KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
§
Volltext
URN: urn:nbn:de:swb:90-499103
Originalveröffentlichung
DOI: 10.5194/gmdd-8-6987-2015

Towards convection-resolving, global atmospheric simulations with the Model for Prediction Across Scales (MPAS): an extreme scaling experiment

Heinzeller, D.; Duda, M. G.; Kunstmann, H.

Abstract:
The Model for Prediction Across Scales (MPAS) is a novel set of earth-system simulation components and consists of an atmospheric model, an ocean model and a land-ice model. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. This makes MPAS a promising tool for conducting climate-related impact studies of, for example, land use changes in a consistent approach.

Here, we present an in-depth evaluation of MPAS with regards to technical aspects of performing model runs and scalability for three medium-size meshes on four different High Performance Computing sites with different architectures and compilers. We uncover model limitations and identify new aspects for the model optimisation that are introduced by the use of unstructured Voronoi meshes. We further demonstrate the model performance of MPAS in terms of its capability to reproduce the dynamics of the West African Monsoon and its associated ... mehr


Zugehörige Institution(en) am KIT Fakultät für Physik (PHYSIK)
Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU)
Publikationstyp Zeitschriftenaufsatz
Jahr 2015
Sprache Englisch
Identifikator ISSN: 1991-9611, 1991-962X

KITopen-ID: 1000049910
HGF-Programm 12.02.03 (POF III, LK 01)
Erschienen in Geoscientific model development discussions
Band 8
Heft 8
Seiten 6987-7061
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page