
Practical Massively Parallel Sorting

Michael Axtmann
Karlsruhe Inst. of Technology

Karlsruhe, Germany
michael.axtmann@kit.edu

Timo Bingmann
Karlsruhe Inst. of Technology

Karlsruhe, Germany
bingmann@kit.edu

Peter Sanders
Karlsruhe Inst. of Technology

Karlsruhe, Germany
sanders@kit.edu

Christian Schulz
Karlsruhe Inst. of Technology

Karlsruhe, Germany
christian.schulz@kit.edu

ABSTRACT
Previous parallel sorting algorithms do not scale to the largest avail-
able machines, since they either have prohibitive communication
volume or prohibitive critical path length. We describe algorithms
that are a viable compromise and overcome this gap both in theory
and practice. The algorithms are multi-level generalizations of the
known algorithms sample sort and multiway mergesort. In partic-
ular our sample sort variant turns out to be very scalable. Some
tools we develop may be of independent interest – a simple, practi-
cal, and flexible sorting algorithm for small inputs working in log-
arithmic time, a near linear time optimal algorithm for solving a
constrained bin packing problem, and an algorithm for data deliv-
ery, that guarantees a small number of message startups on each
processor.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Sorting and
searching; D.1.3 [PROGRAMMING TECHNIQUES]: Parallel
programming

General Terms
Sorting

Keywords
parallel sorting, multiway mergesort, sample sort

1. INTRODUCTION
Sorting is one of the most fundamental non-numeric algorithms

which is needed in a multitude of applications. For example, load
balancing in supercomputers often uses space-filling curves. This
boils down to sorting data by their position on the curve for load
balancing. Note that in this case most of the work is done for the
application and the inputs are relatively small. For these cases, we
need sorting algorithms that are not only asymptotically efficient

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA ’15 Portland, Oregon USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

for huge inputs but as fast as possible down to the range where near
linear speedup is out of the question.

We study the problem of sorting n elements evenly distributed
over p processing elements (PEs) numbered 1..p.1 The output re-
quirement is that the PEs store a permutation of the input elements
such that the elements on each PE are sorted and such that no ele-
ment on PE i is larger than any elements on PE i+ 1.

There is a gap between the theory and practice of parallel sorting
algorithms. Between the 1960s and the early 1990s there has been
intensive work on achieving asymptotically fast and efficient paral-
lel sorting algorithms. The “best” of these algorithms, e.g., Cole’s
celebrated O(log p) algorithm [9], have prohibitively large con-
stant factors. Some simpler algorithms with running timeO(log2 p),
however, contain interesting techniques that are in principle practi-
cal. These include parallelizations of well known sequential algo-
rithms like mergesort and quicksort [19]. However, when scaling
these algorithms to the largest machines, these algorithms cannot
be directly used since all data elements are moved a logarithmic
number of times which is prohibitive except for very small inputs.

For sorting large inputs, there are algorithms which have to move
the data only once. Parallel sample sort [6], is a generalization of
quicksort to p − 1 splitters (or pivots) which are chosen based on
a sufficiently large sample of the input. Each PE partitions its lo-
cal data into p pieces using the splitters and sends piece i to PE i.
After the resulting all-to-all exchange, each PE sorts its received
pieces locally. Since every PE at least has to receive the p−1 split-
ters, sample sort can only by efficient for n = Ω(p2/ log p), i.e.,
it has isoefficiency function Ω(p2/ log p) (see also [21]). Indeed,
the involved constant factors may be fairly large since the all-to-all
exchange implies p − 1 message startups if data exchange is done
directly.

In parallel p-way multiway mergesort [36, 33], each PE first sorts
its local data. Then, as in sample sort, the data is partitioned into
p pieces on each PE which are exchanged using an all-to-all ex-
change. Since the local data is sorted, it becomes feasible to par-
tition the data perfectly so that every PE gets the same amount of
data.2 Each PE receives p pieces which have to be merged together.
Multiway mergesort has an even worse isoefficiency function due
to the overhead for partitioning.

Compromises between these two extremes – high asymptotic
scalability but logarithmically many communication operations ver-
sus low scalability but only a single communication – have been

1We use the notation a..b as a shorthand for {a, . . . , b}.
2Of course this is only possible up to rounding n/p up or down.
To simplify the notation and discussion we will often neglect these
issues if they are easy to fix.

1

considered in the BSP model [35]. Gerbessiotis and Valiant [13]
develop a multi-level BSP variant of sample sort. Goodrich [14]
gives communication efficient sorting algorithms in the BSP model
based on multiway merging. However, these algorithms needs a
significant constant factor more communications per element than
our algorithms. Moreover, the BSP model allows arbitrarily fine-
grained communication at no additional cost. In particular, an im-
plementation of the global data exchange primitive of BSP that de-
livers messages directly has a bottleneck of p message startups for
every global message exchange. Also see Section 4.3 for a discus-
sion why it is not trivial to adapt the BSP algorithms to a more real-
istic model of computation – it turns out that for worst case inputs,
one PE may have to receive a large number of small messages.

In Section 4 we give building blocks that may also be of inde-
pendent interest. This includes a distributed memory algorithm for
partitioning p sorted sequences into r pieces each such that the cor-
responding pieces of each sequence can be multiway merged in-
dependently. We also give a simple and fast sorting algorithm for
very small inputs. This algorithm is very useful when speed is more
important than efficiency, e.g., for sorting samples in sample sort.
Finally, we present an algorithm for distributing data destined for
r groups of PEs in such a way that all PEs in a group get the same
amount of data and a similar amount of messages.

Sections 5 and 6 develop multi-level variants of multiway merge-
sort and sample sort respectively. The basic tuning parameter of
these two algorithms is the number of (recursion) levels. With k
levels, we basically trade moving the data k times for reducing the
startup overheads to O(k k

√
p). Recurse last multiway mergesort

(RLM-sort) described in Section 5 has the advantage of achieving
perfect load balance. The adaptive multi-level sample sort (AMS-
sort) introduced in Section 6 accepts a slight imbalance in the out-
put but is up to a factor log2 p faster for small inputs. A feature
of AMS-sort that is also interesting for single-level algorithms is
that it uses overpartitioning. This reduces the dependence of the
required sample size for achieving imbalance ε from O(1/ε2) to
O(1/ε). We have already outlined these algorithms in a preprint [1].

In Section 7 we report results of an experimental implementa-
tion of both algorithms. In particular AMS-sort scales up to 215

cores even for moderate input sizes. Multiple levels have a clear
advantage over the single-level variants.

2. PRELIMINARIES
For simplicity, we will assume all elements to have unique keys.

This is without loss of generality in the sense that we enforce this
assumption by an appropriate tie breaking scheme. For example,
replace a key x with a triple (x, y, z) where y is the PE number
where this element is input and z the position in the input array.
With some care, this can be implemented in such a way that y and z
do not have to be stored or communicated explicitly. In Appendix D
we outline how this can be implemented efficiently for AMS-sort.

2.1 Model of Computation
A successful realistic model is (symmetric) single-ported mes-

sage passing: Sending a message of size ` machine words takes
time α + `β. The parameter α models startup overhead and β the
time to communicate a machine word. For simplicity of exposition,
we equate the machine word size with the size of a data element to
be sorted. We use this model whenever possible. In particular, it
yields good and realistic bounds for collective communication op-
erations. For example, we get time O(β`+ α log p) for broadcast,
reduction, and prefix sums over vectors of length ` [2, 30]. How-
ever, for moving the bulk of the data, we get very complex commu-
nication patterns where it is difficult to enforce the single-ported

requirement.
Our algorithms are bulk synchronous. Such algorithms are often

described in the framework of the BSP model [35]. However, it
is not clear how to implement the data exchange step of BSP effi-
ciently on a realistic parallel machine. In particular, actual imple-
mentations of the BSP model deliver the messages directly using up
to p startups. For massively parallel machines this is not scalable
enough. The BSP∗ model [4] takes this into account by imposing
a minimal message size. However, it also charges the cost for the
maximal message size occurring in a data exchange for all its mes-
sages and this would be too expensive for our sorting algorithms.
We therefore use our own model: We consider a black box data
exchange function Exch(P, h, r) telling us how long it takes to ex-
change data on a compact subnetwork of P PEs in such a way that
no PE receives or sends more than h words in total and at most r
messages in total. Note that all three parameters of the function
Exch(P, h, r) may be essential, as they model locality of commu-
nication, bottleneck communication volume (see also [7, 29]) and
startups respectively. Sometimes we also write Exch˜ (P, h, r) as
a shorthand for (1 + o(1))Exch(P, h, r) in order to summarize a
sum of Exch(·) terms by the dominant one. We will also use that to
absorb terms of the formO(α log p) andO(βr) since these are ob-
vious lower bounds for the data exchange as well. A lower bound
in the single-ported model for Exch(P, h, r) is hβ + rα if data is
delivered directly. There are reasons to believe that we can come
close to this but we are not aware of actual matching upper bounds.
There are offline scheduling algorithms which can deliver the data
using time hβ when startup overheads are ignored (using edge col-
oring of bipartite multi-graphs). However, this chops messages into
many blocks and also requires us to run a parallel edge-coloring al-
gorithm.

2.2 Multiway Merging and Partitioning
Sequential multiway merging of r sequences with total length

N can be done in time O(N log r). An efficient practical imple-
mentation may use tournament trees [20, 27, 33]. If r is small
enough, this is even cache efficient, i.e., it incurs only O(N/B)
cache faults where B is the cache block size. If r is too large, i.e.,
r > M/B for cache size M , then a multi-pass merging algorithm
may be advantageous. One could even consider a cache oblivious
implementation [8].

The dual operation for sample sort is partitioning the data ac-
cording to r − 1 splitters. This can be done with the same number
of comparisons and similarly cache efficiently as r-way merging
but has the additional advantage that it can be implemented with-
out causing branch mispredictions [32].

3. MORE RELATED WORK
Li and Sevcik [22] describe the idea of overpartitioning. How-

ever, they use centralized sorting of the sample and a master worker
load balancer dealing out buckets for sorting in order of decreasing
bucket size. This leads to very good load balance but is not scalable
enough for our purposes and heuristically disperses buckets over
all PEs. Achieving the more strict output format that our algorithm
provide would require an additional complete data exchange. Our
AMS-sort from Section 6 is fully parallelized without sequential
bottlenecks and optimally partitions consecutive ranges of buckets.

A state of the art practical parallel sorting algorithm is described
by Solomonik and Kale [34]. This single level algorithm can be
viewed as a hybrid between multiway mergesort and (determinis-
tic) sample sort. Sophisticated measures are taken for overlapping
internal work and communication. TritonSort [26] is a very suc-
cessful sorting algorithm from the database community. TritonSort

2

[c] [] [] [f]

[] [a] [e] []

[] [g] [] [b, d]

  [c, f]/[
0
c] [c, f]/[

0
a,

2
g] [c, f]/[

1
e] [c, f]/[

0
b,

1
d,

1
f]

[a, e]/[
1
c] [a, e]/[

0
a,

2
g] [a, e]/[

1
e] [a, e]/[

1
b,

1
d,

2
f]

[b, d, g]/[
1
c] [b, d, g]/[

0
a,

2
g] [b, d, g]/[

2
e] [b, d, g]/[

0
b,

1
d,

2
f]


gossip

[row]/[
rank
col]

r[c] = 2 r[a] = 0 ,
r[g] = 6

r[e] = 4 r[b] = 1 , r[d] = 3 ,
r[f] = 5

sum ranks
Figure 1: Example calculations done during fast work inefficient sorting algorithm on a 3× 4 array of processors. The entries in the matrix
on the right show elements received from the particular row and column during the allGather, and the corresponding calculated ranks.

is a version of single-level sample-sort with centralized generation
of splitters.

4. BUILDING BLOCKS

4.1 Multisequence Selection
In its simplest form, given sorted sequences d1, . . . , dp and a

rank k, multisequence selection asks for finding an element x with
rank k in the union of these sequences. If all elements are different,
x also defines positions in the sequences such that there is a total
number of k elements to the left of these positions.

There are several algorithms for multisequence selection, e.g.
[36, 33]. Here we propose a particularly simple and intuitive method
based on an adaptation of the well-known quick-select algorithm
[16, 24]. This algorithm may be folklore. The algorithm has also
been on the publicly available slides of Sanders’ lecture on parallel
algorithms since 2008 [28]. Figure 2 gives high level pseudo code.
The base case occurs if there is only a single element (and k = 1).
Otherwise, a random element is selected as a pivot. This can be
done in parallel by choosing the same random number between 1
and

∑
i |di| on all PEs. Using a prefix sum over the sizes of the

sequences, this element can be located easily in time O(α log p).
Where ordinary quickselect has to partition the input doing linear
work, we can exploit the sortedness of the sequences to obtain the
same information in time O(logD) with D := maxi |di| by do-
ing binary search in parallel on each PE. If items are evenly dis-
tributed, we have D = Θ(n

p
), and thus only timeO(log n

p
) for the

search, which partitions all the sequences into two parts. Deciding
whether we have to continue searching in the left or the right parts
needs a global reduction operation taking time O(α log p). The
expected depth of the recursion is O(log

∑
i |di|) = O(logn) as

in ordinary quickselect. Thus, the overall expected running time is

// select element with global rank k
Procedure multiSelect(d1, . . . , dp, k)

if
∑

1≤i≤p |di| = 1 then // base case
return the only nonempty element

select a pivot v // e.g. randomly
for i := 1 to p dopar

find ji such that di[1..ji] < v and d[ji + 1..] ≥ v
if
∑

1≤i≤p |ji| ≥ k then
return multiSelect(d1[1..j1], . . . , dp[1..jp], k)

else
return multiSelect(d1[j1 + 1..], . . . , dp[jp + 1..],

k −
∑

0≤i<p |ji|)

Figure 2: Multisequence selection algorithm.

O((α log p+ log n
p

) logn).
In our application, we have to perform r simultaneous execu-

tions of multisequence selection on the same input sequences but
on r different rank values. The involved collective communica-
tion operations will then get a vector of length r as input and their
running time using an asymptotically optimal implementation is
O(rβ + α log p) [2, 30]. Hence, the overall running time of multi-
sequence selection becomes

O((α log p+ rβ + r log n
p

) logn) . (1)

4.2 Fast Work Inefficient Sorting
We generalize an algorithm from [18] which may also be consid-

ered folklore. In its most simple form, the algorithm arranges n2

PEs as a square matrix using PE indices from 1..n×1..n. Input el-
ement i is assumed to be present at PE (i, i) initially. The elements
are first broadcast along rows and columns. Then, PE (i, j) com-
putes the result of comparing elements i and j (0 or 1). Summing
these comparison results over row i yields the rank of element i.

Our generalization works for a rectangular a × b array of pro-
cessors where a = O(

√
p) and b = O(

√
p). In particular, when

p = 2P is a power of two, then a = 2dP/2e and b = 2bP/2c.
Initially, there are n elements uniformly distributed over the PEs,
i.e. each PE has at most dn/pe elements as inputs. These are first
sorted locally in time O(n

p
log n

p
).

Then the locally sorted elements are gossiped (allGather) along
both rows and columns (see Figure 1), making sure that the re-
ceived elements are sorted. This can be achieved in time
O(α log p+ β n√

p
). For example, if the number of participating

PEs is a power of two, we can use the well known hypercube al-
gorithm for gossiping (e.g., [21]). The only modification is that
received sorted sequences are not simply concatenated but merged.
3

Elements received from column i are then ranked with respect to
the elements received from row j. This can be done in timeO(n√

p
)

by merging these two sequences. Summing these local ranks along
rows then yields the global rank of each element. If desired, this in-
formation can then be used for routing the input elements in such a
way that a globally sorted output is achieved. In our application this
is not necessary because we want to extract elements with certain
specified ranks as a sample. Either way, we get overall execution
time

O
(
α log p+ β n√

p
+ n

p
log n

p

)
. (2)

Note that for n polynomial in p this bound is O(α log p + β n√
p
).

This restrictions is fulfilled for all reasonable applications of this
sorting algorithm.

3For general p, we can also use a gather algorithm along a binary
tree and finally broadcast the result.

3

Simple Exchange:

< <

PE 9 PE 10

1 2 3 456 7 8 8 9 10 10

group 3

Only first stage, randomly permute PEs during prefix sum:
< <

13 5 1 9 3 3 16 4 7 10 2 26

Figure 3: Exchange schema without and with first stage: permutation of PEs

PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE 7 PE 8

1A 1b 2A 2b 3a 3B 4a 4B 5a 5B 6a 6B 7a 7B 8A 8b

3a 4a 5a 6a7a 1b 2b 8b1A 1A 2A 2A 8A 8A 3B 3B 4B 5B 5B 6B 6B 7B

distribute large pieces

3a 4a 5a 6a7a 1b 2b 8b

group 1 group 2distribute small pieces

Figure 4: Deterministic data delivery schema

4.3 Delivering Data to the Right Place
In the sorting algorithms considered here we face the follow-

ing data redistribution problem: Each PE has partitioned its locally
present data into r pieces. The pieces with number i have to be
moved to PE group i which consists of PEs (i− 1)r + 1..ir. Each
PE in a group should receive the same amount of data except for
rounding issues.

We begin with a simple approach and then refine it in order to
handle bad cases. The basic idea is to compute a prefix sum over the
piece sizes – this is a vector-valued prefix sum with vector length
r. As a result, each piece is labeled with a range of positions within
the group it belongs to. Positions are numbers between 1 and mi

where mi ≤ n/r is the number of elements assigned to group i.
An element with number j in group i is sent to PE (i−1) p

r
+d j

mi
e.

This way, each PE sends exactly n/p elements and receives at most
dmir/pe elements. Moreover, each piece is sent to one or two
target PEs responsible for handling it in the recursion. Thereby,
each PE sends at most 2r messages for the data exchange. Unfor-
tunately, the number of received messages, although the same on
the average, may vary widely in the worst case. There are inputs
where some PEs have to receive Ω(p) very small pieces. This hap-
pens when many consecutively numbered PEs send only very small
pieces of data (see PE 9 in the top of Figure 3).

One way to limit the number of received pieces is to use ran-
domization. We describe how to do this while keeping the data per-
fectly balanced. We describe this approach in two stages where al-
ready the first, rather simple stage gives a significant improvement.
The first stage is to choose the PE-numbering used for the prefix
sum as a (pseudo)random permutation within each group (see Ap-
pendix B). However, it can be shown that if all but p/r pieces are
very small, this would still imply a logarithmic factor higher startup
overheads for the data exchange at some PEs. In Appendix A we
give an advanced randomized algorithm that gets rid of this loga-

rithmic factor. But now we give an algorithm that is deterministic
and at least conceptually simpler.

4.3.1 A Deterministic Solution
The basic idea is to distribute small and large pieces separately.

In Figure 4 we illustrate the process. First, small pieces of size at
most n/2pr are enumerated using a prefix sum. Small piece i of
group j is assigned to PE bi/rc of group j. This way, all small
pieces are assigned without having to split them and no receiving
PE gets more than half its final load.

In the second phase, the remaining (large) pieces are assigned
taking the residual capacity of the PEs into account. PE i sends the
description of its piece for group j to PE bi/rc of group j. This
can be done in time Exch(p,O(r), r). Now, each group produces
an assignment of its large pieces independently, i.e., each group of
p/r PEs assigns up to p pieces – r on each PE. In the following, we
describe the assignment process for a single group.

Conceptually, we enumerate the unassigned elements on the one
hand and the unassigned slots able to take them on the other hand
and then map element i to slot i.4 To implement this, we compute
a prefix sum of the residual capacities of the receiving PEs on the
one hand and the sizes of the unassigned pieces of the other hand.
This yields two sorted sequences X and Y respectively which are
merged in order to locate the destination PEs of each large piece.
Assume that ties in values of X and Y are broken such that ele-
ments from X are considered smaller. In the merged sequence, a
subsequence of the form 〈xi, yj , . . . , yj+k, xi+1, z〉 indicates that
pieces j, . . . , j + k have to moved to PE i. Piece j + k may also
wrap over to PE i + 1, and possibly to PE i + 2 if z = xi+2. The
assumptions on the input guarantee that no further wrapping over
4A similar approach to data redistribution is described in [17].
However, here we can exploit special properties of the input to
obtain a simpler solution that avoids segmented gather and scatter
operations.

4

p = 4

PE 1 PE 2 PE 3 PE 4

sort locally
< < < <

r-way parallel multi-select with r = Θ(k
√
p) = 2

√
4.

< < < <

< < < < < < < < < <

Exch(p,
n
p ,O(r))

< < < <

merge locally
group 1 group 2

recurse on n
r

items with p
r

PEs recurse on n
r

items with p
r

PEs

ex
ec

ut
io

n

Figure 5: Algorithm schema of Recurse Last Parallel Multiway Mergesort

is possible since no piece can be larger than n/p and since every
PE has residual capacity at least n

2p
. Similarly, since large pieces

have size at least n/2pr and each PE gets assigned at most n/p
elements, no PE gets more than n

p
/ n
2pr

= 2r large pieces.
The difficult part is merging the two sorted sequences X and

Y . Here one can adapt and simplify the work efficient parallel
merging algorithm for EREW PRAMs from [15]. Essentially, one
first merges the p/r elements of X with a deterministic sample of
Y – we include the prefix sum for the first large piece on each PE
into Y . This merging operation can be done in timeO(α log(p/r))
using Batcher’s merging network [3]. Then each element of X has
to be located within the ≤ r local elements of Y on one particular
PE. Since it is impossible that these pieces (of total size ≤ rn/p)
fill more than 2r PEs (of residual capacity > n/2p), each PE will
have to locate only O(r) elements. This can be done using local
merging in time O(r). In other words, the special properties of the
considered sequence make it unnecessary to perform the contention
resolution measures making [15] somewhat complicated. Overall,
we get the following deterministic result (recall from Section 2.1
that Exch˜ (·) also absorbs terms of the form O(α log p+ βr)).

THEOREM 1. Data delivery of r × p pieces to r parts can be
implemented to run in time

Exch˜ (p, n
p
,O(r)) .

5. GENERALIZING MULTILEVEL MERGE-
SORT (RLM-SORT)

We subdivide the PEs into “natural” groups of size p′ on which
we want to recurse. Asymptotically, r:= p/p′ around k

√
p is a good

choice if we want to make k levels of recursion. However, we
may also fix p′ based on architectural properties. For example, in
a cluster of many-core machines, we might chose p′ as the number
of cores in one node. Similarly, if the network has a natural hierar-
chy, we will adapt p′ to that situation. For example, if PEs within
a rack are more tightly connected than inter-rack connections, we
may choose p′ to be the number of PEs within a rack. Other net-
works, e.g., meshes or tori have less pronounced cutting points.
However, it still makes sense to map groups to subnetworks with
nice properties, e.g., nearly cubic subnetworks. For simplicity, we
will assume that p is divisible by p′, and that r = Θ(k

√
p).

There are several ways to define multilevel multiway mergesort.
We describe a method we call “recurse last” (see Figure 5) that

needs to communicate the data only k times and avoids problems
with many small messages. Every PE sorts locally first. Then each
of these p sorted sequences is partitioned into r pieces in such a
way that the sum of these piece sizes is n/r for each of these r re-
sulting parts. In contrast to the single level algorithm, we run only r
multisequence selections in parallel and thus reduce the bottleneck
due to multisequence selection by a factor of p′.

Now we have to move the data to the responsible groups. We
defer to Section 4.3 which shows how this is possible using time
Exch˜ (p, n

p
,O(k
√
p)).

Afterwards, group i stores elements which are no larger than any
element in group i+ 1 and it suffices to recurse within each group.
However, we do not want to ignore the information already avail-
able – each PE stores not an entirely unsorted array but a number
of sorted sequences. This information is easy to use though – we
merge these sequences locally first and obtain locally sorted data
which can then be subjected to the next round of splitting.

THEOREM 2. RLM-sort with k = O(1) levels of recursion can
be implemented to run in time

O
((
α log p+ k

√
p β + k

√
p log n

p
+ n

p

)
logn

)
+

k∑
i=1

Exch˜ (
p

i
k , n

p
,O(k
√
p)
)
. (3)

PROOF. (Outline) Local sorting takes time O(n
p

logn). For
k = O(1) multiselections we get the bound from Equation (1),
O((α log p+ rβ+ r log n

p
) logn). Summing the latter two contri-

butions, we get the first term of Equation (3).
In level i of the recursion we have ri independent groups con-

taining p
ri

= p

pi/k
= p1−

i
k PEs each. An exchange within the

group in level i costs Exch˜ (p1−i/k, n
p
,O(r

ri
)) time. Since all in-

dependent exchanges are performed simultaneously, we only need
to sum over the k recursive levels, which yields the second term of
Equation (3).

Equation (3) is a fairly complicated expression but using some rea-
sonable assumptions we can simplify it. If all communications are
equally expensive, the sum becomes kExch˜ (p, n

p
,O(k
√
p)) – we

have k message exchanges involving all the data but we limit the
number of startups toO(k

√
p). On the other hand, on mesh or torus

networks, the first (global) exchange will dominate the cost and we
get Exch˜ (p, n

p
,O(k
√
p)) for the sum. If we also assume that data

5

p = 4

PE 1 PE 2 PE 3 PE 4

pick abr samples and perform fast work inefficient sort

partition locally by (br)−1 splitters s1, s2, s3 with r = Θ(k
√
p) = 2

√
4.

<
s1

<
s2

<
s3

<
s1

<
s2

<
s3

<
s1

<
s2

<
s3

<
s1

<
s2

<
s3

select group boundaries using binary search

< < < < < < << < < < <

Exch(p,
n
p (1 + ε),O(r))group 1 group 2

recurse on n
r

(1− ε) items with p
r

PEs recurse on n
r

(1 + ε) items with p
r

PEs

ex
ec

ut
io

n

Figure 6: Algorithm schema of AMS-sort

is delivered directly, Ω(k
√
p) startups hidden in the Exch˜ () term

will dominate the O(log2 p) startups in the remaining algorithm.
We can assume that n is bounded by a polynomial in p – other-
wise, a traditional single-phase multi-way mergesort would be a
better algorithm. This implies that logn = Θ(log p). Further-
more, if n = ω(p1+1/k log p) then n/p = ω(p

1
k log p), and the

term Ω(β n
p

) hidden in the data exchange term dominates the term

O(βp
1
k logn). Thus Equation (3) simplifies toO(n

p
logn) (essen-

tially the time for internal sorting) plus the data exchange term.
If we also assume α and β to be constants and estimate Exch˜ -

term as O(n
p

), we get execution time

O(k
√
p log2 p+

n

p
logn) .

From this, we can infer a O(p1+1/k log p) as isoefficiency func-
tion.

6. ADAPTIVE MULTI-LEVEL
SAMPLE SORT (AMS-SORT)

A good starting point is the multi-level sample sort algorithm by
Gerbessiotis and Valiant [13]. However, they use centralized sort-
ing of the sample and their data redistribution may lead to some
processors receiving Ω(p) messages (see also Section 4.3). We
improve on this algorithm in several ways to achieve a truly scal-
able algorithm. First, we sort the sample using fast parallel sorting.
Second, we use the advanced data delivery algorithms described
in Section 4.3, and third, we give a scalable parallel adaptation of
the idea of overpartitioning [22] in order to reduce the sample size
needed for good load balance.

But back to our version of multi-level sample sort (see Figure 6).
As in RLM-sort, our intention is to split the PEs into r groups of
size p′ = p/r each, such that each group processes elements with
consecutive ranks. To achieve this, we choose a random sample of
size abr where the oversampling factor a and the overpartitioning
factor b are tuning parameters. The sample is sorted using a fast
sorting algorithm. We assume the fast inefficient algorithm from
Section 4.2. Its execution time isO(abr

p
log abr

p
+β abr√

p
+α log p).

From the sorted sample, we choose br− 1 splitter elements with
equidistant rank. These splitters are broadcast to all PEs. This is
possible in time O(βbr + α log p).

Then every PE partitions its local data into br buckets corre-
sponding to these splitters. This takes time O(n

p
log(br)).

Using a global (all-)reduction, we then determine global bucket
sizes in time O(βbr + α log p). These can be used to assign buck-
ets to PE-groups in a load balanced way: Given an upper bound
L on the number of elements per PE-group, we can scan through
the array of bucket sizes and skip to the next PE-group when the
total load would exceed L. Using binary search on L this finds
an optimal value for L in time O(br logn) using a sequential al-
gorithm. In Appendix C we explain how this can be improved to
O(br log br) and, using parallelization, even to O(br + α log p).

LEMMA 1. The above binary search scanning algorithm in-
deed finds the optimal L.

PROOF. We first show that binary search suffices to find the op-
timal L for which the scanning algorithm succeeds. Let L∗ de-
note this value. For this to be true, it suffices to show that for
any L ≥ L∗, the scanning algorithm finds a feasible partition into
groups with load at most L. This works because the scanning al-
gorithm maintains the invariant that after defining i groups, the al-
gorithm with bound L has scanned at least as many buckets as the
algorithm with bound L∗. Hence, when the scanning algorithm
with bound L∗ has defined all groups, the one with bound L has
scanned at least as many buckets as the algorithm with bound L∗.
Applying this invariant to the final group yields the desired result.

Now we prove that no other algorithm can find a better solution.
Let L∗ denote the maximum group size of an optimal partition-
ing algorithm. We argue that the scanning algorithm with bound
L∗ will succeed. We now compare any optimal algorithm with the
scanning algorithm. Consider the first i buckets defined by both al-
gorithms. It follows by induction on i that the total size ssi of these
buckets for the scanning algorithm is at least as large as the corre-
sponding value s∗i for the optimal algorithm: This is certainly true
for i = 0 (ss0 = s∗0 = 0). For the induction step, suppose that the
optimal algorithm chooses a bucket of size y, i.e., s∗x+1 = s∗x + y.
By the induction hypothesis, we know that ssi ≥ s∗i . Now suppose,
the induction invariant would be violated for i + 1, i.e., ssi+1 <
s∗i+1. Overall, we get s∗i ≤ ssi < ssi+1 < s∗i+1. This implies that
ssi+1 − ssi – the size of group i + 1 for the scanning algorithm –
is smaller than y. Moreover, this group contains a proper subset of
the buckets included by the optimal algorithm. This is a impossible
since there is no reason why the scanning algorithm should not at
least achieve a bucket size s∗i+1 − ssi ≤ y ≤ L∗.

LEMMA 2. We can achieveL = (1+ε)n
r

with high probability
choosing appropriate b = Ω(1/ε) and ab = Ω(log r).

6

PROOF. We only give the basic idea of a proof. We argue that
the scanning algorithm is likely to succeed with L = (1 + ε)n

r
as a group size limit. Using Chernoff bounds it can be shown that
ab = Ω(log p) ensures that no bucket has size larger than n

r
with

high probability. Hence, the scanning algorithm can always build
feasible PE groups from one or multiple buckets.

Choosing b ≥ 2/ε means that the expected bucket size is ≤
ε
2
· n
r

. Indeed, most elements will be in buckets of size less than
εn
r

. Hence, when the scanning algorithm adds a bucket to a PE-
group such that the average group size n

r
is passed for the first

time, most of the time this additional group will also fit below the
limit of (1+ε)n

r
. Overall, the scanning algorithm will mostly form

groups of size exceeding n
r

and thus r groups will suffice to cover
all buckets of total size n.

The data splitting defined by the bucket group is then the input
for the data delivery algorithm described in Section 4.3. This takes
time Exch˜ (p, (1 + o(1))L, (2 + o(1))r)).

We recurse on the PE-groups similar to Section 5. Within the re-
cursion it can be exploited that the elements are already partitioned
into br buckets.

We get the following overall execution time for one level:

LEMMA 3. One level of AMS-sort works in time

O
(
n

p
log

r

ε
+ β

r

ε

)
+ Exch˜ (p, (1 + ε)n

p
,O(r)) . (4)

PROOF. (Outline) This follows from Lemma 2 and the individ-
ual running times described above using ab = Θ(max(log r, 1/ε)),
b = Θ(1/ε), and fast inefficient sorting for sorting the sample. The
sample sorting term then reads O(abr

p
log abr

p
+ β abr√

p
+ α log p)

which is o(n
p

log r
ε

+ β
ε

) + α log p. Note that the term α log p is
absorbed into the Exch˜ -term.

Compared to previous implementations of sample sort, including
the one from Gerbessiotis and Valiant [13], AMS-sort improves
the sample size from O(p log p/ε2) to O(p(log r + 1/ε)) and the
number of startup overheads in the Exch-term fromO(p) toO(r).

In the base case of AMS-sort, when the recursion reaches a sin-
gle PE, the local data is sorted sequentially.

THEOREM 3. Adaptive multi-level sample sort (AMS-sort) with
k levels of recursion and a factor (1 + ε) imbalance in the output
can be implemented to run in time

O

(
n

p
logn+ β

k2 k
√
p

ε

)
+

k∑
i=1

Exch˜ (
p

i
k , (1 + ε)n

p
,O(k
√
p)
)

if k = O(log p/ log log p) and 1
ε

= O(k
√
n).

PROOF. We choose r = k
√
p. Since errors multiply, we choose

ε′ = k
√

1 + ε− 1 = Θ(ε
k

) as the balance parameter for each level.
Using Lemma 3 we get the following terms.
For internal computation: O(n

p
) logn for the final internal sorting.

(We do not exploit that overpartitioning presorts the data to some
extent.) For partitioning, we apply Lemma 3 and get time

O
(
k log

r

ε′

)
= O

(
k
n

p
log

k k
√
p

ε

)
=
n

p
O
(

log p+ k log k + k log
1

ε

)
(5)

=
n

p
O(log p+ logn) .

The last estimate uses the preconditions k = O(log p/ log log p)
and 1

ε
= O(k

√
n) in order to simplify the theorem.

For communication volume we get k · β r
ε′ = O(β

k2 k√p
ε

). For
startup latencies we get O(αk log p) which can be absorbed into
the Exch˜ ()-terms.

The data exchange term is the same as for RLM-sort except that
we have a slight imbalance in the communication volume.

Using a similar argument as for RLM-sort, for constant k and
ε, we get an isoefficiency function of p1+1/k/ log p for r = k

√
p.

This is a factor log2 p better than for RLM-sort and is an indication
that AMS-sort might be the better algorithm – in particular if some
imbalance in the output is acceptable and if the inputs are rather
small.

Another indicator for the good scalability of AMS-sort is that
we can view it as a generalization of parallel quicksort that also
works efficiently for very small inputs. For example, suppose n =
O(p log p) and 1/ε = O(1). We run k = O(log p) levels of AMS-
sort with r = O(1) and ε′ = O(k/ε). This yields running time
O(log2 p log log p + α log2 p) using the bound from Equation (5)
for the local work. This does a factorO(log log p) more local work
than an asymptotically optimal algorithm. However, this is likely
to be irrelevant in practice since it is likely that α � log log p.
Also the factor log log pwould disappear in an implementation that
exploits the information gained during bucket partitioning.

7. EXPERIMENTAL RESULTS
We now present the results of our AMS-sort and RLM-sort ex-

periments. In our experiments we run a weak scaling benchmark,
which shows how the wall-time varies for an increasing number
of processors for a fixed amount of elements per processor. Fur-
thermore, in Appendix E we show additional experiments consid-
ering the effect of overpartitioning in more detail. The test covers
the AMS-sort and RLM-sort algorithms executed with 105, 106,
and 107 64-bit integers. We ran our experiments at the thin node
cluster of the SuperMUC (www.lrz.de/supermuc), a island-based
distributed system consisting of 18 islands, each with 512 compu-
tation nodes. However, the maximum number of islands available
to us was four. Each computation node has two Sandy Bridge-EP
Intel Xeon E5-2680 8-core processors with a nominal frequency of
2.7 GHz and 32 GByte of memory. However, jobs will run at the
standard frequency of 2.3 GHz as the LoadLeveler does not clas-
sify the implementation as accelerative based on the algorithm’s
energy consumption and runtime. A non-blocking topology tree
connects the nodes within an island using the Infiniband FDR10
network technology. Computation nodes are connected to the non-
blocking tree by Mellanox FDR ConnectX-3 InfiniBand mezzanine
adapters. A pruned tree connects the islands among each other with
a bi-directional bi-section bandwidth ratio of 4 : 1. The intercon-
nect has a theoretical bisection bandwidth of up to 35.6 TB/s.

7.1 Implementation Details
We implemented AMS-sort and RLM sort in C++ with the main

objective to demonstrate that multilevel algorithms can be useful
for large p and moderate n. We use naive prefix-sum based data de-
livery without randomization since we currently only use random
inputs anyway – for these the naive algorithm coincides with the
deterministic algorithm since all pieces are large with high proba-
bility.

AMS-sort implements overpartitioning, however using the sim-
ple sequential algorithm for bucket grouping which incurs an avoid-
able factor O(logn). Also, information stemming from overparti-
tioning is not yet exploited for the recursive subproblems. This

7

level p
k 512 2048 8192 32768

1 1 16 16 16 16

2 1 32 128 512 2048
2 16 16 16 16

3 1 8 16 32 64
2 4 8 16 32
3 16 16 16 16

Table 1: Selection of r for weak scaling experiments

p
n/p 512 2048 8192 32768

105 0.0228 0.0277 0.0359 0.0707
106 0.2212 0.2589 0.2687 0.9171
107 2.6523 2.9797 4.0625 6.0932

Table 2: AMS-sort median wall-times of weak scaling experiments
in seconds

means that overpartitioning is not yet as effective as it would be in
a full-fledged implementation.

We divide each level of the algorithms into four distinct phases:
splitter selection, bucket processing (multiway merging or distribu-
tion), data delivery, and local sorting. To measure the time of each
phase, we place a MPI barrier before each phase. Timings for these
phases are accumulated over all recursion levels.

The time for building MPI communicators (which can be consid-
erable) is not included in the running time since this can be viewed
as a precomputation that can be reused over arbitrary inputs.

The algorithms are written in C++11 and compiled with ver-
sion 15.0 of the Intel icpc compiler, using the full optimization
flag -O3 and the instruction set specified with -march=corei7-avx.
For inter-process communication, we use version version 1.3 of the
IBM mpich2 library.

During the bucket processing phase of RLM-sort, we use the
sequential_multiway_merge implementation of the GNU
Standard C++ Library to merge buckets [33]. We used our own im-
plementation of multisplitter partitioning in the bucket processing
phase, borrowed from super scalar sample sort [32].

For the data delivery phase, we use our own implementation of
a 1-factor algorithm [31] and compare it against the all-to-allv im-
plementation of the IBM mpich2 library. The 1-factor implemen-
tation performs up to p pairwise MPI_Isend and MPI_Irecv
operations to distribute the buckets to their target groups. In con-
trast to the mpich2 implementation, the 1-factor algorithm omits
the exchange of empty messages. We found that the 1-factor imple-
mentation is more stable and exchanges data with a higher through-
put on the average. Local sorting uses std::sort.

7.2 Weak Scaling Analysis
The experimental setting of the weak scaling test is as follows:

We benchmarked AMS-sort at 32, 128, 512, and 2048 nodes. Each
node executed 16 MPI processes. This results in 512, 2048, 8192,
and 32768 MPI processes. The benchmark configuration for 2048
nodes has been executed on four exclusively allocated islands. Ta-
ble 1 shows the level configurations of our algorithm. AMS-sort,
configured with more than one level, splits the remaining processes
into groups with a size of 16 MPI processes at the second to last
level. Thereby, the last level communicates just node-internally.
For the 3-level AMS-sort, we split the MPI processes at the first
level into 2dlog(p)/2e groups. AMS-sort configured the splitter se-

29 211 213 215

Number of MPI processes p

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sl
ow

do
w

n

n/p = 105

n/p = 106

n/p = 107

Figure 7: Slowdown of RLM-sort compared to AMS-sort based on
optimal level choice

lection phase with an overpartitioning factor of b = 16 and an
oversampling factor of a = 1.6 log10 n.

Figure 8 details the wall-time of AMS-sort up to three levels.
For each wall-time, we show the proportion of time taken by each
phase. The depicted wall-time is the median of five measurements.
Figure 12 in the Appendix shows the distribution of the wall-times.
Observe that AMS-sort is not limited by the splitter selection phase
in all test cases. In most cases, AMS-sort with more than one level
decreases the wall-time up to 8192 MPI processes. Also, there
is a speedup in the data delivery phase and no significant slow-
down in the bucket processing phase due to cache effects. In these
cases, the cost for partitioning the data and distributing more than
once is compensated by the decreased number of startups. For the
smaller volume of 105 elements per MPI process, note that 3-level
AMS-sort is much faster than 2-level AMS-sort in our experimen-
tal setup; the effect is reversed for more elements. Note that there
is inter-island data delivery at the first and second level of 3-level
AMS-sort. The slowdown of sorting 106 elements per MPI process
with 3-level AMS-sort compared to 2-level AMS-sort is small. So
we assume that the three level version becomes faster than the two
level version executed at more than four islands. In that case, it is
more reasonable to set the number of groups in the first level equal
the amount of islands. This results in inter-island communication
just within the first level.

Table 2 depicts the median wall-time of our weak scaling experi-
ments of AMS-sort. Each entry is selected based on the level which
performed best. For a fixed p, the wall-time increases almost linear
with the amount of elements per MPI process. One exception is
the wall-time for 8192 nodes and 107 elements. We were not able
to measure the 2-level AMS-sort as the MPI-implementation failed
during this experiment. The wall-time increases by a small factor
up to 8192 MPI processes for increasing p. Executed with 32768
MPI processes, AMS-sort is up to 3.5 times slower compared to
intra-island sorting, allocated at one whole island. The slowdown
can be feasibly explained by the interconnect which connects is-
lands among each other. The interconnect has an bandwidth ratio
of 4 : 1 compared to the intra-island interconnect.

Generally, for large p, the execution time fluctuates a lot (also see
Figure 12). This fluctuation is almost exclusively within the all-to-
all exchange. Further research has to show to what extent this is due
to interference due to network traffic of other applications or sub-
optimal implementation of all-to-all data exchange. Both effects
seem to be independent of the sorting algorithm however.

8

512 2048 8192 32768
Number of MPI processes p

0

500

1000

1500

2000

W
al

l-
ti

m
e

/1
0

5
[n

s]

n
p = 105

Data delivery
Bucket processing

Splitter selection
Local sort

1 Level 2 Level 3 Level

512 2048 8192 32768
Number of MPI processes p

0

200

400

600

800

1000

W
al

l-
ti

m
e

/1
0

6
[n

s]

n
p = 106

512 2048 8192 32768
Number of MPI processes p

0

200

400

600

800

1000

W
al

l-
ti

m
e

/1
0

7
[n

s]

n
p = 107

Figure 8: Weak scaling with 105, 106, and 107 elements per MPI
process of AMS-sort

Figure 7 illustrates the slowdown of RLM-sort compared to
AMS-sort. For each algorithm, we selected the number of levels
with the best wall-time. Note that the slowdown of RLM-sort is
higher than one in almost all test cases. The slowdown is signifi-
cantly increased for small n and large p. This observation matches
with the isoefficiency function of RLM-sort which is a log2 p factor
worse than the isoefficiency function of AMS-sort.

7.3 Comparison with Other Implementations
Comparisons to other systems are difficult, since it is not easy

to simply download other people’s software and to get it to run on
a large machine. Hence, we have to compare to the literature and
the web. Our absolute running times for n = 107p are similar to
those of observed in Solomonik and Kale [34] for n = 8 · 106 · p
on a CrayXT 4 with up to 215 PEs. This machine has somewhat
slower PEs (2.1 GHz AMD Barcelona) but higher communication
bandwidth per PE. No running times for smaller inputs are given.
It is likely that there the advantage of multilevel algorithms such as
ours becomes more visible. Still, we view it as likely that adapting
their techniques for overlapping communication and sorting might
be useful for our codes too.

A more recent experiment running on even more PEs is MP-sort
[12]. MP-sort is a single-level multiway mergesort that implements
local multiway merging by sorting from scratch. They run the same
weak scaling test as us using up to 160 000 cores of a Cray XE6
(16 AMD Opteron cores× 2 processors× 5 000 nodes). This code
is much slower than ours. For n = 105 · p, and p = 214 the
code needs 20.45 seconds – 289 times more than ours for p = 215.
When going to p = 80 000 the running time of MP-sort goes up by
another order of magnitude. At large p, MP-sort is hardly slower
for larger inputs (however still about six times slower than AMS-
sort). This is a clear indication that a single level algorithm does
not scale for small inputs.

Different but also interesting is the Sort Benchmark which is
quite established in the data base community (sortbenchmark.
org). The closest category is Minute-Sort. The 2014 winner,
Baidu-Sort (which uses the same algorithm as TritonSort [26]),
sorts 7 TB of data (100 byte elements with 10 byte random keys)
in 56.7s using 993 nodes with two 8-core processors (Intel Xeon
E5-2450, 2.2 GHz) each (p = 15 888). Compared to our experi-
ment at n = 107 · 215, they use about half as many cores as us,
and sort about 2.7 times more data. On the other hand, Baidu-Sort
takes about 9.3 times longer than our 2-level algorithm. and we
sort about 5 times more (8-byte) elements. Even disregarding that
we also sort about 5 times more (8-byte) elements, this leaves us
being about two times more efficient. This comparison is unfair to
some extent since Minute-Sort requires the input to be read from
disk and the result to be written to disk. However, the machine
used by Baidu-Sort has 993×8 hard disks. At a typical transfer rate
of 150 MB/s this means that, in principle, it is possible to read and
write more than 30 TB of data within the execution time. Hence, it
seems that also for Baidu-Sort, the network was the major perfor-
mance bottleneck.

8. CONCLUSION
We have shown how practical parallel sorting algorithms like

multi-way mergesort and sample sort can be generalized so that
they scale on massively parallel machines without incurring a large
additional amount of communication volume. Already our proto-
typical implementation of AMS-sort shows very competitive per-
formance that is probably the best by orders of magnitude for large
p and moderate n. For large n it can compete with the best single-
level algorithms.

9

sortbenchmark.org
sortbenchmark.org

Future work should include experiments on more PEs, a native
shared-memory implementation of the node-local level, a full im-
plementation of data delivery, faster implementation of overparti-
tioning, and, at least for large n, more overlapping of communica-
tion and computation. However, the major open problem seems to
be better data exchange algorithms, possibly independently of the
sorting algorithm.

Acknowledgments:. The authors gratefully acknowledge the
Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for
funding this project by providing computing time on the GCS Su-
percomputer SuperMUC at Leibniz Supercomputing Centre (LRZ,
www.lrz.de) Special thanks go to SAP AG, Ingo Mueller, and Se-
bastian Schlag for making their 1-factor algorithm [29] available.
Additionally, we would like to thank Christian Siebert for valuable
discussions.

9. REFERENCES
[1] M. Axtmann, T. Bingmann, P. Sanders, and C. Schulz.

Practical Massively Parallel Sorting – Basic Algorithmic
Ideas. Preprint arXiv:1410.6754v1, Oct. 2014.

[2] V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C. Ho,
S. Kipnis, and M. Snir. CCL: A portable and tunable
collective communication library for scalable parallel
computers. IEEE Transactions on Parallel and Distributed
Systems, 6(2):154–164, 1995.

[3] K. E. Batcher. Sorting networks and their applications. In
AFIPS Spring Joint Computing Conference, pages 307–314,
1968.

[4] A. Bäumker, W. Dittrich, and F. Meyer auf der Heide. Truly
efficient parallel algorithms: c-optimal multisearch for an
extension of the BSP model. In Algorithms âĂŤ ESA’95,
pages 17–30. Springer, 1995.

[5] T. Bingmann, A. Eberle, and P. Sanders. Engineering parallel
string sorting. Preprint arXiv:1403.2056, 2014.

[6] G. E. Blelloch et al. A comparison of sorting algorithms for
the connection machine CM-2. In 3rd Symposium on Parallel
Algorithms and Architectures, pages 3–16, 1991.

[7] S. Borkar. Exascale computing – a fact or a fiction? Keynote
presentation at IPDPS 2013, Boston, May 2013.

[8] G. S. Brodal, R. Fagerberg, and K. Vinther. Engineering a
cache-oblivious sorting algorithm. In 6th Workshop on
Algorithm Engineering and Experiments, 2004.

[9] R. Cole. Parallel merge sort. SIAM Journal on Computing,
17(4):770–785, 1988.

[10] R. Dementiev, P. Sanders, D. Schultes, and J. Sibeyn.
Engineering an external memory minimum spanning tree
algorithm. In IFIP TCS, pages 195–208, Toulouse, 2004.

[11] D. Dubhashi, V. Priebe, and D. Ranjan. Negative dependence
through the FKG inequality. Research Report
MPI-I-96-1-020, Max-Planck-Institut für Informatik, Im
Stadtwald, D-66123 Saarbrücken, Germany, Aug. 1996.

[12] Y. Feng, M. Straka, T. di Matteo, and R. Croft. MP-sort:
Sorting at scale on blue waters. https:
//www.writelatex.com/read/sttmdgqthvyv
accessed Jan 17, 2015, 2014.

[13] A. Gerbessiotis and L. Valiant. Direct bulk-synchronous
parallel algorithms. Journal of Parallel and Distributed
Computing, 22(2):251–267, 1994.

[14] M. T. Goodrich. Communication-efficient parallel sorting.
SIAM Journal on Computing, 29(2):416–432, 1999.

[15] T. Hagerup and C. Rüb. Optimal merging and sorting on the
EREW-PRAM. Information Processing Letters, 33:181–185,
1989.

[16] C. A. R. Hoare. Algorithm 65 (find). Communication of the
ACM, 4(7):321–322, 1961.

[17] L. Hübschle-Schneider, I. Müller, and P. Sanders.
Communication efficient algorithms for top-k selection
problems. submitted for SPAA 2015, 2015.

[18] M. Ikkert, T. Kieritz, and P. Sanders. Parallele Algorithmen.
course notes, October 2009.

[19] J. Jájá. An Introduction to Parallel Algorithms. Addison
Wesley, 1992.

[20] D. E. Knuth. The Art of Computer Programming—Sorting
and Searching. Addison Wesley, 1998.

[21] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction
to Parallel Computing. Design and Analysis of Algorithms.
Benjamin/Cummings, 1994.

[22] H. Li and K. C. Sevcik. Parallel sorting by overpartitioning.
In ACM Symposium on Parallel Architectures and
Algorithms, pages 46–56, Cape May, New Jersey, 1994.

[23] M. Luby and C. Rackoff. How to construct pseudorandom
permutations from pseudorandom functions. SIAM Journal
on Computing, 17(2):373–386, Apr. 1988.

[24] K. Mehlhorn and P. Sanders. Algorithms and Data Structures
— The Basic Toolbox. Springer, 2008.

[25] M. Naor and O. Reingold. On the construction of
pseudorandom permutations: Luby-Rackoff revisited.
Journal of Cryptology: the journal of the International
Association for Cryptologic Research, 12(1):29–66, 1999.

[26] A. Rasmussen, G. Porter, M. Conley, H. V. Madhyastha,
R. N. Mysore, A. Pucher, and A. Vahdat. Tritonsort: A
balanced large-scale sorting system. In NSDI, 2011.

[27] P. Sanders. Fast priority queues for cached memory. ACM
Journal of Experimental Algorithmics, 5, 2000.

[28] P. Sanders. Course on Parallel Algorithms, lecture notes,
2008. http://algo2.iti.kit.edu/sanders/
courses/paralg08/.

[29] P. Sanders, S. Schlag, and I. Müller. Communication efficient
algorithms for fundamental big data problems. In IEEE Int.
Conf. on Big Data, 2013.

[30] P. Sanders, J. Speck, and J. L. Träff. Two-tree algorithms for
full bandwidth broadcast, reduction and scan. Parallel
Computing, 35(12):581–594, 2009.

[31] P. Sanders and J. L. Träff. The factor algorithm for regular
all-to-all communication on clusters of SMP nodes. In 8th
Euro-Par, number 2400, pages 799–803. Springer c©, 2002.

[32] P. Sanders and S. Winkel. Super scalar sample sort. In 12th
European Symposium on Algorithms, volume 3221 of LNCS,
pages 784–796. Springer, 2004.

[33] J. Singler, P. Sanders, and F. Putze. MCSTL: The multi-core
standard template library. In 13th Euro-Par, volume 4641 of
LNCS, pages 682–694. Springer, 2007.

[34] E. Solomonik and L. Kale. Highly scalable parallel sorting.
In IEEE International Symposium on Parallel Distributed
Processing (IPDPS), pages 1–12, April 2010.

[35] L. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, 1994.

[36] P. J. Varman et al. Merging multiple lists on
hierarchical-memory multiprocessors. J. Par. & Distr. Comp.,
12(2):171–177, 1991.

10

www.gauss-centre.eu
www.lrz.de
https://www.writelatex.com/read/sttmdgqthvyv
https://www.writelatex.com/read/sttmdgqthvyv
http://algo2.iti.kit.edu/sanders/courses/paralg08/
http://algo2.iti.kit.edu/sanders/courses/paralg08/

APPENDIX
A. RANDOMIZED DATA DELIVERY

Our advanced randomized data delivery algorithm is asymptot-
ically more efficient than the simple one described in Section 4.3
and it may be simpler to implement than the deterministic one from
Section 4.3.1 since no parallel merging operation is needed. Com-
pared to the simple algorithm, the algorithm adds more random-
ization and invests some additional communication. The idea is to
break large pieces into several smaller pieces. A piece whose size
x exceeds a limit s is broken into bx/sc pieces of size s and one
piece of size x mod s. We set s := an/rp to be a times the av-
erage piece size n/rp where a is a tuning parameter to be chosen
later. The resulting small pieces (size below s) stay where they
are and the random permutation of the PE numbers takes care of
their random placement. The large pieces are delegated to another
(random) PE using a further random permutation. This is achieved
by enumerating them globally over all parts using a prefix sum.
Suppose there are K large pieces, then we use a pseudorandom
permutation π : 0..K − 1 → 0..K − 1 to delegate piece i to PE
1 + π(i) mod p. Note that this assignment only entails to tell PE j
about the origin of this piece and its target group – there is no need
to move the actual elements at this point. In Figure 9, we denote
the delegation tuples with origin PE p and target group r as (r, p).
Next, for each part, a PE reorders its small pieces and delegated
large pieces randomly (of course without choosing the intra-piece
sorting). Only then, a prefix sum is used to enumerate the elements
in each part. The ranges of numbers assigned to the pieces are then
communicated back to the PEs actually holding the data and we
continue as in the basic approach – computing target PEs based on
the received ranges of numbers.

LEMMA 4. The two stage approach needs time O(α log p +
rβ) + 2Exch(p,O(r/a), dr/ae) to assign data to target PEs.

PROOF. Each PE will produce at most n/p
s

= n/p
an/rp

= r/a

large pieces. Overall, there will be at most n
s

= n
an/rp

=

pr/a large pieces. The random mapping will delegate at most
dr/ae of these messages to each PE with high probability.
Since each delegation and notification message has constant size,
2Exch(p,O(r/a), dr/ae) accounts for the resulting communica-
tion costs. All involved prefix sums are vector valued prefix sum
with vector length r and can thus be implemented to run in time
O(α log p+rβ). This term also covers the local computations.

LEMMA 5. No PE sends more than 2r(1+1/a) messages dur-
ing the main data exchange of one phase of RLM-sort. More-
over, the total number of messages for a single part is at most
p(1 + 1/r + 1/a).

PROOF. As shown above, each PE produces at most r(1 + 1/a)
pieces, each of which may be split into at most two messages. For
each part, there are at most p small pieces and n/r

an/rp
= p/a large

pieces. At most p/r − 1 < p/r pieces can be split because their
assigned range of element numbers intersects the ranges of respon-
sibility of two PEs. Overall, we get p(1 + 1/r + 1/a) messages
per part.

LEMMA 6. Assuming that our pseudorandom permutations be-
have like truly random permutations, with probability 1−O(1/p),
no PE receives more than 1 + 2r(1 + 1/a) messages during one
phase of RLM-sort for some value of a ∈ Θ(

√
r/ log p).

PROOF. Let m ≤ p(1 + 1/a) denote the number of pieces gen-
erated for part x. It suffices to prove that the probability that any

of the PEs responsible for it receives more than 1 + 2mr/p ≤
2r(1 + 1/a) messages is at most 1/rp for an appropriate con-
stant. We now abstract from the actual implementation of data
assignment by observing that the net effect of our randomization
is to produce a random permutation of the pieces involved in each
part. In this abstraction, the “bad” event can only occur if the per-
mutation produces 2mr/p consecutive pieces of total size at most
n/p. More formally, let X1,. . . ,Xm denote the piece sizes. The
Xi are random variables with range [0, an

rp
] and

∑
iXi = n/r.

The randomness stems from the random permutation determin-
ing the ordering. Unfortunately, the Xi are not independent of
each other. However, they are negatively associated [11], i.e., if
one variable is large, then a different variable tends to be smaller.
In this situation, Chernoff-Hoeffding bounds for the probability
that a sum deviates from its expectation still apply. Now, for a
fixed j, consider X:=

∑
j≤i<j+2mr/pXi. It suffices to show that

P [X < n/p] ≤ 1/rpm – in that case, the probability that the bad
event occurs for some j is at most 1/rp. We have E[X] = 2n/p
which differs by t:= n/p from the bound marking a bad event.
Hoeffding’s inequality then assures that the probability of the bad
event is at most

P [X < n/p] ≤ 2e
− 2t2

2mr
r
·(an

rp)2 = 2e
− pr

ma2 ≤ 2e
− pr

a2+1 .

This should be smaller than 1/rp. Solving the resulting relation for
a yields

a ≤ 1

2

(√
1 +

r

ln rp
2

− 1

)
.

Note that Lemma 6 implies that with high probability both the
number of sent and received messages during data exchange will
be close to 2r and the number of message startups for delegating
pieces (see Lemma 4) will be o(r). Hence, we have shown that han-
dling worst case inputs by our algorithm adds only lower order cost
terms compared to the simple variant (plain prefix sums without
any randomization) on average case inputs. In contrast, applying
the simple approach to worst case inputs directly, completely ruins
performance.

We summarize the result in the following theorem:

THEOREM 4. Data delivery of r × p pieces to r parts can be
implemented to run in time

Exch˜ (p, n
p
, 2r)

with high probability.

B. PSEUDORANDOM PERMUTATIONS
During redistribution of data, we will randomize the rearrange-

ment to avoid bad cases. For this, we select a pseudo-random per-
mutation, which can be constructed, e.g., by composing three to
four Feistel permutations [23, 10]. We adapt the description from
[10] to our purposes.

Assume we want to compute a permutation π : 0..n − 1 →
0..n − 1. Assume for now that n is a square so that we can repre-
sent a number i as a pair (a, b) with i = a+b

√
n. Our permutations

are constructed from Feistel permutations, i.e., permutations of the
form πf ((a, b)) = (b, a+f(b) mod

√
n) for some pseudorandom

mapping f : 0..
√
n− 1→ 0..

√
n− 1. f can be any hash function

that behaves reasonably similar to a random function in practice.
It is known that a permutation π(x) = πf (πg(πh(πl(x)))) build
by chaining four Feistel permutations is “pseudorandom” in a sense

11

Simple Exchange:

< <

PE 9 PE 10
s

a

[5]

s

b

[6]

<s

c

s

a

[7]

<s

b

s

[8]– enumerate big pieces –

(3,9), (1,14) (3,9)

delegate big pieces
as (r,p)

[5] [6] [7] [8]

prefix-sum permuted small and big pieces
reply delegation

group 3
6 10a 2 8b 11b 16a 16a 12a 9c 15 7 9a 8d5 3 16a4 10b 14 13

Exch(p,
n
p ,O(r))

Figure 9: Exchange schema with the advanced randomized algorithm.

useful for cryptography. The same holds if the innermost and outer-
most permutation is replaced by an even simpler permutation [25].
In [10], we used just two stages of Feistel-Permutations.

A permutation π′ on 0.. d
√
ne2 − 1 can be transformed to a per-

mutation π on 0..n−1 by iteratively applying π′ until a value below
n is obtained. Since π′ is a permutation, this process must eventu-
ally terminate. If π′ is random, the expected number of iterations
is close to 1 and it is unlikely that more than three iterations are
necessary

Since the description of π requires very little state, we can repli-
cate this state over all PEs.

C. ACCELERATING BUCKET GROUP-
ING

The first observation for improving the binary search algorithm
from Section 6 is that a PE-group size can take only O((br)2) dif-
ferent values since it is defined by a range of buckets. We can mod-
ify the binary search in such a way that it operates not over all con-
ceivable group sizes but only over those corresponding to ranges
of buckets. When a scanning step succeeds, we can safely reduce
the upper bound for the binary search to the largest PE-group ac-
tually used. On the other hand, when a scanning step fails, we can
increase the lower bound: during the scan, whenever we finish a
PE-group of size x because the next bucket of size y does not fit
(i.e., x + y > L), we compute z = x + y. The minimum over
all observed z-values is the new lower bound. This is safe, since a
value of the scanning bound L less then z will reproduce the same
failed partition. This already yields an algorithm running in time
O(br log(br)2) = O(br log(br)).

The second observation is only values for L in the range
dn/r − 1e ..(1 + O(1/b))n/r are relevant (see Lemma 2). Only
O(br) bucket ranges will have a total size in this range. To see
this, consider any particular starting bucket for a bucket range.
Searching from there to the right for range end points, we can
skip all end buckets where the total size is below n/r. We can
stop as soon as the total size leaves the relevant range. Since
buckets have average size O(n/b), only a constant number of end
points will be in the relevant range on the average. Overall, we
get O(br) · O(1) = O(br) relevant bucket ranges. Using this for
initializing the binary search, saves a factor about two for the se-
quential algorithm.

Using all p available PEs, we can do even better: in each itera-
tion, we split the remaining range forL evenly into p+1 subranges.
Each PE tries one subrange end point for scanning and uses the

first observation to round up or down to an actually occurring size
of a bucket range. Using a reduction we find the largest L-value
Lmin for a failed scan and the smallest L value Lmax for a success-
ful scan. When Lmax = Lmin we have found the optimal value
for L. Otherwise, we continue with the range Lmax..Lmin. Since
the bucket range sizes in the feasible region are fairly uniformly
distributed, the number of iterations will be logp+1O(br). Since
p ≥ r, this is O(1) if b is polynomial in r. Indeed, one or two
iterations are likely to succeed in all reasonable cases.

D. TIE BREAKING FOR KEY COMPAR-
ISONS

Conceptually, we assign the key (x, i, j) to an element with key
x, stored on PE i at position j of the input array. Using lexico-
graphic ordering makes the keys unique. For a practical implemen-
tation, it is important not to do this explicitly for every element.
We explain how this can be done for AMS-sort. First note, that in
AMS-sort there is no need to do tie breaking across levels or for the
final local sorting. Sample sorting and splitter determination can
afford to do tie breaking explicitly, since these steps are more la-
tency bound. For partitioning, we can use a version of super scalar
sample sort, that also produces a bucket for elements equal to the
splitter. This takes only one additional comparison [5] per element.
Only if an input element x ends up in an equality bucket we need
to perform the lexicographic comparison. Note that at this point,
the PE number for x and its input position are already present in
registers anyway.

E. ADDITIONAL EXPERIMENTAL DATA
The overpartitioning factor b influences the wall-time of AMS-

sort. It has an effect on the splitter selection phase itself but also
an implicit impact on all other phases. To investigate this impact,
we executed AMS-sort for various values of b with 512 MPI pro-
cesses and 105 elements each. Figure 11 shows how the wall-
time of AMS-sort depends on the number of samples per pro-
cess a · b. Depending on the oversampling factor a, the wall-
time firstly decreases as the maximum imbalance decreases. This
leads to faster data delivery, bucket processing, and splitter selec-
tion phases. However, the wall-time increases for large a as the
additional cost of the splitter selection phase dominates. On the
one hand, AMS-sort performs best for an oversampling factor of 1
and an overpartitioning factor of 64. On the other hand, Figure 10
illustrates that the maximum imbalance is significantly higher for
slightly slower AMS-sort algorithms, configured with b > 1.

12

22 23 24 25 26 27 28 29 210 211 212 213 214

Samples per process a · b

10−2

10−1

100

101

M
ax

im
um

im
ba

la
nc

e

b = 1.0

b = 8.0

b = 16.0

Figure 10: Maximum imbalance among groups of AMS-sort sorted
sequences

22 23 24 25 26 27 28 29 210 211 212 213 214

Samples per process a · b

0

10

20

30

40

50

60

W
al

l-
ti

m
e

[m
s]

Sampling a = 1.0

Sampling a = 8.0

Sampling a = 16.0

Total a = 1.0

Total a = 8.0

Total a = 16.0

Figure 11: Wall-time of AMS-sort for various values of a and b

9
,
1

9
,
2

9
,
3

1
1
,
1

1
1
,
2

1
1
,
3

1
3
,
1

1
3
,
2

1
3
,
3

1
5
,
2

1
5
,
3

*1
5
,
3

0

5000

10000

15000

20000

25000

W
al

l-
ti

m
e

/1
0

5
[n

s]

n
p = 105

lo
g
p
,n

9
,
1

9
,
2

9
,
3

1
1
,
1

1
1
,
2

1
1
,
3

1
3
,
1

1
3
,
2

1
3
,
3

1
5
,
2

1
5
,
3

*1
5
,
3

0

500

1000

1500

2000

2500

W
al

l-
ti

m
e

/1
0

6
[n

s]

n
p = 106

lo
g
p
,n

9
,
1

9
,
2

9
,
3

1
1
,
1

1
1
,
2

1
1
,
3

1
3
,
1

1
3
,
2

1
3
,
3

1
5
,
2

1
5
,
3

*1
5
,
3

0

500

1000

1500

2000

2500

W
al

l-
ti

m
e

/1
0

7
[n

s]

n
p = 107

lo
g
p
,n

Figure 12: AMS-sort with 105, 106, and 107 elements per MPI
process

13

	1 Introduction
	2 Preliminaries
	2.1 Model of Computation
	2.2 Multiway Merging and Partitioning

	3 More Related Work
	4 Building Blocks
	4.1 Multisequence Selection
	4.2 Fast Work Inefficient Sorting
	4.3 Delivering Data to the Right Place
	4.3.1 A Deterministic Solution

	5 Generalizing Multilevel Mergesort (RLM-Sort)
	6 Adaptive Multi-Level Sample Sort (AMS-Sort)
	7 Experimental Results
	7.1 Implementation Details
	7.2 Weak Scaling Analysis
	7.3 Comparison with Other Implementations

	8 Conclusion
	9 References
	A Randomized Data Delivery
	B Pseudorandom Permutations
	C Accelerating Bucket Grouping
	D Tie Breaking for Key Comparisons
	E Additional Experimental Data

