oscillates initially in the natural frequency passing

through a transient phase and reaching limit-cycle-oscillations at the forced frequency after around 95,000

time steps. The computations with FSiM and ADINA show in general a very good agreement. Almost no

deviation is observed in the amplitude, while the FSiM deflections have an offset of 3% below the ADINA

deflections. Figure 4.7 shows the comparison with ADINA, whereby the deflection of FSiM is plotted with

a 3% correction, in order to better compare the results. Between the two curves, a mean phase deviation

of 17° is observed. This is attributed to slightly different overall resolution of the damping effects. Figure

4.8 shows the frequency spectrum of the tip deflection. The number of periods is not large enough for the

Fourier transform to provide a good resolution of the peak. Still, the dominant frequency of 120 Hz can be

clearly identified.

The deflection offset cannot be explained due to compressibility effects, since for the low Mach number

(0.029) the variation of total pressure in comparison to the incompressible computation is negligible. The

accuracy of the structural solver has been tested with similar cases and the deviation lies below 0.5%.

Therefore the explanation must be searched in the fluid field. In order to compare the fluid fields of SPARC

and ADINA, additional simulations were performed with a constant velocity of 10 m/s, so as to achieve a

stationary solution. The velocity and pressure contours show a very good agreement, figures 4.9 to 4.12. For
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4 Verification and performance of FSiM

Figure 4.8: Frequency spectrum of tip deflection.

a more quantitative comparison, figures 4.13 and 4.14 show the horizontal velocity component and pressure

profiles, extracted close before the beam along the line shown in figure 4.9. The velocity profile exhibits

a maximal deviation of around 20% in the lowest area. Unlike the ADINA solution, where the density

is constant, SPARC’s compressible formulation computes a density distribution. Despite the low mach

number, the compressibility effects on the density are not negligible and the deviation from the constant

value of 0.01kg/m3 amounts to 2% at the obstacle height. Since the velocity divergence is strongly related

to the incompressibility, this deviation can partly explain the different velocity profiles. The remaining part

can be attributed to numerical effects since the compressible formulation of SPARC is pushed to its limits.

However, it is not the velocity deviation but rather the pressure that has a direct influence on the deflection.

The maximal deviation in the pressure profile is around 6% in the outer region, where the influence on the

deflection is less important. At the obstacle height the pressure of the FSiM solution is around 3% lower

than that of ADINA. Since pressure is most directly related to the obstacle deflection, this deviation can

adequately explain the deflection offset.

Finally, a time benchmark was done to show the overall performance in comparison with ADINA. Table

4.4 shows the time needed for both codes to compute 1000 time steps, having 8 cores available. In the case

of ADINA, 8 threads were started, whereas for SPARC, 6 cores were assigned, leaving the other two for FSiM

and CalculiX. It must be taken into account that the default working mode of most MPI implementations

assumes no oversubscribed nodes. This means that the total number of processes is not higher than the

number of available cores. Under this assumption, a waiting process still consumes 100 % of the core in

order to detect the availability of the pending message as soon as possible. In some implementations it is

possible to change the working mode so that a waiting process consumes very little core performance, thus

allowing to assign 8 cores to SPARC in this example. However, since two extra cores do not improve the

times of SPARC significantly, all runs have been done with the default working mode. The performance
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4.3 Flexible obstacle

Figure 4.9: Pressure contour plot of FSiM.

Figure 4.10: Pressure contour plot of ADINA.
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4 Verification and performance of FSiM

Figure 4.11: Velocity contour plot of FSiM.

Figure 4.12: Velocitiy contour plot of ADINA.
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4.3 Flexible obstacle

Figure 4.13: Comparison of pressure and velocity profiles between FSiM and ADINA.

Figure 4.14: Comparison of pressure and velocity profiles between FSiM and ADINA. Detail.

59



4 Verification and performance of FSiM

of ADINA is slightly better (14 %) which can be expected since an incompressible formulation was used

where the energy equation is not solved in comparison with SPARC’s compressible formulation. Still, the

comparison points out the efficient implementation of the developed tool. Table 4.5 shows the time fractions

needed by each component of the simulation. These are similar to those of the previous case, which can be

anticipated since the model sizes are comparable.

Table 4.4: Computational time performace.

Table 4.5: Computational time fraction for each coupling component.

60



5 Application to rotating machinery

As presented in the introduction, the final objective of the present development is the investigation of flow-

induced vibrations in turbomachinery. To demonstrate the potential of the developed tool, an application

example is now presented. This test case consists of a two-dimensional turbine inside a casing, resembling

a flow-meter, as shown in figure 5.1. The relevant physical and geometrical parameters are detailed in table

5.1.

Figure 5.1: Geometry of the application example.

Table 5.1: Properties of the application example.

It must be stressed that the purpose of this test case is to demonstrate what analysis could be relevant for

the investigation of vibrations in turbomachinery, with a simplified but still intuitive model, rather than to

reproduce an experiment. This is reflected in the choice and placement of boundary conditions.
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5 Application to rotating machinery

The inflow boundary condition consists of a parabolic velocity profile while a constant static pressure

equal to the reference pressure is prescribed at the outlet. To determine the rotor velocity, the experimental

maximum for power extraction of a savonius rotor was used as a reference. This is given in form of the

tip-speed ratio:

λ =
U

π f D
(5.1)

On this basis, the rotor is set to rotate at a constant frequency f . A sliding interface is used to connect the

rotating and stationary domains, which are discretized with a total of 140,000 finite-volume cells. The values

of velocity, flow density and elasticity module have been chosen so as to achieve a moderate deformation of

the rotor, since a too large deformation would degrade the mesh quality. The flow is in full-turbulent regime

(ReH = 730,000) and resolved with the Spalart-Allmaras turbulence model. Around 130,000 time steps of

2e-5 s were needed to overcome the initial transient phase and reach a periodic solution.

The rotor is discretized with 904 8-node solid bilinear elements. In accordance with the rotating frame of

reference approach, the only influence that the rotation has on the structural field is the addition of centrifugal

forces. These contribute with a stiffening effect on the rotor blades. The rotor is supported on eight nodes

in the shaft zone, as shown in figure 5.2, where all DOF are set to zero. This is equivalent to a rigid shaft.

The shaft reaction moment results from the integration of the reaction forces in these nodes.

(a) Overview (b) Detail

Figure 5.2: Fixed nodes to model the rotor shaft.
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A first impression of the FSI computation is given in figure 5.4, from where the connection between the

pressure field and the resulting force vectors acting on the structure can be inferred. Consistent with the

rotating frame of reference approach, the structure is always depicted in the unrotated position, since the

structural field is actually computed so. This representation is also more convenient to visualize the blade

deformation. As a reference, the magenta mark points out the upper blade on the structure plot.

Three investigations are deemed relevant for industrial purposes:

• Influence of rotor flexibility on fluid moment

• Influence of rotor flexibility on shaft reaction moment

• Time history of excitation and displacement for a blade

For the first and second investigations, an additional CFD computation with the same parameters was

done to represent the case of a stiff rotor. Figure 5.5 shows the fluid moment for the rigid and flexible

rotor that results from the integration of the forces acting on all four blades. As shown in Figure 5.6, the

dominating frequency is 220 Hz, the four-fold of the rotation frequency, as can be obviously anticipated

from the number of blades. A slight reduction of the fluid moment can be appreciated due to the flexibility

of the rotor.

Table 5.2: Natural frequencies of the rotor.

The second aspect requires more insight into the rotor dynamics. For that purpose, a modal analysis was

performed with CalculiX. The frequencies and forms of the first five eigenmodes are presented in table 5.2

and figure 5.9 respectively. From direct observation, it can be anticipated that the asymmetric modes 1 and

5 might have an influence in the shaft reaction torque, whereas the symmetric modes 2,3 and 4 are balanced

with respect to the rotation axis. The fluid moment load is nearly harmonic with a frequency of 220 Hz

but a complex spatial distribution. A modal decomposition of this distribution leads to an excitation of all

modes, including mode 1. The excitation frequency is 1.65 times the natural frequency of the first mode and

therefore it can be anticipated, from figure 2.3, that the first mode will be triggered with an amplification

factor lower than one. Since the reaction moment is directly related to the amplitude of motion, equation

3.13, a reduction of the shaft reaction is expected with respect to the stiff rotor. Analogously, a phase

difference of around π is expected. These deductions can be confirmed in figure 5.7, where the reaction

moments of the two simulations are compared. The reaction moment for the rigid rotor was obtained from

the CFD computation by means of equation 3.14.
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5 Application to rotating machinery

The third issue is addressed in figure 5.8, where the fluid moment of a single blade is plotted. The am-

plitude of the blade fluid moment is greater than that for the whole rotor, because the single blade moments

partially cancel each other and are therefore not fully transmitted to the shaft. The blade fluid moment

shows a clear peak with the rotation frequency of 55 Hz, but contains other components of higher frequency

as well, as can be observed in a spectrum plot, figure 5.3. These loads trigger a complex tip displacement

outlined in the same figure. The blade tip oscillates with a dominating frequency of 330 Hz which can, of

course, also be found in the spectrum plot. The frequency of 330 Hz is the one in the spectrum that lies

closest to the natural frequencies of modes 2, 3 and 4, and therefore its contribution is amplified much more

than that of the other frequencies. The amplitude of the blade tip deflection oscillates with low frequencies,

among others, the rotational frequency of 55 Hz, which can be clearly recognized.

All of these information show the consistency of the results delivered by the developed tool and can be

used, for example, as the starting point for a fatigue analysis of the blade.

Figure 5.3: Frequency spectrum of the blade moment.
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(a) 2.400 s

(b) 2.402 s

(c) 2.404 s

(d) 2.407 s

Figure 5.4: Computation results at different times.
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5 Application to rotating machinery

Figure 5.5: Influence of rotor flexibility on fluid moment.

Figure 5.6: Frequency spectrum of fluid moment.

Figure 5.7: Influence of rotor flexibility on shaft reaction moment.
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Figure 5.8: Time history of excitation and displacement for a blade.
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5 Application to rotating machinery

(a) Undeformed (b) 1st mode

(c) 2nd mode (d) 3rd mode

(e) 4th mode (f) 5th mode

Figure 5.9: Vibration modes of the rotor.
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6 Conclusions and outlook

6.1 Conclusions

Throughout this thesis, the development of a computational tool for the simulation of Fluid-Structure

Interaction in rotating machinery has been presented. Three-dimensional, high resolution coupled solvers

are required to address challenging design issues in different turbomachinery types. The FSM’s CFD solver

SPARC matches those requirements with some advantages in comparison with commercial tools. To exploit

these advantages for coupled simulations, the open-source software package CalculiX was chosen to solve

the structural dynamics. The use of existing solvers exhibits some limitations as regards the error handling

and the text output, due to the fact that the source code of these existing solvers had not been conceived for

coupled use.

To deal with the communication and synchronization of the two part-solvers, the “Fluid Structure In-

teraction Simulation Manager” FSiM was created, based on the Dynamic Process Management of MPI.

The complete resulting coupled tool (SPARC + CalculiX + FSiM) has been designed to take advantage of

the benefits of block-structured meshes. The multigrid strategy, particularly efficient in block-structured

meshes, can be exploited to overcome meaningless transients with a faster, coarser mesh. The use of the

algebraic Transfinite Mapping method, only applicable to block-structured meshes, allows for a fast mesh

adaption in comparison with the pseudo-elastic approaches, usually employed in unstructured meshes. The

block structure provides a straightforward basis to control the mesh adaption, in order to avoid excessive

mesh distortion. In comparison with general-purpose coupling tools, FSiM incorporates the data structures

of both part solvers to avoid costly additional mappings between volume and surface meshes in every cou-

pling iteration. Particularly for block-structured meshes, the mapping from volume to surface mesh is very

efficient.

To handle non-matching meshes, appropriate algorithms have been developed to transfer the displace-

ments and loads across the interface. To this purpose, the interaction surfaces can be segmented to account

for geometrical discontinuities. The developed tool is quite general and can be easily extended to other

surface-coupled problems, such as heat transfer.

Flow-induced vibrations appear with two dominating mechanism: aeroelastic instabilities and forced

oscillations. Two suitable test cases addressing each of them were carefully selected in order to verify

the implementation. The first mechanism was verified with results from the literature for the panel flutter

problem, while for the second, the commercial software package ADINA was used to generate reference data.

In both cases, a very good agreement of around 3% was achieved. This kind of numerical verification allows

a more accurate comparison against reference data than experimental validations. For FSI in particular, the

design of an experimental setup for validation purposes is still challenging. No suitable validation test

was found in the literature that met the additional requirement of a moderate Mach number for SPARC’s

compressible formulation.

Finally, to address rotating systems, the compatibility of displacements and loads must be ensured taking

into account the different ways there exist to handle rotational effects. The alternatives of rotating frame of
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reference and rotating mesh can be combined for the fluid and structural solver, to obtain four possibilities

that are to be handled differently. In this work, we concentrated on the combination of rotating mesh

treatment for the flow solution, and the rotating frame of reference approach for the structural solution. The

different configurations are made compatible with rotational transformations for displacements and forces.

This transformations must be taken into account for the fluid mesh adaption. To show the capabilities of

the new development for the investigations of flow-induced vibrations in turbomachinery, the example of a

two-dimensional turbine has been discussed.

6.2 Outlook

A series of possible extensions have been identified throughout the work, that would improve the com-

putational performance and accuracy. These have not been implemented due to time restrictions. They

include:

Mesh update Currently, the algebraic Transfinite Mapping method is used. An elliptic method or the

Delauney mapping could provide better mesh quality. To obtain more flexibility, a different mesh

update procedure could be defined for each block.

ALE formulation The algorithm presented by Geuzaine et al. [57] promises a second-order accu-

racy in time in moving meshes, and should be considered for high efficient computations.

Coupling scheme For aeroelastic applications, the Generalized Sequential Staggered (GSS) algorithm

promises a faster convergence.

Interface treatment Interpolation methods based on Radial Basis Functions [136], [112] have shown an

improvement in the flexibility and accuracy of the interface treatment.

Free rotations The computation of models with free rotations would allow for more insight into transient

phenomena. FSiM would prove very advantageous for that since, for example, external forces coming

from the generator or motor can be easily introduced in the simulation.

Multiple blade domains An interesting possibility for turbomachinery can be achieved if a full rotor

simulation is desired. In some cases the hub can be modeled as rigid, allowing an easy domain

decomposition whereby each blade/vane is solved in parallel with independent CalculiX processes.

Some additional implementations are then needed to handle several independent structural models

simultaneously.

CalculiX spawning scheme Due to some limitations in many MPI implementations it is not convenient

to spawn a program too many times. Modifying the spawning scheme of CalculiX, to have it run only

once or twice throughout the computation, would slightly improve the efficiency and allow for a more

elegant and stable implementation.
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