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List of Signals

This list contains all signals internally used in RoadHopper which are mentioned in this thesis.

For signals with a greek letter or an index, two names are speci�ed. The plain text version is the one used in

program code, the formatted version is used throughout this thesis.

For every signal, the data type is speci�ed after the slash.

a the current vehicle acceleration / Double

alpha/α the ampli�ed gas pedal input signal / Double

alpha*/α∗ the delayed gas pedal signal (engine input) / Integer

alpha_in/αin the gas/brake pedal input signal (= driver output) / Double

beta/β the ampli�ed brake pedal output signal / Double

beta*/β∗ the delayed brake input signal / Integer

M the engine torque / Double

M* the delayed engine torque applied to the wheels / Double

pos the current vehicle position / GHPoint3D

s the distance already travelled by the vehicle / Double

time the current time / Integer

v/vcurr the current vehicle speed / Double

v_di�/vdi� the di�erence of current and allowed speed / Double

v_limit/vlimit the maximum speed allowed within the current lookahead distance / Double

v_target/vtarget the current target speed for the driver / Double





1 Introduction

This thesis strives to contribute a new approach for generating driving cycles not by test drives

and calculation from the measured data (backward calculation), but instead forward calculate a

cycle from a simulation with models for the driver, vehicle and road. The road model is derived

from detailed map data.

1.1 Motivation

Over the last decades, driving cycles have evolved into a standard tool for various purposes.

The most prominent might be emissions measurement, where cycles like the New European

Driving Cycle (NEDC) in Europe and those developed by California’s Air Resources Board have

found wide usage.

Another area of broad usage for driving cycles is component design, where standardized

measurement programs can be used to verify the �tness of a component e.g. for a given load

pro�le.

Gathering a driving cycle for a given con�guration (vehicle and driver) is still a costly task:

At least one, but usually a lot more measurements need to be performed. Doing such tests for a

number of setups can quickly become prohibitively expensive: [Est+01] gives an estimate of

around £10 000 for a single vehicle emissions test.

Therefore, being able to quickly gather a driving cycle without the need for a full test setup

and test drive brings a number of advantages:

• cost savings potentially in the order of tens of thousands

• much quicker iterations, as a simulation can be performed a lot faster

• the potential to test competing approaches easily with parameter sweeps in a simulation

This thesis presents a concept and implementation for a versatile and extensible driving cycle

simulator.



2 1 Introduction

1.2 Overview

This thesis is divided into seven chapters:

• Chapter 2 explains basic concepts necessary for understanding the following chapters.

• Chapter 3 gives an overview of the concept for generating a driving cycle based on a

route gathered from a map.

• Chapter 4 presents GraphHopper, the routing software that was chosen as the base for

this thesis, and the extensions made to it.

• Chapter 5 introduces RoadHopper, the solution built on top of GraphHopper for simulating

a driving cycle.

• Chapter 6 discusses the results gathered from simulations and compares them to some

real-world measurements from an earlier thesis.

• Chapter 7 summarizes the thesis and gives an outlook on the topic, including a broader

vision for RoadHopper.



2 Basics

This chapter presents a number of topics which are relevant for understanding both the driving

cycle generation concept and the software RoadHopper which was developed to realize it.

After a quick introduction to driving cycles, sections 2.2 and 2.3 lay the necessary foundation

for understanding both maps and mapping applications, with a focus on OpenStreetMap. This

part is more detailed than necessary to provide a solid foundation also for understanding the

calculations on map data.

Section 2.4 gives a quick overview of the most important concepts in VHDL, which was

chosen as the reference for a part of the simulation model. Further information can be found in

the listed references. Section 2.5 presents a generic form of the driving equation, which is the

basis of the vehicle dynamics implemented in the simulation models.

In the last part (sections 2.6 and 2.7), concepts necessary for understanding the simulation

engine implementation are introduced. Naturally, only a small part of these topics can be

covered here. For further information, the cited reference documentation and books on the

topics should be consulted.

0 200 400 600 800 1,000 1,200

0

50

100

t / s

v
/

k
m

/
h

(a) NEDC

0 500 1,000 1,500

0

50

100

t / s

v
/

k
m

/
h

(b) WLTP Class 3

Figure 2.1: Comparison of a modal (NEDC) and a real-world approximation cycle (WLTP)
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2.1 Driving cycles

A driving cycle is a standardized, �xed schedule of vehicle operation. Usually, they are de�ned

as functions of velocity (and optionally gear selection) over time [Bar+09].

Driving cycles are designed for a variety of purposes, with the major ones being emissions

testing and component design. A huge number of cycles were developed over time; [Bar+09]

lists and compares over 200 of them, with a focus on emission testing cycles. The test procedures

employed in such tests are also described there.

To create a driving cycle, four di�erent general methodologies are described in [DNE08]:

1. analyzing measurement data and chaining representative small extracts with zero start

and end speed (called micro-trips in [DNE08] and driving pulse in [Lia06])

2. distinguishing di�erent road types and segmenting the measurements by these types;

unlike the �rst method, the segments can have any start and end speed

3. pattern classi�cation on sequences of driving pulses, plus a stochastic model for succession

probabilites; the sequences are randomly reconnected to a cycle of the desired length

afterwards

4. modal cycle construction based on driving modes (steady speed, acceleration, deceleration)

with de�ned parameters (speed, gear, duration); the driving modes are chained to create a

cycle

The �rst three of these methods create fuzzy, real-looking driving cycles, while the modal cycles

often look very arti�cal (see �gure 2.1 for an example of both). The exact construction of a cycle

from real-world data is done in di�erent ways; [DNE08] lists a number of sources which detail

the cycle creation.

The list of driving cycles in [Bar+09] lists a variety of parameters for each cycle, which were

calculated using a tool called Art.Kinema.

In this thesis, no standardized driving cycles are used. Instead a custom driving cycle based

on a given map track is to be created. For that, a vehicle and driver behaviour are assumed and

the drive along the track is simulated. Those driving cycles are comparable to those generated

by the �rst three patterns listed above; the modal cycles are not comparable as they show much

more uniform velocity distributions.
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2.2 Maps

Maps in the sense discussed here are two-dimensional depictions of a three-dimensional object:

the earth’s surface. To create them, a concept called projections—well-known from mathematics

in general—is used.

Depending on the projection used, a map will be distorted in one or another aspect, potentially

making it unusable for certain purposes. It is therefore important to know the basics of mapping

when working with maps. This is why the topic is discussed here in broader sense than strictly

required for this thesis.

2.2.1 Representing the earth

The earth is no perfect shape like a sphere or an ellipsoid. Instead, the height of the land surface

varies along the surface as a result of past continental movements which formed mountains

and valleys. Even the sea level is not uniform, but varies depending on the local gravity �eld

and other e�ects.

Approximations of the earth for geodetic usage consist of two parts, namely [Lu14, ch. 4]

1. a geoid—the physical shape of the earth—and

2. a reference ellipsoid, which is the mathematical shape of the earth that matches the geoid

as closely as possible.

The surface of the geoid is an equipotential of the earth’s gravity �eld, which means that the

gravitational force is constant along its surface [Mey10]. It is often de�ned along the idealized

sea level ignoring air pressure variations, water currents etc. and is then continued on the same

gravity potential beneath the landmass. The vertical distance between the geoid height and the

ellipsoid height for a point is called geoid undulation.

Calculations are always performed using the ellipsoid, as the geoid is not usable due to its

complicated shape. The ellipsoid is de�ned by the length of its axes, a (major) and b (minor).

Of both the geoid and the ellipsoid, di�erent variants have been de�ned, e.g. the Bessel and

Krassowski ellipsoids or the EGM96 geoid, which are used in di�erent contexts.

2.2.2 Creating maps

Mapping a part of the earth’s surface involves a multi-step process to get from a point on the

earth to a point on a map. During that process, the point on the earth is assigned a geodetic
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coordinate, which is then transformed into the map’s coordinate system, resulting in the location

on the map.

Several concepts are needed for creating a map, which should be discussed here:

Geodetic Datum is a reference used for geodetic surveying. It connects an ellipsoid and a

prime meridian (de�ning the coordinate system root) with one or more reference points

on the earth’s surface.

The datum may be valid for the whole world or only a de�ned area, depending on the way

it is constructed. Many geodetic data—e.g. the Postdam Datum as the base of geodetic

survey in Germany—are just usable in a single country or or for parts of a country.

Geodetic Coordinate Reference System (GCRS) consists of a geodetic datum and an ellip-

soidal coordinate system, the GCRS allows for assigning a pair of coordinates (usually

latitude/longitude) to every point of the datum’s area.

Projected Coordinate Reference System (PCRS) projects a GCRS into a di�erent coordi-

nate system, e.g. a Cartesian system for 2D maps.

The hierarchy of these concepts and their components can also be seen in �gure 2.2.

The mapping process e�ectively uses three steps to get to a map location for any given point

on the earth:

1. map the real point to the datum’s ellipsoid surface, using the geoid and the datum

reference(s)

2. map the ellipsoid point to an ellipsoid coordinate, using the GCRS

3. map the ellipsoid coordinate to a map location, using the PCRS

The process is depicted in �gure 2.3.

The mapping applications discussed in this thesis use the World Geodetic System 1984

(WGS84) as their reference system [NIMA00]. WGS84 uses the aforementioned EGM96 geoid

and de�nes its own geodetic datum and Geodetic Coordinate Reference System. Based on

WGS84, di�erent projections can be used to create a map.

The di�erent projections (and their components) are de�ned by their parameters. To get repro-

ducible results, a database of standardized projection components was created by the European

Petroleum Survey Group (EPSG) [EPSGReg]. It is available at http://www.epsg-registry.org/;

a set of important de�nitions for this thesis is listed in table 2.1.

http://www.epsg-registry.org/
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entity EPSG code

WGS84 Geodetic Datum 6326

WGS84 Ellipsoid 7030

WGS84 GCRS 4326

WGS84/UTM zone 31N PCRS 32 631

UTM zone 31N coordinate conversion 16 031

Ellipsoidal Coordinate System 6422

Cartesian 2D Coordinate System 4400

Greenwhich Prime Meridian 8901

Source: [EPSGReg], retrieved 2015/10/01

Table 2.1: EPSG codes for various components important i.a. in WGS84

name symbol value unit

semi-major axis a 6 378 137.0 m

semi-minor axis b 6 356 752.3 m

�attening f 1/298.257 223 563 —

mean radius rE 6 371 008 m

Source: [NIMA00], own calculation (rE )

Table 2.2: WGS84 earth ellipsoid parameters

Projections

As said above, di�erent types of projections are used in creating a map. This section revolves

only around those used in a PCRS, which map a point from the reference ellipsoid onto a map,

shaping the �nal look of the map. A variety of such projections exists, de�ned for various

purposes. Each of them has their own advantages and drawbacks, which makes them �t for

certain tasks and unusable for others.

In this section, only one of the most popular ones, the Mercator projection, is discussed, as

it is required for understanding the projections used for maps discussed in this thesis. Based

on Mercator are its specializations Transverse Mercator and Web Mercator and the Universal

Transverse Mercator (UTM) system of projections, which are widely used in mapping.

Mercator The Mercator projection [Mey10] maps the earth’s surface onto a cylinder wrapped

around the earth. Usually, the cylinder’s axis equals the rotational axis of the earth and it

touches it along the equator. Mapping points of the surface onto the cylinder is done by drawing

a line from the center through the earth’s surface. The point is then mapped to the intersection

of the line and the cylinder’s surface.
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In the Mercator projection, all longitudes (or meridians) are equidistant, while the distance

between latitudes increases with the distance from the equator. The mapping is pretty accurate

near the equator, but distortions increase rapidly when approaching the poles. The Mercator

projection cannot map the poles, and areas towards the poles are mapped with a multitude of

their real size. One notable example of this is Greenland, which on Mercator-projected maps

often looks bigger than the USA, while in reality it is only around a �fth of the size of the US

(2 166 086 km
2

vs. 9 826 675 km
2
).

A detailed discussion of the disadvantages of the Mercator projection is also given in [Bat+14].

Transverse Mercator Transverse Mercator [Mey10] projections are a specialization of the

Mercator projection. They are used by the UTM, which in turn is the basis for many mapping

applications.

In a Transverse Mercator projection, the cylinder is tilted so that its axis lies in the equatorial

plane. It also has a slightly smaller diameter, so it does not only touch, but cut the surface with

two circles (or ellipses for an ellipsoid). These lines are called standards. The center between the

two cuts is the central meridian, which is the de�nining feature of any given TM projection.

A small band around this central meridian can be mapped to a plane with low distortions,

which is why the Transverse Mercator projection has found wide usage in mapping applications

worldwide.

Universal Transverse Mercator The Universal Transverse Mercator Projection [Mey10] is

a system of 60 Transverse Mercator projections, each covering a width of 6°. These zones are

numbered starting with 1 at 180° W to 174° W to 60 for 174° E to 180° E. Germany is located in

zones 31 and 32 (6° E to 18° E).

As the zones would become too small near the poles, it only covers a range from 80° S to 84° N.

The areas around the poles are mapped by the universal polar stereographic (UPS) system.

The UTM maps to a cartesian coordinate system for drawing. This coordinate system uses a

�xed reference with a few specialties (false easting/northing) to avoid using negative values for

coordinates. This should not be discussed here, instead refer to e.g. [Mey10].

Web Mercator Although the usage of Mercator projections for mapping was declining in

printed cartography, an adapted version became popular again with the rise of web-based map

services [Bat+14]. This version is called Web Mercator or Spherical Mercator, as it projects

WGS84 coordinates using a sphere (and not an ellipsoid as would normally be done) [Bat+14].
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Because of this, it incurs an even higher error than the mercator projection—[NGIA14] describes

the potential errors of coordinates compared to an ellipsoid-based projection as “over 40 km”.

The Web Mercator projection was standardized as EPSG:3857.

Coordinate representations

Degrees can be written in di�erent formats:

• divided into degrees, minutes, seconds: 123°12
′
34
′′
; minutes and seconds can be left out

• decimal: 123.4567°

The decimal format will be the most widely used throughout this thesis, as coordinates are

represented this way in computers.

An alternative unit for angles used in Geodesy is Gradian [Mey10], which divides the full

circle into 400 units. It is also known as gon, and denoted with
g

(e.g. 123
g
).

The ellipsoidal coordinate systems in �gure 2.2 usually have their positive semi-axes towards

north and east. The origin of this system is at the intersection of the equator and the prime

meridian.

Ellipsoidal coordinates can be annotated with ± pre�xes or N/S and W/E su�xes, e.g.:

• +49.010 89°/+8.412 75°

• 49.010 89° N/8.412 75° E

• 49°0
′
39
′′

N/8°24
′
46
′′

E

2.2.3 Calculations

Depending on the used projection and earth shape approximations, di�erent types of distances

can be distinguished [Mey10, sec. 6.1]. Of those, for this thesis only great circle distances

will be relevant, as the distances are usually in the range of a few hundred meters and the

errors incurred are therefore negligible. On the other hand, spherical calculations are very fast

compared to more exact formulae, which makes them better suited for usage in a simulation.

Two types of calculations are mainly used [Mey10]:

1. forward (or direct) calculations to get an end point based on a start point, distance and

initial bearing
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2. backward (or inverse) calculations to get the distance and bearings
1

for a given pair of

points

Forward

A forward calculation gets a point, a distance and an initial bearing (direction of travel) as the

input values. The output is the resulting position after travelling the given distance.

The formula presented here is taken from the Geosphere package
2

of the R statistical com-

puting software (https://www.r-project.org/). It is, as stated above, only valid for a spherical

approximation of the earth, which is accurate enough for our purpose, given that most distances

are only up to a few hundred meters and the coordinates used for calculations are gathered

from a more accurate approximation (WGS84).

Given a point A with coordinates φA/λA, a length l and an initial bearing (direction clockwise

from geographic north) α , the resulting position φB/λB can be calculated to

φB = arcsin

(
sin (φA) · sin

(
l

rE

)
+ cos (φA) · sin

(
l

rE

))
· cos (α ) (2.1)

λB = λA + arctan
*.
,

cos

(
l
rE

)
− sin (φA) · sin (φB )

sin (α ) · sin

(
l
rE

)
· cos (φA)

+/
-

(2.2)

Inverse

For a spherical approximation of the earth, a great arc can be calculated like this: Given the

latitude/longitude pairs φA/λA and φB/λB , the angle between the two points is

l = ζ · rE (2.3)

ζ = arccos(sin (φA) · sin (φB ) + cos (φA) · sin (φB ) · cos (λB − λA)) (2.4)

This formula is e.g. required for determining the length of roads in GraphHopper’s road

graph, as the edges are only marked by their coordinates.

1
When travelling along a great arc, the bearing changes over the distance, unless travelling directly towards

one of the poles (in which case it is �xed to 0° or 180°.

2
see https://cran.r-project.org/web/packages/geosphere/; visited 2015/10/08

https://www.r-project.org/
https://cran.r-project.org/web/packages/geosphere/
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For short distances, the argument’s cosine approaches 1. For lengths in the range of a few tens

of meters, it might yield incorrect results depending on the �oating point accuracy. [Mey10]

therefore suggests using the haversine formula instead:

l = 2r · arcsin

(
sin

2

(φB − φA
2

)
+ cosφA · cosφB · sin

2

(
λB − λA

2

))
(2.5)

For the earth’s radius, the mean of the WGS84 ellipsoid’s radius can be assumed, see table 2.2.

2.3 OpenStreetMap

OpenStreetMap (OSM) is an international project with the aim to create an as complete as

possible map of the whole world. It was started in 2004 and to date has almost three billion

points mapped
3
.

Internally, OSM uses WGS84-based coordinates. Most rendered maps are Web Mercator

projections, as it is the de-facto standard for web mapping applications.

2.3.1 Data model

OSM is a depiction of the real world. As such, it must be able to represent every possibly

interesting item. Still, its data model consists of only three main entity types
4
:

Nodes mark a position on the map. In their most simple form, they just have a pair of

coordinates. The meaning of a node is further described with tags (see below). Nodes

may be included in any number of ways.

Ways are a generalized concept to connect consecutive edges—they do not only represent

streets or footways, but also the walls of buildings or area boundaries. Ways have a

de�ned direction, making the OSM graph a directed graph. This is important e.g. for

mapping oneway streets.

Not all ways are connected, i.e. it is not always possible to travel from one node to the other

only via edge traversal. The OSM graph thus consists of many independent subgraphs.

However, by using the node coordinates, a connection between these subgraphs can still

be constructed using their spatial proximity (e.g. to connect houses to the street next to

them).

3
see https://wiki.openstreetmap.org/wiki/Stats; visited 2015/09/21

4
see https://wiki.openstreetmap.org/wiki/Elements; visited 2015/09/06

https://wiki.openstreetmap.org/wiki/Stats
https://wiki.openstreetmap.org/wiki/Elements
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Relations link two or more elements of the graph (e.g. as parts of a building or buildings to a

street or stations to a public transit line). Political borders, from states down to the level

of urban districts, are also mapped as relations.

Additionally, all entities have a number that explicitly identi�es them in the OSM database

[RT09].

Tags, simple key-value pairs, can be used for further describing all entities. The most often

used key for ways is highway5
, which is used to denote all kinds of streets and street-related

information (e.g. tra�c lights and signs).

The possible values and intended usage of tags are not prescribed by the OpenStreetMap

project, but instead stem from a continuously changing consensus among the mappers [RT09].

For some tag keys, users also de�ne new values where they seem �t (mostly general-purpose

key like highway, see above).

An overview of tag usage (frequency, combinations, geographic distribution etc.) is available

at https://taginfo.openstreetmap.org/.

2.3.2 Data Export

As the data of OpenStreetMap is freely available, it can be accessed both in the form of ready-

made web services (e.g. online maps) and as raw data packages for local usage, e.g. in geoinfor-

mation utilities or statistical analysis tools.

OpenStreetMap data can be exported as either XML or in a binary format called PBF. An

export includes the whole world
6
, but can also be stripped down to only a part of the world.

One tool used for processing OSM data dumps is Osmosis [RT09] (https://wiki.openstreetmap.

org/wiki/Osmosis).

Free downloads of OpenStreetMap data dumps are o�ered e.g. by the German company

Geofabrik, whose download server is located at https://download.geofabrik.de/. This server

is the source of the data used in this thesis.

2.3.3 Routing

The general problem solved by routing algorithms is �nding the shortest path between two points

A and B. Shortest path can be further generalized to path with the lowest edge weight—di�erent

5
see https://wiki.openstreetmap.org/wiki/Key:highway; visited 2015/09/23

6
see https://wiki.openstreetmap.org/wiki/Planet.osm; visited 2015/09/17

https://taginfo.openstreetmap.org/
https://wiki.openstreetmap.org/wiki/Osmosis
https://wiki.openstreetmap.org/wiki/Osmosis
https://download.geofabrik.de/
https://wiki.openstreetmap.org/wiki/Key:highway
https://wiki.openstreetmap.org/wiki/Planet.osm
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edge weights then allow optimizing for di�erent use cases, e.g. avoiding high tra�c roads or

preferring highways over other roads.

Many routing algorithms, like the widely used Dijkstra family, require a huge e�ort for �nding

a single path, but require little precomputation. Newer approaches like Contraction Hierarchies

exist that trade extensive precalculations for speed advantages during search [Gei08].

Of the many algorithms developed over time, this section focusses on the few that are relevant

in the context of this thesis, i.e. those that are implemented in GraphHopper.

Routing Algorithms

Dijkstra’s algorithm is a shortest-path algorithm that iteratively searches from a start node

s to a target note t [Ski08]. From a currently visited node v , all neighbouring, unvisited

nodes get a weight set based on the edge weights. Each node encountered gets a weight

w assigned which denotes the distance from s to this node via the current node v . If a

node already has a weight, it is only changed if the new weight would be lower, ensuring

an optimal solution.

The algorithm forms a circle around the start node, with a radius increasing in each step.

The search can be stopped once t has been visited. The resulting path is the shortest path

from s to t .

Bidirectional Dijkstra The bidirectional version of Dijkstra’s algorithm starts at both the

start and target nodes. The two “search circles” will have only half the radius and thus

cover a much smaller area with less nodes. The bidirectional version therefore is usually

faster.

A* or A-star is a variant of Dijkstra’s algorithm which uses a heuristic to estimate the cost to

completion for a given path. This limits the algorithm’s applicability, as such a function

must �rst of all exist, but it also makes it much more e�cient [ZC09]. One cost estimation

function often used in road network routing is the air line between the current path end

and the destination. For paths pointing away from the target, costs will therefore rise,

making them less attractive than the (more probable) paths already heading into roughly

the right direction. The algorithm can then focus on those more attractive paths, which

improves space usage and—for some applications—also processing time [ZC09].
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Contraction Hierarchies

The concept of Contraction Hierarchies [Gei08] is to insert shortcuts into a graph to avoid

repeated traversal of multiple edges. These shortcuts are inserted on a higher level than the

original nodes, thereby creating the hierarchy.

More recent developments include time-dependent edge weights to include e.g. tra�c load

[Bat+09], and customizing Contraction Hierarchies in general [DSW14].

Contraction Hierarchies are implemented in GraphHopper and enabled by default.

2.3.4 Elevation data

The OpenStreetMap database only contains latitude and longitude coordinates, but no elevation

(height information). As this information is required for e.g. calculating the road grade, it must

be obtained from an external data source.

GraphHopper already contains an interface to fetch and include elevation data from the

Shuttle Radar Topography Mission (SRTM). A high precision version of this data (SRTMGL1;

resolution 1
′′

or one point ca. every 30 m) was published in 2014 and 2015
7
. An interface to this

high-resolution version was added to GraphHopper during this thesis.

2.4 VHDL

Very High Speed Integrated Circuit Hardware Description Language (VHDL) is a general-

purpose hardware description language, standardized by IEEE in 1987. It separates the descrip-

tions of interfaces (entities), architecture and con�guration (implementation), allowing di�erent

implementations to be used. VHDL inherently supports parallelism in execution [LWS94].

For this thesis, VHDL is not so much of interest because of its hardware description capabilities,

but more because of its execution model and the simulator engine built on top of it: These are

both a good �t for the task solved in this thesis. Of the numerous concepts in the language

standard [VHDL], four are therefore relevant for this thesis and should be described here in

further detail: signals, variables, processes and delta cycles.

Processes describe one block of sequential data processing [VHDL]. Multiple processes can

run in parallel. Each process has a so-called sensitivity list of signals (declared with WAIT

ON) it listens to; when one of the signals changes, the process is executed.

7
see https://lpdaac.usgs.gov/nasa_shuttle_radar_topography_mission_srtm_global_1_arc_second_data_

released_over_middle_east; visited 2015/09/18

https://lpdaac.usgs.gov/nasa_shuttle_radar_topography_mission_srtm_global_1_arc_second_data_released_over_middle_east
https://lpdaac.usgs.gov/nasa_shuttle_radar_topography_mission_srtm_global_1_arc_second_data_released_over_middle_east
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Signals and variables both hold values used in the code. Their main di�erence is a be-

havioural one: assignments to variables are always e�ective immediately, while signal

values only change after all processes have run [VHDL, ch. 12.6]. Variables are also local

to one process, while signals are used for transmitting values between processes.

Delta cycles are tightly coupled to the concept of delayed signal updates. To explain them,

we must �rst have a look at what delta cycles actually are: Each time step is divided

into one or more delta cycles. The number of required delta cycles is determined at run

time: If a process updates a signal, the update is delayed until all processes have �nished.

Afterwards, the update is performed and all processes sensitive to the signal are executed

in a further delta cycle [VHDL, ch. 12.6.4].

2.5 Vehicle kinematics

Like every object in motion, a vehicle has a lot of forces which in�uence its movement. Only

some of these can directly be controlled by the driver, while others are indirect consequences of

the driver’s actions.

These forces are usually a part of the so-called driving equation [Bra13]:

Feng the engine force

Fbrake the brake force

Fclimb the climbing force—the force required to overcome a height di�erence along the road

Facc the acceleration force—the force induced by vehicle inertia against an acceleration

Froll the rolling resistance

Fair the air drag

A simpli�ed version of the driving equation with all its parts is depicted in �gure 2.4. As a

result of the simpli�cation, several aspects are not taken into account, namely

1. the di�erent pressures of and load on the single wheels,

2. multiple powered axles,

3. power train losses, and
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Fres = Feng −

(
Fbrake + Facc + Fclimb + Froll + Fair

)
(2.6)

=
1

2

cW · A · ρ · v
2

= fr ·m · д · cosγ

= m · д · sinγ

= m(1 + e ) · a

=
i

rw

·Meng

• e > 0 is a factor for the rotational inertia of the power train. It increases the e�ective

mass of the vehicle relevant for the acceleration.

• γ is the grade of the road in degrees.

• i is the (dimensionless) transmission factor.

• rw is the wheel radius.

Figure 2.4: The driving equation

4. changes in the air resistance due to wind.

Also several factors like the friction coe�cient fr are assumed to be steady, while in reality they

vary depending on the road surface and weather conditions (wet or icy road). [Bra13] delivers a

more detailed discussion of each part, with many of the details left out here for brevity.

For steady driving, Facc equals zero, similarly Fclimb for even roads.

2.6 Concurrent programming

Running a simulation necessitates a lot of computations, many of which do not depend on each

other and thus can be parallelized to speed up the simulation. Therefore, parallel or concurrent

programming is an important topic for simulations.

When creating sequentially executed code, the order of operations is pretty clear—it can

be directly derived from the order of lines in the source code. The main advantage of this

is the obviously simple reasoning about the program’s behaviour. The main disadvantage of
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sequential execution quickly becomes apparent when external systems like a database or a hard

drive come into play: if an operation blocks, the whole code is not executed further until this

result is ready.

Additionally, if the code is executed in a multiprocessor environment, only one of the many

processors will be used, while all others are idle (unless they execute di�erent programs).

Especially given the recent trend towards massive horizontal scaling of processors (multiple

cores) instead of vertical scaling (faster clock speed), using this potential becomes more and

more desirable.

So parallelized actions may speed up computation, if enough execution units are available to

really run the parts at the same time. It may also speed up the software if it runs on a single

core, as code that needs to wait for external, slow resources like the hard drive or the network

can be put to the background while the execution unit continues with another sequence of

operations; this technique is called time slicing or multitasking.

Threads are nowadays the most widely used abstraction for parallel programming, even

though their model leads to many problems seen today with concurrent programming [Lee06].

Most of these problems stem from operations on the same data. Threads are a good model

for data architectures where each single thread operates on its own data (shared-nothing

architecture [Sto86]). In the case of shared data special precautions must be taken to ensure

that the data is always consistent and no deadlocks can occur which let the program grind to a

halt [MS07].

Several approaches to mitigate these negative e�ects have been developed. One of them,

which tries to get rid of shared mutable data altogether, is the actor model. The actors in this

model are small, independent collections of sequential operations. They keep all mutable data to

themselves and only pass immutable data (messages) on to other actors. This way, most of the

e�ort required for synchronizing data access in regular programming environments becomes

unnecessary and can be omitted.

2.6.1 Promises and futures

Before delving deeper into the actor model, another part of concurrent programming needs to

be introduced: promises and futures.

They are one method of synchronising code segments: If two pieces of code run on two

di�erent threads, it must be possible to only continue operation as soon as both are �nished.

As such, futures and promises help mitigating the chaotic behaviour of threads described in

[Lee06].
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Promises and futures are closely coupled, but cover di�erent concerns:

• A promise is an object that acts as a placeholder for the result of a running computation.

It can be completed with either a value or an error, if the computation failed for any reason.

The promise becomes immutable once it was completed, i.e. no second assignment of a

value is possible.

• A future is a read-only view of a promise’s value, and as such a means for separating the

concerns of the computation (user of the promise) and waiting for the computation to

�nish (user of the future).

2.6.2 Actors

The actor model, �rst de�ned in the early 1970s, tries to separate the sequential aspects of

computations from the communication aspects [Cli81]. Fundamental work on the model has

been done in [Cli81; Agh85].

Actors are de�ned as independent agents that do not share any mutable state. They can

send each other messages, which are by de�nition immutable. These messages are delivered

to an actor’s mailbox, from which the actor can take them as soon as he is ready to process

messages. The message reception and queueing itself is not implemented by the actor. This way,

the message queue handling and the actual actor implementation can be more easily separated.

While processing a message, an actor may send messages to any number of other actors,

including the sender of the current message. A message must only contain immutable data:

Closing over the actor’s local, mutable state to other actors would reintroduce the locking and

synchronisation problems known from other parallel computing approaches.

Messages passed to an actor are usually processed in the order they arrived [Cli81]. Imple-

mentations might also de�ne high-priority messages that destroy this natural order (e.g. the

Akka toolkit discussed below introduces di�erent kinds of prioritisation mailboxes).

A system of actors can to some extent be compared to any traditional o�ce, where clerks sit

and wait for incoming messages. Every clerk has its personal area of responsibility, for which

they receive messages. They process these messages sequentially, using the information in

each message to change the data they manage. Meanwhile, they may send messages back to

the sender or to other business units (e.g. to inform them about changes or con�rm that the

message was successfully processed).
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Notable implementations of the actor model include the Erlang language, which is widely

used in telecommunications applications, and Akka, an actor toolkit for Java and Scala, which

is discussed below.

Akka

Akka is a toolkit for implementing the actor model based on the JVM. The initial actor model

implementation was part of the Scala programming language and was later on extracted to

Akka as an independent project.

On top of the generic actor model, Akka de�nes a tree-shaped structure, called supervision

hierarchy. This structure is embedded into the so-called actor system, which takes care of

allocating the necessary resources, e.g. threads, for the execution of the actors.

The levels below the root form a hierarchy of actors, with actors being a parent to the actors

they use for sub-tasks of their computations. An actor automatically is the supervisor of the

actors it creates and is responsible for handling their failures. [Akka, section 2.4] shows four

di�erent patterns for dealing with errors.

This error locality eases development of resilient applications that can still work despite failed

parts. Another feature of Akka that fosters this resilience is the ability to span an actor system

across multiple instances of the JVM, which can possibly also reside on di�erent computers

[Akka, section 2.2.1].

Messaging Messaging between Actors in Akka is implemented in two �avors:

• tell messages without a receipt (�re-and-forget), sent with the ! operator, and

• ask messages where a result is explicitly expected by the sender, sent with ?.

This thesis mainly uses the latter message style, as all messages during a time step in simulation

need to be processed before the time step can be �nished.

2.7 Scala

Scala is an object-functional programming language that has been developed at the EPFL in

Switzerland since 2001. The name is an abbreviation of Scalable language [OSV08, ch. 1], which

points out one emphasis of its design: extensibility. Like every modern programming language,

Scala is a too diverse language to be discussed in all details in this thesis. Therefore, a few
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certain aspects will be highlighted in which Scala di�ers from other modern languages. Some

of these aspects are also especially di�erent compared to Java, the language whose ecosystem

Scala largely shares.

Though designed from the ground up, Scala is intended to coexist and cooperate with the Java

programming language [OSV08, ch. 29]. It is internally compiled to the same bytecode format

as Java [Lin+15] and thus can run in the same execution environment, the Java Virtual Machine

(JVM). The JVM is an intermediate layer between the compiled code and the actual execution

engine (hardware + operating system), making it possible to run the same compilation on

di�erent hardware architectures, like x86 or PowerPC; see [Lin+15] for the detailed speci�cation

of this environment.

Scala constructs can also be used from Java code, and vice versa. [OSV08, ch. 29.1] presents

an overview of the ways Scala’s specialties are mapped to Java constructs.

2.7.1 Functional programming

Functional programming has two main ideas [OSV08, ch. 1]: functions as �rst-class members of

the language and using input–output mappings in functions instead of mutating a global state.

Scala supports both these concepts.

To understand what makes functional programming special, it will help to look at the usual

style of programming �rst: Classical imperative programming revolves around changing some

global state using statements. In contrast, functional programming uses expressions that return

a value based on their input parameters without changing these or any global state (i.e. the

expressions are side-e�ect free).

When functions are treated as �rst-class members of the language, they can be used instead

of a value. They can be passed as an argument or returned as a result of a function and can

also be saved in variables. This allows for totally new approaches to composing programs, e.g.

composing a collection library with �lter functions passed into a method [Sue12, ch. 1.1].

Scala also implements functions of higher order, which take functions as their argument. One

pretty good example is the aforementioned filter function of a collection that implements the

necessary boilerplate for �ltering: looping over all elements, evaluating a given predicate and

discarding the element or not. The predicate itself is supplied as a function:

In the example, only the elements that are < 5 are kept in the collection. The predicate was

supplied as an inline expression without declaring a function body. This is one example of

Scala’s concise syntax that removes much of the boilerplate code required in other languages.
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1 scala> val someElements = List(1,2,3,4,5,6,7,8,9,10)

2 someElements: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

3

4 scala> someElements.filter(_ < 5)

5 res0: List[Int] = List(1, 2, 3, 4)

2.7.2 Read-only data structures

Being a functional programming language, Scala has a strong focus on immutability [Bra11].

Therefore, variables can be de�ned as immutable by declaring them with the val keyword

instead of var, which is used for mutable variables.

Immutable values can also be marked as lazily evaluated by using the lazy val keyword. This

can be handy for situations where a value might not be used, so a costly calculation can be

deferred to the �rst usage (or skipped if the value is not used).

2.7.3 Traits

Scala, like most object-oriented programming languages, only supports single inheritance,

that is, every class can have only one parent class it extends. In traditional object-oriented

programming (OOP), interfaces can be de�ned which add method signatures to a class.

Unlike other languages, Scala does not support interfaces, but only traits. Traits can be seen as

rich interfaces [Bra11], in that they supply both the method signatures and their implementation.

A class can extend a number of traits, e.g. to combine di�erent behaviours. This is widely used

in the collections library; refer to the Scala API documentation for more information.

An example class de�nition from RoadHopper’s source code:

1 class SignalsJourneyActor(val timer: ActorRef, val signalBus: ActorRef, val route: Route)

2 extends Process(signalBus) with ActorLogging {

3

4 // class implementation

5 }

Here, the class SignalsJourneyActor is derived from the class Process and enriched with the

ActorLogging trait. Such a trait is a typical example: it adds one speci�c aspect, logging in this

case, to a class, so that the implementation does not have to be repeated over and over again.

The parameter signalBus is passed from the class to its parent’s constructor.
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2.7.4 Pa�ern matching

Pattern matching [OSV08] is a concept not known from many other languages. It is comparable

to a switch-case statement, but more powerful in so far that it returns a value, which can then

be assigned to a variable. This makes it possible to assign a variable with a single, complex

pattern matching instead of deeply nested if-then-else structures:

1 val normalizedOrientation = orientation match {

2 case o if o < -Math.PI => o + (Math.PI * 2)

3 // ensure that the interval is open at the right end

4 case o if o % (Math.PI * 2) == Math.PI => -Math.PI

5 case o if o >= Math.PI * 2 => (o - Math.PI * 2) % (Math.PI * 2)

6 case o if o >= Math.PI => o - (Math.PI * 2)

7 case o => o

8 }

2.7.5 Case classes

Case classes are classes in Scala declared with the case class keyword. The compiler automatically

adds a number of methods to them which e.g. make them directly usable in pattern matching

[Bra11]. The parameters of a case class are marked as immutable by default, i.e. the val keyword

can be left out.

A case class can be used in a pattern matching like this:

1 case class Message(type: String, text: String)

2

3 // msg is a variable containing a Message case class instance.

4 msg match {

5 case Message("stop-sign", _) => println("Stop sign ahead")

6 case Message("traffic-light", "red") => println("Red traffic light ahead")

7 case Message("speed-limit", "50") => println("Speed limit set to 50 km/h")

8 case _ => println("Unknown message")

9 }

By using _, the value of the corresponding variable is ignored for matching, i.e. the text could

have any value if the type was “stop-sign” above. Likewise, a message of type “tra�c-light”

with value “green” would be matched by the last clause and result in “Unknown message” being

printed.





3 Driving cycle generation concept

This chapter gives an overview of the driving cycle generation concept created for this thesis.

The �rst section explains the developed three-step driving cycle process, followed by sections

that further detail the concepts for each of the steps and the necessary implementation work.

The implementation is not covered here, but in the following two chapters.

3.1 The driving cycle generation process

Given the requirement of generating a driving cycle from a map, the following two steps must

be performed:

1. get a track based on the map

2. get a time–velocity pro�le for the track

Step 1 is already possible with existing routing software, though not yielding a result as

detailed as required for the purpose of this thesis. Hence, the chosen solution needed to be

adjusted and extended.

To realise the second step, some model for creating the velocity pro�le for a given road (part)

is required. A simple, generic mathematical model could not be found in existing literature.

Instead, an approach to simulate a tour along a given track was used. The second step can thus

be split into two parts:

2. simulate a trip along the track, and

3. calculate the time–velocity pro�le from the simulation data.

The full process is also depicted in �gure 3.1.
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Figure 3.1: The three-step driving cycle process

3.2 Map processing and enrichment

To power map-based applications, a number of data sources can be considered, depending on

the level of detail required for the particular use case. For normal map display and routing

with human-readable instructions, most free-to-use map services will already su�ce. They do

however not provide enough detail to realize more complex use cases, like the task discussed in

this thesis.

3.2.1 Mapping service choice

In the context of this thesis, as much data as possible must be extracted from a map, especially

an as exact as possible course of the road, including speed limits, tra�c signs etc. In order to

ful�l these requirements, several mapping services were considered.

The most popular free-to-use map services include Google Maps and Bing Maps (by Microsoft).

Popular commercial vendors (in no particular order) are Mapbox
8

and HERE
9
. All these map

services also include a routing service, also called “directions API” by some vendors. The output

of these routing services is mostly coarse-grained, consisting of the track on the map and

instructions for a human driver
10

. They are therefore not su�cient for the base of a simulation

road.

The mentioned commercial vendors, Mapbox and HERE, also o�er a free-to-use version of

their map service, but these versions also do not o�er the data depth required for the basis of a

driving simulation.

An alternative source of freely usable map data is the OpenStreetMap project (see also

section 2.3). This data is usable under its license terms, see [ODbL]. Additionally, as the raw

8 http://www.mapbox.com/
9 https://www.here.com/, recently sold by mobile phone manufacturer Nokia to a consortium of German car

manufacturers.

10
See e.g. the documentation for the Google Maps Directions API at https://developers.google.com/maps/

documentation/directions/intro; retrieved 2015/09/11.

http://www.mapbox.com/
https://www.here.com/
https://developers.google.com/maps/documentation/directions/intro
https://developers.google.com/maps/documentation/directions/intro
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graph data is available, all information necessary for the cycle generation can be extracted; the

graph can even be enriched with data from additional sources (see section 4.1.2).

3.2.2 Routing

The input of a routing task are 2. . . n waypoints, between which a route is then searched. To

�nd the best route, a metric is applied to all ways. Examples of such a metric are “shortest path”

or “fastest path”. The result is a list of instructions to get from one waypoint to the next, or

more detailed data.

Routing based on OpenStreetMap data is implemented in various existing solutions for di�er-

ent platforms. The most prominent ones are Open Source Routing Machine (OSRM), Graph-

Hopper and MapQuest, all three featured on the project’s o�cial platform openstreetmap.org.

The former two are also open source and free software, which makes them a good choice for

the basis of this thesis: Both softwares already provide the required general feature set to get

maps at a detail level required for this thesis. They are also �exible enough (as their source code

is available and may be modi�ed) for the adaptations necessary to get all needed data.

As the technology was deemed a better �t, GraphHopper was chosen for this thesis over

OSRM. Its internals and the necessary adaptations to its data model and import process are

described in chapter 4.

3.3 Driving cycle simulation

As stated above, no mathematical model exists to directly get a (realistic) travelled speed for

an arbitrary given road segment at the accuracy needed for a driving cycle. Additionally, such

an abstract model would require adaptation for every new set of parameters (driver behaviour,

vehicle parameters, etc.)

Therefore, a di�erent approach was chosen for this thesis: Simulating a driving cycle with

models for the vehicle and the driver’s behaviour. These models should be derived from

literature and embedded into a simulation framework. From the simulation results, a data basis

for calculating velocity pro�les can be gathered. The software for this was created speci�cally

for this thesis and is called RoadHopper.

An overview of the system architecture of RoadHopper is given in �gure 3.2. RoadHopper

was implemented on top of GraphHopper, using of the same software stack, of which the most

important components (the JVM and the embedded Jetty web server) are included in the diagram.

http://openstreetmap.org
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Figure 3.2: RoadHopper’s system architecture
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Figure 3.3: The system model for simulating a driving cycle

Newly introduced into the stack are mainly Akka and Scala, both of which were presented in

chapter 2.

Given the three components road, driver and vehicle, it immediately becomes clear that driver

and vehicle form a controller–plant system, with the driver as the controller steering the plant.

The driver gathers its input from the road and the vehicle state. The resulting system model is

depicted in �gure 3.3.

3.3.1 Simulation models

Creating a complete model of a human driver and a vehicle is a huge task that must be split

into smaller parts to be manageable. Also some of these parts are negligible depending on

the desired properties and the application of the model, so they can be left out or replaced by

simpler approaches.

The usual driving tasks can be grouped into di�erent categories based on their characteristics

like the involved sensory channels, as e.g. done in [Mac03]. The major tasks related to vehicle

steering are lateral and longitudinal control. While the former will have some in�uence on the

spatiotemporal behaviour of the vehicle and thus the resulting driving cycle, this behaviour
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mainly results from the longitudinal control decisions, that is accelerating and decelerating (as

the direct consequence of the driver’s impact on the respective pedals).

As a result, the simulator was designed to ignore lateral control for now. To have a safeguard

against irrational and unrealistic behaviour—like travelling a road bend with a speed that would

let the vehicle derail—some measures were taken, which are described in greater detail in

chapter 5.

The vehicle model was also designed to be as sophisticated as necessary for �rst simulation

results, but not overly complicated. Therefore, a lot of physical e�ects that a�ect the vehicle

performance, like the suspension or power train e�ciencies, were not taken into account.

Instead, a proof-of-concept model was developed that can be extended as it is required for the

next steps. The detailed design and the rationale behind it is shown in section 5.4.4. Future

development possibilites of the model and simulation are discussed in sections 7.2 and 7.3.

3.3.2 Simulator concept

For the simulation, a time-discrete implementation using �xed-frequency scheduling was chosen.

Fixed intervals are necessary to get a deterministic behaviour of mathematical operations, e.g.

integrations or di�erentiations of the input over time.

For the timing frequency, the aim is to have a good compromise between short enough

time slots so that small changes don’t get lost and an e�cient computation of the simulation,

which leads to the chosen frequency of 100 Hz. Compared to the human vision frequency of

25 Hz, this would also mean an oversampling factor of four, without even taking into account

processing times. [Mac03] cites various sources that show human response times between 140

and 180 ms for near-ideal conditions. The 10 ms between two simulation steps should therefore

have enough safety margin to model any possible future applications.

As the �nal scope of the thesis with respect to the models was not known in advance,

special emphasis was put into keeping the model extensible and the existing components easily

replaceable with new implementations. The components are therefore loosely coupled and

should follow the single responsibility principle [Mar12], that is, they should only have one

task to do. This is the reason why e.g. the simulation timer and the signal bus are two separate

components, though both of them are vital for the simulation runtime as a whole.

Another focus was scalability: As the possible range of applications for a driving simula-

tion is very wide, the system should be as �exible as possible to cope with upcoming future

requirements. Though not everything can be taken into account from the very beginning—as
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Figure 3.4: The default GraphHopper user interface with a route selected

more and more requirements will be discovered and/or understood more deeply throughout

development—, the architecture should still be able to cope with future growth.

Because the �nal goal is to get a driving cycle from the simulation results, data must be

recorded throughout the simulation. For this application, only observing the velocity as an

external value would already be enough. For a more detailed analysis of simulation behaviour,

it is however desirable to save also internal states of the system. Therefore, a generic concept to

store all signal values in short time intervals was implemented instead of an external velocity

observer. This was combined with a module that extracts the data and reports it back to a client

for further processing. Analysis scripts to plot graphs from this data were also created, but they

are not part of RoadHopper itself.

3.3.3 User interface

GraphHopper already exposes a web interface for input (coordinates) and output (the routing

results). A screenshot of this interface can be seen in �gure 3.4. This interface was extended to

support starting a simulation and playing back its results, see section 5.6.1.

Although not in the strict sense of human–machine interface, Application Programming

Interfaces (APIs) are also an interface from the system to the outside world. In addition to the

existing API endpoints of GraphHopper, new ones were created to power both the �ne-grained
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route display and the simulation control (starting, status reporting, results view). The signal

values recorded during a simulation can also be fetched by using a dedicated endpoint, see

section 5.7.

3.4 Driving cycle computation

As explained in the simulator concept above, telemetric data is constantly stored during the

simulation. This data can be used afterwards to calculate the driving cycle (i.e. a t–v diagram)

and perform other statistical, spatial or temporal analyses.

As the recorded data is already time-indexed, the computation of a t–v driving cycle is a mere

matter of extracting the data into a plotting-compatible format. Interpolation is not required, as

the data can be recorded with a frequency of up to 100 Hz.

If multiple simulation runs on the same road should be compared, it might be more sensible

to plot the velocity as a function of the travelled distance s instead of using the time t. This

way, the model’s reactions to certain road conditions like tra�c signs, slopes or road bends can

be better assessed compared to a time-indexed representation.





4 Map processing with GraphHopper

Based on the concept given in the previous chapter, this chapter details the �rst step of the driving

cycle process—extracting road data from a map. The software used for this is GraphHopper,

which was also already introduced in chapter 3.

This chapter consists of three main sections, which detail

1. the data model and import process, and the changes made to them,

2. the routing algorithms used, and

3. the basic processing of the routing results.

The construction of the road model is detailed in the next chapter, as it rather belongs to the

simulation models than to GraphHopper.

4.1 Data model

To make GraphHopper routing work, it needs data to perform its algorithms on. For routing,

only a subset of the information available in OpenStreetMap is actually required. Therefore, a

two-step import process is used to (1) reduce the data set and (2) convert it to an optimal format

for routing.

The reduction step actually removes all OSM ways that are not tagged as roads, e.g. walls

of buildings or footways. Subsequently, all nodes are ignored that are not part of one of the

interesting ways. The remaining nodes are grouped into two parts:

• tower nodes—intersections of two or more ways, which makes them interesting for

routing—, and

• pillar nodes which only belong to one way in the graph and are only relevant for drawing

the route in the map.



34 4 Map processing with GraphHopper

Tower nodes also have a unique ID within GraphHopper by which they can be directly addressed.

In contrast, the pillar nodes are stored as an edge property and can only be retrieved if the edge

is known.

Only tower nodes can have additional properties, so the import process was changed to

convert pillar nodes to towers if a tra�c light or other relevant info is attached to them. The

relevant code part is located in GraphHopper’s OSMReader class. This change does not a�ect

other parts, e.g. the routing, even though these converted tower nodes only have one or two

edges they are connected to, in contrast to the three+ normal tower nodes have.

4.1.1 Import process

GraphHopper can import an OpenStreetMap data dump in both the XML and PBF formats. The

dump can also contain only a small part of the world
11

.

To tell tower and pillar nodes (and the other, irrelevant nodes) apart, GraphHopper actually

further divides the �rst import step into two parts, so the total process consists of steps 1a, 1b

and 2
12

.

In step 1a, all ways are traversed and all nodes are marked; these markings are simple counters

incremented each time the node is used. The nodes can then be grouped by their counter value

n:

• n = 0: not part of a road⇒ ignore

• n = 1: pillar node

• n ≥ 2: tower node

During step 1b, all nodes, ways and relations which are relevant for the routing graph are

processed. For tower nodes, an entry in the node map is created, together with a set of node

�ags (bits stored in a large integer).

OSM ways are split at tower nodes and the pillar nodes in between are transformed into a list

of points for the edge. This list is stored as a property of the edge, making the pillar nodes only

reachable through their edge; unlike tower nodes, they don’t have a unique ID which makes

them directly accessible.

Endstanding pillar nodes are also automatically converted to tower nodes (e.g. for blind

alleys).

11
To speed up development, a large part of the work for this thesis was actually conducted with a dump of only

the Karlsruhe City area. Larger data sets were only used for validating �nished results.

12
This numbering is introduced in this thesis and not part of the original GraphHopper source code.
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tower

pillar

Figure 4.1: An example road network with tower and pillar nodes

Step 2 is dedicated to optimising the routing graph: The contraction hierarchies are introduced

to speed up routing, and small separate subnetworks are removed. Such networks can e.g. exist

because of road barriers that isolate a road network (e.g. in military facilities).

4.1.2 Storage Extension

The GraphHopper storage implementation already has an integrated mechanism for adding

information to the routing graph: the so-called storage extensions. One of these extensions can

be added per graph, and it can contain additional �ags for nodes and edges.

The �ags are simple bit sets embedded in a large integer. By using a custom helper class

(called encoder in GraphHopper), these details can be abstracted away and arbitrary numerical

values can be stored. GraphHopper itself also uses this pattern e.g. for encoding the allowed

speed: The speed is divided by a �xed factor and only the (rounded) result is stored. For the

speed, this saves three bits per edge: The speed limit is capped at 155 km h
−1

, it would thus

need dld(155)e = 8 bit. When using a scaling factor of �ve, the values to store are e�ectively

shrinked to 0 to 31 (
155/5), thus needing only dld(32)e = 5 bit.

For usage in this thesis, a custom storage extension (RoadSignExtension) was developed to

store additional information. Over the course of developing RoadHopper, information about

road signs and tra�c lights was added. As we only need information if either of them is

present
13

, they can be encoded in the same block. In general, information that is mutually

exclusive can be encoded using the same “place”, like it is done here.

There are (currently) three possible values of the road sign �ag:

0: no road sign

1: tra�c light

2: stop sign

13
Road signs and tra�c lights both are mutually exclusive properties of a node in OSM; cf. documentation on

the highway tag in OSM.
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Using the formula dld(n)e = dld(3)e = 2, we see that this piece of information will use 2 bits.

The fourth state available with two bits is currently unused. There are at least two possible

usages for this:

1. “give way” signs (as an alternative to the stop signs, requiring a slowdown, but no halt

for one second as stop signs), or

2. a distinction between regular tra�c lights and button-operated pedestrian tra�c lights.

If a tra�c light has a subsidiary stop or “give way” sign attached to it, this is currently not

respected at all; the e�ect of such a sign on the cycle would likely be negligible, as the signs

would only be valid if the tra�c light is turned o�, which will not happen during the simulation.

What might be more interesting is modelling the green arrows placed at tra�c lights in Germany

which during red phases e�ectively turn them into a stop sign for right turning vehicles. As the

behaviour would then be di�erent for right turns and straight driving, the green arrow might

have a partly higher in�uence than the aforementioned subsidiary signs.

4.2 Routing algorithms

GraphHopper supports two shortest path routing algorithms in di�erent variants:

• A* in uni- and bidirectional variants

• Dijkstra in the variants uni-, bidirectional and one to many

By default, the bidirectional Dijkstra variant is used
14

.

In addition, contraction hierarchies are supported, with di�erent possible weights: “fastest”,

“shortest” or a user-de�ned weight
15

.

4.3 Route processing

For routing, GraphHopper is fed with a list of n points, n ≥ 2. All points between the start and

end are called intermediate points. The output of the GraphHopper routing run is a list of edges

that, when traversed, lead from the start point to the end point, going over the intermediate

points in their given order.

14
see https://github.com/graphhopper/graphhopper/blob/bb5de58/core/src/main/java/com/graphhopper/

routing/AlgorithmOptions.java#L58; visited 2015/10/01

15
see class com.graphhopper.GraphHopper, method setCHWeighting()

https://github.com/graphhopper/graphhopper/blob/bb5de58/core/src/main/java/com/graphhopper/routing/AlgorithmOptions.java#L58
https://github.com/graphhopper/graphhopper/blob/bb5de58/core/src/main/java/com/graphhopper/routing/AlgorithmOptions.java#L58
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Every edge has a base and an adjacent node, both of which are tower nodes, and pillar nodes

in between which are only relevant for drawing the route. For every edge, all nodes (tower and

pillar) must be taken into account, as we are interested in all coordinates along the route. To get

a road as the basis for a simulation, this node list must be transformed into a format suitable for

simulation. From this step on, everything described here has been newly implemented for this

thesis.

For every set of two consecutive nodes in the node list, a straight road segment is con-

structed, with the two nodes’ coordinates as start and end points. The �nal road is a sequence

of straight road segments directly attached to each other, without any bends in between. Why

such curved segments don’t need to be fully implemented for the simulation will be detailed later.

In addition to the coordinates, the road is enriched with the road sign (if any) and its allowed

maximum speed according to the information tagged in OpenStreetMap. As road signs belong

to a node, they are added to the road segment that ends at that node.

4.3.1 Calculating the road segments

A lot of information is required for the simulation, which can only be partly read from the

GraphHopper database (like the allowed maximum speed).

The length and grade are not directly stored, but can be derived from the coordinates. This

operation is not only done in preparation of the simulation, but also during it. It should therefore

be fast to not slow down the simulation. This is why the accurate formulae given e.g. in [Mey10]

are not usable: they would require a lot of costly trigonometric operations.

To speed up calculations, the earth is assumed to be a sphere. Therefore the haversine formula

can be used [Mey10], which makes calculating the distance between two points possible with

little e�ort. The formula can also be found in section 2.2.3. For the earth’s radius rE , the medium

ellipsoid radius of 6371 km from WGS84 is used; see table 2.2.

The grade of the route is calculated by dividing the height di�erence by the length:

д =
∆h

l
= tan (α ) (4.1)
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A graded road also means a slight di�erence between the length calculated above and the

actual length travelled along the road. The actual length can be calculated using the well-known

trigonometric relations:

lbase = l (4.2)

lroad =
∆h

sin (α )
=

lbase

cos (α )
(4.3)

As can easily be seen from �gure 4.2, the relative error between the two lengths is

f =
lroad − lbase

lbase

=
lroad

lbase

− 1 =
1

cos (α )
− 1. (4.4)

The relative error is plotted in �gure 4.3. For grades from 0° to 20°, it is less than 6 %. For higher

grades, the error increases (10 % for 25°, 15 % for 30°), but such steeply graded roads are relatively

rare. In fact, for rural roads in Germany, grades higher than 8.0 % (≈ 5°) are already considered

exceptional [RAL, ch. 5.3], so the di�erence between base and actual road lengths should be

very small, even if accumulated over longer distances.

As the errors are quite small, they are currently ignored in the simulation.

4.4 Road postprocessing

After the road has been created from the list of edges, it is further processed to insert more

information required for the simulation. This includes adjusting the speed limits for some parts,

e.g. the section right before a turn, or curves in the road that cannot be travelled with the

allowed speed.

The postprocessing is tightly coupled to the simulation model and therefore not described in

detail in this chapter. Refer to section 5.4.2 instead.
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This chapter describes the architecture, design and implementation of RoadHopper, the driving

cycle simulation software created for this thesis. In section 5.4, the genesis of the simulation

models is also presented.

The later sections also give a short overview on how to use RoadHopper and on postprocessing

the gathered data.

5.1 Architectural overview

Categorizing the components of RoadHopper is possible in di�erent ways. With the simulation

as the central part of the software, the most logical approach to describing the system is a

division into two categories, simulation and infrastructure, with two parts each:

Simulator engine The simulation runtime with the core and utility components (results

logging etc.)

Simulation models The control blocks that implement the actual system model.

Simulator
engine

Simulation
models

GraphHopper
integration

User
interface

Simulation Infrastructure

GraphHopper

Je�y

Akka

Figure 5.1: RoadHopper: architectural overview
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GraphHopper integration The code that extracts data from GraphHopper as a basis for the

simulation, and extensions to GraphHopper for storing simulation-relevant data.

User interface The client-side (HTML/JavaScript) parts for controlling RoadHopper and their

server-side servlet pendants.

The parts with their most important external dependencies are also depicted in Figure 5.1.

The simulator engine consists of the main components timer and signal bus, which are

discussed in the next section. All other simulation components are connected to either the timer

or bus, depending on their purpose.

The infrastructural components are covered in sections 5.5 to 5.7.

5.2 Simulator model

Being a—hugely simpli�ed—model of the real world, the simulation consists of a number of

components which represent physical or biological systems or parts thereof. These models are

naturally an incomplete depiction of their real counterparts. Instead, they serve as a means

to abstract a complicated system to a level where it is possible to comprehend its role in the

simulation. In addition, these simpli�cations make the simulation possible in the �rst place:

running a fully-�edged model of a road–vehicle–driver system would probably require a lot

more computing power than usually available, without necessarily leading to better results.

All components of the simulation are intended to function independently of each other to the

largest possible extent. This especially means that all data should be kept locally and only be

modi�ed by the component responsible for it (i.e. the (sub)system that in�uences the real-world

property). This approach helps avoiding the problem of overlapping changes to the same data

by di�erent components.

In addition, extensibility is a primary goal of the whole simulation model. Therefore, the

models currently used for the vehicle and the driver can easily be exchanged for more accurate

counterparts. Also, additional components can be introduced to make the simulation more

realistic, e.g. other vehicles in tra�c or a more realistic physics model (varying road surfaces, a

wind generator etc.)

Given these requirements, it was pretty obvious that the basis for the simulator model needs to

support highly parallel processing and easy decoupling of components. The actor model seems

a natural �t here and was therefore chosen as the implementation model for the simulation.
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5.2.1 Timer

The central component of the simulation is the timer, which serves as the internal system clock.

As such, all components that need to have a notion of time need to be registered with the timer

before the simulation starts.

The timer controls the progress of the simulation and makes sure that all components are

called at the right time using an internal schedule of future invocations. All invocations of a

component need to be registered with the timer. If multiple components are scheduled for one

time slot, they are called in an arbitrary order
16

.

Simulation start and stop

The simulation is started and stopped by explicit messages sent to the timer. The start is done

from outside the simulator system, the �nal message is sent from within it.

At the start of the simulation run, the timer calls each component for a �rst time to let them

initialize their internal state and schedule the �rst actual invocation. Afterwards, a loop is

executed over and over again until the timer is instructed to stop the simulation.

The stop message is sent by the road watcher which keeps track of the already travelled and

remaining route (and updates signals like s for the travelled distance and pos for the vehicle’s

current position). The simulation must be ended by the timer as most components do not know

enough about the system state to decide on their own if they should schedule another invocation

or not. Hence, the simulation would continue endlessly without the explicit stopping procedure.

After receiving the stop message, the timer will not advance the time any more. Also no

further scheduled invocations will be performed, so components cannot rely on scheduled calls

to be really made.

Time steps

For every time step, three consecutive steps are executed by the timer:

1. tell time (all components)

2. update step (only scheduled components)

3. act step (only scheduled components)

16
In fact, multiple components are called in parallel by the timer.
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Figure 5.2: Example of signal updates throughout the delta cycles

While the time step is only used for synchronization, update and act are two distinct, but

connected phases of the clock step: During the update step, all components can update their

data, which can then be used in the act phase for reacting (e.g. by adjusting the commands as a

reaction to a change in velocity or the travelled distance).

5.2.2 Signals

The separation into update and act implemented in the timer proved to not su�ce for complex

cause-and-e�ect chains, such as the driver–vehicle system. Therefore, other simulation models

were investigated to �nd a better solution. One such simulator model, which was chosen as the

basis for RoadHopper’s model, is part of VHDL (Very High Speed Integrated Circuit Hardware

Description Language).

The signal model of RoadHopper uses three concepts de�ned in VHDL:

Signals The central part of the signal model: A named container which can hold an arbitrary

value (numbers, strings, objects). Signals are written to by one component and can be

read by an arbitrary number of components. The signals are managed by the signal bus,

which also keeps track of all components that can read or write signals.
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Processes A unit of computation which can be invoked by the signal bus. Processes can listen

to a number of signals, including the time, and update any number of signals.

Delta cycles One process execution inside the signal bus. Multiple delta cycles might be run

inside one time step. An example of one such time step with three delta cycles is depicted

in �gure 5.2.

The signal-based scheduling model is implemented in addition to the timer described above,

which still provides the central clock with its discrete time steps. Inside every time step, the

signal bus now performs one delta cycle. Additional delta cycles will be appended depending

on the signal value updates done during the cycle.

Besides being a cleaner approach than mixing the two responsibilities of time and data

synchronization, the separation also opens a possibility to have multiple centrally coordinated

signal busses, e.g. for di�erent vehicles or to separate components within one vehicle.

5.3 Simulator implementation

As mentioned above, the actor model was chosen for the simulation framework: The simulator

and all its components (including those based on signals) are implemented as separate actors.
The underlying actor engine is Akka, a software created by the Swedish company Typesafe.

Their creators describe it as

a toolkit and runtime for building highly concurrent, distributed, and resilient

message-driven applications on the JVM
17

.

Some other parts, which will be described later, are implemented without the actor model, as it

is not necessary for their purpose.

All parts of RoadHopper run inside an instance of the JVM (Java Virtual Machine). The inner

workings of the JVM and Akka will not be described in detail here; instead, their documentation

should be consulted.

5.3.1 Actor system setup

The base of each actor-driven application is an actor system, which can be created as part of a

regular Java-based application. The simulation is set up by a few lines of code, which create an

actor system and all the components. See listing 5.1 for an example with two components.

17 http://akka.io; visited 2015/10/01

http://akka.io
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1 package info.andreaswolf.roadhopper.simulation

2

3 import akka.actor.{ActorSystem, Props}

4 import info.andreaswolf.roadhopper.simulation.signals.SignalBus

5 import info.andreaswolf.roadhopper.simulation.vehicle.VehicleFactory

6

7 val actorSystem = ActorSystem.create("signals")

8

9 val timer = actorSystem.actorOf(Props(new TwoStepSimulationTimer), "timer")

10 val signalBus = actorSystem.actorOf(Props(new SignalBus(timer)), "signalBus")

11

12 // vehicleParameters and route are supplied from the outside

13 val vehicle = new VehicleFactory(actorSystem, timer, signalBus).createVehicle(vehicleParameters)

14 val journey = actorSystem.actorOf(Props(new SignalJourneyActor(timer, signalBus, route)), "journey")

Listing 5.1: Simulation actor system setup

As described above, the central simulation component is the timer. Before handing over

control, the components must be registered with the timer, using RegisterActor messages. The

answer to these messages must be awaited to con�rm that the component has been registered.

Once the surrounding setup code has handed over control to the timer, it will automatically

run the simulation until the end. An example code for this is printed in listing 5.2.

1 Future.sequence(List(

2 timer ? RegisterActor(signalBus),

3 timer ? RegisterActor(vehicle),

4 signalBus ? SubscribeToSignal("s", journey)

5 // further subscriptions would go here

6 )) onSuccess {

7 case _ =>

8 println("Starting")

9 timer ! StartSimulation()

10 }

Listing 5.2: Component registration and simulation start

5.3.2 Messaging

Most of the messages in RoadHopper are implemented using the ask pattern, to allow controlling

time �ow: When a component is called via ask, it returns a future that is completed after the

answer to the message has arrived. Therefore, the timer can use the futures to control if all

components have �nished the current time step.
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val future = Future.sequence(List(
, ,

))

Future.sequence(List(
,

))

Future { ... } Future { ... }

Future { ... }

Future { ... }

Figure 5.3: Example of chaining futures

As it returns a future, sending a message with ask does not block the application. A future can

have code applied that will be executed as soon as the future is completed. Multiple such futures

can be merged with Future.sequence(). An example can be seen in listing 5.2 and �gure 5.3.

A component can in turn use the same pattern to call other components and wait for all their

results. It will then wrap the futures returned by the messages to its subordinate components

into one single future. As soon as this future has �nished, it is safe to return an answer to the

timer. The di�erent call levels during one time step form a tree-like hierarchy, with the timer

being the root. Each leaf needs to �nish before its parent node can �nish, and their parent nodes

in turn need to wait for their children. In other words: each parent–child relation is a “waits

for” relation. These relations are both transitive, so a parent also waits for its grandchildren.

The timer, being the parent to all other components, waits for all of them to �nish.

5.3.3 Signal bus implementation

The call-and-wait pattern described above is also used in the signal bus. Apart from that, the

processes are completely di�erent: The timer can �nish each time step after one round of update

and act messages, while the signal bus does neither know in advance how many rounds (delta

cycles) there will be nor which components to call for each step. An example of a time step

with three delta cycles is depicted in �gure 5.2.

Each process can update every signal by sending an UpdateSignalValue message to the signal

bus. The update is not executed immediately, but delayed until all running processes have

�nished, i.e. the end of the current delta cycle. E�ectively, the signal values during one delta
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cycle are frozen. If necessary, signal updates can also be further delayed to a time slot in the

future.

This value freezing is the main advantage of using delta cycles: There is one point in time

where a list of all called processes is created (the start of a delta cycle) and until these processes

are �nished, no further processes will be invoked. This also means that a process must not

invoke other processes by itself. Nevertheless, a process can call other components, if they

are not a process (but a regular actor or normal object). Such a call should not be named an

“invocation”.

When sending messages or calling other actors, processes must make sure that they only

complete their invocation when all subsequent processing has been �nished. For that, they must

always use the ask pattern for sending messages (? operator) and collect all futures returned

from sending messages. When all these futures have completed, a response must be sent to the

signal bus, telling it that the component has �nished processing.

5.4 Simulation models

In this section, the detailed design and the rationales behind the three main simulation models

1. road,

2. driver, and

3. vehicle

are discussed. The general system model has already been shown in �gure 3.3.

5.4.1 Designs considerations

The road model naturally derives from the representation in OpenStreetMap and GraphHop-

per—there, a road is already deconstructed into single parts. These parts can be directly mapped

into a format suitable for the simulation. Given the considerations in the last chapter, no changes

to the road shape are required, which simpli�es the mapping. In contrast, the driver and vehicle

models deserve more attention.

The question of modelling vehicles and a human driver has been covered in great depth

already. Various models with di�erent intents have been proposed.

A good general overview of driver design considerations is given in [Mac03]. This paper also

features an interesting approach to driver–vehicle system modelling in general:
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To sum up, we see that the combination of human parameters and of mechanical

parameters enter into the process of driving in a manner which does not permit

their clear-cut separation. The car and the driver form, in a sense, an individuum.

This approach could not be followed for this thesis: not enough data and experience was

available to create such an integrated model. Also the intent of the simulation is to parameterize

the driver and use di�erent vehicles. Therefore, separate models were created instead, based on

examples from literature.

5.4.2 Road model

Coordinates
<lat, lon> Road model Elevation data

(SRTM)

Tra�ic lights
Stop signs

Street name

Speed limit

Turn detection Bend detection

Grade/length calculation

OpenStreetMap data other data source postprocessing step

Figure 5.4: The road model components

The road model contains the route to travel in the simulation, delivering parts of the stimuli

necessary for the driver to decide on its actions. To deliver its value, it must incorporate informa-

tion from various sources. The di�erent kinds of information and the necessary postprocessing

steps are depicted in �gure 5.4.

The road consists of a list of connected segments the vehicle drives along. Each segment can

optionally have a road sign or tra�c light at its end. The single segments are constructed from

the routing coordinates, using the information from the GraphHopper database and elevation

data from the Shuttle Radar Topography Mission (SRTM). The length and grade of the road are

calculated using the formulae discussed in section 2.2.3.



48 5 Driving cycle simulation with RoadHopper

Compared to its real-world counterpart, the road model is simpli�ed in a few aspects:

• the road has only one lane

• there are only straight segments with abrupt changes in orientation at the transition

• the road category (highway, residential etc.) is not evaluated

• di�erent kinds of road surfaces (concrete, bitumen etc.) are not incorporated
18

As the simulator model does not include a lateral control, i.e. it only controls the longitudinal

speed of the vehicle, straight road segments are su�cient for simulating; it is not necessary to

create bended roads that can be followed by the vehicle (or simulate such a movement based on

the straight road).

The other simpli�cations can be removed once the vehicle could use this information (road

surface) or the driver is more sophisticated (multiple lanes, road category). The road category

could also be used for various other simulation purposes, which are detailed in chapter 7.

Speed limit adjustments

In general, the driver can directly take the target velocity from the road, as detailed below in

the driver model. At some occasions, a reduction of this velocity is however required. It was

for now decided to incorporate these changes already in the road model, to keep the driver

implementation simpler. This could as well be changed in favor of a more complex target

speed derivation model in the driver (which would be preferable in case multiple vehicles with

di�erent driver characteristics are to be simulated).

As the vehicle–driver model discussed below does not account for lateral steering, the

direction is not changed by the driver. Instead, the vehicle orientation is abruptly changed

once the border between the two road segments was passed (i.o.w. the vehicle always points

in the direction of the current road segment). Changing the direction of a vehicle induces an

acceleration in lateral direction (centripetal force), for which certain limits need to be kept in

order to keep the driving experience comfortable. The lateral acceleration can be calculated to

alat =
v2

2 · r
, (5.1)

with r being the radius of the curve.

18
This information is encoded in OpenStreetMap with the key “surface”, see https://wiki.openstreetmap.org/

wiki/Key:surface; visited 2015/10/01

https://wiki.openstreetmap.org/wiki/Key:surface
https://wiki.openstreetmap.org/wiki/Key:surface
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Figure 5.5: U-turn road: two road examples
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Figure 5.6: Curve radius approximation

The following situations must be considered separately:

1. turns—a sharp bend between two road segments, usually to change from one street to

another, that can only be travelled with a very low speed

2. road bends—a curvature in the road, going over several segments, which can be travelled

with a relatively high speed compared to a turn

3. road signs, tra�c lights—these are already covered in the road model construction process

The general approach to both road bends and turns is to check if the regular speed de�ned

for the segments before and after is feasible. If this speed would result in a too high lateral

acceleration, the speed is reduced accordingly.

This behaviour relies on the underlying data containing only well-formed curvatures. This

means that e.g. u-turns must be modelled as multiple segments with an increasing change in

direction vs. the direction before the turn. One single change is not possible, see �gure 5.5. For

most of the data, this can be taken for granted; for extremely rare edge cases special precautions

should be put in place (e.g. throwing a warning during road construction if a turn angle is

greater than ca. 135°).

Road bends Curves are modelled as sequences of straight segments in OpenStreetMap. A

real curve can be approximated by laying a virtual circle through the straight segments. The

circle radius is determined by viewing the two segments as an arc. With the full length being

l = 2πr , the radius can be calculated to

r = lroad

α

2π
(5.2)

To better approximate real road curvatures, only the halves of the segments next to the arc should

be used, as shown in �gure 5.6. The other halves are either part of the preceding/succeeding

arc, or belong to the straight road before/after the road bend.
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Figure 5.7: A roundabout with road bend help

lines

Figure 5.8: A pre-turn road segment inserted

by the road postprocessing

turn angle speed limit

> 110° 7 km/h

> 80° 10 km/h

> 45° 15 km/h

> 30° 25 km/h

≤ 30° unchanged

Table 5.1: Pre-turn road segment speed limits

This implementation should be treated as preliminary, as the length and shape of the curves

di�ers greatly e.g. between cities and highways. On highways, the segments are often relatively

long, proportional to the allowed speed, as the roads are built for an optimal �ow of tra�c.

Most highway curves can thus be assumed to not need a speed reduction; [Zie10] mentions a

curve radius of 500 m at which no change in driver behaviour is noticeable anymore. Problems

have been observed however with junctions, where often the allowed speed of > 100 km h
−1

of

the main road is also applied to the junction parts.

In cities, the segments can be very short and require some speed reduction. There are certain

situations—most notably smaller roundabouts—where the allowed speed is physically impossible

to travel.

Turns Turns require a huge decrease in speed compared to a straight road, as the direction is

changed with a very small radius.

The radius approximation used for bends would not work here: the segments before and

after a turn are often so long (see e.g. in �gure 5.8) that the virtual curve arc would directly go
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coe�cient proportional integrator di�erentiator

value −0.0069 −2.59 × 10
−6

s
−1

5.35 × 10
−5

s

Note: The software implementation of the controller uses controller coe�cients converted to ms.

Table 5.2: PID controller coe�cients from [LM09]

through the surrounding buildings. Therefore, a �xed radius is assumed instead, depending on

the turn angle.

To realise the necessary speed change, a short segment with a very low speed limit right

before the turn is introduced. The length of this segment is currently �xed to �ve meters, and

the speed limit depends solely on the angle. An example of such a segment can be seen in

�gure 5.8. The speed limits in table 5.1 are currently used for the pre-turn segment. They were

calculated based on an assumed comfortable acceleration of 5 m s
−2

, which was derived from

literature such as [FN98], where a range of 0.35 g to 0.40 g is mentioned as the comfortable

acceleration range.

5.4.3 Driver model

For validation of the general simulator approach, some experiments were conducted using a

strongly simpli�ed model of the driver. This �rst implementation was discarded in favor of a

model proposed in literature and should not be further discussed here.

A huge number of di�erent approaches for modelling a human driver has been published.

[Mac03] gives a good general overview of the topic and provides insight into various modelling

ideas. Besides the �nally implemented approach from [LM09], a few others have in�uenced the

system design and should therefore also be presented here.

An early and very detailed model of the interaction of driver and vehicle is presented in

[Don78], with a special focus on lateral steering. [HM90] discusses a model containing various

blocks for the body parts involved in steering, like the neuromuscular system around the arm,

and the inherent time delays of human signal processing. These two have in�uenced the general

design of the system and should also play a role in further re�ning the model at hand.

The model proposed in [HM90] is further detailed in [MH93]. The latter also gives a de-

tailed explanation why a single-loop system is too simple for lateral steering. As we focus on

longitudinal steering, this should not be further detailed here.

A particularly interesting take is presented in [LM09], where longitudinal and lateral control

tasks of a driver are separately implemented using controllers. The controller coe�cients were
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Figure 5.9: Velocity controller and driver PID controller

derived from driving simulator experiments and a following linear regression analysis. They

are printed in table 5.2.

The controllers used by the model is one single PID controller each, which leads to a very

simple structure of the whole driver implementation. This made the solution a good �t for

validating the general simulator model.

Velocity control

For the longitudinal control part of the model, the delta between target and actual velocity is

fed as the input into the PID controller.

The target velocity is fetched from a velocity-dependent part of the road ahead. This so-called

lookahead distance is computed to

slookahead =
v2

2 · b
(5.3)

with b being the comfortable braking deceleration in m s
−2

. [LM09] recommends b = 8.0 m s
−2

,

but this was found to be very high, resulting in a too short lookahead distance. The value was

at �rst lowered to 4.0 for the tests conducted for this thesis and later reduced again down to 1.0.

A detailed discussion of the reasoning for this is included in section 6.3.

The system part deriving the target velocity is depicted in �gure 5.9. The estimator takes all

road segments within the lookahead distance into account and selects the minimum allowed

velocity as the target velocity

vlimit = min

{
vlimit,seg

}
∀ seg ∈ slookahead (5.4)

with seg being a road segment.
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Directly using the allowed speed on the current road segment would lead to a too optimistic

result for most tra�c conditions, as it assumes a negligible tra�c load. To compensate for that,

a general factor of 0.9 is applied to the speed limit, reducing the allowed velocity by 10 %. This

also helps compensating an observable velocity overshoot when accelerating from standstill.

The resulting velocity di�erence vdi� between the target and actual velocity is fed to the

PID controller. The controller was implemented using coe�cients from [LM09]. They are also

printed in table 5.2 for reference.

Tra�ic sign behaviour

The velocity control task of the driver includes reactions to everything that might a�ect the

allowed speed of the vehicle. Besides the road bend/turn behaviour discussed in the road model,

this especially includes tra�c lights and signs like stop signs.

Tra�c lights are already part of the road model, but currently have no functionality imple-

mented behind them. They are therefore always treated as if they were green.

Stop signs must trigger an always-stop behaviour with the driver—according to o�cial

regulation e.g. in Germany, a vehicle must always come to a halt [StVO, Anlage 2]. Therefore,

when encountering a stop sign within the lookahead distance, the driver switches to a di�erent

operating mode. In that mode, it stops the vehicle, waits for a second and then accelerates again

to the target velocity it used before encountering the stop sign.

5.4.4 Vehicle model

For the vehicle model, special emphasis was put on modelling the power train, as it is the most

relevant component for simulating a driving cycle. The model is similar to the ones discussed

in [SHB10, Fig. 8.14] and [GME07, Fig. 14]. In addition, the driving resistances were modelled as

part of the wheels. As no lateral control is required, the steering part was completely left out.

The main devices within the power train are the engine (in�uenced via the gas pedal) and

the brakes (controlled with the brake pedal). The torque released by the engine is transmitted

to the wheels through the transmission, normally involving a complex physical model for the

coupling, which is left out for the sake of simplicity. The vehicles used as a basis also have a

�xed transmission factor, so no gear changing needed to be modelled.
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Figure 5.10: Model of the vehicle input train

Power train input

Figure 5.10 shows the input/output model from the power train. αin is the output of the driver,

which serves as the input for both gas (αin > 0) and brake pedal (αin < 0).

Both the engine and the brakes do not directly react to changed driver input, but show some

delay e.g. due to inertia of the various components. This is modelled using PT1 controllers

directly after the driver input. Their time constants were estimated based on literature, but

should be given further attention when re�ning the model. Also the vehicle exhibits some

resistance to acceleration due to inertia, which is modelled as part of the wheels.

Gas and brake pedal outputs both are modelled as linear components, with a value range of 0

to 100. In reality, these components are however nonlinear [SHB10] [Mit14]; this is discussed

again in section 6.2.

To achieve the pedal value range, the huge ampli�cation factors for the two PT1 controllers

are necessary. The initial values of ±500 were educated guesses based on the observed output

of the PID controller. They were later reduced when it had become apparent that the driver

model was too aggressive.

Transmission

The transmission is modelled as a simple PT1 controller with a �xed transmission ratio as

included in table 5.3. The time constant was estimated to 0.1 s. The usage of a PT1 controller

for modelling the transmission was suggested in [SHB10, ch. 8.3].

[SHB10] also includes an additional dead time element right after the PT1 controller, which

was not included in the model, as the cited source contained no indication of a realistic value

for its time constant. When re�ning the model, such a component should be added as soon as

the time constant of the existing PT1 controller has been validated.
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part/system parameter Opel Ampera small car unit

vehicle mass 1732 1325 kg

cw 0.27 0.29 —

drag area 2.57 2.4 m
2

engine maximum torque 370 200 N m

maximum power 111 84 kW

maximum rot. speed 12000 12000 min
−1

transmission translation factor 9.4 10 –

wheels rolling friction coe�cient 0.012 0.012 —

radius 0.334 0.32 m

maximum braking force 500 500 N

The maximum braking force was estimated based on [Mit14, �g. 9.34].

Table 5.3: Vehicle parameters; source: MATLAB driving cycle computation model used at HEV

Engine

The engine was modelled with the parameters given in table 5.3, which were taken from the

existing Matlab model for reverse driving cycle calculation. Although present in the Matlab

model, no e�ciencies are currently applied to the engine or the mechanical power train.

1 val loadFactor = signals.signalValue("alpha*", 0.0).round.min(100.0 toLong).max(0.0 toLong)

2 val wheelAngularVelocity: Double =

3 // make sure the vehicle won’t roll backwards; even if it is, the engine will only move it forward

4 Math.max(0.0, signals.signalValue("v", 0.0)) /

5 (2.0 * Math.PI * vehicleParameters.wheelRadius / 100.0)

6

7 // the engine’s rotational speed in [1/s]; if the engine reaches the velocity limit, rotation is set

8 // to infinity to make the torque very small so the wheel/engine velocity does not exceed the limit

9 val rotation = wheelAngularVelocity match {

10 case x if x == 0 => 0.00001

11 case x if x * vehicleParameters.transmissionRatio > (vehicleParameters.maximumEngineRpm / 60) =>

12 Double.PositiveInfinity

13 case x => wheelAngularVelocity * vehicleParameters.transmissionRatio

14 }

15 val M = Math.min(

16 vehicleParameters.maximumEngineTorque,

17 loadFactor / 100.0 * vehicleParameters.maximumEnginePower / (2.0 * Math.PI * rotation)

18 )

Listing 5.3: Engine torque calculation

The (delayed and ampli�ed) gas pedal input α∗ is used as a linear load factor, which directly

in�uences the torque released by the engine. The torque calculation source code is printed

in listing 5.3. The other required parameter is the current engine rotation speed. The engine
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Figure 5.11: The driving resistances

Fres = Feng −

(
Fbrake + Facc + Fclimb + Froll + Fair

)
(5.5)

=
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cW · A · ρ · v
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= fr ·m · д · cosγ

= m · д · sinγ
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=
i

rw
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Figure 5.12: The driving equation as implemented in RoadHopper’s vehicle model

and wheels are coupled back-to-back by the transmission. Therefore, the wheel rotation speed

directly translates to the engine (multiplied by the translation factor); small loss e�ects due to

mechanical distortion by the applied momentum are assumed to be negligible. If a power train

e�ciency is introduced, these mechanical losses should be incorporated.

Driving resistances

Like the braking force, driving resistances contribute a decelerating moment to the driving

equation. In the current model, all these moments are applied directly to the wheels; see

�gure 5.11 for a block diagram of the parts involved.
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Figure 5.12 shows the resulting forces applied at the wheel [Bra13]. As can be seen, most

components of the driving equation as shown in section 2.5 were implemented. The only thing

left out is the mass factor for the acceleration resistance.

Completely missing in both equations is the wheel slip, i.e. the losses occuring at the

wheel–road contact. These should also be integrated in a higher-�delity model.

Additionally, the wheel friction coe�cient is constant (e�ectively assuming an ever constant

road surface), despite di�erent road construction materials and weather conditions. Some other

factors also play a role for the rolling friction, but these are negligible [Mit14, ch. 2.1] and can

be left out.

The model also assumes the air density ρ to have a constant value of 1.2 kg m
−3

, which is

approximately correct for an environment of T = 20
◦
C and p = 1013.25 mbar. However, as

these conditions change, the air density also quickly changes (ρ ≈ 1.14 kg m
−3

for T = 35
◦
C

and ≈ 1.34 kg m
−3

for T = −10
◦
C). As the air resistance is proportional to v2

and thus one of

the bigger factors in the equation for higher speeds, a change in the air density also a�ects the

total driving resistance relatively strong.

Accelerating force The accelerating force Facc applied to the vehicle can directly be derived

from the equation in �gure 5.12: The resulting force Fres in the equation must be 0 according to

the Third Newtonian Law of Motion. Therefore, the accelerating force is

Facc = Feng − Fresistance =m · a (5.6)

= Feng − (Fbrake + Fclimb + Froll + Fair) (5.7)

From this, we can directly derive the current vehicle acceleration a:

a =
1

m

(
Feng − Fresistance

)
(5.8)

5.5 Integration into GraphHopper

RoadHopper relies on GraphHopper for all map-related tasks. Therefore, a tight integration

between the two software products is required. GraphHopper itself o�ers di�erent methods of

integration: An interface based on the HTTP protocol with an accompanying web interface, and

direct access to the internal data structures and services via the com.graphhopper Java package.
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Extending the web interface is easily possible by plugging in additional end points that provide

their services under a distinctive URI. These end points are implemented as Java Servlets. New

servlets were created for these purposes:

• retrieve more extensive information on the road

• controlling the simulation (start, get status, get results)

• retrieve measurement data (see section 6.1.2)

For all these end points, accompanying frontend functionality was integrated into the existing

JavaScript code of GraphHopper’s web UI.

Additionally, the server integration class GraphHopperServer was replaced with a custom

class to integrate the new servlets.

5.6 Running a simulation

A simulation in RoadHopper can be run via one of two default ways:

1. using the RoadHopper web UI

2. with a call to the API endpoint /roadhopper/simulate

This section only describes the web UI, which internally uses the API endpoint.

After startup, RoadHopper exposes its user interface via HTTP. The default port used is

8989, so the address is http://localhost:8989/ if RoadHopper runs on the same machine as

the browser. As the port is not the standard HTTP port 80, it must explicitly be speci�ed when

entering the URL.

The basic user interaction concept of RoadHopper has been inspired by GraphHopper (and

almost every other popular mapping service): After selecting two points on the map (right

click → “Set as start/intermediate/end”), the route is automatically calculated and highlighted

on the map, see �gure 5.13a. Instead of selecting the points on the map, they can also be entered

as either an address or coordinates. The addresses are internally resolved using a service called

OpenStreetMap Nominatim19
.

The route visualization in GraphHopper displays the whole route as one long segment.

To support debugging, this was changed for RoadHopper: now each single road segment is

19
See https://wiki.openstreetmap.org/wiki/Nominatim for more information; visited 2015/09/18

http://localhost:8989/
https://wiki.openstreetmap.org/wiki/Nominatim
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(a) With a route selected

(b) Road segment detail information

Figure 5.13: RoadHopper user interface

drawn with a random color to get a contrast between them. The visualization in both cases is

implemented using Lea�et
20

.

When clicking on a segment, further information about it is displayed in a popup box, again

to support debugging (see �gure 5.13b).

The simulation is started with a click on the “Simulate” button beneath the input �elds. A

command is issued to the server, to which it responds with a con�rmation and the simulation’s

identi�er (�gure 5.14). This identi�er is used for tracking the simulation status.

By using the API endpoints directly, multiple simulations can be run without manual user

interaction. This was used to gather the results discussed in chapter 6.

5.6.1 Simulation data display in the browser

Simulation data can currently only be displayed in retrospective, after the simulation run was

completed.

Live status

As a status indicator during the simulation run, the current simulation time is shown next to

the “Simulate” button.

20
A JavaScript library for interactive map display, see https://www.leafletjs.com; visited 2015/09/18

https://www.leafletjs.com


60 5 Driving cycle simulation with RoadHopper

Figure 5.14: Simulation results displayed in the map

An extended live progress view could e.g. include the current vehicle position, current speed

and the remaining distance to travel. Additionally, if the driver is extended to support di�erent

action modes, this could also be added to the simulation progress view, at least in a special

debugging mode.

Playback

After the simulation has �nished, all data that is necessary for a simulation playback in the

browser is transferred to the client. The data can then be played back by clicking the button

next to the time slider. The slider can be used to navigate to an arbitrary position in the tracked

time. The playback is based on an Lea�et.Playback
21

, an existing plugin for Lea�et, the mapping

library used for displaying the map.

The simulation playback will show a marker at the current position, pointing into the direction

the vehicle is heading (see �gure 5.15). Also visible on screen (but outside the screenshot area)

21
available at https://github.com/hallahan/LeafletPlayback; visited 2015/09/29

https://github.com/hallahan/LeafletPlayback


5.6 Running a simulation 61

The blue circle shows the position currently selected in the graph

Figure 5.15: Simulation playback with position marker

is a box with the vehicle’s current velocity. This could also hold more telemetric data like the

current vehicle grade.

5.6.2 Data storage

Simulations can possibly create huge amounts of data. RoadHopper makes no exception here,

though currently to a smaller degree due to its rather simple simulation models. Also much

data is discarded directly after the simulation has run. For the tests performed for this thesis, a

sample of all signal values was taken every 50 milliseconds (f = 20 Hz). This simulation data is

stored in memory at runtime. Also all road data is stored in memory.

To keep data between server runs for further analysis, it should be stored in a persistent data

storage, e.g. a database. The most widely used type of databases are relational databases, which

store data in a row-based format using a �xed schema (very much like normal tables). The cells

of such rows can store either simple values (like strings and numbers) or a reference to another

record.

Relational databases have been around for multiple decades and were the go-to data storage

for a long time. They are very convenient for �at data structures, but are not very well suited

for complex object structures (the so-called object–relational impedance mismatch [Ire+09]).
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{

result: {

250: {

direction: 1.5292135708293981

position: {

elevation: 122,

lon: 8.38488440398377,

lat: 49.010427161155334

},

speed: 0

},

...

},

simulation: "146fef12bd0",

status: "finished",

time: 334000

}

Listing 5.4: Simulation status in JSON

time,v,s,M

50,0.0,0.0,0.0

100,0.0,0.0,0.0

150,0.0,0.0,0.0

200,0.0,0.0,0.0

250,0.0,0.0,0.0

300,0.0,0.0,0.0

350,0.0,0.0,0.0

400,0.0,0.0,0.0

450,0.0,0.0,0.0

500,0.0,0.0,0.0

550,0.0,0.0,0.0

600,0.0424394011339587,3.373559376469073E-4,200.0

650,0.2015608261734605,0.005341521861560992,200.0

700,0.40646010840509667,0.0194018026941671,200.0

750,0.629322632419306,0.04413605695006531,200.0

...

Listing 5.5: CSV simulation data export

As the signal values in RoadHopper can also be complex values like a coordinate or a complete

road segment, the relational storage model is not a good choice. To put a nested object structure

into the database, the data would need to be either serialized to a format like JSON, defeating the

purpose of the relational model (easy searchability), or stored in various tables and linked via

relations. Instead, OrientDB—a database that directly supports storing complex documents—was

chosen for a proof-of-concept implementation.

For validating the simulation results of RoadHopper, a comparison with measurements

performed in [Rap13] was done. This data was converted into a format similar to the signal

values format and is also stored in the database. The exact process and the results are discussed

in section 6.1.2.

5.7 Simulation data export

Simulation data can be represented in various ways for di�erent purposes:

1. For simple usages like the browser playback mentioned above, only a small—externally

observable—subset of telemetric data is necesssary, with a low time resolution (one to

�ve data points per second; the default of the used visualization library is four).
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2. To get an insight into the simulator’s behaviour, in contrast, internal state of the simulation

engine should be viewable, with a rather high time resolution. This export should be

�exible to allow di�erent usecases depending on the analysis goal.

To account for both these demands, two data exports are integrated into RoadHopper. The

�rst, simple use case is ful�lled by an export to JavaScript Object Notation (JSON) that is

delivered to the browser after the simulation has �nished. This import includes the following

data for each time step:

• timestamp (in ms)

• position (lat/lon; in °) and elevation (in m)

• speed (in m s
−1

)

• direction of travel (in rad)

An example of the JSON data is shown in listing 5.4. The default time resolution is one step

every 250 ms. Judging from the experiments performed during development, this is su�cient

for a smooth visualization.

The second, more sophisticated export is based on comma-separated values (CSV). Listing 5.5

lists an example of the resulting data. The export can include values of arbitrary signals,

depending on the con�guration. Exports can be performed during and after a simulation, but

there is no indication during a simulation that it is still running (the status can be obtained by

querying the SimulationStatus servlet).

The signals to export are handed to the servlet via the (multi-valued) signal parameter. An

example URL to export the velocity and acceleration would look like this: http://localhost:

8989/roadhopper/signalvalues?simulation=<simulationid>&signal=v&signal=a. Further sig-

nals can be added by appending &signal=<name> to the URL. The simulation ID can be obtained

from the response sent when starting a simulation.

http://localhost:8989/roadhopper/signalvalues?simulation=<simulationid>&signal=v&signal=a
http://localhost:8989/roadhopper/signalvalues?simulation=<simulationid>&signal=v&signal=a




6 Results

To prove that the assumptions made during the design of a model hold, it must be tested and

validated afterwards. Therefore, tests were performed on the implementations of simulator and

simulation models. Section 6.1 describes the test methodologies, the test data used and the results

that were observed. From the interpretation of these results in section 6.1.1, recommendations

for improving the simulator models are derived in section 6.3.

In addition to synthetic tests with custom scenarios, measurement data from [Rap13] was used

for comparing the models to real-world behaviour. This is discussed in detail in section 6.1.2.

6.1 Simulation behaviour tests

For simulated driving cycles, a lot of possible scenarios could be tested. In fact, the space

of feasible inputs (waypoints to travel between) is nearly endless, given the total length of

worldwide road networks of about 35 million kilometres [WFB, Country comparison: roadways].

Two types of tests can be performed while developing a simulator like the one discussed

here. The one type are short ad-hoc tests that test one small aspect on a speci�c data set, to

validate a new feature or bug�x. To test the simulation behaviour during development, lots

of such small-scale experiments were conducted, using a variety of di�erent road situations.

Examples are testing the slowdown behaviour around a turn or the acceleration after a tra�c

calmed area. They can easily be repeated using any �tting road segment, therefore no scenarios

were standardized here. Such scenarios could however be valuable for increasing the coverage

of RoadHopper with (automated) tests, see next chapter.

The other type are longer tests with prede�ned scenarios that validate the whole model or

a signi�cant part of it. The scenarios that were developed are detailed further below in this

section, the results are discussed in the following sections.

Several driving cycles, e.g. the CADC, divide driving situations by scenarios, depending on

the (primarily) used road category. CADC uses the categories urban, rural and motorway; see

e.g. [Bar+09] for details on the parameters. [Lia06] uses the additional categories “stop and go”
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scenario from to length

urban1 49.010 557°N/8.412 732°E 49.006 257°N/8.371 421°E 4.4 km

urban2 48.998 409°N/8.390 551°E 49.046 476°N/8.377 419°E 6.5 km

rural1 49.010 557°N/8.412 732°E 49.036 208°N/8.707 223°E 26.9 km

rural2 47.997 097°N/7.847 558°E 47.920 599°N/7.787 933°E 11.5 km

highway1 49.010 557°N/8.412 732°E 48.893 425°N/8.702 835°E 33 km

highway2 48.783 088°N/9.181 459°E 48.594 989°N/8.869 599°E 36.1 km

Table 6.1: Test scenario routes

and “suburban”; the boundaries between all �ve categories are de�ned with fuzzy logic rules

there. For these rules, expected travel distances and velocity distribution plays a role.

The categorization by road and (expected) velocity distribution also seems a good �t for

testing a model, as each of the categories highlights di�erent aspects. For the tests conducted

for this thesis, three types of scenarios were used:

• In urban scenarios, the observed velocities are relatively low, while vehicles often acceler-

ate and slow down. Tra�c will strengthen this e�ect. Additionally, road bends and turns

are observed relatively often.

• Rural scenarios have higher velocities and less tra�c interruptions by e.g. road bends

and turns than urban roads.

• For highway scenarios, the highest speeds can be observed as there are no disturbances by

interfering tra�c from other directions, leading to relatively uniform velocity distributions

for low tra�c conditions on the road. Also the roads are usually shaped to allow high

travel velocities, e.g. with high bend radii.

The three categories were chosen because they can be distinguished relatively easily. Stop and

go tra�c is not possible with the current, tra�c-less simulation model, and suburban and rural

areas are likely harder to distinguish in Germany than the USA, where the test data for [Lia06]

was gathered.

To get a common ground for testing the simulation, two scenarios for each of the three

categories were de�ned, which are listed in table 6.1. For maps of all routes see �gure 6.1. The

scenarios were run in a batch, to quickly get reproducible results.

The basis for all tests was the OpenStreetMap dump baden-wuerttemberg-latest.osm.pbf

downloaded from http://download.geofabrik.de/ on 2015/09/06.

The tests were conducted using the Opel Ampera model as speci�ed in table 5.3.

http://download.geofabrik.de/
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(a) urban1 and urban2 (b) rural1 and highway1

(c) rural2 (d) highway2

Figure 6.1: Test scenario routes: map view
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6.1.1 Test results

The results from the simulation are depicted in �gure 6.2. The graphs show a comparison of the

actual velocity v and the target velocity vtarget as applied to the velocity controller.

Some observations from the graphs should be discussed here:

• The velocity control overshoots in many situations. This is especially visible in �g-

ure 6.2f at around 420 s, while �gures 6.2a and 6.2c show much smaller, but longer lasting

overshoots at around 220 s and 750 s, respectively.

• The di�erent plots all show some oscillating movement around the target velocity even

for stable conditions. Noticeable are the huge di�erences in �gure 6.2e at around 750 s,

which can likely be accounted to a comparingly steep grade in the road.

• One striking example of odd driver behaviour is the increase in velocity in �gure 6.2b at

200 s, while vtarget decreases only a few seconds later. The reason for this errant behaviour

is yet unknown; further analysis of the exact driver behaviour and road conditions at this

very location would need to be performed.

• A similar error appears for the brake to halt in �gure 6.2a at 25 s. The driver should

normally not get the vehicle to halt where only a decrease in velocity (in this case due

to a tra�c calmed area on the KIT campus) is required
22

. The same behaviour could be

observed for turns, where the velocity also needs to be reduced to a comparatively low

level (7 km h
−1

to 15 km h
−1

). The behaviour is similar to the observed overshooting.

6.1.2 Conformance with real-world measurements

With the �rst simulation runs described above, the simulator was proven to work in gen-

eral. To validate the model itself, the simulation results were additionally compared to real

measurements.

Comparing measurements performed under actual tra�c conditions is a di�cult topic. The

data is often distorted by long periods of standing, especially in cities during rush hour. A

general impact on driver steering behaviour will also be noticeable, depending on the tra�c

density. A comparison of measurement data thus should only take times into account when the

vehicle was actually moving. Such small excerpts from a large data set are called driving pulses
in [Lia06].

22
In another test on the same route with the small car model described in table 5.3, the e�ect was even larger—the

vehicle stopped for a few seconds at this position before continuing the journey.
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(e) Scenario highway1
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(f) Scenario highway2

Figure 6.2: Simulation results before optimization
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Figure 6.3: Noise in the GPS measurements, examples taken from measurement Wednesday 2

cat. day of week pulse from to

urban Wednesday 2/72 49.008 945°N/8.387 321°E 49.005 926°N/8.386 946°E

urban Wednesday 2/74 49.005 866°N/8.386 908°E 49.000 184°N/8.385 916°E

urban Wednesday 2/91 48.994 580°N/8.393 265°E 49.002 164°N/8.394 418°E

h’way Friday 4/86 48.971 654°N/8.454 237°E 49.015 694°N/8.466 511°E

Table 6.2: Measurement scenario data

To prepare the comparison, the data set from [Rap13] was separated into driving pulses using

the algorithm listed in appendix A. The velocity present in the data was calculated from the

position change in the GPS data [Rap13] and not fetched from the vehicle electronics.

Upon examination, the measurement data was found to contain a lot of noise, especially in

densely populated areas (city centres) where the GPS signal might be weakened by buildings;

see �gure 6.3 for two examples. The single velocities might therefore be inaccurate, but all in

all, the data should still be reasonably good, as long as the noise in the position data is not too

high (e.g. positioning the vehicle within a block of buildings). Over a full driving pulse, the

medium velocity should still �t, as the start and end positions and the distance between them

should be pretty accurate.

Additionally, the measured GPS positions were matched to their nearest road segment using

an algorithm published by the GraphHopper developers
23

. This algorithm returns the edges

found next to the points. The start/end markers are therefore sometimes o�set by a few dozen

meters and need to be manually adjusted; the positions listed in table 6.2 are already changed

to conform to the measured positions.

The simulation was run for every data set listed in table 6.2, followed by an examination of

the results. Based on the �ndings, model parameters were adjusted to change the behaviour to

23
Available at https://github.com/karussell/map-matching/.

https://github.com/karussell/map-matching/
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match the measurements more closely. Three iterations were performed with the following

model properties:

A) the unchanged model as presented in chapter 5

B) vtarget set to 60 % of its original value

C) B plus the measured current velocity v o�set by a random value vo� ∈ {−4.0 . . . 3.0} (to

emulate errors in reading the speed indicator)

All adjustments in the model are related to the PID controller input value vdi� , to keep a close

link between changes performed and the new simulator behaviour. The PID controller input is

adjusted every 500 ms, to try to emulate the frequency of human steering [MH93].

Similar experiments could be conducted with the vehicle parameters, although the PID con-

troller might show an unexpected reaction to such changes to the vehicle.

In contrast to the driving pulses in the measurements, the vehicle does not slow down to a

halt at the end of the road. Instead, the driver assumes to continue driving, but the simulation

ends because the simulation road was �nished.

Despite several attempts to change this behaviour, no satisfactory parameter set for the driver

model could be found that would work under all conditions. The general idea that was tried is

to insert a short (1 m to 5 m) segment with a speed limit of 0.01 km h
−1

at the end of the road.
24

This results in the vehicle slowing down, but either it stopped long (10 m to 30 m) before the

end or it did not slow down fast enough to come to a halt at the desired position. The likely

cause of this was identi�ed to be the lookahead distance, which was either too high (leading to

a too early slow down) or too low (= braking too late, thus not stopping in time; the vehicle

then still had a leftover velocity when the simulation ended).

A similar behaviour was observed for stop signs, which the vehicle missed under certain

conditions. As the driver switches to a di�erent operating mode when encountering a stop sign,

it will always come to a halt, but it might already be past the stop sign at this position. Using

parameters that allowed stopping in time for one sign, other signs were still missed, so more

research in this area (and a standardization of the tests so they can be conducted repeatedly

and reliably) is clearly necessary.

24
A limit of 0 km h

−1
will be �ltered by the velocity controller.



72 6 Results

0 20 40 60 80 100 120

0

5

10

15

t / s

v
/

m
/
s

measured

simulated A

0 20 40 60 80

0

5

10

15

20

t / s

v
/

m
/
s

measured

simulated A

(a) Simulation A

0 20 40 60 80 100 120

0

5

10

t / s

v
/

m
/
s

measured

simulated B

0 20 40 60 80

0

5

10

t / s

v
/

m
/
s

measured

simulated B

(b) Simulation B

0 20 40 60 80 100 120

0

5

10

t / s

v
/

m
/
s

measured

simulated C

0 20 40 60 80

0

5

10

t / s

v
/

m
/
s

measured

simulated C

(c) Simulation C

Figure 6.4: Measurement Wednesday 2/91 (left) and Wednesday 2/74 (right) compared to di�erent

simulation parameter sets
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6.2 Interpretation of results

Judging from the plots in �gure 6.2, the target velocity is already kept quite well. The perfor-

mance concerning the limit velocity (are the limits always kept?) is not included in these graphs

and a detailed discussion should be omitted here for the sake of brevity. In case the target

velocity is not kept, this might be a result of a too short look ahead distance, thus the driver

would be informed too late about the new velocity. In this case, tuning slookahead (see eq. (5.3))

might help.

b, the comfortable braking deceleration, in�uences the lookahead distance from which the

driver gathers the target velocity. It was therefore identi�ed as the variable of choice to change

for tests. Several values were tested (1 m s
−2

, 2 m s
−2

and 4 m s
−2

), but with each, the driver only

reacted correctly for some simulation scenarios, but failed in others.

Striking are some strong overreactions to changes in the target velocity, the source for which

has yet to be found. A number of possible reasons come to mind:

1. Real-world measurement data was used to calculate the coe�cients of the driver’s PID

controller. As these were gathered from an analysis of a single driver with an unknown

number and type of vehicles [LM09], the whole model is probably not applicable here.

2. vdi� , the di�erence of target and actual velocity, is the only stimulus for the driver. Thus,

it cannot react to bent segments or changes e.g. in the road grade that would be obvious to

a human driver. Some e�ort was made to mitigate these e�ects for road bends by limiting

the target velocity. Graded roads are however not respected at all by the current driver.

3. The driver model was calculated from real data, which is likely not directly applicable to

an all-electric power train with e.g. its better torque characteristic at low speeds. This

would explain the overshooting in initial acceleration compared to measured acceleration

data. Additionally, the brake and gas pedals are modelled as linear components, which

does not eaxctly re�ect their real-word equivalent [Mit14, �g. 9.34].

4. Various model parameters, like the maximum braking force or the gains of the PT1

controllers in the power train, were estimated based on literature data. This data might

very well be wrong for the particular vehicle model, therefore leading to erroneous

simulation behaviour.

5. No tra�c is simulated, which would be required for a realistic simulation behaviour,

especially in cities. As an approximation, the global reduction of the target velocity was
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introduced. The comparison of the measurement’s overall velocity distribution with the

one from the simulation in �gure 6.4c leads to the conclusion that the global reduction of

the target velocity is already pretty similar in both cases.

As can be clearly seen in the plots in �gure 6.4a, the unchanged simulator achieves much

greater velocities than observed in the measurements. This is most likely a result of the lack of

tra�c in the simulation, which causes the slow down in the real world. Also the speed limit

is not always kept, which might be related to di�culties of the driver model with the vehicle

characteristics (higher acceleration/quicker response to changes than expected).

Comparing the plots to some driving cycles derived from real world measurement data already

shows a pretty good result for the adjusted models B and C. The time needed to travel the road

is similar to the measured values when taking into account the di�erent behaviour towards the

end of the road. Further analyses on a larger base of measurement roads would be necessary to

really judge the model in detail.

6.3 Improving the simulation models

The goal of a driving cycle simulation is to gather data that matches actual measurements as

exactly as possible. As shown above, this could partly be achieved, though more intensive

testing would be required to actually validate the models.

To get meaningful data, the vehicle model should accurately represent its real-world pendant.

Some e�ort in this direction has been made and the �rst results look promising. To create a really

accurate model, however, more data will be necessary. This includes a detailed performance

characteristic of the engine, power management including a battery (in case of an electric/hybrid

vehicle) and a transmission model, all these with proper loss characteristics.

The vehicle largely in�uences driver behaviour (how much force is applied to the pedals etc.),

so optimizing the driver is of little use as long as the vehicle model is not validated at least to a

certain degree or a driver model is used that can adjust itself to unknown vehicle characteristics.

Therefore, further work should put emphasis on improving and validating the vehicle model

before adjusting the driver.

The existing PID driver model should be validated against other sources and probably be

compared to other driver models that use di�erent control approaches. When sticking with the

existing model, the methods used in [LM09] could be used to gather new controller coe�cients

from measurement data, as those listed in table 5.2 seem to not �t the current model. Also the
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input should be extended to include more data than just the di�erence of actual and target

velocity.

As stated earlier, for the adaptive lookahead distance of the driver no satisfactory value could

be found. The varied parameter was the comfortable braking deceleration b, which is de�ned

in [LM09] with a value of 8 m s
−2

. Judging from the results when changing the value of b,

the lookahead distance must probably be calculated with a totally di�erent formula, e.g. not

depending onv2
butv or log(v2), which would lead to a more shallow increase of slookahead over

v .





7 Summary and outlook

This chapter summarises the preceding chapters with a special focus on RoadHopper’s imple-

mentation status and gives an outlook of the software’s future.

The summary discusses the driving cycle process and explains how far it was implemented,

concluding with a look on the implementation status of the di�erent models required for the

driving cycle simulation.

The outlook is divided into section 7.2, with a list of short-time implementable features for

improving the simulator, and section 7.3, where a more general vision of the topic and the role

RoadHopper could play is shaped.

7.1 Summary

The goal of this thesis was to get a process and the necessary software to generate driving

cycles based on a route taken from a map. The driving cycles should be created in a format

suitable for processing with third-party tools.

The foundation of this thesis is the three-step driving cycle generation process as described

in chapter 3. The three steps were successfully implemented. A special emphasis was put on

the second step, the driving simulation, as it is the most complex part of the process.

The �rst step of the driving cycle process is built on the already existing, open sourced routing

solution GraphHopper. The software was extended to add to the routing graph information

which is necessary for performing a simulation in the second step. Additionally, the existing

user interface of GraphHopper was extended to support displaying additional information about

the road and the simulation status.

To execute the second and the third step of the process, a new software called RoadHopper
was created. It is largely independent of GraphHopper, while still using some of the interfaces

o�ered by it, mainly to perform routing and extract information from the road network graph.

From this information, a digital road model is derived, on which a simulation is performed.
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The simulation is run by a time-discrete simulation engine. The simulator models are im-

plemented as independent blocks, also called processes, which are connected by signals. The

signals are wired to a shared signal bus, which also takes care of invoking a process if any of

the signals it listens to changes.

To avoid problems with the concurrent execution of blocks and signal updates, they use a

concept called delta cycles. Before a delta cycle, signal updates that were previously held back

are executed. Using their sensitivity lists, processes are then selected for execution if they listen

to any of the updated signals.

The simulation model status is discussed in its own section below.

The third step consists of calculating a driving cycle, i.e. a t–v diagram, from the data gathered

in the previous step. The diagram itself is only generated in a very rough preview version in the

frontend, which is not suitable for a detailed analysis. Instead, the raw values can be fetched

from the simulation engine. They can then be further processed using software like MATLAB

or Python’s Matplotlib.

7.1.1 Model implementation status

The simulation models were designed based on di�erent sources found in literature, among

them [LM09; SHB10].

Some parameters had to be guessed, as the existing literature just gave schematic overviews

of the parts without detailed information on the actual implementation. The most prominent

examples for this are the various PT1 blocks in the power train, where the coe�cients were

approximated based on the observed behaviour of the driver PID controller and educated guesses

on the delays occuring in the power train (based on other literature on power train modelling).

Clearly, due to these inaccuracies, the current state of the models is unsatisfactory to get

driving cycles that closely match real-world car behaviour. As the vehicle and driver are strongly

coupled, they should be viewed as one system, as proposed in [Mac03] already:

To sum up, we see that the combination of human parameters and of mechanical

parameters enter into the process of driving in a manner which does not permit

their clear-cut separation. The car and the driver form, in a sense, an individuum.

This becomes especially true when modelling the interactions on a detailed level, like the

neuromuscular systems steering the hands or feet. Adding these systems will bring inner

feedback loops into the driver–vehicle system depicted in �gure 7.1. Examples for this, though

more related to lateral steering, are given in [Don78].



7.2 Desirable features for RoadHopper 79

Road Driver Vehicle

Integrator/

Feedback

vlimit a

-

vcurr

s

Figure 7.1: Overview of the simulation models

As one intent of this thesis was to get a possibility for driver parametrization, a new integrated

driver–vehicle model should still try to isolate certain driver properties that can be modi�ed.

Examples for these properties could be the aggressiveness (eagerness to accelerate) and the

obedience to speed limits. This would allow modelling di�erent usage patterns of a vehicle,

which might result in greatly varying driving cycles.

7.2 Desirable features for RoadHopper

The current simulator, though fully functional, still lacks a few features that would make

experiments easier and faster to conduct. Also the simulation models could be extended in some

aspects to deliver more accurate results.

Some of those features which are easy to reach in a short term are described here. A broader

vision of what RoadHopper could become in the future is detailed in section 7.3.

7.2.1 Simulator engine

To conduct tests more reliably and reproducible, the internal state of the simulator at the start

of the simulation should be stored. Such a state vector could then be passed in again to restore

the exact same state. This would make A/B analyses of model variations a lot easier.

In addition to that, the models in general should support more parameters that are not

hardcoded in their implementation, but passed in from the outside. This way, simulations could

be run with di�erent model parameters without the need to recompile and restart RoadHopper.

7.2.2 Signal processing

The registration of signals should be simpli�ed—currently it is rather complicated: A component

(or the code instantiating it) must manually register all sensitivities (signals the component

listens to). The major drawback of this is that it scatters signal registration code all over the
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codebase, making the signal system hard to understand. To improve the simulation startup,

components should be able to declare their sensitivities, which would then be automatically

registered on instantiation.

The same goes for de�ning new signals: A process should be able to tell that it will write

to some signal, and then the signal name should be automatically registered. Another major

improvement would be strongly typed signals—if the type of a signal value is de�ned together

with the signal value, the Scala compiler could detect if a write is valid or not. The same goes

for read accesses, which would automatically return the correct type.

Closely linked to the signal write updates is another concept—guards. They should limit the

allowed values for signals, e.g. in the pedals or for the engine torque. If a value is exceeded,

either a notice should be logged or the simulation should be cancelled with an error, depending

on the gravity of the error. This would help detecting mistakes in simulator components that

would otherwise go unnoticed.

A problem that sometimes occurred during development are loops in the signal path. Prob-

lematic about them are endless loops that will occur if signals update each other or are updated

in a daisy chain pattern (A→B→C→A→. . . ). Such errors can be avoided by introducing a

deadtime block that delays a signal, thereby breaking the chain of updates. In the example, if C

was a deadtime block, the value would only be written back to A after a delay, thus not blocking

the current time step.

To help detecting such problems, the signal paths should be checked. The following ap-

proaches are possible to tackle this:

1. Check the paths at startup time, when the signals are registered. A problem here is that

the block types are not known to the relevant code parts, therefore deadtime blocks could

not be reliably detected. Additionally, the “writes-to” relations of blocks to signals are not

explicitly de�ned, while “reads-from” is de�ned through the sensitivities.

2. A more feasible, but slower, approach is to use the signal bus: It can keep all names of

signals that were updated in the current time step and can then throw an error if signals

are updated more than once
25

.

3. An approach that would address the problem even earlier is static analysis. With static

analysis, the source code of all components would be checked for read and write calls to

signals, making it possible to get an exact graph of signal–block relations. However, this

25
In some situations, multiple updates to a signal might be sensible. In this case, the limit should of course be

raised.
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would incur a greater amount of work, as no work into that direction has been done for

this project. Also, for certain general-purpose blocks like PTx blocks, the signal names

are passed as parameters, hence also the process instantiations would need to be checked,

in addition to the processes source code.

In the long run, implementing the �rst concept seems like the best solution; other parts could

also pro�t from a more explicit de�nition of the relations between blocks and signals. The third

approach would allow for a similar bene�t, but is more cumbersome to implement.

7.2.3 Vehicle model

The top goal for developing the vehicle model part is creating a more realistic representation of

the vehicle, to improve accuracy of the simulated driving cycles.

To get a more realistic simulation, tra�c should be added besides improving the vehicle itself.

This could be realised in two ways:

1. De�ne an abstract “tra�c load” that in�uences the driver’s decisions, e.g. by accelerating

and decelerating more often. This is a re�ned version of the general load factor of 0.6

already applied in the experiments described in section 6.1.2.

2. Simulate real vehicles that drive on the streets with independent drivers. The single

vehicle’s positions must be known to all drivers, to allow proper steering and avoid

collisions. Such a model would likely require lateral steering and a more �ne-grained

road implementation.

Implementing more than one vehicle would require namespacing the signals, or using di�erent

signal busses for the vehicle. The latter might be preferable for performance reasons, though

the e�ect of a larger number of writes to a single bus has not been examined. If the vehicle

busses are split, there must be some way to communicate information about surrounding cars

to a vehicle. One possibility would be a common global bus which hold at least the position and

heading, possibly also the velocity of each vehicle. Every process would then be able to access

this bus and get the required information from there.

7.2.4 Road model

The current road model also contains a bit of information that is only relevant for the driver,

e.g. the speed reduction before a turn. This information should be moved to the driver, freeing
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the road from unrelated data. The driver should instead create a kind of driving schedule at the

start, which could be used to already plan such low-speed areas and areas of higher attention,

e.g. near tra�c lights, once they are fully implemented.

Although tra�c lights are already part of the road model, they are currently in an always-

green mode, i.e. they have no state and behaviour attached and the driver also does not recognize

them. As for the behaviour part, several models can be imagined:

1. The most simple one would be a �xed schedule of e.g. 45 s for every phase, alternating

with a three or �ve seconds yellow period in between. The driver would then need to

watch the tra�c light while approaching it and react if its state changes.

2. A more sophisticated tra�c light scheduling would take the road category into account and

prolong the green phase on major roads, while shortening it for minor roads. This would

require embedding deeper knowledge about the type of intersection into GraphHopper’s

routing graph, as currently the category of the other crossing roads is unknown. It is also

possible that for some tra�c lights the schedule is already present in the OSM data set.

The initial state of a tra�c light might be randomized as the most simple approach. At the

start of the simulation, for every tra�c light the current state (red/green) and the time into

this state would be randomly selected. This way, the start conditions would change with every

simulation run, leading to more diverse results.

Alternatively, simulations should be initializable with a �xed state vector—as described above

already—to get reproducible results. The vector for the tra�c light state should be stored

together with the other simulation parameters, so that experiments could be reliably repeated.

Another part that could improve the simulation in various ways are road categories. In

OpenStreetMap, a number of road categories are distinguished
26

, ranging from ”motorway“

down to “service” for on-site roads within industrial areas etc. Knowledge of the road category

could be used by the driver e.g. to better estimate the possible velocity for a turn (for residential

roads, the achievable velocity will likely be a lot smaller than for main roads in cities).

Additionally, the road categories would be necessary for the sophisticated tra�c light model

described above.

Road categories are currently not part of GraphHopper’s data model, but could be added as

edge properties like described in section 4.1.2 (there, adding node properties is described, but

the process is the same for edges).

26
see https://wiki.openstreetmap.org/wiki/Key:highway; visited 2015/10/01

https://wiki.openstreetmap.org/wiki/Key:highway
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For a more sophisticated model of the road segments themselves, the number of lanes should

also be evaluated. The usefulness of this information largely depends on the degree to which

this is part of the OSM data already. Further research into this area would be necessary before

investing more time into creating a detailed multilane model with all the implications (implement

overtaking in the driver model etc.)

As for nodes, “give way” signs should be added, as they incur a necessary decrease in velocity.

This decrease could be done in two ways: either by implementing a slowdown segment right

before the sign, like it is done for turns, or by letting the driver react to the sign. The former

would be easier to implement, while the latter is a cleaner approach, as the road model should

not have to hold all the information that governs the driver behaviour; instead, the driver should

apply own intelligence to gather the target speed from all data present in the road model.

When implementing give way signs, a general model for right of way handling should be

introduced. There are di�erent situations like tra�c lights, stop signs, or no signs at all, that

require di�erent, but similar handling. For turns, no delays are currently applied, as the road

is always assumed to be empty. Until a full tra�c model is in place, a random delay could be

inserted at left turns to accommodate for oncoming tra�c.

Such a right of way model could also take street names into account—they are already encoded

in roads, but currently not evaluated. The street names could e.g. be used to detect a change

from one street to the other, to tell turns and road bends apart.

7.2.5 User interface

For the user interface, a new implementation approach has already been started. It uses Angu-

larJS as the underlying framework, allowing a better separation of the tasks and responsibilites

than the old plain JavaScript solution.

The new user interface should allow parameterizing the simulation. This includes both a

coarse-grained selection like the vehicle model or a speci�c driver implementation, but also

�ner-grained control of the simulator and model parameters.

Such �ner grained control could include setting the initial state of various components like

tra�c lights, as it is already detailed above, and modifying parameters like delays or gains of

some processes.

During a simulation, the user interface currently displays the time that has passed. This could

be extended to show further information on the simulation progress. Desirable information

would be the current position and travelled as well as remaining distance, to estimate the

necessary time until the simulation run is completed. Additionally, internal telemetric data of
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the vehicle, like engine torque, and driver parameters (current target speed and pedal positions)

could be displayed.

To get a quick glance at a simulation run’s results, currently a t–v diagram is displayed.

Especially for longer running simulations, the result is hard to judge just based on this diagram,

as it does not allow zooming and is relatively small. This diagram should be improved and a

few further diagram types added. Further literature research concerning statistical evaluation

of driving cycles should be performed �rst.

Using the tool (Art.Kinema) and parameters mentioned in [Bar+09], a basis for comparing

di�erent simulated cycles could also be established.

7.2.6 Tests

Currently, only some parts of RoadHopper are properly covered with unit and functional tests.

Integration tests that validate the whole system are not implemented, due to a lack of �tting

test model roads on which certain properties of a simulation run (length, achieved maximum

speed, . . . ) could be validated afterwards.

To get a chance to detect errors in newly introduced or changed components of RoadHopper,

such system-level tests should be integrated. They could e.g. run a full simulation on a prede�ned

small road network, allowing validation of the general simulation run and single simulation

properties. The simulation properties that should be validated must be carefully selected, as

otherwise the tests might be prone to breakage, e.g. when asserting a too narrow band for the

allowed maximum velocity during the simulation or for the total time taken for the simulation.

The road data for these test scenarios should either be fetched once from a map and then stored

statically in the test bed, or be arti�cially generated as a whole. The required infrastructure for

the latter is already present in the form of the RoadBuilder class, which is used in various places.

For the former, a custom serialization format for the road should be de�ned, e.g. based on JSON.

Complementary to these system level tests, the unit tests that verify the functionality of

single classes should also be extended. Where applicable, the processes should also have unit

tests or at least functional tests with a very limited scope, so that each component is tested in

an as small-sized isolation as possible.

7.3 Vision for RoadHopper

This section should give a broader outlook on the direction RoadHopper could be developed

into.
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Simulating driving cycles is desirable for a lot of applications, from assessing emissions

or energy usage to laying up components. Depending on the exact scope of the experiment,

models with di�erent characteristics are required—for designing a part, the surroundings of this

particular element need to be modelled as closely as possible. Other parts might be modelled

with only rough approximations if their in�uence is negligible.

As it was designed with �exibility in mind, RoadHopper could become a standard solution for

all these kinds of di�erent use cases. Standardized models could be delivered as plug-and-play

components that can be loaded from data �les, directly usable for simulations. Parts of these

models could then be exchanged with custom implementations to perform di�erent kinds of

tests.

For de�ning such generic, interchangeable models, currently Scala code has to be written,

which can be cumbersome. This task would become a lot easier if instead of writing plain Scala,

a custom domain-speci�c language (DSL) could be used to de�ne models. Such a DSL must

include de�ning components and their behaviour (possibly by extending standard components

like PT1 controllers) and wiring them together. This language could e.g. be inspired by VHDL,

which already was the inspiration for the signal model in RoadHopper.

Models de�ned that way should also be graphically displayed, using existing approaches for

drawing graphs from data structures (or letting users manually order components). In such a

graphical display, errors like unconnected components or signal loops would be easier to spot

than in scattered source code.

In addition to custom models written in Scala or a custom Scala-based DSL, interfaces to

external modelling software would be very useful. This way, existing models, e.g. in Matlab, or

external simulation software e.g. for tra�c could be connected to a simulation in RoadHopper.

Any kind of future model de�nition, whether it is graphical or via a DSL, should include

model checking to detect hidden errors before even starting the simulation. This becomes

especially necessary when more components from di�erent sources are plugged together, as

the potential for errors rises with di�erent modelling styles and nomenclatures e.g. for signal

names.

As for the driving visualization, a more appealing live/replay view could be realised by using

existing 3D technologies, e.g. like in the OpenDS driving simulator
27

.

The data model of RoadHopper could be extended with data from other data sources than the

OpenStreetMap database. An example would be aggregated tra�c loads to have a data basis for

27 http://opends.de/

http://opends.de/
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emulating tra�c. Such a tra�c model could also incorporate live data, e.g. fetched from the

Tra�c Message Channel (TMC) system used by radio stations worldwide.
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A Measurement processing

This appendix explains the algorithm that was used for postprocessing the measurement data

from [Rap13]. The data was measured during several test drives performed with an Opel Ampera

from ETI-HEV.

The data consists of multiple measurement �les, each in the range of a few dozen minutes to

multiple hours.

A.1 The algorithm

In general, due to their length the measurements cannot directly be compared to a simulation,

at least not at the current state: There are too many interruptions where the vehicle stood

still, which greatly distorts data like the average velocity or the duration of the trip. Therefore,

comparison should instead be done on small driving pulses as de�ned in [Lia06].

The algorithm loops over all lines, ignoring those with a velocity of 0.0 (lines 30, 32). For

every measurement point, the position, vehicle orientation and and velocity are extracted (line

42). These points are put into one object at the end of the driving pulse (line 20).

To get the driving pulses, the data is chopped into small pieces, based on tra�c �ow in-

terruptions. For such an interruption, 10 s is assumed as the minimum standing time (line

36).

A.2 Source Code
1 val lines: Iterator[String]

2

3 var roadBuilder: Option[RoadBuilder] = None

4

5 // skip the first line, as it contains only header data

6 lines.next()

7

8 lazy val measurements: List[Measurement] = {

9 val items = new ListBuffer[Measurement]()
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10

11 val buffer = new ListBuffer[DataPoint]()

12 // the counter for the seconds since stopping

13 var timeSinceStopping = 0

14

15 var group = 0

16 def endMeasurementGroup(): Unit = {

17 val newSet = buffer

18 if (newSet.nonEmpty) {

19 if (roadBuilder.isDefined && roadBuilder.get.segments.nonEmpty) {

20 items.append(new Measurement(name + "_" + group, buffer.toList,

21 roadBuilder.map(_.build).get))

22 }

23 roadBuilder = None

24 group += 1

25 }

26 buffer.clear()

27 timeSinceStopping = 0

28 }

29

30 for (line <- lines) {

31 // using ";0.000;" as an indicator that the speed is 0

32 if (line.indexOf(";0.000;") > -1) {

33 timeSinceStopping += 1

34 } else {

35 // vehicle did not move for more than ten seconds => start new measurement

36 if (timeSinceStopping > 10) {

37 log.debug(s"Starting new measurement group after line $c")

38 endMeasurementGroup()

39 }

40 }

41

42 val Array(time, _latitude, _longitude, _velocity, _heading) = line.split(";").map(_.trim)

43 // NOTE only some of our files had a velocity in knots; therefore, we assume km/h for now.

44 val velocityKmh = _velocity.replace(",", ".").toDouble

45 val latitude = _latitude.replace(",", ".").toDouble

46 val longitude = _longitude.replace(",", ".").toDouble

47 val orientation = _heading.replace(",", ".").toDouble.toRadians

48

49 // only include one measurement per second

50 if (time.indexOf(",") == -1 time.split(",").apply(1).equals("00")) {

51 // ignore slow movements for creating the road

52 if (velocityKmh > 1.0) {

53 handlePointForRoad(latitude, longitude, velocityKmh)

54 }

55

56 try {

57 val date = (time.substring(0, 2).toLong * 3600 + time.substring(2, 4).toLong * 60

58 + time.substring(4, 6).toLong) * 1000 + time.substring(7, 9).toLong * 10

59

60 buffer += DataPoint(date, Point(latitude, longitude, 0.0), velocityKmh / 3.6, orientation)
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61 } catch {

62 case ex: NumberFormatException =>

63 log.error(s"Could not parse time ’$time’: ${ex.getMessage}")

64 }

65 }

66 }

67 endMeasurementGroup()

68

69 items.toList

70 }

71

72 def handlePointForRoad(latitude: Double, longitude: Double, velocity: Double) = {

73 val point = Point(latitude, longitude)

74

75 roadBuilder match {

76 case None => roadBuilder = Some(new RoadBuilder(point))

77

78 case _ => roadBuilder map {

79
_.addSegment(point)

80 }

81 }

82 }
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B Velocity control state machine

This approach at controlling the velocity was developed as part of the �rst simple driver model

and is currently not used in RoadHopper. It is described here because it might prove to be useful

again in the future when a more sophisticated driver model is implemented.

Internally, the velocity control uses a state machine to tell di�erent operation modes apart. It

is still described here because its general model might be useful as a blueprint for future driver

implementations that uses operation modes like those in the state machine.

The state machine is responsible for reacting to the road conditions and vehicle state which

are passed to it from the outside. It controls the vehicle velocity by directly setting the desired

acceleration/deceleration, an approach which was used in the �rst very simple proof-of-concept

vehicle model, but is unfeasible for real models.

The three implemented states are

1. initial,

2. free and

3. stop at position.

State initial was only used for initializing the driver, after which it switched to the appropriate

of the two other states.

To get the desired acceleration, the current speed and the driver’s state were considered.

The usual driving state is free, which denotes a mode where no obstacle to driving at the full

allowed speed is currently known (e.g. a stop sign or [not implemented] other vehicles in front

going slower). In state free, the driver watches the target speed (which is fed from the outside)

and adjusts the acceleration as necessary.

When a stop sign is encountered along the way, the driver switches to state stop at position

with a stopping position p. It then watches the current speed and remaining distance to the

obstacle ∆s = p − s and starts braking (acceleration < 0) as soon as the required deceleration

a = v2/2∆s hits a given threshold (i.e. s drops below the so-called comfortable braking distance).
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Both velocity controlling states free and stop at position have no sophisticated mathe-

matical model backing them. Instead, simple thresholds were used to reduce and increase

acceleration depending on the remaining velocity di�erence ∆v . The model also does not in-

clude a lookahead for determining the allowed speed, but only uses the current value. Therefore,

speed limits were always missed when the vehicle approached them from a road segment with

higher speed limit.
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Glossary
Akka A toolkit for implementing the actor model. See section 2.6.2. 19, 28, 43

Delta cycle One execution step within a time step. During a delta cycle, only processes run;

signal updates are delayed until the end of the cycle. 16, 78

Driving pulse A short period of movement in a larger velocity measurement. At the beginning

and end of the pulse, the vehicle is standing still. 68, 89

Je�y A Java-based Servlet engine and HTTP server. Used by GraphHopper and RoadHopper.

See https://eclipse.org/jetty/. 27

Meridian A line going along the earth’s surface from one pole to the other. 9

Process An independent, sequentially executed set of instructions, called every time one of

the signals it listens to (sensitivities) changes. 15, 78

Scala The programming language used for implementing the main parts of RoadHopper. See

section 2.7. 20, 28, 80, 85

Sensitivity list The list of signals a process listens to. The process is executed each time one

of these signals changes its value. This concept exists in VHDL, but is currently not

implemented in RoadHopper. 15, 78

Thread A thread is a unit of computation within a process managed by a computer’s operating

system. A process can have multiple threads running in parallel which share data. 18

https://eclipse.org/jetty/
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