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Abstract We give an account on the authors’ experience
and results from the software verification competition held
at the Formal Methods 2012 conference. Competitions like
this are meant to provide a benchmark for verification sys-
tems. It consisted of three algorithms which the authors have
implemented in Java, specified with the Java Modeling Lan-
guage, and verified using the KeY system. Building on our
solutions, we argue that verification systems which target
implementations in real-world programming languages bet-
ter have powerful abstraction capabilities. Regarding the
KeY tool, we explain features which, driven by the compe-
tition, have been freshly implemented to accommodate for
these demands.

Keywords formal verification, benchmark, Java Modeling
Language, theorem prover

1 Introduction

This paper is a thorough experience report of the members of
the KeY team from the verification competition which was
held on August 30th and 31st 2012 during the Formal Meth-
ods conference in Paris. The competition was organised by
Marieke Huisman, Vladimir Klebanov, and Rosemary Mon-
ahan with the aims “to bring together those interested in for-
mal verification [. . . and] to evaluate the usability of logic-
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based program verification tools in a controlled experiment
that could be easily repeated by others.” The competition
consisted of three algorithmic problems stated in natural lan-
guage or pseudo code, which were to be implemented in
a programming language of the competitors’ choice, speci-
fied, and formally verified with a tool also of the competi-
tors’ choice. Each challenge was to be solved in a limited
amount of time and represented a different general category
of algorithms. The problems were as follows:

1. The Longest Repeated Substring challenge (Sect. 3)
deals with structural analysis of a flat data structure (ar-
ray of characters/integers),

2. the Prefix Sum challenge (Sect. 4) also works with ar-
rays, but performs non-trivial arithmetic in-situ opera-
tions on the array,

3. the Deletion in a Tree challenge (Sect. 5) is about in-
specting and modifying a non-cyclic linked data struc-
ture of binary search trees.

Two of the authors of this paper, Daniel Bruns and Woj-
ciech Mostowski, participated in the competition as a team,
using the Java Modeling Language (JML) [16] to specify
Java implementations of the challenges and verify them with
the KeY tool [3]. Mattias Ulbrich contributed to the post-
competition work to further develop our solutions and tool
support. The full results can be found at http://formal.
iti.kit.edu/~bruns/VerifyThis/. All of the authors
of this paper are experienced users and have been active de-
velopers of the KeY system for several years. Moreover, all
of them participated in similar events previously [5,10,15],
always with the combination of Java, JML, and KeY.

The challenges of this competition turned out to be very
demanding. Only the first challenge could be properly ad-
dressed during the time of the competition, the other chal-
lenges were dealt with off-line after the event. The post-
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competition effort involved working on the challenges them-
selves as well as improving KeY. The tool turned out to run
short of certain features indispensable for the challenges. In
this respect, such a competition advances tools as some of
the new features which have been inspired by this competi-
tion and which the authors have implemented will provide
support for verification beyond the competition challenges.

The challenges had been selected to be language- and
paradigm-agnostic, not requiring any particular feature like
object-orientation. This choice allowed many different ap-
proaches to participate in the competition, but, on the other
hand, led to a selection of problems concentrating on al-
gorithmic rather than programming-language issues of pro-
grams.

The KeY tool verifies programs written in Java and does
not abstract away from the code. Hence, verification of algo-
rithms with KeY requires one to deal with two problems at a
time: (1) the difficulty to verify a non-trivial algorithm and
(2) the implementation issues of the real-world program-
ming language Java (which includes dynamic method look-
up, framing, checking the absence of runtime exceptions,
etc.). Despite the improvements we introduced, KeY does
not seem to be overly suitable for these algorithm-oriented
programs as it is geared towards verification of Java pro-
grams (having reasoning support for various Java-specific
features, in particular inheritance and heap data structures).

2 Verification with the KeY System

KeY [3] is a source-code-based verification system for se-
quential Java programs. Specifications can be given in an ex-
tension to the Java Modeling Language (JML), called JML∗.
At the core of KeY is a dedicated interactive theorem prover
for first-order dynamic logic. Work on KeY started in 1998;
it is being developed at Karlsruhe Institute of Technology;
Chalmers University of Technology in Gothenburg, Swe-
den; Technical University of Darmstadt, Germany; and to
a lesser degree at the University of Twente.

April 2013 marked the release of KeY 2.0, which in-
troduced several features for abstraction, in particular the
possibility to modularly verify recursive method implemen-
tations. KeY is free and open source software and can be
downloaded from http://key-project.org/. This sta-
ble version, however, does not include some of the exper-
imental features we implemented during the work on the
competition challenges, in particular specification through
model methods that we describe later in Sect. 5.

2.1 Java Modeling Language

The Java Modeling Language (JML) [16] is a popular and
powerful specification language for Java programs based on

the design by contract paradigm; the main concepts are class
invariants are method contracts. JML integrates seamlessly
into Java as it is embedded inside comments in Java source
code and JML expressions extend Java expressions in a nat-
ural way. By now, JML has become the de-facto standard in
formal specification of Java source code. Besides KeY, sev-
eral other verification tools are built on JML; for an over-
view see [6].

Contracts in JML essentially consist of preconditions, indi-
cated by the keyword requires, postconditions (ensures),
and frame conditions (assignable). More than one of each
of these specification constructs may be declared, in which
case they are conjoined. In this paper, we are only concerned
with normally terminating methods, i.e., terminating and do-
ing so without throwing any exceptions. The termination
itself is the default property for method contracts in JML,
the absence of exceptions is denoted with the keyword nor-
mal_behavior at the beginning of a contract.

Class invariants describe a global state which must be pre-
served by all methods. In this paper, we understand invari-
ants of a class C as being implicitly added to pre- and post-
conditions in the contracts of every method declared in C.
Methods can be exempt from invariants by marking them as
helper.

JML also provides auxiliary annotations such as loop in-
variants. Loop invariants are marked by the keyword main-
taining. Since termination is required for all of the chal-
lenges discussed in this paper, we also use decreasing
clauses, which are followed by an integer variant expres-
sion, which must, for each succeeding loop iteration, evalu-
ate to a strictly smaller value than in the preceding iteration.
Additionally, as opposed to standard JML, for loops chang-
ing any data on the heap KeY requires one to state corre-
sponding framing conditions with the assignable clause.
The rationale behind this is that invariant specifications for
loops are treated as the same kind of abstraction as contracts
are for methods and hence loops also need to have their
framing conditions stated. We explain the particular fram-
ing conditions as implemented in the KeY logic in Sect. 2.2
after the following paragraphs on JML expressions and ab-
straction.

Expressions in JML can be almost any side-effect free Java
expression. This includes all built-in numerical and boolean
operators as well as calls to pure methods. On top of that,
JML contains a boolean implication operator ==> and quan-
tified expressions. Universal quantification is expressed in
the general shape (\forall T x; guard; body), where
T is the type over which the expression ranges, x is a vari-
able of that type, and guard and body are boolean expres-
sions. Existential quantification works analogously. Syntac-
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tically similar to quantified expressions, JML offers numer-
ical comprehension expressions \sum and \product.

In a post-condition of a contract it is often necessary to
refer to data on the heap in the state when the method started
its execution. This is called a pre-state and in JML can be
accessed with the \old keyword. For instance, the follow-
ing expression states that the value of a field x has been in-
creased: x > \old(x). This unary operator may be applied
to any expression. Method parameters are always evaluated
in the pre-state. Finally, in a post-condition to a non-void
method, the expression \result refers to the return value.

Abstraction in JML is provided through model fields [7]
and model methods. While similar in appearance to fields
and methods in Java, those are specification-only elements,
which may use the full arsenal of JML expressions, includ-
ing some KeY-specific enhancements such as a built-in ab-
stract data type of sequences or sets. Model fields are loosely
coupled to the concrete system state through represents
clauses, which are understood as logical axioms. Model
methods offer a substantially more powerful abstraction
mechanism compared to model fields in that (a) they also
include properties for the defined axioms, i.e., lemmas, and
(b) they allow parametrised queries rather than parameter-
less observations. For instance, model methods can be used
to query the n-th element in a list, where n is an arbitrary
expression possibly referring to other concrete or abstract
expressions.

None of the existing verification tools properly imple-
ment model methods as defined in JML. Applying model
methods to solve the third challenge is one of the contribu-
tions of this paper which goes beyond the competition scope.
That is, the third challenge is the first non-trivial verifica-
tion case study using the newly implemented model meth-
ods mechanism in KeY. We shall go into details of model
methods in Sect. 5 devoted to the third challenge.

Specification-only program elements, such as model
methods, allow the use of Abstract Data Types (ADTs).
These are indispensable when reasoning about concrete data
structures which are object-based, e.g., linked lists or trees.
While concrete implementations carry some overhead (i.e.,
references), we are usually only interested in properties on
the payload data. ADTs are primitive in the Java sense; two
instances containing the same data are always identical.
JML∗ provides the two ADTs \seq (finite sequences, i.e.,
tuples, of any type) and \locset (finite sets of memory lo-
cations; see below).

2.2 Modular Verification Using Dynamic Frames

KeY supports modular verification based on the design by
contract paradigm. This means that single methods are be-

ing verified against their contract alone assuming any possi-
ble environment. This feature ensures (preservation of) cor-
rectness in proofs when some other parts of the implemen-
tation are unknown or have been changed. It is essential that
contracts do not only contain pre- and post-condition pairs
(to describe what an implementation must achieve), but also
frame conditions (to describe what must be preserved). A
frame is a set of heap locations which a method may at most
write to.

In many situations, in particular when changes are local
to one object, it is sufficient to enumerate the locations of
a frame. This is known as a static frame. In the presence of
(object-based) dynamic data structures, however, there is a
need to give a frame for the data structure as a whole, e.g.,
one that includes also locations reachable from the given ex-
ecution context. In the dynamic frames approach [13,26],
frames can be given in an abstract, possibly recursive, defi-
nition. For instance, the frame of a linked list would be the
union of the head node’s locations (for its local data) and the
frame of the tail (if it is not null). The set of heap locations
that a given program accesses is commonly called a foot-
print. In JML∗ the handling of frames is delegated to a dedi-
cated primitive type of location sets denoted with \locset.
The frames built by combining location sets are typically
stored in the definitions of model fields or model methods
that can in turn be referred to in assignable clauses.

A typical specification pattern with dynamic frames are
separation invariants. For a linked list, for instance, an in-
variant is that the locations of a node are not included in the
footprint of its successor; this implies acyclicity, in particu-
lar. Tree data structures usually have the additional property
that the footprints of a node’s children must be pairwise dis-
joint. Such a property appears in the challenge in Sect. 5.

An approach serving the same goals as dynamic frames
is Separation Logic with abstraction [20], where separation
properties are inherent in formulae. Specifications in sepa-
ration logic are usually more concise – there is no need to
explicitly give dependencies.

2.3 Using the KeY Prover

The core of KeY is made up of an interactive theorem prover
for first-order Java dynamic logic (JavaDL) [11], which can
be seen as a generalisation of Hoare logic. Construction of
proofs in KeY corresponds to symbolic execution. That is,
for every possible execution branch a stepwise transforma-
tion of the program leads to a set of constraints describing
the corresponding final program state, which can be then
evaluated against the stated properties using classical first
order reasoning. The symbolic execution method is an im-
provement [14] over a more commonly used verification
condition generation (VCG) technique, in which programs
and properties are collectively transformed using weakest
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precondition calculus to one big proof obligation formula
which is then discharged using a general purpose theorem
prover. The usually large size of the resulting formula is
often a bottle-neck in VCG based approaches. In addition,
symbolic execution provides more feedback since formulae
are more human-readable and allow debugging of the pro-
gram.

Overall, KeY is able to handle a rich subset of sequen-
tial Java programs. In particular, it is one of the few formal
verification tool which consider static initialisation. Other
supported features include Strings (including string pool),
enhanced for loops, and Java Card atomic transactions [17].

In general, KeY has been designed as an interactive theo-
rem prover. That means that the user is responsible for find-
ing a proof, in particular, for providing values for quantifier
instantiations. Despite that fact, KeY offers a high degree
of automation. Many problems in program verification can
be solved fully automatically. In addition, powerful SMT
solvers, such as Z3 [8], can be plugged in to prove first-
order logic subgoals more efficiently than KeY. This applies
mostly to arithmetical problems such as systems of inequa-
tions.

While proofs for valid formulae can be found automat-
ically, failed automated proof attempts are not always help-
ful. Such a situation may result from an inexhaustive proof
search, but it is more likely that the formula to be proven is
just not valid, meaning that the program does not satisfy the
original specification. It is often not obvious for a human
user to understand the kind of counter-examples provided
through open proof goals produced by an automated proof
engine. The main reason is that efficient automation relies
on normal forms which tend not to be human-readable. In
particular, it is not obvious which formulae are corollaries
from the original assumptions and which ones derive from
original proof goals. Humans, on the other hand, prefer to
make frequent case distinctions and simplifications of terms
in order to keep a focus on the original proof goals – possi-
bly at the expense of being less efficient.1

This has led us to pursue a semi-automated proof style
in which the user does not apply every proof step by hand,
but chooses an automated strategy at certain points of in-
terest in the proof. KeY also provides compound interaction
steps, so-called strategy macros, which combine the appli-
cation of several basic deduction steps to achieve a specific
purpose. In the challenges presented in this paper, we have
made frequent use of the following macros:

Propositional expansion (without splits)
– apply only non-splitting propositional rules,

Propositional expansion (with splits)
– apply only propositional rules,

1 For an empirical analysis of user experience with KeY, see [2].

Finish symbolic execution – apply only rules for modal op-
erators, i.e., execute Java programs symbolically,

Close provable goals – automatically close all open goals
for which this is possible, but do not apply any rule to
goals which cannot be closed.

2.4 Related Tools

Other state of the art verification systems for real-world im-
perative and object-oriented programming languages like
Java, C, and C# are mostly based on VCG, such as Spec#
[1], Krakatoa [9], or VCC [23]. They typically combine sev-
eral subsystems in a tool chain, involving general purpose
theorem provers. With these systems, the user does not inter-
act through proof search but through adding auxiliary anno-
tations to the program. The VeriFast [12] system for verifi-
cation of Java and C programs performs symbolic execution
like KeY, but does not offer user interaction either.

The KIV verification system follows a similar approach
as KeY by providing a dedicated interactive theorem prover
with a calculus for dynamic logic [25]. However, while KIV
is a general verification framework for various logics, the
KeY system is specialised for the modular verification of
programs implemented in the Java programming language.
This enables KeY to be more optimised to this task and
achieve a higher degree of automation.

3 Longest Repeated Substring

The Longest Repeated Substring problem (LRS; cf. [24])
occurs in string searching. It can be described as: given an
array of integers (or elements of any other alphabet) {a0, . . . ,

an}, find a sub-array {as, . . . ,as+`−1} which appears at least
twice and there is no repeated sub-array longer than `. For
example, in the array a = {3,0,3,4,3,4,1}, the only LRS is
{3,4}.

While LRS can be solved naïvely in O(n3), the more ef-
ficient algorithm to be used here first indexes all suffixes and
sorts them lexicographically. Then, a Longest Common Pre-
fix (LCP) over neighbouring elements (w.r.t. this ordering)
is a solution. We will first show how to verify an implemen-
tation of LCP and then return to LRS. LCP could be speci-
fied and verified on-site at the competition in the given time;
LRS was verified off-line.

3.1 Longest Common Prefix

The LCP problem can be described as follows: given an
array {a0, . . . ,an} and integers x,y ∈ [0,n], find the max-
imum integer ` such that sub-arrays {ax, . . . ,ax+`−1} and
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/*@ normal_behavior
2 @ requires 0 <= x && x < a.length;

@ requires 0 <= y && y < a.length;
4 @ requires x != y;

@ ensures 0 <= \result;
6 @ ensures \result <= a.length - x;

@ ensures \result <= a.length - y;
8 @ ensures (\forall int i; 0 <= i && i < \result;

@ a[x+i] == a[y+i] );
10 @ ensures \result == a.length-x

@ || \result == a.length-y
12 @ || a[x+\result] != a[y+\result];

@ strictly_pure @*/
14 static int lcp(int[] a, int x, int y) {

int l = 0;
16 /*@ maintaining 0 <= l && l+x <= a.length

@ && l+y <= a.length && x != y;
18 @ maintaining (\forall int z; 0 <= z && z < l;

@ a[x+z] == a[y+z] );
20 @ decreasing a.length-l;

@ assignable \strictly_nothing; @*/
22 while (x+l < a.length && y+l < a.length

&& a[x+l] == a[y+l]) l++;
24 return l;

}

Lst. 1 Implementation of LCP with specification.

{ay, . . . ,ay+`−1} are equal (`= 0 means that there are no du-
plicates at all). This can be solved by simply iterating over
the array once. Listing 1 shows an iterative implementation
in Java and its specification in JML. In Ls. 8f., the contract
states that there is a common sub-array of length `, where `

is the result of lcp(). Lines 10ff. imply that ` is a maximal
solution: the adjacent next cells ax+` and ay+` (if they exist)
do not contain the same element. As we have explained in
Sect. 2.1 above, per default, this contract already states that
lcp() always terminates without throwing an exception.2

In order to verify the implementation with a loop for any
number of iterations, we need to provide additional anno-
tations to guide the prover. We have given two invariants,
one in Ls. 16f. which abstracts from the pre-condition and
one in Ls. 18f. which abstracts from the post-condition (i.e.,
there is a solution candidate up to the current loop iteration).
Line 20 contains a variant which decreases towards zero as
the loop index increases. Line 21 gives a frame condition
for the loop. The keyword \strictly_nothing here says
that the loop does not change the heap state in any way. This
property is known as strict purity, as opposed to what other-
wise is considered ‘pure’ in software verification – namely
that there are possible changes to heap which are not observ-
able.

Provided these loop annotations, the implementation can
be verified against its specification without any user interac-

2 In this case, we also need to prove that no runtime exceptions,
such as NullPointerException or IndexOutOfBoundsException,
are raised.

0 {3,0,3,4,3,4,1} 1 {0,3,4,3,4,1}
1 {0,3,4,3,4,1} 6 {1}
2 {3,4,3,4,1} 0 {3,0,3,4,3,4,1}
3 {4,3,4,1} 4 {3,4,1}
4 {3,4,1} 2 {3,4,3,4,1}
5 {4,1} 5 {4,1}
6 {1} 3 {4,3,4,1}

Table 1 Suffixes of an example array, unsorted (left) and sorted in as-
cending lexicographic ordering (right).

tion in 1800 proof steps, taking 8 seconds of computation
time.3 In particular, KeY is able to find all quantifier instan-
tiations. The solution found on-site is similar in size, but,
due to a different variable ordering, required one quantifier
instantiation to be applied by hand.

3.2 Suffix Array

The time-optimal algorithm for solving LRS does not tra-
verse the original array a, but indices to suffix sub-arrays.
These indices are sorted on a lexicographic ordering of the
suffixes. This already ensures that solution candidates are
neighbours in this so-called suffix array. In Tab. 1, on the
left-hand side, the suffixes for the above example array are
shown. The number on the left is the pointer to the posi-
tion where the respective sub-array starts. On the right-hand
side, these suffixes are sorted lexicographically ascending.
The suffix array to a contains the pointers in that order; in
this example it is {1,6,0,4,2,5,3}.

In the Java implementation, the original array and its suf-
fix array are both contained in one class SuffixArray (see
Lst. 2). The invariant in Ls. 5ff. states that suffixes is a
permutation of pointers into a. Sortedness is specified in the
last invariant (Ls. 10ff.): for any two neighbouring suffixes,
there is an index j such that the j-th entry is larger in the
first suffix array (or j equals the length of the second suffix
array), and all entries until j are equal.

3.3 Proving LRS

As explained above, provided a sorted suffix array, it is suf-
ficient to find an LCP in neighbouring entries. Listing 3
shows a Java implementation, where sa is a field of type
SuffixArray. It computes pointers s and t to two occur-
rences of an LRS and the length ` of the LRS, which are
stored in fields for technical reasons since in Java there is
at most one return value. For solving the LRS problem, it
would be sufficient to return just one pointer, but then we
would have to existentially quantify over the second occur-
rence. A second optimisation is to update these fields only

3 For all proofs, KeY was running on standard desktop computers in
single-processor mode.
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public final class SuffixArray {
2 final /*@ spec_public @*/ int[] a;

final /*@ spec_public @*/ int[] suffixes;
4

/*@ invariant a.length == suffixes.length;
6 @ invariant

@ (\forall int i; 0 <= i && i < a.length;
8 @ (\exists int j; 0 <= j && j < a.length;

@ suffixes[j] == i));
10 @ invariant (\forall int i; 0 < i && i < a.length;

@ (\exists int j;
12 @ 0 <= j && j < a.length-suffixes[i];

@ ((j < a.length - suffixes[i-1]
14 @ && a[suffixes[i]+j] > a[suffixes[i-1]+j])

@ || j == a.length-suffixes[i-1]) &&
16 @ (\forall int k; 0 <= k && k < j;

@ a[suffixes[i]+k] == a[suffixes[i-1]+k]));
18 @*/

}

Lst. 2 Invariants of a suffix array.

at the end of the method, after the loop has finished. Since
the loop is then executed in one single heap state, it is easier
to verify.

Specifying doLRS() is straightforward (see Lst. 4): we
only assume the class invariant of SuffixArray in L. 1
and that the array length is non-trivial. The post-condition
in Ls. 8f. states that the sub-arrays starting at s and t, respec-
tively, are equal for the first ` elements. We also prove that
these point to different sub-arrays, or there is no repetition
at all (L. 10). Lines 11ff. state that the solution candidate is
indeed maximal: there are no indices i and k such that they
point to a repeated substring of length `+1.

Proving correctness of the LRS implementation requires
some user interaction. The difficult part here is to prove
maximality of the computed solution. Completeness proper-
ties like this one are the most challenging problems in soft-
ware verification. It is not obvious to see that maximality
follows from the fact that the suffix array is sorted and it
suffices to only check neighbours. A further complication is
that the specification of LRS as displayed in Lst. 4 refers to

public void doLRS() {
2 int s = 0; int t = 0; int l = 0;

for (int x=1; x < sa.a.length; x++) {
4 int length = LCP.lcp(sa.a, sa.suffixes[x],

sa.suffixes[x-1]);
6 if (length > l) {

s = sa.suffixes[x];
8 t = sa.suffixes[x-1];

l = length;
10 } }

this.s = s; this.t = t; this.l = l;
12 }

Lst. 3 The algorithm for solving the LRS problem.

requires \invariant_for(sa);
2 requires sa.a.length >= 2;

ensures 0 <= s && s < sa.a.length;
4 ensures 0 <= t && t < sa.a.length;

ensures 0 <= l && l < sa.a.length;
6 ensures s+l <= sa.a.length;

ensures t+l <= sa.a.length;
8 ensures (\forall int j; 0 <= j && j < l;

sa.a[s+j] == sa.a[t+j]);
10 ensures s != t || l == 0;

ensures !(\exists int i,k; 0 <= i && i < k
12 && k < sa.a.length-l;

(\forall int j; 0 <= j && j <= l;
14 sa.a[k+j] == sa.a[i+j]));

Lst. 4 Contract for LRS.

the original array while the implementation iterates through
a suffix array. This means that a suitable loop invariant is
not just an abstraction from the method’s post-condition. We
use the following loop invariant, which states that there is no
suffix indexed by w up to the current loop index x such that
w−1 and w point to a repeated substring of length `+1:

!(\exists int w; 0 < w && w < x
&& sa.suffixes[w-1] < sa.a.length-l
&& sa.suffixes[w] < sa.a.length-l;

(\forall int j; 0 <= j && j <= l;
sa.a[sa.suffixes[w-1]+j]

== sa.a[sa.suffixes[w] +j] ));

Interaction was both required in proving that the invari-
ant is preserved and that the post-condition follows from it.
The preservation proof uses the already proven contract for
lcp() (see Sect. 3.1 above) and required six quantifier in-
stantiations, which were more or less obvious. A case dis-
tinction on whether suffixes[x] already points to the end
of the array was also helpful.

Proving the use case, i.e., that the post-condition follows
from the loop invariant in a terminal loop state, required
even more guidance. First of all, we need the fact that the
suffix array describes a permutation of the original array,
and in particular that it is invertible. This is contained in
the class invariant of SuffixArray (see Lst. 2), the defini-
tion of which we unfold in the proof. Since we now have
pointers into the suffix array, we can make use of the fol-
lowing lemma: if there are pointers i and j into a suffix ar-
ray such that they point to a repeated substring of length k,
then the same substring also appears at the position indexed
by i+1. A technical issue is that our specification language
JML does not support the concept of lemmas. Therefore, we
formulate it as a contract to a static boolean (model) method
which always returns true, as seen in Lst. 5. In the proof,
we make a case distinction over the result of this method be-
ing true. One case can be closed instantly using the imple-
mentation of the method. On the other branch, we can use
the lemma to prove that there are LRS of length `+1. Apart
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/*@ public normal_behaviour
2 @ requires \invariant_for(sa);

@ requires 0 <= i && i < j && j < sa.a.length &&
4 @ sa.suffixes[i] + k <= sa.a.length &&

@ sa.suffixes[j] + k <= sa.a.length &&
6 @ (\forall int t; 0 <=t && t < k;

@ sa.a[sa.suffixes[i]+t]
8 @ == sa.a[sa.suffixes[j]+t] );

@ ensures sa.suffixes[i+1] + k <= sa.a.length &&
10 @ (\forall int t; 0 <=t && t < k;

@ sa.a[sa.suffixes[i]+t]
12 @ == sa.a[sa.suffixes[i+1]+t] ); @*/

public static boolean neighbourMax(SuffixArray sa,
14 int i, int j, int k) { return true; }

Lst. 5 This lemma states that longest repeated substrings can be found
among neighbours in the suffix array.

from these case distinctions and occasional (mostly trivial)
quantifier instantiations, the prover ran automatically, even-
tually closing the proof in about 26 000 proof steps.

The introduced lemma captures the fact that a longest
repeating substring will occur between neighbouring entries
in the suffix array: the substrings to which the indexes in the
suffix array point are lexicographically sorted; if two entries
share a common prefix, this must hence be shared by all
entries between these two. The longest common prefix must
be between neighbours.

For the proof of the lemma, further propositions were
provided as additional lemmas (also as method contracts)
which captured intermediate properties like the fact that
lexicographic order is transitive and reflexive.

Leaving out the maximality property would simplify the
proof drastically: it would not require the above lemma or
even the inversion property and could be found without user
interaction in around 12 seconds involving 2000 proof steps.

4 Prefix Sum

In the second challenge, we worked on an intricate algo-
rithm to compute prefix sums [4]: Given an array of inte-
gers {a0, . . . ,a2n}, compute an array {s0, . . . ,s2n} such that
si = ∑

i−1
j=0 a j (every cell si contains the sum over a j up to

i−1). For example, the array {4,7,3,0,4,1,2,3} has pre-
fix sums {0,4,11,14,14,18,19,21}. While this property is
quite simple, the target is an efficient divide-and-conquer al-
gorithm, which has various applications to sorting and com-
puter graphics.

At the competition, there was a choice between an itera-
tive and a recursive implementation. We decided to take on a
recursive implementation, because it reflects more precisely
the real algorithm (which is parallel) than an iterative imple-
mentation; in addition, recursion allows us to reason more
modularly about subproofs, and specifications are more con-
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Fig. 1 An example for upsweep. If viewed in colour, the green cells
are updated with the contents of their left and right children.

cise since there is no need for annotations such as loop in-
variants. All verification results have been obtained off-line
after the competition.

4.1 Problem Description

The prefix sums algorithm works in three phases: In the
first one, called upsweep, sums over subarrays are calcu-
lated bottom-up. Upsweep recurses for the left and the right
half subarray, then these sub-results are added up and writ-
ten to the right-most cell of the current subarray. Figure 1
displays upsweep graphically for the above example; the re-
sulting array is {4,11,3,14,4,5,2,24}. In the second phase,
the right-most cell is set to zero. In the third phase, called
downsweep, the respective full prefix sum is propagated to
each cell. It runs top-down, beginning with the full array:
For every subarray, the value of its right-most cell is copied
to the right-most cell of the left half subarray (left index
in the implementation), at the same time, the sum of values
from these two cells is written to the right-most cell.

In the end, we were only able to prove a side-condition
of upsweep, that on each recursive call, the right-most cell
contains the sum over all cells in range. In Sect. 4.4 we ex-
plain a stronger specification for upsweep (which talks about
all cells), which would be needed in order to prove correct-
ness of the complete algorithm. Proving it with KeY, how-
ever, does not seem to be possible at the moment. This is
mostly due to frequent occurrences of the exponential func-
tion and reasoning by induction is not well supported in KeY.

4.2 Specification Approach

To simplify the implementation of upsweep, we factored out
common arithmetic patterns into separate helper methods.
In particular, we use methods div2 and even to encapsulate
integer division and modulo operations. This allows us to
attach contracts to them. For instance, the precondition for
div2(x) requires that x is a positive even number. From
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public void upsweep(int left, int right) {
2 int space = right - left;

if (space > 1) {
4 upsweep(left - div2(space), left);

upsweep(right - div2(space), right);
6 }

a[right] = a[left] + a[right];
8 }

Lst. 6 Recursive implementation of upsweep.

this, it not only follows that the result is always defined, but
also that it is strictly less that x, which we need in order to
prove termination of the algorithm. The method isPow2(x)
contains a recursive definition of when a positive integer x
is a power of 2. In the contract, we have a sufficient and
necessary condition given using a product comprehension,
but also a more practically helpful condition which states
that a power of 2 is either 1 or it is even and half of it is
again a power of 2. We also use an additional lemma which
states that the sum of two even numbers is even and the sum
of an even and an odd number is odd.

Upsweep (see implementation in Lst. 6) computes sums
for prefixes of the array bottom-up. On each iteration, begin-
ning with a two-element subarray, upsweep(l, r) writes
the sum ∑

r
i=2`−r+1 ai into ar. In particular, after the upsweep

phase has completed, the right-most cell contains the sum
over the complete array. ` and r point to the right-most cell
in the left and the right subarray, respectively; then 2`−r+1
points to the left-most cell.

4.3 Proving upsweep

We prove that the right-most cell contains the above given
sum (see JML specification in Lst. 7). This property is slight-
ly simpler than the general case where we need to show that
every cell contains a sum over a more complicated range
(see Sect. 4.4 below). The two main challenges in verifi-
cation are: (i) proving the post-condition, which involves
reasoning about sums and (ii) proving the pre-conditions
of recursive calls. The principal idea of proving (i) is sim-
ply showing that the sum of the sums temporarily stored in
a` and ar is the sum of all cells in range in the pre-state;
this requires a proof by induction over the length of the ar-
ray. The more intricate issue here is framing. We need to
show that the two recursive calls are independent of each
other.4 Lines 12ff. in Lst. 7 give a frame condition for up-
sweep under which only odd positions between 2`− r +
1 (which is computed by leftMost) and r may be writ-
ten. This means that the recursive calls may only write to
a2`−r+1, . . . ,a` and a`+1, . . . ,ar, respectively. We could have
written that property also as a regular post-condition in the

4 This is in fact essential to this algorithm being parallelisable.

requires left < right;
2 requires right < a.length;

requires leftMost(left, right) >= 0;
4 requires isPow2(right - left);

requires !even(right);
6 requires !even(left) || right - left == 1;

ensures a[right] ==
8 (\sum int i;

leftMost(left, right) <= i && i < right+1;
10 \old(a[i]));

measured_by right - left + a.length + 3;
12 assignable \infinite_union(int k;

!even(k) && leftMost(left, right) <= k &&
14 k <= right; \singleton(a[k]));

Lst. 7 Specification of upsweep. The operator \infinite_union de-
notes the union over a range of sets in JML∗.

contract, but using frames with KeY’s built-in data type of
location sets is favoured since it adds more structure to the
proof.

Since our goal is to show total correctness, i.e., includ-
ing termination, we have to give variants (termination wit-
nesses) to recursive methods. A variant is an integer expres-
sion which must evaluate to a non-negative number in any
legal pre-state, and for recursive calls it must be strictly less
than in the caller-side scope. The variant for upsweep (given
with measured_by) can be seen in L. 11 of the contract.
The “+3” part is a technical requirement in order for other
recursive methods to be called; it fixes a strict ordering of
called methods and ensures that the call graph does not con-
tain cycles (see also Sect. 6 for a discussion). For the pre-
condition of the recursive call on the left half, it amounts
to show that r− ` >

⌊ r−`
2

⌋
, which is true for all r with r >

`+1.
However, in order to prove this we need to make case

distinctions on whether r− ` is a multiple of 2. In order to
have this property established for all recursive calls, we as-
sume that r− ` is a power of 2 in the precondition. This, in
turn, requires us to reason about evenness and powers of 2.
Side-proofs of sequents of this kind actually did contribute
a lot to the overall proof size.

We have proven upsweep (including termination) in a
semi-automated proof style: we have let the automated stra-
tegy run for most of the proof steps, but stopped before ap-
plying any method contracts. Some proof cuts were made
by hand to simplify formulae, e.g., the user had to indicate
where the above mentioned lemma about sums of even num-
bers was needed to conclude the proof. In total, the proof
took about 100 000 steps, of which less than 100 were ap-
plied by hand; time consumed by automated rule applica-
tion was around 18 minutes. Correctness proofs for the aux-
iliary queries and lemmas mentioned above could be found
without any user interaction; altogether they took 6000 proof
steps applied in under 6 minutes.
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4.4 Upsweep revisited

We are now going to take an outlook at the more general
post-condition where we state the value of each cell. Above,
we have already seen that the right-most cell ar contains
a sum over 2(r− `) values. In the general case, this can
be described through a function f : N→ N such that each
cell a2`−r+1+i holds the sum over f (i) elements. The gen-
eral version of the postcondition thus is the following:

ensures (\forall int k; 0 <= k && k < 2*(right-left);
a[k + leftMost(left, right)] == (\sum int i;

k - f(k) + 1 <= i && i < k + 1;
\old(a[i + leftMost(left, right)])));

A closed form definition (cf. [19]) of this function f is
f (i) = 2min{k∈N|imod2k+1=2k−1}. It can be easily implemented
using a functional programming style. Writing down a con-
tract is not trivial because the minimum is not a total func-
tion in general. Therefore, the idea is to provide an imple-
mentation of the minimum function and show that it ter-
minates for all non-negative integer parameters. However,
proving intricate specifications like these, involving recur-
sive predicates, turns out to be still out of reach for a tool
like KeY which targets imperative implementations.

5 Deletion in a Tree

The third challenge is concerned with linked data structures,
concretely binary search trees. The execution of the chal-
lenge program results in a modified tree structure with the
minimal element removed from the tree. It is particularly
important that an iterative algorithm was chosen instead of
a recursive one. More concretely, the given verification task
is the following.

Given: a pointer t to the root of a non-empty binary
search tree (not necessarily balanced). Verify that the proce-

final class Tree {
2 Tree left, right; int data;

4 static Tree deleteMin (Tree t) {
Tree tt, p2, p;

6

p = t.left;
8 if (p == null) { t = t.right; } else {

p2 = t; tt = p.left;
10 while (tt != null) {

p2 = p; p = tt; tt = p.left;
12 }

p2.left = p.right;
14 }

return t;
16 }

}

Lst. 8 Implementation to delete the minimum element in a tree.
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Fig. 2 Deletion of the minimal node in the binary search tree.

dure in Lst. 8 removes the node with the minimal key from
the tree. After removal, the data structure should again be a
binary search tree.

Figure 2 depicts this algorithm schematically and shows
the intended result: It traverses the tree through left refer-
ences and removes the left-most node (which contains the
minimum element). The main difficulty of this challenge, as
it turned out, is to maintain the information about which part
of the input tree t actually changed. In other words, the pre-
cise frame of the changed heap locations by the one line of
code that rearranges only two nodes (L. 13 in Lst. 8) is very
difficult to be given in terms of the initial tree t only. In the
end, the challenge was successfully solved after the compe-
tition and required modifications of the KeY system and a
non-trivial interactive proof. The following sections explain
our solution in detail.

5.1 Abstracting From Concrete Data Structures

The typical approach to address the verification of programs
operating on linked data structures with KeY is to:

1. Define a footprint of the structure in terms of sets of lo-
cations involved in building up the structure and provide
disjointness properties over this footprint to ensure that
the structure is acyclic.

2. Using an abstract data type, define and link to the ap-
propriate data elements a flat, abstract representation of
the structure. Any changes to the actual data structure
are reflected in the abstract representation and any re-
quired properties, like sortedness, can be reasoned about
in terms of this representation rather than the concrete
data structure.

Both the footprint and the abstract representation can be de-
clared and defined as either a model or a ghost field in JML∗,
and then properties can be defined in terms of a class invari-
ant or representation clauses over these fields. For simpler
verification tasks, the particular choice of whether to use
ghost or model fields for these specifications is more a mat-
ter of specification style, rather than any particular reason-
ing capability. Specifications based entirely on model fields
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provide a solid separation between the specification and the
code, but make proofs more difficult. Ghost fields ‘intrude’
the verified program by extending its state and require ad-
ditional book-keeping from the specifier, but make proofs
somewhat easier in practice.

However, both model and ghost fields as currently im-
plemented in the stable version of the KeY system turned
out to be a bottleneck in solving this verification challenge.
The essence of a clean solution to the specification of the
while-loop with loop invariants and then verification of the
top-level specification of the deleteMin() method is to
maintain the information about the locality of structural tree
changes ‘under’ the node p2 with respect to the rest of the
tree, see again Fig. 2. Ideally, any properties about the tree
expressed with any of the two specification methods, should
be parametric with respect to this bordering node which
clearly divides the tree structure into the part which does
not change (everything above the node), and the part which
may still change (anything below the node). The specifica-
tions expressed with model or ghost fields would need to
be defined in relation to this node, which is not fixed until
the loop iteration is completed. This means that model fields
should be parametric to become fully fledged abstract predi-
cates rather than simply abstract ‘prepositions’. This has led
us to build our specification on the more flexible concept of
model methods.

Model methods are a way of declaring fully functional ab-
stract predicates in JML∗. Like other specification elements,
model methods are declared in designated comments and
consist of:

– a method signature with input parameters and the result,
all of which can be of any valid Java or abstract/logical
type;

– an optional body of the method, which gives the actual
definition of the predicate;5 a model method without a
body is truly abstract and has only properties stated with
pre- and postconditions;

– a precondition declaring the conditions under which the
predicate is well-defined and a postcondition that de-
clares any additional properties of the predicate which
follow from its definition under the assumed precondi-
tions;

– an accessible clause, which declares the set of loca-
tions which the predicate at most depends on;

– a measured_by clause, which declares a variant for re-
cursive calls.

Moreover, all model methods are by definition strictly pure
– any modification of the heap is strictly forbidden. Oth-

5 Currently, we only support single return statements for the body,
i.e., definitions can be only given with direct formulae, rather than
proper Java programs that involve, e.g., loops or similar constructs.
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Fig. 3 Binary tree partitioning.

erwise, there are no real limitations on expressions appear-
ing in both the model method definition and model method
specification, in particular, mutual references to other model
methods are allowed. This raises an additional question of
termination conditions for mutually recursive calls, some-
thing which we have not fully addressed yet, this is dis-
cussed shortly in Sect. 5.3.

5.2 Specification Approach

Partitioning the tree. The properties about the binary search
tree structure which we need to specify are divided into two
categories. The first category has to do with general proper-
ties about binary trees and define the well-formedness crite-
ria for trees as well as give the abstract flat representation of
the tree to reason about its contents.

The second category of properties maintains the infor-
mation about the current state of traversal. These properties
in principle partition both the footprint and the abstract rep-
resentation of the initial tree t between the upper part above
some node u currently being visited, and the lower part be-
low node u that may still be changed by the deletion oper-
ation. The key idea is to maintain the fact that the above-
footprint is strictly disjoint from the below-footprint, so that
it can be ensured that changes below the current node will
not affect the already visited structure above. The specifica-
tions of these partitioning predicates also ensure that inclu-
sion of one additional left node during the traversal of the
tree maintain all the required properties. Figure 3 illustrates
this idea, and the following paragraphs discuss the concrete
specifications.

The general structure of the binary search tree. First we de-
clare a model method which defines the overall footprint
(method fp()) of our binary search tree and another one
(method treeInv()) that gives the well-formedness condi-
tion to ensure that the structure does not contain cycles, i.e.,
that the strict footprint of the parent (i.e., all node fields) is
recursively disjoint from the footprints of the leaves, which
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ghost instance int height;
2

model_behavior
4 requires treeInv();

accessible fp();
6 measured_by height;

helper model \locset fp() { return \set_union(
8 this.*, \set_union(

left == null? \empty: left.fp(),
10 right == null? \empty: right.fp())); }

12 model_behavior
accessible fp();

14 measured_by height;
helper model boolean treeInv() { return

16 height >= 0 &&
(left != right || left==null || right==null) &&

18 (left==null || (\disjoint(this.*, left.fp())
&& left.treeInv() && height > left.height)) &&

20 (right==null || (\disjoint(this.*, right.fp())
&& right.treeInv() && height > right.height))

22 && (left==null || right==null ||
\disjoint(left.fp(), right.fp())); }

24

model_behavior
26 requires treeInv();

accessible fp();
28 measured_by height;

helper model \seq treeRep() { return \seq_concat(
30 left==null ? \seq_empty: left.treeRep(),

\seq_concat( \seq_singleton(this),
32 right==null ? \seq_empty: right.treeRep())); }

Lst. 9 The tree’s structure defined through model methods.

are moreover mutually disjoint themselves. Both of these
methods make use of the built-in \locset data type for lo-
cation sets. Moreover, the well-formedness condition also
states an invariant for the ghost field height tracking the
height of the tree below the current node. This field is glob-
ally used in all specifications as a recursion measure. The
property of the height field is purposely an over-approx-
imation, so that later when the nodes are rearranged dur-
ing the deletion no updates to height are necessary.6 Fi-
nally, we define an abstract representation of the tree con-
tents (method treeRep()) in terms of object sequences,
which use the built-in logical data type \seq. Since the tree
is sorted, the most convenient way to organise the repre-
sentation sequence is the inorder traversal of tree elements:
the representation of left sub-tree is placed in the sequence
first, then the actual node, and then the right representation.
These practically generic binary search tree specifications
given with model methods for the Tree class are given in
Lst. 9.

Two points of interest in these specifications are the fol-
lowing: The method treeInv() that essentially defines the

6 This would not have been the case if we had used a ghost field to
track the exact size of the tree by precisely adding sub-tree sizes.

model_behavior
2 requires treeInvUntilLeft(u) && u.treeInv();

accessible fpUntilLeft(u);
4 measured_by height;

helper model \locset fpUntilLeft(Tree u) {
6 return (this == u ? \empty : \set_union(

this.*, \set_union(
8 (left==null) ? \empty : left.fpUntilLeft(u),

(right==null) ? \empty : right.fp()))); }
10

model_behavior
12 accessible fpUntilLeft(u);

measured_by height;
14 helper model boolean treeInvUntilLeft(Tree u) {

return this == u || (height >= 0 &&
16 (left!=right || left==null || right==null) &&

(right == null || (height > right.height &&
18 right.treeInv() &&

\disjoint(this.*, right.fp()))) &&
20 (left == null || (height > left.height &&

left.treeInvUntilLeft(u) &&
22 \disjoint(this.*, left.fpUntilLeft(u)))) &&

(\disjoint(left.fpUntilLeft(u), right.fp())
24 || left == null || right == null)); }

Lst. 10 Describing disjointness of footprints above and below node u.

acyclicity property is guarding the definitions of all other
model methods so far. Then, even though the problem de-
scription talks about binary search trees, i.e., ones with a
sorted structure, the corresponding property is purposely left
out. The representation method treeRep() defines only a
flat sequence of tree nodes with arbitrary ordering. Our top
level specification will state that this representation loses
only the first element as a result of calling deleteMin().
That is, a more general property is established, namely that
the remaining elements preserve their order, in particular
they remain sorted when the initial tree is also sorted.

Invariant tree properties. As already explained, to specify
and prove correct the deleteMin() method it is crucial to
keep the tree structure above the currently visited node sep-
arate from the structure still to be searched, as shown in
Fig. 3. Thus, we define a similar set of model methods as
above, but this time all of them are parametrised with a lim-
iting node u until which the given property is checked. We
start with model methods fpUntilLeft(u) and treeInv-
UntilLeft(u) as shown in Lst. 10.

These methods define the footprint of the tree from the
current this node until some node u which eventually ap-
pears in the left sub-tree. The footprint of the u node itself
is excluded from the result. This is achieved in the base case
of the definition when the currently visited node this is
the same as the bordering node u, in which case the result-
ing footprint becomes empty. Otherwise the definition pro-
gresses by adding the right footprint (if there is one) of the
current node to the footprint collected so far and, if possi-
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ble, recursively stepping into the left sub-tree of the current
node. The fpUntilLeft(u) model method is only defined
for well-structured trees, this is stated in the precondition.

We define an analogous model method to build the rep-
resentation of the tree until the u node:
model_behavior

requires treeInvUntilLeft(u) && u.treeInv();
accessible fpUntilLeft(u);
measured_by height;
helper model \seq treeRepUntilLeft(Tree u) { return
(this == u ? \seq_empty : \seq_concat(

left==null ? \seq_empty : left.treeRepUntilLeft(u),
\seq_concat(\seq_singleton(this),

right==null ? \seq_empty : right.treeRep()))); }

This definition is very similar to the definition of the above
footprint method and also strictly excludes the representa-
tion of the node u from the result.

The essential property of all these u-limited model meth-
ods is that they only depend on the location set defined by
fpUntilLeft(u). In particular, evaluation of these meth-
ods should not depend on the footprint of u, but this is only
true when the node u is actually in the left sub-tree.

The whole trick in our specification and the overall ap-
proach to the proof is to reverse this relation. That is, given
that the left-footprint of the current tree until node u and
complete footprint of the node u we search for are disjoint,
we can check whether node u is a left subtree, and, if so,
several further properties hold. The model method left-
SubTree establishes whether a given node u is a sub-tree on
the left side of the current tree under the mentioned condi-
tions, with the following definition:
model_behavior

requires treeInvUntilLeft(u) && u.treeInv();
requires \disjoint(fpUntilLeft(u), u.fp());
ensures (* see below *);
accessible fpUntilLeft(u);
measured_by height;
helper model boolean leftSubTree(Tree u) { return
(this==u || (left != null && left.leftSubTree(u))); }

The preconditions express what we have just stated and the
well-formedness of the two trees involved, and similarly to
other predicates, the recursion depth of method leftSub-
Tree is bounded by the height of the tree. Again, it is im-
portant that this predicate only depends on the values of lo-
cations until the node u – once node u is reached, the search
stops.

Given that the u node is indeed a left sub-node of the cur-
rent tree several properties hold that are useful for the prob-
lem at hand. These properties are expressed through post-
conditions of leftSubTree. We want to state the following
facts:

– If the left link of node u is not null, then the next left
node is also a left sub-tree of the current tree:
ensures \result ==>

(u.left == null || leftSubTree(u.left));

– The abstract representation of the current tree is a con-
catenation of the representation of the sub-node u with
the partial representation starting from the current node
until u:

ensures \result ==> treeRep() == \seq_concat(
u.treeRep(), treeRepUntilLeft(u));

– Similarly, the footprint of the current tree consists of the
footprint of the sub-tree rooted in u and the partial foot-
print from the current node until u:

ensures \result ==>
fp() == \set_union(fpUntilLeft(u), u.fp());

Note that the two footprints which build up the complete
footprint of the current tree are guaranteed to be disjoint
by the precondition of leftSubTree.

– Establishing the overall well-formedness of the current
node is equivalent to checking the well-formedness until
the limiting node u and the well-formedness of the node
u itself:

ensures \result ==> (treeInv() <==>
(treeInvUntilLeft(u) && u.treeInv()));

– When stepping one non-null node to the left from u, the
partial tree representation until this child node becomes
a concatenation of (1) the node u, (2) the representation
of the right sub-tree of u, and (3) the previous partial
representation until node u:

ensures \result ==> (u.left == null ||
(treeRepUntilLeft(u.left) == \seq_concat(

\seq_singleton(u),
\seq_concat(u.right == null ? \seq_empty :

u.right.treeRep(), treeRepUntilLeft(u)))));

In other words, with this postcondition we describe how
the partial representation is extended during traversal of
the tree through left links.

– Similarly, we state what happens to the partial footprint
when stepping one node to the left from u. The resulting
extension of the partial footprint is entirely analogous to
the extension of the partial representation:

ensures \result ==> (u.left == null ||
(fpUntilLeft(u.left) ==
\set_union(u.*, \set_union(u.right == null ?

\empty : u.right.fp(), fpUntilLeft(u)))));

Deletion of the Minimal Element. The main purpose of the
leftSubTree method is to maintain the information about
how the properties defined with the other model methods are
affected and which part of the tree they (do not) depend on
during a single step of the tree traversal. Since most of the
‘property weight’ is delegated to the leftSubTree method,
the specification of the main while loop of the deletion
method deleteMin() only needs to maintain that the node
p2 keeps being in the left sub-tree of t and that the pre-
conditions of leftSubTree are still satisfied. Together with
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/*@ maintaining p != null && p2 != null;
2 @ maintaining t.treeInv() && p2.treeInv();

@ maintaining t.treeInvUntilLeft(p2);
4 @ maintaining p2.left == p && p.left == tt;

@ maintaining t.leftSubTree(p2);
6 @ maintaining

@ \disjoint(t.fpUntilLeft(p2), p2.fp());
8 @ decreasing tt == null ? 0 : tt.height;

@ assignable \strictly_nothing; @*/
10 while (tt != null) { p2 = p; p = tt; tt = p.left; }

Lst. 11 Traversal loop in deleteMin with loop specifications.

a couple of expressions which define the dependencies be-
tween nodes p, p2, and t, this makes up the loop specifi-
cation in Lst. 11. The variant of the loop specified in L. 8
is self-explanatory. Further, with the assignable clause in
L. 9 we specify that the loop does not modify the heap mem-
ory – all the modified variables in the loop (p, p2, tt) are lo-
cal. Given the definitions of the corresponding model meth-
ods, it should be easy to see that these loop invariants are
indeed maintained.

The actual modification only happens after the loop. Our
top-level specification for the deleteMin() method states
that the rearrangement of nodes removes only the left-most
node and that the resulting tree is still well-formed. The spe-
cial case in which the input tree contained only one node
is specified separately. The result of removing the left-most
node from the abstract representation of the tree is expressed
using existential quantification over the removed node. From
the point of view of this top-level method the assignable
clause can be only over-approximated with the whole foot-
print of the input tree t:
/*@ normal_behavior

@ requires t.treeInv();
@ ensures \result == null ==>
@ \old(t.treeRep() == \seq_singleton(t));
@ ensures \result != null ==> (\result.treeInv() &&
@ (\exists Tree p; \old(t.treeRep()) ==
@ \seq_concat(\seq_singleton(p),
@ \result.treeRep())));
@ assignable t.fp(); @*/

static /*@ nullable @*/ Tree deleteMin(Tree t) { ... }

5.3 Proving Correctness

The complete correctness proof for deleteMin() entails
showing the following proof obligations to hold. For each of
the declared and specified model methods we have to show
that:

– The method implementation (body) respects the acces-
sible clause, i.e., show the method’s dependency con-
tract to be correct.

– Given its definition, the method fulfils the specified con-
tract, i.e., show the method’s properties to hold.

For deleteMin() we need to show that it fulfils its top-level
specification, which in turn entails showing that the main
while loop maintains the specified loop invariants, and that
the loop invariants upon the exit of the loop are sufficient
to establish the final properties after the tree nodes are re-
arranged. Obviously, it is possible to use all already proven
properties and contracts during any of the proofs as long as
no circular proof dependencies are introduced. In particular,
for the recursive model methods it is important that contracts
are applied only on strictly smaller sub-trees with respect to
the initial proof obligation.

Most of the proofs with KeY for this challenge were
done manually by careful application of the proof rules in
the interactive mode of KeY. The technical reasons for being
forced into the manual mode have to do with the experimen-
tal character of the model methods extension that we intro-
duced. In particular, we did not yet implement proper con-
trol of progression over recursive application of contracts to
avoid circular dependencies in the proof and consequently
establish termination. The formerly existing control in KeY
over such calls turned out to be too restrictive, in particular,
it practically prohibits complete reasoning about mutually
recursive references in model methods.

Apart from these technical aspects, subject to future im-
provements we need to introduce into KeY, the correctness
proof required actual proof guidance in terms of providing
cut formulae to direct further reasoning, as follows.

The two most difficult parts are proving the contract for
the leftSubTree method to be correct, i.e., the properties
which continue to hold during traversal of the tree, and prov-
ing the top-level property after the node rearrangement. In
particular, this main proof produces a Dynamic Logic for-
mula which states a relationship between the original tree
representation and the new representation after the heap is
modified (and a similar formula for treeInv that is also
part of the postcondition):

∃p:TreetreeRep(heap) .
= [p]⊕ treeRep(updatedHeap)

where the operators [·] and ⊕ denote singleton sequence
and sequence concatenation, respectively, and the updated
heap is constructed from the original heap by updating the
p2.left node:

updatedHeap
.
= heap [p2.left 7→ heap(p.right)]

The witness for the existential quantifier is produced by the
last loop iteration. Thus, a simple instantiation with the node
p is sufficient.

The most essential part of the proof is to perform a cut
over the t.leftSubTree(p2) to establish that it is actually
equal in the two states before and after the node rearrange-
ment, i.e., that:

leftSubTree(heap,p2) .
= leftSubTree(updatedHeap,p2)
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This is relatively easy to show under the disjointness condi-
tions between t.fpUntilLeft(p2) and p2.fp() carried
over across the loop. That is, it is at this point that we use
the fact that the parts of the trees below and above the p2
are strictly disjoint in terms of footprints and hence make
the corresponding properties which refer to the upper part
of tree equivalent between the old heap and the changed
updatedHeap. In KeY, the so-called dependency contracts
generated from the accessibility clauses are used to establish
such equivalences [26]. Then, from the contract of t.left-
SubTree(p2) we extract several other properties that show
equivalences between these two heaps. In particular, for
proving the tree representation property we get the fact that
the representation above the node p2 is not changed between
heap and updatedHeap.

Although the principles of the proof we just described
are not that complex, the interactions imposed by KeY made
the proof substantially complex. Whenever possible, i.e., for
the remaining parts of the proof where no more cuts or con-
tract applications were necessary, we still employed the au-
tomatic mode of KeY. Regardless of that, the proof required
slightly over 1200 manual proof rule applications and a total
of 133 000 automatic rule applications to finish the proof.
The final proof took us half a day of work with automated
mode running time of 6 minutes.

6 Conclusion and Outlook

Competitions such as the present put under test both the
abilities of the competitors as well as their verification tool
in a very controlled setting. On-site competitions, in addi-
tion, offer the possibility for an immediate comparison of
approaches and results with the other teams, however, con-
sidering the time pressure this is usually done to a very lim-
ited extent. Thus, we consider this paper to be a contribution
to the other competing teams to study and analyse our solu-
tions to the competition challenges in more depth.

To the authors, the most important aspect of the competi-
tion is the evaluation of the KeY verification system. The in-
ability to solve the Prefix Sum and Tree Deletion challenges
within the competition time triggered efforts to improve and
add new features to the system. Apart from helping to solve
the competition challenges, most of these new features made
it to the freshly released stable version 2.0 of KeY:

– JML model methods have been added to KeY as a means
for abstraction from the concrete implementation. This
makes the KeY system the first JML-based tool to fully
support this concept in interactive verification.

– It is now possible to inductively reason about integer
product comprehensions.

– In addition to skolemisation, KeY offers automated in-
duction over quantified formulae over the integers.

– Strategy macros (see Sect. 2.3) have been introduced
to allow a more high-level user interaction thus signif-
icantly reducing the total number of required interactive
steps.

The most difficult part in software verification usually
is to find appropriate specifications. The ability to conduct
proofs by symbolic execution interactively turned out to be
advantageous in this regard. Symbolic execution directly
provides human-readable feedback on program control flow
– similar to software debugging. Interactive proving further-
more allows users to make sensible case distinctions. This
does not only provide some intuition on whether the used
specifications are correct or sufficient, but also on how speci-
fication and implementation could be refactored to simplify
the proof which helped us in all three challenges.

The challenges clearly point out directions for further
improvement. In particular, proving well-foundness of mu-
tually recursive methods, both regular and model, is yet to be
addressed. The currently implemented mechanism in KeY
essentially requires all methods to share a common integer
recursion variant given by the measured_by clause. In prac-
tice this is very restrictive. One of the possible solutions to
this problem would be to allow more structured variant ex-
pressions, like tuples of integers which are then compared
lexicographically. A pair can be used, e.g., where the first
value indicates the dependency depth of mutual calls and
the second one denotes the actual recursion depth. Another
possibility would be to manually restrict the set of applica-
ble method contracts in a particular verification condition,
e.g. by specifying (and checking) JML callable clauses.

On a more general level, the competition challenges em-
phasised the gap between recursive and iterative programs,
both in terms of actual implementations and the verification
effort. This gap is not always obvious to predict. For the
Tree Deletion challenge we initially expected the iterative
nature of the algorithm over a recursive data structure to be
the source of difficulties. Although, judging from a similar
previous challenge [5], we still think that the recursive im-
plementation would be simpler to verify; with the help of
model methods we employed the recursion on the specifica-
tion level and provided an elegant solution to this challenge.

The last point to discuss is the performance of verifica-
tion tools in the scope of competition-style challenges versus
realistic programs. The research efforts in KeY have been
concentrated on fully supporting concrete Java features, like
inheritance, static initialisation, the use of API libraries, and
to support specification features important for production
software, like information-flow properties for security-criti-
cal applications [21]. In the past, this approach to the con-
struction of the KeY verifier enabled us to successfully ver-
ify seriously sized (for a verification effort) case studies, see
e.g. [18,22], and KeY was a pioneer in fully supporting a real
Java execution environment, the Java Card platform [17].
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It seems that for competition style challenges, which are
essentially purely algorithmic problems, what is required of
the verification tool is a strong support for abstraction de-
coupling conceptual problems from the implementation is-
sues of the realisation in a programming language. Such
an abstraction mechanism is inherent to some verification
approaches (for instance by using abstraction predicates in
separation logic oriented tools like VeriFast [12]).

By introducing model methods to KeY we strive at clos-
ing this gap for our tool. But it would also have to include
convenient facilities to declare abstract data types and to
provide means of (inductively) reasoning about them. We
believe that developing the tool and methodology towards
either end of the application spectrum requires different ef-
fort and priorities, which are often difficult to bring together.
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