Ortloff, F., Bohnau, J., Kramar, U., Graf, F., Kolb, T.

Studies on the Influence of H_2S and SO_2 on the Activity of a PdO/Al₂O₃ Catalyst for Removal of Oxygen by Total Oxidation of (Bio-)Methane at very low O₂:CH₄ Ratios Applied Catalysis B: Environmental 182 (2016) 550-561

The original publication is available at: www.elsevier.com

https://doi.org/10.1016/j.apcatb.2015.09.026

Studies on the Influence of H₂S and SO₂ on the Activity of a PdO/Al₂O₃ Catalyst for Removal of Oxygen by Total Oxidation of (Bio-)Methane at very low O₂:CH₄ Ratios

Felix Ortloff¹, Jan Bohnau¹, Utz Kramar², Frank Graf¹, Thomas Kolb^{1,3}

¹DVGW Research Center at Engler-Bunte-Institute (DVGW-EBI) Karlsruhe Institute of Technology (KIT) Engler-Bunte-Ring 1 76131 Karlsruhe, Germany

²Institute of Mineralogy and Geochemistry (IMG) Karlsruhe Institute of Technology (KIT) Adenauerring 20 76131 Karlsruhe, Germany

³Engler-Bunte-Institute, Fuel Technology Division (EBI ceb) Karlsruhe Institute of Technology (KIT) Engler-Bunte-Ring 1 76131 Karlsruhe, Germany

Corresponding author: Felix Ortloff Phone: +49 721 608 4 7071 E-Mail: ortloff@dvgw-ebi.de

Abstract

This work focuses on the deactivation and in-situ regeneration effects of a commercial PdO/Al_2O_3 catalyst for removal of oxygen by oxidation of CH_4 at low $O_2:CH_4$ ratios when hydrogen sulfide and sulfur dioxide are applied. The experimental work is carried out at an operating temperature range of 200 °C < T < 300 °C, atmospheric pressures and H_2S contents of < 50 ppmv.

SO₂ and H₂S show a different behavior in the examined range of operating conditions. Due to the low operating temperatures and low oxygen contents applied in this work, it was possible to identify an intermediate species, presumably PdSO₃, with an increased activity for the oxidation of methane. This stands in contrast to the literature, where SO₂ typically causes catalyst deactivation. Based on the experimental results, a reaction scheme was derived and kinetic measurements for each of the participating reactions were carried out separately.

Furthermore, a deactivation model was derived and validated by experimental data with low contents of H_2S , showing that residual activities, observed by some authors, are a result of rate-equality of deactivation and in-situ regeneration process on the surface of the catalyst.

Nomenclature						
Θ	surface coverage	-				
A-D	kinetic constants	-				
а	activity -					
d	deactivation order	-				
E _A	activation energy	kJ/mol				
$\Delta_{R}H^{\Theta}$	standard enthalpy of reaction	kJ/mol				
$\Delta_{ads} H^{\Theta}$	standard enthalpy of adsorption	kJ/mol				
k	reaction rate constant (mass specific) mol/(sgl					
К	equilibrium constant	bar⁻ ^c				
Κ β'/ Κ β _{1,3}	XRF intensity ratio	-				
29	Bragg-diffraction angle. (Angle between primary and secondary beam after diffraction at a crystal)	0				
m _{ac}	mass of active compound	g				
m, n	reaction order	-				
Ni	amount of species i	mol				
pi	(partial) pressure (of i)	bar				
Ψ	deactivation function	as needed				
фi	ratio i of total active sites	-				
r _i	mass specific reaction rate	mol/(s g bar ^B)				
R	universal gas constant	8,314 kJ/(kmol K)				
t	time	S				
T _R	reaction temperature	К				
<i></i> <i>V</i>	volumetric flow rate	m³/s				
X _i	conversion of i	-				
y _i	mole fraction of i in the gas phase	-				
Abbreviations						
ads	adsorbed					
BTEX	benzene, toluene, ethylbenzene, and x	/lenes				
cal	calculated					
exp	experimental					
(g)	gaseous state					
GHSV	gas hourly space velocity					
(I)	liquid state					
ppmv	parts per million (volumetric)					
STP	standard temperature pressure					
TBM	tert-butyl-mercaptane (TBM)					
THT	tetrahdyrothiophene					
TOS	time on stream					
TPD	temperature programmed desorptic					
XRF	X-ray fluorescence (analysis)					
LiF200	Diffraction crystal used for wavelength separation in X-ray fluorescence for short wavelength (LiF crystal cut along the lattice plane 200; lattice distance 2d = 4.028 Å= 0.4028 nm)					
PET	Pentaerythrit crystal (lattice distance 2 d = 8.74 Å ; intermediate wavelength)					

1 Introduction

In order to prevent damage to the natural gas infrastructure (e. g. corrosion [1]), the maximum oxygen concentration is limited to 10 ppmv for transportation pipelines connected to underground storages and/or cross border transmission [2–4]. One option for the removal of oxygen from biomethane (or other fuel gas streams) is the implementation of the heterogeneously catalyzed oxidation reaction of methane (eq. 1), catalyzed by PdO/Al₂O₃

$$CH_{4(g)} + 2 O_{2(g)} \rightarrow CO_{2(g)} + 2 H_2O_{(l)}$$
 $\Delta_R H^{\Theta} = -890.5 \text{ kJ/mol}$ (1)

Typically, the catalytic oxidation reaction of methane is applied in lean-gas treatment, in terms of reduction of CH_4 emissions from (oxygen-rich) off-gas streams [5] and in catalytic burning systems for increased combustion efficiencies [6–8]. In contrast to these applications, catalytic removal of oxygen from fuel gas streams is carried out at oxygen-understochiometric conditions and consequently at lower reaction temperatures [8–10].

As no hydrogen or hydrocarbons are present in biomethane, the utilization of CH_4 brings in economic benefits in comparison with state-of-the-art technologies for oxygen removal, as no additional reducing agent has to be supplied, stored and added to the gas separately. Besides, the utilization of biomethane for removal of oxygen is a more sustainable option than using fuels from fossil sources [11,12].

Recently, kinetic data for the catalytic removal of oxygen by combustion of CH_4 for very low O_2 : CH_4 ratios was determined for a set of reference catalysts on noble metal basis (platinum and palladium on AI_2O_3 support) [41].

Furthermore, the effects of trace compounds of biomethane on catalyst durability are of interest, e. g. sulfur components, siloxanes [13], ammonia [8], BTEX [14] and halogenated hydrocarbons [15]. This work focuses on sulfur compounds, as they represent the major part of contaminants of biomethane [16].

In the majority of available literature, the influence of H_2S and SO_2 [17–19] on the activity of noble metal catalysts for catalytic combustion of methane is studied. Deactivation by SO_2 or H_2S are usually not treated separately [20], since under typical reaction conditions of methane combustion (T > 350 °C, oxygen excess) hydrogen sulfide is oxidized to SO_2 [21]. When mercaptanes [10] or THT (Tetrahdyrothiophene) [22] are examined, typically a complete conversion to H_2O , CO_2 and SO_2 is assumed, since C-S bonds are not stable at high temperatures [23,24]. The deactivation mechanism is thus treated as of SO_2 .

Despite extensive research on the deactivation and regeneration mechanism of sulfur compounds on noble catalysts [18,19,25,26], the details of the catalytic surface processes do not seem to be fully understood yet (see section 2). Due to the lack of data on the influence

of sulfur contaminants on catalyst activity at low O_2 :CH₄ ratios, detailed examinations on sulfur poisoning of a Pd/Al₂O₃ catalyst under oxygen removal conditions have been carried out in this work.

2 Literature Overview

In literature, there is general agreement, that sulfur compounds cause significant loss of catalyst activity, when noble metals on Al_2O_3 are applied. Deactivation of the catalyst is initiated by adsorption of the sulfur-containing compound on the catalyst surface, followed by a chemical reaction with the active compound. Due to the chemisorption reaction, sulfur forms chemical bonds with the active sites hindering desorption at typical operating conditions. Gradually, the catalyst is poisoned [17,25].

In some cases [17,20,25,26], residual activities of fully poisoned PdO/Al_2O_3 catalysts are observed. Two explanations can be found for this effect:

- The sulfur covered active compound (PdSO_x) itself features some catalytic activity for methane oxidation [17,26] or
- a continuous regeneration of the active sites takes place, caused by storage of sulfur in the catalyst support under formation of Al₂(SO₄)₃ [25].

Ordonez et al. [26] examined the influence of SO_2 on the catalytic activity of PdO/Al₂O₃. As feed gas, 5000 ppmv of methane in an air stream was used. The reaction was operated in a temperature range of 350 °C to 550 °C. Ordonez et al. found that high sulfur concentrations lead to an increase in deactivation rate, whereas the residual activity of the catalyst remains constant. Further, an increase of reaction temperature had a positive effect on the residual activities in Ordonez's case. Unfortunately, Ordonez et al. did not commit to one of the two aforementioned explanations for their observations. For modelling, the authors assumed PdSO₄ to cause the residual activities.

Besides the active compound, the catalyst support plays an important role for the deactivation of noble metal catalysts. Hoyos et al. [17] showed that the deactivation rate of PdO on an AI_2O_3 support is significantly lower than on SiO₂, which is a consequence of the sulfate forming ability of the support material. AI_2O_3 is able to store sulfur as $AI_2(SO_4)_3$ and therefore acts as a sulfur sink, causing a decrease in deactivation rate. Hoyos et al. proved the existence of sulfate by infrared-spectroscopy. In contrary, SiO₂ was not able to form sulfate. Escandón et al. [27] confirmed these results.

Yu et al. [18] also examined the deactivation of a PdO/Al_2O_3 with H_2S in excess of oxygen. From their own results and from literature data the authors proposed a deactivation mechanism of three consecutive reaction steps – the formation of sulfide (eq. 2), its oxidation to sulfite (eq. 3) and finally the storage of sulfur as sulfate in the catalyst support (eq. 4):

$$PdO + H_2S \to PdS + H_2O \tag{2}$$

$$PdS + 1,5 O_2 \rightarrow PdSO_3 \tag{3}$$

$$3 PdSO_3 + Al_2O_3 + 1,5 O_2 \rightarrow 3 PdO + Al_2(SO_4)_3$$
(4)

The authors found that at 200 °C the oxidation of sulfide to sulfite (eq. 3) is kinetically inhibited. As a consequence, PdS remains on the catalytic surface at low temperatures. At higher temperatures (400 °C) and in presence of oxygen, the oxidation of sulfide to sulfite occurs. Thereafter, aluminum sulfate is formed and the active compound of the catalyst (PdO) is restored (eq. 4). Yu et al. carried out infrared spectroscopy measurements and did not observe any formation of PdSO₄. Yu et al. further claimed physical blockage of the active sites by $AI_2(SO_4)_3$ and a decrease of surface area (BET) responsible for the short-term deactivation of the catalyst at high temperatures.

Other research groups [17,19,25] do not share this view and rather explain the short-term deactivation by transformation of PdO to any PdSO_x species with less activity. Ordonez et al. [28] investigated the deactivation and regeneration of PdO/Al₂O₃-catalysts after SO₂-poisoning by performing desorption experiments under inert atmosphere at high temperatures (600 °C). Under these conditions, both, O₂ and SO₂ can be detected in the offgas in various ratios. This indicates for the presence of SO_x-groups on the active sites of the catalyst, as PdSO₄ decomposes to SO₂ and O₂ (eq. 10) at high temperatures. After high temperature deactivation experiments, an increasing amount of oxygen is released due to a higher degree of sulfate formation (eq. 6). As a conclusion, Ordonez et al. assumed that both, sulfate and sulfite groups, are present on the catalyst surface and proposed the mechanism eq. 5 - 12.

$$PdO + SO_2 \to PdSO_3 \tag{5}$$

$$PdO + SO_2 + 0.5 O_2 \rightarrow PdSO_4 \tag{6}$$

$$3 PdSO_3 + Al_2O_3 \to 3 PdO + Al_2(SO_3)_3$$
 (7)

$$3 PdSO_4 + Al_2O_3 \rightarrow 3 PdO + Al_2(SO_4)_3$$
 (8)

$$PdSO_3 \to PdO + SO_2 \tag{9}$$

$$PdSO_4 \rightarrow PdO + SO_2 + 0.5 O_2 \tag{10}$$

 $Al_2(SO_3)_3 \to Al_2O_3 + 3SO_2$ (11)

 $Al_2(SO_4)_3 \to Al_2O_3 + 3SO_2 + 1.5O_2 \tag{12}$

Furthermore, Ordonez et al. examined different gases and gas mixtures for their ability to regenerate a poisoned Pd catalyst. A catalyst, which afore was deactivated with SO₂, was regenerated at 550 °C with hydrogen, dry air, humid air, nitrogen and under vacuum for 20 h. Exclusively with hydrogen a complete recovery of catalyst activity was achieved. For the other gases, only 80 - 90 % of the original activity was reached.

3 Experimental Set-up and Procedure

An extensive description of the lab-scale test rig used in this work is given in [41]. The palladium catalyst used in this work is a commercially available product. As active compound 0.5 wt% of PdO are dispersed on the spherical catalyst support of Al_2O_3 with an outer diameter of 1 - 1.2 mm. The catalyst features a specific surface area of 173 m²/g (BET). During the measurements, the catalyst was diluted with glass-spheres of similar diameter by a ratio of 1:10. The glass-spheres are chemically inert with respect to chemical adsorption of sulfur compounds. Information on the applied experimental procedures is given in relevant subsections. *Table 1* gives an overview over the applied gases. For gas analysis an appropriate µGC system was used. Additionally, representative catalyst samples were prepared under relevant test conditions and analyzed ex-situ via XRF (details on XRF methodology are given in section 3.1.1). The kinetic parameters and reaction orders were determined by numeric fit via minimization of least squares of integral experimental and calculated oxygen conversion. The catalytic reactor was modelled as a PFR (Bo > 100). MS Excel was used for computation.

Compound	Purity		
Methane	3.5 (99.95 vol%)		
Synthetic air (20.5 vol% O_2 in N_2)	20.5 vol% O_2 in N_2 5.0		
Nitrogen	5.0 (99.999 vol%)		
Hydrogen	5.0 (99.999 vol%)		
Hydrogen sulfide in methane	300 ppmv in CH ₄ 5.0		
Sulfur dioxide in nitrogen	1370 ppmv in N ₂ 5.0		

Table 1: Gases used with information on respective purities and suppliers

3.1.1 XRF-Analysis

Principles of X-ray fluorescence analysis are described in [29,30]. The determination of sulfur species on the catalyst surface was carried out by K β -X-ray fluorescence with representative samples, taken subsequently to the measurements in the catalytic test rig. The intensity ratio of K β '/K β _{1,3} varies depending on the binding form of S and can be used for speciation analysis [31–34]. At the K α -line a small energy shift in dependence of the

binding form can be observed when spectrometers with an extremely good angle resolution are used [35].

The measurements were carried out, using an S4 Explorer (Bruker AXS, acc.: 0.05 % F.S.) equipped with Rh-tube, and the crystals LiF200 (2d = 4.028 Å), PET (2 d = 8.74 Å) and XS55 (2d = 55 Å). The PET was used for the determination of the sulfur speciation. The K β - region was scanned from 69.5° to 71° 29 equivalent to 2.4851 - 2.4396 keV (step size ~ 0.73 eV) to determine the K β '/K $\beta_{1,3}$ intensity ratio. For noise reduction the scans were smoothed using a moving 13 point polynomial approximation [36]. The samples were prepared in spectro cups, covered with 6 µm mylar film as bulk powder samples. For calibration of the peak position and the K β '/K $\beta_{1,3}$ intensity ratios the following sulfur species were measured: elemental sulfur, FeS₂, MoS, Na₂SO₃, CaSO₄x 2 H₂O, CuSO₄, SrSO₄, and BaSO₄. The K β scans of these compounds are shown in *Figure 1*.

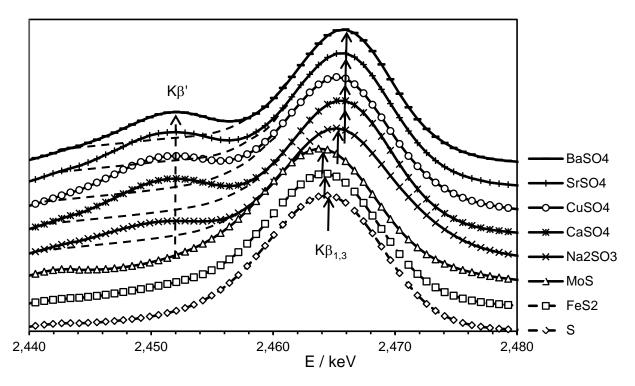


Figure 1: Energy scan across the $K\beta_{1,3}$ and $K\beta'$ - lines of elementary sulfur, sulfide, sulfite and different sulfates. The spectra are normalized to the maximum intensity point and shifted for clarity.

With elementary sulfur and sulfides the K β '-line is not present. With increasing oxidation state of sulfur the K β '/ K $\beta_{1,3}$ intensity ratio increases. The observed energy difference between the K β ' and the K $\beta_{1,3}$ -line is ~ 15 eV. This is in agreement with the data of [31]. *Table 2* compiles the K β '/ K $\beta_{1,3}$ intensity ratio for the different compounds.

Compound	Kβ'/ K $β_{1,3}$ intensity ratio
S	
FeS ₂	0.03
MoS	0.023
Na_2SO_3	0.143
CaSO ₄	0.276
CuSO ₄	0.268
SrSO ₄	0.269
BaSO ₄	0.242

Table 2: $K\beta'/K\beta_{1,3}$ intensity ratio for sulfides, sulfites and sulfates. The intensity ratio of elementary sulfur at the $K\beta'$ position to the $K\beta_{1,3}$ intensity was set as zero point.

4 Results and Discussion

In order to determine whether one of the aforementioned deactivation mechanisms is applicable to the reaction conditions applied in this work (low $O_2:CH_4$ ratios), preliminary measurements on each of the involved reaction steps have been carried out (4.1.1 - 4.1.4). Based on these findings, a reaction scheme is proposed (4.2) and a deactivation / reactivation model is applied (4.3).

4.1 Examinations on reaction mechanism

4.1.1 Deactivation of PdO/Al₂O₃ by Hydrogen Sulfide and Sulfur Dioxide

Figure 2 shows two deactivation experiments with H_2S in the feed at different temperatures (250 °C and 300 °C). For comparison, the actual oxygen conversion X_{O2} is normalized to the conversion of the fresh catalyst $X_{O2,0}$. While the catalyst shows activity for methane oxidation, no H_2S is detected at the reactor outlet.

During both experiments a decrease of oxygen conversion can be observed due to formation of palladium sulfide [18], as confirmed by XRF measurements (see 4.1.3).

Furthermore, it is obvious that the catalyst deactivates faster at 250 °C than at 300 °C. At 250 °C, after 3.5 h no carbon dioxide is detected in the off-gas anymore - methane conversion is stopped completely. The residual oxygen conversion ($X_{O2,res}$) probably is a result of oxidation of hydrogen sulfide to water and surface sulphur species and some beginning of regeneration of blocked active sites (PdS -> PdO; $X_{O2,0}(T = 250 \text{ °C}) = 0.2 \rightarrow X_{O2,res} = 0,015 \rightarrow \text{oxygen consumption: 61 ppmv} \rightarrow n_{H2S}:n_{O2} \approx 1:1$). After approximately three hours, a slight breakthrough of H₂S occurs in the off-gas ($y_{H2S,out} = 10 \text{ ppmv}$) at T = 250 °C.

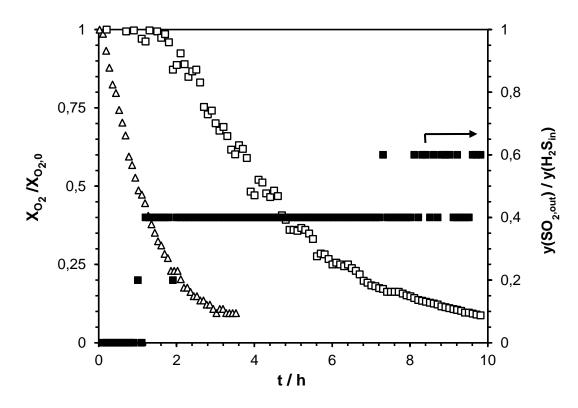


Figure 2: Preliminary examinations on the deactivation of PdO/Al₂O₃ by hydrogen sulfide $(\dot{V} = 100 \text{ l/h (STP)}, p_{CH4,0} = 960 \text{ mbar, GHSV: } 45,000 \text{ h}^{-1}, p_{total} = 1.013 \text{ bar, } y_{O2,0} = 4100 \text{ ppmv}, y_{H2S,0} = 50 \text{ ppmv}, \text{ balance: } N_2$): T = 250 °C (Δ); T = 300 °C (\Box)

In contrast, when the deactivation experiment is carried out at 300 °C, a minor methane conversion still takes place even after 10 h. In addition, the decrease of activity is delayed for approximately 2 h, which is equivalent to the moment when a breakthrough of SO_2 of approximately 20 ppmv occurs in the off-gas. Until then, the complete amount of sulfur in the feed remains on the catalyst surface.

Examinations with an empty reactor (under the same operating conditions) indicate for some conversion of H₂S to SO₂ at higher temperatures, very likely catalyzed by the reactor itself $(X_{H2S_{2}SO2}(300 \text{ °C}) = 40 \text{ \%})$. At 250 °C, however, no formation of SO₂ is observed.

Deactivation experiments in literature (under excess oxygen conditions) usually come to the conclusion that deactivation by H_2S or by SO_2 is equivalent for reasons already mentioned. Since this is not the case under this works operating conditions, the influences of both gases on catalyst deactivation have been examined separately.

4.1.2 Influence of Sulfur Dioxide on Catalytic Activity

Under typical excess oxygen conditions SO_2 leads to the formation of $PdSO_X$ -species with no or only minor residual activity for methane oxidation [17,18]. To eliminate any influences of the applied reaction system, examinations under literature conditions (1500 ppmv CH₄ in excess of O₂) have been carried out. A plot of X_{CH4} vs. time is included in the supplementary

data section. In accordance to literature, under suchlike operating conditions SO₂ leads to a decrease in methane conversion. Additionally, a minor residual activity is confirmed [26].

Figure 3 again shows the influence of SO₂ addition, but under oxygen removal conditions (= lower temperatures and methane in excess). Unexpectedly, under these conditions SO₂ leads to an increase of oxygen conversion, which is in average about 1.6 times higher compared to the standard degree of conversion ($X_{O2,0}$) of a fresh catalyst. It appears as if any stable PdSO_x-intermediate with a higher activity than original PdO is formed. Furthermore, no deactivation at all is observed, even after 20 h TOS with 100 ppmv SO₂ in the feed gas.

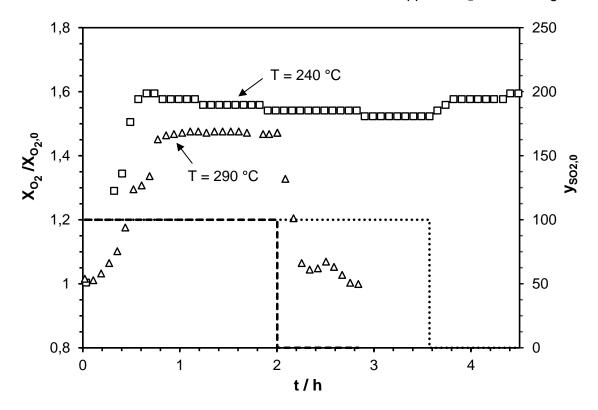


Figure 3: Influence of sulfur dioxide on oxygen conversion at different temperatures $(\dot{V} = 100 \text{ l/h (STP)}, p_{CH4,0} = 960 \text{ mbar, GHSV: } 45,000 \text{ h}^{-1}, p_{total} = 1.013 \text{ bar, balance: } N_2):$ $T = 240 \text{ °C}, y_{02,0} = 1025 \text{ ppmv}, X_{02,0}(240 \text{ °C}) = 0.6; (\Box); T = 290 \text{ °C}, y_{02,0} = 4100 \text{ ppmv} (\Delta),$ $X_{02,0}(290 \text{ °C}) = 0.67; y_{S02,0} \text{ at } T = 240 \text{ °C} (...); y_{S02,0} \text{ at } T = 290 \text{ °C: (---)}$

For a reasonable explanation of the observed phenomena, the original reaction of oxygen with methane on PdO has to be taken into consideration. The catalytic conversion of oxygen on noble metal catalysts can be described by the Eley-Rideal-mechanism [37,38]. Eley-Rideal presumes oxygen to be present in excess at the active sites of the catalyst at any time. Validity of this mechanism was confirmed in [41] for very low oxygen partial pressures as used in this work. Thus the partial pressure of oxygen shows no influence on the rate of reaction ($r_{CH4} \sim p_{O2}^{0}$). Eley-Rideal further presumes methane to take part in the reaction directly from the gas phase or from a short-term adsorbed state on the catalytic surface.

Hence, at moderate pressures, the oxidation reaction is usually modelled first order in methane $(r_{CH4} \sim p_{CH4}^{1})$.

This implicates any $PdSO_X$ species to have a positive effect on rather the activity of the catalyst itself or on the adsorption of methane on the catalyst surface. Further it seems that the reactive intermediate is not stable at high temperatures or/and when high contents of oxygen are present in the feed gas (see *Figure 3*), indicating why suchlike results have not been published yet.

Obviously, the catalyst behaves different after SO_2 -feed is terminated. At T = 240 °C and $y_{O2,0} = 1025$ ppmv the PdSO_X-intermediate is stable. The slight increase of conversion probably occurs as some physisorbed SO_2 , inhibiting the oxidation reaction of methane, is desorbed from the catalyst.

A totally different behavior is observed at T = 290 °C and $y_{O2,0} = 4100$ ppmv. Under these conditions the catalytic activity decreases to its original level (of PdO) after termination of the SO₂ feed. During the entire experiment, no SO₂ is detected in the off gas, indicating storage of sulfur in the support of the catalyst as aluminum sulfate and subsequent transformation of the active sites back to PdO. This process probably also takes place during SO₂ feed, but the formation of the PdSO_X intermediate however seems to be dominant at the reaction conditions applied.

4.1.3 Identification of Reactive Intermediate Species

According to the literature, it is likely that the species with increased activity are either $PdSO_3$ [18] and/or $PdSO_4$ [17]. For further identification, the effect of oxygen on the formation of the $PdSO_x$ -intermediate and its subsequent transformation to PdO was examined in detail. In order to confirm the experimental findings, X-ray fluorescence analysis (XRF) was also used.

Aforementioned examinations revealed that the active compound is stable at 240 °C and an oxygen inlet concentration of about 1000 ppmv. Consequently, these conditions were used to examine the formation of the intermediate compound. Thus, the catalyst was exposed to SO₂ in an oxygen-free atmosphere where formation of palladium sulfite is expected (see eq. 5).

In order to prevent any inhibition of the combustion reaction (eq. 1) by adsorbed SO_2 , the catalyst was flushed with pure methane for approximately one hour after the formation segment. Thereafter, oxygen was added to the feed gas – and an increased activity was apparent immediately. Consequently, it can be stated that oxygen is not necessary to form the active $PdSO_x$ -intermediate, when SO_2 is applied. This finding indicates palladium sulfite ($PdSO_3$) or any compound with an equal Pd:O ratio to be the active intermediate. *Figure 4* illustrates the applied experimental procedure and the results.

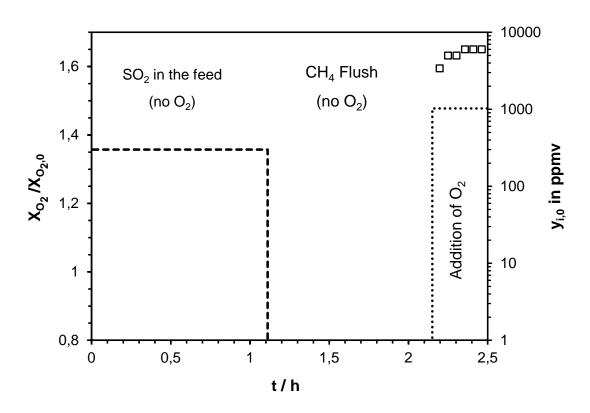


Figure 4: Influence of oxygen on formation reaction of the $PdSO_X$ -intermediate ($\dot{V} = 100 l/h$ (STP), $p_{CH4,0} = 960 mbar$, GHSV: 45,000 h^{-1} , $p_{total} = 1.013 bar$, T = 240 °C, balance: N_2): $X_{02}/X_{02,0}$ (\Box); $y_{02,0}$ (.....); $y_{S02,0}$ (---)

To verify $PdSO_3$ as the active intermediate, the influence of oxygen during recovery of PdO was examined additionally. In contrast to $PdSO_4$, $PdSO_3$ requires oxygen to form $Al_2(SO_4)_3$ and restore PdO (eq. 13).

$$3 PdSO_3 + 1.5 O_2 + Al_2O_3 \to PdO + Al_2(SO_4)_3$$
(13)

Upon this second attempt the $PdSO_x$ species was formed in a methane / sulfur dioxide (100 ppmv) / oxygen (4100 ppmv) atmosphere at higher temperature. *Figure 5* shows the procedure. After terminating both, the SO_2 and O_2 feed, the reactor was again passed through an isothermal flush cycle at 290 °C for approximately 1.5 h. After resumption of oxygen supply, the conversion is apparent immediately, but a fast decrease of activity - back the original activity level of PdO - occurs. It can be therefore stated, that not only high temperatures but oxygen is needed for completing the regeneration cycle of the active compound. This again indicates for PdSO₃ as the active intermediate species.

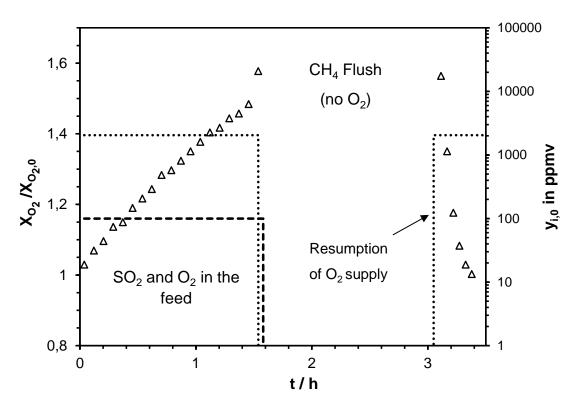


Figure 5: Influence of oxygen on formation of PdO ($\dot{V} = 100 \ l/h \ (STP), \ p_{CH4,0} = 910 \ mbar, GHSV: 45,000 \ h^{-1}, \ p_{total} = 1.013 \ bar, \ T = 290 \ ^{\circ}C, \ balance: N_2): \ X_{O2}/X_{O2,0} \ (\Delta); \ y_{O2,0} \ (.....); \ y_{SO2,0} \ (---)$

Results of XRF Species Analysis

For XRF analysis, three catalyst samples were prepared by applying different gaseous sulfur compounds and reaction temperatures: H₂S at 220 °C (\rightarrow PdS), SO₂ at 220 °C (\rightarrow PdSO₃) and one Pd-sample on Al₂O₃ carrier after exposure to SO₂ first at 300 °C followed by 220 °C (\rightarrow PdSO₃+Al₂(SO₄)₃). *Figure 6* shows the resulting scans across the Kβ' and Kβ_{1,3}-lines.

The K β '/ K $\beta_{1,3}$ intensity ratio increases from 0.077 for the reaction with H₂S at 220 °C to 0.242 for the reaction with SO₂ starting at 300 °C and then decreasing to 220 °C. The ratio for the reaction with SO₂ at 220 °C is slightly lower but with 0.223 clearly higher than 0.143, the ratio of Na₂SO₃. Even after the reaction with H₂S a small K β '-peak is visible and the ratio (0.077) is slightly higher than that of MoS (0.023). A comparison of the K β '/ K $\beta_{1,3}$ intensity ratios is given in *Table 3*.

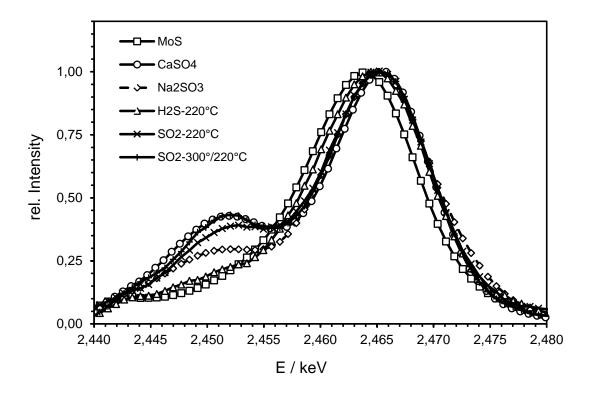


Figure 6: $K\beta'$, $K\beta_{1,3}$ -scan of Pd-Al₂O₃ catalyst spheres after reaction with H₂S at 220 °C, SO₂ at 220 °C and SO₂ at 300 °C/220 °C. MoS, Gypsum and Na₂SO₃ are given for comparison.

Table 3: $K\beta'/K\beta_{1,3}$ intensity ratio for the catalyst material after reaction with H_2S and SO_2 at different temperatures forming sulfides, sulfites and sulfates. The intensity ratio of S at the $K\beta'$ position to the $K\beta_{1,3}$ intensity was set as zero point

Preparation of catalyst samples for XRT / Compounds	Kβ'/Kβ _{1,3} intensity ratio
Deactivation with 50 ppmv of H_2S at T = 220 °C	0.067
Application of 50 ppmv SO ₂ at T = 220 °C	0.223
50 ppmv of SO ₂ at 300 °C; SO ₂ at 220 °C; SO ₂ while cooling to RT	0.242
CaSO ₄ *2H ₂ O	0.278
Na ₂ SO ₃	0.143
MoS	0.023
SrSO ₄	0.269

The K β [/] K $\beta_{1,3}$ intensity ratios imply, that after reaction with H₂S the sulfur is mainly bound as PdS. A small part seems to be present as PdSO₃ or PdSO₄. This may be caused by oxidation with O₂ from the air after the H₂S-reaction. This is supported by the fact, that the ratio increases if the same samples are measured after considerably longer contact with air (*Figure 7*).

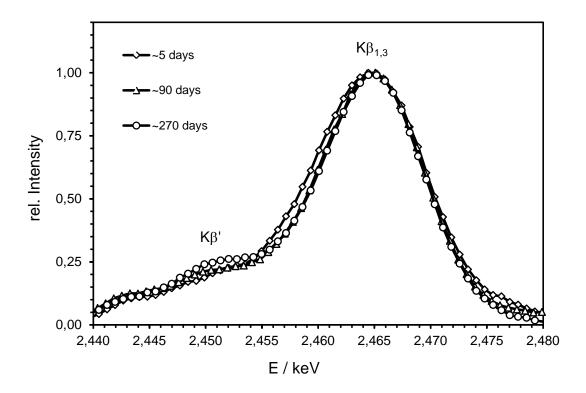


Figure 7: Time dependency of the $K\beta'/K\beta_{1,3}$ -ratio for the sample after reaction with H_2S at 220°C

The K $\beta'/K\beta_{1,3}$ ratio of SO₂ at 220 °C is higher than the ratio of Na₂SO₃ and slightly lower than the SrSO₄ ratio. This implies that a small part is present as PdSO₃ and the major part as SO₄²⁻ – but probably as Al₂(SO₄)₃. It seems as if oxidation of PdSO₃ to Al₂(SO₄)₃ occurs even at 220 °C, but formation of PdSO₃ is probably faster than the consecutive reaction of PdSO₃ to Al₂(SO₄)₃. The K $\beta'/K\beta_{1,3}$ ratio for the reaction with SO₂ at 300 °C followed by 220 °C is higher than for the reaction at 220 °C, but still slightly lower than that of SrSO₄. This clearly shows, that the major part of sulfur is bound as SO₄²⁻, most likely as Al₂(SO₄)₃. A small part still is present as PdSO₃. As the applied catalyst exhibits only 0.5 ma.-% of PdO, consequently the determined amount of PdSO₃ is smaller than that of SO₄-species for all relevant samples.

The results of this work correlate with the proposed mechanism by Yu et al. [18]. The formation of $PdSO_4$, as suggested by other authors [19,26], was not confirmed under the operating conditions applied in this work (see *Figure 4* and *Figure 5*). However, deviations concerning catalytic activity of the $PdSO_x$ -species between this work and literature observations occurred (see supplementary data, Fig. B vs. *Figure 3 - Figure 5*). One possible explanation could be that $PdSO_4$ (with low activity for oxidation of methane) might be formed when high oxygen contents are applied, whereas formation of the reactive $PdSO_3$ -intermediate occurs when only little oxygen is available in the gas phase.

The influence of SO₂ on the catalytic activity is furthermore able to account for the initially described delay in conversion decrease at 300 °C (see *Figure 2*). The formation of PdSO₃ is probably able to compensate the loss of activity by formation of PdS. The SO₂ breakthrough occurs due to competing adsorption of H₂S and SO₂. At high sulfur loadings of the surface, SO₂ adsorption decreases, therefore the deactivation of the catalyst by H₂S dominates.

4.1.4 In-situ Regeneration of the Catalyst

Finally, the regeneration of the deactivated catalyst was examined. *Figure 8* shows a characteristic regeneration curve after the H_2S exposure to the catalyst is terminated. Typically all samples for regeneration measurements were pre-treated with 100 ppmv of H_2S until residual activity for methane oxidation = 0.

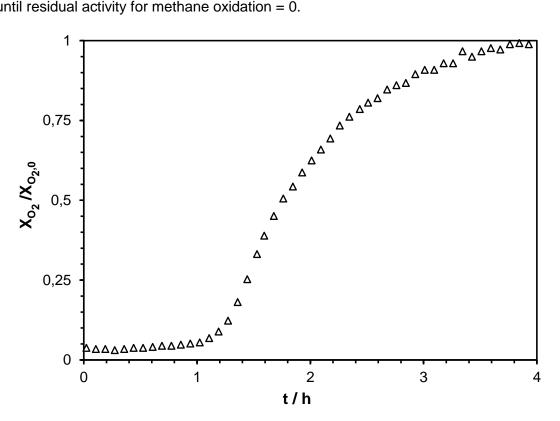


Figure 8: In-situ regeneration of a deactivated PdO/Al₂O₃ catalyst after termination of H₂S-feed ($\dot{V} = 100 \text{ l/h}$ (STP), $p_{CH4,0} = 960 \text{ mbar}$, $y_{O2,0} = 4100 \text{ ppmv}$, GHSV: 45,000 h⁻¹, $p_{total} = 1.013 \text{ bar}$, T = 296 °C, balance: N₂)

Equivalent to the termination of the deactivation measurements, no CO_2 is detected at the beginning of the catalyst regeneration phase. After a delay of approximately one hour (in this case), the activity recovers in the course of the measurement back to its original level. No sulfur compounds are detected in the off-gas, indicating for storage of the complete sulfur loading in the catalyst support. Therefore it is very likely that palladium sulfide is oxidized to sulfite, followed by formation of $AI_2(SO_4)_3$ and recovery of PdO, equivalent to the measurements with SO_2 .

The delay in regeneration is a consequence of excess of H₂S on the catalyst surface, which was adsorbed on the support during deactivation experiment. Under the assumption that the complete amount of palladium on the catalyst surface is accessible for H₂S and a 1:1 stoichiometry is valid for deactivation, only 1/11 of the amount of H₂S which is necessary to completely deactivate the catalyst reacts with the active compound. The rest is adsorbed on the support material (see section 4.4.3, Figure 17). This excess of sulfur on the catalyst surface is very likely to re-cover the active sites after they are regenerated. After degradation of this sulfur reservoir, recovery of methane conversion becomes visible. In contrary to Ordonez et al. [28], a complete in-situ recovery of the catalytic activity under reaction conditions is possible, as the original activity of the fresh catalyst is reached. The experimental findings lead to the conclusion that the active compound is regenerated to PdO and that Al₂(SO₄)₃ neither physically blocks active sites nor significantly narrows pores at conditions applied in this work, which would lead to a mass transfer limitation of the methane oxidation. However, how many deactivation and regeneration cycles are possible with one catalyst has not been determined in this work, as for all experiments, a fresh catalyst was used.

4.2 Reaction Scheme

When high partial pressures of H_2S (≥ 20 ppmv) are used for the deactivation experiments, the in-situ regeneration reactions are obviously too slow for achieving a stationary state on the catalyst surface. But, when low partial pressures of the catalyst poison are applied, e.g. in the case where the reaction is used for oxygen removal from fuel gas streams, an equilibrium state between deactivation and regeneration is expected, probably leading to the residual activities observed by some authors [8,25,26]. In such a case, different states of the active compound (Pd) are likely to be present on the catalyst surface, whereby the ratios of PdO, PdS and PdSO₃ depend on the applied reaction conditions (T, p_i).

In order to verify this assumption, measurements with low partial pressures of hydrogen sulfide were carried out. The reaction temperature was chosen as high as possible for fast insitu regeneration of the catalyst, but low enough for minor H_2S conversion to SO_2 . The results for four different partial pressures of H_2S at 280 °C are shown in *Figure 9*.

As can be seen, constant and comparably high residual activities are achieved for each of the examined partial pressures. An increase of H_2S content leads to lower residual activities due to intensification of deactivation. These results are in contrast to Ordonez et al. [26], who observed one single residual activity, which was independent of the partial pressure of the catalyst poison.

It could be that the regeneration of PdO from $PdSO_4$ (presumed to be present at high oxygen contents) is slower than the regeneration from $PdSO_3$ to PdO (at low oxygen contents), leading to a high fraction of $PdSO_4$ on the catalytic surface under typical literature operating conditions. This may cause the single constant residual activity, observed by Ordonez et al. [26] even for different concentrations of H_2S . For deeper insights, additional experiments and sample analysis are necessary.

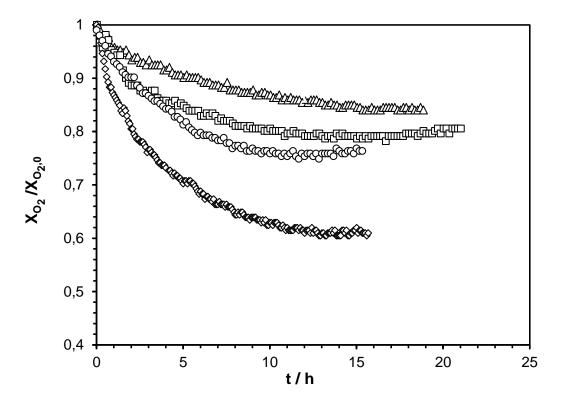


Figure 9: Influence of low $p_{H2S,0}$ on the oxygen conversion ($\dot{V} = 100 l/h$ (STP), $p_{CH4,0} = 960 \text{ mbar}$, $y_{02,0} = 4100 \text{ ppmv}$, GHSV: 45,000 h^{-1} , $p_{total} = 1.013 \text{ bar}$, T = 280 °C, balance: N_2): $y_{H2S,0} = 4 \text{ ppmv} (\Delta)$; $y_{H2S,0} = 8 \text{ ppmv} (\Box)$; $y_{H2S,0} = 10 \text{ ppmv} (\circ)$; $y_{H2S,0} = 14 \text{ ppmv} (\diamond)$

Based on the presented experimental findings, *Figure 10* gives a summary of the proposed reaction scheme for deactivation and regeneration of the PdO/Al₂O₃ catalyst, when low ratios of O_2 :CH₄ are applied.

$$PdS + O_2 \rightarrow PdSO_3$$
 (14)

$$PdO + SO_2 \rightarrow PdSO_3$$
 (15)

$$3 PdSO_3 + 1.5 O_2 + Al_2O_3 \rightarrow 3 PdO + 3 Al_2(SO_4)_3$$
 (16)

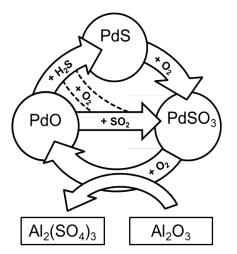
Figure 10: Proposed deactivation and regeneration scheme of the PdO/Al₂O₃ catalyst for low O_2 :CH₄ ratios

4.3 Surface Species Modelling

In order to describe temporal changes of catalyst activity Levenspiel [39] proposed an empirical model consisting of a deactivation function Ψ , depending on the temperature and the partial pressure of the catalyst poison p_i and a deactivation order d on the original catalyst activity a (eq. 17).

$$-\frac{da}{dt} = \Psi(p_i, T) * a^d \tag{17}$$

In an advanced version, the model was adapted to account for residual activities a_s (eq. 18).


$$-\frac{da}{dt} = \Psi(p_i, T) * (a - a_s(p_i, T))^d$$
(18)

Based on the approach of Froment [40], Ordonez et al. [26] proposed a different model for the catalytic oxidation of methane by PdO and the deactivation by sulfur which takes into account surface phenomena on the catalyst. Ordonez et al. assume that an active site of the catalyst can be present as palladium oxide (PdO) or as palladium sulfate (PdSO₄). ϕ_{PdSO4} represents the coverage fraction of PdSO₄ of all active sites. On the fresh catalyst, only PdO is present ($\phi_{PdSO4} = 0$), whereby only PdSO₄ is existent on the completely deactivated catalyst ($\phi_{PdSO4} = 1$). Eq. 19 shows Ordonez' reaction rate approach. k₁ is the reaction constant of PdO, k₂ of PdSO₄.

$$-r_{O2} = k_1 * (1 - \Phi_{PdSO_4}) * p_{CH_4} + k_2 * \Phi_{PdSO_4} * p_{CH_4}$$
(19)

The fraction of deactivated active sites can be described by eq. 20, whereby k_s represents the deactivation constant and p_s the partial pressure of the catalyst poison.

$$\frac{d\Phi}{dt} = k_s(T) * \left(1 - \Phi_{PdSO_4}\right)^n * p_s^m \tag{20}$$

With this approach, Ordonez et al. [26] were able to describe the catalyst deactivation for different temperatures and partial pressures of SO₂.

The surface species model proposed in this work is based on the approach of Ordonez et al. According to the experimental results at low O_2 partial pressures, the states of the active sites of the catalyst can rather be PdO, PdS or PdSO₃ (eq. 21).

$$\Phi_{Pd0} + \Phi_{PdS} + \Phi_{PdS03} = 1 \tag{21}$$

The rate of total oxygen conversion is a result of the respective activity of the three possible states of the active compound (eq. 22).

$$-r_{02} = \Phi_{Pd0} * r_{02,Pd0} + \Phi_{PdS} * r_{02,PdS} + \Phi_{PdS03} * r_{02,PdS03}$$
(22)

If possible, the reaction rates are related to the original reaction rate equation for methane oxidation taken from [41] with kinetic parameters for PdO ($k_{0,CH4-ox} = 1.1 \ 10^8$; $E_A = 87.8 \ kJ/mol$; A = 0; B = 1,3; C = 2.5; D = 0.5; $K_{CO2} = 1 \ bar^{-1}$; $K_{H2O,0} = 1.17 \ 10^{-5} \ bar^{-0.5}$; $\Delta_{ads}H_{H2O} = 58.4 \ kJ/mol$).

$$r_{O2,i} = a_i * r_{O2,PdO} = k_{O_2}(T) \cdot p_{CH_4}^B \cdot \frac{1}{\left(1 + K_{CO_2} p_{CO_2}^{2,5} + K_{H_2O}(T) \cdot p_{H_2O}^{0,5}\right)}$$
(23)

The calculations are carried out by a time discretized numerical method. The ratio $\Phi_{i,j}$ of the surface species i at time j are calculated on basis of the ratio $\Phi_{i,j-1}$ of the previous time step and its time discrete change (eq. 24).

$$\Phi_{i,j} = \Phi_{i,j-1} + \Delta t * \frac{d\Phi_{i,j-1}}{dt}$$
(24)

This leads to the calculation rules eq. 25-27 for the three possible states of the active compound palladium:

$$\Phi_{PdS,j} = \Phi_{PdS,j-1} + \Delta t * \left(\left(\frac{d\Phi_{PdS,j-1}}{dt} \right)_{PdO \to PdS} - \left(\frac{d\Phi_{PdS,j-1}}{dt} \right)_{PdS \to PdSO_3} \right)$$
(25)

$$\Phi_{PdS03,j} = \Phi_{PdS03,j-1} + \Delta t * \left(\left(\frac{d\Phi_{PdS0_3,j-1}}{dt} \right)_{PdS \to PdS0_3} - \left(\frac{d\Phi_{PdS0_3,j-1}}{dt} \right)_{PdS0_3 \to Pd0} \right)$$
(26)

$$\Phi_{PdO,j} = \Phi_{PdO,j-1} + \Delta t * \left(\left(\frac{d\Phi_{PdO,j-1}}{dt} \right)_{PdSO_3 \to PdO} - \left(\frac{d\Phi_{PdO,j-1}}{dt} \right)_{PdO \to PdS} \right)$$
(27)

The formation of PdO out of PdS is described by rate eq. 28. An oxygen dependency is considered, see eq. 16.

$$\frac{d\Phi_{PdO}}{dt} = k_{PdO}(T) * \Phi_{PdSO_3}^{n_{PdO}} * p_{O_2}^{m_{PdO}}$$
(28)

A similar approach is used to describe the formation of PdSO₃ by oxidation of PdS (eq. 29).

$$\frac{d\Phi_{PdSO_3}}{dt} = k_{PdSO_3}(T) * \Phi_{PdS}^{n_{PdSO_3}} * p_{O_2}^{m_{PdSO_3}}$$
(29)

Again, oxygen partial pressure is taken into considation, see eq. 14.

As already mentioned, the formation of PdS from PdO and H₂S occurs by two different routes and thus a different modelling approach must be applied. With a fresh catalyst, for the first minutes of the deactivation experiment, the formation of PdS mainly results from direct adsorption of H₂S from the gas phase on the active sites, followed by the deactivation reaction (eq. 2). But H₂S also adsorbs on the catalyst support, leading to an increase of sulfur loading of the Al₂O₃ surface during the experiment (see *Figure 11*). As already shown during regeneration measurements, this sulfur sink is not inert throughout the reaction cycle. During deactivation measurements it additionally re-occupies free and/or already regenerated active sites. Therefore, some assumptions for modelling of the deactivation process have to be applied.

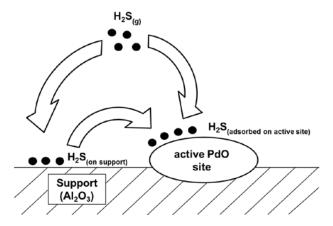


Figure 11: PdS formation scheme

This leads to the following approach to describe the formation of PdS from PdO (eq. 30):

$$\left(\frac{d\Phi_{PdS}}{dt}\right)_{PdO \to PdS} = \left(\frac{d\Phi_{PdS}}{dt}\right)_{from \ gas \ phase} + \left(\frac{d\Phi_{PdS}}{dt}\right)_{from \ support}$$
(30)

The formation of PdS directly from the gas phase shows a dependency of partial pressure of H_2S and of PdO-ratio. For modelling of the reaction a rate constant k_{PdS} is applied (eq. 31).

$$\left(\frac{d\Phi_{PdS}}{dt}\right)_{gas\ phase} = k_{PdS} * p_{H_2S}^{m_{PdS}} * \Phi_{PdO}^{n_{PdS}}$$
(31)

The formation of PdS from surface H_2S is modelled by a sulfur surface diffusion term, incorporating the fraction of PdO and the sulfur coverage Θ of the support, representing the driving force for mass transfer (eq. 32).

$$\left(\frac{d\Phi_{PdS}}{dt}\right)_{support} = k_{\Theta} * \Theta * \Phi_{PdO}^{n_{\Theta}}$$
(32)

The sulfur coverage Θ of the support is defined by the ratio of the accumulated sulfur loading N_s(t) and the maximum possible sulfur loading N_{s,max} (eq. 33).

$$\Theta = \frac{N_S(t)}{N_{S,max}} \tag{33}$$

Since N_{S,max} is not easily accessible, a new rate constant k' is defined (eq. 34):

$$k' = \frac{k_{\Theta}}{N_{S,max}} \tag{34}$$

The change in sulfur loading is defined by the remaining amount of H_2S that is stored in the packing less the PdS formation reactions (eq. 35).

$$\left(\frac{dN_{s,j-1}}{dt}\right) = \dot{N}_{H_2S,in} - \dot{N}_{H_2S,out} - N_{PdO} * \left(\left(\frac{d\Phi_{PdS,j-1}}{dt}\right)_{gas \ phase} + \left(\frac{d\Phi_{PdS,j-1}}{dt}\right)_{support}\right)$$
(35)

In the context of this work, it is assumed that all PdO atoms are accessible on the catalyst surface and that each PdO reacts with one H_2S molecule.

4.4 Examinations on Reaction Kinetics

As any $PdSO_3$ or equivalent component is metastable under at least some of the applied reaction conditions, it was possible to carry out separate kinetic studies on the most important reactions of the proposed reaction scheme (4.4.1 - 4.4.3).

4.4.1 Regeneration of PdO from PdSO₃

The experimental procedure for determination of regeneration kinetics of PdO is similar to the procedure applied in *Figure 5*. PdSO₃ was formed under an SO₂ and O₂ containing atmosphere and afterwards the catalyst was flushed with methane. The conversion of oxygen was monitored after oxygen feed was re-enabled after the flush cycle. Despite the high reaction rates ($r_{O2,PdSO3} = 1.6 r_{O2,PdO}$), it was possible to determine the influences of oxygen partial pressure and temperature on the reaction PdSO₃ \rightarrow PdO (eq. 16). As can be seen in *Figure 12* and *Figure 13* an increase of oxygen partial pressure and temperature both result in faster PdO formation, which is typical for an oxidation reaction.

The regeneration reaction of PdO from PdSO₃ can be divided into three consecutive steps:

- a. Oxidation of SO₂, which is chemically bound on PdO, to (PdO-)SO₃
- b. Transport (by surface diffusion) of SO₃ to the surrounding Al₂O₃ surface
- c. Storage of SO₃ as Al₂(SO₄)₃ in the catalyst support

The positive effect on the regeneration rate by an increase of oxygen content in the feed gas leads to the conclusion that step a) is the rate-determining step, as the consecutive transport step should exhibit no oxygen dependency.

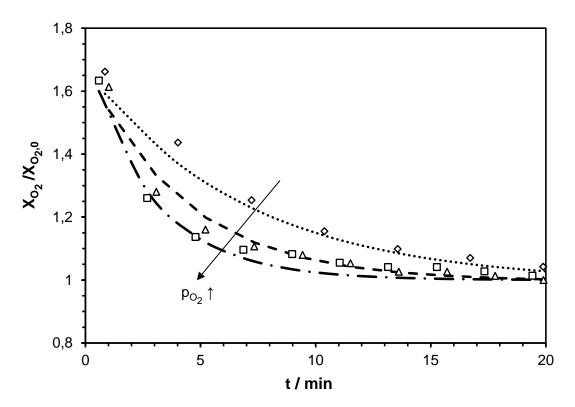


Figure 12: Influence of p_{O2} on the regeneration reaction of PdO from PdSO₃ ($\dot{V} = 100 \text{ l/h}$ (STP), $p_{CH4,0} = 910 \text{ mbar}$, T = 250 °C, GHSV: 45,000 h⁻¹, $p_{total} = 1.013 \text{ bar}$, balance: N_2): X_{O2} at $y_{O2,0} = 2050 \text{ ppmv} \exp(0)$ calc (.....), $y_{O2,0} = 3075 \text{ ppmv} \exp(\Delta)$ calc (.....), $y_{O2,0} = 4100 \text{ ppmv} \exp(\Box)$ calc (.....)

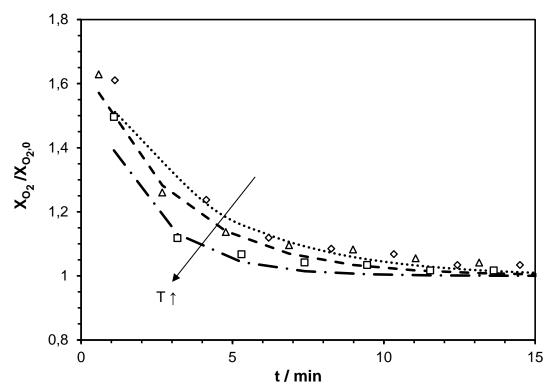


Figure 13: Influence of temperature on the regeneration reaction of PdO from PdSO₃ ($\dot{V} = 100 \text{ l/h} (\text{STP}), p_{CH4,0} = 910 \text{ mbar}, y_{O2,0} = 4100 \text{ ppmv}, \text{ GHSV: } 45,000 \text{ h}^{-1}, p_{total} = 1.013 \text{ bar}, \text{ balance: } N_2$): X_{O2} at $T = 240 \text{ °C exp} (\diamond)$ calc (.....), $T = 250 \text{ °C exp} (\Delta)$ calc (.....), $T = 265 \text{ °C} \text{ exp} (\Box)$ calc (.....)

Finally the kinetic parameters for this reaction were evaluated. For the measurements, it was assumed, that at the beginning of the experiment the active sites are present exclusively as $PdSO_3$ ($\phi_{PdSO3} = 1$) and at the end of regeneration, total conversion to PdO ($\phi_{PdO} = 1$) has occurred. *Figure 12* shows furthermore a comparison of the experimental data and the calculation results for different partial pressures of oxygen. Both, the temperature and oxygen dependence can be described satisfactorily with the parameters in *Table 4*.

Further, it can be assumed that when high surface coverage of the support material with e.g. H_2S or water occurs, the oxidation reaction of $PdSO_3$ and furthermore the surface diffusion process could be inhibited [19]. However, such conditions were not applied in this study.

4.4.2 Formation of PdO from PdS

As the kinetics of the $PdSO_3 \rightarrow PdO$ reaction are established, it is possible to access the kinetic parameters of the previous formation reaction of $PdSO_3$ from PdS. *Figure 14* shows the normalized oxygen conversion progression of a completely deactivated catalyst, some time period after the termination of the H₂S pretreatment (100 ppmv of H₂S until residual activity for methane oxidation = 0) for three different reaction temperatures. As can be seen, an increase of temperature promotes the regeneration of the catalyst.

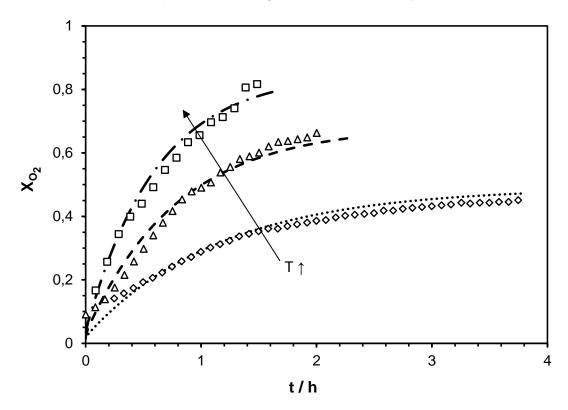


Figure 14: Temperature influence on the PdO-formation from PdS and comparison of experimental results and calculated conversion for the formation of PdO from PdS at different temperatures ($\dot{V} = 100 \text{ l/h}$ (STP), $p_{CH4,0} = 960 \text{ mbar}$, $y_{02,0} = 4100 \text{ ppmv}$, GHSV: 45,000 h⁻¹,

 $p_{total} = 1.013 \text{ bar, balance: } N_2$): $X_{O2} at T = 277 \text{ °C exp ($$$) calc (.....), T = 288 °C exp($$$$) calc (_____), T = 296 °C exp ($$$$) calc (_____)$

For analysis of the regeneration curves, an idle time segment at the beginning of the experiments (see *Figure 8*) is neglected, as the elimination of surface sulfur does not cause an increase in oxygen conversion (due to re-coverage of active sites). Only when the amount of active sulfur on the surface is fairly eliminated, the regeneration of the catalyst gets visible by an increase of oxygen conversion (due to oxidation of methane at the regenerated PdO sites).

As already noted, the regeneration of PdS consists of two reaction steps, the oxidation of PdS to PdSO₃ and the consecutive recovery of PdO under formation of Al₂(SO₄)₃. Comparison of the time scale of both reactions (*Figure 12* and *Figure 14*) leads to the conclusion that the oxidation of PdS is the rate-determining step in the reaction scheme. PdSO₃ is a metastable intermediate species - at temperatures above 250 °C its retention time on the catalyst surface is short, therefore the ratio of PdSO₃ on the surface tends to be fairly small ($\phi_{PdSO3} \rightarrow 0$).

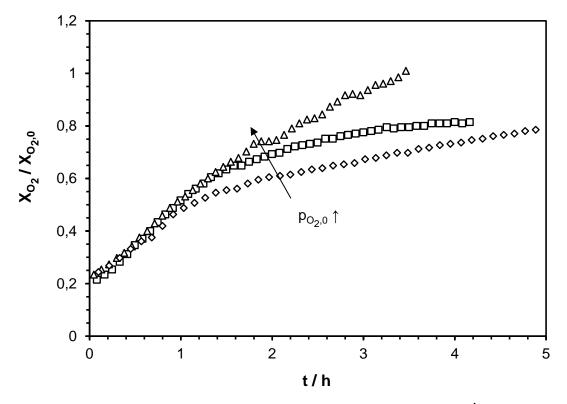


Figure 15: Influence of p_{O2} on the formation of PdO from PdS ($\dot{V} = 100 l/h$ (STP), $p_{CH4,0} = 960 \text{ mbar}$, $T = 277 \,^{\circ}\text{C}$, GHSV: 45,000 h^{-1} , $p_{total} = 1.013 \text{ bar}$, balance: N_2): Δp_{O2} at $p_{O2,0} = 4 \text{ mbar}$ (\Box), 3 mbar (Δ) and 2 mbar (\Diamond)

Furthermore, the influence of the oxygen partial pressure was examined. As can be seen, in the first hour of measurements, regeneration rates equal each other. Therefore, it seems as if the partial pressure of oxygen had no influence on the regeneration of active sites (when at

least 2000 ppmv of oxygen are applied to the feedgas). After approximately one hour a decrease of reaction rate occurs with the lowest of the applied inlet concentrations of oxygen. Most likely, the active sites in the upper part of the catalyst bed are then regenerated. As a consequence a depletion of oxygen occurs in the lower region of the bed due to recoverage of methane combustion in the upper part. Thus p_{O2} decreases in the lower part of the bed, resulting in an inhibition of the regeneration reaction. Nevertheless, in a technical application the strongest sulfur loading is expected at the top part of the catalyst bed, especially in continuous operation mode. Simultaneously, this is where the oxygen content is highest. Thus an influence of oxygen on the regeneration of PdS to PdSO₃ (eq. 31) were determined (see *Table 4*). The results of the fits are shown in *Figure 14*. As can be seen, the calculated conversion rates are in good agreement with the experimental results.

4.4.3 Deactivation of PdO by Formation of PdS

Figure 16 shows the decrease of oxygen conversion with different concentrations of hydrogen sulfide (GHSV of 45,000 h⁻¹) with a constant temperature and besides H_2S an equal gas composition. It is apparent that an increase of partial pressure of H_2S results in an intensification of catalyst deactivation.

Furthermore, *Figure 17* shows the oxygen conversion as a function of accumulation of H_2S $(n_{H2S,total}/n_{Pd0,catalyst})$ on the catalyst surface. Since the amount of H_2S for a complete deactivation of the catalyst is almost equal for different partial pressures of H_2S , the total injected quantity of H_2S , not its partial pressure, is the most important factor for the deactivation of the catalyst.

Besides, if sulfur deposited at the active sites primarily, a complete deactivation of the catalyst would occur at a specific amount of H_2S of one (under the assumption that all PdO molecules are accessible on the catalyst surface and that one PdO site reacts with one single H_2S molecule). However, the experimental results indicate that the major part of H_2S adsorbs on the support, not at the active sites. Still, no sulfur desorption occurs after terminating the H_2S feed, indicating for an additional strong chemisorption of H_2S on the catalyst support.

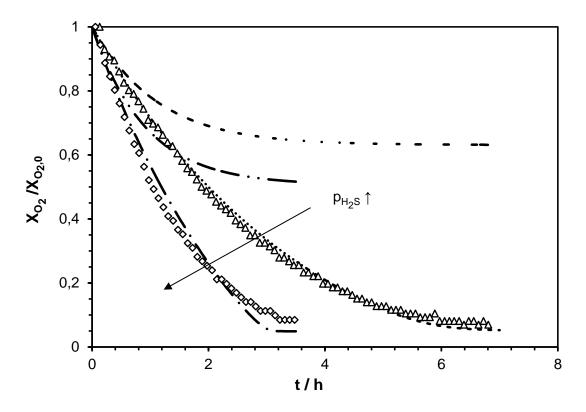


Figure 16: Comparison between experimental and calculated data for the deactivation at different partial pressures of H_2S ($\dot{V} = 100$ l/h (STP), $p_{CH4,0} = 960$ mbar, GHSV: 45,000 h⁻¹, $p_{total} = 1.013$ bar, $y_{02,0} = 2050$ ppmv, T = 250 °C, balance: N_2): $y_{H2S,0} = 50$ ppmv: exp. (\diamond), calc. without support-sulfur (_____), calc. with support-sulfur (_____); $y_{H2S,0} = 30$ ppmv: exp. (Δ), calc. without support-sulfur (____), calc. with support-sulfur (.____)

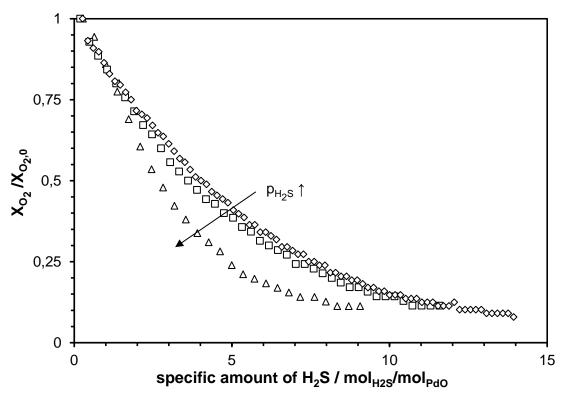


Figure 17: Influence of p_{H2S} as a function of the specific amount of H_2S ($\dot{V} = 100$ l/h (STP), $p_{CH4,0} = 960$ mbar, GHSV: 45,000 h⁻¹, $p_{total} = 1.013$ bar, $y_{02,0} = 2050$ ppmv, T = 250 °C, balance: N_2): $y_{H2S,0} = 100$ ppmv (Δ); 50 ppmv (\Box); 30 ppmv (\Diamond)

Figure 18 shows the influence of p_{O2} on the formation of PdS from PdO. The deactivation rates do not deviate significantly in the first (two) hours of the experiments. Thereafter, the conversion of oxygen at 1025 ppmv decreases faster. This is probably an effect of porenarrowing leading to a mass transfer limitation of the methane oxidation and/or the regeneration reaction of PdS, caused by depletion of oxygen at the inner active sites. Indeed, this phenomenon does not occur at higher partial pressures of oxygen. Thus, as expected from reaction stoichiometry, it is assumed that p_{O2} has no significant influence on the formation of PdS.

Furthermore the influence of temperature was examined. The applicable temperature range for the measurements is limited by SO₂ formation (280 °C) and by the minimum temperature for oxygen conversion (235 °C). A temperature effect on deactivation reaction is not visible within these boundaries. In literature, adsorption of sulfur, not the consecutive reaction with the active compound is considered to be the rate-determining reaction step [17,25]. Probably due to the small variation range, changes of temperature show no effect on sulfur adsorption. At the end of the experiments no activity for methane oxidation is observed anymore ($r_{O2,PdS} = 0$), additionally a minor H₂S breakthrough appears. Higher reaction temperatures result in a slight increase of residual activities, which is not due to higher activity for oxidation of methane but due to an increase of regeneration rate.

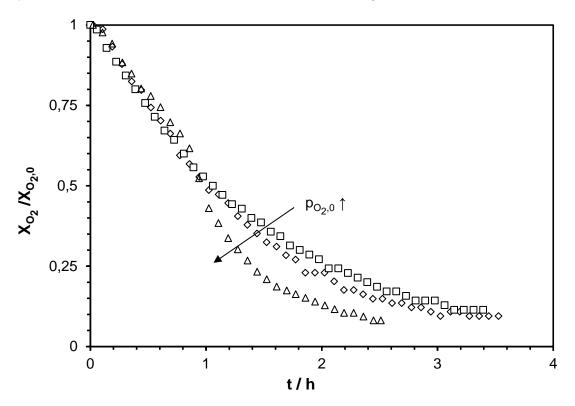


Figure 18: Influence of p_{O2} on the formation of PdS from PdO ($\dot{V} = 100$ l/h (STP), $p_{CH4,0} = 960$ mbar, GHSV: 45,000 h⁻¹, $p_{total} = 1.013$ bar, $y_{H2S,0} = 50$ ppmv, T = 250 °C, balance: N_2): $y_{O2,0} = 1025$ ppmv (Δ); 2050 ppmv (\Box); 4100 ppmv (\Diamond)

Finally, the kinetic parameters for the formation of PdS were derived. As already addressed, the formation of PdS occurs directly by H_2S adsorption on the active sites but additionally by surface diffusion of sulfur molecules, adsorbed on the catalyst support. The deactivation directly from the gas phase was adapted to the initial degradation rate (slope of the deactivation curves within the first minutes of measurements), as it is assumed that the amount of sulfur on the support (and therefore the formation of PdS from support-sulfur) is low in this time period. As deactivation progresses, more and more support-sulfur takes part and additionally covers the active sites. The kinetic parameters of this term are predominantly fitted to the end of the deactivation measurements. The derived parameters are summarized in *Table 4. Figure 16* shows the experimental results and calculated conversion rates for 30 ppmv and 50 ppmv of H_2S at low temperatures. For demonstration, the conversion rates are calculated with and without PdS-formation from support-sulfur.

To summarize the results, *Figure 19* shows the measurements at low feed concentrations of H_2S , which result in residual activities, as deactivation and regeneration rates equal each other. As can be seen, it is possible to calculate the residual activities, when the kinetic parameters of the involved reactions are incorporated, which were derived from separate experimental studies on each reaction. *Figure 20* shows a parity plot of all experimental vs. calculated data.

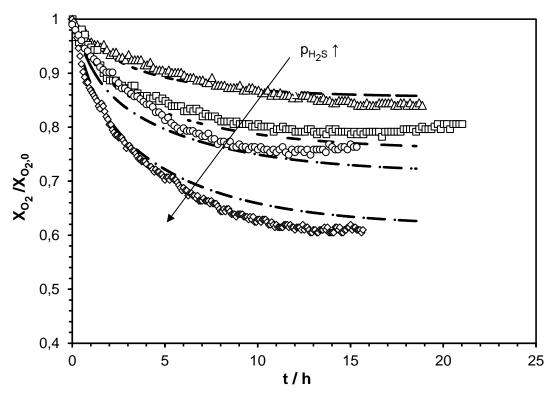


Figure 19: Comparison between experimental and calculated data for catalyst deactivation at different partial pressures of H_2S ($\dot{V} = 100$ l/h (STP), $p_{CH4,0} = 960$ mbar, GHSV: 45,000 h⁻¹, $p_{total} = 1.013$ bar, $y_{02,0} = 4100$ ppmv, T = 280 °C, balance: N_2): $y_{H2S,0} = 14$ ppmv: exp. (\Diamond),

calc. (____), $y_{H_{2S,0}} = 10 \text{ ppmv: exp. (o), calc. (____); } y_{H_{2S,0}} = 8 \text{ ppmv: exp. (_), calc. (____); } y_{H_{2S,0}} = 4 \text{ ppmv: exp. (} \Delta), calc. (....)$

Reaction	Parameter	k _{0,i}	E _A	m _i	n _i	k	n₀	eq.
PdSO₃ to PdO	Unit	h⁻¹ bar⁻n	kJ/mol	-	-	h⁻¹	-	-
	Value	2.6x10 ¹⁰	60.5	1.25	1	-	-	28
PdS to PdSO₃	Unit	h⁻¹	kJ/mol	-	-			-
	Value	1.6x10 ⁷	74	0	1.35			29
PdS formation	Unit	h⁻¹ bar ^m	kJ/mol	-	-	h⁻¹	-	-
	Value	1.1x10 ⁴	74	1	1.3	4.5	0.1	31,32

Table 4: Kinetic parameters of the reaction PdSO₃ to PdO, eq. (28)

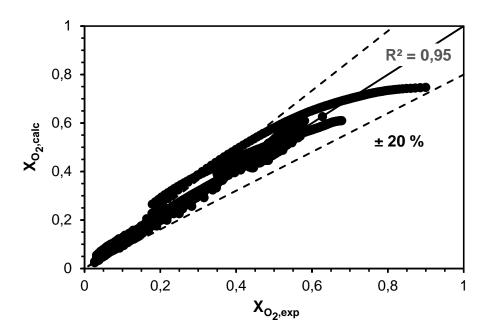


Figure 20: Parity Plot of experimental oxygen conversion vs. model prediction

5 Summary and Conclusion

As sulfur compounds are an important kind of gas contaminants, this work focuses on the effect of sulfur-containing gas components on the durability of a commercial PdO/Al₂O₃ catalyst for removal of oxygen by oxidation of CH₄ at low O₂:CH₄ ratios, an operating temperature range of 200 °C < T < 300 °C and low H₂S contents.

As SO₂ and H₂S show a different behavior in the examined range of operating conditions, the influences of both were determined separately in course of preliminary examinations on catalyst deactivation and consecutive in-situ regeneration. Due to the low operating temperatures and low oxygen contents applied in this work, it was possible to identify an

intermediate species, presumably $PdSO_3$, with an increased activity for the oxidation of methane. This stands in contrast to the literature, where SO_2 typically causes catalyst deactivation. As a conclusion it can be drawn, that oxygen content in the gas phase may have an influence on oxidation stage of the $PdSO_X$ component spectrum on the catalyst surface. Based on the experimental results, a reaction scheme was derived and kinetic measurements for each of the participating reactions were carried out separately.

Furthermore, the derived deactivation model was validated by experimental data with low contents of H_2S , showing that the residual activities, observed by some authors, are a result of rate-equality of deactivation and in-situ regeneration process on the catalytic surface.

In further investigations more detailed information on catalyst surface species can be obtained by using extended X-ray absorption spectroscopy (EXAFS) at an adequate synchrotron beamline. EXAFS enables the determination of the atomic environment as well of the Pd-atoms as of the sulfur atoms.

The results of this work are useful in particular when low contents of H_2S or SO_2 (< 1-2 ppmv) are applied to the catalyst, e.g. in terms of oxygen removal with in-situ fine purification of the gas. Further on, first long-term deactivation measurements with high amounts of H_2S (which were not part of this work) reveal, that a steady decline of conversion takes place after a certain TOS (depending on total H_2S amount applied to the catalyst). Whether the pores of the catalyst are physically blocked by surface sulfur, swelling of the support by storage of sulfate or other mechanisms take place has to be examined further, but passing through this type of deactivation is again fully reversible for the first few cycles. However, in order to deal with high H_2S amounts, it needs to be further examined how the long-term stability evolves, how many deactivation and regeneration cycles are possible until the catalyst support is completely saturated and irreversible deactivation takes place, respectively.

Acknowledgements

The authors are thankful for the funding from DVGW (German Technical and Scientific Association for Gas and Water).

6 References

- [1] T. Muschalle, Influence of oxygen impurities on underground gas storage and surface equipment: Literature study = Einfluss von Sauerstoff als Spurengas auf Untertagegasspeicher und obertägige Anlagen, DGMK, Hamburg, 2013.
- [2] DVGW e.V., G260 Gasbeschaffenheit, 2013.
- [3] DVGW e.V., G 262 Nutzung von Gasen aus regenerativen Quellen in der öffentlichen Gasversorgung, 2011.
- [4] EASEE-Gas, CBP 2005-001/02 Harmonisation of Natural Gas Quality, 2005.
- [5] B.H. Engler, Katalysatoren für den Umweltschutz, Chemie Ingenieur Technik 63 (1991) 298–312.
- [6] J.N. Armor, Energy efficiency and the environment: Opportunities for catalysis, Applied Catalysis A: General 194–195 (2000) 3–11.
- [7] T.R. Baldwin, R. Burch^{*}, Catalytic combustion of methane over supported palladium catalysts: I. Alumina supported catalysts, Applied Catalysis 66 (1990) 337–358.
- [8] P. Hurtado, S. Ordóñez, A. Vega, F.V. Díez, Catalytic combustion of methane over commercial catalysts in presence of ammonia and hydrogen sulphide, Chemosphere 55 (2004) 681–689.
- [9] T.F. Garetto, C.R. Apesteguía, Oxidative catalytic removal of hydrocarbons over Pt/Al2O3 catalysts, Catalysis Today 62 (2000) 189–199.
- [10] J.M Jones, V.A Dupont, R Brydson, D.J Fullerton, N.S Nasri, A.B Ross, A.V.K Westwood, Sulphur poisoning and regeneration of precious metal catalysed methane combustion, Catalysis Today 81 (2003) 589–601.
- [11] W. Köppel, F. Ortloff, R. Erler, G. Frank, Vermeidung und Entfernung von Sauerstoff bei der Einspeisung von Biogas in das Erdgasnetz, Abschlussbericht DVGW-Forschungsvorhaben G-1-05-10, 2010.
- [12] F. Ortloff, F. Graf, T. Kolb, Ensuring operational safety of the natural gas grid by removal of oxygen from biogas via catalytic oxidation of methane, gas for energy (2013) 58–65.
- [13] S.J. Gentry, A. Jones, Poisoning and inhibition of catalytic oxidations: I. The effect of silicone vapour on the gas-phase oxidations of methane, propene, carbon monoxide and hydrogen over platinum and palladium catalysts, Journal of Chemical Technology and Biotechnology 28 (1978) 727-732.
- [14] R. Auer, M. Alifanti, B. Delmon, Fernand C Thyrion, Fernand C, Catalytic combustion of methane in the presence of organic and inorganic compounds over La0.9Ce0.1CoO3 catalyst, Applied Catalysis B: Environmental 39 (2002) 311–318.
- [15] C. Cullis, B. Willatt, The inhibition of hydrocarbon oxidation over supported precious metal catalysts, Journal of Catalysis 86 (1984) 187–200.
- [16] S. Rasi, J. Läntelä, J. Rintala, Trace compounds affecting biogas energy utilisation A review, Energy Conversion and Management 52 (2011) 3369–3375.
- [17] L.J. Hoyos, H. Praliaud, M. Primet, Catalytic combustion of methane over palladium supported on alumina and silica in presence of hydrogen sulfide, Applied Catalysis A: General 98 (1993) 125–138.
- [18] T.-C. Yu, H. Shaw, The effect of sulfur poisoning on methane oxidation over palladium supported on γ-alumina catalysts, Applied Catalysis B: Environmental 18 (1998) 105– 114.
- [19] D.L. Mowery, R.L. McCormick, Deactivation of alumina supported and unsupported PdO methane oxidation catalyst: the effect of water on sulfate poisoning, Applied Catalysis B: Environmental 34 (2001) 287–297.

- [20] P. Hurtado, Salvador Ordez, Herminio Sastre, Fernando V., Combustion of methane over palladium catalyst in the presence of inorganic compounds: inhibition and deactivation phenomena, Applied Catalysis B: Environmental 47 (2004) 85–93.
- [21] Patrick Gélin, Michel Primet, Complete oxidation of methane at low temperature over noble metal based catalysts: a review, Applied Catalysis B: Environmental 39 (2002) 1– 37.
- [22] I. Rosso, Edoardo Garrone, Francesco Geobaldo, Barbara Onida, Guido Saracco, Vito Specchia, Sulphur poisoning of LaMn1-xMgxO3 catalysts for natural gas combustion, Applied Catalysis B: Environmental 30 (2001) 61–73.
- [23] J.J. Spivey, Complete catalytic oxidation of volatile organics, Industrial & Engineering Chemistry Research 26 (1987) 2165–2180.
- [24] W.M. Haynes, D.R. Lide, T.J. Bruno (Eds.), CRC handbook of chemistry and physics, 94th ed., CRC Press, Boca Raton, Fla. [u.a.], 2013.
- [25] J. Lampert, M. Shahjahan Kazi, Robert J. Farrauto, Palladium catalyst performance for methane emissions abatement from lean burn natural gas vehicles, Applied Catalysis B: Environmental 14 (1997) 211–223.
- [26] S. Ordóñez, Paloma Hurtado, Herminio Sastre, Fernando V. Dı&x0301, ez, Methane catalytic combustion over Pd/Al2O3 in presence of sulphur dioxide: development of a deactivation model, Applied Catalysis A: General 259 (2004) 41–48.
- [27] L.S. Escandón, S. Ordóñez, A. Vega, F.V. Díez, Sulphur poisoning of palladium catalysts used for methane combustion: Effect of the support, Journal of Hazardous Materials 153 (2008) 742–750.
- [28] S. Ordóñez, P. Hurtado, F. Díez, Methane catalytic combustion over Pd/Al2O3 in presence of sulphur dioxide: development of a regeneration procedure, Catalysis Letters 100 (2005) 27–34.
- [29] G.R. Lachance, F. Claisse, Quantitative X-ray fluorescence analysis: Theory and application, Wiley, Chichester, New York, 1995.
- [30] J.C. Lindon, G.E. Tranter, J.L. Holmes, Encyclopedia of spectroscopy and spectrometry, Vol. 3, Academic Press, San Diego, 2000.
- [31] M. Torres Deluigi, J.A. Riveros, Chemical effects on the satellite lines of sulfur Kβ X-ray emission spectra, Chemical Physics 325 (2006) 472–476.
- [32] M. Kavčič, J.-C. Dousse, J. Szlachetko, W. Cao, Chemical effects in the Kβ X-ray emission spectra of sulfur, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 260 (2007) 642–646.
- [33] R.A. Mori, E. Paris, G. Giuli, S.G. Eeckhout, M. Kavcic, M. Zitnik, K. Bucar, Pettersson, L G M, P. Glatzel, Sulfur-metal orbital hybridization in sulfur-bearing compounds studied by X-ray emission spectroscopy, Inorganic chemistry 49 (2010) 6468–6473.
- [34] M. Mogi, A. Ota, S. Ebihara, M. Tachibana, M. Uda, Intensity analysis of S Kß emission spectra of Na2SO3 by the use of DV-Xα MO method, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 75 (1993) 20–23.
- [35] M. Kavčič, A.G. Karydas, C. Zarkadas, Chemical state analysis employing sub-natural linewidth resolution PIXE measurements of Kα diagram lines, X-Ray Spectrom. 34 (2005) 310–314.
- [36] A. Savitzky, Golay, M. J. E., Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem. 36 (1964) 1627–1639.
- [37] F.W. Knebel, Erdgasvorwärmung durch direkte katalytische Oxidation: Inline-Gasvorwärmung. Dissertation, Karlsruhe, 2000.

- [38] U. Feuerriegel, Zur Desaktivierung eines Palladium-Trägerkatalysators durch Schwefelwasserstoff bei der katalytischen Methanoxidation. Dissertation, Kassel, 1993.
- [39] O. Levenspiel, Experimental search for a simple rate equation to describe deactivating porous catalyst particles, Journal of Catalysis 25 (1972) 265–272.
- [40] G.F. Froment, Modeling of catalyst deactivation, Catalyst Deactivation 212 (2001) 117– 128.
- [41] F. Ortloff, J. Bohnau, F. Graf T. Kolb, Removal of Oxygen from (Bio-)Methane via Catalytic Oxidation of CH4 – Reaction Kinetics for very low O2:CH4 Ratios, article submitted