
Attack Surface Reduction for Web Services based on Authorization Patterns

Roland Steinegger, Johannes Schäfer, Max Vogler, and Sebastian Abeck
Research Group Cooperation & Management (C&M)

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

{ abeck, steinegger }@kit.edu, { johannes.schaefer, max.vogler }@student.kit.edu

Abstract—During the design of a security architecture for a

web application, the usage of security patterns can assist with

fulfilling quality attributes, such as increasing reusability or

safety. The attack surface is a common indicator for the safety

of a web application, thus, reducing it is a problem during

design. Today’s methods for attack surface reduction are not

connected to security patterns and have an unknown impact on

quality attributes, e.g., come with an undesirable trade-off in

functionality. This paper introduces a systematic and

deterministic method to reduce the attack surface of web

services by deriving service interface methods from

authorization patterns. We applied the method to the

Participation Service that is part of the KIT Smart Campus

system. The resulting RESTful web services of the application

are presented and validated.

Keywords-security pattern, attack surface, authorization, web

service, rest

I. INTRODUCTION

Every web application has assets needing protection from
threats, e.g., web services. Thus, securing web applications is
a major issue. Security must be considered during the whole
software development life cycle to build secure software [1].
In such a security-based software development life cycle,
security patterns are used during the design phase to solve
common security problems and build a security architecture
[2].

Security patterns in the security architecture can have an
impact on non-security quality attributes of the whole
software system, such as loose coupling or discoverability
[2]. When using security patterns, it is helpful to know this
influence on the quality of the application [3]. Additional,
security should be applied as early as possible to increase
overall security [3]. Developers are generally not security
experts and a systematical approach can help them reaching
quality requirements [4]. Regarding a concrete quality
attribute, the attack surface, several metrics have been
introduced to measure the attack surface of whole software
systems [5], object oriented designs [3][6] and web
applications [7].

In addition to metrics, there are methods to reduce the
attack surface, e.g., by using the Top 10 most critical
applications security flaws of the Open Web Application
Security Project (OWASP) [8], by removing or disabling less
important or unnecessary functionality [9][10] or by
reducing the permissions of the application [11]. These
methods do not offer the possibility to systematically reduce
the attack surface and they do not describe their influence on

other quality attributes. Additionally, there is no connection
to security patterns that are commonly used in a security-
based development process.

Thus, we propose a method based on security patterns for
authorization to reduce the attack surface of web services.
The method has direct impact on the service interface. It
mainly focuses on web services having a manageable
amount of authorization rules that do not change
periodically. It reduces the attack surface, by reducing the
privileges for methods on the interface to the minimum
needed, according to authorization. Furthermore, the client
can choose under which privilege a service interface method
should be called. Both increase the security by following the
principle of least privilege and secure interaction design [12].
Our approach additionally leads to service interfaces, which
are compliant with the Representational State Transfer
(REST) paradigm [13].

The method is applied on the Participation Service of the
KIT Smart Campus system. The service uses an Attribute-
Based Access Control (ABAC) for authorization due to
complex security requirements. The resulting web services
of the Participation Service are introduced. The web services
are analyzed using the attack surface metric of [7].

The article is structured as follows: Firstly, the needed
background and related work are introduced in Section II.
The approach is presented in Section III for two commonly
used authorization patterns. The next Section IV shows the
evaluation of the approach by applying it on the Participation
Service. After the evaluation Section V discusses limitations
of the approach. The paper gives conclusions and an outlook
on future work in the last Section VI.

II. BACKGROUND AND RELATED WORK

In this section, the needed background for our approach
is presented. This includes the software system used for
evaluating the approach, the Participation Service, security
patterns used for our approach, and related work on the
attack surface, as well as on REST and its constraints.

A. Participation Service of the KIT Smart Campus

The KIT Smart Campus (KIT-SC) system is a web
application developed at the Karlsruhe Institute of
Technology (KIT). A detailed description of the KIT-SC and
its features is given in [14]. The KIT-SC pursues the goal to
support students and employees at learning, teaching and
other activities related to the KIT campus.

The Participation Service represents a part of the KIT-
SC. It provides a forum with voting and discussion features.

Subject Role Resource

Right

isAuthorizedForhas

Figure 2. Scheme of the Roled-Based Access Control based on [17]

Subject Resource Env ironment

Attribute Attribute Attribute

Right

«use»

isAuthorizedFor

«use»

«use»

Figure 1. Scheme of the Attribute-Based Access Control based on

[17]

Following the principles of systemic consensus, this enables
groups of users to make decisions on campus-related issues
by using the modern, responsive web application.

B. Security patterns for authorization

With our approach, service interfaces are derived from
authorization patterns. The steps are shown for two common
security patterns: Role-Based Access Control (RBAC) and
ABAC.

RBAC takes advantage of the fact, that organizations are
often structured in roles, e.g., students, employees and
administration [2]. These roles have certain rights and duties.
The rights of these roles can be used to model the access
rights in the system. Thus, subjects get all rights through
their roles. In this way, the process of assigning access rights
is simplified by the usage of global roles instead of
individual rights [2].

The structure of RBAC shows Figure 1. Subjects have
certain roles and these roles are directly connected with
resources. The concrete right is associated to the connection
between role and resource. As soon as roles are not
applicable or a more flexible access control is required,
RBAC has strong limitations [15].

ABAC is a more flexible approach because of the usage
of attributes as information source for access control [15]. In
addition to static roles, which can still be realized with
ABAC, access control can be defined for dynamic attribute
combinations of subjects, resources and environments [15].
This structure shows Figure 2. Subjects are directly
connected to resources. The right is associated to this
connection and uses the attributes.

Yuan et al.'s formal definition [15] is: S, R and E are
subjects, resources and environments with pre-defined
attribute sets SAn, RAn and EAn. A policy rule that decides
on whether a subject s can access a resource r in an
environment e is a Boolean function of s, r and e's attributes:

canAccess(s, r, e) ← f(ATTR(s), ATTR(r), ATTR(e))

where ATTR() is a function that assigns every currently
valid attribute to a subject, resource or environment.

Authorization using ABAC is, thus, more fine-grained
than RBAC. But as negative aspect, it is more complex to
implement.

C. Attack Surface

With our approach, we connect security patterns with
software product quality according to ISO/IEC 25010 [16].
These are on the one hand the quality attribute attack surface
and on the other hand quality attributes connected to the
REST paradigm. In this section, we introduce the attack

surface.
Developers wish to anticipate the vulnerability of their

software system prior to deployment. The popular concept of
loose coupling and the distribution of systems or web
applications lead to an increasing number of interfaces [18].
These are natural security boundaries that augment the attack
surface, an indicator for measuring a system’s vulnerability
towards external attacks [7][9].

The attack surface does not give information on code
quality or high-value architectural design. And neither does a
large attack surface imply that a system has much
vulnerability, nor does a small attack surface mean little
vulnerability. But a large attack surface indicates that an
attacker presumably needs less effort for exploiting
vulnerabilities [5]. The reduction of the attack surface,
therefore, reduces the overall security risk – a product of the
probability, the consequences of occurrence of a hazardous
event and the asset value: Risk = Threat × Vulnerability ×
Asset Value [19]. Think of two web applications with similar
functionality and value – the one with a higher attack surface
is more likely to be chosen to attack amongst these
opportunities.

We use the attack surface metric for web applications [7]
to evaluate our approach. The metric is based on parameters
grouped into parameter families. These parameter families
are Degree of Distribution, Dynamic Creation, Security
Features, Input Vectors, Active Content, Cookies and Access
Control. Parameters are, e.g., Role and Privileges for the
parameter family Access Control. For each of the parameters
a value is assigned, depending on the application. The higher
the value, the greater is the attack surface and the higher is
the risk for attacks, e.g., accessing the application as
unauthenticated user has value 0, whereas accessing as
authenticated or root user have value 5 and 10. The metric is
calculated by calculating the Euclidian norm for each value
of a parameter family. The value of the parameter family is
the Euclidian norm calculated for each value of parameter in
the family. The maximum attack surface is 60.79.

In the next sections, we discuss methods for reducing the
attack surface regarding our goals and service interface
design. The author of [9] suggests several methods for
reducing the attack surface of an operating system. His 80/20
rule (according to the Pareto principle) to reduce the amount
of running code contradicts our goal to not reduce
functionality. Further, he offers no systematical way to find

code to remove. The methods for applying least privileges
and reducing access for untrusted users mainly focus on the
system running the application. According to this method,
we suggest that for service interfaces least privileges also
means reducing the amount of accessible operations.
Authorization defines who shall access operations and is,
therefore, our starting point for securing access by reducing
the attack surface.

Reference [10] introduces an approach for removing or
disabling unused code in operating systems. This
corresponds to finding the 20 percent in the 80/20 rule of [9]
and therefore, it aims to reduce functionality. Their general
approach consists of two phases, the analysis and
enforcement phase. In the analysis phase, unused code is
found. The enforcement phase aims to avoid execution of
unused code. They identify unused code by running the
application and executing all available methods. Thus, this
approach needs a running application and is firstly applicable
in the implementation phase. We think that seldom-used or
unused code could be avoided by considering security
earlier.

Methods for reducing the attack surface of a web
application based on the Top 10 vulnerabilities published by
the OWASP are introduced by [8]. The authors use security
measures mitigating these vulnerabilities. The Top 10 entries
are related to security vulnerabilities in web applications and
therefore, they do not have to be connected to the attack
surface. Thus, not all of the applied measures, such as input
validation and secret tokens, affect the attack surface
directly. A systematical way to reduce the attack surface
needs to ensure this reduction.

The discussed approaches aim to reduce the attack
surface of in several ways. They do not offer a systematical
way with concrete transformations to reduce the attack
surface. Often the functionality of the application is reduced
to ensure a smaller attack surface. Using security patterns is
not part of any of these approaches. We tackle these
limitations with our approach.

D. Web Services based on REST

According to the W3C, the term web service refers to a
software system designed to support interoperable machine-
to-machine interaction over a network [21][20]. It is
frequently regarded more as a system’s function of providing
web access to its inner purpose rather than the whole system
itself. Furthermore, a web application consists of web
services, e.g., the web browser uses web services.

The W3C distinguishes two types of web services: Those
using REST-compliant interfaces and those providing
arbitrary access [20]. While the latter have been primarily
used in the past – presumably because of the ease of
implementation – RESTful interfaces become increasingly
popular, mainly for their lightweight and universal
deployment [21].

REST is an architectural style for the communication of
web services proposed by Fielding [13]. It relies on existing

standards, such as the Hypertext Transfer Protocol (HTTP),
and defines six constraints for RESTful interfaces rather than
concrete implementation specifications: The Client-Server
principle, the concept statelessness, the usage of a cache, the
uniformity of the interface, the layered system and the
optional Code-On-Demand feature [13].

The uniform interface is the centerpiece of the REST
architectural style: The interface describes every aspect
trough resources. Every resource is identified by a unique
address, which is in most cases a URI. Those resources are
retrieved or manipulated via representations. A set of valid
operations on these representations is available. Requests and
responses are self-descriptive and semantic and hypermedia
is used to describe them [13]. Hereby, a high degree of
universality is achieved. However, it comes with a
compromise in efficiency since the standardized information
transfer leads to an overhead [21].

Since our approach alters the operations allowed on the
resources, the compliance of the new interface to the
uniformity concept is focus of validation.

III. DERIVING SERVICE INTERFACE METHODS FROM

AUTHORIZATION PATTERNS

In this section, we introduce our method to reduce the
attack surface. We developed the approach based on the
following assumptions and formulated goals 1 to 6. First,
current methods for attack surface reduction have
inacceptable deficits, such as decreasing functionality (goal 1
and 4). Second, non-security experts can apply the method
and ensure security [4] (goal 2). Third, the method must be
applicable at an early stage [3] (goal 3) on the KIT Smart
Campus (goal 5, 6).

1. Security patterns shall be connected to software

product quality not related to security.
2. A systematic way shall ensure certain quality

attributes, including the attack surface.
3. The method shall be applicable in an early software

development phase.
4. The method shall not reduce application

functionality.
5. The method shall be applicable on web applications.
6. It shall apply for web services similar to the

RESTful web services of the Participation Service.

Before introducing the method, we align the term attack
surface according to ISO/IEC 25000 and 25010. The attack
surface is an inherent characteristic of software, because it
can be measured with several metrics introduced. Thus,
speaking in the language of ISO/IEC 25000 [22], it is a
software quality attribute. We suggest to assign it to the
quality characteristic freedom from risk and its sub
characteristic economic risk mitigation according to ISO/IEC
25010 [16]. Therefore, it belongs to the quality in use model.

Resource1Serv ice

+ createAsAttribute2AndAttribute3(): Response

+ readAsAttribute1(): Response

+ readAsAttribute2AndAttribute3(): Response

+ readAsNotAttribute2(): Response

+ updateAsAttribute2AndAttribute3(): Response

+ updateAsNotAttribute2(): Response

Figure 3. Entity Service for Resource #1 of Table 2

TABLE I. EXEMPLARY MATRIX FOR RBAC WITH ROLES

 Resource #1 Resource #2

C R U D C R U D

Role #1 ● ●

Role #2 ● ● ● ● ●

Role #3 ● ● ● ● ● ● ●

TABLE II. EXEMPLARY MATRIX FOR ABAC WITH EXPRESSIONS

canAccess(s, r, e)

Resource #1 Resource #2

C R U D C R U D

attribute1(r) ● ●

!attribute2(r) ● ● ● ● ●

attribute2(r) ∧ attribute3(r) ● ● ● ● ● ● ●

Concerning the method, the starting point is the
authorization of the application and corresponding security
patterns. These patterns describe who can access resources
in which way. Thus, authorization can be used to reduce the
attack surface to exactly the functionality that shall be
offered. Regarding the metric for web applications
introduced in [7], our approach reduces the parameter family
of access control. Other parameter families are not
influenced by the approach and, thus, a reduction is ensured.

Our approach consists of the following three steps:

1. Set up an access control matrix.
2. Derive services from the access control matrix.
3. Create REST-compliant web services based on the

derived services.

The access matrix of the first step contains resources and

operations as columns and policy rules as rows. For every
operation allowed by a policy rule, the corresponding table
cell is filled with a dot. See Table 1, Table 2 and Table 3 as
examples. In the second step, a web service is introduced for
each resource. Its service interface has an operation for every
table cell having at least one marked row. Figure 3 is an
example for this. In the last step, the resulting web services
are mapped to a REST-compliant web service. Each step is
introduced in the next sections. First, the main idea of
deriving technology independent web services and its service
interfaces is explained in depth. Second, the mapping from
the abstract web service to a REST-compliant web service.

A. Deriving Abstract Service Interfaces from Role-Based

Access Control

A role-based scheme for the access control with n
different resources and m roles can be depicted as a two-
dimensional matrix (see example on Table 1). With the
REST paradigm’s resource-oriented interface style kept in
mind, we assume that four operations are possible per
resource: Creating, retrieving, updating and deleting
(CRUD). A bullet indicates that the specified role is allowed
to use the specified operation on the specified resource.

While in an ordinary RESTful implementation the
interface would have provided access for all roles on all
operations and all resources, our approach aims to reduce the
overall number of accessible operations to a minimum. In the

context of Table 1, this would lead to a reduction of the
attack surface by the number of unfilled table cells.

This is achieved by the creation of additional methods:
Usually, one method is implemented for each operation on a
resource. But by using our approach, methods are not only
generated per operation but per operation and role
(GetAsRole1, GetAsRole2, GetAsRole3, PostAsRole1, etc.).
The difference is that each method can only validly be used
by exactly one role and not by all roles possible. So far, the
attack surface stays the same. The reduction is then reached
by not implementing those methods that do not have a bullet
in the access control matrix of, e.g., Table 1.

B. Deriving Abstract Service Interfaces from Attribute-

Based Access Control

Applying the approach to ABAC extends the principles
of the application to RBAC.

In the first step, all applicable operations for each
resource of R are listed as columns in the access control
matrix. Every policy rule of the canAccess() functions is
listed as row. Every cell for which a canAccess() function is
true is marked. A possible result shows Table 2.

Deriving the interface from Table 2 works similarly to
the role-based approach: A service interface is created for
each resource. In every service, operations are created for all
allowed operation. Example operations from Table 2 are
readIfIsAttribute1, updateIfIsNotAttribute2 and
deleteIfIsAttribute2AndAttribute3 (see Figure 3). To prevent
long and complicated method names, it is best practice to
derive canAccess() rules from single attributes only
whenever possible.

C. Application on Authorization Patterns

Sections III.A and III.B show how service interface
methods can be derived for ABAC and RBAC. This section
shows that the method is applicable for any kind of
authorization.

In the sections on RBAC and ABAC, there are two
limitations. First, the service interface methods are derived
from access control matrixes for RBAC and ABAC. Second,
because of the scenario and REST compliance, we used
entity services [23] using only basic CRUD-operations. Both
limitations are not necessary and can be generalized.

Concerning the first limitation, the abstract security
pattern Authorization defines who may access protected
resources in which way [2]. The access control matrix
contains the description of the entity (who) on the first
column of a row, the resource to access (what) on top of the

UserServ ice

+ createIfIsGuest(): String

+ readIfIsAdmin(): String

+ readIfIsAuthenticated(): String

+ updateIfIsAdmin(): String

+ updateIfUserIsResource(): String

GroupServ ice

+ createIfIsLAuthenticated(): String

+ readIfIsAdmin(): String

+ readIfIsAuthenticated(): String

+ updateIfIsAdmin(): String

+ updateIfUserIsOwner(): String

Figure 4. User and Group Service derived from access control matrix

shown in table 3

TABLE III. ACCESS CONTROL MATRIX OF USER AND GROUP

RESOURCES OF THE PARTICIPATION SERVICE

canAccess(s, r, e)

User Group

C R U D C R U D

Guest(s) ●

Authenticated(s)

●

● ●

User(s) = r

●

User(s) = Owner(r) ●

Admin (s)

● ●

● ●

column and how the resource shall be accessible below the
resource. Therefore, an access control matrix, as used it
before, can be created for every kind of authorization.

Deriving the abstract service interfaces from these access
control matrixes can be achieved as previously shown.
Create a service interface for each service with operations
combined to the permission. The name of the operations can
be of any kind, thus not only CRUD-operations are
applicable.

D. Maintaining REST Compliance

In order to comply with the previously presented REST
constraints, we propose to not realize the derived service
interface methods with extended HTTP-operations. Quite the
contrary: REST relies on a defined and pre-known set of
operations – namely GET, POST, PUT, DELETE, etc. when
using HTTP. Introducing new operations restricts the API
usage to insiders, thus, adversely affects the interface’s
uniformity and universality. It is also hardly possible in
practice when using HTTP, since custom methods are not
supported by browsers or most clients [21].

It is furthermore not advisable to realize the derived
methods by using custom HTTP headers. To send a “X-Role:
Administrator” header with every request seems practical on
the first sight. But whitelist-based firewalls and proxy
servers will skip those custom headers [24] limiting the API
usage to clients that don’t rely on a firewall. This kind of
limitation is not acceptable.

However, a third way exists: We propose adding the
service operation name to the request URI. Illustrating HTTP
requests using the examples from above could then look like
this:

POST /resource1/?authorization=createAsRole3
DELETE /resource2/?authorization=deleteAsRole3
…
GET /resource1/?authorization=readIfIsAttribute1
PUT /resource1/?authorization=updateIfNotAttribute2
…

This is legal in the HTTP standard and does not violate

the interface uniformity constraint of REST compliance. The
server extracts the information from the parameter – a task
possible with every framework and scripting language.
Diligence is required in the implementation: The parameter
must not have a fallback for an invalid or missing value. If
that is the case, an error has to be thrown. Otherwise, the
attack surface is not reduced for the simple reason that it

does not differ from the traditional implementation.
An appropriate error communication for that case and for

the case of using a not allowed permission on the specific
resource, is responding with HTTP’s status 405 Method Not
Allowed. At first sight it seems uncommon to respond with a
method-related error code to a missing or falsely specified
parameter. However, as the parameter is merely an extension
of the method according to the approach of this paper, it is
suitable here. The list of “allowed methods” (more precisely:
method and value for the authorization parameter) can be
supplied in the body of the HTTP response. As a result it is
possible to follow the Hypertext-As-The-Engine-Of-
Application-State (HATEOAS) paradigm.

IV. EVALUATION

In this section, we apply the method on the Participation
Service of the KIT-SC system, show the resulting web
services and give an evaluation. The Participation Service is
developed by seven students during a practical course at the
KIT. The group was divided into two teams, one focusing on
the HTML 5 frontend and the other focusing on the Java
backend.

At the beginning the requirements for the service were
collected. All required subjects S, resources R, environments
E and their attributes SAn, RAn and EAn were identified and
the access control matrix was built. Possible subjects are
anonymous users and authenticated users. This publication
demonstrates the method on the User and Group resources
only, leaving out all other resources of the Participation
Service for the sake of shortness.

According to the requirements, both, users and groups,
can be created, edited and displayed. Deletion is solved by
setting a status flag to deactivated, thus, by updating the
resource. The access control matrix in Table 3 shows the
authorization rules based on ABAC. Users can be created by
guests. An authenticated user can read user account data,
create groups and read them. The owner of an user or group
account can update its information. User with the admin flag
are allowed to read and update users and groups.

Figure 4 shows the derived abstract service interfaces
from the access control matrix of Table 3. For each resource
a service is modeled with the operations according to the
access control matrix. This implies, that the services do not
have operations for deleting the resources, because no
authorization rule exists for this operation. Typically the
delete operation would still be implemented, but inaccessible
due to the enforced authorization. According to [9], this
mapping is a reduction of the attack surface.

The abstract service interfaces are then mapped to the
REST services with URLs as follows:

For the User Service:
POST /user/?authorization=createIfIsGuest
GET /user/?authorization=readIfIsAdmin
GET /user/?authorization=readIfIsAuthenticated
PUT /user/?authorization=updateIfIsAdmin
PUT /user/?authorization=updateIfUserIsResource

For the Group Service:
POST /group/?authorization=createIfIsAuthenticated
GET /group/?authorization=readIfIsAdmin
GET /group/?authorization=readIfIsAuthenticated
PUT /group/?authorization=readIfIsAdmin
PUT /group/?authorization=readIfUserIsOwner

The Spring Security project was chosen to enforce the

authentication and authorization of the KIT-SC.
Authorization is implemented by adding the annotation
PreAuthorize to each entry point of the corresponding URL.
These annotations contain the access policies as Spring EL
expressions, which are evaluated by Spring Security to
enforce access control. Spring EL offers the possibility to
state expressions on the attributes of resource and subject.
Thus, the patterns delivered in the request, formerly
introduced by our method, can be used to formulate the
Spring EL statement.

Using the approach of this paper in combination with
Spring Security proved to be a good choice for many
reasons:

The attack surface metric of [7] has been improved. The
access control parameter rights of the parameter family
access control has been reduced from 10 to 0 or 5,
depending on the privileges of the operation.

Moreover, enforcing the authorization is easier, because
testing functionality and access decision can be combined.
For example look at the third row of Table 3. The user shall
only be able to update its account. This constraint can be
implemented and tested quite easily. Further, for
enforcement of this policy, just the ownership has to be
validated. This is quite easy, because the user data is
delivered in the request. Without this limitation, the
information must be collected separately. Thus, with a
generic update operation, for each user touched by an
operation call, every policy has to be enforced and
corresponding data has to be fetched.

Additionally, frontend developers benefited from
associating the authorization to HTML forms, buttons and
links. By choosing which operation to call, they get
sensitized to security. Following the principles of secure
interaction design [12], they added confirmation messages,
warnings, colors and icons to the user interface according to
the security level of the different operations used.

V. LIMITATIONS

Regarding goal 6, the method is based on at least three
assumptions. First, the authorization may be exposed to the
users of the web service and, thus, also to attackers. This

may be a threat for the web service or even a problem
regarding federation. We assume, that the system is secure,
even if the attackers have this information, according to
Kerckhoffs's principle for crypto-systems [27]. Thus, this
information may be exposed without making the web service
insecure. Despite this, exposing the information can be
impossible. In this case, the web service operation name has
to be obfuscated or the introduced method cannot be applied.

Second assumption is, that the count of authorization
rules for a single web service does not exceed. The policies
defined by ABAC can be fine-grained using complex
expressions. All these fine-grained policies lead through our
approach to at least one service interface operation. In large
systems this may be a great overhead. Many operations with
potentially long names could be introduced. For example
operations with similar functionality need an agnostic
internal method to avoid redundancy and more methods and
tests have to be implemented by the developers.

Third assumption raised by goal 6 is, that the
authorization rules do not change periodically or often. A
change in the authorization rules may lead to changes in the
web service operations and can cause changes in systems
using the web service, when using the method. This depends
on the change and on the mapping of the abstract interface to
the language depend web service interface. In our REST
mapping, the URL does not change, but a new parameter
may be introduced. In this case, changing authorization rules
do not lead to changes in systems using the web service.
Even so, the web service has to be enhanced including
overhead.

Additionally, the approach introduced is systematical, but
we have not used a language to describe access control
policies. This is because we could not find a suitable
language. Possible candidates are the Unified Modeling
Language with SecureUML [4] and UMLsec [25] or the
Ponder Policy Specification Language (PPSL) [26]. But
UMLsec and SecureUML need to be enhanced, to support
every kind of authorization. PPSL is not based on the UML
and has no visual representation, but we think both are
important prerequisites so that the approach is used.

Another limitation concerning REST is the restricted
functionality of HTTP’s OPTIONS method. An OPTIONS
call to a resource is responded with a list of allowed methods
on that resources and using one of them should not result in a
405 Method Not Allowed error code. However, after
applying this paper’s approach, the method name is not
sufficient to formulate valid requests – information about
valid authorization parameter values are required (see
Section III). The response is expressed in a list of comma-
separated HTTP methods and there seems to be no
possibility to additionally provide parameter values.

VI. CONCLUSION AND FUTURE WORK

We introduced a new way of designing interface methods
by using security patterns. For this method, we showed that
the attack surface on the interface is minimized according to
the least privilege needed. Additionally, we showed how to
combine the method with the REST paradigm and therefore,
create REST-compliant web services.

The application of the method was shown within the
Participation Service of the KIT-SC. In this application, at
least the disadvantage of creating many interface methods by
applying our approach arose. However, the attack surface
has been reduced. By giving a mapping from the technology
independent web service to a RESTful web service, the
approach facilitates a REST-compliant Participation Service.

The approach gives software architects the possibility to
improve the safety of web services using authorization
patterns. They can follow instructions to improve quality
attributes of the application in a systematic way without
having a security background or knowledge.

Software developers using the derived service interface
are aware of the privileges when using interface methods.
This increases the security according to secure interaction
design. Furthermore, the implementation of the service
interface can be easier tested, because the authorization
offers constraints for the operation to be implemented.

The disadvantage of creating many service interface
methods may be the focus of future work. For instance, this
phenomenon could be avoided by combining similar rights
for the same object to one service interface method. Another
starting point for future work is to research the advantages of
the static in contrast to the dynamic access decisions. This
can lead to an improved performance, improved security
through easier testing and easier externalization of access
decisions.

Our main goal is to combine the usage of security
patterns with quality attributes. This can lead to more precise
predictions on the quality of software. Therefore, non-
functional requirements of stakeholders can be considered
during the design of an application. By offering systematical
methods, the quality can be ensured among the phases of the
software development.

REFERENCES

[1] G. McGraw, “Software Security,” IEEE Security & Privacy,
pp. 80-83, Mar.-Apr. 2004,
doi:10.1109/MSECP.2004.1281254.

[2] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F.
Buschmann, and P. Sommerlad, “Security Patterns:
Integrating Security and Systems Engineering,” John Wiley &
Sons, Dec. 2005, ISBN: 978-0-470-85884-4.

[3] B. Alshammari, C. Fidge, and D. Corney, “Security Metrics
for Object-Oriented Designs,” IEEE 21. Australian Software
Engineering Conference (ASWEC), Apr. 2010, pp. 55-64,
doi:10.1109/ASWEC.2010.34.

[4] D. Basin, J. Doser, and T. Lodderstedt, “Model Driven
Security: from UML Models to Access Control
Infrastructures,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 15, Jan. 2006, pp. 39-91,
doi:10.1145/1125808.1125810.

[5] P. Manadhata, K. Tan, R. Maxion, and J. Wing, “An
Approach to Measuring A System’s Attack Surface,”
Carnegie Mellon University, Aug. 2007 [online]. Available
from: http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&
doc=GetTRDoc.pdf&AD=ADA476805
[retrieved: 23.09.2014]

[6] B. Alshammari, C. Fidge, and D. Corney, “Security Metrics
for Object-Oriented Class Designs,” IEEE 9th International
Conference on Quality Software, Aug. 2009, pp. 11-20,
doi:10.1109/QSIC.2009.11.

[7] T. Heumann, J. Keller, and S. Türpe, “Quantifying the Attack
Surface of a Web Application,” In Proceedings of Sicherheit
2010, vol. 170, 2010, pp. 305-316, ISBN: 978-3-88579-264-2.

[8] G. Sumit, R. K. Nabanita, Mukesh, S. Saurabh, and M.
Pallavi, “Reducing Attack Surface of a Web Application by
Open Web Application Security Project Compliance,”
Defence Science Journal, vol. 62(5), Sep. 2012, pp. 324-330,
doi: 10.14429/dsj.62.1291.

[9] M. Howard, “Attack Surface – Mitigate Security Risks by
Minimizing the Code You Expose to Untrusted Users,”
MSDN Magazine, November 2004. [Online]. Available from:
http://msdn.microsoft.com/en-us/magazine/cc163882.aspx
[retrieved: 23.09.2014]

[10] A. Kurmus, A. Sorniotti, and R. Kapitza, “Attack Surface
Reduction For Commodity OS Kernels: trimmed garden
plants may attract less bugs,” in Proceedings of the Fourth
European Workshop on System Security (EUROSEC '11),
Apr. 2011, pp. 1-6, doi:10.1145/1972551.1972557.

[11] A. Bartel, J. Klein, and M. Monperrus: “Automatically
Securing Permission-Based Software by Reducing the Attack
Surface: An Application to Android,” in Proceedings of the
27th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2012), Sep. 2012, pp. 274-277,
doi: 10.1145/2351676.2351722.

[12] K. Yee, “Guidelines and Strategies for Secure Interaction
Design,” Security and Usability: Designing Secure Systems
That People Can Use, pp. 247.273, Aug. 2005, ISBN: 978-0-
596-00827-7.

[13] R. Fielding, “Architectural Styles and the Design of Network-
based Software Architectures,” Dissertation, University of
California, Irvine, 2000, ISBN: 0-599-87118-0.

[14] M. Gebhart, P. Giessler, and P. Burkhardt, “Quality-Oriented
Requirements Engineering for Agile Development of
RESTful Participation Service,“ in press.

[15] E. Yuan and J. Tong, “Attribute Based Access Control
(ABAC) for Web Services,” in Proceedings of the
International Conference on Web Services (ICWS), Jul. 2005,
pp. 561–569, doi:10.1109/ICWS.2005.25.

[16] ISO/IEC, “ISO/IEC 25010:2011(E) Systems and software
engineering – Systems and software Quality Requirements
and Evaluation (SQuaRE) – System and software quality
models,” 2011.

[17] R. Steinegger, “Authentication and authorization patterns in
existing security frameworks [Authentifizierungs- und
Autorisierungsmuster in bestehenden Sicherheits-
Frameworks],” diploma thesis, Karlsruhe Institute of
Technology, Karlsruhe, Germany, 2012. German.

[18] C. Pautasso and E. Wilde, “Why is the Web Loosely
Coupled? A Multi-Faceted Metric for Service Design,” in
Proceedings of the 18th international conference on World
wide web (WWW '09), Apr. 2009, pp. 911-920,
doi:10.1145/1526709.1526832.

[19] A. Caballero, “Computer and Information Security
Handbook,” Morgan Kaufmann Publications, 2009, ISBN:
978-0123743541.

[20] W3C, “Web Services Glossary,” Feb. 2004. [Online].
Available from: http://www.w3.org/TR/2004/NOTE-ws-
gloss-20040211/#webservice [retrieved: 23.09.2014]

[21] L. Richardson and S. Ruby, “RESTful Web Services”,
O'Reilly Media, May 2007, ISBN: 978-0596529260.

[22] ISO/IEC, “ISO/IEC 25000:2005(E) Software Engineering –
Software Product Quality Requirements and Evaluation
(SQuarE) – Guide to SQuaRE,” 2005.

[23] S. Cohen, “Ontology and Taxonomy of Services in a Service-
Oriented Architecture,” Microsoft Architect Journal, Apr.
2007.

[24] A. van Kesteren, “HTTP methods, Web browsers and
XMLHttpRequest,” Oct. 2007. [Online]. Available from:
http://annevankesteren.nl/2007/10/http-method-support
[retrieved: 23.09.2014]

[25] J. Jürjens, “UMLsec: Extending UML for Secure Systems
Development,” Lecture Notes in Computer Science, vol.
2460, pp. 412-425, Sep, 2002, doi:10.1007/3-540-45800-
X_32.

[26] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The
Ponder Policy Specification Language,” in Proceedings of the
International Workshop on Policies for Distributed Systems
and Networks (POLICY '01), Jan. 2001, pp. 19-37, ISBN: 3-
540-41610-2.

[27] Auguste Kerckhoffs, “La cryptographie militaire,” Journal des
sciences militaires, vol. IX, Jan. 1883, pp. 5–38.

