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1 Chapter 1

Introduction: Quantum interference and
ring currents in nanoscopic physics

In the physical nanosciences, sending a current through a device is a common way to probe
the internal structure, e.g., electrical currents serve as sensors in scanning tunneling micro-
scopes (STM)[1, 2] and mechanically controllable break junctions (MCBJ)[3, 4]. In molecular
electronics[5], they operate single molecular switches[6–11] as well as molecular motors[12–16].
For such applications it is important to understand how current flows through a device: Sensing
can be efficient only if the signatures of the measured current-voltage characteristics (IV) can be
related reliably to their microscopic origin. Likewise, a controlled device operation and a system-
atic improvement of its performance also relies on a precise knowledge about the driving currents.
For instance, the dissipation of heat is closely intertwined with the local current densities. To
establish the required microscopic understanding, a good part of the theoretical nanosciences has
always dealt with the question of how to interpret the experimental IV in terms of the detailed
physics that governs at the nanoscale.

Current flow at the nanoscale differs qualitatively from its classical counterparts due to quantum
interference. Such quantum interference effects can significantly enhance or reduce the current
through quantum structures. Where the classical Kirchhoff’s circuit law predicts a current increase
by a factor of two for two identical paths, constructive interference allows for enhancements up
to a factor four. In non-identical paths, destructive quantum interference is possible, reducing
the resulting current by orders of magnitude. Indeed, quantum interference effects in transport
through single molecules has been a topic intensively investigated over the last decade, both
experimentally[17–28] and theoretically[29–40]. Both, constructive and destructive interference
effects were recently shown to survive at room temperature: constructive interference enhancement
beyond Kirchhoff’s circuit law has been demonstrated in a single molecule with two parallel
connected benzene rings[27, 28], whereas destructive interference was measured in, e.g., anthracene
(three benzene rings) with additionally adsorbed oxygen atoms providing destructive interference
paths[26, 40].

Even in a single atom ring, e.g. in benzene, quantum interference can be experimentally observed.
Much lower conductance values are measured for meta-connected benzene rings (with asymmetric

1



1 Introduction: Quantum interference and ring currents in nanoscopic physics

current paths) as compared to para-connected rings (with symmetric current paths)[17–24]. The
destructive quantum interference has been explained in terms of non-interacting tight-binding
models[33–39]. Interestingly, such tight-binding studies also exhibit (“bond”) currents circulating
around the carbon ring[36, 38]. Even though circulating (ring) currents do not contribute to the
total transport current they are important to analyze: (a) the magnitude of the ring currents can
significantly exceed the total current and (b) ring currents induce local magnetic fields which may
influence electron and nuclear spins as well as the electron motion itself.

In this thesis, we explicitly investigate the appearance of such ring currents and more generally
current patterns in transport through mesoscopic grapheneA ribbons. In other words, we ana-
lyze the spatial structure of the scattering states. So far, explicit investigations of the spatial
dependence of the scattering states with their associated local current patterns are quite rare.
The reason is, presumably, that the local current density is not easily resolved, experimentally.
(However, related suggestions will be made later in this work.) This is unfortunate since current
patterns turn out to exhibit a very rich substructure that originates from quantum interference.
Figure 1.1 offers an illustration. The current patterns feature, e.g., small current vortices that are
related to orbital magnetism.

Indeed, ring currents in ring structures have been investigated already for a long time. For instance,
ring currents induced by magnetic fields applied to aromatic molecules is a field on its own in
quantum chemistry[41–43]. This goes back to 1936, when Pauling[44] and Lonsdale[45] calculated
the diamagnetic response in “benzene and other aromatic hydrocarbon molecules [assuming] that
the pz electrons (one per aromatic carbon atom) are free to move from carbon atom to adjacent
carbon atom under the influence of the impressed fields”[44]. The induced ring currents generate
a magnetic field which counteracts the external magnetic field (Lenz’s law). In the late 1960s, the

Figure 1.1: Simulated local current density (integrated over the out-of-plane direction and normalized
to the spatial average current) induced by an applied bias voltage Vbias = 250mV in a hydrogenated
graphene ribbon. Some interesting current paths are drawn in the picture for illustration, e.g., local
current vortices exceeding the spatial average current by orders of magnitude (see red regions). Plot
shows current amplitude (color), current direction (arrows), carbon atoms (gray crosses) and hydrogen
atoms (red crosses).
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interaction of these shielding currents with the nuclear spin of hydrogen atoms has been measured
by NMR experiments[46–51]. Since the 1990s, ab initio studies became available which showed
the spatial structure of the induced current density[52–57].

Diamagnetic currents induced by magnetic fields are not restricted to small molecules; they exist in
all structures with highly mobile electrons, e.g., also in graphene[58], in fullerenes[59], and also in
conducting metal rings. The latter are often used to investigate the consequences of the Aharonov-
Bohm (AB) effect[60]. (An electron picks up a phase when encircling a magnetic flux.) To allow
for interference effects, the phase coherence length must be larger than the dimensions of the
ring. Therefore, one needs either very small or clean samples or suppression of phase relaxation
by other means, e.g., by superconductivity in superconducting rings. Including two Josephson
junctions[61], such rings serve as superconducting quantum interference devices (SQUID)[62–64].
The induced ring currents allow for the measurement of very tiny changes in applied magnetic
fields. Superconductivity is a topic on its own which we do not discuss in this thesis, but Büttiker
et al. realized already in 1983, that also ring structures made of non-superconducting materials
can be driven by external magnetic fields: “small [...] rings of normal metal, driven by an external
magnetic flux, act like superconducting rings with a Josephson junction, except that 2e is replaced
by e”[65, 66]. Soon after, in 1985, the so called AB oscillations have been observed in normal metal
rings, i.e., in a gold ring of diameter d ≈ 800nm [67]. (Up to now, AB rings have been fabricated
from various materials, e.g., also from graphene[68].) In the presence of an external magnetic field,
non-superconducting rings can also carry persistent currents: dissipationless circulating electron
currents that do not require an external voltage[69]. The electronic groundstate of the ring carries
a current. Time-reversal invariance is broken by the external magnetic field. The difference to
superconducting ring currents is that the ring currents vanish for zero external field. Evidence for
such persistent currents have been observed for low temperatures, T ≈ 10mK, in 1990/91 for a
array of mesoscopic copper rings[70] as well as for an isolated gold loop[71].

In this thesis, instead of applying a magnetic field to induce ring currents, we apply an electric
field, i.e., a dc-bias voltage. This produces local current vortices, which in-turn induce local
magnetic fields. An established concept to calculate transport currents based on a microscopic
system description is the Landauer-Büttiker formalism[72–74]. It describes charge transport as
a sequence of scattering processes of (very weakly) interacting particles and applies in situations
where transport can safely be assumed to be phase coherent. The charming aspect of this approach
is that it reduces the transmission calculation for complicated nanostructures to the calculation
of the scattering asymptotics, incarnated in (usually a small number of) transmission coefficients.
As is often the case, reducing the complexity in such a way also eliminates fundamental physics;
in this case the spatial structure of the electron current density j(r), which describes the pathway
through the device.

To assess the local currents, the Landauer-Büttiker formalism is often reformulated in terms of non-
equilibrium Green’s function techniques (NEGF)[75, 76]. Indeed, tight-binding (TB) transport
studies using NEGF have been widely employed to calculate the local current structure in graphene
and graphene ribbons[77–85]. The resulting TB (“bond”) currents show vortices, ring current
contribution produced by local scattering centers like impurities and lattice defects[77–83]. Similar
TB transport studies in carbon nanotubes[86] and aromatic molecules (beyond benzene)[87, 88]
also show the formation of ring currents in the presence of scattering centers.

3



1 Introduction: Quantum interference and ring currents in nanoscopic physics

While the TB simulations reveal a exciting qualitative feature of local current flows (ring currents)
their quantitative interpretation is not straight-forward. Calculations of the current density j(r)
or the induced magnetic field B(r) that are valid on atomic length scales and start from the
TB (“bond”) currents can be performed only if the spatial structure of real-space wavefunctions
is reinstalled.B However, usually the real-space representation (spatial basis set) of a given TB
model is not given sufficiently accurately and therefore this reconstruction is not practical. This
is one of the reasons, why we will avoid the use of TB models and rather advance a different
approach in this thesis.

Local basis sets are given explicitly, namely, when working with conventional codes employing,
e.g., the density functional theory (DFT) in order to construct an effective single-particle Hamil-
tonian for a given microscopic system (“device”). Making use of this, we combine DFT with
non-equilibrium Green’s function techniques (DFT+NEGF) to address the local transport prob-
lem. This combination has been used in the past by our group as well as by many others[89–96]
for the calculation of IVs. Its validity has been a matter of an intensive debate over the years;
by now, the Kohn-Sham (KS) based transport method can be considered an established tool.C
To the best of my knowledge, an application for local current densities, as we establish it in this
work, has not been realized before.

The main challenge of this thesis was the high computational cost of DFT transport for graphene
flakes with up to 2500 carbon atoms. Our calculations were run on the HERMIT/HORNET
supercomputer at the High Performance Computing Center (HLRS) in Stuttgart who kindly
granted a budget of five million CPU-hours for this work.D

Although we investigate the emergence of vortices in the local current density in graphene ribbons,
our results have a much wider scope. We presume that the effect applies to mesoscopic transport
with broken symmetries in general, and that a tendency for ring currents in seen in generic
mesoscopic systems.

We arranged our work into the following chapters: In Chap. 2 (and Appx. B), we present our
new implementation of the DFT+NEGF method, focusing on local transport quantities as well as
efficiency (parallelization and scalability) for large system sizes. Local transport quantities include
the local current densities j(r), but also induced observables like the induced magnetic field B(r)
and the total sample magnetization m. For this thesis, I implemented the DFT+NEGF method
for large two-dimensional systems on top of the existing transport code AitransS[97, 98]. (The
latter had been developed in our group to treat transport through molecules, and was not yet
suited for large transport calculations on a supercomputer.) Our implementation scales efficiently
when using up 1000 CPU cores, reaching graphene sizes containing of the order of 103 carbon
atoms. Relying on DFT, our implementation is not restricted to graphene, and may be used in
the future to study dc-transport in molecular films in general.

As first application, we investigate the transport behavior of narrow armchair graphene nanorib-
bons in Chap. 3. We see that already pristine nanoribbons feature inhomogeneous current pat-
terns, streamline patterns, due to the presence of confining edges which can be explained with
simple zone-folding arguments. These streamline patterns also provide an intuitive explanation
for the well-known strong position dependence of impurities[81, 99–102]. If the impurity is placed
outside the streamlines of the pristine ribbon, no qualitative changes in the current densities are
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observed. When individual scatterers are placed inside a streamline, the current patterns change
significantly. In that case, we observe ring currents, prominent current density vortices that can
exceed the average through current by orders of magnitude. We illustrate the fundamental origin
of these ring currents by using simple two-path tight-binding (toy) models.

An interesting question is how these current vortices behave in large samples which include many
scattering centers. Does one observe a rich current pattern which features many vortices? In
Chap. 4, we see that this is indeed the case.

For that purpose, we investigate large hydrogenated graphene nanoribbons with a finite hydrogen
coverage, i.e., many hydrogen adsorbates which act as local scattering potentials. We discover
pronounced patterns in the local current density, current vortices, that go along with orbital
magnetism. The induced magnetism is important for several reasons. First, random magnetic
fields can induce spin relaxation which may be important for graphene spintronics[103]. Second,
the random magnetic fields can be experimentally observed, thereby serve as indication for the
vortex pattern. We propose a NMR-type experiment in the presence of an applied bias voltage
to observe the spatial fluctuations of the induced magnetic fields. Alternatively, one may tend to
measure the total induced magnetization mz, which is effectively the average rotation sense of all
current vortices. We predict a total magnetization of

√
〈m2

z〉 ∼ 1µB ·
√
Vbias/V that scales with

the square root of the bias voltage, independent of the system size.

A quantitative analysis of the current density fluctuations reveals that they follow a lognormal
distribution; in particular, the magnitude of the ring currents exceeds the average through current
by orders of magnitude in large spatial regions. In other regions, the current density is significantly
below the average through current. The associated magnetic fields exhibit drastic fluctuations and
large field gradients.

In the second part of Chap. 4, we discuss how the observed effects depend on system size, on
finite bias voltages, on different adsorbate concentrations or different adsorbate types, and on
relaxation effects. In all cases, the individual current patterns change, but the general (statistical)
features—strong current vortices significantly exceeding the average through current and a log-
normal distribution of the current density—remain. We thus propose that the observed current
vortices are generic and also relevant for experimental sample sizes, which are usually much larger
than the systems reachable by DFT transport.

Next, we discuss the influence of spin polarization on the transport behavior. First, we would
like to mention that we do not cover Kondo physics in this work. (For a recent review on Kondo
impurities in graphene, we refer to Ref. 104.) Instead, we focus on temperatures well above the
Kondo scale TK. Indeed, there appears to be experimental evidence for a relatively small Kondo
temperature in graphene induced by spin-1/2 point defects, TK. 2K [105]. In Chap. 5, we focus
on the spin-flip transmission as well as on the influence of spin polarization on the local current
density. We show that the spin-flip transmission in small hydrogenated graphene ribbons can
reach the same order of magnitude as the spin-conserving one. We relate this effect to exchange-
interaction rather than intrinsic spin-orbit interaction.

As the last topic covered in this thesis, we turn to self-consistency in Chap. 6. We discuss self-
consistency in the magnetic field, i.e., how the induced magnetic field backfeeds into the electronic
states. Since current-induced magnetic fields have not been discussed in graphene before, this is

5



1 Introduction: Quantum interference and ring currents in nanoscopic physics

an open question. Our results show that the magnetic feedback is indeed minor and can be ignored
in most cases. The reason is simple: the current vortices mostly encircle single rings; the magnetic
flux through single rings is very small, in the order of 10−7 times the magnetic flux quantum Φ0.
Thus, the induced phase changes in the electronic wavefunctions are also small.

We close with conclusions and outlook in Chap. 7.

Last, I feel obliged to mention that several publications[106–113] were written during the work
on this thesis, see page 171 for the publication list. Therefore, also ideas of my coworkers have
found their way into this thesis. A great thanks to all my coworkers! Hence, a large overlap
between these publications and this thesis is expected. On the other hand, this thesis also contains
material, like the current density distribution functions, that have not—except at presentations—
been published yet.
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Notes & Appendices

The main part of this thesis focuses on conveying the essential ideas and important results. There-
fore, short technical notes—that are not intended for the first-time reader—are moved to the end
of each chapter. They are marked by capital Latin characters in superscript, as A,B,C,. . . . Longer
discussions are deferred to the appendices. For example, in Appx. A, we discuss the nomenclature
of graphene ribbons, the employed unit system, and give a list of abbreviations used throughout
this thesis.

Notes to chapter 1

The notes are for completeness, reproducibility and to help interested readers understand all the fine technical details.

A We have chosen graphene, a two-dimensional sheet of
carbon atoms arranged in a honeycomb lattice, be-
cause it is a famous representative for two-dimensional
materials. Its unique features include a linear disper-
sion at the Fermi energy and a high electron mobility
rate[114–116]. Graphene, and two-dimensional mate-
rials in general, have been studied intensively in the
last decade[117]; especially after Novoselov et al. had
proven the stable existence of graphene in 2004[118].
Before, two-dimensional materials were believed to be
unstable due to the Mermin-Wagner theorem[119, 120].
Graphene and other (effectively) two-dimensional mate-
rials are stabilized by small deformations into the third
dimension. As expected, the main effort of transport in-
vestigations in graphene[114–116] focused on global ob-
servables, like the total current. The underlying spatial
structure of the current density was mostly ignored.
(page 2)

B The problem of lacking spatial information is apparent
already in the simplest examples. Consider a infinitely
long circular wire carrying a spatially homogeneous cur-
rent I0. The wire radius R is the unknown spatial in-
formation. According to Ampère’s circuital law, the az-
imuthal magnetic field inside the wire (at distance r to
the wire center) is Bϕ = µ0I0

2π
r
R2 and therefore strongly

depends on the (unknown) wire radius R. For infinitesi-
mal thin wires, the magnetic field diverges. This depen-
dence becomes even more pronounced when dropping
the homogeneity assumption of the current density.
(page 4)

C A disadvantage of DFT based transport is that a
formal justification exists—as often—only for special
cases[121–125]. For the qualitative results, that we
are after, that does not pose a problem. It is suffi-
cient to note that the exact pathways—as predicted
by the simulated current densities j(r)—are proba-
bly not reproducible in experiment. The qualitative
features—tendencies to form current vortices and broad
distribution—should be correct.

To circumvent this issue, one could in principle em-
ploy more elaborate methods like the GW approxima-
tion (GW), or coupled cluster theory (CC). In prac-
tice, these methods are computationally much too ex-
pensive to treat large graphene flakes. In other words,
DFT+NEGF is a method that provides atomic res-
olution by employing local basis functions while, at
the same time, it is computationally still feasible for
graphene flakes with thousands of carbon atoms.
(page 4)

D As mentioned, ab initio transport simulations of local
current densities j(r) in disordered graphene nanorib-
bons with up too 2500 carbon atoms (equivalent to
37000 basis functions) are computationally expensive.
Thus, a proposal was sent (and accepted) to the High
Performance Computing Center Stuttgart (HLRS) for
five million CPU-hours on the HERMIT/HORNET su-
percomputer. For comparison, a single workstation
with 16 cores would run over 35 years for reach such
a budget. Many thanks to I. Kondov, A. Bagrets, and
F. Evers, who have helped writing the proposal.[113]
(page 4)





2 Chapter 2

Transport method: Calculation of the
local current density

This chapter presents the transport formalism based on density functional theory (DFT)
as used throughout this thesis for the calculation of the spatially continuous electron
current density j(r), and also for the induced quantities like the magnetic field B(r).
The physical results are deferred to subsequent chapters. The basic idea of DFT based
transport relies on the widespread Kohn-Sham (KS) formulation of DFT. The KS theory
replaces the full many-body system by a fictitious non-interacting KS system. We apply
single particle scattering theory to the non-interacting KS particles, i.e., we construct
the KS scattering states ψKS(r) from the underlying DFT simulation and calculate the
KS electron current density as

j(r) = ~
2im lim

r′→r
(∇r −∇r′)ψ∗KS(r′)ψKS(r) . (2.1)

This procedure is general and could be implemented also in other transport codes[89–96]
that rely upon DFT. So far, existing codes focus on global quantities like the transmis-
sion coefficients or the current-voltage characteristics but do not calculate the local
current density j(r). Examples include DFT-based tight-binding codes, like gDFTB[89]
implemented on top of DFTB+[126], as well as full DFT codes, like transiesta[90],
smeagol[91, 92] (both based on the DFT code siesta[127]) or WanT[93] (based on
quantum espresso[128]).

We structure this chapter as follows: First, in Sec. 2.1, we summarize the basic ideas of
Landauer-Büttiker transport, and present a standard formulation using non-equilibrium
Green’s functions (NEGF). In Sec. 2.2, we apply the transport formalism to DFT and
especially discuss how a KS Hamiltonian for the bulk limit can be constructed from a
DFT simulation of a finite system. The implementation of the local current density,
including convergence tests for the continuity equation are presented in Sec. 2.3. The
induced local magnetic fields and the influence of finite grid spacings are discussed in
Sec. 2.4. After an investigation of the computational performance in Sec. 2.5, we close
with a summary of recommended numerical settings (Sec. 2.6).
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2 Transport method: Calculation of the local current density

2.1 Landauer-Büttiker transport

In the following, we refrain from deriving the transport formulas and instead discuss the essential
physical ideas of Landauer-Büttiker transport[72, 73] using the non-interacting quantum dot as
toy model in Sec. 2.1.1. Then, in Sec. 2.1.2, we present how the Landauer-Büttiker formalism is
usually formulated in terms of non-equilibrium Green’s functions (NEGF). To deal with reser-
voirs, we employ a decimation technique to construct self-energies which model semi-infinite leads
(Sec. 2.1.3). We conclude in Sec. 2.1.4 with a short discussion how the transport simulations are
extended to systems with broken spin-rotational invariance. None of these techniques is new on
its own (e.g. see book by Di Ventra[76]), but combining them with ab initio methods in order to
investigate the local current density in film geometries has—to the best of my knowledge—never
been done before.

2.1.1 A toy model: the non-interacting quantum dot

Ideally, the transport problem consists of a closed system with a battery (electron source and
sink) and a junction which connects the two battery poles. In the Landauer-Büttiker approach,
such a complicated system is replaced by an open junction coupled to two reservoirs with different
chemical potentials µ. Next, one assumes that the transport can be described by a stationary
solution, called steady state. In that case, the reservoirs continuously inject (or absorb) electron
wave packets which move towards (or away from) the junction. Here, we move to an effective single
particle description of the electrons.A Then, the reservoirs themselves can be modeled by closed
but (semi-)infinite left and right leads. Their occupation numbers fL/R are given by Fermi-Dirac
functions with individual chemical potentials, i.e., fL/R(E) = f(E−µL/R).

In the example of Fig. 2.1, the junction is represented by a single quantum dot (QD) at energy
E = ε. When coupled to the leads, the electrons of the QD move to the left and right lead. The
rate is proportional to the number of electrons Nd in the QD. The proportionality constant γ/~
is called rate or broadening (see remark about broadening). At the same time, the electrons from
the leads move to the QD with the same rate, but proportional to the occupation of the leads.
Thus, the total particle current from the left (right) lead to the QD is

IL/R =
γL/R

~

[
fL/R(ε)−Nd

]
. (2.2)

A stationary steady state solution requires IL + IR = 0 (no charge accumulation in the QD).
The number of electrons Nd in the QD are therefore given by the weighted average of the lead
occupation numbers:

Nd = γLfL(ε) + γRfR(ε)
γL + γR

. (2.3)

Thus, the basic ingredient for a non-equilibrium phenomenon is a difference in the occupation
numbers of the leads. If the energy ε of the QD is between the chemical potentials of the leads
(assume µL > ε > µR within a few kBT for finite temperatures), the left lead continuously feeds
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2.1 Landauer-Büttiker transport

Figure 2.1: An example junction with a quantum dot (QD) coupled to two leads (source and drain).
The energy ε of the QD state lies between the chemical potentials µL/R of the leads. Thus, a current I
from left to right lead is generated and the occupation Nd of the QD lies between the occupation
numbers fL/R of the left and right lead.

in electrons while the right lead continuously absorbs electrons from the junction. Thereby, they
generate a current Id through the QD:

Id(ε) := IL
(2.2)= γL

~

(
fL(ε)−Nd

) (2.3)= 1
~

γLγR
γL + γR

(
fL(ε)− fR(ε)

)
. (2.4)

The dependence on the difference in the occupation numbers, fL(ε)−fR(ε), is typical for transport
phenomena.

Remark: Broadening

So far, we assumed that the density of states of the QD is sharp (i.e. a Dirac delta peak) and
neglected that it is indeed broadened by the coupling to the leads. In this example, the total
broadening γ of the QD state is given by the sum of the individual broadenings, i.e., γ = γL + γR.
For the single QD, the broadened density of states ρ(E) is a Lorentzian peaked at E = ε with
width γ.

In the spirit of the Landauer-Büttiker approach, we assume independent channels, i.e., channels
with different spatial structure or at different energies do not influence each other. This also
follows from linear response arguments. Thus, the total current Itotal through the broadened state
is given by integrating all contributions weighted by the density of states, i.e.,

Itotal =
+∞∫

−∞

dE ρ(E) Id(ε=E) =
+∞∫

−∞

dE
2π~T (E)

(
fL(E)− fR(E)

)
(2.5)

with T (E) = 2πρ(E) γLγR/(γL+γR). Here, we introduced an important quantity, the transmission
function T (E), essentially the current per energy. It gives the probability for an electron with
energy E to propagate through the junction.
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2 Transport method: Calculation of the local current density

2.1.2 Multichannel formulation using non-equilibrium Green’s functions (NEGF)

For the general case, the main (technical) difference is that the junction—called device region in
the following—contains a non-trivial inner structure. The broadenings γL/R become broadening
matrices ΓL/R, and the density of states and the occupation inside of the device region must be
calculated incorporating the inner structure. Here, we present the Landauer-Büttiker transport
through a device described by the general Hamiltonian Hdevice (using NEGF, see Appx. B.1 for a
short overview of Green’s functions). Later, in Sec. 2.2, we employ DFT and use the KS Hamil-
tonian HKS as parametrization of the device Hamiltonian Hdevice.

Standard transmission calculation

To be more specific and to recall the basic definitions for the multichannel case, we consider an
example—a thin armchair graphene nanoribbon (AGNR5)—as shown in Fig. 2.2. We partition
it into a central region (device), a left and a right lead. The Green’s function Gdevice

0 for the
uncoupled device reads

Gdevice
0 (E) =

(
(E + i0)1−Hdevice

)−1
. (2.6)

To model the infinite extension of the system in the (current flow) x-direction, we compute the
self-energies ΣL/R(E) using absorbing boundary conditions[129] as specified in Sec. 2.1.3. The
resulting Green’s function

G(E)−1 = Gdevice
0 (E)−1 −ΣL(E)−ΣR(E) (2.7)

describes the propagation of independent particles in the device in the presence of the leads. The
transmission function T (E) is given by

T (E) = Tr{ΓL G ΓR G†} . (2.8)

Here, ΓL/R denote the anti-Hermitian parts of the self-energies, i.e., ΓL/R = i(ΣL/R−Σ†L/R). They
are the generalization of the broadenings γL/R (cf. Sec. 2.1.1) and account for the level broadenings
in the device region due to the coupling to the leads.

Figure 2.2: Armchair graphene nanoribbon partitioned into left lead, right lead and device region
containing one nitrogen impurity (green).
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2.1 Landauer-Büttiker transport

When a bias-voltage is applied between the leads, (−e)Vbias = µR − µL, the total electric current
(per spin) is given by

Iel = −eItotal = −e
h

+∞∫

−∞

dE T (E)
(
fL(E)− fR(E)

)
(2.9)

which depends on the occupation numbers fL/R(E) of the left and right-travelling scattering
states. For low temperatures (T → 0), the occupation numbers can be modelled by step func-
tions [fL=Θ(µL−E), fR=Θ(µR−E)]. In the second step, for small bias voltages (in limit of linear
response), both chemical potentials are near the Fermi energy (e.g. µL=εF+eVbias, µR=εF) and
the total current (per spin) simplifies to

Iel
T→ 0−−−→ −e

h

µL∫

µR

dE T (E) Vbias→ 0−−−−−→ − e2

h︸︷︷︸
G0

T (εF)Vbias . (2.10)

G0 is the conductance quantum (per spin) and G0T (εF) the zero-bias conductance. In a perfect
crystal, T (E) equals the number of bands and the conductance—assuming spin degeneracy—is
quantized in units of the conductance quantum Gspin

0 = 2G0 = 2e2
h ≈ 77.48µS.

Local observables: current density and induced B-field

The retarded Green’s function G(E) also allows to calculate the non-equilibrium Keldysh Green’s
function G<(E):

G< = iG
[
fLΓL + fRΓR

]
G† . (2.11)

For low temperatures (T → 0), and at energies µR < E < µL, i.e. inside the voltage window, one
has fL=1, fR=0, so that the Keldysh Green’s function G< reduces to

G<(E) = iG(E)ΓL(E)G†(E) . (2.12)

The Keldysh Green’s function is transformed to real-space representation using the orthonormal-
ized basis functions ϕ̃i(r) which are based on the underlying DFT calculation: G<(r, r′, E) =∑

ij ϕ̃i(r)G<
ij(E)ϕ̃∗j (r′) (for details, see Sec. 2.3). Using this decomposition, the particle current

density (per spin and energy) is expressed as

j(r, E) = 1
2π

~
2m lim

r′→r
(∇r′ −∇r)G<(r, r′, E) . (2.13)

The factor 2π reflects the Fourier transformation to energy domain. When applying a finite bias
voltage Vbias between left and right lead, e.g. µL=εF+eVbias and µR=εF, current contributions
within the bias window have to be integrated, i.e.,

j(r) =
µL∫

µR

dE j(r, E) . (2.14)
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2 Transport method: Calculation of the local current density

The current density response to the bias voltage (at zero bias) is given by

dj(r)
d(eVbias)

∣∣∣∣∣
Vbias=0

= j(r, εF) . (2.15)

The Fermi energy εF can be varied experimentally, e.g., by applying a back-gate voltage Vgate.

Further, the electric current density jel = −ej induces a magnetic field B and a magnetization m
which is calculated via the Biot-Savart law as:

B(r) = µ0
4π

∫ jel(r′)× (r− r′)
|r− r′|3 d3r′ , m = 1

2

∫
r× jel(r) d3r , A(r) = µ0

4π

∫ jel(r′)
|r− r′|d

3r′ .

(2.16)

We also introduced the vector potential A required to calculate the magnetic feedback in Chap. 6.

Remark on finite basis sets: The current density as written in Eq. (2.13) satisfies a continuity-
equation in the basis set limit: ∇ · j(r) = 0. For finite basis sets, this equation is violated. The
magnitude |∇ · j| decreases with increasing basis set size. At the end of all calculations, one has
to ensure that the basis set was large enough, so that ∇ · j ≈ 0.

2.1.3 Modeling the reservoirs: construction of the self-energies ΣL/R

The Green’s functions include the left and right leads (reservoirs) via the corresponding self-
energies. They are readily calculated if the reservoir is quasi-onedimensional (i.e. a “long wire”),
if two conditions hold true: (i) a single particle theory can be applied and (ii) the hopping along
the wire is short range (i.e. only a finite number of neighbors). In that case, the lead can be
represented by a Hamiltonian that exhibits a tridiagonal block-structure:

Hlead =




Hblock
[0] V 0
V† Hblock

[1]
. . .

. . . . . . V0 V† Hblock
[M−1]



. (2.17)

Each of the blocks may be thought about as a “slice” of the original wire. The Hamiltonian Hlead

of Eq. (2.17), therefore, corresponds to a wire consisting of M slices. Every slice is characterized
by its own block-Hamiltonian, Hblock

[j] . For simplicity, we assume that each slice is described by
the same block matrix, Hblock

[j] = Hblock and that each slice connects to the other slices via a block
matrix V that is the same for every pair of neighboring slices (and zero otherwise). It is easy
to see that due to the block-diagonal structure a self-energy is readily calculated in a recursive
fashion. To motivate the recursion, we recall the familiar self-energy for coupling a quantum dot
(device) to a reservoir, Σ = [Vlead]†GleadVlead. For the quasi-onedimensional geometry, we have
[Vlead]† =

(
0 · · · 0 V†

)
accounting for the fact, that the device couples only to the outmost
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2.1 Landauer-Büttiker transport

slice of the wire. Along that logic, each slice of the wire can be coupled one after another, forming
the following recursion equations

Σm(E) = V†Gm−1(E)V , Σ0(E) = 0 , (m = 0, · · · ,M−1) (2.18a)

Gm(E) =
[
(E + iηdec)1−Hblock

[m] −Σm(E)
]−1

. (2.18b)

The number of blocksM it takes to converge the self-energies depends on the imaginary shift ηdec;
typically we have M = 50 − 400. Therefore, it would be numerically too expensive to calculate
the lead’s Green’s function Glead = [(E + iηdec)1 −Hlead]−1 by full matrix inversion. The set of
recursion equation is often referred to as block decimation technique. On a mathematical level, it
is effectively a Gaussian elimination scheme.

In the final step, we make use of the fact that the full Hamiltonian, including left and right lead
together with the device, again has a block-structure:

H =




Hlead VL 0
V†L Hdevice V†R
0 VR Hlead


 . (2.19)

Then, we evaluate the self-energies for the left and right lead using the same logic as before:

ΣM
L = V†LGM−1

L VL , ΣM
R = V†RGM−1

R VR . (2.20)

To determine the coupling matrices VL/R, we assume that the device Hamiltonian Hdevice also
contains a left and right contact region, each of which is identical to a building block Hblock of
the lead, i.e.,

Hdevice =




Hblock · · · · · ·
· · · · · · · · ·
· · · · · · Hblock


 . (2.21)

That way, the (large) coupling matrices VL/R can be built by using the same coupling matrix V
as in the leads:

VL =




...
...

...
0 0 0
V 0 0


 , VR =




0 0 V
0 0 0
...

...
...


 . (2.22)

For simplicity, we have been assuming here, that left and right leads are twins.B

The Green’s function for an arbitrary device Hdevice in the presence of the leads is readily found
via matrix inversion:

G(E) =
[
E1−Hdevice −ΣM

L (E)−ΣM
R (E)

]−1
. (2.23)

The Green’s function G(E) thus found is used to compute the transmission coefficient (Eq. (2.8))
and the electron current density (Eq. (2.13), see Sec. 2.3 for details).
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2 Transport method: Calculation of the local current density

Technical remark: The construction of the self-energies does not make explicit reference to
the device Hamiltonian Hdevice. Therefore, as long as different devices share the same coupling
matrices VL/R, they also share the same self-energies. Hence, it is computationally advantageous
to store them on the hard disk. This technique was used, e.g., for treating AGNRs with different
impurity configurations.

Absorbing boundary conditions

The decimation technique (DT) gives a numerically exact result for the self-energy. It is efficient
with quasi-onedimensional wires and short range hopping.

In its standard implementation, DT is working with a (spatially) constant damping rate ηdec.
In order to generate an effectively smooth lead density of states near the Fermi energy εF, its
magnitude should somewhat exceed the level spacing ∆M , i.e., ηdec & ∆M . The level spacing
decreases with the wire length, ∆M ∼ vF2π~/(Ml), where vF denotes the Fermi velocity and l
the width of each slice.

For realistic modeling, the absorption should occur in the leads, i.e., sufficiently far away from the
device. Therefore, a second requirement on ηdec is that it should be negligible near the contact to
the device. Ideally, ηdec vanishes in the device region. Now, if the damping is taken to be spatially
constant, then ηdec will be small everywhere, so M must be large to satisfy the inequality.

As in previous studies[97, 98, 106], we apply absorbing boundary conditions (ABC)[129] to work
with a spatially varying ηdec. We include ABC in the DT with the replacement ηdec → η̂ABC in
Eq. (2.18), using a purely local damping

η̂ABC = η(r) δ(r− r̂) . (2.24)

The leakage rate (or damping rate) η(r) describes how electrons are adsorbed into the leads, and
(as discussed) should be negligible near the device and increase smoothly in the leads. As suitable
default parametrization for the leakage rate, we use

η(r) = η0 e−κ(L−d) , (2.25)

where κ is the damping coefficient and d denotes the distance between the device region and the
absorption point r inside the reservoir.
(default values: η0 = 1Ha ≈ 27.2 eV and κ = 16/L where L is total length of each leadC)

When applying this method to DFT (cf. Sec. 2.2.1), we take advantage of the local basis set: the
basis functions |ϕ̃i〉 are centered at atoms sitting at position ri, and we approximate 〈ϕ̃j |̂r|ϕ̃i〉 ≈
riδij , i.e., η̂ABC becomes a diagonal matrix.

Pictorial illustration: Fig. 2.3 shows an illustration of building the leads, applying the ABC via
the damping rate ηL/R, and connecting the leads to the device.
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2.1 Landauer-Büttiker transport

Figure 2.3: Bottom: Schematic assembly of the total sys-
tem for transport through an AGNR5 with one nitrogen sub-
stituent. It consists of left and right lead, and device region.
For each lead, M equal building blocks Hblock are connected
using the coupling matrix V. The device region already con-
tains the beginning of each lead, represented by two contact
regions (dashed blue box). Top: Schematic spatial depen-
dence of the leakage rates η(d) in the left and right lead as
used for absorbing boundary conditions. Near and in the
contact region the leakage rate is exponentially small (nearly
zero).

Figure 2.4: Actual geometry in
a DFT calculation of an impurity
and a lead system showing the
cutting procedure. The armchair
graphene nanoribbons (carbon
atoms in gray) are terminated
with hydrogen (red). The upper
system contains a single nitrogen
atom (green) as impurity in the
central device region.

2.1.4 Extension to systems with broken spin-rotational invariance

Most of this thesis deals with transport through systems with spin-rotational invariance. Never-
theless, including spin into the method is straightforward and we investigate the spin effects of
small AGNRs in Chap. 5 (partly published in Ref. 111). For simplicity (and since it is sufficient
for the following), we assume that the leads are spin-unpolarized. This is to be expected for
AGNRs.D Formally, the block matrix Hblock and therefore the self-energies ΣL/R get spin-indices
but are really spin-diagonal with identical spin blocks in both channels, i.e., Hblock

σσ′ = Hblock δσσ′ ,
Σσσ′

L/R = ΣL/R δσσ′ .

All non-trivial spin-physics is restricted to the device region. The spin-dependent device Hamil-
tonian Hdevice

σσ′ can contain non-diagonal elements, e.g., due to spin-orbit interaction. As a con-
sequence, the Green’s functions Gσσ′ and G<

σσ′ also carry spin indices and contain non-diagonal
spin elements.

The generalized transmission function, cf. Eq. (2.8),

T (E) =
∑

σσ′
σ̃σ̃′

Tr{(ΓLδσσ̃) Gσ̃σ′ (ΓRδσ′σ̃′) [G†]σ̃′σ} =
∑

σσ′

Tr{ΓL Gσσ′ ΓR [G†]σ′σ}︸ ︷︷ ︸
=:Tσσ′

=
∑

σσ′

Tσσ′ ,

(2.26)

can be dismantled into spin-conserving (T↑↑, T↓↓) and spin-flip (T↑↓, T↓↑) terms, see Chap. 5 for
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2 Transport method: Calculation of the local current density

the physical discussion. On the other hand, the total current density, cf. Eq. (2.13),

j(r, E) = Tr
σ

1
2π

~
2m lim

r′→r
σ′→σ

(∇r′ −∇r)G<σσ′(r, r
′, E)

︸ ︷︷ ︸
=:jσ

=
∑

σ

jσ , (2.27)

can only be separated into spin up and spin down currents. The off-diagonal spin elements of
limr′→r(∇r′ −∇r)G<σσ′(r, r

′, E) do not have a (direct) physical interpretation. Please note that
the spin up current j↑ may vanish arbitrarily and reappear in the spin down current j↓. Only the
total current density j = j↑ + j↓ is conserved, i.e., the continuity equation holds true, ∇ · j = 0.

Remark: Independent spin channels (collinear spin physics)

If the spin channels are effectively independent, as in case of a collinear open-shell DFT cal-
culation, each molecular orbital is assigned to one of the two spin channels. No states with
contributions from both spin channels are allowed. Thus, the spin-dependent device Hamiltonian
Hdevice
σσ′ contains only spin-diagonal elements which are usually different in both channels, i.e.,

Hdevice
σσ′ = Hdevice

σ δσσ′ . All quantities then carry this single spin index. As a consequence, the
whole calculation separates into two additive spin-independent calculations, one for the spin up
channel (Hdevice = Hdevice

↑ ) and one for spin down channel (Hdevice = Hdevice
↓ ).

2.2 Density functional theory (DFT) based transport calculations

So far, the description of the method was general; the block matrices Hblock, V, and Hdevice have
not yet been specified. In this thesis, we base the atomistic description on density functional
theory (DFT). [Please refer to Appx. B.2.1 for an overview on DFT.] Nevertheless, several other
effective single particle descriptions of molecular films are compatible with this methodology, e.g.,
nearest-neighbor-tight-binding models and Hartree-Fock (HF).

For this thesis, I implemented the presented formalism in our transport module AitransS[97, 98].
It reconstructs the Kohn-Sham (KS) Hamiltonian HKS from KS orbitals which are given in terms
of local basis functions. (See Appx. B.2.2 for details on the employed basis functions.) To keep
the computational effort feasible, our implementation employs the massively parallelized ab initio
package FHI-aims[130], whose scalability has already been demonstrated up to several thou-
sand CPUs[130–133]. To preserve this scalability, shared-memory (via OpenMP) and distributed-
memory (via MPI) parallelization approaches were implemented in our transport module (see
Sec. 2.5 and Appx. B.3 for details). Our module is readily adapted to other electronic struc-
ture codes that deliverer all (occupied and virtual) eigenstates in terms of local basis functions,
e.g., an interface to the Turbomole package[134] has also been implemented and—whenever
possible—we use Turbomole to cross-check our results.

It should be noted that the KS-based Landauer-Büttiker formalism has been established to repro-
duce the exact (physical) conductance only in two model situations: for non-interacting particles
and also in the presence of strong correlations, namely in the framework of the single impurity
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2.2 Density functional theory (DFT) based transport calculations

Anderson model (SIAM)[121–125]. Our implementation aims at intermediate situations, with in-
teraction effects that can be modelled qualitatively by effective local potentials and corresponding
excitations with a single-particle nature. With this caveat, we expect the general qualitative fea-
tures of our simulation results to be representative of the real physical system, in particular the
tendencies to form ring currents or streamline patterns—while the actual flow pattern for a given
atomic arrangement of device might somewhat deviate from our simulations. Nevertheless, one
must be aware that there are special examples where KS transport fails, even qualitatively (e.g.,
see Ref. 135).

2.2.1 Construction of the (bulk) Kohn-Sham Hamiltonian

With DFT (as well as HF) a minor complication arises because the matrices Hblock, V, and Hdevice

refer to the electronic structure of a subsystem embedded in the infinite bulk. For systems with
translational invariance, such as clean wires, the block matrices can be extracted from DFT cal-
culations employing plane waves and periodic boundary conditions. In this way, Hblock and V
could be found.

In contrast, the device block Hdevice is not periodic and here a different procedure should be
applied. We extract it from a DFT calculation performed for a finite sized system using local
basis functions |ϕi〉. (For basis function details, see Appx. B.2.2.)

A schematic representation of the partitioning is depicted in Fig. 2.4 (top). In the spirit of
Eq. (2.21), a part of the leads is also included in the device block Hdevice (“extended device block”).
As said, in this way, the coupling matrices VL/R, which couple the surface of the extended device
region to the electrodes, contain the same matrix elements as V.

Due to our choice of a local basis set, the KS Hamiltonian of the whole finite sized system, which
contains the extended device, exhibits a block-structure. The inner part resembles Hdevice. The
extensions have to be chosen long enough to ensure the convergence of Hdevice. On a technical
level, the procedure is as follows. The KS orbitals |ψKS

i 〉 (with KS energies εKS
i ) are represented

by expansion coefficients c̃ji with respect to the orthogonal basis set |ϕ̃j〉, i.e., |ψKS
i 〉 =

∑
j |ϕ̃j〉 c̃ji.

The number of molecular orbitals |ψKS
i 〉 equals the number of basis functions, so that the expansion

coefficients c̃ji form a square matrix. The orthogonal basis set |ϕ̃j〉 is constructed from the non-
orthogonal basis set |ϕj〉 of the underlying DFT calculation using Löwdin orthogonalization[136]:
|ϕ̃i〉 =

∑
j |ϕj〉 [S

−1/2]ji where S is the (symmetric) overlap matrix Sij = 〈ϕi|ϕj〉, see Appx. B.4.1
for details.

The device region is associated with the subset of all basis functions |ϕ̃i〉 that are localized on
the atoms belonging to the device region. The device block Hamiltonian Hdevice is given by the
matrix elements of the KS Hamiltonian

ĤKS
0 =

∑

n

|ψKS
n 〉εKS

n 〈ψKS
n | =

∑

ij

|ϕ̃i〉HKS
0,ij〈ϕ̃j | , (2.28)

with HKS
0,ij =

∑
n c̃in ε

KS
n

[
c̃T
]
nj
, restricted to the basis functions of the device region subset.
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2 Transport method: Calculation of the local current density

By following the same line of ideas, one can also extract the block Hamiltonians for the lead
slices, Hblock and V, so that there is actually no need to employ a different set of computations
with periodic boundary conditions. Specifically, one considers a piece of a homogeneous wire, see
Fig. 2.4 (bottom), with left and right center slice and extensions to both sides. The corresponding
KS Hamiltonian will again represent this situation in its block structure when expressed in the
localized basis set |ϕ̃i〉:

HKS =




Hext Vext 0 0
Vext† Hblock V 0

0 V† Hblock V′ext

0 0 V′ext† H′ext



. (2.29)

Once again, the blocks V and Hblock of interest to us are given by the matrix elements of HKS

that are associated with the corresponding left and right subblocks (slices). Again, care has to be
taken with the size of the extensions in order to ensure convergence of the center subblocks.E

2.2.2 Convergence tests: Kohn-Sham Hamiltonian & transmission coefficients

Kohn-Sham Hamiltonian

We present convergence tests that illustrate, how the KS blocks Hblock and V converge with
increasing length of the extension, i.e., with a growing distance of the center slices to the (left/right)
system boundaries. To this end, we perform a single DFT run for a long piece of the lead electrode.
The wire can be cut into slices and for each slice the diagonal block Hblock

[n] (together with the
coupling V[n] to the neighboring blocks) can be extracted. The index n is a measure for the
distance of the respective slice to the boundary. Slices sufficiently far away from the boundary
(n→∞) exhibit the same block-elements. These blocks enter the decimation procedure.

As a specific example to illustrate the convergence behavior, we examine a pristine AGNR5 in a
(spin-unpolarized) DFT calculation. For n = 0, . . . , 9, we construct several block Hamiltonians
Hblock

[n] for slices which are n carbon rings away from the boundaries, see Fig. 2.5a. To quantify
the deviation ∆H between block Hamiltonians, we use two norms: the maximum norm ‖∆H‖max
(referring to the maximal deviation in the corresponding matrix elements) and the Euclidean norm
‖∆H‖2. As is seen in Fig. 2.5b, either norm rapidly converges to the bulk limit. In fact, we find
that, e.g., n = 9 can be taken as a faithful approximation for the bulk block Hamiltonian, i.e. of
one slice in the infinite 1D system (n→∞) and therefore we take it as our reference in Fig. 2.5b.
We checked that the absolute convergence behavior for V is the same as for Hblock. (Data is not
shown.)

Transmission coefficients

The matrix norms give an unbiased measure for the convergence of the block Hamiltonian. In the
physical context, however, one is more interested in the convergence of observables, which may
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2.2 Density functional theory (DFT) based transport calculations

(a) Extraction of H[n]
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Figure 2.5: (a): Schematic extraction of the (pairwise overlapping) Hamiltonians H[n] from an
AGNR5 with a total length of 20 carbon rings. Each Hamiltonian H[n] covers 2×2 carbon rings
(28 atoms [20 C, 8 H] and 320 basis functions). n denotes the distance of the extracted subsystem to
the border of the finite DFT system measured in carbon rings. [DFT details: FHI-aims, basis set tier1,
closed-shell, 284 atoms [200 C, 84 H], 3220 basis functions]
(b): Dependence of the subsystem Hamiltonian H[n] on its position in an pristine AGNR5 with 20
carbon rings in length. As matrix norms (left y-axis), we use the maximum norm ‖∆H‖max =
maxij(|∆Hij |) and the Euclidean norm ‖∆H‖2 = σmax where σmax is the largest singular value of ∆H.
The root mean square deviation ∆Trms (right y-axis) is plotted to show differences in the transmission
calculation, see Appx. B.5.1 for further details.

or may not be well represented by the unbiased measures that we have considered. Therefore, an
independent check of the convergence of the transmission is indicated, as well.

To this end, we perform a series of transport simulations using the set Hblock
[n] to construct the

corresponding sequence of self-energies. At the same time, Hblock
[n] is used as device Hamiltonian,

i.e., Hdevice = Hblock
[n] , VL = VR = V. We calculate the deviation ∆T (E) between the calculated

transmission T (E) and its exact value, which is given by the number of bands of the infinite
pristine AGNR5 at energy E (for bandstructure, cf. Fig. 2.6a). In Fig. 2.5b, we display the root
mean square deviation ∆Trms, obtained by averaging ∆T (E) over an energy interval E1 = εF−3 eV
to E2 = εF + 3 eV (for details on ∆Trms, cf. Appx. B.5.1).

Already at n ≥ 1, the deviation in the transmission ∆Trms drops below 10−2 and we see a regular
convergence pattern. Hence, we conclude that very short extensions, actually only a single carbon
ring wide, are sufficient in order to obtain quantitative transport coefficients in graphene ribbons.

To further illustrate the validity of our method, we also display the energy-resolved convergence
behavior in Fig. 2.6b. Only near steps, small deviations (up to 0.05 eV) are discernible (see inset
of Fig. 2.6b). The exact positions of steps are recovered with minimally larger blocks (2 and 3
rings). We thus confirm our previous results.
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Figure 2.6: (a): Bandstructure of infinite one-dimensional pristine AGNR5 calculated with FHI-
aims tier1. (b): Transmission function and number of bands for different sizes of Hblock (using blocks
with 1, 2, and 3 carbon rings in transport direction). Please note that the transmission calculation is
even able to resolve the marked avoided crossings in the bandstructure. As required, the transmission
functions drops by 2 in a small energy range at each avoided crossing.

Summarizing, we conclude that to achieve the numerical accuracy in the transport coefficients
that we are after in this work, it is sufficient for us to work with blocks Hblock and V containing
only one carbon ring; further coupling matrix elements can be neglected.F

Remark on damping coefficients in η̂ABC: For the test calculations presented in Fig. 2.5b and
Fig. 2.6b, the default parametrization for the leakage rate η(r) (summarized after Eq. (2.25)) has
been used. We have ensured that our conclusions do not change under a moderate variation of
the damping rate and its spatial arrangement (cf. Appx. B.5.1). Specifically, when the leakage
rate is sufficiently large (η0 ≈ 0.1 − 1Ha) and smoothly approaches zero near the device region
(κL ≈ 8 − 64), the step-like transmission function is reproduced as long as the leads are long
enough (M ≈ 50− 200). This is consistent with earlier works[129] for tight-binding models.

We mention that the number of building blocks M needs to be adjusted manually because it
depends on the width of the graphene ribbon. As a rule of thumb, the total length of each lead
should exceed its width at least by a factor of L/W ≈ 10− 25.G
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2.3 Spatially resolved current density j(r)

2.3 Spatially resolved current density j(r)

So far, we focused on global observables, like the transmission function T (E), that involve spatial
averages, see Eq. (2.8). In this section, we discuss how to calculate spatially resolved observables,
like the current density j(r).

2.3.1 Representation of the continuous current density using a finite basis set

As described in Eq. (2.13), the current density j(r, E) is calculated as a spatial derivative of the
Keldysh Green’s function G<(r, r′, E). Here, we explicitly evaluate j(r, E) in terms of the local
basis functions ϕ̃i(r), i.e.,

j(r, E) = 1
2π

~
2m lim

r′→r
(∇r′ −∇r)G<(r, r′, E)

= 1
2π

~
2m lim

r′→r
(∇r′ −∇r)

∑

ij

ϕ̃i(r)G<
ijϕ̃j(r

′)

= 1
2π

~
m

∑

ij

[
ϕ̃i(r) 1

2

(
G<
ij −G<

ji

)

︸ ︷︷ ︸
=:

as
G<
ij

(
∇ϕ̃j(r)

)]

= 1
2π

~
m

∑

ij

ϕ̃i(r)
as
G<
ij

(
∇ϕ̃j(r)

)
,

(2.30)

where
as
G< := 1

2(G< − [G<]T ) is an abbreviation for the anti-symmetric elements of the Keldysh
Green’s function. We employed that the basis functions ϕ̃i(r) are always real by construction
(cf. Appx. B.2.2 for basis function details).

Other local quantities, like the non-equilibrium density n(r, E) or the local density of states ρ(r, E),
are calculated in a similar fashion (see end of Appx. B.4.1).

Remarks on discretization errors due to finite basis set sizes: The physical current density
must fulfill the continuity equation: ∇ · j(r) = 0 at all points r. The basis sets we use (either
numerical orbitals or Gaussian orbitals) are finite and thereby incomplete. Hence, the orthodox
continuity equation is satisfied approximately and will be recovered only in the basis set limit.H
Therefore, we monitor in our calculations the divergence

∇ · j(r, E) = 1
2π

~
m

∑

ij

ϕ̃i(r)
as
G<
ij

(
∆ϕ̃j(r)

)

+ 1
2π

~
m

∑

ij

(
∇ϕ̃i(r)

)as
G<
ij

(
∇ϕ̃j(r)

)

︸ ︷︷ ︸
=0 (due to symmetry)

, (2.31)

and ensure that our observables are converged with respect to the size of the basis set.
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2 Transport method: Calculation of the local current density

Finite differences: The necessary derivatives of the basis functions ϕi(r) are calculated numer-
ically using a symmetric two-point rule (ej are the canonical basis vectors):

∇jϕi(r) = (2∆)−1
[
ϕi(r+∆ej)− ϕi(r−∆ej)

]
, (2.32)

∇2
j ϕi(r) = ∆−2

[
ϕi(r+∆ej)− 2ϕi(r) + ϕi(r−∆ej)

]
.

We chose ∆ = 3
√
ε, (ε ≈ 2.2 · 10−16 being the double floating point machine precision), leading to

accuracies in the order of 10−10 and 10−5 for first and second derivative, respectively.I

2.3.2 Convergence tests: basis size dependence of the current density

As a test, we investigate the local electron current density in pristine and functionalized AGNR5.
For the physical discussion of the results, please refer to Chap. 3. We raster the current and
divergence formulas, Eq. (2.30) and Eq. (2.31), on a Cartesian grid with a grid spacing of 0.1Å.
The eight grid corners of the grid cuboid are (x, y, z) = (xmax/min±1Å, ymax/min±1Å,±4Å), where
xmax/min denote the maximal/minimal x-coordinate of any atom in the structure. All atoms are
located in the z = 0 plane.

Pristine AGNR5

In Fig. 2.7, we show an electron current density map at z = 0.4Å. A perfect streamline pattern
arises as a consequence of quantum confinement in the transverse direction (see Sec. 3.1 for the
physical discussion). The plot illustrates the partitioning and how the current flow is generated in
the NEGF approach. Within the left and right contact region (blue boxes), the self-energy ΣL/R is
non-zero. Its anti-Hermitian piece generates the current flow, left source and right drain. Outside
source and drain, the divergence of the current is seen to be very small and can be controlled by
the size of the basis set, see Appx. B.5.2.

Figure 2.7: Inplane current density jxy(r, E) (left) and current divergence ∇ · j(r, E) (right) for a
pristine AGNR5 at E = εF + 1 eV, at a plane z = 0.4Å above the carbon and hydrogen atoms (gray
and red crosses, respectively). The current density carries one conductance quantum, T (E) = 1; its
direction is indicated by black arrows. The contact regions, where the self-energies representing the
leads are added, are marked in dashed blue. In these areas, numerical artifacts are seen in the current
density and in the divergence because the current appears from/disappears into the leads. The dashed
orange box is used for further convergence tests, see Fig. 2.10 and Fig. 2.11. The arrows give the
direction of the current density. [DFT details: FHI-aims, basis set tier1, closed-shell]
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2.3 Spatially resolved current density j(r)

AGNR5 with a single nitrogen substituent

As next test, one carbon atom near the border of the AGNR5 is substituted by nitrogen, cf. Fig. 2.2.
The latter then acts as a strong scatterer. The atomistic equilibrium structure of the graphene
lattice is hardly distorted and in particular stable against out of plan perturbation (see Sec. 3.2
for the physical discussion).

First, we note that the dependence of the transmission function on the basis set size is weak,
see Fig. 2.8. We compare closed-shell calculations (with fractional occupation numbers using
FHI-aims) with the majority spin channel (α) of collinear open-shell calculations (with integer
occupation numbers using Turbomole). Indeed, we observed a good collapse of all data curves.J
The main differences are small shifts in energy. As example, the energy points with T (E) = 0.5
are marked with colored arrows.

In Fig. 2.9, we investigate the dependence of the current density on the basis set size. For a
proper comparison, we need to account for the small energy shifts of the KS Hamiltonian due
to the variation in the basis set size. Accordingly, we compare the current pattern based on the
principle that we fix the transmission (rather than the energy) when going from a current pattern
obtained for one basis set to the next one.

We observe a very rapid convergence of the current pattern. Only the divergence of the current
exhibits a significant quantitative flow. For increasing basis set size (tier1 to tier2), the diver-
gence decreases rapidly. Note, that the basis sets svp and tier1 are of equal size but differently
constructed, and therefore their divergence pattern also differ slightly.

An additional check is to calculate the current density integrated over a cross section at fixed x in
the yz-plane, Ix(x) =

s
jx(r, E) dy dz, and compare it to the total current e2

h T (E) (per energy
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Figure 2.8: Transmission function depending on basis set size and on spin treatment (open-shell
vs. closed-shell calculation). The main differences are small shifts in energy. As example, the energy
points with T (E) = 0.5 are marked with colored arrows. Turbomole: only α-channel of an open-shell
calculation in svp and tzvp basis set; FHI-aims: closed-shell calculation in tier1 and tier2 basis
set.
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2 Transport method: Calculation of the local current density

Figure 2.9: (a)-(c): Variation of the in-plane current density jxy(r, E) with increasing size of the
basis set for an AGNR5 with one nitrogen substituent (green cross) at a plane z = 0.4Å above the
carbon atoms restricted in x-direction to the central region near the nitrogen impurity (dashed orange
box in Fig. 2.7). The current density carries half a conductance quantum, T (E) = 0.5, in all cases;
the energy E is varied such that all plots share the same transmission value, see colored arrows in
Fig. 2.8 for exact position. The current direction is indicated by black arrows for the largest basis
set. (d)-(f): The divergence ∇ · j(r, E) belonging to the respective current pattern in (a)-(c). The
divergence converges very rapidly with increasing size of the basis set. Divergence errors have a very
small impact on the current pattern.
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Figure 2.10: Relative deviation between the local current density integrated over a yz-plane and the
total current given by the transmission function. The x-position of the integration plane is measured
from the left side of the dashed orange box shown in Fig. 2.7, coinciding with the plot range of Fig. 2.9.
Also, as in Fig. 2.9, the transmission is fixed at T = 0.5. For clarity, only the markers of every 12th
sampling point are shown.
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2.3 Spatially resolved current density j(r)

and spin). The latter we have fixed by our choice to select the energy. The ratio of both, Ix/[ e
2

h T ],
should be unity and its deviation is reproduced in Fig. 2.10 as function of x. The deviation from
unity is small, with an amplitude that reduces rapidly with increasing basis set size.

Convergence tests for the current density: In Fig. 2.11, we show the current pattern devia-
tion (∆j), the current divergence (∆∇·j), and the comparison to transmission (∆T ). All three are
formulated as root mean square errors:

∆j =

√
1
V

∫
d3r
∣∣∣∣j(r, E)− jlargestBasis(r, E)

∣∣∣∣
2
, (2.33)

∆∇·j =

√
1
V

∫
d3r
(
∇ · j(r, E)

)2
, (2.34)

∆T =

√√√√
∫ dx
Lx

(
Ix/

[
e2

h
T (E)

]
− 1
)2

, (2.35)

with Ix =
s
jx(r, E) dy dz. In case of the current pattern, an exact reference solution is not

available, so we have to resort to the current pattern calculated using the largest basis set (tier3
using FHI-aims) for comparison. The spatial integrals are done by summing over the same grid
points which have been used for calculating the local currents, as described in the beginning of
Sec. 2.3.2, restricting the x-integration further to the (dashed orange) central part of the device
region, cf. Fig. 2.7.K
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Figure 2.11: Convergence analyses of the local currents shown in Fig. 2.9 with respect to the basis
set using FHI-aims (closed markers) and Turbomole (open markers). The root mean square devia-
tions ∆X are plotted over the number of basis functions per carbon atom (∆T on left y-axis; ∆j and
∆∇·j on right y-axis). All error measures decrease when increasing the basis set size. The different
basis set contains different number of basis functions per hydrogen/carbon/nitrogen atom: tier1/svp:
5/14/14; tzvp: 6/31/31; tzvpp: 14/31/31; tier2: 15/39/39: tier3: 31/55/55.
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2 Transport method: Calculation of the local current density

All three error measures decrease when increasing the basis set size, irrespective of the underlying
DFT code. Interestingly, the error measures for the transmission (∆T ) and for the divergence
(∆∇·j) are, for the same basis set size, always smaller using FHI-aims basis sets compared to
Turbomole basis sets.

The results of this section are encouraging, because they suggest that the local current density
is an observable that rapidly converges with the size of the basis set. Already the smallest sets,
svp/tier1, allow for quantitative results.

AGNR41 with 20% hydrogen adsorbates

We now apply the presented method to larger systems, namely the AGNR41 shown in Fig. 2.12
functionalized with 20% hydrogen. For the physical discussion of the current vortices seen there,
please refer to Chap. 4. Here, we cover important technical details, e.g., the convergence behavior
with the basis set size.

Current patterns: Fig. 2.13 displays the current pattern of the large, mesoscopic sample for
two different basis sets, tier1 and tier2. The visible deviations are located near the left/right
boundaries with values at the lower end of the logarithmic colorscale (dark blue). In the upper
three orders of magnitude, the current density is virtually identical.

Transmission function: In Fig. 2.14, also the transmission functions corresponding to the cur-
rent patterns are shown. At the energy chosen for Fig. 2.13, E=εF−635meV (orange arrow),

Figure 2.12: Atomic structure of a wide hydrogen-terminated armchair graphene nanoribbon (8×41)
with NC = 41 carbon atoms in transverse direction (AGNR41). The nanoribbon has been function-
alized with additional 20% hydrogen atoms (additional 66 hydrogen atoms). Imagine a bias voltage
being applied between the (infinitely extended) upper and lower leads so that a current flows across
the device.
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2.3 Spatially resolved current density j(r)

(a) basis set: tier1 (b) basis set: tier2

Figure 2.13: Basis set comparison of the local current density response (integrated over the out-of-
plane direction) in the AGNR41 of Fig. 2.12 at energy E=εF−635meV (orange arrow in Fig. 2.14).
The current exhibits very strong mesoscopic fluctuations which exceed the average current by two
orders of magnitude in the logarithmic color scale. The current density is plotted relative to average
current density I/Ly, with width Ly = 5.19nm. Plot shows current amplitude (color), current direction
(arrows), carbon atoms (gray crosses) and hydrogen atoms (red crosses).
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Figure 2.14: Transmission of the AGNR41 shown in Fig. 2.12 comparing the basis set convergence
(tier1 vs. tier2) of the relaxed structure with the deviation to the distorted (unrelaxed) structure
with a tier1 basis set. Additionally, the number of channels of the pristine AGNR41 is shown (orange).

the transmission is well converged, as was to be expected. For different energies slightly larger
deviations can be seen, that are mostly to be interpreted as small shifts of the resonance energies.
Only in the relatively dense region of the spectrum, these shifts can become comparable to the
level spacing, so that larger deviations occur. In these regions, differences in the current patterns
can occur (see Appx. B.5.4 for current pattern at E = εF + 155meV, blue arrow in Fig. 2.14).

We conclude, that a tier1 basis set already gives a qualitatively reliable transmission function,
but for resolving the fine structure of the transmission a larger basis set is required.
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2 Transport method: Calculation of the local current density

2.4 Magnetic field B(r) induced by the local current density

Additionally to the local current density (which is not easy to measure in actual experiments),
we can calculate the induced magnetic field B(r) and the vector potential A(r) that accompanies
the dc-current flow. The magnetic fields can feed back into the current flow itself (see Chap. 6).
But also, the magnetic fields could potentially be detected in experimental setups that allow to
perform a measurement of the nuclear magnetic resonance (NMR) in the presence of the current
flowing (see Sec. 4.1.4).

2.4.1 Implementation of the law of Biot-Savart

The integrals in Eq. (2.16) for the magnetic field B, the vector potential A and the magnetic
moment m are readily evaluated on a properly chosen Cartesian grid with grid spacing δ, which
was already used to raster the current density j(r) in the device region:

m = δ3

2
∑

r
(r−O)× [−j(r)] , (2.36)

B(r) = α2δ3
∑

r′
r′ 6=r

[−j(r′)]× (r− r′)
|r− r′|3 , (2.37)

A(r) = α2δ3

[∑

r′
r′ 6=r

[−j(r′)]
|r− r′| + ζ [−j(r)]

δ

]
, (2.38)

where we replaced µ0
4π by the squared fine-structure constant α2, reflecting the atomic units used

in the calculations. (The minus sign reflects the negative electron charge). As usual, the definition
of the dipole moment makes explicit reference to the origin of the coordinate system, O. In order
to eliminate spurious contributions to m originating from the leads, we chose for O the center of
the integration box. For the magnetic field integral, the sum over r′ explicitly omits the singular
point r = r′. It does not contribute, because the angle integration of j(r′) × (r − r′) vanishes in
the cubic volume element with center r.

For the vector potential, we treat the cube with center r analytically, the singularity can be
integrated to

+δ/2∫

−δ/2

+δ/2∫

−δ/2

+δ/2∫

−δ/2

dx dy dz√
x2 + y2 + z2

= δ2
+1/2∫

−1/2

+1/2∫

−1/2

+1/2∫

−1/2

dx dy dz√
x2 + y2 + z2

︸ ︷︷ ︸
=: ζ

= δ3 ζ

δ
(2.39)

where ζ is the grid-spacing independent integral, ζ = 1
2 [3 ln(7 + 4

√
3)− π] ≈ 2.380.
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2.4 Magnetic field B(r) induced by the local current density

Figure 2.15: Convergence of the magnetic field distribution (in out-of-plane direction at z=0) in-
duced by the current distribution at energy E=εF+155meV (blue arrow in Fig. 2.14; cf. Appx. B.5.4,
Fig. B.10). The magnetic field strongly varies and changes sign from region to region. On the right
side, the convergence of the magnetic field with respect to the grid spacing δ is shown. Note how some
features (marked by black arrow) simply vanish when employing a too coarse grid, e.g. δ = 0.8Å.

Figure 2.16: Convergence of the vector potential (in-plane components at z=0) induced by the
current distribution at energy E=εF+155meV (blue arrow in Fig. 2.14; cf. Appx. B.5.4, Fig. B.10).
On the right side, the convergence of the vector potential with respect to the grid spacing δ is shown.
The spatial average was removed before plotting, i.e., A− 〈A〉 is plotted.

2.4.2 Convergence tests: grid spacing dependence of the magnetic field

As with any discretization, the magnetic field B(r), the vector potential A(r) and the magnetic
moment m carry a residual dependence on the grid spacing δ, that vanishes in the continuum
limit δ → 0.

Magnetic field & vector potential pattern

In Fig. 2.15 and Fig. 2.16, the grid dependence of the spatial pattern of the magnetic field and the
vector potential is displayed: B(r, E=εF+155meV) and A(r, E=εF+155meV), cf. blue arrow in
Fig. 2.14. One convinces oneself that at grid spacings δ . 0.2Å), both, the magnetic field and the
vector potential are converged. For coarser grids, features (arbitrarily) vanish from the calculated
fields.
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2 Transport method: Calculation of the local current density

Global deviations

In order to obtain more quantitative information, we also consider the discretization error for
quantities that average over the entire sample.

The magnetic moment, associated with the magnetic field shown in Fig. 2.15, is mδ=0(E) =
(0.03,−0.01,−1.51)µB/V (extrapolated for δ → 0). In Fig. 2.17, we show the relative root mean
square deviation of the magnetic moment and how it converges when taking the continuum limit.

∆m,rel(δ) =

√∣∣∣mδ(E)−mδ=0(E)
∣∣∣
2

√∣∣∣mδ=0(E)
∣∣∣
2

. (2.40)

As is seen there, the magnetization rapidly converges reaching accuracies better than 1% at
δ . 0.2Å. Data for a similar convergence test for the magnetic field B(r) with

∆B,rel(δ) =

√
1
V

∫
δ d3r

∣∣∣Bδ(r, E)−BfinestGrid(r, E)
∣∣∣
2

√
1
V

∫
δ d3r

∣∣∣BfinestGrid(r, E)
∣∣∣
2

, (2.41)

are also displayed in Fig. 2.17. In order to reduce the numerical effort, here the reference point
is taken to be the calculation with the finest computational feasible grid, being δfinestGrid=0.1Å
for B(r). The symbol

∫
δ indicates a summation over the grid with spacing δ. At δ . 0.2Å, the

relative discretization error drops below 10% which we feel is acceptable given that the raw data
spread over four orders of magnitude.
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Figure 2.17: The relative mean root square (left y-axis) of the magnetic field B(r, E=εF+155meV),
the vector potential A(r, E=εF+155meV), and the magnetic moment m(E=εF+155meV) depending
on the grid spacing δ. The grid spacing is used for both, rastering the current, and integrating over
space. Additionally, the logarithmic deviation (right y-axis) of the magnetic field is shown.
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2.5 Performance measurements: scaling and parallelizability

An analogous relative error measure for the vector potential, ∆A,rel(δ), shows that the vector
potential converges even faster, dropping below 1% for δ . 0.2Å.

In order to better account for the logarithmically broad distribution in magnetic field strengths,
we introduce a logarithmic measure for the discretization error,

∆B,log10(δ) =

√√√√ 1
V

∫

δ
d3r

3∑

i=1

∣∣∣∣ log10

[
Bi(r, E)/BfinestGrid

i (r, E)
]∣∣∣∣

2
, (2.42)

effectively a root mean square error for the exponents. Again, there is a clear convergence behavior,
see Fig. 2.17. Already at δ . 0.3Å, the logarithmic deviation falls below a quarter decade, so that
deviations are hardly visible in logarithmic plots like Fig. 2.15.

2.5 Performance measurements: scaling and parallelizability

In our DFT calculations of larger systems exceeding thousand carbon atoms, we rely on FHI-aims.
It uses the ELPA[133] package tuned for petaflop-applications to solve the Kohn-Sham eigenvalue
problem on massive parallel computer clusters. The scalability of FHI-aims has been shown by
the maintainers[130]. Therefore, we restrict ourselves to the discussion of the performances of
our new transport module; the KS states of the DFT reference calculation and the eigenvector
representation of the corresponding overlap matrix S are assumed to be given and stored on the
hard disk in a HDF5-file[137].

The observables we consider for benchmarking are the transmission T , and the current density j(r);
our test systems are hydrogen saturated AGNRs of 4 different sizes, see Fig. 2.18. Further param-
eters: tier1 basis set (14 basis functions per C; 5 per H), self-energy is iterated M = 200 times
and the resolution of the real space grid was δ=0.2Å, with 31 lattice points in z-direction. Per-
formance checks were carried out at the High Performance Computing Center Stuttgart (HLRS)

Figure 2.18: AGNRs used for benchmarking from left to right: 170 carbon atoms (10×17), 345
(15×23), 735 (21×35) and 1500 (30×50). The size of the block Hblock used to build the lead is marked
in green (one carbon ring in transport direction); the whole system (including hydrogen termination)
is used as device Hdevice.
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2 Transport method: Calculation of the local current density

on the CRAY XE6 (Hermit) cluster. Each node is equipped with 2 · 16 = 32 cores (Dual Socket
AMD Interlagos @ 2.3GHz 16 cores) with 1–2GiB RAM per core. The nodes are connected by a
fast interconnect, the CRAY Gemini interconnect technology.

Scaling of computational time and memory: Fig. 2.19a displays how the memory (M) and
CPU-time (T ) requirements scale with the system size parametrized by the number of basis
functions, N . As is seen from the fits,L the memory requirement scales with N2 (number of
elements in the Green’s functions). The computational time for the current calculation also scales
like a second order polynomial in N (and not third order) because the overlap of basis functions
at different atoms is negligible beyond a distance that exceeds several bond lengths.

Parallelizability: The data presented in Fig. 2.19a has been obtained with a single MPI process
(NMPI = 1) parallelized using threads on p = 32 CPU cores. We now report about the speedup
that we achieve using MPI to run several processes (each combining p = 8 CPU cores) on different
computational nodes. Then, the wall time (total real world calculation time) TNMPI decreases with
the number of processes NMPI; ideally, it is inversely proportional to it.
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Figure 2.19: (a): Left axis: Core hours (wall time times number of CPU cores) TT and Tj for
calculating transmission T and current density j per energy point (average value for 128 energy points),
respectively. Right axis: The corresponding memory requirements MT and Mj. The solid lines are
the following fits (with n = N/10 000): TT = (0.660n+ 0.409n2) h, Tj = 26.8n2 h,MT = 4.55n2 GiB,
Mj = 6.37n2 GiB.
(b): Scaling behavior when using NMPI processes, each using p = 8 cores, which communicate via
MPI with each other. For an AGNR35 (21×35) containing N = 10675 basis functions, nE = 128
transmission values and nE = 32 current densities have been calculated, ensuring that every process
can calculate on a separate energy point. The (theoretical) perfect scaling S(P ) = P is shown in solid
black. This benchmark employs up to 256 CPU cores.
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2.6 Summary: recommended numerical parameters

In Fig. 2.19b, we plot the reduction factor (inverse speedup) S−1 = TNMPI/T1 over the inverse
number of MPI processes, N−1

MPI. According to Amdahl’s law S−1 = [α+(1−α)/NMPI] the “serial
fraction” of the code, i.e., the saturation α, can be estimated (α is the remaining value in the inset
of Fig. 2.19b for N−1

MPI → 0). It turns out to be 1% for 10675 basis functions. In other words, the
present parallelization will cease to be efficient at αNMPI ≈ 1, i.e., at ∼ 1000 cores.

2.6 Summary: recommended numerical parameters

In this chapter, we have presented a formalism to calculate the electron current density j(r) and
the induced magnetic field B(r). It is based on the non-equilibrium Green’s function technique
and density functional theory formulated in an atom-centered basis sets. The implementation of
the formalism is especially constructed towards quasi-onedimensional wires. Then, the leads can
be dealt with employing a standard recursive Green’s function method (decimation technique).
Extensive test of the numerical parameters have been performed to establish the reproducibility
of the results. In particular, we ensured that despite of the finite basis set the continuity equation
is fulfilled in the basis set limit.

For the important application to the case of armchair graphene nanoribbons (see the follow-
ing chapters), we have summarized the numerical parameters for quantitative correct results in
Tab. 2.1, as they are used throughout this thesis. In particular, we use a moderate basis set
(14 basis function per carbon atom; double-ζ quality) to calculate quantitatively correct current
patterns. Larger basis sets are needed if small energy shifts in the transmission function are
unacceptable.

Additionally, Tab. 2.1 also lists settings for strict convergence tests. All calculations which show
new physical effects must be checked using at least these stricter settings. For this thesis, we have
always picked test systems which were checked for convergence using these settings.
1

recommended settings for reference
quantitative results convergence checks

basis set size tier1 / svp tier2 / tzvpp Figs. 2.9, 2.10,
(basis functions per carbon atom) (14/14) (39/31) 2.11, 2.13, 2.14

grid spacing δ δ = 0.2Å δ ≤ 0.1Å Figs. 2.15, 2.16, 2.17

length-width-ratio of each lead L/W ≈ 10− 25 L/W ≥ 50 Sec. 2.2.2, Tab. B.3

length of each slice Hblock 1 carbon ring ≥ 2 carbon rings Fig. 2.5b, Eq. (2.29)

length of extensions Hext 1 carbon ring ≥ 3 carbon rings Fig. 2.6b

Table 2.1: Recommended numerical parameters for quantitative correct results and for additional
(more strict) convergence checks. The last column lists references to the data on which the recommen-
dations are based.

1This is the end of the method chapter.M
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Notes to chapter 2

The notes are for completeness, reproducibility and to help interested readers understand all the fine technical details.

A The effective single particle treatment is—in the
Landauer-Büttiker framework—necessary for electrons
in the leads because otherwise, even injecting electrons
moving towards the junction requires solving a full
many-body problem. In this thesis, we also restrict
ourselves to effective single particle treatment for the
electrons in the junction, although this is not required
by the Landauer-Büttiker viewpoint. One exception is
given in Sec. 3.3.3 where explicit interaction effects are
shortly discussed on the basis of a small tight-binding
model. (page 10)

B Please note, that the left and right leads are assembled
from opposite directions, but are otherwise identical.
The resulting self-energies are thereby related by a sym-
metry transformation. In practice, it is much easier to
calculate two self-energies. For the left lead, Eq. (2.18)
are iterated as written. For the right lead, one replaces
V→ V†. (page 15)

C The total length of the lead is given by the numberM of
slices Hblock in the lead plus one (for the contact region)
times the length l of a single slices, i.e., L = (M + 1)l.
(page 16)

D Since we examine transport in armchair ribbons, the
left and right border is of zig-zag type. These zig-zag
borders facilitate spin-separation, especially for ribbons
which are not much longer than wide[138]. These spin-
separations do not describe the infinitely extended sys-
tem, which we intend to investigate. Therefore, we sup-
press the spin-separation using spin-unpolarized DFT
simulations. In the following, the remaining finite-size
effects (caused by the difference between hydrogen ter-
mination and carbon continuation) are dealt with by
choosing a large enough system. (page 17)

E Ideally, both matrix blocks Hblock in Eq. (2.29) are
identical. In practice, they slightly deviate from each
other for finite sized extensions. These deviations are
usually small and not important for the transport phe-
nomena; we minimize them by taking the arithmetic
average of both matrix blocks (per element with respect
to the orthogonal basis set |ϕ̃i〉). (page 20)

F A single carbon ring contains 4 carbon atoms in
transport direction (i.e. armchair direction). Thus,
the matrix V describing only one carbon ring in-
cludes all carbon-carbon couplings up to fourth-nearest-
neighbors. (page 22)

G For the AGNR5, containing 2 carbon rings in width, the
rule of thumb means that valuesM = 2 ·L/W ≈ 20−50
are reasonable. For wider ribbons, larger values are
needed, i.e. for AGNR41, containing 20 carbon rings in
width, values ofM = 20·L/W ≈ 200−450 are necessary
for converged leads. Please, compare this with Fig. 2.14
(left) where the bandgap, calculated with M = 200, of
the pristine AGNR41 is not yet fully developed. The
(theoretical sharp) step near E = εF is still slightly
smoothed. (page 22)

H The continuity equation can only be fulfilled exactly
at all spatial points using a finite basis set if the ba-
sis functions themselves are tuned to fulfill the conti-
nuity equation, i.e. by forcing that they comply with
the Laplace equation: ∇·∇ϕj(r) = ∆ϕj(r) = 0. Liou-
ville’s theorem forces such (harmonic) basis functions to
be constant everywhere in space (since basis functions
are bounded to represent molecular orbitals), perishing
any usefulness of this approach. (page 23)

I The functional error of the symmetric two-point rule for
first and second derivative with spacing ∆ scales with
O(∆2). Therefore a small ∆ should be chosen. On the
other hand, calculating differences is numerically unfa-
vorable because of a finite machine precision ε (double
precision: ε = 2.2 · 10−16). The finite precision error
scales with O(ε∆−1) and O(ε∆−2) for first and second
derivative calculation, respectively. Since we only need
the second derivative for the divergence which is not a
physical quantity but a convergence measure, we sac-
rifice its accuracy in favor of a uniform ∆, and choose
an optimal ∆ = 3√ε for the first derivative, leading to
accuracies in the order of 10−10 and 10−5 for first and
second derivative, respectively. The units used in the
code are atomic units, i.e., Bohr radius for the length
scale, which is the correct length scale on which the
basis function vary. (page 24)

J The minority channel (β) looks slightly different due
to different occupation induced by an overall odd num-
ber of electrons in combination with integer occupation
number. Allowing for fractional occupation numbers
as in FHI-aims, a collinear open-shell calculation con-
verges to the closed-shell calculation. (page 25)

K In x-direction, we exclude one carbon ring additionally
to the (dashed blue) contact regions since the basis func-
tions cannot be strictly separated in space and therefore
the contact regions do not have the strict borders im-
plied by the dashed blue box. In fact, parts of the self-
energies ΣL/R, representing the leads, also contribute to
regions next to the blue dashed region, cf. Appx. B.5.2.
Please also note, that the absolute value of the error
measures ∆j and ∆∇·j depend (arbitrarily) on the up-
per and lower integration borders in y and z-direction.
Away from the AGNR5, the local currents and the di-
vergence are exactly zero, giving no measurable error.
Because of the averaging procedure, the error measures
∆j and ∆∇·j can become arbitrarily small by integrating
over sufficiently space. To compare the error measures,
it is important to perform the integration always on the
same grid. (page 27)

L For comparison, we also fitted a single exponent (valid
only in the plotted regime): TT = 10−5.24N1.32 h,
Tj = 10−6.46N1.97 h, MT = 10−6.77N1.85 GiB, Mj =
10−6.95N1.94 GiB. (page 34)

M I dedicate this extremely useful footnote to Sir “Terry”
Pratchett (*28 April 1948; †12 March 2015), e.g., see
Ref. 139. (page 35)



3 Chapter 3

Application I:
Narrow armchair graphene nanoribbons

We investigate the transport behavior of narrow armchair graphene nanoribbons.
We start with pristine ribbons in Sec. 3.1, and observe perfect streamline pat-
terns in the current density. These streamline patterns arise as a consequence of
quantum confinement in the transverse direction, as can be explained with simple
zone-folding arguments. Next, in Sec. 3.2, we investigate the transport properties
of ribbons with nitrogen substituents, and observe a strong dependence on the po-
sition of the nitrogen substituent. This dependence is intuitively explained by the
streamline patterns. If the nitrogen is placed outside the streamlines of the pristine
ribbon, hardly any effect on the transport is observed. Placing the nitrogen inside a
streamline, the current pattern changes significantly and shows prominent vortices,
ring currents, which induce orbital magnetism. The fundamental origin of these ring
currents is then explored in Sec. 3.3 using simple two-path tight-binding toy models.

3.1 Pristine ribbons

As first application, we investigate the current flow through pristine AGNRNC, armchair graphene
nanoribbons with NC carbon atoms in the transverse direction (y-direction), see Appx. A.1 for
detailed nomenclature. We find perfect streamline patterns (Sec. 3.1.1) which are a consequence of
quantum confinement in the transverse direction (Sec. 3.1.2). We observe and explain a threefold
periodicity in NC. The periodicity remains valid in the bulk limit (Sec. 3.1.3), i.e., for very wide
ribbons.

Pristine armchair graphene nanoribbons are spin-unpolarized, in contrast to ribbons with zig-
zag borders, which facilitate spin-separation[138]. Thus, no spin-effects are considered in this
section, and we apply closed-shell DFT transport calculations using Turbomole and FHI-aims
as described in Chap. 2.
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3 Application I: Narrow armchair graphene nanoribbons

3.1.1 Streamline patterns in the current density

The simulated current pattern for a single channel (T = 1) in an AGNR5 is shown in Fig. 3.1. We
make the following observations, which remain true for wider AGNRs discussed later in Sec. 3.1.2.

A perfect streamline pattern arises (see Fig. 3.1a). The current flows along carbon-carbon bonds
but there are carbon atoms in the center of the AGNR5 which are not even touched by the current
flow. Thus, the overall current pattern is strongly inhomogeneous already in this simple pristine
case. Two cuts perpendicular to the current direction are shown in Figs. 3.1b and 3.1c. The
current is divided into flows above and below the carbon plane. This is expected because the
current follows the shape of the π-orbitals of the electrons near the Fermi energy. These π-orbitals
are hybridizations of pz-orbitals of single carbon atoms. Therefore, they have a node in the carbon
plane, suppressing any current contribution there. Because of the perfect z-mirror symmetry of the
current density and the trivial structure in z-direction, we restrict ourselves to xy-cuts at z=0.5Å
(as shown in Fig. 3.1a) in the following. The value z=0.5Å is chosen since it corresponds to the
maximum current density (see Figs. 3.1b and 3.1c).

The transmission function T (E) of pristine AGNR5—shown in Fig. 3.2a—is quantized in integer
values due to the perfect periodicity of the ribbon in transport direction. Effectively, T (E) counts
the number of bands available for transport at energy E. So far, we discussed the single channel
case (T = 1, black arrow in Fig. 3.2a). Now, we shortly turn to the two channel case (T = 2,
gray arrow). The current pattern shown in Fig. 3.2b shows the superpositionA of two channels,
the already discussed streamline channel and an additional second channel. Due to the latter, the

(a) xy-cut at z=0.5Å (b) yz-cut at x=x0 (c) yz-cut at x=x1

Figure 3.1: Local current density response (per spin) for perfect single channel transmission T =1 in a
pristine narrow hydrogen-terminated armchair graphene nanoribbon (AGNR5) for different cuts: (a) a
cut along the xy-plane at z=0.5Å, and (b/c) cuts along yz-planes at x=x0 and x=x1 in, respectively.
The current pattern shows two prominent streamlines, see (a), which are split into flows below and
above the ribbon plane, see (b/c). The z=0.5Å-plane, and the x0/x1-planes are shown in dashed
white. Plot shows current amplitude (color), current direction (arrows), carbon atoms (gray crosses),
and hydrogen atoms (red crosses). [DFT details: Turbomole, basis set tzvpp, closed-shell]
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3.1 Pristine ribbons
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Figure 3.2: (a) Transmission function of pristine AGNR5. The single channel (T =1) case and
double channel case (T =2) are marked. The corresponding current patterns are shown in Fig. 3.1
and Fig. 3.2b, respectively. (b) Local current density response (per spin) for two channels (T =2) in
pristine AGNR5. The streamline pattern mixes with an additional channel, so that all carbon atoms
are touched by the current flow. Plot shows current amplitude (color), current direction (arrows),
carbon and hydrogen atoms (gray and red crosses). [DFT details: Turbomole, basis set tzvpp, closed-shell]

current touches all carbon atoms resulting in a more homogeneous flow. To focus on fundamental
properties of single scattering states, we will restrict the investigations to the single channel case
in the remainder of this thesis, meaning T =1 (or T <1 when including impurities).

3.1.2 Influence of transverse confinement & selection rules

After discussing the current flow in pristine AGNR5, we will now generalize the results to broader
ribbons and investigate the dependence of the current flow on the number of transverse carbon
atoms NC. This work has been done in close collaboration with J. Wilhelm and has also been
published in his master thesis[140] and in our joined publication[109].

Transmission function of AGNRs

To discuss the dependence of transport properties on NC, we explicitly investigate four rib-
bons: AGNR11–14. The transmission function, shown in Fig. 3.3, already shows three classes:
AGNR(3m), AGNR(3m−1), and AGNR(3m−2) [m ∈ N]. AGNR11 and AGNR14, belonging
to class AGNR(3m−1), feature a small bandgap (≈ 0.1 eV) and a wide energy region with ex-
actly one channel (T =1). AGNR12 [AGNR(3m)] shows a larger bandgap (≈ 0.6 eV) and still a
moderate region with exactly one channel. AGNR13 [AGNR(3m−2)] also has a larger bandgap
(≈ 0.8 eV) but it features a significantly smaller single channel region. These three classes are
consistent with earlier DFT bandgap calculations[141–143]. The three-fold periodicity remains
true for larger AGNRs, but the bandgaps decrease as 1/NC with a class dependent prefactor.
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3 Application I: Narrow armchair graphene nanoribbons
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Figure 3.3: Transmission function of several consecutive pristine AGNRs. The single channel (T =1)
case is marked by an arrow. The corresponding current patterns (for the single channel) are shown in
Fig. 3.4. For plotting reasons, the transmission functions are slightly shifted on the y-axis; the correct
values are always exact integer multiples. My thanks to J. Wilhelm who performed the numerical
calculations[140]. [DFT details: Turbomole, basis set svp, closed-shell]

Current patterns in AGNRs

Next, we tend to the current patterns of AGNR11–14, shown in Fig. 3.4. For NC=3m−1,
Figs. 3.4a and 3.4d, we still see the perfect streamline pattern. Please note, that all stream-
lines together form a single channel. Therefore, the current per streamline decreases with the
number of streamlines, as can be seen by comparing AGNR11 and AGNR14.

The other two classes, NC=3m (Fig. 3.4b) and NC=3m−2 (Fig. 3.4c) , still show strongly textured
current patterns but no perfect streamlines. Only at the border, the streamlines survive. In the
interior, the current is more complicated but its amplitude still shows a node structure in transverse
direction, e.g., the current pattern in AGNR12 has three nodes in y-direction: one in the center
and two next to the surviving streamlines at the borders. This already hints at transverse quantum
confinement as origin for these effects. Also, the number of nodes, and equivalent the number of
maxima, grows with increasing ribbon width. In fact, the integer m is the number of maxima in
transverse direction. Also, m equals to the number of streamlines for NC=3m−1.

This periodicity in the ribbon width continues to wider ribbons. In every third ribbon, for
NC=3m−1, a perfect streamline pattern exists. For NC 6=3m−1, the current density shows stream-
lines only at the boundaries, but more complicated patterns in the ribbon center. We thus also find
a periodicity on NC for the current patterns, but only two qualitatively different cases: NC=3m−1
(with streamlines) and NC 6=3m−1 (without perfect streamlines).

As a final remark, please note that pristine AGNR12 and AGNR13 even show backflowing currents,
local current contributions that flow (at least partially) against the total current direction.
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3.1 Pristine ribbons

(a)
NC=3m−1
AGNR11 (b)

NC=3m
AGNR12 (c)

NC=3m−2
AGNR13 (d)

NC=3m−1
AGNR14

Figure 3.4: Local current density response (per spin) for perfect single channel transmission (T =1)
in pristine AGNR11–14. AGNR11 and AGNR14 show perfect streamline patterns, while for AGNR12
and AGNR13 the streamline pattern survive only at the border. Plots show current amplitude (color),
current direction in the upper part (black arrows), carbon atoms (gray crosses), and hydrogen atoms
(red crosses). My thanks to J. Wilhelm who performed the numerical calculations[140].
[DFT details: Turbomole, basis set svp, closed-shell]

Selection rules

The transverse structure of the current patterns can be explained by standard zone-folding ar-
guments, which are well-known in carbon nanotubes[144, Sec. 3.2], and have also already been
applied to AGNRs[143]. First, we look at the spatial structure of the wavefunction ψ in transverse
direction and assume that hardcore boundary conditions apply, i.e.,

ψ(y=0) = 0 , and ψ(y=Ly) = 0 , (3.1)

with Ly being the ribbon width. The only k-points respecting these conditions are

ky,m = π

Ly
·m, for m ∈ Z . (3.2)

The width of an AGNRNC is approximatelyB given by Ly = (NC + 1)ay. Here, ay = a
√

3/2 is the
carbon-carbon bond length projected to the y-axis. [The carbon-carbon bond length is a and a
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3 Application I: Narrow armchair graphene nanoribbons

(a) Brillouin zone of graphene (b) Transversal dependence of the wavefunction in AGNRs

Figure 3.5: (a) First Brillouin zone of graphene showing both Dirac points, K and K′, and reciprocal
lattice vectors, b1 and b2. The zone-folding procedure is indicated for AGNR8 and AGNR9, exem-
plarily. (b) Schematic visualisation of the wavefunctions for states near the Fermi energy, showing
their dependence on the transverse direction. Hardcore boundary conditions are applied at the hydro-
gen atoms (red crosses). In the case of AGNR5/11/14 (AGNR(3m−1) in general), the nodes of the
wavefunction exactly matches carbon atoms (gray crosses), explaining the perfect streamline pattern.
In the other case, the nodes are slightly shifted away from carbon positions, so that all carbon atoms
carry contributions near the Fermi energy.

link between neighboring atoms is given by, e.g., a = a(1/2,
√

3/2).] In Fig. 3.5a, the first Brillouin
zone of graphene with the two Dirac cones K and K′ is “sliced” at the valid k-points

ky,m = Ky
3m

NC + 1 ,
[
Ky = 2π

3
√

3a = π
3ay

]
(3.3)

exemplary shown for NC = 8 and NC = 9. For NC = 8, as for any NC = 3m−1, the Dirac
cone is directly hit: ky,m = Ky. Thus, the spatial structure of electronic states near the Fermi
energy in an AGNR(3m−1) is expected to be governed by Ky (at least in y-direction). Together
with the contribution of the other Dirac cone, K ′y = −Ky, a standing wave with wavelength
λ = 2π/Ky = 6ay emerges. Being an even integer multiple of the transverse bond-distance ay
(and because of symmetry), the nodes of such a standing wave coincide with carbon atoms. This is
sketched in Fig. 3.5b for AGNR5/11/14 and explains the formation of perfect streamline patterns
in the current density of AGNRs(3m−1).

For AGNRs with NC 6= 3m−1, no allowed wavevector ky,m coincides with the Dirac cones. The
nearest allowed wavevector K̃y = ky,m—choosing m ∈ Z so that |K̃y −Ky| is minimal—is slightly
off. Therefore, the wavelength

λNC = 2π/K̃y = 6ay ·





1 + 1
NC

for NC = 3m
1 for NC = 3m− 1
1− 1

NC+2 for NC = 3m− 2
(3.4)
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3.1 Pristine ribbons

is no integer multiple of ay (for NC 6= 3m−1) and the nodes of the standing wave pattern do not
match the carbon rows, see Fig. 3.5b. Instead the nodes are “between” the carbon atoms which
is the reason for the node structures seen in AGNR12 and AGNR13.

Remark: The above arguments apply equally well to the local density of states (LDOS) in
equilibrium. Indeed, the LDOS shows the same node structure in the transverse direction as the
current density (see for example our publication[109, Fig. 10]). But the LDOS does not obey a con-
tinuity equation, and therefore shows additional structure along the ribbon direction (x-direction).
Therefore, the LDOS forms at most pseudo-streamlines. On the other hand, the LDOS can be ac-
cessed by a scanning tunneling microscope (STM), see Tersoff-Hamann theory[145]. Nevertheless,
to the best of my knowledge, no experiment has so far observed the pseudo-streamlines (or current
streamlines) in AGNRs(3m−1), probably because edge irregularities destroy the streamlines and
the fabrication of perfect pristine AGNRs remains challenging.

3.1.3 Streamline patterns in the bulk limit

We now explain how the bulk limit of the current density is reached. In the bulk limit, the stream-
line pattern should vanish because the boundaries should no longer play a significant role. But
when investigating the current density response for wider ribbons (up to AGNR41, see Fig. 3.6), we
see no indication that the streamline patterns vanish, except that the total current is distributed
intom streamlines whose amplitudes are therefore reduced bym (cf. Appx. C.1 for further details).

The streamlines vanish in the bulk limit in another fashion. The energy range ∆ET =1 in which only
a single channel exists decreases for increasing ribbon width. As discussed on the basis of Fig. 3.2b,
the streamlines only exist at T = 1. One expects a 1/NC decay for this energy range in wide
ribbons. Our DFT simulations support such a decay (cf. Appx. C.1) and give as numerical value

∆ET =1 ≈
25 eV
NC

for NC � 1 . (3.5)

For bias voltages larger than this energy window, eVbias > ∆ET =1, the streamline pattern mixes
with other channels, thereby vanishing. Thus, for fixed bias voltage, the streamline pattern be-
comes less and less important for increasing ribbon width. Nevertheless, for sufficiently small bias
voltages, we predict the appearance of streamlines in all AGNRs(3m−1), regardless of their width.

Figure 3.6: Local current density response (per spin) in pristine AGNR41 (single channel, T =1).
No deviations from the perfect streamline pattern are visible. Note, that the plot has been rotated
compared to previously shown current density plots. [DFT details: FHI-aims, basis set tier1, closed-shell]
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3 Application I: Narrow armchair graphene nanoribbons

3.2 Ribbons with a single nitrogen substituent

After discussing current patterns in pristine AGNRs, we now consider ribbons with a single nitro-
gen substituent as scattering center. There are three different (not symmetry-equivalent) positions
in an AGNR5 for a nitrogen substituent, see Fig. 3.7a. In Sec. 3.2.1, we examine the influence of
the nitrogen position on the transport properties. Placed inside a pristine streamline, the current
pattern changes significantly and shows prominent vortices. These ring currents induce orbital
magnetism which we discuss in Sec. 3.2.2 using the example of nitrogen substituted to position 3.
Finally, in Sec. 3.2.3, we summarize simulations with other impurity types, and conclude that the
discussed effects (strong position dependence and ring currents) are generic and independent of
the impurity type.

Remark: We checked that all three structures (AGNR5 with a single nitrogen substituent as
shown in Fig. 3.7a) remain planar. For this purpose, we placed the nitrogen atom 0.2Å above the
in-plane position of the substituted carbon atom. After a geometry relaxation using DFT, the
nitrogen returns into the planar position with an accuracy better than 10−4 Å.

(a) AGNR5 with nitrogen atom
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(b) Transmission of AGNR5 with nitrogen substituents

Figure 3.7: (a) Atomic structure of an AGNR5 with one nitrogen substituent (in green at position 3).
All three symmetry-inequivalent positions for a nitrogen substituent are marked.
(b) Transmission function for AGNR5 containing a single nitrogen substituent. The black arrow
marks the energy (E=εF+1 eV) for which the current density responses are shown in Fig. 3.8a–c. The
transmission of AGNR5 with nitrogen at position 2 or 3 shows a prominent dip, an antiresonance at
energy E = Eres. [DFT details: FHI-aims, basis set tier1, closed-shell]
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3.2 Ribbons with a single nitrogen substituent

3.2.1 Position of impurities: placement inside or outside the streamlines

In Fig. 3.7b, we show the transmission of all three systems together with the pristine case. Most
interestingly, the transmission function for position 1 (blue) does not show any qualitative changes
near the Fermi energy when compared to the pristine case. Only the steps are smeared out which
is expected as soon as the perfect periodicity is perturbed. Also, the current density response
at E=εF+1 eV—shown in Fig. 3.8a—does not show any visible deviations from the streamline
pattern. We conclude that placing a nitrogen substituent outside of the pristine streamlines
hardly influences the transport near the Fermi energy.

(a) nitrogen at pos. 1, E−εF = 1 eV (b) nitrogen at pos. 2, E−εF = 1 eV

(c) nitrogen at pos. 3, E−εF = 1 eV, E < Eres (d) nitrogen at pos. 3, E−εF = 1.25 eV, E > Eres

Figure 3.8: (a–c) Local current density response (integrated over the out-of-plane direction) nor-
malized to the average through current of AGNR5 with a single nitrogen substituent (green cross)
at position 1–3, respectively. The corresponding energy (E=εF+1 eV) is marked in Fig. 3.7b by a
black arrow. The current pattern in (a) shows a hardly perturbed streamline pattern, while (b/c)
show prominent ring currents whose amplitudes exceed the average through current by a factor of
about 30 (see color scale).
(d) Current density response corresponding to (c), but above the antiresonance (E > Eres), whereas (c)
shows the current pattern below the antiresonance (E < Eres). Note how the ring current direction
changes between (c) and (d). [DFT details: FHI-aims, basis set tier1, closed-shell]
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3 Application I: Narrow armchair graphene nanoribbons

Quite the opposite happens when the nitrogen substituent is placed inside a streamline. The
transmission function for position 2 and 3 shows an additional feature, a dip (antiresonance) at
E = Eres which is due to interference effects. The current density response near the antiresonance
is shown in Fig. 3.8b and Fig. 3.8c. Both current patterns differ qualitatively from the streamline
pattern, showing a prominent ring current near the nitrogen substituent.

We will discuss these ring currents in Sec. 3.2.2, but for the moment let us summarize that we can
analyze the dependence on the position of the impurities in AGNRs(3m−1) in terms of streamlines
and we find a simple, intuitive explanation for the position dependence. If the impurity is placed
inside a streamline, the transmission is suppressed over a large energy window. On the other hand,
the transmission function and the current pattern is hardly affected when placing an impurity
outside a streamline. This explanation seems to be general, see Sec. 3.2.3 for an example with
OH-adsorbates on AGNR11.

Remark on spin magnetism: The nitrogen feeds in an extra electron into the conduction band
of the ribbons. Having an odd number of electrons, one may think about spin-polarization and
Kondo effect. Concerning the Kondo effect, we recall that the flat geometric structure of the rib-
bons suggests that the unpaired electron is not localized but completely immersed in the ribbon’s
π-band. We therefore do not expect a Kondo effect/Coulomb-blockade type situation. For all
three nitrogen positions, we checked this expectation by an open-shell calculation that produces
two (identical) half-occupied states at the Fermi energy suggesting the absence of a (nearby)
magnetic instability. Hence, Kondo-physics is probably not relevant in these systems.C

3.2.2 Ring currents & orbital magnetism

We now investigate the antiresonance in the transmission function at E = Eres (cf. Fig. 3.7b).
We restrict ourselves to the nitrogen at position 3 (red curve). In Fig. 3.8c and Fig. 3.8d, the
current density response is plotted below and above the antiresonance, respectively. At first
glance, both patterns look similar: they feature a prominent ring current around the 6-atom ring
with the nitrogen substituent. The magnitude of the ring currents is not restricted by the total
current. Instead, we observe that the ring currents are larger than the average through current
by a factor 30–50 (see color scale).

Nevertheless, there is an essential difference between the two current patterns: the ring cur-
rent direction. It changes from clock-wise (below Eres, Fig. 3.8c) to anti-clockwise (above Eres,
Fig. 3.8d). This becomes even more interesting, if we recall that ring currents are related to or-
bital magnetism. The induced magnetic field, shown in Fig. 3.9, also changes the direction when
transversing the antiresonance. The magnetic field strength reaches dBz/dVbias = 150mT/V with
a large gradient reaching 1T/(V nm). The observations are especially important in the context
of nanoelectronics. Such a ribbon may work as a current-field converter: a nanoscopic coil. The
sign of a macroscopically applied voltage fixes the sign of a microscopic induced field.
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3.2 Ribbons with a single nitrogen substituent

(a) nitrogen at pos. 3, E−εF = 1 eV, E < Eres (b) nitrogen at pos. 3, E−εF = 1.25 eV, E > Eres

Figure 3.9: Magnetic field response (in out-of-plane direction) induced by the current patterns shown
in Figs. 3.8c and 3.8d, respectively. The field is plotted in the carbon plane (z=0), but being divergence
free, it hardly changes with z (checked for z = ±1Å). [DFT details: FHI-aims, basis set tier1, closed-shell]
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Figure 3.10: Transmission function (solid red) and magnetization per bias dmz/dVbias (perpendicular
to the graphene plane, dashed black) for the AGNR5 with nitrogen at position 3 (transmission as in
Fig. 3.7b). The magnetization shows a sign change directly at the antiresonance E=Eres. The orange
arrows mark the energy for which the current response is plotted in Figs. 3.8c and 3.8d, respectively.
[DFT details: FHI-aims, basis set tier1, closed-shell]

Magnetization

To investigate the ring currents in the complete energy range, we calculate the magnetic re-
sponse dmz/dVbias induced by the current patterns and show it in Fig. 3.10. [total magnetization:
m = 1

2
∫

r× jel(r) dr, cf. Eq. (2.16)] First, note that the magnetic response changes its sign exactly
at the antiresonance (see magnification), reflecting the change of the ring current direction. Sec-
ond, the magnetic moment (and also the inducing ring currents) is linear in the detuning E−Eres
whereas the transmission shows a quadratic dependence. That means that near the antiresonance,
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3 Application I: Narrow armchair graphene nanoribbons

the ring currents dominate. They become arbitrarily large compared to the total through current.
For all energies, the amplitude of the magnetic response is in the order of 0.1–0.5µB/V (per spin).
An experimental observation should be feasible.

Remark 1: Although interesting from a theoretical point of view, comparing the ring currents
to near-vanishing through currents may be of less importance from a practical point of view. As a
compromise, we only plot current density responses with finite transmission T & 0.1 in the main
part of this thesis, so that an experimental observation is—in principle—possible (see Appx. C.2
for an example with near-vanishing transmission).

Remark 2: There is an additional much-sharper antiresonance at E = εF + 1.345 eV, see mag-
nification of Fig. 3.10. The same effects can be observed: the transmission vanishes quadratically
but the magnetic moment vanishes only linearly, see Appx. C.2 for further details.

Finite bias voltage

So far, we discussed only the current density response to an infinitesimal bias voltage. From the
magnetization response dmz/dVbias in Fig. 3.10, one already expects finite ring currents also for
finite bias voltages because there are large regions with dmz/dVbias having a constant sign. In
Fig. 3.11, the current density and the induced magnetic field is calculated for a bias voltage eVbias =
Eres − εF = 1.145 eV which covers the range between Fermi energy and antiresonance. In that
range, the magnetic response dmz/dVbias does not change its sign.

Thus, Fig. 3.11 suggest that the ring currents should be observable for finite bias voltages. In that
case, we expect a ring current exceeding the average through current by about a factor of 10. The
magnetic field reaches 130mT which might be detectable experimentally, e.g., by a magnetic STM.

(a) Current density (finite bias voltage) (b) Induced magnetic field (finite bias voltage)

Figure 3.11: (a) Current density and (b) induced magnetic field for a finite bias voltage Vbias=1.145V.
All previously discussed features remain. The magnetic moment of the current density is mz=0.44µB
for both spin channels (mz=0.22µB per spin channel). [DFT details: FHI-aims, basis set tier1, closed-shell]
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3.2 Ribbons with a single nitrogen substituent

The associated total magnetic moment mz=0.44µB (for both spin channels) lies also in an ob-
servable order of magnitude. For our system, it significantly exceeds previously reported values
of orbital magnetism, e.g., by Im et al. [146] who report orbital magnetism in carbon nanotubes
due to structural (Stone-Wales) defects with a maximum magnitude of m=0.08µB.

Remark on mx,my, Bx, By: In this section, we have restricted ourselves to the magnetic
field Bz(z=0) and magnetic moment mz perpendicular to the graphene ribbon. Since both,
B and m are pseudovectors (axial vectors), their in-plane components are exactly zero due to
the z-mirror symmetry of the transport setup. In the case of disorder, like hydrogen adatoms
in Chap. 4, some carbon atoms are moved out of the ribbon plane, and the symmetry is broken.
Then, the in-plane components mx,my, Bx, By are finite. Nevertheless, they are still suppressed
by an approximate z-mirror symmetry, and we will focus on mz/Bz also in these cases.

3.2.3 Summary & generalization to other impurity types

So far, we discussed a nitrogen substituent as an example and found two main effects: (i) a strong
position dependence explainable by the streamlines and (ii) a tendency to form ring currents.
We presume that these results are general since they also appear with many different types of
impurities as well. In this section, we summarize and refer to such other examples.

The first effect, the position dependence, is also shown in Fig. 3.12 for OH adsorbates on AGNR11.
If the OH group is adsorbed on a carbon atom inside a streamline, the transmission is suppressed
over a large energy window (cf. Fig. 3.12b). Otherwise the transmission and the current pat-
tern is hardly affected (cf. Fig. 3.12a). The antiresonance for OH at position 4 (E≈εF−0.45 eV)
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Figure 3.12: Transmission function of AGNR11 with one OH-adsorbate at different positions. The
positions are counted from the center of the AGNR11, corresponding to the nomenclature used in
AGNR5, see Fig. 3.7a. My thanks to J. Wilhelm who performed the numerical calculations[140].
[DFT details: Turbomole, basis set svp, closed-shell]

49



3 Application I: Narrow armchair graphene nanoribbons

is very sharp with minor contributions to transport with finite bias voltages. The general fea-
tures, that the transmission is strongly dependent on the position of the OH group, was already
observed[81, 99–102], and the streamline patterns of the underlying pristine ribbons provide an
intuitive explanation.

Second, also the tendency to form ring currents is general. In close collaboration with J. Wilhelm,
we have observed ring currents for adsorbates (OH and H), as well as for substituents (nitrogen
and boron) for several different AGNRs[111, 140]. Our results are supported by other groups
which have applied TB models to disordered graphene ribbons; the resulting TB bond currents
also show ring currents[77–83]. Ring currents have also been reported in carbon nanotubes due to
structural defects[146]. In all these cases, the ring currents are related to a quadratically vanishing
transmission at an antiresonance. The ring currents vanish linearly and change their direction at
the antiresonance.

3.3 Tight-binding (toy) models explaining the ring current formation

In this section, we investigate tight-binding (TB) toy models to explain the formation of ring
currents. We can explain all qualitative features of the ab initio treatment, but of course no
quantitative features, like numbers and local spatial structures.

The transport method for TB systems follows the DFT method—as described in Chap. 2—but
with one crucial difference. Local current densities are not available due to missing spatial in-
formation. Instead, we need to work with “bond currents”, current contributions flowing from
one TB site to another. Such bond currents are defined to fulfil at least a continuity equation in
the TB lattice, but not in real space (see Appx. C.3 for details). The bond current jl→i flowing
directly from site l site i is defined as

jl→i := 2
~

Im tli〈ψ|l〉〈i|ψ〉 , (3.6)

where |ψ〉 is the scattering state and tli the hopping element between site l and i.

We first discuss a non-interacting TB two-path model in detail (Sec. 3.3.1). Then, in Sec. 3.3.2,
we discuss the role of broken path symmetry using a selection of different non-interacting TB
tow-path models. Last, we shortly comment on multi-particle interaction effects (Sec. 3.3.3).

3.3.1 A non-interacting two-path model

Our two-path (toy) model, defined in Fig. 3.13a, features two paths—a top and bottom path—
that connect to the same reservoirs, given by semi-infinite TB chains. Importantly, the symmetry
between the two paths is broken by adding (different) on-site potentials εT/B to each path. The
results of a simple analytic calculation (which we postpone to the end of this section) are displayed
in Fig. 3.13b. First, it reproduces the well known fact[147] that antiresonances (destructive in-
terference) are generic encounter in this model: the transmission function T vanishes at the
antiresonance Eres = 1

2(εT + εB).
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(a) TB-model
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Figure 3.13: (a) Tight-binding (TB) two-path model featuring a ring (hoppings t′) with (different)
on-site potential εT/B in both arms. The ring is attached to semi-infinite TB chains with hopping t.
(b) The total current, proportional to the transmission, and current in both arms as calculated for
the two-path model of (a). The currents are proportional to the incoming current jin. The magneti-
zation mz = (jB − jT)A/2 (proportional to the orbital current) depends on the unspecified area A of
the ring. (t′ = t/

√
2; εT = −εB = 1

2 t)

As novel results, we also calculate the currents in the separate arms, jT and jB. Near the antires-
onance, they have opposite sign, thereby generating a loop current. The orbital magnetization
mz = (jB− jT)A/2 is given in terms of the (unspecified) area A of the ring. Both, the currents in
the ring and the orbital magnetization vanish linearly near the antiresonance while the through
current (transmission) vanishes quadratically. Thus, the model recovers the qualitative aspects of
the AGNR5 with a nitrogen substituent, as discussed in the previous section. Again, the ratio of
the ring currents and the through current becomes arbitrarily large near the antiresonance Eres,
and the ring current changes its direction emphasizing the close relation of the effect to quantum
interference.

Qualitative explanation of the antiresonance

To qualitatively explain the interference effect, we first regard a single path (TB chain) with an
on-site potential ε0 on one site. The scattering phase ϕ,

tanϕ = − ε0
2t sin k , (3.7)

accumulated by a plane wave (wavevector k) depends on the absolute value and the sign of ε0
(cf. Appx. C.4). This is expected, since a positive (negative) on-site potential locally decreases (in-
creases) the kinetic energy and therefore increases (decreases) the wavelength. In two-path models,
containing two equidistant paths with different on-site potentials, the different wavelengths lead
to a phase difference, which is the origin of the destructive interference effect at the antiresonance.
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3 Application I: Narrow armchair graphene nanoribbons

Analytic solution

To get additional insight, like access to the (complex) transmission amplitude φ(E), we now solve
the two-path (toy) model analytically. The Hamiltonian

Ĥ =
(
− t

∞∑

n=1

[
|−(n+1)〉〈−n|+ |n+1〉〈n|

]
− t′

[
|T 〉〈−1|+ |T 〉〈1|

]
− t′

[
|B〉〈−1|+ |B〉〈1|

]
+ h.c.

)

+ εT|T 〉〈T |+ εB|B〉〈B| (3.8)

describes the ring and two semi-infinite TB chains, as shown in Fig. 3.13a. We are interested in
the scattering solution, i.e., we search for eigenstates of Ĥ which include an incoming wave |ψin〉 =∑∞

n=1 e+ik(−n)|−n〉 with wavevector k. We thereby effectively restrict the energy E = −2t cos k
to the band of the TB chain, i.e., E ∈ [−2t, 2t]. For the scattering state, we make the ansatz

|ψ〉 =
∞∑

n=1

[(
e+ik(−n) + re−ik(−n)

)
|−n〉+ φe+ikn|n〉

]
+ T |T 〉+B|B〉 (3.9)

which includes 4 free parameters: a reflexion amplitude r as prefactor of the reflected wave, a
transmission amplitude φ as prefactor of the transmitted wave, and the wavefunction weights T
and B for the sites |T 〉 and |B〉, respectively. Enforcing the state to be an eigenstate of the
Hamiltonian with energy E = −2t cos k, we get four conditions:

φ
!= t′

t
(T +B) != 1 + r , (3.10a)

−t′(e−ik + re+ik + φe+ik) +XεX
!= EX for X ∈ {T,B} . (3.10b)

Solving this linear set of equations and introducing the abbreviation Eres = 1
2(εT + εB), we get

T = 2itt′ sin k
D

(E − εB) , B = 2itt′ sin k
D

(E − εT) , (3.11a)

φ = 4it′2 sin k
D

(E − Eres) , r = 2t′2E(E − Eres)− t2(E − εB)(E − εT)
tD

, (3.11b)

which all share a common denominator D := t(E − εB)(E − εT) + 4t′2eik(E − Eres).

The transmission function is given by the absolute square of the transmission amplitude, i.e.,

T (E) = |φ|2 = 1

1 +
[

2t′2E(E − Eres)− t2(E − εB)(E − εT)
4tt′2(E − Eres) sin k

]2 . (3.12)

For εT 6= εB, the transmission vanishes at E = Eres due to destructive interference (antiresonance).
Please note that there is no antiresonance (and therefore also no ring currents) without the on-site
energies. In particular, T (E) = 1 ∀E if εT = εB = 0, t′ = t/

√
2.
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3.3 Tight-binding (toy) models explaining the ring current formation

We calculate the bond currents in the ring as well as the incoming and total current as

jin := j−2→−1

∣∣∣∣
ψ=ψin

= 2
~
t sin k , (3.13a)

jtotal := j−2→−1 = j1→2 = 2
~
t sin k T , (3.13b)

jT := jT→1 = 2
~
t sin k T E − εB

2(E − Eres)
, (3.13c)

jB := jB→1 = 2
~
t sin k T E − εT

2(E − Eres)
. (3.13d)

As expected, the ratio between the total current jtotal and the incoming current jin is given by
the transmission T . The current formulas for the top and both path can be combined to

jT/B = T
E − εB/T

2(E − Eres)
jin . (3.14)

Because of the denominator (E−Eres), the local currents jT/B become arbitrarily large compared
to the transmission T near the antiresonance at Eres.

Expansion near the antiresonance Eres

Next, we expand the solution in the vicinity of the antiresonance Eres keeping only the leading
order (assuming εT 6= εB). The sine of the wavevector kres near the antiresonance stays positive
as long as kres stays away from the band edges, i.e., sin kres > 0 for −2t < Eres < 2t. The auxiliary
denominator D used in Eq. (3.11) is given by a (real and negative) constant,

Dres(E) = − t4(εT − εB)2

︸ ︷︷ ︸
D0
res

+O(E − Eres) , D0
res ∈ R− , (3.15)

at the antiresonance. Thus, the transmission amplitude

φres(E) (3.11b)= 4it′2 sin kres
D0

res︸ ︷︷ ︸
φ1
res

(E − Eres) +O
(

[E − Eres]2
)

φ1
res ∈ iR− (3.16)

vanishes linearly at Eres and changes its sign. This is important for two reasons. First, it means
that the transmission

Tres(E) = |φres|2 = |φ1
res|2 (E − Eres)2 +O

(
[E − Eres]3

)
(3.17)

vanishes quadratically at the antiresonance. And second, it means that the ring current vanishes
linearly, changing its sign and sense of rotation. This is evident from Eq. (3.14), whose expansion

jT/Bres(E) (3.14)= Tres
E − εB/T

2(E − Eres)
jin = ±jin4 |φ

1
res|2 (εT − εB) (E − Eres) +O

(
[E − Eres]2

)
(3.18)

vanishes linearly at the antiresonance. The different signs arise from the term E−εB/T; with
positive sign for jT, negative sign for jB.
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3 Application I: Narrow armchair graphene nanoribbons

Interference effects

To understand the importance of the sign change in the transmission amplitude for the ring current
reversal, we take one step back and consider the total scattering state |ψ(E)〉,

|ψ(E)〉 = |ψin〉︸︷︷︸
−1∑

n=−∞
e+ikn|n〉

+ r(E)

−1∑
n=−∞

e−ikn|n〉

︷︸︸︷
|ψr〉 + φ(E)|ψt〉︸︷︷︸
∞∑
n=1

e+ikn|n〉+ t
2t′
(
|T 〉+ |B〉

)+ χ(E)
|T 〉 − |B〉︷ ︸︸ ︷
|ψimp〉 , (3.19)

as a superposition of an incoming wave |ψin〉, a reflected wave |ψr〉, a transmitted wave |ψt〉 and
a local non-degenerate impurity state |ψimp〉 (with prefactor χ(E) = itt′ sin k

D (εT−εB)). The first
three terms are just plane waves, with eikn being the only energy-dependence. Further, we include
the term t

2t′ (|T 〉+ |B〉) in the transmitted wave |ψt〉, so that |ψin〉+ r|ψr〉+φ|ψt〉 already satisfies
the continuity equation.D

To study the interference effects, we investigate the transmitting region where only two terms are
relevant, e.g., only |ψ〉 = φ|ψt〉 + χ|ψimp〉 contributes. The bond current from site i to site j is
then given by

ji→j =2
~

Im tij〈ψ|i〉〈j|ψ〉 (3.20)

=2
~

Im tij

{
|φ|2〈ψt|i〉〈j|ψt〉︸ ︷︷ ︸

normal current for |ψt〉

+ |χ|2〈ψimp|i〉〈j|ψimp〉︸ ︷︷ ︸
→ 0 since real

+
[
φχ∗〈ψimp|i〉〈j|ψt〉+ φ∗χ〈ψt|i〉〈j|ψimp〉

]

︸ ︷︷ ︸
interference term linear in φ

}

where the first term, proportional to the transmission T = |φ|2, gives the normal through current
for the transmitted state. The second term vanishes since, assuming time-reversal invariance,
|ψimp〉 does not carry a current on its own. The interesting term is the third one, where inter-
ference effects occur between the local impurity state |ψimp〉 and the transmitted wave. Explicit
calculations show that this term carries the ring currents.E Near an antiresonance, the transmis-
sion amplitude φ changes its sign, but χ remains finite. [χres(E) = t

4t′ φ
1
res (εT−εB)+O(E−Eres)]

Therefore, the total sign of the interference term changes simply due to the sign change in the
transmission amplitude. This explains the ring current reversal near such antiresonances.

A similar (much shorter) analysis for the interference effects in carbon nanotubes due to structural
(Stone-Wales) defects has also been reported by Im et al. [146].

3.3.2 The role of broken path symmetry in two-path models

In Fig. 3.14, we show several TB two-path models with and without ring currents. This serves two
purposes. First, we show that the physics described by our model is general, and not restricted to
exactly one two-path model. Second, we discuss how exact symmetries can suppress the emergence
of ring currents.
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Tight-binding models with ring currents Tight-binding models without ring currents
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(a) 4-site ring model with symmetry-breaking on-site
potentials ±ε in the paths. This leads to current
backflows running opposite the total current direc-
tion. [ε=t; mz=(jB−jT)A/2; the dotted curves are
±8(E/t)1+8(E/t)2 and +16(E/t)2]
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(b) 4-site ring model with different hoppings t′, t′′ in the
paths which is not sufficient to generate backflow currents,
i.e., all currents remain positive: jT/B(E) ≥ 0 ∀E.
[t′=t/2; t′′=t/

√
2; ε=t; mz=(jB−jT)A/2]
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(c) 6-site ring model where the symmetry of the two
paths is broken by different hoppings t and t′.
[t′=t/2; mz=(jB−jT)A/2]
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(d) 6-site ring model with the same hopping t inside the
two paths. The difference in hoppings of the paths to the
leads is not sufficient to generate backflow currents.
[t′=t/2; ε=t; mz=(jB−jT)A/2]
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(e) 4-site ring model where the leads are connected
asymmetrically, forming different path lengths. In
such a model, no further symmetry-breaking terms
(in hopping elements or on-site energies) are needed
to allow for current backflows. [mz=(3jB−jT)A/4;
dotted curves are ±4(E/t)2+2(E/t)4 and +4(E/t)4]

Legend

transmission T (E)

= total current jtotal
top current jT

bottom current jB
magnetization mz

Figure 3.14: A selection of tight-binding (toy) models with (left column) and without (right column)
ring currents. Ring currents include current backflow, i.e., the current through (at least) one path
becomes negative at some energies: jT < 0 or jB < 0.



3 Application I: Narrow armchair graphene nanoribbons

The first model, Fig. 3.14a, is the already discussed two-path model but with a restricted pa-
rameter set (t′=t, εT=−εB). As discussed, it shows ring currents with sign changes near the
antiresonance. The asymmetry in the on-site potentials is important for this model. Without this
asymmetry, no antiresonances and ring currents are observed, cf. Fig. 3.14b. Here, the symmetry
t′|T 〉 ↔ t′′|B〉 prohibits ring currents, i.e., the top current jT must flow in the same direction as
the bottom current jB.

On-site potentials are not a necessary ingredient for the emergence of rings currents. In larger
rings, e.g. a 6-site ring as in Fig. 3.14c, different internal hoppings are sufficient. Since the graph
is bipartite (and without on-site potentials), the model is particle-hole symmetric, resulting in a
mirror-symmetry for the transport quantities around zero energy. Thus, the two antiresonances are
symmetric to zero energy. Both feature a quadratically vanishing through current and a linearly
vanishing magnetization. The different inner hoppings are important in this model. Without that
difference, no ring current emerge, cf. Fig. 3.14d. We conclude, that exact symmetries relating the
inner structure of two paths are sufficient to suppress ring currents; see Appx. C.5 for a detailed
(formal) proof.

The last model, Fig. 3.14e, shows the emergence of ring currents due to asymmetric path lengths.
Again, such a model is particle-hole symmetric, forbidding a sign change in the transmission am-
plitude at Eres = 0. Instead, the transmission amplitude goes as φres ∝ (E−Eres)2. This behavior
causes quadratically vanishing ring currents (proportional to φres) and a quartic dependence of
the transmission, Tres = |φres|2 ∝ (E − Eres)4.

We conclude that the investigated physics is general. Ring currents are proportional to the trans-
mission amplitude φ near antiresonances, and therefore, they always exceed the through current
which is quadratic in φ. Only exact symmetries are able to suppress the phenomenon. Since such
exact symmetries are (nearly) always broken in experiment, we expect local ring currents in all
geometries that include rings.

3.3.3 Multi-particle interaction effects: a DMRG study

So far, we worked with (effective) one particle theory. In our TB (toy) models, interaction effects
were ignored, and on the DFT transport level, interaction is effectively treated at a mean-field
level. Therefore, the question whether ring currents survive explicit interaction effects was never
touched. For that, we cite the master thesis of B. Schönauer[148]. Although there are many studies
of explicit interaction effects in TB models, the work of Schönauer is of special importance to our
work since he studied the interaction effects on the bond currents using the same TB two-path
model as used in this thesis, cf. Fig. 3.13a for the TB model.F

In his work, density matrix renormalization group (DMRG[149, 150]) was used to study the
influence of interactions on the time-dependence of bond currents. The interaction was given by
a nearest-neighbor density-density interaction,

∆Ĥ = U
[
n̂T n̂+1 + n̂+1 n̂B + n̂B n̂−1 + n̂−1 n̂T

]
, (3.21)
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3.3 Tight-binding (toy) models explaining the ring current formation

where U > 0 is the repulsive interaction and n̂x is the density operator of site x. The interaction
was restricted to the 4-site ring structure. The leads were assumed non-interacting, but correlation
effects in the leads were kept.

An example of his investigations is shown in Fig. 3.15. There are two main effects. First, the
upper and lower link currents exceed the transmitted current significantly, and most of the time,
one of them flows against the total current direction. Thus, explicit interaction effects do not
destroy ring currents, at least not in principle. This is the most important result of Schönauer’s
work in the context of this thesis.

Second, his work shows that there are even more open questions related to ring currents. As shown
in Fig. 3.15, the bond currents oscillate in time. Schönauer was able to relate the frequency ω
of the current oscillations to the energy difference between the many-body groundstate of the
uncoupled ring structure and its first excited state. So far, an estimate for the time-scale on
which (if at all) the oscillations decay to a steady state is not available and remains an open
question.

Please refer to Schönauer’s thesis[148] as we are neglecting many (numerical and physical) details.

Figure 3.15: Time-dependence of bond currents in a two-path TB model which includes a nearest-
neighbor density-density interaction. At time t < 0, the system is prepared in the groundstate with
an applied bias voltage Vbias. At time t = 0, the bias voltage is instantaneously switched off and the
system evolves according to the Schrödinger equation. Cosine functions with frequency ω (solid lines)
are fitted to the numerical data (circles). Numerical parameters: t=t′=J , εT=0.5J , εB=0, U=2J ,
t′′=0.5J , eVbias=0.4J . Plot reproduced with permission of B. Schönauer[148, Fig. 4.9].
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Notes to chapter 3

The notes are for completeness, reproducibility and to help interested readers understand all the fine technical details.

A The superposition of several current channels in pris-
tine AGNRs is a simple summation of all channels. No
interference effects occur between the channels. The
interference effects are already included in the band-
structure determining the spatial shape of the individ-
ual bands/channels. (page 38)

B We write that the width of an AGNRNC is only ap-
proximately equal to Ly = (NC + 1)ay because it is
unclear where the exact border is; how much “space”
do the hydrogen atoms “occupy”? The choice Ly =
(NC + 1)ay is a simple choice consistent with TB con-
siderations. Implementing hardcore boundary condi-
tions as in Eq. (3.1) in a TB model could be done by
adding one additional site (the hydrogen site) at each
border with an infinite on-site potential. In that case,
the width Ly is proportional to NC+1. (page 41)

C There is evidence that an AGNR5 with a nitrogen sub-
stituent (placed on position 3) does not feature spin-
polarization. In FHI-aims, a spin-polarized DFT cal-
culation with an initial spin density of unity at the
nitrogen atom converges to a nearly spin-unpolarized
solution. The states at the Fermi energy of the fi-
nite cluster are split by 3.5meV in the different spin
channels whereas the average level splitting (of ten
states near the Fermi energy) is about 200meV. For
states away from the Fermi energy, the spin splitting
is even smaller. This remaining spin-polarization is
probably due to the need to stop the SCF iteration at
some point. (Basis set: tier1, convergence settings:
sc_accuracy_rho/eev/etot 7E-5/1E-3/1E-6)

Furthermore, open-shell and closed-shell calculations
yield the same transport behavior. In Fig. 2.8, we com-
pared closed-shell calculations (with fractional occupa-
tion numbers using FHI-aims) with the majority spin
channel (α) of collinear open-shell calculations (with in-
teger occupation numbers using Turbomole). Indeed,
we observed a good collapse of all data curves. The
minority channel (β) looks slightly different due to dif-
ferent occupation induced by an overall odd number of
electrons in combination with integer occupation num-
ber. Allowing for fractional occupation numbers as in
FHI-aims, a collinear open-shell calculation converges
to the closed-shell calculation. (page 46)

D An alternative explanation for the partitioning used in
Eq. (3.19) is to move all terms directly proportional to
the scattering amplitude φ to the transmitted wave. On
the technical level, the partitioning separates the con-
tribution of the two paths, in a symmetric and anti-
symmetric part:

T |T 〉+B|B〉 = (3.22)

=

(3.10a)= t
2t′ φ︷ ︸︸ ︷

T +B

2

(
|T 〉+ |B〉

)

︸ ︷︷ ︸
symmetric

+

(3.11a)= itt′ sin k
D︷ ︸︸ ︷

T −B
2

(
|T 〉 − |B〉

)

︸ ︷︷ ︸
anti-symmetric

.

The symmetric parts contribute to the total through
current and are therefore included in |ψt〉. The asym-
metric terms remain in |ψimp〉. (page 54)

E Here, we explicitly evaluate the interference term

jinterf.i→j = 2
~

Im tij
[
φχ∗〈ψimp|i〉〈j|ψt〉+ φ∗χ〈ψt|i〉〈j|ψimp〉

]

(3.23)

near the antiresonance E=Eres. [The interference term
was originally defined in Eq. (3.20).] We restrict our-
selves to the top path, i.e., to jT := jT→1, meaning
i = T , j = 1. The second part of the interference term
vanishes because 〈1|ψimp〉 = 0. We are left with the
first part,

jT
interf.
res = 2

~
Im t′

[
φres︸︷︷︸

φ1
res (E − Eres)

·

t
4t′ [φ

1
res]∗(εT − εB)
︷︸︸︷
χ∗res · 〈ψimp|T 〉︸ ︷︷ ︸

1

·
eikres︷ ︸︸ ︷
〈1|ψt〉

]
+ . . .

= t sin kres
2~︸ ︷︷ ︸
jin/4

|φ1
res|2 (εT − εB) (E − Eres) + . . . ,

(3.24)
which exactly reproduces the top current jTres near the
antiresonance, cf. Eq. (3.18). (page 54)

F In addition to the TB (toy) model shown in Fig. 3.13a,
B. Schönauer[148] replaced the link t directly between
the 4-site ring and the two semi-infinite TB chains by
a weak link t′′ < t. (page 56)



4 Chapter 4

Application II:
Graphene with hydrogen adsorbates

We investigate the current density j(r) in hydrogenated armchair graphene
nanoribbons (AGNRs) with finite hydrogen coverage with about 103 carbon atoms.
We start, in Sec. 4.1, by studying the linear current response of a rectangular
graphene flake (16×83) for a fixed hydrogen concentration. We discover pronounced
patterns in the local current density, namely current vortices, that induce orbital
magnetism. The current density follows a lognormal distribution, that reflects
in broad (spatial) fluctuations. This indicates that the magnitude of the ring
currents in several spatial regions exceeds the average (through) current by orders
of magnitude. The associated magnetic fields exhibit strong fluctuations and large
field gradients. To observe the spatial fluctuations of the induced magnetic fields,
we propose a NMR-type experiment in the presence of an applied bias voltage.

In Sec. 4.2, we discuss the dependence of our results on the system size. Our
predictions aim at the bulk limit, i.e., for experimental sample sizes, which are
typically larger than the systems accessible to DFT transport. Additionally, we
cover the effects of finite bias voltages, different adsorbate concentrations, and
different adsorbate types. In all cases, the general features—large current vortices
and a lognormal distribution of the current density—remain.

In Sec. 4.3, we analyze the magnetization mz, effectively the average
sense of rotation of all current vortices. We predict a total magnetization of√
〈m2

z〉 ∼ 1µB ·
√
Vbias/V which scales with the square root of the bias voltage,

and is independent of the system size.
Effects of lattice relaxation, especially crosstalk between several adsorbates

via their interaction in terms of lattice strain, can play an important role for the
optimal lattice geometry. In Sec. 4.4, we study the relaxation effects in hydro-
genated AGNR41. We find that the crosstalk indeed feeds back into the electronic
structure, the transmission function and the local current density. However, the
qualitative (statistical) features of the current density remain unaffected.
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4 Application II: Graphene with hydrogen adsorbates

(a) AGNR16×83 (b) AGNR8×41

Figure 4.1: (a) A wide hydrogen-terminated armchair graphene nanoribbon (AGNR16×83) that has
been functionalized with 20% hydrogen atoms. The functionalized area (16×83 carbon atoms including
hydrogen termination and additional 266 adsorbed hydrogen atoms) has been geometrically relaxed
using DFT. The ribbon is extended (infinitely) in x-direction by pristine AGNR83 employing an infinite
lattice algorithm. (b) A smaller sample (AGNR8×41) with 20% hydrogen adsorbates (i.e., additional
66 adsorbed hydrogen atoms). [Plot shows carbon atoms in gray, hydrogen atoms in red. Transport is
in x-direction.]

4.1 Transport through wide hydrogenated AGNRs

We start our investigations by considering a wide armchair graphene nanoribbon: an AGNR16×83
which is functionalized with 20% hydrogen, see Fig. 4.1a. This is one of the largest AGNRs avail-
able to our DFT transport method. For comparison against finite size effects, we also employ a
smaller sample (AGNR8×41), also functionalized with 20% hydrogen, as shown in Fig. 4.1b. The
hydrogen adatoms are randomly positioned above and below the carbon atoms. (For construc-
tion details, see Appx. A.1.) The AGNRs are geometrically relaxed using DFT until all remaining
forces drop below 10−2 eV/Å. For our simulations, we use closed-shell DFT with tier1 basis func-
tions using the Perdew-Burke-Ernzerhof functional (PBE)[151] as implemented in FHI-aims[130].

We chose hydrogen because hydrogen is one of the common adsorbates on graphene seen in
experiment. The concentration of 20% is selected due to two reasons: (i) experiments are usually
performed with a (quite large) finite concentration, (ii) the concentration should be below the
percolation threshold of 30.3% site defects.A

In this section, we focus on transport effects in the linear response limit of AGNR16×83/AGNR8×41
with a fixed hydrogen concentration of n = 20%. We defer investigation of the detailed size depen-
dence, effects of a finite bias voltage, different adsorbate concentrations, and different adsorbate
types to Sec. 4.2. The effects of spin polarization on the current density are deferred to the
following chapter, especially to Sec. 5.2.4.
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4.1 Transport through wide hydrogenated AGNRs
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Figure 4.2: Transmission functions T (red, left y-axis) and sample magnetization per bias dmz/dVbias
(perpendicular to the graphene plane, dashed black, right y-axis) belonging to the ribbons shown in
Fig. 4.1. The transmission features many antiresonances; in the vicinity of the antiresonances, the
sample magnetization dmz/dVbias shows sign changes. The transmission functions Tpristine (orange,
left y-axis) of pristine ribbons exhibit sharp steps and a small band gap at E = εF with T = 0. The
blue arrow marks the energy for which the current density and magnetic field response are plotted in
Fig. 4.3. [DFT details: FHI-aims, basis set tier1, closed-shell. For the AGNR16×83, there are two clipped peaks in the
magnetization at E−εF = 0.102 eV (and 0.217 eV), reaching up to dmz/dV = 67.8µB/V (and 50.1µB/V), respectively.]

4.1.1 Transmission and magnetization

As a first evidence that sizable ring currents, as discussed in Chap. 3, also exist in larger samples,
we plot the transmission and the total magnetization (per bias) in Fig. 4.2 for both AGNRs.
The ring currents reflect in a non-zero total magnetization dmz/dVbias. [Total magnetization:
m = 1

2
∫

r × jel(r) dr, cf. Eq. (2.16).] The transmission function, T (E), is strongly peaked; each
peak reflects an individual current carrying sample states. The many maxima are separated by
very sharp antiresonances.

A suppressed transmission (T ≈0) in this setup should be understood as a consequence of quantum
interference. The adsorbates split off resonant levels from the conduction band continuum. In the
present case, the hydrogen adsorbates force the underlying carbon atom into an sp3-hybridization.
Thus, the former π-electron of the carbon atom is removed from the π-band. The associated quasi-
localized state contributes a separate transport channel that can interfere with the original ones.
At the antiresonances, the interference is destructive and the transmission vanishes. The mag-
netization dmz/dVbias follows the peak structure of the transmission; at most antiresonances,
it also changes its sign. Such physics is described by the same mechanism as in Sec. 3.3: sign
changes in the transmission amplitude are induced by quantum interference effects, and reflect in
a quadratically vanishing transmission function, but in linearly vanishing local ring currents.
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(a) Current density response (b) Induced magnetic field

Figure 4.3: (a) Local current density response (integrated over the out-of-plane direction) for the hy-
drogenated AGNR16×83 shown in Fig. 4.1a. The current exhibits very strong mesoscopic fluctuations
that reflect in a logarithmic color scale covering five decades. Some interesting current paths are drawn
in the picture for illustration. Plot shows current amplitude (color), current direction (arrows), carbon
atoms (gray crosses), and hydrogen atoms (red crosses). (b) Induced magnetic field (in out-of-plane
direction). The magnetic field strongly varies and changes sign from region to region. The field is
plotted in the (averaged) carbon plane (z=0), but being divergence free, it hardly changes with z.



4.1 Transport through wide hydrogenated AGNRs

4.1.2 Current density response and induced magnetic field

Current density

Figure 4.3a shows the current density response in AGNR16×83 at the energy corresponding to the
transmission peak marked by a blue arrow in Fig. 4.2a. The current flow follows indeed a com-
plicated filamentary pattern, and more importantly, the flow has a pronounced tendency to form
ring structures (eddies) with a local current strength that exceeds the (average) through current
by orders of magnitude (see dark red regions). Also, local backflow channels where the current
runs against the average current exist. Such local backflow channels are evidence of ring currents
of a larger spatial extend. In general, large current fluctuations—the current density in Fig. 4.3a
covers five decades (see logarithmic color scale)—are characteristic for mesoscopic fluctuations
of wavefunctions in disordered media[152]. The latter manifest as reproducible fluctuations of
the transmission (cf. Fig. 4.2) with an amplitude corresponding to the order of one conductance
quantum when control parameters like the energy are varied, e.g., by gating.

We checked that the current density response at other transmission peaks is qualitatively the
same: local ring currents exceed the average through current by orders of magnitude, and the
current magnitude strongly varies from region to region. This is to be expected also from the
magnetization response plotted in Fig. 4.2 since the latter shows the same features over a broad
energy range.

Magnetic fields

The strong fluctuations in the current density induce a highly inhomogeneous magnetic field,
see Fig. 4.3b. The sign of the out-of-plane component Bz changes from region to region. The
resulting magnetic islands strongly vary in size, ranging from subatomic distances up to several
nanometers. This is an additional evidence for current eddies of different size since each magnetic
island correspond to a ring current which encloses the corresponding region.

Remark on mx,my, Bx, By: We have restricted ourselves to the magnetization mz and mag-
netic field Bz(z=0) perpendicular to the graphene ribbon. The other components of the magne-
tization are suppressed by an approximate z-mirror symmetry. For example, the magnetization
(per spin) induced by the current density of Fig. 4.3a is calculated as m = (−0.7, 0.5, 67.8)µB/V.
It perfectly aligns in z-direction. [The finite grid error for each component is in the order
of ∆mgrid

x/y/z = 2µB/V so that mx, my vanish within our systematic error bounds.] The in-plane-
components of the magnetic field, Bx and By, also follow an approximate z-mirror symmetry, i.e.,
every contribution above the carbon plane is canceled by an opposite contribution from below.
Additionally, the divergence condition ∂zBz + · · · = 0 reduces the z-dependence of Bz while the
features of Bx, By wash out quite fast when moving away from the carbon plane (see Appx. D.2.2
for an example).
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4 Application II: Graphene with hydrogen adsorbates

4.1.3 Distribution functions of the current density and the induced magnetic field

Current density

We already discussed that the current density has a broad distribution since its magnitude covers
five decades as shown in Fig. 4.3a. In this section, we quantify the current density distribution,
and see that it is logarithmically broad, i.e., described by a lognormal distribution.

Figure 4.4 shows the distribution

P(ln x) = 1
NPoints

∑

r
δ

(
ln x− ln

∣∣∣
∫

dz j�i (r)
∣∣∣

j�avg;y

) [
j�avg;y = dItotal

LydVbias
= eT

hLy

]
(4.1)

of the current density response j�i = dji/dVbias, integrated over the z-direction. To form a dimen-
sionless quantity, the integrated current density is normalized to the average through current per
width j�avg;y, and the logarithm of the ratio is investigated. (To avoid overcrowded distribution
plots, we use a diamond � to mark linear response quantities, i.e., X� = dX/dVbias.)

We first note that the distribution of the current magnitude follows (nearly perfectly) a lognormal
distribution

Plognormal(ln x) = 1√
2πσ

exp
[
− (ln x− µ)2

2σ2

]
,

[
x =

∣∣∣ ∫ dz j�
∣∣∣/j�avg;y

]
(4.2)

which has been parameterized by the mean value µ and the standard deviation σ of the simulated
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Figure 4.4: Distribution function for the current density response j�int =
∫
dz dj/dVbias (integrated

over the out-of-plane direction and normalized to the average through current) of an AGNR16×83 at
E−εF=0.104 eV (as shown in Fig. 4.3a). The lognormal distribution Plognormal has been parameter-
ized by the calculated mean µ and standard deviation σ of the distribution P[ln(|j�int|/j�avg;y)]. It
appears as a (downward opening) parabola in the double-logarithmic plot. The values µ and σ also
determine Pcomponent which is the expected distribution function for a single component of a vector
whose magnitude is lognormal distributed, assuming that all components are equivalent (see text and
Appx. D.5.2).
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4.1 Transport through wide hydrogenated AGNRs

current magnitude.B Most surprisingly, the mean value—the most frequent value—is significantly
larger than zero, µ > 0. The mean value µ refers to the current density normalized to the average
through current. Therefore, already the most probable (i.e. typical) current density value (maxima
of the Plognormal in Fig. 4.4) exceeds the average through current by a factor of eµ ≈ 14. Due to
the continuity equation, this must imply the presence of strong ring currents, as seen in Fig. 4.3a.

Next, we turn to the distributions of the individual current components jx/y/z, cf. Fig. 4.4. These
distributions are asymmetric with long tails for smaller values. The asymmetry and the long
tails are expected and coincide well with the analytical expectation Pcomponent. The distribu-
tion Pcomponent,

Pcomponent(ln |xi|) =
2π∫

0

dϕ P(ϕ)︸ ︷︷ ︸
1/2π

+1∫

−1

dcos θ P(cos θ)︸ ︷︷ ︸
1/2

×

×
+∞∫

−∞

dln x Plognormal(ln x) δ
(
ln |xi| − ln(|x cos θ|)

)
(4.3)

= e
σ2
2

2
|xi|
x̃

erfc
( σ√

2
+ 1√

2σ
ln |xi|

x̃

)
, with x̃ := eµ ,

describes individual components xi of a vector whose magnitude x = |x| follows a lognormal
distribution with mean µ and width σ. An additional assumption in the calculation of Pcomponent is
that all three vector components are equivalent, i.e., the spherical angles ϕ and cos θ are uniformly
distributed: P(ϕ) = 1/2π and P(cos θ) = 1/2 (see Appx. D.5.2 for the analytical calculation of
Pcomponent).

Surprisingly, the assumption of equivalent vector components seems to hold true for the current
density distributions shown in Fig. 4.4, i.e., the distribution for the out-of-plane current com-
ponent (jz) coincides with the distributions for the in-plane current component (jx/jy). This
happens only for a large impurity concentration (cf. Sec. 4.2.2) where the graphene sheet is no
longer locally flat but strongly distorted since many carbon atoms are moved out of the average
carbon plane due to sp3-hybridization. Therefore, we relate isotropic current density distribution
functions to lattice deformation in the out-of-plane direction.

The assumption of uniformly distributed angles can also be checked directly by calculating the
distribution functions of the angles, see Fig. 4.5. The in-plane angle ϕ is indeed (nearly) uniformly
distributed, while the distribution for the out-of-plane angle cos θ is only approximately uniform.
The remaining features are an enhancement of cos θ = 0 (j⊥ez) and cos θ = ±1 (j‖ez).

The first peak (cos θ=0)—describing a preferred current flow in the carbon plane—is expected.
The second peak (cos θ=±1), however, is unexpected since it describes currents perpendicular
to the graphene plane. In that case, some of the electronic orbitals that form the hydrogen-
carbon bonds participate in the transport. (See Appx. D.2 for additional cuts through the three-
dimensional current density.)

In summary, we found that the magnitude of the current density follows a lognormal distribution,
centered at a current value which exceeds the average through current. This is important since
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Figure 4.6: (a) Distribution functions for the magnetic field response B� = dB/dVbias (in the carbon
plane, z=0) of an AGNR16×83 at E−εF=0.104 eV (as shown in Fig. 4.3b). (b) Distribution functions
of the angles of the induced magnetic field.
[B�x = |B�| sin θ cosϕ, B�y = |B�| sin θ sinϕ, B�z = |B�| cos θ, B�avg;y = (µ0dItotal)/(4πLydVbias) = (µ0eT )/(4πLyh) ]

these current contributions must refer to ring currents due to the continuity equation. (Since the
current density integrated over any cross section yields the through current, any local enhancement
must result in backflow somewhere else.)

66



4.1 Transport through wide hydrogenated AGNRs

Magnetic field

The distribution functions for the magnetic field component are shown in Fig. 4.6. They may
be relevant for NMR-type experiments since they determine the distribution of the NMR-shifts
(cf. Sec. 4.1.4). Since the magnetic field is induced by the current density, one expects a similar
distribution for both. Indeed, the absolute value of the magnetic field also follows a lognormal
distribution. On the other hand, the magnetic field has a preferred direction: the z-direction. The
angles cos θ = ±1 (B‖ez) are more likely than angles with in-plane contributions, see Fig. 4.6b.

Remark: The current density decays exponentially at the transition from the graphene flake to
the vacuum. We are not interested in these border effects. They start to emerge in the vicinity
of the hydrogen termination. Therefore, only current contributions at least one carbon ring away
from the border are included in the distribution functions. Similarly for the magnetic field. Please
refer to Appx. D.5.3 for details.

4.1.4 Observable consequences of nanoscale ring currents

Detailed mappings of the current flow have been attempted relatively recently. In 2000, Topinka
et al.[153, 154] investigated the current flow through quantum dots (QD) embedded in a two-
dimensional electron gas, and measured the change of the conductance δG(r) induced by placing
a charged AFM-tip in the current flow at position r. A large change in δG(r) was related to a
large current density at point r (before disturbing with the tip). They observed a rich filamentary
structure. However, the original interpretation of the pattern in terms of current flows has been
questioned, later. Indeed, the conductance change δG(r) is not necessarily directly proportional
to |j(r)|. Instead, in the course of the analysis[155], it was emphasized that, strictly speaking,
δG(r) reflects the sensitivity of the scattering states to local perturbations at position r. The
dependence of the scattering states on the (perturbed) scattering potential V (r) is nonlocal due
to the quantum-mechanical origin. Placing a tip somewhere, may influence the current pattern far
away since it changes the local phases, and thereby influences quantum-interference effects directly.

Since the local current density is not easily measured directly, it is important to look for indirect
evidence. The induced magnetic field provides such indirect evidence. A manifestation of current
eddies are strong fluctuations in the local magnetic field. Such magnetic fields could feed back
into the current flow itself and induce spin-relaxation. Furthermore, they could potentially be
detected in experimental setups that allow to perform a measurement of the nuclear magnetic
resonance (NMR) in the presence of a current. Also, one can think of a direct mapping of the
induced magnetic field, instead of a mapping of the current density.

Spin-relaxation due to the induced (inhomogeneous) magnetic field

In leading order perturbation theory, the spin-relaxation rate is τ−1
s ∼ (µBB0)2τ , where B0 is

the typical strength of the random magnetic field and τ denotes the time it takes the electron
to move from one current loop to the next[156]. For the magnetic field depicted in Fig. 4.3b, we
expect µBB0/~ ∼ 100MHz at Vbias = 1mV.C This value is in the range typical of hyperfine-
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4 Application II: Graphene with hydrogen adsorbates

interactions. When other sources of spin-relaxation are missing, e.g. spin-relaxation induced by
spin-orbit interaction is weak, the current-induced spin-relaxation might become the relevant
source of spin-relaxation. In particular, for strongly disordered films, the relaxation rate τs formally
diverges due to multiple scattering events, i.e., the electron is “trapped” in current loops around
scattering centers[157]. On the other hand, recent works indicate that spin-orbit interaction may
be significant in hydrogenated graphene, enhanced by lattice distortion[158–160], and therefore it
is momentarily not clear if current-induced spin-relaxation is a relevant mechanism in graphene.

NMR-type experiment

Second, we discuss a potential NMR-type experiment. The important part is to measure the
NMR-resonances in the presence of a current. In the case of hydrogenated graphene, one would
focus on the spin of the hydrogen cores, i.e., spins of individual protons. In addition to the NMR-
shift due to the chemical environment, the observed NMR-shifts depend on the induced local
magnetic field, and therefore depend on the applied bias voltage. If one is able to reconstruct the
atomic structure (via NMR or otherwise), and is able to follow individual NMR-resonances, one
might “see” the ring currents emerge when slowly increasing the bias voltage. Since the NMR-
shifts measure the local magnetic field, one can in principle measure the orbital current flow with
atomic precision in a global experiment. Admittedly, such an NMR-type experiment would likely
be challenging because it needs to be performed under an applied bias voltage.

Direct mapping of the magnetic field

A direct measurement of the induced magnetic field pattern could be possible using Lorentz
transmission electron microscopy (LTEM)[161, 162]. A high energy electron beam is shot through
the sample. The beam is deflected by the magnetic field in and near the sample. Measuring the
angle of deflection, the magnetic field can be reconstructed. The advantage of this method is
that it directly gives the spatial dependence (in contrast to NMR and spin-relaxation which first
average over the sample). Resolving larger magnetic islands, in the order of nanometers, would be
sufficient to show the existence of the current eddies. When increasing the bias voltage, current
eddies at different positions would dominate, and one would see the creation and destruction of
magnetic islands.

4.2 Influence of system details and bias voltage
on the local current density

We presented the linear current density response and the induced magnetic field for a large flake
(AGNR16×83) in Sec. 4.1, and discussed the physical implications. In this section, we investigate
if the picture of local current vortices must be altered when details in the transport setup are
varied. First, in Sec. 4.2.1, we analyze how the statistics of the individual scattering states evolve
for different sized AGNRs as well as for different hydrogen concentration (Sec. 4.2.2). Next, in
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4.2 Influence of system details and bias voltage on the local current density

Figure 4.7: Overview over all hydrogen-terminated AGNRs used to study the size dependence. The
colored boxes mark the region that is functionalized with 20% hydrogen atoms. Two different aspect
ratios are investigated: square (W/L = 1, green boxes) and wide (W/L = 3, blue boxes) AGNRs.
The self-energies, representing the semi-infinite leads, only depend on the width of the AGNR, i.e., on
the number of transverse carbon atoms NC. The self-energies were therefore stored on hard disk and
recycled (cf. remark at end of Sec. 2.1.3). [Plot shows carbon atoms in gray, hydrogen atoms in red. Transport
is in x-direction.]

Sec. 4.2.3, we discuss the effect of a finite bias voltage, i.e., how several transport states add up.
The effects of a different adsorbate, hydroxyl groups, is discussed in Sec. 4.2.4. In all cases, we
find the qualitative picture of current vortices remaining unchanged.

4.2.1 System size dependence

System selection: wide and square AGNRs

In this section, we investigate the dependence of the observed phenomena on the system size. For
this purpose, we employ differently sized AGNRs as shown in Fig. 4.7. We employ two different
width-to-length ratios: square AGNRs with W/L = 1 and wide AGNRs with W/L = 3. Both sets
of AGNRs are functionalized by 20% hydrogen which were randomly positioned above and below
the carbon atoms. Then, the structures were geometrically relaxed until all remaining forces drop
below 10−2 eV/Å. For further construction details, please refer to Appx. A.1.
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4 Application II: Graphene with hydrogen adsorbates

Figure 4.8: Local current density response (integrated over the out-of-plane direction) for the hydro-
genated AGNR34×59 shown in Fig. 4.7. The current exhibits very strong mesoscopic fluctuations that
reflect in a logarithmic color scale covering four decades. Some interesting current paths are drawn in
the picture for illustration. Plot shows current amplitude (color), current direction (arrows), carbon
atoms (gray crosses), and hydrogen atoms (red crosses).
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4.2 Influence of system details and bias voltage on the local current density

Figure 4.9: Magnetic field response (in out-of-plane direction) induced by the current density response
shown in Fig. 4.8. The magnetic field strongly varies and changes sign from region to region. The field
is plotted in the (averaged) carbon plane (z=0), but being divergence free, it hardly changes with z.
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AGNR34×59

A candidate for wide AGNRs was already discussed in the previous section. As candidate for
square AGNRs, we shortly discuss the emergence of ring currents in AGNR34×59. The trans-
mission function T (E) of AGNR34×59 is also dominated by individual sharp peaks (only shown
in Appx. D.7.1, Fig. D.13e). We checked that the magnetic response dmz/dVbias also shows the
known sign changes at most antiresonances (not shown). We thus presume that the aspect ratio
of the AGNR has a minor influence on the discussed qualitative physics.

We check this conjecture in Fig. 4.8 and Fig. 4.9, which show the current density response and
the induced magnetic field for an energy corresponding to a transmission peak. Again, we see the
usual pattern: ring currents exceeding the average through current by orders of magnitude and
large spatial fluctuations resulting in a color scale covering four decades. The induced magnetic
field shows again magnetic islands of strongly varying size. We note that the ratio of the maximal
current density normalized to the average through current is in the order of 102 whereas for the
wide AGNR16×83 it was larger, in the order of 103. An similar tendency can be observed in the
magnetic field response. We, thus, presume that the effect of current vortices is more pronounced
in wide AGNRs. This is supported by the magnetization mz which features larger values for wide
AGNRs, see Sec. 4.3.

The distribution functions shown in Fig. 4.10 show that the current magnitude still follows a
lognormal distribution, and the angles are still approximately uniformly distributed. The distri-
butions are smoother due to the larger number NPoints of spatial points used in the calculation.
The very small difference between ϕ = 0 (jx > 0) and ϕ = ±π (jx < 0) results in the small average
through current. All together, this supports the previously discussed results of Sec. 4.1.
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Figure 4.10: (a) Distribution function for the current density response j�int =
∫
dz dj/dVbias

(integrated over the out-of-plane direction and normalized to the average through current) of an
AGNR34×59 at E−εF=−366meV (as shown in Fig. 4.8). (b) Corresponding distribution functions
for the azimuthal angle ϕ and the polar angle θ.
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4.2 Influence of system details and bias voltage on the local current density

Characterization of distribution function via mean µ and width σ

To further quantify the statistics of individual scattering states—especially their size dependence—
we apply the following procedure: For all systems shown in Fig. 4.7, we calculate the transmission
function which always features a peak structure near the Fermi energy. Then, we choose transmis-
sion peaks near the Fermi energy and calculate the current density response, the induced magnetic
field, and the corresponding distribution functions. We do not present the raw data explicitly (all
data is given in Appx. D.7), but instead, we focus on the distribution functions of the current
density, and characterize them by their mean µ and standard deviation σ. These moments refer
to the logarithm of the integrated current density normalized to the average through current, as
employed in Figs. 4.4 and 4.10a.

Figure 4.11 shows the size dependence of the mean µ and standard deviation σ averaged over all
selected energies. We see a weak dependence on the AGNR size. If anything, the mean µ decreases
slightly for larger systems whereas the width σ increases. For all systems, µ+σ > 2, meaning that
a significant portion of the current density exceeds the average through current by two orders of
magnitude. [Remember that µ and σ are the moments of the lognormal distribution.] Because of
the continuity equation, this can only result in significant ring currents.

Simply calculating the moments µ and σ does not ensure that the current distributions follow
a lognormal distribution. We manually checked the current distributions, see Appx. D.7, and
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Figure 4.11: Flow of the mean µ and width σ of the lognormal distribution of the magnitude of
the current density response in different AGNRs with 20% hydrogen adsorbates. For each AGNR,
the current density response is calculated at several energies (each with peaks in the transmission).
The mean µ and width σ of the corresponding distribution function is averaged over all considered
energies. The analogue is performed for the three deviation measures ∆PX . (Note that the deviation
measures ∆PX are multiplied by a factor of two, c.f. plot legend. For geometries, see Fig. 4.7.)
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indeed, the magnitude of the current density always follows a lognormal distribution. To visualize
this verification in the flow diagram, Fig. 4.11, we define a deviation measure ∆Pln j ,

∆Pln j ∝

√∫
d ln x

∣∣∣ lnP(ln x)− lnPlognormal(ln x)
∣∣∣
2
, (4.4)

that measures the deviation of the distribution function P(ln x) from a lognormal distribution (pa-
rameterized with correct center and width), i.e., it measures the deviation from the (downward
opening) magenta parabola plotted in Figs. 4.4 and 4.10a (see Appx. D.5.1 for the full defini-
tion of ∆Pln j including integration cut-off). Similarly, we define the measures ∆Pϕ and ∆Pcos θ

that quantify the deviation of the current density angles from a uniform distribution (again, see
Appx. D.5.1 for a formal definition). For our purpose, deviation measures below unity are evi-
dence that the current magnitude and the angles of the current density approximately follow a
lognormal and uniform distribution, respectively. Please note that ∆Pϕ decreases monotonously
for increasing system size. Thus, in the limit of large system sizes, the in-plane angle ϕ seems to
be perfectly uniformly distributed. That means that local current fluctuations, i.e. ring currents,
are isotropic and completely mask the through current. In such a case, one might expect a power
law behavior, e.g., an inverse linear dependence on the system size, ∆Pϕ ∝ N−1

carbon. Our data is
compatible with an exponent of −1 (but also with many others due to a small statistics).

We thus conclude that the magnitude of the current density response follows a lognormal dis-
tribution, irrespective of the size of the AGNR. A significant portion of the current distribution
exceeds the average through current by orders of magnitude leading to strong current vortices.

Remark: Here, we based our investigations on AGNRsNC with NC=3m−1 (m ∈ N), in which
streamlines emerge in the pristine case (cf. Chap. 3.1). In Appx. D.7.3, we investigate hydro-
genated AGNR42 and AGNR43, and find no qualitative differences for the other classes, NC=3m
and NC=3m−2.

4.2.2 Impurity concentration

Until now, we worked with a fixed hydrogen concentration of n = 20%. In this section, we vary the
hydrogen concentration from 0% to 40% at fixed system size. We already discussed the limiting
case of pristine AGNRs with zero concentration n = 0% in Sec. 3.1. [The distributions of pristine
ribbons are shown in Appx. D.5.4, Fig. D.12.] Now, we simulate transport through AGNR41 with
varying hydrogen concentration. In all cases, the leads are given by pristine AGNR41. Thus,
the self-energies are identical, and stored on hard disk for recycling. To study the current density
statistics, we repeat our procedure: From the calculated transmission function, transmission peaks
are selected, and the associated current density responses and distribution functions are calculated.
In Fig. 4.12, we plot the flow of the mean µ and width σ of the distribution function averaged
over the selected energies. For finite concentration, i.e., n ≥ 1%, the mean µ is above zero so
that significant portions of the current density exceed the average through current. The width σ
hardly depends on the concentration. The deviation measures ∆P are more interestingly. They all
increase for small impurity concentrations, ∆Pln j and ∆Pcos θ even diverge. The magnitude of the
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Figure 4.13: (a) Distribution functions for the current density response in AGNR24×41 with 1% hy-
drogen adsorbates. The out-off-plane current component jz shows a qualitatively different distribution
function when compared to the in-plane current component jx and jy. (b) Corresponding distribution
functions for the azimuthal angle ϕ and the polar angle θ. The azimuthal angle ϕ is approximately
uniformly distributed. In contrast, the distribution of polar angle cos θ shows as significant peak at
cos θ = 0 which favors the in-plane current component (j⊥ez). A Lorentzian 1

π
γ/2

(cos θ)2+(γ/2)2 (γ = 0.04)
is shown for comparison.
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4 Application II: Graphene with hydrogen adsorbates

current density is no longer lognormal in pristine ribbons and cos θ is not uniformly distributed
for small concentrations. Thus, there are two questions: (i) how is the current density distributed
for small but finite concentrations, e.g. for n = 1%, and (ii) how are the angles then distributed?

To answer this type of questions, we tend to the current distribution for n = 1% as shown in
Fig. 4.13a. The magnitude of the current distribution still follows a lognormal distribution and
the in-plane current components also follow the expected behavior given by Pcomponent. The
distribution for the out-of-plane current component (jz) is however shifted to smaller values, i.e.,
in-plane current components dominate. This is consistent with the angle distribution shown in
Fig. 4.13b. The polar angle cos θ is no longer near a uniform distribution but shows a pronounced
peak at cos θ = 0. Please note the logarithmic scale. Thus, for smaller hydrogen concentrations,
we find that the current density flows mainly along the graphene plane. Only minor current
contributions from the bottom to top side exist. This is what one expects in pristine AGNR,
the current near the Fermi energy is solely carried by π-orbitals. The π-orbitals have a node in
the graphene plane and cannot mediate a current contribution from one side to the other. For
higher concentrations, more and more π-electrons form bonds to the adsorbed hydrogen atoms.
The remaining σ-orbitals (z-mirror symmetric) start to contribute. That way, current paths
connecting both graphene sides exist.

4.2.3 Finite bias voltage

Current density for eVbias � ∆ [bias voltage� level spacing]

So far, we discussed the current density response dj/dVbias induced by an infinitesimal bias voltage
dVbias, i.e., the limit in which the applied bias voltage Vbias is much smaller than the level spacing ∆.
In this section, we investigate the opposite limit, a large bias voltage eVbias � ∆.

Applying a finite bias voltage involves the integration of current contributions over an energy range
of width eVbias. This is computationally demanding and therefore we restrict the investigation
to 20% hydrogen on the medium sized AGNR8×41 whose atomic structure and transmission
function have already been presented in Fig. 4.1b and Fig. 4.2b, respectively. The level spacing
of the AGNR8×41 near the Fermi energy is approximately ∆ ≈ 50meV (cf. Appx. D.1). We use
a bias voltage of Vbias = 1V, summing over about N = eVbias/∆ ≈ 20 states.

The current density induced by Vbias = 1V is shown in Fig. 4.14a. The current density exhibits a
streamline-type pattern carrying the total current (from top to bottom) that is overlaid by strong
fluctuations that reflect in a logarithmic color scale covering three decades. Local current vortices
(eddies) still exist, but mostly encircle only single carbon rings. Although they still exceed the
average current by about one order of magnitude, they are not as prominent as for infinitesimal
bias voltage.

We explain this behavior in the following way: Inside the bias window, individual transport states
exist which all show current vortices of varying sizes. These vortices are differently positioned,
and by summing over the states, the vortices encircling several carbon rings are washed out. Only
the smallest vortices (encircling one carbon ring) survive. On the other hand, contributions to
the average through current cannot cancel each other. Therefore, the average through current
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(a) Current density at finite bias Vbias = 1V

(b) Induced magnetic field
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Figure 4.14: (a) Local current density for the hydrogenated AGNR8×41 (shown in Fig. 4.1b) at
a finite bias voltage Vbias = 1V. The current density integrated over the out-of-plane direction
normalized to the average through current javg;y = Itotal/Ly. The current density exhibits a
streamline-type current pattern carrying the total current (from top to bottom) that is overlaid by
strong fluctuations that reflect in a logarithmic color scale covering three decades. Local current
vortices encircle mostly only single carbon rings. (b) Magnetic field (in out-of-plane direction) induced
by the current distribution shown in panel (a). Induced magnetic field (in out-of-plane direction).
The field is plotted in the (averaged) carbon plane (z=0). (c) Distribution function for the current
density jint/javg;y =

∫
dz j/javg;y shown in panel (a). (d) Corresponding distribution functions for the

azimuthal angle ϕ and the polar angle θ.



4 Application II: Graphene with hydrogen adsorbates

becomes larger compared to the current vortices. On a quantitative level, the analysis is as follows:
Adding up current vortices scales like adding up random numbers, i.e., increasing like

√
N . On the

other hand, the through current increases linearly, Itotal ∝ N . Therefore, the current fluctuations
normalized to the average through current are expected to decrease as 1/

√
N .

The induced magnetic field still shows random magnetic islands, see Fig. 4.14b. The amplitude B0
of the field fluctuations is about B0 ∼ 10mT. This is larger than our earlier estimate, B0 ∼ 1mT
(cf. Sec. 4.1.4), for a single transport state. Here, we integrate over about N ≈ 20 states, so that
a larger field of about

√
N ≈ 4.5 is expected if the transport states add up randomly. [Since

the through current increases linearly with the number of transport states, this means that the
magnetic field per through current decreases as 1/

√
N .]

The distribution functions of the finite current density normalized to the through current are shown
in Figs. 4.14c and 4.14d. They show the same features as before: the magnitude of the current
density follows a lognormal distribution, all three individual current component are equivalent.
The mean µ = 0.61 of the lognormal distribution is however shifted to smaller values reflecting in
the reduced dominance of the current vortices observed in Fig. 4.14a. [For comparison, µ & 2 for
an infinitesimal bias voltage.]

The distributions of the angles are still similar to the infinitesimal bias voltage case, but the small
bump at ϕ = 0 evolved to a significant peak in P(ϕ). This peak accounts for a significant net
current through the ribbon. [ϕ = 0 refers to a forward flow, while ϕ = ±π refers to backflow.]

Thus, for eVbias/∆ = 20, we see the same qualitative features—current vortices and a broad lognor-
mal current distribution—as for an infinitesimal bias voltage (eVbias/∆ → 0). On a quantitative
level, however, we observe that the magnitude of the current vortices (normalized to the through
current) is reduced and we expect that for large bias voltages or larger samples (eVbias/∆� 100)
streamline patterns of the through current dominate, current vortices are further reduced and
vanish in the limit eVbias/∆→∞.

Current density evolution for continuously increasing Vbias

Instead of looking at a single bias voltage, one is also interested in the evolution of the cur-
rent density and its associated distribution functions for continuously increasing the bias voltage.
We focus on the evolution of the current distribution function which is characterized by the mo-
ments µ and σ. (A selection of current density plots for varying bias voltage is given in Appx. D.3,
Fig. D.4.)

As a preparation, we consider the transmission T and the density of states (DOS) ρ plotted over
the integrated number N of transport states, as shown in Fig. 4.15 (bottom). This choice of the
x-axis has the advantage that the individual transport resonances (peaks in T and ρ for N < 15)
are equidistant; of course, the area below the curves no longer correspond to the energy integral.
[The transmission function as function of the energy E is shown in Fig. 4.2b.] From the individual
equidistant peaks, we conclude that each peak in the transmission refers to a separate state in the
sample.
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Figure 4.15: (top/center): Flow of the mean µ (red) and width σ (green) of the lognormal distribution
of the current density magnitude in hydrogenated AGNR8×41 (shown in Fig. 4.1b). Additionally,
several deviation measures ∆PX are shown. In the top panel, the current density response is taken at
a specific energy, j(E) = dj/d(eVbias)|E , whereas the current density is integrated from the Fermi energy
to the chosen energy in the center panel, j =

∫ E
εF

dE′ j(E′). (Note that the deviation measures ∆PX
are multiplied by a factor of two, c.f. plot legend.)
(bottom): Transmission function T (E) and DOS ρ(E) taken at energy E(N ). The x-axis (of all
panels) is not the energy E but given by the number of states N (integrated DOS from Fermi energy
to energy E); that way, the transmission peaks (for N < 15) are equidistant. They are evidence that
the current is carried by individual sample states. For convenience, the energy E(N ) is given on the
right y-axis (dashed black). [The small current arrows (red, green, blue, magenta) on top of each panel mark the
energies for which explicit distribution function are shown in Appx. D.5.4, Fig. D.10 and Fig. D.11. ]

In Fig. 4.15 (center), the moments of the current density distribution for a finite bias voltage Vbias
are shown. The bias voltage is related to the number of states N by N =

∫ E
εF
ρ(E′)dE′ with

E = εF + eVbias, i.e., N = 0 refers to Vbias = 0. We checked that the distribution for the current
magnitude remains lognormal for all bias voltages, cf. the deviation measure ∆Pln j (see also
Appx. D.5.4, Fig. D.11 for example distributions). The center µ of the lognormal distribution
moves to smaller values but stays above zero, µ > 0. Hence, the lognormal distribution is always
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4 Application II: Graphene with hydrogen adsorbates

centered at current values above the average through current. Its width σ & 1 is virtually constant,
i.e., it does not depend on the bias voltage Vbias. At first glance, this is somewhat surprising:
averaging N uncorrelated distributions, one would expect the width of the average distribution to
decay as 1/

√
N . One has to keep in mind that we do not average the distribution functions but

the spatially resolved current density. Spatial fluctuations in the current density are correlated
across different transport states belonging to nearby energy, i.e., regions with small (or large)
local current density feature a small (or large) current density for a broad energy window. [The
results fit the discussion for Vbias = 1V showing a lognormal distribution for the current density
magnitude for Vbias = 1V, cf. Fig. 4.14c.]

Last, in Fig. 4.15 (top), the moments of the distribution of the current density response for
infinitesimal bias voltages are shown. The number of states N refer to the energy E at which the
current density responses are calculated. Again, the distributions remain lognormal for all energies,
cf. the deviation measure ∆Pln j (see also Appx. D.5.4, Fig. D.10 for example distributions). Note
that the peaks of the moment µ are shifted with respect to the peaks in the transmission T . This
behavior is due to the normalization of the current density to the average through current, i.e.,
to the transmission. At antiresonances, the transmission vanishes faster (usually quadratically)
than the induced current vortices (usually linearly). At zero transmission, the mean µ of the
ratio between current density and transmission then diverges. In the plot, the peaks are not fully
resolved. The actual sample points are therefore marked.

Remark: A finite bias voltage involves an energy integration, which is performed numerically
by rastering the energy landscape and using a simple trapezoidal integration rule. A common
energy spacing, as used for the discussed AGNR41 near transmission peaks, is δ = 1meV. This
might feel unnecessarily small (much smaller than the average level spacing ∆ ≈ 50meV), but the
peaks are not uniformly distributed, and some peaks are only of width ∆ ∼ 10meV. We still need
several energy points to resolve them properly. To ensure converged energy integrals, we always
check that quantitatively same results are obtained if only every other integration point is used.

4.2.4 Adsorbate chemistry: hydroxyl groups

So far, we mostly discussed hydrogen adsorbates. In this section, we demonstrate that the effects
do not qualitatively depend on hydrogen to be used as adatoms. We observe the same effects for
hydroxyl groups.

Structure

We use an AGNR24×41 functionalized with 5% hydroxyl groupsD (OH-groups) as shown in
Fig. 4.16. The hydroxyl groups are randomly positioned above or below carbon atoms and the
whole structure is geometrically relaxed. The procedure is identical to the procedure used for hy-
drogen adsorbates (cf. Sec. A.1) with the addition that the hydroxyl groups are randomly oriented
before relaxation, i.e., the hydrogen atoms point in random direction (but with fixed C-O-H angle).
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4.2 Influence of system details and bias voltage on the local current density

Figure 4.16: A hydrogen-terminated armchair graphene nanoribbon (AGNR24×41) that has been
functionalized with additional 5% hydroxyl groups (49 OH-groups). The functionalized area (24×41
carbon atoms including hydrogen termination and hydroxyl groups) has been geometrically relaxed
using DFT. The ribbon is infinitely extended in x-direction by pristine ribbon AGNR41. [Plot shows
carbon atoms in gray, hydrogen atoms in red, oxygen atoms in dark green. Transport is in x-direction.]
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Figure 4.17: (a) Transmission function for the AGNR24×41 functionalized with 5% hydroxyl groups
shown in Fig. 4.16. The transmission shows the usual peak structure near the Fermi energy. At
the marked peak (E=εF−164.5meV, red box), the current density response is calculated (shown in
Fig. 4.18). (b) Distribution function for the current density response j�int =

∫
dz dj/dVbias (integrated

over the out-of-plane direction and normalized to the average through current) calculated for the
transmission peak marked by a red box in panel (a). As before, a lognormal distribution Plognormal
and the distribution Pcomponent expected for equivalent vector components are shown for compari-
son. They have been parameterized only by the calculated mean µ and standard deviation σ of the
distribution P[ln(|j�int|/j�avg;y)].
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Figure 4.18: Local current density response (integrated over the out-of-plane direction) for the
AGNR24×41 functionalized with 5% hydroxyl groups (shown in Fig. 4.16). The current exhibits very
strong mesoscopic fluctuations that reflect in a logarithmic color scale covering four decades. Some in-
teresting current paths are drawn in the picture for illustration. Plot shows current amplitude (color),
current direction (arrows), carbon atoms (gray crosses), hydrogen atoms (red crosses), and oxygen
atoms (green crosses).
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4.3 Magnetization mz modeled by independent magnetic moments

Transmission and current density response

The transmission T (E) through the ribbon is shown in Fig. 4.17a. T (E) exhibits the expected
peak structure near the Fermi energy. The current density response calculated at the marked
transmission peak is shown in Fig. 4.18. We see the familiar picture: current vortices exceed-
ing the average through current by orders of magnitude. The associated distribution functions
are presented in Fig. 4.17b. The magnitude of the current density follows a lognormal distribu-
tion. The in-plane components jx/jy follow the expectation for equivalent vector components
(cf. Appx. D.5.2). The out-of-place component jz follows a shifted distribution, as it is also the
case for hydrogen adsorbates at small concentrations. The shift is comparable to a hydrogen
concentration of 5% (cf. Fig. D.15i in Appx. D.7.2). This suggests that—from the point of view
of the statistics of the current pattern—there is no significant difference between H and OH-
adsorbates. We thus expect that the distribution for jz coincides again with the ones of jx/jy for
larger hydroxyl concentrations.

4.3 Magnetization mz modeled by independent magnetic moments

So far, we focused on local quantities: the current density, the induced magnetic field, and the
associated distribution functions. Since spatially averaged quantities are experimentally easier to
access, we here analyze the total magnetization mz which is a measure for the average sense of
rotation of the current vortices. [Total magnetization: m = 1

2
∫

r × jel(r) dr, cf. Eq. (2.16).] In
fact there are two types of averaging procedures involved: (i) a spatial averaging over sample area,
and (ii) an energy average over different states in the bias window.

4.3.1 System size dependence: 〈(dmz/dVbias)2〉 ∝ Ncarbon

We first focus on the spatial averaging procedure. For that purpose, we analyze the magne-
tization dmz/dVbias for the hydrogenated AGNRs already used before, see Sec. 4.2.1. For the
size dependence, we already calculated the current density response for several energies (all se-
lected energies feature transmission peaks). The magnetizations induced by these current den-
sity responses—together with their mean and standard deviations—are shown in Fig. 4.19a and
Fig. 4.19b, separately for the two different system ratios. The mean value is close to zero whereas
the standard deviation increases with increasing system size. One might expect a power law be-
havior with exponent 1/2, i.e., an increase like

√
N , where N is the number of carbon atoms in the

functionalized area. [Our data is compatible with an exponent 1/2. But our low statistics—typical
for ab initio studies—would also allow other exponents.]

A square root behavior can be motivated by a simple model that considers mz as a sum of N/2
uncorrelated magnetic moments with magnitude µring and random signs. [There are N/2 carbon
rings in an AGNR with N carbon atoms.] In other words, we assume that each carbon ring carries
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Figure 4.19: Dependence of the magnetization dmz/dVbias (per bias) on the system size. For each
AGNR, the current density response is calculated at several energies (each with peaks in the trans-
mission). The corresponding induced magnetizations dmz/dVbias (green crosses) are averaged. The
mean (red cross) is near zero while the standard deviation (red bar) increases with system size. In-
dependent magnetic moments µring located at each carbon ring—randomly oriented in either up or
down direction—predict a width of µring

√
N/2 (blue line). The values of µring are determined by fits

to the calculated standard deviation of the sample data. (The raw data is listed in Appx. D.6. For
geometries, see Fig. 4.7.)

a magnetic moment µring which randomly points in the up or down direction.E We thus expect a
Gaussian distribution with zero mean,

〈
dmz

dV

〉peak
= 0 , (4.5)

and width

σpeakdmz/dV = µring
√
N/2 , (4.6)

which increases with the square root of the number of independent magnetic moments. The
magnitude of the magnetic moment µring per carbon ring is estimated by fits in Fig. 4.19a and
Fig. 4.19b. The value for wide systems (W/L=3) exceeds the value for square systems (W/L=1)
considerably, by almost a factor of two.

A dependence on the system ratioW/L is not unexpected; the most trivial dependence is probably
a linear W/L dependence, which already manifests itself in the conductance G of clean graphene,
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4.3 Magnetization mz modeled by independent magnetic moments

G ∝ W/L (for W � L).F Here, we are neither in the correct limit nor do we have enough data
to estimate the dependence on the system ratio, except by noting the increase for wider ribbons.
Thus, we estimate µring ≈ 0.5µB/V (per spin) forW/L ≈ 1–3, keeping in mind that µring probably
increases for increasing W/L.

4.3.2 Finite bias voltage: 〈m2
z〉 ∝ Vbias

We now analyze the effect of a finite bias voltage on the total magnetization. In Fig. 4.20, the
voltage dependence of the magnetization (per spin) is shown for several wide and square AGNRs.
The absolute value of the magnetization tends to grow with increasing bias voltage. No clear
dependence on the system size is observable.

This behavior can be explained along the same lines as in the previous section. Instead of summing
only over space, we now also sum over energy domain. In the previous section, we estimated the
magnetic moment µring ≈ 0.5µB/V of individual transport states using only peak values of the
transmission function. [Recall that the transmission function shows a peak structure, one peak
per transport state.] We roughly estimate the energy integrated magnetic moment µpeakring (for
a complete peak in the transmission) as half of the peak value µring times the level spacing ∆
(i.e. using the area of a triangle), i.e.,

µpeakring = 1
2 µring

∆
e
. (4.7)

Using this value, we follow again the logic of summing up randomly oriented moments. There
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several AGNRs with 20% hydrogen adatoms. A simple model of magnetic moments µring which are
independently placed at each carbon ring (in space) and at each transmission peak (in energy domain)
predicts a Gaussian distribution of the magnetic moment centered at zero (because of symmetry) with
a width of cm µB

√
Vbias/V (see text). (For geometries, see Fig. 4.7.)
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4 Application II: Graphene with hydrogen adsorbates

are still N/2 carbon rings in space. Additionally, there are eVbias/∆ transport states in energy
domain. The total number of moments is estimated by the product,

N = N

2
eVbias

∆ . (4.8)

Assuming that all these moments are independent, the sum again follows a Gaussian distribution
with an average magnetization 〈mz〉 = 0. The width of the distribution,

σmz = µpeakring
√
N =: cm µB

√
Vbias/V , (4.9)

increases with the square root of the bias voltage. The prefactor cm is given by

cm = 2−3/2 [µring (µB/V)−1]
√
N∆ (eV)−1 ≈ 0.69 , (4.10)

using the estimation ∆ ≈ 15.1 eV/N for the level spacing (see Appx. D.1).

In summary, we expect a finite magnetization perpendicular to the graphene plane which scales
with the square root of the applied bias voltage and is independent of the system size. The sign
of the magnetization is random but its absolute value is estimated (including a spin degeneracy
factor of 2) asG

√
〈m2

z〉 ∼ 1µB ·
√
Vbias/V . (4.11)

This estimation is still subject to the overall DFT uncertainty. The estimated number may deviate
by a factor of order unity [i.e. give or take a factor of two]. In addition, the estimation is valid
for aspect ratios of W/L ≈ 1 − 3; we expect an increase of the magnetization for larger values
of W/L.

4.4 Lattice relaxation:
influence on the transmission and local current density

Lattice relaxation

An important question relates to the effect of lattice relaxation on the transport characteristics.
To what extend are the transmission function and the current density sensitive to whether or not
the atomistic geometry is fully relaxed into its equilibrium state? To address this question, we
analyze the transport characteristics of an AGNR41 that has not been geometrically relaxed. [All
AGNRs employed so far have been geometrically relaxed.]

Clearly, there is a certain arbitrariness in the selection of the unrelaxed reference state. We try to
mimic at least the sp3-hybridization of the anchor carbon atoms. Therefore, we adopt the following
procedure: We start with an unrelaxed structure consisting of a regular hexagonal carbon lattice
(bond length dCC = 1.439Å) with hydrogen termination. The adsorbed hydrogen atoms are then
placed vertically above or below the carbon atoms with a bond distance of dCH = 1.095Å (see
Appx. A.1 for further details). The carbon atoms (with the adsorbed hydrogen atoms) are moved
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unrelaxed relaxed (AGNR8×41) relaxed (AGNR34×59)
dHCH 1.095Å 1.119± 0.008(+0.017

−0.013)Å 1.119± 0.007(+0.020
−0.015)Å

dHH 1.439Å 2.100± 0.024(+0.031
−0.039)Å 2.124± 0.043(+0.167

−0.057)Å
dC0C0 1.439Å 1.428± 0.024(+0.055

−0.072)Å 1.426± 0.026(+0.142
−0.078)Å

dC0CH 1.523Å 1.513± 0.010(+0.024
−0.030)Å 1.512± 0.011(+0.078

−0.036)Å
dCHCH 1.439Å 1.566± 0.016(+0.028

−0.014)Å 1.560± 0.010(+0.023
−0.022)Å

Table 4.1: Effect of lattice relaxation on the bond lengths dXY (measured between atom type X and
type Y ). To reduce boundary effects, we take only atoms into account which (a) were fully relaxed
and (b) are at least 3 carbon atoms away from the ribbon boundary (in y-direction). Atom types:
hydrogen atom (H) adsorbed on a carbon atom (CH), and carbon atoms (C0) without any hydrogen
adsorbates. In case of two hydrogen atoms (dHH or dCHCH), both hydrogen atoms are located on the
same side of the graphene flake. For the relaxed AGNR41, the distances are given as m ± σ(∆max

∆min
)

where m is the average value, σ is the standard deviation and m+ ∆max/min is the maximal/minimal
value. In the unrelaxed AGNR41, all distances are exact in the sense that no spatial variations exist.

(a) unrelaxed structure (b) relaxed structure

Figure 4.21: Example of lattice relaxation when two hydrogen adsorbates sit on neighboring carbon
atoms. (a): Unrelaxed structure with hydrogen adsorbates placed directly above the carbon atoms
(see text). (b): DFT-relaxed structure (see text). The hydrogen atoms (red spheres) repel each other
to make room for their electron cloud. This also pushes the anchor carbon atoms (gray spheres) apart.

out of the graphene plane by 0.5Å to represent the sp3-hybridization. This geometry serves as
unrelaxed reference state. For the relaxed structure, we additionally structurally relax all atoms
of functionalized area (device region excluding contact region) until all atomic forces drop below
10−2 eV/Å. The relaxed AGNR41 was shown in Fig. 4.1b.

We illustrate the change of the lattice constants due to relaxation in Tab. 4.1. The most important
effect is that hydrogen adsorbates sitting on adjacent carbon atoms repel each other (dHH grows)
and also pull their anchor carbon atoms apart (dCHCH grows). This effect is also shown in Fig. 4.21.
Additionally, the bond-lengths are no longer the same everywhere in the ribbon but depend on the
local impurity configuration, e.g. the carbon-carbon bond length dC0C0 (for carbon atoms without
hydrogen adsorbates) deviates up to 5% from its average value.
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Figure 4.22: Comparison of the transmission through the relaxed and the unrelaxed version of the
hydrogenated AGNR8×41 shown in Fig. 4.1b. Additionally, the number of channels of the pristine
AGNR41 is shown (orange). [DFT details: FHI-aims, basis set tier1, closed-shell]

Relaxation effects on the transmission function

The transmission functions of the relaxed and unrelaxed AGNR41 are displayed in Fig. 4.22.
Major modifications can be seen: neither the peak structure near the Fermi energy (see zoom-
in) nor the transmission for higher energies can be reproduced. Therefore, we conclude that the
details of the transmission function, especially the peak positions, are not only sensitive to where
the adsorbates are placed, but also to the induced lattice distortion.

Relaxation effects on the current density

Next, we check the local current density. Since already the transmission function (total current
per bias) differs, it does not make sense to expect the current density responses taken at specific
energies to coincide: they certainly differ. Since the transmission of the unrelaxed AGNR41 shows
a familiar peak structure near the Fermi energy, one might hope that the current density contri-
butions are just slightly shifted but that a integrated current density is still correctly reproduced.
To check this, we apply a finite bias voltage of Vbias = 1V. The current density and the related
distribution functions of the unrelaxed AGNR41 are shown in Fig. 4.23. The current density of
the relaxed lattice has already been shown in Fig. 4.14. Already at first glance, one detects sig-
nificant differences between the current patterns. Thus, the lattice relaxation is also affecting the
local current paths.

On the other hand, we see that the qualitative features—current vortices and broad distributions—
are reproduced with the unrelaxed lattice as well. This is not surprising since we know that
these general features are reproduced for several different impurity types (cf. Sec. 4.2.4). In the
unrelaxed lattice, the hydrogen adatoms exert a different influence on the electronic structure,
e.g., no crosstalk. They effectively behave as impurities of a different type.
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(a) Current density at finite bias Vbias = 1V
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Figure 4.23: Local current density and corresponding distribution functions for the unrelaxed version
of the hydrogenated AGNR8×41 shown in Fig. 4.1b at a finite bias voltage Vbias = 1V. This is
the analogue figure to Fig. 4.14 which shows the local current density and corresponding distribution
functions for the relaxed version of the hydrogenated AGNR8×41.

Our result bears a relevance for tight-binding simulations of disordered graphene flakes in the
limit of large defect concentrations. Generic tight-binding studies ignore the crosstalk that two
(or more) adsorbates can have via their interaction in terms of lattice strain. We expect that
this crosstalk plays an important role, at higher concentrations, for the optimal lattice geometry.
As our study shows, the crosstalk feeds back also into the electronic structure, the transmission
function and the local current density.

89



Notes to chapter 4

The notes are for completeness, reproducibility and to help interested readers understand all the fine technical details.

A Percolation theory analyzes how many sites of a regu-
lar (infinite) lattice (where only neighboring sites are
connected) can be removed before the lattice disinte-
grates, i.e., before the spanning cluster vanishes. Span-
ning clusters are connected clusters of the same order
as the system size. The spanning clusters are important
for transport effects since only they provide connected
paths between far away regions.

In a hexagonal lattice (as graphene), n . 30.3% ran-
dom sites can be removed before the spanning cluster
vanishes. For the exact percolation threshold see, e.g.,
Ref. 163.

Therefore, we focus on hydrogenated graphene with hy-
drogen concentration below 30.3% so that paths exist
that only involve carbon atoms which do not carry ad-
sorbed hydrogen atoms. (page 60)

B Throughout this thesis, the mean µ refers to the spatial
average of the logarithm of the current density normal-
ized to the total through current, i.e.,

〈
ln
[∣∣∣
∫

dz j(r)
∣∣∣

Itotal/Ly

]〉

x,y

= µ . (4.12)

On a linear (non-logarithmic) scale, the average of the
local current density is

〈∣∣∣
∫

dz j(r)
∣∣∣

Itotal/Ly

〉

x,y

= eµ+σ2/2 , (4.13)

which also includes the width σ of the lognormal distri-
bution. (page 65)

C The magnetic field response in Fig. 4.3b is in the or-
der of dB/dVbias = 1T/V. The width of the transmis-
sion peak (see Fig. 4.2a) is in the order of δE = 1meV.
Thus, applying a finite bias voltage of Vbias = 1mV,
we expect a magnetic field of B0 = 1mT, or equivalent
µBB0/~ ≈ 100MHz. (page 67)

D The reader might wonder, why we use a concentration
of 5% hydroxyl groups rather than our standard choice
of 20%. Since the hydroxyl groups are larger than sin-
gle hydrogen adatoms, randomly placing a large con-
centration on graphene leads to collisions, i.e. hydrogen

atoms of hydroxyl groups anchored on neighboring car-
bon atoms are too close. A geometric relaxation of such
a system would take enormous computational resources.
Instead, we tried placing 20% hydroxyl groups in one
sublattice (although this significantly differs from a ran-
dom configuration). Even then, the hydrogen atoms
can get close, and in some positions, H2O separates in
the geometric relaxation, leaving a single oxygen rad-
ical. Chemically, we expect the oxygen to be highly
reactive and to bind to nearly everything in the envi-
ronment. In our simulations, the geometric relaxations
are performed without an environment, and the oxygen
stays without additional bonding partners leading to lo-
cal charging effects. Nevertheless, we analyzed the sys-
tem. It also features current vortices compatible with
our results. (page 80)

E Summing up such random contributions is equivalent
to a one-dimensional random walk[164, 165] taking N/2
steps with step size µring. (page 84)

F In pristine graphene, the zero bias conductance G is
given by

G = Gspin
0 T (εF) = 4e2

πh

W

L
, (4.14)

valid in the wide system limit, W � L [115, 166, 167].
The W/L-dependence is due to the number of bands
growing linearly when increasing the system width.
(page 85)

G For a Gaussian distribution, the root mean square ex-
pectation value is equal to the width of the distribution,
i.e., for the magnetization (per spin), we expect

√
〈m2

z〉 = σmz ≈ 0.69µB ·
√
Vbias/V , (4.15)

whereas the expectation of the absolute value

〈|mz|〉 =
√

2
π

√
〈m2

z〉 =
√

2
π
σmz

≈ 0.55µB ·
√
Vbias/V

(4.16)

is reduced by a constant prefactor
√

2/π. (page 86)



5 Chapter 5

Spin effects

In this chapter, we investigate the effects of spin polarization on the transport
behavior, which has not been considered so far in this thesis. After a short in-
troduction into spin DFT with an emphasis on spin-orbit interaction (Sec. 5.1),
we focus on spin-flip effects in transport through hydrogenated graphene ribbons
in Sec. 5.2. We find that the spin-flip transmission can reach the same order of
magnitude as the spin-conserving one. We relate this effect to exchange-interaction
rather than intrinsic spin-orbit interaction. We also investigate the spin effects on
the unpolarized current density and find current patterns featuring broad fluctua-
tions and strong ring currents, exactly as in the spin-independent case. The exact
current patterns and transmission functions depend on the exact ground configura-
tion but the generic features—broad fluctuations and ring currents—are always the
same. Thus, we presume that these qualitative features do not depend on the exact
groundstate and are also correctly reproduced in spin-restricted closed-shell simu-
lations. In Sec. 5.3, we explicitly check this conjecture for one of the systems pre-
viously discussed in Chap. 4: a medium sized AGNR8x41 with 20% hydrogen. The
qualitative results are indeed independent of the employed level of spin treatment.

5.1 DFT transport for systems with broken spin-rotational
invariance

5.1.1 Spin effects in DFT

In the previous chapters, spin effects played a minor role: a spin degeneracy of two was included
in all calculations but no further spin effects were covered. In these cases, the transport spin is
preserved. In principle, there are several reasons, why the transport spin may not be preserved.
The three most prominent ones are: (i) exchange-interaction with local spins, (ii) spin-orbit
interaction (SOI), and (iii) interaction with a magnetic field. In this chapter, we study the effects
of type (i) and (ii). Effects of type (iii) are partly discussed in Chap. 6.
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5 Spin effects

There are two well-established procedures to include spin into KS-DFT. The first and much more
common one is collinear spin DFT. Instead of working only with the total groundstate density n(r),
collinear spin DFT employs spin-resolved groundstate densities, n↑(r) and n↓(r), or equivalently
the total density n and the spin density s=n↑−n↓. The spin resolved densities nσ(r) are separately
represented by a sum of orthonormal KS states ψKS

σ,l (r). The reconstructed KS Hamiltonian is
spin-diagonal, all KS spins point along (or against) the chosen quantization axis. For further
details on collinear spin DFT please refer to the literature, e.g. Ref. 168 and references therein.

An advantage of collinear spin DFT is that it is computationally much cheaper than spinor DFT,
which is an alternative way to include spin effects to DFT. In spinor DFT, the basic idea is to
extend the KS states to two-component KS spinors

ψKS(r) =


ψ

KS
↑ (r)
ψKS
↓ (r)


 . (5.1)

They represent the groundstate density

n(r) =
∑

l

[
ψKS
l (r)

]†
ψKS
l (r) , (5.2)

and the spin density

s(r) =
∑

l

[
ψKS
l (r)

]† ~
2σ ψ

KS
l (r) , (5.3)

with σ being a vector of Pauli matrices. That way, the local spin density can point in any direction,
not only parallel or antiparallel to the quantization axis. The reconstructed KS Hamiltonian can
feature spin-off-diagonal elements

HKS =


HKS

↑↑ HKS
↑↓

HKS
↓↑ HKS

↓↓


 , (5.4)

which, in KS transport, can allow for spin-flip transmission terms T↑↓ and T↓↑. Such terms describe
electrons whose spins flip when traversing the system (cf. Sec. 2.1.4). In the following, we use the
spinor DFT approach as implemented in Turbomole [134], which, conveniently, also features an
all-electron spin-orbit interaction (SOI) module[169]. Since SOI included in spinor DFT is a less
known topic, we outline the basic idea in Sec. 5.1.2.

Remark: By default, the spin quantization axis used in Turbomole is the z-axis. For an
arbitrary quantization axis n = (sin θ cosϕ, sin θ sinϕ, cos θ), we use an unitary transformation

U =
(

cos θ2 −e−iϕ sin θ
2

eiϕ sin θ
2 cos θ2

)
, HKS → U HKS U † , (5.5)

to rotate the KS Hamiltonian in spin space. For additional details, please refer to the master
thesis of J. Wilhelm[140, Ch. 6] who implemented the spin rotation in our transport module.

92



5.1 DFT transport for systems with broken spin-rotational invariance

5.1.2 Spin-orbit interaction (SOI)

Origin of SOI

Spin-orbit interactions (SOI) originate as relativistic effects for single electrons from the Dirac
equation[170]. The Dirac wavefunctions are described by four-component spinors; half of the
components describe positron like contributions. In the low energy limit, the four-component
spinors can be decoupled into two-component spinors

ψ(r) =
(
ψ↑(r)
ψ↓(r)

)
(5.6)

with a spin up and a spin down component. These two-component spinors obey a low-energy
Dirac equation: (

Ĥ0 + δĤrel-scalar + δĤSOI

)
ψ = Eψ . (5.7)

Here, Ĥ0 is the unperturbed non-relativistic single particle Hamiltonian including the standard
kinetic term p2/(2m). The relativistic-scalar corrections δĤrel-scalar include kinetic corrections
p4/(8m3c2) as well as the Darwin term ∆vex(r)~2/(8m2c2). Conceptually, they are easy to treat
because they are spin-diagonal. The interesting term, is the SOI

δĤSOI = ~
4m2c2 σ ·

[(
∇vex(r)

)
× p

]
, (5.8)

because it couples the electron spin ~
2σ with the orbital properties (∇vex)× p. This breaks spin-

rotational invariance. The SOI is proportional to the gradient of the external potential vex(r)
generated by the atom cores. Therefore, one expects a large SOI for heavy atoms but not for
graphene which consists of carbon atoms. However, recent studies show that the SOI in hydro-
genated graphene is massively enhanced by lattice distortion[158–160].

Incorporating SOI in spinor DFT
See Appx. B.2 for an overview of DFT nomenclature.

To include SOI in spinor DFT one must—at least in principle—express the relativistic energy
corrections δĤrel-scalar and δĤSOI in terms of the densities n(r) and s(r). Since this seems hopeless,
one employs the KS formulation for the relativistic corrections in the same way as it has already
been applied to the kinetic single particle term t̂kin: the relativistic corrections are calculated
for the (non-interacting) KS states, and all further corrections are absorbed into the exchange-
correlation functional Exc. The full energy functional

E[n, s] =
∑

l

〈ψKS
l |t̂kin + δĤrel-scalar + δĤSOI|ψKS

l 〉

+ 1
2

∫
dr vH(r)n(r) +

∫
dr vex(r)n(r) + Exc[n, s] ,

(5.9)
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then contains the relativistic corrections and an exchange-correlation potential Exc[n, s] which
depends on the spin density. The other terms, the (non-relativistic) kinetic energy t̂kin, the
Hartree-potential vH(r), and the external potential vex(r) remain unchanged. In principle, the
energy functional E[n, s] is exact since it only defines the exchange-correlation functional Exc. In
practice, Exc[n, s] is usually approximated by a non-relativistic functional, e.g. by well-established
GGA- or LDA-functionals.

We have outlined only the basic idea of SOI in DFT and omitted many technical and conceptual
subtleties. For these details, please refer to the Turbomole package[169, 171].

5.2 Application: narrow hydrogenated graphene ribbons including
spin-orbit interaction (SOI) & spin magnetism

We now investigate the spin-flip transmission in hydrogenated AGNR11, following closely our own
publication[111]. Here, I greatly thank J. Wilhelm who performed the spinor DFT calculations.
We consider two AGNR11 with different impurity configurations: (a) with a single hydrogen
adatom and (b) with a finite concentration of randomly distributed hydrogen adatoms, see Fig. 5.1.
The hydrogen adatoms form chemical bonds to the anchor carbon atoms which results in sp3

hybridizations of the anchor atoms. Both systems were structurally relaxedA to include the strong
enhancement of SOI due to local lattice distortion[158–160].

5.2.1 Single hydrogen adsorbate

We start with the AGNR11 including a single hydrogen adatom. The simulated spin-dependent
transmission functions Tσσ′ are shown in Fig. 5.2. First, we focus on the situation where the total

(a) 1H on AGNR11 S = (−0.12, 0.01, 0.99)~ (b) 12H on AGNR4x11 S = (−0.16, 0.04, 0.86)~

Figure 5.1: Finite sized hydrogen-terminated armchair graphene nanoribbons (carbon atoms in gray)
with hydrogen adatoms (red) as used in the DFT calculation: (a) one hydrogen atom on a clean
AGNR11, (b) 12 hydrogen atoms on AGNR4x11 (corresponds to 27% hydrogen coverage). For both
ribbons, the total spin moment S =

∫
s(r) d3r for the finite sized ribbon, predicted by a spinor DFT

simulation including SOI, nearly aligns with the z-axis, S ≈ |S| ez. For transport simulations, the
device region (green box) is extended by (semi-infinite) leads in x-direction. The leads are represented
by closed-shell DFT calculations without SOI. Therefore, SOI is effectively restricted to the device
region (green box).
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Figure 5.2: Spin-dependent transmission of transport through an AGNR11 with one hydrogen adatom
with SOI (a,b) and without SOI (c,d); see Fig. 5.1a for the atomic structure. The quantization axis
(QA) of the incoming electrons is either (a,c) aligned with or (b,d) perpendicular to the total spin
S ≈ |S| ez of the finite sized sample. The average spin-flip transmission Tσσ̄,avg is calculated as
the average of both spin-flip transmissions, Tσσ̄,avg = (E2−E1)−1 ∫ E2

E1
(T↑↓+T↓↑) dE, E1/2=εF±1.5 eV.

Tpristine is given by the number of bands in pristine AGNR11. Please note that T↑↑ and T↑↓ are
sometimes hidden behind T↓↓ and T↓↑, respectively. T↓↑ and T↑↓ are exactly zero in panel (c). My
thanks to J. Wilhelm who performed the numerical calculations[140]. [DFT details: Turbomole, basis set
svp, spinor DFT with and without SOI]

spin of the sample and the spin of incoming electrons are (very nearly) aligned. The former points
in (near) z-direction, S = (−0.12, 0.01, 0.99)~; so we choose z as spin quantization axis for the
conduction electrons. The corresponding transmission functions are shown in Figs. 5.2a and 5.2c
with and without SOI, respectively. We first note, that the spin-conserving transmissions Tσσ
are virtually identical, and we conclude that SOI hardly influences Tσσ. The most prominent
feature is a broad antiresonance in T↓↓ which refers to the quasilocalized state induced by the
hydrogen adatom. Such antiresonances are well-known in literature and we already discussed
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them in Secs. 3.2 and 3.3. In Fig. 5.2a, the spin-flip transmission Tσσ̄ (T↑↓ and T↓↑) is very small,
in the order of 10−4. And it completely vanishes in Fig. 5.2c due to the absence of SOI.

Next, we consider the case where the spin of the incoming electrons is not aligned with the sample
spin. In Fig. 5.2b (with SOI), the spin-flip transmission is strongly enhanced, in the order of
5 ·10−2. Slightly above the bandgap, it does significantly exceed the spin-conserving transmission.
We claim, that this enhancement is not related to SOI, but due to exchange interaction. As
evidence, we repeat the the transmission calculation without SOI, see Fig. 5.2d. The result is
indeed indistinguishable from Fig. 5.2b.

In a nutshell, the exchange-driven spin-flip can be understood as follows: assuming the sample
spin S points into a fixed direction, say the z-direction, the exchange interaction S · Scond turns
into Sz Sz,cond ∼ σ̂z,cond where the Pauli matrix σ̂z,cond acts on the incoming conduction electrons.
Thus, an incoming spin is conserved if fully polarized in the ±z-direction. In contrast, a spin
is no longer conserved if it exhibits a component perpendicular to the sample spin, e.g., in x-
direction. Then, spin-flips become possible. In the case of a single hydrogen adatom (as presented
in Fig. 5.2), the spin-flip probability (T↑↓ + T↓↑)/

∑
σσ′ Tσσ′ reaches values near unity, for energies

near the bandgap.

Remark: Additional examples which support our analysis can be found in Ref. 111 (two hydrogen
adatoms on AGNR11) and Ref. 140 (OH groups on AGNR11).

5.2.2 Finite hydrogen concentration

To make a connection to Chap. 4, we also investigate a ribbon with a finite hydrogen concentration,
as shown in Fig. 5.1b. The corresponding transmission functions are shown in Fig. 5.3 for two
different quantization axes. First, the transmission functions show many antiresonances, leading
to strong transmission fluctuations. They are due to several quasilocalized states near the Fermi
energy induced by the hydrogen adatoms. Second, the spin-flip transmission reaches the same
order of magnitude as the spin-conserving one in a large energy window.

Notice, for both quantization axes, the spin-flip transmission is in the order of 5 ·10−2. In contrast
to a single hydrogen adatom, the spin-flip transmission is not strongly suppressed if the spins
of the incoming electron are aligned with the total sample spin S. In fact, we could not find a
quantization axis where the spin-flip transmission is suppressed to ∼ 10−4 similar to Fig. 5.2a.
From that, we conclude, that the local spin density is strongly fluctuating in space, and that only
the average is pointing in z-direction.

5.2.3 Local current density for finite hydrogen concentration

In Fig. 5.4, we show the (spin-unpolarized) local current density response for the hydrogenated
AGNR11 of Sec. 5.2.2 based on spinor DFT calculations including SOI. The current exhibits
strong mesoscopic fluctuations covering three decades. They are related to vortices which exceed
the average current by over one order of magnitude. We compare this result with Chap. 4, in
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Figure 5.3: Spin-dependent transmission of transport through an AGNR11 with 12 hydrogen adatoms
with SOI; see Fig. 5.1b for the atomic structure. The quantization axis (QA) of the incoming electrons
is either (a) aligned with or (b) perpendicular to the total spin S ≈ |S| ez of the finite sized sample.
See Fig. 5.2 for details on Tσσ̄,avg/Tpristine. My thanks to J. Wilhelm who performed the spinor DFT
simulation of the finite ribbon[140]. [DFT details: Turbomole, basis set svp, spinor DFT with SOI]

Figure 5.4: Local current density response (integrated over the out-of-plane direction) normalized to
the average through current in the hydrogenated AGNR11 shown in Fig. 5.1b. The current exhibits
very strong mesoscopic fluctuations that reflect in a logarithmic color scale covering three decades.
Some interesting current paths are drawn in the picture for illustration: local current vortices exceeding
the spatial average current by one order of magnitude (see dark red regions). Plot shows current
amplitude (color), current direction (arrows), carbon atoms (gray crosses), and hydrogen atoms (red
crosses). [DFT details: Turbomole, basis set svp, spinor DFT with SOI]

which we simulated the local current density for much larger ribbons but enforced a closed-shell
electronic structure without SOI to reduce the computational effort. The characteristic features,
i.e., current vortices and broad fluctuations, are the same in both cases; they emerge from full spin
treatment including SOI as well as from spin restricted treatment. Therefore, we confirm that their
appearance is a fundamental property of the scattering states in hydrogenated graphene flakes.
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5 Spin effects

5.2.4 Comparison of different (approximate) groundstate spin configurations and
their influence on transmission and local current density

We now examine if and how different levels of spin theory change the current picture of Fig. 5.4.
For that purpose, we perform closed-shell, collinear open-shell and full spinor DFT calculations
with FHI-aims and Turbomole. Open-shell and spinor DFT simulations depend on the initial
guess of the spin configuration since the KS equations are solved iteratively and only find local
minima in the energy landscape. We use several reasonable guesses, such as an extended Hückel
guess for open-shell calculations using Turbomole[134]. The exact initial configurations are not
important for our discussion and are deferred to the notesB section. The important point is that
many possible spin configurations with (nearly) equal energy exist. In principle, we should accept
only the configuration with the lowest total energy, but since our DFT treatment is not exact
(remember the approximate functionals), and the energy differences are small (100µeV to several
meV per atom, see Tab. 5.1), the true groundstate realized in experiment might not have the
lowest energy in approximate DFT. Therefore, we perform several simulations and compare the
transport results.

We start with the transmission functions shown in Fig. 5.5. We sort the transmission curves into
two categories:

• The “closed-shell-like” category (blueish) contains transmission functions with a peak
near E = εF − 0.4 eV and E = εF + 0.2 eV with small transmission directly below εF, i.e.,
T (εF − 0.1 eV) < 0.1.

• The “open-shell-like” category (reddish) contains transmission functions with a peak
near E = εF − 0.15 eV but small transmission directly above εF, i.e., T (εF + 0.2 eV) < 0.1.

This classification was chosen since the two categories show distinct additional features, e.g., peaks
at different positions. For nearly all energies, all curves of one category are above all curves of the
other category.

Most interestingly, the transmission of the open-shell calculation (B) using FHI-aims lies in the
closed-shell category despite a total spin of Sz = 1~, see Tab. 5.1. Also, the SOI calculation
(b) using Turbomole has a nearly vanishing total spin but belongs to the open-shell category.
From that, we conclude that the total spin is not a good indicator for transport in hydrogenated
graphene ribbons.

Next, we investigate the local current density response at six energies, marked by arrows in the
transmission plot, Fig. 5.5. Inside each category, the current pattern and the current magnitude
normalized to the transmission always match (see Appx. E.1 for all plots). Between the two
categories, the current patterns do not match for all energies, see Fig. 5.6 for an example. Even
if the current patterns differ, their qualitative features—current vortices and broad fluctuations—
are present in all cases. They emerge from the full spin treatment including SOI as well as from
the closed-shell treatment. Thus, we conclude that these qualitative features are generic and do
not depend on the exact groundstate configuration. They are also correctly reproduced in (much
cheaper) spin-restricted closed-shell simulations.

98



5.2 Application: narrow hydrogenated graphene ribbons including SOI & spin magnetism

0

0.5

1

1.5

2

−1.5 −1 −0.5 0 0.5 1 1.5

T
ra

ns
m

is
si

on
T

E − εF [eV]

Turbomole closed
shell

FHI-aims closed
shell

(B) FHI-aims open
shell

(C) FHI-aims open
shell

Turbomole open
shell

(A) FHI-aims open
shell

(a) Turbomole SOI
(b) Turbomole SOI

pristine closed
shell

Figure 5.5: Total transmission for different DFT calculations comparing different levels of theory:
open-shell, closed-shell, and 2-component spinor calculation including spin-orbit interaction (SOI). All
transmission curves can be categorized as either “closed-shell-like” (bluish) or “open-shell-like” (red-
dish). The arrows represent energy values for which the current density response has been calculated;
green/red arrows refer to current patterns which match/differ for the two categories. The current
patterns inside each category match qualitatively.

E = εF−0.40 eV E = εF−0.15 eV

T
ur

bo
m

ol
e

cl
os
ed

sh
el
l

E = εF−0.40 eV T (E) = 1.115 E = εF−0.15 eV T (E) = 0.055

T
ur

bo
m

ol
e

op
en

sh
el
l

E = εF−0.40 eV T (E) = 0.196 E = εF−0.15 eV T (E) = 0.679

Figure 5.6: The current density for two different energies,
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∆E0[ eV] Sz[~]
FHI-aims closed

shell 0 0

(A) FHI-aims open
shell −0.478 1.91

(B) FHI-aims open
shell −0.016 0.05

(C) FHI-aims open
shell −0.310 1.08

∆E0[ eV] Sz[~]
Turbomole closed

shell 0 0

Turbomole open
shell −0.626 1

∆E0[ eV] S[~]

(a) T. SOI 0



−0.163
−0.044
+0.860




(b) T. SOI −0.014



−0.097
+0.021
−0.041




Table 5.1: Comparison of DFT ground
state energies E0 of the finite (uncou-
pled) cluster and of the overall spin.C
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5 Spin effects

5.3 Application: wide hydrogenated graphene ribbons including
spin magnetism

In this section, we investigate how different levels of spin theory influence the qualitative transport
features in larger hydrogenated AGNRs. We are motivated by recent studies that indicate that
hydrogen adsorbates on graphene ribbons are indeed magnetic[103, 172–176]. Therefore, one
must ask in what sense the spin-unpolarized results of Chap. 4 remain valid when spin effects
are included. As one can already speculate from the results of the previous section, we find that
generic transport features do not depend on the exact spin groundstate configuration, also not in
larger hydrogenated AGNRs.

For this investigation, we apply closed-shell and open-shell DFT to a medium sized ribbon, an
AGNR8x41 with 20% hydrogen (as used in Chap. 4, see Fig. 4.1b for the atomic structure). For
such system sizes, we are already unable to perform a spinor DFT calculation. Even collinear
open-shell calculations are computational tedious because of a very slow SCF convergence due to
many possible spin configurations with (nearly) equal energy. The larger the system gets, the more
low lying spin excitation exist in a given energy window; making the SCF convergence extremely
costly for larger systems. Physically, this is the same effect as in a spin glass[177]: flipping a
single spin is energetically hardly suppressed if neighboring spins are also flipped. Thus, finding
the electronic groundstate of such systems is hard.

In Fig. 5.7, we show the total transmission T and the magnetic response dmz/dVbias simulated
by a closed-shell (CS) and two open-shell (OS) calculations (A and B) with different initial spin
configurations.D As before, all three simulations converge to different local minima in the energy
landscape and therefore the transport properties differ. The total energy of the OS simulations
is only slightly—1.42 eV and 2.78 eV—below the CS case. This corresponds to only a few meV
per atom, and one should consider all three spin configurations as energetically equal due to
approximations in the DFT functionals.

For all three systems, the transmission T and magnetic response dmz/dVbias differ quantitatively.
Nevertheless, the qualitative features are the same in all cases. A pronounced peak structure in T
and dmz/dVbias exists in the vicinity of the Fermi energy. The magnetic response shows the usual
sign changes near antiresonances. Also, the magnitude of the magnetic response peaks is similar
in all three cases. If anything, the magnetic response peaks are slightly higher for CS, but also
slightly sharper so that the magnitude of the energy-integrated magnetization coincides again.

Remark: We also investigated the current density pattern j(r, E) and the current distributions
functions P[ln ji/javg;y] of the OS simulations directly (not shown). We found no contradiction to
any results presented in this thesis.
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Figure 5.7: Total transmission and total magnetic response, comparing a closed-shell with two dif-
ferent open-shell DFT simulations. The transmission and the magnetic response include both spin
channels. The transmission shows a fine peak structure in a wide energy window for all three cases
(left panel). A zoom-in of the transmission (lower right panel) and the magnetic response (upper right
panel) show three quantitatively different cases, which still show the same generic features: a peak
structure of the transmission and several sign changes in the magnetic response.
[DFT details: FHI-aims, basis set tier1, closed and open-shell. Closed shell quantities have been multiplied by the spin
degeneracy factor 2. The clipped peak in dmz/dVCS at E−εF = 0.105 eV reaches −22.1µB/V.]

Summary

On the one hand, we showed that the exact spin groundstate configuration has an immediate
influence on the local current pattern. We are therefore unable to predict the exact current
paths through hydrogenated graphene ribbons. [Even if the DFT transport would predict exact
current paths, one would not expect them to reproduce the physical current path in experiment
since there is no formal connection for the general case between the KS current density and the
physical one (see discussion in Sec. 2.2).] On the other hand, we showed that qualitative features—
transmission peaks, sign changes in the magnetic response, and current vortices—remain valid,
independent of the level of spin theory. The results indicate that (much cheaper) closed-shell
calculations—ignoring local spin polarization—already allow for qualitatively correct predictions
of the local current density. That justifies the closed-shell treatment of large hydrogenated ribbons,
as performed in Chap. 4. These closed-shell results are correct on a qualitative level.
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Notes to chapter 5

The notes are for completeness, reproducibility and to help interested readers understand all the fine technical details.

A In the AGNR11 with a single hydrogen adatom
(Fig. 5.1a), only the hydrogen atom and the four near-
est carbon atoms were structurally relaxed. In the
AGNR11 with 12 hydrogen adatoms (Fig. 5.1b), the
central AGNR4x11 (44 carbon atoms and 12 adsorbed
hydrogen atoms) was structurally relaxed. (page 94)

B As initial spin configuration for the different DFT cal-
culations of Sec. 5.2.4 we used:

(A) FHI-aims open-shell: a spin moment µB on
each hydrogen atom (all pointing in the same
direction),

(B) FHI-aims open-shell: a spin moment µB on
each hydrogen atom, pointing alternatingly in
spin up and spin down direction,

(C) FHI-aims open-shell: a partial spin moment
of 0.1µB on each carbon and hydrogen atom (all
pointing in the same direction),

(a) Turbomole SOI: an extended Hückel guess
with fast simulated thermal annealing using
the parameter $fermi tmstrt=300 tmend=10
tmfac=0.95 hlcrt=0.5 stop=1.0E-3,

(b) Turbomole SOI & Turbomole open-shell:
an extended Hückel guess with slow sim-
ulated thermal annealing using the param-
eter $fermi tmstrt=300 tmend=10 tmfac=0.98
hlcrt=0.5 stop=1.0E-3.

The resulting total spin moments after SCF convergence
are given in Tab. 5.1. (page 98)

C We made sure to only compare energies which are calcu-
lated by the same code with the same basis set because
otherwise the differences are due to differences in the
calculation scheme and not of physical origin. In that
sense, a closed-shell calculation is equivalent to an open-
shell calculation where both spin channels are forced to
be the same. As energy zero point, we chose the energy
of the closed-shell calculation (if available; otherwise,
we chose a random reference point). The ground state
DFT energies used as references points are

FHI-aims closed-shell: E0 = −137514.8234 eV,

Turbomole closed-shell: E0 = −137549.2636 eV,

Turbomole SOI: E0 = −137599.2168 eV.

They are given only for completeness. (page 99)

D As initial spin configuration for the open-shell (OS) sim-
ulations shown in Fig. 5.7 we used

(A): a spin moment µB on each hydrogen atom (all
pointing in the same direction),

(B): a spin moment µB on each hydrogen atom, point-
ing alternatingly in spin up and spin down direc-
tion.

After SCF convergence, the resulting total spin mo-
ments of the entire structures are (A) Sz = 21.06~ and
(B) Sz = 4.64~. (page 100)



6 Chapter 6

Magnetic feedback: Self-consistency in
the induced orbital magnetism

In this chapter, we study magnetic feedback effects on the transport behavior in
hydrogenated AGNRs. The magnetic field induced by orbital currents couples to
both, electron charge and spin. Therefore, magnetic feedback effects can—at least
in principle—significantly reduce ring currents (Lenz’s law) or alter the current den-
sity pattern altogether. To discuss these effects, we first determine (Sec. 6.1) how
an external magnetic field acts on the electron’s motion and its spin. We present
a method that includes the magnetic field into DFT a posteriori by calculating its
action on the Kohn-Sham states. In Sec. 6.2, we employ this approach to hydro-
genated AGNRs, and discuss the feedback of the induced magnetic field on the
transmission function. We estimate that the magnetic feedback is minor for the
system sizes considered and can be ignored in most cases. This result is supported
by a numerical calculation which shows changes in the transmission in the order
of O(10−9).

6.1 Theory: influence of magnetic fields

A magnetic field couples to electrons in two ways. First, it couples to the charge influencing the
motion by the Lorentz force. Second, it also couples to the spin via a Zeeman term S ·B, favoring
an anti-alignment between spin S and magnetic field B.

Lorentz force: principle of minimal coupling

We include the Lorentz force by employing the principle of minimal coupling, substituting the ki-
netic momentum operator p̂ by π̂ = p̂−qA(r̂) with electron charge q = −e and vector potential A.
The Lorentz interaction

∆ĤLorentz = π̂2

2m −
π̂2

2m

∣∣∣∣
A=0

= −q[A(r̂) · p̂ + p̂ ·A(r̂)]
2m + q2A2(r̂)

2m (6.1)
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6 Magnetic feedback: Self-consistency in the induced orbital magnetism

is given by the difference between the kinetic energy with and without vector potential A.

Zeeman interaction: S ·B

The Zeeman interaction couples spin to the magnetic field. The corresponding Hamiltonian reads

∆ĤZeeman = γ

∫
Ŝ(r) ·B(r) d3r (6.2)

with the gyromagnetic ratio γ = q
m for the electron spin (including the g-factor g= 2 and electron

charge q = −e). Writing the spin-density operator Ŝ(r) = ~
2δ(r − r̂)σ̂ in terms of Pauli-matrices

σi, the Zeeman interaction in spin representation is explicitly given as

∆ĤZeeman = q~
2m σ̂ ·B(r̂) = q~

2m

(
Bz(r̂) B∗xy(r̂)
Bxy(r̂) −Bz(r̂)

)
(6.3)

with Bxy := Bx + iBy.

Incorporating the magnetic field into DFT

The magnetic field does not couple directly to the electron density. Therefore, incorporating
the magnetic field into DFT is not straightforward. The standard way is to employ current
density functional theory (CDFT)[178, 179]. In that case, the exchange-correlation functional
Exc[n, s, j] not only depends on the density n(r) and the spin density s(r), but also on the current
density j(r) (see Appx. B.2 for a DFT overview). That means, that in addition to the external
fields Aext(r) and Bext(r), there are new exchange-correlation potentials Axc(r) = δExc/δj(r)
and Bxc(r) = δExc/δs(r) that act on the Kohn-Sham (KS) system [in addition to the standard
exchange-correlation potential vex(r) = δExc/δn(r)].

Formally, CDFT—as standard DFT—is exact as long as the exchange-correlation functional Exc
is exact. In practice, useful approximate functionals for CDFT are much more problematic than
in standard DFT. For that reason, we do not use CDFT to include the magnetic field. Instead,
we include the magnetic field ad-hoc by applying the above Hamiltonians directly to the KS
states, i.e., we calculate the matrix elements with respect to the orthonormal basis set |ϕ̃i〉, using
p̂ = −i~∇ in real space. The Lorentz Hamiltonian,

∆HLorentz
ij := 〈ϕ̃i|∆ĤLorentz|ϕ̃j〉

= 1
2m

∫
ϕ̃∗i (r)

{
i~q[A(r) · ∇+∇ ·A(r)] + q2A2(r)

}
ϕ̃j(r)d3r ,

(6.4)

and the Zeeman interaction,

∆HZeeman
ij := 〈ϕ̃i|∆ĤZeeman|ϕ̃j〉

= q~
2m

∫
ϕ̃∗i (r) σ̂ ·B(r) ϕ̃j(r)d3r ,

(6.5)
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then contain spatial derivatives and integrals which are solved numerically (see Appx. F.1 for
details). Compared to CDFT, our approach has the advantage that it fits seamlessly into our
framework (as presented in Chap. 2) that relies on groundstate DFT. No drastic code changes
are necessary, only the two Hamiltonian matrices ∆HLorentz and ∆HZeeman need to be calculated.
Both matrices are then directly added to the KS Green’s function of the device region, i.e., new
terms (marked in blue) are added to Eq. (2.7) which becomes

G(E)−1 = GKS
0 (E)−1 −ΣL(E)−ΣR(E)−∆HLorentz −∆HZeeman . (6.6)

Our method does not accommodate for energy contributions induced by large changes in the
groundstate density due to the applied magnetic field. (Such terms would be included in CDFT.)
Therefore, our method fails for large density changes, i.e., in the limit of very strong applied
magnetic fields. On the other hand, our method should include all relevant physics for weak to
moderate magnetic fields.

Remark: The principle of minimal coupling also affects the definition of the current density
operator

j(r, E) = 1
2π

~
2m lim

r′→r
(∇r′ −∇r)G<(r, r′, E) + i

2π
q

m
A(r)G<(r, r, E) (6.7)

which acquires new a term proportional to the vector potential A. Please refer to Appx. F.2 for
the derivation.

6.2 Application: self-consistency effects in graphene ribbons

In this section, we apply the presented formalism to investigate self-consistency effects of the in-
duced magnetic field in large hydrogenated AGNRs. In principle, the induced magnetic field feeds
back into the electronic structure and thereby also affects the current density with an expected
tendency to suppress it (Lenz’s law). We can solve this self-consistency iteratively, i.e., we start by
calculating the current density in the absence of magnetic fields. Then the magnetic field induced
by the current density is calculated. In the next step, the current density is recalculated in the
presence of the induced magnetic field. These steps are iterated until convergence is achieved.

In our formalism, self-interaction effects are included, i.e., the magnetic contribution induced by
the motion of a single electron also acts back on the motion of this electron. On the one hand,
the self-interaction is unphysical and should be removed. On the other hand, the self-interaction
effect is negligible if we apply a bias voltage Vbias that averages over many electrons. In this case,
the relevant level spacing is given by the level spacing ∆lead of the leads which is significantly
smaller than the level spacing ∆ of the device. We will work in the hierarchy, eVbias � ∆� ∆lead.
Therefore, the self-interaction should not matter for a qualitative understanding and an estimation
of the order of the effect.
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6 Magnetic feedback: Self-consistency in the induced orbital magnetism

6.2.1 Estimation of the magnetic flux

First, we estimate the order of the magnetic flux related to the induced magnetic field. Second,
we use the magnetic flux to estimate the influence of self-consistency on the transmission function.

For an hydrogenated AGNR, we expect an induced magnetic field is in the order of B0 ∼ 10mT for
a finite bias voltage Vbias = 1V, cf. Fig. 4.14b. For a small system, we expect that most vortices
encircle only a few carbon rings. Thus, we multiply the magnetic field by the area Aring ≈ 3.5Å2

of a single carbon ring. This gives the magnetic flux per carbon ring,

Φ = Aring ·B0 ∼ 10−7 Φ0 , (6.8)

which is significantly smaller than the magnetic flux quantum Φ0 = h/e ≈ 4.1 ·105 TÅ2 (for single-
charged electrons). The magnetic flux can be used to estimate the influence of self-consistency on
the transmission function in the following way: We expect significant effects on the transmission
function only if the electrons pick up phases in the order of 2π. Such a phase is realized if the
electron encircle an area containing a full flux quantum Φ0. Therefore, we predict that magnetic
feedback effects on the transmission function are in the order of O(10−7) if single ring vortices dom-
inate. For a larger effect, one can assume that the dominating ring currents encircle several rings.
To get a magnetic flux of the order of a full flux quantum, the system size must reach 1–10µm.
Whether such a system still features fully phase-coherent transport or not is—at the very least—
arguable. [The upper end of the mesoscopic regime is usually seen at such length scales.] Thus,
also in that case, we do not expect large self-consistency effects but for a different reason.

6.2.2 Numerical calculation

Wide ribbons: hydrogenated AGNR8×41

We now apply our method (cf. sec:SC:theory) to calculate the self-consistency effects in a hydro-
genated AGNR8×41 as shown in Fig. 4.1b with bias voltage Vbias = 1V. The current density and
the induced magnetic field (without self-consistent iteration) can be found in Fig. 4.14. Since we
expect a small effect, we only calculate the first iteration step. In Fig. 6.1, we plot the transmis-
sion T0 of the zeroth iteration and the deviation ∆T = |T0 − T1| from the transmission T1 after
the first iteration step. We find that the magnitude of the change is below 10−9; at most energies
∆T is even smaller. In the current density, we cannot reproduce any deviation since the numer-
ical error of the numerically performed basis function derivatives is also of the order O(10−10).
Therefore, we conclude that self-consistency in the magnetic field has only a very minor influence
on the total transmission function and can be neglected in most cases.

Narrow ribbon: AGNR5 with a single nitrogen substituent

We close with an additional numerical example, a narrow AGNR5 with a single nitrogen sub-
stituent as presented in Sec. 3.2.2. We calculate the self-consistency effect for a bias voltage
of Vbias=1.145V. This bias voltage coincides with the maximal energy range between the Fermi
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Figure 6.1: Comparison of the total transmission (both spin channels) after zero and after one iteration
in the self-consistency cycle. We include ∆HLorentz and ∆HZeeman on top of a spin-unpolarized DFT
calculation of hydrogenated AGNR8×41, see Fig. 4.1b for the atomic geometry. The transmission
T0 is taken after zero iterations, i.e., without applying any magnetic field. The transmission T1 is
calculated after one iteration, i.e., with applying the magnetic field induced by the current density
of the zeroth iteration with Vbias = 1V. Both transmission functions coincide in the plot. The
deviation ∆T = |T0−T1| reaches values up to 10−9. In all cases, the antiresonances, i.e. the downward
peaks, are not fully resolved due to a finite energy raster of δE = 0.5meV.
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Figure 6.2: Comparison of the total transmission (both spin channels) after zero and after one iteration
in the self-consistency cycle. We include ∆HLorentz and ∆HZeeman on top of a spin-unpolarized DFT
calculation of AGNR5 with a nitrogen substituent, see Fig. 3.7a (pos. 3) for the atomic geometry.
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transmission T1 is calculated after one iteration, i.e., with applying the magnetic field induced by the
current density of the zeroth iteration with Vbias = 1.145V (integration from Fermi energy to the
antiresonance Eres). Both transmission functions coincide in the plot. The deviation ∆T = |T0 − T1|
reaches values up to 10−9. In all cases, the antiresonances, i.e. the downward peaks, are not fully
resolved due to a finite energy raster of δE = 5meV. The transmission does not vanish completely
inside the band gap (but is reduced by nine orders of magnitude) due to the limited length of the lead
system in x-direction. This methodological artifact is due to a small numerical difference between the
exact lead-induced self-energy and our approximation scheme (see decimation technique in Sec. 2.1.3).
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Figure 6.3: Comparison of the transmission functions in a small energy range near the antireso-
nance E = Eres. This is a zoom-in of Fig. 6.2 with the transmission T1 split into its spin-resolved
components, i.e., T1 =

∑
σσ′ T1,σσ′ . The spin off-diagonal component T1,↑↓ and T1,↓↑ are not shown

since they are in the order O(10−20) (and below) for all energies E−εF ∈ [−3 eV,+3 eV]. The data is
marked by crosses, the solid lines are quadratic fits near the antiresonance. The respective minimum
of each parabola is marked by a colored arrow.

energy εF and the antiresonance energy Eres. At the latter, the induced magnetic field response
changes its sign. In other words, Vbias=1.145V is the bias voltage with the largest induced mag-
netic field in this system (see Fig. 3.11 for current density and induced magnetic field).

In Fig. 6.2, the total transmission for zero and one self-consistency iteration are compared. The
two transmission curves virtually coincide. Their difference only reaches values up to O(10−9),
and thus, also for this system, the self-consistency effects on the total transmission are negligible.

If one is interested in the spin-resolved quantities, i.e., the spin-resolved transmission, the picture
changes. In Fig. 6.3, the total transmission T0 without any spin polarization is compared to
the spin-resolved transmission T1,σσ′ for one self-consistency iteration. The difference in the spin
channels of T1,σσ are solely due to the self-consistency effect of the induced magnetic field. Recall
that the AGNR5 with nitrogen substituent stays completely flat, i.e., the system features a z-
mirror symmetry. Thus, the in-plane magnetic field components Bx and By are suppressed.
This is expressed in small spin-flip transmission values T1,↑↓ and T1,↓↑ below O(10−20) for all
investigated energies. The out-of-plane component Bz alone can only induce spin-diagonal energy
shifts, cf. Eq. (6.3). We observe such a shift of the spin resolved transmission curves in the order
of 2µeV. Although small, it reaches the order of the intrinsic spin-orbit interaction in pristine
graphene, where the latter opens a gap of 24µeV at the Dirac points[180]. [The gap is larger by
an additional factor of about 20 in hydrogenated graphene[159].]

Thus, self-consistency effects on the spin-resolved transmission function are mainly described by
small energy shifts. These induced energy shifts may become relevant compared to intrinsic
spin-orbit interaction. This is consistent with our discussion in Sec. 4.1.4 of current-induced spin
relaxation, where we found that the induced magnetic field acting on the electron spins might
compete with other sources of spin relaxation.
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7 Chapter 7

Conclusion & Outlook

In this thesis, we applied density functional theory (DFT) in combination with non-equilibrium
Green’s function (NEGF) techniques to study the spatial structure of scattering states in graphene
nanoribbons. For that purpose, we presented a formalism which calculates the electron current
density j(r) and the induced orbital field B(r). A large emphasis was placed on parallelization,
so that an efficient scaling for up to 1000 CPU cores is achieved on a supercomputer. Although,
we have applied our implementation solely to graphene nanoribbons, it is in no way restricted
to carbon based materials. Further transport studies, especially computationally expensive ones,
can rely on our implementation also for other classes of materials.

We have employed our machinery to pristine and disordered armchair graphene nanoribbons
(AGNRs). Even in pristine ribbons, we found highly inhomogeneous current density patterns:
streamline patterns. They arise as a consequence of quantum confinement in the transverse
direction, as can be explained with simple zone-folding arguments. The current pattern displays
a threefold periodicity in the ribbon width. In pristine AGNRs(3m−1), i.e. the number of carbon
atoms in transverse direction is NC = 3m−1 (m ∈ N), these streamlines are separated by (almost)
vanishing current flows. We found that these streamline patterns intuitively explain the strong
position dependence of impurities in graphene ribbons. An impurity has only a strong influence
on the transport behavior if positioned inside the streamlines of the pristine ribbon. That way,
changing the position of an impurity—even by a single lattice constant—can lead to qualitatively
different transport scenarios. This effect was well-known before[81, 99–102], but we provide an
intuitive explanation in terms of streamlines. This result can also be understood as a manifestation
of a strong spatial structure in the scattering states of mesoscopic devices.

The strong spatial structure in the scattering states is even more evident if scattering centers exist.
We observed a tendency to form ring currents, current vortices, which induce orbital magnetism.
This tendency is independent of the atomistic details in the structure: it exist for single impurities
in narrow AGNRs as well as for finite impurity concentrations in large AGNRs; irrespective of
local spin polarization, lattice relaxation effects, or magnetic backfeed. We could trace the origin
of these ring currents to asymmetries in the possible interference paths by using a two-path (toy)
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model. From that, we conclude that loop currents are expected in all generic situations with
phase-coherent charge transport in the presence of broken spatial symmetries, such as brought
about by disorder.A Hence, current vortices should be a generic feature of transport through
mesoscopic devices, whose implications have hardly been touched upon by now.

Our investigations aim at situations, where interaction effects can be modelled qualitatively by
mean field interactions, so that a single-particle picture remains valid. In this case, we expect
the general qualitative features of our DFT transport simulations to be representative of the real
physical system. For our results, that means that the qualitative features of the scattering states—
tendencies to form ring currents or streamline patterns—are of physical origin. However, the exact
physical current density pattern for a given atomic structure might deviate from the presented
simulation results.

In this thesis, we discussed orbital magnetism and induced spin relaxation as examples. Both
effects are experimentally relevant. We propose to measure orbital magnetism by an NMR ex-
periment performed under an applied bias voltage. The coupling of the induced magnetic field
to the hydrogens’ nuclear spins should allow to study the evolution of the current vortices ex-
perimentally. Alternatively, one could measure the total induced magnetization mz, which is
effectively the average rotation sense of all current vortices. We predict a total magnetization of√
〈m2

z〉 ∼ 1µB ·
√
Vbias/V that scales with the square root of the bias voltage, independent of

the system size. Additionally, the random magnetic fields induce a new spin-relaxation channel—
spin relaxation by bias-induced orbital magnetism—which may be relevant especially for graphene
spintronics[103].

Our findings are not restricted to charge transport. The underlying idea is very general: scat-
tering states of mesoscopic samples have an inner, non-trivial structure than can lead to pattern
formation. An additional example is heat transport: Meair et al. have recently proposed the
concept of a local temperature applicable to an out-of-equilibrium situation[181]. In a meso-
scopic device connected to several reservoirs, the local particle density receives contributions from
the scattering states originating from the different reservoirs. If the reservoirs exhibit different
temperatures, the device will show local temperature fluctuations. Hot regions have dominant
particle contributions from the hot reservoir, while colder regions receive more contributions from
the colder reservoir.

As possible future applications, we think of nanoscopic devices. It might be possible to engineer
the impurity positions so that all current vortices in a given, perhaps periodic, nanostructure
rotate in the same direction. In such a case, magnetic moments would not (partly) cancel each
other but instead add up, so that a large total moment could be observed. Applying an alternating
voltage, such a device would act as a nano-transmitter. For such a nanodevice, the knowledge of
an inhomogeneous heat flow is also important since heat affects the device operations, and must
be disposed somehow. To cool efficiently, one must know where overheating is critical.

Another area for future research are three dimensional structures. We expect that our results—at
least partially—transfer to the third dimension since the physical mechanism relies on quantum
interference which only depends on the existence of asymmetric paths through the device. So far,
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it is unknown how the additional (spatial) degree of freedom influences the formation of current
vortices; one might expect a seemingly random orientation of the induced local magnetic moments,
i.e., ring vortices exist in all spatial directions. Until now, the atomistic structure of the current
paths in three-dimensions was even more ignored than in lower dimensions. Impurities, e.g. in a p-
or n-doped silicon crystal, were responsible only for changing the chemical potential and adjusting
the number of charge carriers. Their influence on the microscopic current path through the wire
was of minor importance. With the on-going effort of miniaturization—following approximatelyB
Moore’s law[182]—the transport behavior in integrated circuits (IC) will be governed by quantum
effects stemming from individual scattering centers. Since 2014, Intel mass-produces its CPUs
using the 14-nm technology; the next steps (10-nm, 7-nm, 5-nm) are already in preparation.
Although the numbers must be taken with a grain of salt,C it is clear that the miniaturization
cannot continue forever while relying on (semi)-classical transport theory. Quantum interference
effects and non-trivial current patterns—as discussed in this thesis—will become important, in
one way or another.
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Notes to chapter 7

The notes are for completeness, reproducibility and to help interested readers understand all the fine technical details.

A As usual, system symmetries govern what effects can be
observed in principle. With spatial symmetries (inver-
sion or mirror symmetry) intact, no ring currents are
possible because both senses of rotation are equivalent.
Such a degeneracy can be lifted in several ways, e.g., by
the presence of impurities, boundary effects, or by an
applied external magnetic field. (page 110)

B In 1965, Moore predicted an exponential growth of
the number of components in integrated circuits (IC)
when producing for minimal costs per component. His
prediction aimed at a timescale of about 10 years.
Today, Moore’s law is mainly used as a marketing
scheme by Intel (cofounded by Moore) and is applied

to (nearly) every quantity in computer hardware which
grows (roughly) exponentially: most prominently the
number of transistors per chip, the transistor density
and the computing power. The growth rates vary; most
quantities approximately double every 18–24 months.
(page 111)

C In principle, the length in 14-nm technology refers to
the average half-pitch being defined as half the distance
between identical features. In practice, it is often crit-
icized that hardly anything in a chip is 14 nm wide,
and that the main usage of these numbers is marketing.
Nevertheless, the numbers give the correct order for the
involved length scales. (page 111)



A Appendix A

Nomenclature & Conventions

A.1 Graphene nanoribbons: nomenclature & construction

Graphene nanoribbons

Graphene consists of carbon atoms arranged in a reg-
ular hexagonal lattice. We work with finite graphene
nanoribbons (GNRs) whose borders are hydrogen-
terminated, i.e., hydrogen atoms are placed as continu-
ation of the hexagonal lattice (but with a reduced bond
distance).

Armchair and zigzag boundaries

There are two types of regular boundaries for GNRs:
armchair and zigzag (cf. Fig. A.1). Long GNRs featur-
ing only one boundary type are either called armchair
graphene nanoribbon (AGNRs) or zigzag graphene
nanoribbons (ZGNRs). Pristine AGNRs are usually
spin-unpolarized[114], whereas pristine ZGNRs facili-
tate spin-separation[138]. In this thesis, we focus on
AGNRs.

Nomenclature: AGNRNC & AGNRNx×Ny

We label pristine AGNRs consisting of NC carbon
atoms in the transverse direction (y-direction) by
AGNRNC. When placing impurities on the AGNRs,
the nomenclature AGNRNx×Ny refers to the size of the
functionalized area. In Fig. A.1 an AGNR4x11 func-
tionalized with 27.3% hydrogen atoms is displayed. The
carbon atoms of the pristine continuation in x-direction
are not counted since the transport formalism extends
the pristine areas semi-infinitely anyway.

Construction

We construct hydrogenated AGNRs in the following
way. We start with a structure consisting of a regu-
lar hexagonal carbon lattice with bond length dCC =
1.439Å. The hydrogen atoms terminating the ribbon
are placed as continuation of the hexagonal lattice but
with a bond distance of dCH = 1.0954Å. Both values
are taken from a relaxation of a small 14×14 graphene-
ribbon calculation in Turbomole[134] using a svp ba-
sis set. Then, adsorbed hydrogen atoms are randomly
placed vertically above or below random carbon atoms
(of the functionalized area) with a bond distance of
dCH. In the unrelaxed structure, the carbon atoms
(with the adsorbed hydrogen atoms) are moved out
of the graphene plane by 0.5Å to represent the sp3-
hybridization. This unrelaxed structure serves as a tem-
plate.

To get a relaxed structure, we structurally relax all
atoms of the functionalized area (device region exclud-
ing contact region) using DFT as implemented in FHI-
aims[130] until all atomic forces drop below 10−2 eV/Å.

Coordinate system

Throughout this work, we always place the AGNR in
the xy-plane at z = 0. The transport direction is the x-
direction, with an (electron) particle current flowing
from −x to +x.
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Figure A.1: Hydrogen terminated graphene nanorib-
bon showing zigzag (blue box) and armchair boundaries
(red box). In the center (green box), a functionalized
area of an AGNR4×11 carries 12 additional hydrogen
atoms.

AGNRNC εHL ∆ε
AGNR5 −3.9855 eV 0
AGNR14 −4.1411 eV 64meV
AGNR20 −4.1691 eV 46meV
AGNR29 −4.1767 eV 35meV
AGNR41 −4.2054 eV 35meV
AGNR42 −4.2168 eV 35meV
AGNR43 −4.2023 eV 29meV
AGNR59 −4.2215 eV 31meV
AGNR83 −4.2412 eV 83meV

[DFT details: FHI-aims, basis set tier1, closed-shell]

Table A.1: HOMO-LUMO average εHL and
shift ∆ε for determination of the Fermi energy
εF = εHL + ∆ε in pristine AGNRs.

A.2 Determination of Fermi energy εF

In this thesis, most energies are given with respect
to the Fermi energy εF of the corresponding pristine
AGNRNC. To determine the Fermi energy, we use the
following procedure: First, the average energy εHL of
the highest occupied (HOMO) and lowest unoccupied
(LUMO) molecular orbital of a finite pristine ribbon
[see e.g. Fig. 2.4 (bottom) for AGNR5] serves as an es-
timate. Then, the transmission function T of the in-
finitely extended pristine AGNR is calculated. Last, a
correcting shift ∆ε is introduced so that the Fermi en-
ergy εF = εHL + ∆ε lies in the bandgap, T = 0, of the
infinite AGNR. The estimates of εHL for several AGNRs
and corresponding shifts ∆ε are given in Tab. A.1.

A.3 Abbreviations used in this thesis
AB Aharonov-Bohm effect[60]
ABC Absorbing Boundary Conditions
AFM Atomic Force Microscope
AGNR Armchair Graphene NanoRibbon
B-P86 Becke-Perdew functional[183, 184]
CDFT Current Density Functional Theory[178, 179]
DFT (groundstate) Density Functional Theory
DMRG Density Matrix Renormalization Group
DOS Density Of States
DT Decimation Technique
IV current-voltage

(from symbols I [current] and V [voltage])
LDA Local Density Approximations

(class of DFT functionals)
LDOS Local Density Of States
LTEM Lorentz Transmission Electron Microscopy
MCBJ Mechanically Controllable Break Junction

NEGF Non-Equilibrium Green’s Function formalism
NMR Nuclear Magnetic Resonance
GGA Generalized Gradient Approximations

(class of DFT functionals)
GNR Graphene NanoRibbon
GW GW approximation
KS Kohn-Sham
HF Hartree-Fock
PBE Perdew-Burke-Ernzerhof functional[151]
SCF Self-Consistent Field (in the DFT)
SIAM Single Impurity Anderson Model
SOI Spin Orbit Interaction
STM Scanning Tunneling Microscopy
SQUID Superconducting Quantum Interference Device
TB Tight-Binding method
QA Quantization Axis (for the spin)
QD Quantum Dot
ZGNR Zigzag Graphene NanoRibbon

A.4 Unit system: atomic units
Our transport code uses atomic units internally (abbre-
viation: a.u.). In atomic units, the following quantities
are set to unity and serve as basis units: the electron
mass me = 1, the reduced Planck constant ~ = 1, the
vacuum permittivity (times 4π) 4πε0 = 1, and the ele-
mentary charge e = 1.

Derived units are formed by combinations of these
base units. Examples are the Hartree energy Ha =
mee

4/(4πε0~)2 ≈ 27.21 eV, and the Bohr radius a0 =
4πε0~2/(mee

2) ≈ 0.53Å. Another example is the mag-
netic moment whose base unit in a.u. is two times the
Bohr magneton, i.e., a.u. = e~/me = 2µB.
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B Appendix B

Transport method: Calculation of the
local current density

This appendix contains additional material that complements Chap. 2. It features
a short overview of Green’s functions (Appx. B.1) and of DFT including employed
basis functions (Appx. B.2). Next, the structure of the implementation (Appx. B.3)
and essential optimization (Appx. B.4) are presented. Finally, the appendix lists ad-
ditional convergence checks (Appx. B.5) to further support the analyses of Chap. 2.

B.1 Green’s function formalism: retarded and advanced Green’s function

We give a short overview of Green’s functions for refer-
ence. Similar (and much more extended) overviews can
be found in any standard textbook[76, 185, 186].

Definition in Time-Domain

The Green’s function G(t) to the one-particle
Schrödinger equation

i~∂t|ψ(t)〉 = Ĥ|ψ(t)〉 (B.1)

is defined as solution of the equation
(

i~∂t − Ĥ
)

G(t) = δ(t) . (B.2)

For a time-independent Hamiltonian Ĥ, there are two
linearly independent solutions, G+

0 and G−0 :

G±(t) =




∓ i

~e− i
~ Ĥt, for t ≷ 0

0, for t ≶ 0 .
(B.3)

G+ (G−) is called the retarded (advanced) Green’s
function since it is able to construct the full time-
dependent solution |ψ(t)〉 when only knowing a single
past (future) point t0.

|ψ(t)〉 = ±i~G±(t− t0)|ψ(t0)〉 t ≷ t0 . (B.4)

Since the Green’s function can be used to propagate a
state in time, it’s often also called propagator. In this
thesis, the retarded Green’s function G+ is usually just
called G.

Fourier Transformation to Energy Domain

For a time-independent problem (homogeneity in time),
it is useful to perform a Fourier transformation to en-
ergy domain, i.e.,

G±(E) =
+∞∫

−∞

dt e+ i
~Et e∓ηt/~ G±(t) (B.5)

where we already introduced an infinitesimal small pa-
rameter η > 0 (see red term) to ensure the convergence
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of the integral at t→ +∞ and t→ −∞ for the retarded
and advanced Green’s function, respectively. The con-
vergence at the other integral limit is trivial since the
Green’s function G±(t) is zero for t ≶ 0.

Formally performing the integration leads to

G±(E) =
[
E − Ĥ ± iη

]−1
(B.6)

where the inversion can be defined as matrix inversion
if the operator Ĥ is written in some (finite) basis.

The inverse Fourier transformation

G±(t) =
+∞∫

−∞

dE
2π~ e−

i
~Et G±(E) (B.7)

can be performed via contour integration. For t > 0
(t < 0) the integration contour can be closed in the
lower (upper) complex plane. Formally, G±(E) has a

single pole at E = Ĥ ∓ iη and we recover the original
definition in Eq. (B.3).

Observables

As example for an observable, the density of states op-
erator ρ̂ is calculated as

ρ̂(E) =
∑

i

δ(E − Ei)|i〉〈i|
Ei|i〉=Ĥ|i〉= δ(E − Ĥ)

= 1
π

η

(E − Ĥ)2 + η2
= − 1

π
Im 1

E − Ĥ+ iη

= − 1
π

Im G+ ,

(B.8)

where in the second line, we used a Lorentzian 1
π

η
x2+η2

to represent the delta distribution δ(x) in the limit of
infinitesimal η.

B.2 Density functional theory

Density functional theory (DFT) is probably the most
successful theory to calculate the electronic structure of
atoms, molecules and solid states from ab initio. Here,
only the most important ideas of DFT can be presented.
Thus, for simplicity, this overview ignores spin and ex-
ternal magnetic fields. For a full length description,
please refer to the literature, e.g. Ref. [168, including
references].

B.2.1 General framework

Born-Oppenheimer approximation

As most ab initio methods, standard DFT treats
the atomic cores as classic potentials in a Born-
Oppenheimer approximation[187]. Thus, their interac-
tion with the electrons is included in an external poten-
tial vex(r, {Ri}) which acts on the electron positions r
and depends on the core positions Ri only as parame-
ters. Geometric relaxations are possible, by iteratively
changing and improving the core position Ri in each
DFT towards the energetically most stable configura-
tion. In the following, the dependence on the core po-
sition is suppressed in the external potential vex(r).

The full many-body Hamiltonian Ĥ for nel electrons is
then given by

Ĥ = T̂ + V̂int +
∫

dr vex(r) n̂(r) , (B.9)

where T̂ is the kinetic energy operator. The interac-
tion term V̂int is the Coulomb interaction, an isotropic
and homogeneous two-body interaction, i.e., V̂int =
1
2
∑
ij v(|r̂i− r̂j |). The external potential vex(r) directly

couples to the electron density n(r).

Hohenberg-Kohn theorem

The foundation of DFT is laid by the Hohenberg-Kohn
theorem[188]. For fixed V̂int (and fixed T̂ , nel), the
Hohenberg-Kohn theorem ensures a one-to-one-to-one
correspondence between the external potential vex(r),
the groundstate wavefunction Ψ({ri}), and the ground-
state density n(r):

vex(r)⇔ Ψ({ri})⇔ n(r) for fixed V̂int . (B.10)

The path vex(r)⇒ Ψ({ri})⇒ n(r) is trivial since it de-
scribes the canonical method: definition of the Hamilto-
nian (using vex(r)), solving it for the groundstate wave-
function Ψ({ri}) and calculating the groundstate den-
sity n(r) = 〈Ψ|n̂(r)|Ψ〉. The reverse direction is the
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important part of the Hohenberg-Kohn theorem (a nice
proof is given by Levy[189]). It allows us to ignore
the full many-body wavefunction Ψ({ri}), which is usu-
ally too complicated to be calculated anyway, and work
solely with the groundstate density n(r). The price to
pay is that all physical quantities are now functionals
of the groundstate density. This is possible since the
groundstate density already uniquely defines all observ-
ables due to the one-to-one correspondence.

The functional E[n] for the groundstate energy is (at
least formally) given by

E[n] := min
|Ψ〉

〈Ψ|n̂(r)|Ψ〉=n(r)

〈Ψ|Ĥ|Ψ〉 (B.11)

= min
|Ψ〉

〈Ψ|n̂(r)|Ψ〉=n(r)

〈Ψ|T̂ + V̂int|Ψ〉

︸ ︷︷ ︸
E′[n]

+
∫

dr vex(r)n(r) .

Given a certain groundstate density, one (formally) con-
structs all many-body wavefunctions Ψ which reproduce
the correct density, 〈Ψ|n̂(r)|Ψ〉 != n(r). The ground-
state energy is the minimum energy of all such con-
structed wavefunctions. In the second line, we sepa-
rated the term containing the external potential vex(r).
This is essential because the remaining functional E′[n]
is universal in the sense that it does not depend on the
external potential vex(r), and can (at least formally) be

constructed once and for all. Then, the true ground-
state density to any external potential vex(r) can be
found by minimizing the functional E[n] with respect
to the density n(r), i.e., δE[n]

δn(r)
!= 0

Kohn-Sham method

So far, it is unclear how to use DFT in practice since
the exact energy functional is unknown and probably
too complicated to be ever written down more explicitly
than above. Direct approximations of the energy func-
tionals are challenging, usually too challenging. Here,
the Kohn-Sham (KS) method[190] comes into play. It
made DFT as successful as it is today. The KS method
constructs a fictitious non-interacting system, the KS
system, and employs it to approximate the kinetic en-
ergy operator T̂ which is hard to deal with otherwise.

So, the groundstate density is represented by the sum
of orthonormal KS states ψKS

n :

n(r) =
∑

l

fl|ψKS
l (r)|2 ,

(∑

l

fl = nel
)
. (B.12)

Formally, the occupation numbers fl are either zero or
one and the sum can be restricted to terms with fl = 1.1
Using the KS states, the universal energy functional is
separated into three terms:

E′[n] =
∑

l

fl

∫
dr
(
ψKS
l (r)

)∗ −~2

2m ∆
︸ ︷︷ ︸

single particle kinetic energy t̂kin

ψKS
l (r) + 1

2

∫
dr vH(r)
︸ ︷︷ ︸

Hartree-potential

n(r) + Exc[n]
︸ ︷︷ ︸

exchange-correlation functional

. (B.13)

The first term serves as an approximation to the total
kinetic energy. The second term includes the most obvi-
ous interaction effect via the Hartree-potential vH(r) =∫

dr′ v(|r − r′|)n(r′). This includes unphysical self-
interaction effects since every single electron interacts
with the total electron density (which also includes the
contribution of that single electron). Everything else
(including corrections to the kinetic energy and the can-
cellation of the self-interaction) is put into the exchange-
correlation functional Exc[n]. In that sense, Eq. (B.13)

is still exact since it only defines Exc[n].2

The new problem is to search for the set of KS states
{ψKS

l (r)} which minimize E[n]. This variational prob-
lem leads to the Kohn-Sham equations:

ĤKS|ψKS
l 〉 = εl|ψKS

l 〉 ,

ĤKS = t̂kin + v̂ex + v̂H + v̂xc .
(B.14)

The Lagrange-multiplier εl was introduced to ensure the
correct normalization of the KS states ψKS

l . The func-
1In practice, fractional occupation numbers are useful to improve convergence of the SCF cycle (see end of para-
graph) as they provide a way to avoid a sharp distinction between occupied and unoccupied states near the
Fermi energy. A sharp distinction is usually numerically unstable in early steps of the SCF cycle.

2Formally, the exchange-correlation functional Exc[n] also depends directly on the KS states ψKS
l since it must

include corrections to the kinetic energy term. In the end, only E′[n] does solely depend on the groundstate
density.
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tional derivative of the exchange correlation functional
is called the exchange correlation potential v̂xc:

v̂xc = δExc[n]
δn(r̂) . (B.15)

Since the Hartree potential vH(r) and the exchange-
correlation potential vxc(r) depend on the density n(r),
the KS equations are usually solved iteratively (which
is then called the self-consistent field (SCF) cycle).

The KS equations, Eq. (B.14), look temptingly like a
single particle time-independent Schrödinger equation
for non-interacting particles. Understandably, ĤKS is
therefore called the KS Hamiltonian, εl are the KS ener-
gies, and the KS states ψKS

l refer to fictitious KS parti-
cles. This analogy must not be taken to far: formally all
the KS quantities are fictitious, although some relations
to the physical interacting electron system exists, e.g.,
the KS energy of the highest occupied orbital (HOMO)
coincides with the (negative) ionization potential[191–
193].

Approximation of the exchange-correlation
functional

Until this point, the DFT is still exact but hardly useful
in practice since the exchange correlation functional Exc
is unknown. For practical purposes, there exist several
widely used approximations, most prominently, the lo-
cal density approximations (LDA) and the generalized
gradient approximations (GGA):

Exc[n] ≈
∫

dr ELDA
xc

(
n(r)

)
, (B.16)

Exc[n] ≈
∫

dr EGGA
xc

(
n(r),∇n(r)

)
. (B.17)

In LDA, the functional dependence is expressed as a
simple spatial integral whose integrand only depends on
the local density value n(r) at that point. Additionally,
the first density gradient is include in GGA schemes.

In this thesis, we use two well-established GGAs:
the Perdew-Burke-Ernzerhof functional (PBE)[151] (us-
ing the DFT package FHI-aims[130]) and the Becke-
Perdew functional (B-P86)[183, 184] (using the DFT
package Turbomole[134]).

B.2.2 Basis sets: overview of local basis
functions used in this thesis

Both DFT codes used in this thesis, FHI-aims and
Turbomole, use atom centered local basis func-
tions |ϕj〉 to represent the Kohn-Sham orbitals |ψKS

i 〉 =∑
j |ϕj〉 cji. Their basis functions ϕi(r) = 〈r|ϕi〉 are

represented in a radial-angular decomposition,

ϕi(r) = Ri(r)Ylm(θ, φ) , (B.18)

with real-values spherical harmonics Ylm that ensure
real-valued basis functions everywhere. (The angular
indices l(i),m(i) are functions of the overall basis in-
dex i.) Anticipating time reversal invariance3 of the
KS system, real-valued basis functions mean that all
expansion coefficients cji stay real as well.

FHI-aims uses numeric atom-centered orbitals
(NAO)[130] as basis functions. The radial part
ui(r) = Ri(r) · r is numerically tabulated on a loga-
rithmic grid. We employ a cubic spline interpolation
for intermediate values. These basis functions used
throughout this thesis are ordered in tiers with increas-
ing precision, ranging from tier1 (double-ζ) through
tier2 (triple-ζ) up to tier3 (quadruple-ζ). By default,
we use the light default species settings (corresponding
to tier1 for carbon atoms) and only switch to tight
default species settings (corresponding to tier2) for
convergence checks.

Turbomole uses contracted Gaussian type orbitals
(CGTO)[194, 195] as basis functions. The radial part
is given by

Ri(r) = rl
Pi∑

p

dp exp(−ηpr2) , (B.19)

where Pi Gaussians with exponents ηp are contracted
using the weights dp. The basis functions used in this
thesis are (with increasing precision) of double-ζ (split-
valence, def2-svp) and triple-ζ quality with polariza-
tion functions (def2-tzvp, def2-tzvpp), and the cor-
responding Coulomb-fitting basis sets within the resolu-
tion of identity approximation[196–198]. The basis sets
are abbreviated by svp, tzvp, tzvpp.

3Time reversal invariance is, for example, broken by spin-orbit interaction (SOI). Then, the expansion coefficients
become complex, see Chap. 5 for an investigation of SOI in graphene nanoribbons.
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B.3 Implementation overview

B.3.1 Program structure

Before discussing the program performance
(Appx. B.3.2), we present the task flow, see Fig. B.1.
The code is structured into several modules, which
operate independently. The modules’ outputs (and
therefore the inputs for the next module) are either
saved on the hard disk or kept directly in memory.

The most important modules (from top to bottom in
Fig. B.1) are:

ExtractSubSystem: In two separate instances of this
module, the Kohn-Sham Hamiltonian for the de-
vice and the lead region is reconstructed. When
using several MPI processes, only the first one
(rank 0) is performing the work; the results are
broadcasted to all other MPI processes.

CalcSelfEnergy: For each energy point E, the self-
energy ΣL/R for the lead is constructed (or read
from hard disk if it was constructed earlier).

CalcTransmission: To calculate the transmission, we
first diagonalize the central part of the device
region (cf. Sec. B.4.5) using all MPI processes
via ScaLAPACK[199]. Next, the different en-
ergy points are distributed to the different MPI
processes. For each energy point E, the self-
energies ΣL/R(E) are used to calculate the re-
tarded Green’s function G(E), the transmis-
sion T (E) and the density of states ρ(E).

The time tG for constructing the Green’s func-
tion and calculating the transmission includes
constructing the indices, applying the self-energy
and—most notably—the matrix inversion and
matrix multiplication. Since these things are
separated in the code, we calculate tG := TT −
tH− tdiag− tΣ where TT is the total wall time of

the complete program run. The lower t are mea-
sured using an in-code timing mechanism. (See
Fig. B.1 (left) for definition of the timing sym-
bols).

CalcLocalCurrent: The Keldysh Green’s function G<

is used to calculate the spectrally resolved non-
equilibrium particle number n(E). The lo-
cal current density j(r, E), the divergence ∇ ·
j(r, E), the local density of states ρ(r, E) and the
spectrally resolved non-equilibrium local den-
sity n(r, E) are rastered on a rectilinear grid.
Again, the timing for reconstructing the Green’s
function includes all necessary overhead, i.e.,
tG< := Tr − tH − tΣ − t(r).

If the number of MPI processes exceeds the num-
ber of energy points (probably because we use a
very fine grid for the local quantities), the energy
points are not distributed but all MPI processes
calculate all energy points. This leads to an over-
head since the self-energy and the Green’s func-
tions are calculated redundantly. The rastering
of the local quantities, i.e. the grid points, are
then distributed over all MPI processes.

MagneticField: As an optional post-processing mod-
ule, the magnetic field B(r, E), the vector po-
tential A(r, E) and the magnetic moment m(E)
induced by the current density j(r) can be cal-
culated. This module in not included in the de-
tailed performance analysis below and therefore
no timing symbol is given.

There are additional modules for post-processing,
e.g., IntegrateEnergy, IncludeMagneticFeedback,
IntegrateGFs, CalcSpectrum, WriteASCII; please re-
fer to the program documentation for details (e.g. run
TSaint --config).

B.3.2 Parallelization and performance measurements

In Fig. B.2, we present detailed measurements of the
performance of our transport code for realistic system
sizes. In the tests, we distinguish between calculation
of the transmission and of local observables. Trans-

mission calculations (T (E)) also include the density of
states ρ(E). Local observables are the local current
density j(r, E) but also its divergence ∇ · j(r, E), the
non-equilibrium density n(r, E) and the local density
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B Appendix: Transport method: Calculation of the local current density

Figure B.1: Center: The main modules are depicted in separate boxes. The two most common module se-
quences are depicted in blue (transmission calculation) and red (current density and magnetic field calculation).
Both sequences include the reconstruction of the KS Hamiltonian and the calculation of the self-energies (pur-
ple). Transmission calculations (T (E)) also include the density of states ρ(E). Current density calculations
(j(r, E)) additionally include the current divergence ∇ · j(r, E), the non-equilibrium density n(r, E) and the
local density of states ρ(r, E). Left: the timing symbols used in the following for performance analyzation, cf.
Fig. B.2. Right: Overview of the parallelization techniques used in each module to allow the use of many (up
to thousand) CPUs.

of states ρ(r, E). In Fig. B.2a, the wall time for cal-
culating NE = 128 separate transmission and density
of states values is plotted depending on the number
of basis functions N . The test system are the same
hydrogen-saturated AGNRs as shown in Fig. 2.18.

The total time TT (N) is divided into four groups (tH,

tdiag, tΣ, tG, cf. Fig. B.1). The calculation of the lead
self-energy [via 200 iterations in the decimation tech-
nique (cf. Sec. 2.1.3)] depends directly on the number
of basis functions Nlead of a block (“slice”) of the lead; it
only indirectly depends on the basis functions N of the
device region. Thus, the dependence on the former is
plotted separately. The main effort for a transmission
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Figure B.2: O
(
Nn
)
-scaling: Performance measurements with varying system size for a transmission (upper

plot) and local observable (lower plot) calculation for a fixed number of CPU cores (P=32). Symbols: number
of basis functions N , number of energy points NE , number of CPU cores P .
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Figure B.3: MPI-parallelization: Speedup for a fixed system size (735 (21×35) carbon atoms) and for a fixed
number of CPU cores per MPI process (p=8). Left: Speedup for transmission calculations. Right: Speedup
for local observable calculation. Symbols are the same as in Fig. B.2. p is the number of CPU cores per MPI
process, and NMPI is the number of MPI processes (P = pNMPI).
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B Appendix: Transport method: Calculation of the local current density

calculation is reconstructing the self-energy; therefore
it makes sense to save them on the hard disk if several
different impurity configurations are processed which all
use the same leads. Then, the main effort is spent for
reconstructing the Green’s function (tG). The diago-
nalization (tdiag, see Sec. B.4.5) does not significantly
contribute to the overall effort for the available system
sizes since it is performed only once and not for every
energy point.

In Fig. B.3b, the analogue is plotted for a single (NE=1)
current density calculation. The number of grid points
used is proportional to the system size (one grid point
every 0.2Å, 31 in z-direction). We first note, that the
main effort is dominated by rastering the local quanti-
ties (t(r)). We were able to optimize local observable
calculation to scale below N2 employing the locality of

the basis functions.4

In Fig. B.3, we discuss the parallelization efficiency of
the transmission calculation and current density cal-
culation for a fixed system size (735 (21×35) carbon
atoms). The speedup S for many MPI processes com-
pared to a single process is shown and compared to Am-
dahl’s law: TNMPI = T1

(
α+ 1−α

NMPI

)
, α ≈ 1%. We see a

good scalability for the total wall time, the self-energy
construction and the Green’s function construction (TT ,
tΣ, tG). The reconstruction of the KS Hamiltonian (tH)
does not speedup since only the first MPI process is in-
volved (cf. Fig. B.1). For the diagonalization, we even
observe that using two processes (using ScaLAPACK)
is slower than using only one process (using LAPACK).
Therefore, our code now only uses ScaLAPACK start-
ing with 4 MPI processes.

B.3.3 Numerical parameters

In Table B.1, we list the numerical parameters of
the largest calculation performed for hydrogenated
graphene flakes. First, the graphene flake is structurally
relaxed using FHI-aims until the remaining forces de-
crease below 10−2 eV/Å. This is, by far, the most ex-
pensive part of the calculation. Then a final DFT run
for the relaxed structure is performed and the output

written to disk. This is used by AitransS to perform
a wide scan over the transmission function (the self-
energies Σ are pre-calculated since they only depend
on the system size, not on the impurity configuration).
Eventually, a few interesting energy points are taken
from the transmission function and the current density
is calculated at those energy points.

FHI-aims AitransS
Relaxation DFT Transmissiona Current densityb

numbers of processes NMPI 3600 384 16 6
cores per process p 1 1 12 24

total number of cores P 3600 384 192 144
number of nodes n 150 16 8 6
wall time Twall 77.9hc 5.52h 5.68h 9.86h
core hours Tcores 280 500h 2 120h 1 090h 1 420h

memory usage per processM 0.72GiB 0.72GiB 52.7GiB 76.3GiB
memory usage per nodeMnode 17.2GiB 17.2GiB 105.5GiB 76.3GiB

a Transmission T (E) has been calculated at 2423 energies values.
b The current density j(r, E) has been calculated at 6 energies values.
c The relaxation calculation was broken down into several jobs, each with a wall time below 24h.

Table B.1: An overview of the calculations performed on Cray XC40 (Hornet) for the largest graphene flake
feasible (with 2479 carbon atoms) whose central 34×59 carbon atoms have been functionalized with hydrogen
(compare with Fig. 4.8). Note that some information is redundant, i.e., P = pNMPI = 24n, Tcores = TwallP ,
Mnode =MNMPI/n.

4Naively the evaluation of the current or its divergence, see Eq. (2.30) and Eq. (2.31), scales with N3 since the
number of spatial grid points r scales linearly, for constant grid spacing, and the summation of i, j gives addi-
tional N2. Please, refer to Sec. B.4.4 for optimization details.
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B.4 Implementation details

B.4.1 A word on the Löwdin orthogonalization

Technically, the underlying DFT codes work with non-
orthogonal basis sets |ϕi〉. Internally, the Kohn-Sham
(KS) orbitals |ψKS

i 〉 are represented by expansion coef-
ficients cji with respect to the non-orthogonal basis set,
i.e., |ψKS

i 〉 =
∑
j |ϕj〉 cji.

We use the (symmetric) overlap matrix Sij = 〈ϕi|ϕj〉
to calculate the orthogonal set of basis functions |ϕ̃i〉
via the Löwdin-orthogonalization[136] procedure, i.e.,
|ϕ̃i〉 =

∑
j |ϕj〉

[
S
−1/2
]
ji
. The “square root” S

1/2 is
defined by the positive square roots of the eigenval-
ues in eigenbasis representation. The expansion coef-
ficients are transformed as well: c̃ik =

∑
j

[
S

1/2
]
ij
cjk.

The Löwdin-orthonormalized basis set |ϕ̃i〉 is the or-
thogonal basis set which minimizes the squared dis-
tance

∑
i

∫
|ϕi(r) − ϕ̃i(r)|2 d3r to the original ba-

sis set |ϕi〉[200]. In particular, that means that the
orthonormalized basis function |ϕ̃i〉 is still localized
around the same atom core as |ϕi〉.

The full KS Hamiltonian ĤKS
0 is then reconstructed

ĤKS
0 =

∑

n

|ψKS
n 〉εKS

n 〈ψKS
n | =

∑

ij

|ϕ̃i〉HKS
0,ij〈ϕ̃j | ,

(B.20)
which is written with respect to the orthonormal basis
as

HKS
0,ij =

∑

n

c̃in ε
KS
n

[
c̃T
]
nj
. (B.21)

In the main part, we always worked with the Löwdin-
orthonormalized basis set |ϕ̃i〉; even when calculating
local observables [cf. Eq. (2.30),(2.31)].

In practice, it is computational advantageous to trans-
form the Green’s functions to the non-orthogonal basis
set, e.g., Ǧ = S

−1/2GS
−1/2, and calculate the local ob-

servables using the original non-orthogonal basis set.
For the calculation of the current density, this means:

j(r, E) = 1
2π

~
m

∑

ij

ϕ̃i(r)
as
G<
ij

(
∇ϕ̃j(r)

)
, (B.22)

= 1
2π

~
m

∑

ii′

jj′

ϕi′(r)S−1/2

i′i

as
G<
ij(E)S−1/2

jj′︸ ︷︷ ︸
=:

as
Ǧ<
i′j′

(
∇ϕj′(r)

)
.

Going to the second line, we replaced the orthonormal
basis set ϕ̃i(r) with the original set ϕi(r) using the over-
lap matrix S.

Technical remark: Please note, that the primed in-
dices of Eq. (B.22) run (in principle) over all NDFT non-
orthogonal basis functions |ϕi〉 of the underlying DFT
calculation whereas the unprimed indices only run over
the N basis functions |ϕ̃i〉 used to represent the device
region. At first glance, the two numbers are the same
since we constructed the later basis set as linear com-
bination of the former. But, the device region is usu-
ally represented only by a N×N -subblock of the total
NDFT×NDFT KS Hamiltonian. By extracting this sub-
block, we only take a subset of the orthogonal basis set
|ϕ̃i〉, i.e., N < NDFT. Especially near the borders of the
device region, non-orthogonal basis functions centered
outside reach into the device region and are therefore
partly contained in the (restricted) orthogonal basis set.
Due to that reason, the (technical) matrix dimension
of Ǧ is larger that the matrix dimension of G and a
rectangular subblock of the overall overlap matrix S is
needed in Ǧ = S

−1/2GS
−1/2.

Overview over local observables

For convenience, we list all implemented local observ-
ables: the local current density j(r, E), its divergence,
the non-equilibrium local density n(r, E) and the local
density of states ρ(r, E); all spectrally resolved:

j(r, E) = 1
2π

~
2m lim

r′→r
(∇r′ −∇r)G<(r, r′, E)

= 1
2π

~
m

∑

ij

ϕi(r)
as
Ǧ<
ij

(
∇ϕj(r)

)
,

(B.23)

∇ · j(r, E) = 1
2π

~
m

∑

ij

ϕi(r)
as
Ǧ<
ij

(
∇ ·∇ϕj(r)

)
,

(B.24)

n(r, E) = − i
2πG

<(r, r, E)

= − i
2π
∑

ij

ϕi(r)
sym

Ǧ<
ijϕj(r) ,

(B.25)

ρ(r, E) = − 1
π

ImG(r, r, E)

= − 1
π

∑

ij

ϕi(r) Im Ǧij ϕj(r) .
(B.26)
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The checked versions, e.g., Ǧ, always denote the quan-
tities with respect to the non-orthogonal basis set, i.e.,
Ǧ = S

−1/2GS
−1/2.

Remark: Since the Keldysh Green’s function G< is
anti-Hermitian, cf. Eq. (2.12), the symmetric and an-
tisymmetric parts are given by the imaginary and real
part, respectively:

sym
G<
ij := 1

2

(
G<
ij + G<

ji

)
= 1

2

(
G<
ij − (G<

ij)∗
)

= i Im G<
ij ,

(B.27)
as
G<
ij := 1

2

(
G<
ij −G<

ji

)
= 1

2

(
G<
ij + (G<

ij)∗
)

= Re G<
ij .

(B.28)

B.4.2 Optimization overview

In this section, we present the most important op-
timizations used throughout our code development.
These are implementation details, but nevertheless,
they are important to anyone who either wants to to
improve/modify the code or plans to write a separate
framework to transport through large systems.

In the following sections, several optimizations are pre-
sented whose performance impact is summarized in
Tab. B.2. The table lists the increase in wall time and
memory consumption when a specific optimization is re-
moved from the code. Each optimization is labeled by
a short keyword which is used in the respective section
headings.

The optimization ZerosInSigma (cf. Sec. B.4.3), ex-
ploiting the block structure of the self-energy, is
straightforward but reduces the construction of the
Green’s function by over a factor of ten. The techni-
cally most difficult (but also very important) optimiza-

tion is probably SpaceBlocks (cf. Sec. B.4.4) without
which current calculations for systems with more than
1000 atoms would become impossible. But also the
optimization MatrixInverse (cf. Sec. B.4.5) is quite
handy because it allows for quick (and perhaps finer
in energy domain) transmission scans before turning to
more expensive current density calculations. Note that
all three optimization have a larger impact for the 812-
atom-system compared to the 398-atom-system. This
makes them especially important for large systems.

The optimization measurements have been performed
with realistic system data (cf. Appx. B.3.2) so that
size-related bugs and problems already appeared dur-
ing testing and could be solved early on. Prominent
bottlenecks/problems related to the large system size
were:

• The matrix outputs of FHI-aims are by default
written as text files which is inefficient (in terms

Optimization Changed
Quantity 398 atoms 812 atoms

ZerosInSigma: T a Energy loop: tG × 13.3 203s →2705s × 19.0 1342s →25482s

Memory: MT × 2.0 1141MiB →2307MiB × 2.1 4845MiB →9945MiB

ZerosInSigma: j a Energy loop: tG< × 1.9 664s →1263s × 2.9 754s →2179s

Memory: Mj × 1.5 1669MiB →2459MiB × 1.5 7143MiB →10615MiB

SpaceBlocks: j Local quantities: t(r) × 18.3 557s →10177s × 41.1 1845s →75811s

MatrixInverse: T a Energy loop: tG × 7.0 203s →1414s × 10.6 1342s →14264s

Memory: MT × 1.3 1141MiB →1450MiB × 1.3 4845MiB →6230MiB

Table B.2: Increase in wall time and memory consumption when specific optimizations are removed from
the code. To get a feeling for the the dependence on the system size, two different sizes are shown. The
computational parameters and the systems are identical to the ones used in Fig. B.2a and Fig. B.2b. Symbols
are used to distinguish transmission (T ) and current density (j) calculations. a The self-energy was read
from hard disk.
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of disk memory but also in terms of CPU time).
Especially for large systems, this became a bot-
tleneck and we switched to writing the matrix
data directly to a HDF5-file[137], which is a
structured but binary file format.

• Reading and writing from and to the hard disk
(I/O) becomes terrible slow if it is done in
small portions (or unnecessary from multiple
processes). To solve that, we read the whole ma-
trix data using a single system call (using HDF5-

parallel when available). Also, all I/O-related
work in the module ExtractSubSystem is is done
in one process (rank 0) and only the results are
broadcasted to other MPI processes.

• It is problematic (i.e. some MPI implementations
crash) to send data larger than 2GiB via MPI in
a single call, even if the number of elements is sig-
nificantly below 231−1. In such cases, our code
automatically sends the data using multiple MPI
calls.

B.4.3 Optimization ZEROSINSIGMA: exploiting the block structure of self-energy Σ and
broadening matrix Γ

Formally, transmission T and Keldysh Green’s func-
tion G< are calculated as:

T (E) = Tr{ΓL G ΓR G†} , cf. Eq. (2.8) (B.29)
G<(E) = iGΓLG† . cf. Eq. (2.12) (B.30)

In practice, the matrices ΓL/R = i(ΣL/R −Σ†L/R) con-
tain a lot of zeros. Their non-vanishing entries belong to
the left/right contact areas of the device region. This
block structure is evident if one partitions the device
region into three regions: left contact area (L), right
contact area (R) and the remaining central part of the
device (C). In the basis (L/C/R), the matrices ΓL/R
then read:

ΓL =




Γ̃L 0 0
0 0 0
0 0 0


 , ΓR =




0 0 0
0 0 0
0 0 Γ̃R


 .

(B.31)
Working with the (unnecessarily large) matrices ΓL/R
is computationally inefficient. It is much more efficient
to also partition the retarded Green’s function G into

blocks, i.e.,

G =




GLL GLC GLR
GCL GCC GCR
GRL GRC GRR


 , GFL :=




GLL
GCL
GRL


 .

(B.32)
Here, we already defined GFL as the submatrix of G
where the first index refers to the full (F) device region
but the second index is restricted to the left (L) contact
region.

Using these shrunken matrices, the transmission T and
Keldysh Green’s function G< is calculated as:

T (E) = Tr{Γ̃L GLR Γ̃R [GLR]†} , (B.33)
G<(E) = iGFLΓ̃L[GFL]† . (B.34)

Remark on complexity: Using this technique, the
computational complexity for calculating transmission
and Keldysh Green’s function is reduced from O(N3)
[Eq. (B.29),(B.30)] to O(n3) [Eq. (B.33)] and O(nN2)
[Eq. (B.34)], respectively. N and n denote the num-
ber of basis functions in the device region and the left
contact region, respectively.
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B.4.4 Optimization SPACEBLOCKS: dividing space into blocks

Here, we discuss how to evaluate the formulas for space-
depending local quantities like the current density

j(r, E) ∝
∑

ij

ϕi(r)
as
G<
ij

(
∇ϕj(r)

)
. (B.35)

In principle, the double sum runs over all N basis func-
tions of the underlying DFT simulation. Additionally,
for constant grid spacing, the number of spatial grid
points r scales linearly with system size. Thus, naively,
the evaluation of the local quantities scales with N3.
But each basis function is localized around some atom,
i.e., it is nonzero only in a small area. This can be
exploited in the following way.

First, we define rmax as the maximal extent of all ba-
sis functions, i.e., each basis function is zero at points
which are further away from its central atom than rmax.
Second, the 3D space is divided into little cubes with
edge length rmax/n, see Fig. B.4 (n is an integer). When
calculating any local quantity inside the blue shaded

area, the only basis functions taken into account are
centered around atoms in the green (and blue) shaded
area. All other basis functions do not contribute in the
blue shaded area.

Hence, the the cubes of length rmax/n are distributed to
the separate MPI processes. The integer n is chosen
such that every MPI process can work on at least five
cubes since some cubes are cheap since no or hardly any
grid points are contained. Then, for each inner (blue)
cube, we restrict the Green’s function G< to the ba-
sis functions corresponding to atoms in the extended
(green) shaded area.

Remark: To measure the wall time in Tab. B.2 with-
out this optimization for 812 atoms, we needed to dou-
ble the grid spacing (taking only every eighth grid
point) and used linear extrapolation to approximate t(r)
for the full grid.

Figure B.4: Dividing space into 156 (13×12x1) non-overlapping blocks, exemplary for a graphene flake with
398 atoms. (2D-Model with n = 2, rmax = 5.05Å)
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B.4.5 Optimization MATRIXINVERSE: calculating the Green’s function inverse

As the self-energy can be read from hard disk, the most
expensive part in a transmission calculation is the ma-
trix inversion in calculating the retarded Green’s func-
tion G, cf. Eq. (2.23). According to Fig. B.2a, G can
be constructed in O(N2) whereas a textbook matrix
inversion scales5 as O(N3) and would therefore domi-
nate for large systems anyway. The quadratic scaling
shown in Fig. B.2a is possible when calculating G(E)
for many different energies. Exploiting the structure of
the Green’s function, one can pre-diagonalize parts of

the Hamiltonian so that the residual work per energy
point resides in O(N2).

Partitioning of the Green’s function: We first trans-
form the Hamiltonian so that it is diagonal in the re-
gions where the self-energies Σ are zero. Thus, we re-
sort the indices of the Green’s function such that the
self-energy contribution of the leads only appear in sub-
block D, i.e.,

G−1 = E1−H−ΣL(E)−ΣR(E)

=
(
E1AA −HAA −HAD
−HDA E1DD −HDD −ΣL(E)−ΣR(E)

)−1

=:
(

A B
C D

)−1

,
(B.36)

with the subscripts AA, AD, DA, DD denoting the re-
striction to the respective matrix subspace.

As advantage of this division, the only non-trivial en-
ergy dependence appears in subblock D = E1DD −
HDD−ΣL(E)−ΣR(E). The block A can be diagonal-
ized for all energies in a single eigenvalue problem: the
eigenvalues are given by Ã = E1 − H̃AA where H̃AA
denotes the eigenvalues of HAA. The transformation
matrix V (H̃AA=V−1HAAV) is constructed by filling
its columns with the (right) eigenvectors of HAA. The

off-diagonal blocks also stay energy independent, e.g.,
B̃ = −V−1HAD.

General matrix: For the matrix inversion, we first
tend to a general matrix which we divide into four
blocks (

A B
C D

)
, (B.37)

so that the submatrices A and D are square matrices.
The inverse is given by

(
A B
C D

)−1

=
(

A−1(1+ BE−1CA−1) −A−1BE−1

−E−1CA−1 E−1

)
with E := D−CA−1B (B.38)

as is easily checked by direct matrix multiplication. Next, we transform A into diagonal form Ã, e.g., A = VÃV−1.
This makes the calculation of the inverse Ã−1 trivial and we get:

(
A B
C D

)−1

=
(

VÃ−1(1+ B̃E−1C̃Ã−1)V−1 −VÃ−1B̃E−1

−E−1C̃Ã−1V−1 E−1

)
with E := D− C̃Ã−1B̃ (B.39)

5The direct textbook matrix multiplication algorithm indeed scales cubically. But there exist more complicated
algorithms with complexity below cubic but, of course, still above quadratic, like the Strassen algorithm with
≈ O(N2.8)[201]. In practise, implementations often still use a direct cubic scaling version of the matrix prod-
uct since it is easier optimized to the hardware and wins for small to medium matrix sizes. For large matrix
sizes, choosing more sophisticated algorithm is usually a trade-off between speed and accuracy since the faster
algorithms are usually numerically less stable. For the sake of simplicity, we simply assume cubic scaling of the
algorithms. However, the discussed tendency is still correct even for modified scalings.
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B Appendix: Transport method: Calculation of the local current density

using the abbreviations C̃ := CV and B̃ := V−1B.

Exploiting symmetries of G: In general, the Hamil-
tonian H is Hermitian and the self-energies Σ are non-
Hermitian. In most cases, we can restrict ourselves to
a real symmetric Hamiltonian and complex symmet-
ric self-energies. In that case, the Green’s function G
is also (complex) symmetric, B̃ and C̃ are related by
transposition, the eigenvalue problem simplifies to a
real symmetric one6 which makes the transformation
matrix V orthogonal, i.e., V−1 = VT .

Basis change for non-local quantities: If we are
only interested in non-local quantities like the transmis-
sion or the density of states, we can go a step further.
Such quantities do not dependent on the spatial basis
and we can transform the Green’s function so that the
Hamiltonian is diagonal in the subblock A:

G→ S−1GS , S =
(

V 0
0 1DD

)
. (B.40)

In practise, we indirectly perform this transformation
by omitting the respective factors of V in Eq. (B.39).
All in all, the inverse is given by:

G =


Ã−1(1+ B̃E−1B̃T Ã−1) −Ã−1B̃E−1

[
−Ã−1B̃E−1

]T
E−1


 with E := D− B̃T Ã−1B̃ (B.41)

using the abbreviation B̃ := VTB.

Optimization traits: In Eq. (B.41), no matrix oper-
ations for matrices of size of HAA appear (except for
the initial eigenvalue problem): the inverse Ã−1 is triv-
ial since Ã is diagonal. Therefore, this optimization is
extremely useful for large systems where the coupling
regions to the leads are only a small part of the overall
system, i.e., NA � ND with NA/D denoting the size of
the square matrices A,D, respectively.

For a short complexity analysis, we assume that mul-
tiplication and eigenvalue problem of N × N -matrices
have computational complexity O(N3). Then, the
naive direct matrix inversion used to calculate the
Green’s function has complexityO((NA+ND)3) NA�ND→
O(N3

A).

In the above optimization, the complexity of the prepa-
ration process containing the eigenvalue problem and

the calculation of B̃ is O(N3
A +N2

AND) NA�ND→ O(N3
A).

All the following inversions using Eq. (B.41) only are of
complexity O(N3

D + NAN
2
D + NA) NA�ND→ O(NAN

2
D).

The summands stand for inversion of E, products of
NA × ND-matrices with ND × ND-matrices like B̃E−1

and inversion of Ã, respectively.

Strictly speaking, the optimization still scales cubically
in NA due to the initially eigenvalue problem. Never-
theless, for energy sweeps over the density of states or
the transmission, the complexity of each inversion step
dominates and whose effort could be reduced to com-
plexity O(NAN

2
D) for large systems, cf. Fig. B.2a7

As stated above, the optimization only applies for non-
local quantities. For local quantities like current densi-
ties, the transformation matrices V cannot be omitted
from Eq. (B.39) and we are back to cubic complexity.

6For real symmetric eigenvalue problems, implementations such as ScaLAPACK[199] or ELPA[133] exist that
parallelize over many computational nodes. To the best of my knowledge, no efficient and numerically stable
parallelized implementation exists for the general eigenvalue problem.

7For the AGNRs used for Fig. B.2a, the central part scales linearly, NA ∈ O(N), but the contact regions scale
with the square root, ND ∈ O(

√
N) because they only grow transverse to the transport direction but not in

transport direction. This gives the observed overall complexity O(N2 = NAN
2
D).
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B.5 Additional convergence tests for the transmission and current density

B.5.1 Transmission coefficient in pristine AGNR5

To test the damping model (see Sec. 2.1.3) and the ex-
traction procedure (e.g. in Fig. 2.5b), we compare the
transmission as calculated with different parametriza-
tions of the damping rate η(r) with the (numerically)
exact result (derived from a band-structure calcula-
tion). Our test systems are pristine armchair nanorib-
bons with width of five carbon atoms (AGNR5). To this
end, we define the root mean square deviation ∆Trms:

∆Trms =

√
1

∆E

∫ E2

E1

[
∆T (E)

]2
dE , (B.42)

∆E = E2 − E1 E1/2 = εF ∓ 3 eV . (B.43)
The integral is evaluated on an energy grid with spac-
ing ∆ = 0.1 eV; ∆T (E) denotes the difference of the
calculated transmission and the number of bands in the
bandstructure in the interval (E −∆, E + ∆), formally

∆T (E) = min
Ẽ∈(E−∆,E+∆)

|Tcalc(E)−Nbands(Ẽ)| ,

(B.44)

where Nbands(Ẽ) is the number of bands at energy Ẽ.
Tab. B.3 lists the deviations of the transmission func-

tions for the pristine AGNR5 (see Sec. 2.2.2) for dif-
ferent parametrizations of the damping rate η(r), see
Eq. (2.24).

We have therefore checked that when the leakage rate
is sufficiently large (η0 ≈ 0.1 − 1Ha) and is smoothly
reduced to zero near the device region (κL ≈ 8 − 64),
exact results (in this case a step-like transmission func-
tion) can be recovered as long as the leads are long
enough (M ≈ 50−200). As a rule of thumb, the length
of the total system should exceed its width at least by
a factor of L/W ≈ 10− 25.

If these conditions are mistreated, more drastic effects
arise, such as standing waves reflecting from the lead
boundaries. For illustration, Fig. B.5 focuses on these
effects induced by poorly chosen damping models. Fi-
nite values of η at the device-to-lead interface cause
back-reflection of waves. The latter happens for a step-
function parametrization as well as for too large damp-
ing at the interface (κL ≤ 4).

number of unit cells
M ∆Trms

1 3.7 · 10−1

5 1.2 · 10−1

10 2.7 · 10−2

50 6.9 · 10−3

100 8.3 · 10−3

200 6.6 · 10−4

damping model
model ∆Trms

η0 = 0.1Ha
κL = 16

6.6 · 10−3

η0 = 0.5Ha 2.3 · 10−3

η0 = 1.0 Ha 6.6 · 10−4

η0 = 1.0Ha

κL = 4 2.6 · 10−1

κL = 8 2.6 · 10−3

κL = 16 6.6 · 10−4

κL = 32 7.8 · 10−3

κL = 64 1.8 · 10−3

ηstep,0 = 0.1Ha
ηstep(x) 5.4 · 10−1

ηstep,0 = 1.0Ha 6.6 · 10−1

Table B.3: Variation of the calculated transmission coefficients (measured with respect to conducting bands,
cf. Fig. 2.6a) with different parametrizations of the damping rate η(r), see Eq. (2.24). The default values taken
in our production runs are listed in underlined bold. Entries leading to acceptable results are marked in green,
unacceptable ones are marked in red. Left: Variation with the number of blocks M used in each lead. Right:
Variation with damping rate η(r). Different values for the parameters η0 (top) and κ (center) of the damping
rate from Eq. (2.25) are tested, as well as a step-function parametrization ηstep(d) = ηstep,0 ·Θ(d) (bottom).

129



B Appendix: Transport method: Calculation of the local current density

0

1

2

3

4

−3 −2 −1 0 1 2 3

T
ra

ns
m

is
si

on
T
(E

)

Energy E − εF [eV]

−3 −2 −1 0 1 2 3

Energy E − εF [eV]

M = 1
M = 10
M = 50

# of bands

η0 = 1.0Ha, κL = 4
η0 = 0.1Ha, κL = 16

ηstep,0 = 1.0Ha
# of bands

Figure B.5: Transmission T of a pristine AGNR5 for several damping models including non-converged ones
for illustration. The exact value, the number of bands from a bandstructure calculation, is plotted as solid
line. Left: The length of the leads (number of building blocks M) is varied (the remaining parameters are the
default values: η0 = 1Ha, κL = 16). For too short leads (M ≤ 10), the steps in the transmission function
are not fully developed, yet. Right: The length of the leads is fixed (M = 200), but the parametrization of
the leakage rate η(ri) is varied, i.e., to a step function (constant at ηstep,0 in the leads but zero in the device
region; magenta circle markers) which shows standing wave patterns due to reflection at the interface.

B.5.2 Local current densities in pristine AGNR5

This section contains additional convergence tests for
local currents in pristine AGNR5. They turn out very
similar to the discussion offered in Sec. 2.3.2 for the
AGNR5 with a single nitrogen substituent.

In Figs. B.6 and B.7, the dependence of the current den-
sity in pristine AGNR5 on the basis set size is shown.

As in the case with a nitrogen scatterer (cf. Sec. 2.3.2),
the divergence decreases rapidly for increasing basis set
size (tier1→ tier2→ tier3; svp→ tzvp→ tzvpp).

Again, the current density j(r) as well as its divergence
and its integral over a yz-plane converged in the limit
of large basis sets (cf. Fig. B.8a and Fig. B.8b).

Artificial current sources and sinks in the contact region

When coupling to the leads, the current density arti-
ficially appears and disappears; as seen in Fig. B.9 in
terms of the divergence pattern ∇ · j(r, E) in the left
contact region. The self-energy ΣL effectively behaves
as a current source with a spatial structure which be-
comes more complicated for large basis sets. Therefore,
the calculated current density represents the physical
current density only in regions away from the contact

region, i.e., in the center of the device region, but not in
the model electrodes. The effect of the self-energy can
even spread a little further into the device region since
the basis function have a finite extension. Thus, in our
convergence tests, we only compared the current den-
sity in a smaller region (dashed orange box in Fig. 2.7),
which is one additional carbon ring away from the con-
tact region.

130



B.5 Additional convergence tests for the transmission and current density

Figure B.6: (a)-(c): Variation of the in-plane current density jxy(r, E) with increasing size of the basis set
for a pristine AGNR5 at a plane z = 0.4Å above the carbon atoms at perfect transmission, T (E) = 1 (Energy:
E = εF + 1 eV). The current direction is indicated by black arrows for the largest basis set. (d)-(f): The
divergence ∇ · j(r, E) belonging to the respective current pattern in (a)-(c). The divergence converges very
rapidly with increasing size of the basis set. Divergence errors have a very small impact on the current pattern.
All plots were calculated using FHI-aims.

Figure B.7: Analog to Fig. B.6 but calculated using Turbomole.
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Figure B.8: (a): Relative deviation between the local current density (as plotted in Fig. B.6 and B.7) inte-
grated over a yz-plane and the total current given by the transmission function. For clarity, only the markers
of every 12th sampling point are shown. (b): Convergence analyses of the local currents shown in Fig. B.6
and B.7 with respect to the basis set using FHI-aims (closed markers) and Turbomole (open markers). The
root mean square deviations ∆X are plotted over the number of basis functions per carbon atom (∆T on left
y-axis; ∆j and ∆∇·j on right y-axis). All error measures decrease when increasing the basis set size. The dif-
ferent basis sets contain different number of basis functions per hydrogen/carbon/nitrogen atom: tier1/svp:
5/14/14; tzvp: 6/31/31; tzvpp: 14/31/31; tier2: 15/39/39: tier3: 31/55/55.

Figure B.9: The current divergence∇·j(r, E) in the left contact region (coupled to the left lead) for a pristine
AGNR5 at a plane z = 0.4Å above the carbon atoms. The self-energy ΣL effectively behaves as a current
source with a spatial structure which becomes more complicated for large basis sets. Please note the different
scale which is larger by about one order of magnitude than all the other divergence plots in this thesis.
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B.5.3 Local current densities in AGNR5 with a single nitrogen substituent

In the main part, we have shown a basis set comparison
of the current density in AGNR5 with a single nitrogen

substituent in Fig. 2.9. Here, plots with additional basis
sets are shown in Figs. B.11 and B.12 for completeness.

B.5.4 Local current density in hydrogenated AGNR41 (20% hydrogen adsorbates)

Fig. B.10 shows the basis set dependence of the current
density at an energy point, where the transmission it-
self is not yet fully converged, but small energy shifts
are noticeable in the transmission peaks (cf. blue ar-
row in Fig. 2.14). In this situation, the current density
still exhibit a dependence on the basis set size. The
main qualitative feature remain: current vortices are
still present and stable. Also quantitative features are
sustained; the overall scale is the same and the current

still exhibits the mesoscopic fluctuations in the same
order of magnitude exceeding the average current by
two orders of magnitude, cf. the logarithmic color scale.
Hence, we are unable to predict the concrete current
path at a certain energy point. We can still make sense-
ful predictions about statistic properties of the current
densities (such as magnitude of the fluctuations or their
mean value), even though the transmission function is
not yet converged with respect to the basis set size.

(a) basis set: tier1 (b) basis set: tier2

Figure B.10: Basis set comparison of the local current density response (integrated over the out-of-plane
direction) in the AGNR41 of Fig. 2.12 at energy E=εF+155meV (blue arrow in Fig. 2.14). The current
density is plotted relative to average current density I/Ly, with width Ly = 5.19 nm. Plot shows current
amplitude (color), current direction (arrows), carbon atoms (gray crosses) and hydrogen atoms (red crosses).
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Figure B.11: (a)-(c): Variation of the in-plane current density jxy(r, E) with increasing size of the basis
set for an AGNR5 with one nitrogen substituent (green cross) at a plane z = 0.4Å above the carbon atoms
restricted in x-direction to the central region near the nitrogen impurity (dash orange box in Fig. 2.7). The
current density carries half a conductance quantum, T (E) = 0.5, in all cases; the energy E is varied such
that all plots share the same transmission value, see colored arrows in Fig. 2.8 for exact position. The current
direction is indicated by black arrows for the largest basis set. (d)-(f): The divergence ∇ · j(r, E) belonging
to the respective current pattern in (a)-(c). The divergence converges very rapidly with increasing size of the
basis set. Divergence errors have a very small impact on the current pattern. All plots were calculated using
FHI-aims.

Figure B.12: Analog to Fig. B.11 but calculated using Turbomole.
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C Appendix C

Application I:
Narrow armchair graphene nanoribbons

This appendix contains additional material that complements Chap. 3, e.g., addi-
tional material on the behavior of streamlines in the bulk limit (Appx. C.1) as well
as additional plots for ring currents near antiresonances for AGNR5 with a single
nitrogen substituent (Appx. C.2). Next, a continuity equation for “bond currents”
is derived from a general TB Hamiltonian (Appx. C.3). The scattering phase of a
simple linear TB chain with an on-site potential is derived in Appx. C.4. Finally,
the appendix closes with symmetry consideration preventing the emergence of ring
currents (Appx. C.5).

C.1 Bulk limit investigations for current patterns in pristine ribbons

C.1.1 Energy window for observation of
streamlines

In Tab. C.1, we check the estimate

∆ET=1 ≈
25 eV
NC

for NC � 1 (C.1)

used in the Sec. 3.1.3 to estimate the energy range in
which streamlines exist. The energy range ∆ET=1 is
defined as the energy range with T (E) = 1 and we ex-
pect a 1/NC behavior for the energy interval T (E) = 1
since the (discrete) transverse wavevectors ky,m scale
with 1/NC. Thus, the product ∆ET=1 · NC (last ta-
ble column) should be constant for NC � 1. As men-
tioned in the main text, the streamline patterns in the
current density in AGNRs(3m−1) only appear at en-
ergies E with a single fully transparent channel. For
higher/lower energies, with two or more current chan-
nels, the patterns are more complicated.

One should not attach to much importance to the
exact numerical values since they are strongly func-
tional/method dependent. For example, for AGNR14,
we report two different values which were calculated by
using different (but very similar) functionals using dif-
ferent DFT codes.

C.1.2 Streamline patterns in the bulk limit

In Sec. 3.1.3, we stressed that we see no indication that
the streamline pattern vanishes for wide ribbons. In
Fig. C.1, a cut at constant x and z through the stream-
lines in AGNR5/8/11/14/17 is shown. The current den-
sity is scaled by the numberm of streamlines. That way,
the curves coincide. We conclude that, the streamlines
remain for wide AGNR(3m−1); only the weight is dis-
tributed over all m streamlines. Please note that the
small negative values for jx occurring in Fig. C.1 indi-
cate small current eddies with backflow.
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NC=3m−1 m ∆ET=1 ∆ET=1 ·NC

5a 2 2.63 eV 13.2 eV
8a 3 2.20 eV 17.6 eV
11a 4 1.75 eV 19.3 eV
14a 5 1.48 eV 20.7 eV
14b 5 1.42 eV 19.8 eV
17a 6 1.20 eV 20.4 eV
20b 7 1.06 eV 21.2 eV
29b 10 0.778 eV 22.6 eV
41b 14 0.585 eV 24.0 eV
59b 20 0.426 eV 25.1 eV
83b 28 0.304 eV 25.3 eV

a Turbomole, svp basis set, B-P86-functional
b FHI-aims, tier1 basis set, PBE-functional
both closed-shell

Table C.1: Testing the dependence of ∆ET=1 on
NC for NC = (3m − 1). ∆ET=1 is defined as the
energy range when only one band in an AGNRNC
is present and therefore perfect streamline patterns
are expected. My thanks to J. Wilhelm who per-
formed the numerical calculations for the cases la-
beled with a[140].
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Figure C.1: A xz-cut through the current den-
sity response scaled by the number of streamlines
m for different pristine AGNRs(3m−1). The x-
component jx is shown at T = 1, at z = 0.5Å,
and x = x1, see Fig. 3.1a. Each AGNR(3m−1)
shows m peaks. The origin of the y-axis is chosen
so that y/ay = 1 coincides with the first peak. My
thanks to J. Wilhelm who performed the numeri-
cal calculations[140].
[DFT details: Turbomole, basis set svp, closed-shell]
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Figure C.2: Transmission function (solid red) and magnetization per bias dmz/dVbias (perpendicular to the
graphene plane, dashed black) for the AGNR5 with nitrogen at position 3. The plot is identical to Fig. 3.10,
except that additional energies are marked by colored arrows. The orange arrows mark the energy for the
current response already plotted in Figs. 3.8c and 3.8d, respectively. The green arrows refer to the current
response in Figs. C.3a and C.3b. The blue arrows refer to the Figs. C.3c and C.3d.
[DFT details: FHI-aims, basis set tier1, closed-shell]
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C.2 Additional ring current investigations for ribbons with a single nitrogen

In this section, we list additional current density re-
sponses at selected energy points to further support
our analyses of ring currents near antiresonances as
discussed in Sec. 3.2.2. The selected energy points
are labeled by colored arrows in the magnifications of
Fig. C.2. The energy points always appear in pairs, one
below and one above an antiresonance.

The current densities for the orange marked energy
points are already shown in the main text, in Fig. 3.8c
and Fig. 3.8d.

The green marked energy points refer to the ring cur-
rents shown in Fig. C.3a and Fig. C.3b. These energies

are very close to the antiresonance and the ring cur-
rents exceed the remaining average through current by
a factor of 1000. The latter is therefore not visible in
the current density plots anymore and we see a perfect
reversal of the ring current pattern. The slightly differ-
ent scale is due to slightly different transmission values,
i.e., the chosen energy points are not exactly symmetric
to the antiresonance.

The remaining two ring current patterns, Fig. C.3c and
Fig. C.3d (blue marked energies in Fig. C.2), deal with
a second (sharper) antiresonance at E′res. Again, we see
a reversal of the rotation sense. Thus, we conclude that
these direction changes are a generic feature.

(a) nitrogen at pos. 3, E−εF = 1.14 eV, E < Eres (b) nitrogen at pos. 3, E−εF = 1.15 eV, E > Eres

(c) nitrogen at pos. 3, E−εF = 1.33 eV, E < E′res (d) nitrogen at pos. 3, E−εF = 1.36 eV, E > E′res

Figure C.3: (a–b) Local current density response (integrated over the out-of-plane direction) normalized to
the average through current of AGNR5 with a single nitrogen substituent (green cross). The plots are for
slightly different energy points (see green arrows in Fig. C.2), (a) below and (b) above the antiresonance Eres.
(c–d) Equivalent to (a–b) but for energy below and above the second (sharper) antiresonance E′res (see blue
arrows in Fig. C.2). [DFT details: FHI-aims, basis set tier1, closed-shell]
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C.3 Bond currents in tight-binding models:
derivation of the continuity equation in a tight-binding model

In this section, we derive a continuity equation for tight-
binding (TB) models. On that basis, we define “bond
currents”, current contributions which flow from one
TB site to another, and which obey this TB continuity
equation.

First, let us assume that the system is described by an
effective single particle Hamiltonian

Ĥ =
∑

i,j

hij c
†
i cj , (C.2)

with a general matrix hij . We do not (yet) impose any
conditions to hij ; not even hermiticity. The fermionic
operators ci comply with the usual anti-commutation
relations

{
c†i , cj

}
= δij and

{
ci , cj

}
= 0 . (C.3)

The time-dependence of the one-particle wavefunction

|ψ〉 =
∑

n

ψnc
†
n|0〉 (C.4)

follows from the Schrödinger equation

i~∂t|ψ〉 = Ĥ|ψ〉 and − i~∂t〈ψ| = 〈ψ|Ĥ† . (C.5)

Next, we calculate the time-derivative of the density ρl
of site l (ρl := 〈c†l cl 〉):

∂tρl = ∂t〈ψ|c†l cl |ψ〉

=
(
∂t〈ψ|︸ ︷︷ ︸

(C.5)= i
~ 〈ψ|Ĥ

†

)
c†l cl |ψ〉+ 〈ψ|c†l cl

(
∂t|ψ〉︸ ︷︷ ︸

(C.5)= − i
~ Ĥ|ψ〉

)

(C.2)= i
~
∑

ij

(
h∗ij〈ψ|c†jci c

†
l cl |ψ〉 − hij〈ψ|c

†
l cl c

†
i cj |ψ〉

)

= 2
~
∑

ij

Im
(
hij〈ψ|c†l cl c

†
i cj |ψ〉

)

(C.4)= 2
~
∑

ijnm

Im
(
hij 〈0|cmc†l cl c

†
i cjc

†
n|0〉︸ ︷︷ ︸

δml δli δjn

ψ∗mψn

)

= 2
~
∑

j

Imhljψ
∗
l ψj

(C.7)= 2
~
∑

j

Imhlj〈c†l cj〉 (C.6)

In the last line, we applied the identity

〈c†i cj〉 = 〈ψ|c†i cj |ψ〉 (C.7)
(C.4)=

∑

nm

ψ∗mψn 〈0|cmc†i cjc
†
n|0〉︸ ︷︷ ︸

δmi δjn

= ψ∗i ψj .

Now, we insert a Hamiltonian describing a pure nearest-
neighbor TB model, i.e.,

hij =




−tij if 〈i, j〉 (i and j are nearest neighbors) ,
0 else .

(C.8)

That way, we arrive at a continuity equation

∂tρl
(C.6)= −2

~
∑

i
if 〈l,i〉

Im tli〈c†l ci 〉 =: −
∑

i
if 〈l,i〉

jl→i . (C.9)

Here, we used that a continuity equation of the form

∂tρl = “−div jl” (C.10)

must hold, and we identify the sum of all currents jl→i
flowing away from site l as the divergence. That way,
we can define the current jl→i flowing from site l to
site i (with site l and i being nearest neighbors) as:

jl→i := 2
~

Im tli〈c†l ci 〉 if 〈l, i〉 . (C.11)

Source and sink terms

Adding an on-site energy term to the model, ∆hij =
δij εi, we get

∂tρl +
∑

i
if 〈l,i〉

jl→i
(C.6)= 2

~
∑

j

Im ∆hlj〈c†l cj〉

︸ ︷︷ ︸
Im εl〈c

†
l
c
l
〉=Im(εl)ρl

(C.12)

as a correction to Eq. (C.9). By defining a source/sink-
term

σ := 2
~

Im(εl)ρl , (C.13)

we can write the full continuity equation as

∂tρl +
∑

i
if 〈l,i〉

jl→i = σ . (C.14)

Please note, that σ is only non-zero if we add an imagi-
nary part to the on-site energy εl. Then, the Hamil-
tonian Ĥ is no longer Hermitian because it includes
damping terms. Such damping terms occur, for exam-
ple, when including effects of leads via a self-energy.
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C.4 Linear tight-binding chain with a single on-site potential

Remark: Instead of c†i and cj (used in multi-particle
physics) one can also use |i〉 and 〈j| (used in single-
particle physics) directly. This basically means to
use single particle states |n〉 = c†n|0〉 and to project
the Hamiltonian to these single-particle states. Then
Eq. (C.2) and Eq. (C.4) become

Ĥ =
∑

i,j

hij |i〉〈j| (C.15)

and
|ψ〉 =

∑

n

ψn|n〉 , (C.16)

respectively. The resulting bond currents in this single
particle formulation read

jl→i := 2
~

Im tli〈ψ|l〉〈i|ψ〉 if 〈l, i〉 . (C.17)

C.4 Linear tight-binding chain with a single on-site potential

In this section, we calculate the scattering phase of
transport through a linear tight-binding (TB) chain
with a single one-site potential ε0. Similar to Sec. 3.3.1,
the Hamiltonian is defined by

Ĥ =− t
∞∑

n=−∞

[
|n〉〈n+1|+ |n+1〉〈n|

]
+ ε0|0〉〈0| .

(C.18)

We search for eigenstates which include an incoming
wave |ψin〉 =

∑∞
n=1 e+ik(−n)|−n〉 with wavevector k,

thereby effectively restricting the energy E = −2t cos k
to the band of the TB chain: E ∈ [−2t, 2t]. Hence, we
make the ansatz

|ψ〉 =
∞∑

n=1

[(
e+ik(−n) + re−ik(−n)

)
|−n〉+ φe+ikn|n〉

]
+ φ|0〉 (C.19)

which includes 2 free parameters: the reflexion ampli-
tude r and the transmission amplitude φ. Enforcing the
state to be an eigenstate of the Hamiltonian, we get two
conditions:

φ
!= 1 + r , (C.20a)

−t(e−ik + re+ik + φe+ik) + ε0φ
!= Eφ . (C.20b)

Solving this linear set of equations gives

φ = 1
1 + i ε0

2t sin k
, (C.21a)

r = φ− 1 =
−i ε0

2t sin k
1 + i ε0

2t sin k
= ε0

2it sin k − ε0
. (C.21b)

The transmission T , given by the squared absolute
value of the transmission amplitude φ, is

T = |φ|2 = 1

1 +
[

ε0

2t sin k

]2 , (C.22)

and does not depend on the sign of ε0, only on the am-
plitude. The scattering phase ϕ, however, given by

tanϕ := Imφ

Reφ = − ε0

2t sin k , (C.23)

depends also on the sign of ε0. The dependence on the
sign is important for Sec. 3.3.1, because it explains how
an antiresonance can be formed in a two-path model
with opposite on-site potential in the paths.
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C.5 How symmetry can prevent the emergence of ring currents

In this section, we explain how a perfect symmetry re-
lation between the different paths of two-path models
as discussed in Sec. 3.3 can lead to a suppression of the
ring currents. To this end, Fig. C.4 (left) shows the
most general system—we know of—where a symmetry
relation suppresses the creation of any backflow cur-
rents. The system features two identical paths (labeled
by the sub-Hamiltonian h) whose couplings to the leads
differs only by a scalar constant s. Of course, the case
of equal hopping, s = 1, is included.

For convenience, we diagonalize the subsystem h, see
Fig. C.4 (right). Then, each path consists of several
states of energy ei with (potentially) different couplings
t′i, t′′i to the leads. The current jT/B can be split into
its contribution jT/B,i through the states ei. For the
basis functions, we use the same nomenclature as in

Eq. (3.8), except that every eigenstate ei belongs to its
own basis functions |Ti〉 and |Bi〉 at the top and bottom
path, respectively.

For each state ei, an eigenstate |χi〉 with energy ei of
the overall structure (including leads) is given by

|χi〉 = s|Ti〉 − |Bi〉 . (C.24)

This eigenstate has no contributions at the leads and
is therefore not part of an incoming wave. And since
it is an eigenstate of the overall Hamiltonian, it is also
not mixed in by the time evolution. Hence, each trans-
port/scattering state ψ is orthogonal to it:

〈ψ|χi〉
!= 0 . (C.25)

Thus, a general scattering state is written as

|ψ〉 =
∞∑

n=1

[(
e+ik(−n) + re−ik(−n)

)
|−n〉+ φe+ikn|n〉

]

︸ ︷︷ ︸
incoming, reflected and transmitted wave as before

+
∑

i

ci
(
|Ti〉+ s∗|Bi〉

)

︸ ︷︷ ︸
most general term allowed by 〈ψ|χi〉

!= 0

(C.26)

with some constants ci. This relates the contribution
in the top and bottom path by

〈ψ|Bi〉 = s〈ψ|Ti〉 . (C.27)

Again, we calculate the bond current between two
neighboring sites i and j (connected by the hopping
element tij) as ji→j := 2

~ Im tij〈ψ|i〉〈j|ψ〉. The currents
through the states ei of the top/bottom path are then
given by

jT,i := jT,i→1 = 2
~

Im t′′i 〈ψ|Ti〉〈1|ψ〉 , (C.28)

and

jB,i := jB,i→1 = 2
~

Im s∗t′′i 〈ψ|Bi〉〈1|ψ〉
(C.27)= 2

~
Im |s|2t′′i 〈ψ|Ti〉〈1|ψ〉 . (C.29)

Hence, the currents through the top and bottom path
are related by a constant prefactor:

jB(E) = |s|2 jT(E) ∀E . (C.30)

This behavior is seen in Fig. 3.14b and Fig. 3.14d,
where the top and bottom currents are related by an
energy-independent constant.

Figure C.4: A general TB two-path model where the symmetry suppresses the creation of backflow currents.
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D Appendix D

Application II:
Graphene with hydrogen adsorbates

This appendix contains additional material that complements Chap. 4. First, we es-
timate the average level spacing of hydrogenated AGNRs in Appx. D.1. Additional
material on the current density is divided into three sections: the three-dimensional
spatial dependence (Appx. D.2), the spatial autocorrelation (Appx. D.4), and the
evolution under an applied bias voltage (Appx. D.3). In Appx. D.5, we discuss
details about the distribution function, ranging from definitions over analytical cal-
culations to additional examples. Last, in Appx. D.6 and Appx. D.7, a selection of
the raw data is shown which was used to analyze the dependence on AGNR size
and impurity concentration.

D.1 Level-spacing of hydrogenated AGNRs (20% hydrogen concentration)

In this section, we estimate the level spacing of hy-
drogenated AGNRs for fixed hydrogen concentration.
For that purpose, we employ several AGNRs (as shown
in Fig. 4.7) with 20% hydrogen adsorbates. The level
spacing ∆ is calculated as average over an interval of
1 eV near the Fermi energy, i.e.,

∆ = 1 eV
/∫ εF+0.5 eV

εF−0.5 eV
ρ(E) dE . (D.1)

In the density of states ρ(E), we only include the states
of the functionalized area which excludes the pristine

contact regions.1 In general, the level spacing is in-
versely proportional to the number of states which in
turn is proportional to the system size. We parametrize
the system size by the number of carbon atoms N which
reside in the functionalized area. We thus expect a 1/N
dependence for the level spacing. A fit to the DFT data
estimates

∆ = c∆
N

with c∆ = 15.1 eV , (D.2)

as shown in Fig. D.1.

1Technically, we use the Green’s function G(E) of the device region (cf. Eq. (2.23)) to calculate the density of
states ρdevice(E) of the whole device region (including two pristine contact regions). We use the converged
Green’s function Gm(E) of a single building block of the lead (cf. Eq. (2.18)) to calculate the density of
states ρblock(E) of one lead block. [We use the Green’s function of the last iteration, i.e., m = M − 1,
cf. Eq. (2.18).] Then, the density of states of the functionalized area (without the two contact regions) is
estimated as ρ(E) = ρdevice(E)− 2 ρblock(E).
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Figure D.1: Level spacing of AGNRs(Nx×Ny) with 20% hydrogen depending on the system size. The AGNRs
are shown in Fig. 4.7. The level spacing ∆ is calculated as average over an interval of 1 eV near the Fermi
energy, i.e., ∆ = 1 eV

/∫ εF+0.5 eV
εF−0.5 eV ρ(E) dE. The number of carbon atoms N = Nx ·Ny only includes the carbon

atoms in the functionalized area, i.e., the pristine contact regions are not counted.

D.2 Three-dimensional spatial dependence of current density and magnetic field
in AGNR8×41

D.2.1 Current density response

In the main body, we mostly integrate the current den-
sity over the out-of-plane direction (z-direction). In
this section, we discuss the z-dependence of the current
density response in a hydrogenated AGNR8×41 with
20% hydrogen adsorbates (as shown in Fig. 4.1b). The
transmission function was depicted in Fig. 4.2b and fea-
tures many sharp peaks. We calculate the current den-
sity response at energy E = εF +155meV related to the
center of a transmission peak. In Fig. D.2a, we show the
integrated current density as commonly presented in the
main body. It exhibits the usual strong mesoscopic fluc-
tuations reflecting in a logarithmic color scale covering
4 decades. The cuts in Figs. D.2b and D.2c show that
the current density has the general tendency to be sym-
metric to the carbon plane. Nevertheless, there are also
regions where the current above and below the carbon
plane flows in opposite directions, thereby forming small
vortices. These vortices also induce magnetic fields; this
time in x- and y-direction, which are discussed in the
next section.

D.2.2 Magnetic field response

In the main body, we restricted ourselves to the mag-
netic field in z-direction because the other components

are suppressed by an (approximate) z-mirror symmetry.
In Fig. D.3, the magnetic field response for the current
density response (shown in Fig. D.2) is shown at three
different heights: below (z=−1.5Å), at (z=0Å), and
above (z=+1.5Å) the carbon plane.

The x and y-components show a strong z-dependence,
with a different sign below and above the carbon plane.
For a perfect z-mirror symmetry, the contributions
above the carbon plane are opposite to the ones below,
Bx/y(+z) = −Bx/y(−z). The remaining fluctuations
in the (averaged) carbon plane (Figs. D.3d and D.3e)
are evidence of the slightly broken z-mirror symmetry
of the system configuration.

The z-component of the magnetic field shows a very
weak z-dependence. Basically, all features at z=0Å are
still present at z=±1.5Å. This is explained by the di-
vergence condition, ∂zBz + · · · = 0, which reduces the
z-dependence of Bz.

In the main body, we focused on Bz since we expect the
contributions of Bx, By on the electronic wavefunctions
to average out because of the strong z-dependence and
the sign change at z=0Å. We expect the main contri-
butions from Bz. [Of course, all components are nu-
merically included in Chap. 6 nevertheless.]
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Figure D.2: Local current density response for the hydrogenated AGNR8×41 shown in Fig. 4.1b at energy E =
εF + 155meV. Plot shows current amplitude (color), current direction (arrows), carbon atoms (gray crosses),
and hydrogen atoms (red crosses). (a) In-plane current pattern in an xy-view, integrated over the z as commonly
presented also in the main body. (b/c) A cut through the current density at x = x0, as marked in (a). The
current components parallel (jy and jz) and perpendicular (jx) to the cut are shown in panel (b) and (c),
respectively. Only atoms within 1Å of the cut are marked by crosses in the yz-cut.

143



D Appendix: Application II: Graphene with hydrogen adsorbates

Figure D.3: The magnetic field response dB/dVbias induced by the current configuration presented in Fig. D.2.
The magnetic field is shown at three different heights, z=−1.5Å (panel a/b/c), z=0Å (panel d/e/f), and
z=+1.5Å (panel g/h/i); corresponding to below, at, and above the average carbon plane, respectively. The
x- and y-components show a strong z-dependence with an (approximate) sign change at z=0Å. On the other
hand, the z-component hardly depends on the z-direction.

D.3 Current evolution when increasing the bias voltage

In Sec. 4.2.3, we discussed the evolution of the current
density with increasing bias voltage using the moments
of the distribution function, cf. Fig. 4.15 (center).

In Fig. D.4, we provide explicit plots of the current
density for increasing bias voltage. For small bias
voltages, an increase of the bias voltage significantly
changes the current pattern, e.g., from Vbias = 50mV to
Vbias = 100mV (Fig. D.4a to Fig. D.4b). For large bias
voltages, an increase hardly perturbs the pattern, e.g.,
from Vbias = 200mV to Vbias = 250mV (Fig. D.4d to
Fig. D.4e). From that behavior, we conclude that each

transport state carrying current vortices of the same or-
der. Adding additional transport states (by increasing
the bias voltages) only significantly changes the current
pattern if the number of transport states to start with
was small.

The magnetic field for a bias voltages of Vbias = 250mV
is shown in Fig. D.4f. The magnetic field strongly varies
and changes sign from region to region. The field gra-
dient reaches 200mTV−1 nm−1 which is reduced by
about a factor of 5 when compared with the response
to an infinitesimal small bias voltage (cf. Fig. D.3f).
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D.3 Current evolution when increasing the bias voltage

(a)
∫

jxy(r) dz for Vbias = 50mV (b)
∫

jxy(r) dz for Vbias = 100mV

(c)
∫

jxy dz for Vbias = 150mV (d)
∫

jxy dz for Vbias = 200mV

(e)
∫

jxy dz for Vbias = 250mV (f) Bz(x, y, z = 0) for Vbias = 250mV

Figure D.4: (a-e) Local current density (integrated over the out-of-plane direction) in the hydrogenated
AGNR8×41 of Fig. 4.1b with increasing bias voltage Vbias. Plots show current amplitude (color), current
direction (arrows), carbon atoms (gray crosses) and hydrogen atoms (red crosses). (f) Magnetic field Bz (in
out-of-plane direction) induced by the current distribution plotted in (e) for a bias voltage of Vbias = 250mV.
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D.4 Spatial autocorrelation function of the current density

D.4.1 Theory

In the main body, in Fig. 4.3a, the current density re-
sponse j� := dj/dVbias of a hydrogenated AGNR16×83
was shown. The current pattern displayed many seem-
ingly random current vortices. To quantify this “ran-
domness”, we ask the following question: what is the
spatial autocorrelation function for the current density
and how fast does it decay?

The spatial autocorrelation function Jab(δ) of the cur-
rent density response is given by

Jab(δ) =
〈
ja(r) jb(r + δ)

〉

= 1
V

∫

V

d3r ja(r) jb(r + δ) ,
(D.3)

where the integration volume V is restricted to a cuboid
of dimensions Lx = 38.8Å, Ly = 97.2Å, and Lz =
10.0Å. The cuboid includes only the functionalized
area of the AGNR without the border regions.2 The
integration borders in z-direction, z = ±5Å, are arbi-
trary. To remove this arbitrary dependence, we define
a normalized autocorrelation function

J̃ab(δ) := Jab(δ)√
Jaa(0) Jbb(0)

, (D.4)

so that J̃aa(0) = 1.

To avoid the evaluation of the integral in Eq. (D.3) for
every value of δ, we evaluate the autocorrelation func-
tion by a double Fourier transformation, i.e.,

Jab(δ) =
〈
ja(r) jb(r + δ)

〉

= F−1
(
F
(
ja(r)

)
F
(
jb(r)

)∗)
.

(D.5)

That way, a periodicity of the current density pattern is
assumed which, of course, the current density in hydro-
genated AGNR16×83 does not possess. The induced
errors are of the order 2δi/Li. Thus, we expect only
small errors for δx . 8Å, δy . 12Å, and δz . 2.5Å.

D.4.2 AGNR16×83 functionalized by 20%
hydrogen adatoms

The autocorrelation function J̃xx of the current den-
sity j�x (in transport direction) of a hydrogenated
AGNR16×83 is shown in Fig. D.5a. We observe a very
fast decay which seems to be modulated by additional
oscillations, i.e., J̃xx ∼ e−δ/ξ · cos(λδ). The correlation
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Figure D.5: Spatial autocorrelation functions J̃xx for the current density j�x in transport direction in a
hydrogenated AGNR16×83 (as presented in Fig. 4.3a). The arrows at 0.65Å and 2.49Å (width of carbon ring)
mark significant oscillations in the correlation functions, hinting at current vortices.

2The exclusion of the boundary areas is performed with the same procedure as used for the suppression of the
boundary effects in the distribution functions, cf. Acut in Appx. D.5.3, Fig. D.9c.
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D.4 Spatial autocorrelation function of the current density

length ξ is estimated in Fig. D.5b for the in-plane cur-
rent components as ξ = 0.3 − 0.5Å. The sign changes
in the autocorrelation function are especially important
because they hint at tendencies to form ring currents
around single carbon rings, i.e., the current density j�x
at two points which are separated by one carbon ring,
δ = 2.94Å ey, show a preference to align antiparallel.
The negative peak in z-direction (blue arrow) predicts
a tendency to also form small current vortices along
the z-direction. The effect of a current density run-
ning in opposite direction above and below the graphene
plane is neglected in the main part by integrating over
z-direction.

For completeness, all autocorrelation components are
shown in Fig. D.6. The off-diagonal correlators J̃ab,
a 6= b, should tend to zero for averaging either over a
single large disordered AGNR or over several randomly
disordered AGNRs. The modulations in Fig. D.6d-f are
estimates for the influence of the concrete impurity con-
figuration. Thus, any features in the diagonal correla-
tors J̃aa below 0.05 are probably not of general origin

but depend on the exact impurity configuration.

Thus, all in all, the autocorrelation functions support
the tendency to form vortices in the current density.

D.4.3 Pristine AGNR41

In Fig. D.7, the diagonal autocorrelators for a stream-
line pattern of pristine AGNR24×41 is shown.3 The off-
diagonal correlations J̃xy, J̃xz, J̃yz are numerically zero,
i.e., in the order of 10−6 and below. We ensured that
the integration volume V is chosen in such a way that
the current pattern is indeed exactly periodic. Thus,
no spurious contributions are introduced by the Fourier
transformation.

The perfect periodicity of the streamlines is reflected in
the autocorrelation functions for δ ‖ ex and δ ‖ ey. The
periodicity lengths ax and ay, marked with colored ar-
rows, naturally coincide with the periodicity length of
the streamline patterns. Interestingly, in out-of-plane
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Figure D.6: Spatial autocorrelation functions J̃ab for the current density in a hydrogenated AGNR16×83 (as
presented in Fig. 4.3a).

3The streamline patterns in pristine AGNRs are discussed in detail in Sec. 3.1. Due to the periodicity in the ribbon
width, the autocorrelation functions presented are the same of any AGNRNC with NC = 3m− 1.
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Figure D.7: Spatial autocorrelation functions J̃aa for the streamline pattern seen in pristine AGNR(3m−1).
The off-diagonal correlations Jxy, Jxz, Jyz are numerically zero, i.e., in the order of 10−6 and below.

direction, δ ‖ ez, the autocorrelation function decays
significantly slower than in the hydrogenated AGNR,
cf. Sec. D.4.2. While in pristine AGNRs the current
density is always the same above and below the carbon

plane, it may (and does) differ in hydrogenated AG-
NRs in some spatial regions, cf. Appx. D.2, Figs. D.2b
and D.2c.

D.5 Distribution functions

In this section, we cover details of the distribution func-
tions which have been omitted from the main part.
We start with formal definitions in Appx. D.5.1. In
Appx. D.5.2, we analytically calculate the expectation
of equivalent vector components if the vector magni-

tude follows a lognormal distribution. Next, the proce-
dure how to suppress border contributions is discussed
(Appx. D.5.3). We close with further examples of distri-
bution functions of the current density in Appx. D.5.4.

D.5.1 Normal and lognormal distribution & deviations from distributions

Normal distribution

A normal or Gaussian distribution is given by

Pnormal(x) = 1√
2πσ

exp
[
− (x− µ)2

2σ2

]
. (D.6)

It is solely parameterized by its mean value µ,

µ =
∫
xP(x) dx , (D.7)

and its width σ,

σ2 =
∫

(x− µ)2 P(x) dx . (D.8)

Lognormal distribution

A quantity x follows a lognormal distribution if the log-
arithm ln x follows a normal distribution, i.e.,

Plognormal(ln x) = 1√
2πσ

exp
[
− (ln x− µ)2

2σ2

]
. (D.9)

It is also solely parameterized by its mean value µ and
width σ, both with respect to the logarithm of x.
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Deviation from a lognormal distribution

For classification of the distribution functions, we use
the mean value µ and the width σ. These two val-
ues do not ensure that a quantity follows a normal or
lognormal distribution. Historically, we used higher
moments (skewness ν, kurtosis ω and excess kurto-
sis γ = ω−3) to quantify deviations from a (log)normal
distribution. We found this procedure to be insuffi-
cient because it neglects all differences in higher mo-
ments. Therefore, to quantify the deviation of a (nu-

merically calculated) distribution function P(ln x) from
the lognormal-distribution Plognormal(ln x), we define a
deviation measure ∆Pln x that uses the complete range
in which the distribution function P(ln x) is reliable.
We define ∆Pln x as the logarithmic root mean square
deviation between the two distributions with an addi-
tional cutoff Λ which cuts off statistical unlikely unreli-
able values:

∆Pln x =

√√√√√√
1

2
√

2σ2Λ

lnµ+
√

2σ2Λ∫

lnµ−
√

2σ2Λ

d ln x
∣∣∣ lnP(ln x)− lnPlognormal(ln x)

∣∣∣
2

(D.10)

In this procedure, the lognormal distribu-
tion Plognormal(ln x) is parameterized by the mean µ and
the standard deviation σ of P(ln x). This exactly cor-
responds to the deviation of the distribution P(ln x) to
a (downward opening) parabola in double-logarithmic

plots like Figs. D.10 and D.11. We arbitrarily set the
cutoff to Λ = 2.5. The integration bounds lnµ±

√
2σ2Λ

are set in such a way that only values more likely than
e−Λ/

√
2πσ2 are taken into account.

Deviation from a uniform distribution

For quantities that are expected to follow a uniform
distribution

Puniform(x) =





1
b−a x ∈ [a, b]
0 else

, (D.11)

we define a deviation measure ∆Puniform as the relative

root mean square deviation, i.e.,

∆Puniform =

√√√√ 1
b− a

∫ b

a

dx
(
P(x)− Puniform
Puniform

)2

.

(D.12)

In this thesis, we use this measure for angle distribu-
tions, P(ϕ) and P(cos θ). The related deviation mea-
sures are named ∆Pϕ and ∆Pcos θ , respectively.

D.5.2 Lognormal distribution of a vector quantity

In this section, we analyze a 3-component vector j
whose magnitude j = |j| follows a lognormal distribu-
tion. We assume that the angles defining the component

jx = j sin θ cosϕ, jy = j sin θ sinϕ, and jz = j cos θ are
equally distributed, i.e., P(ϕ) = 1/2π and P(cos θ) =
1/2. For that case, we provide an analytic expression
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Figure D.8: Distribution functions Pcomponent and Plognormal for a linear and logarithmic scale. [Numerical
parameters: ̃ = 1, σ = 1.]

for the expectation value of a single vector component
of j.
To start, let the amplitude j follow a lognormal distri-

bution with mean value µ = ln ̃ and width σ:

P(ln j) = 1√
2πσ

exp
[
− (ln j − ln ̃)2

2σ2

]
. (D.13)

Then, the distribution function of the logarithm of a single component, e.g. ln |jz|, is given by

P(ln |jz|) =
2π∫

0

dϕ P(ϕ)

︸ ︷︷ ︸
1

+1∫

−1

dcos θ P(cos θ)︸ ︷︷ ︸
1/2

+∞∫

−∞

dln j P(ln j) δ
(

ln |jz| − ln(|j cos θ|)
)
. (D.14)

The ϕ-integral evaluates to unity (due to normaliza-
tion). The Dirac delta function forces the amplitude j
to equal j = |jz/cos θ|. This happens twice (for ± cos θ);
by including a factor of 2, we can restrict cos θ to posi-
tive values:

P(ln |jz|) = 1√
2πσ

+1∫

0

dcos θ exp
[
− (ln |jz/cos θ| − ln ̃)2

2σ2

]
.

(D.15)

The integral can be simplified using the substitution

t = ln |jz/cos θ| − ln ̃√
2σ

+ σ√
2
, (D.16)

d cos θ
dt = −

√
2σ e−

√
2σt+σ2 jz

̃
, (D.17)

leading to

P(ln |jz|) = eσ
2

2

2
|jz|
̃

erfc
( σ√

2
+ 1√

2σ
ln |jz|

̃

)

(D.18)
where we have introduced the complementary error
function erfc(x),

erfc(x) = 2√
π

∞∫

x

e−t
2

dt . (D.19)

In the main body of this thesis, we refer to P(ln |jz|)
as Pcomponent. Its behavior is shown in Fig. D.8 (red
curve) for a logarithmic and linear scale. For compar-
ison, a lognormal distribution is shown (in green) as
well. For large values, both distributions are similar.
For small values, Pcomponent shows a much heavier tail.
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Limiting behavior of Pcomponent

The limiting behavior can be reproduced analytically.
Employing the limits for x → ±∞ of the complemen-
tary error function,

lim
x→−∞

erfc(x) = 2 , (D.20)

and

lim
x→+∞

erfc(x) = e−x2

x
√
π
, (D.21)

the distribution functions limiting behavior is given by

lim
ln |jz |→−∞

P(ln |jz|) = e
σ2
2
|jz|
̃
∝ |jz| , (D.22)

lim
ln |jz |→+∞

P(ln |jz|) ∝ exp
[
− (ln |jz| − ln ̃)2

2σ2

]
.

(D.23)

Thus, for small values, a linear regime exists, whereas
a lognormal distribution is recovered for large values.

Remark: The linear regime for small values translates
to a constant regime on a non-logarithmic scale since
the linear term drops out when transforming the distri-
bution function:

P|jz |(|jz|) = Pln |jz |(ln |jz|)
d ln |jz|

d|jz|︸ ︷︷ ︸
1
|jz|

. (D.24)

D.5.3 Current density distribution function: suppressing border contributions

In Chap. 4, we plot several distribution functions of the
current density. We focus on the bulk limit; therefore
we want to suppress border contributions. In this sec-
tion, we provide the details on the procedure how the
borders effects are reduced.

We start with the current density response in three di-
mensional space, e.g., the current density response is
rastered in a cuboid with corners (xmin/max, ymin/max±
3Å, z0 ± 4Å), where xmin/max is the minimal and maxi-
mal x-coordinate of any atom in the device region (in-
cluding contact regions). z0 = 0 refers to the average
carbon plane. The distribution function of the current
density rastered that way is shown in Fig. D.9a. We
see very long tails for small values. We account the
tail to an exponential decay of the current density in z-
direction “outside” the AGNR. If the decay is indeed
exponential, the distribution function of the logarith-
mic current density should go to a constant for small
values. [That this still happens for smaller values is un-
likely because the employed basis functions in the DFT
cannot represent long exponential tails.] Apart from the
long tail clouding any interesting details, this definition
is also problematic since the height Lz of the ribbon is
not well-defined. [Here, we have used the height of the
rastered box, Lz = 8Å.]

To remove the long tails, we integrate the current den-
sity over z-direction. The corresponding distribution
function is shown in Fig. D.9b. The tails are already
significantly reduced. The drop-off at smaller values
is probably due to the finite precision used in the nu-
merical integration (double precision ε = 2.2 · 10−16,
ln ε = −36.05). There is still a heavy shoulder for small
values. These values can be attributed to contributions
at the y-border of the AGNR where the current contri-
butions also decay exponentially.

To remove this border effects, and simultaneously re-
duce the influence of the pristine leads, the integrated
current density is restricted to a rectangular area Acut
which is one carbon ring (2.878Å) distance away from
from the outer hydrogen atoms and from the contact
region (cf. Fig. D.9d). The obtained distribution of the
current density is shown in Fig. D.9c. The current mag-
nitude follows the lognormal distribution and the vector
components follow Pcomponent.

For the distributions of the magnetic field, we apply
a modified procedure. The magnetic field is not inte-
grated but restricted to the average carbon plane, z = 0.
In x/y-direction, it is also restricted to the area Acut.
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Figure D.9: (a) Distribution function for the current density response j� = dj/dVbias normalized to the average
through current per width and height, j�avg;yz = dItotal/(LyLzdVbias). The number of points Npoints used to
approximate the distribution function is shown in the plot title. (b) The current density response is integrated
over the z-direction and normalized to the average through current per width, j�avg;y = dItotal/(LydVbias).
(c) The current density response is integrated over the z-direction and additionally restricted to the region Acut.
(d) Geometry of the ribbon showing the definition of Acut.

152



D.5 Distribution functions

D.5.4 Further distribution functions for simulated current densities

Hydrogenated AGNR8×41:
infinitesimal bias voltage

In Fig. D.10, distribution functions for infinitesimal
bias voltages in hydrogenated AGNR8×41 (20% hy-
drogen concentration) are shown. In both cases, the
magnitude of the current density follows a lognormal
distribution, although the transmission differs by two
decades (T = 0.6 and T = 0.004). The main ef-
fect of a low transmission value is that the distribu-
tion is shifted to higher values. This is because the
current density is normalized to the average through
current j�avg;y = dItotal/(LydVbias). The latter vanishes
faster at an antiresonance with T → 0, so that the ratio
increases.

Hydrogenated AGNR8×41: finite bias voltage

In Fig. D.11, the distribution functions for two differ-
ent bias voltages Vbias are shown. Different bias volt-
ages mean that the current contributions of the differ-
ent number of transport states N =

∫ εF+eVbias
εF

ρ(E) dE

are included: Na = 14 and Nb = 36 for panels (a)
and (b), respectively. In both cases, the magnitude
of the current density follows a lognormal distribu-
tion. The width of the lognormal distribution decreases
for a larger number of states. Naively, from a sim-
ple summation of random quantities, one might ex-
pect a square root dependence, i.e., σ ∝ 1/

√
N . The

data, however, suggest that the decay of the width
is much slower; specifically, the decay of the widths,
σb/σa = 1.06/1.23 = 0.86, is slower than the decay
of the (inverse) square root of the number of states,√
Na/Nb =

√
14/36 = 0.62.

Pristine AGNR41

The current density distribution and the distributions
of the related angles of pristine AGNR41 are shown in
Fig. D.12. As usual, the current density is normalized
to the average through current. The distribution shows
only few values above 0 and no tails for larger (posi-
tive) values, i.e., only very few values exceed the average
through current.
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Figure D.10: Distribution functions for the current density response j� = dj/dVbias taken at (a) high and (b)
low transmission values. The current density is integrated over the z-direction and normalized to the average
through current j�avg;y = dItotal/(LydVbias). The colored arrows refer to Fig. 4.15 (top), where they mark
the energy at which the current density response is taken. The magenta parabola is a lognormal distribution
Plognormal parametrized by the mean µ and the width σ given in the plot titles. The expectation for a single
vector component, Pcomponent, is given by a black line.
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Figure D.11: Distribution functions for the current density j at two different bias voltages. The current
density is integrated over the z-direction and normalized to the average through current javg;y = Itotal/Ly.
The colored arrows refer to Fig. 4.15 (center), where they mark the energy range over which the current density
is integrated. The magenta parabola is a lognormal distribution Plognormal parametrized by the mean µ and
the width σ given in the plot titles. The expectation for a single vector component, Pcomponent, is given by the
black line.
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Figure D.12: (a) Distribution functions for the current density response j� = dj/dVbias . The current density
is integrated over the z-direction and normalized to the average through current j�avg;y = dItotal/(LydVbias).
Because of the exact z-mirror symmetry, the value of

∫
jz dz is always exactly zero. (b) The related distribution

for the angles. Because of the exact z-mirror symmetry, only cos θ = 0 is allowed, leading to a Dirac delta
function P(cos θ)=δ(cos θ).
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D.6 Raw data: magnetization response dmz/dVbias

In Sec. 4.3, especially in Fig. 4.19, we analyzed
the system size dependence of the magnetic re-
sponse dmz/dVbias. For that purpose, for each sys-
tem size, we calculated the magnetic response for sev-
eral energies Ei featuring high transmission values (see
Appx. D.7 for the transmission curves). The raw values
are shown in Tab. D.1.

The average values
〈

dmz

dVbias

〉
= 1
N

N∑

i=1

dmz(Ei)
dVbias

(D.25)

as well as the standard deviations

σdmz/dVbias =

√√√√ 1
N − 1

N∑

i=1

[〈
dmz

dVbias

〉
− dmz(Ei)

dVbias

]2

(D.26)
are shown in Tab. D.2.

System E − εF dmz/dVbias

AGNR6×29

−1.3150 eV +0.6611µB/V
−0.5115 eV −0.8719µB/V
−0.0605 eV +0.3792µB/V
+0.1835 eV −4.2071µB/V
+0.2130 eV +2.9794µB/V
+0.3910 eV +11.9696µB/V

AGNR8×41

−0.3030 eV +9.3981µB/V
−0.1400 eV −3.6439µB/V
−0.0950 eV +18.8951µB/V
+0.0070 eV −4.3672µB/V
+0.0590 eV −1.4230µB/V
+0.0865 eV −4.1040µB/V

AGNR12×59

−0.3330 eV +5.3899µB/V
−0.0725 eV −4.3827µB/V
+0.0155 eV −10.8772µB/V
+0.0440 eV +6.8316µB/V
+0.0660 eV +12.5626µB/V
+0.1820 eV −7.5150µB/V
+0.2115 eV −11.3322µB/V

AGNR16×83

−0.1835 eV −17.0402µB/V
−0.1040 eV −40.4304µB/V
−0.0450 eV −10.6666µB/V
+0.0975 eV +12.0678µB/V
+0.1225 eV +13.4251µB/V
+0.2195 eV +10.0110µB/V

System E − εF dmz/dVbias

AGNR8×14

−0.9090 eV −0.3929µB/V
−0.7540 eV −0.3992µB/V
−0.4675 eV −1.0914µB/V
+0.2730 eV +0.6555µB/V
+0.5610 eV +5.3023µB/V
+0.8710 eV −1.3445µB/V

AGNR12×20

−0.5015 eV −5.2491µB/V
−0.3060 eV +3.9614µB/V
−0.2480 eV −2.1956µB/V
+0.1820 eV +4.2866µB/V
+0.2035 eV −0.6291µB/V
+0.2170 eV +3.6162µB/V

AGNR16×29

−0.4625 eV +6.9511µB/V
−0.3320 eV −0.1153µB/V
−0.0105 eV +3.6212µB/V
+0.1615 eV −4.8307µB/V
+0.3925 eV +3.4705µB/V
+0.4475 eV +0.3718µB/V

AGNR24×41

−1.0550 eV −15.2517µB/V
−0.9350 eV −0.8779µB/V
−0.7000 eV +3.2307µB/V
+0.2485 eV +10.5061µB/V
+0.2980 eV −2.6444µB/V
+0.3130 eV −3.9263µB/V

AGNR34×59

−0.3660 eV +2.7975µB/V
−0.3095 eV +15.9137µB/V
−0.2650 eV −19.3498µB/V
+0.1525 eV +12.0663µB/V
+0.2125 eV +0.5942µB/V
+0.2200 eV −4.5360µB/V

Table D.1: The magnetic response dmz/dVbias taken at energies with high transmission values for several
differently sized AGNRNx×Ny. The data is used in Fig. 4.19 to discuss the system size dependence of the
magnetic response.
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D Appendix: Application II: Graphene with hydrogen adsorbates

System 〈dmz/dVbias〉 σdmz/dVbias

AGNR6×29 +1.8184µB/V 5.5018µB/V
AGNR8×41 +2.4592µB/V 9.5946µB/V
AGNR12×59 −1.3319µB/V 9.5179µB/V
AGNR16×83 −5.4389µB/V 21.3886µB/V

System 〈dmz/dVbias〉 σdmz/dVbias

AGNR8×14 +0.4550µB/V 2.4745µB/V
AGNR12×20 +0.6317µB/V 3.9375µB/V
AGNR16×29 +1.5781µB/V 4.0502µB/V
AGNR24×41 −1.4939µB/V 8.5231µB/V
AGNR34×59 +1.2476µB/V 12.5911µB/V

Table D.2: The average and standard deviation of the magnetic responses dmz/dVbias listed in Tab. D.1.

D.7 Raw data: transmission & distribution functions

In Sec. 4.2.1 and Sec. 4.2.2, we investigated the depen-
dence on the system size and on the impurity concentra-
tion, respectively, on the flow of the moments belonging
to the distribution functions of the underlying current
density. For that purpose, we calculated the transmis-
sion function for each system, and selected six energies
which feature transmission peaks. For these six ener-
gies, the current density response and the associated
distributions were calculated. Then, we averaged the
moments over all six energies and discussed the flow in
dependence on system size and hydrogen concentration
(cf. Fig. 4.11 and Fig. 4.12).

In this appendix, we present a selection of the raw data.
For each system, we show the transmission curve. The
six selected energies are marked by red boxes. For one
of these energies (marked by a filled red box), the cor-
responding distribution function of the current density
is also plotted. Its mean value µ and width σ, as well
as the deviation measures (as defined in Appx. D.5.1)
are given in the title off each distribution function. In

all cases, a lognormal distribution Plognormal parameter-
ized by mean µ and width σ is shown for comparison
(solid magenta). The expectation Pcomponent for a sin-
gle vector component (cf. Appx. D.5.2) is drawn as a
solid black line.

In some systems, we also analyzed the relaxation ef-
fects (cf. Sec. 4.4). In that cases, a transmission func-
tion Tunrelaxed for the unrelaxed ribbon is also plotted
(dashed cyan).

On the following pages, the described selection of the
raw data is shown for

• size dependence in Appx. D.7.1,

• impurity concentration variation in Appx. D.7.2,

• AGNR 41/42/43 dependence in Appx. D.7.3.

Afterwards, the statistical values of all distribution
functions (same order as in Fig. D.13–Fig. D.18) are
listed in Tab. D.3–Tab. D.5.
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D.7 Raw data: transmission & distribution functions

D.7.1 Size dependence
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Figure D.13: Raw data for different sizes of square hydrogenated AGNRs (20% hydrogen, L/W = 1).
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D Appendix: Application II: Graphene with hydrogen adsorbates

Size dependence (continued)
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Figure D.14: Raw data for different sizes of wide hydrogenated AGNRs (20% hydrogen, L/W = 3).
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D.7 Raw data: transmission & distribution functions

D.7.2 Impurity concentration variation
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Figure D.15: Raw data for varying hydrogen concentration of a square AGNR24×41 (L/W = 1). (a) The
transmission function Tpristine of pristine AGNR has been omitted in favor of a legend since Tpristine is shown
in all other transmission plots anyway.
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D Appendix: Application II: Graphene with hydrogen adsorbates

Impurity concentration variation (continued)

Legend (b)-(f)
T

Tpristine

Tunrelaxed

sample points
for P

(
j(r)

)

Legend (g)-(l)
ln(|j�int

x |/j�avg;y)

ln(|j�int
y |/j�avg;y)

ln(|j�int
z |/j�avg;y)

ln(|j�int|/j�avg;y)

Plognormal

Pcomponent

j�int =
∫
dz dj/dVbias

0

1

2

3

4

−1.5 −1 −0.5 0 0.5 1 1.5

T
ra

ns
m

is
si

on
T
(E

)
Energy E − εF [eV]

(b) AGNR8x41, 1% H
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(e) AGNR8x41, 20% H (1)

0

1

2

3

4

−1.5 −1 −0.5 0 0.5 1 1.5

T
ra

ns
m

is
si

on
T
(E

)

Energy E − εF [eV]

(f) AGNR8x41, 40% H

10−5

10−4

10−3

10−2

10−1

100

−10 −5 0 5 10

P
( l
n
(|
∫ d

z
j� i
|/
j� av

g;
y
))

ln(|
∫
dz j�i |/j�avg;y)

E − εF = 0.165 eV; T = 0.998; NPoints = 11220
µ = −0.577, σ = 1.49, ∆Pln j/ϕ/ cos θ

=∞/0.85/∞
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(k) AGNR8x41, 20% H (1)

10−5

10−4

10−3

10−2

10−1

100

−10 −5 0 5 10

P
( l
n
(|
∫ d

z
j� i
|/
j� av

g;
y
))

ln(|
∫
dz j�i |/j�avg;y)

E − εF = 0.249 eV; T = 0.88; NPoints = 11220
µ = 1.29, σ = 2.02, ∆Pln j/ϕ/ cos θ

= 0.46/0.11/0.26

(l) AGNR8x41, 40% H

Figure D.16: Raw data for varying hydrogen concentration of a wide AGNR8×41 (L/W = 3). (a) The
transmission function Tpristine of pristine AGNR has been omitted in favor of a legend since Tpristine is shown
in all other transmission plots anyway.
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D.7 Raw data: transmission & distribution functions

D.7.3 AGNR 41/42/43 dependence

0

1

2

3

4

−1.5 −1 −0.5 0 0.5 1 1.5

T
ra

ns
m

is
si

on
T
(E

)

Energy E − εF [eV]

(a) AGNR24x41, 20% H (2)
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(b) AGNR24x42, 20% H
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(c) AGNR24x43, 20% H
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(d) AGNR24x41, 20% H (2)
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(e) AGNR24x42, 20% H
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(f) AGNR24x43, 20% H

Figure D.17: Raw data for hydrogenated square AGNR24×41/42/43 (20% hydrogen, L/W = 1). Due to lack
of space, the legend is not reproduced (see previous pages).
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(a) AGNR8x41, 20% H (3)
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(b) AGNR8x42, 20% H
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(c) AGNR8x43, 20% H
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(d) AGNR8x41, 20% H (2)
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(e) AGNR8x42, 20% H
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(f) AGNR8x43, 20% H

Figure D.18: Raw data for hydrogenated wide AGNR8×41/42/43 (20% hydrogen, L/W = 3). Due to lack
of space, the legend is not reproduced (see previous pages).
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System E − εF T (E) dmz/dVbias µ(Pln j) σ(Pln j) ∆Pln j ∆Pϕ ∆Pcos θ

A
G
N
R
8x

14
20

%
H

−0.9090 eV 0.2954 −0.393µB/V 0.9981 1.3399 0.1277 0.5622 0.4008
−0.7540 eV 0.3386 −0.399µB/V 1.0436 1.2204 0.1463 0.4310 0.3487
−0.4675 eV 0.9282 −1.09µB/V 0.5851 1.0660 0.1841 0.3486 0.3660
+0.2730 eV 0.3019 +0.656µB/V 0.7021 1.5780 0.2104 0.3674 0.4230
+0.5610 eV 0.6074 +5.3µB/V 1.3262 1.6842 0.3986 0.3273 0.3145
+0.8710 eV 0.7729 −1.34µB/V 0.1926 1.1944 0.2088 0.3020 0.5124

A
G
N
R
12

x2
0

20
%

H
−0.5015 eV 0.9987 −5.25µB/V 0.8248 1.4275 0.5118 0.3367 0.3587
−0.3060 eV 0.9961 +3.96µB/V 0.5462 1.3121 0.1560 0.2717 0.3599
−0.2480 eV 0.9697 −2.2µB/V 1.7501 1.5494 0.2910 0.2297 0.3343
+0.1820 eV 0.5302 +4.29µB/V 2.1480 1.8125 0.1607 0.1951 0.3213
+0.2035 eV 0.4099 −0.629µB/V 1.0549 1.2896 0.1585 0.2004 0.3049
+0.2170 eV 0.6599 +3.62µB/V 2.1199 1.2513 0.1598 0.2137 0.2890

A
G
N
R
16

x2
9

20
%

H

−0.4625 eV 0.8991 +6.95µB/V 0.2877 1.5069 0.1248 0.1923 0.4254
−0.3320 eV 0.6220 −0.115µB/V 1.3861 1.4475 0.2137 0.2541 0.3783
−0.0105 eV 0.5923 +3.62µB/V 1.5744 1.2834 0.0883 0.2640 0.2958
+0.1615 eV 0.3498 −4.83µB/V 2.5073 1.3759 0.1452 0.1619 0.2360
+0.3925 eV 0.2507 +3.47µB/V 1.7150 1.7886 0.1436 0.1044 0.2549
+0.4475 eV 0.6938 +0.372µB/V 1.2879 1.3663 0.0822 0.2090 0.2792

A
G
N
R
24

x4
1

20
%

H
(1
)

−0.2505 eV 0.8342 −20.1µB/V 0.7483 1.9559 0.2368 0.0828 0.3037
−0.1840 eV 0.7113 −2.15µB/V 0.8334 1.6644 0.1106 0.1279 0.3347
−0.1190 eV 0.6928 +11.5µB/V 0.1997 2.0014 0.2715 0.1653 0.3251
+0.0730 eV 0.6798 +0.586µB/V 0.9204 1.5236 0.0957 0.1653 0.3530
+0.1470 eV 0.7874 −12.4µB/V 1.1230 1.5968 0.0561 0.0747 0.3218
+0.1730 eV 0.5425 +13.4µB/V 1.5941 1.4222 0.1312 0.1172 0.3204

A
G
N
R
34

x5
9

20
%

H

−0.3660 eV 0.6509 +2.8µB/V 0.5694 1.8873 0.2304 0.0866 0.3123
−0.3095 eV 0.6958 +15.9µB/V 0.0955 2.7016 0.4387 0.0542 0.3092
−0.2650 eV 0.6025 −19.3µB/V 0.0240 2.4259 0.4382 0.1262 0.3143
+0.1525 eV 0.2778 +12.1µB/V −0.3291 2.7985 0.4070 0.0520 0.2788
+0.2125 eV 0.6112 +0.594µB/V 1.2548 1.6676 0.0798 0.0834 0.3063
+0.2200 eV 0.5486 −4.54µB/V 1.4540 1.7585 0.1655 0.0763 0.3074

A
G
N
R
6x

29
20

%
H

−1.3150 eV 1.9199 +0.661µB/V −0.0772 1.0716 0.1441 0.5741 0.3294
−0.5115 eV 0.7537 −0.872µB/V 0.1620 1.3891 0.1897 0.4370 0.3911
−0.0605 eV 0.6717 +0.379µB/V 0.8367 1.8668 0.3861 0.3026 0.2268
+0.0075 eV 0.8557 +35.6µB/V 2.6981 1.6417 0.4607 0.4078 0.3253
+0.1835 eV 0.9999 −4.21µB/V 0.8882 1.2488 0.2716 0.2862 0.3162
+0.2130 eV 0.3840 +2.98µB/V 1.4008 1.1698 0.1619 0.2775 0.2721

A
G
N
R
8x

41
20

%
H

(1
)

−0.4570 eV 0.7228 +1.3µB/V 0.3925 1.3175 0.1332 0.4304 0.4266
−0.0925 eV 0.6258 −0.7µB/V 1.0056 1.5739 0.4354 0.2384 0.3782
−0.0640 eV 0.6424 −1.78µB/V 1.3494 1.7189 0.4096 0.2549 0.4783
+0.0130 eV 0.9829 −3.53µB/V 1.5689 1.3280 0.1140 0.3196 0.4066
+0.1055 eV 0.7227 −11.3µB/V 2.3864 1.3507 0.2441 0.1681 0.3642
+0.1290 eV 0.6055 +0.154µB/V 1.2690 1.6147 0.1515 0.2114 0.3220

A
G
N
R
8x

41
20

%
H

(2
)

−0.4750 eV 0.9738 +6.95µB/V −0.4061 2.1427 0.3599 0.2161 0.3356
−0.1720 eV 0.7209 +4.69µB/V 1.3903 1.2021 0.2281 0.3220 0.4042
−0.1035 eV 0.9979 +7.16µB/V 0.1159 1.5548 0.2069 0.3285 0.4509
+0.0135 eV 0.9421 +5.05µB/V 1.2009 1.4521 0.3604 0.2647 0.4017
+0.1625 eV 0.9471 −0.397µB/V 2.0616 1.6557 0.2062 0.1767 0.3088
+0.1965 eV 0.8127 −2.26µB/V 2.3037 1.8516 0.2616 0.1236 0.2669

A
G
N
R
12

x5
9

20
%

H

−0.3330 eV 0.9867 +5.39µB/V −0.0372 2.0210 0.1585 0.1278 0.3200
−0.2490 eV 0.4289 +3.89µB/V 0.5764 2.2753 0.2646 0.1111 0.3331
−0.0725 eV 0.5645 −4.38µB/V 1.0371 1.6456 0.0800 0.1586 0.3125
+0.0155 eV 0.5584 −10.9µB/V 0.1561 2.1050 0.2302 0.1209 0.3080
+0.0440 eV 0.2878 +6.83µB/V 2.2938 1.3797 0.1591 0.1491 0.3111
+0.0660 eV 0.8691 +12.6µB/V 1.9347 1.3538 0.0764 0.1161 0.2914

A
G
N
R
16

x8
3

20
%

H

−0.1835 eV 0.4777 −17µB/V −1.8140 3.2002 0.4553 0.1311 0.3582
−0.1040 eV 0.8578 −40.4µB/V −0.2820 2.6604 0.1961 0.0975 0.3385
−0.0450 eV 0.5207 −10.7µB/V 1.9658 2.4992 0.3215 0.0871 0.3592
+0.0975 eV 0.8260 +12.1µB/V 1.0578 1.7898 0.1670 0.0853 0.3029
+0.1040 eV 0.6612 +67.8µB/V 2.6474 1.7039 0.0840 0.1265 0.3228
+0.1225 eV 0.8038 +13.4µB/V 0.2501 2.3483 0.3133 0.0861 0.2957

Table D.3: Statistical data of the distribution funtions Pln j = P[ln |j(E)|/j�avg;y]. The corresponding trans-
mission functions and selected distribution functions are shown in Fig. D.13–Fig. D.18



System E − εF T (E) dmz/dVbias µ(Pln j) σ(Pln j) ∆Pln j ∆Pϕ ∆Pcos θ

A
G
N
R
24

x4
1

0%
H

−0.2350 eV 0.9661 −0.000613µB/V −0.6173 1.5174 +∞ 0.8822 +∞
−0.2350 eV 0.9661 −0.000613µB/V −0.6173 1.5174 +∞ 0.8822 +∞
−0.2350 eV 0.9661 −0.000613µB/V −0.6173 1.5174 +∞ 0.8822 +∞
+0.1650 eV 1.0000 +0.00706µB/V −0.5519 1.4868 +∞ 0.8464 +∞
+0.1650 eV 1.0000 +0.00706µB/V −0.5519 1.4868 +∞ 0.8464 +∞
+0.1650 eV 1.0000 +0.00706µB/V −0.5519 1.4868 +∞ 0.8464 +∞

A
G
N
R
24

x4
1

1%
H

−0.1215 eV 0.3679 +1.08µB/V 1.2788 1.3892 0.0818 0.2952 3.3620
−0.0715 eV 0.5502 −23µB/V 1.4765 1.7882 0.1780 0.2542 3.6078
−0.0390 eV 0.8731 +29.3µB/V 0.8792 1.6367 0.1780 0.2144 3.4119
+0.1285 eV 0.9452 −1.53µB/V 0.5894 1.2053 0.2096 0.4345 4.0815
+0.2805 eV 0.8925 −34.7µB/V 0.4971 1.2252 0.3429 0.3520 4.1346
+0.3035 eV 0.6146 −4.65µB/V 0.1291 1.1223 0.4239 0.7161 4.3325

A
G
N
R
24

x4
1

5%
H

−0.1835 eV 0.9366 +9.23µB/V 1.5195 1.4659 0.1035 0.1696 1.5146
−0.0930 eV 0.8666 −11.4µB/V 0.8846 1.5322 0.2009 0.1625 1.3365
−0.0095 eV 0.4674 −6.64µB/V 0.4203 1.5302 0.1947 0.3070 1.4530
+0.0025 eV 0.8036 −14.2µB/V 0.4923 1.6304 0.2440 0.2168 1.3837
+0.0295 eV 0.9071 +14.3µB/V 1.7116 1.7002 0.0661 0.1383 1.2550
+0.0410 eV 0.8983 −15.9µB/V 1.3704 1.4396 0.0900 0.1982 1.3205

A
G
N
R
24

x4
1

10
%

H

−0.0665 eV 0.7768 −5.65µB/V 1.2698 1.8946 0.2943 0.1302 0.8777
−0.0415 eV 0.2789 −12.7µB/V 1.3883 1.7472 0.3956 0.1244 0.9033
−0.0075 eV 0.6004 −8.5µB/V 0.9458 1.5103 0.5695 0.1949 0.8206
+0.0655 eV 0.9340 −7.54µB/V 1.6777 1.2955 0.1141 0.1678 0.7630
+0.1295 eV 0.3542 +15.9µB/V 2.4018 1.4354 0.0946 0.0911 0.7382
+0.1390 eV 0.7732 +6.48µB/V 2.2502 1.5160 0.0954 0.1110 0.6900

A
G
N
R
24

x4
1

20
%

H
(1
)

−0.2505 eV 0.8342 −20.1µB/V 0.7483 1.9559 0.2368 0.0828 0.3037
−0.1840 eV 0.7113 −2.15µB/V 0.8334 1.6644 0.1106 0.1279 0.3347
−0.1190 eV 0.6928 +11.5µB/V 0.1997 2.0014 0.2715 0.1653 0.3251
+0.0730 eV 0.6798 +0.586µB/V 0.9204 1.5236 0.0957 0.1653 0.3530
+0.1470 eV 0.7874 −12.4µB/V 1.1230 1.5968 0.0561 0.0747 0.3218
+0.1730 eV 0.5425 +13.4µB/V 1.5941 1.4222 0.1312 0.1172 0.3204

A
G
N
R
24

x4
1

40
%

H

−1.4750 eV 0.3874 −1.54µB/V −0.0906 2.5091 0.3193 0.1756 0.2811
−1.3700 eV 0.4011 +0.686µB/V 0.6564 2.2802 0.2199 0.1929 0.2999
−1.0100 eV 0.2411 −2.23µB/V 0.0710 2.3313 0.2963 0.1666 0.3262
+0.3935 eV 0.3170 −1.34µB/V 1.0828 1.8347 0.0744 0.1410 0.3239
+0.4145 eV 0.3475 +0.0593µB/V 1.9014 1.6171 0.0625 0.1190 0.3264
+0.4515 eV 0.6159 +17.7µB/V 0.9223 2.1846 0.1396 0.0582 0.2685

A
G
N
R
8x

41
0%

H

−0.2350 eV 0.9960 −0.000461µB/V −0.6459 1.5270 +∞ 0.8943 +∞
−0.2350 eV 0.9960 −0.000461µB/V −0.6459 1.5270 +∞ 0.8943 +∞
−0.2350 eV 0.9960 −0.000461µB/V −0.6459 1.5270 +∞ 0.8943 +∞
+0.1650 eV 0.9985 +0.00059µB/V −0.5766 1.4921 +∞ 0.8544 +∞
+0.1650 eV 0.9985 +0.00059µB/V −0.5766 1.4921 +∞ 0.8544 +∞
+0.1650 eV 0.9985 +0.00059µB/V −0.5766 1.4921 +∞ 0.8544 +∞

A
G
N
R
8x

41
1%

H

−0.2350 eV 0.4926 −0.162µB/V −0.0289 1.1504 0.6796 0.6694 3.7350
−0.1350 eV 0.1636 −0.0967µB/V 0.4143 1.0869 0.4952 0.5622 3.4943
−0.0510 eV 0.1067 −8.89µB/V 3.6144 1.3897 0.1587 0.6313 3.2301
−0.0240 eV 0.3004 +9.06µB/V 1.7593 1.4254 0.2359 0.3108 3.5352
+0.0650 eV 0.2387 −0.216µB/V 0.3443 1.1566 0.5409 0.6442 3.6143
+0.1650 eV 0.5391 −0.043µB/V −0.0429 1.2553 0.7186 0.6793 3.7536

A
G
N
R
8x

41
5%

H

−0.5290 eV 0.8520 +7.26µB/V −0.0839 1.4013 0.4253 0.4324 1.4900
−0.2860 eV 0.8881 +2.41µB/V 0.6006 1.2023 0.1455 0.3987 1.7572
−0.1870 eV 0.9531 +3.97µB/V 0.4227 1.1900 0.1063 0.4130 1.6544
+0.0305 eV 0.5963 −2.95µB/V 2.0504 1.4798 0.1736 0.2363 1.5822
+0.1775 eV 0.8791 +9.31µB/V 0.9132 1.2268 0.1091 0.3764 1.7358
+0.3410 eV 0.6183 −0.262µB/V 0.7836 1.0711 0.3471 0.3962 1.7889

A
G
N
R
8x

41
10

%
H

−0.4625 eV 1.0589 −1.23µB/V 1.1717 1.2229 0.1139 0.3464 0.7319
−0.3600 eV 0.9433 +0.25µB/V 1.0028 1.0979 0.0833 0.2832 0.7433
−0.1605 eV 0.4973 −14.1µB/V 3.2432 1.4026 0.2171 0.2412 0.5881
+0.0320 eV 0.8113 −7.32µB/V 2.3310 1.4021 0.1418 0.2283 0.5276
+0.0595 eV 0.6309 −14.2µB/V 2.1408 1.7128 0.2359 0.2187 0.5542
+0.1150 eV 0.9789 +4.03µB/V 1.4525 1.2706 0.2097 0.4151 0.6562

Table D.4: Statistical data of the distribution funtions Pln j = P[ln |j(E)|/j�avg;y]. The corresponding trans-
mission functions and selected distribution functions are shown in Fig. D.13–Fig. D.18



System E − εF T (E) dmz/dVbias µ(Pln j) σ(Pln j) ∆Pln j ∆Pϕ ∆Pcos θ
A
G
N
R
8x

41
20

%
H

(1
)

−0.4570 eV 0.7228 +1.3µB/V 0.3925 1.3175 0.1332 0.4304 0.4266
−0.0925 eV 0.6258 −0.7µB/V 1.0056 1.5739 0.4354 0.2384 0.3782
−0.0640 eV 0.6424 −1.78µB/V 1.3494 1.7189 0.4096 0.2549 0.4783
+0.0130 eV 0.9829 −3.53µB/V 1.5689 1.3280 0.1140 0.3196 0.4066
+0.1055 eV 0.7227 −11.3µB/V 2.3864 1.3507 0.2441 0.1681 0.3642
+0.1290 eV 0.6055 +0.154µB/V 1.2690 1.6147 0.1515 0.2114 0.3220

A
G
N
R
8x

41
40

%
H

−0.6350 eV 0.4228 +3.74µB/V 0.0446 2.2411 0.3209 0.1288 0.2564
−0.5300 eV 0.3296 −1.98µB/V 0.8338 2.6668 0.5822 0.1720 0.3345
−0.1300 eV 0.3509 −0.546µB/V 0.9284 1.2390 0.0820 0.2814 0.2836
+0.1265 eV 0.3282 −7.06µB/V 2.1855 2.5937 0.6727 0.1880 0.2509
+0.2490 eV 0.8799 +3.09µB/V 1.2898 2.0213 0.4598 0.1096 0.2567
+0.2850 eV 0.8366 −0.0955µB/V 1.8489 1.6927 0.1867 0.1481 0.3058

A
G
N
R
24

x4
1

20
%

H
(2
)

−1.0550 eV 0.8519 −15.3µB/V 0.9244 1.5035 0.1971 0.1935 0.2677
−0.9350 eV 0.9788 −0.878µB/V 0.6365 1.9117 0.1298 0.2053 0.2671
−0.7000 eV 0.3517 +3.23µB/V 0.9351 2.0595 0.2487 0.1177 0.2731
+0.2485 eV 0.6520 +10.5µB/V 2.5481 1.7024 0.0788 0.0775 0.2994
+0.2980 eV 0.2808 −2.64µB/V 1.5481 1.5655 0.1704 0.0977 0.2854
+0.3130 eV 0.3649 −3.93µB/V 1.2059 1.7076 0.0686 0.1260 0.2687

A
G
N
R
24

x4
2

20
%

H

−0.9450 eV 0.7762 +0.887µB/V 0.7803 1.4495 0.1050 0.1735 0.2905
−0.7500 eV 0.4543 +5.23µB/V 0.2808 1.7188 0.0671 0.2546 0.2840
−0.6050 eV 0.9389 +1.55µB/V 1.1803 1.3361 0.0644 0.1486 0.2928
+0.1935 eV 0.2597 −14.2µB/V 1.9346 1.3567 0.0449 0.1297 0.2872
+0.2120 eV 0.5030 −3.78µB/V 1.8167 1.3438 0.0653 0.1201 0.3182
+0.2195 eV 0.6608 −12.9µB/V 2.3175 1.5278 0.0676 0.1323 0.3036

A
G
N
R
24

x4
3

20
%

H

−0.9940 eV 0.4797 +6.04µB/V 0.8639 1.6235 0.2083 0.1406 0.2958
−0.8790 eV 0.8087 +0.429µB/V −0.0320 2.0050 0.5707 0.2124 0.2682
−0.7190 eV 0.3501 +4.47µB/V −0.1113 1.9987 0.5194 0.2294 0.2909
+0.2005 eV 0.4804 +1.6µB/V 0.8770 1.6464 0.2426 0.1246 0.2960
+0.2365 eV 0.5232 +1.39µB/V 1.3952 1.4271 0.1089 0.1621 0.2750
+0.2535 eV 0.5719 −3.37µB/V 1.0257 1.7548 0.3104 0.2037 0.2761

A
G
N
R
8x

41
20

%
H

(2
)

−0.4750 eV 0.9738 +6.95µB/V −0.4061 2.1427 0.3599 0.2161 0.3356
−0.1720 eV 0.7209 +4.69µB/V 1.3903 1.2021 0.2281 0.3220 0.4042
−0.1035 eV 0.9979 +7.16µB/V 0.1159 1.5548 0.2069 0.3285 0.4509
+0.0135 eV 0.9421 +5.05µB/V 1.2009 1.4521 0.3604 0.2647 0.4017
+0.1625 eV 0.9471 −0.397µB/V 2.0616 1.6557 0.2062 0.1767 0.3088
+0.1965 eV 0.8127 −2.26µB/V 2.3037 1.8516 0.2616 0.1236 0.2669

A
G
N
R
8x

42
20

%
H

−0.5190 eV 0.9889 +3.99µB/V 0.2983 1.8816 0.5599 0.2758 0.3551
−0.4220 eV 0.7546 −1.74µB/V 1.1456 1.1269 0.1238 0.4181 0.3719
−0.2030 eV 0.3014 +4.16µB/V 1.6527 1.2511 0.0789 0.1863 0.3927
+0.1010 eV 0.6736 −12.7µB/V 1.7054 1.6421 0.2117 0.1659 0.3055
+0.1215 eV 0.6071 −8.55µB/V 1.9947 1.4827 0.2368 0.1463 0.3027
+0.1345 eV 0.3991 −6.15µB/V 2.9117 1.7628 0.2115 0.1475 0.2975

A
G
N
R
8x

43
20

%
H

−0.4050 eV 0.5309 −5.36µB/V −0.1026 1.8955 0.3651 0.2123 0.3520
−0.3400 eV 0.7012 +0.666µB/V 0.7839 1.4586 0.1365 0.2629 0.3298
−0.2320 eV 0.4584 +2.32µB/V 0.8506 2.0193 0.3039 0.2322 0.3154
+0.1655 eV 0.2619 −1.67µB/V 1.8803 1.8262 0.4697 0.1226 0.2703
+0.2855 eV 0.8540 +4.04µB/V 0.6839 2.1767 0.3244 0.2439 0.3016
+0.3185 eV 0.9866 +3.07µB/V 0.6351 1.7925 0.2857 0.1820 0.3057

Table D.5: Statistical data of the distribution funtions Pln j = P[ln |j(E)|/j�avg;y]. The corresponding trans-
mission functions and selected distribution functions are shown in Fig. D.13–Fig. D.18



E Appendix E

Spin effects

This appendix contains additional material that complements Chap. 5.

E.1 Comparison of different (approximate) groundstate spin configurations and
their influence on transmission and local current density

In Sec. 5.2.4, we discussed spin effects on the (spin-
unpolarized) current density response. For that pur-
pose, we calculated the total transmission with differ-
ent levels of spin theory (closed-shell, open-shell and
spinor DFT). The transmission plot and the compari-
son of the DFT groundstate energies are reproduced for
convenience in Fig. E.1 and Tab. E.1, respectively.

In this appendix, we present all current density pat-
terns which are calculated for the energies as marked
in Fig. E.1 by arrows. The current plots for the closed-
shell and open-shell category are shown in Fig. E.2 and
Fig. E.3, respectively. As claimed in the main body,
in each category, the current density normalized to the
transmission does not depend on the spin level of the
calculation (for finite transmission values).

One noticeable example is given by the current pattern
for E=εF+0.2 eV of the closed-shell category (Fig. E.2).
Although the transmission value ranges from T =0.24 to
T =0.86, the current pattern is virtually identical for all
closed-shell cases.

For a (nearly) vanishing transmission, the current pat-
tern is solely dominated by small local fluctuations
which are sensitive to small differences in the simu-
lations, as for example the exact spin configuration.
An example is given by the current density pattern
for E=εF+0.2 eV of the open-shell category (Fig. E.3).
In this case, the current patterns differ. In all other
cases, the current density normalized to the transmis-
sion only depends on the category but not on the exact
simulation details.
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Figure E.1: Total transmission for different DFT calculations comparing different levels of theory: open-shell,
closed-shell, and 2-component spinor calculation including spin-orbit interaction (SOI). All transmission curves
can be categorized as either “closed-shell-like” (bluish) or “open-shell-like” (reddish). The arrows represent
energy values for which the current density response has been calculated; green/red arrows refer to current
patterns which match/differ for the two categories. The current patterns inside each category always match
for non-vanishing transmission. The figure is a copy of Fig. 5.5, reproduced here for convenience.

∆E0[ eV] Sz[~]
FHI-aims closed

shell 0 0

(A) FHI-aims open
shell −0.478 1.91

(B) FHI-aims open
shell −0.016 0.05

(C) FHI-aims open
shell −0.310 1.08

∆E0[ eV] Sz[~]
Turbomole closed

shell 0 0

Turbomole open
shell −0.626 1

∆E0[ eV] S[~]

(a) T. SOI 0



−0.163
−0.044
+0.860




(b) T. SOI −0.014



−0.097
+0.021
−0.041




Table E.1: Comparison of DFT ground state energies E0 of the finite (uncoupled) cluster and of the overall
spin. We made sure to only compare energies which are calculated by the same code with the same basis
set because otherwise the differences are due to differences in the calculation scheme and not of physical
origin. In that sense, a closed-shell calculation is equivalent to an open-shell calculation where both spin
channels are forced to be the same. As energy zero point, we chose the energy of the closed-shell calculation
(if available; otherwise, we chose a random reference point). For information: the ground state DFT energies
used as references points are: FHI-aims closed-shell: E0 = 137514.8234 eV, Turbomole closed-shell: E0 =
137549.2636 eV, Turbomole SOI: E0 = 137599.2168 eV. The table is a copy of Tab. 5.1, reproduced here for
convenience.

166



Turbomoleclosed
shell

E
=
ε F
−

1.
10

eV
T

(E
)=

0.
56

5
E

=
ε F
−

0.
40

eV
T

(E
)=

1.
11

5
E

=
ε F
−

0.
15

eV
T

(E
)=

0.
05

5
E

=
ε F

+
0.

20
eV

T
(E

)=
0.

69
4

E
=
ε F

+
0.

75
eV

T
(E

)=
0.

31
7

E
=
ε F

+
1.

20
eV

T
(E

)=
0.

27
7

FHI-aimsclosed
shell

E
=
ε F
−

1.
10

eV
T

(E
)=

0.
62

8
E

=
ε F
−

0.
40

eV
T

(E
)=

1.
05

2
E

=
ε F
−

0.
15

eV
T

(E
)=

0.
05

1
E

=
ε F

+
0.

20
eV

T
(E

)=
0.

85
7

E
=
ε F

+
0.

75
eV

T
(E

)=
0.

33
2

E
=
ε F

+
1.

20
eV

T
(E

)=
0.

27
2

(B)FHI-aimsopen
shell

E
=
ε F
−

1.
10

e V
T

(E
)=

0.
65

7
E

=
ε F
−

0.
40

e V
T

(E
)=

1.
01

1
E

=
ε F
−

0.
15

e V
T

(E
)=

0.
04

4
E

=
ε F

+
0.

20
e V

T
(E

)=
0.

54
0

E
=
ε F

+
0.

75
e V

T
(E

)=
0.

36
3

E
=
ε F

+
1.

20
e V

T
(E

)=
0.

27
8

(C)FHI-aimsopen
shell

E
=
ε F
−

1.
10

e V
T

(E
)=

0.
74

4
E

=
ε F
−

0.
40

e V
T

(E
)=

1.
37

5
E

=
ε F
−

0.
15

e V
T

(E
)=

0.
04

9
E

=
ε F

+
0.

20
e V

T
(E

)=
0.

24
4

E
=
ε F

+
0.

75
e V

T
(E

)=
0.

38
4

E
=
ε F

+
1.

20
e V

T
(E

)=
0.

27
2

F
ig

ur
e

E
.2

:
T
he

cu
rr
en
t
de

ns
ity

fo
r
six

di
ffe

re
nt

en
er
gi
es

fo
r
al
lc

al
cu

la
tio

ns
in
sid

e
th
e
“c
lo
se
d-
sh
el
l-l
ik
e”

ca
te
go

ry
.
N
ot
e,

ho
w

th
e
cu

rr
en
t
de

ns
ity

pe
r
tr
an

sm
iss

io
n
is
in
de

pe
nd

en
t
of

th
e

ex
ac
t
tr
an

sm
iss

io
n
va
lu
e.

Pl
ea
se

re
fe
r
to

Fi
g.

5.
5
fo
r
th
e
tr
an

sm
iss

io
n
pl
ot
.



Turbomoleopen
shell

E
=
ε F
−

1.
10

eV
T

(E
)=

0.
61

0
E

=
ε F
−

0.
40

eV
T

(E
)=

0.
19

6
E

=
ε F
−

0.
15

eV
T

(E
)=

0.
67

9
E

=
ε F

+
0.

20
eV
T

(E
)=

0.
00

05
E

=
ε F

+
0.

75
eV

T
(E

)=
0.

64
4

E
=
ε F

+
1.

20
eV

T
(E

)=
0.

21
2

(A)FHI-aimsopen
shell

E
=
ε F
−

1.
10

eV
T

(E
)=

0.
74

9
E

=
ε F
−

0.
40

eV
T

(E
)=

0.
39

5
E

=
ε F
−

0.
15

eV
T

(E
)=

0.
58

6
E

=
ε F

+
0.

20
eV

T
(E

)=
0.

01
4

E
=
ε F

+
0.

75
eV

T
(E

)=
0.

59
8

E
=
ε F

+
1.

20
eV

T
(E

)=
0.

20
1

(a)TurbomoleSOI

E
=
ε F
−

1.
10

eV
T

(E
)=

0.
62

6
E

=
ε F
−

0.
40

eV
T

(E
)=

0.
22

0
E

=
ε F
−

0.
15

eV
T

(E
)=

0.
89

6
E

=
ε F

+
0.

20
eV

T
(E

)=
0.

00
2

E
=
ε F

+
0.

75
eV

T
(E

)=
0.

56
9

E
=
ε F

+
1.

20
eV

T
(E

)=
0.

21
1

(b)TurbomoleSOI

E
=
ε F
−

1.
10

eV
T

(E
)=

0.
64

8
E

=
ε F
−

0.
40

eV
T

(E
)=

0.
28

0
E

=
ε F
−

0.
15

eV
T

(E
)=

0.
98

9
E

=
ε F

+
0.

20
eV

T
(E

)=
0.

00
3

E
=
ε F

+
0.

75
eV

T
(E

)=
0.

46
7

E
=
ε F

+
1.

20
eV

T
(E

)=
0.

21
0

F
ig

ur
e

E
.3

:
T
he

cu
rr
en
t
de

ns
ity

fo
r
six

di
ffe

re
nt

en
er
gi
es

fo
r
al
lc

al
cu

la
tio

ns
in
sid

e
th
e
“o
pe

n-
sh
el
l-l
ik
e”

ca
te
go

ry
.
Fo

r
(n
ea
rly

)
va
ni
sh
in
g
tr
an

sm
iss

io
n,

e.
g.
,
at
E

=
ε F

+
0.

2e
V
,
th
e

cu
rr
en
t
flu

ct
ua

tio
ns

do
m
in
at
e
an

d
ar
e
hi
gh

ly
se
ns
iti
ve

to
th
e
ex
ac
t
gr
ou

nd
st
at
e
co
nfi

gu
ra
tio

n.
Pl
ea
se

re
fe
r
to

Fi
g.

5.
5
fo
r
th
e
tr
an

sm
iss

io
n
pl
ot
.



F Appendix F

Magnetic feedback: Self-consistency in
the induced orbital magnetism

This appendix contains additional material that complements Chap. 6. In
Appx. F.1, we shortly present implementation details on how the matrix elements
for the magnetic influence on the electron motion and spin are calculated. A deriva-
tion of the current density operator with applied vector potential A is given in
Appx. F.2.

F.1 Implementation details

Basis set transformation

In this section, we present how the matrix elements of
type ∆HLorentz

ij := 〈ϕ̃i|∆ĤLorentz|ϕ̃j〉, see Eq. (6.4), are
evaluated in our implementation. For that purpose, we
write the orthogonal basis set ϕ̃i(r) in terms of the non-
orthonormal basis ϕj(r) used in the underlying DFT
code,

ϕ̃i(r) =
∑

j

ϕj(r)
[
S
−1/2
]
ji
. (F.1)

The matrix element ∆ȞLorentz is evaluated in the non-
orthogonal basis set,

∆ȞLorentz
ij = 〈ϕi|∆ĤLorentz|ϕj〉 (F.2)

= 1
2m

∫
ϕ∗i (r)

{
i~q[A(r) · ∇+∇ ·A(r)]

+ q2A2(r)
}
ϕj(r) d3r

and then transformed back to the orthogonal basis set
by

∆HLorentz = S
−1/2 ∆ȞLorentz S

−1/2 . (F.3)

Internally, the matrix element is split,

∆ȞLorentz
ij = ∆ȟA

ij + (∆ȟA
ji)∗ + ∆ȟAA

ij , (F.4)

into two auxiliary integrals,

∆ȟA
ij = + i~q

2m

∫
ϕi(r) A(r) · [∇ϕj(r)] d3r (F.5)

and

∆ȟAA
ij = + q2

2m

∫
ϕi(r) A2(r)ϕj(r) d3r . (F.6)

For that purpose, we utilized that the vector potential
and the basis set are real, A(r) ∈ R and ϕi(r) ∈ R.
By employing integration by parts, the differential op-
erators now act solely on the basis functions. These
derivatives are calculated numerically with a precision
of O(10−10), cf. Eq. (2.32).

Similarly, the Zeeman term ∆HZeeman
ij :=

〈ϕ̃i|∆ĤZeeman|ϕ̃j〉, see Eq. (6.5), is internally calcu-
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lated with respect to the non-orthonormal real basis
set ϕi(r):

∆ȞZeeman
ij = q~

2m

∫
ϕi(r)

(
Bz(r) B∗xy(r)
Bxy(r) −Bz(r)

)
ϕj(r) d3r ,

(F.7)

and then transformed back,

∆HZeeman=
(
S
−1/2 0
0 S

−1/2

)
∆ȞZeeman

(
S
−1/2 0
0 S

−1/2

)
.

(F.8)

To additionally reduce the computational effort, one
can employ spin symmetries. In Eq. (F.7), only half
of the components in ∆ȞZeeman are independent. The
others are determined by the symmetries

[
∆ȞZeeman

]↑↑
= −

[
∆ȞZeeman

]↓↓
(F.9)

and
[
∆ȞZeeman

]↑↓
=
{[

∆ȞZeeman
]↓↑}∗

, (F.10)

where the star ∗ denotes complex conjugation.

Numerical Integration

For the numerical integration, we use a three-
dimensional trapezoidal rule, i.e., we replace the in-

tegral by a sum over three-dimensional equidistant
grid {ri} with spacing δ:

∫
d3rF (r)→ δ3

∑

ri

F (ri) . (F.11)

In the integrals of type Eq. (F.2) and Eq. (F.7), the
fastest varying parts of the integrand are the basis func-
tions, not the magnetic field, nor the vector potential.
To resolve the basis functions appropriately, we use a
small spacing of δ = 0.05Å (and below). We avoid
an expensive calculation of the magnetic field and vec-
tor potential on such a fine grid (scaling with O(δ−6),
cf. Sec. 2.4). Instead we employ a larger grid spacing
of δ = 0.2Å to calculate the current density and the
induced magnetic field and vector potential. Interme-
diate values are then estimated by a cubic spline inter-
polation as implemented in the GNU scientific library
(GSL)[202].

Gauge invariance

A large spatial average 〈A〉 of the vector potential shifts
all energies without having an influence on observables,
like energy differences or the magnetic field B =∇×A.
In this thesis, we employ Gauge invariance to remove
the spatial average 〈A〉 of the vector potential, i.e., we
replace A→ A−〈A〉. That choice also reduces the ex-
plicit contribution q

m
A(r)|Ψ(r)|2 of the vector potential

to the current density j(r), cf. Eq. (F.14).

F.2 Current density operator with applied vector potential A

For completeness, we give a short derivation of the cur-
rent operator. Classically, the current density operator
is given by

ĵ(r)
∣∣∣
classic

= π̂

m
δ(r− r̂) , (F.12)

with the kinetic momentum operator π̂. In quantum
mechanics, one uses the symmetrized version

ĵ(r) = {π̂, δ(r− r̂)}
2m (F.13)

with {A,B} = AB+BA denoting the anti-commutator.
Employing the principle of minimal coupling, i.e. π̂ =
p̂− qA(r̂), the expectation value of the current density

operator becomes

j(r) = 〈Ψ|̂j(r)|Ψ〉

= ~
2mi

(
Ψ∗(r)∇Ψ(r)−Ψ(r)∇Ψ∗(r)

)
(F.14)

− q

m
A(r)|Ψ(r)|2 .

Transforming to energy domain and employing the
Keldysh Green’s function G<, we get

j(r, E) = 1
2π

~
2m lim

r′→r
(∇r′ −∇r)G<(r, r′, E)

+ i
2π

q

m
A(r)G<(r, r, E) (F.15)

as given in the main body. In the last term, we rewrote
the density in terms of the Keldysh Green’s function,
|Ψ(r, E)|2 = n(r, E) = − i

2πG
<(r, r, E).
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Scientific Work

Attended Conferences & Workshops

• 18th HLRS Results and Review Workshop, 5–6 October 2015, HLRS, Stuttgart, Germany
Contribution: Ab initio transport calculations for functionalized graphene flakes

on a supercomputer (Talk)

• Conference: DPG-Frühjahrstagung (SKM), 15–20 March 2015, Berlin, Germany
Contribution: Ab-initio simulations of local current flows in functionalized

graphene flakes and ribbons (Talk)

• Workshop: Scientific Visualization & GPU Programming using CUDA,
20–24 October 2014, HLRS, Stuttgart, Germany

• Conference: DPG-Frühjahrstagung (SKM), 30 March–4 April 2014, Dresden, Germany
Contribution: Ab-initio simulations of local current flows in functionalized

graphene flakes and ribbons (Talk)

• Autumn School on Correlated Electrons: Emergent Phenomena in Correlated Matter,
23–27 September 2013, Forschungszentrum Jülich, Germany
Contribution: Ab-initio transport calculations of functionalized graphene flakes (Poster)

• Conference: Graphene Week 2013, 2–7 June 2013, Chemnitz, Germany
Contribution: Ab-initio transport calculations of functionalized graphene flakes (Poster)

• Conference: DPG-Frühjahrstagung (SKM), 10–15 March 2013, Regensburg, Germany
Contribution: Ab-initio transport calculations of functionalized graphene flakes (Talk)

• Workshop: Recent progress in Dynamical Mean-Field Theory and GW calculations,
17–20 December 2012, IPCMS, Strasbourg, France

• Summer School on Magnetism and Spintronics in Molecular Nanostructures,
16–22 September 2012, Ile de Porquerolles, France
Contribution: Towards ab-initio transport calculations of large graphene flakes (Poster)

• Workshop: Density Functional Theory and Beyond with Numeric Atom-Centered Orbitals,
28–31 August 2012, Free University Berlin, Germany
Contribution: Towards ab-initio transport calculations of large graphene flakes (Poster)

• Workshop: Electronic Correlations and Disorder in Quantum Matter,
31 March–3 April 2012, Karlsruhe, Germany

• Conference: Theoretical and Computational Nano-Photonics: TaCoNa-Photonics 2011,
26-28 October 2011, Physikzentrum, Bad Honnef, Germany
Contribution: B-spline modal method in comparison to the Fourier modal method (Poster)
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Teaching Experience

• SS 2015: Exercise to Introduction to Density functional theory:
Fundamentals and applications

• SS 2014: Exercise to Experimental Physics 6: Nuclei and Particles
(Kerne und Teilchen)

• WS 2012/13: Exercise to Theoretical Physics E: Quantum Mechanics II
(Quantenmechanik II)

• SS 2012: Exercise to Theoretical Physics F: Statistical Mechanics
(Statistische Mechanik)

• SS 2011: Exercise to Theoretical Optics
(Theoretische Optik)

• WS 2010/11: Exercise to Computer Application
(Rechnernutzung)

• SS 2009: Exercise to Theoretical Physics B: Classical Mechanics
(Klassische Mechanik)
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