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Abstract

Spatial interaction is a central characteristic of all economic activity at different levels

of aggregation. This thesis investigates its role in a variety of contexts and pursues

several goals. First, it aims at providing new insights into the role of integration in the

agglomeration-growth nexus. Embedded in a discussion on size and scale, the concept

of integration as a spatial institution is developed. It is argued that integration is a

multidimensional concept that pins down the impact of institutions to a spatial dimension.

One dimension of integration is the strength of knowledge spillovers. A deeper under-

standing of these constitutes the second goal. In a recent influential contribution to the

cross-country growth literature, the importance of technological interdependence working

via spatial externalities between countries has been demonstrated within an integrated

theoretic and empirical framework. This thesis supports the hypothesis of interdepen-

dence, but challenges a series of empiric results by demonstrating that they hinge crucially

on the particular version of the Penn World Table that is used to build the data set.

In addition, spatial econometric methods are applied to provide new estimates on the

strength of knowledge spillovers between countries. Furthermore, this thesis contributes

to the literature by modeling interdependence between countries via their bilateral genetic

distance instead of the default measure in the literature, geographic distance. Also in this

case, it is shown that the estimation results are highly sensitive to data revisions. This

issue is of particular importance in providing policy advice.

The final goal is to investigate knowledge spillovers within the setting of a single country.

By taking a further recent extension of the model from the previous analysis, a gap

in the literature is filled by applying this model to the US states. It is shown that the

hypothesis of technological interdependence between US states receives support. However,

the estimation results from the Spatial Durbin Model fail to indicate either a direct or

indirect impact of R&D investments on per worker income in the US states.
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Introduction

The topic of this thesis is “Spatial Interaction and Economic Growth”. It thus addresses

two key facets in human society. Starting with economic growth, it denotes the increase

in the market value of the goods and services that are produced in e.g. a country over a

period of time. Differences in the rates of economic growth across countries affect their

respective levels of per capita income over time. For the largest part of human history,

differences in per capita income levels have been comparatively small, and only during

the last two centuries have income differences widened (see, for example, Galor, 2005).

The determination of this evolution merits detailed study. Not simply from a purely

materialistic perspective of “the more goods, the better”, but also from a broader point

of view. Per capita income levels correlate with characteristics that fundamentally affect

people’s lives, like health (Weil, 2014).1 Economic growth is thus clearly a topic of central

importance.

Before elaborating on interaction, a second key aspect in human society, and how it is

related to economic growth, space will be introduced into the discussion. Figure 1 serves

as a starting point for this. It depicts Earth at night. As can be seen, some areas like

Europe, Japan or the east of the United States are brightly illuminated. In contrast, large

areas of Russia, China or on the South American and African continents exhibit noticeably

less light at night. Illumination at night correlates with economic activity.2 Hence, the

figure clearly demonstrates that economic activity has a spatial dimension. In fact, the

World Bank notes in its 2009 World Development Report that location, understood as the

place of work, is the “best predictor of income in the world today” (World Bank, 2009, 1).

An important factor in this result are a location’s specific environmental characteristics

(or first-nature geography), i.e. navigable rivers, access to the sea, the presence of natural

resources, or the disease burden (see, for example, Gallup et al., 1999). These are, however,

not the only determinants of the spatial distribution of economic activity. Second-nature

geography also plays an important role. At this point, interaction enters the picture.

Interaction, as related to economics, comprises several categories, among these are trade

1Higher incomes per capita are, for instance, negatively associated with infant mortality and positively
with higher life expectancy (Pritchett and Summers, 1996). In the respective country with the highest
life expectancy (for females), this variable has grown by the remarkable rate of 3 months per year since
1840 (Oeppen and Vaupel, 2002).

2See e.g. Henderson et al. (2012) or Michalopoulos and Papaioannou (2013).
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Figure 1: Earth at Night (Source: NASA (2012). Data courtesy Marc Imhoff of NASA GSFC and
Christopher Elvidge of NOAA NGDC. Image by Craig Mayhew and Robert Simmon, NASA GSFC.
http://visibleearth.nasa.gov/view.php?id=55167 (accessed: 11 August, 2015)).

in goods and services, but also migration and, for example, foreign direct investment.

Every single one of these interactions is possibly associated with an exchange in ideas,

knowledge, or technology. Moreover, these dimensions, by their very definition, all include

a role for space: They have an impact on the spatial distribution of economic activity and

vice versa. For example, migrants crossing a border and working in the new country have

an impact on its economic activity as some of them might set up a new firm which then

possibly attracts new workers. More generally, agglomeration and dispersion forces shape

the economic landscape. People and firms concentrate in certain locations in order to take

advantage of large markets (sharing), thick labor markets (matching) or to benefit from

knowledge spillovers (learning).3 Opposing these agglomeration forces, dispersion forces

like pollution, crime or high land rents also need to be taken into account. The distribution

of economic activity across space can then be understood as a result of balancing these

forces in a spatial equilibrium. Necessarily, a certain degree of integration like relatively

free movement of labor, capital, goods or services between the locations needs to exist

in order for interaction to take place between them. These considerations describe the

background for Chapter 1 in this thesis.4

Chapter 1 successively provides key empirical facts on the evolution of agglomeration,

economic growth and integration over the course of recent economic history and provides

a theoretical economic underpinning for each of these. It then presents a model by Baldwin

3Compare, for example, Marshall (1890) and Krugman (1998) for these agglomeration economies.
The words in parentheses denote the labels by which the concepts are often summarized in the literature.
See, e.g. Puga (2010, 210).

4Chapter 1 has been published in similar form as Deeken and Ott (2014a) and as Working Paper
No. 59 in the Working Paper Series in Economics at KIT (Deeken and Ott, 2014b).

http://visibleearth.nasa.gov/view.php?id=55167
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and Forslid (2000), which connects all three characteristics. The advantage of this model

is that it combines two models from different strands of literature. This is made feasible

as they share the same foundation in the Dixit-Stiglitz approach to modeling monopolistic

competition (Dixit and Stiglitz, 1977). In the combined model, the first one, from the field

of new economic geography, is the two-region core-periphery model by Krugman (1991),

in which transport costs for goods traded between regions play a role so that the location

of economic activity matters.5 In addition, it is based on the assumption of increasing

returns to scale on a firm level. Therefore, firms strive to concentrate production in

a single location.6 Agglomeration and dispersion forces then endogenously determine

the spatial distribution of economic activity for an exogenously given value of transport

costs. The endogenous growth model of increasing variety by Romer (1990) constitutes

the second part of the combined model. A crucial assumption in this model is that

investment leads to knowledge spillovers, which in turn determine growth. Importantly,

when combining these two models, Baldwin and Forslid (2000) assume that only a fraction

of the knowledge generated in one region spills over into the other region. Later chapters

will introduce the concept of an interaction matrix which allows, although in a different

modeling framework, to capture interaction between more than two regions. Nonetheless,

the general setup described here allows for a more nuanced consideration of integration

compared to traditional new economic geography models as it includes a second exogenous

policy parameter besides transport costs and that is the one governing the strength of

knowledge spillovers between regions, i.e. the cost of sharing information.

Scale is another important component in Chapter 1. The global structure of areas in

which economic activity is spatially concentrated across continents, is repeated at lower

levels of aggregation as well, i.e. when zooming in on a section of the map. Examples

include the differences between the northwest and southeast of Europe on the continental

scale or between Madrid and the rest of Spain on a national scale. Agglomeration and

dispersion forces determine the location of economic activity at all scales. The precise

design of integration, understood as an institution with a spatial dimension, matters for

taking advantage of the benefits of agglomeration. Hence, policy implications concerning

integration which foster interaction are presented at the end of Chapter 1.7

5As Gallup et al. (1999, 185) point out, the importance of transport was well understood by Adam
Smith, as can be seen from the following passage from his work they provide: “There are in Africa none
of those great inlets, such as the Baltic and Adriatic seas in Europe, the Mediterranean and Euxine seas
in both Europe and Asia, and the gulphs of Arabia, Persia, India, Bengal, and Siam, in Asia, to carry
maritime commerce into the interior parts of that great continent” (Smith, 1904, I.3.8.).

6The Spatial Impossibility Theorem by Starrett (1978) matters in this regard. It states that if space
is homogeneous, increasing returns and indivisibilities are absent, then in a competitive equilibrium with
positive transport costs, the characteristic feature of the economy will be backyard capitalism (see also
Ottaviano and Thisse (2004, 2571-2573)).

7The benefits of integration were also clearly understood by Smith. Gallup et al. (1999) were not
explicitly concerned with integration when excerpting Smith’s work. However, reading on in the original
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Chapter 28 addresses both theoretically and empirically the issue of how interaction be-

tween countries via knowledge spillovers influences per capita income levels. The chosen

context is the growth model developed by Ertur and Koch (2007), which explicitly in-

corporates technological interdependence between countries in an integrated theoretical

and empirical framework. This interdependence is assumed to operate through spatial

externalities, i.e. knowledge spillovers that cross borders.

The question of how to capture the strength of interaction between countries is a main

part of this chapter. It should be kept in mind that whereas it is relatively straightforward

to model the interaction between two countries (as in Chapter 1 for the transport costs

or the strength of knowledge spillovers), this problem becomes more challenging when

the number of countries is increased. As Ertur and Koch (2011) point out, this is the

case, since with just two countries only direct effects between these two exist. Adding

an additional country, the possible interaction effects become more complex. In this

case, countries can not only interact directly with each other, but also indirectly so that

feedback effects are now present. This increase in complexity that results in the transition

from modeling interdependence between two countries to interdependence between three

(or more) countries is the so-called “three-ness effect” (compare Ertur and Koch (2011,

218) with reference to Behrens and Thisse (2007, 461)).

Introducing an interaction matrix which specifies the strength of the connections between

countries into a model and thereby creating a system that includes feedback effects be-

tween observations is a way of addressing this effect. Such a matrix includes an entry (or

weight) for every country pair under consideration reflecting how close the countries are

to each other and thus serves as a proxy for the strength of knowledge spillovers between

these two countries. Ertur and Koch (2007) base the interaction terms between countries

on their respective geographical distance to each other. This is standard practice in the

literature, due to empirical evidence that an increase in the geographical distance be-

tween originating and receiving country has a negative effect on the amount of knowledge

spillovers in a wide variety of industry sectors (Keller, 2002).9

Chapter 2, however, diverts from this standard measure and contributes to the cross-

country growth literature by picking up a suggestion by Ertur and Koch (2011) to base

the interaction matrix on the genetic distance between countries. Genetic distance can

be seen as a summary statistic that picks up a divergence across populations in char-

work, Smith notes at the end of the section that the “navigation of the Danube is of very little use to
the different states of Bavaria, Austria and Hungary, in comparison of what it would be if any of them
possessed the whole of its course till it falls into the Black Sea” (Smith, 1904, I.3.8.).

8Chapter 2 has been published in similar form as Working Paper No. 74 in the Working Paper Series
in Economics at KIT (Deeken, 2015a).

9This is similar to a rise in the costs of trading information discussed in Chapter 1.



Introduction 5

acteristics like habits, beliefs, norms or conventions that are slowly changing over time,

and Spolaore and Wacziarg (2009) point out that this divergence creates barriers to the

diffusion of development or technology, even after accounting for differences in e.g. lan-

guage. Adaptation of innovations might be impeded by non-codifiable cultural differences

between societies (Spolaore and Wacziarg, 2009, 513). Chapter 2 investigates whether the

empirical results for geographic distance carry over to the alternative measure of genetic

distance.

Naturally, other distance measures, like technological or institutional distances between

countries come to mind that could be used instead of genetic distance to construct an

interaction matrix. However, the model by Ertur and Koch (2007) leads to a reduced

form whose theoretical implications are investigated with tools developed in the spatial

econometric literature, and at this step the exogeneity of the interaction matrix becomes

crucial. The objective is to determine within the context of the model how income per

capita in a given country is influenced by changes in the variables, like the investment

rate in physical capital, in the countries it is connected to. The reduced form includes

a multiplicative term between the interaction matrix and the matrix of regressors. If

now the weights in the interaction matrix were not exogenous, as would be the case for

technological distance, then some form of interdependence between the interaction matrix

and the regressors might exist (LeSage and Pace, 2014). Furthermore, the weights might

change with changes in the regressors, complicating the interpretation of the model as the

impact on the dependent variable from changes in the weights is hard to disentangle from

the impact that results from changes in the regressors (ibid.). These problems are absent

when the weights are exogenous as in the case of geographic and genetic distance.

Chapter 2 contributes to the literature also in another way. It investigates in a specific

sense the important issue of robustness of empirical results. Even though data availability

is a problem in many empirical studies, for the sample of countries investigated by Ertur

and Koch (2007) the opposite is the case. Multiple versions of the same data set, the Penn

World Table, are available and the default approach by researchers often is to use the

most recent version. Rarely is it checked, if the empirical results are consistent across the

various versions. Chapter 2 fills a gap in the literature by conducting extensive robustness

checks for the influential Ertur and Koch model concerning this aspect. It is important

to highlight that robustness is not a foregone conclusion. Issues for the empirical results

in other studies have been detected (see Johnson et al. (2013)), with consequences for

the conclusions drawn. In the current complex world, this issue is particularly pertinent

when it comes to providing policy advice based on empirical analyses. Sound data is a

requirement for this, and policy makers need to be aware if, for instance, implications

hinge on the specific version of the data set that is used
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Chapter 310 is linked to the modeling framework from the previous chapter, but shifts the

focus in two ways. First, it makes the transition from exogenous to endogenous growth

with technological interdependence by presenting a model by Ertur and Koch (2011) in

detail. Second, it moves the aggregation level for the units of analysis from countries as in

Ertur and Koch (2011) to regions within in a state. In particular, the empirical analysis

focusses on the states in the United States. To the best of my knowledge, this model has

not been empirically investigated in the literature for the US states before.

The United States is an important choice though as on a global level it accounts for a

high proportion of investment in research and development (37% in 2001 according to the

National Science Board 2014, 4-17) and foreign countries strongly benefit from spillovers

due to research conducted in the United States (Eaton and Kortum, 1996). This chapter

analyzes, if the individual US states also benefit from these knowledge spillovers.

The issue of how to specify interdependence that has been mentioned in the context

of the analysis between countries in Chapter 2 continues to be valid in this chapter.

However, at the level of US states no measures of genetic distance are available so that

distances based on the exogenous characteristic of geography are used instead. In general,

geographic distances are suggested to capture spillovers related to trade and foreign direct

investment (Klenow and Rodŕıguez-Clare, 2005, 842),11 but also differences in institutions

(Ertur and Koch, 2007, 1036). The frictions associated with knowledge spillovers between

states in a common institutional framework should thus be lower than globally across

countries where this is not the case to the same extent. This provides an additional

motivation for investigating the model’s implications for the states in US.

The concluding chapter, summarizes the thesis’ main results and provides an outlook con-

cerning future research on the topic of spatial interaction and economic growth. Emphasis

is put on the issue of sensitivity of empirical results to data quality.

10Chapter 3 has been published in similar form as Working Paper No. 75 in the Working Paper Series
in Economics at KIT (Deeken, 2015b).

11Ertur and Koch (2011, 236) also point to this article for this statement. However, they refer to
page numbers that are outside the range contained in Klenow and Rodŕıguez-Clare (2005). The reference
given above points to the appropriate page number.



Chapter 1: Integration as a Spatial

Institution: Implications for Agglom-

eration and Growth12

1.1 Introduction to Chapter 1

The 2009 World Development Report by the World Bank opens with the statement “Pro-

duction concentrates in big cities, leading provinces, and wealthy nations. Half the world’s

production fits onto 1.5 percent of its land” (World Bank, 2009, xiii). This immense con-

centration of economic activity has its counterpart in the fact that urban areas currently

account for more than 50% of the global population (United Nations, 2012). Economic

activity and people are thus unlikely to be randomly distributed across space. Together

these facts indicate the existence of benefits from concentration. These benefits are well

known and date back to Marshall (1890) and his description of external economies. More

specifically, these can be broken down to market size effects operating through forward

and backward linkages, thick labor markets, and pure external economies like, for exam-

ple, knowledge spillovers (Krugman, 1998). However, if only these agglomeration forces

were at work, the implication was that the whole world would end up in one gigantic ag-

glomeration. In effect, these forces that are conducive to agglomeration are balanced by a

variety of dispersion forces like the existence of land rents or pure external diseconomies

(e.g. pollution or crime). The resulting economic landscape is the outcome of the tension

between these opposing forces.13

In addition to this concentration of economic activity, recent economic history over ap-

proximately the past 70 years is furthermore characterized by the ongoing process of

globalization in its various forms as well as by an unprecedented increase in per capita

income levels. Agglomeration and growth are connected via integration (globalization) to

each other. In this chapter, key empirical facts on each aspect are presented and a selec-

tion of important models from the theoretical literature concerning these is commented

12Chapter 1 has been published in similar form as Deeken and Ott (2014a) and as Working Paper
No. 59 in the Working Paper Series in Economics at KIT (Deeken and Ott, 2014b).

13Expressed differently, these forces are second-nature determinants for location decisions in contrast
to first-nature or exogenous determinants like natural resources, climate or natural harbors.
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on. A model by Baldwin and Forslid (2000) that combines an endogenous growth model of

the Romer (1990) variety with a new economic geography model along the lines of Krug-

man (1991) is looked at in more detail, but without delving deep into the formal analysis.

This combined model incorporates all three characteristics of interest and also allows for

a more sophisticated consideration of the impact of integration on agglomeration than is

the case in traditional new economic geography models. The reason is that it not only

considers the costs of trading goods, but also accounts for the costs of trading information,

a lowering of which tends to weaken the agglomeration forces. A detailed understanding

of the concept of economic integration is particularly relevant, as it is the “way to get both

the immediate benefits of the concentration of production and the long-term benefits of

a convergence in living standards” (World Bank, 2009, 1).

The issue of size and scale economies, and the role integration plays herein is important

in these considerations. For instance, the implication of many endogenous growth models

that larger economies exhibit higher growth rates is not necessarily borne out empirically

(Jones, 1995b). Another aspect is that scale economies might not be relevant at all levels

of aggregation (i.e. city, region, nation). In particular, it is argued that future research

should more precisely focus on integration as a dynamic concept that does not only affect

agglomeration and growth, but which is itself the endogenous outcome of various inter-

dependencies and which complements the institutional settings of the territories that are

linked to each other.

The chapter is organized as follows. Section 1.2 presents stylized facts and theoretical

issues on agglomeration, growth, and globalization. In Section 1.3 a model by Baldwin

and Forslid (2000) is described that links these aspects. Section 1.4 deals with the issue

of scale, size, and density while Section 1.5 derives policy implications from the insights

of the previously presented arguments. Section 1.6 offers some concluding remarks and

perspectives for future research.

1.2 Building Blocks

1.2.1 Spatial Concentration

The earliest urban structures date back to the time of the Neolithic Revolution (Bairoch,

1988). Prior to the Industrial Revolution, however, “the urban way of life had for thou-

sands of years been the exception, it now became the rule” (Bairoch, 1988, 213). This

tendency towards increasing urbanization continues today and reflects an ongoing global

pattern as can be seen in Figure 1.1, which illustrates a positive trend that is expected

to last during the next several decades.14 Though the trend is global, there are marked

14The coarse aggregation scheme is chosen to ensure comparability of urbanization rates and GDP
per capita throughout the subsequent section. Since there is no perfect overlap in data availability
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differences between the various ‘global regions’. Western Europe, the United States and

Australia have crossed the threshold of more than half of their respective population living

in urban areas before 1950 and now have urbanization rates between 75% and 90%. Africa

and Asia on the other hand had urbanization rates of ca. 15% in 1950 and are expected

to cross the value of 50% in 2035 and 2020, respectively. Latin America has followed yet

another path. It reached an urbanization rate of 50% in the early 1960s, had a higher

rate than Western Europe in 2000, and currently has a rate of nearly 80%.

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050
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Figure 1.1: Urban Population by Major Geographical Area.

Note: The data are from United Nations (2012). See Appendix A for a list of geographical entities
included in the aggregates.

These numbers for the urbanization rate provide little information, however, on whether

people are living in large cities of several million people or if they are living in compara-

tively small cities of a few hundred thousand inhabitants. Table 1.1 remedies this situation

to some extent by distinguishing the absolute number of urban residents according to five

city-size classes.15 What can then be inferred from combining the data in Figure 1.1 and

as regards urbanization rates (Figure 1.1) and growth (Figure 1.2), the notion of ‘global regions’ from
the United Nations World Urbanization Prospect is adopted and applied to the New Maddison Project
Database (Bolt and van Zanden, 2013). Details on this can be found in Appendix A. In Figure 1.1, the
concept of ‘urban population’ is based on the definitions of the respective national statistical agencies
and thus may vary across regions. For an alternative agglomeration measure that aims at enabling cross-
country comparability see Uchida and Nelson (2010). Note that the population forecasts (from 2012
onwards (United Nations, 2012)) depend upon national census data that are also only comparable with
restrictions.

15The entries in Table 1.1 are absolute numbers of urban residents. Therefore, the data offers only
limited information about the number of cities in each group. The 630 million people, who are forecasted



1.2. Building Blocks 10

Table 1.1 is that not only are more and more people living in cities, but they are also

increasingly living in large cities. In 1970, for instance, approximately 14% of the world’s

population lived in cities of more than 500,000 inhabitants, whereas the corresponding

figure was approximately 26% in 2011 and will rise to approximately 33% in 2025.16

The share of the urban population living in cities with less than 500,000 inhabitants is

forecasted to fall by 20 percentage points from 62% in 1970 to 42% in 2025, but the share of

urban residents in cities with more than 10 million inhabitants is expected to increase from

3% to 14% over the same period. Combining these aspects with the empirical evidence

on city-size distributions implies the emergence and even intensification of core-periphery

structures at various levels of spatial scale.

Table 1.1: Evolution and Forecast of Total Population in Millions According to City-size Classes.

< 0.5m 0.5-1m 1-5m 5-10m > 10m

1970 833 128 244 109 39
1990 1333 206 456 142 145
2011 1849 365 776 283 359
2025 1966 516 1129 402 630

Note: The data are from United Nations (2012).

In other words, the trend of ongoing concentration may be observed at different levels

of spatial aggregation. Brakman et al. (2009, 13) neatly summarize this phenomenon by

stating: “It appears that the highly uneven distribution of economic activity across space

has a fractal dimension – that is, it repeats itself at different levels of aggregation.” Put dif-

ferently, ongoing concentration might be observed across several spatial scales whereupon

from a global perspective the resulting core-periphery structure remains unchanged.

These facts on urbanization are strong indicators for the existence of ‘local’ scale effects.

The resulting spatial pattern is the outcome of the location decisions of firms and house-

holds, and the underlying economic reasoning may be summarized as follows: Individuals

are indifferent as regards relocation if benefits and costs are equalized. In other words,

for any degree of aggregation a spatial equilibrium is reached whenever forces attracting

people (so-called agglomeration forces) and those pushing off people (dispersion forces)

to live in cities of over 10 million residents in 2025 might, for instance, be distributed more or less evenly
over some 60 cities or on the other hand be concentrated in a few gigantic cities of 50 million residents and
many comparatively small ones with “only” approximately 10 million residents. Any other combination
that distributes 630 million residents over a number of cities with a minimum size of 10 million is also
possible. More details on the city-size distribution can be found in (Gabaix and Ioannides, 2004).

16The shares are calculated from the data in United Nations (2012, Figure II and Table A.5).
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are balanced.17 From a slightly different perspective, a location may be attractive for

people or firms due to characteristics that are external to these actors.

The associated agglomeration (or external) economies that act as attractors for firms and

individuals to a certain place date back to the seminal work of Marshall (1890), who

identified three main sources of spatial concentration processes:18 (i) Market-size effects:

Local concentration leads to large local markets and vice versa. Via ‘forward’ or ‘cost

linkages’ a local concentration benefits both consumers, who profit from more varieties

and lower prices, as well as firms, since the local production of intermediate goods reduces

the costs of downstream producers. On the other hand, firms gain from producing in a

large market with good access to customers (‘backward’ or ‘demand linkages’). (ii) Thick

labor markets ease the matching problem between supply and demand of (today frequently

specialized) labor. (iii) (Pure) external economies that are the more distinct the more

densely populated a region is, since proximity allows for more frequent interaction and

increased information spillovers. Infrastructure fixed costs are also spread over more

heads. These forces mostly cover specialization advantages as the considered actors can

benefit from scale economies and the related cost decreases, which usually are meant to

apply within single sectors.19

Equally important for the attractiveness of a certain location, though not specifically

mentioned in the context of Marshall’s triad, are: (iv) Selection effects that occur in

highly competitive markets where only efficiently working firms are able to survive. This

effect is reinforced, since efficiency acts as an attraction point for internationally mobile

capital and/or frequently highly qualified labor. (v) Diversity: Especially in light of the

aforementioned increase of large urban agglomerations (Table 1.1), it is quite reasonable

that the economic centers are not only characterized by specialization in a single but in

several different fields at the same time. Groups of interconnected companies together

with the supporting institutions, which are all located close to each other, are frequently

said to form a cluster (Porter, 1990). In particular, if several clusters are co-located, it

is not just specialization, but in contrast the opportunity to interact with various – also

heterogeneous – actors that attracts new firms and people. In this connection, Jacobs

17This argument holds with the caveat that in formal theoretical models it is only valid for interior
equilibria, but not for equilibria in which complete agglomeration occurs.

18In this context, Alfred Marshall shaped the notion of the ‘industrial districts’ – a formulation that
must be understood in light of the 19th century’s economic conditions. The basic mechanisms, however,
are still valid today only that aside from the industrial sector an important share of value creation is
realized within the service sector. Marshall’s concept has been picked up by Arrow (1962) and Romer
(1986), who introduced it in theoretical models. As a consequence, agglomeration economies that are
related to spillovers and (industry) specialization are mostly denoted as Marshall-Arrow-Romer (MAR)
externalities; see also Krugman (1998) for a compact overview.

19Considering current production conditions, this includes the service sector and the joint use of
research infrastructure.
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(1969) was the first to point to the positive effect of the co-location of diverse actors.20

The resulting productivity and consumption economies are associated with the diversity

and intensity of economic activity. In addition, large agglomerations are also more efficient

in solving the matching problem that may arise in the factor markets thus linking the

reasoning to the aforementioned thick labor markets and adapting them to a more dynamic

environment that also might account for structural change. It is therefore reasonable

to assume that as a consequence of ‘density’, the corresponding region’s productivity

increases and thereby drives local productivity above average.

But if only agglomeration forces were at work, the spatial equilibrium would result in

a unique agglomeration of economic activity thus contradicting the empirical facts sum-

marized in Figure 1.1 and Table 1.1. In fact, there exist opposing dispersion forces that

are mainly based on the following sources: (i) Immobile factors such as land, natural

resources, but also workers, imply that industries have to some extent go to where factors

and their owners are located. At the same time, institutional arrangements may also foster

or hamper the mobility of factors. Two descriptive examples are the four freedoms within

the EU or the necessity of obtaining work permits for non-residents in the US. (ii) Land

rents increase as a result of concentration both for producing firms, but also for private

individuals, who seek to minimize commuting costs. In the extreme, increasing land rents

may even lead to the relocation of economic activity not only from the core to peripheral

regions, but also as regards the location of different operating areas of firms within ur-

banized areas (functional specialization, Duranton and Puga, 2000). (iii) (Pure) external

diseconomies of scale such as congestion, pollution, and crime also hamper concentration.

As argued before, a spatial equilibrium is reached when both, agglomeration and disper-

sion forces, are balanced. Ongoing urbanization in this context implies the emergence and

reinforcement of core-periphery structures in economies with increasing population size.

In Section 1.4 the identified core-periphery structures are related more precisely to scale

effects and size in growing economies.

1.2.2 Growth and Prosperity

Aside from the spatial concentration of population and production at certain locations,

another major trend since the era of industrialization is ongoing economic growth as

measured by gross domestic product (GDP) per capita. Figure 1.2 depicts GDP per capita

based on 1990 international dollars21 for the period 1850-2010 and strikingly highlights the

20The associated external effects are nowadays called Jacobs or urbanization externalities (thus being
distinguished from the previously mentioned MAR or specialization/localization externalities).

21In this unit 1 international dollar has the same purchasing power as $1 US had in 1990, and the
GDP per capita values in other currencies are adjusted by purchasing power parities. Keeping in mind
the difficulties of estimating these time series (see e.g. Bolt and van Zanden (2013)), it is nonetheless to
a certain degree possible to compare the values across time and countries.



1.2. Building Blocks 13

world-wide growth story for the same major global regions as in the preceding section.22

Around the world, centuries of Malthusian stagnation in which per capita income was near

the subsistence level precede the Industrial Revolution until economies entered a period of

sustained economic growth.23 The positive trend might already be discerned in the 19th

century. However, the effect of exponential growth becomes distinctly visible after World

War II, though there are clear differences between the various illustrated global regions.
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Figure 1.2: GDP per Capita in 1990 International Dollars.

Note: The data are from the New Maddison Project Database (Bolt and van Zanden, 2013). See
Appendix A for a list of geographical entities included in the aggregates.

The dominating positive trend for the global regions tends to hide drastic differences in

income at the less aggregated level of individual countries. At the top, the USA has a

GDP per capita of $30,491 in 2010 while the poorest country in the Maddison sample

in that year is the Democratic Republic of the Congo with a GDP per capita of $260.

Another noteworthy characteristic of the data is the possibility that a laggard overtakes

the leader in the GDP per capita ranking (‘leapfrogging’). This is exemplified by the USA

becoming richer than the previous leader Australia in 1899.24

22The New Maddison Project Database provides information on the economic performance of countries
and geographic regions from the year 1 onwards (at least for a subset of countries). The selected regions
were chosen to allow for an immediate comparison to Figure 1.1.

23See, for instance, Galor (2005, 2011) and the references therein for empirical evidence and a theo-
retical model explaining this transition to sustained growth.

24For additional empirical evidence on the changing leaders and laggards for the period 1-2003, compare
e.g. Figure 9 in Brakman and van Marrewijk (2008).
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The pattern of ongoing growth in Figure 1.2 has been accompanied by additional economic

regularities. Kaldor (1957, 591) stated for capitalist economies that there are “remarkable

historical constancies revealed by recent empirical investigations.” His observations led

to the nowadays well recognized ‘stylized facts of growth’ (Kaldor, 1961).25 At the same

time, these observations set the frame for a research agenda to develop a consistent, com-

prehensive theory, which led to the neoclassical growth model (Solow, 1956; Swan, 1956).

Based on the empirical observation of ongoing economic growth – often interpreted as in-

creasing prosperity that in turn allows for a life above subsistence level – economic theory

in general tries to gain a deeper understanding of the driving forces of this process. The

major goal is to identify the underlying determinants, to comprehend their interaction,

and, given any indications for forces hampering this process (e.g. market failures), to de-

rive appropriate policy recommendations in order to maximize overall welfare. Growth

thereby refers to the evolution of the GDP per capita, mostly analyzed at the country

level, which results from the accumulation and use of more and/or better inputs in the pro-

duction process. Across time and in spite of its rich explanatory power of the stylized facts

detailed in Footnote 25, the neoclassical growth model has been criticized with respect

to several dimensions (e.g. Jones and Romer, 2010). It only covers one state variable,

namely physical capital. The lacking microfoundations imply an exogenously assumed

savings rate, since the resulting growth rate is not derived from individual optimization

behavior. The model is also not able to explain the variation of growth rates between

countries. In the model’s equilibrium, growth per capita comes to a standstill with the

consequence that the empirically observed positive growth rates can only be explained by

exogenous technological progress. Due to its specification, technological change naturally

remains a black box so that ultimately no clear-cut policy recommendation can be derived

from the model in this respect.

Solow’s basic growth model set the ground for several extensions, among them the in-

clusion of human capital or productive governmental activity. Further efforts led to the

emergence of endogenous growth theory in the mid 1980s, which also provided insights into

the utility maximization–growth nexus (i.e. the derived aggregate growth rate is based on

individual optimization decisions (microfoundations)) thereby especially addressing the

role of technological progress, human capital accumulation, or the role of institutions.

Recent discussions of growth theorists distinguish ‘proximate’ from ‘fundamental’ causes

of growth. The latter cover conditions such as luck, geography, culture, and institutions

25In detail, the Kaldor facts are the following: (i) Labor productivity has grown at a steady rate, (ii)
capital per worker has continually increased, (iii) the real interest rate (return on capital) has been stable,
(iv) the capital-output ratio has been constant, (v) the shares of capital and labor in national income
have been stable, and (vi) among the fastest growing countries the growth rate has varied in the range
of 2–5%.
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while the former refer to production inputs such as physical and human capital as well as

to their overall productivity, which is enhanced by technological progress.26

These new theoretical frameworks have now themselves undergone an empirical assess-

ment. Again, the goal has been to review whether or not they are suited to contribute to a

better understanding of the empirical facts and thus to link theory and empirical research

within a consistent framework. Jones and Romer (2010) recently revisited the aforemen-

tioned Kaldor facts and updated them thereby also accounting for structural change over

the last five decades.27 Summarizing these findings, leads to the recognition that in order

to match the requirements of today’s empirical results and to develop a consistent theory,

aside from physical capital more state variables – namely human capital, ideas, popula-

tion – and also institutions as reflecting the “rules of the game” (North, 1990, 3) need to

be considered. In the context of growing economies, the important role of institutions is

emphasized in the seminal work of Acemoglu et al. (2001) and highlighted as well by, for

instance, Rodrik et al. (2004).28

Altogether, within growth theory usually the platform of analysis is aggregate economies

(countries or continents) where spatial components are not explicitly considered.29 In case

they are, the notion of ‘geography’ refers to natural conditions, which include a country’s

endowment with natural resources or its climatic conditions (e.g. Gallup et al., 1999;

Dell et al., 2012). Put differently, as regards the spatial dimension, both the models and

the stressed empirical studies refer to what sometimes is called ‘first-nature geography’,

but do not make explicit man-made ‘second-nature geography’ conditions in a territorial

sense.30 The latter might, however, to some extent be understood as or be linked to

institutional settings. Especially in Section 1.4 it is argued that the degree of integration

might be interpreted as reflecting an explicit spatial dimension of institutions. In addition,

Jones and Romer’s (2010) stylized fact of ‘increases in the extent of the market’ implicitly

26Excellent overviews on issues related to economic growth are provided by Acemoglu (2009) – with
a special emphasis on the distinction between fundamental and proximate causes of growth – or more
broadly by Barro and Sala-i-Martin (2004).

27In detail, the Jones-Romer facts identify the following empirical regularities: (i) Increases in the
extent of the market, (ii) accelerating growth, (iii) variation in modern growth rates, (iv) large income
and total factor productivity differences, (v) increases in human capital per worker, (vi) long-run stability
of relative wages.

28Note that in many discussions and theoretical models, the concept of institutions is often connected
to the presence of property rights. Throughout this chapter, however, a broader interpretation is as-
sumed and institutions are embedded as regards their impact on the degree of integration – as later
e.g. in Section 1.3 where institutions are seen as being related to the variable ‘freeness of trade’ and the
environments that allow for knowledge spillovers.

29A winged word in this context is that ‘the world is flat’, which refers to the title of a book by
Friedman (2005).

30An exception is Bosker and Garretsen (2009), who demonstrate that second-nature (or relative)
geography interpreted as the institutional quality of neighboring countries has an impact on a country’s
economic development.
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incorporates a spatial dimension, as the observed increase is the outcome of both growth

(at any place) and access to foreign markets due to globalization which extends the relevant

market for any economy involved in (international) trade. To conclude: Until today,

spatial aspects are, if at all, only implicitly or indirectly addressed in most models of

endogenous growth.

1.2.3 Globalization

A glimpse at the discussion so far suggests that “agglomeration can be considered the

territorial counterpart of economic growth” (Fujita and Thisse, 2002, 389). However, this

viewpoint is too simplistic and without any explanatory power as regards the underlying

interdependencies that drive this result given that countries or regions are not isolated

actors, but are increasingly embedded in international value-creation processes in which

due to globalization the places of production and consumption frequently are not located

within the same national borders. Globalization in this context covers several dimensions,

namely mobility of goods, people, ideas, and capital.31 The exchange of these items is

the immediate outcome of increased integration.32 Important grounding in this context is

given by rules that facilitate international/cross-border economic activity like the reduc-

tion of trade barriers, reduced transportation costs or the recognition of foreign degrees.

The key driver that fosters the joint emergence of growth and agglomeration, however,

is the increase in the international trade of goods (compare Baldwin et al. 2001). Con-

cerning mobility of people, migration mainly occurs within, but also between countries

(World Bank, 2009, 147), and global migration is increasing at least in absolute numbers.

The world-wide stock of migrants has risen to 165 million in 2000 from a starting value of

92 million in 1960, although the migrant’s share of the world population has fallen from

3.05% to 2.71% over this period (Özden et al., 2011, 15). For migration flows, analysis

by Abel and Sander (2014) suggests that for the three 5-year periods from 1995 to 2010

a relatively stable share of approximately 0.6% of the world population has migrated in-

ternationally. With respect to the mobility of ideas, Jones and Romer (2010, 229) note

that, for instance, the change in the share of patents granted to non-US entities by the

U.S. Patent and Trademark Office can be interpreted as an indicator for the international

flow of ideas. This share has increased from 18% in 1963 to 52% in 2012.33

31The latter, for instance, via foreign direct investment (FDI). The concept may be understood even
more broadly as in the KOF Index of Globalization, which includes, amongst other things, information
on cultural proximity (see http://globalization.kof.ethz.ch/ (accessed: 11 August, 2015)).

32See Meissner (2014) for additional details on the concepts of globalization and integration.
33Compare the column ‘Total Patent Grants, Foreign Origin Percent Share’ under http://

www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm (accessed: 11 August, 2015). The ex-
change of ideas is also immensely fostered by the fall in communication costs and the accompanying spread
of the internet to which approximately 35.6% of the global population had access in 2012, whereas the
corresponding shares were 0.05% in 1990 and 6.7% in 2000 (World Bank 2013; series IT.NET.USER.P2).

http://globalization.kof.ethz.ch/
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm
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Figure 1.3: Globalization.

Note: World FDI over World GDP is series BX.KLT.DINV.WD.GD.ZS from the World Bank’s
World Development Indicators (World Bank, 2013), and the variable World trade / World GDP is
calculated from Heston et al. (2012).

Figure 1.3 illustrates the phenomenon of globalization along the two dimensions ‘trade’

(mobility of goods) and ‘FDI’ (mobility of capital), which both have significantly increased

during the last several decades although not steadily so. The sharp drop around the year

2000 coincides with the bursting of the dot-com bubble, and the onset of the recent

financial crisis has led to a setback in the trend towards increasing globalization. These

effects are particularly stark for the series of the ratio of World FDI to World GDP.

The increase in international trade over the past 50 years shown in Figure 1.3 overlaps

with a period of ongoing trade liberalization. One measure for liberalizing trade are

preferential trading agreements, and the cumulative number of these agreements in force

has increased from a value in the single digits in the early 1950s to nearly 70 in 1990 before

reaching almost 300 in 2010 (World Trade Organization, 2011, 54-55).34 On a closer look,

the increase in world trade over time hides an important aspect concerning the evolution

of the composition of world trade. The share of intra-industry trade as opposed to inter-

industry trade has increased as well. Brülhart (2009, 426) notes that the share of global

intra-industry trade rose from roughly a quarter in 1962 to over 50% in 2006.35

34This is not to say that trade liberalization is the only or most important factor in the increase
in world trade. See Baier and Bergstrand (2001) for an analysis of the relative importance of trade
liberalization, transport costs, and other factors in this development.

35The underlying measure for intra-industry trade is the Grubel-Lloyd index at the 3-digit Standard
International Trade Classification (SITC) level. At the more detailed 5-digit SITC level intra-industry
trade has increased from ca. 10% to about 30% over the period.
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A noteworthy aspect that accompanies the increasing share of intra-industry trade under-

lying this development is the composition of this form of trade in horizontal and vertical

versions (see e.g. Thom and McDowell 1999 for this distinction). Horizontal intra-industry

trade refers to trade in differentiated products at the same processing stage in a sector

and is closely related to the love-of-variety effect that is, for example, present in the

model discussed in the subsequent section.36 Vertical intra-industry trade on the other

hand takes place within a given sector, but at different stages of processing and is linked

to comparative advantage and its resulting specialization. Distinguishing between final

and intermediate goods instead, Brülhart (2009) notes that trade in final products has

increased globally from a starting value slightly above 10% in 1962 to roughly a third in

2006, and the corresponding series for intermediate goods has followed the one for final

goods closely until the mid 1970s, after which the shares were consistently higher and

reached about 40% in 2006.37

On a theoretical level, neoclassical international trade theory in the form of the Ricardian

and Heckscher-Ohlin models relies on the presence of comparative advantage due to dif-

ferent technologies or relative factor abundances to explain inter-industry trade between

countries. However, neither is all trade between countries of the inter-industry variety

nor is all trade between countries that differ in income, size, and relative factor endow-

ments. Germany, for instance, exports cars to France and vice versa. In order to explain

this intra-industry trade that takes place even in the absence of comparative advantage

various assumptions of the neoclassical trade theory need to be relaxed. This is done in

the field of new trade theory, which, for instance, no longer assumes that firms produce

with a constant returns to scale technology and operate in an environment of perfect com-

petition. Instead, increasing returns to scale at the firm level and imperfect competition

are introduced.38 The second change concerns the assumption of a homogeneous product

in the neoclassical trade models, which is replaced in new trade theory by heterogeneous

goods which are assumed to be imperfect substitutes for the consumers who exhibit love-

of-variety preferences that are captured via a constant elasticity of substitution function.39

The most widely adopted model of monopolistic competition with these characteristics is

the one introduced by Dixit and Stiglitz (1977). Notice that these assumptions also mirror

the transition from neoclassical to endogenous growth theory discussed in Section 1.2.2.

36This effect is however not constrained to final goods, but is also relevant for intermediate goods or
services in firms’ production processes (Hewings and Oosterhaven, 2014, 912-913).

37Data in Brülhart (2009) distinguishes only between trade in intermediate and final goods, but not
between horizontal and vertical intra-industry trade. The shares are for the 5-digit SITC level.

38As Davis (1995) notes though, it is not necessary to assume increasing returns to scale at the firm
level, since intra-industry trade can be accounted for without this assumption based on comparative
advantage.

39These preferences imply that consumers receive more utility from consuming e.g. one unit each of
seven different varieties instead of seven units of one particular variety.
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Increased freeness of trade also enhances international competition between firms and

industries and induces possible relocations of economic activity allowing for production at

the most productive places. The consequences on the spatial distribution thereby involve

two dimensions. Concerning inter-industry trade, industries that exhibit a comparative

advantage will grow, whereas the disadvantaged industries will shrink. As regards intra-

industry trade, liberalization increases international competition, and some firms are not

able to cope with these conditions. Empirical studies have shown that the corresponding

reallocation of firms is more pronounced as regards intra-industry than inter-industry

trade (Brakman et al., 2009).

Analogous to the reasoning in Section 1.2.1, the resulting spatial equilibrium is the out-

come of the interaction between local increasing returns to scale and trade costs in which

agglomeration and dispersion forces offset each other. Reduced trade costs (which en-

hance the freeness of trade) are frequently interpreted as being the outcome of increased

economic integration between formerly more or less autarkic economies. The driving force

in all these models is a reduction of trade costs or put differently, increased integration.

Trade costs are mostly argued to capture a reduction of trade barriers such as duties

or other non-tariff barriers. Major components are also transportation costs that have

undergone a significant decline throughout the last several decades.40 This implicitly in-

corporates aspects of technological change, which allows e.g. for an increase in shipping

capacities, but also reduced communication costs that are due to improvements of infor-

mation and communications technology. Nevertheless, within the considered models and

empirical studies the degree of integration is assumed to be exogenous. In Section 1.4

it is argued that integration itself undergoes an evolution together with the processes of

growth and agglomeration. In order to capture the implications, integration should be

related to the institutional view detailed throughout Section 1.2.2. A more pointed view

would be that integration is a fundamental cause for the spatial shape of the economic

landscape and has explicitly to be seen as a dynamic institution with a strong spatial

dimension.

1.3 Model

Section 1.2 described a variety of stylized facts for three defining characteristics of ‘mod-

ern’ economic history: Growth, agglomeration, and integration. The former part of this

chapter detailed these several lines of argumentation. Due to the dynamic perspective

and the various interacting effects, their final impact on the spatial distribution of eco-

nomic activity in growing economies is far from being trivial. To provide some guiding to

40The decline in costs is clearly present for air shipping, but less pronounced for ocean shipping as
Hummels (2007) notes.
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disentangle the main lines of reasoning within a consistent model, this section presents,

without going deeply into its formal structure, a model by Baldwin and Forslid (2000)

that highlights the connections between these three characteristics and thus attempts

to account for the joint endogeneity of the location of industrial activity and long-run

economic growth.

Baldwin and Forslid’s starting point is the two region core-periphery model developed by

Krugman (1991), which takes care of agglomeration and integration. In this model, there

exists a traditional sector with constant returns to scale and perfect competition and an

industrial sector with increasing returns to scale at the firm level, which is characterized

by monopolistic competition. Goods from both sectors are traded, although trade costs

occur only in the manufacturing sector. Whereas the global labor supply and the labor

supply in the traditional sector are fixed, labor in the industrial sector is mobile, and the

interregional labor distribution in this sector is determined endogenously, since migration

depends on differences in the real wages in the two regions.41 This model setup produces

circular (cumulative) causation, which can be broken down to three forces that ultimately

depend on the degree of integration as measured by transportation/trade costs. Two

of these, the backward and forward linkages, are agglomeration forces and have already

been described in Section 1.2.1 under the label market-size effects. The third force is

the competition or market-crowding effect, which works against agglomeration, as firms

prefer to locate away from their competitors. Whether or not a process of cumulative

causation will be set in motion, depends on the relative strength of these forces. If, for

instance, agglomeration forces are stronger than the dispersion force, then a shock to the

system has the result that all industrial activity will locate in a single region, whereas the

immobile factors of the traditional sectors determine the economic power of the periphery.

Baldwin and Forslid (2000) combine this framework with the endogenous growth model

by Romer (1990) thereby incorporating the third characteristic. Both models are built

upon the Dixit-Stiglitz approach to modeling monopolistic competition (Dixit and Stiglitz,

1977) mentioned in Section 1.2.3. This identical understructure greatly facilitates the in-

tegration of the two separate models. The new aspect in Baldwin and Forslid’s model is to

not only consider the implications of changes in the trading costs for goods as in standard

new economic geography models, but also the implications of changes in the trading costs

for ideas. New ideas or knowledge are the driving force of economic growth in the model,

and they ultimately show up in the form of an increasing number of varieties produced in

the monopolistically competitive manufacturing sector. Producing a new variety requires

a fixed cost of one unit of capital K in the model in addition to a variable cost for labor.

41In a slight modification to the Krugman (1991) model, Baldwin and Forslid (2000) allow for forward-
looking behavior in the migration decision instead of static expectations.
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Capital in this model is viewed as “new knowledge embedded in a manufacturing facility

that is immobile across regions” (Baldwin and Forslid, 2000, 310). Production of capital

requires only labor as an input and takes place in the model’s third sector, the investment

good or innovation sector, which is characterized by perfect competition. The crucial

feature of this sector is the presence of knowledge spillovers or technological externalities

in the sense that the unit labor requirement falls with an increasing level of production in

the investment good sector. The specific distribution of manufacturing activity over the

two regions moreover has a bearing on the extent of knowledge spillovers. More precisely,

knowledge accumulated in a given region, e.g. the north, is more beneficial to firms in

the north than knowledge accumulated in the south. This specification receives empirical

support by, for instance, the work by Eaton and Kortum (1996, 276), who demonstrate for

the OECD that even though there is substantial diffusion of technology between countries,

large impediments to its diffusions exist that “are sufficient to generate large differences

in productivity across countries.” Put differently, location matters for firm productivity.

Baldwin and Forslid formally model production in the innovation sector via the following

production function:

QK(t) =
LI
aI(t)

; aI(t) =
1

K(t− 1) + λK∗(t− 1)
; 0 ≤ λ ≤ 1

in which the variable QK(t) denotes the flow of new capital at time t, and employment

in the investment sector is denoted by LI . K and K∗ are capital in the north and south,

respectively, and the parameter λ signifies the degree of knowledge spillovers. The one-

period lag, t − 1, for the capital in the two regions in the expression for the unit labor

requirement in the investment goods sector, aI(t), indicates that it takes a certain amount

of time until knowledge produced in one region becomes available in the other region.42

A complete analytical derivation of the results in Baldwin and Forslid (2000) is outside

the scope of this chapter. Suffice it to say at this point that the model’s dynamics can be

completely described by a system of three difference equations in the variables for labor in

the north, L(t), the north’s share of global capital, K(t)/
(
K(t)+K∗(t)

)
≡ θK(t), and the

shadow value of migration, W (t). As in the standard core-periphery model, three stable

long-run equilibria exist:43 One in which manufacturing activity is spread symmetrically

between the north and the south, and in the other two equilibria manufacturing activity is

either completely agglomerated in the north or the south. The stability of these equilibria

is verified via an analysis of the eigenvalues of the Jacobian matrix of the system of

difference equations linearized around the steady state under consideration.

42Baldwin and Forslid (2000, 313) take one period to last approximately 10 years.
43Additional unstable interior equilibria exist as well.
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Despite the fact that the model is analytically rather complex, it has the neat feature

that the stability properties of the respective equilibria depend only on two parameters.

One is the already mentioned λ, denoting the degree of knowledge spillovers. The higher

its value, the less localized are the technological externalities. Hence, this parameter can

be interpreted as representing the cost of trading information. The second parameter, φ,

is an index capturing the notion of freeness of trade and can be shown to vary between 0

and 1.44 This specification makes it possible to summarize information on the stability of

the equilibria in the comparatively simple diagram shown in Figure 1.4, which is divided

into three sections.
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is stable and agglomeration is unstable

Section II: Symmetric equilibrium
is stable and agglomeration is stable

Section III: Symmetric equilibrium
is unstable and agglomeration is stable

Figure 1.4: Stability of the Equilibria in Dependence on λ and φ (Adapted from Baldwin and
Forslid (2000) and Brakman et al. (2009)).

Analysis of Figure 1.4 shows that the results from the standard core-periphery model of

the Krugman variety carry over to the growth-augmented model. A fall in transport costs

(equivalently a higher value for φ) has the implication that agglomeration becomes the only

stable equilibrium.45 This process is illustrated by the horizontal line with the three arrows

in Figure 1.4. For a high enough level of knowledge spillovers, the economy moves from a

situation in which only the symmetric equilibrium is stable (Section I) through a situation

in which both agglomeration and the symmetric equilibrium are stable (Section II) to

one in which only agglomeration is a stable equilibrium (Section III). This destabilizing

aspect (in the sense of a tendency towards agglomeration) of closer integration is linked to

the presence of an additional agglomeration force due to the introduction of endogenous

growth into the model. However, the presence of knowledge spillovers influences the

44For infinitely high trade costs the index is zero, whereas in the absence of trade costs it equals one.
45Note that Figure 1.4 only establishes that agglomeration is a stable equilibrium, but not which region

is or becomes the core. To determine this, the initial conditions and the specific shock that disturbs an
unstable equilibrium need to be analyzed.
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strength of this third circular causation chain and Baldwin and Forslid (2000) indicate

that the strength of this effect can be counteracted by the model’s second policy parameter,

λ. Hence, combining a lowering of the costs of trading goods with a lowering of the costs

of trading ideas opens up the possibility that the symmetric equilibrium remains stable

for a wider range of values for φ. This possibility is shown by the dashed arrow moving

from Section I to Section II.

It is also possible that a policy that lowers the costs of trading information sufficiently,

leads to a spreading out of industrial activity. In Figure 1.4 this is captured by a ‘world’

economy starting in point A in a core-periphery equilibrium, which then becomes more

integrated through higher knowledge spillovers and moves to point D in which only spread-

ing is a stable equilibrium.

Therefore, integration needs to be viewed as a more complex process than in standard

new economic geography models and embrace aside from mobility of goods and people

also mobility of ideas and capital. Ever closer integration through a given reduction in the

costs of trading goods does not necessarily lead to complete agglomeration. This process

can be counteracted (compare a movement along the dashed arrow or from point A to C

with a policy that moved the world economy from A to B) and possibly even reversed46

through adequate policies that lead to a fall in the costs of trading information. Note that

although integration is now more broadly specified than in the standard new economic

geography model, it is still specified as an exogenous and static concept.

1.4 Size vs Scale: When, Where, and Why Does It

Matter?

The considerations so far have mainly been focussed at a highly aggregate level, be it

the arbitrarily chosen global regions highlighted within the empirical presentations in

Figures 1.1 and 1.2, the world-wide view in Figure 1.3 or the economy-wide perspective

assumed within the discussed theories in Sections 1.2.2 and 1.2.3 as well as within Sec-

tion 1.3 and Figure 1.4. Besides, it is nearby to assume that the aggregation level also

determines the size of the considered economy. Benefits of large economies arise e.g. as

size co-determines the financial, political, business and cultural environments of people

and firms. One example is the provision of public goods like national defense, public

security, or the judicial system, for which the costs in larger nations can be spread over

more taxpayers. Further benefits of large countries are insurance against asymmetric

46Consider a situation in which both regions are living in autarky, introduce some free trade which
moves the world economy to point E where the core-periphery equilibrium is stable and then drastically
reduce the cost of trading information so that the world economy ends up in point D where only spreading
is a stable equilibrium.
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regional shocks47 or the possibility of nation-wide redistribution schemes that affect the

after-tax income distribution in a way not feasible if the territories were independent en-

tities (Alesina and Spolaore, 2003, 3-4). Counteracting these positive effects of size are

more heterogeneous preferences in larger countries, leading to a higher probability that

some subset of regions (or individuals) in a nation is not in agreement with the policies

of the central government and thus poses a danger to its stability (Alesina and Spolaore,

2003, 4-5). Ethnic, linguistic, and religious heterogeneity play a role in this context. More

prosaically, administrative costs may rise with ever larger size and issues of congestion,

crime, and pollution may become a problem. It is thus nearby to assume that there is some

endogenously resulting ‘optimal’ size of economic spaces, which differs according to their

respective characteristics and evolves as production conditions, dynamic environments, or

institutional settings (especially of interest are the rules underlying international trade or

knowledge diffusion) change.

That size per se is not necessarily beneficial as regards prosperity is confirmed if one takes

a more precise look at empirical regularities. Less aggregated data, for example, suggests

that out of the twenty countries with the largest population only four (USA, Russia,

Japan, and Germany) belong to the group of high-income economies according to the

World Bank’s classification.48 Contrariwise, the mentioned high-income group includes

countries with a relatively small population like Singapore, Luxembourg or Iceland. A

similar result holds for selected US states. Out of the top ten according to population,

only New York is also in the top ten with respect to per capita income. On the other hand,

small states like New Hampshire are relatively rich.49 Prosperous regions at different sizes

have at various times included, for example, agglomerations in northwestern Europe for

the continental scale, the Ruhr district in Germany for the country scale, or the city state

of Hamburg in northern Germany on the local scale. Also at the city level, more and

less prosperous districts might be observed50 and even at the extreme micro level of one

city block in New York City this phenomenon is observable (see Easterly et al. (2015)).

From a dynamic perspective (i.e. focussing on the growth rate and not on the level of

GDP per capita) OECD data for the second half of the 20th century at the country level

also suggests that there is no conclusive evidence of a unique and positive relationship

47Just to mention one example: The lack of such an insurance in the Eurozone during the recent eco-
nomic crisis has inhibited the recovery dramatically. Adversely affected US states, for instance, received
federal transfers from their ‘stronger’ counterparts, whereas such fiscal transfers (e.g. from Germany to
Spain) were not possible within the monetary union of the Eurozone as it is not a fiscal union.

48An overview of the classification scheme can be found here: http://data.worldbank.org/about/
country-classifications/country-and-lending-groups (accessed: 11 August, 2015).

49See the ‘State and County QuickFacts’ data set available under: http://quickfacts.census.gov/
qfd/download_data.html (accessed: 11 August, 2015).

50Compare e.g. for Karlsruhe the two districts of almost identical size ‘Südweststadt’ and ‘Oststadt’
with the former being relatively prosperous and the latter being inhabited by poorer individuals.

http://data.worldbank.org/about/country-classifications/country-and-lending-groups
http://data.worldbank.org/about/country-classifications/country-and-lending-groups
http://quickfacts.census.gov/qfd/download_data.html
http://quickfacts.census.gov/qfd/download_data.html


1.4. Size vs Scale: When, Where, and Why Does It Matter? 25

between GDP growth and measures of scale (compare e.g. Jones (1995a,b) or Backus et al.

(1992)).51

The discussed ambiguity of the empirical studies is also mirrored within growth theory,

which considers both the level but especially the growth rate of GDP per capita. An

important class of growth models exhibits scale effects in the sense that variations in

the size or scale of the economy permanently alter the long-run equilibrium growth rate

per capita.52 Within these models the relationship between scale and growth is unique –

thereby contradicting the previously discussed empirical ambiguity – and depends upon

both the existence and the nature of production externalities (e.g. via the provision of

productive public inputs or various sorts of spillovers). This class of models, however,

has strong formal requirements leading to restrictive knife-edge assumptions that have to

be fulfilled in order to allow for long-run equilibrium growth.53 Both the theoretical and

empirical limitations of the mentioned models have led to the formulation of so-called

non-scale growth models, i.e. models that exhibit equilibrium growth rates that are not

subject to scale effects in spite of endogenously accumulated production factors and the

existence of externalities. However, those models suffer from other limitations, e.g. they

exhibit special stability characteristics together with transitional dynamics and hence are

again only suited to explain details of the complex growth story, but not to resolve the

aforediscussed tensions.54 One might summarize that there is no clear-cut evidence on

the relationship between size and prosperity neither as regards theory nor the empirical

analyses. Thus it is also not clear how integration that alters the size of a considered

economy affects wealth. This is a strong indicator for the fact that not all relevant

aspects have been addressed yet to understand the relationship between agglomeration,

growth, and integration and how their respective interdependencies and feedbacks shape

the economic landscape.

One starting point for further thoughts consists in following the line of reasoning of Alesina

and Spolaore (2003, 82), who argue that “whether country size matters for economic

prosperity depends on a country’s degree of integration with the rest of the world.” This

is a quite plausible argument, since, for instance, small countries like Luxembourg or

Switzerland (0.5m and 7.5m inhabitants, respectively) dispose of intensive trade relations

51Over an extraordinary long time frame though, beginning in 1,000,000 B.C., Kremer (1993) finds
support for the hypothesis of a positive link between population growth and economic growth. Notice
that this long-run time scale includes the transition of various organizational forms of economic activity
from hunter-gatherer over subsistence to nowadays industrialized economies.

52Examples are the models of Romer (1990) or Barro (1990); compare e.g. Turnovsky (2000, Chap-
ter 14) for a comprehensive overview.

53These assumptions include constant returns to scale to rivalrous factors to allow for competitive
factor markets. See Solow (1994) and Dalgaard and Kreiner (2003) for more on this.

54See Turnovsky (2000), Eicher and Turnovsky (1999) and Eicher and Turnovsky (2000) for more
details on scale and non-scale models of growth.
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and are well embedded in international value-creation networks. At the same time, land-

locked countries of larger size as e.g. Uzbekistan (27.5m inhabitants), but with little access

to world markets, are less prosperous.55

Though the argument of Alesina and Spolaore again starts at a national level, it is nearby

to relax this perspective and to analyze the role of integration for prosperity and ag-

glomeration also at a less aggregated level. It is conceivable that size may not matter

for productivity at an aggregate level, but be quite relevant at a regional scale thereby

relying on externalities associated with proximity-productivity linkages. It furthermore

clarifies that the notion of scale (in the sense of size) has to be distinguished from scale

effects, and one has to be precise by using the appropriate wording.

Scale may thus not simply be used as a synonym for population size. From the perspective

of the production conditions, scale effects are especially linked to market forms56 or various

sorts of externalities as determinants of ongoing growth.57 From a firm perspective, usually

internal and external economies of scale are distinguished. The optimal firm size is reached

whenever firms fully exploit existing internal economies of scale. In addition, there exist

external economies of scale, and both scale effects in conjunction determine whether or not

a firm decides to relocate. In this context, in particular firms that dispose of production

conditions characterized by increasing returns to scale and the associated spillovers are

important drivers for regional development. Nailing these thoughts down to a spatial

component, it seems quite plausible to assume that e.g. knowledge flows are easier realized

in places where more people are concentrated. Economies of scale are then rather linked

to the idea of density than to mere size. It is thus important through which channel

integration acts: Does it enhance the mere number of actors within the economy (scale)

or does it affect their way of interaction (scale effects)?

In what follows it is argued that integration can and should be understood in a much

broader sense than just as a reduction of trade costs and also cover, as argued within the

model presented in Section 1.3, the impact of knowledge spillovers. Integration affects

the environment of the firms in the sense that it has the power to transform size into

density the latter being quite well an agglomeration force. In doing so, integration is

especially apt to activate latent agglomeration and dispersion forces thereby shaping the

economic landscape at various levels of aggregation. Besides, integration may be deployed

more effectively as an agglomeration force if it can build upon a solid institutional base.

55In 2010 GDP per capita in Switzerland was more than four times the respective value for Uzbekistan
(Bolt and van Zanden, 2013). The population numbers are also for 2010 and are taken from United
Nations (2012, Table A.5).

56An example is the necessity of constant returns to scale of the private factor inputs so that competitive
factor remunerations are guaranteed.

57A detailed overview on different scale effects is provided by the World Bank (2009, 128) in Table 4.1
entitled ‘A dozen economies of scale’.
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So far, the role of institutions has been discussed as a fundamental cause of economic

growth both within and across economies. Our approach exactly starts at this point and

argues that the design of integration pins down the impact of institutions to a spatial

dimension and may thereby alter the effective economic scale. This might be justified as

follows: Integration affects both the size of the relevant market and the effectiveness of

local increasing returns to scale. It thereby has the power to act as a major agglomeration

force and thus has an impact on the spatial structure of economic activity at different

levels of aggregation. Being more precise, integration may alter various returns to scale

relevant for an individual firm. It acts via two separate channels. On the one hand, as

it enhances the mobility of goods, people, capital, and ideas, integration, in the sense

of higher freeness of trade also increases the size of the relevant market. On the other

hand, it also affects the firms’ environmental conditions, especially with respect to density

as integration also impacts on knowledge spillovers. Formerly latent economies of scale

might become active at a firm level, if, as a consequence of integration, a region becomes

more dense. In sum, integration is not just an additional argument accompanying the

agglomeration-growth nexus, but across time it is the key driver of spatial concentration

in growing economies. It especially becomes powerful not only as an enabler but also as

a magnifier of scale effects.

Hence, even though the empirical regularities discussed in Section 1.2 and the presented

theory in Section 1.3 are strong indicators for a co-evolution of urbanization and growth,

spatial scaling (in the sense of zooming in from continental over national and regional to

even city level) together with a differentiated analysis of the impact of integration both

requires and allows for a more sophisticated view.

One caveat concerns the missing linkage between scale and institutions and how these are

related to space; another concerns the dynamics and endogeneity of institutions. There

is a large discussion on the role of national and regional innovation systems that deals

with institutional and organizational dimensions that already address the evolution of

institutions within dynamic economies. The analysis, however, is carried out mostly

within isolated economies (compare e.g. Cooke et al. (1997)). Analogous reasonings as

regards the institutional embedding of integration and its feedback on diverse levels of

aggregation are still far from being understood in depth. What most theories do so far is

an analysis of how static and exogenously given levels of integration affect the dynamic

concepts of agglomeration and growth. However, the corresponding feedback link from

agglomeration and growth on the evolution of integration and its interpretation as an

institution that is shaped by those economies that are linked via integration is missing.

But these considerations are mandatory to understand integration as a dynamic and

endogenous concept that is linked to space. The following section even goes one step
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further and argues that if integration is interpreted as a dynamic spatial institution, the

concept and its design become a fundamental cause not only for growth but also for

agglomeration on which economic policy has a large impact. The corresponding policy

implications therefore have to accommodate these various interdependencies.

1.5 Policy Implications

The previous sections have presented a multitude of empirical facts on the issues of growth,

urbanization, and globalization and explored the connections between these also on a

theoretical level before the matters of size and scale and the role integration plays herein

have been discussed more deeply. Implications for policy have so far been delegated to

the background.

Which policy implications can be derived from the Baldwin and Forslid (2000) model?

Naturally, these depend on the particular objectives set by policy makers and how they

relate these objectives to overall welfare. For instance, a preference for a symmetric out-

come58 can be achieved by adjusting the policy variables for the costs of trading goods

and information adequately. However, as long as one neglects arguments of redistribution,

such an objective contrasts with the goal of maximizing overall real income. The techno-

logical externalities in the innovation sector imply that agglomeration of economic activity

is growth enhancing in the sense that more varieties are produced if all manufacturing

activity is located in a single region (unless λ = 1). Workers in every region and sector

gain from this increased number of varieties via the love-of-variety effect. This dynamic

gain needs to be seen alongside the static welfare loss for consumers in the periphery’s

traditional sector, which arises since these workers have to import all manufactured va-

rieties, leading to a higher price index in the peripheral region (for φ < 1). Baldwin

and Forslid (2000) demonstrate that the dynamic gains can only mitigate, but not com-

pensate the welfare losses for the workers in the periphery’s traditional sector. Hence,

starting from a symmetric equilibrium no clear-cut policy implications exist, which lead

to a Pareto improvement. The presence of the externality moreover implies that, as in

standard expanding-variety growth models, the decentralized growth rate in the Bald-

win and Forslid (2000) model is not Pareto optimal. Combining completely free trade

(i.e. φ = 1) with, for instance, a subsidy to production in the innovation sector would be

an example for a policy that leads to the socially optimal growth rate and, assuming the

starting point is the symmetric equilibrium, brings about a Pareto improvement for all

workers (Baldwin and Forslid, 2000, 323). As described above, building upon an institu-

tional foundation, policies for closer integration become more important in the process of

58Perhaps inspired by Article 72 (2) of the Basic Law for the Federal Republic of Germany, which tasks
the Federation with the “establishment of equivalent living conditions throughout the federal territory”
(see http://www.gesetze-im-internet.de/englisch_gg/ (accessed: 11 August, 2015).

http://www.gesetze-im-internet.de/englisch_gg/
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development. Along the lines of the model in Section 1.3, these fall into two categories:

Integrating policies that lead to lower costs of trading goods and integrating policies that

lower the costs of trading information. That tighter integration brings immense benefits

is highlighted by e.g. Eaton and Kortum (1996, Table 5), who note that for all OECD

countries except the US the majority of the contribution to productivity growth comes

from abroad.

Taking a step back from the model, it is evident that economic activity is spatially con-

centrated.59 This need not imply differences in living standards between regions in which

economic activity is concentrated and regions in which it is not, even though it can –

the relationship resembles an inverted U over the course of economic development (World

Bank, 2009, 74) and can be interpreted as a variant of a ‘Kuznets curve’.60 In reaction to

this situation many policy makers pursue the goal of convergence of living standards as

measured by GDP per capita. The European Union, for instance, tries to promote this

goal by allocating a significant share of its funds for cohesion policy for the period 2014-

2020 to economically lagging regions.61 It is important to keep in mind here that pursuing

economic convergence of regions does not imply striving for an equal spatial distribution

of economic activity, as this would prevent regions from benefiting from agglomeration

economies with possible negative repercussions on aggregate economic performance.62

According to the World Bank (2009, e.g. 41), economic integration is expected to resolve

the tension between the fact of concentration and the objective of convergence. However,

the utilized concept of integration is fuzzy, and the corresponding policy implications

need to be differentiated according to the scale at which the policies are applied as well

as to a country’s level of development thereby taking an implicit dynamic perspective,

which also addresses the evolution of integration and thus represents a dynamic concept.

Such an approach allows taking into consideration the relative importance of the various

agglomeration economies over the course of development and furthermore means that

policies that aim at integration within or between cities differ from policies intended to

integrate regions or nations.

59For an additional illustration of the global situation see for example: http://gecon.yale.edu/
large-pixeled-contour-globe (accessed: 11 August, 2015).

60The relationship considered here is not quite the same as the one for the original Kuznets curve,
which considered interpersonal income inequality instead of spatial inequality, though the underlying
reasoning is the same for both curves (World Bank, 2009, 293).

61Defined for this purpose as regions with a GDP per capita less than 75% of the EU-27 average.
See the European Union’s Regional Policy website for more detailed information: http://ec.europa.eu/
regional_policy/index_en.cfm (accessed: 12 March, 2014). At the national level in Germany, the
federal financial equalization system (Länderfinanzausgleich) indirectly pursues a similar objective by
utilizing a large budget to redistribute money from prosperous to weaker federal states.

62The example of the industrial policy in the former Soviet Union has demonstrated the problems with
such an approach (World Bank, 2009, 256).

http://gecon.yale.edu/large-pixeled-contour-globe
http://gecon.yale.edu/large-pixeled-contour-globe
http://ec.europa.eu/regional_policy/index_en.cfm
http://ec.europa.eu/regional_policy/index_en.cfm
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Consider, for example, the policies the World Bank (2009, 229) advocates for an urban-

ization strategy that explicitly aims at increasing density in order to foster benefits from

the proximity-productivity linkage. The report categorizes territories according to their

level of urbanization. Given incipient urbanization, characterized by a share of the urban

population of less than 25%, density is comparatively low so that policy makers’ objective

should be to enable the aforementioned agglomeration economies. In addition, at this

stage of development there is room for individual plants and firms to more fully exploit

internal returns to scale. However, the choice of policy instrument is important. Policy

makers, for instance, face a risk of favoring one place or industry over another by spatially

targeted interventions, whereas markets may assess the situation in a different light. This

may lead to inefficient economic structures, which may persist over time. Hence, a strat-

egy avoiding such an outcome would place emphasis on establishing adequate institutions

like secure property rights in land markets and provision of basic social services for health

and education without applying a spatial focus. This aspect remains important in areas

with intermediate urbanization shares of about 50%. Firms located in these areas are em-

bedded in various emerging networks where cooperation arises both within and between

different places. Through the co-location of firms in the same or closely related sectors,

these firms benefit from localization (MAR) externalities, which lead to increasing returns

to scale within the considered region. The promotion of these agglomeration economies

should be high on the policy makers’ agenda in these regions, but not the only item on

it. Investments in infrastructure are important as well in order to ease congestion and

to better integrate people and places. These policies continue to be relevant for areas of

advanced urbanization where around 75% of the population live in urban areas. Benefits

in these areas arise mostly from urbanization economies dating back to Jacobs (1969) and

which point to diversity and intense economic activity. ‘Livability’ is the watchword from

the World Bank (2009, 201) for these areas, and this could be reflected in polices that try

to reduce crime and pollution or provide amenities.

Policies should thus reflect that as an economy evolves, it passes from states with constant

returns to scale through states characterized by specialization/localization economies to

states of urbanization economies. Throughout this process of transformation, frequently

internal economies of scale turn into external economies, which then simultaneously act

as agglomeration forces for those being located in close proximity. This argument is

especially intuitive for growing agglomerations where development prepares the ground

for the gradual evolution of clusters, which on their own are specialized, but which – given

sufficient size – due to their interaction finally also allow for diversification. Integration

plays a major role herein.
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1.6 Conclusion for Chapter 1

Agglomeration, economic growth, and integration are three main aspects that characterize

recent world economic history. This chapter has highlighted the relevant empirical facts on

these and summarized how they relate to each other by presenting a model by Baldwin and

Forslid (2000) that combines two seminal models from the endogenous growth (Romer,

1990) and new economic geography literature (Krugman, 1991). A non-formal analysis

of the combined model has shown that lowering the costs of information tends to weaken

the agglomeration force that is set in motion by a lowering of trade costs. Despite these

important insights, the treatment of integration in this model is still on a very rough level.

The issue of scale in its various guises and how it is affected via integration has re-

ceived particular attention. It has been demonstrated that the presence of agglomeration

economies possibly depends on the level of aggregation (continent, nation, region, city,

district). Analyzing this issue in more depth and investigating the presence of possible

threshold effects seems to be worthwhile. Major weaknesses are that the degree of inte-

gration is exogenously given in most analyses and thus does not allow for either economic

development or structural change or spatial scaling. Especially in dynamic economies

where the economic landscape is shaped by the interactions of growth and agglomeration

such a perspective of integration is much too simplistic. Integration in a comprehensive

sense goes far beyond being the mere enabler and magnifier of mobility of various items.

It also implies changes in the organization of economic processes at a spatial scale as it

changes the way in which different agents in a system relate to each other. The design

of integration thus complements the respective institutional settings of interacting ter-

ritories. Due to the dynamic environments, also integration itself evolves and becomes

a dynamic and endogenous concept. Future research thus requires a far more precise

view on the endogenous determination and evolution of integration and how this inter-

acts within supra-national, national and regional institutional settings thereby shaping

the economic landscape. Integration should be clearer understood as a process that itself

undergoes dynamic changes, too. As the economy evolves, also the design of the prevailing

integration mechanism has to be continuously adjusted. In doing so, the respective level

of agglomeration at which integration becomes active has to be considered as well as the

dynamic characteristics of the investigated economic spaces.



Chapter 2: Knowledge Spillovers:

On the Impact of Genetic Distance

and Data Revisions63

2.1 Introduction to Chapter 2

Countries do not develop in isolation from each other, but are connected and interact

in many different ways. A key aspect of this interdependence concerns technology, in

particular technological knowledge spillovers. Accounting for this technological interde-

pendence both on an empirical and theoretical level requires a notion of how to model

the interaction between countries. Empirical evidence suggests that knowledge spillovers

decline with the distance in geographic terms between countries (Keller, 2002, 136). This

insight has, for instance, been picked up by Ertur and Koch (2007), who develop a the-

oretical model of economic growth that incorporates technological knowledge spillovers

between countries. In the empirical part of their paper, they employ a specification,

which qualitatively replicates the effect identified by Keller (2002).

However, geographic distance is only one possible measure to model interaction between

countries. The concept is more general and encompasses “any kind of network structure”

(Ertur and Koch, 2011, 236). For example, data on genetic distance, which is defined as

the time, since two populations have shared a common ancestor (Spolaore and Wacziarg,

2009, 470), can be used to build this structure.

The general possibility of implementing this concept in this way is noted briefly by Ertur

and Koch (2011, 236-237, 249), and it follows as Spolaore and Wacziarg (2009) demon-

strate that genetic distance has an effect on cross-country income differences. They pro-

pose the following mechanism for this result and also provide empirical evidence consistent

with it:64 Within populations, characteristics like habits, implicit beliefs or conventions

63Chapter 2 has been published in similar form as Working Paper No. 74 in the Working Paper Series
in Economics at KIT (Deeken, 2015a). An abridged version of this chapter is also available on the website
of the XVIII Applied Economics Meeting in Alicante (http://www.alde.es/encuentros/trabajos/d/
pdf/156.pdf (accessed: 19 August, 2015)).

64It needs to be pointed out though that their empirical results are not uncontroversial, and have, for
instance, been challenged by Campbell and Pyun (2015).

http://www.alde.es/encuentros/trabajos/d/pdf/156.pdf
http://www.alde.es/encuentros/trabajos/d/pdf/156.pdf
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are transmitted across generations biologically and culturally, and genetic distance can be

viewed as a summary statistic that picks up a divergence across populations in characteris-

tics that are slowly changing over time (see, also Spolaore and Wacziarg (2015)). The next

step in their argument is the assumption that these differences in characteristics between

populations introduce barriers to communication and understanding which then hinder

the diffusion of technology. Hence, by using genetic distance, this chapter contributes to

the literature by providing an important robustness check for the empirical results in the

influential model by Ertur and Koch (2007) which relies on geographic distance to model

interaction.

A further motivation for employing data on genetic distance is that this approach captures

interactions between economies that geographic distance is missing. For instance, Lindner

and Strulik (2014, 18) note (without any reference to genetic distance) that it might be

the case that knowledge exchange between the United States and the United Kingdom is

higher than between the United States and Guatemala even though geographic distance

would suggest otherwise. By modeling interaction through genetic distance instead of

geographic distance however, stronger knowledge spillovers between the United States

and the United Kingdom compared to between the United States and Guatemala would

be in line with the data on genetic distance, as the United States and United Kingdom

populations are genetically closer to each other than the ones in the United States and

Guatemala.

The second contribution of this chapter is the assessment of the robustness of the results by

Ertur and Koch (2007) to data revisions. In their econometric analysis, they rely on data

from Penn World Table (PWT) Version 6.1 (Heston et al., 2002). Since the publication

of their article, newer versions of the PWT have become available, and in each update

the data has been revised. Ideally, empirical results should be robust to different versions

of the PWT. However, this is not a foregone conclusion, and Ponomareva and Katayama

(2010) find that conclusions from cross-country growth studies might change even for

the same period and units of observation, depending on the version of the PWT. More

recently, Johnson et al. (2013) have also investigated this issue. They find that some

data revisions have been relatively minor. For instance, the average growth rate of GDP

over the period 1975-1999 for Morocco was 1.6% when calculating it using PWT 6.1 and

1.7% when basing the calculations on PWT 6.2 (Johnson et al., 2013, Table 1). Other

revisions were drastic, showing high variability in the estimates, as exemplified by the

case of Equatorial Guinea. Taking the data from PWT 6.1, its average GDP growth

rate in the period 1975-1999 was −2.7%, making it the worst performing of 40 African

countries that are covered in both PWT 6.1 and 6.2. On the other hand, for the data from

PWT 6.2 its average GDP growth rate over the same period was 4%, thereby becoming the
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second-best performer in the list of 40 African countries after Botswana (Johnson et al.,

2013, 255-256). Hence, the fact that robustness to different versions is an issue for some

studies is not too surprising. However, they also argue, based on the results of a series

of replication exercises for prominent articles investigating economic growth that results

from cross-sectional estimations tend to be robust to changing the version of the PWT

(Johnson et al., 2013, 273). This chapter investigates whether this is also the case for the

results in Ertur and Koch (2007) by estimating the model for the same set of countries

and the same time period (1960-1995), but with data taken from PWT Versions 6.2 and

7.1. The importance of checking the robustness of a study’s results to data revisions has

also been highlighted, for example, in the debate on the relationship between public debt

levels and economic growth (see Reinhart and Rogoff (2010) and Herndon et al. (2014)).

In this regard, the implications for providing policy advice based on results that are, for

instance, sensitive to the specific version of the data set that is used, cannot be neglected.

Policy makers’ awareness of this issue needs to be raised.

The third contribution of this chapter lies in the quantification of the strength of the

indirect (spillover) effects from, for instance, physical capital investment on steady-state

per capita income in the model by Ertur and Koch (2007). In the original study, only

the magnitude of the direct effects is presented. New methods have been developed by

LeSage and Pace (2009) that are applied here which allows for providing important results

concerning knowledge spillovers which are not highlighted in Ertur and Koch (2007).

This chapter is organized as follows: Section 2.2 introduces the concept of genetic dis-

tance. The following section briefly motivates the need to incorporate knowledge spillovers

in theoretical models, introduces the concept of spatial dependence and provides indica-

tive evidence for its existence before presenting the model by Ertur and Koch (2007) in

detail. In Section 2.4, the empirical specification and estimation strategy are discussed,

and Section 2.5 presents and discusses the estimation results. Section 2.6 concludes this

chapter.

2.2 Genetic Distance

Genetic data is increasingly used in economic studies.65 Nonetheless, a brief summary of

relevant concepts might be helpful in order to better understand the measure of genetic

distance employed in the empirical part of this chapter. A gene, i.e. a string of DNA

encoding a protein, can exist in numerous forms, and a particular form of this gene

is called an allele (Giuliano et al., 2014, 182). Individuals with different alleles may

have different observable (phenotypic) traits, for instance, eye color; although different

65See, for instance, Spolaore and Wacziarg (2009), Giuliano et al. (2014), Desmet et al. (2011) or
Ashraf and Galor (2013).
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alleles between individuals need not result in different observable characteristics (ibid.).

It is important to note that the frequency of alleles is not constant across populations,

as this is the information used to calculate measures of the genetic distance between

populations (Spolaore and Wacziarg, 2009, 480). In principle, on which particular genes’

allelic frequency66 this computation is based would not matter. In practice, however, the

measure is based on neutral genes. These are genes that do not endow an individual with

a selective advantage (Giuliano et al., 2014, 182). This implies that the measure of genetic

distance provides no information about specific genes that have a direct impact on fitness

and survival or income and productivity (Spolaore and Wacziarg, 2009, 470).

The particular index of genetic distance mainly considered in this chapter, FST distance,

measures the probability that the alleles for a gene selected at random from two popu-

lations will be different (Spolaore and Wacziarg, 2009, 481).67 For identical allele distri-

butions this index equals zero, and it increases with differences in the distributions.68 As

Spolaore and Wacziarg (2009) argue, these allele differences increase due to the presence

of random (or genetic) drift. This concept may be illustrated through an example by

Masel (2011, R837): Imagine a population of 5,000 people in which, due to the general

diploid nature of human somatic cells (the gametes, ovum and sperm, in contrast, are

haploid), 10,000 copies of each gene exist.69 If now, for instance, 3,000 of those copies are

of a particular form or allele, then in the next generation there might be more or fewer

than 3,000 copies, as out of all possible gametes, only some are randomly picked out.

When populations become separated, and for constant drift rates (see Kimura (1968) for

evidence on this), genetic distance can then be used to measure the time that has passed,

since populations have become separated (or, in other words, their degree of genealogical

relatedness). It is in this sense that genetic distance can be understood as the time that

has elapsed, since populations have shared a common ancestor. Spolaore and Wacziarg

(2009, 470-471) furthermore hypothesize that populations that are genetically more dis-

tant, have diverged more strongly in characteristics that are variably transmitted across

generations, like habits, norms, or implicit beliefs, and that this divergence hinders, for

instance, communication and understanding and thereby creates barriers to the diffusion

of development or technology. Applying this line of thought to the example mentioned in

66A database on allele frequencies is available under: http://alfred.med.yale.edu (accessed: 11 Au-
gust, 2015).

67Data from Spolaore and Wacziarg (2009) on an index with different theoretical properties, Nei’s
distance (see Nei (1972) and Cavalli-Sforza et al. (1994)), which however is highly correlated with FST

distance, will be used to assess the robustness of the empirical results as well.
68This index from Cavalli-Sforza et al. (1994) uses the frequency of 128 alleles that are related to

45 genes, which fulfill the conditions that they are both selectively neutral and easy to collect (Giuliano
et al., 2014, 183).

69A human cell is called haploid if its nucleus has a single set of 23 chromosomes and it is diploid if
its nucleus has a double set of 23 chromosomes.

http://alfred.med.yale.edu
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the introduction: The United States are genetically closer to the United Kingdom than

to Guatemala (the pairwise genetic distances are 0.033 and 0.091, respectively) so that

with regard to this concept fewer barriers to knowledge diffusion should exist between the

United States and the United Kingdom than between the United States and Guatemala.70

Note that the stated genetic distances in this example are weighted FST genetic distances,

which take into account that some countries, like the United States or Australia, consist

of genetically distant subpopulations (see Spolaore and Wacziarg, 2009, 484-485).71

2.3 Spatial Dependence and Model Setup

This section motivates the need for including technological interdependence across geo-

graphical regions in theoretical models and introduces the spatial Solow model as it was

developed by Ertur and Koch (2007). Section 2.3.1 develops the concept of spatial depen-

dence and illustrates the concept with a brief example. Section 2.3.2 describes in detail

the specification of technological progress and technological interdependence in this model

before Section 2.3.3 investigates the transition dynamics and derives an equation for the

steady-state income per worker.

2.3.1 Spatial Dependence

Knowledge spillovers have been discussed by economists for quite a long time, going back

to Marshall (1890). His description of these effects was completely verbal however, and

the first attempts to incorporate these effects within a theoretical model are due to Arrow

(1962) and Romer (1986). These authors made the assumption that knowledge generated

in a single firm is not confined to this particular firm, but might spill over to other firms

in a given geographical region as knowledge is considered a non-rival input. While this is

an improvement on earlier models like the one by Solow (1956), it remains unclear why

knowledge diffusion should stop at a given border. Learning-by-doing, for instance, can

result as a by-product of mergers and acquisitions, be a result of interfirm cooperation or

the meeting of different people at conferences and seminars (Fischer, 2011, 420). None

of these activities is necessarily confined within an arbitrary geographical unit. With

respect to physical capital externalities, for example, López-Bazo et al. (2004, 44), note

that “there is no a priori reason to constrain spillovers within the barriers of the economy

where the agent making the investment is located”. Diffusion of these knowledge spillovers

across boundaries can then be viewed as a spatial externality, implying that, for instance,

70Considering geographic distances between the country capitals suggests that Washington, D.C. is
closer to Guatemala City (distance = 3,007km) than to London (distance = 5,909km). See Equation
(B.5) in Appendix B.2 for the general formula to calculate these distances.

71See Appendix B.1 for a formal definition of FST genetic distance. The formula for the weighted
version is provided in Equation (B.3).
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the economic development of neighboring countries is related. Before presenting how

this effect is picked up in a theoretical model, the concept of spatial dependence will be

introduced to provide indicative evidence for the relevance of these spatial externalities.

As countries interact with each other in numerous ways, it is straightforward to assume

that the development of one country may be influenced by the development of nearby

countries. This latter idea is captured in the (spatial) econometric literature by the

concept of spatial dependence. More precisely, spatial dependence captures situations in

which the values observed in e.g. country i depend on the values observed in neighboring

countries (see LeSage and Pace, 2009, 2).

As an example consider Figure 2.1, which depicts total factor productivity (TFP) levels

relative to those of the United States for 110 countries for the year 2007 in shades of

green. Visual inspection of this figure suggests that the TFP levels are not distributed

TFP Relative to US in 2007

< 0.6

0.6 - 0.8

0.8 - 1

> 1

No data

Figure 2.1: Total Factor Productivity Relative to the United States for 110 Countries in 2007 (Data
from Feenstra et al., 2013b).

randomly. Countries with comparatively low TFP levels (less than 80% of the value for

the United States) are, for instance, concentrated in South America, southeastern Europe

or east and southeast Asia, whereas regions with higher TFP levels (above 80% of the

level in the United States) can be found in northwestern Europe.

An alternative visualization of these data is provided by a Moran scatterplot in Figure 2.2.

When interpreting this figure, it is important to note that the variables are in deviations-

from-the-mean form. The meaning of the variable “Spatial Lag of TFP” on the ordinate

might not be immediately clear. In general, a spatial lag is a weighted average of the
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Figure 2.2: Moran Scatterplot of TFP Relative to the United States for 110 Countries in 2007
(Data from Feenstra et al., 2013b).

Note: The variables are in the form of deviations from the mean so that the value 0 on the abscissa
is equivalent to the mean value of 0.685.

values for a variable from countries that are neighbors to country i (see LeSage and Pace,

2009, 8).72

The Spatial Lag of TFP on the ordinate in Figure 2.2 thus has the interpretation that

for a given observation i, this variable shows the deviation of the TFP for country i from

the mean of TFP of its neighbors. Hence, in the lower left quadrant of the figure, one

finds countries for which not only their own TFP is below the mean, but also the TFP of

its neighbors is below the mean. Whereas, in the upper right quadrant countries cluster

whose own TFP as well as the one of its neighbors is above mean.73

Figures 2.1 and 2.2 have provided indicative evidence of spatial dependence (or spatial

autocorrelation) in country-level data. Theoretical models should therefore not disregard

72For expository reasons the term “neighbor” will be slightly abused in this section. In fact, in the
calculation of the spatial lag of TFP for country i, all countries for which data is available are included and
not only neighboring countries. However, countries that are geographically closer to country i receive
a higher weight in the calculation of the spatial lag. The precise formal specification of this idea is
provided in Section 2.5.1. Note that countries whose TFP levels exceed those of the US are mainly oil-
rich countries, like Saudi Arabia, Qatar (QAT) or Kuwait (KWT) for which TFP will be overstated as
data is lacking to include also “subsoil assets” in the underlying methodology (see Feenstra et al. (2013a,
35-36) and Inklaar and Timmer (2013)) as well as Singapore or the Special Administrative Regions of
Hong Kong and Macao.

73Note that this result of spatial dependence is not particular to country-level data. Looking, for exam-
ple, at the distribution of the TFP levels of European NUTS 2 regions gives a similar result (Derbyshire
et al., 2011).
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this characteristic of the data, but instead try to represent it. The following section shows

one possible way to achieve this.

2.3.2 Specification of Technological Progress

The aggregate production for each country i = 1, . . . , N at time t in the model developed

by Ertur and Koch (2007) is described by the Cobb-Douglas production function

Yi(t) = Ai(t)Ki(t)
αLi(t)

1−α with 0 < α < 1 (2.1)

where output, Yi(t), is produced with the three input factors labor, Li(t), physical capital,

Ki(t) and technology, Ai(t). This function is linearly homogenous in the two input factors

capital and labor and thus has constant returns to scale with respect to these two factors.

The aggregate level of technology in country i is described by

Ai(t) = Ω(t)ki(t)
φ

N∏
j 6=i

Aj(t)
γwij . (2.2)

Basically, overall technological progress is assumed to be due to three different factors in

Equation (2.2) which are (imperfect) substitutes. The first factor, Ω(t), reflects exogenous

(Harrod-neutral) technological progress as modeled in the original contributions by Solow

(1956, 85) and Swan (1956). In formal terms, this is captured by the equation

Ω(t) = Ω(0)eµt,

with µ as the constant rate of technological progress and Ω(0) the initial level.

The second term models the influence of the physical capital per worker, ki(t) = Ki(t)
Li(t)

,

on aggregate technology in country i. The level of technology increases with the level of

capital per worker ki(t), modeling the assumption that physical capital externalities exist

in general. Their strength is governed by the parameter φ for which 0 ≤ φ < 1 holds so

that perfect knowledge spillovers from a capital investment in a given firm in country i

to the remaining firms in this country are ruled out, as diffusion is not frictionless and

some knowledge is “lost in transmission”. The assumption that all firms in a country

gain a higher level of technology, if one firm increases its physical capital per worker is

due to Arrow (1962) and Romer (1986). As has been mentioned above, the assumption

that these knowledge spillovers should be constrained within a single region or country is

tenuous. Why should knowledge diffuse only within a country but not across countries?
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The strength of the spillovers might be dampened (and there is indeed empirical evidence

to that extent74), but they should be present nonetheless.

The third factor in Equation (2.2) picks this up. From a formal perspective, this factor

is a weighted geometric mean of the level of technology in all countries j = 1, . . . , N con-

nected to country i. The strength of these cross-border spillovers or spatial externalities

is governed by two factors. The parameter γ, for which 0 ≤ γ < 1 holds, gauges which

fraction of knowledge generated in, for example, country j′ spills over into country i. This

value is the same for all units of observation. The second factor concerns the weights

wij. In general, these are allowed to differ across countries, and they specify the way in

which countries are connected to each other. It is important to note that how strong

country i benefits from knowledge spillovers depends on the way it is connected to all

other countries under consideration. This implies that the net effect on a country’s level

of technology due to spatial spillovers will differ across countries. For a given degree of

spillovers, relatively isolated countries will benefit less than more integrated countries.

With respect to the spatial weights, it is assumed that these are non-negative, which

leaves open the possibility that countries might not be connected to each other at all so

that spatial externalities are absent between particular pairs of countries, non-stochastic,

implying that the weights are fixed over time, and finite. In addition, the weights wij lie

in the interval [0, 1] and for i = j wij = 0 holds, excluding the case of self-influence. Fi-

nally, the weights sum to one.75 Summarized, the spatial weight matrix or more generally

interaction matrix, W, is thus row-stochastic (LeSage and Pace, 2009, 9-10).76

Applying the natural logarithm to Equation (2.2), it can be rewritten as

lnAi(t) = ln Ω(t) + φ ln ki(t) + γ

N∑
j 6=i

wij lnAj(t). (2.3)

74See, for example, Keller (2002), who estimates that at a distance of about 1,200 kilometers from the
country in which the knowledge originates, 50% is still available.

75On the assumptions for the spatial weights see Ertur and Koch (2007, 1036, Footnote 2) and Fischer
and Wang (2011, 20).

76An illustration of two spatial weight matrices is given in Appendix B.2, which also describes the
calculation of the spatial weights based on great circle distances between country capitals in detail.
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Stacking the equations for all countries i = 1, . . . , N at time t, the level of technology can

be expressed as
lnA1(t)

...

lnAN(t)


︸ ︷︷ ︸

=A
(N×1)

=


ln Ω(t)

...

ln Ω(t)


︸ ︷︷ ︸

=Ω
(N×1)

+φ


ln k1(t)

...

ln kN(t)


︸ ︷︷ ︸

=k
(N×1)

+γ


w11 · · · w1N

...
. . .

...

wN1 · · · wNN


︸ ︷︷ ︸

=W
(N×N)

·


lnA1(t)

...

lnAN(t)


︸ ︷︷ ︸

=A
(N×1)

(2.4)

⇐⇒ A = Ω + φk + γWA.

Given that spatial dependence is positive, γ 6= 0, and that the inverse (I−γW )−1 exists77

the previous equation is equivalent to

A = (I − γW )−1Ω + φ(I − γW )−1k. (2.5)

From this expression, it follows that the level of technology for a given country i can be

written as

Ai(t) = Ω(t)
1

1−γ ki(t)
φ

N∏
j=1

kj(t)
φ
∑∞
r=1 γ

r(W r)ij (2.6)

where (W r)ij are the individual entries in row i and column j of the matrix W taken

to the power of r. Since the derivation of Equation (2.6) is not immediately obvious,

important intermediate results are provided in Appendix B.4.1. In particular, it is proved

that the inverse matrix (I−γW )−1, which is also called the inverse spatial transformation

(Le Gallo, 2014, 1515), can be written as an infinite series, i.e.

(I − γW )−1 =
∞∑
r=0

γrW r.

With respect to Equation (2.5), it follows then that the level of technology in every country

is correlated with the level of technology in every other country and closer countries are

more closely related.78 The effect of the inverse spatial transformation is often referred to

as the spatial multiplier effect (see, for example, Ertur and Koch (2007, 1044) or Le Gallo

(2014, 1515)).

77This inverse exists if 1
γ is not an eigenvalue of the spatial weight matrix. However, it is not necessarily

guaranteed that the inverse exists for the parameter space for γ assumed here. See Appendix B.3 for a
proof that the inverse exists in this case as well.

78As Anselin (2003, 155) mentions in a slightly different context, which is nonetheless applicable here,
this is in effect a reformulation of the first law of geography by Tobler, which states that “everything is
related to everything else, but near things are more related than distant things” (1970, 236).
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The results derived with respect to the level of technology are helpful in rewriting the

production function. This function exhibits constant returns to scale in capital and labor,

which implies that Equation (2.1) can be written in per capita terms

yi(t) = Ai(t)ki(t)
α (2.7)

where yi(t) = Yi(t)
Li(t)

. Inserting the expression for the level of technology in Equation (2.6)

into the per worker production function leads to

yi(t) = Ω(t)
1

1−γ · ki(t)α+φ(1+
∑∞
r=1 γ

r(W r)ii) ·
N∏
j 6=i

kj(t)
φ
∑∞
r=1 γ

r(W r)ij .

Now define

uii ≡ α + φ

(
1 +

∞∑
r=1

γr(W r)ii

)
and uij ≡ φ

∞∑
r=1

γr(W r)ij (2.8)

and substitute for the exponents of physical capital per worker so that the per worker

production function can be written more compactly as

yi(t) = Ω(t)
1

1−γ · ki(t)uii ·
N∏
j 6=i

kj(t)
uij . (2.9)

From this function it can be seen that in contrast to the standard Solow model, the model

presented here implies heterogeneity in the social elasticities of income per worker with

respect to capital per worker. If, for instance, country i increases its own stock of physical

capital per worker, the social return (or elasticity) is79

∂yi(t)

∂ki(t)

ki(t)

yi(t)
= uii.

In case all countries except country i simultaneously increase their stocks of physical

capital per worker, then the corresponding elasticity is

N∑
j 6=i

∂yi(t)

∂kj(t)

kj(t)

yi(t)
=

N∑
j 6=i

uij.

79The term social in contrast to private is warranted in this case, as the elasticity calculated here
includes the physical capital externalities, φ, within a country (see the definitions in Equation (2.8)).
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Hence, if all countries i = 1, . . . , N together increase their stocks of physical capital per

worker, then

∂yi(t)

∂ki(t)

ki(t)

yi(t)
+

N∑
j 6=i

∂yi(t)

∂kj(t)

kj(t)

yi(t)
= uii +

N∑
j 6=i

uij = α +
φ

1− γ
< 1 (2.10)

is the social output elasticity per worker in the situation in which all countries simul-

taneously increase their capital stock per worker.80 The inequality α + φ
1−γ < 1 is an

assumption made by Ertur and Koch (2007, 1037), since otherwise the per worker pro-

duction function in Equation (2.9) would not have decreasing returns to (all) physical

capital, and the model would exhibit endogenous growth.

2.3.3 Transition Dynamics and Steady State

Capital accumulation is described by the fundamental dynamic equation of the Solow

model, i.e.

k̇i(t) = siyi(t)− (ni + δ)ki(t) (2.11)

where k̇i(t) = dki(t)/dt denotes a time derivative, si is the country specific constant saving

rate (the fraction of output invested in physical capital), ni is the constant growth rate

of labor for country i, and δ is the depreciation rate, which is assumed to be identical for

all countries.

Due to the decreasing returns to capital per worker (it holds that 0 < α < 1, see Equation

(2.1)), ki(t) converges monotonically to its steady-state value or value on the balanced

growth path, k∗i (t).
81 When this value is reached, capital (and by implication output)

80The result before the inequality follows since

uii +

N∑
j 6=i

uij = α+ φ+ φ

∞∑
r=1

γr(W r)ii +

N∑
j 6=i

φ

∞∑
r=1

γr(W r)ij

= α+ φ

1 +

N∑
j=i

·
∞∑
r=1

γr(W r)ij

 .

The matrices W r are Markov matrices, and in this case it is the rows that sum to one, meaning that∑N
j=iW

r
ij = 1∀ r so that uii +

∑N
j 6=i uij = α + φ (1 +

∑∞
r=1 γ

r) , and the term in parentheses can be

rewritten as 1 +
∑∞
r=1 γ

r = 1 +
∑∞
r=1 γ

r + γ0 − γ0 = 1 +
∑∞
r=0−γ0 = 1

1−γ . With this result, the social
returns are

uii +

N∑
j 6=i

uij = α+
φ

1− γ
.

81Similar to Fischer (2011, 425), the balanced growth path is defined as a situation in which the
physical capital per worker grows at rate g, the investment rate for physical capital, the employment
growth rate and the growth rate of the exogenous part of technology are constant.
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per worker grow at the balanced growth rate g = µ [(1− α)(1− γ)− φ]−1.82 This rate

increases if, for instance, φ, the parameter indicating the strength of knowledge spillovers

within a country, increases or if γ increases so that knowledge spillovers between countries

are stronger.83

The steady-state value k∗i (t) can be calculated by noting that from Equation (2.11) on

the balanced growth path

g = si
y∗i (t)

k∗i (t)
− (δ + ni) ⇐⇒ k∗i (t) =

si
ni + δ + g

y∗i (t) (2.12)

holds. Inserting Equation (2.9) into the right-most expression above and solving for k∗i (t)

yields

k∗i (t) = Ω(t)
1

1−γ(1−uii)

(
si

ni + δ + g

) 1
1−uii

N∏
j 6=i

(
k∗i (t)

) uij
1−uii .

The steady-state value of real income per capita in country i, y∗i (t), can be derived by first

taking the logarithm of the production function in Equation (2.7), writing it in matrix

form (compare Equation (2.4)) to obtain

y∗ = A∗ + αk∗,

where the asterisks denote steady-state values, and then inserting the expression for A

from Equation (2.5) evaluated at steady state therein and finally solving for y∗, which

yields

y∗ = Ω + (α + φ)k∗ − αγWk∗ + γWy∗.

Writing this equation for a single country i at time t results in

ln y∗i (t) = ln Ω(t) + (α + φ) ln k∗i (t)− αγ
N∑
j 6=i

wij ln k∗j (t) + γ
N∑
j 6=i

wij ln y∗j (t). (2.13)

82The rate can be calculated by taking the derivative of Equation (2.13) with respect to time, then
using ln k∗i (t)/dt = g = ln y∗i (t)/dt, and solving the derivative for g.

83These results hold due to the inequality α+ φ
1−γ < 1.
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Inserting now the expression for the capital-output ratio on the balanced growth path

from Equation (2.12) into this expression and solving for y∗i (t) leads to the final result

ln y∗i (t) =
1

1− α− φ
ln Ω(t) +

α + φ

1− α− φ
ln si

− α + φ

1− α− φ
ln(ni + g + δ)− αγ

1− α− φ

N∑
j 6=i

wij ln sj

+
αγ

1− α− φ

N∑
j 6=i

wij ln(nj + g + δ) +
γ(1− α)

1− α− φ

N∑
j 6=i

wij ln y∗j (t).

(2.14)

In line with the standard Solow model, this equation states that the per worker income

in steady state in country i is positively influenced by an increase in its own saving rate,

si, since an increase in savings leads to more investment and a higher capital stock per

worker, which in turn leads to a higher per worker income in steady state. Increases in

the labor force (note that g and δ are constant) reduce steady-state income, since for a

given saving rate the capital stock must now be spread over more workers so that k∗i (t)

falls, implying a decrease of y∗i (t). In addition to these standard effects, Equation (2.14)

suggests that the steady-state value also depends negatively on increases in the saving

rates of the other countries and positively on the increases in the population growth rate

and steady-state levels of the remaining countries. Why this should be the case is not

immediately obvious. However, at this point it needs to be taken into account that the

steady-state values in the neighboring countries of i depend, for instance, positively on

their own saving rates. Higher capital stocks in neighboring countries lead to a higher

level of technology in these countries (see Equation (2.2)). A fraction of this knowledge

spills over into country i, which therefore benefits via these spatial externalities. The

elasticity ηisj of income per worker in steady state in country i with respect to the saving

rate in the neighboring countries is given by84

ηisj =
φ

(1− α)(1− α− φ)

∞∑
r=1

(W r)ij

[
γ(1− α)

1− α− φ

]r
. (2.15)

This expression is clearly positive (compare Equation (2.10)). The corresponding elasticity

with respect to population growth, ηinj , equals the expression above with a negative sign.

A further point to note is that the effect on a country’s per capita income from increasing

84See Appendix B.4.2 for the derivation.
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its own saving rate (or decreasing its own population growth rate) is higher in this model

than in the standard Solow model. This elasticity is given by

ηisi =
α + φ

1− α− φ
+

φ

(1− α)(1− α− φ)

∞∑
r=1

(W r)ii

[
γ(1− α)

1− α− φ

]r
. (2.16)

The reason is that the knowledge generated by the increase in the capital stock per worker

diffuses to the neighboring countries, leading to a higher income per worker in these

countries, which again has a positive impact on the income per worker in country i. This

feedback effect follows from the model’s setup, since even though the diagonal entries of

the spatial weight matrix W are zero, this is not the case for higher orders of the matrix,

as, for instance, each country is a second-order neighbor to itself or in other words a

neighbor to its first-order neighbor (see LeSage and Pace, 2009, 9).

2.4 Empirical Specification, Estimation Strategy, and

Model Interpretation

This section presents details on the empirical specification of the model from Section 2.3,

develops the spatial econometric estimation strategy, and addresses the interpretation of

parameters from the estimation. It will first be shown that ordinary least squares (OLS)

estimators of the model’s parameters are biased and inconsistent. Thereafter, maximum

likelihood estimators (ML) will be presented as an alternative to OLS.

2.4.1 Econometric Specification of the Model

Equation (2.14) from Section 2.3 has the empirical counterpart at t = 0 (both the time

index and the star to indicate the steady-state value of per worker income are now dropped

to enhance readability)

ln yi = β0 + β1 ln si + β2 ln(ni + g + δ) + θ1

N∑
j 6=i

wij ln sj

+ θ2

N∑
j 6=i

wij ln(nj + g + δ) + ρ
N∑
j 6=i

wij ln yj + εi

(2.17)

where 1
1−α−φ ln Ω(0) = β0 + εi for i = 1, . . . , N and β0 is a constant and εi is a country-

specific shock. From the development of the theoretical model, the empirical specification

above implies the following constraints on the coefficients β1 +β2 = 0 and θ1 + θ2 = 0 (see

Equation (2.14)).
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In matrix form, Equation (2.17) is equivalent to85

y = ιNβ0 +Xβ +WXθ + ρWy + ε. (2.18)

and the definitions of the respective variables are in order of appearance in the equation

above provided in the list below

y is an N × 1 vector of real income per worker in logarithms,

ιN is an N × 1 vector of ones,

β0 is a scalar (constant parameter),

X is an N × 2 matrix of the exogenous explanatory variables (investment rate and

population growth rate) in logarithms for the N observations,

β is a 2× 1 vector [β = (β1, β2)′] of the regression parameters for the investment rate

and population growth rate,

W is the N ×N spatial weight matrix in row-standardized form,

WX is the N × 2 matrix of the spatially lagged explanatory variables,

θ is a 2× 1 vector [θ = (θ1, θ2)′] of the regression parameters for the spatially lagged

explanatory variables,

ρ is the spatial autoregressive coefficient, ρ = γ(1−α)
1−α−φ ,

Wy is an N × 1 vector representing the spatially lagged endogenous variable,

ε is an N × 1 vector of errors, for which the assumption of normal and identical

distribution with mean zero and variance σ2I holds, i.e. ε ∼ N (0, σ2I).

Equation (2.18) includes spatial lags of both the endogenous variable and the explanatory

variables on the right-hand side. This specification is called a Spatial Durbin Model

(SDM) (see e.g. Anselin, 1988b, 111). By redefining Z = [ιNXWX] and δ = [β0,β,θ]′,

this model can be rewritten as (see, for instance, LeSage and Pace, 2009, 46)

y = ρWy +Zδ + ε (2.19)

85The notation here and in the list below follows Fischer (2011) and thus differs slightly from the one
in Ertur and Koch (2007). The reason for this is to be precise and clear in the notation. In particular,
by using the notation in Fischer (2011), having X denote two different matrices depending on context,
is avoided.
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which is a spatial autoregressive (SAR) model. This specification will be used to demon-

strate that the OLS estimates are biased and to derive the ML estimates for this model.86

In reduced form (i.e. solved for the endogenous variable), the specification in Equation

(2.19) can be expressed as87

y = (I − ρW )−1Zδ + (I − ρW )−1ε.

This specification implies that the spatial lag of the endogenous variable and the error

term are correlated with each other, as

Cov[(Wy), ε] = E[(Wy)ε′]− E[Wy] = W (I − ρW )−1σ2

so that the OLS parameter estimators are biased and inconsistent (Davidson and Mac-

Kinnon, 2004) and an alternative estimation strategy is thus necessary.

2.4.2 Estimation Strategy

Given these problems, LeSage and Pace (2009, 45) note with reference to Lee (2004)

that maximum likelihood is a viable alternative to OLS.88 Assuming that the errors are

normally distributed, the specification in Equation (2.19) has the following log-likelihood

function.

lnL(y; δ, ρ, σ2) =− N

2
ln(2π)− N

2
ln(σ2) + ln |I − ρW |

− 1

2σ2
[(I − ρW )y −Zδ]′ [(I − ρW )y −Zδ] .

Finding the maximum for this function requires calculating the partial derivatives with

respect to all parameters, setting these necessary conditions equal to zero, and solving the

system for the parameters. Instead, yielding identical results, this multivariate optimiza-

tion problem can be reduced to a univariate optimization problem by concentrating the

log-likelihood function with respect to the parameters δ and σ2 (LeSage and Pace, 2009,

47). This concentrated log-likelihood function depends, in addition to the sample data,

only on the single parameter ρ and is given by

lnL(y; ρ) = −N
2

[ln(2π) + 1] + ln |I − ρW | − N

2
ln

[
(êO − ρêL)′(êO − ρêL)

N

]
(2.20)

86The SAR model is nested in the SDM model and so with the above rewriting their likelihood functions
coincide (LeSage and Pace, 2009, 46). Using the SAR model here is simply done to save on notation.

87Note that this only holds if (I − ρW ) is non-singular. See Appendix B.3 for the proof.
88Other approaches like instrumental variables (IV), generalized methods of moments (GMM) or

Bayesian Markov Chain Monte Carlo (MCMC) might be alternatives (see Elhorst, 2010, 15).
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where êO are the estimated residuals from a regression of y on Z and êL those from a

regression of Wy on Z (see Fischer, 2011, 427). Maximizing Equation (2.20) yields a ML

estimate ρ̂, which can then be used to compute the ML estimates δ̂ and σ̂2.

2.4.3 Model Interpretation

Due to the presence of the spatial lagsWX andWy in Equation (2.18), the interpretation

of the parameters is a bit more complicated than in standard linear regression models,

since the feedback effects mentioned in Section 2.3.3 need to be taken into account. The

partial derivatives of Equation (2.18) with respect to, for example, the investment rate,

are given by
∂y

∂X ′
1

= (I − ρW )−1 (Iβ1 +W θ1) . (2.21)

This expression is an N ×N matrix, which represents the non-linear impacts on all coun-

tries that result from a change in the investment rate in any country (Fischer, 2011). As

LeSage and Pace (2009, 36) point out, in general the impact of a change in an explanatory

variable in this type of model will not be identical across all observations. Therefore, they

suggest a summary measure of these differing impacts. The row sums in the matrix in

Equation (2.21) represent the total impact to an observation, i.e. the impact of a change

in the investment rate in all countries on steady-state income in country i = 1, . . . , N .

The average of these row sums is then labeled the average total impact to an observation

by LeSage and Pace (2009). On the main diagonal of the matrix are the own partial

derivatives or direct impacts from a change in the explanatory variable. These derivatives

capture the effect of a change in, for example, the investment rate in country i on steady-

state income in country i, and these impacts are summarized via averaging the entries on

the diagonal of the matrix. LeSage and Pace (2009, 37) note that this corresponds, at

least to a certain extent, to the typical interpretation of regression coefficients. Finally,

the off-diagonal elements in the matrix are the cross-partial derivatives and represent the

indirect (or spillover) impacts, which are again summarized by averaging the row sums

of the respective matrix elements. In other words, this measure records the effect on the

steady-state level income in country i resulting from a change in the investment rate in all

countries except country i. Hence, the average indirect impact is given by the difference

between the average total impact and the average direct impact.

2.5 Data, Estimation Results, and Robustness

This section starts by providing information on the data sources used to assemble the

data set for the empirical analyses and on how the variables were constructed from the

source data. Thereafter, robustness checks on the results in Ertur and Koch (2007) are
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conducted and discussed. The first set of robustness checks in Section 2.5.2 considers

the sensitivity of the results to changing the version of the PWT from 6.1 to 6.2 and

7.1, respectively. Next, in Section 2.5.3, estimation results are reported and discussed for

the specification in which technological interdependence is modeled via genetic distance.

Again, sensitivity of the results is assessed by estimating the model with data from the

three different versions of the PWT.

2.5.1 Data

The main data source for the replication exercise is PWT 6.1 (Heston et al., 2002), while

for the robustness checks PWT 6.2 (Heston et al., 2006) and 7.1 (Heston et al., 2012)

are used. Additional versions of the PWT exist as well, for example, PWT 6.3 and

7.0. However, Breton (2012) has noted substantial issues with Version 7.0. Moreover, as

Johnson et al. (2013, 257) point out, the exposition would soon become intractable if one

aimed at a comparison between every single version.89 As in Ertur and Koch (2007, 1042),

the initial sample covers the 91 countries of the non-oil sample in Mankiw et al. (1992),

for which data is available over the period 1960-1995.90 In contrast to the theoretical

model, GDP per capita and GDP per worker are not in fact identical, as not the whole

population in a country is employed. Hence, for the empirical exercise, the dependent

variable, y, is real GDP (evaluated via the chain method) per worker (variable rgdpwok

in PWT). The investment rate, s, is the real share of investment in real GDP (variable

ki in PWT) averaged over the respective years. For the average growth rate of workers,

n, no directly corresponding variable is available in PWT. A number for the size of the

working-age population can be recovered however by noting that the series for real GDP

per capita and population are available so that the number of workers can be calculated

by multiplying real GDP per capita (rgdch in PWT) by the size of the population (pop

in PWT) and dividing the result by the value of real GDP per worker (Ertur and Koch

(2007, 1042) refer to Caselli (2005, 685) for this method). The average growth rate of the

working-age population is then calculated as an approximation (though this is not stated

explicitly in Ertur and Koch (2007)) by taking the natural logarithm of the number of

workers in 1995, subtracting the natural logarithm of the number of workers in 1960, and

dividing the result by the number of years, i.e. 35.

89See Table 2 in Johnson et al. (2013) for an overview of the evolution of the PWT up to Version 7. More
recent versions of the Penn World Table (8.0 and 8.1, respectively) are also available (Feenstra et al., 2015).
These data sets will however not be used in this analysis, as these versions lack data on the real share of
investment in real GDP. See Table A3 in the document “variable correspondence” available under http:
//www.rug.nl/research/ggdc/data/pwt/pwt-8.0 (accessed: 11 August, 2015), which states that not
only is this variable not reported in PWT 8.0, but neither is it possible to construct it from the source data.
This continues to be valid for PWT 8.1 (see http://www.rug.nl/research/ggdc/data/pwt/pwt-8.1.xml
(accessed: 11 August, 2015).

90Appendix B.6 lists these countries.

http://www.rug.nl/research/ggdc/data/pwt/pwt-8.0
http://www.rug.nl/research/ggdc/data/pwt/pwt-8.0
http://www.rug.nl/research/ggdc/data/pwt/pwt-8.1.xml
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For the construction of the interaction matrices the general assumptions made in Section

2.3.2 are valid. An additional important point to note is that the weights in these matrices

should be exogenous with respect to model (Ertur and Koch, 2007, 1042). This makes

geographic and genetic distance ideal candidates.91 The matrices that are based on spatial

distances use as weights the great circle distances, dij, between country capitals i and j.

There is however some scope in pinning down the latitude and longitude of a capital, and

Ertur and Koch provide no information for their source of this data. In this chapter, in all

calculations that rely on latitude and longitude, the coordinates are taken from the CIA’s

World Factbook (Central Intelligence Agency, 2013), and the distances are calculated as

described in Appendix B.2.92 As a final step, the weights for the interaction matrices are

given by wij(1) = w∗ij(1)/
∑

j w
∗
ij(1) and wij(2) = w∗ij(2)/

∑
j w
∗
ij(2), and the weights are

based on the following functional forms

w∗ij(1) =

0 if i = j

d−2
ij otherwise

(2.22a)

w∗ij(2) =

0 if i = j

e−2dij otherwise.
(2.22b)

Applying the transformations wij(1) = w∗ij(1)/
∑

j w
∗
ij(1) and wij(2) = w∗ij(2)/

∑
j w
∗
ij(2),

ensures that the row entries in the interaction matrix indeed sum to one. Adopting

the inverse of the squared distance as a functional form in Equation (2.22a) reflects a

gravity function (Ertur and Koch, 2007, 1042) and captures that the effect of the spatial

externalities weakens more than proportionally with distance; a result that has received

support in the empirical literature (see e.g. Keller, 2002). The spatial weight matrix based

on the weights in Equation (2.22a) is called W1 and the one in Equation (2.22b), which

Ertur and Koch (2007) employ as a robustness check, is W2.93

91Another interesting variable on which to base the weights would be, for example, a measure of
technological proximity between countries. However, this measure could not be considered exogenous to
the model for the sample period considered in this chapter and it would be problematic in the case of
technology to disentangle the effects on income per worker due to changes in X from those effects due
to changes in W .

92For some countries the capital has moved to a different city over the period from 1960 to 1995.
The capital for Côte d’Ivoire, for example, has moved from Abidjan to Yamoussoukro in 1983. In these
cases, the coordinates of the city, which was the capital over the longer period with respect to the sample
horizon was used. Recent versions of the World Factbook, however, lack geographic coordinates for former
capitals so that for these capitals the coordinates have been gathered via Google Maps. This approach
has also been employed for cities like Hong Kong that are not listed in the World Factbook.

93This latter matrix is also the one that has been used to calculate the spatial lag of TFP in the Moran
scatterplot in Figure 2.2.
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The data on genetic distance is taken from the data set of Spolaore and Wacziarg (2009),

who rely on data assembled by Cavalli-Sforza et al. (1994). Following the construction of

the original weight matrices based on geographic distance, the functional form in Equation

(2.22a) has been chosen for the interaction matrices based on genetic distances as well so

that a straightforward robustness check is possible. For the interaction matrix W3, the

distances dij are based on the concept of weighted FST genetic distance (see Section 2.2

and Appendix B.1 for this measure) and for matrix W4 on weighted Nei’s genetic distance

(Nei, 1972, 1973).

2.5.2 Results – Interaction Matrix Based on Geographic Dis-

tance

Estimation results are presented in Table 2.1.94 The first two columns replicate the results

from Table 1 in Ertur and Koch (2007) and serve as a benchmark compared to which all

subsequent robustness analyses will be assessed.95

In this analysis, the interaction matrix based on the weights in Equation (2.22a) has

been used. Column 1 shows in the upper half the results for the standard Solow model

estimated by ordinary least squares (OLS). The estimated coefficients on the investment

rate and on the population growth rate have the signs expected from the theoretic model

and in addition are highly significant. In the lower half, this model is estimated with the

restriction β1 = −β2 imposed. This restriction is tested with a Wald test and rejected

(p-value = 0.038). Furthermore, the implied value for the capital share, α = 0.58, is too

high compared to empirical estimates. Gollin (2002, 458), for example, estimates that

the capital shares for most countries lie in the range of 20% to 35%. Also, Moran’s I

test indicates spatial autocorrelation in the error term. Based on these results, Ertur

and Koch (2007, 1046) thus conclude that the standard model is misspecified as it does

not account for physical capital externalities and technological interdependence between

countries.

Column 2 shows that the estimation results support the implications of the spatially aug-

mented model. All coefficients have the signs predicted from theory (compare Equation

(2.17)), even though, for instance, the estimated coefficient associated with the spatial

94All estimations have been carried out in Matlab using the Spatial Econometrics Toolbox by LeSage,
which is publicly available under: http://www.spatial-econometrics.com/ (accessed: 11 August, 2015).

95Note that since the analysis here is based on the geographic coordinates from the CIA’s World
Factbook, and these coordinates differ in some cases slightly from the ones in Ertur and Koch (2007),
the values for Moran’s I test in the unrestricted and restricted versions of the standard Solow model
in Column 1 as well as the values for the spatially augmented Solow model in Column 2 are somewhat
different. Qualitatively, the results are not affected though. Also, there is a small mistake in Ertur and
Koch’s Table I, as the values for Moran’s I test in the unrestricted Solow model belongs to the restricted
Solow model and vice versa.

http://www.spatial-econometrics.com/
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lag of the population growth rate is insignificant (p-value = 0.479). The likelihood ratio

test does not reject the joint theoretical restriction β1 + β2 = 0 and θ1 + θ2 = 0, as the

p-value is 0.419, which supports the validity of the spatially augmented model. In addi-

tion, the (significant) implied value for the capital share of income is α = 0.284 and thus

falls approximately right in middle of the range of estimates by Gollin (2002). Further-

more, the parameter φ reflecting physical capital externalities is positive and significant

at the 10%-level. Also, the implied value for γ, which gauges the degree of technologi-

cal interdependence among the countries is positive and highly significant, implying that

this characteristic indeed needs to be taken into account in growth models, as economies

cannot be considered as independent observations (Fischer, 2011, 432). Finally, the value

of α + φ/(1 − γ) is below 1, implying that the externalities in the model are not strong

enough to lead to endogenous growth (Ertur and Koch, 2007, 1048). In sum, the estima-

tion results therefore provide rather strong support for the model developed by Ertur and

Koch.

The next columns in Table 2.1 assess the sensitivity of these results when changing the

underlying data source to more recent versions of the PWT. Due to missing data, for

instance, values for the variable capital investment are not available for some countries in

PWT 6.2, the sample size needs to be reduced to 83 countries in the estimations based on

this data source.96 In order to obtain estimation results for a balanced sample across all

three versions of the PWT considered in this chapter, Columns 3 and 4 show estimation

results for the 83-country sample with data from PWT 6.1. For the standard model,

the results are virtually identical (Column 3) to those from the full sample. However,

dropping these 8 observations from the sample affects the results in the spatial model.

The implied values for α and φ are comparable in size to the full sample with 91 countries,

but they are insignificant in the smaller sample. Hence, dropping these 8 countries from

the sample already puts a small dent in the robustness of the results obtained by Ertur

and Koch (2007).

Columns 5 and 6 change the data source to PWT 6.2. In Column 5 of Table 2.1 the

estimation results are in line with those from Columns 1 and 3. The only exception

is that for this data source the restriction β1 = −β2 is not rejected (p-value = 0.476),

suggesting a good fit between the model and the data, except that the implied value for

the capital share is still too high with α = 0.576. For the unconstrained estimation of

the spatial model, Column 6 shows that compared to Columns 2 and 4, the coefficient for

the population growth rate still has the sign implied by the theoretical model, but is now

insignificant (p-value = 0.347). The results from the estimation with the joint parameter

restriction applied, show that, as for the results for the 83-country sample with data from

96See Appendix B.6 for the eight countries with missing data.
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Table 2.1: Estimation Results for the Standard and Spatially Augmented Solow Model According
to Three Different Versions of the Penn World Table Based on Interaction Matrix W1 (Geographic
Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Model Stand. Spatial Stand. Spatial Stand. Spatial Stand. Spatial
Number of observations 91 91 83 83 83 83 83 83

Unconstrained estimation:

Constant 4.651 0.886 4.609 0.518 7.130 2.780 2.976 1.828
(0.010) (0.635) (0.017) (0.796) (0.000) (0.181) (0.189) (0.399)

ln si 1.276 0.836 1.234 0.789 1.319 0.876 1.697 0.944
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ln(ni + 0.05) −2.709 −1.538 −2.701 −1.449 −1.835 −0.689 −3.428 −1.441
(0.000) (0.006) (0.000) (0.021) (0.008) (0.347) (0.000) (0.081)

W ln sj — −0.347 — −0.314 — −0.160 — 0.710
(0.057) (0.137) (0.514) (0.110)

W ln(nj + 0.05) — 0.591 — 0.343 — −0.191 — −0.298
(0.479) (0.705) (0.843) (0.793)

W ln yj — 0.742 — 0.732 — 0.608 — 0.595
(0.000) (0.000) (0.000) (0.000)

Moran’s I test 0.432 — 0.397 — 0.346 — 0.389 —
(0.000) (0.000) (0.000) (0.000)

Constrained estimation:

Constant 8.375 2.118 8.407 2.220 8.465 3.158 7.321 1.939
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.004)

ln si − ln(ni + 0.05) 1.379 0.855 1.354 0.813 1.356 0.871 1.904 0.958
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

W [ln sj − ln(nj + 0.05)] — −0.292 — −0.230 — −0.149 — 0.692
(0.098) (0.270) (0.527) (0.109)

W ln yj — 0.735 — 0.721 — 0.613 — 0.608
(0.000) (0.000) (0.000) (0.000)

Moran’s I test 0.415 — 0.4397 — 0.342 — 0.377 —
(0.000) (0.000) (0.000) (0.000)

Test of restriction 4.427 1.738 4.066 1.474 0.514 0.127 3.805 0.358
(0.038) (0.419) (0.047) (0.479) (0.476) (0.938) (0.055) (0.836)

Implied α 0.580 0.284 0.575 0.242 0.576 0.196 0.656 8.261
(0.000) (0.012) (0.000) (0.120) (0.000) (0.403) (0.000) (0.852)

Implied φ — 0.177 — 0.206 — 0.270 — −7.772
(0.082) (0.139) (0.213) (0.861)

Implied γ — 0.554 — 0.525 — 0.408 — −0.043
(0.000) (0.000) (0.009) (0.868)

α+ φ
1−γ — 0.680 — 0.676 — 0.651 — 0.808

(0.000) (0.000) (0.000) (0.000)

Note: p-values are given in parentheses. For the standard Solow model the restriction is tested with
the Wald test and for the spatially augmented model the restriction is tested with the likelihood
ratio (LR) test.

PWT 6.1, the implied share of capital income and the parameter for the physical capital

externalities are insignificant (p-values of 0.403 and 0.213, respectively). Hence, changing

the data source from PWT 6.1 to 6.2, suggests that while many results (e.g. concerning
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the implied value of γ or the test of the joint restriction) are not sensitive to this change,

the original results by Ertur and Koch (2007) concerning the implied capital share of

income and the parameter φ are not robust.

More drastic changes to the original results are visible when moving to PWT 7.1 in

Columns 7 and 8. For the standard model in Column 7, the signs of the coefficient

estimates have the expected signs, and Moran’s I test indicates misspecification with

respect to spatial correlation in the error term. In accordance with the results for the

PWT 6.1 sample, the parameter restriction β1 = −β2 is rejected (p-value = 0.055), though

this time at the 10% level instead of the 5% level. However, in the spatially augmented

model in Column 8, the constrained estimation implies an implausibly large share of

capital income. The estimated value for α is 8.261 (although this value is not significant

with a p-value of 0.852). Moreover, the value for the physical capital externalities is

now negative, but also not significant (p = 0.861). The same holds qualitatively for the

parameter measuring technological interdependence. These estimates imply that using a

more recent data source, leads to drastic changes in the empirical results compared to the

benchmark results.97

It needs to be kept in mind though that in addition to the results in Table 2.1 the model’s

interpretation relies on the calculation of the direct and indirect effects from changes in

the exogenous variables via the approach presented in Section 2.4.3. The results for these

impacts are presented in Table 2.2 for all four samples considered in this chapter. In

the paper by Ertur and Koch only the direct effects are reported (though without any

reference to the significance of these estimates). Here, a richer analysis is presented by

also reporting estimates for the indirect and total impacts on steady-state per worker

income due to changes in the exogenous variables and by providing information about the

significance of all three impacts as well.

Concerning the direct impacts, the results show that across all four samples an increase

in the investment rate in physical capital is approximately comparable in size and signifi-

cance. The estimated coefficients are highly significant and imply, due to the logarithmic

specification of the model, that a 10% increase in the investment rate would result in

an increase in per capita income between 8.6% and 11.6%. The results for the indirect

impacts of changes in the investment rate, resulting from spatial spillovers, differ how-

ever across the samples. Whereas these impacts are comparable in size for the first three

97That changing the data source from e.g. PWT Version 6.1 or 6.2 to 7.1 can lead to different results
in models similar to the one considered here has also been pointed out by Johnson et al. (2013, 270).
They find that in the Solow model augmented with human capital, developed by Mankiw et al. (1992),
the coefficient on the investment share is reduced in size close to zero, when the estimation is based on
a more recent version of the PWT (7.0 in their case). This finding is attributed to the investment series
being more variable in this version of the PWT. However, they also state that the reason for this higher
variability is unclear (Johnson et al., 2013, 270).
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Table 2.2: Estimation Results for the Direct, Indirect and Total Impacts in the Spatial Model
According to Three Different Versions of the Penn World Table Based on Interaction Matrix W1

(Geographic Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Direct impacts:

ln si 0.916 0.859 0.941 1.158
(0.000) (0.000) (0.000) (0.000)

ln(ni + 0.05) −1.693 −1.636 −0.793 −1.635
(0.005) (0.013) (0.269) (0.043)

Indirect impacts:

W ln sj 1.030 0.960 0.915 3.012
(0.118) (0.198) (0.057) (0.004)

W ln(nj + 0.05) −2.008 −2.559 −1.458 −2.709
(0.484) (0.423) (0.476) (0.218)

Total impacts:

ln si + W ln sj 1.945 1.820 1.856 4.170
(0.007) (0.023) (0.000) (0.000)

ln(ni + 0.05) + W ln(nj + 0.05) −3.701 −4.196 −2.251 −4.343
(0.230) (0.220) (0.294) (0.054)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random draws
from the estimation.

samples, the impact is only significant for the PWT 6.2 sample at the 10%-level. For the

PWT 7.1 sample, this effect has tripled in size compared to the other estimates and is

significant at the 1%-level. These findings indicate again that the results in Ertur and

Koch are not robust with respect to changing to more recent versions of the Penn World

Table. It is however interesting to note that at least for the first three samples the direct

and indirect impacts from the investment rate contribute both approximately 50% to the

total impact of this variable. Table 2.2 also shows that the results concerning the impacts

of the population growth rate are not robust across samples.

Finally, the estimates in Table 2.2 illustrate that basing the interpretation of the model

on the estimates in Table 2.1 would lead to incorrect conclusions. For instance, inter-

preting the coefficient associated with the spatial lag of the investment rate, W ln sj in

Column 2 of Table 2.1, as an indicator for the indirect impact would lead to the inference

that this effect is negative (−0.347), implying that an increase in the investment rate in

neighboring countries would result in a decrease of per capita income in the country under

consideration. The true impact estimate in Column 1 of Table 2.2, however, suggests that

the spillover effect is positive, though marginally insignificant at the 10%-level.
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Before turning to the estimation results for the interaction matrix based on genetic dis-

tance, it should be remembered that Ertur and Koch have also employed an interaction

matrix based on the specification in Equation (2.22b) to assess the sensitivity of their

results using their initial choice of weight matrix. The detailed results of the robustness

analysis for this interaction matrix across all four samples are delegated to Appendix B.5.

Tables B.1 and B.2 in this appendix demonstrate again that some of the original results

fail to hold when estimating the model across the different samples.

Concerning interaction matrixW2, an important comment needs to be made. This matrix

does not seem to correspond exactly to the specification Ertur and Koch (2007) actually

use in their empirical analysis. From the Matlab code on the article’s website,98 it is

clear that their estimation results are obtained by dividing the geographic distances dij

by 1,000. A reason for this transformation is not given however, and it turns out that

the estimation results are highly sensitive to this alternative specification (see the results

in Tables B.3 and B.4 in Appendix B.5). For instance, without dividing the distances by

1,000, the estimation results imply highly significant negative values for the parameters φ

and γ, and the implied capital share of income increases to an unreasonably, but highly

significant value of 90%. With respect to the impact estimates, the values for the direct

and total impacts are approximately comparable across both specifications, the indirect

effects however turn from being not significant in the specification as implemented by

Ertur and Koch to being strongly significant in the specification as claimed in the article

(i.e. without the division by 1,000).

2.5.3 Results – Interaction Matrix Based on Genetic Distance

This section presents the estimation results for the model in which the interaction matrix

is based on genetic distance. The general specification of the weights is given by the one

in Equation (2.22a), and the analyses use weighted FST genetic distance.99 As the results

for the standard model do not depend on the interaction matrix, Table 2.3 shows only

the results from the estimation of the spatial Durbin model. The results for the standard

model are suppressed in order to avoid duplication.100

Column 1 provides the results for the full sample of 91 countries for data taken from

PWT 6.1. In contrast to the benchmark, i.e. the original results in Ertur and Koch,

98See http://qed.econ.queensu.ca/jae/datasets/ertur001/ (accessed: 23 July, 2014).
99For the results based on (weighted) Nei’s distance see Tables B.5 and B.6 in Appendix B.5. The

estimation results are comparable to the ones shown in Tables 2.3 and 2.4, which might be explained
by the fact that the correlation between the two measures of genetic distance is 93.9% (Spolaore and
Wacziarg, 2009, 482) and thus very high.

100It is worth pointing out however, that in all samples the standard model continues to be misspecified,
as the values for Moran’s I test suggest spatial autocorrelation in the error term (p-values are 0.000 in
all four tests) also when using interaction matrix W3 in these tests.

http://qed.econ.queensu.ca/jae/datasets/ertur001/
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Table 2.3: Estimation Results for the Spatial Durbin Model According to Three Different Versions
of the Penn World Table Based on Interaction Matrix W3 (Weighted FST Genetic Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Unconstrained estimation:

Constant 8.654 8.246 5.941 −1.932
(0.001) (0.000) (0.011) (0.423)

ln si 0.820 0.945 0.888 0.972
(0.000) (0.000) (0.000) (0.000)

ln(ni + 0.05) −1.034 −0.871 −0.148 −0.930
(0.054) (0.099) (0.790) (0.153)

W ln sj 0.901 0.665 0.725 −0.009
(0.000) (0.001) (0.002) (0.983)

W ln(nj + 0.05) 0.651 0.431 −1.625 −1.912
(0.500) (0.632) (0.096) (0.078)

W ln yj 0.322 0.327 0.198 0.556
(0.006) (0.002) (0.128) (0.000)

Constrained estimation:

Constant 5.520 5.452 6.013 2.452
(0.000) (0.000) (0.000) (0.000)

ln si − ln(ni + 0.05) 0.785 0.856 0.870 0.996
(0.000) (0.000) (0.000) (0.000)

W [ln sj − ln(nj + 0.05)] 0.850 0.653 0.655 0.130
(0.000) (0.001) (0.003) (0.743)

W ln yj 0.280 0.296 0.245 0.605
(0.019) (0.005) (0.045) (0.000)

Test of restriction 2.450 1.949 1.862 3.708
(0.294) (0.377) (0.394) (0.157)

Implied α 1.491 1.830 1.598 −0.273
(0.003) (0.052) (0.038) (0.803)

Implied φ −1.052 −1.360 −1.133 0.772
(0.039) (0.155) (0.147) (0.474)

Implied γ −0.319 −0.189 −0.219 0.238
(0.098) (0.196) (0.212) (0.288)

α+ φ
1−γ 0.694 0.686 0.669 0.740

(0.000) (0.000) (0.000) (0.000)

Note: p-values are given in parentheses. The restriction for the spatially augmented model is tested
with the likelihood ratio (LR) test.

the estimates based on genetic distance show, for instance, that the coefficient associated

with the spatial lag of the investment rate is now positive and highly significant (p-

value = 0.000). The results for the constrained estimation also differ from the ones

with an interaction matrix using geographic distance, as the implied value for α is now

implausibly large and highly significant. Moreover, the estimate for γ, measuring the

degree of technological interdependence is now negative and marginally significant at the
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10%-level, which seems implausible.101 Similar results are also obtained for the other

samples. When using data from PWT 7.1 for instance, the implied value for the capital

share of income in Column 4 actually turns negative (although the p-value is 0.803). In

neither sample, based on a likelihood ratio test, the joint parameter restriction β1 +β2 = 0

and θ1 + θ2 = 0 is rejected though.

Table 2.4: Estimation Results for the Direct, Indirect and Total Impacts in the Spatial Model
According to Three Different Versions of the Penn World Table Based on Interaction Matrix W3

(Weighted FST Genetic Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Direct impacts:

ln si 0.887 1.004 0.918 1.035
(0.000) (0.000) (0.011) (0.000)

ln(ni + 0.05) −1.009 −0.856 −0.198 −1.229
(0.058) (0.101) (0.722) (0.060)

Indirect impacts:

W ln sj 1.673 1.401 1.098 1.116
(0.000) (0.000) (0.000) (0.156)

W ln(nj + 0.05) 0.506 0.260 −1.996 −5.246
(0.701) (0.830) (0.062) (0.001)

Total impacts:

ln si + W ln sj 2.560 2.405 2.015 2.151
(0.000) (0.000) (0.000) (0.012)

ln(ni + 0.05) + W ln(nj + 0.05) −0.503 −0.560 −2.193 −6.475
(0.707) (0.627) (0.035) (0.003)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random draws
from the estimation.

Despite these results from the estimation of the constrained model across the four samples,

the impact estimates in Table 2.4, which are calculated from the unconstrained estimation

results will be briefly discussed. Across all samples, the estimates for the direct impact

of a change in the investment rate on steady-state per capita income is comparable to

the results for the model with interaction matrix W1. One important difference to the

results in Table 2.2 concerns the spillovers from a change in the investment rate for the

full sample of 91 countries. The estimated effects are now highly significant and imply

that a change of 1% in the investment rate in all countries except country i would result in

an increase of approximately 1.7% in per capita income in country i. Another interesting

result is that these spillovers are not significant in the sample for PWT 7.1 in Column 4

101The implied values for α, φ, and γ are of approximately similar size in the estimation based on Nei’s
distance for this sample, though neither value is significant at the 10%-level. This is the exception from
the claim about comparable estimation results for both measures of genetic distance made in Footnote 99.
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of Table 2.4, whereas the reverse holds for this sample in the estimation with geographic

distance. There (see Column 4 in Table 2.2), this estimate is not only highly significant,

but also large in size. Table 2.4 furthermore clearly shows that the impacts with respect

to the population growth rate are highly sensitive to the particular version of the PWT

used in the estimation. Hence, it can be concluded that the original results by Ertur and

Koch are challenged strongly both by changing the measure in the interaction matrix from

geographic to genetic distance and also by substituting the data set from older versions

of the Penn World Table for more recent versions.

2.6 Conclusion for Chapter 2

This chapter has presented the growth model with technological interdependence among

countries developed by Ertur and Koch (2007) and subjected their empirical results to

a series of robustness checks. In contrast to the original specification, which uses an

interaction matrix based on geographic distance, here data on measures of genetic distance

from Spolaore and Wacziarg (2009) has been used to construct an alternative interaction

matrix. Furthermore, additional robustness checks have been conducted to assess the

sensitivity of the original results across different versions of the Penn World Table for the

same period and the same set of countries. The analyses show that the original results by

Ertur and Koch are only robust to a certain extent. While the hypothesis that countries

need to be analyzed in an interdependent system is supported, other results are highly

sensitive to the version of the Penn World Table that is used in the empirical estimation.

Ertur and Koch (2007) estimate, for instance, an implied capital share of income slightly

below 30%, which is significant at the 5% level. However, this result is not robust when

estimating the model with data from PWT 6.2 or 7.1 instead.

Furthermore, whereas Ertur and Koch only provide estimates of the direct impacts on per

worker income associated with changes in the exogenous variables, in this chapter values

for the indirect and total impacts have been calculated as well. The results again indicate

non-robustness across different versions of the PWT, as, for example, the indirect impacts

(or spillovers) associated with changes in the investment rate of physical capital on per

worker income in steady state are not significant in the PWT 6.1 sample, but significant

in the ones based on PWT 6.2 and 7.1, respectively. Results have also been shown to be

highly sensitive to the precise specification of the weights in the interaction matrix based

on geographical distance.

Based on theoretical and technical considerations, genetic distance has been introduced

as an alternative measure to geographic distance, on which to base an interaction matrix.

Concerning the empirical results for this alternative matrix, it is found that, whereas in the
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original model indirect spillovers from capital investment were insignificant in the PWT 6.1

sample, using a measure of genetic distance, these spillovers now have a significant effect

on steady-state income per worker. However, the version of the model with an interaction

matrix based on genetic distance implies an implausibly large capital share of income. In

addition, also in the case of genetic distance, estimation results are sensitive to the version

of the data set. It can thus be stated that the empirical results in Ertur and Koch are

highly sensitive to the measure on which the weights in the interaction matrix are based

(geographic or genetic distance) as well as to the concrete specification of the weights in

the interaction matrix. This conclusion vividly demonstrates the importance of sound

data when it comes to, for instance, giving policy advice.

In this chapter, as, for example, in Fischer (2011), only level regressions have been ad-

dressed. Future work will also investigate the sensitivity of the estimates for the growth

regressions in Ertur and Koch (2007), as well as the impact of introducing human capital

into this model. Results from Ertur and Koch (2006) suggest that this factor is not related

to growth within this framework. However, as the results in this chapter clearly demon-

strate, that this holds across different versions of the PWT need not necessarily be the

case. It should also be pointed out that an endogenous version of the model framework

exists (Ertur and Koch, 2011), which for a smaller set of countries and a shorter time

period provides empirical support, based in part on data from PWT 6.2, in favor of the

endogenous version. But again, this is no guarantee that this necessarily needs to hold

across different versions of the PWT. Robustness should be assessed for this finding as

well. As this chapter has also clearly demonstrated the sensitivity of the empirical results

to the precise choice of the interaction matrix, further research will be devoted to this

issue. In particular, the method of Bayesian Model Averaging will be used to address the

uncertainty concerning the specification of the interaction matrix in this model.

Before concluding this chapter, a brief remark on policy concerning the role of geographic

and genetic distance in determining the strength of knowledge spillovers: As humans have

demonstrated numerous times over the course of history in often horrible ways, neither

the geographic distances (through expansionary wars or state collapses) nor the genetic

distances (via genocide or the slave trade) between countries are fixed in the long run.102

Abstracting from these, policy can, however, still have an impact by e.g. fostering openness

and thereby removing barriers to the diffusion of knowledge (Spolaore and Wacziarg, 2009,

524).

102Also another, maybe at first glance more innocuous possibility, comes to mind in light of the dramat-
ically falling costs for gene sequencing. These are currently below $4,500 for the whole human genome
compared to nearly $100, 000, 000 in 2001 (Wetterstrand, 2015). I do not think that it is completely
unrealistic that personal genetic data will be used by states to influence, for instance, visa decisions.



Chapter 3: Schumpeterian Growth

with Technological Interdependence:

An Application to US States103

3.1 Introduction to Chapter 3

Interaction between countries or regions occurs in many forms. One particular dimension

of this interaction concerns the diffusion of knowledge or knowledge spillovers. Given

that knowledge is a key factor in economic development, this implies that the level of

development, measured by, for example, income per capita, in one region depends on

characteristics in the regions it interacts with.

The presence of these interdependent relationships motivates the need to incorporate these

also in theoretic models. One example in the recent economic literature that takes into

account interdependence between countries is the exogenous growth model developed in

Ertur and Koch (2007). In this chapter, the transition to an endogenous growth model

will be made by presenting a model by the same authors (Ertur and Koch, 2011), which

builds heavily upon the contributions by Aghion and Howitt (1998) and Howitt (2000).

The novelty of the model by Ertur and Koch (2011) is that it incorporates complex

spatial interactions, modeled via technological interdependence between regions, in the

context of an endogenous growth model, in which profit-driven investment in research

and development (R&D) determines the rate of technological progress. In particular, the

authors develop an integrated theoretical and empirical framework that nests a series of

growth models.

This chapter fills a gap in the literature as, to the best of my knowledge, the model

has not yet been investigated empirically for the US states. The shift in focus from a

cross-country to a cross-regional setting is important for the following reasons. First, the

United States is the global leader in investments in R&D. In 2011, R&D investments

in the United States accounted for approximately 30% of the global total, far ahead of

the next-ranked countries China, Japan, and Germany with shares of 15%, 10%, and 7%,

103Chapter 3 has been published in similar form as Working Paper No. 75 in the Working Paper Series
in Economics at KIT (Deeken, 2015b).
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respectively. The dominance was even higher in 2001, when the United States’ global share

was 37% (all figures are from National Science Board (2014, 4-17)). The second reason for

choosing US states as the units of analysis addresses interdependence between these units.

As Keller (2002) points out, the strength of technological knowledge spillovers declines

with the geographic distance between the originating and the receiving country, implying

that diffusion of technology is not a frictionless process. Geographic distance in this

situation captures, for instance, socio-economic differences, but also those in institutions

between countries (Ertur and Koch, 2007, 1036), which have been highlighted in the

growth literature as a fundamental determinant of cross-country income differences.104

The advantage of studying diffusion of technology within a single country is the common

institutional setting,105 which possibly reduces part of the frictions. The third reason for

choosing the United States relates back to the first. Eaton and Kortum (1996) find that

for the OECD countries the amount of a country’s growth in productivity that depends

on research efforts in the United States is larger than 50%, which points to substantial

spillovers from the United States. In addition, Eaton and Kortum (1999, 558) estimate

that in the past 60% of the United States’ productivity growth originated from research

conducted domestically. This figure is in stark contrast to the corresponding values for

Japan or Germany, with figures of 16% or 35%, respectively, and it raises the question, if

significant spillovers also exist between US states or only between the Unites States and

other countries. The cited figure of 60% is silent about any spillovers between US states.

Indicative evidence for the potential existence of these spillovers is provided by the map

in Figure 3.1, which shows the average R&D investment rate (or R&D intensity) over the

period 1997-2007 in the 48 continental US states plus the District of Columbia.106

States with average R&D investment rates above 2% can be found predominantly on the

western seaboard and in the south-west (with the exception of Nevada) as well as in the

north-east and the region around the Great Lakes (the notable exception in these regions

is Maine). In regions where states with high R&D intensities abound, the potential for

spillovers and a subsequent impact on output is high.

Figure 3.2 illustrates the data on the R&D intensities in a different way. It shows a Moran

scatterplot of the average R&D intensity (in standardized form) on the horizontal axis,

and the vertical axis measures the standardized value of the spatial lag of this variable.

The value of the spatial lag for a given state comprises the average of the R&D intensities

of this states’ direct neighbors.

104As a starting point, consider the seminal contribution by Acemoglu et al. (2001).
105However, US states have considerable autonomy in the United States’ federalist system. For a

comparison with the German system on this aspect, see Halberstam and Hills, Jr. (2001).
106A correspondence between state abbreviations and names is provided in Table C.6 in Appendix C.5.
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Figure 3.1: Average R&D Investment Rate for the 48 Continental US States plus Washing-
ton, D.C. over the period 1997-2007 (Data: OECD, 2015).

Each point in the scatterplot corresponds to a single state so that states in the upper right

quadrant have average R&D intensities above the mean and are also surrounded by states

for which the same holds. The reverse holds for states in the lower left quadrant, whereas

in the upper left quadrant states can be found whose own average R&D investment rate

is below the mean, but who are neighbors to states with above-average R&D intensities.

The dot labeled “NM” in the figure denotes New Mexico, which has the highest R&D

intensity in the sample.107 However, its neighboring states fall below the average.

The chapter is organized as follows: Section 3.2 introduces the basic structure of the

multi-region Schumpeterian before Section 3.3 specifies the nature of technological inter-

dependence between regions and derives the equation for the income per worker in steady

state. In Section 3.4, the focus is on the empirical specification of the model and the esti-

mation strategy. The data for the empirical analysis is presented in detail in Section 3.5,

which also discusses the estimation results. Finally, Section 3.6 concludes this chapter.

107The high value for New Mexico can be explained by the presence of Los Alamos National Laboratory
and Sandia National Laboratories, which are federally funded research and development centers. Compare
the information by the National Science Foundation available under http://www.nsf.gov/statistics/
infbrief/nsf02322/ (accessed: 9 August, 2015).

http://www.nsf.gov/statistics/infbrief/nsf02322/
http://www.nsf.gov/statistics/infbrief/nsf02322/
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Figure 3.2: Moran Scatterplot of the Average R&D Investment Rate for the 48 Continental US
States plus Washington, D.C. over the period 1997-2007 (Data from (OECD, 2015)).

Note: The variables are in the form of deviations from the mean so that the value 0 on the abscissa
is equivalent to the mean value of 2.2%.

3.2 Multi-Region Schumpeterian Growth Model

without Technological Interdependence

This section describes the multi-region Schumpeterian growth model in Ertur and Koch

(2011), which builds upon work by Aghion and Howitt (1998, Chapter 3 and 12.2) and

Howitt (2000). The expression “multi region” that is attached to this setup might be a

slight misnomer though, as each region is assumed to develop independently from the other

regions so that the term “single-region model” would be more appropriate for this section.

However, to make the transition to the multi-region model in Section 3.3 easier, already

here a single region in the economy will be indexed. Section 3.2.1 describes the production

side of the region’s final good sector and Section 3.2.2 illustrates its intermediate goods

sector, before Section 3.2.3 clarifies the connections in the research and development

(R&D) sector.

3.2.1 Final Good Sector

The economy under consideration consists of i = 1, . . . , N regions. A single final good is

produced in each region with labor and a continuum of intermediate goods (or varieties)
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as input factors. The final good sector operates under perfect competition, and the good

is produced via the following production function, illustrated here for region i,

Yi(t) = Qi(t)
α−1

∫ Qi(t)

0

Ai(v, t)xi(v, t)
αLi(t)

1−α dv, (3.1)

where Yi(t) is output in region i at time t. This output, besides its use as a consumption

good, also functions as a capital good in the production of intermediates and as an input

into research and development activities. The variable xi(v, t) measures the flow of inter-

mediate good v used in the production of the final good, and Qi(t) indicates how many

different intermediate goods exist in region i at time t. The continuum of intermediates

is therefore measured on the interval v ∈ [0, Qi(t)]. Ai(v, t) is a productivity parameter,

which reflects the quality of intermediate product v and thus increases with successive

vintages of the good. Finally, Li(t) = Li(0)enit is the flow of labor, and ni > 0 is the

constant growth rate of labor.108 It is assumed that the population and labor force size

coincide and that labor is supplied inelastically.

Following Acemoglu (2009, 435 and 461), the demand for intermediate good v can be

calculated by maximizing the instantaneous profits of a representative final goods producer

at time t.109 The problem is

max
xi(v,t)

Πi(v, t) = Qi(t)
α−1

∫ Qi(t)

0

Ai(v, t)xi(v, t)
αLi(t)

1−α dv

−
∫ Qi(t)

0

pi(v, t)xi(v, t) dv − wi(t)Li(t).
(3.2)

Applying the rule for differentiating under the integral sign, and solving the necessary

condition for pi(v, t) leads to the inverse demand schedule for variety v ∈ [0, Qi(t)]
110

pi(v, t) = αAi(v, t)li(t)
1−αxi(v, t)

−(1−α). (3.3)

108The restriction that the labor growth rate is positive is not actually spelled out explicitly in Ertur
and Koch (2011) though. However, since labor is an essential input in the production of the final good
(for the proof, see, for example Barro and Sala-i-Martin (2004, 77-78)), the positive growth rate can be
inferred. This assumption is maybe not as innocuous as it seems, in particular when it comes to testing
the model’s implications empirically. See also Footnote 149 in this context.

109Again this is not explicitly spelled out in Ertur and Koch (2011) either, but, in general, firms
maximize the present discounted value of future profits. However, since firms rent the services of the
input factors labor and capital (in the form of intermediates), and there are no adjustment costs, no
dynamic constraints exist, and the intertemporal maximization problem becomes a static one (or more
precisely, a sequence of static problems (see e.g. Barro and Sala-i-Martin (2004, 32) and Acemoglu (2009,
435))).

110See Appendix C.2.1 for the derivation.
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Here, li(t) ≡ Li(t)
Qi(t)

denotes the number of workers per variety. With the help of results

developed in Section 3.2.2.1, it can be shown that the production function in intensive

form is given by111

ŷi(t) = k̂i(t)
α (3.4)

where ŷi(t) ≡ Yi(t)
Ai(t)Li(t)

is the output per effective worker, and k̂i(v, t) is capital per effective

worker.

Concerning the production function in Equation (3.1), it is important to note that the

integral is multiplied by the factor Qi(t)
α−1. The factor is introduced in order to avoid

that producers of the final good become increasingly more productive simply due to the

availability of an increasing number of varieties. This effect, which can be interpreted as a

form of technological progress has, for instance, been developed in the endogenous growth

model by Romer (1990).112

The focus in the model described here is on technological interdependence (or more specifi-

cally, technology transfer) between regions. Hence, it is assumed that regions trade neither

in goods nor in factors (Ertur and Koch, 2011, 220). Therefore, in general, the interme-

diate goods used and produced in region i as well as its final good are specific to this

particular region. Nonetheless, due to technological interdependence, this is not the case

for the process by which a specific intermediate good is produced. The respective idea

for the production process might well have originated in a different region (Howitt, 2000,

831). The details of this idea will be provided in Section 3.3.

3.2.2 Intermediate Goods Sector

This section describes the production relations in the intermediate goods sector. It starts

with the firms’ optimization problem and illustrates the different assumptions underlying

the generation of horizontal and vertical innovations. In general, horizontal innovations

(or product innovations) increase the number of existing varieties, whereas vertical inno-

vations (or process innovations) increase the productivity (quality) of an already existing

variety.

3.2.2.1 Firms in the Intermediate Goods Sector

In the sector for intermediate goods, the production function for each monopolist in a

given sector v is described by

xi(v, t) =
Ki(v, t)

Ai(v, t)
(3.5)

111See Appendix C.2.2 for the derivation.
112The absence of an effect of an increasing number of varieties on productivity in the model presented

here is demonstrated at the end of Appendix C.2.2.
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where Ki(v, t) is the capital input in terms of the final good. From the functional form of

the production function, it can be inferred that the production of varieties of higher quality

becomes increasingly more capital intensive. This follows from the presence of the factor

Ai(v, t) in the denominator which rises with each new vintage of the good. In order to

produce the intermediate good, the monopolist needs to rent capital at the price of ri(t)+δi

per unit, where ri(t) is the interest rate in region i and δi is the exogenously given region-

specific depreciation rate. With this information, and, since Ki(v, t) = Ai(v, t)xi(v, t)

from Equation (3.5), it follows that the monopolist’s profit function is

πi(v, t) = pi(v, t)xi(v, t)− [ri(t) + δi]Ai(v, t)xi(v, t). (3.6)

Solving the inverse demand function in Equation (3.3) for xi(v, t) leads to the direct

demand function for intermediates

xi(v, t) = [αAi(v, t)]
1

1−α li(t)pi(v, t)
− 1

1−α . (3.7)

Hence, the profit maximization problem for the monopolist is given by the constrained

optimization problem of maximizing the profits in Equation (3.6) subject to the demand

function in Equation (3.7). Substituting the expression for xi(v, t) into the profit function

above, leads to the unconstrained profit maximization problem of the monopolist

max
pi(v,t)

πi(v, t) = pi(v, t) [αAi(v, t)]
1

1−α li(t)pi(v, t)
− 1

1−α

− [ri(t) + δi]Ai(v, t) [αAi(v, t)]
1

1−α li(t)pi(v, t)
− 1

1−α .

Setting the derivative ∂πi(v,t)
∂pi(v,t)

equal to zero, results in the necessary condition

− α

1− α
[αAi(v, t)]

1
1−α li(t)pi(v, t)

− α
1−α−1

+
1

1− α
[ri(t) + δi]α

1
1−αAi(v, t)

2−α
1−α li(t)pi(v, t)

− 1
1−α−1 = 0

and solving for the profit-maximizing price yields

pi(v, t) = [ri(t) + δi]
Ai(v, t)

α
. (3.8)

Substituting this price into Equation (3.7) leads to

xi(v, t) = α
2

1−α li(t) [ri(t) + δi]
− 1

1−α .
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This result shows that the production of the intermediate good is independent of v (i.e. in-

dependent of the specific variety produced), and hence it holds that

xi(v, t) = xi(t), (3.9)

implying that the equilibrium in the intermediate goods sector is symmetric so that in-

dependent of the specific variety v all monopolists produce the identical amount xi(t) of

their respective variety.113

Noting that in equilibrium xi(t) = k̂i(t)li(t) holds,114 it follows that the equilibrium inter-

est rate is given by

ri(t) = α2k̂i(t)
α−1 − δi. (3.10)

Finally, using the profit-maximizing price in Equation (3.8), substituting the equilibrium

interest rate and the expression for the quantity, xi(t) = k̂i(t)li(t), in the symmetric

equilibrium into the profit function in Equation (3.6), implies that the monopolist’s profits

are given by

πi(v, t) = Ai(v, t)π̃i
(
k̂i(t)

)
li(t), (3.11)

where the function π̃i
(
k̂i(t)

)
is defined as π̃i

(
k̂i(t)

)
≡ α(1− α)k̂i(t)

α.

3.2.2.2 Horizontal Innovations in the Intermediate Goods Sector

The relevant assumption concerning horizontal innovations is that new varieties are cre-

ated by imitation. Moreover, no resources are spent on this activity so that imitation is

not a deliberate effort by individuals. As Aghion and Howitt (1998, 107) laconically put

it: “imitation just happens”. Hence, individuals in the economy can be sure that new vari-

eties will enter the economy, but the specific point in time when a new intermediate good

will be available for production of final output or when a new sector opens up in which

to reap monopoly profits remains uncertain. Therefore, the occurrence of innovations is

governed by a random process, and the specific random process assumed is a Poisson

process. In more formal terms, each agent in region i imitates with equal likelihood, and

113Naturally, this also results, if one sets up the profit maximization problem with quantity as the
decision variable (see, for example, Varian, 1992, 234) so that

max
xi(v,t)

= αAi(v, t)xi(v, t)
α−1li(t)

1−αxi(v, t)− [ri(t) + δi]Ai(v, t)xi(v, t).

Taking the derivative with respect to quantity, it follows that the marginal revenue and marginal cost
function are proportional to Ai(v, t), and, since this is the only difference between the firms producing
an intermediate product, the symmetric equilibrium in Equation (3.9) follows (Howitt, 2000, 832).

114This result is derived in Appendix C.2.2 as an intermediate result in the derivation of the production
function in intensive form.



3.2. Multi-Region Model without Technological Interdependence 70

her Poisson arrival rate115 of imitation is given by ξ > 0, which is identical across regions.

This implies that the aggregate flow of new intermediate goods is given by

Q̇i(t) = ξLi(t). (3.12)

As Appendix C.2.3 demonstrates, the number of workers per variety li(t) converges to

li =
ni
ξ
, (3.13)

which is independent of time t and thus constant.

3.2.3 Research and Development – Vertical Innovations

Apart from increases in the number of intermediate goods (horizontal innovations), a key

characteristic of the model are quality, i.e. productivity, improvements of already existing

intermediate products (vertical innovations). On a general level, quality improvements

for a given variety result from investment in R&D in that particular sector.116 Here, the

final good is the relevant input factor. It is assumed that the inventor of a higher-quality

variety in sector v at the same time also is the producer of this intermediate good.117

The mere fact of engaging in research activities naturally is no guarantee for success. As

is standard in this type of models (see, for example, Aghion and Howitt, 1998, 54-55),

the underlying random process for the occurrence of vertical innovations is also assumed

to be a Poisson process. However, in this case, the Poisson arrival rate in any sector

v ∈ [0, Qi(t)] is slightly more complicated as it is not given by a single parameter, but

instead by the function

φi(t) = λiκi(t)
φ. (3.14)

The variable κi(t) denotes the sector-specific expenditures on vertical R&D adjusted for

productivity, and the parameter φ, for which 0 ≤ φ ≤ 1 holds, gauges the strength of

a given amount of R&D expenditures on λi (Ertur and Koch, 2011, 222). To be more

precise with respect to R&D expenditures, these are given by κi(t) =
SA,i(t)

Qi(t)Ai(t)max
, where

SA,i(t) is the total input into R&D in region i, so that
SA,i(t)

Qi(t)
reflects the total amount

115See Appendix C.1 for a primer on Poisson processes.
116The specific setup in the intermediate sector with imitation leading to new varieties and innovation

to a higher quality of existing varieties was introduced by Young (1998), who formalized ideas expressed
verbally in earlier work by Gilfillan (1935a,b). In this approach, a scale effect (i.e. a positive effect of
population on the per capita growth rate), which was criticized by Jones (1995a,b) is not present. See
also, Aghion and Howitt (1998, 106-110).

117This assumption is made for convenience. As Barro and Sala-i-Martin (2004, 290) state, results
would be the same, if one alternatively assumed that inventors charged producers of intermediate goods
a license fee for the use of the blueprint or process innovation.
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invested in a given sector aggregated over all firms. Ai(t)
max is the maximal value of

Ai(v, t) (or the leading-edge productivity parameter), and it is defined by

Ai(t)
max ≡ max {Ai(v, t); v ∈ [0, Qi(t)]} . (3.15)

An important assumption is made concerning this parameter. Potential innovators all

have immediate access to this technological knowledge and thus “all draw on the same

pool” (Aghion and Howitt, 1998, 87-88).

Adjustment of the sector-specific resource investment by the leading-edge technology pa-

rameter captures the assumption of ever increasing complexity in the research process

(Ertur and Koch, 2011, 222). With technology ever increasing, more and more resources

need to be spent to prevent the rate of innovation from slowing down. In other words,

“as technology advances, the resource cost of further advances increases proportionally”

(Aghion and Howitt, 1998, 410). Note that, since the prospective payoffs from an inno-

vation are identical across sectors, productivity-adjusted R&D investment, κi(t), is also

identical for each sector in region i.

Potential innovators face the questions of whether to conduct research at all, and if so

how much to invest in R&D. Concerning these decisions, the value of an innovation to a

successful innovator in a given sector is a critical variable. This value is given by

Vi(t) =

∫ ∞
t

e−
∫ τ
t (ri(s)+φi(s))dsπi(τ) dτ. (3.16)

At some point in the future, a higher-quality variety will be invented in this sector, and

the incumbent will be replaced by the successful innovator and lose his profits.118 The

equation above takes this into account and adjusts for it by including the Poisson arrival

rate of new innovations in the discount factor.119 Adjusted for productivity, the value of

an innovation is defined as vi(t) ≡ Vi(t)
Ai(t)max

(Ertur and Koch, 2011, 222) so that

vi(t) =

∫ ∞
t

e−
∫ τ
t (ri(s)+φi(s)) ds

1

Ai(τ)max
πi(τ) dτ.

118Innovations will result from new entrants into the sector due to the Arrow replacement effect (Arrow,
1962). This effect states that incumbents who innovate would only replace part of their existing profits.
On the other hand, researchers entering the sector have access to the leading-edge technology parameter,
and, if they are successful, can reap the complete monopoly profits. Hence, these researchers have higher
incentives to innovate than incumbents.

119A formal derivation of this value is provided in Appendix C.2.4.
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Substituting for πi(τ) from Equation (3.11) and noting that by assumption the pro-

ductivity level of a firm that innovates at time t is at the leading edge, implies that

Ai(v, t) = Ai(t)
max in this case. Therefore120

vi(t) =

∫ ∞
t

e−
∫ τ
t (ri(s)+φi(s)) ds

Ai(τ)max

Ai(τ)max
π̃i
(
k̂i(τ)

)
li(τ) dτ

=

∫ ∞
t

e−
∫ τ
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(τ)

)
li(τ) dτ.

Taking the derivative of this equation with respect to time, leads to the following research-

arbitrage equation121

v̇i(t)

vi(t)
= ri(t) + φi(t)−

li(t)π̃i
(
k̂i(t)

)
vi(t)

. (3.17)

Written in this form, the function in Equation (3.16) is also known as the (stationary)

Hamilton-Jacobi-Bellman Equation (see, for example, Acemoglu, 2009, 245 and 462-463).

Expressed equivalently as

ri(t)vi(t) = li(t)π̃i
(
k̂i(t)

)
+ v̇i(t)− φi(t)vi(t),

it shows that the required return on an innovation, ri(t)vi(t), for a firm that engages in

R&D, needs to equal its flow profits, li(t)π̃i
(
k̂i(t)

)
, plus any capital gains, v̇i(t), adjusted

for the fact that with positive probability φi(t) a new innovation occurs at some point in

time, and the monopolist’s product thus becomes obsolete from this point onwards.

An individual considering conducting R&D with the aim of improving a particular vari-

ety v has expected profits πeA,i. In particular,

πeA,i = λiκi(t)
φ SA,i(v, t)

SA,i(t)/Qi(t)
· Vi(t) + (1− λiκi(t)φ)

SA,i(v, t)

SA,i(t)/Qi(t)
· 0− SA,i(v, t). (3.18)

Here, λiκi(t)
φ is the probability of being successful in research, and 1 − λiκi(t)

φ is the

complementary probability of failure in research. SA,i(v, t) denotes how many resources

the firm invests in R&D, and the division by SA,i(t)/Qi(t) captures negative externalities

in the research process. More precisely, overlap and duplication of research efforts are

underlying this assumption (Ertur and Koch, 2011, 222). Hence, there is no linear increase

in profits with resources invested in R&D. Note that the R&D technology requires only

output as an input.122 In other words, only laboratory equipment is required to engage

120In the article by Ertur and Koch the dependence of the number of workers per variety li on τ is
missing.

121This derivation involves applying Leibniz’s Formula, and the detailed steps are provided in Ap-
pendix C.2.5.

122The price of these resources is normalized to 1 as they are measured in units of the output good,
which is the numéraire in this model.
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in research activities, but no workers or scientists need to be employed. Therefore, this

model is a variant of a “lab-equipment” model (see, for instance, Acemoglu, 2009, 433).

Incumbent firms in the R&D sector then face the following profit-maximization problem

(this follows from simplifying Equation (3.18) and dropping the superscript for expecta-

tions to enhance readability)

max
SA,i(v,t)

πA,i(v) = λiκi(t)
φ SA,i(v, t)

SA,i(t)/Qi(t)
Vi(t)− SA,i(v, t).

The necessary condition therefore reads

∂πA,i(v)

∂SA,i(v, t)
= 0 ⇐⇒ λiκi(t)

φ

SA,i(t)/Qi(t)
Vi(t) = 1.

By substituting Vi(t) = vi(t)Ai(t)
max and using the definition of κi(t) in this condition, it

follows that the value of an innovation is given by

vi(t) =
1

λi
κi(t)

1−φ.

Solving for κi(t) and log-differentiating the resulting expression yields κ̇i(t)
κi(t)

= 1
1−φ

v̇i(t)
vi(t)

.

Substituting thereafter from the research-arbitrage equation in (3.17) and then inserting

the expression for the Poisson arrival rate from (3.14) leads to the following differential

equation
κ̇i(t)

κi(t)
=

1

1− φ

[
ri(t) + λiκi(t)

φ − λiκi(t)φ−1li(t)π̃i
(
k̂i(t)

)]
. (3.19)

This equation describes how the resources invested in R&D (measured in terms of the

final good) evolve over time.

In the derivation of this expression, the leading-edge productivity parameter Ai(t)
max has

been used. As innovations result in knowledge spillovers, this parameter is not constant.

In particular, its growth rate and thereby the growth rate of technological progress is

equal to

gi(t) ≡
Ȧi(t)

max

Ai(t)max
=

σ

Qi(t)
Qi(t)λiκi(t)

φ = σλiκi(t)
φ. (3.20)

Basically, therefore, Ai(t)
max grows with the aggregate rate of innovations (i.e. the Pois-

son arrival rate from Equation (3.14) times the number of differentiated varieties Qi(t))

multiplied by a factor of proportionality σ/Qi(t) > 0. This factor captures by how much

public knowledge increases as a result of an additional innovation or, expressed differently,

it measures “the marginal impact of each innovation on the stock of public knowledge”

(Aghion and Howitt, 1998, 411). However, this impact is diminishing in Qi(t). Over time,

horizontal innovations lead to an increase in the number of intermediates, and the division
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of the factor of proportionality by this number ensures that innovations of a given size for

a particular product, will have a diminishing impact (Ertur and Koch, 2011, 223).

Having determined the growth rate for the leading-edge productivity parameter, it is

helpful for subsequent derivations to look at the corresponding growth rate for the average

productivity parameter, Ai(t). In general, a successful innovation for intermediate good v

changes productivity for this good from Ai(v, t) to Ai(t)
max.123 Across innovating sectors,

the average increase from a successful innovation is given by Ai(t)
max−Ai(t). Taking into

account that innovations are generated with rate λiκi(t)
φ uniformly across all sectors, and

that average productivity remains unaffected by horizontal innovations, it follows that the

change in average productivity can be expressed as

Ȧi(t) = λiκi(t)
φ
(
Ai(t)

max − Ai(t)
)
.

Appendix C.2.7 demonstrates that the ratio of the leading-edge productivity parameter

to the average productivity parameter converges to the constant 1 +σ so that Ai(t)
max =

(1 + σ)Ai(t)∀ t, implying that the growth rates of both variables will be identical.

3.2.4 Physical Capital Accumulation and Steady State

As in a standard neoclassical Solow model, the accumulation of physical capital is governed

by the general equation

˙̂
ki(t) = sK,ik̂i(t)

α −
(
ni + gi(t) + δi

)
k̂i(t). (3.21)

Here, sK,i denotes the investment rate for physical capital in region i and δi signifies

the depreciation rate for physical capital, which is region-specific. The evolution of the

economy can then be described by the following system of differential equations:

˙̂
ki(t) = sK,ik̂i(t)

α −
(
ni + gi(t) + δi

)
k̂i(t)

κ̇i(t) =
κi(t)

1− φ

[
ri(t) + λiκi(t)

φ − λiκi(t)φ−1li(t)π̃i
(
k̂i(t)

)]
where the first equation follows from Equation (3.21) by inserting for the growth rate from

Equation (3.20), and the second equation above is just Equation (3.19) multiplied by κi(t).

In steady state, capital in efficiency units and productivity-adjusted R&D investment are

constant so that
˙̂
ki(t) = κ̇i(t) = 0. Imposing this condition and denoting steady-state

values with an asterisk, implies that the steady-state rate of technological progress in

123One might wonder about the distribution of productivities across sectors in this model. Ap-
pendix C.2.6 demonstrates that the relative productivities ai(v, t) = Ai(v, t)/Ai(t)

max converge to an
invariant distribution, meaning that even though Ai(t)

max increases over time and sectors change posi-
tion in the distribution, its shape remains constant in the long run (Aghion and Howitt, 1992, 88).
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region i is given by g∗i = σλi (κ
∗
i )
φ and that the steady-state value for k̂∗i is defined by the

˙̂
ki(t) = 0-isocline as124

k̂∗i =

(
sK,i

ni + σλi (κ∗i )
φ + δi

) 1
1−α

. (3.22)

This isocline is depicted as the downward-sloping curve (I) in (κi(t)− k̂i(t))-space in the

upper right hand in Figure 3.3. From setting κ̇i(t) = 0, it follows that the
˙̂
ki(t) = 0-isocline

is given by

1 = λi
(
κ∗i
)φ−1 π̃i(k̂

∗
i )li

r∗i + λi
(
κ∗i
)φ .

This relation is the upward-sloping schedule labeled (II) in Figure 3.3.

gi(t)

κi(t)

gi(t) = σλi(t)κi(t)
φ

κ∗i

g∗i

g∗i
k̂i(t)

κi(t)

(II)

κ̇i(t) = 0

˙̂
ki(t) = 0

(I)

k̂∗i

κ∗i

k̂∗i

gi(t)

ni + gi(t) + δi

ni + g∗i + δi

k̂i(t)

ni + gi(t) + δi

sK,ik̂i(t)
α−1

ni + g∗i + δi

Figure 3.3: Illustration of the Steady State (Adapted from Ertur and Koch (2011)).

Curve (I) is downward sloping as in steady state an increase in R&D investment leads

to an increase in the growth rate g∗i . From Equation (3.22), it then follows that for

124There seems to be a typo in the corresponding Equation (22) in Ertur and Koch (2011), where the

left-hand side should read (k̂∗i )1−α instead of (k̂∗i )α.
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equilibrium to be maintained the capital-output ratio, k̂∗

ŷ∗
= (k̂∗)1−α, needs to fall. On

the other hand, Curve (II) is upward sloping, since when k̂∗i increases, the interest rate

in steady state falls (compare Equation (3.10)) and profits increase (see Equation (3.11)).

Hence, in equilibrium R&D expenditures need to rise.

Turning now to the remaining parts of Figure 3.3, the lower right one shows the Solow

diagram as, for example, in Barro and Sala-i-Martin (2004, 56). The main difference to

the standard version is that here the effective depreciation rate, ni + gi(t) + δi, through

its dependence on the rate of technological progress, gi(t), is endogenously determined

by investment in R&D and thus moves up until the steady state is reached (Ertur and

Koch, 2011, 224). This determination of gi(t) through κi(t) is depicted in the upper left

part of the figure, whereas the positive dependence of the effective depreciation rate on

technological progress is depicted in the lower left part of the figure. In steady state,

with gi(t) = g∗i , the effective depreciation rate is constant, which allows for determining

the level of physical capital per effective worker and the level of R&D investment via the

dotted lines.

3.3 Multi-Region Schumpeterian Growth Model with

Technological Interdependence

This section introduces the analytical setup in which diffusion of knowledge depends on

a region’s gap to its own technological frontier. In addition, the steady-state equation on

which the estimation will be based, is derived.

3.3.1 Research Productivity, Knowledge Spillovers, and Tech-

nology Gap

Turning now to the case of multiple regions, the assumption that all regions develop

independently from each other is abandoned. Interdependence enters the model via the

assumption that the productivity in the research sector, λi, in region i depends on its own

level of technology relative to the level of other regions as well as on the way the connection

between regions is modeled. In formal terms, the region-specific research productivity is

given by

λi = λ

N∏
j=1

(
Aj(t)

Ai(t)

)γivij
. (3.23)

Note that the technology frontier is specific to each region due to the presence of the

parameters vij. Concerning these, it is assumed that they are non-negative, finite and

non-stochastic. Moreover,
∑N

j=1 vij = 1 is assumed. In general, not all regions necessarily
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are equally able to increase their research productivity due to a given increase in knowl-

edge in the regions it is connected to. In this regard, the absorptive capacity of a region

plays an important role.125 This notion is picked up by Ertur and Koch (2011) in the

parameter γi, as it is assumed that the absorption capacity depends on the human capital

stock, Hi, in region i in the following way: γi = γHi, where γ < 1 is a measure of the

amount of knowledge spilling over from other regions. At this point, the derivation in Ap-

pendix C.2.7, which demonstrates that the growth rates of the leading-edge productivity

parameter and the average productivity parameter are identical, becomes helpful. Sub-

stituting the expression for λi into Equation (3.20), and using that gi(t) ≡ Ȧi(t)
max

Ai(t)max
= Ȧi(t)

Ai(t)

leads to

gi(t) ≡ σλκi(t)
φ

N∏
j=1

(
Aj(t)

Ai(t)

)γivij
.

The last term in this equation represents the distance to the technological frontier for

region i. This implies that the further away a region is from its own technology frontier,

i.e. the larger is the average technological level in the regions it is connected to or the

lower is its own level of technology, the higher is its productivity in the research sector.

The intuition is that there exists a large pool of knowledge in the region’s environment

into which it has not yet tapped into. Spillovers from other regions or equivalently spatial

externalities are comparatively large in this case.126 Conversely, a region close to its

technological frontier cannot benefit from spillovers or technology diffusion from connected

regions in the same extent as the pool of knowledge has been largely tapped out and

copying “foreign” technology becomes more difficult (Ertur and Koch, 2011, 226).127

Since in steady state k̂i and κi grow at constant rates in each region, it follows that a

region’s distance to its own technological frontier remains constant. However, for steady

state to occur this requires that all regions grow at identical rates or, expressed differently,

converge to parallel growth paths in the long run. This steady state growth rate for regions

i = 1, . . . , N is given by

gw ≡ σλκφi

N∏
j=1

(
Aj
Ai

)γivij
(3.24)

where time dependence t as well as the asterisks indicating steady-state values have been

dropped to enhance readability. Regions converge to the same growth rate in the long run

due to the inverse relation between how many resources are invested in the research sector

125This corresponds to ideas developed in Nelson and Phelps (1966), although the specific word “ab-
sorptive capacity” is not mentioned by them.

126As Ertur and Koch (2011, 217-218) point out, this is the concept of the “advantage of backwardness”
by Gerschenkron (1962).

127These effects are similar to the effects of “standing on the shoulders of giants” (compare Caballero
and Jaffe, 1993) and “fishing out” (see Jones, 1995a, 765) mentioned in the literature on endogenous
growth models with respect to the research productivity in a single country.



3.3. Multi-Region Model with Technological Interdependence 78

and this sector’s productivity in steady state. Investing a comparatively large amount of

resources in the research sector so that κi is relatively high, implies that the level of

technology will in turn also be relatively high. From Equation (3.23) it then follows

that the ratio of the average level of technology to the own level of technology will be

comparatively low, i.e. a region is close to its own technology frontier, which implies that

research productivity λi in turn will be relatively low, too. A region with comparatively

low R&D expenditures has a relatively high research productivity due to the large distance

to its own technology frontier and as Ertur and Koch (2011, 226) note, due to technology

diffusion and its impact on research productivity, convergence to the steady state growth

rate occurs.

In order to test the model empirically in the following section, Equation (3.24) will be

rewritten. As an intermediate step note that the productivity-adjusted sector-specific

expenditures into R&D are given by κi(t) =
SA,i(t)

Qi(t)Ai(t)max
. Multiplying and dividing

this expression by Yi
Li

and using Ai(t)
max = (1 + σ)Ai(t) from Appendix C.2.7 leads

to κi =
SA,i
Yi

Yi
Li

Li
Qi

1
(1+σ)Ai

. With the result from Equation (3.13), this can be equivalently

expressed as

κi = sA,iyi
ni
ξ

1

(1 + σ)Ai
. (3.25)

Here, the definition sA,i ≡ SA,i
Yi

for the investment rate in the research sector has been

applied. The global technology growth rate can then be shown to be given by the expres-

sion128

gw =
σλ

[(1 + σ)ξ]φ
sφA,iy

φ
i n

φ
i A
−φ−1
i

N∏
j 6=i

A
γivij
j . (3.26)

Applying the natural logarithm to this equation and then solving for lnAi yields

lnAi =
1

1 + φ
ln

σλ

gw[(1 + σ)ξ]φ
+

φ

1 + φ
(ln sA,i + lnni + ln yi) +

γHi

1 + φ

N∑
j 6=i

vij lnAj.

128The derivation might not be immediately obvious and is therefore given in Appendix C.2.8.
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Stacking the equations for regions i = 1, . . . , N , the level of technology is given by
lnA1t

...

lnANt


︸ ︷︷ ︸

=A
(N×1)

=
1

1 + φ
ln

σλ

gw[(1 + σ)ξ]φ
ι+

φ

1 + φ


ln sA,1 + lnn1 + ln y1

...

ln sA,N + lnnN + ln yN


︸ ︷︷ ︸

=sA+n+y
(N×1)

+
γ

1 + φ


H1 0 · · · 0

0 H2 · · · 0
...

...
. . .

...

0 · · · 0 HN


︸ ︷︷ ︸

=H= diag(Hi)
(N×N)


v11 · · · v1N

...
. . .

...

vN1 · · · vNN


︸ ︷︷ ︸

=V
(N×N)


lnA1

...

lnAN


︸ ︷︷ ︸

=A
(N×1)

Defining W ≡H · V with entries vii = 0 if i = j in V , the equivalent matrix expression

for the level of technology is

A =
1

1 + φ
ln

σλ

gw[(1 + σ)ξ]φ
ι+

φ

1 + φ
(sA + n+ y) +

γ

1 + φ
WA. (3.27)

Given that the matrix
(
I − γ

1+φ
W
)

is non singular and thus has an inverse,129 Equation

(3.27) can be solved for A to yield a matrix equation for the level of technology

A =
1

1 + φ

(
I − γ

1 + φ
W

)−1(
ln

σλ

gw[(1 + σ)ξ]φ
ι

)
+

φ

1 + φ

(
I − γ

1 + φ
W

)−1

(sA + n+ y).

(3.28)

3.3.2 Income per Worker in Steady State

In this section an expression that determines the income per worker in steady state will

be derived. From Equation (3.4) it follows that the production function per worker in

steady state for region i is given by y∗i = A(k̂∗i )
α. Substituting for the steady-state level

of capital in efficiency units leads to

y∗i = A

(
sK,i

ni + σλi (κ∗i )
φ

+ δi

) 1
1−α

.

129An application of Gerschgorin’s Theorem (see Gerschgorin, 1931) ensures that. See Appendix C.2.9
for a similar case.
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After taking the natural logarithm and stacking the expressions for regions i = 1, . . . , N ,

the steady-state incomes in per worker terms can be expressed in the following matrix

equation: y = A + α
1−αsK in which the matrix sK is an N × 1 matrix with the terms

sK,i
ni+gw+δi

for the respective regions. Inserting the result for A from Equation (3.28) into

the expression above, yields

y =

(
ln

σλ

gw[(1 + σ)ξ]φ

)
ι+ φ(sA + n) +

α(1 + φ)

1− α
sK −

αγ

1− α
WsK + γWy. (3.29)

Writing this equation for an individual region i clarifies the determinants of the level of

per worker income in steady state

ln yi = ln
σλ

gw[(1 + σ)ξ]φ
+ φ(ln sA,i + lnni) +

α(1 + φ)

1− α
ln

sK,i
ni + gw + δi

− αγHi

1− α

N∑
j 6=i

vij ln
sK,j

nj + gw + δj
+ γHi

N∑
j 6=i

vij ln yj.

(3.30)

It is important to note here that a change in the independent variables in region i affects

the steady-state levels in the regions to which it is connected, and the steady-state levels in

neighboring regions in turn have an influence on the respective level in region i. Therefore,

studying the effect of, for example, a change in the investment rate in physical capital

requires an analysis of the complete interdependent system in Equation (3.29). In general,

the impact of a change in one of the independent variables can be divided into two parts.

The first one represents the impact on the income per worker in steady state in region i

due to a change in the independent variable in this region, and the second one details

the effect of an identical change in the same variable in all regions j = 1, . . . , N with

j 6= i that region i is connected to. For example, the N ×N matrix of income per worker

elasticities with respect to the R&D investment rate sA, is given by

ηsA ≡ ∂y

∂sA
= φ(I − γW )−1 = φI + φ

∞∑
r=1

γrW r. (3.31)

This result is obtained by solving Equation (3.29) for y and then differentiating the result

with respect to sA.130 Concerning the last equality, it follows as the inverse (I − γW )−1

is given by the Neumann series
∑∞

r=0 γ
rW r (see, for instance, Meyer (2000, 126 and 618)

for this result) so that

(I − γW )−1 = I + γW + γ2W 2 + · · ·+ γrW r + · · · =
∞∑
r=0

γrW r. (3.32)

130Naturally, this derivation is only valid given that the inverse (I − γW )−1 exists. Appendix C.2.9
provides the conditions under which this inverse exists.
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This series is also called the spatial multiplier.131 With respect to the elasticity in Equation

(3.31), it highlights that changes in R&D investment in a given region i will have an impact

on income per worker in all other locations. Hence, the total effect can be decomposed

into the two impacts described above.

The first effect is given by132

η
sA,i
i = φ+ φ

∞∑
r=1

γri v
(r)
ii > 0 (3.33)

where v
(r)
ii denotes the element i in row i and column i of the matrix V taken to the power

of r. The second effect, the impact on region i of a change in R&D expenditures in the

regions it is connected to, is

η
sA,j
i = φ

∞∑
r=1

γri v
(r)
ij > 0. (3.34)

In a similar manner, the aggregate effect of changes in the physical capital investment

rate can be derived to yield

ηsK ≡ ∂y

∂sK
=

α

1− α
I +

αφ

1− α
(I − γW )−1 =

α(1 + φ)

1− α
I +

αφ

1− α

∞∑
r=1

γrW r (3.35)

which is positive, as knowledge diffuses across regions. For the employment growth rate,

the corresponding elasticity is given by

ηn ≡ ∂y

∂n
= − α

1− α
diag

(
n

n+ g + δ

)
+

αφ

1− α
diag

(
g + δ

n+ g + δ

)
+

αφ

1− α

∞∑
r=1

γrW rdiag

(
g + δ

n+ g + δ

)
.

(3.36)

This elasticity captures that on the one hand, per worker income is positively influenced by

increases in the employment growth rate, as this leads to a larger number of horizontally

131See e.g. Ertur and Koch (2011, 232), Elhorst (2010, 21-22), or LeSage and Pace (2014) on this
expression.

132Note that even though the entries vii in the matrix V might be zero, this is not necessarily the case
for entries in the corresponding matrix raised to a higher order as the following counterexample shows:

V V =


0 1/3 1/3 1/3

1/2 0 1/2 0
1/3 1/3 0 1/3
1/2 0 1/2 0

 ·


0 1/3 1/3 1/3
1/2 0 1/2 0
1/3 1/3 0 1/3
1/2 0 1/2 0

 =


4/9 1/9 3/9 1/9
1/6 1/3 1/6 1/3
1/3 1/9 4/9 1/9
1/6 1/3 1/6 1/3

 = V 2

Therefore, the matrix V is not idempotent. Economically, this effect can be understood as knowledge
spilling over from region i to region j from where a spillover originates back to region i. In other words,
feedback effects exist in this model.
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differentiated products on which R&D can be conducted, and it captures that on the

other hand, a negative impact exists, which results from the dilution of physical capital

(Ertur and Koch, 2011, 250).133

3.4 Empirical Specification and Estimation Method

This section describes the empirical specification of the model and details the econometric

estimation method. In particular, the derivation of the log-likelihood function and its

concentrated version will be discussed in detail.

3.4.1 Empirical Specification

From the expression for the steady-state level of income per worker in Equation (3.30),

the following empirical counterpart in reduced form can be derived134

ln yi = β0 + β1 ln
sK,i

ni + gw + δi
+ β2 ln sA,i + β3 lnni

+ θHi

N∑
j 6=i

vij ln
sK,j

nj + gw + δj
+ γHi

N∑
j 6=i

vij ln yj + εi.
(3.37)

In this equation, the parameters are given by the following expressions β0 ≡ ln σλ
gw[(1+σ)ξ]φ

>

0, β1 = α(1+φ)
1−α > 0, β2 = β3 = φ > 0, and θ = − αγ

1−α < 0. The error term or region-specific

shock, εi, is assumed to be identically and independently distributed (iid) for i = 1, . . . , N .

Accounting for the interdependence between regions, the equation above can be rewritten

in matrix form as

y = ιβ0 +Xβ + θWZ + γWy + ε. (3.38)

This specification is a Spatial Durbin Model (SDM) as it includes spatial lags of the

exogenous as well as endogenous variables (LeSage and Pace, 2009).135 The list below

provides an overview of variable definitions in this specification:

y is an N × 1 vector of the natural logarithm of real income per worker,

ι is an N × 1 vector of ones,

β0 is a scalar,

133The two different diagonal matrices in Equation (3.36) are both of dimension N × N , and their

general terms are given by ni
ni+gw+δi

and gw+δi
ni+gw+δi

, respectively, with i = 1, . . . , N (Ertur and Koch,

2011, 250).
134For simplicity, the time index has been set to t = 0 and is omitted.
135To be more precise, Equation (3.38) is a constrained version of the standard Spatial Durbin Model,

since in this case only a subset of the potential spatial lags of the exogenous variables is included.
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X is an N × 3 matrix of the explanatory variables (the investment rate in physical

capital, sK,i, divided by the effective depreciation rate, ni + gw + δi, the growth rate

of the number of workers, ni, and the investment rate in R&D, sA,i – all in logs),

β is a 3× 1 vector [β = (β1, β2, β3)′] of the regression parameters for the explanatory

variables,

θ is a scalar,

W is the N × N interaction matrix (or spatial weight matrix) in non row-normalized

form,

Z is the N×1 vector of the investment rate in physical capital divided by the effective

depreciation rate,

WZ is the N×1 vector of the spatial lag of the investment rate in physical capital divided

by the effective depreciation rate,

γ is the spatial autoregressive coefficient,

Wy is an N × 1 vector denoting the spatial lag of the endogenous variable,

ε is an N × 1 vector of errors with mean zero and variance σ2I so that ε ∼ N (0, σ2I)

holds.

The model specified in Equation (3.38) nests a series of growth models as special cases

of the multi-region Schumpeterian growth model. For instance, the familiar Solow model

(see, for example, the original contributions by Solow (1956) and Swan (1956)) is a special

case of Equation (3.37). It results when no interaction (or technological interdependence)

between regions exists and consequently γ = 0 (compare Equation (3.23)). Furthermore,

in the standard Solow model, R&D expenditures are not present, which implies φ = 0.136

With these conditions, it follows from Equation (3.37) that in this case steady-state income

per worker is given by

ln yi = βS0 + βS1 ln
sK,i

ni + gw + δi
+ εSi . (3.39)

136There exist extensions of the model, which include this variable. See, for example, Nonneman and
Vanhoudt (1996) or Keller and Poutvaara (2005). Additional augmentations of the standard Solow model
have been developed, too. These include extending the model by human capital (Mankiw et al., 1992), by
health (Knowles and Owen, 1995), by IQ and longevity Ram (2007), or by history (Dalgaard and Strulik,
2013). These models are, however, not nested in the multi-region Schumpeterian model discussed here
and hence not estimated.
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Written in matrix form, this is equivalent to y = β0ι + βS1X
S + εS with XS an N × 1

vector of the investment rate in physical capital divided by the effective depreciation rate,

βS1 the corresponding regression parameter, and εS an iid vector for the error terms.

Next, the Schumpeterian model by Howitt (2000) and Aghion and Howitt (1998) is also

a special case of the multi-region Schumpeterian model as these authors abstain from

modeling spillovers due to investment in physical capital (implying θ = 0) and assume

that the amount of knowledge that diffuses to other regions is identical for all regions

(Howitt, 2000, 838). Hence, if the amount of knowledge diffusion is independent of the

specific region, the term γHi

∑N
j 6=i vij ln yj in Equation (3.37) can be subsumed into the

constant of the empirical specification. The result then is

ln yi = βH0 + βH1 ln
sK,i

ni + gw + δi
+ βH2 ln sA,i + βH3 lnni + εHi (3.40)

which in matrix form reads y = βH0 ι + XHβH + εH with XH an N × 3 matrix of

the regressors specified in the equation above and βH the 3 × 1 vector of corresponding

coefficients. The error in this specifications is also iid.

Finally, given that R&D investment has no impact on the Poisson arrival rate and thus

φ = 0, it follows that β2 = 0 = β3 in Equation (3.37), and the resulting model is the

spatially augmented Solow model developed in Ertur and Koch (2007).137 Formally, this

specification is given by

ln yi = βEK0 + βEK1 ln
sK,i

ni + gw + δi
+ θEKHi

N∑
j 6=i

vij ln
sK,j

nj + gw + δj

+ γEKHi

N∑
j 6=i

vij ln yj + εEKi .

(3.41)

which is a Spatial Durbin Model. In matrix notation, it is given as y = βEK0 ι+βEKXEK+

θEKWXEK +γEKWy+εEK with XEK an N ×1 vector of the values for the investment

rate in physical capital divided by the effective depreciation rate, WXEK the spatial lag

of this variable, Wy the spatial lag of the dependent variable, and εEK the iid error term.

137The model presented in Equation (3.41) differs from from the one in Ertur and Koch (2007) with
respect to the interaction matrix W , as in their contribution the matrix of the human capital stock, H,
is absent.
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3.4.2 Estimation Strategy

As LeSage and Pace (2009) point out, a Spatial Durbin Model can be equivalently ex-

pressed as a Spatial Autoregressive Model (SAR). Rewriting Equation (3.38) accordingly,

leads to

y = γWy + X̃δ + ε (3.42)

with X̃ = [ιXWZ] an N × 5 matrix and δ = [β0 β θ]
′ a 5× 1 vector. In reduced form,

this model is therefore given by138

y = (I − γW )−1X̃δ + (I − γW )−1ε.

Note that this reduced-form specification implies that the spatial lag of the endogenous

variable is correlated with the error term, i.e.

Cov[(Wy), ε] = E[(Wy)ε′]− E[Wy] = W (I − γW )−1σ2.

Hence, ordinary least squares (OLS) estimators will not be consistent.

An alternative to using OLS to estimate the model is provided by Maximum Likelihood

(ML) estimation (compare e.g. Lee, 2004). This requires making a distributional assump-

tion for the error terms. Above, it was assumed that the error terms follow a normal

distribution, and in this case the log-likelihood function reads

lnL(y; δ, γ, σ2) =− N

2
ln(2π)− N

2
ln(σ2) + ln |I − γW |

− 1

2σ2

[
(I − γW )y − X̃δ

]′ [
(I − γW )y − X̃δ

]
.

(3.43)

In particular, the presence of the determinant ln |I − γW | in this expression might not

be immediately obvious. The following derivation of the function above therefore sheds

some light on this term.

3.4.2.1 Derivation of the Log-likelihood Function

Given the distributional assumption made above for the error (or disturbance) terms, εi,

in a given region, these have the following probability density function

f(εi; 0, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
ε2
i

)

138On the existence of the inverse, see Appendix C.2.9.
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so that the joint density function of the error terms reads

f(ε1, . . . , εN ; 0, σ2I) =
N∏
i=1

f(εi; 0, σ2)

=

(
1√

2πσ2

)N N∏
i=1

exp

(
− 1

2σ2
ε2
i

)
f(ε; 0, σ2I) =

(
1√

2πσ2

)N
exp

(
− 1

2σ2
ε′ε

)
where the last line follows from

∑N
i=1 ε

2
i = ε′ε. However, the disturbance terms cannot be

observed, and therefore the likelihood function needs to be based on y, which is observable

(Anselin, 1988b, 62). Hence, the vector of random variables ε needs to be transformed

into the vector of random variables y. This works with the help of a general result on the

transformation of variables. It holds that the joint density function g(·) for y is given by

(Davidson and MacKinnon, 2004, 430-431)

g(y) = f(ε) ·
∣∣∣∣∂ε∂y

∣∣∣∣ .
Due to this result, the determinant will enter the likelihood function. This determinant

is also called the Jacobian (determinant) of the transformation (see, for example, Greene,

2003, 844-45). From Equation (3.42) it follows that the vector of disturbances is given by

ε = (I − γW )y − X̃δ. (3.44)

Therefore, the Jacobian determinant for this case reads
∣∣∣ ∂ε∂y ∣∣∣ = |I − γW |. Accordingly,

the joint density function for y is

g(y; δ, γ, σ2) =

(
1√

2πσ2

)N
· exp

(
− 1

2σ2
ε′ε

)
· |I − γW | .

As the likelihood function coincides with the joint density function (Verbeek, 2004, 164),

it can be expressed as

L(y; δ, γ, σ2) = (2πσ2)−
N
2 · exp

(
− 1

2σ2
ε′ε

)
· |I − γW | .
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Inserting for ε from Equation (3.44), and taking the natural logarithm of this expression

results in

lnL(y; δ, γ, σ2) =− N

2
ln(2π)− N

2
ln(σ2) + ln |I − γW |

− 1

2σ2

[
(I − γW )y − X̃δ

]′ [
(I − γW )y − X̃δ

]
which is identical to Equation (3.43) above.139

Finding the ML estimator, requires maximizing the log-likelihood function with respect to

the parameters δ, γ, and σ2, i.e. setting the 5× 1 score vector equal to the corresponding

zero vector (Verbeek, 2004, 166-167). This multivariate optimization problem can be

transformed into a univariate one by concentrating the log-likelihood function with respect

to δ and σ2. The approach (see Pace and Barry, 1997, 235-236) is to substitute closed-

form solutions for the estimators, δ̂(γ) and σ̂2(γ), that depend only on the data and the

unknown parameter γ, into Equation (3.43). These solutions can be derived from the first-

order conditions for δ and σ2 (LeSage and Pace, 2009, 47). The resulting concentrated

log-likelihood function can then be maximized with respect to the parameter γ to obtain

an estimate, γ̂, for this parameter. This estimate can in turn be used to back out estimates

for the other parameters from the expressions for δ̂(γ̂) and σ̂2(γ̂) (LeSage and Pace, 2009,

47).

3.4.2.2 Derivation of the Concentrated Log-likelihood Function

Following the approach outlined above, the derivative of the log-likelihood function with

respect to σ2 yields140

∂ lnL(·)
∂σ2

= − N

2σ2
+

1

2σ4

[
(I − γW )y − X̃δ

]′ [
(I − γW )y − X̃δ

]
. (3.45)

Setting this derivative equal to zero, leads to the maximum likelihood estimator for σ2,

i.e.

σ̂2(γ) =
1

N

[
(I − γW )y − X̃δ̂

]′ [
(I − γW )y − X̃δ̂

]
. (3.46)

Taking the derivative of Equation (3.43) with respect to δ and solving for the maximum

likelihood estimator δ̂ is a little more involved so that at this point only the result is

139The log-likelihood function in the standard regression model might be more familiar, but no de-
terminant occurs in that expression. The reason for the difference is that in the standard case where
ε = y −Xβ the Jacobian is equal to 1. In general, the presence of the determinant in the formula for
the transformation ensures that after the transformation the volume under the joint probability density
function is still equal to unity (LeSage and Pace, 2009, 80).

140Alternatively, taking σ as the parameter in the log-likelihood function instead of σ2 would lead to
identical results in the end.
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presented, while the detailed derivation is delegated to Appendix C.3.1. The estimator is

given by

δ̂ =
(
X̃
′
X̃
)−1

X̃
′
(I − γW )y. (3.47)

Defining δ̂O ≡
(
X̃
′
X̃
)−1

X̃
′
y and δ̂L ≡

(
X̃
′
X̃
)−1

X̃
′
Wy, the estimator can be equiva-

lently expressed as141

δ̂ = δ̂O − γδ̂L.

Defining furthermore the estimated residuals of a regression of y on X̃ as êO ≡ y− X̃δ̂O
and the estimated residuals of a regression of Wy on X̃ as142 êL ≡ Wy − X̃δ̂L, the

maximum likelihood estimator σ̂2 can be expressed as

σ̂2(γ) =

[
(êO − γêL)′ (êO − γêL)

N

]
.

Substituting this estimator into the log-likelihood function in Equation (3.43), yields

lnL(y; γ) = − N

2
ln(2π)− N

2
ln

[
(êO − γêL)′ (êO − γêL)

N

]
+ ln |I − γW |

− 1

2 1
N

· (êO − γêL)′ (êO − γêL)

(êO − γêL)′ (êO − γêL)

= − N

2
[ln(2π) + 1] + ln |I − γW | − N

2
ln

[
(êO − γêL)′ (êO − γêL)

N

]
(3.48)

which now only depends on the parameter γ. Computation of the maximum likelihood

estimator γ̂ is facilitated by taking recourse to a result by Ord (1975, 121). This result

states that the determinant |I−γW | can be expressed in a simpler way via the eigenvalues

λi, . . . , λN of the interaction matrix. In particular, it holds that |I−γW | = ΠN
i=1(1−γλi)

or, after taking the natural logarithm: ln |I − γW | =
∑N

i=1 ln(1− γλi). This latter result

is substituted into the log-likelihood in Equation (3.48). The advantage of employing

this expression is that in the numerical optimization procedure for the determination of

γ̂, the eigenvalues need only be determined once (Ertur and Koch, 2011, 233). Having

determined γ̂ numerically, the value can be substituted into the closed-form solutions for

σ̂2 and δ̂ in Equations (3.46) and (3.47) to obtain the estimates for these parameters.

141This is an unbiased estimate. See Keilbach (2000, 153) for the proof.
142In Ertur and Koch (2011, 233) there is a slight mistake as they state (converted to the notation used

here) that êL = y − X̃δ̂L, whereas the expression given in the main text above is the correct one.
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3.5 Data, Estimation Results, and Interpretation of

Model Parameters

This section first provides a detailed overview of the data and the construction of the

variables for the empirical analysis. Afterwards estimation results of the models specified

in Section 3.4.1 will be presented and discussed. Estimates for the direct, indirect and

total impacts of the variables in the spatial models will also be presented.

3.5.1 Data

The empirical analysis focusses on the US federal states. As is common practice in studies

analyzing US economic development on a state level, Alaska, Hawaii, and (by definition)

Washington, D.C. are dropped from the sample so that only the 48 contiguous (or conti-

nental) states are included.143 In addition, following the approach by Bode et al. (2012,

27), Delaware is also excluded so that the baseline sample consists of 47 states. The state

of Delaware is home to a large financial industry, and it might be the case that this char-

acteristic influences the estimation results. Also, as Hanushek et al. (2015, 16) note, gross

state product (GSP) in Delaware might not be well described by a standard production

function, as more than 35% of its GSP in 2007 is accounted for by finance and industry,

whereas the remaining states only reach less than half this value.144

The sample period in the empirical analysis below covers the 11 years from 1997-2007.

This period is rather short, but still in line with the studies (on different units of obser-

vation) by, for instance, Ertur and Koch (2011, 235), who analyze a period of 14 years

or Fischer (2011, 430) and Fischer et al. (2010, 592), who have data for 10 years.145 For

the present analysis, data for more recent years is available in the case of a subset of the

variables used in the analysis. The reason 2007 is chosen as the final year is twofold: On

the one hand, it is chosen to avoid the financial crisis starting in 2008 influencing the re-

sults, and, on the other hand, data for the investment in physical capital is only available

up to 2007. For years prior to 1997 data is available for many variables pertaining to

the analysis. However, 1997 is chosen as a cutoff, since the time series for the dependent

variable has a structural break in that year.146

143Compare, for instance, Holtz-Eakin (1993), Barro and Sala-i-Martin (1992) or, more recently, Ya-
marik (2011) for this composition of the sample.

144Hanushek et al. (2015, 16) quote figures from an article in The Economist (2013) stating that
Delaware is a tax haven where companies outnumber people (945,000 vs. 917,092).

145As Fischer (2011, 429) notes with reference to Durlauf and Quah (1999) and Islam (1995), steady-
state regressions are valid for relatively short time periods.

146The break occurs as the US shifted from the Standard Industrial Classification (SIC) to the North
American Industry Classification System (NAICS) and the Bureau of Economic Analysis on their web-
site strongly “cautions against appending the two data series” (compare http://www.bea.gov/regional/
docs/product/ (accessed: 11 August, 2015)).

http://www.bea.gov/regional/docs/product/
http://www.bea.gov/regional/docs/product/
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Output, yi, is measured as real chained-weighted gross state product generated in the

private sector measured in 2000 dollars, and the data stems from the Bureau of Economic

Analysis’ (BEA) regional accounts data (BEA, 2015b). The variable is constructed by

dividing nominal gross state product generated in the private sector by the implicit price

deflators for the gross domestic product (GDP), which is taken from the national accounts

data of the BEA (2015a).147 In more detail, the following approach is employed (compare

Peri, 2012, 350): The time series for the GDP deflator is from the BEA (2015a) and has

2009 as its reference year. Therefore, the reference year for this series is first changed to

the year 2000 before using these values to convert GSP in nominal dollars to GSP in 2000

real dollars.148

Labor is measured as total employment on private payrolls, as in, for example, Yamarik

(2013). This data is reported by the Bureau of Labor Statistics (2015) in its Current

Employment Statistics, and ni is the average annual growth rate of total employment.149

Values for the state-level real investment rate, sK,i, are not available from official US

agencies. However, Yamarik (2013), updating a previous contribution by Garofalo and

Yamarik (2002), provides values for state-level real investment in 2000 dollars. Dividing

those by the real GSP values then leads to the values for the state-level real investment

rate. Furthermore, in Yamarik (2013), annual values for state-specific depreciation rates

of physical capital, δi, are also provided so that here, in contrast to other studies, it is

possible to deviate from the assumption of identical depreciation rates across all units of

observation and use the average state-specific annual depreciation rate of physical capital

in the empirical study instead.150 The growth rate, gw, is set to 0.02, which is in line with

the value chosen by Howitt (2000, 841) and also is similar to the approach by Yamarik

147This is similar to, for instance, Yamarik (2006) and Barro and Sala-i-Martin (2004), who use the
national consumer price index to deflate nominal personal income.

148As Barro and Sala-i-Martin (2004, 497) note: “As long as the same index is used at each date for
each state, the particular index chosen does not affect the relative levels and growth rates across states”.

149The values for this variable pose a slight problem for the estimation in the next section. The
model is specified in logs, but, as the summary statistics in Table 3.1 show, the minimum value for the
employment growth rate is −0.5%, for which the logarithmic transformation is not defined. Besides this
value for Michigan, also Ohio has a negative employment growth rate over the period (−0.01%). Several
approaches exist to deal with this issue. The one preferred here for its simplicity, follows Sarel (1996,
203), who encounters this problem in the context of inflation rates. He sets the negative values equal to
the smallest positive observed value in the sample. For the present analysis, the respective value is 0.23%
(for Mississippi). Alternatively, for comparable situations, it is suggested to add a constant to the variable
before applying the logarithmic transformation to ensure that all values are positive (see, for example,
Dowdy et al. (2004, 329) or Wooldridge (2013, 193)). Adding, for instance, 0.006 to all employment
growth rates before taking logs ensures that the growth rate for Michigan is positive but small (0.1%).
Thirdly, the observations for Michigan and Ohio could be dropped from the sample. All three methods
of handling this problem lead to only minor quantitative changes in the estimated parameters. Note
that the adjustment is only necessary for the employment growth rate variable, but not for the effective
depreciation rate, ni + gw + δi, which is positive for all observations.

150The data for sK,i and δi is available on Steven Yamarik’s website under: https://web.csulb.edu/
~syamarik/ (accessed: 11 August, 2015).

https://web.csulb.edu/~syamarik/
https://web.csulb.edu/~syamarik/
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(2006) considering that he obtains a mean value of 9% for ni + gw + δi where the sample

covers the time period 1950-2000.151 Investment in R&D, sA,i, is measured as the average

real research and development expenditure as a percentage of real gross state product.

Data for this variable is provided by the Organisation for Economic Co-operation and

Development’s (OECD) Regional Database (OECD, 2015). Total R&D expenditures are

given by summing up expenditures in the business, government, higher education, and

private non-profit sectors (OECD, 2015). Concerning the human capital stock, Hi, this

variable is measured by the average share of individuals above the age of 24 with four

or more years of college (more specifically, a Bachelor’s degree or higher). This is in

accordance with the measure used by, for example, Bode et al. (2012) or Yamarik (2006).

The data is supplied by the Current Population Survey of the United States Census

Bureau (2015). For this variable, no state-level data is available for 2007 so that this year

is omitted in calculating the average values.152

With respect to the interaction matrix W , it is important to highlight that the weights

should be exogenous to the variables in the model (Ertur and Koch, 2007, 1042). This

restricts the choice of variables that might be considered to model connectivity between

states considerably. In general, studies have relied on geographic distance to specify the

weights in the interaction (or spatial weight) matrix. This measure allowed researchers

to capture that effects between units of observations diminish with geographic distance

(see, for example, Eaton and Kortum (1996) or Keller (2002)).153 The distance-decay

effect can be formalized in a variety of ways. Here, three different interaction matrices

of the form W = HV with general weights given by wij = Hivij will be considered to

assess the robustness of the empirical results. As will be clear from the functional forms

specified in Equations (3.49), (3.50), and (3.51) below, the matrices V1,V2 and V3 are

row standardized, whereas the matrices W1,W2 and W3 are not, as they are multiplied

by the matrix H .

The first interaction matrix, W1, is based on a binary first-order contiguity matrix as in

Fischer (2011, 430) or Rey and Montouri (1999, 146). States are considered contiguous

(or, more simply, neighbors), if they share a common border (i.e. Montana and North

151Assuming gw = 0.02, the average value of ni + gw + δi in the present sample is approximately 8%
(see Table 3.1).

152See the user note at the following link: http://www.census.gov/hhes/socdemo/education/data/
cps/2007/usernote.html (accessed: 11 August, 2015).

153Measures based on geographic distance are, however, not the only possibility. Another exogenous
measure is genetic distance between units of observation. In the present analysis, it is unfortunately not
possible to use this alternative measure, since the necessary bilateral distance measures are not available
on the level of US states (see Spolaore and Wacziarg (2009) for the relevant country-level data). A similar
issue arises for another potential candidate measure, linguistic distance, that has been used in studies
applying spatial econometric methods (compare, for example, Isphording and Otten (2013) or Melitz and
Toubal (2014)).

http://www.census.gov/hhes/socdemo/education/data/cps/2007/usernote.html
http://www.census.gov/hhes/socdemo/education/data/cps/2007/usernote.html
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Dakota) and the modifier “first-order” refers to the fact that only direct neighbors are

relevant154 so that Minnesota is a first-order neighbor of North Dakota, but a second-

order neighbor of Montana (see the map in Figure 3.1).155 In formal terms, the weights

in matrix W1 are therefore described by wij(1) = Hivij(1), with

vij(1) =

0 if i = j

1∑N
j 6=i vij(1)

if i and j are neighbors.
(3.49)

A second possibility to model the distance-decay effect abstracts from the binary option

adopted above and connects all states directly with each other. The weights in matrix

W2 are given by wij(2) = Hivij(2), and, as, for example, in Ertur and Koch (2011), the

following continuous functional form is assumed for these weights

vij(2) =

0 if i = j

e−dij∑N
j 6=i e

−dij otherwise.
(3.50)

Here, dij is the great circle distance – the shortest path between two points on the surface

of a sphere – between the geographic centroids of the US states. These centroids are

illustrated by the black dots in Figure 3.4.

The third interaction matrix, W3, has weights wij(3) = Hivij(3) and has a similar form

to the matrix in, for example, Bode et al. (2012) and Basile (2014). It adopts the negative

exponential form of matrixW2, but scales it with a factor τ . In addition, a distance cutoff

is introduced. If the distance between the centroids of the two states is larger than this

threshold, the corresponding matrix entry is set to zero, implying that direct spillovers

between these states are non-existent. Formally, the matrix entries are calculated by

vij(3) =

0 if i = j or if dij > 512km

e−τdij∑N
j 6=i e

−τdij if dij < 512km.
(3.51)

As in Bode et al. (2012), τ is set to 0.02, and the distance cutoff is chosen following Basile

(2014, 12) as the minimum distance ensuring that all states have at least one neighbor.

For the present sample, this distance is slightly below 512km (the distance between the

centroids of Arizona and New Mexico). Concerning τ , Bode et al. (2012) supply a helpful

illustration: They argue that the weights in the interaction matrices can be understood

154One might wonder about the quadripoint where the borders of Colorado, New Mexico, Arizona and
Utah meet (see Figure 3.1). In the present analysis, the pairs Arizona/Colorado and Utah/New Mexico
are considered neighbors.

155Note that this specification does not rule out spillovers from Minnesota to Montana, as all states are
connected via the spatial multiplier (compare Equation (3.32)).
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Figure 3.4: Geographic Centroids of US States.

similar to iceberg transportation costs156 where the parameter τ indicates the percentage

of knowledge diffusion that is lost per kilometer. For τ = 0.02 this implies that after 50

kilometers 1 − e−0.02∗50km ≈ 63.2% of the iceberg “has melted away” and approximately

86.5% after 100 kilometers.

Before presenting the estimation results in the following section, Table 3.1 provides sum-

mary statistics for the variables used in the empirical analyses.

3.5.2 Estimation Results

Table 3.2 shows the estimation results157 for the series of models described in Section 3.4.1.

In Column 1, the standard Solow model from Equation (3.39) is estimated by ordinary

least squares (OLS), and the results show that, in line with the predictions of this model,

the investment rate in physical capital divided by the effective depreciation rate has a pos-

itive and significant impact on steady-state income per worker (p-value = 0.033). As the

156These are familiar from new economic geography (see, e.g. Krugman, 1991, 489). Samuelson de-
scribed the general concept in the following way: “To carry [a] good across the ocean you must pay some
of the good itself” and illustrated it more specifically by continuing that “only a fraction of ice exported
reaches its destination as unmelted ice” (Samuelson, 1954, 268). However, the general idea goes back
almost two centuries to von Thünen, who noted with respect to the transport of grain by horse-drawn
carriage that if the distance between farm and city (and back to the farm) is large enough (50 miles
in the specific example he describes), then “ist also der Transport des Korns auf 50 Meilen unmöglich,
weil die ganze Ladung oder deren Werth auf der Hin- und Zurückreise von den Pferden und den dabei
angestellten Menschen verzehrt wird” (von Thünen, 1826, 9).

157All estimations have been conducted in Matlab with the Spatial Econometrics Toolbox provided by
LeSage. The toolbox is available under: http://www.spatial-econometrics.com/ (accessed: 11 August,
2015).

http://www.spatial-econometrics.com/
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Table 3.1: Summary Statistics – Baseline Sample.

Variable Mean Median Standard

deviation

Minimum Maximum

yi 85,012.07 80,896.36 13,921.60 66,616.49 123,281.63

sK,i 0.085 0.081 0.017 0.063 0.139

ni 0.012 0.011 0.008 −0.005 0.037

δi 0.048 0.048 0.002 0.044 0.051

ni + gw + δi 0.080 0.079 0.008 0.062 0.101

sA,i 0.022 0.019 0.015 0.005 0.075

Hi 0.255 0.244 0.046 0.158 0.351
sK,i

ni+gw+δi
1.064 1.034 0.172 0.862 1.706

W1sK 0.264 0.261 0.051 0.159 0.416

W2sK 0.274 0.262 0.070 0.162 0.494

W3sK 0.271 0.260 0.061 0.159 0.438

W1y 21,073.61 20,214.21 4,628.53 12,977.69 32,609.39

W2y 21,302.32 20,192.91 5,446.95 12,398.25 42,844.25

W3y 21,616.61 19,961.00 5,454.27 13,399.71 38,037.59

Note: The given values are the original values (i.e. not in logs) for the benchmark sample of 47 states
and the period 1997-2007 with yi the income per worker in 2007.

model is specified in logs, the estimated coefficient points to an increase of approximately

3.3% due to a 10% increase in the investment rate in physical capital.

Table 3.2: Estimation Results for Three Different Models for the Baseline Sample of 47 States and
Interaction Matrices W1, W2, and W3 for the Period 1997-2007.

Model Solow
(1956)

Howitt
(2000)

Ertur and Koch (2007) Ertur and Koch (2011)

Interaction matrix W1 W2 W3 W1 W2 W3

Constant 11.322 11.690 11.019 10.966 10.965 11.253 10.977 10.977
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ln sK,i − ln(ni + 0.02 + δi) 0.326 0.362 0.310 0.325 0.282 0.329 0.321 0.278
(0.033) (0.017) (0.023) (0.023) (0.053) (0.018) (0.029) (0.064)

ln sA,i — 0.065 — — — 0.023 −0.006 −0.005
(0.041) (0.494) (0.868) (0.906)

lnni — 0.023 — — — 0.018 0.010 0.008
(0.467) (0.523) (0.717) (0.769)

W [ln sK,j − ln(nj + 0.02 + δj)] — — −1.728 −0.567 −0.237 −1.641 −0.606 −0.268
(0.096) (0.263) (0.719) (0.118) (0.239) (0.687)

γ — — 0.117 0.126 0.126 0.096 0.131 0.129
(0.004) (0.000) (0.001) (0.048) (0.009) (0.011)

AIC −3.794 −3.813 −3.896 −3.965 −3.942 −3.829 −3.885 −3.860
BIC −3.715 −3.655 −3.738 −3.807 −3.785 −3.593 −3.648 −3.624
Number of observations 47 47 47 47 47 47 47 47

Note: p-values are given in parentheses.
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Column 2 shows the estimation results from the Howitt model, specified in Equation (3.40).

The coefficient for the investment rate over the effective depreciation rate has increased

slightly, quantitatively as well as in significance, compared to the estimation of the Solow

model. The newly added variable, investment in R&D, is estimated to have a positive

and significant effect (p-value = 0.041) on per worker income in steady state. However,

the effect is smaller than for investments in physical capital, as a 10% increase in R&D

investment would result in a 0.65% increase in per worker income in steady state. Re-

garding the remaining variable, the employment growth rate, its effect is not significant

with a p-value of 0.467.158

The next 3 columns estimate the spatially-augmented Solow model from Equation (3.41)

by maximum likelihood as described in Section 3.4.2. Here, the approach differs slightly

from Ertur and Koch (2011), as the approach from Basile (2014) is followed to estimate the

Spatial Durbin Model instead of the Spatial Error Model (SEM) to obtain estimates for the

coefficient of the spatial lag of the investment variable as well.159 For all three interaction

matrices the effect of the investment variable accords with implications derived from the

theoretic model, and, with the exception of the matrix W3, is also significant at the 5%-

level. The estimated coefficients for the spatial lag of the investment variable are not

significant in either case. Note, however, that the estimate for the spatial autoregressive

coefficient is highly significant (at the 1%-level) for all three matrices.

As this model, by definition, contains interaction between regions, and an interdependent

system is estimated, a direct interpretation of the estimated parameters as in the case of

the models estimated by OLS is not feasible and might lead to invalid conclusions. The

next section presents a method developed by LeSage and Pace (2009) to disentangle the

direct and indirect impacts in spatial models.

In the remaining three columns, the multi-region Schumpeterian growth model from Equa-

tion (3.37) is estimated. Similar to the case of the spatially-augmented Solow model, the

impact of the investment rate in physical capital is positive for all three interaction ma-

trices and significant at the 5%-level for matrices W1 and W2. Also, the spatial lag of

this variable is significant in neither case at standard significance levels. Concerning the

newly added variables, the investment rate in R&D and the employment growth rate,

the estimated coefficients are not significant in either case. However, again the estimate

for the spatial autoregressive coefficient, γ, is estimated to be positive and significant

158The non-significance of this variable in the Howitt specification is also found by Ertur and Koch
(2011) in their cross-country sample.

159In contrast to the SDM model, the SEM model contains spatial autocorrelation only in the error
term, but not in the regressors. See Ertur and Koch (2011, 234 and 240-241) for the specific model
addressed here and, for instance, LeSage and Pace (2009) on the spatial error model in general.
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for all three matrices W1, W2, and W3, implying that the states cannot be treated as

independent observations.

These estimation results do not provide a clear picture, as, for example, the impact of the

R&D investment rate, seems to affect income per worker in steady state in the non-spatial

model, but not in the spatial model, although the information criteria point to the latter

one.160 Nonetheless, due to the estimates for the parameter γ, it emerges from these

results that interaction effects between observations seem to be relevant.161

In Section 3.5.1 it has been mentioned that the state of Delaware has been excluded

from the baseline sample due to the presence of a large financial and insurance sector.

Appendix C.4.1 presents the estimation results when Delaware is included in the sample

(see Table C.1). As it turns out, including the state in the sample, results in the coefficient

on the physical investment rate over the effective depreciation rate losing its significance,

thereby lending credence to the conjecture that this state might not be well described by

the model considered here.162

3.5.3 Interpretation of the Model Parameters

Due to the interaction effects contained in the spatial models via the inclusion of the

spatial lags, the coefficient estimates in Table 3.2 cannot be interpreted directly. At this

point, it is helpful to refer back to the elasticities calculated in Equations (3.31), (3.35),

160Akaike’s Information Criterion (AIC) and the Schwarz or Bayesian Information Criterion (BIC) are
calculated according to the formulae (see, for example, Greene (2003, 160)):

AIC = log

(
ε̂′ε̂

N

)
+ 2

K

N
and BIC = log

(
ε̂′ε̂

N

)
+
K

N
logN,

where ε̂ denotes the residuals of the estimation and K signifies the number of parameters (for the original
contributions regarding these information criteria, see Akaike (1973) and Schwarz (1978)). It should be
kept in mind here that only nested models can be compared according to these criteria. Accordingly,
comparisons are possible across model with the same interaction matrix, but not between, for example,
the models in the last two columns.

161The goal here is to test empirically the four different types of models that are contained in a “com-
pletely integrated theoretical and empirical framework” (Ertur and Koch, 2011, 216). Hence, the subject
of model comparison as traditionally understood, is assigned a reduced role here. In the context of com-
parison of (spatial) econometric models, the two ends of the spectrum are the specific-to-general approach
and the general-to-specific approach (see, for example, Le Gallo (2014, 1528-1529) on these approaches).
The former strategy has been found to outperform the latter strategy in a specific context not including
the SDM as a possible specification (Florax et al., 2003). On the other hand, LeSage and Pace (2009)
suggest to start with the SDM model, whereas an approach outlined by Elhorst can be seen as a combina-
tion of the two search strategies that chooses as a starting point, however, the specific model. A further
reason these approaches have not been adhered to strictly here is that they rely on tests which have been
specified for row-standardized interaction matrices (compare, for example, Anselin (1988a) and Anselin
et al. (1996)). It is not clear, if these can be applied in the given context in a straightforward manner for
models in which the interaction matrix is not described by this characteristic.

162Also, Washington D.C. has been omitted from the sample. Including it does not lead to qualitative
changes in the results compared to the baseline estimates. Detailed estimation results are omitted though.
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and (3.36). These N × N matrices describe the effects of changes in the explanatory

variables on the dependent variables. The individual entries in these matrices denote,

for instance, the effect of an increase in the investment rate in R&D in Maine on the per

worker income in steady state in North Dakota. It becomes clear that the effects will differ

depending on the pairs of states chosen and thus reporting all individual effects is rather

unwieldy. LeSage and Pace (2009) helpfully provide a method to summarize in a clear

manner the estimation results on the direct and indirect effects (or spillovers).163 The

direct effects are the partial derivatives measuring the change in the dependent variable

in region i due to a change in the explanatory variable in region i. These effects are

measured on the diagonal of the matrix of elasticities (compare Equation (3.33)). LeSage

and Pace (2009) suggest to summarize the direct impact with the average value of the

diagonal matrix elements.

A change in the explanatory variable in region i also affects the dependent variable in

the other regions, and these indirect impacts are captured by the off-diagonal entries in

the matrix (compare Equation (3.34)). With regard to this effect, the proposed summary

measure is the average of the row sum of these off-diagonal matrix entries. This row

sum measures the effect on the dependent variable in region i due to a change in the

explanatory variables in the remaining regions. Straightforwardly, the average of these

row sums is then chosen as the summary measure for the indirect effects.164 Summing

up the direct and indirect effects (i.e. all the elements in a row) gives then a measure

for the total impact. The average of these sums is chosen as the corresponding summary

measure.

Table 3.3 presents the estimates for the direct, indirect, and total impacts for the multi-

region Schumpeterian model calculated in the way just described. The results show that

the indirect effects are not significant for any of the variables included in the regression,

independently of the specific interaction matrix.165 Concerning the estimates for the

direct and total impacts, these are positive and significant for the investment rate over

the effective depreciation rate in the case of interaction matrices W1 and W2, but not

if matrix W3 that contains a distance cutoff is included. Quantitatively, the significant

163A very lucid exposition of their approach can be found in Section 6 of Elhorst (2010).
164As LeSage and Pace (2009, 37) demonstrate, an identical value for the indirect effect is obtained by

summing up the off-diagonal column elements and calculating the average of these sums. The interpre-
tation is however different, as, for instance, the latter measure captures the impact of a change in the
exogenous variable in region i on the dependent variable in all other regions. In the context, of the present
model this measure reports, for example, the impact of an increase in R&D investment in Massachusetts
on the per worker income in the remaining US states, whereas the sum of the off-diagonal row elements
would report the change in, for example, the per worker income in Massachusetts due to a change in the
R&D investment rate by an identical amount in the remaining states.

165Inference on the statistical significance of the parameters is based on p-values which have been
obtained from simulating the distribution of the respective effects with the help of the variance-covariance
matrix derived in Appendix C.3.2.
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Table 3.3: Estimation Results for the Direct, Indirect and Total Impacts in the Multi-Region
Schumpeterian Model for the Baseline Sample of 47 States and Interaction Matrices W1, W2, and
W3 for the Period 1997-2007.

Interaction matrix W1 W2 W3

Direct impacts:

ln sK,i − ln(ni + 0.02 + δi) 0.330 0.321 0.278
(0.022) (0.034) (0.070)

ln sA,i 0.023 −0.006 −0.005
(0.497) (0.867) (0.905)

lnni 0.018 0.010 0.008
(0.525) (0.718) (0.772)

Indirect impacts:

W [ln sK,j − ln(nj + 0.02 + δj)] 0.034 0.047 0.039
(0.149) (0.105) (0.150)

W ln sA,j 0.001 −0.003 −0.002
(0.724) (0.699) (0.724)

W lnnj 0.002 0.001 0.001
(0.623) (0.797) (0.851)

Total impacts:

ln sK,i
ln(ni+0.02+δi)

+W
ln sK,j

ln(nj+0.02+δj)
0.364 0.368 0.318

(0.020) (0.031) (0.066)
ln sA,i +W ln sA,j 0.025 −0.009 −0.007

(0.509) (0.837) (0.875)
lnni +W lnnj 0.020 0.012 0.009

(0.528) (0.726) (0.780)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random draws
from the estimation.

estimates point to an increase of approximately 3.6% in per worker income due to a 10%

increase in investment in physical capital.166

Regarding the sample that includes Delaware, estimates for the impacts are given in

Table C.2 in Appendix C.4.1. They show that, in contrast to the baseline sample, the

direct and total impacts are not significant no matter the interaction matrix included.

Summarizing the empirical results with respect to the multi-region Schumpeterian growth

model, it needs to be stated that even though the model’s implications are borne out for

a particular sample in a cross-country analysis in Ertur and Koch (2011), these results

are not readily transferable to the sample of US states analyzed here. Whereas R&D

investments have a positive impact on income per worker in the Howitt model, in which

the amount of knowledge that diffuses between regions is identical (see Ertur and Koch

(2011, 238)), this is not the case in its version with more complex spatial interactions.

166For the spatial Solow model, i.e. the SDM model in Columns 3-5 in Table 3.2, the respective impacts
are not significant in any case and detailed results are omitted here.
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It might be that the inclusion of the spatial lags in the SDM model is not warranted.

As Greene (2003, 151) notes, in such a situation the estimates become less precise and

therefore are less likely to be significant. Indeed, the results from testing for the presence

of spatial autocorrelation in the residuals of the Howitt model with Moran’s I test167 do

not point to estimating a spatial version of the model. However, as the results in Table 3.2

show, the estimate for the spatial autoregressive coefficient is highly significant.168 The

estimation of this model therefore provides new information; in particular, when compared

to the results by Basile (2014) for 248 European NUTS 2 regions. He estimates a growth

version of the multi-region Schumpeterian model for these regions for the period 1991-

2011 and finds that the estimates have the signs implied by theory and are significant.169

For the US states, it might be that spatial interaction between states exists, which is,

however, only captured by the variable income per worker and not by, for instance, R&D

investments. The Moran scatterplot in Figure 3.2 only hinted at potential spillovers from

R&D investments, but the econometric analysis finds no support for these.

Before concluding, a final series of estimation results for the baseline sample of obser-

vations will be briefly discussed. Despite the warning against appending the two data

series for the GSP variable mentioned in Section 3.5.1, Appendix C.4.2 ignores this. The

results are qualitatively similar to the ones for the shorter sample. However, notable dif-

ferences in the significance of variables exist, for example, in the Howitt model where the

R&D investment rate no longer has a statistically significant impact. In the multi-region

Schumpeterian model when matrix W1 is used, the spatial autoregressive coefficient is

not significant (compare Table C.4 for these results). A further difference concerns the

direct and total impact estimates for the variable investment rate in physical capital over

the effective depreciation rate. These have increased in size to values larger than 0.5 and

are highly significant with p-values below 0.003 (see Table C.5).170

167The test statistic is given by

I =
N

S0

(
ε̂′Wε̂

ε̂′ε̂

)
where ε̂ are the residuals from the OLS regression and S0 is a standardization factor, that equals 1 in the
case of a row-standardized interaction matrix, as it is given by the sum of all the elements in W (see, for
example, Le Gallo (2014, 1524), who also provides the expressions for the expectation and variance of I,
derived by Cliff and Ord (1972) under the null hypothesis).

168Tentative evidence from more specific Lagrange Multiplier tests, which in contrast to Moran’s I
test, specify a particular alternative hypothesis also point to including a spatial lag in the Howitt model.
Results of these tests are omitted here though due to the possible issues regarding non-standardized
interaction matrices mentioned at the end of Footnote 161.

169He also provides estimates for the direct, indirect, and total impacts, but no information on their
significance is given.

170Also, in the case of interaction matrix W2, the indirect effect is marginally significant now at the
5%-level.
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3.6 Conclusion for Chapter 3

In this chapter, the multi-region Schumpeterian growth model developed by Ertur and

Koch (2011) has been presented in detail. A characteristic feature of this model is that

regions are not considered to develop in isolation from each other, but rather interde-

pendence between regions via knowledge spillovers is explicitly included. Technological

progress in the model results from purposeful investments in R&D. It has been shown that

how much a region can benefit from a given amount of knowledge spillovers depends on

the way a region is connected to other regions and on the distance to its own technological

frontier.

Also, the econometric strategy to estimate the equation for the steady-state income per

worker that results from the theoretical model has been thoroughly outlined. In contrast

to the original contribution, the level of aggregation in the empirical analysis has been

reduced, and the model’s implications have been tested for a sample consisting of states

within a single country (the United States) instead of across countries.

The estimation results presented here do not provide full support for all implications de-

rived from the theoretic model. For instance, the hypothesis of technological interdepen-

dence between the regions receives support, as the parameter gauging this characteristic is

estimated to be positive and statistically significant for all three interaction matrices con-

sidered. However, a statistically significant impact of, for example, R&D investment on

per worker income could not be detected in this model, even though it was present in the

model with a simplified interaction structure (i.e. the Howitt (2000) model). Despite this

result, the more nuanced way interaction is modeled in Ertur and Koch (2011) may seem

more plausible, as these authors assume that the net effect of the knowledge spillovers

depends on the absorptive capacity, i.e. the level of human capital in the receiving region,

which is in contrast to the more basic assumption that the amount of knowledge diffused

by each region to the other regions is identical.

This distinction may also point to an explanation for the differing estimation results.

As the OECD notes in its Science, Technology and Industry Outlook: “US firms are

at or near the forefront of technological advances in a number of areas” (OECD, 2010,

232), and the “United States has long been, and still is, at the forefront of cutting-edge

science, technology and innovation” (OECD, 2014, 444). Moreover, the various US states

are heterogeneous. Hence, it might be the case that potential knowledge spillovers from

investment in R&D and physical capital arise in the form of highly-specialized knowledge

in a given state, and this knowledge might only diffuse to a very low extent, as it cannot

be productively used in the states the originating state is connected to. The receiving

states might lack the absorptive capacity to benefit from inter-industry spillovers.
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From a different perspective, the model does not differentiate between, for example, var-

ious types of workers and an identical level of human capital in two states might hide

a large diversity in the composition of human capital. If one assumes identical human

capital levels in two states that have different industry structures whose requirements

are mirrored in the diversity of the respective state’s human capital, then the model’s

mechanics would imply that spillovers originating in the state with a strong presence in

e.g. nanotechnology to the state with a large presence in, for example, car manufactur-

ing would necessarily be reflected in an increase in per worker income. However, the

knowledge generated in nanotechnology might not be readily applicable in the car man-

ufacturing sector, since human capital in this sector lacks the necessary complementarity

to benefit from the knowledge spillovers. The implied impact on per worker income might

then not show up in the data.

This chapter has deliberately chosen to stay in a similar framework as Ertur and Koch

(2011), both theoretically as well as econometrically, to obtain results that are comparable

to a certain extent. Naturally, other estimation approaches exist, and future research

will focus on estimating, for instance, a spatial panel model for this sample. Also, the

specific choice of the interaction matrix is an interesting topic for further study. In the

present analysis, even though the estimation results for the three interaction matrices

were similar, they were not identical. The method of Bayesian Model Averaging may

be a fruitful avenue for finding a matrix that fits the data more closely. Furthermore, as

knowledge spillovers decrease with distance, conducting the analysis at e.g. the level of the

county or metropolitan area might lead to additional insights. However, data availability

is the restricting factor in this case.



Conclusion and Outlook

A starting point of this thesis has been the observation that economic activity does not

appear to be distributed randomly across space and that location matters for people’s

(economic) well being. Though not the only determinant, spatial interaction between, for

example, countries or regions is of central importance for this result as the present thesis

has demonstrated in a variety of ways.

After presenting key empirical facts and theories on the aspects of agglomeration (ur-

banization), economic growth, and integration, Chapter 1 has looked more closely at

integration, since it provides the linkage between agglomeration and growth. It was ar-

gued that integration needs to be understood in a more nuanced way than in standard

new economic geography models, in which integration is mostly captured by a decrease

in transport costs. Given knowledge’s role in determining economic growth, the cost of

sharing information, which has an impact on the strength of knowledge spillovers, needs to

be considered as well. Embedded in a discussion on the notions of size and scale (effects),

it was pointed out that via integration mere size, for example, the absolute number of

workers in a region, might be transformed into density, i.e. the number of workers in a

region of given size. In contrast to size, density might then be able to activate latent ag-

glomeration economies (or external economies of scale) in a region. Of central importance

for integration to assume this transformative role is on the one hand, the specific design

of integration by policy makers and on the other hand, the institutional foundation in the

concerned regions. To quote a key sentence from Chapter 1: “integration pins down the

impact of institutions to a spatial dimension” (see page 27).

In addition, no “one size fits all”-policy exists: Integration policies depend not only on

the level of aggregation under consideration (for instance, integrating countries vs. inte-

gration of regions within a country), but also on the level of development. Chapter 1 has

demonstrated that, for example, taking advantage of agglomeration economies in highly

urbanized countries clearly requires different policies than trying to achieve the same goal

in countries at the other end of the spectrum. The discussion in Chapter 1 highlighted

the key concepts in a mostly verbal manner even though numerous empirical facts and a

model have been presented as well.

Chapter 2 shifted the methodological focus by investigating knowledge spillovers in a fully

integrated theoretic and empiric spatial growth framework due to Ertur and Koch (2007).
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Their model includes technological interdependence working via spatial externalities be-

tween countries and provides an important addition to the standard growth models used

in the literature.

A series of robustness checks, divided into two dimensions, were conducted in Chapter 2.

As exogeneity of the weights in the interaction matrix is important, the choice of possible

measures is restricted. However, based on a suggestion by Ertur and Koch (2011) and

considerations put forward in Spolaore and Wacziarg (2009), genetic distance provides a

plausible measure, since it captures barriers to the diffusion of development. The first

check therefore concerned choosing genetic distance as an alternative to geographic dis-

tance for the choice of the bilateral weights in the model’s interaction matrix. Estimating

the reduced-form empirical specification determining income per capita confirms the find-

ing that countries need to be investigated in an interdependent context, also if genetic

distance is used. The estimated spatial autoregressive coefficient is positive and highly

significant in both cases. Nonetheless, the findings are not identical for both distance

measures. To highlight one example, Ertur and Koch (2007) estimate an implied capital

share of slightly below one third, which is in line with values predicted by e.g. Gollin

(2002). This result cannot be confirmed with genetic distance. In this case, the respective

value is implausibly high.

Next, robustness was analyzed with respect to the underlying data source for the variables

not depending on geographic or genetic distance. Taking the data from Penn World

Table Version 6.2 or 7.1 instead of 6.1 as in Ertur and Koch (2007) and basing the

interaction matrix on geographic weights, supports the hypothesis that countries need to

be analyzed in an interdependent system and that models neglecting this characteristic

are misspecified. However, continuing with the example of the capital share of income,

this estimate is not robust across different versions of the PWT. The implied coefficient is

not statistically different from zero for more recent versions of the data. This even holds

for the estimation based on PWT 6.1, if the sample size is adjusted to produce a balanced

sample across the three different versions to account for missing data in PWT 6.2.

With the help of a methodology devised by LeSage and Pace (2009), it was possible in

Chapter 2 to quantify the strength of cross-country knowledge spillovers that result from

spatial interaction. Ertur and Koch (2007) provide no direct detailed information on these

knowledge spillovers, but it turns out that those spillovers arising from the investment

in physical capital are not significant in their original sample. With one exception this

result is robust across the three different versions of the PWT that were considered. This

is in stark contrast to the results that were obtained using genetic distance. In this case,

only one version (PWT 7.1) implied an insignificant estimate. For the other versions, the

corresponding estimates were highly significant.



Conclusion and Outlook 104

A last result from Chapter 2 concerns an inconsistency in Ertur and Koch (2007). They

specify two different functional forms for the weights in the interaction matrix, but their

published results actually use a form that differs by a scaling factor from the form spec-

ified in the publication. This has non-trivial implications for the results as, for example,

the estimate for the spatial autoregressive parameter changes sign between the two spec-

ifications.

Chapter 1 was intensively concerned with integration, but also pointed out the impor-

tance of institutions, whereas Chapter 2 investigated the strength of knowledge spillovers

across countries. It was noted that knowledge diffusion is not a frictionless process as, for

example, institutional differences between countries play a role.

Chapter 3 picked up this train of thoughts again by staying in an extended framework of

the model from the previous chapter, while highlighting the removal of some of the insti-

tutional differences by studying knowledge spillovers within the integrated institutional

framework of the United States. Within the context of this extended framework, the

multi-region Schumpeterian growth model by Ertur and Koch (2011), the hypothesis of

technological interdependence between the US states receives empirical support. Nonethe-

less, neither a direct nor an indirect impact of R&D investments on per-worker income

on the state level could be detected for either of the three alternative interaction matrices

considered. The first was based on contiguity, more specifically, first-order neighborhood,

the second one used the negative exponential of geographic distance for the weights and

the third one combined this functional form with a distance cutoff.

Results differ, if the equation is estimated for a version of the model that is nested within

the multi-region Schumpeterian growth framework and assumes a simplified interaction

structure between states, in which the amount of knowledge spillovers does not depend

on the absorptive capacity of the receiving state. In this simplified version of the model,

R&D investments have a direct impact on per worker income. It was hypothesized that

the reason for these contrasting results might be due to the US being a global technological

leader. In order to take advantage of possible knowledge spillovers from one state, the

receiving state would therefore need to have a workforce that is equipped with human

capital that is complementary to these knowledge spillovers. Only a comparatively high

level, as implicitly assumed in the simpler model, might not be enough.

In the following, concluding remarks with a brief outlook on further research and open

questions will be given. I think the considerations from Chapter 1 clearly point to the fact

that integration is a multidimensional issue and that policies aimed at closer integration

need to be tailored to the scale at which they are meant to have an impact as well as to the

institutional framework into which they are introduced. For instance, if the policy goal

is to increase density in cities with the goal of benefiting from agglomeration economies
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like the ones implied by Marshall (the “mysteries of the trade become no mysteries; but

are as it were in the air” (1890, IV.X.7)), then merely removing restrictions on internal

migration or migration across country borders is not sufficient. People flocking to a city

often will have no adequate places to live and work, and frequently NIMBYism is the

problem,171 which then needs to be addressed at the local level.

Also, trying to represent the dynamic properties of integration over the course of devel-

opment and arriving at an endogenization of the concept in theoretic models could lead

to new insights. In this regard, possible threshold effects might merit further attention,

both when it comes to e.g. increasing density in the course of economic development, but

also when loss of spatial concentration of economic activity is the relevant issue, thereby

capturing possibly structural change. Ideally, such an approach would be combined with

a mapping of the theoretical model to stylized facts.

The integrated theoretical and empirical frameworks discussed in Chapters 2 and 3 have

the advantage of flexibility in the sense that their implications can be tested empirically for

different levels of aggregation. They are not exclusively applicable to study cross-country

interdependence. The model from Chapter 2 has been applied, for example, to European

NUTS 2 regions and Brazilian microregions (see Fischer (2011) and Rodrigues Júnior

et al. (2010), respectively).

In many empirical studies data availability restricts the sample size and time horizon.

Apart from this factor, this thesis has clearly shown that data quality is another issue that

cannot be neglected. Data on GDP or investment rates at various levels of aggregation

are not as precise as one would like. In the same sense as data on economic activity is

inferred from data on illumination at night captured by satellites (see Figure 1), values

for the variables used in the regressions are to a certain extent also only indicators and

therefore uncertain. I believe, it is important that researchers relying on data from the

PWT check the sensitivity of their estimation results across different versions. Currently,

research is being conducted to arrive at a“consensus estimate”for the income variable from

the various versions of the PWT (see Crespo Cuaresma et al., 2015). This methodology

could be adapted to arrive at similar consensus estimates for the remaining variables that

depend on data from the PWT, too.

Also, with the World Development Indicators (WDI), a further data set exists that could

be used in cross-country regression analyses. However, as Ram and Ural (2014) note in a

short comparison study of these two data sets, no general conclusion can be made about

171The acronym stands for “not in my backyard” and pejoratively captures the opposition of residents
to new zoning rules allowing new development projects in their neighborhood. See e.g. Avent (2011) on
examples for the US concerning this issue.
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the differences in results that would occur if the same model was estimated with first

taking data from the WDI and then from the PWT.

Finally, in the models in the last two chapters of this thesis, the frictions in the process

of knowledge diffusion were proxied by geographic and genetic distances. However, that

does not imply that policy is ineffective in influencing the strength of knowledge spillovers,

even though the two distances itself are, at least in my opinion, definitely outside the

range of morally acceptable policy variables. Policy can nonetheless still influence the net

effect of geographic or genetic distance on knowledge diffusion by reducing barriers across

societies. As Spolaore and Wacziarg (2009, 524) point out, translation and adaptation of,

for instance, technological innovations from one tradition to another might be effective in

this situation. This is also the case for the promotion of openness and exchanges across

societies. Hence, in the end, a better understanding of interaction is key.



A Appendix to Chapter 1

List of Geographic Entities

A list of countries and entities sorted into the various regions in Figures 1.1 and 1.2

according to the classification in the New Maddison Project Database is given below.

Table A.1: Countries Aggregated into Major Geographical Regions According to the Classification
in the New Maddison Project Database.

Africa: Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape
Verde, Central African Republic, Chad, Comoro Islands, Côte d’Ivoire, Demo-
cratic Republic of the Congo, Djibouti, Egypt, Equatorial Guinea, Eritrea,
Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea Bissau, Kenya, Lesotho,
Liberia, Libya, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mayotte,
Morocco, Mozambique, Namibia, Niger, Nigeria, Republic of the Congo,
Rwanda, Saint Helena, Sao Tomé & Principe, Senegal, Seychelles, Sierra Leone,
Somalia, South Africa, Sudan, Swaziland, Tanzania, Togo, Tunisia, Uganda,
Western Sahara, Zambia, Zimbabwe

Asia: Afghanistan, American Samoa, Bahrain, Bangladesh, Bhutan, Brunei, Burma,
Cambodia, China, Cook Islands, East Timor, Fiji, French Polynesia, Guam,
Hong Kong, India, Indonesia, Iran, Iraq, Israel, Japan, Jordan, Kiribati,
Kuwait, Laos, Lebanon, Macao, Malaysia, Maldives, Marshall Islands, Microne-
sia, Mongolia, Nauru, Nepal, New Caledonia, North Korea, Northern Mariana
Islands, Oman, Pakistan, Palau, Papua New Guinea, Philippines, Qatar, South
Korea, Samoa, Saudi Arabia, Singapore, Solomon Islands, Sri Lanka, Syria,
Taiwan, Thailand, Tonga, Turkey, Tuvalu, United Arab Emirates, Vanuatu,
Vietnam, Wallis and Fortuna, West Bank and Gaza, Yemen

Latin America: Anguilla, Antigua and Barbuda, Argentina, Aruba, Bahamas, Barbados, Be-
lize, Bermuda, Bolivia, Brazil, British Virgin Islands, Cayman Islands, Chile,
Colombia, Costa Rica, Cuba, Dominica, Dominican Republic, Ecuador, El
Salvador, Grenada, Guatemala, Guyana, Haiti, Honduras, Jamaica, Mexico,
Montserrat, Netherlands Antilles, Nicaragua, Panama, Paraguay, Peru, Puerto
Rico, St. Kitts and Nevis, St. Lucia, St. Pierre and Miquelon, St. Vincent and
the Grenadines, Suriname, Trinidad and Tobago, Turks and Caicos Islands,
United States Virgin Islands, Uruguay, Venezuela

Western Europe: Andorra, Austria, Belgium, Cyprus, Denmark, Faeroe Islands, Finland, France,
Germany, Gibraltar, Greece, Greenland, Guernsey, Iceland, Ireland, Isle of
Man, Italy, Jersey, Liechtenstein, Luxembourg, Malta, Monaco, Netherlands,
Norway, Portugal, San Marino, Spain, Sweden, Switzerland, United Kingdom



B Appendix to Chapter 2

B.1 Definition of FST Genetic Distance

This appendix provides a formal definition of the concept of FST genetic distance which

was developed by Wright (1951).1 Consider as an example the case of two populations, A

and B, that are of equal size and a single gene which can either have the form of allele 1

or of allele 2.2 Denote the gene frequency of allele 1 in population A by pA and the one

for allele 2 by qA. The probability that two randomly selected alleles at the locus under

consideration will be identical (i.e. homozygosity occurs) is given by p2
A + q2

A. The case of

heterozygosity (i.e. two randomly selected alleles will differ) then is hetA = 1−(p2
A+q2

A) =

2pAqA. This follows as pA+qA = 1 and hence (pA+qA)2 = p2
A+q2

A+2pAqA = 1 holds. For

population B, the equivalent expressions for homozygosity and heterozygosity are given

by p2
B + q2

B and hetB = 1− (p2
B + q2

B) = 2pBqB, respectively.

Denoting the average gene frequencies of the two alleles in the two populations as p =
1
2
(pA + pB) and q = 1

2
(qA + qB), it follows that in the sum of the two populations het-

erozygosity is given by hetAB = 1 − (p2 + q2) = 2pq. The average heterozygosity in the

two populations is hetmean = 1
2
(hetA + hetB). By comparing hetmean to hetAB, FST is a

measure for the “variation in gene frequencies of populations” (Spolaore and Wacziarg,

2009, 525)

FST =
hetAB − hetmean

hetAB
= 1− pAqA + pBqB

2p̄q
=

1

4

(pA − pB)2

p(1− p)
. (B.1)

It now follows that the genetic distance between two populations is zero, if their allele

frequencies at the given locus are identical (i.e. pA = pB) and that FST equals one if the

respective frequencies are completely different (i.e. pA = 1 and pB = 0 or vice versa).3

1For a compact review of FST that covers additional details, see Holsinger and Weir (2009).
2Compare Spolaore and Wacziarg (2009, 524-525) for this approach and Cavalli-Sforza et al. (1994,

26-27) for extensions to more than two alleles and two populations.
3Note that Cavalli-Sforza et al. (1994, 29), for instance, provide the following formula for FST genetic

distance

FST =
Vp

p(1− p)
(B.2)

where p are the average gene frequencies across the populations under consideration, and Vp indicates
the variance between gene frequencies across these populations. If now pA ≡ p+ σ and pB ≡ p− σ with
σ ≥ 0 and the variance is denoted by σ2, then the formula in Equation (B.1) is equivalent to the one
provided in Equation (B.2) (see Spolaore and Wacziarg (2015, 6-7) for this derivation).
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In the construction of the interaction matrix based on genetic distance in Section 2.5,

weighted FST distances are used to account for the fact that populations in, for instance,

the United States or the United Kingdom consist of many subpopulations. If now the

United States contains the populations i = 1, . . . , I and the United Kingdom the pop-

ulations j = 1, . . . , J and s1i is the share of population i in the United States and s2j

the share of population j in the United Kingdom, then the weighted FST genetic distance

between these two countries is given by (see, for example, Spolaore and Wacziarg (2009,

484-485))

FW
ST =

I∑
i=1

J∑
j=1

(s1i × s2j × dij) (B.3)

where dij denotes the FST genetic distance between populations i and j.

B.2 Spatial Weight Matrices and Great Circle Dis-

tances

Numerous possibilities exist to model spatial connectivity via a spatial weight matrix. This

appendix illustrates two possibilities and provides details on the calculation of great circle

distances that are commonly used in empirical work. As an example, for how to model

the spatial relationship between geographic regions, consider the four NUTS 2 regions4

Schleswig-Holstein (SH), Hamburg (HH), Lüneburg (LÜ), and Mecklenburg-Vorpommern

(MP) depicted in the map in Figure B.1.

Figure B.1: NUTS 2 Regions in Northern Germany.

4NUTS is an acronym of the French Nomenclature des Unités territoriales statistiques, i.e. the Nomen-
clature of territorial units for statistics of the EU, and the NUTS 2 level comprises government regions.
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Defining now those regions that share are common border as neighboring regions, the

following spatial weight matrix of first-order neighbors can be constructed

WA =


SH HH LÜ MV

SH 0 1 1 1

HH 1 0 1 0

LÜ 1 1 0 1

MV 1 0 1 0

 .

In row-standardized form, the result is

WB =


SH HH LÜ MV

SH 0 1/3 1/3 1/3

HH 1/2 0 1/2 0

LÜ 1/3 1/3 0 1/3

MV 1/2 0 1/2 0

 . (B.4)

Here, queen contiguity is used as a concept to determine the spatial weights.5 However, a

spatial weight matrix can also be constructed based on geographic distance between units

of observations. One relatively straightforward alternative in this vein is the geographic

distance between country capitals. Consider, for example, the four capitals Berlin, Buenos

Aires, Moscow and Seoul and take as spatial weights the shortest distance between them.

Since the earth is (approximately) a sphere, this distance is not a straight line, but the

shortest path between the cities along the surface of the earth, i.e. an arc of a great circle.

Figure B.2 shows the great circle distances between Berlin and Buenos Aires and between

Moscow and Seoul on a Plate Carée projection of the earth, and Panels (a) and (b) in

Figure B.3 show the same distances on the surface of a spherical earth.6

In general, the great circle distance between two points i and j can be calculated by using

the spherical law of cosines (Shekhar and Xiong, 2008, 639-642)

dij = R⊕ × arccos[cos lati cos latj cos(longi − longj) + sin lati sin latj] (B.5)

where R⊕ = 6,378.1km is the (rounded value of the) earth’s equatorial radius (see Ahrens

(1995, 36)), and the values for latitude and longitude are in decimal degrees.

5The name follows from the movement of the queen on the chessboard. Other criteria for determining
spatial weights, whose names have the same origin are bishop and rook contiguity (see, for instance,
(Anselin, 1988b, 18)).

6These figures were drawn with ArcGIS.
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Figure B.2: Great Circle Distances between Berlin and Buenos Aires and between Moscow and
Seoul on a Plate Carée Projection of the Earth.

!

!

!

(a) Great Circle Distance between Berlin and
Buenos Aires on the Surface of a Spherical
Earth.

!

!

(b) Great Circle Distance between Moscow and
Seoul on the Surface of a Spherical Earth.

Figure B.3: Great Circle Distances on the Surface of a Spherical Earth.

The geographic coordinates for the four capitals under consideration are as follows:

Berlin: N52◦31′, E13◦24′

Buenos Aires: S34◦35′, W58◦40′

Moscow: N55◦45′, E37◦36′

Seoul: N37◦33′, E126◦59′
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These coordinates are taken from the CIA’s World Factbook (Central Intelligence Agency,

2013) and before inputting them into the formula above they need to be converted from

degree-minute format to decimal degrees by dividing the entry for minutes by 60 and

adding it to the value for the degree (see Peterson and Smith (2012, 458)). In decimal-

degree form south and west are denoted with negative values (Shekhar and Xiong, 2008,

639) so that the coordinates from above now read7

Berlin: 52.52◦, 13.4◦

Buenos Aires: −34.58◦, −58.67◦

Moscow: 55.75◦, 37.6◦

Seoul: 37.55◦, 126.98◦

The distance between Berlin and Buenos Aires, for instance, can then be calculated as

dB,BA = R⊕ × arccos [cos(52.52◦) cos(−34.58◦) cos(13.4◦ − (−58.68◦))

+ sin(52.52◦) sin(−34.58◦)]

⇐⇒ dB,BA = R⊕ × 107.2356◦.

Converting now from degrees to radians by multiplying the angle with π/180 gives the

distance between Berlin and Buenos Aires as

dB,BA = 6,378.1km · 107.2356◦ · π
180

= 6,378.1km · 1.8716 = 11,937.25km. (B.6)

The complete spatial weight matrix for the four capitals thus reads

WC =


Berlin Buenos Aires Moscow Seoul

Berlin 0 11 936 1,610 8,138

Buenos Aires 11,936 0 13,505 19,431

Moscow 1,610 13,505 0 6,616

Seoul 8,138 19,431 6,616 0

 . (B.7)

The difference between the value in Equation (B.6) and the corresponding value in Equa-

tion (B.7) stems from rounding the results of the trigonometric functions in the calculation

above. In the matrix, the values have been calculated by implementing the formula in

7These conversions can easily be done in Mathematica or Matlab using the functions FromDMS and
dm2degrees, respectively. The values here are rounded to two decimal points.
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Matlab directly. After row-standardizing the matrix, it could be used in a straightforward

manner in the econometric exercise in the main text.

Note that as an alternative to the equatorial radius the mean radius of the earth could

have been used in the calculation. In its Earth Fact Sheet8 the National Aeronautic and

Space Administration (NASA) gives a value of 6,371km for the mean radius. Substituting

this value in Equation (B.5) would not change the relative distances between capitals,

however.

It should as well be kept in mind that the distances have been calculated by assuming

the earth is a sphere, although it is better described by an oblate spheroid and hence,

for instance, Vincenty’s formulae would be more accurate (Vincenty, 1975). For the

distances considered here, the gain in accuracy is negligible though and using a spatial

weights matrix based on Vincenty’s formulae would not change the qualitative results in

the main text.

B.3 Proof that (I − γW )−1 exists

This appendix demonstrates that the inverse of (I−γW ) exists for the assumed parameter

space of γ, given that γ 6= 0 and that 1
γ

is not an eigenvalue of W . The first condition is

obvious as it simply posits the existence of spatial externalities.9 In general, (I − γW )

will have an inverse, if it is non-singular, implying that |I − γW | 6= 0. The matrix will

thus be singular and have no inverse if |I−γW | = 0. Applying the rules for determinants,

(see, for example, Sydsæter et al., 2008, 5) this expression is equivalent to∣∣∣∣1γ I −W
∣∣∣∣ = 0 ⇐⇒

∣∣∣∣W − 1

γ
I

∣∣∣∣ = 0.

The second equation is the characteristic or eigenvalue equation of W , demonstrating

that (I − γW ) will not have an inverse if 1
γ

is an eigenvalue of W .

Having established the general conditions under which the inverse exists, it will now be

shown that it exists for 0 ≤ γ < 1.10

The last step in the proof will use the result that the eigenvalues of W will be less than or

equal to 1 in absolute value. This result is now proved via Gerschgorin’s Circle Theorem.11

8This is available under: http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html (ac-
cessed: 11 August, 2015).

9For γ = 0, the model would reduce to a standard Solow model with physical externalities.
10It will actually be shown that the inverse exists for |γ| < 1. This naturally includes the parameter

space described by the inequality in the main text, where one could exclude γ = 0.
11The original statement is due to Gerschgorin (1931). Here, I rely on the presentations in Meyer

(2000, 498) and Cheney and Kincaid (2008, 347-349).

http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
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This theorem states that the eigenvalues of a matrix B ∈ Cn×n lie in the complex plane in

the area that is given by the intersection of the union of all Gerschgorin circles associated

with the rows of B and the union of all Gerschgorin cirlces associated with the columns

of B. Formally, the Gerschgorin circles (or discs), Gri , associated with the rows are given

by

Gri = {z ∈ C : |z − bii| ≤ ri}, where ri =
n∑
j=1
j 6=i

|bij| for i = 1, 2, . . . , n

which means that the circles have the entry bii of the matrix B as their center and the

sum of the absolute values of the off-diagonal entries of the respective row as their radius.

The eigenvalues of the matrix are then contained in the union of these n Gerschgorin

circles associated with the rows of B, i.e. in
⋃N
i=1 Gri .

The Gerschgorin circles associated with the columns, Gci , are given by12

Gcj = {z ∈ C : |z − bii| ≤ cj}, where cj =
n∑
i=1
i 6=j

|bij| for j = 1, 2, . . . , n

and the union of these n Gerschgorin circles is denoted by
⋃N
i=1 Gci . Hence, the eigenvalues

of B will be contained in the following intersection(
N⋃
i=1

Gri

)⋂(
N⋃
i=1

Gci

)
.

Before applying this theorem to the spatial weight matrix W from the main text, a brief

graphical illustration for the matrix in (B.4) from Appendix B.2 will be provided to deepen

the understanding of the theorem.

For the matrix WB, all Gerschgorin circles are centered around the point (0, 0) in the

complex plane, and since the matrix is row standardized all circles associated with the

rows have a radius of 1. The union of these circles is shown in Panel (a) of Figure B.4.

Naturally, the circles associated with the columns are also centered around (0, 0) and,

since c1 = c3 = 4/3 and c2 = c4 = 2/3, there are in effect only two circles for the columns,

which have radii of 4/3 and 2/3, respectively. These circles and their union are depicted

in Panel (b) of Figure B.4. Finally, Panel (c) of Figure B.4 overlays the two results,

showing that all eigenvalues13 (which are depicted with a white circle in the figure) will

be contained within the unit circle.

12That the eigenvalues of B also are contained in the circles associated with the columns follows,
since the calculation of the eigenvalues involves the determinant, which is identical for a matrix and its
transpose (Meyer, 2000, 463).

13The eigenvalues of WB are λ1 = 1, λ2 = −1/3, λ3 = −2/3, and λ4 = 0.
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with the Rows of WB, i.e.
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Figure B.4: Illustration of Gerschgorin’s Circle Theorem for the Matrix WB.

This brief illustration provides an insight into why the eigenvalues λi of the matrix W

from the main text will be equal to or less than 1 in absolute value. The result hinges on

the assumption that the spatial weight matrix is row standardized so that ri = 1 for i =

1, . . . , N , implying that |λi| ≤ 1 will hold for the eigenvalues.

In order to finally show that (I−γW )−1 exists a last intermediate result is helpful. From

Schur’s Triangularization Theorem it follows that via a similarity transformation14 every

14Two square matrices A and B are similar “whenever there exists a nonsingular matrix P such that
P−1AP = B. The product P−1AP = B is called a similarity transformation on A” (Meyer, 2000,
506, emphasis in the original).
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square matrix can be made upper triangular (Meyer, 2000, 508). Hence, an invertible

N ×N matrix P exists so that

P−1WP = T , with T =


t11 · · · t1N
...

. . .
...

0 · · · tNN


where as an implication of Schur’s Triangularization Theorem the eigenvalues of W are

the diagonal entries of the matrix T . This matrix will now be used to prove that I−γW
is non-singular.

Proof.

|I − γW | = |PP−1(I − γW )| = |P (I − γW )P−1|

⇐⇒ |I − γW | = |PIP−1 − γPWP−1| = |I − γT |

⇐⇒ |I − γW | = (1− γt11) · · · (1− γtNN) (B.8)

⇐⇒ |I − γW | 6= 0

The last line follows if |γλii| 6= 1, which holds since tii = λi and |λii| ≤ 1 from Gerschgorin’s

Theorem, and also |γ| < 1 holds.

Here, the product rule on determinants as well as the fact that |PP−1 = 1| (see Meyer,

2000, 508) has been used, and to obtain Equation (B.8) the rule for the determinant of a

triangular matrix has been employed (see Meyer, 2000, 462).

An implication of applying Gerschgorin’s Theorem in this case is that it rules out that 1
γ

is an eigenvalue of W . This follows since it has been established that the eigenvalues of

W are in the interval [−1, 1] and |γ| < 1 so that the hypothetical eigenvalue 1
γ

would be

larger than 1.
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B.4 Derivations and Proofs of Selected Model Re-

sults

In this appendix the expressions for the spatial multiplier and the elasticities are derived.

B.4.1 Derivation of Equation (2.6)

This appendix proves that (I − γW )−1 equals
∑∞

r=0 γ
rW r and uses the result to derive

the expression for the level of technology in country i in Equation (2.6) in Section 2.3.2.

The crucial step in this proof will be to show that limn→∞(γW )n = 0. If this holds, then

I − γW has an inverse, thereby providing an alternative proof for its existence, and it

follows that this inverse can be written as
∑∞

r=0 γ
rW r.15

Proof. As a first step, the following result is helpful

(I − γW )
(
I + γW + (γW )2 + · · ·+ (γW )n

)
= I − (γW )n

where, if limn→∞(γW )n = 0 the right-hand side tends to I as n → ∞. Left multiplying

this equation by (I − γW )−1 then leads to the Neumann series

I + γW + (γW )2 + · · ·+ (γW )n =
∞∑
r=0

γrW r = (I − γW )−1.

It remains to be shown that limn→∞(γW )n = 0 indeed holds. This is equivalent to the

statement that the spectral radius of the matrix γW is strictly smaller than 1 (see Meyer,

2000, 618). Since the spectral radius of a matrix is given by its largest eigenvalue in

absolute value (Meyer, 2000, 497), a straightforward application of Gerschgorin’s Circle

Theorem to the matrix γW shows that its spectral radius is smaller than 1. This follows,

since for the matrix W the largest eigenvalue is 1, and multiplying each matrix entry by

|γ| < 1 would reduce the radii of the Gerschgorin circles.

The expression (I − γW )−1 =
∑∞

r=0 γ
rW r is also referred to as the spatial multiplier

(Ertur and Koch, 2007, 1044) and using this result in Equation (2.5) leads to

A =
∞∑
r=0

λrW rΩ + φ

∞∑
r=0

γrW rk.

15This is called a Neumann Series and can be used to approximate the inverse (Meyer, 2000, 126).
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This equation can be simplified by repeatedly substituting the result WΩ = Ω.16 The

equation then reads

A =
1

1− γ
·Ω + φ

∞∑
r=0

γrW rk.

The last term on the right-hand side can be shown to equal

φ
∞∑
r=0

γrW rk = φ


ln k1(t)

...

ln kN(t)

+


∏N

j=1 ln kj(t)
φ
∑∞
r=1 γ

r(W r)1j

...∏N
j=1 ln kj(t)

φ
∑∞
r=1 γ

r(W r)Nj


so that after first collecting the terms in logarithms and then applying the exponential

transformation, the level of technology for a given country i is given by

Ai(t) = Ω(t)
1

1−γ · ki(t)φ ·
N∏
j=1

kj(t)
φ
∑∞
r=1 γ

r(W r)ij

which is Equation (2.6) in Section 2.3.2.

B.4.2 Derivation of the Elasticities

Define S as the N × 1 vector of investment rates, si, in logarithms and N as the N × 1

vector of the effective depreciation rates, ni+g+δ, also in logarithms, then Equation (2.14)

can be rewritten in matrix form as

y =
1

1− α− φ
Ω +

α + φ

1− α− φ
S − α + φ

1− α− φ
N

− αγ

1− α− φ
WS − αγ

1− α− φ
WN +

γ(1− α)

1− α− φ
Wy.

Solving this equation for y, yields

y =
1

1− α− φ

[
I − γ(1− α)

1− α− φ
W

]−1

Ω

+

[
γ(1− α)

1− α− φ
W

]−1(
α + φ

1− α− φ
I − αγ

1− α− φ
W

)
S

+

[
γ(1− α)

1− α− φ
W

]−1(
α + φ

1− α− φ
I − αγ

1− α− φ
W

)
N

16That this holds can be seen by writing out the details of the matrix multiplication and then using
the assumption that W is row standardized so that

∑N
j=1 w1j = 1.
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and taking now the derivative with respect to S leads to a matrix for the elasticities of

steady-state income with respect to the investment rate

ηs =
α + φ

1− α− φ
I +

[
φ

(1− α)(1− α− φ)

] ∞∑
r=1

W r

(
γ(1− α)

1− α− φ

)r
= −ηn

where ηn denotes the corresponding matrix of elasticities with respect to the vector of

effective depreciation rates N . The elasticities given in Section 2.3.3 in Equations (2.15)

and (2.16) for a country i then follow directly from the equation above.

B.5 Further Robustness Checks

This appendix gathers detailed estimation results for a series of specifications mentioned

in the main text. The results in Tables B.1 and B.2 demonstrate that the original results

by Ertur and Koch are not robust across different versions of the Penn World Table

based on the specification for the interaction matrix W2 as actually implemented in their

estimation. Tables B.3 and B.4 show that the estimation results are highly sensitive to

division of the geographic distances between country capitals by 1,000 in the weights of

interaction matrix W2. Finally, Tables B.5 and B.6 depict the results when the weights

in the interaction matrix using genetic distances between countries are based on weighted

Nei’s genetic distance. In this case, the estimation results are not robust across the

different samples, but comparable to the ones based on weighted FST distance in the main

text with the exception mentioned in Footnote 101.
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Table B.1: Estimation Results for the Standard and Spatially Augmented Solow Model According
to Three Different Versions of the Penn World Table Based on Interaction Matrix W2 (Geographic
Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Unconstrained estimation:

Constant 0.546 0.214 3.042 1.139
(0.771) (0.911) (0.135) (0.586)

ln si 0.804 0.757 0.836 0.936
(0.000) (0.000) (0.000) (0.000)

ln(ni + 0.05) −1.471 −1.263 −0.496 −1.094
(0.08) (0.030) (0.479) (0.146)

W ln sj −0.381 −0.370 −0.132 0.152
(0.021) (0.031) (0.530) (0.669)

W ln(nj + 0.05) 0.158 −0.145 −0.595 −0.623
(0.840) (0.856) (0.500) (0.520)

W ln yj 0.657 0.659 0.516 0.577
(0.000) (0.000) (0.000) (0.000)

Constrained estimation:

Constant 2.769 3.022 4.086 2.649
(0.000) (0.000) (0.000) (0.000)

ln si − lnni 0.826 0.791 0.839 0.970
(0.000) (0.000) (0.000) (0.000)

W [ln sj − ln(nj + 0.05)] −0.318 −0.232 −0.085 0.252
(0.045) (0.174) (0.679) (0.457)

W ln yj 0.665 0.635 0.510 0.578
(0.000) (0.000) (0.000) (0.000)

Test of restriction 2.378 2.090 0.652 0.543
(0.305) (0.352) (0.722) (0.762)

Implied α 0.323 0.268 0.143 −0.773
(0.001) (0.042) (0.612) (0.695)

Implied φ 0.129 0.174 0.313 1.265
(0.126) (0.138) (0.235) (0.519)

Implied γ 0.538 0.484 0.324 0.166
(0.000) (0.000) (0.026) (0.406)

α+ φ
1−γ 0.603 0.605 0.606 0.743

(0.000) (0.000) (0.000) (0.000)

Note: p-values are given in parentheses. The restriction for the spatially augmented model is tested
with the likelihood ratio (LR) test.
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Table B.2: Estimation Results for the Direct, Indirect and Total Impacts in the Spatial Model
According to Three Different Versions of the Penn World Table Based on Interaction Matrix W2

(Geographic Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Direct impacts:

ln si 0.847 0.799 0.897 1.091
(0.000) (0.000) (0.000) (0.000)

ln(ni + 0.05) −1.709 −1.583 −0.667 −1.378
(0.004) (0.012) (0.332) (0.064)

Indirect impacts:

W ln sj 0.388 0.337 0.562 1.487
(0.286) (0.386) (0.049) (0.037)

W ln(nj + 0.05) −2.128 −2.561 −1.588 −2.696
(0.244) (0.168) (0.252) (0.110)

Total impacts:

ln si + W ln sj 1.236 1.136 1.459 2.578
(0.004) (0.014) (0.000) (0.003)

ln(ni + 0.05) + W ln(nj + 0.05) −3.837 −4.143 −2.255 −4.073
(0.066) (0.055) (0.143) (0.029)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random draws
from the estimation.
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Table B.3: Estimation Results for the Spatially Augmented Solow Model According to the Speci-
fication of W2 as Implemented (Column 1) vs. as Claimed (Column 2) in Ertur and Koch (2007).

Data set PWT 6.1

Weight in the interaction matrix W2 e−2dij/1,000 e−2dij

Number of observations 91 91

Unconstrained estimation:

Constant 0.546 5.140
(0.771) (0.005)

ln si 0.804 1.238
(0.000) (0.000)

ln(ni + 0.05) −1.471 −2.475
(0.008) (0.000)

W ln sj −0.381 0.826
(0.021) (0.004)

W ln(nj + 0.05) 0.158 −1.570
(0.840) (0.012)

W ln yj 0.657 −0.236
(0.000) (0.073)

Constrained estimation:

Constant 2.769 8.884
(0.000) (0.000)

ln si − lnni 0.826 1.093
(0.000) (0.000)

W [ln sj − ln(nj + 0.05)] −0.318 2.021
(0.045) (0.000)

W ln yj 0.665 −0.236
(0.000) (0.000)

Implied α 0.323 0.895
(0.001) (0.000)

Implied φ 0.129 −0.373
(0.126) (0.000)

Implied γ 0.538 −1.078
(0.000) (0.000)

α+ φ
1−γ 0.603 0.716

(0.000) (0.000)

Note: p-values are given in parentheses. The likelihood ratio (LR) could not be performed for this
matrix, as no value for the log-likelihood was returned in this model.
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Table B.4: Estimation Results for the Direct, Indirect and Total Impacts in the Spatial Model
According to the Specification of W2 as Implemented (Column 1) vs. as Claimed (Column 2) in
Ertur and Koch (2007).

Data set PWT 6.1

Weight in the interaction matrix W2 e−2dij/1,000 e−2dij

Number of observations 91 91

Direct impacts:

ln si 0.847 1.210
(0.000) (0.000)

ln(ni + 0.05) −1.709 −2.412
(0.004) (0.001)

Indirect impacts:

W ln sj 0.388 0.463
(0.286) (0.033)

W ln(nj + 0.05) −2.128 −0.850
(0.244) (0.001)

Total impacts:

ln si + W ln sj 1.236 1.673
(0.004) (0.000)

ln(ni + 0.05) + W ln(nj + 0.05) −3.837 −3.262
(0.066) (0.000)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random draws
from the estimation.
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Table B.5: Estimation Results for the Spatial Durbin Model According to Three Different Versions
of the Penn World Table Based on Interaction Matrix W4 (Weighted Nei’s Genetic Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Unconstrained estimation:

Constant 8.023 8.745 5.864 −2.162
(0.003) (0.000) (0.013) (0.373)

ln si 0.847 0.962 0.901 1.005
(0.000) (0.000) (0.000) (0.000)

ln(ni + 0.05) −1.091 −0.857 −0.137 −0.892
(0.047) (0.115) (0.806) (0.172)

W ln sj 0.725 0.728 0.739 −0.027
(0.003) (0.001) (0.003) (0.949)

W ln(nj + 0.05) 0.595 0.396 −1.747 −2.041
(0.550) (0.676) (0.074) (0.065)

W ln yj 0.330 0.285 0.181 0.557
(0.006) (0.015) (0.184) (0.000)

Constrained estimation:

Constant 5.407 5.750 6.119 2.325
(0.000) (0.000) (0.000) (0.001)

ln si − lnni 0.812 0.898 0.884 1.031
(0.000) (0.000) (0.000) (0.000)

W [ln sj − ln(nj + 0.05)] 0.668 0.688 0.671 0.047
(0.005) (0.001) (0.004) (0.905)

W ln yj 0.308 0.262 0.232 0.624
(0.019) (0.024) (0.070) (0.000)

Test of restriction 1.710 1.857 2.082 3.945
(0.425) (0.395) (0.353) (0.139)

Implied α 1.855 1.615 1.529 −0.081
(0.105) (0.023) (0.030) (0.913)

Implied φ −1.407 −1.141 −1.060 0.588
(0.221) (0.115) (0.138) (0.417)

Implied γ −0.199 −0.225 −0.233 0.284
(0.294) (0.158) (0.207) (0.188)

α+ φ
1−γ 0.681 0.683 0.669 0.741

(0.000) (0.000) (0.000) (0.000)

Note: p-values are given in parentheses. The restriction for the spatially augmented model is tested
with the likelihood ratio (LR) test.
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Table B.6: Estimation Results for the Direct, Indirect and Total Impacts in the Spatial Model
According to Three Different Versions of the Penn World Table Based on Interaction Matrix W4

(Weighted Nei’s Genetic Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Direct impacts:

ln si 0.909 1.011 0.923 1.074
(0.000) (0.000) (0.000) (0.000)

ln(ni + 0.05) −1.071 −0.843 −0.185 −1.227
(0.050) (0.118) (0.741) (0.063)

Indirect impacts:

W ln sj 1.454 1.365 1.080 1.122
(0.000) (0.000) (0.000) (0.152)

W ln(nj + 0.05) 0.390 0.254 −2.101 −5.462
(0.776) (0.834) (0.046) (0.008)

Total impacts:

ln si + W ln sj 2.363 2.376 2.001 2.195
(0.000) (0.000) (0.000) (0.011)

ln(ni + 0.05) + W ln(nj + 0.05) −0.681 −0.589 −2.286 −6.689
(0.629) (0.630) (0.026) (0.003)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random draws
from the estimation.
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B.6 List of Countries Included in the Empirical Anal-

yses

This appendix lists the countries that are included in the empirical analyses. Country

codes are given as well. In the analyses with 83 countries, Angola, Bangladesh, Botswana,

Central African Republic, Mauritania, Papua New Guinea, Sierra Leone, and Democratic

Republic of Congo have been dropped to achieve a balanced sample over PWT Versions

6.1, 6.2, and 7.1.

Table B.7: Alphabetical List of the 91 Countries from PWT 6.1 Included in the Empirical Analyses.

Country Code Country Code

Angola AGO Mali MLI

Argentina ARG Mauritania MRT

Australia AUS Mauritius MUS

Austria AUT Mexico MEX

Bangladesh BGD Morocco MAR

Belgium BEL Mozambique MOZ

Benin BEN Nepal NPL

Bolivia BOL Netherlands NLD

Botswana BWA New Zealand NZL

Brazil BRA Nicaragua NIC

Burkina Faso BFA Niger NER

Burundi BDI Nigeria NGA

Cameroon CMR Norway NOR

Canada CAN Pakistan PAK

Central African Republic CAF Panama PAN

Chad TCD Papua New Guinea PNG

Chile CHL Paraguay PRY

Colombia COL Peru PER

Costa Rica CRI Philippines PHL

Côte d’Ivoire CIV Portugal PRT

Democratic Republic of the Congo ZAR Republic of the Congo COG

Denmark DNK Republic of Korea KOR

Dominican Republic DOM Rwanda RWA

Ecuador ECU Senegal SEN

Egypt EGY Sierra Leone SLE

El Salvador SLV Singapore SGP

Ethiopia ETH South Africa ZAF

Finland FIN Spain ESP

France FRA Sri Lanka LKA

Ghana GHA Sweden SWE

Greece GRC Switzerland CHE

Guatemala GTM Syria SYR

Honduras HND Tanzania TZA
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Table B.7: (Continued)

Country Code Country Code

Hong Kong HKG Thailand THA

India IND Togo TGO

Indonesia IDN Trinidad and Tobago TTO

Ireland IRL Tunisia TUN

Israel ISR Turkey TUR

Italy ITA Uganda UGA

Jamaica JAM United Kingdom GBR

Japan JPN United States USA

Jordan JOR Uruguay URY

Kenya KEN Venezuela VEN

Madagascar MDG Zambia ZMB

Malawi MWI Zimbabwe ZWE

Malaysia MYS



C Appendix to Chapter 3

C.1 Poisson Processes

In the literature on Schumpeterian growth models it is standard to model the occurrence

of an innovation via a Poisson arrival rate or to read about Poisson processes (compare,

for instance, Aghion and Howitt (1992) and Aghion et al. (2014)).1 A detailed exposition

of these notions is however seldom provided so that these concepts from statistical theory

may pose some difficulties at first glance. This appendix therefore serves as a brief review

of the general concepts concerning Poisson processes.

An important step towards understanding Poisson processes concerns the exponential

distribution. If a continuous random variable X is exponentially distributed, then its

probability density function (PDF) is given by

f(x) =

λe−λx if x ≥ 0

0 if x < 0.
(C.1)

Here, λ is a parameter for which λ > 0, and x is a particular value of the random variable.

This function is illustrated for two different values of λ in Figure C.1.

The cumulative distribution function, which gives the probability that X ≤ x, with x ≥ 0

is then given by

P{X ≤ x} = F (x) =

∫ x

0

f(τ) dτ =

∫ x

0

λe−λτdτ =
∣∣∣x
0
− e−λτ = 1− e−λx. (C.2)

The exponential distribution has the property of being memoryless (Ross, 2010, 294).

This property can formally be stated as

P{X > s+ t|X > t} = P{X > s} ∀ s, t ≥ 0.

Interpreting the random variable X, for instance, as the lifetime of a certain machine,

instrument, or device like a traffic light, the equation above states that the probability

that a traffic light functions s + t units of time (i.e. days), given that it already has

1Poisson processes also play an important role in other areas of economics like labor or monetary
economics. Wälde (2011, 261) provides a brief list of applications in economics.
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Figure C.1: Probability Density Functions (PDF) of an Exponentially Distributed Random Variable
X with Parameter λ = 1.3 and λ = 0.4, respectively.

Note: The underlying data was generated in Mathematica.

worked for t days is the same as the unconditional probability that it works for s days.

Put differently, the traffic light “does not remember” it has already worked for t days. A

concept, known as the hazard rate or failure rate, helps to illustrate this property. For

the given example, it is defined as the conditional probability that a traffic light, having

survived t days, will fail. Formally, the failure rate, r(t), is thus given by (Ross, 2010,

299)

r(t) =
f(t)

1− F (t)
.

Inserting from Equations (C.1) and (C.2), one immediately sees that the failure rate is

constant in the case of an exponentially distributed random variable2

r(t) =
λe−λt

e−λt
= λ.

The notion of failure rates will be picked up again after the following exposition on Poisson

processes. These are a specific form of a counting process. Generally speaking, a counting

process {N(t), t ≥ 0} is a stochastic process, which counts the number of events, N(t),

that have happened up until time t (like, for example, the number of cyclists who have

crossed a certain bridge until noon). For a Poisson process, the following definition holds

(Ross, 2010, 313): A Poisson process is a counting process with rate λ > 0, if (i) N(0) = 0,

2In fact, as Ross (2010, 299-300) demonstrates, the property of memorylessness exists only for random
variables that are exponentially distributed.
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(ii) the process has independent increments, and (iii) the number of events in any interval

of length t has a Poisson distribution with mean λt, i.e. ∀ s, t ≥ 0

P{N(t+ s)−N(s) = n} = e−λt
(λt)n

n!
, n = 0, 1, . . .

In the context of the model in the main text, for an individual about to engage in re-

search and calculating the value of an innovation, information on the absolute number of

innovations in a given sector is of minor interest compared to the time span over which

she will be able to earn monopoly profits. Hence, information on the time between inno-

vations is of central interest. Denoting the point of time of the first innovation as T1 and

defining Tn as the time span or interarrival time between event (or innovation) n− 1 and

n, implies that if, for example, innovation number 5 occurred at time 33, innovation 6 at

time 34, and the next innovation at time 38, then one would have T6 = 34− 33 = 1 and

T7 = 38− 34 = 4 as the values for the interarrival times. Information on the distribution

of this sequence of random variables can now be derived by noting that the probability

that the first event or innovation occurs after time t is given by the expression (Ross,

2010, 317)

P{T1 > t} = P{N(t) = 0} = e−λt.

Hence, T1 is exponentially distributed. This result follows from using property (i) of the

Poisson process and by noting that during the interval [0, t] by definition no event occurs

so that the number of events in this particular interval is N(t + 0) = N(t) = 0.3 Next,

the probability of T2, i.e. the probability that the time between events 1 and 2 is larger

than t is the probability of T2 given that T1 already happened (which necessarily needs

to be the case given the definition of T2) and had an interarrival time of e.g. s. Then, it

holds that

P{T2 > t|T1 = s} = P{0 events in (s, s+ t]|T1 = s}

= P{0 events in (s, s+ t]}

= e−λt,

where the second line follows from the fact that the Poisson process has independent incre-

ments (i.e. the number of events that occur in non-overlapping intervals are independent

from each other) so that the conditional and unconditional probabilities are identical. The

third line holds, as the process has stationary increments,4 implying that the distribution

for the number of events in (s, s+ t) is identical for all s (Ross, 2010, 313).

3In general, it holds that P{X > x} = 1 − P{x ≤ X}. Hence, with reference to the cumulative
distribution function in Equation (C.2), the claim that T1 has an exponential distribution is valid.

4This is implied by an alternative definition of a Poisson process to the one provided above. See Ross
(2010, 314) for the details concerning this definition.
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Having demonstrated that the interarrival times are independently and identically dis-

tributed, the failure rate for the interarrival times is therefore given by the parameter or

intensity of the Poisson process, λ. Translated into the context of the model, a failure

is equivalent to a new innovation, and the probability that a new innovation comes into

existence during the interval dt is given by r(t)dt = λdt (Ross, 2010, 299).

Figures C.2 and C.3 illustrate important characteristics of Poisson processes and the ex-

ponential distribution with different values for λ. One clearly sees from the length of

the horizontal lines in Figure C.2, that the time interval between innovations (or “fail-

ures”) is not constant. Interpreting the units of time as years, it takes, for instance, only

approximately three months to go from quality level 7 to level 10 (or come up with 3

additional products in that time span), whereas making the three steps from 3 to 6 takes

approximately 5 years. Also, the number of absolute innovations is higher for the process

with a higher value for λ (17 versus 4).
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Figure C.2: Illustration of Two Poisson Processes with Intensities λ = 1.3 and 0.4, respectively.

Note: The data underlying the Poisson processes was generated in Mathematica.

Additionally, Figure C.3 illustrates that a higher value for λ is equivalent to having a

larger probability mass at any value of the random variable. Therefore, the probability

that an innovation occurs within a certain period of time is indeed higher for higher values

of λ.
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Figure C.3: Cumulative Density Functions (CDF) of an Exponentially Distributed Random Vari-
able X with Parameter λ = 1.3 and λ = 0.4, respectively.

Note: The underlying data was generated in Mathematica.

C.2 Additional Derivations – Model

This appendix gathers a variety of derivations of (intermediate) results that are merely

stated in the presentation of the model in Sections 3.2 and 3.3 in the main text.

C.2.1 Derivation of the Inverse Demand Schedule for Interme-

diate Goods

In the following, the inverse demand function for an intermediate good will be derived in

detail.

The necessary condition for the maximization problem in Equation (3.2) is given by
dΠi(v,t)
dxi(v,t)

= 0. Calculating the derivative in this equation, requires an application of the

following result for differentiating under the integral sign (see, for instance, Sydsæter

et al., 2008, 159)

F (x) =

∫ d

c

f(x, t) dt =⇒ F ′(x) =

∫ d

c

∂f(x, t)

∂x
dt.

Applying this general result to the problem in (3.2), leads to the necessary condition

Qα−1
i

∫ Qi(t)

0

αAi(v, t)Li(t)
1−αxi(v, t)

−(1−α) dv =

∫ Qi

0

pi(t) dv.
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Note that this expression is not identical to the solution given in Equation (3.3) in the

main text. The reason is that in the equation above the derivation has been taken with

respect to xi(v, t) in general (i.e. the whole continuum of varieties) and not with respect to

a specific intermediate good, like, for example, good j. For a specific good j, the correct

derivative to take is ∂Πi(v,t)
∂xi(j,t)

. This derivative can be stated, by rewriting the integrals in

the optimization problem (maybe slightly informally interpreting the integral as a sum of

discrete varieties), as

∂Πi(v, t)

∂xi(j, t)
= Qi(t)

α−1

[∫ Qi(t)

v 6=j
v=0

∂

∂xi(j, v)
Ai(v, t)xi(v, t)

αLi(t)
1−αdv

+
∂

∂xi(j, v)
Ai(j, t)xi(j, t)

αLi(t)
1−α
]

−

[∫ Qi(t)

v 6=j
v=0

pi(v, t)xi(v, t)dv +
∂

∂xi(j, v)
pi(j, t)xi(j, t)

]

− ∂

∂xi(j, v)
wi(t)Li(t).

Calculating the respective derivatives in this expression and setting the result equal to

zero, leads to (note that the terms with the integrals no longer depend on xi(j, t) and thus

their derivative with respect to this variable is equal to zero)

Qi(t)
α−1αAi(j, t)Li(t)

1−αxi(j, t)
−(1−α) = pi(j, t).

As good j is just one specific good out of the continuum v ∈ [0, Qi(t)], the (inverse)

demand from the producers of final goods for intermediate goods in Equation (3.3) in the

main text follows.

C.2.2 Deriving the Production Function in Intensive Form

In equilibrium, capital supply, Ki(t), equals capital demand,
∫ Qi(t)

0
Ki(v, t)dv, and hence,

substituting Ki(v, t) = Ai(v, t)xi(v, t) from the production function for intermediate goods

(see Equation 3.5) into this equality, leads to

Ki(t) =

∫ Qi(t)

0

Ai(v, t)xi(v, t) dv ⇐⇒ Ki(t) = xi(t)

∫ Qi(t)

0

Ai(v, t) dv (C.3)

where the second equation has used the property that the equilibrium in the interme-

diate goods sector is symmetric (see Equation (3.9)). Defining the average productivity

parameter in the intermediate goods sector as

Ai(t) ≡
1

Qi(t)

∫ Qi(t)

0

Ai(v, t) dv ⇐⇒ Ai(t)Qi(t) =

∫ Qi(t)

0

Ai(v, t) dv (C.4)
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and substituting from the second equation in the expression above into Equation (C.3)

results in xi(t) = k̂i(t)
Li(t)
Qi(t)

, where k̂i(t) is the capital stock per effective worker, i.e. k̂i(t) ≡
Ki(t)

Ai(t)Li(t)
. With the property of the symmetric equilibrium, the expression for xi(t) just

derived, and the second expression in Equation (C.4), the production function in intensive

form can be written as

ŷi(t) = k̂i(t)
α

where ŷi(t) ≡ Yi(t)
Ai(t)Li(t)

is the production per effective worker, and which is identical to

Equation (3.4).

In the main text in Section 3.2.1, it was stated that as the production function is multiplied

by the factor Qi(t)
α−1, technological progress in this model is due to increases in produc-

tivity and not increases in the number of varieties as in the model by Romer (1990). This

result will now be demonstrated mathematically. The production function in intensive

form above can be expressed in aggregate terms as Yi(t) = Ai(t)Li(t)
1−αKi(t)

αAi(t)
−α.

From the two expressions after the equivalence arrows in Equations (C.3) and (C.4), it

follows that Ki(t)
Ai(t)

= xi(t)Qi(t) so that

Yi(t) = Ai(t)Li(t)
1−α(xi(t)Qi(t)

)α
(C.5)

which has constant returns to scale in the two input factors labor and aggregate amount

of intermediate inputs. As can be seen, technological progress in this specification is only

due to increases in productivity. On the other hand, without the factor Qi(t)
α−1 in the

original specification of the production function in Equation (3.1), the right-hand side in

Equation (C.5) would need to be multiplied by Qi(t)
1−α to obtain a corresponding result,

and increases in the number of varieties would lead to increases in productivity in this

case.

C.2.3 Convergence of the Number of Workers per Product to a

Constant

The result that the number of workers per intermediate good, Li(t)/Qi(t) = li(t) mono-

tonically converges to the constant ni/ξi in Equation (3.13) can be derived as follows:

Taking the natural logarithm of li(t) and deriving the result with respect to time yields

l̇i(t)

li(t)
=
L̇i(t)

Li(t)
− Q̇i(t)

Qi(t)
.
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Inserting ni for the population growth rate and substituting for Q̇i(t) from Equation (3.12)

leads to the differential equation

l̇i(t)

li(t)
= ni − ξli(t) ⇐⇒ l̇i(t)− nili(t) = −ξli(t)2. (C.6)

This equation has one steady state at l∗i = ni
ξ

, which results from setting l̇i(t) = 0 and

solving for li. Asymptotic convergence to the steady state follows as l̇i(t) < 0 for all

li(t) > l∗i and l̇i(t) > 0 for all li(t) < l∗i (see Part 3 of Corollary 2.2 in Acemoglu (2009)

for this approach to determine global asymptotic stability).5

C.2.4 Derivation of the Value of an Innovation

This section provides a derivation of the expression for the value of an innovation to

a monopolist stated in Equation (3.16). In particular, it will be shown how this value

depends on the Poisson arrival rate of new (quality) innovations.

A firm will reap monopoly profits from the time the innovation is brought to market

(e.g. t = 0) until it is replaced at some time T , with T ∈ (0,∞), by a new monopolist

producing a variety of a higher quality, and profits will fall to zero.6 Therefore, the value

for a firm at time 0 is given by7

Vd(0) =

∫ T

0

e−
∫ τ
0 r(s)dsπ(τ) dτ

where r(s) is the interest rate at time s, and the exponential expression is the discount

factor applied to the monopolist’s profits. That the replacement will happen is certain,

but the point in time T in the future when it will happen can only be determined with

5Note that Equation (C.6) is a Bernoulli equation (Sydsæter et al., 2008, 208), which can be trans-
formed into a standard linear differential equation by using the transformation z(t) = 1

li(t)
and then be

solved for the general solution

z(t) =

(
z(0)− ξ

ni

)
e−nit +

ξ

ni
.

Reversing the transformation, the general solution for li(t) is thus given by

li(t) =
1(

li(0)−1 − ξ
ni

)
e−nit + ξ

ni

,

which confirms that l∗i = ni
ξ is indeed a steady-state value for the differential equation.

6This follows from the Arrow replacement effect and the fact that the previous monopolist will be
driven out of the market via Bertrand competition, as the new innovator produces a higher quality good
at identical costs (Aghion et al., 2014, 518).

7The subscript d denotes “deterministic” in this instance.
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some probability. Hence, the expected value of an innovation is a random variable and

can be expressed as follows8

V (0) = E[Vd(0)] =

∫ ∞
0

f(T )

[∫ T

0

e−
∫ τ
0 r(s)dsπ(τ) dτ

]
dT

=

∫ ∞
0

∫ T

0

f(T )e−
∫ τ
0 r(s)dsπ(τ) dτ dT, (C.7)

where f(T ) is a general probability density function with f(T ) ≥ 0 ∀T and
∫∞

0
f(T ) dT =

1. The equality in Equation (C.7) follows as f(T ) does not depend on τ and can thus be

moved into the integral with respect to τ . However, this expression is still quite different

from Equation (3.16).

The next step is to change the order of integration, which requires adjusting the limits of

integration (this step is explained and illustrated in more detail at the end of this section).

This procedure yields

V (0) =

∫ ∞
0

[∫ ∞
τ

f(T ) dT

]
e−

∫ τ
0 r(s)dsπ(τ) dτ. (C.8)

Referring back to the discussion on Poisson processes in Appendix C.1, and making a

specific distributional assumption on the function f(T ) (compare Equation (C.1)), the

integral in brackets is just the probability that an innovation occurs after time τ , or,

equivalently, that the firm can still earn monopoly profits at time τ . Calculating the

complementary probability to the one stated (in general terms) in Equation (C.2), this

probability is e−φτ so that the value of an innovation is given by9

V (0) =

∫ ∞
0

e−φτ · e−
∫ τ
0 r(s)dsπ(τ) dτ

=

∫ ∞
0

e−
∫ τ
0 (r(s)+φ)dsπ(τ) dτ.

To be precise, this expression differs slightly from the more general one in the main text, as

it is assumed here that φ is constant, which only holds in steady state (also, an identifier i

for individual regions was dropped here).

Proving the validity of the change in the order of integration above, requires demonstrating

that the expressions in Equation (C.7) and (C.8) are equivalent. This basically works by

showing that the area of integration is identical in both cases. The following method can,

for instance, be found in Sydsæter et al. (2008, 166pp) or Thomas Jr. (2005, 1074-75). In

8Note that this approach is basically the same as the one adopted by Yaari (1965, 142) in his model
of uncertain lifetime.

9The second equality follows, as e−
∫ τ
0
φ ds = e

−
∣∣τ
0
φs

= e−φτ .
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general, double integrals are evaluated by first working out the inner integral and then

the outer one. In illustrating the method graphically in Figure C.4, the upper limit of

integration in Equation (C.7) is changed from ∞ to an upper bound of T̄ to simplify

the graphical exposition. For the double integral in Equation (C.7), the relevant area

of integration is depicted in Panel (a) of Figure C.4 and the one for Equation (C.8) in

Panel (b).

T

τ

T = T̄

τ = T

0 τ = 0 T̄

τ = T

A

(a) Illustration of Evaluating the Integral in
Equation (C.7).

T

τ

T = T̄

T = T̄

τ = T

0 T̄

T = τ A

(b) Illustration of Evaluating the Integral in
Equation (C.8).

Figure C.4: Graphical Illustration of Changing the Order of Integration and Preserving the Area
of Integration.

In order to evaluate the integral in the first equation, the inner integral is evaluated along

the line τ = 0 to τ = T , and then the outer integral is evaluated by integrating along all

vertical lines from T = 0 to T = T̄ (indicated by the horizontal arrows) to obtain the grey-

shaded area of integration A (see Panel (a)). The same area is obtained by changing the

order of integration, then first integrating along the horizontal line from T = τ to T = T̄ ,

and then the outer integral covers all horizontal lines from τ = 0 to τ = T̄ (indicated

by the vertical arrows) so that also in this case the grey-shaded area of integration A is

obtained (see Panel (b)).

C.2.5 Derivation of the Research-Arbitrage Equation

The research-arbitrage equation results from deriving Equation (3.17) which is repeated

here for convenience

vi(t) =

∫ ∞
t

e−
∫ τ
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(τ)

)
li(τ) dτ
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with respect to t. Taking this derivative requires applying Leibniz’s Formula (see, for

example Sydsæter et al., 2008, 160)

F (t) =

∫ v(t)

u(t)

f(t, τ) dτ

=⇒ F ′(t) = f
(
t, v(t)

)︸ ︷︷ ︸
1

v′(t)︸︷︷︸
2

− f
(
t, u(t)

)︸ ︷︷ ︸
3

u′(t)︸︷︷︸
4

+

∫ v(t)

u(t)

∂f(t, τ)

∂t︸ ︷︷ ︸
5

dτ.

In the case at hand, the function f(t, τ) in the formula above is therefore given by f(t, τ) =

e−
∫ τ
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(τ)

)
li(τ), and the individually numbered terms above are given by

the following expressions, respectively

1 : f
(
t, v(t)

)
= e−

∫∞
t (ri(s)+φi(s)) ds limτ→∞ π̃i

(
k̂i(τ)

)
li(τ)

2 : v′(t) = d
dt

“∞” = 0

3 : f
(
t, u(t)

)
= e−

∫ t
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(t)

)
li(t) = e0π̃i

(
k̂i(t)

)
li(t) = π̃i

(
k̂i(t)

)
li(t)

4 : u′(t) = d
dt
t = 1

5 : ∂
∂t
e−

∫ τ
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(τ)

)
li(τ) = −[−ri(t) + φi(t)]e

−
∫ τ
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(τ)

)
li(τ)

Using these intermediate results with the product 1 · 2 = 0 already inserted, it follows

that

∂

∂t
vi(t) = v̇i(t) = −π̃i

(
k̂i(t)

)
li(t) +

∫ ∞
t

[ri(t) + φi(t)]e
−

∫ τ
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(τ)

)
li(τ) dτ

= −π̃i
(
k̂i(t)

)
li(t) + [ri(t) + φi(t)]

∫ ∞
t

e−
∫ τ
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(τ)

)
li(τ) dτ︸ ︷︷ ︸

vi(t)

= −π̃i
(
k̂i(t)

)
li(t) + [ri(t) + φi(t)]vi(t)

and from the last expression, the research-arbitrage stated in the main text in Equa-

tion (3.17), is readily obtained.

C.2.6 Convergence of Relative Productivities

In the following, it will be demonstrated that the relative productivity parameters ai(v, t) =
Ai(v,t)
Ai(t)max

converge to an invariant distribution. More specifically, it will be shown that the

distribution of the fraction of sectors for which Ai(v, t) ≤ Ai(t)
max is time independent

and given by a
1
σ
i . This result is based on the assumption that new and existing products
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have identical distributions for the productivity parameters at any time t. The proof

follows along the lines of Aghion and Howitt (1998, 115).

For an arbitrary point in time t, denote the cumulative distribution of the absolute pro-

ductivity parameters by F (·, t). At some point in time, t0 ≥ 0, one particular sector

v ∈ [0, Qi(t)] with productivity parameter Ai(v, t) necessarily was the leading-edge sector.

Defining then the cumulative distribution function as Φi(t) = F
(
Ai(v, t), t

)
, it needs to

hold that

Φi(t0) = 1, (C.9)

i.e. the probability that the particular sector that was picked out has the highest produc-

tivity across all sectors under consideration equals 1. At time t0 “many”sectors are behind

the one with the highest productivity. These sectors individually will innovate with the

Poisson arrival rate for vertical innovations and, hence, in aggregate, since there are Φi(t)

sectors, with the rate Φi(t)λiκi(t)
φ. This rate therefore equals the one with which the

mass of sectors behind the leading one will decrease. In formal terms,

Φ̇i(t) = −Φi(t)λiκi(t)
φ ∀ t ≥ t0. (C.10)

Equations (C.9) and (C.10) pose then an initial-value problem with solution

Φi(t) = e
−

∫ t
t0
λiκi(s)

φ ds ∀ t ≥ 0. (C.11)

Equation (3.20) implies the differential equation Ȧi(t)
max = σλiκi(t)

φAi(t)
max, and at

the start of this section it was assumed that Ai(v, t) = Ai(t0)max (compare also the

definition in Equation (3.15)). The solution to the differential equation for the leading-

edge productivity parameter is therefore

Ai(t)
max = Ai(v, t)e

σ
∫ t
t0
λiκi(s)ds ∀ t ≥ t0. (C.12)

From combining Equations (C.11) and (C.12), it thus follows that the distribution of the

relative productivities in the long run converges to

Φi(t) =

(
Ai(v, t)

Ai(t)max

) 1
σ

= ai(t)
1
σ .

As Aghion and Howitt (1992, 116) point out, in the long run almost all values for ai in

the interval [0, 1] will exist.10

10Additional remarks on the cross-section distribution, including a graphical analysis can be found in
Howitt (2000, 834). See also Howitt (1999, 721).
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C.2.7 Growth Rate of the Average and Leading-Edge Produc-

tivity Parameters

In the main text at the end of Section 3.2.3, an equation for the growth rate of the average

productivity, Ai(t), was given, which is repeated here for convenience

Ȧi(t) = λiκi(t)
φ
(
Ai(t)

max − Ai(t)
)
.

It will now be demonstrated that the leading-edge and average productivity parameters

will grow at identical rates. Defining the ratio between these two parameters as Γi ≡
Ai(t)

max

Ai(t)
and rewriting it in growth rates leads to

Γ̇i(t)

Γi(t)
=
Ȧi(t)

max

Ai(t)max
− Ȧi(t)

Ai(t)
. (C.13)

Substituting for the growth rate of the leading-edge parameter from Equation (3.20) and

noting that the growth rate of the average productivity parameter is given by

Ȧi(t)

Ai(t)
= λiκi(t)

φ

[
Ai(t)

max

Ai(t)
− Ai(t)

Ai(t)

]
= λiκi(t)

φ
(
Γi(t)− 1

)
,

it follows that the growth rate of the ratio of the productivity parameters is

Γ̇i(t)

Γi(t)
= σλiκi(t)

φ − λiκi(t)φ [Γi(t)− 1] .

This expression can be rewritten as11

Γ̇i(t) =
[
(1 + σ)λiκi(t)

φ − λiκi(t)φΓi(t)
]

Γi(t) (C.14)

which has a trivial steady state at zero and a second one at Γ∗i = 1 + σ. As long as

λiκi(t)
φ > 0, convergence to this value follows via applying the same approach as in

Appendix C.2.3. From the definition of Γi, it holds that Ai(t)
max = (1 + σ)Ai(t), and

both productivity parameters will therefore grow at the rate gi(t) = σλiκ(t)φ.

11As in the case for the differential equation for the number of workers, li(t), Equation (C.14) is also
a Bernoulli equation.



C.2. Additional Derivations – Model 141

C.2.8 Derivation of the Global Technology Growth Rate

This section derives the productivity growth rate given in Equation (3.26) in the main

text. Starting with inserting the expression for κi in Equation (3.25) into the one for gw

in Equation (3.24), yields

gw =
σλ

[(1 + σ)ξ]φ
sφA,iy

φ
i n

φ
i A
−φ
i

N∏
j=1

(
Aj
Ai

)γivij
. (C.15)

With the help of the properties of the product operator, the last factor can now be

rewritten in the following way

N∏
j=1

(
Aj
Ai

)γivij
=

N∏
j 6=i

A
γivij
j A

−γivij
i =

N∏
j 6=i

A
γivij
j

N∏
j 6=i

A
−γivij
i

=
N∏
j 6=i

A
γivij
j A

−γi
∑N
j 6=i vij

i

=
N∏
j 6=i

A
γivij
j A

−γi(1−vii)
i

= A
−γi 1

γi
i

N∏
j 6=i

A
γivij
j = A−1

i

N∏
j 6=i

A
γivij
j .

The step from the first to the second line uses the result
∑N

j=1 vij = 1 and the one from

the second-to-last to the last line takes advantage of the definition vii ≡ γi−1
γi

< 1 (see

Ertur and Koch (2011, 226-27) on these assumptions). Substituting the final result in the

derivation above into Equation (C.15), leads to Equation (3.26) in Section 3.3.1.

C.2.9 Existence of (I − γW )−1

In contrast to the case of a row-standardized interaction matrix, I−γW might be singular

also for values in the interval γ ∈ (−1, 1). The general condition for this matrix to be

singular is |I − γW | = 0, i.e. if 1
γ

is an eigenvalue of the interaction matrix. Consider

now, for instance, the matrix

W 1 =

(
0 16

4 0

)
,

which is not row-standardized. Its characteristic equation is given by λ2 = 64 so that the

eigenvalues are λ1 = −8 and λ2 = 8. Then, for γ = 1
8

the matrix I−γW 1 will be singular.

However, by restricting the parameter space for γ to γ ∈
(
− 1
λ1
,− 1

λ2

)
, the inverse above

will be non-singular. An equivalent representation of the model under consideration can

thus be obtained if the interaction matrix is normalized by this factor, i.e. W ∗
1 = W 1

λ2
and
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by denoting γ∗ = γλ2 with parameter space γ∗ ∈ (−1, 1). A similar procedure works in

more general cases (Kelejian and Prucha, 2010, 56), when the eigenvalues cannot be as

easily determined as in the matrix above. With the help of Gerschgorin’s Circle Theorem

(Gerschgorin, 1931), regions in the complex plane can be determined that contain the

eigenvalues of the matrix.12 With this information, it is possible to identify an interval for

the parameter space, in which the inverse exists (see also Ertur and Koch, 2011, 231).

C.3 Additional Derivations – Econometric Theory

This appendix derives results in detail that are important in the econometric estimation

of the model and for drawing inference. More specifically, a part of the score vector will

be derived, before the steps in the derivation of the variance-covariance matrix, which is

merely stated in Ertur and Koch (2011, 233), will be demonstrated.

C.3.1 Derivation of the Maximum Likelihood Estimator δ̂

Before taking the derivative of the likelihood function with respect to δ, it will first be

written in an expanded form. From Equation (3.43), it follows that

lnL(y; δ, γ, σ2) = −N
2

ln(2π)− N

2
ln(σ2) + ln |I − γW |︸ ︷︷ ︸
≡C

− 1

2σ2

y′(I − γW )′(I − γW )y − y′(I − γW )′X̃δ︸ ︷︷ ︸
1×1

− δ′X̃ ′(I − γW )y︸ ︷︷ ︸
1×1

+ δ′X̃
′
X̃δ


= C − 1

2σ2

[
y′(I − γW )′(I − γW )y − 2δ′X̃

′
(I − γW )y + δ′X̃

′
X̃δ
]

where the last line has used the fact that the terms with the underbraces are identical

scalars and that the matrix (I − γW ) is symmetric. Taking now the derivative13 with

respect to δ leads to

∂ lnL(·)
∂δ

= − 1

2σ2

[
−2X̃

′
(I − γW )y + 2X̃

′
X̃δ

]
.

Setting this expression equal to zero and solving for δ̂, yields the expression in Equa-

tion (3.47).

12A more recent formal statement of this theorem can, for example, be found in Cheney and Kincaid
(2008).

13For the rules on matrix derivation see, for example, Verbeek (2004, 394-95).
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C.3.2 Derivation of the Variance-Covariance Matrix

The asymptotic variance-covariance matrix is given by the inverse of the information

matrix I(δ, γ, σ2), and this matrix is equal to the negative expected Hessian matrix,

H , for the log-likelihood function in Equation (3.43). In general terms, the information

matrix thus reads

I(δ, γ, σ2) = −E[H ] = −E


∂2 lnL(·)
∂δ∂δ′

∂2 lnL(·)
∂δ∂γ

∂2 lnL(·)
∂δ∂σ2

∂2 lnL(·)
∂γ∂δ′

∂2 lnL(·)
∂γ2

∂2 lnL(·)
∂γ∂σ2

∂2 lnL(·)
∂σ2∂δ′

∂2 lnL(·)
∂σ2∂γ

∂2 lnL(·)
∂σ2∂σ2

 . (C.16)

The individual entries for the first row in the Hessian matrix are calculated by taking the

respective partial derivatives of Equation (C.3.1):

∂2 lnL(·)
∂δ∂δ′

= − 1

σ2
X̃ ′X̃ (C.17)

∂2 lnL(·)
∂δ∂γ

= − 1

σ2
X̃ ′Wy (C.18)

∂2 lnL(·)
∂δ∂σ2

=
1

σ4

{
−X̃ ′

[
(I − γW )y − X̃δ

]}
= − 1

σ4
X̃ ′ε (C.19)

where the last equality has used the expression for ε in Equation (3.44).

In order to calculate the entries in the second row of the Hessian, the first derivative of

the log-likelihood function with respect to γ is needed. Note that the last term in the

log-likelihood function can be equivalently written as − 1
2σ2ε

′ε, and the derivative of this

term with respect to γ is given by (compare, for example, Anselin, 1988b, 75)

∂ε′ε

∂γ
= ε′

∂ε

∂γ
+
∂ε′

∂γ
ε = 2ε′

∂ε

∂γ
. (C.20)

Deriving the log determinant with respect to γ makes use of Jacobi’s formula (com-

pare, for instance, Absil et al., 2008, 196). This states that the derivative of the de-

terminant of a matrix X with respect to a can be expressed in the following way:
∂|X|
∂a

= tr
[
adj (X) ∂X

∂a

]
.14 Alternatively, provided that X is invertible, the expression for

the adjugate matrix, adj(X) = |X|(X)−1, can be inserted, implying that the derivative

of the determinant is given by |X|tr
[
(X)−1 ∂X

∂a

]
. In the following, a derivative of a log de-

terminant will be taken so that taking into account the rules for differentiating logarithmic

functions and the ones for determinants, Jacobi’s formula reads ∂ ln |X|
∂a

= tr
[
(X)−1 ∂X

∂a

]
in this case.

14A proof of this result can be found, for instance, in Magnus and Neudecker (1999, 150).
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Applying these rules to the case at hand and noting that ∂ε
∂γ

= −Wy, the partial derivative

of the log-likelihood function with respect to γ is

∂ lnL(·)
∂γ

= −tr (I − γW )−1W +
1

σ2
ε′Wy.

Before calculating the first entry in the second row of the Hessian matrix, note that the

expressions ε′Wy and (Wy)′ ε denote an identical scalar. As ε′Wy is a scalar, it is

possible to introduce the trace operator (see Anselin, 1988b, 77) so that

ε′Wy = tr [ε′ (Wy)] = tr
{

[ε′ (Wy)]
′}

= tr
[
(Wy)′ ε

]
= (Wy)′ ε′. (C.21)

The second equality holds, since a matrix and its transpose have the same trace, and

the third equality follows from the properties of transposed matrices. Substituting this

expression into the first derivative above, inserting for ε, and taking the partial derivative

with respect to δ′ yields the result

∂2 lnL(·)
∂γ∂δ′

= − 1

σ2

(
X̃ ′Wy

)′
(C.22)

which is just the transpose of Equation (C.18). Anselin (1988b, 75) provides a helpful

rule for taking the derivative of an inverse matrix, i.e. ∂(X)−1

∂a
= − (X)−1 ∂X

∂a
(X)−1 and

notes that the trace operator can be applied after differentiation as it is a linear operator.

Hence,

∂2 lnL(·)
∂γ2

= − tr
[
− (I − γW )−1 (−W ) (I − γW )−1W

]
− 1

σ2
(Wy)′Wy

= − tr
[
W (I − γW )−1W (I − γW )−1]− 1

σ2
(Wy)′Wy

= − tr (WAWA)− 1

σ2
(Wy)′Wy (C.23)

where the second equality has taken advantage of the property that the trace of a matrix

is invariant to cyclical permutations (see, e.g. Meyer, 2000, 110). Additionally, in the

expression in the last equality, the following definition from Ertur and Koch (2011, 233)

is employed WA ≡ W (I − γW )−1. Turning to the last entry in the second row of the

Hessian, this is given by
∂2 lnL(·)
∂γ∂σ2

= − 1

σ4
ε′Wy. (C.24)
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The derivatives in the third row of the Hessian matrix are the partial derivatives of the

expression in Equation (3.45). The first entry in this row is

∂2 lnL(·)
∂σ2∂δ′

=
1

2σ4

[
−2y′ (I − γW )′ X̃ + 2δ′X̃ ′X̃

]
= − 1

σ4

[
y′ (I − γW )′ − δ′X̃ ′

]
X̃ = − 1

σ4
ε′X̃ = − 1

σ4

(
X̃ ′ε

)′
(C.25)

where again Equation (3.44) has been used. Applying one more time the rule in Equa-

tion (C.20) for differentiating the expression for the sum of squared errors, facilitates

calculating the partial derivative with respect to γ so that

∂2 lnL(·)
∂σ2∂γ

=
1

2σ4
2ε′ (−Wy) = − 1

σ4
ε′Wy. (C.26)

For the last entry in the third row, the partial derivative reads

∂2 lnL(·)
∂σ2∂σ2

=
N

2σ4
− 1

σ6
ε′ε. (C.27)

Gathering the results in Equations (C.17) – (C.19) and Equations (C.22) – (C.27) yields

the following Hessian matrix of dimension 7×7 (the first column has dimension 7×5 and

the remaining two columns each have dimension 7× 1)

H =


− 1
σ2X̃

′X̃ − 1
σ2X̃

′Wy − 1
σ4X̃ ′ε

− 1
σ2

(
X̃ ′Wy

)′
−tr (WAWA)− 1

σ2 (Wy)′Wy − 1
σ4ε

′Wy

− 1
σ4

(
X̃ ′ε

)′
− 1
σ4ε

′Wy N
2σ4 − 1

σ6ε
′ε

 .

The next step in deriving the information matrix is taking the (negative) expected value

of the Hessian matrix above. Starting with the first column, its first entry contains no

random variables and hence −E
[
− 1
σ2X̃

′X̃
]

= 1
σ2X̃

′X̃. Moving on, the second entry

equals

−E
[
− 1

σ2

(
X̃ ′Wy

)′]
=

1

σ2

{
E
[
X̃ ′W (I − γW )−1X̃δ + (I − γW )−1ε

]}′
=

1

σ2

(
X̃ ′WAX̃δ

)′
(C.28)

where the last line follows as the expectation is a linear operator, the errors are assumed to

be independent of all explanatory variables, and since E[ε] = 0 due to the distributional

assumption from Section 3.4.1. These latter two results can also be applied to calculate

the last entry in the first column, implying that −E
[
− 1
σ4

(
X̃ ′ε

)′]
= 0.
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In the second column of the information matrix, the first entry is simply the transpose of

the 1× 5 vector in Equation (C.28). However, the second entry on the diagonal requires

more computations. The negative of the expected value of the first term in this entry

is not a random variable and thus equals −E [−tr (WAWA)] = tr (WAWA), while the

following holds for the second term

−E
[
− 1

σ2
(Wy)′Wy

]
=

1

σ2
E

{[
WAX̃δ +WAε

]′ [
WAX̃δ +WAε

]}
=

1

σ2

{
E

[(
WAX̃δ

)′
WAX̃δ

]
+ E

[(
WAX̃δ

)′
WAε

]
+E

[
(WAε)

′WAX̃δ
]

+ E
[
(WAε)

′WAε
]}
.

Following the same arguments as above, the first term in the previous equation is com-

pletely deterministic and the cross products have an expected value of 0. For the last

term, the rules from Equation (C.21) and the fact that cyclical permutations leave the

trace of a matrix unchanged can be applied to demonstrate that15

1

σ2
E
{

tr
[
W ′

AWAεε
′]} =

1

σ2
tr
[
W ′

AWA

]
E [εε′]︸ ︷︷ ︸
σ2I

= tr
[
W ′

AWA

]
. (C.29)

Combing these partial results leads to the corresponding entry in the information matrix

−E
[
−tr (WAWA)− 1

σ2
(Wy)′Wy

]
= tr [(WA +WA

′)WA]

+
1

σ2

(
WAX̃δ

)′
WAX̃δ.

Substituting for y in the in the last entry in the second column and transforming the

resulting expression in a similar manner as in Equation (C.29) leads to

−E
[
− 1

σ4
ε′Wy

]
=

1

σ4
E [tr (WAεε

′)] =
1

σ2
trWA.

This entry is also identical to the second one in the third column in the information

matrix, and the first entry in this column equals 0.16 Noting that E [ε′ε] = Nσ2, the

remaining entry on the diagonal reads

−E
[
N

2σ4
− 1

σ6
ε′ε

]
= − N

2σ4
+

1

σ6
Nσ2 =

N

2σ4
.

15See also Anselin (1988b, 77) for the second equality in this derivation.
16This follows as this value is simply the transpose of the third entry in the first column.
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Collecting the results for the individual entries derived above, leads to the following in-

formation matrix

I(δ, γ, σ2) =


1
σ2X̃

′X̃ 1
σ2

(
X̃ ′WAX̃δ

)′
0

1
σ2X̃

′WAX̃δ tr [(WA +WA
′)WA] + 1

σ2

(
WAX̃δ

)′
WAX̃δ

1
σ2 trWA

0 1
σ2 trWA

N
2σ4

 .

Finally, the asymptotic variance-covariance matrix, V (δ, γ, σ2), on which the hypotheses

tests will be based, is then given by the inverse of the information matrix, i.e. V (δ, γ, σ2) =

I(δ, γ, σ2)−1.
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C.4 Additional Estimation Results

This appendix provides estimation results from two additional analyses. The estimation

results in the first section demonstrate that the omission of the state of Delaware is crucial

for the results regarding the significance of the estimate of the investment rate in physical

capital divided by the effective depreciation rate. Next, in Section C.4.2, the time horizon

of the analysis is extended to cover the period 1990-2007, thereby ignoring the warning

by the Bureau of Economic Analysis mentioned in Footnote 146 of Section 3.5.1 about

appending the data series for the dependent variable.

C.4.1 Results – Benchmark Sample not Omitting Delaware

Table C.1: Estimation Results for Three Different Models for the Baseline Sample plus the State
of Delaware and Interaction Matrices W1, W2, and W3 for the Period 1997-2007.

Model Solow
(1956)

Howitt
(2000)

Ertur and Koch (2007) Ertur and Koch (2011)

Interaction matrix W1 W2 W3 W1 W2 W3

Constant 11.337 11.755 10.931 10.969 10.949 10.933 11.041 11.011
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ln sK,i − ln(ni + 0.02 + δi) 0.179 0.231 0.169 0.148 0.117 0.155 0.150 0.119
(0.233) (0.119) (0.188) (0.288) (0.406) (0.242) (0.301) (0.419)

ln sA,i — 0.072 — — — −0.013 0.001 0.001
(0.033) (0.745) (0.979) (0.984)

lnni — 0.280 — — — 0.018 0.013 0.011
(0.406) (0.547) (0.680) (0.717)

W [ln sK,j − ln(nj + 0.02 + δj)] — — −1.589 −0.232 0.061 −1.716 −0.258 0.034
(0.101) (0.608) (0.920) (0.084) (0.572) (0.956)

γ — — 0.149 0.129 0.135 0.159 0.126 0.133
(0.000) (0.001) (0.001) (0.003) (0.021) (0.014)

AIC −3.661 −3.691 −3.869 −3.814 −3.807 −3.796 −3.736 −3.727
BIC −3.583 −3.535 −3.498 −3.659 −3.651 −3.562 −3.502 −3.493
Number of observations 47 47 47 47 47 47 47 47

Note: p-values are given in parentheses.
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Table C.2: Estimation Results for the Direct, Indirect and Total Impacts in the Multi-Region
Schumpeterian Model for the Baseline Sample plus the State of Delaware and Interaction Matrices
W1, W2, and W3 for the Period 1997-2007.

Interaction matrix W1 W2 W3

Direct impacts:

ln sK,i − ln(ni + 0.02 + δi) 0.155 0.150 0.119
(0.248) (0.306) (0.422)

ln sA,i −0.013 0.001 0.001
(0.745) (0.980) (0.983)

lnni 0.018 0.013 0.011
(0.551) (0.682) (0.717)

Indirect impacts:

W [ln sK,j − ln(nj + 0.02 + δj)] 0.027 0.019 0.015
(0.321) (0.421) (0.537)

W ln sA,j −0.005 −0.002 −0.002
(0.628) (0.797) (0.803)

W lnnj 0.003 0.001 0.001
(0.616) (0.782) (0.811)

Total impacts:

ln sK,i
ln(ni+0.02+δi)

+W
ln sK,j

ln(nj+0.02+δj)
0.183 0.169 0.134

(0.248) (0.308) (0.428)
ln sA,i +W ln sA,j −0.017 −0.001 −0.001

(0.718) (0.987) (0.984)
lnni +W lnnj 0.021 0.014 0.012

(0.556) (0.691) (0.729)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random draws
from the estimation.
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C.4.2 Data and Estimation Results – Baseline Sample (Extended

Time Horizon: 1990-2007)

This appendix provides a brief description on how the variables have been constructed

for the case when the sample period is extended to include the years 1990-1996 as well.

After providing summary statistics in Table C.3, the results from the estimation of the

nested models are shown in Table C.4. Estimates of the impacts are given in Table C.5.

Table C.3: Summary Statistics – Baseline Sample (Extended Time Horizon: 1990-2007).

Variable Mean Median Standard

deviation

Minimum Maximum

yi 85,012.07 80,896.36 13,921.60 66,616.49 123,281.63

sK,i 0.079 0.075 0.014 0.061 0.127

ni 0.016 0.014 0.009 0.002 0.043

δi 0.048 0.047 0.001 0.048 0.051

ni + gw + δi 0.084 0.082 0.009 0.069 0.109

sA,i 0.021 0.019 0.015 0.004 0.075

Hi 0.237 0.228 0.043 0.144 0.328
sK,i

ni+gw+δi
0.947 0.917 0.126 0.776 1.398

W1sK 0.219 0.214 0.044 0.130 0.332

W2sK 0.226 0.220 0.054 0.130 0.390

W3sK 0.224 0.219 0.050 0.128 0.345

W1y 19,617.38 18,376.66 4,434.07 11,868.55 30,909.47

W2y 19,825.09 18,874.88 5,152.72 11,411.44 40,053.49

W3y 20,114.12 18,874.88 5,144.09 12,313.56 35,559.93

Note: The given values are the original values (i.e. not in logs) for the benchmark sample of 47 states
and the period 1990-2007 with yi the income per worker in 2007.

Even though the dependent variable is still real per worker income in 2007, values for the

earlier years are needed to calculate the average real investment rate in physical capital, as

Yamarik (2013) only provides values for gross real investment in physical capital. The data

series on nominal gross state product for the years 1990-1996 from the Bureau of Economic

Analysis’ regional accounts data (BEA, 2015b) based on SIC, has been transformed as

described in Section 3.5.1 into real 2000 dollars and then appended to the series for the

years 1997-2007 based on NAICS.

Another complication arose in the construction of this data set, as the OECD only provides

annual values for the R&D investment rate from 1997 onwards and additionally for the

years 1991, 1993, and 1995 (OECD, 2015). Hence, the values for the years 1992 and 1994

have been interpolated by taking the average of the previous and subsequent years’ value

before calculating the average over the values from 1992 to 2007 to obtain the variable sA,i.
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As can be seen from Table C.3, no negative values for the employment growth rate oc-

curred in this sample so that the values for all observations can be transformed into logs

without any problems.

Finally, note that even though the dependent variable has not changed and the neigh-

borhood relations and geographic distances between states are identical to the ones for

the sample in the main text, this is not the case for the spatial lags, as these include a

measure for the human capital stock.

Table C.4: Estimation Results for Three Different Models for the Baseline Sample of 47 States and
Interaction Matrices W1, W2, and W3 for the Period 1990-2007.

Model Solow
(1956)

Howitt
(2000)

Ertur and Koch (2007) Ertur and Koch (2011)

Interaction matrix W1 W2 W3 W1 W2 W3

Constant 11.379 11.374 11.119 11.050 11.052 11.093 10.863 10.869
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ln sK,i − ln(ni + 0.02 + δi) 0.643 0.637 0.544 0.543 0.509 0.566 0.527 0.504
(0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001) (0.001)

ln sA,i — 0.044 — — — 0.020 −0.008 −0.007
(0.134) (0.505) (0.809) (0.826)

lnni — −0.042 — — — −0.042 −0.039 −0.040
(0.180) (0.153) (0.182) (0.161)

W [ln sK,j − ln(nj + 0.02 + δj)] — — 0.097 −0.489 −0.019 −0.041 −0.295 0.063
(0.937) (0.443) (0.982) (0.973) (0.648) (0.940)

γ — — 0.098 0.118 0.118 0.070 0.114 0.112
(0.014) (0.001) (0.001) (0.116) (0.017) (0.017)

AIC −4.003 −4.056 −4.035 −4.141 −4.130 −4.019 −4.086 −4.082
BIC −3.925 −3.898 −3.877 −3.983 −3.972 −3.783 −3.850 −3.846
Number of observations 47 47 47 47 47 47 47 47

Note: p-values are given in parentheses.
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Table C.5: Estimation Results for the Direct, Indirect and Total Impacts in the Multi-Region
Schumpeterian Model for the Baseline Sample of 47 States and Interaction Matrices W1, W2, and
W3 for the Period 1990-2007.

Interaction matrix W1 W2 W3

Direct impacts:

ln sK,i − ln(ni + 0.02 + δi) 0.565 0.527 0.504
(0.000) (0.001) (0.002)

ln sA,i 0.020 −0.008 −0.007
(0.508) (0.812) (0.824)

lnni −0.042 −0.039 −0.040
(0.160) (0.189) (0.168)

Indirect impacts:

W [ln sK,j − ln(nj + 0.02 + δj)] 0.042 0.066 0.062
(0.155) (0.049) (0.053)

W ln sA,j 0.001 −0.002 −0.002
(0.765) (0.667) (0.675)

W lnnj −0.003 −0.005 0.006
(0.358) (0.294) (0.957)

Total impacts:

ln sK,i
ln(ni+0.02+δi)

+W
ln sK,j

ln(nj+0.02+δj)
0.607 0.593 0.566

(0.000) (0.001) (0.002)
ln sA,i +W ln sA,j 0.021 −0.010 −0.001

(0.518) (0.788) (0.801)
lnni +W lnnj −0.045 −0.044 −0.045

(0.161) (0.189) (0.169)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random draws
from the estimation.
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C.5 List of States Included in the Empirical Analyses

This appendix lists the states that are included in the different empirical analyses and

also provides a correspondence with the state abbreviations used in Figure 3.1.

Table C.6: Alphabetical List of the 48 US States plus the District of Columbia.

State Code State Code

Alabama AL Nebraska NE

Arizona AZ Nevada NV

Arkansas AR New Hampshire NH

California CA New Jersey NJ

Colorado CO New Mexico NM

Connecticut CT New York NY

Delaware DE North Carolina NC

District of Columbia DC North Dakota ND

Florida FL Ohio OH

Georgia GA Oklahoma OK

Idaho ID Oregon OR

Illinois IL Pennsylvania PA

Indiana IN Rhode Island RI

Iowa IA South Carolina SC

Kansas KS South Dakota SD

Kentucky KY Tennessee TN

Louisiana LA Texas TX

Maine ME Utah UT

Maryland MD Vermont VT

Massachusetts MA Virginia VA

Michigan MI Washington WA

Minnesota MN West Virginia WV

Mississippi MS Wisconsin WI

Missouri MO Wyoming WY

Montana MT
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Wälde, K. (2011). Applied Intertemporal Optimization, Edition 1.1, Mainz University
Gutenberg Press.

Weil, D. N. (2014). “Health and Economic Growth,” in P. Aghion and S. N. Durlauf
(editors), Handbook of Economic Growth, Volume 2B, Chapter 3, Elsevier B.V., Oxford,
623–682.

Wetterstrand, K. (2015). “DNA Sequencing Costs: Data from the NHGRI Genome
Sequencing Program (GSP),” .
URL: http: // www .genome .gov/ sequencingcosts/ , accessed: 17 August, 2015.

Wooldridge, J. M. (2013). Introductory Econometrics: A Modern Approach, 5th Edi-
tion, South-Western, Mason.

World Bank (2009). World Develoment Report 2009: Reshaping Economic Geography,
World Bank, Washington.

——— (2013). World Development Indicators, World Bank.

World Trade Organization (2011). World Trade Report 2011 - The WTO and pref-
erential trade agreements: From co-existence to coherence, World Trade Organization,
Geneva.

Wright, S. (1951). “The Genetical Structure of Populations,” Annals of Eugenics, 15,
323–354.

Yaari, M. E. (1965). “Uncertain Lifetime, Life Insurance, and the Theory of the Con-
sumer,” The Review of Economic Studies, 32(2), 137–150.

Yamarik, S. (2006). “Solow and the States: New Evidence,” Regional Studies, 40(6),
571–582.

——— (2011). “Human capital and state-level economic growth: what is the contribution
of schooling?” The Annals of Regional Science, 47, 195–211.

——— (2013). “State-Level Capital and Investment: Updates and Implications,” Con-
temporary Economic Policy, 31(1), 62–72.

Young, A. (1998).“Growth without Scale Effects,” Journal of Political Economy, 106(1),
41–63.

http://www.deutschestextarchiv.de/book/show/thuenen_staat_1826
http://www.genome.gov/sequencingcosts/

	List of Figures
	List of Tables
	Introduction
	Chapter 1: Integration as a Spatial Institution: Implications for Agglomeration and Growth
	Introduction to Chapter 1
	Building Blocks
	Spatial Concentration
	Growth and Prosperity
	Globalization

	Model
	Size vs Scale: When, Where, and Why Does It Matter?
	Policy Implications
	Conclusion for Chapter 1

	Chapter 2: Knowledge Spillovers: On the Impact of Genetic Distance and Data Revisions
	Introduction to Chapter 2
	Genetic Distance
	Spatial Dependence and Model Setup
	Spatial Dependence
	Specification of Technological Progress
	Transition Dynamics and Steady State

	Empirical Specification, Estimation Strategy, and Model Interpretation
	Econometric Specification of the Model
	Estimation Strategy
	Model Interpretation

	Data, Estimation Results, and Robustness
	Data
	Results – Interaction Matrix Based on Geographic Distance
	Results – Interaction Matrix Based on Genetic Distance

	Conclusion for Chapter 2

	Chapter 3: Schumpeterian Growth with Technological Interdependence: An Application to US States
	Introduction to Chapter 3
	Multi-Region Model without Technological Interdependence
	Final Good Sector
	Intermediate Goods Sector
	Firms in the Intermediate Goods Sector
	Horizontal Innovations in the Intermediate Goods Sector

	Research and Development – Vertical Innovations
	Physical Capital Accumulation and Steady State

	Multi-Region Model with Technological Interdependence
	Research Productivity, Knowledge Spillovers, and Technology Gap
	Income per Worker in Steady State

	Empirical Specification and Estimation Method
	Empirical Specification
	Estimation Strategy
	Derivation of the Log-likelihood Function
	Derivation of the Concentrated Log-likelihood Function


	Data, Estimation Results, and Interpretation of Model Parameters
	Data
	Estimation Results
	Interpretation of the Model Parameters

	Conclusion for Chapter 3

	Conclusion and Outlook
	Appendix to Chapter 1
	  List of Geographic Entities

	Appendix to Chapter 2
	Definition of FST Genetic Distance
	Spatial Weight Matrices and Great Circle Distances
	Proof that (bold0mu mumu IIIIII - bold0mu mumu WWWWWW)-1 exists
	Derivations and Proofs of Selected Model Results
	Derivation of Equation (2.6)
	Derivation of the Elasticities

	Further Robustness Checks
	List of Countries Included in the Empirical Analyses

	Appendix to Chapter 3
	Poisson Processes
	Additional Derivations – Model
	Derivation of the Inverse Demand Schedule for Intermediate Goods
	Deriving the Production Function in Intensive Form
	Convergence of the Number of Workers per Product to a Constant
	Derivation of the Value of an Innovation
	Derivation of the Research-Arbitrage Equation
	Convergence of Relative Productivities
	Growth Rate of the Average and Leading-Edge Productivity Parameters
	Derivation of the Global Technology Growth Rate
	Existence of (bold0mu mumu IIIIII - bold0mu mumu WWWWWW)-1

	Additional Derivations – Econometric Theory
	Derivation of the Maximum Likelihood Estimator bold0mu mumu 
	Derivation of the Variance-Covariance Matrix

	Additional Estimation Results
	Results – Benchmark Sample not Omitting Delaware
	Data and Estimation Results – Baseline Sample (Extended Time Horizon: 1990-2007)

	List of States Included in the Empirical Analyses

	Bibliography

