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Executive Summary

Karlsruhe Institute of Technology (KIT) is developing the parallel computational fluid dynamics code
GASFLOW-MPI as a best-estimate tool for predicting transport, mixing, and combustion of hydrogen
and other gases in nuclear reactor containments and other facility buildings. The code can model
geometrically complex facilities with multiple compartments and internal structures. It can simulate
the effects of two-phase dynamics with the homogeneous equilibrium model (HEM), two-phase heat
transfer to walls and internal structures, chemical kinetics, catalytic recombiners, and fluid turbu-
lence. An analysis with the GASFLOW-MPI code will result in the complete fluid dynamics description
of gas species and discrete particle distribution and pressure, and temperature loadings on the walls
and internal structures participating in an event.

GASFLOW sequential version has been used to calculate the distribution and control of hydrogen and
noxious gases in complicated nuclear containment and confinement buildings and in nonnuclear
facilities. It has been applied to situations involving transporting and distributing combustible gas
mixtures. It has been used to study gas behavior in complicated containment systems with low-speed
buoyancy-driven flows, with diffusion-dominated flows, and during deflagrations. The effects of
controlling such mixtures by safety systems can be analyzed.

GASFLOW-MPI is a finite-volume code based on proven computational fluid dynamics methodology
that solves the compressible Navier-Stokes equations for three-dimensional volumes in Cartesian or
cylindrical coordinates. Wall shear stress models are provided for bulk laminar and turbulent flow.
GASFLOW-MPI has transport equations for multiple gas species and one for internal energy. The two
turbulence models available in GASFLOW-MPI are the algebraic and x—& model which provide zero-
and two-transport-equation models that determine turbulent velocity and length scales needed to
compute the turbulent viscosity. Terms for turbulent diffusion of different species are included in the
mass and internal energy equations.

Heat conduction within walls and structures is one dimensional. Heat and mass transport to walls
and structures is based on a modified Reynolds-Chilton-Colburn analogy, which accounts for
increased heat transfer and condensation when the mass fraction of steam becomes a relatively
large fraction of the mass of the gas mixture. Vaporization of fluid films is included with an inhibiting
function as water vapor concentrations in fluid volumes adjacent to structures increase. Two-phase
dynamics can occur in the fluid mixture volumes according to a classical homogeneous equilibrium
model.

Chemical energy of combustion involving hydrogen provides a source of energy within the gaseous
regions. A one-step global chemical kinetics model based on a modified Arrhenius law accounts for
local hydrogen and oxygen concentrations. Models based on combustion progress variable transport
equation have been also developed in the GASFLOW-MPI code. Hydrogen is ignited using a
generalized ignitor model that represents both spark- and glow-plug-type designs. A catalytic
hydrogen combination with oxygen is modeled using data from both the Nonproliferation and
International Security division (NIS) and Siemens recombiner box designs.
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The aerosol model comprises the following models: Lagrangian discrete particle transport, stochastic
turbulent particle diffusion, particle deposition, particle entrainment, and particle cloud. These
models incorporate the physics of particle behavior to model discrete particle phenomena and allow
the code user to track the transport, deposition, and entrainment of discrete particles as well as
clouds of particles.

In GASFLOW-MPI, the computational domain is discretized by a mesh of rectangular parallelepiped
cells in either Cartesian or cylindrical geometry where primary hydrodynamic variables are cell-face-
centered normal velocity and cell-centered density, internal energy, and pressure. A linearized
Arbitrary-Lagrangian-Eulerian method is used for approximating the solution to the mass, momen-
tum, and energy conservation equations.

The code version described in this manual is designated GASFLOW-MPI 1.0. In the 1980s, the name
Hydrogen Mixing Studies, or HMS, was applied to any of a series of codes developed to solve special
problems in HMS using a common theoretical basis. The latest version of HMS (HMS-93, for the year
1993, also known as HMS 1.0 for the first integrated version) integrated the best features of all the
older versions into a single software package. This work was sponsored by the US Nuclear Regulatory
Commission (NRC) as a best-estimate tool for nuclear containment analyses involving hydrogen and
cooling issues. HMS 1.0 is the initial version of a larger code package called GASFLOW, which is
supported by the US Department of Energy (DOE) to address various nuclear and nonnuclear facility
safety issues. HMS 1.0 for the NRC is the same as GASFLOW 1.0 for the DOE.

Previous versions of HMS were applied to the following facilities and standard problems:

e EPRI/HDR International Standard Problems.

e Sandia FLAME and VGES Facilities.

e Nevada Hydrogen Tests.

e NRC Containment Loads Working Group Standard Problem:s.
e HCOG 1/4 Scale Test Facility.

e CSNI Hydrogen Distribution Benchmark Problems.

e Hydrogen Rule for Large Dry Containments.

e PHDR Large-Scale Hydrogen Mixing Experiment.

e PHDR Fire Experiments.

GASFLOW 2.0 has been extended beyond GASFLOW 1.0 with the following developments:

e Independent multiblock computational domains.

e Independent multiblocks connected on external boundaries by a ventilation system.

e |Implemention of a fraction area treatment to model flow areas smaller than a cell face area.
e Accurate internal energy as a function of temperature to 4th degree polynomials.

e Gas properties library of thermochemical and transport extended to 30 species.

e Homogeneous equilibrium model for fluid mixture.

e Droplet depletion or “rainout”.

e Two-phase heat and mass transfer to structural components.

e Both spark- and glow-plug ignitor models.
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Empirical hydrogen combustion limits.
Hydrogen recombiner models.

Transport, deposition, and entrainment of discrete particles.

GASFLOW-MPI 1.0 has been extended beyond the GASFLOW serial version 3.5 using the paradigms of
Message Passing Interface (MPI) and domain decomposition. The data structure, parallel linear
solvers and preconditioners in Portable Extensible Toolkit for Scientific Computing (PETSc) has been
employed. GASFLOW-MPI 1.0 has been parallelized based on GASFLOW serial version 3.5 with major
changes in the following:

The data structure in GASFLOW serial code has been completely replaced by using the distributed
arrays in PETSc library.

The Precontioned Conjugate Residual method used in GASFLOW serial version has been replaced
by the parallel preconditioners and linear solvers in PETSc library.

Multiblock computational domains and multiblocks connected on external boundaries by a
ventilation system is not supported in the current GASFLOW-MPI release. In order to keep the
backward compitability, the block number in input variable arrays in ingf file, such as gasdef(7,*),
mobs(7,*) and walls(7,*), were not removed. However, currently it must be always 1 for
GASFLOW-MPI applications.

Transport, deposition, and entrainment of discrete particles are currently not supported.
These features will be implemented in the next release of GASFLOW-MPI.

Only algebraic and k-€ turbulence models are currently supported. More turbulence models will
be implemented in future release of GASFLOW-MPI.

Models for turbulent combustion have been extended in GASFLOW-MPI.

Post-processing: pscan and graphic library, cgs, will not be used as post-processing tool in
GASFLOW-MPI. Data format for GMV, Opendx, AVS and VISART are not suppoted. Instead, we
provide Python tools, pyscan and create3D, for visualization purposes. The data can be read by
the most popular 3D visualization tools, such as Paraview, Visit, Tecplot and Ensight.
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Nomenclature

Dq
Da%mix

Da%&

Gordon and McBride coefficient for specific heat polynomial, CHEMKIN coefficients
for transport properties, and coefficient for internal energy polynomial
Hamaker constant and generalized polynomial coefficients for internal

energy approximation

Fractional flow-area vector

Archimedes number

Wall or structural surface area

Area of fluid cell in contact with GRS recombiner foil

Coefficient for internal energy polynomial

Velocity of control surface

Coefficient for internal energy polynomial, water saturation curve coefficients,
and species concentration when written with a component subscript
Relaxation coefficient for phase-change model (HEM) or droplet rainout model (s~1)
Energy of combustion for hydrogen

Fluid drag coefficient

Vector structural drag coefficient

Frequency (or pre-exponential) factor

Specific heat at constant pressure

Specific heat at constant volume

Coefficient for internal energy polynomial

Particle (sphere) diameter (cm)

Particle diameter (cm)

Structural drag vector

Molecular diffusion coefficient of species «zinto the mixture
Binary molecular diffusion coefficient of species e into species
Coefficient for internal energy polynomial

Coefficient of restitution

Activation energy

Potential energy well depth on impact (ergs)

Potential energy well depth on rebound (ergs)

Static friction coefficient

Acceleration of gravity (cm/s2)

Apparent particle penetration depth (cm)

Structural mass-transfer coefficient

Corrected structural mass-transfer coefficient for effect of water vapor
Structural heat-transfer coefficient

Corrected structural heat-transfer coefficient for effect of water vapor

Xi
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[ reference

Xii

Enthalpy for species o

Hydrogen

Water vapor

Heaviside function

x- (or r-) direction index

Specific internal energy

Specific internal energy at reference temperature (298.15 K)
y- (or 6-) direction index

Mass flux vector for species o

z-direction index

Chemical rate constant

Bulk mechanical property: = (1-N2)/Y (cm2/dyne)
Kinetic energy from incident normal velocity (ergs)
Kinetic energy from rebound normal velocity (ergs)
Turbulence length scale

Mass

Particle mass (g)

Mass transfer rate to and from structural surface
Molecular weight

Steam mole fraction

Unit normal vector

Nitrogen

Oxygen

Pressure

Prandtl number

Volumetric flow rate into recombiner

Energy flux vector

Energy lost or gained by the structure due to phase change
Convected energy to structural surface

Radial coordinate

Flux ratio

Radius of curvature (cm)

Gas constant for species o

Recombination reaction rate

Universal gas constant

Fluid cell surface area

Moving control surface

Schmidt number

Energy source or sink

Momentum source or sink

Arbitrary source term



Nomenclature

<~ < < < x

<
R

N

Mass source or sink resulting from phase change involving structures

Mass source or sink resulting from chemical reactions and HEM

Time

Temperature

x- (or r-) direction velocity component

Fluid velocity vector

Grid velocity vector

Velocity component tangent to and a distance y from wall (cm/s)

Shear velocity (cm/s)

Velocity into recombiner

Gas velocity (cm/s)

Gas velocity at center of particle (cm/s)

Minimum particle pickup velocity predicted by the semi-empirical model (cm/s)
Minimum particle pickup velocity predicted by the single particle model (cm/s)
Incident normal velocity (cm/s)

Critical normal rebound velocity (cm/s)

Particle velocity (cm/s)

Rebound normal velocity (cm/s)
Tangential velocity (cm/s)

y- (or 6-) direction velocity component
Volume

Moving control volume

z-direction velocity component
Position vector

Cartesian coordinate

Mass fraction of species o

Cartesian coordinate

Distance normal to surface and perpendicular to flow direction (cm)
Distance from wall to cell center

Particle Young’s modulus (dyne/cm?)

Molar or volume fraction for species o

Cartesian coordinate

Separation distance of sphere and substrate (cm)
Coefficient of thermal expansion

Wall thermal diffusivity

Boundary layer thickness (cm)

Time step

Mesh cell size for heat conduction grid

Mesh cell size for fluid cells in x- or r- coordinate direction

Mesh cell size for heat cells in y- or 6- coordinate direction
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Nomenclature

0z Mesh cell size for heat cells in z-coordinate direction

n Molecular viscosity (g/cm s) and recombiner efficiency

€ Dissipation of turbulent kinetic energy and time-step parameter

K Turbulent kinetic energy

14 Kinematic viscosity (cm2/s)

N Poisson ratio

A Second coefficient of molecular viscosity

u First coefficient of molecular viscosity

v Molecular kinematic viscosity

p Density

rg Gas density (g/cm3)

'n Particle density (g/cm3)

o Turbulence coefficient

T Viscous stress tensor

Ts Wall or structural shear stress

0 Azimuthal coordinate and gas mixture volume or void fraction

w Reaction rate

[0) Molecular thermal conductivity

)] Arbitrary scalar or vector function

o1 Rate factor

b4 General molecular transport coefficient and turbulence variable

O Mass-transfer correction factor

O Heat-transfer correction factor

Superscripts

A Lagrangian Phase A computational level

B Lagrangian Phase B computational level

n Old time level

n+1 New time level

* Moving control surface or volume and corrected heat and mass
Transfer coefficients for water vapor effect

0 Reference value

Xiv

Thermodynamic or microscopic density



Nomenclature

Subscripts
b Bulk fluid property
c Cell-centered value and combustion convection

Related to convective heat-transfer condensation/vaporization
Related to two-phase interaction combustion
Related to combustion

d Related to mass-transfer coefficient
Cell face

g Gas

hy Hydrogen component

hoo Water vapor component

hyol Water liquid component

i x- (or r-) direction index
in Recombiner inlet
| Related to the energy conservation equation

j y- (or 6-) direction index
k z-direction index
m Momentum control volume, or related to the momentum conservation equations
max Maximum droplet loading of the atmosphere mixture
Refers to fluid mixture
out Recombiner outlet
02 Oxygen component
0 Reference
Rainout

Referees to droplet rainout model
ref Reference
s Structure surface
saturation or sat
Saturation condition for structural surface or mixture temperature

t Turbulent and total or apparent

total Total heat flux to structures, convection plus phase change
w Wall-temperature distribution in structures

X Vector component in x- or r-coordinate direction

y Vector component in y- or 8-coordinate direction

z Vector component in z-coordinate direction

Species

Related to the turbulence coefficients
Related to the turbulence coefficients
Related to the turbulence coefficients

T E A ® Q

Related to the mass conservation equations
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1 Introduction

1.1 Background

Combustion in nuclear facility buildings, such as light-water reactor (LWR) containments, can cause
high pressures or temperatures that can, in turn, damage the containment or affect important
safety-related equipment. After the Three Mile Island accident (a severe, or degraded-core,
accident), it was found that significant quantities of hydrogen had been generated from the chemical
reaction between the zirconium cladding (the thin protective covering of the nuclear fuel) and the
water vapor. When released into the containment, this hydrogen burned by one or more combustion
modes and threatened the containment integrity, internal structures, and safety-related equipment.

Modeling the geometries of containment buildings is difficult. One example is the Heiss Dampf
Reactor (HDR) containment near Frankfurt, West Germany, which is shown in Figure 1-1. The HDR
building is 60 m high and 20 m in diameter. It contains two stairwells, an elevator shaft, several
vertical open hatchways, and ~70 rooms. This particular containment has roughly 11,300 m3 of free
volume, or approximately one-sixth to one-eight the free volume of a typical United States (US) or
German Convoi-type pressurized water reactor (PWR) containment.

The German Nuclear Utility Industry, Siemens, the US Department of Energy (DOE), and US Nuclear
Regulatory Commission (NRC) are supporting research at the Forschungszentrum Karlsruhe and Los
Alamos National Laboratory to develop GASFLOW to evaluate design basis and beyond design basis
severe accidents in nuclear reactor containments as well as in other nuclear facility buildings and the
consequences on safety-related equipment and the containment structure itself. Current research
coordinates model development with validation using experiments performed in Germany, the
European Communities, and the US. We will describe the Los Alamos Implicit Continuous-Fluid
Eulerian Arbitrary-Lagrangian-Eularian numerical methodology (ICE'd ALE) field-model approach in
the report.

1.2 Computational Methodology

This report documents the theoretical and computational aspects of GASFLOW-MPI, a scalable finite-
volume computer code for solving transient, three-dimensional (3D), compressible, Navier-Stokes
equations for multiple gas species.

The code is designed to be a best-estimate tool for predicting the transport, mixing, and combustion
of hydrogen gas in nuclear reactor containments and other nuclear facility buildings and structures.
GASFLOW-MPI is based on the governing physical laws and modeling assumptions that are described
in Chapter 0. In Chapter 3, we describe the linearized ICE'd ALE that provides the basis of the com-
putational method used to integrate the equations in time and space. Briefly, each computational
step is divided into three phases.
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(1) An explicit Lagrangian phase computes changes in material volume, density, velocity, and inter-
nal energy caused by pressure gradients, combustion ignited with a generalized ignitor model,
condensation and vaporization within the assumptions of the two-phase homogeneous equili-
brium model, a structural two-phase heat transfer, catalytic recombiner hydrogen mitigation,
structural heat conduction, and turbulence.

(2) An implicit Lagrangian phase calculates pressures at the advanced time level by solving simul-
taneously for pressure, density, velocities, and internal energy.

(3) A rezone phase computes the mass, momentum, and energy exchange between Eulerian cells
that has occurred in the Lagrangian phase and repartitions or rezones these variables onto the
original mesh.

The computational time step is completed with the evaluation of turbulence quantities, such as
kinetic energy, dissipation and viscosity, which are calculated explicitly; the discrete particle trans-
port, deposition, and entrainment governing equations are solved independently of the fluid flow
equations; and a global analysis of the stability time step is performed at the end of each time step.

Figure 1-1 Cross section of the Heiss Dampf Reactor near Frankfurt, Germany



2 Mathematical and Physical Models

The equations of motion for a compressible fluid are derived from the physical laws that require the
conservation of mass, momentum, and energy. The equations of change, which are presented in this
section, relate the dynamics of the fluid to temporal and spatial influences such as viscous stress,
body force, turbulence, structural resistance, heat transfer, phase change, and combustion. This
includes relations for the transport of individual gas species. An equation of state is included to relate
pressure (p) to density (p), mixture temperature (T), and volume fraction occupied by the gaseous
mixture (6 ).

As suggested by the “ALE” name, GASFLOW-MPI uses both the Lagrangian and Eulerian method-
logies. The Lagrangian (or material) specification considers specific elements of matter and describes
the motion as functions of space (x) and time (t). This approach is useful because the conservation
laws refer to specific parcels of matter. However, the Eulerian (or spatial) viewpoint is often more
convenient because it describes flow in terms of volumes fixed in space. Because the computational
method used to model the flow is facilitated by dividing the problem domain into parallelepiped
Eulerian volumes (cells) in either Cartesian or cylindrical geometry, it is natural to present the
continuous equations in integral form (Ref. 2-1. and Ref. 2-2). This makes it easier to see how the
integration of continuous volume and surface integrals presented in this section is approximated by
the discrete or finite-volume equations given in Chapter 1.

2.1 The Generalized Conservation Equation

The conservation of any arbitrary extensive variable (for example, mass, momentum, or energy) is

P
2 (@ay =[S.av
&tl ! o (2-1)

where @(x, t) is any continuously summable function, V is a material volume, and S is a source term.
We use the Reynolds Transport Theorem, which may be expressed as

j@dthq)(u-A)dSqu,dV
Vv 0_)t S Vv , (2_2)

where u(x, t) is the fluid velocity and A and dS are the outward normal fractional area vector and
differential area, respectively, of material surface S bounding V. We introduce the fractional area
methodology of the FAVOR (Fractional Area Volume Obstacle Representation) algorithm due to Hirt
(Ref. 2-3) to more easily and accurately model variable flow areas involved in complex geometrical
representations. Applying the transport theorem to an arbitrary control volume v* (Ref. 2-2) (not
necessarily a material volume) enclosed by surface S* gives

J D
Eid)dV=iEdV+§CD(b-A)dS+J:S¢dV, .
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and add in Equation (2-3) where b is the velocity of the contour surface S'. If V* is chosen to be
instantaneously coincident with V, Equations (2-2) and (2-3) may be combined to give

9 [ @av =p@(b—u)-AdS+ [ S,dv, (2-4)
ot ;. 5 v

the integral form of the generalized conservation law. This is the basic kinematic relation used in the
following three subsections and states that the time-rate-of-change of F in an arbitrary control
volume V* (left side) is equal to the inflow of F through the boundary plus the source term (right
side). The term b — u is the relative velocity between the control surface and the fluid. When b = u,
we recover the Lagrangian form [Equation (2-1)]. For a control volume that is fixed with respect to
the coordinate axes, b = 0 and we recover the Eulerian form

ijd)dr/:—g&b(u-A)derqu,dV, (2-5)
ot ;. - b

or
j%dV:—gﬁ(u.A)d&jSﬂ,dV, (2-6)
I g i

2.2 The Mass Conservation Equations

The mixture mass conservation equation follows directly from Equation (2-4) by letting @ = p

%lpde(fp(b—u)-AdS+lSpdV, (2-7)

where p is the mixture density or the sum of the macroscopic densities for each individual species; u
is the mass-average velocity vector; and Sp is the mass source or sink due to condensation,
vaporization, and liquid droplet depletion (rainout) per unit volume and time. Similarly, setting
@ = 1in Equation (2-4) gives an expression for the change in volume:

P%
2 —b-AdS ]
> qSS , (2-8)

The transport equation for individual species is given by

% [PV =dp, (b—u)-AdS—(J,-A)dS+[S, a7, (2-9)
v s S 4

where o denotes the gas species, p, is the mass per unit volume (macroscopic density), J , - A is the

mass diffusion flux vector with Cartesian geometry components, (AXJX,Q,A},J_},,,Z,AZJ:),I) and the source
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or sink term, S

p.o’

represents the species mass created or destroyed by chemical reactions and two-

phase change dynamics of the liquid and vapor water components.

The diffusion of species a is represented by the second integral on the right side of Equation (2-9),

which is often reported in the literature (Ref. 2-4 and Ref. 2-5) as

9 [ Pa
ax\ p )

~A,pD

oa—>mix

_Apra—NniX

%

d

(&
yip

|

(2-10)

a(p
—ApD, . Z|Fa
Zp o—mix &Z(pj

for Cartesian geometry, where D, nmix is the mass diffusion coefficient of species o into the gaseous
mixture. The reader is referred to Sections 2.5.1.2 (Transport Properties) and 2.7.4 (Turbulence
Effects on the Transport Coefficients) to see what models are used to compute molecular mass
diffusion coefficients of the binary coefficients and what effects turbulence has on these coefficients,
respectively.

It is essential that the diffusion fluxes identically sum to zero, so Equation (2-10) is

>3, A=) J,=0

(2-11)

As pointed out by Ramshaw (Ref. 2-6), the condition of Equation (2-11) is only exact for Equation
(2-11) when binary mixtures are involved or for multicomponent mixtures when all the diffusion
coefficients are equal. This is in general not the case (see Ref. 2-6), so a correction to Equation (2-10)
is incorporated that properly reflects the physical content of Equation (2-10) while providing full
symmetry in all species:

I d(c cp, d (¢s
Alem D L\l | | LNy p, LB
X _C o~ a—mix ax_( Cj [ p j; B —mix &x( c jj|
I d(c cp, d (¢
\eM D, . —| % |- < MDD, —| 1|,
. _C o~ a—mix &y(cj [ p j; B f—mix &y( Cj:|
i d(c cp, d[¢s
-A|\cM D, . —| % |- —=% M/D, . —|—+—
z_C o~ a—mix &Z( CJ [ p j; B p—omix 0—)2[ c ]:|

When Equation (2-9) is summed over all species, the result is the mixture mass equation [Equation
(2-7)].

(2-12)




2 Mathematical and Physical Models

2.3 The Momentum Transport Equations

The mixture-momentum conservation equations are given by

%jpude@Spu(b—u)AdS
vV S

~p pdS+| pgav —(z- A)dS (D, - A)ds+ 8, a7, (2-13)

S N

where p is the pressure, Tis the viscous stress tensor, g is the gravitational vector, D, is the internal
structure drag tensor, and S,, any momentum sources such as fans. The right-side integrals
represent, respectively, the flux of momentum through the control surface; the sum of pressure
gradient, gravity, and viscous forces on the control volume; fluid drag forces acting on structural
surfaces; and any additional momentum sources.

The Cartesian and cylindrical components of T for a Newtonian fluid are given in Table 2-1 and
Table 2-2, respectively. The components of u are (u, v, w) in the x-, y-, and z-directions (Cartesian
coordinates) or r-, 6-, and z-directions (cylindrical coordinates); subscripts on T indicate the surface
normal direction and the direction of the stress component.

The reader is referred to Sections 2.5.1.2 (Transport Properties) and 2.7.4 (Turbulence Effects on the
Transport Coefficients) to see how the mixture viscosity is computed and what effects turbulence has
on the viscosity, respectively. Here we have used the second viscosity coefficient, A = —21/3, which is
equivalent to assuming the bulk viscosity to be zero.

Table 2-1 Stress tensor components for a Newtonian fluid (Cartesian coordinates)

du 2 ou av_

T, /«{ o 3(V “)} T, ,u{ay+ax_

v 2 ou ow |

=—ul 2% (v S
% !{ dy 3( u)} g ﬂ[az i ox

o Tow 2, _ fov ow]

=7 ;{2 dz 3 v u)} b _—,u{ngg_

Table 2-2 Stress tensor components for a Newtonian fluid (cylindrical coordinates)

ou 2 o0(v) 1ou
=—u|l2—-=(V- =—U|r—|—|+——
fr ,u{ or 3( u)} e 'u[rar(rj+r80}
lov u) 2 dv 1ow
=—u| 2| ——+—|—-=(V- =—U| —+——
oo 'L{ (r 8¢9+rj 3( u)} Ceo ‘{afrae}
ow 2 ou ow
—_yl 22 _Z(y. . LA
E ,u[ 0z 3( u)} b ﬂ[az-i_ar:l
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2.4 The Internal Energy Transport Equation

The equation of change for total internal energy is

d
D[ ptav = pI(b—u)- AdS
dtlp fp( u)

;
‘:” }’V—g)(q'A)dS+ [sar, (2-14)
N 14

where I is the mixture specific internal energy, and S, is the energy source or sink per unit volume and
time as a result of combustion, phase change, and energy exchange with internal structures, floors,

—ip(u'A)dS—f{ga

N

ceilings, and walls. Because phase-change effects can dominate the p_u work term, we must account
for the remaining gas in a computational cell expanding or compressing into the volume change
associated with the phase change process. We account for this effect by using the ideal gas equation
of state to arrive at

P,

V 0—)t honSp,hzo ’

where R,, is the gas constant for steam, T is the gas mixture temperature, V.. is the steam
volume, and S o is the sum of all steam mass per unit time lost or gained due to phase change in

the fluid mixture and to mass transfer on all surfaces internal to or bounding the computational cell
V. Note that S o is the same mass source per unit volume and time as Equation (2-7), i.e., the

water vapor component conservation equation.

The energy flux vector q is given by
_Ax ¢ __zha xa:|’
q-A= —Ay Zha W}, , (2-15)

—Az_ LSt

where ¢, is the molecular conductivity and h, is the enthalpy for species O The reader is referred to
Sections 2.5.1.2 (Transport Properties) and 2.7.4 (Turbulence Effects on the Transport Coefficients) to
see what models are used to compute the mixture conductivity and what effects turbulence has on
these coefficients, respectively.
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2.5 Constitutive Relationships

2.5.1 Thermochemical and Transport Properties

GASFLOW-MPI has incorporated a library of 25 species, which are listed in Table 2-3. Two of them are
gas mixtures: (1) air, a mixture of 79% nitrogen and 21% oxygen and (2) Ig, a “light-gas” consisting of
a mixture of 15% hydrogen and 85% helium. Some of the species are not stable molecules, for
example, h, o, and oh, but they are included because of the possibility of implementing detailed
hydrogen-oxygen chemical kinetics mechanisms which require intermediate reaction species.

Two of the species are not gases: (1) h,0,, which is the water liquid component required for the two-

phase homogenous equilibrium model and (2) ¢, which is solid carbon or soot being produced in the
event of hydrocarbon combustion.

2.5.1.1 Internal Energy and Specific Heats

The specific internal energy of species Qlis related to the temperature by

L= (Lronee) + j (C,) dr, (2-16)

Trq/er@rme

where we have arbitrarily defined our reference temperature 298.15 K and set the reference internal
energy equal to zero. (Note that in future versions of GASFLOW-MPI we will not have this limitation,
but for the present version, we include the internal energy in this way).

One can approximate the specific heat in Equation (2-16) by polynomials of various degrees. In fact,
Gordon and McBride (Ref. 2-8), basing their approximations on the JANAF Tables (Ref. 2-9), give
specific heats at constant pressure as a function of temperature in the form of least squares
coefficients as follows:

Table 2-3 Gas properties at temperature equaling 298.15 K [extracted from the JANAF (Ref. 2-7) Tables]

Molecular Weight Gas Constant Specific Heat Enthalpy of Formation
Species M, (g/mole) ma(l/g—K) C,. U/gK) h;,a (J/g)
ha 2.01588 4.12416 10.179479 0.000
02 31.99880 0.25983 0.658068 0.000
n2 28.01340 0.29680 0.742878 0.000
air 28.85033 0.28819 0.723125 0.000
he 4.00260 2.07705 3.115522 0.000
lg 3.70459 2.24411 3.690719 0.000
hoo 18.01528 0.46150 1.402215 -13422.869
oh 17.00734 0.48886 1.274294 2320.372
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h 1.00794 8.24856 12.373200 216262.790
o) 15.99940 0.51964 0.849832 15574.679
hoy 33.00674 0.25189 0.805014 633.786
h,0, 34.01468 0.24442 1.023102 -4001.221
nhs 17.03052 0.48820 1.603728 —2695.058
nh; 16.02258 0.51891 1.576402 10471.333
nh 15.01464 0.55374 1.387406 22571.525
hno 31.01404 0.26807 0.848757 3210.575
n,0 44.01280 0.18889 0.688477 1864.055
no 30.00610 0.27707 0.717481 3008.888
chy 16.04276 0.51825 1.703236 -4667.000
co 28.01040 0.29683 0.743551 —3946.416
co, 44.00980 0.18892 0.654727 —8941.658
ar 39.94800 0.20813 0.312192 0.000
xe 131.29 0.06333 0.094993 0.000
h,ol 18.01528 0.00000 4.179300 —-15865.897
c 12.01100 0.00000 0.017708 0.000
L =a+a,T+aTl*+a,Tl +aT* (2-17)
9»{ 1 2 3 4 5 :

We have based the GASFLOW-MPI approximations for the specific heats at constant volume upon
polynomials of up to the third degree. When Equation (2-16) is then integrated for the species’
specific internal energy, we approximate the resulting fifth-degree polynomial with a polynomial of
up to the fourth degree,

I,=a,+b,T+c, T’ +d, T’ +e,T", (2-18)

which allows analytically inverting this function for the temperature field when the internal energy
and species’ densities are known. Therefore, GASFLOW-MPI provides the possibility of internal
energy as a function of temperature representation from linear to the fourth-degree polynomial
shown in Equation (2-18). It must be stated that the selection of accuracy, i.e., the degree of the
polynomial, is related to the computer time to invert Equation (2-18), and the user will be reminded
of this fact in the GASFLOW-MPI User’s Manual (NUREG/CR-6570, Vol. 2).

The total specific internal energy then is given by

I= Zxala = Zxaaa +TZxaba +Tzzxaca +T3Zxada +T4Zxaea =

Zxaaa +T{Z x,b, ‘H{Z%C(z +T(Z x,d, +TZ xaeaﬂ} , (2-19)
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where x, is the mass fraction for species O In order that homogeneous equilibrium model
thermodynamics be correct, the expression for the liquid water specific internal energy is derived
such that the difference between the vapor and liquid specific internal energies is matched by the
same difference between the vapor and liquid saturation curve from the steam tables (Ref. 2-10).

We recommend, for consistency between Equations (2-17) and (2-18), that each species’ specific
heat be obtained by differentiating Equation (2-18) with respect to temperature, but there are other
possibilities that will be described in the GASFLOW-MPI User’s Manual (NUREG/CR-6570, Vol. 2).

The interrelationships between enthalpy, internal energy, and specific heats are given by the usual
thermodynamic relations

1,=h,—R]T
Cv,(z = Cp,a _Ra

2.5.1.2 Transport Properties

The molecular transport properties, i.e., heat conductivities, dynamic viscosities, and binary diffusion
coefficients, for all gaseous species are included in the GASFLOW-MPI properties library. We have
used the data base of the CHEMKIN (Ref. 2-11) code to provide the GASFLOW-MPI relationships. We
use the CHEMKIN model

In(¥)=a,+a,In(T)+a,In(T) +a,In(T) +a,In(T)’ (2-20)

for the desired transport property ¥ , as well as perhaps less accurate, but simplified polynomials
discussed in the GASFLOW-MPI User’s Manual (NUREG/CR-6570, Vol. 2).

When the individual transport properties are determined, the mixture values can also be computed.
For the mixture thermal conductivity, the relationship of Mathur et al. (Ref. 2-12), is used:

1| & 1
¢=5 DY+ (2-21)
ZR AT
o=1

The modified semi-empirical formulas of Wilke (Ref. 2-13), modified by Bird et al. (Ref. 2-4), can be
used to compute the mixture viscosity as

N
Y
U= Za—'ua , (2-22)

where

10
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_L 1 1P
2 2( M n
c1>aﬁ=L 1+ M | 7| A (—/’j . (2-23)
\/g M/i lu/i Ma

We determine the diffusion coefficient of species o into the mixture by the following well-known
relationship (Ref. 2-14):

2.7
== (2-24)

Da—)mixture -
> Y, /D,
o

2.5.2 Equation of State

The pressure field, p, is obtained by applying the Gibbs-Dalton law of partial pressures to an ideal gas
mixture in the available gas volume (void volume):

a#hyol a#hyol
Ty Rp, pPT Y R.x,
=« =« , (2-25)
P 0 0

where R, is the gas constant for species o. The volume fraction, 6, of the liquid water phase is
computed from

p hyol

thermo 4

p hyol

0=1- (2-26)

thermo

where the thermodynamic liquid water density, Phot s is usually approximated as a constant value

of 1 g/cm3.

2.6 Heat-Transfer and Phase-Change Relationships

2.6.1 Gas-Structure Heat Transfer

The convective heat exchange between the gas mixture and a solid boundary (referred to generically
as a wall, but it may in fact be, in addition, a ceiling, floor, or internal structure) is given by

J‘Sl,convectiondV = ZhSAS (T; _T) ’ (2'27)
v s

where T; is the structure surface temperature, T is the gas temperature, hg is the heat-transfer
coefficient between the gas mixture and the internal structures, and A; is the cell face area for walls

11
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or the exposed area for internal structures in a computational cell. The thermal energy delivered to
the wall surface, gs convection, has the opposite sign of the gas mixture, so the thermal energy becomes

=hA(T-T). (2-28)

qs ,convection

The thermal boundary layer is taken into account by using a modified Reynolds analogy formulation
(Ref. 2-15), which is simplified and combined with a Chilton-Colburn empirical analogy (Ref. 2-4)
between the momentum and thermal boundary layers to obtain the heat-transfer coefficient:

Ts
u

(4

2
h=rC, -Pr. (2-29)

See Section 2.6.6 (Wall Shear Stress) below for a more detailed discussion of this heat-transfer
coefficient.

The rates of heat transfer and condensation increase when the mass fraction of steam becomes a
relatively large fraction of the mass of the gas mixture. As the mass-transfer rate increases, the
thermal and concentration boundary layers become thinner because of the suction effect of the
condensation process. This reduction in the boundary layer thickness further increases the
temperature and concentration gradients near the boundary and consequently increases the heat-
and mass-transfer coefficients. The opposite effect occurs at a surface where vaporization of a liquid
film is taking place; hence, the heat- and mass-transfer coefficients decrease during these conditions.
Bird, Stewart, and Lightfoot (Ref. 2-4, Section 2.5.1) develop correction factors based on film theory
that can be used to determine the increase in the heat- and mass-transfer coefficients. The corrected
heat-transfer coefficient then becomes

h=0,h (2-30)
where
_ 9
0, = e%T_l (2-31)

and the rate factor, ¢ T, is given by

-m C
s p,ho
= PR 2-32
) 3

where m; is the wall condensation or vaporization rate, equal to one of the surface contributions
involving the term J' Sphzng in Equation (2-9), and C,, .., is the specific heat of the water vapor at
14 ! 2102

constant pressure. Note that in the presence of condensing water vapor, ¢[ is negative which
*
increases the correction factor, Q) , and the heat-transfer coefficient, hs ; the opposite effect occurs

during evaporation of a surface film when ¢r is positive. The internal structure heat-transfer
coefficient is computed in an analogous fashion.

12
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2.6.2 Condensation and Vaporization

Phase change between the gas and structures can occur on any structural surface (walls, ceiling,
floors, and internal structures) can occur under one of these two conditions: (1) the surface
temperature is less than the saturation temperature of the water vapor next to the surface
(condensation), or (2) condensate exists on any given structural surface and the condensate surface
(i.e., the surface temperature as well) is greater than the saturation temperature of the gas mixture
adjacent to the surface (vaporization).

The phase-change rate on any structural surface is described as
ms = hd A? (ph20 - ps,saturatian ) ’ (2_33)

where hd is the corrected mass-transfer coefficient, ,0h20 is the water vapor density in the gas

mixture, and 0O is the saturation water vapor density at the structural surface conditions. hd

s, saturation

is the corrected mass-transfer coefficient. Py is the water vapor density in the gas mixture.

The saturation density in the above relationship is computed from the saturation pressure and the
structural surface temperature by

— p s, saturation (]—; )
R T

o s

P saaion | Too P saations (T.) ] , (2-34)

where the saturation pressure as a function of temperature is evaluated from the integrated
Clausius-Clapeyron equation for the water component saturation curve in the form

—ate T

P ()=10°¢ “7 | (2-35)

and the coefficients are defined

¢, = 2258.0
c, = 6.05963 . (2-36)
¢, = 0.4579742

The mass-transfer coefficient, hy, then can be expressed in terms of the heat-transfer coefficient, hs
(Ref. 2-16), as

h Sc?
hy=—2C (2-37)

'OCp Pr_§

when we make use of a Chilton-Colburn empirical analogy between heat and mass transfer (Ref. 2-4).

Following similar ideas as with the heat-transfer coefficient for relatively large steam mass fractions,
we correct the mass-transfer coefficient by

13



2 Mathematical and Physical Models

h,=0©,h, , (2-38)
where
_ log(R+1) (2-39)
" R

and the flex ratio R is expressed as

R= ns,hzo - nhzo

_— (2-40)

s,ho

where 71, , is the steam mole fraction at the wall, and 7, , is the steam mole fraction in the gas

mixture.

For the situation where “dryout” of a surface may occur, i.e., the liquid film totally evaporates leaving
the surface dry, a better formulation of the surface mass transfer equation (2-33) is

thermo
5As p hyol

m, =max| —
2At

APy = Prsataion) | (2-41)

where § is the film thickness and Af is the time increment of the computational time step in
seconds. Note the sign of Equation (2-41): positive indicates condensation, whereas negative means
vaporization of the liquid film, where, at the point of near dryout, we allow only half of the available
film to evaporate in a time step.

The total mass source or sink term due to phase change involving structural surfaces in Equations
(2-7) and (2-9) for all surfaces then becomes

thermo
514 hyol

AV ==y max| ———"— A (P, = P suraion) |+ (242)

j Sp,hzo,condensation/ vaporization
14

2At

The amount of energy resulting from phase change and the structural wall surface is then

_SAp
_ = ] T ,
2Ar (%)
qs,condensatinn/vaporization =max h; As (phz() - ps,mturation ) Ihzo (T; ) > ’ (2_43)

h:; A.s' (phzo = P saturation ) Ihzo (T)

where Ihzo (T) is the specific internal energy of the water vapor in the computational cell adjacent

to the wall with volume V. and ]hzo (Z) is the specific internal energy of the liquid water film that is

14
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on the surface. (Note that we assume the film temperature is equal to the surface temperature of
the wall.) In this case, the energy lost or gained in the gas mixture is

oA
R . da— T .
2At hyo ( s )
I S[,condensation/vaporizationdV = _Z max h; As (phza - Iow,saturation )Ihzo (TZV ) ’ ' (2-44)
v s
hd As (phzo - ps,saturation )Ihzo (T)

2.6.3 Phase Change in the Fluid Mixture -
The Homogeneous Equilibrium Model (HEM)

The nonequilibrium phase exchange function between the vapor and liquid phases is presented here
as a relaxation type function. The mass exchange between the phases, shown as a source and sink
term in Equation (2-9), is given for the water vapor phase by

IS p,h2o,ﬂuiddV = Vc[psatumtian (T, Psaturation) — Pho ] (2-45)
v

and for the water liquid phase as

J' Sp,h201 Jfluid dV = _Vc[pvatumtian (T > P satumtion) - p o :| , (2'46)
v

where the saturation pressure is again given by

—c+c, T

(T)=10°-¢ 7 (2-47)

p saturation
and the saturation density is then computed by

psatumnon( )

2-48
R, T (2-48)

psaturation (T’ psatumtton)

The relaxation coefficient C, which has units of inverse time, is a user input value [see cbulkrlx in the
GASFLOW-MPI User’s Manual (NUREG/CR-6570, Vol. 2)], but GASFLOW-MPI checks to see if this
input value produces an acceptable stable solution for the current time step.

The work due to the production or loss of steam on the internal energy control volume in Equation
(2-12) can now be computed from

S - S, dvV =
L/ > }d thOT v haoT.l o dV

15
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R T |:_[ p.ho, condenvazzon/vaporlzallondV + J. Sp7h20,ﬂuidde| =
vV

thermo

54
Zma{ pAh;"l A (P, —p.,,sm,-on)}

+VC I: Pisaturation (T > Psaturation ) —P hyo ]

R, T (2-49)

hyo

2.6.4 Droplet Depletion or Droplet “Rainout”

When the nonequilibrium phase exchange function between the vapor and liquid phases is active,
conditions may exist that could produce large amounts of liquid water (water droplets). In these
cases, we would like to have the option of depleting the liquid water mass in the fluid mixture when
a certain droplet loading has occurred. This can be done with a relaxation type function, where the
liquid droplet mass, when the liquid water exceeds a certain loading, relaxes toward the accepted
loading value. The loss or sink term to account for this event in Equation (2-9) is given for the liquid
phase by

JS ot misture®V = VC ot misture - TN [O, (phzol,max = Phyol )} : (2-50)

Vv

The relaxation coefficient, Chzol mixure » Which has units of inverse time, and the maximum loading

density, phzol’max , are user input values [see crelax and rholigmx, respectively, in the GASFLOW-MPI

User’s Manual (NUREG/CR-6570, Vol. 2)], but GASFLOW-MPI checks to see if these input values
produce an acceptable stable solution for the current time step.

The loss of droplets on the internal energy control volume in Equation (2-12) can now be computed
from

JS[,rail1outh VG, ot misture min|:o’(ph20[,max phzol):| hzo/(T ) , (2-51)

Vv

2.6.5 Structural Heat Conduction

For every computational cell side interfacing with a wall, ceiling, or floor and any defined distributed
heat sinks, the one-dimensional transient heat-conduction equation

7z j gdv = k—de (2-52)

with the wall boundary condition from Equations (2-28) and (2-43)

16
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=—kA 0—)Tw (2‘53)

qs,convection +QS,condensatt’on/vaporization K &x

X=s

is solved from the temperature distribution, Ty,(x,t), and the wall surface temperature, T;. The term
k in Equations (2-52) and (2-53) is the thermal conductivity of the structure. On the left side of
Equation (2-53) the two terms represent energy delivered to a wall section by convection and phase
change, respectively.

2.6.6 Wall Shear Stress

The heat-transfer coefficient expression [Equation (2-29)] contains the computational cell-centered
average velocity, u., a vector with the two wall tangential velocity components, and the wall shear

stress, 7,, which is related to the fluid density and the wall shear speed, u-, by

T =pu; . (2-54)

We are unable to resolve turbulent boundary layers near solid walls with any practical computing
mesh, so we match our solution near solid boundaries or internal structures with the turbulent law-
of-the-wall (Ref. 2-17):

u

c

—Aln (y—”j +B . (2-55)
1%

U
This expression requires an iterative solution for U.. We find that it is more convenient and almost as
accurate to use an approximation obtained by replacing U. in the argument of the logarithm in
Equation (2-55) by the one-seventh-power law (Ref. 2-18). The one-seventh-power law may be
rearranged to give

7
8
ycu* :Ols(yc uc j , (2_56)
14 | 4
which yields
uC yC uC
—=2.19In| =—= [+0.76 (2-57)
U, 14

when substituted into Equation (2-55) and when A=2.5 and B=5.5. It is now straightforward to find
the shear speed, U., where y. is the distance from the wall to the cell-centered average tangential

speed, |u_|, and v is the gas mixture molecular kinematic viscosity.

The local Reynolds number, (y. |u,|/v), may be small, indicating that the cell center lies in the laminar

sub layer and the law-of-the-wall formulation is not valid. In this case, Equation (2-57) is replaced by
the corresponding laminar formula:
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1
uc uc

- =(y7]2 . (2-58)

The transition between Equations (2-57) and (2-58) is made at the value where they predict the same

wall surface shear speed, U., which is (y. /v) = 130.7. Therefore, U. is calculated by Equation

uC

(2-57) when (y,

/v) _130.7 and by Equation (2-58) when (y.

u, u_[/v) < 130.7. In the laminar case,
the wall heat-transfer coefficient [Equation (2-29)] reduces to h, = pv C, /'y, which results in a

simple difference approximation to the laminar heat flux for a molecular Prandtl number of unity
when substituted into Equation (2-28).

Therefore, the uncorrected heat-transfer coefficient calculated from Equation (2-29) becomes

vpC

h’&<13o_7
ve v

= C |u 2 -
h el _pr 2, 2e %l > 1307 (2-59)
ALY v
2.191n| 2Bl 110,76
|4

2.7 Turbulence Modeling

Most flows of engineering interest, including the flows of concern here, are turbulent. Turbulence
may be described qualitatively as the superposition of an irregular fluctuating motion on the mean
flow, which, for an arbitrary variable y, may be expressed as

y(x.0=Fx)+y (%0 (2-60)

where Wis the instantaneous value, l//' is the fluctuating (turbulent) component, and ¥/ is the mean
value defined as time average

ty+t

P =lim- [ yxndr (-61)

In practice, t is taken to be much larger than the characteristic times associated with 1//'. Formally,
this time Reynolds averaging is only appropriate for stationary turbulence (Ref. 2-19). In practice,
virtually all the problems involving turbulent flows that we are interested in are classified as
inhomogenous turbulent flows. Therefore, in order to make use of the Reynolds-averaged equations,
we assume nearly stationary or quasi-stationary turbulent conditions, which are discussed below.

When the instantaneous values of p, p, 1, and u; (u; = u, v, w for i = 1, 2, 3) are substituted into the
mixture-momentum equations [Equation (2-13)], the resulting equations contain additional products
of terms involving u;, @, p’, and p. The terms -puguj'-, called the Reynolds stresses, are the focus of
attention in the turbulent equations. [Other correlations such as lﬂm are discussed, for example,
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by Cebeci and Smith (Ref. 2-20, Chapter 0).] Defining -ﬁu{uj’ as the components of the turbulent
stress tensor 7; and combining them with the laminar viscous stress, T, the total stress tensor may be
written as

T=T+1,. (2-62)

The effect of 7 in most flows is a large increase in the apparent (turbulent) resistance of the flow; in
other words, 7 results in increased momentum transport. With the addition of the unknown
turbulence quantities, Equations (2-9), (2-13) and ( 2-14) no longer form a closed set and modeling 7;
becomes the major problem in simulating turbulent motion.

To understand the general approach to modeling 7, it is useful to consider two observations about
the eddies that characterize the turbulent motion. First, the largest eddies (whose size is determined
by the geometry of the flow) carry most of the turbulent kinetic energy. The smallest eddies, with
sizes determined by molecular viscosity, dissipate turbulent kinetic energy. The qualitative dynamics
of the eddies and their interaction with the mean flow are described by Rodi (Ref. 2-21).

The large eddies interact with mean flow (because the scales of both are similar), thereby extracting
kinetic energy from the mean motion and feeding it into the large-scale turbulent motion. The eddies
can be considered as vortex elements which stretch each other. Due to this vortex stretching, which
is an essential feature of the turbulent motion, the energy is passed on to smaller and smaller eddies
until viscous forces become active and dissipate the energy. This process is called energy cascade.
The rate at which mean-flow energy is fed into the turbulent motion is determined by the large-scale
motion; only this amount of energy can be passed on to smaller scales and finally be dissipated.
Therefore, the rate of energy dissipated is also determined by the large-scale motion although
dissipation is a viscous process and takes place at the smallest eddies. It is important to note that
viscosity does not determine the amount of dissipated energy but only the scale at which dissipation
takes place. The smaller the effective viscosity (i.e., the larger the Reynolds number), the smaller are
the dissipative eddies relative to the large-scale eddies. When buoyancy forces are present, there is
also an exchange between potential energy of the mean flow and turbulent kinetic energy, which can
go in both directions but is also effected through the large-scale motion.

The preceding observations are the basis for modeling the effects of turbulence on the mean flow,
specifically in choosing the relevant velocity and length scales that characterize the local state of
turbulence. Postulating an analogy between laminar stresses and Reynolds stresses (Boussinesq’s
idea), that is,

t) =—pild = (2-63)
Iy J
t ox,

the turbulence closure problem is seen as one of finding a turbulent or eddy viscosity lLt. The effects
of turbulence on the mean flow come down to modeling Ltas a function of fluid properties, the
dynamics of the flow, and the geometry. The two turbulence models used in GASFLOW-MPI,
algebraic and «-g, are, respectively, zero- and two-transport-equation models that predict the
velocity and length scales that are used to compute Wt. The models are described in order of
increasing complexity, number of equations, and computational effort and, as a rule, in order of
accuracy.
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Turbulence effects in the vicinity of a wall are modeled with the law-of-the-wall formulation (Section
2.6.5).

2.7.1 Algebraic Model

For a turbulent velocity scale, Prandtl suggested that the square root of the mean turbulent kinetic
energy K'is a natural choice, where

1/2
(= == &
Kzz(u2+v2+w2] (2-64)

and a length scale / characteristic of the size of the energy-carrying eddies. Thus,

u,=C,px"%l (2-65)

where C,, is a constant (typically 0.05). It is often estimated that 10% or less of the mean flow energy
is contained in the turbulent kinetic energy, so

K2 =[01(1/2)u*]" . (2-66)

For containment studies, the length scale usually is set equal to 0.25~0.5 m.

2.7.2 «-€ Model

The Navier-Stokes equations may be manipulated to produce exact expressions for x; the turbulent
kinetic energy, and &, the rate of dissipation of turbulent kinetic energy (Ref. 2-22) defined as

2

gzvzz % . (2-67)

i

The exact xkand £ equations are modeled by a pair of approximate transport equations developed by
Launder and Spalding (Ref. 2-15), with an extension to treat buoyancy effects. Again, &%/2 is the
characteristic velocity scale, and the length scale is proportional to &3/2/&. The transport equation for
the product PK is given by

o

K

%IpKdV = ¢|:,0K‘(b—u)+(£VK‘j+T:Vu]AdS
14 N

+J‘[l[l0{g'VT—p€+K'SK]dV , (2-68)

vV

where O is the coefficient of thermal expansion. The advection, diffusion, and shear production of
turbulent kinetic energy are given by the three terms in the first integral on the right side; the three
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terms in the second integral represent its production by buoyancy, dissipation, and generation from
sources, respectively.

The transport equation for the product of the density and the dissipation of the turbulent kinetic
energy, pg, is

%Jpedl/:@[pg(b—u)+[ﬁV8J+Clir:Vu]AdS
, : o K

&£

2
+J‘{C1%uag-VT—C1p%+8SS}dV. (2-69)
Vv

The terms on the right-hand side have meanings analogous to those in Equation (2-68) The turbulent
viscosity is calculated using the Kolmogorov hypothesis:

_ Cﬂp’(l/z
£

)7 (2-70)

The values of the five new constants (Cy, C;, Cy, Sy, S) appearing in Equations (2-68) and (2-69) and
listed in

Table 2-4 Constants used in the x-¢ turbulence model

G G C/l Oy O¢

1.44 1.92 0.09 1.0 1.3

are those suggested by Launder and Spalding (Ref. 2-15) following an extensive examination of
experimental data for free turbulent flows.

2.7.3 SST k-w Model

warning: The GASFLOW-MPI SST k-w model is under development as time permits.

The shear stress transport (SST) k-w model was originally developed by Menter (Ref. 2-50, Ref. 2-51)
for accurate prediction of aeronautics flows with strong adverse pressure gradients and separation. It
is known that the standard k-w model shows a strong sensitivity to the initial values of w in free-
streams outside of the boundary layer which can be avoided by the k- model. This motivation of the
SST k-w model is to ensure a proper selection of k-€ or k-w zones without user interaction using the
blending functions. The main additional complexity is to calculate the distance to the nearest wall
which is required in the blending functions.
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The standard k and w transport equations are:

9(px)
ot

9(pw)
ot

+V-(,0KU) = V'[(tul +o—klﬂt)VK]+PK +F, - Bpxw (2-71)

+Ve(pU) = Ve (1, +0,11,)V o +§0{1 (P.+P,)-Bpw*
The closure coefficients in Standard k-w model are

o0, =0.5, S =0.09, 0, =05 a=5/9, B=0.075

The standard k- model is converted into a k-w formulation:

9(px)
ot

J(pw)
ot

+Ve(pxU) =V (14, +0,,11,)V & |+ P.+ P, - BpKe

(2-72)

+V.(pwU) = V.[(lul +O-a)21u7)va):|+ 2:00-&)2 lVK.VCO—FQCKZ (PK +chb ) _ﬂzpr
10} K

The closure coefficients in Transformed k- model are

o,=1 ﬂ'z 0.09, o,, =0.856, o, =0.44, ,32 =0.0828

P, is the rate of production of turbulent kinetic energy by the mean flow, namely a transfer of kinetic
energy from the mean flow to the turbulence,

p.= —% ,okV-U—%(V-U)2 + YU VU+(VU)') (2-73)

where u. is the turbulent dynamic viscosity. The turbulence production term due to the buoyancy,
PKbI is

P,=—""gVp (2-74)

PO,
The turbulent Schmidt number o, is 0.7 for full buoyancy model in GASFLOW-MPI.

The equations of standard x-w model are multiplied by blending function F;, the transformed «-¢
equations by a function 1-F; and the corresponding k- and w- equations are added to read:

9(px)
ot

+Ve(pxU) =Vl (4, + 0,314, )V & |+ P+ P, - Bpxe (2-75)

a(apta)) +Ve(paU) =V (4, + 0,1, )V |+(1-F)2po,, lVzoVaHQ()c3 (P.+P,)-B.p&’
w K
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The closure coefficients are calculated by

0, =Foy, +(1_E)O-/c2’
O-(u3 :anl +(1_E)O-w2’
o, =Fo, +(1_E)azn

ﬁs :Eﬁ1+(1_E)ﬁ2

To avoid the over prediction of the eddy viscosity and obtain proper transport behaviour, a limiter is
added to the formulation of the eddy-viscosity to account for the transport of the turbulent shear
stress,

" max(ao,SF,)

F, is a blending function which restricts the limiter to the wall boundary layer, as the underlying
assumptions are not correct for free shear flow. a; is a constant equalling 0.31. S is the modulus of
the mean strain rate tensor.

The blending functions, F; and F,, which are based on the flow variables and on the distance to the
nearest wall are critical to the success of the method. F; is defined

F, =tanh(arg}), (2-77)
with
arg, = min[max{ﬂ\{jy , 5}}02(2)/]’ ‘éPDKO';,; J , (2-78)

where y is the distance to the nearest wall and

CD,, = max[Zp%VK-Va),lOwJ; (2-79)
F, is defined
F, =tanh (arg; ) (2-80)
with
arg, = max[ 2:/; ,502&) (2-81)
Boy yo

GASFLOW-MPI provides the locations of all wall surfaces. For a specific gas cell, the distance from the
cell to all of the no-slip wall surfaces is calculated, and then search the minimum distance. For the
flows without any wall effect (without any wall or all the walls are free-slip), in GASFLOW-MPI SST k-
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w model we assume the distance to the nearest wall is infinite. Then the blending functions F;= F,= 0
which leads to the k- model in k-w formulation.

2.7.4 Turbulence Effects on the Transport Coefficients

By postulating the Boussinesq analogy (Ref. 2-18) between molecular stresses and Reynolds stresses,
we can replace the molecular diffusion coefficients for mass [Equations (2-9) and (2-12)], energy
[Equations (2-14) and (2-16)], and momentum [Equation (2-13), Table 2-1 and Table 2-2] with the
sum of the molecular and turbulent values. The resulting diffusion coefficient is often referred to as
the “total” or “apparent” diffusivity, thermal conductivity, and viscosity, respectively, for the mass,
energy, and momentum diffusion terms. Therefore, we represent these three transport coefficients
in the following way:

D — D =D +D

o—>mix apparent a—mix t

¢ - ¢apparent = ¢ + ¢t (2_82)
lu - luapparent = /u + lut

The turbulent conductivity, ¢,, is

ﬂtcp
=—= (2-83)
4=
and the turbulent mass diffusivity, D;, is
p =t (2-84)

t

pSc

t

which involve the turbulent Prandtl and Schmidt numbers.

The turbulent Prandtl number, Pr;, can usually be assumed constant. Values of 0.90 for shear flows
and 0.50 for free shear layers are usually satisfactory, whereas the turbulent Schmidt number, Sc,, is
normally selected between 0.5 and 1.0. Both the turbulent Prandtl and Schmidt numbers are
properties of the flow field and hence are not material properties.

2.8 Chemical Kinetics

2.8.1 One-Step Global Chemical Kinetics Model

A simple one-step global chemical kinetics model that grossly over simplifies the actual chemical
processes has been used. In the present implementation of this model, the only reaction modeled is

2h,+0,—=2h0 . (2-85)
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In modeling nuclear reactor containment buildings, typical computational cell volumes are 1-2 m3;
they are larger in some cases. We try to keep cell volumes to about 1 m3 in regions where diffusion
flames are expected. For this spatial resolution, there is no attempt to describe flame structure; we
simply represent combustion energy release in a complex geometric containment (Ref. 2-22).
Furthermore, chemical reaction time scales generally are short compared with fluid motions in these
combustion modes, so the many elementary reaction steps and intermediate chemical species can
be neglected in this first approximation.

The concentrations of reactants and products in Equation (2-85) are usually defined by

dc dc dc
Lde, __4¢, _ 19, _ , (2-86)

— +
2 dt dt 2 dt

where rate of reaction or reaction rate, @, is normally proportional to the concentrations of the
reactants raised to small powers that are frequently (but not necessarily) integers.

The species concentrations (moles/cm3) are related to the macroscopic species densities through the
species molecular weight

p,=c,-M, (2-87)

and to the species volume fraction by

y =% (2-88)

a a#hyol
C

o

For the hydrogen-oxygen reaction of Equation (2-85), the reaction rate can be written

o=k(T)cpcs (2-89)
where the rate constant, k, varies with temperature but is independent of concentration. The
exponents of the concentrations in Equation (2-89) are known as the order of the reaction with
respect to each reactant, where the sum of the exponents of the rate equation, i.e., order = p + q, is
called the order of the reaction. There are important points concerning the order of the reaction: (1)
it may be a fraction, (2) it is not necessarily related to the stoichiometric coefficients in the balance
equation, and (3) it must be determined experimentally.

For this version of GASFLOW-MPI, we assume a reaction order 2, i.e., p =1 and g = 1, which leads to
the equation

1 dc,, dc

= = k(T
2 dt dt (T)ene,

(2-90)
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Modeling the rate constant is usually accomplished by implementing a modified Arrhenius law in the
form

E,

k(T)=C,-T" AT (2-91)

where C; is the frequency factor (we use C; = 5x1012 (cm3/mole-s-K) in this model), n is the pre-
exponential temperature exponent (we use n = 0 for this model), R is the universal gas constant, and

E, is the activation energy (we use 7.8x1011 ergs/mole for this model) of Equation (2-85).

Using the method of partial fractions, Equation (2-90) may be analytically integrated to give the
solution

0
1 In 002 ( ) Chz (t) :k(T)’l‘ ] (2_92)

¢, (0)=2¢,,(0) (¢, (0)¢, (1)

Another approach is to write two individual equations for the finite-rate chemical kinetics, first for
the hydrogen concentration

dc,,

dt

=-2k(T)c,c,, (2-93)

and then the oxygen concentration

2=—k(T)c,c, - (2-94)

"0,

The chemical energy of combustion is computed as a source for the energy transport equation
[Equation (2-12)] by

_[Sl,combustiondV = V (jc ) a) ’ (2-95)
V

where C. = 4.778 x 1012 ergs/mole.

In practice, when solving the finite-rate chemical equations [Equations (2-93) and (2-94)] by this
later method, we integrate the fuel [Equation (2-93)] when the fuel-oxidizer mixture is fuel lean and
the oxidizer [Equation (2-94)] when the fuel-oxidizer mixture is fuel rich. From the chemical balance
Equation (2-85), all components of the combustion process are determined.

We have compared the results of this model with the hydrogen combustion experimental data for
the one-fourth-scale test facility (Ref. 2-23 and Ref. 2-24), the HDR E12 series and the Batelle Model
Containment (BMC) HX series (Ref. 2-25), and an oil pool combustion test in the HDR containment
building (Ref. 2-26). We have found good agreement for the general circulation patterns in complex
geometries, concentrations of combustion products, and temperature distributions throughout the
containment buildings. For the oil pool fires in the HDR (Ref. 2-26), the combustion model was
modified to reflect hydrocarbon fuels.
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2.8.2 Combustion Models Based on Reaction Progress Variable

(Warning: These combustion models are currently experimental, and should be used with caution.
More details of the models will be given in the next release.)

The turbulent integral time scale, 7, , and integral length scale, lt , associated with the large eddies

are defined as

/
7, =", (2-96)
u
and

[ =C, , (2-97)

| /2
where u, = EK is the R.M.S. turbulent velocity, & is the turbulent dissipation rate, and
C, =0.37 is the turbulent length scale constant.

The chemical time scale is defined as

S

T, (2-98)

where « is the thermal diffusivity, and S, is the laminar flame speed. The flame thickness, /., is

therefore defined as

a
[, =—. 2-99
s (2-99)

Damkoehler number, Da, is defined as the ratio of the turbulent integral time scale to the chemical
time scale

7
Da=—. (2-100)
TC

The progress of reaction from unburnt to burnt is represented by the scalar variable f(x,t). The
combustion progress variable is usually written

Yy, initia (X’t>_YH2 (X’t)
YHZ,initial (Xat) _YHz,ﬁnal (X’t)

¢(x1)=

(2-101)

with the progress variable being either 1 (in the burnt region) or 0 (in the unburnt region). Y
represents the mass fraction of the species.
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A general “combustion progress variable” transport equation can be written as

ot c

t

i(p§)+V~(pfu)=V-va+5’ jV§}+pS§ . (2-102)

The key to this modeling approach is the source term, pSf. Below we will outline the models for the
source terms in GASFLOW-MPI.

2.8.2.1 Arrhenius Rate Model

This approach directly neglects the effect of turbulence, although indirectly turbulence is accounted
for through turbulent diffusion in Equation (2-96), and assumes that chemistry plays the most
important role in the combustion process. The reaction rate is given as

E
S.=C p(1- _ | :
pS:=C,p( g")exp( RTJ (2-103)

where C; is the frequency factor (we use C; = 5x10™ (cm®/mole-s-K) in this model), and E, is the
activation energy (we use 7.8x10" ergs/mole for this model).

2.8.2.2 Eddy-Break-Up Model

This model is based on phenomenological analysis of turbulent combustion for high turbulent
Reynolds number (Re;>>1) and high Damkoehler number (Da>>1). The chemical kinetic rates are
neglected and the mean reaction rate is mainly controlled by turbulent mixing time, 7,. The source
term is given as

£
PS; Z—ngupzf(l—f)' (2-104)
where C,,,, is a model constant of the order of unity.

2.8.2.3 Eddy Dissipation Model

This model is based on the assumption that combustion occurs at small scales, where mixing occurs
on a molecular level and the rate is assumed to be proportional to the inverse of the turbulent time
scale. It was developed from the original eddy break-up model, the most significant difference being
that the EDM model accounts for the fact that the reaction rate cannot occur unless both fuel and
oxidizer mix on a molecular scale at a sufficient temperature. This is accomplished by relating the
reaction rate to the limiting species. The model is formulated as follows:

E . Yo YHO
S.=Bp—min| Y, ,—,B,——|, 2-105
PO lpk [ Ho g 2 1+¢] ( )

where B; and B, are model constants, and ¢ is the stoichiometric oxygen to hydrogen mass ratio.
When these models are used in CFD calculations, it turns out that the B; or B, need to be "tuned"
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within a wide range in order to obtain reasonable results for a particular problem. In GASFLOW-MPI,

the default values are B; =4 and B, = 0.5.

2.8.2.4 Models Based on Progress Variable Gradient

The source term of the mean reaction progress can be modeled as

7

PSe=p,S; |V§

(2-106)

where p s the density of unburnt mixture, and S, is the turbulent flame speed. The key to this
modeling approach is to find correlations for S,.. GASFLOW-MPI currently provides seven

correlations for turbulent flame speed, including

S, =S,

K
S, =5, |1+—|,
s [1]

U,

S, =8, |1+1.25| -+
=9 [SL

0.7
j , (Kawanabe correlation)

0.5

2 ]
S. =S, 1201952 1| 01954 | 40782 ke
[ l S 1

F F L “F

S, =0.52 (u )Dao‘25 , (Zimont correlation)

t

0TS 025 5 . .
S, = (ut) Da™*, (Zimont-Mesheriakov correlation)

D 2 -0.25
—azj . (Schmid correlation)

S =S +u
’ ¢ ’(1+Da

2.8.3 Two-Step Chemical Reaction Model

(Warning: The two-step model in GASFLOW-MPI is under development as time permits.)

, (Peters correlation)

(2-107)

(2-108)

(2-109)

(2-110)

(2-111)

(2-112)

(2-113)

Another option for describing the chemical process is to use a two-step model, where the chemical

reaction is divided into two parts, an induction phase and an energy release phase.

29



2 Mathematical and Physical Models

2.8.3.1 Induction Parameter Model

The induction parameter model provides a simplified approach for the inclusion of chemistry into
reacting flow calculations. The primary benefit is the reduction in computation time compared with
using detailed chemical mechanisms.

The chemical reaction consists of two phases, an induction phase and an energy release phase. In the
first phase, intermediate species build up the radical pool, the radicals that are necessary for chain
branching of the reaction. Minimal energy is released. This phase is modeled by an induction time.
During the second phase, the radicals recombine, which leads to the release of the main energy of
the reaction. This time is called the energy release time.

To formulate an induction parameter model, it is first necessary to determine the characteristic times
of the two phases: induction and energy release times. This has been done for a wide range of initial
temperatures, pressures, and gas compositions. These parameters were determined from
calculations using an integration package for chemical reaction rate equations and an appropriate
chemical reaction scheme.

Here, a hydrogen-air system is considered. A detailed chemical mechanism with 48 reactions and 8
reactive species, developed at the Naval Research Laboratory, was used (Ref. 2-27 and Ref. 2-28).
With the GASFLOW code using a solver for stiff differential equation systems, this detailed
mechanism was solved for one cell over a wide range of initial conditions. The characteristic times
were determined from the temperature/time history. As a criterion for completion of the first phase
of the reaction and thus the induction time, a temperature rise of 2% was chosen. At 95% of the
maximum temperature, the energy release phase was considered to be finished.

Induction and energy release times were then stored in the form of a table. The initial temperature
had a range from 800 to 2500 K, the pressure ranged from 0.1 to 0.6 MPa, and the hydrogen
concentration ranged from 5 to 30 vol%. An interpolation routine in the code is used to retrieve the
needed values from this table.

For the first phase of the reaction, a nondimensional parameter is advanced through time and the
computational mesh. The equation for this induction parameter can be represented in the following
form:

dP 1
d_ =—uVP+ V(DVP) +— . (2-114)

t Tind

The first term on the right-hand side is the convective term, the second one describes the diffusion of
the parameter, and the third one is the source term.

The term P stands for the induction parameter, u for the velocity vector with which the parameter
can be advected through the domain, D is the diffusion coefficient, and tind is the temperature-,
pressure-, and composition-dependent induction time. As a diffusion coefficient, the coefficient of a
typical radical, OH, was used.

The initial value of P is zero. For P smaller than 1, no energy is released and the fluid composition
remains the same. When P reaches one, the induction time is elapsed and the energy release phase
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begins. We decided to treat this phase as if the energy were released stepwise linearly, depending on
the energy release time and the available fuel.

Induction and energy release times are updated for each cell during every time step to reflect the
actual condition the fluid is in.

2.8.3.2 Coupling of Induction Parameter Model with K- Model

For calculating turbulent flames, the induction parameter model is coupled with the k- model. This
approach is based on the eddy-dissipation concept by Magnussen and Hjertager (Ref. 2-29) with the
ignition/extinction modification introduced by Hjertager (Ref. 2-30).

Experiments have shown that the rate of combustion in flames is mainly dependent on hydro-
dynamic parameters. The combustion rate is limited by the rate of molecular mixing between the
reactants. This mixing is linked to the rate at which turbulent eddies are dissipated. It is therefore
assumed that the combustion rate is proportional to the rate of dissipation of kinetic energy of
turbulence.

At first, a local turbulent Reynolds number is computed from turbulent and molecular viscosities:

v
Re =L

t

(2-115)

If this number is smaller than a critical Re number, the energy will be released using the induction
parameter model. Otherwise, the Magnussen/Hjertager model is called. The critical value is chosen
on the basis of yielding reasonable results, because the approach itself is highly empirical.

Two time scales are defined. One is the turbulent eddy mixing time scale

==, (2-116)
E

where kis the turbulent kinetic energy and ¢ is the dissipation rate of turbulent kinetic energy. Both
Kk and ¢ are calculated in the code in the k- turbulence model.

The second one is a characteristic chemical time scale which is assumed to be the induction time zjpg
The values for 7jpq4 are interpolated from the table.

A Damkoehler number is defined as the ratio of the chemical time to the turbulent time:

Da="Tn (2-117)

If this Damkoehler number is greater than the critical value Dje , the dissipation time of the turbulent
eddies is too short in comparison to the induction time, and the gas will not burn. If the number is
smaller than the critical value, the combustion rate is calculated as follows:

= —épmlim , (2-118)
T,

t
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where mjjm is the smallest of the three mass fractions, namely fuel, oxygen, or mass fraction of fuel
already burnt. The constants A and Dje are given the values 16 and 1000, respectively.

2.9 Recombiner Models

We have examined data for both the Siemens (Ref. 2-31) and NIS (Ref. 2-32) recombiner box designs.
In addition, we have reviewed the analysis and modeling development of Fischer (Ref. 2-33). For the
GASFLOW-MPI models of these two systems, which are shown schematically in Figure 2-1, we
formulate a geometry that specifies a chimney formed by the vertical walls, and within this enclosure
that is open at both the top and bottom, there is a defined reaction zone or volume. The task is to
derive a model for the rate of hydrogen recombination with available oxygen in this reaction zone,
given the gaseous conditions entering the recombiner at, e.g., location IN (shown in Figure 2-1 at the
lower entrance). The model should be developed such that the projected flow area into the box can
be scaled to accommodate nearly any recombiner size. We assume that the structure or the porosity
for fluid flow of the recombiner members (plates or other configurations) remains uniform of any
scale recombiner box. These recombiner structures also provide mass that gives a certain thermal
inertia to the system.

For the Siemens recombiner box, there is considerable performance data available in Ref. 2-31,
which we have condensed and presented in Figure 2-1. To understand this figure, one first computes
the hydrogen volume percentage at the recombiner inlet (location IN in Figure 2-1). Then one reads
up to the recombination rate curve and then horizontally to the left vertical axis to determine the

hydrogen recombination rate in g/m2-s (rate of hydrogen consumed per unit area inflow to the
recombiner box). The recombiner efficiency for these conditions, based upon inlet and outlet

hydrogen volume fractions, Yhz,lN and )IhQ,OUTl respectively, is determined by reading horizontally

from the intersection with the hydrogen recombination rate curve to the right to intersect the
efficiency curve, where the efficiency is defined as

n=1-Y, our /I;ZJN . (2-119)

To determine the efficiency percentage as defined by Equation (2-119), one reads vertically to the
top horizontal axis.

Fischer (Ref. 2-33) carefully examined the experimental data that was obtained from the Battelle
Model Containment for the MC recombiner test series (Ref. 2-32), which focused on the NIS
granulated recombiner box design. He found that a correlation showing the flow rate through the
recombiner could be established that was dependent on the hydrogen volume fraction at the
recombiner inlet and on a time constant which represented the thermal inertia of the device. In
addition, Fischer found that, for steady-state operation, the volumetric flow rate was only a function
of the hydrogen concentration at the recombiner inlet. Fischer also determined from the data that
the efficiency for the NIS recombiner was nearly constant at 84.6% over the operating range of
interest. We present Fischer’s findings in Figure 2-2.
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Figure 2-1 Schematic diagram for the recombiner box model
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Figure 2-2 Siemens (Ref. 2-31) and NIS (Refs. 2-32 and 2-33) recombiner

In order to develop the basis for some of the GASFLOW-MPI recombiner models, we summarize
Fischer’s model here:

(1)  The steady-state volumetric flow through the NIS recombiner, Q,, is given by
b
0, = a(Yhz,IN) ) (2-120)
where YhQJN = hydrogen volume fraction at the box inlet (IN in Figure 2-1)

and the experimentally determined constants are given by
a=0.67e+06 (cm3/s)

b=0.307
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(2) The time-dependent behavior of the volumetric flow Q(t) is described by the differential
equation

a0 _ 1., _ ]
i T(Qo o) , (2-121)

where 7is a relaxation time constant determined by experiment to be roughly 1800 s.

(3) By carefully examining the time-averaged data at the recombiner inlet and outlet, Fischer
found that the hydrogen recombination through the flow passages was incomplete. He
determined an efficiency factor based on Equation (2-119) to be = 0.846.

2.9.1 NIS Recombiner Model

The Battelle-Frankfurt NIS tests (Ref. 2-32) and Fischer’s analysis (Ref. 2-33) were conducted on a 1
m2 cross-section inflow recombiner box of high-heat-capacity granulate design. We wish to
generalize this model to be able to scale to different inflow areas but of the same or very similar
internal design. In addition, we wish to derive the GASFLOW-MPI model in terms of inflow velocity, U
in Figure 2-1, to conform with the GASFLOW-MPI numerical algorithm. Following Fischer’s model, the
GASFLOW-MPI model for NIS recombiner boxes proceeds as follows:

(1) The reference velocity in cm/s from Equation (2-91) is given by
0307
Uyt)=67-[%, (1) (2-122)
Note that, in the general case, the reference inlet condition (Fischer’s “steady-state value”) becomes
a function of time because containment conditions are nearly always changing.

(2) The time-dependent velocity, U(t), inflowing into the recombiner box is

dU@t) 1

a7

[U,()-U(1)]= %{0.67 R (t)]o'307 ~U (z)} . (2-123)

(3) We define a recombination reaction rate as

: om,, : . . .
ha =- = _(mhz,out - mhz ,in) = mhz,in - m112,out ’ (2_124)

ot

which we must relate to the efficiency based upon hydrogen volume fractions shown in Equation
(2-117). With a fair amount of algebra, Equation (2-124) can be reformulated to

R, =7n-1m,,, 1 , (2-125)

1= (1-n)-1,,,

34



2 Mathematical and Physical Models

which reflects the fact that the number of moles flowing through the recombiner changes during the
recombination process. For the conditions we are interested in, see Figure 2-2, the term in brackets
is very close to unity, so we can simply write the hydrogen recombination rate as

R, =n-,_, . (2-126)

We now relate the hydrogen recombination rate from Equation (2-126) to the reaction rate from
Equation (2-86) by

Rh2=2-d)-V-Mh2 , (2-127)

where @ is the rate of hydrogen recombination in moles-hy/cm3-s . Knowing the efficiency is 0.846,
we can compute the rate of recombination, @, as

0.846-U (t)- A4, - t
w:% ( )V G (1) . (2-128)

(4) We use this recombination rate to solve the c