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1 | Introduction

Observation and multiscale in plastic deformation

Models of plastic deformation of crystals have different perspectives based on scales

of observation. Crystal plasticity presents a multiscale problem in time and in space

of considerable complexity. It is worth to understand how plastic deformation can

be observed and considered in material science which can benefit the development

of models that aimed at explaining the behavior of materials in the interested scale.

The observations of slip lines in natural metal single crystals such as Cu, Ag, and

Au leaded to the establishment of the concept of the glide plane in metal by Mügge

as early as 1899. This was already before the work of Laue, Friedrich, and Knipping

in 1912 that X-rays had become available as a tool for studying crystal structures,

crystallographic orientations and the perfection of crystals. X-ray diffraction studies

of deformed crystals confirmed not only the conclusions on the crystallography of

the glide processes drawn earlier from surface observations but also demonstrated

convincingly that plastic deformation preserved the crystal structure as well as the

specific volume within the experimental accuracy achievable at the time. The results

shown by the X-ray diffractograms of deformed crystals was correctly interpreted as

being caused by local rotations of the crystal structure around an axis lying in the

glide plane perpendicular to the glide direction.

Subsequent attempts to explain the discrepancy between the theoretically predicted

shear strength of a metal and the experimentally observed yield stresses lead to the

concept of the dislocation, a linear crystal defect, which was proposed in 1934 almost

simultaneously by Orowan, Polanyi, and Taylor.

The approach to dislocation to dislocation theory proved exceedingly successful in

accounting, often quantitatively, for physical phenomena that are governed primar-

ily by the properties of individual dislocations. To some extent the mechanistic

approach was assisted by the possibility to observe individual dislocations by trans-

mission electron microscopy (TEM) and thus to test many of its predictions.

Therefore, the plastic deformation involves interconnected processes on length scales

that extend from the atomistic scale, on which the arrangement of single atoms is

1



2 1. Introduction

considered, to the concept of dislocations and up to the macroscopic scale given by

the specimen size.

Figure 1.1: Length scales associated with dislocation systems

Appropriate length scales may be defined as follows:

• The atomistic scale deals with the arrangement and the interactions between

individual atoms. These interactions govern the dislocation core structures

and, therefore, influence dislocation mobilities and short-range interactions

between dislocations.

• On the microscopic scale the elementary ’units’ of plastic deformation are

dislocation segments or isolated dislocation lines. On this scale, dislocations

are treated as line singularities in an elastic continuum. The appropriate tool

for calculating their stress fields and the elastic interactions mediated by these

fields is continuum mechanics. In many cases the dislocation motion can be

described by force-velocity relationships.

• The mesoscopic scale is the spatial scale on which the evolution of the disloca-

tion system may be described in terms of dislocation densities and dislocation

correlation functions. On this scale, it is expedient to consider separately the

external stress and the internal stress arising from the superposition of the

stress fields of a large number of dislocations and spatially varying on the

length scale. Under certain circumstances it may be appropriate to introduce

a hierarchy of mesoscopic scales, e.g. in polycrystals whose grain size is small

compared with the macroscopic dimensions. In this example two mesoscopic

scales arise naturally. mesoscopic scale I deals with the dislocation patterns

(cells, subgrains, etc.) within the grains, whereas mesoscopic scale II comprises

many grains.

• On the macroscopic scale, the specimen may be considered as being composed

of macroscopic volume elements whose extensions are large compared to the

mesoscopic length scales of the microstructure. On this scale, it is in many

cases possible to describe the plastic response by deterministic constitutive

laws which result from averaging over the dynamics of the dislocation system

on microscopic and mesoscopic scales.
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A brief history of modeling

From the top down point of view, phenomenological continuum models for plasticity

which are not based on dislocation mechanics have been successful in a wide range of

engineering applications. They operate on length scales where the properties of ma-

terials and systems are scale invariant. The scale-invariance, however, breaks down

at dimensions below a few micro-meters, which is also a scale of growing technolog-

ical interest. These microstructural effects become more and more pronounced in

small systems and lead to so-called ’size effects’ (e.g. Ashby, 1970; Arzt, 1998) and

various experimental work (e.g. Stolken and Evans, 1998; Fleck et al., 1994). Phe-

nomenological continuum theories incorporate internal length scales by introducing

strain gradient terms - sometimes based on the consideration of GND densities -

into their constitutive equations (e.g. Fleck et al., 1994; Nix and Gao, 1998; Gurtin,

2002; Gao and Huang, 2003) but are not able to consider fluxes of dislocations or

the conversion of SSDs into GNDs and vice versa. The benefit of these approach

are that there are a firm basis in mathematics formulation based on convex analy-

sis which leads to the well posed problem of numerical methods. This also include

advanced models for gradient plasticity introduced by , e.g., Gurtin et al. (2007).

These models are analyzed numerically by Wieners and Wohlmuth (2011) and for

gradient crystal plasticity Reddy et al. (2012) which are already realized numeri-

cally by using the framework of the energetic approach of A. Mielke Mielke (2005).

However these are not the approach that can explain and take the account of the

interaction of dislocations to the consideration.

On the other hand from the button up approach from the microstructure, Discrete

dislocation dynamics (DDD) models (e.g. Kubin and Canova, 1992; Devincre and

Kubin, 1997; Fivel et al., 1997; Ghoniem et al., 2000; Weygand et al., 2002; Bu-

latov and W., 2002; Arsenlis et al., 2007; Zhou et al., 2010) contain very detailed

information about the dislocation microstructure and the interaction and evolution

of dislocations and have been very successful over the last two decades in predict-

ing plasticity at the micro-meter scale. DDD simulations allow to investigate very

complex plastic deformation mechanisms but are, however, due to their high com-

putational cost limited to very small system size/small densities.

In the level of mesoscopic scale, there were some investigation already about two

decades after the invention of the idea of dislocations leading by Kondo (1952);

Nye (1953); Bilby et al. (1955); Kröner (1958) independently introduced equivalent

measures for the average plastic deformation state of a crystal in the form of a second-

rank dislocation density tensor. This ’Kröner-Nye tensor’ is introduced to link the

microscopically discontinuous to a macroscopically continuous deformation state and

is the fundamental quantity in Kröner’s continuum theory of dislocations. This
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tensor, however, only captures inhomogeneous plastic deformation states associated

with so-called geometrically necessary dislocations (GNDs) and does not account for

the accumulation of so-called statistically stored dislocations (SSDs) in homogeneous

plasticity. This renders the classical dislocation density measure problematic as a

foundation for a continuum theory of plasticity.

Later in order to generalize the classical continuum theory of dislocations, Groma

and coworkers Groma (1997); Groma et al. (2003) used methods from statistical

physics to describe systems of positive and negative straight edge dislocations in

analogy to densities of charged point particles. They derived evolution equations

which are able to faithfully describe fluxes of signed edge dislocations. The subse-

quent generalization to systems of curved dislocation loops, however is not straight-

forward. Pioneering steps into that direction have been undertaken by Kosevich

(1979); El-Azab (2000); Sedláček et al. (2003) and ’screw-edge’ representations also

by Zaiser and Hochrainer (2006); Arsenlis et al. (2004); Reuber et al. (2014). A new

approach based on statistical averages of differential geometrical formulations of dis-

location lines has been done by Hochrainer et al. (Hochrainer (2006); Hochrainer

et al. (2007); Sandfeld (2010a); Sandfeld et al. (2010)) who generalized the statisti-

cal approach of Groma towards systems of dislocations with arbitrary line orienta-

tion and line curvature introducing the higher-dimensional Continuum Dislocation

Dynamics (hdCDD) theory. The key idea of hdCDD is based on mapping spa-

tial, parameterized dislocation lines into a higher-dimensional configuration space,

which contains the local line orientation as additional information. In order to avoid

the high computation cost of the higher-dimensional configuration space ’integrated’

variants of hdCDD - denoted by CDD - have also been developed recently Hochrainer

et al. (2009); Sandfeld et al. (2011); Hochrainer et al. (2013); Monavari et al. (2014);

Hochrainer (2015). Their simplifying assumptions already have been benchmarked

for a number of situation. Until now, hdCDD nonetheless serves as the reference

method for all CDD formulations, since it can be considered as an almost exact

continuum representation of curved dislocations.

However a complete dislocation based plasticity theory that is based on hdCDD and

CDD was not developed from the beginning because the aim of the development of

these theories were only trying to establish the mathematical framework needed to

perform meaningful averages over systems of moving curved dislocations that provide

a consistent framework for a statistical mechanics of curved dislocation lines. The

first attempt to investigate the full hdCDD based plasticity was proposed by Sandfeld

et al. (2010). They considered the problem of micro-bending of a free-standing thin

film by assuming the homogeneous of dislocation glides in the direction parallel to

the film that can simplify the system to use only one representative slip plane per

slip system for the simulation. This setting was limited to the given external stress
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and mean field stress that was derived explicitly in Zaiser et al. (2007); Nikitas

(2008). To overcome the limitation of homogeneous slip planes assumption, the

relaxed system with discrete slip planes was introduced in Sandfeld et al. (2013) by

using the Groma’s continuum dislocations system and for a better explaination for

dislocation loops in the recent work Sandfeld and Po (2015). For the system with

hdCDD theory with discrete slip planes has not been studied before, due to the high

computational cost of additional dimension in hdCDD system and the complexity

of geometries itself. To overcome this problem the new framework and numerical

methods have to be developed which is the main purpose of this work.

Within this thesis, the elasto-plasticity based on hdCDD theory will be developed

by trying to answer the following questions:

• Investigate whether the hdCDD problem is well-posted.

• Develop numerical methods for hdCDD on single slip and provide a framework

for parallel computation for the multi-slips on the full system.

• Develop a framework that allows the coupling of hdCDD and linear elastic

problems.

• Study the behavior of the full setting by applying to thin film applications.

Outline

The structure of the thesis is organized as the following:

In Chapter 2, overviews of dislocations in material science and in the continuum

mechanics theory together with the theory of hdCDD are discussed. For the material

science perspective, the concept of individual dislocations to the concept of classical

continuum theory of Kröner will be shown. On the other hand dislocation densities

in continuum mechanics will be illustrated from the framework of Gurtin et al.

(2007) to show the different point of views that the scalar quantity of dislocation

densities can be postulated from the plastic slip that used as a internal variable

in the energy framework of classical plasticity theory. Moreover the benefit of this

postulated dislocation densities is shown in the concept of gradient plasticity taking

this dislocation densities to be an additional internal variable that can provide a

size dependent behavior to the classical plasticity theory. We finish this chapter

with the introduction of hdCDD theory to show a general concept for continuum

dislocation densities with arbitrary line orientation proposed by Hochreiner and a

specific modeling perspective to give a connection to continuum mechanics for the

numerical experiment purpose.

In Chapter 3, the mathematical analysis of the reformulation of hdCDD theory

in a general form so called Friedrich system is discussed. The well-posedness of the
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hdCDD system under the assumption that velocity of dislocation density does not

depend on the orientation direction is shown. Moreover the standard discontinuous

Galerkin scheme for the space discretization and explicit Runge-Kutta for the time

integration (explicit-RKDG) are shown together with the error analysis of the scheme

with RK3 based on the framework of Burman et al. (2010).

In Chapter 4, we will show the numerical result for the RKDG from previous chap-

ter and discuss behaviors of the hdCDD system over a single slip. Furthermore, the

limitation of both theory of hdCDD and our standard DG method proposed in the

previous chapter are pointed out. The main problem for numerical method comes

from the additional dimension of line orientation that have a drawback with a large

number of degree of freedom for the dG discretization. Moreover with our proposed

model of embedded slip planes in the elastic body, a standard mesh discretization

of hdCDD system will also cause a problem for mesh distribution for parallel treat-

ment. A new type of basis functions called Finite Volume Fourier elements(FVF) for

DG method is introduced to overcome these problems. At the end of the chapter,

one possibility of the simplified Continuum Dislocation Dynamics (sCDD) theories

proposed to approximate the hdCDD system by reducing the information from the

line orientation dimension will be shown.

The main results of this thesis for the full-coupled elasto-plasticity based on hdCDD

theory for 2D body will be shown in Chapter 5. The modeling proposed in the

Chapter 2 will be implemented by using the reduced hdCDD system of the embedded

slip planes for the 2D body. The RKDG with FVF elements will be used for the

evolution of hdCDD system as the micoscopic part together with the standard FEM

methods for elastic body of macroscopic domain. The fully coupled system will be

further investigated upto two slip systems by applying to the applications of thin

film with tensile and shearing tests.

In Chapter 6, the main idea to implement DG methods is provided by modifying the

existing geometric data structure so called Distributed Point Objects concept in the

in-house FEM software package M++, Wieners (2010). The main difference is that

in the conforming FEM, the consistency of values over nodal points on the interface

of distributed domain on different processors have to be preserved, but in the case of

DG these value are discrete and related to different values, so the consistency over

them is not needed. However the communication between the neighboring cells is

required for the numerical flux of DG scheme. With this requirement, the concept

of overlapping cells within the geometric data structure is introduced to treat the

required information for the communication of distributed meshes.
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2 | Dislocations and Single Crys-

tal Plasticity

Overviews of dislocations in material science, dislocation densities in continuum me-

chanics and the theory of higher-dimensional Continuum Dislocations Dynamics (hd-

CDD) are given in this chapter. The different terminology of dislocation densities in

continuum mechanical and materials science will be pointed out, because although

the terms such as dislocation densities are used in both communities, however, they

refer sometimes to different quantities and therefore can lead to misunderstanding.

Dislocations in material science serves the perspective of botton-up idea which is

based on the structure of individual dislocations to the concept of continuum dis-

location density. On the other hand dislocation densities in continuum mechanics

will illustrate the different point of view that the scalar quantity of dislocation den-

sities can be obtained from the internal variable in the energy framework of classical

plasticity theory. The framework of Gurtin will be addressed and this can lead to

the concept of gradient plasticity based on dislocation densities to provide a size

dependent behavior to the classical plasticity theory. At the end, the theory of

higher-dimensional Continuum Dislocations Dynamics (hd-CDD) is given to show a

general concept for continuum dislocation densities with arbitrary line orientation

by Hochreiner and a specific modeling perspective to give a connection to continuum

mechanics for the numerical experiment purpose. Moreover this will provide mate-

rial for the mathematical analysis and for numerical methods of hd-CDD in later

chapters.

2.1 Dislocations in Material Science

2.1.1 Concept of Dislocations

Dislocation is the concept that is used to explain plastic deformation of materials

which can be viewed as a defect in the crystal lattice. In general, these defects

can be occurred in all dimensions such as point defects (0 dimension), line defects

(1 dimension), planar defects (2 dimension) and volume defects (3 dimension). In

9



10 2. Dislocations and Single Crystal Plasticity

many cases, line defects are one of the most important classes where it can generate

planar defects by the movement of the defected lines and volume defects can be

viewed as the averages of defected lines over volume which leads to the concept of

continuum dislocations.

The first introduction of dislocations came in the form of line singularity by Volterra

(1907); Love (1927) in a continuous elastic body even before the beginning of the

observation of dislocations by experiments. The explanation of Volterra can be seen

in literature in the form of Volterras tubes that one can take a cylinder of material

around the dislocation line, cut it along some wall, shift the surfaces of the cut in

all possible ways. After welding the walls together where in some cases material has

to be added or removed, this will lead to different deformation states around the

dislocation line.

Figure 2.1: Types of Voltera’s distortions tubes, Cordier et al. (2014)

The dislocation had been more welcomed in the content of planes slides of atoms

on each others inside crystal in order to close the gap of predicted stresses between

the experimentally observed in yield stress in actual crystal and the theoretically

calculation that first calculated by Frenkel in 1926. The explanations by using the

concept of dislocation were independently given by Orowan (1934); Polanyi (1934);

Taylor (1934). Two important fundamental types of dislocations, edge and screw

dislocations, has been used to explain the characteristic of distortion of the originally

perfect crystal in particular regions around the dislocation line. Other forms of

movement (e.g. so-called climb) are not considered throughout this thesis.

If one considers the special cases of dislocations as straight lines in perfect crystals,

and combine with the edge and screw deformation from Volterra tube. One can

see the deformation more clearly from the visualization as the deformed structure

of perfect crystal. A screw dislocation will cause atoms to shift parallel to the line
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direction and parallel to the moving direction of dislocation. An edge dislocation

will cause atoms to shift perpendicular to the line and parallel to the direction of

dislocation movement.

Figure 2.2: Motion of edge and screw dislocations and their formation

However the dislocation line can be in any form and is not necessary a straight line,

the case of dislocation loop will be considered in the part of hd-CDD theory.

2.1.2 Burgers Circuit, Burgers Vector and Plastic Slip

Burgers circuit/Burgers vector To fully characterize a dislocation it is necessary

to introduce the Burgers circuit. The Burgers circuit can be started by considering

a closed path in a perfect crystal, then when a dislocation, edge or screw, moves

inside the closed path and have the additional length that added up to the Burgers

circuit called Burger vector, b.

Figure 2.3: Burgers circuit in a perfect crystal and Burger vectors as additional
length generated when edge and screw dislocations move inside the closed
path (see https://en.wikipedia.org/wiki/Burgers vector)

The direction of the Burgers vector depends on the direction of the orientation of

the Burgers circuit which is conventional matter. Here, the clockwise orientation
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direction is used for the circuit and the Burger vector is pointed in the opposite

direction. The magnitude of Burger vector, b = |b|, is considered as the physical

length between atoms in crystal structure on the glide plane.

To give the definitions of edge and screw dislocations more specifically, one can define

the line direction for the dislocation line, l̂, and the movement direction, v̂, that are

perpendicular to each other. The edge dislocation will create a Burger vector that is

perpendicular to the dislocation line direction and parallel to the movement direction

which can be interpreted as b · l̂ = 0 and b · v̂ = ±b. One the other hand, the screw

dislocation will create a Burger vector that is parallel to the dislocation line and

perpendicular to the dislocation movement, b · l̂ = ±b and b · v̂ = 0.

Plastic slip An important measurement for plastic deformation of the dislocations

system is the plastic slip, γ. This quantity is a volume based scalar and can be

defined as total area swept by dislocations to the volume of considered crystal. The

swept area can be illustrated by the area on the boundary on a lattice plane which

as slipped by dislocations which is given by the length of dislocation line times size

of Burger vector per dislocation line and can be computed by the superposition

principle of the system with many dislocations. This assume to be happened on

the specific lattice plane that dislocation line lays on, since only the edge and screw

dislocations are considered and other forms of movement that can be seen in the

Volterra cut plane are not considered.

Figure 2.4: Multiple edge dislocations and their Burgers circuit ∂S over the area S.
Each dislocation entering the volume leave behind a surface step ±4x,
Sandfeld (2010a).

For the case of an edge dislocation, the plastic slip can be computed as follow:

γ :=
swept area

crystal volume
=

∑
i b · l̂il
hl

=

∑
i b · l̂i
h

,

where li is a line direction of each edge dislocations, h is the height of the crystal, l

is the length of the dislocation line and b is the Burger vector with given direction.
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2.1.3 Single Crystals and Slip Systems

Real metals are most often encountered in the form of polycrystalline aggregates,

composed of grains separated by grain boundaries, with the grain interiors having

a structure close to that of a single crystal. However, with the current work in this

thesis, only single crystals are considered.

As in the previous discussion, plastic deformation in the individual crystals (grains)

generally occurs via the motion of dislocations on crystallographic slip planes in crys-

tallographic slip directions. This microscopic motion results in macroscopic motion

results in macroscopic shearing of the slip planes in the silp directions. Such shears

are generally referred to as slips.

The most common crystal structures in metals are:

• face-centered cubic (fcc); for example, Al, Cu, Ni, Ag, γ-Fe;

• body-centered cubic (bcc); for example, Ta, V, Mo, Cr, α-Fe;

• hexagonal close-packed (hcp); for exampel, Ti, Mg, Zn, Cd.

Schematics of these structures are shown in figure:

Figure 2.5: Examples of crystal structures (see http://www.schoolphysics.co.uk)

Stated precisely, plastic deformation occurs by slip in preferred slip directions which

can be referred to unit Burger vector with a given direction,

ds, s = 1, 2, ..., N,

on preferred slip planes identified by their normals

ms, s = 1, 2, ..., N,

where ds := bs/b, ms are constant orthonormal lattice vectors and N is referred to

the number of slip systems that can also be represented by the pairs (ds,ms). The

number of slip systems depends on the structure of the crystal, for example in fcc

structure there are in total 12 slip systems.
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2.1.4 Connection to Continuum Dislocations Densities

The study of individual dislocation lines leads to the field of the discrete dislocation

density (DDD) theory that can serve for well explanations matching with experi-

ments. However, when the larger system is considered in the range of micrometers

the DDD theory seem to reach its limitation with the complexity of the large system.

The continuum dislocations density has been developed to close this gap.

The continuum framework of dislocations started from the development of the classi-

cal dislocation density tensor which was introduced independently and with slightly

different accents by Nye and Kröner as well as in a much more formal way by Kondo

and Bilby et al. In the following we adopt the definitions and notations by Kröner

because they may directly be translated to the kinematic formalism based in differ-

ential forms which we use in the following. Nye’s lattice curvature (contortion), by

contrast, plays a more prominent role for the calculation of internal stresses from

dislocation distributions. Kröner’s dislocation density tensor α is traditionally writ-

ten as a second rank tensor. By definition it measures the net Burgers vector flux b

through a surface F , thus ∫
F
α>n da = b, (2.1)

where n denotes the normal to the surface F pointing outside the crystal.

Figure 2.6: The representation of edge dislocation illustrated in the content of con-
tinuum framework

On the other hand the net Burgers vector flux through F may in the case of pure dis-

location plasticity (which is assumed throughout the whole thesis) be determined by

adding up, i.e. integrating, the plastic distortions, βp := γb⊗ l, along the boundary

curve C = ∂F . Therefore, ∫
F
α>n da =

∫
C
βpl ds (2.2)
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As a direct consequence one obtains by Stokes’ theorem α = ∇×βp. The fact that

dislocations do not end inside the crystal implies that
∫
F αnda = 0 for all closed

surfaces F . By the Gauss integration theorem, α as a consequence is solenoidal such

that

divα = 0. (2.3)

It has been known in the modeling perspective that the dislocation density tensor

does – as an averaged object – not carry enough information about the dislocation

state to deduce from it the rate of plastic deformation ∂tβ
p. Because of ∂tα =

∇×∂tβp, the absence of a relation between α and the deformation rate implies that

the evolution of α itself cannot be formulated in closed form. This is the reason

why it is in general not possible to build a closed theory of plasticity solely on the

classical dislocation density tensor. However, the classical formulation is suited for

the treatment of single dislocations as singular densities, as well as for the special

situation where dislocations form smooth line bundles. Only in these special cases

the dislocation density tensor contains complete information about the dislocation

state, that is the total dislocation density ρt and the local line-direction l. For only

one glide system, α in this case has the form

α = ρtl⊗ b, (2.4)

with b denote the Burgers vector direction. Because the line direction l is known, it

makes sense to assign to the dislocation density a smooth velocity field v, which is at

each point orthogonal to the line direction of the dislocations. From the infinitesimal

area swept by a line segment, which reads l×v = −v× l, the plastic distortion rate

is obtained as

∂tβ
p = −ρtv × (l⊗ b) = −v ×α. (2.5)

This formula was first given by Mura and is the tensorial version of Orowan’s equa-

tion for the shear rate on a glide plane

∂tγ
p = ρtvb (2.6)

with a (pseudo) scalar velocity v and b denoting the length of the Burgers vector.

The closed evolution equation for the dislocation density tensor is hence given by

∂tα = −∇× (v ×α). (2.7)
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The above set of equations is a suitable approach for describing the kinematics of

averaged systems of smooth bundles of non-intersecting dislocations – represented

by a density – in a continuum framework.

One of the first successful of continuum dislocation density theory that steps into this

direction was undertaken by Groma and co-workers (Groma (1997); Groma et al.

(2003)). They used methods from statistical physics to describe systems of positive

and negative straight edge dislocations in analogy to densities of charged point par-

ticles. They arrived at a set of evolution equations which is able to describe fluxes of

signed edge dislocations, including the conversion of GND density into ’statistically

stored dislocation’ (SSD) density and vice versa. Similar to the Kröner-Nye frame-

work, the dislocation velocity is again of constitutive nature. The generalization

of this work with the system of only edge dislocations to arbitrary systems of dis-

locations with different orientations as well as varying curved geometries, however,

is a highly non-trivial task. Only recently, Hochrainer and co-workers generalized

the statistical approach of Groma towards systems of dislocations with arbitrary

line orientation and line curvature introducing the higher-dimensional Continuum

Dislocation Dynamics theory that can be found later in this section.

2.2 Dislocation Densities in Continuum Mechanics

In this section, the postulated dislocation densities in continuum mechanics will be

illustrated under the framework of Gurtin et al. (2007) in the content of strain-

gradient model. The classical continuum model for single-crystal plasticity will be

first addressed to provide the needed information and connection to the strain-

gradient single-crystal plasticity model.

2.2.1 A Classical Continuum Model for Single-crystal Plas-

ticity

The idea behind crystal plasticity is that the plastic deformation happened with

shear deformation. This simple ideas carry to introduce the plastic slip in crystals.

Suppose that there are N slip systems. Each of them can be represented by a pair

of two unit vectors (ds,ms), s ∈ {1, ..., N} where ds is the direction in which slip

takes place that normally is the direction of a given Burger vector and ms is the

normal to the plane that slip takes place. To complete the description the plastic

slip along the slip plane s is denoted by γs. This is the same notation that we used

for slip systems and plastic slip created from dislocation in the previous section.

For the global setting, let the reference configuration B be a bounded Lipschitz do-

main in R3 and let ∂DB ∪ ∂NB = ∂B be a non-overlapping decompositions into
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Dirichlet boundary ∂DB and Neumann boundary ∂NB. The position of a material

point is denoted by x and the displacement of the body from its reference configu-

ration at time t by u(x, t).

Small deformations are assumed so that the infinitesimal strain ε is given by

ε = ε(u) = sym(∇u) , (2.8)

where the symmetric part of a tensor is defined as

sym(·) :=
1

2
(·+ (·)>) (2.9)

and can be decomposed additively in the form

ε = εel + εpl, (2.10)

where εel is the elastic strain depended only of the stress, while εpl is the plastic

strain depended only on the internal variables of plastic deformations.

The classical macroscopic equilibrium equation is given by

−∇ · σ = fB in B (2.11)

where σ is the Cauchy stress tensor with the constitutive relation

σ = Cεel = C(ε− εpl) (2.12)

and C is the elasticity tensor. The macroscopic boundary conditions are

u = uD on ∂DB, σn = tN on ∂NB . (2.13)

The displacement gradient which sometimes is called the deformation tensor Du is

assumed to be decomposed similarly to the strain ε into elastic and plastic parts βel

and βpl respectively,

Du = βel + βpl . (2.14)

It follows that for a single crystal that plastic distortion βpl coming purely from

shear deformation can be completely described by the relation

βpl =
N∑
s=1

γsds ⊗ms. (2.15)
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For later use, the tensor

Ms = ds ⊗ms (2.16)

is referred to as the Schmid tensor which is the projection tensor accounting for the

orientation of the slip system s.

Depending on the vector of plastic shear strains γ = (γ1, ..., γN)>, the plastic strain

is given by

εpl = εpl(γ) = sym(βpl) =
∑

s
γsM

sym
s , Msym

s = sym Ms . (2.17)

This defines the elastic strain

εel = εel(u,γ) = ε(u)− εpl(γ) . (2.18)

Generalized stresses: Suppose for definiteness that the free energy ψ is a function

of the elastic strain, and let η = (η1, ..., ηN)> be a vector of scalar hardening variables

for each of the slip systems. Thus the free energy can take the form

ψ(εel,η) = ψel(εel) + ψh(η). (2.19)

where the free energy of elastic part is , ψel(εel) = 1
2
εel : Cεel. Under the assump-

tions of isothermal processes and no additional heat involved, the local dissipation

inequality takes the form

ψ̇ − σ : ε̇ ≤ 0. (2.20)

It follows that

−σ : ε̇pl +
∑
s

∂ψh

∂ηs
η̇s ≤ 0 (2.21)

by using

ψ̇el =
∂ψel

∂εel
: ε̇el = Cεel : ε̇el = σ : (ε̇− ε̇pl). (2.22)

Now for the case of single crystals by using the assumption for εpl and the symmetry

of the stress,

σ : ε̇pl = σ :
∑
s

γ̇sds ⊗ms =
∑
s

γ̇sσ : ds ⊗ms =
∑
s

γ̇sτs. (2.23)
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where τs is the shear stress projection on the slip plane s. To define the generalized

stresses and plastic strains, the conjugate stress of the hardening variable ηs is defined

by

gs = −∂ψ
h

∂ηs
. (2.24)

Then the reduced dissipation inequality becomes∑
s

Σs · Ṗs =
∑
s

(τsγ̇s + gsη̇s) ≥ 0, (2.25)

where Σs, P are defined to be the generalized stress and the plastic strains, respec-

tively, as follows

Σs = (τs, gs), Ps = (γs, ηs). (2.26)

Yield: In phenomenological plasticity the yield function for a single crystal can take

the simple form

φ(Σs) := |τs|+ gs − τ0, (2.27)

where τ0 is an initial yield stress and here for simplicity it can be all the same for

all slip systems. The elastic regions E for which

E =
⋂
s

{(σ,g) | φ(Σs) ≤ 0, s = 1, ..., N} (2.28)

is considered. This elastic region can be shown to be convex.

Property 2.2.1. The elastic region E defined in (2.28) is convex.

Proof. Let Σ1 = (σ1,g1), Σ2 = (σ2,g2) ∈ E . We have to show that for any

ω ∈ (0, 1) the combination ωΣ1 + (1− ω)Σ2 is in E . Consider on each slip system s

0 ≥ ωφ(Σ1
s) + (1− ω)φ(Σ2

s)

= ω(|τs,1|+ gs,1 − τ0) + (1− ω)(|τs,2|+ gs,2 − τ0)

≥ |ωτs,1 + (1− ω)τs,2|+ ωgs,1 + (1− ω)gs,2 − τ0

= φ(ωΣ1
s + (1− ω)Σ2

s).

Therefore ωΣ1 + (1− ω)Σ2 ∈ E and thus E is convex.
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With the principle of maximal plastic work and the reduced dissipation inequality

(2.25) and a convex yield surface, the normality law now becomes

γ̇s = λs
∂φ

∂τs
(2.29)

η̇s = λs
∂φ

∂gs
= λs (2.30)

where λs is the plastic multiplier together with the complementarity relations

λs ≥ 0, φ(Σs) ≤ 0, λsφ(Σs) = 0. (2.31)

Example of hardening relations: An example of a hardening relation can be

found in Steinmann and Stein (1996) where the hardening energy ψh depends only

on η such that

ψh(ηs) = −τ0ηs −
(τ∞ − τ0)2

h0

ln
(

cosh
( h0ηs
τ∞ − τ0

))
, (2.32)

with material constants τ0, τ∞ and h0. Then the conjugate stress gs takes the form

g(ηs) = −∂ψ
h(ηs)

∂ηs
= τ0 + (τ∞ − τ0)tanh

( h0ηs
τ∞ − τ0

)
. (2.33)

A more general hardening rule that distinguish between self-hardening which char-

acterizes hardening on a slip plane due to slip on all slip systems coplanar to the

given plane; and latent hardening which refers to hardening on a slip plane due to

slip on all other individual slip planes can be found in Gurtin et al. (2007).

Example of viscoplastic behavior: In order to extend the framework to support

rate-dependent materials, it can be introduced the viscoplastic form. An example

for a viscoplastic law is given by Hoff (1960) by first recall the flow law (2.29) of

plastic slip to the form

γ̇s = sign(τs)λs, (2.34)

then rewrite the yield condition (2.27) in the form

Φ(τs, gs) =
|τs|

τ0 − gs
≤ 1. (2.35)

The Norton-Hoff viscoplastic regularization of the flow law is done by replacing

(2.34) with

γ̇s =
∂f̃

∂τs
, where f̃ =

d0

q
Φq, (2.36)
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where q ≥ 2 and d0 are positive constants.

2.2.2 Strain-gradient Single-crystal Plasticity

Strain-gradient theories of plasticity have got attention since the early contribution

of Aifantis (1984). The benefit of these theories is the ability to introduce a length

scale together with the non-local nature of the gradient terms that allow the theory

to capture the size-dependence behavior observed in experiments and lacking from

the classical theories of plasticity. Furthermore, the inclusion of gradients of plastic

strain shades some light to a link at the continuum level between observed size effects

and the underlying behavior of dislocations.

In this subsection, the extension of the classical theory of single-crystal plasticity to

the gradient model will be presented in the way of the framework of Gurtin et al.

(2007).

Characterization of Burgers vector in Gurtin framework: To derive the

macroscopic counterpart of this notion, consider first the decomposition of the dis-

placement gradient ∇u into elastic and plastic parts βel and βpl as in (2.14) Now

consider a closed curve C of the surface F in the body and because βpl represents

the distortion of the lattice due to the formation of dislocations, the corresponding

integration around C in the distorted lattice is represented by the integral

b(C) =

∫
C
βplds =

∫
F

(∇× βpl)>nda. (2.37)

Because βpl is not generally the gradient of a vector field, the integral does not

generally vanish. The vector b(C), which represents the Burgers vector correspond-

ing to the curve C, is a macroscopic analog of the Burgers vector as defined at the

microscopic level.

The local consequence of this is basic to what follows. We associate the vector

measure (∇ × βpl)>eda with the Burgers vector corresponding to the boundary

curve of the surface-element nda. In this sense, the tensor field

α = ∇× βpl (2.38)

which we refer to as the Burgers tensor, provides a local characterization of the

Burgers vector.
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Decomposition of Burgers tensor into edge and screw dislocations: We

consider the reformulation of Burgers vector by using the single-crystal hypothesis

that βpl =
∑

s γsds ⊗ms, which leads to

α =
∑
s

∇× (γsds ⊗ms) =
∑
s

∇× (ds ⊗ (γsms))

=
∑
s

(
[(∇ds)γsms×]> +∇× (γsms)⊗ ds

)
=

∑
s

(
(γs∇×ms +∇γs ×ms)⊗ ds

)
=

∑
s

(∇γs ×ms)⊗ ds.

by using the fact that ∇ds = ∇×ms = 0, then we have the useful identity that

α =
∑
s

(∇γs ×ms)⊗ ds. (2.39)

Let Πs denote slip plane s. Then, for any s, the vector ds and

ls := ms × ds (2.40)

form an orthonormal basis for Γs. Since the vector ∇γs ×ms is orthogonal to ms,

it can be expanded in terms of ds and ls,

∇γs ×ms = [ls · (∇γs ×ms)]ls + [ds · (∇γs ×ms)]ds

= [(ms × ls) · ∇γs]ls + [(ms × ds) · ∇γs]ds
= (−ds · ∇γs)ls + (ls · ∇γs)ds

hence we can write α in the form

α =
∑
s

[
(lα · ∇γα)dα ⊗ dα + (−dα · ∇γα)lα ⊗ dα

]
. (2.41)

Within a continuum theory the geometric features of edge and screw dislocations are

characterized by dyads of the form ls⊗ds, when ls ⊥ ds represents edge dislocations

and ds ⊗ ds when ls = ds represents screw dislocations, where ls and ds are unit

vectors. The normal vector ds can be postulated as the Burgers direction and ls

as the line direction. The canonical dislocation dyads for slip on s are therefore

the edge and screw dyads as follows

ls ⊗ ds(edge) and ds ⊗ ds(screw) (2.42)
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Introducing the symbols ` and� for edge and screw dislocations, we can thus rewrite

α in the form

α =
∑
s

(ρs`ls ⊗ ds + ρs�ds ⊗ ds), (2.43)

ρs` := −ds · ∇γs, ρs� := ls · ∇γs. (2.44)

We refer to ρα` and ρα· as edge and screw dislocation densities. Thus we see

that α can be decomposed into distributions of edge and screw dislocations on the

individual slip systems.

Note that the densities ρα` and ρα· carry units of [m−1] and that they may be positive

or negative.

The tangential gradient ∇s on the slip plane Γs: Recall that Γs represents the

slip plane s. The tensor

Ps = 13 −ms ⊗ms (2.45)

represents the projection onto Γs. Since {ms,ds, ls} represents an orthonormal

basis of all vectors in R3 implies that

ds ⊗ ds + ls ⊗ ls + ms ⊗ms = 13, (2.46)

and hence by definition of Ps that

Ps = ds ⊗ ds + ls ⊗ ls. (2.47)

Given any scalar field ϕ,

∇sϕ := Ps∇ϕ (2.48)

is the tangential gradient of ϕ on Γs. We have

∇sϕ = (ds · ∇ϕ)ds + (ls · ∇ϕ)ls, (2.49)

and we may conclude for γs that

∇sγs = Pα∇γs = −ρs`ds + ρs�ls, (2.50)

the dislocation densities ρs` and ρs� therefore represent components of the tangential

slip gradient ∇sγs relative to the basis {ds, ls} for the slip plane Γs. The field

ρsnet :=
√
|ρs`|2 + |ρs�|2 = |∇sγs|. (2.51)
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represent the net dislocation density on Γs.

Terminology: The terms Burgers vector and dislocation density in this subsection

are different from these terms used by material scientists as also has been mentioned

by Gurtin et al. (2010). The term Burgers vector in this context in continuum

mechanics signifies a vector of a given length, measured per unit area, and the

notion of a dislocation density also represents a length measured per area, this

in continuum mechanics both carry the dimension [m−1]. In materials science

the Burgers vector comes from the physical movement of a dislocation line and is

the vector that represents the closure failure of a Burgers circuit around a single

dislocation in a crystal lattice; its magnitude, denoted by b, is also referred to as

the Burgers length, a definition that typically renders b and interatomic spacing. In

materials science dislocation densities are measured in dislocations per unit area and

hence carry the dimension [m−2]. Each continuum-mechanical density, say ρcm, can

be converted to a material-science density, say ρms, via the transformation

ρms = b−1ρcm. (2.52)

Concrete example can be found in Orowan equation, γ̇s = ρmsbv, in this context

refers to number of dislocations per unit area.

Furthermore, problems can also occur with plastic slip γ, since in physical meaning

of material science the damage can be in all 0,1,2 and 3 dimension depended on

problem setting as mentioned before but in continuum mechanics this quantity is

considered only in volume. One has to be aware when combine this two perspective

together.

Principle of virtual power and microforce balance

We come back to consider the kinematic quantities appearing in gradient theory for

single crystal which in the work of Gurtin are the elastic strain rate ε̇el, the slip

rates γ̇s, and their gradients ∇γ̇s that we have seen can be reformulated to the edge

ρs` and the screw ρs� dislocation densities later. The relevant stress-like quantities

are then the stress σ, a new scalar microforce πs and a new vectorial microstress ξs.

Then the total internal power Pint(B) in the arbitrary sub-domain B in the body B
is given by

Pint(B) =

∫
B

σ : ε̇eldx+
∑
s

∫
B

(πsγ̇s + ξs · ∇γ̇s) dx. (2.53)
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The external power Pext(B) has also the new term that involves a microtraction

Ξs(n) depending on the outward unit normal n and power-conjugate to γ̇s,

Pext(B) =

∫
B

f · u̇ dx+

∫
∂B

t · u̇ ds+
∑
s

∫
∂B

Ξs(n)γ̇s ds. (2.54)

From the decomposition of the gradient of dislocation (2.14) , we have a relation

between the velocity u̇ and slip rate γ̇s of the form,

∇u̇ = β̇el +
∑
s

γ̇sMs, (2.55)

where Ms = ds ⊗ms is the Schmidt tensor. The principle of virtual power is then

simply the requirement that

Pint(B) = Pext(B) (2.56)

for all sub-domain B of B and all admissible kinematic rate quantities.

Next substitute (2.53) and (2.54) into the virtual power identity and set the velocity

u̇ = 0 then the following identity is obtained,

∑
s

[ ∫
B

(πs − τs − div ξs)γ̇s dx+

∫
∂B

(ξs · n− Ξs(n))γ̇s ds
]

= 0 (2.57)

by using the integration by parts∫
B

ξs · ∇γ̇s dx =

∫
∂B

ξ · nγ̇s ds−
∫
B

div ξsγ̇s dx, (2.58)

the relation between elastic rate ε̇el and slip rate γ̇s from (2.55) for u̇ = 0 such that

ε̇el = sym β̇el = −
∑
s

γ̇s symMs, (2.59)

and using symmetry property of σ for shear stress τs = σ : Ms.

Since B is arbitrary, then the following microforce balance equation is obtained

τs = πs − div ξs (2.60)

and furthermore the microtraction condition on the boundary

Ξs(n) = ξs · n. (2.61)
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Free energy function, dissipation inequality and length scale

The free energy in the case of single-crystal strain-gradient plasticity is written in

the separable form with the addition of defect energy ψd that depends on dislocation

densities of edges ρ` = (ρ1
`, ..., ρ

N
` ) and screws ρ� = (ρ1

�, ..., ρ
N
� ),

ψ(εel,ρ`,ρ�,η) = ψel(εel) + ψd(ρ`,ρ�) + ψh(η). (2.62)

The local dissipation inequality takes the form

ψ̇ − σ : ε̇el −
∑
s

(πsγ̇s + ξs · ∇γ̇s) ≤ 0. (2.63)

The defect energies based on dislocation densities in Gurtin et al. (2007) work takes

the form

ψd(ρ`,ρ�) =
1

2

∑
s

|ρsnet|2 =
1

2

∑
s

(
(ρs`)

2 + (ρs�)2
)

=
1

2

∑
s

|∇sγs|2,

where ∇sγs := (ds · ∇γs)ds + (ls · ∇γs)ls = −ρs`ds + ρs�ls as in (2.49).

Remark: Gurtin (2002) has also proposed another form of defect energy that de-

pends on the Burgers tensor α instead of dislocation densities,

ψd(α) =
1

2
|α|2. (2.64)

Then with the substitution of the free energy the dissipation inequality reduced to∑
s

(
(ξs − ξen

s ) · ∇γ̇s + πsγ̇s + gsη̇s

)
≥ 0, (2.65)

by using the fact that ψ̇d =
∑

s ξ
en
s · ∇γ̇s with

ξen
s :=

∂ψd

∂(∇γ)
= −ρs`ds + ρs�ls. (2.66)

that represents the energetic component of the microstress.

For simplicity we define the dissipative microstress

ξdis
s := ξs − ξen

s (2.67)
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and introducing the generalized stress Σs and the generalized plastic strain Ps as

same as in previous setting by

Σs := (πs, `
−1
e ξ

dis
s , gs), Ps := (γs, `e∇γs, ηs), (2.68)

where `e is an energetic length scale that evolved the size dependent behavior then

the dissipation inequality can be rewritten in the compact form∑
s

Σs · Ṗs ≥ 0. (2.69)

The yield function on the slip s is defined by

φ(Σs) := |Sdis
s |2 + gs − S0, (2.70)

here S0 denotes the initial yield stress, Sdis
s = (πs, `

−1
e ξs) and |Sdis

s |2 := (|πs|2 +

`−2
e |ξdis

s |2)1/2.

The generalized strain rate and hardening rate are given by the normality relation

γ̇s = λs
∂φ

∂πs
= λs

πs
|Sdis
s |2

, (2.71)

∇γ̇s = λs
∂φ

∂ξdis
s

= λs
`−2
e ξdis

s

|Sdis
s |2

, (2.72)

η̇s = λs
∂φ

∂gs
= λs, (2.73)

where λs ≥ 0 is a scalar multiplier, together with the complementarity conditions

φ(Σs) ≤ 0, λs ≥ 0, λsφ(Σs) = 0. (2.74)

Moreover, if we take the additional assumption for the normality relation of the pairs

of strain rate

(γ̇s, `e∇γ̇s) = λs
∂φ

∂(πs, `−1
e ξs)

= λs
∂φ

∂Sdis
s

(2.75)

then it follows

λs =
(

(γ̇s)
2 + `2

e|∇λ̇s|2
)1/2

=: ds. (2.76)
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Here ds can be viewed as the effective slip rate associated to the s slip system, then

consider the flow at the yield surface such that φ = 0, one gets |Sdis
s |2 = S0− gs and

the flow relations can be inverted, for d 6= 0, as

πs =
S0 − gs
ds

γ̇s, (2.77)

ξdis
s =

S0 − gs
ds

`2
e∇γ̇s. (2.78)

2.3 Higher-dimensional Continuum Dislocations Dy-

namics Theory

Only recently, Hochrainer and co-workers generalized the statistical approach of

Groma towards systems of dislocations with arbitrary line orientation and line curva-

ture introducing the higher-dimensional Continuum Dislocation Dynamics (hdCDD)

theory Hochrainer (2006); Hochrainer et al. (2007); Sandfeld (2010a); Sandfeld et al.

(2010). The key idea of hdCDD is based on mapping spatial, parameterized dislo-

cation lines into a higher-dimensional configuration space, which contains the local

line orientation as additional information. The continuum representation of lines in

this configuration space requires the notion of a so-called generalized line direction

L and generalized velocity V together with the dislocation density tensor of second

order, αII, which is also defined in the configuration space. This density tensor con-

tains the Kröner-Nye tensor as a special case but is furthermore able to describe the

evolution of very general systems of curved dislocations with arbitrary orientation.

In particular the common differentiation between GND and SSD density becomes

dispensable. Similar to Kröner’s or Groma’s frameworks, this continuum theory

again also describes only the kinematics, i.e. the evolution of dislocation density in

a given velocity field. The additionally available information of hdCDD, e.g. line

orientation and curvature, however, is crucial for determining dislocation interaction

stresses and modeling physically-based boundary conditions in a realistic manner.

A complete dislocation based plasticity theory that based on hdCDD was however

not yet firmly developed because the aim of the development of the theory was

only trying to establish the mathematical framework needed to perform meaningful

averages over systems of moving curved dislocations. The first attempt to investigate

the full hdCDD based plasticity was proposed by Sandfeld et al. (2010). They

considered the problem of micro-bending of a free-standing thin film by assuming

the homogeneity of dislocation glides in the direction parallel to the film that can

simplify the system to use only one representative slip plane per slip system for the

simulation. This setting was limited to the given external stress and mean field stress

that was derived explicitly in Zaiser et al. (2007); Nikitas (2008). To overcome the
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limitation of homogeneous slip planes assumption, the relaxed system with discrete

slip planes was introduced in Sandfeld et al. (2013) by using the Groma’s continuum

dislocations system and for a better explanation for dislocation loops in the recent

work Sandfeld and Po (2015). For the system with hdCDD theory with discrete

slip planes has not been studied before, therfore we propose here the framework to

support the discrete slip planes. More details of the behaviour of hdCDD over a

single slip, one can find in Chapter 4.

2.3.1 Dislocation Densities and Plastic Shear Strain

One aspect of continuum dislocation theories is that they consider averages of slip

planes. Therefore, in any slip system s, we use a discrete set of ’crystallographic’

slip planes of distance Ms > 0

Γs,g =
{
zg + ξds + ηds ×ms : (ξ, η) ∈ R2

}
, (2.79)

where zg ∈ Γs,g denotes the origin of the local (ξ, η) coordinate system which is

aligned such that the Burgers vector bs points into positive η direction and ξ points

into the line direction of a positive edge dislocation; points in the slip plane are

denoted by r ∈ Γs,g. Each SP is expanded to a thin layer of width h ≤ Ms (collecting

a small number of physical slip planes)

Bs,g =
{

z ∈ B : z = rg + ζms with rg ∈ Γs,g and |ζ| ≤ h/2
}
. (2.80)

In our model, the dislocation density in the slip system s is represented by the

average ρs,g in the layer Bs,g.

Since the evolution of the dislocation density ρs,g and Orowan’s relation of the plastic

shear strain are evaluated only in the crystallographic slip planes Γs,g, the continuum

approach requires to extend the values to the body B. For this purpose, we introduce

the orthogonal projection Ps,g : B −→ Γs,g, and for r ∈ Γs,g\B the plastic shear strain

γs,g is extended by constant continuation. We consider two cases:

Case 1: Direct representation of crystallographic SPs.

We set

γs(r) =

γs,g(r) r ∈ Bs,g for some g ,

0 else .
(2.81)

The objective of Case 1 is, to analyze, how Ms and h need to be chosen for our

density-based micro-structure representation. This provides then benchmark

data for Case 2.
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Observation
surface slip traces
of a deformed crystal

Physical model
the ’crystallographic’
slip planes (representing a small
number of physical slip planes)
are evenly spaced
with distance Ms

Numerical model

Case 1: direct representation Case 2: averaged representation

Figure 2.7: The representation of discrete slip planes in one slip system in a crystal.

Case 2: Averaged representation of crystallographic SPs.

Alternatively, we average over multiple crystallographical SPs in order to ar-

rive at a representation of, e.g., dislocation density or plastic strain in which

they are distributed field quantities – not only within the SP but also in di-

rection of the slip system normal. Therefore, we first collapse a number of

crystallographic SPs that are contained within a region of width Ms� h into

one representative SP by summing up the respective dislocation field variables

over Ms. The representative SPs are numbered by g. All points r of this layer

belong to the domain

Bs,g =
{

z ∈ B : z = rg + ζms with rg ∈ Γs,g and |ζ| ≤ Ms/2
}

(2.82)

averaging over representative slip planes. The domains Bs,g are non-overlapping

with
⋃
g

Bs,g = B. For the plastic shear strain in Bs,g we define the average

γs,g =
Ms
Ms

∑
Γs,g⊂Bs,g

γs,g . (2.83)
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At points between the representative slip planes

r =
Ms− ζ
Ms

Ps,gr +
ζ

Ms
Ps,g+1r , ζ ∈ [0,Ms]

we define the plastic shear strain in the body B by linear interpolation

γs(r) =
Ms− ζ
Ms

γs,g(Ps,gr) +
ζ

Ms
γs,g+1(Ps,g+1r) . (2.84)

2.3.2 A hdCDD theory of Curved Dislocations

The tensor αII is defined on the configuration space Γs,g × S1, where S1 = R/2π ≡
[0, 2π) is the orientation space. In the following, r = (η, ξ) is a point in the slip

plane and (r, ϕ) denotes a point in Γs,g × S1. The dislocation density on Γs,g must

be understood as a volume density. If we want to obtain the total line length in the

SP, we have to integrate ρBs,g over Bs,g.

Let ls(ϕ) = cosϕds + sinϕds ×ms define the canonical spatial line direction and

Ls,g(r, ϕ) = (ls, ks,g)
> define the generalized line direction in the higher-order config-

uration space, with ks,g the average line curvature (i.e. one over the bending radius

of the line). The dislocation density tensor of second order then takes the form

αII
s,g(r, ϕ) = ρs,g(r, ϕ)Ls,g(r, ϕ)⊗ bs , (2.85)

where we again assume that the slip plane coordinate system η − ξ is aligned such,

that the Burgers vector bs points into positive η direction. The evolution equation

for this tensor has the form

∂tα
II
s,g(r, ϕ) = −∇̂ ×

(
Vs,g(r, ϕ)×αII

s,g(r, ϕ)
)
, (2.86)

where the vector Vs,g = (−vs,g∂ϕls,−Ls,g · ∇̂vs,g) denotes the generalized velocity

in configuration space, which is perpendicular to the generalized line direction and

∇̂ := (∂η, ∂ξ, ∂ϕ). For detailed information on derivations and implications of these

equations refer to Hochrainer et al. (2007); Sandfeld et al. (2010). One can observe

that from a formal point of view the Kröner-Nye framework with equations (2.4)

and (2.6) looks very similar to the higher-dimensional Hochrainer framework with

equations (2.85) and (2.86) if ls and vs were exchanged with their higher-dimensional

counterparts. In fact, one can retrieve the Kröner-Nye tensor for the slip plane s

from the density function ρs,g(r, ϕ) in a straightforward manner as

αs,g(r) =

2π∫
0

ρs,g(r, ϕ)ls(ϕ)⊗ bs dϕ , ls(ϕ) = cosϕds + sinϕds ×ms .
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Other classical measures can be derived from hdCDD variables as well. For instance

the total scalar density is given by

ρtot
s,g(r) =

2π∫
0

ρs,g(r, ϕ) dϕ , (2.87)

and the two GND densities contained in the components (αs,g)11 and (αs,g)12 (e.g.

the GND density of edge and screw dislocations) derive as

κs,g(r) =

2π∫
0

ρs,g(r, ϕ)ls(ϕ) dϕ , κ⊥s,g(r) =

2π∫
0

ρs,g(r, ϕ)l′s(ϕ) dϕ , (2.88)

where l′s(ϕ) = − sinϕds + cosϕds ×ms is the orthogonal line direction. Subse-

quently, we will not state the point of evaluation (r) or (r, ϕ) for ease of readability

if the meaning is clear from the context. The physical interpretation of the tensorial

evolution equation (2.86) might become more obvious if one replaces the evolution

equation for αII
s,g by a system of two coupled scalar evolution equations for the

dislocation density ρs,g and the so-called curvature density qs,g = ρs,gks,g:

∂tρs,g = −∇̂ · (ρs,gVs,g) + qs,gvs,g , (2.89a)

∂tqs,g = −∇̂ · (qs,gVs,g)− ρs,g
(
Ls,g · ∇̂(Ls,g · ∇̂vs,g)

)
. (2.89b)

The first of these two equations gives upon integration over the sub-volume Bs,g and

all orientations S the total line length in the respective sub-volume, whereas inte-

grating the second equation over Bs,g and S yields the number of closed dislocation

loops as multiple of 2π. This set of equations is complemented by boundary condi-

tions which define, whether a dislocation can leave the crystal (free surface) or not

(impenetrable surface). In the latter case, the density flux through the boundary

is set to zero, e.g. ρs,gvs,g · ns = 0, where ns is the outward unit normal at the

boundary point under consideration.

The plastic shear strain γs,g can be obtained similar as before by using the Orowan

relation and integrating over the orientation space:

∂tγs = bs,g

2π∫
0

ρs,gvs,gdϕ . (2.90)

2.3.3 The Dislocation Velocity

All continuum dislocation models mentioned in the previous section have in common

that they are ’kinematic’ theories in the sense that all of them take the dislocation
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velocity vs,g as a constitutive ingredient, based on which one then predicts the flux

of density. Hence, in Kröner’s, Groma’s and Hochrainer’s theories alike (although

based on very different assumptions) the ’dynamics’, i.e. stresses from dislocation

interactions are not a priori included in these theories and need to be determined

separately. How to derive physically meaningful dislocation interaction stress com-

ponents is a topic that we will not further elaborate here; details about rigorous

analysis of some dislocation systems in a continuum framework can be found in

Zaiser et al. (2001); Groma et al. (2003); Sandfeld et al. (2013); Schulz et al. (2014).

Subsequently, we base the dynamics of our dislocation systems on the following

assumptions for the velocity function:

1. The scalar velocity vs,g in Γs,g is assumed to depend linearly on the stresses

acting on dislocations.

2. The velocity function can be decomposed into several types of stresses that can

be sorted into two fundamentally different classes: those stresses obtained from

the solution of the elastic BVP as outlined in section 5.1.1 together with the

projection of the resolved stress, τs,g = Ms : σ and those stresses governing

short-range elastic dislocation interactions, τb
s,g, τ

lt
s,g and τy

s,g, which are the

back stress, line tension and yield stress, respectively.

3. We assume that dislocations move only if the yield stress was overcome by the

sum of all other contributions which we denote by τ 0 = τs,g − τb
s,g − τ lt

s,g. The

signs follows from the definitions of the stresses stated below.

With these assumptions the velocity function then takes the form

vs,g =


bs
B

sgn(τ 0
s,g)(|τ 0

s,g| − τy
s,g) if |τ 0

s,g| > τy
s,g,

0 otherwise,

(2.91)

where B is the drag coefficient. The stress τs,g from the solution of the elastic BVP

contains besides the stresses due to the prescribed boundary conditions also the

contribution from the eigenstrain, which governs the long-range interaction between

dislocations. For further details and a study of the elastic long range interaction

refer to e.g. Sandfeld et al. (2013). The back stress is an approximation for the

repelling forces between parallel dislocations with the same line direction. It is

required due to the fact, that the resolution of the dislocation problem (the mesh

width) is generally much higher than the resolution of the elastic BVP. For details see

e.g. Groma et al. (2003); Sandfeld et al. (2011); Schulz et al. (2014). For a system of

curved dislocations no back stress formulation has been benchmarked before. Hence,
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we adapt a formulation which was suggested and implemented in the related works

Hochrainer (2006); Sandfeld (2010a). The back stress then can be written as

τb
s,g =

Dµbs
ρtot
s,g

∇ · κ⊥s,g ,

which means, that the back stress at r in direction of ls(ϕ) is proportional to the

gradient of GNDs perpendicular to the line direction ls. Here, D is a constant taken

to be of magnitude 1.

The line tension τ lt
s,g describes the self-interaction of a dislocation loop, e.g. a loop

subjected to no other stress would contract due to the line tension. If we use a

constant line tension approximation that is independent of the line orientation the

line tension reads

τ lt
s,g =

Ts
bs

qs,g
ρs,g

where Ts is the coefficient describing the strength of the interaction; it can be set to

Ts = µb2
s . Finally, the yield function is governed by a Taylor-type term for the form

τy
s,g = aµbs

√
ρtot
s,g (2.92)

with a constant a ∈ [0.2, 0.4], see Groma et al. (2003).
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imation of the hdCDD system

The purpose of this chapter is to provide mathematical tools to analyze and to

construct numerical methods for the system of equations (2.89) that come from

the higher-dimensional Continuum Dislocation Dynamics theory. We first restate

the problem here again and formulate definitions of the problem in a more precise

mathematical setting. For the well-posedness result of the system, we follow the

framework described in Ern et al. (2007) which is summarized in the Section 3.1

and 3.2. Then we finish the chapter with the investigation of one of the numeri-

cal methods used for hd-CDD system, i.e., the explicit Runge-Kutta Discontinuous

Galerkin methods with third order in time by following the framework of Burman

et al. (2010).

Consider the evolution equations for the dislocation density ρs,g and the curvature

density qs,g

∂tρs,g = −∇̂ · (ρs,gVs,g) + qs,gvs,g , (3.1a)

∂tqs,g = −∇̂ · (qs,gVs,g)− ρs,g
(
Ls,g · ∇̂(Ls,g · ∇̂vs,g)

)
, (3.1b)

with the general velocity Vs,g and the general line direction Ls,g in the higher-order

configuration space given by

Vs,g(r, ϕ) := (−vs,g∂ϕls,−Ls,g · ∇̂vs,g), (3.2)

Ls,g(r, ϕ) := (ls, ks,g)
>, (3.3)

where ls(ϕ) := (cosϕ, sinϕ) is the canonical spatial line direction and ks,g is the

average line curvature with the constitutive relation

qs,g = ρs,gks,g. (3.4)

To make notations simpler, later in this chapter the slip system s and representative

slip g indices will not be written since the system will be considered on a specific

35
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single plane. In the setting of hdCDD in chapter 2, the given velocity v is assumed

not to depend on the ϕ direction. With this assumption the evolution system can

be reduced by first considering

ρ
(
L · ∇̂(L · ∇̂v)

)
= ρ

(
(l, k)> · ∇̂

(
(l, k)> · (∇v, 0)>

))
= ρ

(
(l, k)> · ∇̂(l · ∇v)

)
= ρ

(
l · ∇(l · ∇v) + k∂ϕ(l · ∇v)

)
= ρ(l · ∇(l · ∇v)) + q(l′ · ∇v).

Then the evolution system reduces to

∂tρ = −∇̂ · (ρV) + qv, (3.5a)

∂tq = −∇̂ · (qV)− ρ(l · ∇(l · ∇v))− q(l′ · ∇v). (3.5b)

To prepare this problem setting for a mathematical analysis, the system (3.5) is

rewritten in a general form that later will be defined and called as the Friedrich

system,

∂tu +
3∑
i=1

∂i(F
iu) + Bu = 0 in Ω ⊂ R2 × S1, (3.6)

where (∂i)i=1,2,3 = (∂x, ∂y, ∂ϕ)>,u = (ρ, q)> and

F1 =

[
v sinϕ 0

0 v sinϕ

]
, F2 =

[
−v cosϕ 0

0 −v cosϕ

]
,

F3 =

[
−l · ∇v 0

0 −l · ∇v

]
, B =

[
0 −v

l · ∇(l · ∇v) l′ · ∇v

]
.

We can also rewrite (3.6) in an alternative form

∂tu +
3∑
i=1

Fi∂iu +
3∑
i=1

(∂iF
i)u + Bu = 0. (3.7)

We define operators

F :=
3∑
i=1

Fi∂i, X :=
3∑
i=1

∂iF
i, B̃ := X + B,
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i.e.

X =

[
−2l′ · ∇v 0

0 −2l′ · ∇v

]
, B̃ =

[
0 −v

−2l′ · ∇v + l · ∇(l · ∇v) −l′ · ∇v

]
.

Then we have

∂tu + Fu + B̃u = 0. (3.8)

3.1 Friedrichs’ Operator

Let L be a Hilbert space equipped with the scalar product (·, ·)L and the correspond-

ing norm ‖ · ‖L. Let D be a dense subspace of L. We assume that we have at hand

two linear operators T : D → L and T̃ : D → L.

Definition 3.1.1. (Friedrichs’ operators) We say that T and T̃ are Friedrichs’ oper-

ators if they are satisfied the following assumptions

∀(u, v) ∈ D ×D, (Tu, v)L = (u, T̃v)L, (T1)

∃C s.t ∀u ∈ D, ‖(T + T̃)u‖L ≤ C‖u‖L, (T2)

∃µ0 > 0 s.t ∀z ∈ L, ((T + T̃)z, z)L ≥ 2µ0‖z‖2
L. (T3)

It cannot be seen immediately that this definition is well-defined because in (T3) it

is not clear whether T + T̃ can be extended to L. To show well-definedness of this

definition, the following lemma is needed and in addition the self-adjoint property

is shown for T + T̃,

Lemma 3.1.2. Assume (T1) and (T2), then T + T̃ ∈ L(L;L) and is self-adjoint on

L such that

∀(u, v) ∈ L× L, ((T + T̃)u, v)L = (u, (T + T̃)v)L. (3.9)

Proof. T + T̃ ∈ L(L;L) is the consequence of the closure theorem [Kreyszig, Thm.

10.3-5] by using the density property of D and T + T̃ ∈ L(D;L) from (T2). To

prove the self-adjoint property, since D is dense in L then for any u, v ∈ L there

exist sequence in D such that (un)→ u and (vn)→ v. From (T1) we have

((T + T̃)un, vn)L = (un, (T + T̃)vn)L,

then letting n→∞ and using the property that T + T̃ ∈ L(L;L) shows that (3.9)

is satisfied.
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3.1.1 Examples

Friedrichs’ System: Let Ω be a bounded, open, and connected Lipschitz domain

in Rd. Let m be a positive integer and set L = [L2(Ω)]m and D = [C∞0 (Ω)]m. With

this setting D is dense in L. A Friedrichs’ system is formulated using d + 1 Rm,m-

valued fields defined in the domain Ω, say B,F1, ...,Fd with the assumptions that

B,Fi, i ∈ 1, ..., d and
d∑
i=1

∂iF
i ∈ [L∞(Ω)]m,m, (3.10a)

Fi = (Fi)>, i ∈ 1, ..., d a.e. in Ω, (3.10b)

∃µ0 > 0, B + B> −
d∑

k=1

∂iF
i ≥ µIm, (3.10c)

where Im denotes the identity matrix in Rm,m. We define an operator T as follows:

T : D → L, u 7→ Bu +
d∑
i=1

Fi∂iu. (3.11)

Then the formal adjoint of T is given by

T̃ : D → L, u 7→
(
B> −

d∑
i=1

(∂iF
i)
)
u−

d∑
i=1

Fi∂iu. (3.12)

Proposition 3.1.3. Assume (3.10), and let T and T̃ be defined by (3.11) and (3.12),

respectively. Then T and T̃ are Friedrichs’ operators.

Proof. We have to show that a Friedrichs’ system satisfies properties (T1) – (T3).

T1: Let u,v ∈ D, it follows that

(Tu,v)L = (Bu +
d∑
i=1

Fi∂iu,v)L

= (u,B>v) +
d∑
i=1

(∂i(F
iu),v)L −

d∑
i=1

((∂iF
i)u,v)L

= (u,B>v)−
d∑
i=1

(u, (∂iF
i)>v)L

+

∫
∂Ω

d∑
i=1

ni(F
iu) · v da−

d∑
i=1

(u, (Fi)>∂iv)L

= (u,
(
B> −

d∑
i=1

(∂iF
i)−

d∑
i=1

Fi∂i

)
v)L
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= (u, T̃v)L

by using integration by parts, the symmetry of Fi and v = 0 on ∂Ω.

T2: Observe that for u ∈ D,

(T + T̃)u =
(
B +

d∑
i=1

Fi∂i + B> −
d∑
i=1

(∂iF
i)−

d∑
i=1

Fi∂i

)
u

=
(
B + B> −

d∑
i=1

(∂iF
i)
)
u.

Then

‖(T + T̃)u‖2
L =

∫
Ω

|
(
B + B> −

d∑
i=1

(∂iF
i)
)
u|2 dx

≤
(

2‖B‖2
∞ + ‖

d∑
i=1

(∂iF
i)‖2
∞

)∫
Ω

|u|2 dx

≤ C‖u‖2
L

since B and
∑d

i=1(∂iF
i) ∈ [L∞(Ω)]m,m.

T3: It follows from (3.10c) that

((T + T̃)u,u)L =

∫
Ω

(
B + B> −

d∑
k=1

∂iF
i
)
u · u dx

≥ µ

∫
Ω

u · u dx = µ‖u‖2
L.

Symmetric First-Order Hyperbolic Systems: This class of systems can be

transformed into Friedrichs’ systems most directly. Consider the Friedrichs operator

T : u 7→ Bu +
d∑
i=1

Fi∂iu.

We call T uniformly hyperbolic on the domain Ω if there is a vectorα := (α1, ..., αm) ∈
Rm such that

∑d
i=1 αiF

i is uniformly positive definite in Ω. Given β ∈ R, the differ-

ential operator satisfied the identity

T(eβα·xu) = Beβα·xu +
d∑
i=1

Fi∂iu +
d∑
i=1

(Fi∂ie
βα·x)u
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= eβα·x(T + β
d∑
i=1

(αiF
i))u

the parameter β can be chosen sufficiently large to ensure that T1 := T+β
∑d

i=1(αiF
i)

satisfies condition (T3). Thus, under the transformation u = eβα·xv, the sym-

metric first-order hyperbolic system Tv = f is equivalent to the Friedrichs system

T1v = e−βα·xf with suitable boundary conditions which will be discussed later in

the chapter. More details about this transformation can be found in Jensen (2004).

hdCDD System: It can be easily seen that the hdCDD system (3.8) is a symmet-

ric first-order hyperbolic system. We are now ready to show that the hdCDD system

can be transformed into the Friedrichs’ system with a suitable domain Ω, condition

for a given function v, suitable α ∈ Rd and β > 0 and then Friedrichs’ operators

can be defined by restating the hdCDD system (3.8) as following proposition.

Proposition 3.1.4. Let Ω = (0, T )×Γ×S1 where 0 < T <∞, Γ is a bounded, open,

and connected Lipschitz domain in R2 and S1 := R/2πZ. Set L = [L2(Ω)]2 and

D = [C∞0 (Ω)]2. Let v ∈ C2(Γ;R) and

F1(x, y, ϕ) =

[
v sinϕ 0

0 v sinϕ

]
, F2(x, y, ϕ) =

[
−v cosϕ 0

0 −v cosϕ

]
,

F3(x, y, ϕ) =

[
−l · ∇v 0

0 −l · ∇v

]
, B(x, y, ϕ) =

[
0 −v

−2l′ · ∇v + l · ∇(l · ∇v) −l′ · ∇v

]
,

with l = (cosϕ, sinϕ) are in [L∞(Γ × (0, 2π))]2×2. Then the hdCDD system from

(3.8)

∂tu + Fu + Bu = 0 (3.13)

with Fu =
∑3

i=1 Fi∂iu, can be transformed to a Friedrichs’ system.

Proof. By following the transformation of symmetric first-order hyperbolic system

into Friedrichs’ system, we will show that there exist α ∈ R4 and β > 0 such that

after scaling (3.10) is satisfied. Let α = (1, 0, 0, 0)> and substitute u = eβα·xv in

(3.13) where x = (t, x, y, ϕ)> ∈ Ω. We have

I2∂tv + Fv + (B + βI2)v = 0

where I2 is identity in R2×2. Condition (3.10b) can easily be seen. (3.10a) follows

by assumption that v ∈ C2(Γ) then we have v, ∂xv, ∂yv, ∂xyv, ∂xxv, ∂yyv are in C0(Γ)

and thus (B + βI2), Fi, i = 1, 2, 3, and
∑3

i=1 ∂iF
i are in [L∞(Ω)]2×2.
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For (3.10c), we have to show that there exist µ, β > 0 such that

B + B> + 2βI2 −
d∑

k=1

∂iF
i ≥ µIm.

With the symmetric property of Fi and (B + (B)>) for all (x, y) ∈ Γ, we can find

real eigenvalues λ1, λ2 of (B + B> −
∑d

k=1 ∂iF
i) and choose β > max{|λ1|, |λ2|} to

get the condition of µ = β−max{|λ1|, |λ2|} > 0. Then all of conditions of Friedrichs’

systems has been fulfilled.

3.2 Well-posedness and Boundary Conditions

In this section we will investigate boundary conditions that can be used to define a

subspace V ⊂ L such that a Friedrichs’ operator T : V → L is bijective. Then for

a given function f ∈ L, there exists a unique solution u ∈ V such that Tu = f and

also similarly to a restricted subspace V ∗ ⊂ L for T̃.

We will find the maximal domain for Friedrichs’ operator T : D → L by extending

the operator as in Ern et al. (2007). The first extension is fromD to the closure of this

dense space, sayW0 := D‖·‖W0 , with respect to the graph norm ‖·‖W0 := ‖·‖L+‖T·‖L.

The operators T and T̃ now have the unique extension domain to W0 which is the

minimal domain in the terminology of (Aubin, 2000, Ch.5). The space W0 and the

property (T1) of Friedrichs’ operator, we have the following identifications:

D ⊂W0 ⊂ L ≡ L′ ⊂ W ′
0 ⊂ D′ (3.14)

where D′ is the algebraic dual of D and L′ and W ′
0 are topological duals. We now

then abuse the notation by setting T = (T̃)∗ ∈ L(L;W ′
0) and T̃ = T∗ ∈ L(L;W ′

0).

Since L ⊂ W ′
0 where (·)∗ represents the adjoint operator, the following space is make

sense to be defined

W = {v ∈ L; Tv ∈ L} = {v ∈ L; T̃v ∈ L}, (3.15)

and clearly W0 ⊂ W . The space W , called graph space with graph norm ‖ · ‖W :=

‖ · ‖L+‖T · ‖L, is the maximal domain of T and T̃ and can be shown to be a Hilbert

space (Ern et al., 2007, Lem. 2.1).

3.2.1 Well-posedness

Now we have the extended operators T and T̃ in L(W ;L). In this subsection, we will

identify sufficient conditions on subspaces V and V ∗ in W such that the restricted
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operators T : V → L and T̃ : V ∗ → L are isomorphisms. Let us first introduce the

operator D ∈ L(W ;W ′) such that for all (u, v) ∈ W ×W

〈Du, v〉W ′,W = (Tu, v)L − (u, T̃v)L, (3.16)

with the following property.

Property 3.2.1. Assume (T1) and (T2), then D is self-adjoint operator, i.e., for all

(u, v) ∈ W ×W ,

〈Du, v〉W ′,W = 〈Dv, u〉W ′,W . (3.17)

Proof.

〈Du, v〉W ′,W − 〈Dv, u〉W ′,W =
(

(Tu, v)L − (u, T̃v)L

)
−
(

(Tv, u)L + (v, T̃u)L

)
= ((T + T̃)u, v)L − ((T + T̃)v, u)L = 0.

by using the self-adjoint property of T + T̃ on L from Lemma 3.1.2.

Moreover it can be shown that Ker D = W0 (Ern et al., 2007, Lemma 2.4) and

therefore one can think of D as a boundary operator compared to an integration by

parts as from the definition of D, we have

(Tu, v)L = (u, T̃v)L + 〈Du, v〉W ′,W .

Now we are ready to state two key assumptions to define subspaces V and V ∗ in W

by the following:

V ⊂ {w ∈ W ; 〈Dw,w〉W ′,W ≥ 0}, V ∗ ⊂ {w ∈ W ; 〈Dw,w〉W ′,W ≤ 0}, (V1)

V = D(V ∗)⊥, V ∗ = D(V )⊥. (V2)

These two assumptions lead to the important consequence for the L-coercivity of

Friedrichs’ operator as the following lemma.

Lemma 3.2.2. Let T, T̃ are Friedrichs’ operators and V, V ∗ ⊂ W that satisfy (V1)–

(V2). Then T is L-coercive on V and T̃ is L-coercive V ∗.

Proof. From the definition of D in (3.16), it implies for all w ∈ V ⊂ W that

(Tw,w)L = (Tw,w)L −
1

2

(
〈Dw,w〉W ′,W − (Tw,w)L + (T̃w,w)L

)
=

1

2
((T + T̃)w,w) +

1

2
〈Dw,w〉W ′,W
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≥ µ0‖w‖2
L,

by using property (T3) for (T+ T̃) and 〈Dw,w〉W ′,W ≥ 0 from the assumption (V1)

for w ∈ V . For L-coercivity of T̃ in V ∗, the similar proof to T can be provided.

Then the well-posedness of Friedrichs’ operator follows from the following theorem by

using the existence and uniqueness properties from the inf-sup condition in Banach-

Nečas-Babuška theorem (BNB), (Di Pietro and Ern, 2011, Thm. 1.1).

Theorem 3.2.3. (Ern et al., 2007, Thm. 3.1) Let T, T̃ are Friedrichs’ operators and

V, V ∗ satisfy (V1)–(V2). Then the restricted operators T : V → L and T̃ : V ∗ → L

are isomorphisms.

Corollary 3.2.4. Let T, T̃ are Friedrichs’ operators from Thm.3.2.3 and f ∈ L. Then

the following problems are well-posed:

Find u ∈ V such that Tu = f in L. (3.18)

Find u∗ ∈ V ∗ such that T̃u∗ = f in L. (3.19)

3.2.2 Boundary Conditions

In the assumptions (V1) and (V2), there are some freedom to design the subspace

V ⊂ {w ∈ W ; 〈Dw,w〉W ′,W ≥ 0} and also for V ∗ by introducing a boundary

operator, say M, that for example the space V can be defined as the kernel of

a combined boundary operator D − M. We state assumptions for an operator

M ∈ L(W ;W ′) such that for w ∈ W ,

M is positive, i.e. 〈Mw,w〉W ′,W ≥ 0, (M1)

W = Ker(D−M) + Ker(D + M), (M2)

and let M∗ ∈ L(W ;W ′) denote the adjoint operator of M defined as follows: for all

u, v ∈ W

〈Mu, v〉W ′,W = 〈M∗v, u〉W ′,W . (3.20)

The important result from these assumptions is that the relation to the subspace

V, V ∗ and the assumptions (V1)–(V2) as the following theorem.

Theorem 3.2.5. (Ern et al., 2007, Thm. 4.2) Assume that M ∈ L(W ;W ′) satisfies

(M1)–(M2) and set

V = Ker(D−M), (3.21)

V ∗ = Ker(D + M∗), (3.22)
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then V and V ∗ satisfy (V1)–(V2).

3.2.3 Weakly Enforced Boundary

We will later apply the discontinuous Galerkin method as numerical method, which

need the weak formulation with weakly enforced boundary conditions. We consider

the Friedrich’s operator T by defining the bilinear form a ∈ L(W ×W ;R),

a(u,v) = (Tu,v)L +
1

2
〈(M−D)u,v〉W ′,W , (3.23)

with the following property.

Property 3.2.6. The corresponding bilinear form a ∈ L(W ×W ;R) of the Friedrichs’

operator T defined in (3.23) is L-coercive on W , i.e., there is µ0 > 0 for all w ∈ W ,

a(w,w) ≥ µ0‖w‖2
L +

1

2
〈Mw,w〉W ′,W . (3.24)

Proof. With the definition of the boundary operator D, it follows

a(w,w) = (Tw,w)L −
1

2
〈Dw,w〉W ′,W +

1

2
〈Mw,w〉W ′,W

= (Tw,w)L −
1

2

(
(Tw,w)L − (T̃w,w)L

)
+

1

2
〈Mw,w〉W ′,W

=
1

2
((T + T̃)w,w)L +

1

2
〈Mw,w〉W ′,W

and together with property (T3) of Friedrichs’ operators then there is µ0 > 0 such

that (3.24) holds.

The alternative formulation of (3.18) with weakly enforced boundary conditions is

stated in the theorem belows.

Theorem 3.2.7. (Ern and Guermond, 2006, Thm.2.8) Let a bilinear a(·, ·) be defined

in (3.23) and f be a given function in L. Then, there is a unique solution u ∈ W
such that

a(u,w) = (f ,w)L (3.25)

for all w ∈ W . Moreover this solution u solves (3.18).

Proof. Since T ∈ L(V ;L) is isomorphic by theorem 3.2.3, there is a unique u ∈
V ⊂ W such that Tu = f . Moreover since V = Ker(D −M), it follows that

〈(M−D)u,w〉W ′,W = 0 for all w ∈ W . Then, we get the existence of u ∈ W that

a(u,v) = (f ,v)L for all w ∈ W and this u solves (3.18). The uniqueness follows

directly from L-coercivity of the bilinear form a in property 3.2.6.
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3.2.4 Examples

Scalar hyperbolic equation: Let Ω be a bounded, open, and connected Lipschitz

domain in Rd and v be a vector field in Rd such that v ∈ [L∞(Ω)]d and∇·v ∈ L∞(Ω).

Define the inflow boundary ∂Ω− and the outflow boundary ∂Ω+ as follows:

∂Ω− = {x ∈ ∂Ω; v(x) · n(x) < 0}, ∂Ω+ = {x ∈ ∂Ω; v(x) · n(x) > 0}. (3.26)

Let µ ∈ L∞(Ω) and assume that there exists µ0 > 0 such that

µ(x)− 1

2
∇ · v(x) ≥ µ0 ≥ 0 a.e. in Ω. (3.27)

Consider the advection-reaction equation for a given function f ∈ L2(Ω)

µu+ v · ∇u = f. (3.28)

We can define Friedrichs’ operators T and T̃ on D = C1
0(Ω) that is dense in L =

L2(Ω)

T = µ+ v · ∇, T̃ = µ−∇ · v − v · ∇ (3.29)

together with the graph space

W = {w ∈ L2(Ω); v · ∇w ∈ L2(Ω)}. (3.30)

We state the properties of W that will be used later from Ern and Guermond (2004)

that

C1(Ω) is dense in W, (3.31)

∃ψ−, ψ+ ∈ C1(Ω) s.t. ψ− + ψ+ = 1 on Ω, ψ−|∂Ω+ = 0, ψ+|∂Ω− = 0. (3.32)

Then Friedrichs’ operators have unique extensions and as before we abuse the nota-

tions for the extended operators T, T̃ ∈ L(W,L).

Moreover, the operator D has the following representation, for all u, v ∈ W

〈Du, v〉W ′,W =

∫
∂Ω

uv(v · n) da. (3.33)

We observe that∫
∂Ω

uv(v · n)da =

∫
Ω

∇ · (uvv)dx

=

∫
Ω

(
(∇u · v)v + (∇v · v)u+ uv∇ · v

)
dx,
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which shows that the operator D is well-defined in W. For boundary conditions, set

V = {w ∈ W ; w|∂Ω− = 0}, V ∗ = {w ∈ W ; w|∂Ω+ = 0} (3.34)

Property 3.2.8. Let V and V ∗ be defined in (3.34), then (V1)–(V2) hold.

Proof. For (V1), it is clear from the representation of D in (3.33) and definitions

of ∂Ω− and ∂Ω+. For (V2), we first show that V = D(V ∗)⊥ by letting v ∈ V and

v∗ ∈ V ∗ then

〈Dv∗, v〉W ′,W =

∫
∂Ω

vv∗(v · n)da = 0, (3.35)

because v|∂Ω− = 0, v∗|∂Ω+ = 0 and v · n = 0 on ∂Ω \ (∂Ω− ∪ ∂Ω+), therefore

v ∈ D(V ∗)⊥ and V ⊂ D(V ∗)⊥. Conversely, let v ∈ D(V ∗)⊥ and ψ− ∈ C1(Ω) defined

in (3.32). Then ψ−v ∈ V ∗ and

0 = 〈D(ψ−v), v〉W ′,W =

∫
∂Ω

ψ−v2(v · n) da =

∫
∂Ω−

v2(v · n) da. (3.36)

This leads to v|∂Ω− = 0, which means v ∈ V and then D(V ∗)⊥ ⊂ V . For the

condition V ∗ = D(V )⊥ can also be proved similarly.

The boundary operators M can also be defined related to V such that for u, v ∈ W

〈Mu, v〉W ′,W =

∫
∂Ω

uv|v · n| da

=

∫
∂Ω+

uv(v · n) da−
∫
∂Ω−

uv(v · n) da

and it follows that M∗ = M.

Together with the definition of D, we have

〈(D−M)u, v〉W ′,W = 2

∫
∂Ω−

uv(v · n) da (3.37)

〈(D + M∗)u, v〉W ′,W = 2

∫
∂Ω+

uv(v · n) da (3.38)

and it can be shown that V = Ker(D−M) and V ∗ = Ker(D + M∗).

Then the well-posed problem of scalar hyperbolic equations can be restated as fol-

lows: Find u ∈ W such that for a given f ∈ L

µu+ v · ∇u = f in L , (3.39a)
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(D−M)u = 0 in W ′. (3.39b)

hdCDD System: From proposition 3.1.4, we obtain a Friedrichs’ system by

rescaling the hdCDD system. Then we can define Friedrichs’ operators T and T̃ on

D[C1
0(Ω)]2 which is dense in L = [L2(Ω)]2 with Ω = (0, T ) × Γ × S1, a sufficiently

large β > 0 and for a given v ∈ C2(Γ),

T = I2∂t +
3∑
i=1

Fi∂i + B + βI2, (3.40)

T̃ = −I2∂t −
3∑
i=1

Fi∂i −
3∑
i=1

(∂iF
i) + B> + βI2, (3.41)

together with the graph space

W = {w ∈ [L2(Ω)]2; (I2∂t +
3∑
i=1

Fi∂i)w ∈ [L2(Ω)]2}, (3.42)

and as before we have the unique extended operators T, T̃ ∈ L(W,L).

From the integration by parts, we have the boundary operator D as follows, for all

u,v ∈ W

〈Du,v〉W ′,W =

∫
∂Ω

(
ntI2u +

3∑
i=1

niF
iu
)
· v da

=

∫
∂Ω

(
(nt + nxv sinϕ− nyv cosϕ− nϕ(l · ∇v))I2u

)
· v da

=

∫
{0,T}×Γ×S1

ntu · v da

+

∫
(0,T )×∂Γ×S1

(nxv sinϕ− nyv cosϕ)u · v da

−
∫

(0,T )×Γ×{0,2π}
nϕ(l · ∇v)u · v da

=

∫
∂Ω\∂ΩS1

λ(x)(u · v)da

where n = (nt, nx, ny, nϕ)> is unit normal vector at x = (t, x, y, ϕ)> ∈ ∂Ω, ∂ΩS1 :=

(0, T )× Γ× {0, 2π} and λ(x) = nt + nxv sinϕ− nyv cosϕ. We use the fact that the

integration on ∂ΩS1 vanishes, i.e.
∫
∂ΩS1

nϕ(l ·∇v)u ·v da = 0 because of the periodic

boundary conditions on S1. To state more explicitly, here we have on the boundary

in time direction n = (−1, 0, 0, 0)> at t = 0, n = (1, 0, 0, 0)> at t = T . Similar
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to previous example, we define the inflow boundary ∂Ω− and the outflow boundary

∂Ω+ as follows:

∂Ω− = {x ∈ ∂Ω \ ∂ΩS1 ; λ(x) < 0}, ∂Ω+ = {x ∈ ∂Ω \ ∂ΩS1 ; λ(x) > 0}, (3.43)

and we also define the subspaces in W

V = {w ∈ W ; w|∂Ω− = 0}, V ∗ = {w ∈ W ; w|∂Ω+ = 0} (3.44)

The same argument with the proof in property 3.2.8 can be used to show that these

V and V ∗ satisfy assumptions (V1)–(V2).

The boundary operators M can also be defined related to V such that for u,v ∈ W

〈Mu,v〉W ′,W =

∫
∂Ω\∂ΩS1

|λ(x)|u · v da

=

∫
∂Ω+

λ(x)u · v da−
∫
∂Ω−

λ(x)u · v da

and then

〈(D−M)u,v〉W ′,W = 2

∫
∂Ω−

λ(x)u · v da. (3.45)

This defines the well-posedness of hdCDD system with zero on the inflow boundary

including inflow in time domain at t = 0. To include initial value g with a suitable

regularity, we have to consider the modified problem with additional function uini ∈
W such that uini(t = 0) = g: Find u0 ∈ W such that

T(u0 + uini) = 0 in L , (3.46a)

(D−M)u0 = 0 in W ′. (3.46b)

Then, u0 + uini is the solution for hdCDD problem with initial value g. Therefore,

we have the well-posedness result for the open boundary case of the hdCDD system.

The impenetrable boundary case is more complicated due to the velocity v that

depends nonlinearly on the dislocation density ρ so the well-posedness of this case

is not covered in this thesis.

3.3 Explicit Runge-Kutta Discontinuous Galerkin

Methods for hdCDD

The hdCDD system has been shown to be well-posed in the space-time setting.

However, for the numerical treatment we would like to choose a method to solve this
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problem separately in space and time by using the discontinuous Galerkin method

in space and explicit Runge-Kutta methods in time, or in short explicit RKDG

methods (see Cockburn and Shu (1991); Hesthaven and Warburton (2007)).

Our goal in this section is to analyze the convergence of explicit RKDG methods for

the hdCDD system following the framework in Burman et al. (2010). In addition

to the work of Burman et. al., we have the zero-order component B in the hdCDD

system which needs some modification for the proof and specific parameters for

hdCDD system will be also investigated here in this thesis.

We consider the hdCDD system (3.13) on Ω = (0, T ) × Ω̃, where Ω̃ := Γ × S1,

together with boundary and initial conditions as follows:

Find u : (0, T )× Ω̃→ R2 solving

∂tu + Fu + Bu = 0 in (0, T )× Ω̃, (3.47a)

u(·, t = 0) = g in Ω̃, (3.47b)

(M−D)u = 0 on (0, T )× ∂Ω̃S1 (3.47c)

with periodic boundary conditions u(t, x, y, 0) = u(t, x, y, 2π), ∂Ω̃S1 = ∂Γ× S1 and

given initial values g : Ω̃→ R2.

Alternatively we can also write the system for space-time functional spaces as in

(3.46). But this time with separating space and time, specifically we define spaces

analog to the space-time hdCDD system, i.e., L̃ = [L2(Ω̃)]2, a graph space

W̃ = {w ∈ L̃;
3∑
i=1

Fi∂iw ∈ L̃} ⊂ [H1(Ω̃)]2, (3.48)

and its subspace

Ṽ = {w ∈ W̃ ; w|∂Ω̃− = 0}, (3.49)

where ∂Ω̃− = {x ∈ ∂Ω̃S1 ; nxv sinϕ− nyv cosϕ < 0}, and similarly for Ṽ ∗ and ∂Ω̃+.

Now we are interested in a smooth solution

u ∈ C0([0, T ]; Ṽ ) ∩ C1([0, T ]; L̃), (3.50)

and we can reformulate (3.47) to

∂tu(t) + Au(t) = 0 ∀t ∈ [0, T ], (3.51)

with a initial value u(t = 0) = g ∈ Ṽ and A = F + B.
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Introducing a corresponding bilinear form with weakly enforced boundary condition,

i.e., for (v,w) ∈ W̃ × W̃ ,

a(v,w) = (Fv,w)L2 + (Bv,w)L2 +
1

2
((M−D)v,w)L2,∂Ω̃S1

. (3.52)

Considering the following with the symmetry property of Fi, integration by parts

and the periodic boundary condition on S1 yields

(Fv,v)L2 = (
3∑
i=1

∂i(F
iv),v)− (Xv,v)L2 ,

= (Dv,v)L2,∂Ω̃S1
− (v,Fv)L2 − (Xv,v)L2 ,

where X =
∑3

i=1 ∂iF
i, then we get

(Fv,v)L2 =
1

2
(Dv,v)L2,Ω̃S1

− 1

2
(Xv,v)L2 . (3.53)

Substituting this relation into (3.52), it leads to

a(v,v) = (Bv,v)L2 +
1

2
|v|2M −

1

2
(Xv,v)L2 (3.54)

where

|v|M := (Mv,v)
1/2

L2,∂Ω̃S1
(3.55)

denotes a seminorm by using the nonnegative property of the boundary operator M.

3.3.1 Space semidiscretization

Let {Th}h>0 be a family of simplicial meshes of Ω̃ where h ≤ 1 denotes the maximal

diameter of elements in Th. For simplicity, we assume that the meshes are affine

and that Ω̃ is a polyhedron. Mesh faces are collected in the set Fh which is split

into the set of interior faces, F int
h , and boundary faces, F ext

h . For K ∈ Th and for

f ∈ Fh, ‖ · ‖L2,K and ‖ · ‖L2,f , denote the [L2(K)]2 and [L2(f)]2 norms, respectively;

and ‖ · ‖2
L2,Fh :=

∑
f∈Fh ‖ · ‖

2
L2,f . We assume that meshes are kept fixed in time and

also that the family {Th}h>0 is quasi-uniform.

Let p ≥ 0. We define spaces

Wh = {wh ∈ [L2(Ω̃)]2;∀K ∈ Th,wh|K ∈ [Pp]2}, (3.56)

W (h) = [H1(Ω̃)]2 +Wh. (3.57)

The Wh space is a DG space consisting of discontinuous R2-valued piecewise poly-

nomials of total degree ≤ p, where in the case of p = 0 the DG method is equivalent
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to the finite volume method. Let πh denote the L2-orthogonal projection onto Wh.

To define the discrete operator, first we consider the system with linear operator A

from (3.51) over the element K,

(Aw,v)L2,K = ((F + X )w,v)L2,K + ((B−X )w,v)L2,K

= ((
3∑
i=1

∂i(F
iw),v)L2,K + ((B−X )w,v)L2,K

= −(w,Fv)L2,K + ((B−X )w,v)L2,K +
∑
f∈∂K

(
3∑
i=1

nfi F
iw,v)L2,f ,

by using the integration by parts where nf = (nf1 , n
f
2 , n

f
3) is the normal vector to

face f . The DG method scheme starts by modifying this formulation to allow the

boundary part to have interaction with nearby elements by introducing a numerical

flux, say F∗K,f . We define the discrete linear operators Ah : Wh → Wh such that for

all (wh,vh) ∈ Wh ×Wh

(Ahwh,vh)L2,K = −(wh,Fvh)L2,K + ((B−X )wh,vh)L2,K +
∑
f∈∂K

(nf · Fi∗
K,f (wh),vh)L2,f ,

then with integration by parts and the symmetry of Fi, we obtain

(Ahwh,vh)L2,K = (Fwh,vh)L2,K + (Bwh,vh)L2,K

−
∑
f∈∂K

(
3∑
i=1

nfi F
iwh − nf · Fi∗

K,f (wh),vh)L2,f .

The numerical upwind flux is defined as follows

nf · F∗K,f (wh) =
3∑
i=1

nfi {{Fiwh}}+
Cf
2

[[wh]], (3.58)

where for a fixed common interior face f between cells K and Kf , we define the

average and the jump along a normal nf oriented from K to Kf as

{{vh}} =
vh|K + vh|Kf

2
, [[vh]] := vh|K − vh|Kf ,

respectively and the normal velocity Cf = |V · nf |, where V = (−v∂ϕl,−L · ∇̂v) is

the general velocity of hdCDD defined in (3.2). Then we have

(Ahwh,vh)L2 =
∑
K∈Th

(Ahwh,vh)L2,K
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=
∑
K∈Th

[
(Fwh,vh)L2,K + (Bwh,vh)L2,K

]
−
∑
K∈Th

[ ∑
f∈∂K

(
3∑
i=1

nfi F
iwh − nf · F∗K,f (wh),vh)L2,f

]
,

by considering on a fixed face f = ∂K ∩ ∂Kf ∈ F int, we have nf,K = −nf,Kf , then

(
3∑
i=1

nf,Ki Fiwh − nf,K · Fi∗
K,f (wh),vh|K)L2,f + (

3∑
i=1

n
f,Kf
i Fiwh − nf,Kf · Fi∗

Kf ,f
(wh),vh|Kf )L2,f

=
3∑
i=1

[nKi
2

(Fiwh|K − Fiwh|Kf ,vh|K)L2,f +
n
Kf
i

2
(Fiwh|Kf − Fiwh|K ,vh|Kf )L2,f

]
− Cf

2
(wh|K −wh|Kf ),vh|K)L2,f −

Cf
2

(wh|Kf −wh|K ,vh|Kf )L2,f

=
3∑
i=1

nKi ([[Fiwh]], {{vh}})L2,f −
Cf
2

([[wh]], [[vh]])L2,f .

Finally, the discrete operator Ah can be written as

(Ahwh,vh)L2 =
∑
K∈Th

[
(Fwh,vh)L2,K + (Bwh,vh)L,K

]
(3.59)

−
∑
f∈F int

h

[ 3∑
i=1

nfi ([[F
iwh]], {{vh}})L2,f −

Cf
2

([[wh]], [[vh]])L2,f

]
+
∑
f∈Fext

h

1

2
((M−D)wh,vh)L2,f ,

= (Adg
h wh,vh)L2 + (Sdg

h wh,vh)L2 ,

where

(Adg
h wh,vh)L2 =

∑
K∈Th

[
(Fwh,vh)L2,K + (Bwh,vh)L2,K

]
(3.60)

+
∑
f∈Fext

h

1

2
((M−D)wh,vh)L2,f ,−

∑
f∈F int

h

(
3∑
i=1

nfi [[F
iwh]], {{vh}})L2,f

(Sdg
h wh,vh)L2 =

∑
f∈F int

h

(
Cf
2

[[wh]], [[vh]])L2,f . (3.61)

We can now define the discrete DG operator for the bilinear form a from (3.52),

such that

ah(wh,vh) = adg
h (wh,vh) + sdg

h (wh,vh) , (3.62)
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where

adg
h (wh,vh) = (Adg

h wh,vh)L2 , sdg
h (wh,vh) = (Sdg

h wh,vh)L2 . (3.63)

Moreover we define

σ := max
i=1,2,3

‖Fi‖[L∞(Ω̃)]2×2 . (3.64)

Then, it follows

CfI2 = |V · nf |I2 =
3∑
i=1

|nfi Fi| ≤ 3σI2, (3.65)

and with a fixed face f ∈ F ext
h , we have for v,w ∈ [L2(f)]2

|((M−D)v,w)L2,f | =

{
0, f ⊂ ∂Ω̃ \ ∂Ω̃−

|2(Dv,w)L2,f |, f ⊂ ∂Ω̃−
,

≤ |2(
3∑
i=1

nfi F
iv,w)L2,f |,

then by using Cauchy-Schwarz inequality,

|((M−D)v,w)L2,f | ≤ 6σ‖v‖L2,f‖w‖L2,f . (3.66)

We now state the following key properties.

Property 3.3.1. Let ah be the bilinear operator defined in (3.62). Then the following

assumptions hold

(DG1) the identity for a bilinear adg
h such that for all vh ∈ Vh

adg
h (vh,vh) =

1

2
|vh|2M −

1

2
(Xvh,vh)L2 + (Bvh,vh)L2 , (3.67)

and then it follows

(Ahvh,vh)L2 = |vh|2S −
1

2
(Xvh,vh)L2 + (Bvh,vh)L2 , (3.68)

where

|v|S :=
(
sdg
h (v,v) +

1

2
|v|2M

)1/2

; (3.69)

(DG2) the strong solution u satisfies for all t ∈ (0, T ),

∂tπhu + Adg
h u = 0, and Sdg

h u = 0; (3.70)
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(DG3) there is cs such that for all vh ∈ Vh,

|vh|S ≤ c1/2
s σ1/2h−1/2‖vh‖L2 , (3.71)

and there is c′s such that for all v ∈ [Hp+1(Ω̃)]2,

|v − πhvh|S ≤ c′
1/2
s σ1/2hp+1/2‖v‖Hp+1 ; (3.72)

(DG4) there is cL such that for all v ∈ V (h),

‖Ahv‖L2 ≤ σ‖∇hv‖L2 + cB‖v‖L2 + cLσ
1/2h−1/2|v|S, (3.73)

where ∇h denotes the broken gradient of v.

Proof. (DG1): Consider similarly to (3.53), we obtain

(Fvh,vh)L2,K =
1

2
(Dvh,vh)L2,K −

1

2
(Xvh,vh)L2,K , (3.74)

then ∑
K∈Th

(Fvh,vh)L2,K = −1

2
(Xvh,vh)L2,K +

∑
f∈Fext

h

1

2
(Dvh,vh)L2,K

+
∑
f∈F int

h

(
3∑
i=1

nfi [[F
ivh]], {{vh}})L2,f .

If we substitute this in (3.60) then (3.67) holds and (3.68) follows directly from the

definition of | · |S.

(DG2): For the strong solution, we have u from (3.50), then [[u]] = [[Fiu]] = 0. It

follows that for all vh ∈ Vh

(Sdg
h u,vh)L2 =

∑
f∈F int

h

(
Cf
2

[[u]], [[vh]])L2,f = 0

and

(Adg
h u,vh)L2 =

∑
K∈Th

[
(Fu,vh)L2,K + (Bu,vh)L2,K

]
+
∑
f∈Fext

h

1

2
((M−D)u,vh)L2,f ,−

∑
f∈F int

h

(
3∑
i=1

nfi [[F
iu]], {{vh}})L2,f

= (Au,vh)L2 = −(∂tu,vh)L2

= −∂t(πhu,vh)L2
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then (3.70) holds.

(DG3): From the assumption on mesh discretization that Th is shape-regular then

there is a constant c such that for all K ∈ Th and for all f ∈ ∂K

‖vh‖L2,f ≤ ch
−1/2
K ‖vh‖L2,K . (3.75)

Then,

|vh|2S =
∑
f∈F int

h

(
Cf
2

[[vh]], [[vh]])L2,f +
∑
f∈Fext

h

1

2
(Mvh,vh)L2,f ,

≤ Cf
2

∑
f∈F int

h

‖(vh|K − vh|Kf )‖2
L2,f +

3σ

2

∑
f∈Fext

h

‖vh‖2
L2,f ,

≤ 3σ
∑
K∈Th

∑
f∈∂K

‖vh‖2
L2,f ≤ 12c2σ

∑
K∈Th

h−1
K ‖vh‖

2
L2,K

≤ 12c2σh−1‖vh‖2
L2 ,

and (3.71) follows. For (3.72), it follows from the optimality of L2-orthogonal pro-

jection on K ∈ Th that for v ∈ [Hp+1(K)]2 then there exists c1 such that

‖v − πhvh‖L2,K ≤ c1h
p+1
K ‖v‖Hp+1,K (3.76)

and the proof proceeds as previously for (3.71).

(DG4): We recall from (3.59),

(Ahv,wh)L2 =
∑
K∈Th

[
(Fv,wh)L2,K + (Bv,wh)L2,K

]
+
∑
f∈Fext

h

1

2
((M−D)v,wh)L2,f ,

−
∑
f∈F int

h

(
3∑
i=1

nfi [[F
iv]], {{wh}})L2,f + (Sdg

h v,wh)L2

≤
∑
K∈Th

‖Fv‖L2,K‖wh‖L2 + ‖Bv‖L2‖wh‖L2

+
∑
f∈Fext

h

1

2
‖(M−D)v‖L2,f‖wh‖L2,f +

∑
f∈F int

h

3∑
i=1

‖nfi [[Fiv]]‖L2,f‖wh‖L2,f

+
∑
f∈F int

h

Cf
2
|v|S‖[[wh]]‖L2,f

≤ σ‖∇hv‖L2‖wh‖L2 + ‖B‖∞‖v‖L2‖wh‖L2

+ch−1/2|v|S‖wh‖L2 + ch−1/2Cf |v|S‖wh‖L2 .
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Then,

‖Ahv‖L2 = sup
‖wh‖L2 6=0

|(Ahv,wh)L2 |
‖wh‖L2

≤ σ‖∇hv‖L2 + cB‖v‖L2 + cLσ
1/2h−1/2|v|S.

Moreover we define the norm

‖w‖∗ := σ1/2h1/2‖∇hw‖L2 + σ1/2h−1/2‖w‖L2 (3.77)

+σ1/2‖w‖L2,Fh + |w|S;

then it implies from (DG4) that for all v ∈ V (h),

‖Ahv‖L2 ≤ c′Lσ
1/2h−1/2‖v‖∗, (3.78)

with c′L = max(1, cL). Using inverse and trace inequalities, it is inferred that there

is c∗ s.t. for all vh ∈ Vh,

‖vh‖∗ ≤ c∗σ
1/2h−1/2‖vh‖L2 . (3.79)

Hence, letting cL∗ := c′Lc∗, there holds for all vh ∈ Vh,

‖Ahvh‖L2 ≤ cL∗σh
−1/2‖vh‖L2 . (3.80)

Furthermore, using (3.72) and usual approximation properties in finite element

spaces, it is inferred that there is c′∗ such that for all v ∈ [Hp+1(Ω̃)]2,

‖v − πhv‖∗ ≤ c′∗σ
1/2hp+1/2‖v‖[Hp+1(Ω̃)]2 . (3.81)

3.3.2 Analysis of explicit RK3 schemes

We consider the third-order Heun version of RK3, which is usually written as follows:

k1 = −Ahu
n
h + fnh, (3.82)

k2 = −Ah(u
n
h +

τ

3
k1) + f

n+1/3
h , (3.83)

k3 = −Ah(u
n
h +

2τ

3
k2) + f

n+2/3
h , (3.84)

un+1
h = unh +

τ

4
(k1 + 3k3). (3.85)
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In our case for hdCDD system, we have in the homogeneous case such that f = 0

then this can be rewritten as

un+1
h = unh − τAhu

n
h +

τ 2

2
A2
hu

n
h −

τ 3

6
A3
hu

n
h. (3.86)

For the later use in the error analysis, we define the additional functions,

w = u + τ∂tu, (3.87)

y = u + τ∂tu +
1

2
τ 2∂2

t u, (3.88)

together with their discrete forms

wn
h = unh − τAhu

n
h, (3.89)

ynh =
1

2
(unh + wn

h)− 1

2
τAhw

n
h. (3.90)

Then we can rewrite the RK3 scheme (3.86) as

un+1
h =

1

3
(unh + wn

h + ynh)− 1

3
τAhy

n
h. (3.91)

Moreover define

ξnh = unh − πhun, ζnh = wn
h − πhwn, θnh = ynh − πhyn, (3.92)

ξnπ = un − πhun, ζnπ = wn − πhwn, θnπ = yn − πhyn. (3.93)

Lemma 3.3.2. With the RK3 scheme (3.89)–(3.91) together with w,y defined in

(3.87)–(3.88) and the error functions defined in (3.92)–(3.93), there holds

ζnh = ξnh − τAhξ
n
h + ταnh, (3.94)

θnh =
1

2
(ξnh + ζnh )− 1

2
τAhζ

n
h +

1

2
τβnh , (3.95)

ξn+1
h =

1

3
(ξnh + ζnh + θnh)− 1

3
τAhθ

n
h +

1

3
τγnh , (3.96)

with

αnh = Ahξ
n
π , βnh = Ahζ

n
π , γnh = Ahθ

n
π − πhηn, (3.97)

where

ηn = τ−1

∫ tn+1

tn

1

2
(tn+1 − t)3∂4

t u dt. (3.98)
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Proof. Recall from (DG2) that ∂tπhu + Ahu = 0, it follows for wn in (3.87)

πhw
n = πhu

n + τπh∂tu
n = πhu

n − τAhu
n. (3.99)

We subtract this from (3.89)

wn
h − πhwn = (unh − πhu)− τAhu

n
h + τAhu

n,

= (unh − πhu)− τAh(u
n
h − πhun) + τAh(u

n − πhun),

= ξnh − τAhξ
n
h + ταnh,

then (3.94) follows.

For (3.95), we start with the projection of yn

πhy
n = πhu

n + τπh∂tu
n +

1

2
τ 2πh∂

2
t u

n,

= πhw
n +

1

2
τ∂t(τπh∂tu

n),

= πhw
n +

1

2
τAh(τ∂tu

n),

=
1

2
(πhw

n + πhu
n)− 1

2
τAhu

n − 1

2
τAh(w

n − un),

by using (DG2), (3.87) and (3.99) then

πhy
n =

1

2
(πhw

n + πhu
n)− 1

2
τAhw

n. (3.100)

Subtract this from (3.90), we get

ynh − πhyn =
1

2
(unh − πhun) +

1

2
(wn

h − πhwn)− 1

2
τAh(w

n
h −wn),

=
1

2
ξnh +

1

2
ζnh −

1

2
τAh(w

n
h − πhwn) +

1

2
τAh(w

n − πhwn),

=
1

2
ξnh +

1

2
ζnh −

1

2
τAhζ

n
h +

1

2
τAhζ

n
π ,

then (3.95) holds.

Next for (3.96), we start with Taylor’s expansion,

un+1 = un + τ∂tu
n +

τ 2

2
∂2
t u

n +
τ 3

6
∂3
t u

n +

∫ tn+1

tn

(tn+1 − t)3

6
∂4
t u dt,(3.101)

then by using ηn = τ−1
∫ tn+1

tn
1
2
(tn+1 − t)3∂4

t u dt its projection follows,

πhu
n+1 = πhy

n +
τ 3

6
πh∂

3
t u

n +
τ

3
πhη

n,
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=
1

3
πhy

n +
2

3
πhy

n +
τ

3
∂t(

τ 2

2
πh∂

2
t u

n) +
τ

3
πhη

n,

=
1

3
πhy

n +
2

3
πhy

n +
τ

3
Ah(

τ 2

2
∂2
t u

n) +
τ

3
πhη

n,

=
1

3
(πhy

n + πhw
n + πhu

n)− τ

3
Ahw

n − τ

3
Ah(y

n −wn) +
τ

3
πhη

n,

then

πhu
n+1 =

1

3
(πhy

n + πhw
n + πhu

n)− τ

3
Ahy

n +
τ

3
πhη

n. (3.102)

As previously, we subtract this from (3.91) then (3.96) holds.

Energy identity and stability

We derive an energy identity that will later be used for stability estimation.

Lemma 3.3.3 (energy identity). The following identity holds

1

2
‖ξn+1

h ‖2
L2 −

1

2
‖ξnh‖2

L2 +
τ

2
|ξnh |2S +

τ

6
|ζnh |2S +

τ

3
|θnh |2S +

1

6
‖θnh − ζnh‖2

L2 (3.103)

=
τ

6
|ζnh − ξnh |2S +

1

2
‖ξn+1

h − θnh‖2
L2 + X n

h + Bn
h +

τ

3
(γnh , θ

n
h)L2

+
τ

6
(βnh , ξ

n
h)L2 +

τ

3
(αnh, ξ

n
h +

1

2
ζnh )L2 ,

where

X n
h :=

τ

6
(X ξnh , ξ

n
h)L2 +

τ

6
(X ζnh , ξ

n
h)L2 +

τ

6
(X θnh , θ

n
h)L2 ,

Bn
h := −τ

3
(Bξnh , ξ

n
h)L2 − τ

3
(Bθnh , θ

n
h)L2 − τ

6
(Bζnh , ξ

n
h)L2 − τ

6
(Bξnh , ζ

n
h )L2 .

Proof. First from (3.94), we have

(ζnh , ξ
n
h)L2 = (ξnh , ξ

n
h)L2 − τ(Ahξ

n
h , ξ

n
h)L2 + τ(αnh, ξ

n
h)L2 ,

then

‖ξnh‖2
L2 = (ζnh , ξ

n
h)L2 + τ(Ahξ

n
h , ξ

n
h)L2 − τ(αnh, ξ

n
h)L2 . (3.104)

Next from (3.95), we have

2(θnh , ζ
n
h )L2 = ((ξnh + ζnh ), ζnh )L2 − τ(Ahζ

n
h , ζ

n
h )L2 + τ(βnh , ζ

n
h )L2 ,

and on the other hand

2(θnh , ζ
n
h )L2 = ‖θnh‖2

L2 − ‖θnh − ζnh‖2
L2 + ‖ζnh‖2

L2 ,
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then

‖θnh‖2
L2 = (ζnh , ξ

n
h)L2 + ‖θnh − ζnh‖2

L2 − τ(Ahζ
n
h , ζ

n
h )L2 + τ(βnh , ζ

n
h )L2 . (3.105)

Next rewrite (3.94) - (3.96) to

θnh = ζnh −
τ

2
Ah(ζ

n
h − ξnh) +

τ

2
(βnh − αnh) (3.106)

ξn+1
h = θnh −

τ

3
Ah(θ

n
h − ζnh ) +

τ

3
(γnh − βnh ) (3.107)

then consider

1

2
‖ξn+1‖2

L2 −
1

2
‖ξn+1

h − θnh‖2
L2 =

1

2
(ξn+1, ξn+1)L2 − 1

2
(ξn+1
h − θnh , ξn+1

h − θnh)L2

= (ξn+1
h − 1

2
θnh , θ

n
h)L2

=
1

2
‖θnh‖2

L2 + (ξn+1
h − θnh , θnh)L2

then by using (3.107), we have

1

2
‖ξn+1‖2

L2 −
1

2
‖ξn+1

h − θnh‖2
L2 =

1

2
‖θnh‖2

L2 −
1

3
τ(Ah(θ

n
h − ζnh ), θnh)L2 (3.108)

+
1

3
τ(γnh − βnh , θnh)L2 ,

Next combine (3.104), (3.105) and (3.108), we have

1

2
‖ξn+1‖2

L2 −
1

2
‖ξn+1

h − θnh‖2
L2 −

1

2
‖ξnh‖2

L2

= −1

2
‖ξnh‖2

L2 +
1

2
‖θnh‖2

L2 −
1

3
τ(Ah(θ

n
h − ζnh ), θnh)L2 +

1

3
τ(γnh − βnh , θnh)L2

=
1

2
‖θnh − ζnh‖2

L2 −
1

3
τ(Ah(θ

n
h − ζnh ), θnh)L2 +

τ

3
τ(γnh − βnh , θnh)L2

− τ

2
(Ahξ

n
h , ξ

n
h)L2 +

τ

2
(αnh, ξ

n
h)L2 − τ

2
(Ahζ

n
h , ζ

n
h )L2 +

τ

2
(βnh , ζ

n
h )L2

then

1

2
‖ξn+1‖2

L2 −
1

2
‖ξn+1

h − θnh‖2
L2 −

1

2
‖ξnh‖2

L2 = R1 +R2, (3.109)

with

R1 =
1

2
‖θnh − ζnh‖2

L2 +
τ

3
(Ahζ

n
h , θ

n
h − ζnh )L2 , (3.110)

R2 = −τ
3

(Ahθ
n
h , θ

n
h)L2 − τ

6
(Ahζ

n
h , ζ

n
h )L2 − τ

2
(Ahξ

n
h , ξ

n
h)L2 (3.111)

+
τ

3
τ(γnh , θ

n
h)L2 − τ

3
τ(βnh , θ

n
h)L2 +

τ

2
(αnh, ξ

n
h)L2 +

τ

2
(βnh , ζ

n
h )L2 .
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Furthermore,

R1 =
1

2
(θnh − ζnh , θnh − ζnh +

2τ

3
Ahζ

n
h )L2 ,

=
1

2
(θnh − ζnh ,−

1

3
(θnh − ζnh ) +

2τ

3
(Ahξ

n
h + βnh − αnh))L2

=
1

3
(θnh − ζnh , (ξnh − ζnh + τβnh ))L2 − 1

6
‖θnh − ζnh‖2

L2

=
1

3
(θnh − ζnh , ξnh − ζnh )L2 +

τ

3
(θnh − ζnh , βnh )L2 − 1

6
‖θnh − ζnh‖2

L2

=
1

3
(−τ

2
Ah(ζ

n
h − ξnh) +

τ

2
(βnh − αnh), ξnh − ζnh )L2

+
τ

3
(θnh , β

n
h )L2 − τ

3
(ζnh , β

n
h )L2 − 1

6
‖θnh − ζnh‖2

L2

=
τ

6
(Ah(ξ

n
h − ζnh ), ξnh − ζnh )L2 +

τ

6
(βnh − αnh, ξnh − ζnh )L2

+
τ

3
(θnh , β

n
h )L2 − τ

3
(ζnh , β

n
h )L2 − 1

6
‖θnh − ζnh‖2

L2

by using (3.106) and (3.94), then we get

R1 =
τ

6
(Ah(ξ

n
h − ζnh ), ξnh − ζnh )L2 +

τ

3
(αnh, ξ

n
h +

1

2
ζnh )L2 − τ

2
(αnh, ξ

n
h) (3.112)

+
τ

6
(βnh , ξ

n
h) +

τ

3
(θnh , β

n
h )L2 − τ

2
(ζnh , β

n
h )L2 − 1

6
‖θnh − ζnh‖2

L2 ,

Finally, we substitute R1 and R2 together with (3.68) from the (DG1) property that

(Ah·, ·)L2 = | · |2S − 1
2
(X ·, ·)L2 + (B·, ·)L, back in (3.109) then the assertion (3.103)

holds.

With the conditions that we have provided then the results of stability and conver-

gence of the RK3-DG scheme for hdCDD can be achieved as in Burman et al. (2010)

as the following results.

Lemma 3.3.4. (Burman et al., 2010, Lem.4.3)(stability) There exists a constant

cτ (C
−1
S , C−1

L∗ ) > 0 for the CFL condition that

τ ≤ cτh

σ
, (3.113)

and a constant C > 0 such that the following property holds,

1

2
‖ξn+1

h ‖2
L2 − ‖ξnh‖2

L2 +
τ

48
|ξnh |2S +

τ

12
|ζnh |2S +

τ

48
|θnh |2S (3.114)

≤ Cτ(τ 6 + ‖ξnπ‖2
∗ + ‖ζnπ‖2

∗ + ‖θnπ‖2
∗ + ‖ξnh‖2

L2).
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Theorem 3.3.5. (Burman et al., 2010, Thm. 4.1) Assume that u ∈ C4((0, T );L) ∩
C2((0, T ); [Hp+1(Ω)]2) together with the CFL condition (3.113) then there holds,

‖uN − uNh ‖L2 +
(N−1∑
n=0

1

48
τ |unh|2S +

1

12
τ |wn

h|2S +
1

48
τ |ynh|2S

)1/2

(3.115)

≤ C(τ 3 + hp+1/2).



4 | hdCDD Over a Single Slip

In this chapter we will discuss behaviors of the hd-CDD system over a single slip

from the modeling perspective and numerical experiments. We will discuss the

limitation of both the theory of hd-CDD and our standard dG method proposed in

the previous chapter. The main problem for the numerical methods come from the

additional dimension of line orientation that have a drawback with a large number

of degrees of freedom for the dG discretization. Moreover with our proposed model

of embedded slip planes in the elastic body, a standard mesh discretization will also

cause a problem for mesh distribution for the parallel treatment of the numerical

implementation. To overcome these two problems in the numerical method in the

same time, a new type of basis functions called Finite Volume Fourier elements(FVF)

is introduced. We will also discuss some of the simplified Continuum Dislocation

Dynamics (sCDD) theories which are proposed to approximate the hd-CDD system

by reducing the information from the line orientation dimension. Again for simplicity

of presentation in this chapter, we skip the slip system index s and representative

slip g.

4.1 Continuum Dislocation Dynamics

The hdCDD system (2.89) investigated in the previous chapter is not exactly written

in the original form proposed by Hochrainer (2006). The original system was written

with another pair of variables, i.e., dislocation density ρ : Γ× S1 ×R and curvature

k : Γ × S1 × R as the following: find ρ = ρ(x, ϕ, t) and k = k(x, ϕ, t) for a given

velocity v = v(x, ϕ, t), by solving a system of equations:

∂tρ = −∇̂ · (ρV) + ρvk (4.1a)

∂tk = −L · ∇̂(L · ∇̂v)−V · ∇̂k − k2v, (4.1b)

with the initial values ρ0 and k0.

However, this formulation is still only the special case of the full system that is

defined on the full manifold M⊂ R3 and the line orientation space S2 which is the

63
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positions on the surface of unit sphere which is better explained in the recent work

of Hochrainer (2015).

(a) position on surface sphere S2. (b) lifted loop on slip plane Γ.

Figure 4.1: (a): shows the manifold in R3 as the surface of sphere and the possible
coordinate of orientation (ϕ, θ) ∈ S2, Hochrainer (2015); (b): shows the
lifted loop as the dislocation loop on slip plane represented in higher-
dimensional space Γ× S1, Hochrainer (2006)

For the special case the full manifold M ⊂ R3 is dropped to the slip plane surface

Γ ⊂ R2 and the line orientation on Γ is also reduced automatically to S1. This

simplification reduced the arbitrary dislocation line loop in R3 to the dislocation

loop on the slip plane that can have representation with line orientation space as

the lifted loop of dislocation as shown in Figure 4.1.

We show here that our formulation with curvature density q is equivalent to the

original formulation.

Proposition 4.1.1. The equation system (4.1) has a following equivalent form:

∂tρ = −∇̂ · (ρV) + qv , (4.2a)

∂tq = −∇̂ · (qV)− ρ
(
L · ∇̂(L · ∇̂v)

)
, (4.2b)

where q = ρk.

Proof. We have

∂t(ρk) = ρ∂tk + k∂tρ

= ρ
(
− L · ∇̂(L · ∇̂v)−V · ∇̂k − k2v

)
+ k
(
− ∇̂ · (ρV) + ρvk

)
= −

(
ρV · ∇̂k + k∇̂ · (ρV)

)
− ρ
(
L · ∇̂(L · ∇̂v)

)
= −∇̂ · (ρkV)− ρ

(
L · ∇̂(L · ∇̂v)

)
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by using ∇̂ · (ρkV) = ρV · ∇̂k + k∇̂ · (ρV).

4.1.1 Physical Condition

With the physical condition that dislocation lines do not end inside the crystal, this

leads to the equation

∇̂ · (ρL(k)) = 0. (4.3)

We have a proof for the special case for v ≡ constant that the physical condition

(4.3) can be derived from the equation (4.1).

Theorem 4.1.2. The evolution equations system

∂tρ(x, ϕ, t) = vl′(ϕ) · ∇ρ(x, ϕ, t) + vk(x, ϕ, t)ρ(x, ϕ, t) , (4.4a)

∂tk(x, ϕ, t) = −vk(x, ϕ, t)2 + vl′(ϕ) · ∇k(x, ϕ, t) , (4.4b)

with l(ϕ) = (cos(ϕ), sin(ϕ), l′(ϕ) = ∂ϕl(ϕ), v ≡ constant, and together with the

initial condition

ρ0 := ρ(x, ϕ, 0) ,

k0 := k(x, ϕ, 0)

such that

∇̂ · (ρ0L(k0)) = 0.

Then the physical condition (4.3) holds for all t ≥ 0.

Proof. We have

∂t(ρ(x, ϕ, t)k(x, ϕ, t)) = k(x, ϕ, t)∂tρ(x, ϕ, t) + ρ(x, ϕ, t)∂tk(x, ϕ, t)

= k(x, ϕ, t)
(
vl′(ϕ) · ∇ρ(x, ϕ, t) + vk(x, ϕ, t)ρ(x, ϕ, t)

)
+ρ(x, ϕ, t)

(
− vk(x, ϕ, t)2 + vl′(ϕ) · ∇k(x, ϕ, t)

)
= vk(x, ϕ, t)l′(ϕ) · ∇ρ(x, ϕ, t) + vρ(x, ϕ, t)l′(ϕ) · ∇k(x, ϕ, t)

= v∇ ·
(
k(x, ϕ, t)ρ(x, ϕ, t)l′(ϕ)

)
.

Consider

d(x, ϕ, t) = l(ϕ) · ∇ρ(x, ϕ, t) + ∂ϕ(k(x, ϕ, t)ρ(x, ϕ, t))
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Then, we have

d(x, ϕ, t)− d(x, ϕ, 0) =

∫ t

0

∂td(x, ϕ, s)ds

with

∂td(x, ϕ, t) = ∂t

(
l(ϕ) · ∇ρ(x, ϕ, t)

)
+ ∂ϕ

(
k(x, ϕ, t)ρ(x, ϕ, t)

)
= l(ϕ) · ∇∂tρ(x, ϕ, t) + ∂ϕ∂t(k(x, ϕ, t)ρ(x, ϕ, t))

= vl(ϕ) · ∇
(
l′(ϕ) · ∇ρ(x, ϕ, t) + k(x, ϕ, t)ρ(x, ϕ, t)

)
+v∂ϕ∇ ·

(
k(x, ϕ, t)ρ(x, ϕ, t)l′(ϕ)

)
= v∇ ·

(
k(x, ϕ, t)ρ(x, ϕ, t)l(ϕ)

)
+v∂ϕ∇ ·

(
k(x, ϕ, t)ρ(x, ϕ, t)l′(ϕ)

)
= v∇ ·

[
∂ϕ

(
k(x, ϕ, t)ρ(x, ϕ, t)

)
l′(ϕ)

]
= v∇ ·

(
d(x, ϕ, t)l′(ϕ)

)
using

l(ϕ) · ∇
(
l′(ϕ) · ∇ρ(x, ϕ, t)

)
= ∆ρ(x, ϕ, t)l(ϕ) · l′(ϕ) = 0

and

l′(ϕ) · ∇d(x, ϕ, t) = l′(ϕ) · ∇
(
l(ϕ) · ∇ρ(x, ϕ, t)

)
+ l′(ϕ) · ∇∂ϕ

(
k(x, ϕ, t)ρ(x, ϕ, t)

)
= 0 +∇ ·

[
∂ϕ

(
k(x, ϕ, t)ρ(x, ϕ, t)

)
l′(ϕ)

]
.

Thus, d solves a linear evolution equation subject to the initial value

d(x, ϕ, 0) ≡ 0 and therefore has the unique solution d(x, ϕ, t) ≡ 0.

4.1.2 Initial values and exact solution for a single loop

We have seen in Proposition 4.1.1 that the equation system in the form of (ρ, k) is

equivalent to the form of (ρ, q). Then we can provide the initial values for one form

and it can be transfered to another by using the relation q = ρk.

Initial values

We use a Gaussian function to approximate the dislocation loop with the following

initial value functions

ρ(x, ϕ, 0) = R0e−
σ
2
r0(x,ϕ)2

, (4.5a)
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k(x, ϕ, 0) =
1

R0

, (4.5b)

where r0(x, ϕ) = |−R0l
′+x0−x| = [(R0 sinϕ+ x0 − x)2 + (−R0 cosϕ+ y0 − y)2]

1/2
.

We confirm the physical condition by the following proposition.

Proposition 4.1.3. For the intitial functions ρ0 := ρ(x, ϕ, 0) and k0 := k(x, ϕ, 0)

defined in (4.5), then we have the physical condition (4.3) for the initial condition

such that

∇̂ · (ρ0L(k0)) = 0.

Proof.

∇̂ · (ρ0L(k0)) = ∇̂ · (ρ0l, ρ0k0)>

= l · ∇ρ0 + k0∂ϕρ0

= −σ
2
ρ′0l · ∇r2

0 − k0
σ

2
ρ′0∂ϕr

2
0

= σρ0l · [−R0l
′ + x0 − x]− k0σρ0[−R0l

′ + x0 − x] · (−R0l
′′)

= σρ0l · [x0 − x]− σρ0l · [x0 − x]

= 0

since l′′ = −l, l · l′ = 0 and ρ′0 = ρ0.

Exact solution of a single loop

Proposition 4.1.4. With initial functions (4.5) we have the exact solutions of ρ and

k as follow,

ρ(x, ϕ, t) = R(t)ρ̃(r(t)) = R(t)e−
σ
2
r(x,ϕ,t)2

, (4.6a)

k(x, ϕ, t) =
1

R(t)
, (4.6b)

where r(x, ϕ, t) = | −R(t)l′ + x0 − x|, R(t) = R0 + vt.

Proof. We consider the evolution equation of ρ as

∂tρ = vl′ · ∇ρ+ ρkv.

We have

∂tρ(x, ϕ, t) = R(t)∂tρ̃(r(t)) + ρ̃(r(t))∂tR(t)

= −R(t)
[σ

2
ρ̃(r(t))∂tr

2
]

+
(
ρ̃(r(t))R(t)

)∂tR(t)

R(t)
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= R(t)
[
σρ̃(r(t))[−R(t)l′ + x0 − x] · (vl′)

]
+ ρvk

= (vl′) ·
[
R(t)σρ̃(r(t))[−R(t)l′ + x0 − x]

]
+ ρvk

= vl′ · ∇ρ+ ρvk

since

∇ρ(x, ϕ, t) = R(t)∇ρ̃(r(t))

= R(t)
[
σρ̃(r(t))[−R(t)l′ + x0 − x]

]
.

Moreover we still have the physical condition (4.3) for all t ≥ 0 by Theorem 4.1.2.

Exact solution with compact support

We can define the exact solution in (4.6a) in a more general form by choosing

ρ̃(x, ϕ, t) = e−g(r(x,ϕ,t)
2) , (4.7)

where g(·) is a differentiable function that has positive derivative for positive argu-

ments and r(·) is defined previously. Then we can follow proofs for initial values and

exact solution by using the chain rule for ρ̃ such that

∂tρ̃(x, ε, t) = −2ρ̃′g′r∂tr(x, ϕ, t)

∇ρ̃(x, ε, t) = −2ρ̃′g′r∇r(x, ϕ, t)

∂ϕρ̃(x, ε, t) = −2ρ̃′g′r∂ϕr(x, ϕ, t).

By using this generalization idea with g(x) = 1
1−x , we can now define compact

support solutions

ρ(x, ϕ, t) =

{
R(t)e

− 1
1−r(x,ϕ,t)2 , r(x, ϕ, t) < 1

0, else
(4.8a)

q(x, ϕ, t) =
ρ

R(t)
. (4.8b)

4.2 Standard RKDG Scheme

We restate the hdCDD system (3.47) here again. We have Ω = (0, T ) × Ω̃, where

Ω̃ := Γ× S1 together with boundary and initial conditions as follows:

Find u = (ρ, k) : (0, T )× Ω̃→ R2 by solving

∂tu + Fu + Bu = 0 in (0, T )× Ω̃,

u(·, t = 0) = g in Ω̃,
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(M−D)u = 0 on (0, T )× ∂Ω̃S1

with periodic boundary conditions u(t, x, y, 0) = u(t, x, y, 2π), ∂Ω̃S1 = ∂Γ× S1 and

given initial values g : Ω̃→ R2.

DG Scheme

Let Wh = {wh ∈ [L2(Ω̃)]2; ∀K ∈ Th,wh|K ∈ [Pp]2} be the DG space with the mesh

Th from the previous chapter. We define the discrete linear operators Ah : Wh → Wh

such that for all (wh,vh) ∈ Wh ×Wh

(Ahwh,vh)L2,K = (Fwh,vh)L2,K + (Bwh,vh)L2,K (4.9)

−
∑
f∈∂K

(
3∑
i=1

nfi F
iwh − nf · Fi∗

K,f (wh),vh)L2,f

with the numerical upwind flux defined as follows

nf · F∗K,f (wh) =
3∑
i=1

nfi {{Fiwh}}+
Cf
2

[[wh]], (4.10)

where for a fixed common interior face f between cells K and Kf , we define the

average and the jump along a normal nf oriented from K to Kf as

{{vh}} =
vh|K + vh|Kf

2
, [[vh]] := (vh|K − vh|Kf ),

respectively and for the normal velocity Cf = |V · nf | where V = (−v∂ϕl,−L · ∇̂v)

is the general velocity of hdCDD defined in (3.2).

In this step, we prepare the space discretization for the time integration by defining

matrices, i.e., for φ1, ..., φN being discontinuous finite element basis of Wh,

M = [(φi, φj)]i,j=1,...,N ∈ RN×N ,

A = [Ah(φi, φj)]i=1,...,N ∈ RN×N .

denoting the mass matrix and the non-symmetric stiffness matrix, respectively. Then

we have the equations for the dG-scheme as

M∂tu
¯

+ Au
¯

= 0
¯
, (4.11)
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where u
¯
(t) = (ui(t))i=1,...,N is the coefficient vector at time t of the solution with

respect to the dG basis corresponding to the function

uh(t) =
N∑
i=1

ui(t)φi ∈ Wh.

Time Discretization (Runge-Kutta)

In the previous chapter, the convergence of RK3 has been shown. However for the

implementation of the numerical methods, we provide the time integration from first

order to fourth order as the following,

First order RK : it is also the same formula with the explicit Euler scheme which

we have

u
¯
n+1 = u

¯
n −4tM−1A(u

¯
n)

For higher order Runge-Kutta schemes we have the following equations:

Second order RK :

k
¯1 = −4tM−1A(u

¯
n),

k
¯2 = −4tM−1A(u

¯
n +4tk

¯1),

u
¯
n+1 = u

¯
n +

1

2
(k
¯1 + k

¯2).

Third order RK :

k
¯1 = −4tM−1A(u

¯
n),

k
¯2 = −4tM−1A(u

¯
n +

1

3
4tk

¯1),

k
¯3 = −4tM−1A(u

¯
n +

2

3
4tk

¯2),

u
¯
n+1 = u

¯
n +

1

4
(k
¯1 + 3k

¯3)

4th order RK :

k
¯1 = −M−1A(u

¯
n),

k
¯2 = −M−1A(u

¯
n +

1

2
4tk

¯1),

k
¯3 = −M−1A(u

¯
n +

1

2
4tk

¯2),

k
¯4 = −M−1A(u

¯
n +4tk

¯3),

u
¯
n+1 = u

¯
n +

1

6
4t(k

¯1 + 2k
¯2 + 2k

¯3 + k
¯4).
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4.2.1 Numerical Results

We simulate the expanding loop of ρ by using the intitial function ρ0 = ρ(t = 0)

in (4.6a) and the exact solution k0 = k(t = 0) in (4.6b). We consider the physical

condition (4.3) and the convergence of our current scheme by comparing with the

exact solution. For the variables in the model problem we set Ω = (0, 1)2 × (0, 2π),

R0 = 0.2, σ = 400, v = 1, T = 0.1 and 4t = 0.001.

First we give the information about the number of unknowns for different polynomial

order and level of refinement over the domain Ω with tetrahedral mesh as below.

level l mesh width cells unknowns P1 unknowns P2

2 0.0125 1,536 6,144 15,360

3 0.0625 12,288 49,152 122,880

4 0.03125 98,304 393,216 983,040

5 0.015625 786,432 3,145,728 7,864,320

Result for DGP1+RK1.

level l ‖ρ0‖L2 ‖ρlh − ρ‖L∞ ‖ρlh − ρ‖L1 ‖ρlh − ρ‖L2 sup |
∫
K

div ρlhL|
2 0.1317 1.4570 0.042330 0.10800 0.0186200

3 0.1328 1.1820 0.016890 0.06072 0.0049710

4 0.1329 0.6670 0.007106 0.02973 0.0011870

Result for DGP1+RK4.

level l ‖ρ0‖L2 ‖ρlh − ρ‖L∞ ‖ρlh − ρ‖L1 ‖ρlh − ρ‖L2 sup |
∫
K

div ρlhL|
2 0.1317 1.4540 0.042270 0.10760 0.0184800

3 0.1328 1.1820 0.016940 0.06082 0.0049100

4 0.1329 0.6695 0.007189 0.03016 0.0011830

5 0.1329 0.4308 0.002580 0.01205 0.0002266

Result for DGP2+RK1.

level l ‖ρ0‖L2 ‖ρlh − ρ‖L∞ ‖ρlh − ρ‖L1 ‖ρlh − ρ‖L2 sup |
∫
K

div ρlhL|
2 0.1317 1.0330 0.0181600 0.057240 0.0271100

3 0.1328 0.5332 0.0059440 0.023210 0.0065610

4 0.1329 0.3146 0.0016640 0.007629 0.0010910

Result for DGP2+RK4.

level l ‖ρ0‖L2 ‖ρlh − ρ‖L∞ ‖ρlh − ρ‖L1 ‖ρlh − ρ‖L2 sup |
∫
K

div ρlhL|
2 0.1317 1.0330 0.0181600 0.057240 0.0271100

3 0.1328 0.5381 0.0059350 0.023480 0.0062580

4 0.1329 0.2737 0.0014990 0.007282 0.0010820

5 0.1329 0.1282 0.0003019 0.001796 0.0001659



72 4. hdCDD Over a Single Slip

As the numerical results for the L2-norm, we obtain the linear convergence for DGP1

and quadratic convergence for DGP2. These are however slower than what we ex-

pected from the results of error analysis in Chapter 3 which should be in order of

k + 1
2
, where k is order of polynomial of DG elements with a smooth solution.

Parallel Performance

We compare the parallel performance using the first order RK with 4t = 0.001,

T = 0.1 and polynomial order 2.

level l unknowns cpus time(h:m:s.ms) times(based 1 cpu)

4 983,040 1 1:01:59.00 1.00

5 9:22.16 6.62

10 4:48.05 12.91

20 2:30.40 17.68

40 1:18.60 47.32

80 0:40.91 90.90

For level 5, we have stability problems of the scheme for 4t = 0.001, therefore we

change the time step to 4t = 0.0001 with the same T = 0.1. This result with totally

1000 time steps.

level l unknowns cpus time(h:m:s.ms)

5 7,864,320 80 51:28.00

Alternativly, we use higher order RK with larger time step, then we try to use 4th

order RK with 4t = 0.001. We can get a stable result within about 16 minutes on

80 processors. We plot ρh at t = 0 and t = 0.1 for mesh level 4 and 5 as follows,
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(a) ρ4h(t = 0) (b) ρ4h(t = 0.1)

(c) top view of ρ4h(t = 0) (d) top view of ρ4h(t = 0.1)

Figure 4.2: Plots of ρ4
h at t = 0 and t = 0.1 for mesh level 4.

(a) ρ5h(t = 0) (b) ρ5h(t = 0.1)

(c) top view of ρ5h(t = 0) (d) top view of ρ5h(t = 0.1)

Figure 4.3: Plots of ρ5
h at t = 0 and t = 0.1 for mesh level 5.

In the next step for the elasto-plasticity model, this simulation of hdCDD has to

provide the required information for the elasticity problem, see Chapter 2.
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(a) ρh (b) ρtot (c) plastic slip γ

Figure 4.4: Plots of evolution of multi-loops for dislocation density has been shown
in (a); (b) shows the total dislocation density; and (c) shows the plastic
slip that can be seen as the accumulated number of dislocations passed
through each area of slip plane.

The Figure 4.4 shows the total dislocation densitiy ρtot =
∫ 2π

0
ρ(ϕ) dϕ that influence

the velocity of dislocations itself and the plastic slip γ computed from Orowan’s

equation that is needed later to compute plastic distorsion βpl where the exact

solution with compact support (4.8a) of hdCDD has been used as initial values for

the simulation to avoid overlap of each loop. These procedures on the parallel setting

are however not a trivial task due to the communication needed for the integration

over one direction of the line orientation ϕ. This can be more complex with the

system of muli-slip planes on the full elasto-plasticity setting. To overcome this

problem a new type of basis function for the DG scheme will be used as can be seen

in the next section.

4.3 Finite Volume Fourier Element

The motivation for developing and using a new basis family for DG schemes can be

started by considering the problem of mesh distribution in Figure 4.5 for the embed-

ded slip planes over the elastic body in order to provide the parallel computation.

As we have seen before that the hdCDD system introduces a additional dimension

for the line orientation which is not shown here. The slip planes are constructed in

such a way they lines on faces of the discretized elements of the elastic body. Then

after distribute sub-domain for elastic problem, this can cause a very tricky method

to treat the line orientation dimension for the slip planes.
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(a) Elasticbody with
embedded slip planes

(b) Sub-domain of
mesh distribution

Figure 4.5: (a): shows the multi-slip planes system over the elastic body with the
absence of the orientation dimension; (b): shows the area of sub-domains
that can be distributed to different processors

It would be a very good idea, if we can provide the basis functions in such a way that

we do not have to worry about the distribution and communication over the direction

ϕ. To achieve this we use the benefit of the DG methods that allows us to construct

discontinuous basis function on a more general element. We start by discretizing the

higher-dimensional domain Γ × [0, 2π] by triangular prisms as in Figure 4.6. Then

using the benefit of our problem that has the periodic boundary on ϕ direction by

using the Fourier basis over this direction together with polynomial function over

the triangle based of the element. The tensor product of the polynomial and Fourier

functions provide a new possibility for us to handle our problems. In this thesis only

the polynomial order 0 is considered, therefore we named this new basis functions

over the triangular prism as the Finite Volume Fourier Element.

Figure 4.6: Mesh discretization with triangular prism.
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Fourier basis Functions

We use the Fourier series such that for f is the periodic function over [0, 2π) we have

f(ϕ) =
1√
2
a0 +

∞∑
n=1

an sin(nϕ) +
∞∑
n=1

bn cos(nϕ).

Together with the orthogonality properties∫ 2π

0

sin(nϕ) sin(mϕ)dϕ = πδmn,

∫ 2π

0

cos(nϕ) cos(mϕ)dϕ = πδmn, n,m ∈ Z∫ 2π

0

sin(nϕ) cos(mϕ)dϕ = 0, n 6= m∫ 2π

0

sin(nϕ)dϕ =

∫ 2π

0

cos(nϕ)dϕ = 0, n 6= 0.

We can then calculate coefficients a0, an, bn as

a0 =
1√
2π

∫ 2π

0

f(ϕ)dϕ,

an =
1

π

∫ 2π

0

f(ϕ) sin(nϕ)dϕ,

bn =
1

π

∫ 2π

0

f(ϕ) cos(nϕ)dϕ.

This leads to the approximation of the periodic function f such that for a given

nf ∈ N

f(ϕ) ≈ 1√
2
a0 +

nf∑
n=1

an sin(nϕ) +

nf∑
n=1

bn cos(nϕ). (4.12)

Later we will use the set of trigonometric functions as Fourier basis functions

F = { 1√
2
, sin(nϕ), cos(nϕ) | n = 1, ..., nf , ϕ ∈ [0, 2π)} (4.13)

= {Ψn | n = 1, ..., Nf}

with property ∫ 2π

0

Ψn(ϕ)Ψm(ϕ)dϕ = πδmn,

where Ψi are re-numbering functions of trigonometric functions and Nf = 2nf + 1.
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4.3.1 Finite Volume Fourier Element

Finite Volume Fourier Shape Functions

We consider shape functions over the triangular prism by using the product of P0

polynomial and Fourier basis function as follows,

φ̂n(x, ϕ) = 1Ψn(ϕ) , Ψn ∈ F , x ∈ T̂ , ϕ ∈ [0, 2π),

where Ψn , n = 1, ..., Nf are Fourier basis functions defined in previous section. More-

over define the space

FVFn(K̂) := span{φ̂n(x, ϕ), (x, ϕ) ∈ K̂ := T̂ × [0, 2π)}. (4.14)

Interpolation

We approximate the function u(x, ϕ) : T × [0, 2π)→ R as

u(x, ϕ) ≈
∑
n

αnφn(x, ϕ),

=
∑
n

αnΨn(ϕ),

then ∫
T

∫ 2π

0

u(x, ϕ)Ψn(ϕ) dϕdx =

∫
T

∫ 2π

0

(∑
m

αmΨm(ϕ)
)

Ψn(ϕ) dϕdx

= αn

∫
T

1dx

∫ 2π

0

Ψn(ϕ)Ψn(ϕ) dϕ

= αnπ|T |

where |T | is the area of the triangle T . And so we have

αn =
1

π|T |

∫
T

∫ 2π

0

u(x, ϕ)Ψn(ϕ) dϕdx.

DG Scheme

Define the discretized space

WFVF
h := {φ ∈ [L2(Γ× (0, 2π))]2 | ∀K ∈ Th, φ|K ∈ [FVFn(K)]2},

where K is the physical triangular prism with K = T × [0, 2π], T a triangle in Γ.
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Let uh ∈ WFVF
h , then similar to (4.9) for a fixed K ∈ Th by separate the integration

over T and [0, 2π] we have

∫
T

(∫ 2π

0

∂tu
K
h φ

K dϕ
)

dx̃ =
3∑
i=1

[∫
T

(∫ 2π

0

(FiuKh )∂iφ
K dϕ

)
dx̃ (4.15)

−
∫
∂T

(∫ 2π

0

ni(F
∗iuh)φ

K dϕ
)

dã

]
−
∫
T

(∫ 2π

0

(BuKh )φK dϕ
)

dx̃,

where x̃ = (x, ϕ) ∈ T × (0, 2π), ã is surface over this setting. We perform the inte-

gration in ϕ direction directly into the scheme, then it will left only the integration

over triangle T that has to be done numerically. The matrix representations and the

time integration can be performed similarly to the previous section.

4.3.2 Numerical Results

We again use the exact solutions with compact support of ρ and ρk with a given

v ≡ const. We set for one loop solution with R0 = 0.15, σ2 = 200 and we have

‖u(t = 0)‖L2 = 1.115. We first check the interpolation based on nf by using fixed

refinement level 5 for T with uh is the interpolation of u.

nf ‖uh − u‖L2 factor DoFs

0 1.002e-00 - 8,192

5 4.517e-01 2.22 90,112

10 2.355e-01 1.93 172,032

15 2.164e-01 1.08 253,952

20 2.130e-01 1.02 335,872

We do further check the interpolation based on various levels by using fixed nf = 20.

level ‖uh − u‖L2 factor DoFs

3 6.710e-01 - 20,992

4 3.942e-01 1.70 83,968

5 2.130e-01 1.85 335,872

6 1.139e-01 1.87 1,343,488

7 6.555e-02 1.74 5,373,952

Comparing with the FV scheme, ‖uh − u‖L2 = 3.060e-02 for the interpolation at

level 5 with 1,572,864 DoFs. The degrees of freedom have been reduced about 5

times, but however with a trade off of a less accurate approximation. The analysis

of the convergence rate of this interpolation is still missing in this work. However, we

observe that the convergence of the interpolation of FVF element with fixed nf = 20

is almost linear.
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Time Evolution

We now consider the time evolution by setting R0 = 0.15, σ2 = 200, T = 0.2 and

nf = 20 with ‖u(t = 0.2)‖L2 = 1.169.

level ‖uh − u‖L2 factor time (h:m:s.ms) proc. cores

3 1.068e-00 - 0:8.98 16

4 9.753e-01 1.09 0:33.16 16

5 8.243e-01 1.18 2:10.63 16

6 6.214e-01 1.33 8:45.53 16

7 4.283e-01 1.45 12:04.08 48

Comparing with the DGP1 scheme in previous section, ||uh − u||L2 = 8.989e-01

for the result of simulation at level 5. For the convergence rate of the results, it

is obviously slower than the rate of interpolation. Therefore, with the lacking of

numerical analysis, we may approximate the convergence rate to be sub-optimal by

using these numerical results.

Figure 4.7: Evolution of ρtot :=
∫ 2π

0
ρ(ϕ) dϕ at level 7

Boundary Condition Results

Finally after comparing the simulation to show the convergent results of the numer-

ical scheme, we are now ready to test it with boundary conditions.

We set R0 = 0.15, σ2 = 200, T = 0.7 and nf = 15.

Open Boundary

Figure 4.8: Evolution of ρtot with open boundary condition in level 5.
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Impenetrable Boundary

Figure 4.9: Evolution of ρtot with impenetrable boundary condition at level 5.

Figure 4.10: Evolution of qtot with impenetrable boundary condition at level 5.

4.4 Simplified CDD Models

In previous section, the new type of DG basis has been proposed to reduce the degree

of freedoms over a single slip plane. Another possiblility is to develop further theory

that approximate the hdCDD system directly in the equation. The work has been

already proposed by Hochrainer and coworkers (Hochrainer et al. (2009); Sandfeld

et al. (2011); Hochrainer et al. (2013); Monavari et al. (2014); Hochrainer (2015))

after the achievement of the first numerical results carried out by Sandfeld (2010a);

Sandfeld et al. (2011). Here, we give an example for the possibility to simplify the

system by introducing additional constitutive equations to the system.

In order to give a clear presentation of the development of the sCDD system, we

divide the derivation into several steps over the domain Γ ∈ R2×{0}, b = (1, 0, 0)>

and the normal of the slip plane m = (0, 0, 1)>.

Step 1: Full CDD

We start by considering the full system;

∂tρ = −∇̂ · (ρV) + qv, (4.16a)

∂tq = −∇̂ · (qV)− ρ
(
L · ∇̂(L · ∇̂v)

)
. (4.16b)
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Step 2: Apply assumption ∂ϕv = 0

We consider the system under an assumption that ∂ϕv = 0 then we can write these

equations in more details as follows

∂tρ = −∇(ρvl⊥) + ∂ϕ(ρl · ∇v) + ρkv

= −∂x(ρv sinϕ) + ∂y(ρv cosϕ) + ∂ϕ

(
ρ cosϕ∂xv + ρ sinϕ∂yv

)
+ qv

and

∂tq = −∇(ρvl⊥) + ∂ϕ(ρl · ∇v)− ρ(l · ∇(l · ∇v)) + ql⊥ · ∇v)

= −∂x(qv sinϕ) + ∂y(qv cosϕ) + ∂ϕ

(
q cosϕ∂xv + q sinϕ∂yv

)
−ρ
(

cos2 ϕ∂2
xv + 2 sinϕ cosϕ∂x∂yv + sin2 ϕ∂2

yv
)

+ q
(

sinϕ∂xv − cosϕ∂yv
)

= −∂x(qv sinϕ) + ∂y(qv cosϕ) + ∂ϕ

(
q cosϕ∂xv + q sinϕ∂yv

)
−ρ

2

(
(∂2
xv + ∂2

yv) + cos 2ϕ(∂2
xv − ∂2

yv) + 2 sin 2ϕ∂x∂yv
)

+ q
(

sinϕ∂xv − cosϕ∂yv
)

by using identities

sin 2ϕ = 2 sinϕ cosϕ, cos 2ϕ = 2 cos2 ϕ− 1.

Finally we have

∂tρ = −∂x(ρv sinϕ) + ∂y(ρv cosϕ) + ∂ϕ

(
ρ cosϕ∂xv + ρ sinϕ∂yv

)
+ qv

∂tq = −∂x(qv sinϕ) + ∂y(qv cosϕ) + ∂ϕ

(
q cosϕ∂xv + q sinϕ∂yv

)
−ρ

2

(
(∂2
xv + ∂2

yv) + cos 2ϕ(∂2
xv − ∂2

yv) + 2 sin 2ϕ∂x∂yv
)

+q
(

sinϕ∂xv − cosϕ∂yv
)

Step 3: Perform an integration on ϕ direction

We reduce the Full CDD to sCDD by doing the integration on ϕ direction, so we

have

∂tρ
t =

∫ 2π

0

(
− ∂x(ρv sinϕ) + ∂y(ρv cosϕ) + ∂ϕ

(
ρ cosϕ∂xv + ρ sinϕ∂yv

)
+ qv

)
dϕ

= −∂x(vρs1) + ∂y(vρc1) + qtv (4.17)

and

∂tq
t =

∫ 2π

0

[
− ∂x(qv sinϕ) + ∂y(qv cosϕ) + ∂ϕ

(
q cosϕ∂xv + q sinϕ∂yv

)
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−ρ
2

(
(∂2
xv + ∂2

yv) + cos 2ϕ(∂2
xv − ∂2

y) + 2 sin 2ϕ∂x∂yv
)

(4.18)

+q
(

sinϕ∂xv − cosϕ∂yv
)]
dϕ

= −∂x(vqs1) + ∂y(vqc1) + qs1∂xv − qc1∂xv

−1

2

(
ρt(∂2

xv + ∂2
yv) + ρc2(∂2

xv − ∂2
yv) + 2ρs2∂x∂yv

)
where

qc1 :=

∫ 2π

0

q cosϕdϕ, qs1 :=

∫ 2π

0

q sinϕdϕ,

ρc1 :=

∫ 2π

0

ρ cosϕdϕ, ρs1 :=

∫ 2π

0

ρ sinϕdϕ,

ρc2 :=

∫ 2π

0

ρ cos 2ϕdϕ, ρs2 :=

∫ 2π

0

ρ sin 2ϕdϕ.

We now have 6 new variables in addition to the equations of ρ and q then we need

consititutive relations to be able to solve the problem.

Step 4: Constitutive Equations

Assumptions

Define a new angular variable ϕG := arctan(ρs1/ρc1) and in particular with ρG :=√
ρ2
c1 + ρ2

s1 then it follows

cosϕG = ρc1/ρG, sinϕG = ρs1/ρG

and this leads to

ρc1 = ρG cosϕG, ρs1 = ρG sinϕG.

Then apply this idea further to approximate ρc2 and ρs2 with

ρc2 ≈ ρG cos 2ϕG = ρG(2 cos2 ϕG − 1) =
2ρ2

c1

ρG
− ρG, (4.19)

ρs2 ≈ ρG sin 2ϕG = ρG(2 sinϕG cosϕG) =
2ρc1ρs1
ρG

. (4.20)

For the variables qc1 and qs1 we will use the approximation

qc1 =

∫ 2π

0

ρ2k cosϕ

ρ
dϕ (4.21)

=

∫ 2π

0

(ρ cosϕ)(ρk)

ρ
dϕ
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≈
∫ 2π

0
(ρ cosϕ)dϕ

∫ 2π

0
(ρk)dϕ∫ 2π

0
ρdϕ

=
ρc1q

t

ρt
.

Similarly we have

qs1 =

∫ 2π

0

ρ2k sinϕ

ρ
dϕ ≈ ρs1q

t

ρt
. (4.22)

With these estimations we can reduce the new variables from 6 to 2 variables, ρc1

and ρs1. We will keep these two variables and find their evolution equations.

To complete the model we use the assumption from Sandfeld (2010b) that

α =

∫ 2π

0

ρl⊗ bdϕ = (ρc1, ρs1, 0)> ⊗ b,

∂tβ
pl = −

∫ 2π

0

ρv(l⊥ × l)⊗ bdϕ = (ρtvm)⊗ b,

where m is the normal of slip plane and in this case we have m = (0, 0, 1)>.

Together with the relationship

α = ∇× βpl,

then we have

∂tα = (∂tρc1, ∂tρs1, 0)> ⊗ b

and

∂t∇× βpl = ∇× ∂tβpl = (∇× ρtvm)⊗ b = (∂y(ρ
tv),−∂x(ρtv), 0)> ⊗ b.

Finally we obtain an additional evolution system for ρc1 and ρs1

∂tρc1 = ∂y(ρ
tv) (4.23a)

∂tρs1 = −∂x(ρtv). (4.23b)

Step 5: Finalize the sCDD system

We substitute the constitutive equations (4.19), (4.20), (4.21), (4.22) into (4.18) then

we have

∂tq
t = −∂x(vqs1) + ∂y(vqc1) + qs1∂xv − qc1∂xv (4.24)
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−1

2

(
ρt(∂2

xv + ∂2
yv) + ρc2(∂2

xv − ∂2
y) + 2ρs2∂x∂yv

)
= −v∂x(qs1) + v∂y(qc1)− 1

2

(
ρt(∂2

xv + ∂2
yv) + ρc2(∂2

xv − ∂2
y) + 2ρs2∂x∂yv

)
= −v∂x(

qtρs1
ρt

) + v∂y(
qtρc1
ρt

)− 1

2

(
ρt(∂2

xv + ∂2
yv) + (

2ρ2
c1

ρG
− ρG)(∂2

xv − ∂2
yv)
)

−2
ρc1ρs1
ρG

∂x∂yv.

Finally by combining this with (4.17), (4.23) we have the equations system for F-

sCDD as follows

∂tρ
t = −∂x(vρs1) + ∂y(vρc1) + vq (4.25a)

∂tρc1 = ∂y(vρ
t) (4.25b)

∂tρs1 = −∂x(vρt) (4.25c)

∂tq
t = −v∂x(

qtρs1
ρt

) + v∂y(
qtρc1
ρt

)− 1

2

(
ρt(∂2

xv + ∂2
yv) (4.25d)

+(
2ρ2

c1

ρG
− ρG)(∂2

xv − ∂2
yv)
)
− 2

ρc1ρs1
ρG

∂x∂yv.

Moreover, we can further rewite this in a more compact form by introducing

κ = (ρc1, ρs1, 0)>, (4.26)

then (4.25b) and (4.25c) can be reformulated to

∂tκ = ∇× (vρtm). (4.27)

For the conservative form one should rewrite the evolution of qt as

∂tq
t = −∂x(v

qtρs1
ρt

) + ∂y(v
qtρc1
ρt

) + f(ρt, ρc1, ρs1, q
t) (4.28)

where

f(ρt, ρc1, ρs1, q
t) =

qtρs1
ρt

∂xv −
qtρc1
ρt

∂yv −
1

2

(
ρt(∂2

xv + ∂2
yv) + (

2ρ2
c1

ρG
− ρG)(∂2

xv − ∂2
yv)
)

−2
ρc1ρs1
ρG

∂x∂yv.
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Conservative Form

In order to provide the system in the general framework, say nonlinear conservative

form, we rewrite (4.25) in the form of equation

∂tu +
2∑
i=1

∂i(F
i(u)(u)) + b(u) = 0 in Ω ⊂ R2, (4.29)

here (∂i)i=1,2 = (∂x, ∂y)
>,u = (ρt, ρc1, ρs1, q

t)>. Then we have

F1(u) =


0 0 v 0

0 0 0 0

v 0 0 0

0 0 0 vρs1
ρt

 , F2(u) =


0 −v 0 0

−v 0 0 0

0 0 0 0

0 0 0 −vρc1
ρt

 , b(u) =


−vq

0

0

−f(u)

 .

With this new simplified-CDD system that provides an approximation of hdCDD,

the cost of numerical methods can be massively reduced by avoiding the computation

on the additional orientation dimension by introducing two additional variables and

resulting in a nonlinear system.





5 | 2D Coupled System

In this chapter we consider the fully coupled system for the 2D setting that already

has been illustrated in Figure 2.7. The content in this chapter is quite self-contained,

this means that the notation and explanation can be read separately from other

chapters. The numerical scheme and the investigation of the implemented model

will be provided and discussed for shear and tensile tests in terms of meaning in

material science. The results in this chapter have already been published in Sandfeld

et al. (2015).

5.1 A continuum model for single-crystal plasticity

Let the reference configuration B be a bounded Lipschitz domain in R3 and let

∂DB ∪ ∂NB = ∂B be non-overlapping decompositions into Dirichlet boundary ∂DB
and Neumann boundary ∂NB. The position of a material point is denoted by x and

the displacement of the body from its reference configuration by u(x, t).

The deformation tensor Du is decomposed additively into elastic and plastic parts

βel and βpl respectively,

Du = βel + βpl . (5.1)

Small deformations are assumed so that the infinitesimal strain ε is given by

ε = ε(u) = sym(Du) . (5.2)

Plastic slip is assumed to take place on N slip systems, each having a unit normal

ms and slip direction ds = 1
bs

bs on the s-th system, where bs is the Burgers vector of

length bs = |bs|. As an example, the face-centered cubic (FCC) crystal has N = 12

slip systems. In special situations symmetry can be exploited and the case N = 1

or N = 2 can be considered over the crystal of thin film via shearing and bending

situations.
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The plastic shear strain in the slip system s is denoted by γs. In the single crystal,

we assume that the plastic part of the displacement gradient is given by the sum

over the contributions from all active slip systems

βpl =
∑

s
γsMs (5.3)

where Ms = 1
bs

bs ⊗ ms = ds ⊗ ms is the projection tensor accounting for the

orientation of the slip system s.

Depending on the vector of plastic shear strains γ = (γ1, ..., γN)>, the plastic strain

is given by

εpl = εpl(γ) = sym(βpl) =
∑

s
γsM

sym
s , Msym

s = sym Ms . (5.4)

This defines the elastic strain

εel = εel(u,γ) = ε(u)− εpl(γ) . (5.5)

5.1.1 Variational balance equations

The classical macroscopic equilibrium equation is given by

−∇ · σ = fB in B, (5.6)

where σ is the Cauchy stress tensor with the constitutive relation

σ = C : εel = C : (ε− εpl) (5.7)

and C is the elasticity tensor. The macroscopic boundary conditions are

u = uD on ∂DB, σn = tN on ∂NB . (5.8)

Let U =
{
u ∈ H1(B,R3) : u = 0 on ∂DB

}
, and assume that uD extends to B. Then,

we have in weak form: find u ∈ uD + U such that∫
B
(ε(u)− εpl) : C : ε(δu) dx =

∫
B

fB · δu dx +

∫
∂NB

tN · δu da , δu ∈ U . (5.9)

5.2 A numerical scheme for the reduced 2D system

For the numerical evaluation of the physical behavior of our model we consider a

2D reduction of the fully coupled system, where we assume to have a homogeneous

distribution over the y direction and slip plane normals ms in the x− y plane. This
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leads to ∂ηρs,g ≡ ∂ηqs,g ≡ ∂ηvs,g ≡ 0 everywhere in the system. In this section we

describe the discretization for a single slip plane in 1D, Γ = Γs,g = {zg+ξds : ξ ∈ R}
where zg is a given point defined where the slip plane located in the body; for

simplicity we skip the indices s and g.

5.2.1 Reduced hdCDD over 1D slip plane

Rewriting (2.89) using ∂ηρ ≡ ∂ηq ≡ ∂ηv ≡ 0 yields

∂tρ = −∇̃ · (ρṼ) + qv, (5.10a)

∂tq = −∇̃ · (qṼ)− ρ cosϕ∂ξ

(
cosϕ∂ξv + k∂ϕv

)
(5.10b)

−q∂ϕ
(

cosϕ∂ξv + k∂ϕv
)
,

with ∇̃ = (∂ξ, ∂ϕ)> and Ṽ = (v sinϕ, cosϕ∂ξv+k∂ϕv)>. Assuming that the velocity

does not exhibit any angular anisotropy the system (5.10) reduces further to

∂tρ = −∇̃ · (ρṼ) + qv, (5.11a)

∂tq = −∇̃ · (qṼ)− ρ(cosϕ)2∂2
ξv + q sinϕ∂ξv . (5.11b)

For the construction of a discontinuous Galerkin discretization we rewrite (5.11) in

the equivalent form of a linear conservation law for w = (ρ, q)>, i.e.,

∂tw + ∇̃ · F(w) + Bw = 0 in Γ× S1, (5.12)

where ∇̃ · F(w) = ∂ξ(F1w) + ∂ϕ(F2w) with

F1 =

[
v sinϕ 0

0 v sinϕ

]
, F2 =

[
− cosϕ∂ξv 0

0 − cosϕ∂ξv

]
,

B =

[
0 −v

(cosϕ)2∂2
ξv − sinϕ∂ξv

]

depending on the dislocation velocity v.

5.2.2 The RKDG method

The system (5.12) reads as follows: find w : Γ× S1 × [0, T ]→ R2 solving

∂tw + Aw = 0 in Γ× S1 (5.13)
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subject to the initial condition w(r, ϕ, 0) = w0(r, ϕ), periodic boundary conditions

w(ξ, η, 0, t) = w(ξ, η, 2π, t) in ϕ, and where

Aw = ∇̃ · F(w) + Bw = F1∂ξw + F2∂ϕw + (∂ξF1 + ∂ϕF2 + B)w.

In the first step we derive a semi-discrete discontinuous Galerkin scheme. Let Th ={
K} be a triangulation of B, and assume that this triangulation is aligned with the

slip plane Γ, i.e., Γ =
⋃
f∈FΓ

f with faces f ∈ FΓ =
{
∂K ∩ Γ: K ∈ Th

}
. Let Zh be

the set of all vertices of the triangulation. For a fixed face f̄ = conv{zj−1, zj} with

zj−1, zj ∈ Γ we observe

A(w,φ)f×S1 =

∫
f×S1

(
∇̃ · F(w) + Bw

)
· φ dξdϕ

=

∫
f×S1

(
− F(w) · ∇̃φ+ Bw · φ

)
dξdϕ+

∫
S1

ñ · F(w) · φ
∣∣∣zj
zj−1

dϕ

for all smooth functions φ : f × S1 −→ R2. For the discretization we choose an

ansatz space Xf on every face defining a discontinuous ansatz space Xh =
{
φh ∈

L2(Γ,R2) : φh|f ∈ Xf

}
and the numerical flux

F∗f,e(φh) = {{Ffφh}}f,e +
Cf
2

[[φh]]f,eñ

on the face intersections e = ∂f ∩ ∂fe (which are single points in a 1D slip plane).

Here, we choose the stabilization constant Cf = |Ṽ|, and the average and the jump

along a normal ñ oriented from f to fe are given by

{{Fwh}}f,e :=
1

2

(
Fwh|f + Fwh|fe

)
, [[wh]]f,e := wf |f −wf |fe ,

respectively. On the open boundary, we set wh|fe = wh|f and wh|fe = −wh|f for

the impenetrable boundary. Now, defining locally

(Af,hwh,φh)f×S1 =

∫
f×S1

(
− F(wh) · ∇̃φh + Bwh · φh

)
dξdϕ

+

∫
S1

ñ · F∗f,e(wh) · φh
∣∣∣zj
zj−1

dϕ

yields the discrete operator by (Ahwh,φh)Γ×S1 =
∑

f (Af,hwh,φh)f×S1 . We choose a

DG ansatz space with Fourier basis functionsXf = Pk⊗Fn, where Pk = span{1, ξ, ..., ξk}
are polynomials, and the truncated Fourier space is given by

Fn = span{1, cos(ϕ), sin(ϕ), ..., cos(nϕ), sin(nϕ)}.
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Thus, the components of wh = (ρh, kh) have the form

ρh(ξ, ϕ) =
k∑
l=0

ξl
(
al0 +

n∑
m=1

(
alm cos(mϕ) + blm sin(mϕ)

))
and similar for qh. The Runge–Kutta time discretization is now obtained by the

method of lines. Therefore, choosing a basis φ1, ...φN of Xh yields the matrix for-

mulation

M∂tu(t) + A u(t) = 0 (5.14)

with M =
(
(φk,φm)

)
m,k

and A =
(
Ah(φ

k,φm)
)
m,k

. This yields for the time step

from tn to tn+1

un+1 = un − MtM−1A
(
uk − 1

2
MtM−1A

(
un − 1

3
MtM−1A

(
un − 1

4
MtM−1A un

)))
for the classical explicit Runge–Kutta schemes of order 4 (see Hochbruck et al. (2015)

for alternative time integration methods in combination with DG schemes).

5.2.3 Finite element discretization of the solid

Let Vh =
{
v ∈ H1(B)2 : v|K ∈ P1(K) for K ∈ Th

}
be a standard finite element space

for the displacements and set Vh(uD) =
{
v ∈ Vh : v(z) = uD(z) for all nodal points

z ∈ Zh ∩ ∂DB
}

. For u ∈ Vh the strain ε(u) and the stress σ = C : ε is piecewise

constant in K. Now, the coupled algorithm is defined as follows:
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S0) Select Mt > 0, N ∈ N, set n = 0, set initial values for ρ0
s,g, q

0
s,g, γ

0
s,g on Γs,g.

S1) Set tn = nMt, unD = uD(tn), fnB = fB(tn) and gnN = gN(tn).

Compute γns in B from γns,g in Γs,g (depending on Case 1 or 2 in Sec. 2.3).

S2) Evaluate the plastic strain εpl,n|K =
∑

s γ
n
s |KMsym

s and compute un ∈
Vh(u

n
D) with∫
B
ε(un) : C : ε(δu) dx =

∫
B
εpl,n : C : ε(δu) dx +

∫
B

fB · δu dx

+

∫
∂NB

gN · δu da , δu ∈ Vh(0) .

S3) On f = K ∩ K ′ ⊂ Γs,g set τns,g|f = 1
2

(
σn|K + σn|K′

)
: Ms and compute

velocities vns,g (eqn. (2.91)).

S4) Compute (ρn+1
s,g , q

n+1
s,g ) independently on every Γs,g by M explicit Runge–

Kutta steps for (5.14) with step size Mt/M and fixed velocity vns,g.

S5) If n < N , set n = n+ 1 and go to S1).

Since this scheme in step S4) is full explicit, the CFL condition requires sufficiently

small time steps. Also the coupling with the boundary value problem S2) is explicit.

In our numerical tests we choose the global time step Mt and the local time step

Mt/M small enough to observe convergence by comparing the results with different

mesh resolution h.

5.3 Numerical experiments

We evaluate our model for a single-crystal thin film with idealized passivated and

non-passivated surfaces in a tensile test setting. This is a well established benchmark

test for crystal plasticity models, see (e.g. Liu et al., 2011; Schwarz et al., 2005; Zaiser

et al., 2007; Deshpande et al., 2005; Fredriksson and Gudmundson, 2005; Fertig and

Baker, 2009)). The novelty of hdCDD, however, is that we can directly link the

dislocation microstructure in almost DDD-like details to the macroscopic response.

In the following, we study in particular the influence of the line curvature and two

different physical boundary conditions in single- and multislip configurations. Ad-

ditionally, we evaluate numerically effects due to averagings for Case 1 and 2. We

note, that especially the line curvature is a physical parameter that does not occur

in any other continuum models, which makes detailed comparisons difficult.
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(a) Tensile test: Displacements are prescribed at
left and right boundaries, top and bottom bound-
aries are free surfaces.

(b) Shear test: Displacements are pre-
scribed at bottom and top boundaries, left
and right boundaries are free surfaces.

Figure 5.1: Geometry and boundary conditions of the investigated model systems
for the tensile test (Study 1 and Study 2) and the shear test (Study 3).

Geometry and slip system

We consider the configuration defined in Liu et al. (2011) for the investigation of

the deformation behavior of a thin, single-crystalline Al film during tensile load-

ing assuming plane strain. The film is represented by a 2-dimensional body B =

(0, 10l) × (0, l) with l = 1 µm. We consider one or two active slip systems (N = 1

or 2) with 1-dimensional (crystallographic) slip planes determined by

d1 = cosφ e1 + sinφ e2 , m1 = − sinφ e1 + cosφ e2 , (5.15a)

d2 = − cosφ e1 + sinφ e2 , m2 = − sinφ e1 − cosφ e2 (5.15b)

with the angle φ = π/3 between slip planes and the film surfaces. The distance

between crystallographic slip planes is set to Ms = 0.05, 0.1, 0.2 µm, respectively.

For the thickness of the crystallographic layer Bs,g we choose h = 0.5Ms. In Case 2,

we set Ms = 0.2, 0.4 µm. As material we use aluminum with a Young’s modulus of

E = 7 · 1010 Pa, Poisson ratio ν = 0.3, Burgers vector size b = 2.56 · 10−10 m and

drag coefficient B = 2.0 · 10−4 Pa·s.

5.3.1 Numerical aspects

We use two different finite element meshes: the mesh for the elastic problem consists

of triangular linear finite elements with altogether ≈ 223 000 degrees of freedom

(dofs), the hdCDD mesh consists of linear Fourier elements with, e.g. ≈ 262 000

dofs for Case 1 with Ms = 100 nm and h = 50 nm. For the time integration we

used a step size of Mt = 10−3µs with M = 10 ’micro-time steps’ per macroscopic

displacement increment, resulting in 6 · 103 micro-time steps for reaching the total

strain of εtot = 1.2%. For the shear test the same step size is used with a total

number of 5 · 103 micro-time steps for obtaining the total strain of εtot = 2.5%.
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Boundary conditions

For the two different systems we introduce different boundary conditions for the

elasticity problem:

(1) For the symmetric tensile test we consider prescribed boundary displacements

along the left and right boundary face (at x1 = 0 and x1 = 10l, respectively).

We increase the displacements with a constant rate u̇1,right = −u̇1,left = 1.0

m/s for t ∈ [0, 0.06] µs. In order to avoid vertical translations we additionally

fix the displacements at the point (5l, 0)>.

(2) For the shear test we consider prescribed boundary displacements along the

upper surface at x2 = l and fixed displacements at the lower surface at x2 = 0.

The upper prescribed displacements are increased with a constant rate u̇1,up =

1.0 m/s for t ∈ [0, 0.05] µs.

For both systems, also the boundary conditions for the dislocation problem w.r.t.

dislocation fluxes have to be considered. In physical terms surfaces can either be

open (dislocations can leave the film) or impenetrable (dislocations cannot leave the

film). Open boundaries can simply be modeled by extrapolating the hdCDD field

values. For impenetrable surfaces we require (i) that the flux of dislocation density

normal to the surface vanishes and that (ii) dislocations directly at the surface

must be straight and thus must have zero curvature. Numerically, we model the

impenetrable flux boundary condition by introducing a numerical inflow defined as

the negative outflow of density and curvature densities on the considered boundary.

Initial values

We construct consistent initial values which guarantee that, e.g., the solenoidality

of αII (i.e. divαII = 0) is not violated and that the GND density comes out as a

gradient of the plastic slip. This is done by superposition of Nd randomly distributed

discrete dislocation loops in a 2D slip plane followed by an appropriate ’smearing-out’

procedure as described in detail in Section 5.5.1. One-dimensional slip plane data

are then obtained by integrating the CDD field values over the second, homogeneous

direction (see Fig. 5.2). Depending on the used averaging, i.e. Case 1 or 2, we finally

have to consider the distance of the representative slip planes.
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Figure 5.2: Visualization of the initial dislocation density in the higher-dimensional
configuration space for a system with 25 representative slip planes, each
of then containing 28 ’smeared-out’ randomly positioned loops. In verti-
cal direction the variable ϕ ∈ [0, 2π] is displayed for some of the 25 slip
planes; the dashed white lines indicate the line orientation for screw and
edge segments (compare Burgers vector direction in the spatial plane).
Each of the wavy distributions corresponds to (a) dislocation loop(s).
On the bottom plane the spatial projection of the total density ρtot is
shown as spatial average as seen in ’Case 2’.

5.3.2 Study 1: The influence of boundary conditions (Case

1)

For this investigation we use 80 representative slip planes and the shear strain ex-

tension of Case 1, starting in each SP with 5 dislocation loops of radius r between

100 nm and 200 nm at random positions. The height of the quasi-discrete numerical

SPs has a relatively small value of h = 50 nm below which no appreciable difference

in the system response could be observed (also see Study 2). For averaging purposes

we assume an out-of-plane length of Lz = l/ sin(φ) = 1.15 µm resulting in an average

dislocation density 〈ρ〉 = 3.1×1013/m2. For the analysis of the influence of boundary

conditions we study two configurations: in the first configuration we choose open

boundaries (abbreviated as ’open BCs’), i.e. dislocations can leave the volume, and

the second imposes impenetrable boundaries (abbreviated as ’imp. BCs’), i.e. dislo-

cations can not leave the volume through the surface ∂B. The simulation is driven

by a prescribed constant strain rate ε̇ = 0.2 µs−1 until the maximum total strain

εtot = 1.2% is reached.

In Fig. 5.3 the evolution of the total density ρtot at three distinct time steps in the

x − y-plane is illustrated. We observe that the configuration with open boundaries

approaches a constant total density distribution while the system with impenetrable

boundaries forms pile-ups of dislocations at the boundary with constant density val-

ues in between. To analyze this behavior we investigate the dislocation microstruc-

ture in the higher-dimensional configuration space at final time for a slip plane in

the center of the film in more detail (Fig. 5.4). The higher-dimensional fields show
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Figure 5.3: Initial distribution and time evolution of total density ρtot, Case 1, at
t = 0.03 µs and t = 0.055 µs with open and impenetrable boundary
conditions for the dislocation density.

that for both dislocation boundary conditions after an initial ’incubation’ time the

center region of the slip plane approaches a state which is characterized by only edge

dislocations of positive and negative orientation: ρ(x, ϕ) is approximately non-zero

only for the orientations ϕ = π/2 and ϕ = 3π/2. The reason for this is that disloca-

tion loops expanded and segments with edge orientation either left the film through

the surface or pile up against the surface. In any case, only screw segments are

left behind which in this 2D model thread the film into the out-of-plane direction.

Investigating the curvature k = ρ/q we also see that the screw segments are nearly

straight (i.e. k ≈ 0); only for the impenetrable boundaries we find a non-zero curva-

ture shortly before the surface: here, dislocations need to bend strongly in order to

adjust from the threading screw dislocation orientation to the geometry of the films’

surface. This also suggests that the amount of dislocations inside the film for the

impenetrable system will be significantly higher: to begin with, dislocations are not

’lost’ by out-flux through the surfaces, and additionally increased line length produc-

tion will take place due to the high dislocation curvature near the surfaces. Plotting

the average density evolution in Fig. 5.5 (b) shows that in the elastic regime I the

dislocation density is constant, i.e. the resolved shear stress is not large enough to

overcome the yield stress. This is followed in regime II by a transition of free loop ex-

pansion which results in a high dislocation multiplication rate. Towards regime III,

edge components are then lost through open surfaces, while for impenetrable BCs

edge dislocations are deposited at the surfaces. The open system contains at final

strain a density which is smaller roughly by a factor of 3, and additionally the aver-

age density even reaches a stationary state (threading screw segments are straight

and thus only translate). For the system with impenetrable surfaces the average
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Figure 5.4: Time evolution of hdCDD density ρ(ξ, ϕ), curvature density q(ξ, ϕ) and
curvature k(ξ, ϕ) = q(ξ, ϕ)/ρ(ξ, ϕ) for open (left block) and impenetra-
ble boundaries (right block) for a slip plane with random initial values
taken from the center region of Fig. 5.3. On the vertical axis is the line
orientation ϕ ∈ [0, 2π], on the horizontal axis is the local ξ coordinate,
the small text label indicates the maximum field value.

density increases approximately linearly (caused by the constant line length increase

of deposited edges).

What are the consequences for the macroscopic stress-strain response? A higher

dislocation density, on the one hand, obviously comes with a stronger influence of

the Taylor equation for the yield stress. On the other hand, a higher plastic activity,

where the density comes in through the Orowan relation, causes plastic softening

through the solution of the elastic eigenstrain BVP. The competition of these two

effects can be observed in the macroscopic stress-strain curve in Fig. 5.5 (a) where at

larger strains the obtained stress level for the system with open boundaries is only

slightly lower. Interesting to note is also the initial ’hump’ right after the elastic

regime I when softening sets in. This is caused by the fact that at an early stage

dislocation loops are still comparatively small and thus contribute with a high line

tension effect which effectively reduces the resolved shear stress. Once loops have

expanded, this contribution is reduced and the softening behavior is sustained. A

very similar behavior is also observed in DDD simulations Weygand and Gumbsch

(2005).

Finally, we compare the evolution of the initial dislocation loop distribution to a

distribution of positive and negative edge dislocations (dashed lines in Fig. 5.5). For

the latter we choose the number of edge dislocations such that the initial density
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(a) average stress vs. total strain (b) average total density vs. total strain

Figure 5.5: Macroscopic quantities (Case 1) for two different boundary conditions
(open and impenetrable) and two different initial configurations (con-
sisting of either only loops or only straight edge dislocations). The three
different time snapshots in Fig. 5.4 correspond to the different regimes
I, II, and III, respectively.

is similar to the saturation density of loops with open BCs. We observe that after

the onset of plastic yield edge dislocations flow towards the surfaces (regime II).

They either get lost through the surfaces (open BCs) or pile up against the surface

(imp. BCs) in which case the density simply stays constant because the number of

edge dislocations is preserved. This microstructure results in a dramatically different

stress-strain response as compared to the system with curved dislocations: because

we have neither an increase in density nor a line tension one can only observe a

linear hardening (regime II) which – regardless the boundary condition – is followed

by a nearly elastic regime III where the stresses are considerably different from those

reached for the system with dislocation loops.

5.3.3 Study 2: Spatial coarsening from Case 1 to Case 2

In Case 1 we considered slip planes as quasi-discrete objects mimicking the situation

in DDD simulations. This not only requires a very high spatial resolution for the

finite element scheme, but it is also somewhat unsatisfying from a conceptual point

of view to have two different resolutions (within the slip plane and perpendicular

to it). If this can be avoided by use of Case 2 and whether it is admissible will be

studied subsequently: for a given initial distribution of dislocations loops we compare

the asymptotic system response for h→ 0 in Case 1 and then compare with results

obtained for different values of Ms in Case 2.

All system and geometry properties are the same as in the previous Study 1, but

this time we only compute stresses for a given dislocation configuration. To make

the configurations easier to compare we simply choose a homogeneous distribution

of loops. Fig. 5.6 (a) shows the resulting stresses for the quasi-discrete Case 1 for a
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(a) Distribution of the stress compo-
nent σxx on the left half part (0, 5l)×
(0, l).

(b) Averaged stress 〈σxx〉 = 1
Lx

∫ Ly

0
σxx dx at

εtot = 0.

Figure 5.6: Comparison of Case 1 and Case 2 for different numerical SP heights at
t = 0 for a homogeneous distribution of loops of the same radius. (a)
shows the spatial stress distribution, (b) shows averaged stress profiles
across the height. Since the configuration is symmetric, only half of the
profile is shown.

SP height of h = 50 nm and two different discretizations for Case 2. If we average

these stress distributions we obtain stress profiles as shown in Fig. 5.6 (b). It shows

that for values of h = 100 nm and below the stresses do not change appreciably

anymore. Running the same simulations for Case 2 where the plastic strain is coarse

grained in between the numerical SPs and comparing with the results for Case 1

allows for the conclusion that for this system a Ms = 200 nm is sufficient; also the

stress-strain behavior (not shown) does not show any significant difference. The

considered situation of a homogeneous loop distribution is of course artificial. In

fact, differences during time evolution in particular between the very coarse Case

2 and the fine Case 1 become larger if we start with random initial values and as

the plastic slip becomes more heterogeneous (early in regime II). Nonetheless, even

there, our chosen approximation of Case 2 with Ms = 200 nm is sufficient.

The advantage of the interpolation approach used in Case 2 becomes obvious when

we take a look at the degrees of freedoms and the computational time used for the

simulations shown in Tab. 5.1.

5.3.4 Study 3: A double slip configuration with Case 2

We now investigate the macroscopic elasto-plastic response together with the mi-

crostructural evolution in a configuration with the two slip systems (5.15). We use

fully averaged dislocation distributions (Case 2 with Ms = 200 nm), and the in-
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configuration dofs (FEM + DG) time in h.(8 proc.)

Case 1, Ms = 50 nm, h = 25 nm 214 962 + 1 049 600 7:39:33

Case 1, Ms = 100 nm, h = 50 nm 54 682 + 262 400 1:49:01

Case 1, Ms = 200 nm, h = 100 nm 54 682 + 131 200 1:00:35

Case 2, Ms = 200 nm 54 682 + 131 200 1:00:44

Case 2, Ms = 400 nm 54 682 + 65 600 0:46:04

Table 5.1: Comparison of computational time and degrees of freedom for Case 1
and Case 2.

teraction of the dislocation densities in the two systems is described by the yield

function

τy
s,g = aµbs

√
ρtot

1 + ρtot
2 , (5.16)

where ρtot
s is reconstructed in B from ρtot

s,g by averaging and interpolation using the

construction (2.84). The line tension is obtained in full analogy to Study 1 for

each slip system separately. Subsequently, we compare a single slip and double slip

scenario with the following initial distribution of the dislocation density: in both

cases we have altogether 800 dislocation loops in an averaging volume for which we

again assume an out-of-plane averaging length of Lz = 1.15 µm. The loops’ radii are

taken from a uniform random distribution in the range of [100, 200] nm. We either

distribute them across the two slip systems or only across a single slip system such

that the average dislocation density in the full body is always the same. In this

study we only consider open boundaries since we focus here on the investigation of

the hardening/softening effects introduced by the interaction of the slip systems and

the concomitant change in dislocation microstructure. The results are illustrated in

Figs. 5.7–5.9.

Initially (εtot ≤ 0.2%) both systems respond nearly perfectly elastic because the

resolved shear stress is in almost all regions smaller than the yield stress. This can

be seen in the linear increase in Fig. 5.8(a) which is a consequence of the (nearly)

zero velocity in Fig. 5.7 (c) and (f).

Eventually (0.2% < εtot < 0.5%), starting from the outer regions of the density

distribution where ρtot is smaller, the yield stress will be overcome. This results in a

non-zero dislocation velocity mainly in the surface-near regions (Fig. 5.7 (c) and (f)

and further plots shown in the Section 5.5.1). Already shortly after εtot = 0.2% it

becomes visible that the single slip and double slip systems behave very differently.

The reason for this lies in the crystallography of the model systems: the Burgers

vectors of the symmetrically inclined slip systems are such that under the prescribed

shear deformation the plastic strain tensors will partially cancel out. This results in a
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higher resolved shear stress since the plastic softening contribution is smaller. At the

same time, however, the resulting velocity is higher, giving rise to more dislocation

activity which can be observed in the plastic strain profile (compare Fig. 5.7 (b)

and (e)). For the single slip situation these relations are just the other way around:

the plastic slip reduces the resolved shear stress and thus the dislocation velocity.

The reduced plastic activity also shows in the evolution of the dislocation density

and plastic slip which happens at a lower rate than for the double slip system,

cf. Fig. 5.8(b).

profiles for the single slip configuration

(a) total density (b) plastic slip (c) velocity

profiles for the double slip configuration

(d) total density (e) plastic slip (f) velocity

Figure 5.7: Profiles of CDD field variables along a central slip plane for the single
slip (a–c) and double slip configuration (d–f) for 4 different time steps.
Double slip density values and plastic slip (d–f) were multiplied by a
factor of 2 to make them comparable with the single slip situation.

We will now take a closer look at some details of the stress-strain curve (Fig. 5.8(a)).

What causes the ’humps’ and different maxima for single/double slip following the

elastic regime at εtot ≈ 0.5%? Fig. 5.9 shows the higher-dimensional density, cur-

vature density and curvature fields. There it can be seen, that for the single slip

system the lower velocity broadens the density distribution but does not allow for a

more significant expansion of loops and thus retards the density production. As a

consequence of the reduced loop expansion, the loops curvature is also much higher

for the single slip system, giving rise to a more pronounced influence of the line

tension (cf. plots in the Section 5.5.1); as a consequence of the retarded density

production the yield stress is effectively lower. The latter shows in Fig. 5.8(a) in

the lower maximum of the hump as compared to the double slip situation; the for-

mer shows in the steeper inclination following the hump. While loops expand the

influence of the line tension becomes smaller and tends to zero with edge segments
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leaving the film and screw dislocations becoming straight lines. The influence of the

yield stress approaches a constant value once the density from the nearly straight

edge dislocations saturates. Therefore, towards larger total strains (> 2%) the only

difference between the single and double slip system stems from the plastic strain,

while microscopic, short-range stresses had a stronger influence on early details of

the stress-strain response.

(a) average resolved shear stress vs. total strain (b) average total density vs. total strain

Figure 5.8: Stress-strain plot and evolution of total density and plastic slip for the
single slip and double slip configuration.

5.4 Summary and Conclusion

Modeling and prediction of crystal-plasticity on the micro-meter scale requires a

faithful representation of the underlying physical mechanisms. We introduced the

higher-dimensional CDD theory as a mathematical description of the kinematic be-

havior of statistically averaged ensembles of dislocations. A special emphasis was

put on a consistent geometric description of the CDD field equations for the general

case of arbitrarily oriented slip systems. In particular the transfer of information

from two-dimensional crystallographic slip planes to the three-dimensional contin-

uous body was concisely formulated. Furthermore, a conservative discontinuous

Galerkin scheme suitable for the dislocation problem was derived. These model

formulations were then applied to simulate different plain-strain slip geometries un-

der tensile and shear loading conditions together with different physical boundary

conditions. We analyzed in detail how systems of dislocation evolve while they in-

teract with each other due to short-range and long-range stress components. In

doing so we could directly link the dislocation microstructure – represented by the

higher-dimensional density and curvature density – to the macroscopic behavior

(e.g. stress-strain response or average density). By comparing to systems of straight

edge dislocations we observed that the line curvature has a strong influence on the

hardening behavior: not only did the stress-strain curve change quantitatively, it
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Figure 5.9: Time evolution of hdCDD density ρ(ξ, ϕ), curvature density q(ξ, ϕ) and
curvature k(ξ, ϕ) = q(ξ, ϕ)/ρ(ξ, ϕ) for open boundaries, left: in single
slip configuration (compare Study 1, Fig. 5.4) and right: in double slip
configuration with random initial values taken from the center region of
Fig. 5.10. On the vertical axis is the line orientation ϕ ∈ [0, 2π], on the
horizontal axis is the local ξ coordinate, the small text label indicate the
maximum field value (comparison with Fig. 5.4 of Study 1).

also changed qualitatively which would be explained by hdCDD. Furthermore, we

showed how physical boundary conditions influence the orientation distribution of

dislocations and again, how this impacts the system response. Finally, we studied

a double slip configuration where we could again attribute the distinctly different

hardening behavior for single/double slip to microstructural aspects.

The hdCDD model contains microstructural information which otherwise is only

available in DDD simulations. These microstructural details have a strong influence

on the system response, which is why a comparison with other models is difficult: no

other standard continuum plasticity model is able to represent e.g. the conversion

of SSDs into GNDs and the dislocation line length production accompanied by ex-

pansion of dislocation loops. Thus, direct comparisons with DDD simulation will be

extremely interesting and helpful to further benchmark our model. The necessary

extraction of information from DDD simulations and converting them into contin-

uous fields, however, is a non trivial task which needs to be undertaken with care

in future work. Additionally, DDD could be used to identify physical formulations

for incorporating further dislocation interactions and reactions into our continuum

model. With this we hope to go beyond what up to date is possible with DDD and
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apply CDD to realistic three-dimensional systems with large numbers of interacting

dislocations and plastic strain.

5.5 Appendix

5.5.1 Computation of consistent initial values

Special care has to be taken with creating initial values for CDD simulations. ’Con-

sistent initial values’ are those which represent averaged systems of dislocations

such that the solenoidality of αII is not violated, i.e. divαII = 0. An additional con-

straint is the compatibility between a resulting GND density and the plastic shear,

κ⊥ = 1
b
∇γs. One way of guaranteeing these conditions is to create initial values

in a 2-dimensional slip plane by superposition of objects which a priori fulfill these

conditions. E.g. one may choose a closed dislocation loop of radius R with center

point r0; a point r in Γs,g then has the distance d = |R(− sinϕ, cosϕ) + r0− r| from

the loops’ line and the density and the curvature can be obtained by ’smearing-out’

the line such that the total line length 2πR is preserved, i.e.,

ρ(r, ϕ) =


R exp(−1/(1−(d/d0)2))

2π
∫ d0
0 t exp(−1/(1−(t/d0)2)) dt

if d < d0 ,

0 else,

where the parameter d0 governs the width of the compact density distribution

around the line. Note, that this results in an area density, i.e. ρ has the unit of

line length per area. The curvature density can be obtained as q(r, ϕ) =
ρ(r, ϕ)

R
.

The corresponding plastic slip generated by the expanded loop is given by γ(r) =

b

∫ R+d0

|r−r0|

∫ 2π

0

ρ(η, 0, ϕ) dϕ dη. We superimpose Nd such dislocation loops with ran-

domly chosen centers of the loops with a uniform distribution and such that the

compact function for the CDD fields fits completely into the slip plane. Addition-

ally, the loops’ radii are chosen from a uniform random distribution. The 1D-slip

planes represent a homogeneous distribution into the second direction, so that we

integrate the CDD fields along the width for ρs,g(ξ), qs,g(ξ) and γs,g(ξ), see Fig. 5.2

for an visualization.
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5.5.2 Evolution of CDD field quantities for Study 3

The following figures show the evolution of total density for the single and double

slip system (Fig. 5.10). The largest difference in these two situations is that due

to the different stress state in double slip the dislocation activity is much more

pronounced. In Fig. 5.11 also the profiles for all relevant CDD field quantities and

stress components are shown. One of the key feature of hdCDD is that the distinction

into GNDs and SSDs is obtained naturally from the higher-dimensional configuration

space. This can be also observed in the evolution of the integrated quantities ρtot

and κedge in Fig. 5.11 (a)+(b) and (g)+(h). Therein, the difference ρtot − |κedge|
would yield the SSD density of edges.

ρtot, single slip, (s = 1) ×1014/m2 ρtot, double slip (s = 1, 2)
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Figure 5.10: Initial distribution and time evolution of total density ρtot
s,g for Case

2, Study 3, for system with s = 1 and s = 1, 2 at t = 0.01 µs and
t = 0.02 µs with open boundary conditions for the dislocation density.
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profiles for the single slip configuration

(a) total density (b) GND density (edges) (c) plastic slip

(d) line tension (e) yield stress (f) velocity

profiles for the double slip configuration

(g) total density (h) GND density (edges) (i) plastic slip

(j) line tension (k) yield stress (l) velocity

Figure 5.11: Profiles of CDD field variables along a center slip plane for single slip (a-f) and
double slip (g-l) configuration. Density values and plastic slip for the double slip
configuration (a)-(c) were multiplied by a factor of 2 to make them comparable
with the single slip configuration.
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We present a parallel data structure for discontinuous Galerkin (DG) methods based

on the previous M++ library which was originally designed for finite element meth-

ods (FEM) by using the Distributed Point Objects concept. M++ has many at-

tractive features, for example transparent parallel computation, parallel direct and

iterative linear solvers, parallel preconditioners such as multigrid. We also define an

additional abstract linear algebra model extended to M++.

6.1 A parallel mesh model

For keeping an abstract programming model with a transparent parallel code it is

required to modify some M++ structures especially with nodal points according to

the discontinuous property of the test space in DG. We repeat the configuration in

Wieners (2010) by considering the finest mesh as (C,V , E ,F) of cells C, vertices V ,

edges E and faces F .

Let c ∈ C be a cell, Vc ⊂ R3 be the cell vertices, Ec be the cell edges, and Fc be

the cell faces. For each edge e ∈ Ec is represented by a pair (xe, ye) ∈ Vc × Vc and

its edge midpoint ze ∈ R3. In similar fashion we also use the face midpoint zf and

the cell midpoint zc as the corresponding keys of f ∈ Fc and c ∈ C, respectively.

Then we define Zc = Vc ∪ {ze : e ∈ Ec} ∪ {zf : f ∈ Fc} ∪ {zc} be the set of hash

keys associated to the cell c. Moreover we need additional representation for each

interior face f to make a connection between two cells c, c′ ∈ C with f ∈ Fc ∩Fc′ by

the pair of midpoints (zc, zc′). And we introduce the exceptional point z =∞, then

for a boundary faces f ∈ Fc are associated to the pair (zc,∞).

Then we preform a distribution of the mesh by a load balancing procedure on

the processor set P = {1, .., P}, where the load balancing is given by a function

dest : C → P , Cp = {c ∈ C : dest(c) = p},

defining a disjoint decomposition C = C1 ∪ ... ∪ CP . This also defines Vp = ∪c∈CpVc,
Ep = ∪c∈CpEc, Fp = ∪c∈CpFc and Zp = ∪c∈CpZc. For the representation of boundary

faces of process Cp, such that f ∈ FP associated with (zc, zc′) where c ∈ Cp but c′ /∈
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Cp, we replace this with (zc,∞). This constructions give overlapping decompositions

of the vertices V = V1∪...∪VP , the edges E = E1∪...∪EP , the faces F = F1∪...∪FP

and the hash key Z = Z1 ∪ ... ∪ ZP . The overlapping decomposition of the hash

keys Z defines a set-valued partition map

π : Z → 2P , π(z) = {p ∈ P : z ∈ Zp}.

Remark : With this setting we always have π(zc) = 1, c ∈ C, in order to the disjoint

decomposition of C. We do the remark here because this will be modified for DG

methods which we will see later. This modification will cause us some problems and

the solution will be presented later.

In conforming FEM we have to take care of the consistency of value over nodal

points on these overlapping decompositions, but in the case of DG these value are

already related to different values, so the consistency over them is not needed. But

as we can see in the numerical scheme, the information over the neighboring cells

is required for the numerical flux F∗. With this requirement, we define a set of

overlapping cells together with the previous distributed mesh on each processor.

6.1.1 Overlapping cells

We define a distribution of the overlapping cells by a function

overlap : C → P ∪ {0},

c 7→

 p, ∃f ∈ Fc such that f ∈ Fp and c /∈ Cp

0, else

then define

OpC = {c ∈ C : overlap(c) = p},

OpF = {f ∈ Fc : c ∈ Op}.

Since the important components for DG methods are just cells and faces, then we do

the modification just on Cp and Fp by ignoring Ep and Vp. We perform the extended

constructions

C̃p = Cp ∪ OpC, F̃p = Fp ∪ OpF , Z̃p = Zp ∪ C̃p ∪ F̃p,

and then modify the partition map as

π̃ : Z → 2P , π̃(z) = {p ∈ P : z ∈ Z̃p}.
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6.2 Parallel discontinuous Galerkin

For a purpose of comparison, we first repeat the configurations of finite element

mesh as in Wieners (2010) which is given by a decomposition Ω = ∪c∈CΩc, where

Ωc = conv{Vc} ⊂ R3, together with non-overlapping sub-domains Ω
p

= ∪c∈CpΩc.

The finite element space V = span{φi : i ∈ I} with basis φi, where I is the

corresponding index set. Each basis function φi is associated with a dual function

φ′i ∈ V ′ such that 〈φ′i, φk〉 = δik and every index i ∈ I is assigned with a nodal point

zi ∈ Ω. The set of nodal points is defined with N = {zi : i ∈ I}, and in M++ we

also have N ⊂ Z.

In case of discontinuous Galerkin, a DG mesh is also given by a decomposition

Ω, and additionally comes together with overlapping sub-domains Ω̃p = ∪c∈C̃pΩc.

We define

VDG = span{φc,i : i ∈ Ic, c ∈ C}

be a DG space with basis φc,i, where Ic is the corresponding index set over each cell

c. In order to the local property of basis function φc,i, we have a associated dual

function φ′c,i ∈ V ′DG such that 〈φ′c,i, φc′,k〉 = δcc′δik. To distinguish the nodal points

for the discontinuous space between cells, we group the local nodal points on each

cell together and make them associate with the middle cell point zc. The result is

that we have to assign the nodal points in the setting of M++ to the center of the

cells, so we have NDG = {zc : c ∈ C} as the set of nodal points.

With this setting, we still haveNDG ⊂ Z and moreover we define the local nodal

points on each cell to be NDG,c = {zi : i ∈ Ic}. Then we can assign a basis function

φc,i to a pair of nodal points (zc, zi) ∈ NDG ×NDG,c. We give a remark that #Ic is

depended on the order of the polynomial in the cell, this means with a normal DG

space which we have a homogeneous order of polynomial over the domain then #Ic
is constant, for example in R3 we have 4 for linear tetrahedral and 10 for quadratic

tetrahedral in a scalar space and 12 and 30 in a vector space, respectively.

The representation of a DG function v =
∑

c∈C,i∈Ic vc,iφc,i ∈ VDG is uniquely

defined by its coefficient vector (vc,i)c∈C,i∈Ic with vc,i = 〈φ′c,i, v〉. Similarly, a discrete

functional f =
∑

c∈C,i∈Ic fc,iφ
′
c,i ∈ V ′DG is also uniquely represented by its coefficient

vector (fc,i)c∈C,i∈Ic with fc,i = 〈f , φc,i〉.

6.2.1 DG parallel vector representation

We can see that both basis function φc,i and its dual function φ′c,i are locally con-

tributed on each cell. It is obviously not similar to the FEM case, because a basis

function φi is partly contributed to the cells contained the associated nodal point
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of φi. This means that the parallel vector representation such as an additive vector

representation, which was introduced in M++ for FEM, is not needed, since the

contribution of the vector is just located in the local domain on each processor, and

the consistent vector representation also need to be modified. Therefore with an ad-

ditional setting of overlapping cells, we have to keep the consistency of their values

by defining a new the consistent overlapping vector representation for the

DG parallel vector representation.

Consistent overlapping vector representation

This representation is used for both the coefficient vectors of DG function (vc,i)c∈C,i∈Ic

and its dual (fc,i)c∈C,i∈Ic . Since the local nodal points on each cell already group

together by using its midpoint, then it is more convenient to represent the vector

just as (vc)c∈C, where vc = (vc,1, ..., vc,n)>, n = #Ic is a subvector and also similar

for (fc)c∈C.

The coefficient vector (vc)c∈C of DG function v ∈ VDG is presented in parallel

by its local restrictions vp = (vc)c∈C̃p which defines a mapping

E : VDG → VDG
P

v 7→ v = (vp)p∈P .

Then we define the constrained product space

VDG = {v ∈ VDGP : vqc = vpc for q ∈ π̃p(zc), c ∈ Cp}.

We have VDG = E(VDG) and for v ∈ VDG a unique DG function v ∈ VDG with

E(v) = v is well-defined.

Remark : The different setting of the consistent overlapping vector and the consis-

tent vector representation defined in Wieners (2010) is that here we consider vpc to

be a master subvector of the overlaping subvectors set {vqc , q ∈ π̃p(zc), c ∈ Cp} but

the representation in Wieners (2010) doesn’t need a master value.

6.2.2 DG parallel matrix representation

For a parallel matrix representation for DG, we can use the additive operator

representation defined in Wieners (2010), since the operator in DG scheme is

always divided to the contribution of cells and contribution of faces. Then it is obvi-

ously that the addition of these contributions are needed over the common interior

faces between processors.
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Remark : It should be remarked that the parallel assembling of a matrix for DG

operator in the processor p is considered only for cells c ∈ Cp, then the diagonal

block matrices of overlapping cells c ∈ OpC are always zeros.

6.3 Parallel linear algebra

Since the additive and consistent representations previously defined in Wieners

(2010) are avoided in DG function spaces, VDG and V ′DG, the idea for reliable, trans-

parent and efficient implementation of parallel algorithms also has to be modified.

Therefore instead of the collect and accumulate procedures, the new overlap con-

sistent procedure needs to be performed for vectors in VDG of DG functions and

vectors in V ′DG of discrete DG functionals. The new parallel operation to keep the

consistency of vectors are defined below,

a) A unique DG parallel vector representation is obtained by

OverlapConsistent : VDG
P → VDG

defined by

OverlapConsistent(v)pc = vqc , q ∈ π̃(zc), c ∈ Cq;

This parallel operation require only communication with the neighbouring processors

Pp =
⋃

p∈π̃(zc)

π̃(zc), c ∈ OpC.

The parallel data exchange in the overlap consistent routine is realized by identifying

the indices by center of overlapping cells, zc, used as a group of local nodal points

in each cell.

Remark : The alternative of the overlap consistent can be achieved by using

the parallel operations, collect and accumulate, by changing the master processor

for every index over the overlapping cells for the additive vector representation as,

p = q : q ∈ π̃(zc), c ∈ Cq instead of p = min π̃(zc). In the recent implementation the

method of master processor modification has been used and working well with the

existed FEM algorithms.
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We proposed the model of elasto-plasticity that based on dislocation densities ob-

tained from the higher-dimensional Continuum Dislocations Dynamics (hdCDD)

theory. The representative slip planes are introduced and the micro structure be-

havior of dislocation densities and curvature densities happened within this domain.

The full setting are provided by embedding multiple of representative slip planes

into the elastic body.

The hdCDD theory was formulated in a more precise mathematical setting called

Friedrichs’ system. This formulation provided us a good framework to analyze and

construct numberical methods. With this general form we showed the well-posedness

for the open boundary of hdCDD together with the assumption that the velocity does

not depend on the orientation direction. In the first glance of numerical methods, the

explicit RKDG methods were used and the error analysis with the RK third order

were considered and numerical results had been obtained. Furthermore, the new

type of basis functions called Finite Volume Fourier elements (FVF) was introduced

to reduce the degree of freedom for the space discretization with dG-method and

overcome the mesh distribution problem for the embedded slip planes in the parallel

implementation.

In the numerical experiments, these model formulations were then applied to simu-

late different plain-strain slip geometries under tensile and shear loading conditions

together with different physical boundary conditions. We analyzed in detail how

systems of dislocations evolve while they interact with each other due to short-range

and long-range stress components. In doing so we could directly link the disloca-

tion microstructure – represented by the higher-dimensional density and curvature

density – to the macroscopic behavior (e.g. stress-strain response or average den-

sity). By comparing to systems of straight edge dislocations we observed that the

line curvature has a strong influence on the hardening behavior: not only did the

stress-strain curve change quantitatively, it also changed qualitatively which would

be explained by hdCDD. Furthermore, we showed how physical boundary conditions

influence the orientation distribution of dislocations and again, how this impacts the

system response. Finally, we studied a double slip configuration where we could
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again attribute the distinctly different hardening behavior for single/double slip to

microstructural aspects.

However, this work is just only the beginning of the investigation of elasto-plasticity

model based on hdCDD. A lot of simplifications of the hdCDD system were made to

make the mathematical analysis and numerical treatments feasible. The interesting

studies in the future can be, for example, allowing velocity to depend on orientation

directions and even dislocation densities and curvature densities. This will activate

more interesting behaviors of the system and maybe provide the possibility to analyze

the impenetrable boundary and pile up situations.

The hdCDD model contains microstructural information which otherwise is only

available in DDD simulations. These microstructural details have a strong influence

on the system response, which is why a comparison with other models is difficult: no

other standard continuum plasticity model is able to represent e.g. the conversion

of SSDs into GNDs and the dislocation line length production accompanied by ex-

pansion of dislocation loops. Thus, direct comparisons with DDD simulation will be

extremely interesting and helpful to further benchmark our model. The necessary

extraction of information from DDD simulations and converting them into contin-

uous fields, however, is a non trivial task which needs to be undertaken with care

in future work. Additionally, DDD could be used to identify physical formulations

for incorporating further dislocation interactions and reactions into our continuum

model. With this we hope to go beyond what up to date is possible with DDD and

apply CDD to realistic three-dimensional systems with large numbers of interacting

dislocations and plastic strain.
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