

 Karlsruhe Reports in Informatics 2015,10
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Non-Interference with What-Declassification in

Component-Based Systems

Daniel Grahl and Simon Greiner

 2015

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Non-Interference with What-Declassification in
Component-Based Systems

Daniel Grahl and Simon Greiner
Karlsruhe Institute of Technology, Germany

Department of Informatics
{firstname.lastname}@kit.edu

Abstract—Component-based design is a method for modular
design of systems. The structure of component-based systems
follows specific rules and single components make assumptions on
the environment that they run in. In this paper, we provide a non-
interference property for component-based systems that allows
for a precise specification of what-declassification of information
and takes assumptions on the environment into consideration in
order to allow a modular, precise and re-usable information-flow
analysis. For precise analysis, components can be analyzed by
separately analysing services provided by a component, and from
our compositionality theorem non-interference of components
follows.

I. INTRODUCTION

Modern IT Systems have to master complex requirements
regarding functionality, availability, and scalability. Designing
these kinds of systems as monolithic programs is not feasible
in practice. Component-based system engineering techniques
allow designers to break a system down to different, reusable
parts specializing on particular tasks. Each of these components
often do not provide a functionality on their own but only in
cooperation with other components. Contracts allow single
components to explicitly formulate requirements on their
environment which are necessary in order to provide guarantees
of a component’s implementation.

In this work, components are programs encapsulating their
states and communicating with their environment exclusively
via messages. Functionality is provided as services, i.e., requests
made from one component to another and an answer to
this request. This notion is inspired by Szyperski et al. [1].
Real world implementations are provided especially in the
web context, for example using Enterprise Java Beans [2],
a common technology for implementing distributed, service-
oriented systems in Java. Component-based Systems can be
considered either as programs where different components run
on distributed hardware, running in different virtual machines
or, for example like web applications and databases, running
in different processes on the same operating system.

The distribution of functionality to different components
makes it hard to provide precise guarantees of information flow
properties of an overall system. When information is exchanged
between components, it is necessary to preserve knowledge
about the sensitivity of the information passed along. In this
paper, we develop a compositional non-interference property
with what-declassification for component-based systems and
we thus allow a very precise specification of high and low

information on interfaces between components. Further, the non-
interference property takes into consideration typical guarantees
assumed by Szyperski-like components, for example, the
existence of required services or termination of a service.

Figure 1 illustrates a component-based system of a web-
based online shop. Component C receives the name and a
credit card number from the customer via a web form. Then
C stores this information in the database DB, from where
the billing component B requests this information in order
to generate a bill; and component P manages the payment
process with the credit card company. It is necessary that the
bill contains the customer’s name, but the credit card number
can be restricted to the last four digits. To perform the payment,
however, the entire information has to be used by component P.

The information that only the last four digits of the credit
card are low is specified on the input-level of C. In order to
allow modularity, this information has to be preserved over
the boundaries between components C and DB, as well as
between DB and B.

A. Contribution

We introduce a compositional notion for non-interference in
interactive programs supporting declassification of information.
Our framework is an extension of the framework by Rafnsson
et al. [3]. Our notion of declassification has as a consequence
that non-interference in presence of deterministic environments
is weaker than non-interference in general. Since equivalence
of non-interference with deterministic environments and non-
interference in general is the basis for compositionality proofs
in [3], we provide a compositionality proof for non-interference
with declassification.

Figure 1. Component Diagram

We provide a formalization of components as sets of services
operating on separated states making assumptions on the
environment the component is executed in. The formalization
of components is inspired by restrictions the Java Enterprise
Edition makes on Java programs executed in application
containers. This formalization should also be applicable to other
web technologies like ASP.NET or databases. We formalize
non-interference for components in the presence of cooperative
environments and we show compositionality for synchronous
parallel composition.

In general, it is not possible to analyze non-interference with
declassification for components using approaches like type
systems and others. Therefore, we aim for static verification
approaches of non-interference properties in components based
on theorem provers. To achieve this, we introduce a notion of
non-interference for services, which implies non-interference
for components and is suitable for extensions of theorem prover
approaches.

B. Outline

In the following section, we introduce the computational
model we use, based on labeled transition systems. In Sec-
tion III, non-interference is defined and we show parallel
interleaving compositionality. This is followed by the definition
of components in Section IV and the definition of non-
interference for components in Section V.

After this, we introduce the computational model we use,
based on labeled transition systems. In Section III, we extend
strategy-based non-interference with what-declassification using
equivalence relations for specification. For better comparability
with the original work by Rafnsson et al. we make this extension
on their original computational model, provide a comparison
with their compositionality results and present a proof for
compositionality of our extended notion. In Section IV, we
define components and compositions, our target of analysis in
this paper. This is followed by the definition of non-interference
for components under cooperative environments in Section V.
Finally, we provide a non-interference property for services,
which implies non-interference for components and is suitable
for static program analysis. In Section VII we present related
work and finally conclude.

II. COMPUTATIONAL MODEL

In this work, we discuss non-interference in component-
based systems. A core property of components in our setting
is that components do not share a state and thus can not
communicate via variable manipulation. The only form of
communication is via messages sent and received by a
component. Labeled Transition Systems (LTS) are a very
general possibility for modeling programs or components
communicating via message passing.

The environment communicates with an LTS by passing
messages over channels and observing output messages from
the LTS. We define C as a set of channels, over which values
from a domain V can be communicated. We refer to the
communication of a value over a channel as a message in

M ⊆ C× V. An LTS can receive input messages I and send
output messages O, where M = I ∪ O and I ∩ O = ∅. We
write α!v for a message m ∈ O communicating the value
v on a channel α, α?v for m ∈ I, and if it is not relevant
whether m is an input or output, we write α.v for m ∈ M.
The transition relation → describes the transition of an LTS
by communicating a message. We write p m−→ p′, if LTS p
transitions to p′ for some m ∈ M. We write p m−→ if there
exists some p′ such that p m−→ p′.

Further, we require an LTS not to discriminate on input
acceptance due to the communicated value (1) and neither to
provide indeterministic output (2) nor indeterministic internal
behavior (3).

1) ∀α ∈ C, v ∈ V· p α?v−−→ =⇒ ∀v′ ∈ V· p α?v′−−−→
2) If p m1−−→ p1 and p

m2−−→ p2 and m1 6= m2 then m1 ∈ I
and m2 ∈ I.

3) If p m−→ p1 and p m−→ p2 then p1 = p2.
The only source of indeterministic behavior is due to indeter-
ministic input. In related work [3] this restricted form of an
LTS is called “input-output LTS”. For simplicity, we directly
refer to them as LTS in the remainder.

Traces T are finite lists of messages, where 〈〉 ∈ T is
the empty list anda is the concatenation operator. The trace
consisting of a single message m is 〈m〉. If it is clear from
the context we write m instead of 〈m〉. The prefix relation is
defined as t1 ≤ t if ∃t2· t1a t2 = t. We say p can communicate
a trace t, written p t−→, if t = 〈〉 or t = 〈m〉a t′ and p m−→ p′

and p′
t′−→ for some p′. T(p) := {t | p t−→} is the set of all

traces, which p can communicate.
For better readability, we frequently use the following

convention in this paper. We refer to traces by t, channels
by α and β, messages by m and values by v, and LTS by p
as well as their primed and indexed counterparts.

III. INFORMATION-FLOW IN LABELED TRANSITION
SYSTEMS

Intuitively, non-interference for an LTS means, that some
secret (high) information given as input to an LTS does not
influence publicly (low) observable output of the LTS. To
analyze information flow for an LTS a specification of secret
and public information is necessary. Typically, this specification
is, depending on the framework, given in the form of types
of variables, parameters or channels. For example, if some
channel has high type, the behavior of the LTS should not
reveal the value of the communicated value. The behaviour of
the LTS has to be equivalent for different values communicated
over a high parameter.

For a compact presentation, we only consider the 2-element
security lattice high and low in this paper. Nevertheless, a more
complicated security lattice can easily be expressed with our
notion of security, but explicit consideration does not provide
further insights.

Specification with types is very coarse-grained, since it does
not allow to specify that only partial information contained in an
input may be public (What-declassification [4]). For example, it

can not be expressed that the last bit of the input value may be
revealed, but otherwise the value has to be kept secret. In this
paper we introduce a specification of high and low information
based on equivalence relations. If two messages are equivalent
with respect to this specification, the observable behavior of
the LTS should be indistinguishable for an adversary. This is a
generalization of specification using types, and allows a very
flexible specification of secret information, but we can express
typed-based secrecy specifications with our relation.

A. Security Specification of Messages and Values

We assume the classification of high and low input and output
for a labeled transition system is provided by an equivalence
relation ∼⊆M×M as part of the specification. If two messages
m1,m2 are equivalent with respect to ∼, the information which
discriminates m1 from m2 is secret. For example, given the
security specification α?x ∼ α?y iff x mod 2 = y mod 2, the
last bit of the value communicated on channel α is low. The
specification α?x ∼ α?y iff x = y, the entire communicated
value is low and in the case α?x ∼ α?y iff true, the entire
value is high. We assume in the reminder of this paper some
definition of ∼ to be given.

In order to specify that the existence of a message itself is
a secret, we introduce a special placeholder � ∈M. We call a
message m ∼ � invisible, and visible if m � �. If a message
m is invisible, the observable behavior of an LTS must not
differ depending on whether m is provided as an input or not.

We assume that it always can be distinguished on which
channel the message was communicated, if the message is
visible. Formally, this means m ∼ m′ =⇒ (m ∼ � ∧m′ ∼
�) ∨ (m = α.v ∧m′ = α.v′) for some α ∈ C.

The equivalence relation ∼ implicitly defines equivalence
classes on M with [m] := {m′ | m′ ∼ m}. For every
equivalence class [m], we denote an arbitrary, but constant
representative [[m]] ∈ [m], where [[�]] = �.

Equivalence of messages gives rise to the equivalence of
traces t, t′, written t ∼ t′. Traces t, t′ are equivalent, if,
after removing invisible messages, their projection on the
representative of the equivalence classes are equal. We define
t ∼ t′ if t�∼= t′�∼ where

〈〉�∼ := 〈〉

(ma t)�∼ :=

{
t�∼ if m ∼ �
[[m]]a t�∼ otherwise

While above we introduced ∼ for messages, we overload the
symbol for equivalence of traces in order to avoid too many
different symbols. It should be clear from the context, whether
∼ refers to messages, traces, or as defined later, for sets of
messages.

Apart from the projection operator on traces, we define
projection on sets and a filter operator on traces and sets. Let
M,N ⊆M,m ∈M, t ∈ T.
· M�∼:= {[[m]] | m ∈M} \ {[�]}
· M ∼ N :⇔M�∼= N�∼
· M B N :=M ∩N

· 〈〉 B N := 〈〉

· (ma t) B N :=

{
ma(t B N) if m ∈ N
t B N otherwise

B. Strategies
The environment observes the behavior of an LTS and

provides input depending on this observation. The environment
may also deny to provide further input. We model the
environment as a strategy, a function mapping the previously
communicated trace, i.e. the observation made by the environ-
ment to the LTS, to a set of possible inputs provided by the
environment.

Our goal is to analyze non-interference for LTS, meaning
we want to detect leaks in the LTS. When analyzing the LTS
in the presence of an environment, we want to ensure that
detected leaks are due to an insecurity in the LTS rather than an
environment which leaks confidential information. To enforce
the environment not to leak secret information, we require the
strategy to provide equivalent input for equivalent observations
(Line 1 in Definition 1). We denote the set of all strategies
with Strat.

Definition 1 (Strategy). A strategy is a function ω : T 7→ P(I),
such that

t1 ∼ t2 =⇒ ω(t1) ∼ ω(t2) (1)

for all t1, t2.

A trace t is consistent with a strategy ω, written ω |= t, if
the strategy can communicate the trace. Formally ω |= t, if
∀m ∈ I with t = t1ama t2 it holds that m ∈ ω(t1). An LTS
p produces t under ω, written ω |= p

t−→ if ω is consistent with t
and p t−→. Again, this definition of strategies is a generalization
of the previous work in [3].

If a strategy ω provides at most the input another strategy
ω′ provides, we say ω refines ω′.

Definition 2 (Strategy Refinement). ω refines ω′, written ω ≤
ω′, if ω(t) ⊆ ω′(t) for all t.

A strategy ω refining ω′ is at most consistent with the traces
ω′ is consistent with.

Lemma 1. If ω ≤ ω′ then for all LTS p: ω |= p
t−→ =⇒ ω′ |=

p
t−→

Proof for Lemma 1. Proof according to [5]. In general, every
trace accepted by ω is also accepted by ω′, due to definition of
strategy acceptance and refinement relation. ω |= t, so for every
m ∈ I: t′am ≤ t =⇒ m ∈ ω(t′) and since ω(t′) ⊆ ω′(t′)
m ∈ ω′(t′), so ω′ |= t. ♦

Two strategies are equivalent with respect to ∼, if they
provide equivalent output for the same observation.

Definition 3 (Equivalence of strategies). Two strategies ω
and ω′ are equivalent with respect to an equivalence relation
∼⊆M×M if ∀t ∈ T · ω(t)�∼ = ω′(t)�∼.

Again, we overload here the symbol ∼ and write ω ∼ ω′

for strategies that are equivalent with respect to ∼.

C. Non-Interference
After setting up a formal notion for LTS and a model for

the environment, we can formalize non-interference. As usual,
we compare different runs of an LTS. Since execution of an
LTS in general requires intermediate input, the runs have to be
executed in presence of an environment. We want to ensure that
different behavior of runs is due to leaks in the LTS, not by the
environment leaking secrets. Therefore, we require the different
runs to be executed under equivalent environments. We say
an LTS is non-interferent, if every trace which is possible for
the LTS under a strategy is also possible under every other,
equivalent strategy.

An LTS p is non-interferent with respect to a set of
strategies W , if for every trace produced by p under a strategy
ω ∈ W , an equivalent trace is produced under every other,
equivalent strategy in W .

Definition 4 (W -non-interference). An LTS p is W -non-
interfering for W ⊆ Strat, if

∀ω1, ω2 ∈W, t1·ω1 ∼ ω2 ∧ ω1 |= p
t1−→ =⇒

∃t2·ω2 |= p
t2−→ ∧ t1 ∼ t2

A W-attack is a counter example for W -non-interference.

Definition 5 (Attack). A W -attack on p is a tuple
(ω1, ω2, t1) ∈W ×W × T with

1) ω1 ∼ ω2 and
2) ω1 |= t1 and
3) ω1 |= p

t1−→ and
4) ∀t2·ω2 |= p

t2−→ =⇒ (t1 � t2)

It is easy to see that an LTS is W -non-interferent if and
only if there does not exist a W -attack.

We denote the set of all programs, which are W -non-
interferent with W -NI.

If a program is W -non-interferent, it is also non-interferent
with respect to all subsets of W .

Lemma 2. For all W1,W2 ⊆ Strat: W1 ⊆ W2 =⇒
W2-NI ⊆W1-NI

Proof for Lemma 2. We have to proof that, given W1 ⊆W2,
all p ∈ W2-NI it also holds that p ∈ W1-NI. We show
the contrapositive. Assume p /∈ W1-NI. Then there exists
(ω1, ω2, t) which is a W1-attack on p. Since W1 ⊆ W2,
ω1 ∈W2 and ω2 ∈W2, (ω1, ω2, t) is a W2-attack on p. ♦

D. Non-interference for Deterministic Strategies
We have presented a notion of non-interference, which is a

generalization of previous work and adds what-declassification.
In this section we show how our non-interference with
declassification relates to some properties of non-interference
without declassification. One property of non-interference is
that it is sufficient to only consider deterministic strategies in
order to prove non-interference with respect to all possible
strategies. This finding also is the basis for all proofs of
compositionality properties in [3]. We show here that this
property does not hold if we allow declassification.

A strategy is deterministic, if it provides for any channel at
most one message for every observation.

Definition 6 (Deterministic Strategies). A strategy ω is deter-
ministic if ∀α, t· |{m | m ∈ ω(t) ∧m = α?v}| ≤ 1.

We refer to the set of all deterministic strategies as DS.

Theorem 1. Strat-NI (DS-NI

To illustrate Theorem 1 consider the specification α?x ∼
α?y if x 6= 1 ∧ y 6= 1, α?1 ∼ � and β!x ∼ β!y ⇔ x = y.

This specification expresses that the only information that
may be leaked on channel α is whether the communicated
value is equal to 1. Further, if the message communicates 1,
then the message is invisible. Also, β!x ∼ β!y ⇔ x = y,
expressing that every information communicated over β can
be distinguished.

The program read(x ← α);read(x ←
α);write(1 → β) is non-interferent for deterministic
strategies, but not for all strategies. Take for example the trace
α?1;α?2;β!1. This trace reveals the existence of α?1 and we
can obviously construct a Strat-Attack.

But we can not construct a deterministic strategy accepting
this trace. For a strategy ω accepting the trace, it has to hold
that α?1 ∈ ω(〈〉) and α?2 ∈ ω(〈α?1〉). Since 〈〉 ∼ 〈α?1〉,
also α?x ∈ ω(〈〉) for some x 6= 1. And therefore ω is not
deterministic according to Definition 6.

Proof for Theorem 1. Strat-NI ⊆ DS-NI follows from
Lemma 2. As a counterexample for Strat-NI = DS-NI see
example above. ♦

The reason for Strat-NI 6= DS-NI in our generalized case,
when ∼ defines declassification, is that determinism is defined
on the level of channels, while equivalence of messages can
imply several equivalence classes for messages communicated
over one channel. The specification of high information in the
specific case of non-interference by Rafnsson et al. ensures that
either all messages communicated over a channel are equivalent
or none are. Especially, there can not exist two messages on
one channel, where one message on some channel is visible,
and the another message on the same channel is not. This
limitation on the security specification does not apply in our
case as the counterexample above illustrates.

E. Parallel Compositionality

The most general composition of LTS is by parallel interleav-
ing of LTS. In parallel interleaving compositions, composed
LTS do not directly communicate with each other, but the
output of one LTS is mapped to input of the other LTS by
the environment. The environment has full control over the
wiring between the composed LTS. The semantics of parallel
composition is defined in Figure 2.

Rafnsson et al. show that non-interferent LTS result in a non-
interferent LTS when parallelly composed. Their proof makes
use of the property Strat-NI = DS-NI, which holds when
∼ does not define declassification. But as we have shown
in Theorem 1, Strat-NI = DS-NI does not hold in our

p1
m−→ p′1

(p1 ‖ p2)
m−→ (p′1 ‖ p2)

p2
m−→ p′2

(p1 ‖ p2)
m−→ (p1 ‖ p′2)

Figure 2. Parallel composition of LTS

generalized case. Nevertheless, the compositionality of LTS
still holds.

Theorem 2 (Compositionality). pA, pB ∈ Strat-NI =⇒
pA ‖ pB ∈ Strat-NI

The proof for Theorem 2 requires some additional definitions.
Therefore, we refer the interested reader to the appendix.

IV. COMPONENTS AND COMPOSITIONS

We have defined a non-interference property allowing the
declassification of partial information. Now, we want to use this
property to construct systems using a component-based system
design. Component-based system development allows efficient
design of systems and makes use of re-usability of parts of
a system. To allow re-usability, including non-interference
properties, we require a black-box view on information flow
in a component. We consider components to be some entity
which provides services to its environment and requires other
services to be provided by the environment. Services provided
by one component share a common state, while a component’s
state is disjoint from all other components.

The correct functionality of a component depends on guaran-
tees the environment has to provide. One of these guarantees is
that the environment provides services necessary for the correct
execution of a component’s services. A component guarantees
to provide services, if it can rely on the environment providing
a set of required services.

The concrete formalization of components is inspired by the
Java Enterprise Edition (JEE) as specified in the JSR 318,
version 3.1 [2], a technology for implementing business
logic on distributed server systems. Business logic in JEE
is implemented in so called Java Beans, Java objects, which
are run by an Application Server and whose methods can be
called as services by remote calls. The programming model
is rather restrictive in order to allow the application server
to perform tasks like login, session management, and thread
management.

JEE mainly differentiates between stateless and stateful
session beans. Stateless session beans do not manage a state
over the execution of a service, while stateful beans preserve
their state over several sequent service calls. JEE requires that
beans may at most be entered by a single thread, which by
construction of JEE applications means that beans are not
reentrant and loop-back calls are not allowed. This enforces a
strict layering of JEE applications, since circular dependencies
might result in callback loops. Service calls are synchronous
in the sense that after the call of a service in another bean the
execution of the calling service waits for termination of the
called service. Asynchronous service calls can be performed by
message driven beans, but we do not consider message driven
beans here for simplicity.

In this section, we formalize components and services.
Also, we define sets of strategies, which respect assumptions
the component makes about the environment. We call these
environments cooperative. Then we define a composition
of components which allows the reduction of assumptions
a component makes about the environment. In this setting,
we show non-interference of compositions under cooperative
environments. Ultimately, we show that a component-based
system is in Strat-NI, if it does not require any services to
be provided by the environment.

A. Services and Components

The environment can call a service by sending a message to
the component. During execution of the service, the component
can call other services provided by other components by
sending and receiving messages. Finally, after termination of the
service, some return value is provided as a response to the initial
call. A service is defined by a name, a signature and the body
of the program defining the service’s behavior. The signature
describes the input parameters of the service, the initial channel
used for calling the service, and the termination channel used
for communicating the return value. A combination of the
program defined by their services of a component and a state, as
defined later, define an LTS. The function Ini(serv) defines the
initial channel of the service serv, Fin(serv) the termination
channel.

The body of a service is a program consisting of the language
primitives from Figure 3. We give the semantics of the language
with respect to some state σ. A state is a mapping from program
variables to values from the domain V. In the remainder of
this paper, σ and its primed and indexed counterparts refer to
states.

For simplicity, we do not define methods. Also, we refrain
from an explicit consideration of objects. The language could
easily be extended to support both of them without invalidating
the results in the remainder, but it would complicate the
presentation without any considerable benefit.

The rule Service in Figure 3 defines the semantics of a
service call. A service call consists of the sending of a message
on the initial channel and providing some value representing
a parameter. After sending, the service waits for the response
of the called service on the termination channel. Semantics
of sending and receiving messages is shown in Figure 4. We
refer to the body of a service serv by bodyserv . Note that by
definition of the language, services are deterministic.

The services defined by the language introduced above are
limited to a single parameter. This limitation is not a restriction
of the expressivity of our language. The parameter can be
considered to be some encoding of several parameters. As
illustrated in the introduction, secrecy of information contained
in the parameter can be modeled with ∼ for each parameter
separately, also for parts of the parameter or combinations of
several parameters included in one service call. We limit the
presentation here to a single parameter, since it simplifies the
presentation without restricting the results.

The handler of a service represents the program which is
executed when a service is called. Initially, the service is started
by a message on channel Ini(serv) and after executing the
service’s body, it writes the result on channel Fin(serv). We
assume variables named param and res to be available in
every component, the variable named param can be used by
the program to access the parameter and res to write the return
value. The program representing the handler handlerserv of a
service serv is defined as

handlerserv :=read(param← Ini(serv)); bodyserv;

write(res→ Fin(serv));

SKIP
〈SKIP ;σ〉 −→ 〈SKIP ;σ〉

SEQ1
〈SKIP ; c2;σ〉 −→ 〈c2;σ〉

SEQ2
〈c1;σ〉

t−→ 〈c′1;σ′〉 c1 6= SKIP

〈c1; c2;σ〉
t−→ 〈c′1; c2;σ′〉

ASSIGN
σ(e) = v

〈x := e;σ〉 −→ 〈SKIP ;σ[x := σ(e)]〉

IF1
σ(e) = 0

〈if e then c1 else c2;σ〉 −→ 〈c1;σ〉

IF2
σ(e) 6= 0

〈if e then c1 else c2;σ〉 −→ 〈c2;σ〉

WHILE
〈while e do c1;σ〉 −→

〈if e then (c1;while e do c1) else SKIP ;σ〉

SERVICE
servC = Ini(serv) servR = Fin(serv)

〈x := serv(e);σ〉 −→
〈write(e→ servC);read(x← servR);σ〉

Figure 3. Language Semantics

SEND
σ(e) = v

〈write(e→ α);σ〉 α!v−−→ 〈SKIP ;σ〉

REC
e ∈ V

〈read(x← α);σ〉 α?e−−→ 〈SKIP ;σ[x := e]〉

Figure 4. Additional semantic rules

EXT1
〈c1;σ〉

α?x−−→ 〈c′1;σ′〉

〈c1 u c2;σ〉
α?x−−→ 〈c′1;σ′〉

EXT2
〈c2;σ〉

α?x−−→ 〈c′2;σ′〉

〈c1 u c2;σ〉
α?x−−→ 〈c′2;σ′〉

Figure 5. Semantics of external choice

A service serv1 requires a service serv2, if a call to serv2
is contained in the body of serv1. We denote the set of services
required by serv1 with reqserv1 .

A component c provides a set of services provc to its
environment. We recursively define the body of the component,
refered to as cbody , with respect to the services it provides. The
component initially provides all services, while the environment
chooses which service should be executed by sending a message
to the respective initial channel. After termination of the called
service, again, the environment can choose among all provided
services. The external choice operator u models this behavior.
Semantics of u is shown in Figure 5.

Let {serv1, ..., servn} = provc for some component c.
Then the body of c is recursively defined as

cbody := (handlerserv1 u . . . u handlerservn); cbody
We assume for every component c to have some unique initial
state σc without explicitly specifying it. 〈cbody;σc〉 represents
an LTS as defined earlier. We refer to this LTS with cLTS .

Services provided by one component share a common state,
i.e. information received by one service might be leaked by
another, subsequently executed, service. Further, we assume
that services are executed sequentially. We require services
to terminate by definition, in contrast a component can never
terminate. After successful execution of a service, all services
are again offered to the environment.

The set of services that a component requires is the union
of the required services of the provided services, i.e. reqc =
{serv | ∃s· s ∈ provc ∧ serv ∈ reqs}

If a service is called with an invisible message, but terminates
with a visible message, the termination of a service reveals
the initial message. So, it makes sense to require services not
reveal its call by a visible termination message. For the same
argument, we make sure that the call of a service does not
reveal the upcoming termination of the service.

Definition 7 (Visibility-Preserving services). A service serv
is visibility-preserving if ∀σ, σ′, v, v′, t·
〈handlerserv;σ〉

Ini(serv)?vataFin(serv)!v′−−−−−−−−−−−−−−−−−→ 〈SKIP ;σ′〉 =⇒
(Ini(serv)?v ∼ �⇔ Fin(serv)!v′ ∼ �)

A component c is visibility-preserving if all services in
provc are visibility-preserving.

The contract between a component and its environment
states that the component only guarantees correct execution
if required services are provided by the environment. Since

components are designed for compositional system design, a
component also has to work as part of the environment to
other components. Therefore, we have to ensure that services
provided by a component terminate and all provided services
can be called again. Termination, as stated above, requires that a
service ensures that for every trace a service can communicate,
there exists a trace which leads to termination of the service.

Definition 8 (Terminating Service). A service serv is termi-
nating if

∀t, σ ∃t′· 〈servhandler;σ〉
t−→ =⇒

〈servhandler;σ〉
tat′−−→ 〈SKIP ;σ′〉 and

∀σ∃n ∈ N ∀t· 〈servhandler;σ〉
t−→ =⇒ |t|≤ n

The first condition in Definition 8 ensures that every input
provided by the environment leads to a state, where the service
still can run to completion. The second condition ensures that
the maximum length of a trace needed for completion only
depends on the initial state, but not on intermediate input. It
is possible to implement services which comply with the first
part of the conjunction of this definition, but can still be forced
by the environment to perform infinite execution. Take for
example the following service:

x = m(0);while x == 1 do x = m(0); return 1;

For every trace, the service can communicate, there exists
the case, when the environment provides 0 as a result of m.
Therefore, we additionally require an upper bound for the
length of a trace a service can communicate. In combination
with the two conditions, the implementation of the service has
to ensure that it terminates, independent from the environment
the component runs in.

For technical reasons, we assume that a service is at most
provided by one component, i.e. serv ∈ provc ∧ serv ∈
provd =⇒ c = d. This restriction is useful in the further
presentation, but limits the expressivity of our language only
marginally. If two components are designed to provide the same
service, one of them can be changed by a simple renaming
of the initial and terminating channels and the name of the
service. It does however imply a static system in the sense that
we do not allow exchanging components at run-time.

B. Composition

The contract between a component and its environment
implied by required and provided services states that correct
functionality of a component depends on an environment
providing some basic guarantees to the component. We call
these environments cooperative. Only if a component does not
require any services, the environment may be non-cooperative.
When composing components interleaving parallel, i.e., the
environment is responsible for message passing as defined
in Subsection III-E, this dependency can not be mitigated.
Nevertheless, we want to have a composition operation for
components, which allows to reduce dependency of the
composition from the environment.

PARSYNCH1
p
α.v−−→ p′ ∧ α /∈ C

p|[C]|s α.v−−→ p′|[C]|s

PARSYNCH2
s
α.v−−→ s′ ∧ α /∈ C

p|[C]|s α.v−−→ p|[C]|s′

PARSYNCH3
p
α!v−−→ p′ ∧ s α?v−−→ s′ ∧ α ∈ C

p|[C]|s α!v−−→ p′|[C]|s′

PARSYNCH4
p
α?v−−→ p′ ∧ s α!v−−→ s′ ∧ α ∈ C

p|[C]|s α!v−−→ p′|[C]|s′

Figure 6. Inference rules for synchronized parallel composition

We define a composition operation which reduces depen-
dency on a cooperative environment using synchronized parallel
composition. Parallelly synchronized composition for two LTS
p and p′ on a set of channels c, written p|[c]|p′, means that
communication between p and p′ on some channel from c is
performed by the components directly without utilizing the
environment. The semantics of p|[c]|p′ is defined in Figure 6.
The communication between two components can still be
observed by the environment, but is not provided by the
environment. If two components are composed synchronously
on the initial and terminating channels of a service, we remove
this service from the set of required services.

We call the combination of two components using syn-
chronized parallel composition a composition. Composed
components communicate on a well-defined set of services by
synchronizing on the respective initial and terminating channels.
The environment is not involved in the message passing, but
can still observe the internal communication. We provide a
formal definition for components recursively.

Definition 9 (Composition). A component is a composition.
For components (or compositions) c, c′ with provc∩provc′ =
∅, reqc ∩ reqc′ = ∅, and s ⊆ reqc ∩ provc′ , d is the
composition of c and c′ on the set of services s, written d :=
c|[s]|c′ and
· provd := provc ∪ (provc′ r s)
· reqd := (reqc r s) ∪ reqc′
· dLTS := cLTS |[Ini(s) ∪ Fin(s)]|c′LTS

To compose two compositions on a set of services, one
composition has to provide the services, while the other
composition has to require them. The set of provided services
of the composition results from the provided services of each
component, minus the services the components synchronize
on. Also, the set of required services is the combination of
the services required by each component, minus the services
provided internally. The LTS defined by the composition results
from the parallel synchronous composition of the two LTS of
the components.

Note we ensure that the channels used for synchronization
represent calls and termination of required services for one
component and provided services for the other component. This
way, we enforce an acyclic structure in compositions, which
guarantees us that there are no deadlock situations caused by
one component being called, but the other component not being
able to provide the called service.

Also, the states of each component can not be interfered
with by the other component. The only way of interaction
between the components in a composition is due to message
passing.

By composition, services are removed from the set of
required services, and the dependency on a cooperative environ-
ment can be reduced. Basically, we ensure that an assumption
a component makes on a cooperative environment is provided
by a component which is known and can be analyzed.

In a composition, formerly provided services are also
removed from the set of provided services, but this is a mere
technicality. We can always just add a copy of the respective
services with renamed initial and terminating channels to the
component.

C. Cooperative Strategies

We have modeled components and defined a composition
operation for components. Also, we frequently state that envi-
ronments have to be cooperative. We now define cooperative
environments as a subset of strategies.

An environment is cooperative, if it satisfies three conditions.
1) Every service required by a component is provided by

the environment.
2) Every service called by a component terminates.
3) A service is terminated with a visible message if it was

called with a visible message.
Condition (1) is trivially satisfied by any strategy since the

call of a service is an output message sent by the composition
and strategies can not refuse outputs. Condition (2) is a real
restriction on strategies. It ensures that if a composition calls
a required service, the environment provides a message on
the terminating channel. The last condition (3) is a condition
which results from our non-interference definition. Assume
a component would call a service with an invisible message.
If the environment answers this call with a visible message,
the environment leaks the information that the service was
called. Since we do not consider information leaks caused by
the environment, we rule out this leak by definition.

We call a strategy satisfying conditions (2) and (3) a
Cooperative Strategy.

Definition 10 (Cooperative Strategies). Given composition c
providing the services provc, ω ∈ Strat is a cooperative
strategy for c, written ω ∈ COOPc, if for all t, t′, serv, σ, v

such that serv ∈ reqc and ω |= 〈cbody;σ〉
taIni(serv)!vat′−−−−−−−−−−→

and Fin(serv) /∈ t′, it holds

∃t′′·ω |= 〈cbody;σ〉
taIni(serv)!vat′at′′−−−−−−−−−−−−→ ∧ (2)

Fin(serv)?v ∈ ω(taIni(serv)!va t′a t′′) (3)

and

Fin(serv)?v′ ∈ ω(taIni(serv)!va t′) (4)
=⇒ (5)

Ini(serv)!v ∼ �⇔ Fin(serv)?v′ ∼ � (6)

With the first restriction in Definition 10, we ensure that for
every trace which is consistent with a cooperative strategy and
a composition, which contains the call of a service, there
also exists a trace (line 2) after which the called service
terminates (line 3). For components, the termination has to
be communicated right after the call of the service, because
by construction of components, no other traces are accepted
by the component. Intuitively, this restriction formulates that
an attacker knows the cooperative. A strategy can not block
execution by not providing invisible termination messages. So
it is not a secret that termination messages are provided, given
that a service was called. As a consequence, it may be a secret,
whether the environment calls a service, but not whether a
called service terminates.

The second restriction formalizes visibility preserving exe-
cution of services required by the component (Condition 3). It
ensures that, if a cooperative strategy provides a terminating
message for a trace, which contains the initial message for
the service (line 4), then this terminating message is visible if
and only if the initial message was also visible (line 6). This
way, we avoid that the strategy leaks the information that an
invisible service call happened by revealing the call through
the termination message.

The set of cooperative strategies for a component or
composition c indeed only limits the set of strategies, if
the composition requires services and therefore expects a
cooperative environment.

Lemma 3. For a composition c with reqc = ∅ it holds that
COOPc = Strat.

Proof for Lemma 3. Follows directly from Definition 10 ♦

V. NON-INTERFERENCE FOR COMPONENTS

After defining the concept of components, compositions and
the cooperation a component expects from its environment, we
want to develop a notion of non-interference for components
under cooperative environments into consideration. We again
use strategies to model the environment, but restrict the set of
strategies to those who provide the guarantees assumed by a
component.

We use cooperative strategies to define non-interference for
a component conditional to cooperation.

Definition 11 (Cooperation-Non-Interference). A composition
c is non-interferent, if cLTS ∈ COOPc-NI.

Since for compositions that do not require a service, every
strategy is a cooperative strategy (Lemma 3), from cooperative
non-interference, general non-interference follows.

Lemma 4. For a component c with reqc = ∅ it holds that
cLTS ∈ COOPc-NI⇔ cLTS ∈ Strat-NI

Proof for Lemma 4. Follows from Definition 11 and Lemma 3.
♦

Cooperation-non-interference is compositional for compo-
nents under synchronized parallel composition.

Theorem 3 (Composition Non-Interference). For a composi-
tion d = pA|[s]|pB with pA ∈ COOPpA -NI, pB ∈ COOPpB -NI
and pA, pB visibility-preserving then d ∈ COOPd-NI

The proof for Theorem 3 can be found in the appendix.

VI. NI FOR SERVICES

Analyzing non-interference for entire components may be
tedious, depending on the complexity of ∼. Especially, we
do expect that complex definitions of ∼, although useful for
specification, are hard to formalize. We expect this in particular
for typical enforcement methods like type systems, especially,
if high precision is necessary. It would therefore be beneficial,
if we could utilize an additional dimension of modularity.

The next natural level of modularity are services. Services
are rather simple programs in that they are deterministic and
terminating. In this section, we provide a non-interference
property for services, which allows composition of services to
non-interferent components.

Non-interference properties for terminating, deterministic
programs can be found in literature in many different shapes.
Our notion presented here is inspired by non-interference for
batch programs, which we extend by message passing. In this
notion, a program, or service, is non-interferent, if it terminates
in equivalent post-states after being started in equivalent pre-
states.

Different methods for enforcement are provided, for example
type systems, program dependency graphs and theorem proving
approaches, differing in precision, specification overhead and
manual interaction. We do not limit ourselves to a specific
enforcement method, but restrict ourselves to the general idea.

The equivalence of states σ, σ′ is in our setting defined by an
equivalence relation ≈. While the definition of the partitioning
of the state in a high and a low part is considered often as
specified security property of a program, we merely consider
this partition as a technical necessity. We do not put any focus
on the intended meaning of a high and low partitioning here,
as long as there exists some suitable equivalence relation on
states.

We define two properties for services. First, we require a
service not to reveal its execution, if the environment does not.

Definition 12 (Strictly Visibility-preserving Service). A
service serv is visiblity-preserving with respect to ∼ and ≈ if

∀σ, σ′, t, t′· 〈handlerserv;σ〉
tat′−−→ 〈SKIP ;σ′〉 =⇒

(t B I ∼ 〈〉 =⇒ t B O ∼ 〈〉 ∧
ta t′ B I ∼ 〈〉 =⇒ σ ≈ σ′)

The first part of Definition 12 states that if all inputs provided
by the environment to the service so far are invisible, the service
may only provide invisible outputs. This condition is a more
strict version of Definition 7. Additionally to the condition that
a service called invisibly, terminates invisibly, Definition 12
requires all intermediate service calls to be invisible. In the
context of cooperative strategies, a component can not be non-
interferent, if a service makes a visible service call. Since we
are about to define a non-interference definition for services,
which is independent from strategies, we have to make this
property explicit.

Additionally, if only invisible input were sent to a service,
which terminates, the final state must be equivalent to the
final state. This last condition is necessary in order to provide
sequential compositionality and is formalized in the second
part of Definition 12.

Second, we define non-interference for a service according
to the classic definition of non-interference for batch programs
and we add the consideration of equivalent traces.

Definition 13 (Service Non-Interference). A Service serv is
non-interferent with respect to ∼ and ≈, written serv ∈ SNI≈∼
iff it is strictly visibility-preserving with respect to ∼ and ≈
and

∀σ1, σ2, σ′1, σ′2, t1, t2·σ1 ≈ σ2∧ (7)

〈handlerserv;σ1〉
t1−→ 〈SKIP ;σ′1〉 ∧ (8)

〈handlerserv;σ2〉
t2−→ 〈SKIP ;σ′2〉 (9)

=⇒ (10)
(t1 B I ∼ t2 B I =⇒ σ′1 ≈ σ′2) ∧ (11)
(∀t′1 ≤ t1, t′2 ≤ t2· t′1 B I ∼ t′2 B I =⇒ (12)
∃t′1a t′′1 ≤ t1, t′2a t′′2 ≤ t2· (13)
t′1a t

′′
1 ∼ t′2 a t′′2) (14)

A service started in two equivalent states (7) has to terminate
(9) in equivalent states, if the input provided by the environment
is equivalent for both runs (11). Implicitly, this condition
encodes a well-behaving environment in the sense that we
assume the environment not to leak information.

The second condition ensures that the service does not
leak information by providing non-equivalent output to the
environment after receiving equivalent input. Lines 12 to 14
ensure that t1 and t2 are equivalent up to the first not equivalent
input. For all prefixes of the two traces produced during
execution which got provided equivalent input (12), the traces
either are equivalent, or at least there are further events in the
traces such that the traces can become equivalent (14). We

give in the condition the possibility that both prefixes can be
extended. In fact, it is sufficient to only extend the prefix whose
equivalence projection is shorter. But phrasing this formally
does not result in a simpler formula.

Now, we want to characterize components, which only have
non-interferent services with respect to the some equivalence
relation ≈.

Definition 14 (Component State Non-interference). A compo-
nent c is (∼,≈)-NI if ∀serv ∈ provc· serv ∈ SNI≈∼.

Given two equivalent cooperative strategies after observing
equivalent traces, calling a service. Then, a component in
(∼,≈)-NI produces equivalent traces under these environments
and the services terminate after communicating equivalent
traces.

Lemma 5. Given ω1 ∼ ω2 ∈ COOP with respective previous
observations p1 ∼ p2, σ1 ≈ σ2, σ

′
1, non-interferent service

serv and previous observations. Then

∀t1· 〈handlerserv;σ1〉
t1−→ 〈SKIP ;σ′1〉 =⇒

(t1 ∼ 〈〉 ∧ σ1 ≈ σ′1) ∨

∃t2, σ′2· 〈handlerserv;σ2〉
t2−→ 〈SKIP ;σ′2〉 ∧

t1 ∼ t2 ∧ σ′1 ∼ σ′2

Intuitively, the lemma holds for traces t1 with an invisible
initial message trivially, since the service has to produce an
invisible trace according to Definition 12. In the case of the
first message of t1 being visible, we can show by induction for
every prefix of t1 that 〈handlerserv;σ2〉 accepts an equivalent
trace t2. The formal proof can be found in the Appendix.

We now can show that Definition 14 implies Cooperation-
Non-Interference.

Theorem 4. Given an equivalence relation ≈ such that c is
(∼,≈)-NI, then 〈cbody;σ0〉 ∈ COOPc-NI.

The proof for Theorem 4 requires some additional technical
lemmas and definitions. The interested reader may be referred
to the Appendix.

Definition 13 can be seen as a proof obligation for services
with respect to equivalence relations on messages and states of
a component. Services in our setting are rather simple programs,
since they are deterministic and terminating. Complex systems
are created by combining services and components.

We gain according to Theorem 4 non-interference for
a component by non-interferent services. So proving non-
interference for an entire system is reduced to an analysis
of single services, and a comparison of the state equivalence
relation on states for services provided by a component. System
non-interference then is for free by our compositionality results.

We do not fix the method for analysis of non-interference
for services. This way, the best suitable method for a concrete
service can be chosen. In some cases, the method of choice
may be type systems or program dependency graphs. In

cases of complicated security specifications, theorem proving
approaches might be necessary.

VII. RELATED WORK

Non-interference in general is a well-researched security
property. The origins go back to strong dependency by Cohen
[6] and the definition of non-interference by Goguen and
Meseguer [7]. State-of-the-art research, as far as needed in
this work, can be separated into (1) non-interference for
interactive programs exchanging parametrized messages with
its environment, where secrets are inputs and outputs during the
run of a program; and (2) non-interference for batch-programs,
where partly high and partly low input is provided as a state at
the start of the program and the security property has to hold
in the state after termination of the program.

Work on non-interference for programs with intermedi-
ate communication with its environment is manifold. Non-
interference is discussed using event systems, for example, [8],
[9], or process calculi, e.g., [10]–[12]. In both contexts, the
environment is not modeled explicitly, but as traces or streams
of input and output events.

The work closest to ours uses labeled transition systems as
representations of programs and explicitly takes the environ-
ment of a program in the form of strategies into consideration.
Modeling the environment by using strategies was pioneered by
Wittbold et al. in [13]. Here, the environment is separated into
high and low users of a system, each modeled as a strategy, and
providing high and low input respectively. O’Neill et al. [14]
present a formal analysis of non-interference for interactive
programs in the presence of strategies. Clark et al. show in
[5] that for deterministic programs, it is sufficient to model
the environment as input-streams. Input-streams, in contrast to
strategies, do not take the observation of an execution of the
program into consideration, i.e., all input can be predetermined.

Rafnsson et al. add an additional dimension to the speci-
fication of parameters of messages as low and high type. In
[3], they define the presence of messages as a possible secret,
which leads to strategies, which are able to block program
execution by not providing further input on a channel. The
resulting non-interference property is very restrictive. Nearly
all programs receiving intermediate secret messages as inputs
followed by low outputs are insecure. Take, for example the
program read(x ← α);read(y ← β);write(1 → γ),
where an event on channel γ reveals that an event on channel
β previously was provided to the program. If the presence of
events on channel β is high, the observational communication
has to be equivalent, independent from communication on this
channel.

By using cooperative environments, we make the non-
interference property more applicable in cases where we
have some reason to assume a cooperative environment.
More concretely, we employ contracts which are assumed
by component-bases system engineering to hold for every
environment the component is deployed in. While the call of a
service is still considered a possible secret, the termination of
a called service is not and therefore the program can not be

blocked by receiving the service termination as a high input.
After composition of components, the fact that a service is
called still is a secret and can not be observed by an attacker.

Further, we extend the work in [3] with declassification
of information, according to Sabelfeld et al. [4] in the what-
dimension. By using equivalence relations for the specification
of secret information instead of previously used type systems.
This extension allows us to specify parts of communicated
parameters as high and low and preserve this specification
over interface boundaries between components. Our extension
is a generalization of the three dimension of high and low
for communicated content and the secrecy of the existance
of a message in the sense that we can express specifications
according to the type system proposed by Rafnsson et al. with
our equivalence relations. Nevertheless, the compositionality
proof performed in [3] does not hold in our more general case,
so we provide a new compositionality proof.

Vanhoef et al. [15] provide a similar notion of declassification
which allows declassification of partial information using a
project function for specification. Vanhoef et al. additionally
allow the declassification of aggregated information over a
history of events, making the declassification policy stateful.
Their work builds on results by Sabelfeld and Sands [16], who
allow the specification of information flow properties using
partial equivalence relations for sequential batch programs.
For enforcement of the policy, they propose a dynamic
approach based on secure multi-execution, but do not provide
a compositionality result for their non-interference property.

In contrast to Vanhoef et al. we aim for re-usability of
components in different contexts, possibly with several different
security lattices. In this setting a dynamic enforcement of non-
interference using secure multi-execution is not practical, since
we expect the cost of multi-execution to be too high in this case.
We aim for a static and reusable analysis of components, which
makes a compositional non-interference property necessary.
Therefore, we prove compositionality for our extension of
the strategy-based approach by Rafnsson et al. In contrast to
Sabelfeld and Sands, we consider interactive programs instead
of batch programs.

When considering compositionality of services, we extend
non-interference for batch programs with intermediate message
passing. A discussion on non-interference in batch programs
can be found in [17]–[20]. Here two runs of a program started in
two equivalent, but underspecified, initial states are compared.
The program is secure, if the terminal states of both runs are
equivalent with respect to some specification of secrets in the
state. Sabelfeld and Sands [16] propose the PER model for
information declassification using partial equivalence relations,
but without interactive message passing with the environment.
We extend this notion of non-interference for batch programs
with intermediate event communication and we relate it
to non-interference for interactive programs by providing a
compositionality result for components, which states that non-
interferent batch programs result in non-interferent interactive
programs in the case of components.

VIII. CONCLUSION

We have presented a framework to express non-interference
for interactive programs, allowing what-declassification of
information provided as input messages. Further, we have
applied this framework to components, where components are
defined as a sequential composition of sequential, terminating,
and deterministic programs. The component model is inspired
by the Java Enterprise Edition, a common framework for
implementing distributed enterprise systems, And assumptions
made on the environment of a component are inspired by
Szyperski-like components. In Theorem 3 we have shown
compositionality of non-interference in the presence of a cooper-
ative environment. To analyze non-interference for components,
we provide a non-interference property for services and in
Theorem 4 we show compositionality of non-interference of
services with shared states within a component.

Future work will be concerned with different topics. For one,
requiring components to provide their services sequentially is a
limitation in a more general case. We would like to develop non-
interference properties for services executed in parallel within
one component, while sharing a common state. A modification
of the rely-guarantee approach [21]–[23] seems promising
as a tool to limit program analysis to single services plus a
compositionality condition. Parallel execution of services would
also allow us to lift the restriction of non-reentrant components.

Further, Theorem 4 requires services within one component
to be non-interferent with respect to one and the same equiva-
lence relation on states. We expect it to be tedious, especially
when using theorem prover approaches for enforcement, to
find an equivalence relation which is suitable for all services
within one component. We assume that a service is in general
non-interferent with respect to an entire set of equivalence
relations, which can be described in an abstract way. We will
analyze how we can make use of this observation in order
to show non-interference of services with respect to a set
of equivalence relations, while showing compositionality of
services by checking simpler conditions on compatibility of
the sets of equivalence relations of different services.

And finally, we plan to develop and implement analysis
techniques for of services (cf. Definition 13) on code level.
Type systems are not precise enough for real world programs,
since semantic declassification as defined in this paper is hard
to cover with type systems. Instead, there is promising work
using theorem provers to analyze non-interference of programs
with what-declassification (e.g., [24], [25]). These theorem
provers support a rich subset of Java and therefore can analyze
programs implemented in real world programming languages.
Since the theorem prover approaches do not support reasoning
about programs with message passing, it is crucial to lift this
limitation.

REFERENCES

[1] C. Szyperski, D. Gruntz, and S. Murer, Component Software: Beyond
Object-oriented Programming. Pearson Education, 2002.

[2] EJB 3.1 Expert Group, JSR 318: Enterprise JavaBeans, Version 3.1,
Sun Microsystems, 2009. [Online]. Available: https://jcp.org/aboutJava/
communityprocess/final/jsr318/

https://jcp.org/aboutJava/communityprocess/final/jsr318/
https://jcp.org/aboutJava/communityprocess/final/jsr318/

[3] W. Rafnsson, D. Hedin, and A. Sabelfeld, “Securing interactive programs,”
in 25th IEEE Computer Security Foundations Symposium, CSF 2012,
Cambridge, MA, USA, June 25-27, 2012, 2012, pp. 293–307.

[4] A. Sabelfeld and D. Sands, “Declassification: Dimensions and principles,”
J. Comput. Secur., vol. 17, no. 5, pp. 517–548, Oct. 2009.

[5] D. Clark and S. Hunt, “Non-interference for deterministic interactive
programs,” in Formal Aspects in Security and Trust, ser. Lecture Notes
in Computer Science, P. Degano, J. Guttman, and F. Martinelli, Eds.
Springer Berlin Heidelberg, 2009, vol. 5491, pp. 50–66.

[6] E. Cohen, “Information transmission in computational systems,” SIGOPS
Oper. Syst. Rev., vol. 11, no. 5, pp. 133–139, Nov. 1977.

[7] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in IEEE Symposium on Security and Privacy, 1982, pp. 11–20.

[8] H. Mantel, “Possibilistic definitions of security – an assembly kit,” in
13th IEEE Computer Security Foundations Workshop (CSFW ’00), 2000,
pp. 185–199.

[9] A. Sabelfeld and H. Mantel, “Static Confidentiality Enforcement for
Distributed Programs,” in Static Analysis, ser. Lecture Notes in Computer
Science, M. Hermenegildo and G. Puebla, Eds. Springer Berlin
Heidelberg, 2002, vol. 2477, pp. 376–394.

[10] R. Focardi and R. Gorrieri, “A classification of security properties for
process algebras,” Journal of Computer Security, vol. 3, pp. 5–33, 1994.

[11] P. Y. A. Ryan and S. A. Schneider, “Process algebra and non-interference.”
in CSFW. IEEE Computer Society, 1999, pp. 214–227.

[12] F. Pottier, “A simple view of type-secure information flow in the pi-
calculus,” in Proceedings of the 15th IEEE Workshop on Computer
Security Foundations, ser. CSFW ’02. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 320–.

[13] J. T. Wittbold and D. M. Johnson, “Information flow in nondeterministic
systems,” in IEEE Symposium on Security and Privacy. IEEE Computer
Society, 1990, pp. 144–161.

[14] K. R. O’Neill, M. R. Clarkson, and S. Chong, “Information-flow security
for interactive programs,” in Proceedings of the 19th IEEE Computer
Security Foundations Workshop. Piscataway, NJ, USA: IEEE Press, Jul.
2006, pp. 190–201.

[15] M. Vanhoef, W. De Groef, D. Devriese, F. Piessens, and T. Rezk, “Stateful
declassification policies for event-driven programs,” in 2014 IEEE 27th
Computer Security Foundations Symposium (CSF 2014). IEEE, July
2014, pp. 293–307.

[16] A. Sabelfeld and D. Sands, “A PER model of secure information flow in
sequential programs,” Higher-Order and Symbolic Computation, vol. 14,
no. 1, pp. 59–91, 2001.

[17] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow
by self-composition,” in 17th IEEE Computer Security Foundations
Workshop, (CSFW-17 2004), 28-30 June 2004, Pacific Grove, CA, USA,
2004, pp. 100–114.

[18] R. Joshi and K. R. M. Leino, “A semantic approach to secure information
flow,” Sci. Comput. Program., vol. 37, no. 1-3, pp. 113–138, 2000.

[19] T. Amtoft and A. Banerjee, “Information flow analysis in logical form,”
in Static Analysis, ser. Lecture Notes in Computer Science, R. Giacobazzi,
Ed. Springer Berlin Heidelberg, 2004, vol. 3148, pp. 100–115.

[20] Á. Darvas, R. Hähnle, and D. Sands, “A theorem proving approach to
analysis of secure information flow,” in Security in Pervasive Computing,
Second International Conference, SPC 2005, Boppard, Germany, April
6-8, 2005, Proceedings, 2005, pp. 193–209.

[21] C. B. Jones, “Tentative steps toward a development method for interfering
programs,” ACM Trans. Program. Lang. Syst., vol. 5, no. 4, pp. 596–619,
Oct. 1983.

[22] C. Stirling, “A generalization of Owicki-Gries’s Hoare logic for a
concurrent while language,” Theoretical Computer Science, vol. 58,
no. 1–3, pp. 347 – 359, 1988.

[23] K. Stølen, “A method for the development of totally correct shared-state
parallel programs,” in CONCUR ’91, 2nd International Conference on
Concurrency Theory, Amsterdam, The Netherlands, August 26-29, 1991,
Proceedings, 1991, pp. 510–525.

[24] C. Scheben and P. H. Schmitt, “Verification of information flow properties
of Java programs without approximations,” in Formal Verification of
Object-Oriented Software - International Conference, FoVeOOS 2011,
Turin, Italy, October 5-7, 2011, Revised Selected Papers, 2011, pp. 232–
249.

[25] D. Grahl, “Deductive verification of concurrent programs and its
application to secure information flow for Java,” Ph.D. dissertation,
Karlsruhe Institute of Technology, 29 Oct. 2015.

APPENDIX

Before we provide the proofs, we introduce some notions
and show some supporting lemmas.

A. Preliminaries

The following lemmas allow some shortcuts in the arguments
in the proofs to come.

Lemma 6. Given ω, ω′ ∈ Strat. Then, the following notions
are equivalent:

1) ω ∼ ω′
2) ∀m � �, t·ω(t) B [m] = ∅ ⇔ ω′(t) B [m] = ∅
3) ∀t, t′· t ∼ t′ =⇒ ω(t) ∼ ω′(t′)

Proof for Lemma 6. 1 ⇔ 2:
Assume ω ∼ ω′. Then, by Definition 3, ∀t·ω(t) ∼ ω′(t),
which is by definition of low-projection ∀t· {[m] | ∃n ∼ m ∈
ω(t)∧m /∈ [�]} = {[m] | ∃n ∼ m ∈ ω′(t)∧m /∈ [�]}, which
is equal to ∀t, [m] 6= [�]·ω(t) B [m] = ∅ ⇔ ω′(t) B [m]
which is equivalent to ∀[m], t· [m] 6= [�] ⇔ ω(t) B [m] ∼
ω′(t) B [m]

1 =⇒ 3:
ω ∼ ω′ ∧ t ∼ t′ =⇒ ω(t) ∼ ω(t′) ∧ ω′(t) ∼ ω′(t′) Since ω
and ω′ are strategies. ω ∼ ω′, therefore ω(t) ∼ ω′(t). And by
transititvity: ω(t) ∼ ω′(t) ∼ ω′(t′)
3 =⇒ 1:
∀t ∼ t′·ω(t) ∼ ω′(t′), so especially ∀t·ω(t) ∼ ω′(t) and
by definition of ∼ on sets of messages: ∀t·ω(t)�`= ω′(t)�`
which is the definition of ∼ on strategies. ♦

We say a trace t contains a message m, written m ∈ t, iff
∃t′, t′′· t′ama t′′ = t.

We say a message m ∈ M is visible, if m � �. The term
t B � yields a trace without invisible messages in t. The
formal definition is

〈〉 B � := 〈〉

(ma t) B � :=

{
t B � if m ∼ �
ma(t B �)otherwise

If two traces are equivalent, then the amount of visible
messages in both traces is equal.

Lemma 7. ∀t ∼ t′· |t B �|=|t′ B �|

Proof. Follows from definition of equivalence of traces and
the definition of the filter operation for visible messages. ♦

We frequently argue about interleavings in the following
proofs. So, t1 9t t2, iff t is an interleaving of t1 and t2.

As a shortcut, we define prefix equivalence, written s ≤∼ t
as ∃t1 ≤ t· s ∼ t1.

Also, an LTS is input neutral for equivalent and visible
messages.

Lemma 8. Given LTS p and m,m′ ∈ I with m � � and
m′ ∼ m. Then p m−→ =⇒ p

m′

−−→.

Proof for Lemma 8. Follows directly from definition of LTS
and restrictions on ∼. ♦

Non-interference of an LTS does not depend on feeding of
invisible messages. If we can find an attack on an LTS, then
there also exists an attack with a strategy that does not provide
any secret input.

Lemma 9. If (ω1, ω2, t) is an attack on p, then, for some ω′2
with ∀t·ω′2(t) = ω2(t) \ [�], (ω1, ω

′
2, t) is an attack on p.

Proof for Lemma 9. ∀t′·ω′2 |= t′ =⇒ ω2 |= t. Therefore,
if there is no trace with ω2 |= p

t−→, no t can exist with
ω′2 |= p

t−→. ♦

B. Proofs omitted in the main paper

Proof for Theorem 2. We proof pA ‖ pB /∈ Strat-NI =⇒
pA, pB /∈ Strat-NI.

Then there exists an attack (ω1, ω2, t) on pA ‖ pB . Espe-
cially, we know by Lemma 9 that ω2 does not produce invisible
input.

Assume towards contradiction pA, pB ∈ Strat-NI. Then
by definition we have for k ∈ {A,B}: ∀ω1k, ω2k ∈
Strat·ω1k ∼ ω2k =⇒ ∀t1k·ω1k |= pk

t1k−−→ =⇒
∃t2k·ω2k |= pk

t2k−−→ ∧t1k ∼ t2k
Select t1A, t1B such that t is an interleaving of t1A and t1B

and pA
t1A−−→ and sB

t1B−−→.
We now construct strategies ω1A, ω2A, ω1B , ω2b such that

ω1A ∼ ω2A and ω1B ∼ ω2B .
Let j ∈ {1, 2}, k, k′ ∈ {A,B}, k 6= k′.

ωjk(t) := {m | ∃t′1t′k, t′k′ · t ∼ t′k ∧ t′k 9t′1 t
′
k′

∧ t′kam ≤∼ t1k ∧ pk
t′kam−−−→

∧ t′k′ ≤∼ t1k′ ∧ pk′
t′
k′−−→

∧ t′1am ≤∼ t1 ∧ ωj |= pA ‖ pB
t′1am−−−→}

We have to show ωjk ∈ Strat, ω1k ∼ ω2k, ω1A |=
pA

t1A−−→ and ω1B |= pB
t1B−−→ bevor we show that this

contradicts pA, pB ∈ Strat.
Proof for ωjk ∈ Strat:

Let t ∼ t′. Assume m ∈ ωjk(t). Let t′1, t
′
k, t
′
k′ be the witnesses

for m above. Since t ∼ t′ and t ∼ t′k also t′ ∼ t′k. Therefore
t′1, t

′
k, t
′
k′ is a witness for t′ and m ∈ ωjk(t′) and ωjk(t) ∼

ωjk(t
′).

Proof for ω1k ∼ ω2k:
Let t be arbitrary. Assume w.l.g. m ∈ ω1k(t) and (m � �).

Let t′1, t
′
kt
′
k′ be the witness for m in the definition of ω1k.

Since ωj |= pA ‖ pB
t′1am−−−→ and ω1 ∼ ω2 there exists an m′ ∈

ω2(t
′
1) with m′ ∼ m. By input neutrality, pA ‖ pB

t′1am
′

−−−→.
Since t′kam ∼ t′kam

′, also t′kam
′ ≤∼ t1k. Similar since

t′1 am ∼ t′1 am
′, also t′1 am

′ ≤∼ t1. Lines 1 and 3 from
the definition are independent from parameter j, therefore
m′ ∈ ω2k(t).

Proof for ω1A |= pA
t1A−−→:

We show that ω1A |= pA
t1A−−→ We already have pA

t1A−−→
, pB

t1B−−→, t1A 9t1 t1B and ω1 |= pA ‖ pB
t1−→.

Induction over n =|t1A B I|
n = 0: Since pA

t1A−−→ and t1A has no inputs, trivially it holds
ω1A |= pA

t1A−−→. n + 1, given n: Assume ω1A |= pA
t1A−−→

with |t′1A B I|= n. For some t′′1A with |t′′1A B I|= 0 and some
m ∈ I we get t1A = t′1Aama t

′′
1A.

For some t′1B ≤ t1B and t′1 ≤ t1 we have t′1A 9t′1 t
′
2B that

ω1A |= pA ‖ pB
t′1am−−−→. By pA

t1A−−→ and pB
t1B−−→, we get

pA
t′1Aam−−−−→ Since u ≤ u′ =⇒ u ≤∼ u′, we get by definition

of ω1A: m ∈ ω1A(t
′
1A). Therefore ω1A |= pA

t′1Aam−−−−→. And

since t′′1A does not have inputs, ω1A |= pA
t′1Aamat′′1A−−−−−−−→.

The proof for ω1B |= pB
t1B−−→ can be obtained by swapping

A and B.

Now, we can show that pA /∈ Strat-NI or pB /∈ Strat-NI

We have assumed towards contradiction that pA, pB ∈
Strat-NI. Since ω1k ∼ ω2k, there exist t1k ∼ t2k such that
ω2k |= pk

t2k−−→. We now show that there exists t2 ∼ t1 with
ω2 |= pA ‖ sB

t2−→ which contradicts the original assumption.

We assume |t2k B I|> 0. Let t2k = t′2k amk a t′′2k with
|t′′2k B I|= 0 and mk ∈ I. By definition of ω2k, we have
mA ∈ ω2A(t

′
2A) and mB ∈ ω2B(t

′
2B). Therefore, there exist

tA1 , t
B
1 such that tA1 amA ≤∼ t1 and tB1 amB ≤∼ t1 and

ω2 |= pA ‖ pB
tA1amA−−−−→ and ω2 |= pA ‖ pB

tB1amB−−−−→. Since
m ∈ ω2(t) =⇒ m � �, we know t1

AamA B I B � =
t1
AamA B I and tB1 amB B I B � = tB1 amB B I
By definition, we either get tA1 amA ≤∼ tB1 amB ≤∼ t1

or tB1 amB ≤∼ tA1 amA ≤∼ t1. W.l.g. tB1 amB ≤∼ tA1 a
mA ≤∼ t1. Therefore, we get tA1 amA B I ∼ t1 B I. Thus,
there also exists t′1, t

′′
1 such that t′1a t

′′
1 = t1 and t′′1 B I ∼ 〈〉

and t′1 ∼ tA1 amA. Now there is some u′′1 with u′′1 ∼ t′′1 and

t′′2A 9u′′
1
t′′2B . Since |u′′1 B I|= 0 and ω2 |= (pA ‖ pB)

tA1amA−−−−→,

we also get ω2 |= (pA ‖ pB)
tA1amAau

′′
1−−−−−−−→. But tA1 amAau′′1 ∼

t1, which contradicts the original assumption in this proof.
Thus, either pA /∈ Strat-NI or pB /∈ Strat-NI ♦

Proof for Theorem 3. We proof the contrapositive. Let d /∈
COOPd-NI. Therefore, it exists an attack on d: (ω1, ω2, t1) with
ω1, ω2 ∈ COOPd, ω1 |= dLTS

t1−→ and ∀t2·ω2 |= dLTS
t2−→

=⇒ (t2 � t1).

Then, there exist traces t1A, t1B such that (t1A|[s]|t1B) = t1
and pALTS

t1A−−→ and pBLTS

t1B−−→.

As in proof for Theorem 2, we construct strategies which
then result in attacks on pA or pB .

First we construct strategies for pA and pB :

Let j ∈ {1, 2}, k, k′ ∈ {A,B}, k 6= k′. We define strategies

ωjk:

ω′jk(t) := {m | ∃t′1, t′k, t′k′ · t ∼ t′k ∧ t′k|[s]|t′k′ = t′1

∧ t′kam ≤∼ t1k ∧ sk
t′kam−−−→

∧ t′k′ ≤∼ t1k′ ∧ sk′
t′
k′−−→

∧ t′1am ≤∼ t1 ∧ ωj |= pA ‖ pB
t′1am−−−→}

We extend the strategies ωjk with the terminating events
needed to make the strategies cooperative.

ωjk(t) := ω′jk(t)∪
{m | ∃t′, t′′, v, w, serv· t = t′aIni(serv)!va t′∧
(Fin(serv)?w′ /∈ t′) ∧ Ini(serv)!v ∼ �∧

m = Fin(serv)?w ∧m ∼ � ∧ pk
tam−−→ ∧

not(∃u,w′′· (Fin(serv)?w′ /∈ u)∧

Fin(serv)?w′ ∈ ω′jk(tau) ∧ ω′jk(t) |= pk
tau−−→ ∧)}

We have to show ωjk ∈ Strat, ωjk ∈ COOPpk and ω1k ∼
ω2k.

Proof for ωjk ∈ Strat:
See proof of Theorem 2.

Proof for ωjk ∈ COOPpk :
ωjk ∈ Strat, so it is left to show two properties from
Definition 10
Definition 10, Lines 2, 3):
We have to show

∀t, t′, serv, σ, v· serv ∈ reqc∧

ωjk |= pk
taIni(serv)!vat′−−−−−−−−−−→ ∧Fin(serv) /∈ t′

=⇒ ∃t′′·ωjk |= pk
taIni(serv)!vat′at′′−−−−−−−−−−−−→ ∧

Fin(serv)?v′ ∈ ωjk(taIni(serv)!va t′a t′′)

Select t, t′, serv, v such that serv ∈ reqpk ,

ωjk |= pk
taIni(serv)!vat′−−−−−−−−−−→, Fin(serv) /∈ t′.

Case 1: k = A Since ωjA |= sA
taIni(serv)!vat′−−−−−−−−−−→, there

exists witnesses t′1, t
′
k, t
′
A′ , such that taIni(serv)!va t′ ∼ t′A.

Therefore, it exists t′A = u a Ini(serv)!v′ a u′ such that
t ∼ u, Ini(serv)!v ∼ Ini(serv)!v′, t′ ∼ u′. Therefore, u′ can
contain Fin(serv)!w only if Fin(serv)!w ∼ �.

Case 1.1: (Ini(serv)!v � �):
Since ωj ∈ COOPd and (Ini(serv)!v � �) (Second condition
of Definition 10), Fin(serv)!w is not in u’. Again, since ωj ∈
COOPd, there exists u′′, such that ωj |= d

uaIni(serv)!wau′au′′

−−−−−−−−−−−−−→
∧Fin(serv)?w′ ∈ ωj(u a Ini(serv)!w a u′ a u′′).
Also, due to ωj ∈ COOPd and (Ini(serv)!w � �), also
(Fin(serv)?w′ � �). Similar to above, we can again split
this trace in uA, uB such that it is accepted by pA. Since
u ∼ t, Ini(serv)!v ∼ Ini(serv)!v′, t′ ∼ u′, t′1, t

′
k, t
′
A′ is also

a witness for Fin(serv)!w′ ∈ ωjA
Case 1.2: Ini(serv)!v ∼ �

Due to the extension of ω′jk to ωjk as constructed above, there
is a trace u such that the terminating message can be consumed.

Case 2: k = B
Proof is similar to Casees 1.1 and 1.2.

Definition 10, lines 4, 6):

∀t, t′, serv, σ· serv ∈ reqc ∧ ωjk |= pk
taIni(serv)!vat′−−−−−−−−−−→ ∧

Fin(serv) /∈ t′ ∧ Fin(?)v′ ∈ ωjk(taIni(serv)!va t′)

=⇒ (Ini(serv)!v ∼ �⇔ Fin(serv)?v′ ∼ �)
This follows by construction of ωjk. ω′jk is constructed from

ωj , it is ensured that visible calls are terminated visible. Since
ω′jk is only extended with invisible termination events, if the
original call was also invisible, the claim holds.

Proof for ω1k ∼ ω2k:
See proof of Theorem 2. The definition of ω′jk is basically
the same. Note that the extension to ωjk only adds invisible
events, therefore ω′jk ∼ ωjk.

Form the four ωjk,there results an attack pA or pB similair
to the proof for Theorem 2. ♦

Proof for Lemma 5. Let t1 with first message m be arbitrary.
Case 1: m ∼ �. Since serv is non-interferent, serv is also

visibility-preserving. By definition Definition 12 t1 ∼ 〈〉 and
σ1 ∼ σ′1.

Case 2: m � �.
For all traces t′1 ≤ t1 exists a trace t2 such that t′1 ∼ t′2 and

ω2〈handlerserv;σ2〉
t′2−→. Induction over n =|t′1|.

Start: n = 1. Since m is visible, ω1 ∼ ω2 and m ∈ ω1(p1)
and p1 ∼ p2, there exists m2 ∈ ω2(p2) with m ∼ m2.
Therefore t′2 = m2.

Step: n + 1 t′2 ∼ t′1. t′1am ≤ t1. Case 2.1: m ∼ �. t′2 is
the witness.

Case 2.2: m � �.
Case 2.2a: m ∈ I. Therefore t′1 = t′′1 a o1, o1 ∈ O Since

ω1 ∈ COOP, (o1 � �). Since t′1 ∼ t′2 and ω2 ∈ COOP, t′2 =
t′′2 a o2, (o2 � �). Again, since m ∈ ω1(p1a t′1) and ω1 ∼
ω2, there exists m′ ∈ ω2(p2 a t′2) with m′ ∼ m. Therefore

t′1am ∼ t′2am′ and ω2 |= 〈handlerserv;σ2〉
t′2am

′

−−−→.
Case 2.2b: m ∈ O. t′1 ∼ t′2, thus t′1 a m B I ∼ t′2 B

I. Since serv is non-interferent and σ1 ≈ σ2, there exists
t′′2 ,m

′ with t′2 a t
′′
2 ≤ t2 with t′1 am ∼ t′2 am

′ a t′′2 and

〈handlerserv;σ2〉
t′2am

′

−−−→. If m′ visible, m′ ∼ m and m2 ∈
O and therefore ω2 |= 〈handlerserv;σ2〉

t′2am
′

−−−→. If m′ ∼
� and m′ ∈ O, then, ω2 ∈ COOP there exists m′′ ∼ �
with m′′ ∈ ω2(p2 a t′2 a m′ a m′′) and therefore ω2 |=
〈handlerserv;σ2〉

t′2am
′am′′

−−−−−−→. It holds t′1 a m B I ∼ t′2 a
m′am′′ B I. Since serv is terminating, t′2 := t′2am

′am′′.
Recursively case 2.2b ensures m′ is visible. Therefore t′1 a

m ∼ t′2am′ and ω2 |= 〈handlerserv;σ2〉
t′2am

′

−−−→
Since t1 terminates on a visible output (Definition 7) and

t2 ∼ t1, t2 is a terminating trace. Since serv is non-interferent
σ′1 ∼ σ′2 ♦

Proof for Theorem 4. Instead, we show the contrapositive, i.e.
we assume an attack to exist and show that this leads to a
contradiction to c ∈ (∼,≈)-NI.

Given a component c and a COOPc − Attack (ω1, ω2, t)

such that ω1, ω2 ∈ COOPc, ω1 ∼ ω2, ω1 |= 〈cbody;σ0〉
t−→ and

∀t′·ω2 |= 〈cbody;σ0〉
t′−→ =⇒ (t � t′).

Select t1 ≤ t the longest prefix of t for which an equivalent
trace for ω2 exists. Among all possible candidates for ω2, select
the one, which is equivalent to t1 and has the most visible
events in the trace. And finally, among those, we select the
longest possible trace, meaning, there are no invisible events
following t2 for c under ω2.

Formally:
1) t1 ≤ t∧∀t′ ≤ t· ∃t′′ ∼ t′·ω2 |= 〈cbody;σ0〉

t′′−→ =⇒ |t′|≤
|t1|.

2) t2 ∼ t1∧
3) ω2 |= 〈cbody;σ0〉

t2−→
4) ∀t′ ≤∼ t·ω2 |= 〈cbody;σ0〉

t′−→ =⇒ |t′ B �|≤|t2 B �|
5) ∀t2 ≤ t′ ∧ t′ ∼ t1·ω2 |= 〈cbody;σ0〉

t′−→ =⇒ t′ = t2
We split ti, i ∈ {1, 2} in tia and tib such that tia finishes

with a termiantion of a provided service and tib does not
terminate any service provided by c.
ti =: tia a tib, i ∈ {1, 2} such that 〈cbody;σ0〉

tia−−→
〈cbody;σi〉 and 〈servibody ;σi〉

tib−−→ 〈resti;σ′i〉.
This means, that there is a next event m in t and some event

m′ which might be consumed by c and provided by ω2. I.e.
let m,m′ such that t1am ≤ t and 〈rest2;σ′2〉

m′

−−→.
The event m′ can not be invisible, because otherwise there

would have existed a longer trace t2, such that t2 satisfies the
conditions above.

We make a case distinction over m ∈ I and m ∈ O and
show that both cases result in a contradiction to the original
assumption.

Case 1: m ∈ I, m′ is visible: Since ω1 ∼ ω2 and m visible,
we know that there exists an m′ ∈ ω2(t2) such that m′ ∼ m.
Since ω2 ∈ COOPc, we know that ω2 can not block execution
on visible input, bacause, if m is a service call, then m′ is a call
to the same service and otherwise m and m′ are termination
events on required services, which must not be blocked by
service strategies.

So there exists a trace t′2 such that t′2 ∼ t1 and ω2 |=
〈cbody;σ0〉

t′2−→, i.e. ω2 |= 〈cbody;σ0〉
t′2am

′

−−−→. But this means
due to Lemma 7, that |t2′ a m′ B �|>|t2 B �|, which
contradicts the construction of t2.

Case 2: m ∈ O: First we show, that m′ ∈ O. Since
serv1 is terminating, there exists a trace t1a ≤ t′1 such

that 〈serv1body ;σ1〉
t′1−→ 〈SKIP ;σ′′1 〉. Since serv1 ∈ SNI≈∼

and, by induction, σ1 ≈ σ2, we know that for all traces

t′2 such that 〈serv2body ;σ2〉
t′2−→ 〈SKIP ;σ′′2 〉 it holds that

t1
′ B I ∼ t2′ B I =⇒ t′1 ∼ t′2
serv2 can not be blocked due to missing termination of a

called service. Therefore, if m′ ∈ I, m ∈ Ini(provc). Since
m ∈ O, (t1b 6= 〈〉), but t1b ∼ 〈〉, especially the initial message
is invisible. This contradicts Definition 12.

Therefore m′ ∈ O and by definition ω2 |=
〈cbody;σ0〉

t2am
′

−−−→. Due to the construction of t2, m′ is visible.

According to Definition 8, there exists a trace t′2, such that
t2
′ B I ∼ t1′ B I
Therefore, t′2 ∼ t′1, and it has to hold that m′ ∼ m, therefore

t1am ∼ t2am′, which is a contradiction to the construction
of t2.

♦

	2015,10_Titelbl.pdf
	services.pdf
	Introduction
	Contribution
	Outline

	Computational Model
	Information-Flow in Labeled Transition Systems
	Security Specification of Messages and Values
	Strategies
	Non-Interference
	Non-interference for Deterministic Strategies
	Parallel Compositionality

	Components and Compositions
	Services and Components
	Composition
	Cooperative Strategies

	Non-interference for Components
	NI for services
	Related Work
	Conclusion
	References
	Appendix
	Preliminaries
	Proofs omitted in the main paper

