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1 Motivation

In der Photogrammetrie und Fernerkundung werden unterschiedliche Messsysteme
zur Datenerfassung eingesetzt. Die eingesetzten Messsysteme lassen sich in passive
und aktive Systeme einteilen. Bei den aktiven Systemen wird elektromagnetische
Strahlung verwendet um die Szene zu bestrahlen und damit spezifische Eigenschaf-
ten der bestrahlten Oberflächen abzuleiten. Eine Unterscheidung ist bei den aktiven
Systemen hinsichtlich der eingesetzten Wellenlänge der Strahlung möglich. Radio
Detection and Ranging (RADAR) Systeme strahlen mit Wellenlängen im m- bis
mm-Bereich, elektro-optische (EO) Systeme [47] hingegen mit Wellenlängen im mm-
bis nm-Bereich. Im Folgenden werden diese elektro-optischen Systeme zur Verein-
fachung als aktive optische Sensoren oder kurz aktive Sensoren bezeichnet. Solche
aktive Sensoren sind beispielsweise Laserscanner [84, 95], strukturierte Lichtprojek-
tion Sensoren oder Entfernungskameras [16].
Die mit aktiven Sensoren (Kapitel 1.1) erfassten 3D-Daten haben spezielle Eigen-
schaften weswegen für eine automatische Verarbeitung anwendungsspezifische Me-
thoden (Kapitel 2) entwickelt werden müssen um eine Szene zu analysieren. Mittels
vier aufeinander aufbauenden Verarbeitungsstufen (Kapitel 1.2) wird diese Zielset-
zung angegangen und umgesetzt.

1.1 Taxonomie der aktiven Sensoren

In Abhängigkeit von der Anwendung werden spezielle aktive Sensoren eingesetzt.
Die Charakterisierung dieser aktiven Sensoren kann nach unterschiedlichen Kriteri-
en erfolgen [A3]. Die in dieser Habilitationsschrift eingesetzte Taxonomie orientiert
sich an den Kategorien: Modulationstechnik, Detektionstechnik, Anordnung, Mess-
technik, Beleuchtungsquelle, Sichtfeld und Entfernungsbereich (Abbildung 1.1).
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Abbildung 1.1: Taxonomie der aktiven Sensoren nach den Kategorien: Modu-
lationstechnik, Detektionstechnik, Anordnung, Messtechnik, Beleuchtungsquelle,
Sichtfeld und Entfernungsbereich.
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Modulationstechnik
Die Modulation von elektromagnetischer Strahlung erfolgt bei Aktiven Sensoren
durch Dauerstrich- bzw. Pulsmodulation (Continuous-Wave, CW bzw. Pulse Modu-
lation). Hierbei ist die eingesetzte Modulationstechnik einer bestimmten Messtech-
nik zugeordnet, bei Dauerstrichmodulation erfolgt eine Phasendifferenzmessung und
bei Pulsmodulation eine Laufzeitmessung.
Detektionstechnik
Die Detektionstechniken sind unterteilbar in Kohärente Detektion (Coherent De-
tection) und Direkte Detektion (Direct Detection). Der Unterschied dieser Detekti-
onstechniken besteht darin, dass bei kohärenter Detektion die Kohärenz der elek-
tromagnetischen Strahlung für die Detektion berücksichtigt wird und bei direkter
Detektion die Kohärenz unberücksichtigt bleibt. Die kohärenten Detektionsmetho-
den sind Heterodyne Detektion (Heterodyne Detection) und Homodyne Detektion
(Homodyne Detection). Die direkten Detektionsmethoden sind Mehrfach-Photonen-
Detektion (Multi Photon Detection) und Einzel-Photon-Detektion (Single Photon
Detection).
Anordnung
Bei der Anordnung der Sende- und Empfangseinheit erfolgt eine Unterscheidung
zwischen monostatischer (monostatic) und bistatischer (bistatic) Anordnung, wobei
der technische Aufwand für ein monostatisches System größer ist, als der technische
Aufwand für ein bistatisches System.
Messtechnik
Die bei aktiven Sensoren eingesetzte Messtechnik ermöglicht die Entfernung direkt
oder indirekt bestimmt. Bei der Phasendifferenz- und Laufzeitmessung wird direkt
aus dem gemessenen Phasendifferenzwert bzw. Laufzeitwert die Entfernung abge-
leitet. Bei der Triangulationsmessung wird unter Berücksichtigung der inneren Ori-
entierung und der relativen Orientierung zwischen Sende- und Empfangseinheit in-
direkt über den gemessenen Disparitätswert die Entfernung bestimmt. Zudem ist
der funktionale Zusammenhang zwischen gemessenem Wert und Entfernung linear
(direkt) bzw. nichtlinear (indirekt).
Beleuchtungsquelle
Als Beleuchtungsquelle werden bei aktiven optischen Sensoren wegen ihrer hohen
Stahlintensität meist Light Amplification by Stimulated Emission of Radiation (La-
ser), Laserdioden oder Leuchtdioden eingesetzt.
Sichtfeld
Das Sichtfeld (Field of View, FOV) ist konstruktionsbedingt durch die Anordnung
der einzelnen Sensorelemente geprägt, hierbei werden bei Flächensensoren zweidi-
mensionale Abbildungen ermöglicht, hingegen bei Zeilensensoren bzw. Zeilenscanner
nur eindimensionale Abbildungen. Zeilensensoren bestehen aus geradlinig angeord-
neten Sensorelementen die synchron Daten aufnehmen. Bei Zeilenscanner hingegen
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wird ein einziges Sensorelement geradeaus bewegt, währenddessen sequentiell durch
punktuelle Abtastung gemessen wird.
Entfernungsbereich

Bei aktiven Sensoren ist der operative Entfernungsbereich unterteilbar in einen na-
hen Entfernungsbereich (Close Range oder Short Range), mittleren Entfernungs-
bereich (Mid Range) und fernen Entfernungsbereich (Far Range). Die Abgrenzung
zwischen den Entfernungsbereichen ist unscharf, die Übergänge sind fließend, eine
strikte Trennung ist nur schwer möglich. Trotzdem wird im Folgenden eine grobe
Einteilung vorgenommen:
Der nahe Entfernungsbereich (Abbildung 1.5, rot) umspannt Entfernungen unter-
halb von mehreren Metern bzw. Zehnermetern. Typische Vertreter von aktiven Sen-
soren, die in diesem Entfernungsbereich eingesetzt werden, sind strukturierte Licht-
projektion Sensoren (z.B. Microsoft Kinect 1.0), Time-of-Flight Entfernungskameras
(z.B. MESA SR-4000, PMD CamCube 2.0) oder einfache Laserscanner (z.B. Hokuyo
UTM-30LX) (Abbildung 1.2).

Photo by Evan-Amos (Public domain) Foto von Captaindistance (CC-BY-SA-3.0)

a b

Foto von ToFExpert (CC-BY-SA-3.0) Photo with courtesy of Hokuyo

c d

Abbildung 1.2: Aktive Sensoren die im nahen Entfernungsbereich messen: Struk-
turierte Lichtprojektion Sensoren (z.B. Microsoft Kinect 1.0 (a)), Time-of-Flight
Entfernungskameras (z.B. MESA SR-4000 (b), PMD CamCube 2.0 (c)) und ein-
fache Laserscanner (z.B. Hokuyo UTM-30LX (d)).
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Der ferne Entfernungsbereich (Abbildung 1.5, blau) umspannt Entfernungen deut-
lich oberhalb von mehreren hundert Metern bzw. Kilometer. Flugzeuggetragene La-
serscanner (Airborne Laser Scanning, ALS) und Satellitengetragene Laserscanner
(Satellite Laser Scanning, SLS) werden diesem Entfernungsbereich zugeordnet. Ty-
pische Vertreter von aktiven Sensoren die in diesem Entfernungsbereich operieren
sind auf Flugzeugen (z.B. RIEGL LMS-Q780, Toposys Falcon III, Optech Titan,
Leica ALS60) (Abbildung 1.3) oder auf Satelliten (z.B. Geoscience Laser Altimeter
System, GLAS) montiert.

©RIEGL Photo with courtesy of Trimble

a b

Photo with courtesy of Teledyne Optech Foto mit freundlicher Genehmigung von Leica

c d

Abbildung 1.3: Aktive Sensoren die im fernen Entfernungsbereich messen: Flug-
zeuggetragene Laserscanner (z.B. RIEGL LMS-Q780 (a), Toposys Falcon III (b),
Optech Titan (c), Leica ALS60 (d)).
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Zwischen nah und fern liegt der mittlere Entfernungsbereich (Abbildung 1.5, grün)
bei dem hauptsächlich Mobile Laserscanner (Mobile Laser Scanning, MLS) und Ter-
restrische Laserscanner (Terrestrial Laser Scanning, TLS) eingesetzt werden. Typi-
sche Vertreter von aktiven Sensoren die in diesem Entfernungsbereich operieren,
befinden sich auf mobilen Roboter bzw. Fahrzeugen (z.B. SICK LMS511, Velody-
ne HDL-64E, Velodyne VLP-16) oder werden für terrestrische Anwendungen (z.B.
Leica HDS6000, Z+F Imager 5006h, RIEGL VZ-4000) eingesetzt (Abbildung 1.4).

Foto mit freundlicher Genehmigung Photo with courtesy Photo with courtesy
von SICK of Velodyne Lidar of Velodyne Lidar

a b c

1
Foto mit freundlicher Genehmigung Foto mit freundlicher Genehmigung ©RIEGL

von Leica von Z+F

d e f

Abbildung 1.4: Aktive Sensoren die im mittleren Entfernungsbereich messen: Mo-
bile Laserscanner (z.B. SICK LMS511 (a), Velodyne HDL-64E (b), Velodyne VLP-
16 (c)) und Terrestrische Laserscanner (z.B. Leica HDS6000 (d), Z+F Imager
5006h (e), RIEGL VZ-4000 (f)).

Die in Kapitel 2 eingesetzten aktiven Sensoren sind alle in Abbildung 1.5 dargestellt
und entsprechend der drei Entfernungsbereiche farblich (rot, blau, grün) markiert.
Zudem ist für jeden Sensor das vom Hersteller spezifizierte operative Entfernungs-
intervall aufgetragen.
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Abbildung 1.5: Vom Hersteller spezifiziertes operatives Entfernungsintervall bei
verschiedenen aktiven Sensoren. Gruppiert nach dem nahen (rot), mittleren (blau)
und fernen (grün) Entfernungsbereich.

1.2 Aufbau der Habilitationsschrift

In diesem Kapitel wird ein Überblick über den Aufbau der Habilitationsschrift ge-
geben (Abbildung 1.6), der sowohl die wesentliche Ziele als auch die übergeordnete
Konzeption darstellt. Dieses Kapitel dient der wissenschaftlichen Einordnung und
ist gleichzeitig als nützlicher Hinweis zum Lesen der Habilitationsschrift gedacht.
In Kapitel 1 wird zum Habilitationsthema hingeführt, indem für die automati-
schen Szenencharakterisierung in der Photogrammetrie und Fernerkundung mittels
neue aktive optische Sensoren motiviert wird. Insbesondere die Charakterisierung
von aktiven optischen Sensoren (Kapitel 1.1) hinsichtlich unterschiedlichen Krite-
rien verdeutlicht deren spezielle Eigenschaften, wodurch die Datenerfassung unter-
schiedlich beeinflusst wird. Ausgehend von den erfassten Daten werden zielgerichtete
Forschungsaktivitäten konzipiert (Kapitel 1.3), die eine automatische Szenencharak-
terisierung ermöglichen.
Aus dieser Konzeption werden vier aufeinander aufbauenden Verarbeitungsstufen
entwickelt. In Kapitel 2 werden die hierfür relevanten Methoden vorgestellt.
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• Beginnend mit der ersten Verarbeitungsstufe Modellierung und Analyse
von Messsignalen (Kapitel 2.1) sollen die mit aktiven Sensoren erfassten Da-
ten dahingehend aufbereitet werden, dass ein wesentlicher Zugewinn für die
nachfolgenden Verarbeitungsstufen erreicht wird. Beispielsweise wurden spezi-
elle Signalverarbeitungsmethoden für Entfernungskameras (Kapitel 2.1.1) und
Full-Waveform-Laserscanner (Kapitel 2.1.2) entwickelt bzw. eine radiometri-
sche Kalibrierung (Kapitel 2.1.3) basierend auf verschiedenen Beleuchtungs-
modellen konzipiert.

• Nach der Aufbereitung der Daten werden in der zweiten Verarbeitungsstufe
durch die Koregistrierung mit 2D- bzw. 3D-Sensoren (Kapitel 2.2) die
Beobachtungen durch mehrere Sensoren bzw. durch einen bewegten Sensor
für eine umfassende Szenenerfassung vereinheitlicht. Hierfür ist beispielswei-
se die Zusammenführung von geometrischen und radiometrischen Daten bzw.
die Überführung von 2.5D-Daten in eine übergeordnete Punktwolke zweck-
dienlich. Deswegen wurden neue Lösungsansätze zur Bestimmung der rela-
tiven Orientierung zwischen aktiven 3D-Sensoren und passiven 2D-Sensoren
(Kapitel 2.2.1) sowie bei bewegten aktiven 3D-Sensoren (Kapitel 2.2.2) entwi-
ckelt. Im Speziellen wurde hierfür eine Entfernungskamera mit einer thermi-
schen Infrarot-Kamera (Kapitel 2.2.1.1) bzw. ein mobiler Laserscanner mit ei-
ner RGB-Kamera (Kapitel 2.2.1.2) kombiniert. Zudem wurden neue Methoden
entwickelt, bei denen keine zusätzliche Sensoren zur Bestimmung der Position
und der Lage des aktiven 3D-Sensors verwendet werden, sondern ausschließlich
die mit scannenden aktiven 3D-Sensoren (Kapitel 2.2.2.1) bzw. bildgebenden
aktiven 3D-Sensoren (Kapitel 2.2.2.2) erfassten Daten berücksichtigt werden.

• Nach der Vereinheitlichung der Daten wird in der dritten Verarbeitungsstu-
fe durch Szenenanalyse (Kapitel 2.3) der Inhalt einer Szene bezüglich der
darin enthaltenen Strukturen effizient analysiert. Da aktive Sensoren primär
der geometrischen Erfassung dienen, werden bei der Analyse die geometrische
Eigenschaften der Szene in Form von Punktwolken priorisiert. Weil die Charak-
terisierung von 3D-Punkten sowohl von der nicht bekannten Szenenstruktur
als auch von der zu wählenden Nachbarschaft geprägt ist, ist die optimale
lokale Nachbarschaft zur Merkmalsberechnung für jeden 3D-Punkten geson-
dert zu bestimmen (Kapitel 2.3.1). Für jeden 3D-Punkt werden aus der op-
timalen lokalen Nachbarschaft verschiedene geometrische 3D-Merkmale und
2D-Merkmale extrahiert (Kapitel 2.3.2) und dem 3D-Punkt zugewiesen. Da
die Relevanz der geometrischen Merkmale von den Szeneninhalten beeinflusst
wird, ist es sinnvoll für eine performante Klassifizierung eine optimale Auswahl
von relevanten Merkmalen (Kapitel 2.3.3) zu bestimmen. Abschließend wird
basierend auf den relevanten Merkmalen eine Klassifikation (Kapitel 2.3.4)
durchgeführt.
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• Nach der sehr allgemein gehaltenen Szenenanalyse wird in der vierten Ver-
arbeitungsstufe durch Objektrekonstruktion (Kapitel 2.4) eine differenzier-
te Analyse der Szene hinsichtlich einzelner Objekte vorgenommen. Es wer-
den sowohl natürliche Objekte (Kapitel 2.4.1) als auch anthropogene Objekte
(Kapitel 2.4.2) untersucht.

In Kapitel 3 ist abschließend eine kurze Zusammenfassung und der Ausblick auf
zukünftige Forschungsmöglichkeiten gegeben.
Ergänzend sind in Kapitel 4 die Forschungsaktivitäten in Form von relevanten Pu-
blikationen berücksichtigt. Die durchgeführten Forschungsaktivitäten werden zudem
hinsichtlich der übergeordneten Konzeption im folgenden Kapitel 1.3 vertieft.

Kapitel 1.1
Taxonomie der aktiven Sensoren

Kapitel 2.1
Modellierung und Analyse von Messsignalen

m
Kapitel A

[A4, A5, A7, A9, A10, A12, A14]

Kapitel 2.2
Koregistrierung mit 2D- bzw. 3D-Sensoren

m
Kapitel B

[B1, B2, B8, B9, B11, B12, B13, B14]

Kapitel 2.3
Szenenanalyse

m
Kapitel C

[C3, C4, C5, C7]

Kapitel 2.4
Objektrekonstruktion

m
Kapitel D

[D3, D4, D6]

Abbildung 1.6: Aufbau der Habilitationsschrift hinsichtlich aktiver Sensoren, den
vier Verarbeitungsstufen und den zugeordneten Schlüsselpublikationen.
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1.3 Konzeption der Forschungsaktivitäten

Die vorliegende Habilitationsschrift entstand im Rahmen meiner Forschungsaktivi-
täten am Instituts für Photogrammetrie und Fernerkundung (IPF) des Karlsruher
Institut für Technologie (KIT). Die Forschungsaktivitäten waren und sind inhalt-
lich auf die ThematikMethoden zur automatischen Szenencharakterisierung
basierend auf aktiven optischen Sensoren für die Photogrammetrie und
Fernerkundung ausgerichtet. Für deren Umsetzung sind sowohl mathematisch-
analytische, numerische und informationstechnische Grundlagen, die radiometrische
und geometrische Modellierung, die Evaluation der automatischen Auswerteverfah-
ren, als auch die eigenständige und innovative Methodenentwicklungen essentiell,
um im Bereich der Bild- und Signalverarbeitung innerhalb der Photogrammetrie,
Fernerkundung und Geodäsie erfolgreich wissenschaftlich zu wirken.
Forschungsaktivitäten werden durch studentische Arbeiten, Doktorarbeiten und For-
schungskooperationen wesentlich unterstützt. Insbesondere die vom Autor betreuten
Doktorarbeiten und die Forschungskooperationen ermöglichen hierbei eine weiter-
führende inhaltliche Vertiefung sowie die zielgerichtete Umsetzung der übergeordne-
ten Konzeption. Die Gesamtkonzeption der inhaltlichen Forschungsrichtungen wur-
den konsequent durch den Verfasser der Habilitationsschrift geprägt (Kapitel 1.2)
und realisiert (Kapitel 2). Die dazu entstandenen 45 relevanten Publikationen sind
den vier Verarbeitungsstufen zugeordnet (Kapitel 4). Zudem sind die insgesamt 22
Schlüsselpublikationen1 (Abbildung 1.6) als Abdruck vollständig in der Habilitati-
onsschrift enthalten.
Vom Verfasser der Habilitationsschrift wurde zudem federführend mit diversen na-
tionalen und internationalen Institutionen gezielt Forschungskooperationen initiiert,
um die wesentlichen Forschungsthemen dieser Arbeit zu vertiefen und die angestreb-
ten Ziele zu erreichen, beispielsweise:

• Fachgebiet Photogrammetrie und Fernerkundung (PF) der Technischen Uni-
versität München (TUM) zum Thema Entfernungskamera kombiniert
mit thermischer Infrarot-Kamera (Kapitel 2.2.1.1).

• Institut für Optronik, Systemtechnik und Bildauswertung (IOSB) der Fraun-
hofer-Gesellschaft (FhG) zum Thema Mobiler Laserscanner kombiniert
mit RGB-Kamera (Kapitel 2.2.1.2).

• Laboratoire Méthodes d’Analyses pour le Traitement d’Images et la Stéréo-
restitution (MATIS) des Institut Géographique National France International
(IGN) zum Thema Auswahl relevanter Merkmale (Kapitel 2.3.3).

• Department of Forest Sciences der University of Helsinki (UH) zum Thema
Objektrekonstruktion (Kapitel 2.4).

1Weiterführende Information hinsichtlich der Einordnung von Schlüsselpublikationen und rele-
vanten Publikationen sind in Kapitel 4 gegeben.
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2 Zusammenfassung der entwickelten Methoden

In diesem Kapitel werden die entwickelten Methoden vorgestellt. Ausgehend von
Daten, die mit einem aktiven Sensor erfasst werden, lassen sich folgende vier auf-
einander aufbauende Verarbeitungsstufen ausmachen, um die Daten nutzbringend
zu analysieren. Beginnend mit der gezielten Aufbereitung der Rohdaten kann be-
reits durch Modellierung und Analyse von Messsignalen (Kapitel 2.1 mit Kapitel A)
ein wesentlicher Zugewinn für die nachfolgenden Verarbeitungsstufen erreicht wer-
den, beispielsweise durch eine verbesserte Erfassung der Szene, die zusätzliche Mög-
lichkeiten für die weiterführende Verarbeitung ermöglicht. In der darauf folgenden
Verarbeitungsstufe werden durch Registrierung (Kapitel 2.2 mit Kapitel B) einzel-
ne voneinander unabhängige Beobachtungen in eine übergeordnete vereinheitlichte
Repräsentation überführt, beispielsweise durch die Zusammenführung von geome-
trischen und radiometrischen Daten bzw. die Überführung von 2.5D-Daten in eine
Punktwolke. In der nächsten Verarbeitungsstufe wird die Punktwolke hinsichtlich
Szeneninhalt analysiert (Kapitel 2.3 mit Kapitel C). Hierbei werden relevante Merk-
male ausgewählt und für jeden 3D-Punkt eine optimierte lokale Nachbarschaft zur
Berechnung der Merkmale berücksichtigt, um eine erhöhte Gesamtgenauigkeit bei
der Klassifikation zu erreichen. Mit der letzten Verarbeitungsstufe wird durch Ob-
jektdetektion (Kapitel 2.4 mit Kapitel D) eine differenzierte Analyse der Szene hin-
sichtlich einzelner Objekte vorgestellt.

2.1 Modellierung und Analyse von Messsignalen

Bei der ersten Verarbeitungsstufe werden die mit aktiven Sensoren erfassten Daten
für die nachfolgenden Verarbeitungsstufen aufbereitet. Durch die Modellierung und
Analyse von Messsignalen können die Daten dahingehend optimiert werden, dass
eine verbesserte Erfassung der Szene ermöglicht wird. Die Verbesserung kann bei-
spielsweise hinsichtlich geometrischer und radiometrischer Aspekte erfolgen. Durch
Modellierung des Signals ergeben sich zusätzliche Möglichkeiten bei der Analyse
von Messsignalen. Hierfür wurden spezielle Signalverarbeitungsmethoden für Entfer-
nungskameras (Kapitel 2.1.1) und Full-Waveform-Laserscanner (Kapitel 2.1.2) ent-
wickelt bzw. eine radiometrische Kalibrierung (Kapitel 2.1.3) basierend auf verschei-
denen Beleuchtungsmodellen konzipiert.
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2.1.1 Phase-Unwrapping bei Entfernungsbildern

In diesem Kapitel werden zwei Verfahren vorgestellt, die den eingeschränkten Ent-
fernungsmessbereich bei Entfernungskameras (z.B. MESA SR-4000 oder PMD Cam-
Cube 2.0; Kapitel 1.1) bild- bzw. signalbasiert über den vom Hersteller spezifizierten
Messbereich hinaus zu erweitern (Abbildung 2.1).

Bei der Verwendung von dauerstrichmodulierten (Continuous-Wave) Lichtquellen
kann durch Messen der Phasendifferenz 4ϕ die Entfernung 4R zwischen Sensor
und beleuchteter Objektoberfläche berechnet werden mit

4R = c

2fm
4ϕ
2π , (2.1)

wobei fm der Modulationsfrequenz und c der Lichtgeschwindigkeit entspricht [16].

Durch die Phasendifferenz 4ϕ sind Phasenmehrdeutigkeiten unvermeidbar, welche
Mehrdeutigkeiten bei der Entfernungsmessung4R verursachen (Abbildung 2.1c und
d). In Abhängigkeit von der verwendeten Modulationsfrequenzrate (z.B. 20 MHz)
ergibt sich ein eindeutiger Entfernungsmessbereich (z.B. 7,5 m). Absolute Entfernun-
gen R werden fälschlicherweise zu kurz erfasst, wenn die Werte über dem eindeutigen
Entfernungsmessbereich Rm mit

Rm = c

2fm
(2.2)

liegen.

Es werden im Folgenden neue bild- bzw. signalbasierte Methoden für Entfernungska-
meras vorgestellt mit denen durch Phasenabwicklung (phase-unwrapping) der Ent-
fernungsmessbereich um ein Vielfaches erweitert werden kann.

Bildbasierte Erweiterung des Entfernungsmessbereichs

Aus der Radio Detection and Ranging (RADAR) Interferometrie [30, 37] sind ver-
schiedene bildbasierte Methoden bekannt, die zum Phase-Unwrapping bei Phasen-
mehrdeutigkeiten verwendet werden können. Um die prinzipielle Funktionsweise zur
Phasenrekonstruktion speziell bei Entfernungsbilder, die mit einer Entfernungska-
mera gemessen wurden, zu untersuchen, wurden sowohl Probabilistische Graphische
Modelle [22, 28], als auch der Goldstein-Algorithmus [32, 36] entsprechend für Ent-
fernungsbilder adaptiert und angewandt.
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a b

c d

e f

g h

Abbildung 2.1: Zwei Szenen (a,b) erfasst mit verschiedenen Entfernungskameras,
Entfernungsbilder gemessen durch MESA SR-4000 (c) und PMD CamCube 2.0
(d), Darstellung von vertrauenswürdigen (helle Grautöne) und nicht vertrauens-
würdigen (dunkle Grautöne) Messungen (e,f), Ergebnisse der bildbasierten (g) und
signalbasierten (h) Erweiterung des Entfernungsmessbereichs.
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Essentiell für die Auflösung von Phasenmehrdeutigkeiten ist die Bestimmung rele-
vanter Inkonsistenzen im Phasenbild. Eine Inkonsistenz, auch Residuum genannt,
ist gegeben, falls die Summe der Phasendifferenzen der vier nächstgelegenen und be-
nachbarten Pixel ungleich Null ist. Verursacht werden diese Inkonsistenzen durch (i)
szenenbedingte Diskontinuitäten, (ii) den eingeschränkten Entfernungsmessbereich
und (iii) Rauschen. Die Residuen sind in Abbildung 2.2a aufgetragen. Zur besse-
ren Unterscheidung wurden die positive Residuen (weiß) und negative Residuen
(schwarz) entsprechend eingefärbt.

a b

c d

Abbildung 2.2: Berücksichtigung des Vertrauensmaßes bei der Phasenrekonstruk-
tion: a) positive Residuen (weiß) und negative Residuen (schwarz), b) Häufigkeit
der Vertrauensmaße der Szene aus Abbildung 2.1a, c) Phasenrekonstruktion (Wert
2 bis 7) und d) Phasenrekonstruktion (Wert 4 bis 7).

Wird ein Vertrauensmaß berücksichtigt bei der Prozessierung, beispielsweise die Si-
gnalgüte dargestellt in Abbildung 2.1e, können rauschbedingte und somit nicht ver-
trauenswürdige Messungen direkt bestimmt werden. Werden alle Messungen bei
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der Phasenrekonstruktion berücksichtigt, ergibt sich daraus Abbildung 2.1g. Offen-
sichtlich ist die Phasenrekonstruktion nicht optimal, es sind mehrere Inkonsistenzen
gegeben. Im Vergleich dazu kann eine Verbesserung erreicht werden, indem nicht
vertrauenswürdige Messungen für die Phasenrekonstruktion unberücksichtigt blei-
ben und bei der Phasenrekonstruktion ausmaskiert werden [A5]. Werden beispiels-
weise vertrauenswürdigere Messungen für die Phasenrekonstruktion eingesetzt, in
Abbildung 2.2c (Wert 2 bis 7) bzw. in Abbildung 2.2d (Wert 4 bis 7), ergeben sich
dadurch weniger Inkonsistenzen, die Rekonstruktion ist durch die Ausmaskierung
stellenweise lückenhaft, jedoch qualitativ stimmiger. Abschließend ist zu erwäh-
nen, dass szenenbedingte Diskontinuitäten mit dem vorgestellten Ansatz zur bildba-
sierten Erweiterung des Entfernungsmessbereichs nicht kompensiert werden können
(Abbildung 2.1g).

Signalbasierte Erweiterung des Entfernungsmessbereichs

Unterschiedliche Modulationsfrequenzen werden beispielsweise bei dauerstrichmodu-
lierten TLS Systemen [29, 84] eingesetzt, um mittels niedriger Modulationsfrequenz
einen möglichst großen Entfernungsmessbereich abzudecken und mittels hoher Mo-
dulationsfrequenz einen möglichst genaue Entfernungsmessung zu ermöglichen. Um
schnell, präzise und in großen Entfernungen zu messen, werden die unterschiedli-
chen Modulationsfrequenzen synchron auf das Signal aufgetragen. Dies ist derzeit
bei Entfernungskameras nicht möglich. Moderne Entfernungskameras können mit
bis zu vier unterschiedlichen Modulationsfrequenzen im MHz-Bereich messen, je-
doch sind die unterschiedlichen Modulationsfrequenzen pro Gerät nicht gleichzeitig
einsetzbar. Um eine signalbasierte Phasenrekonstruktion bei dauerstrichmodulier-
ten Entfernungskameras zu ermöglichen, wird ein neues Zeit-Frequenz-Multiplex-
Verfahren vorgestellt [A4] mit dem der Entfernungsmessbereich um ein Vielfaches
erweitert werden kann.
Die Phase ϕ ist vollständig beschrieben mit

ϕ = 2πk +4ϕ, (2.3)

wenn die ganzzahlige Periodenanzahl k = 0, 1, 2, ... und die Phasendifferenz 4ϕ
bekannt sind.
Das entfernungsspezifische Äquivalent hierzu ist die absolute Entfernung R mit

R = Rmk +4R, (2.4)

bestimmt durch die ganzzahlige Periodenanzahl k, dem eindeutigen Entfernungs-
messbereich Rm und der gemessenen Entfernung 4R.
Werden zwei unterschiedliche Modulationsfrequenzen f1 und f2 mit f1 < f2 bei der
Messung verwendet, ergeben sich in Abhängigkeit von der verwendeten Modulati-
onsfrequenz zwei spezifische eindeutige Entfernungsmessbereiche mit Rm1 und Rm2.
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Somit ergibt sich Fall A und B für die gemessenen Entfernungen 4R1 und 4R2.

Fall A

Sind die gemessenen Entfernungen 4R1 ≤ 4R2, dann gilt k1 = k2 = k und die
absolute Entfernung R ist bestimmt durch

R = Rm1k +4R1 = Rm2k +4R2, (2.5)

mit der ganzzahlige Periodenanzahl k = (4R2 −4R1)/(Rm1 −Rm2).

Fall B

Sind die gemessenen Entfernungen 4R1 > 4R2, dann gilt k1 + 1 = k2 = k und die
absolute Entfernung R ist bestimmt durch

R = Rm1(k − 1) +4R1 = Rm2k +4R2, (2.6)

mit der ganzzahlige Periodenanzahl k = (4R2 −4R1 +Rm1)/(Rm1 −Rm2).
Exemplarisch sind in Abbildung 2.3 für zwei Modulationsfrequenzen f1 = 18 MHz
und f2 = 21 MHz die gemessenen Entfernungen 4R1 und 4R2 über die absolute
Entfernung R aufgetragen. Die berechnete Differenz 4R2−4R1 zeigen deutlich die
vorzeichenbedingte Fallunterscheidung.

Abbildung 2.3: Gemessenen Entfernungen 4R1 (rot gestrichelt) und 4R2 (grün
gepunktet), die berechnete Differenz 4R2 − 4R1 (blaue durchgehend) zur Fall-
unterscheidung über die absolute Entfernung R aufgetragen.
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Durch Messungenauigkeiten bei der Erfassung der gemessenen Entfernungen 4R1
und 4R2 ergeben sich Abweichungen zum ganzzahligen Erwartungswert der Peri-
odenanzahl k. Entsprechend kann aus der berechneten Abweichnung ein Vertrauens-
maß q abgeleitet werden, bei dem ganzzahlige Zahlenwerte als vertrauenswürdig und
davon abweichende Werte als nicht vertrauenswürdig im Intervall [0, 1] abgebildet
werden (Abbildung 2.1f) durch

q = 1− 2 | k − nint(k) |, (2.7)

mit | · | für den Absolutwert und nint(·) für den nächsten ganzzahligen Wert.
Somit ist es möglich, bei der signalbasierten Erweiterung des Entfernungsmessbe-
reichs jede einzelne Phasenrekonstruktion (Abbildung 2.1h) hinsichtlich der Güte
zu quantifizieren. Es werden in Abbildung 2.1f vertrauenswürdige Messungen durch
helle Grautöne repräsentiert und nicht vertrauenswürdigen Messungen durch dunkle
Grautöne. Deutlich ist zu erkennen, dass bei diesem Beispiel tendenziell viele ver-
trauenswürdige Phasenrekonstruktionen berechnet werden. Die wenigen Phasenre-
konstruktionen die nicht sehr vertrauenswürdig erscheinen sind in großer Entfernung
(Hintergrund der Szene), bei spiegelnde Oberflächen (Tischoberfläche im Vorder-
grund) oder bei stark geneigte Oberflächen (Raumdecke). Eine zusätzliche quanti-
tative Bewertung ist in Abbildung 2.4 dargestellt. Hierfür wurde die Häufigkeit des
Vertrauensmaßes von der Szene aus Abbildung 2.1b aufgetragen. Es ist zu erkennen,
dass vorwiegend vertrauenswürdige Werte bei der Phasenrekonstruktion bestimmt
wurden.

Abbildung 2.4: Häufigkeit der Vertrauensmaße bei der Szene aus Abbildung 2.1b.
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2.1.2 Signaloptimierung bei Full-Waveform-Laserscanner-Daten

In diesem Kapitel wird ein Verfahren vorgestellt, bei dem das empfangene Signal von
Full-Waveform-Laserscanner optimiert wird. Hierbei wird durch Inversfilterung das
durch die Oberfläche verursachte Signal rekonstruiert, womit beispielsweise eine ver-
besserte Trennbarkeit bei mehreren in unterschiedlichen Entfernungen beleuchteten
Objektoberflächen erreicht werden kann.
Im Gegensatz zur alleinigen Messung charakteristischer Entfernungswerte ergeben
sich bei der Aufnahme der kompletten zeitlichen Signalform (Full-Waveform) bei
Full-Waveform-Laserscanner (z.B. Optech Titan, Leica ALS60 oder RIEGL LMS-
Q780; Kapitel 1.1) neue Möglichkeiten bei der Auswertung zur erweiterten Szenen-
erfassung [A1, A10, 61, 96, A15]. Inbesondere zur Interpretation der empfangenen
Signalform des rückgestreuten Laserpulses ist hierbei das Verständnis für den physi-
kalischen Hintergrund von der Laserstrahlungsausbreitung und die Interaktion mit
Oberflächenstrukturen relevant [A6, 87]. In Abbildung 2.5 ist schematisch die La-
serstrahlungsausbreitung, die Interaktion mit verschiedenen Oberflächenstrukturen
(oben) und die daraus resultierende empfangene Signalform des rückgestreuten La-
serpulses (unten) skizziert.

a b c d e

Abbildung 2.5: Laserstrahlungsausbreitung, die Interaktion mit verschiedenen
Oberflächenstrukturen (oben) und die daraus resultierende empfangene Signal-
form des rückgestreuten Laserpulses (unten): a) Ebene Oberfläche ohne Neigung,
b) Ebene Oberfläche mit Neigung, c) Zwei Bereiche mit leicht unterschiedlicher
Höhe, d) Zwei Bereiche mit deutlich unterschiedlicher Höhe und e) Zufällig ange-
ordnete kleine Objekte (Vegetation).
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Um Oberflächenstrukturen unterscheiden zu können, ist eine Einteilung in unter-
schiedliche Rauhigkeitsstufen sinnvoll. Hierbei kann die Größe der angeleuchteten
Oberflächengeometrie, bezogen auf den Durchmesser d und die Wellenlänge λ des
Laserstrahls, als Unterscheidungsmaß eingesetzt werden [A3], um die unterschied-
lichen Oberflächenstrukturen in Makro-, Meso- und Mikro-Strukturen einzuteilen
(Abbildung 2.6).

Makro-Strukturen

Mit Makro-Strukturen werden Strukturen bezeichnet, deren Ausmaße die Größe des
Strahldurchmessers d (Footprint) um ein Vielfaches übersteigen. Bei Lasersystemen
sind die Strahldivergenz und die räumliche Abtastung aufeinander abgestimmt. Im
Allgemeinen ist hierbei der Strahldurchmesser kleiner oder idealerweise gleich dem
Abstand zwischen den Stützstellen. Die Entfernungswerte, die durch die räumliche
Abtastung mit einem Lasersystem gemessen werden, ermöglichen die Rekonstruktion
von großen Objektstrukturen (beispielsweise Geländetopographie, Dachformen von
Gebäuden).

Bei der Analyse von Makro-Strukturen, die bei ausgedehnten Objekten mit ein-
facher Oberflächengeometrie auftreten, wird vorausgesetzt, dass eine einzelne Re-
flexion auftritt. Diskontinuitäten innerhalb der beleuchteten Oberflächengeometrie
werden vernachlässigt. Makro-Strukturen können durch das Merkmal Entfernung
repräsentiert werden.

Meso-Strukturen

Mit Meso-Strukturen werden Strukturen bezeichnet, deren Ausmaße zwischen der
Größe des Strahldurchmessers d und der Wellenlänge λ liegen. Unterschiedlich weit
entfernte Objektbereiche innerhalb des Strahlengangs bewirken unterschiedliche Ent-
fernungswerte innerhalb einer Messung. Dies kann verursacht werden durch die Be-
leuchtung von zwei, mehreren oder kontinuierlichen Bereichen mit geringer unter-
schiedlicher Entfernung (beispielsweise Schornstein, Gaube, Dachschräge, Dachgie-
bel, Äste, Blätter).

Bei der Analyse von Meso-Strukturen können sowohl deterministische Diskontinui-
täten durch anthropogene Objekte als auch zufällige Diskontinuitäten durch na-
türliche Objekte für die beleuchtete Oberflächengeometrie angesetzt werden. Meso-
Strukturen bewirken eine Deformation der gesendeten Signalform des rückgestreuten
Laserpulses, wodurch die zeitliche Pulslänge der empfangenen Signalform vergrößert
wird. Diese Variation kann als Merkmal Entfernungsvariation bezeichnet werden.
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Mikro-Strukturen

Mit Mikro-Strukturen werden Strukturen bezeichnet, deren Ausmaße kleiner bezie-
hungsweise in der Größenordnung der Wellenlänge λ sind. In Abhängigkeit von der
Wellenlänge wird das Reflexionsvermögen der Oberfläche durch das Oberflächenma-
terial beeinflusst. Das Reflexionsvermögen der Oberfläche kann als Reflexionsstärke
durch ein Lasersystem bestimmt werden. Die Reflexionsstärke wird aus der Ampli-
tude oder der Energie der empfangenen Signalform gemessen. Somit kann durch die
Amplitude (Energie) auf das Material der Oberfläche geschlossen werden.
Bei der Analyse von Mikro-Strukturen ist das Reflexionsvermögen der beleuchteten
Oberflächen relevant, um beispielsweise verschiedene Materialien zu unterscheiden.
Mikro-Strukturen verändern die Amplitude der empfangenen Signalform des rückge-
streuten Laserpulses, der Verlauf wird hierbei nicht verändert. Die Amplitude kann
als Maß für das Merkmal Reflexionsstärke gesehen werden.

Abbildung 2.6: Unterschiedliche Detaillierungsstufen die mit einem Lasersystem
erfasst werden können. In Abhängigkeit von Strahldurchmessers d (Footprint) und
Wellenlänge λ.

Charakteristische Merkmale zur Beschreibung der Oberfläche sind somit Entfer-
nung, Entfernungsvariation und Reflexionsstärke, die mit dem mittleren Zeitwert,
der Pulsdauer und der Amplitude der Signalform (Gleichung 2.8) bei Full-Waveform-
Laserscanner gemessen werden können. Die direkte Ableitung dieser Merkmale aus
dem Signalverlauf führt jedoch aufgrund der gestörten und diskretisierten Signal-
form auf nicht repräsentative Parameter, weswegen eine Modellannahme erfolgt. Die

20



einfache Grundform des Signalverlaufs bei gepulsten Lasersystemen kann durch ei-
ne zeitverzögerte Gaußfunktion (Abbildung 2.7) modelliert werden. Hierfür wird zur
Vereinfachung aus praktischen Gründen die Dauer des Pulses bei halber Amplitu-
denhöhe (Full Width at Half Maximum, FWHM) für die Gaußfunktion mit w in der
folgenden Formel definiert. Für die angepasste Gaußfunktion ergibt sich somit

s(t) = 2a
w
·
√

ln(2)
π
· exp(−4 · ln(2) · (t− τ)2

2w2 ), (2.8)

wobei die zu bestimmenden Parameter der mittlerer Zeitwert τ , die Pulsdauer w
und die Amplitude a sind. Die Oberflächeneigenschaften haben direkten Einfluss
auf die Pulsdauer und die Amplitude der empfangenen Signalform.

Abbildung 2.7: Signalform s(t) mit mittlerem Zeitwert τ , Pulsdauer w bei Full
Width at Half Maximum (FWHM) und Amplitude a.

Bedingt durch die Aufzeichnung der empfangenen Signalform eröffnen sich neue
Möglichkeit zur Merkmalsbestimmung (Kapitel 2.3.2). Die Merkmalsbestimmung
kann zudem prinzipiell verbessert werden, indem sowohl die gesendete Signalform als
auch die empfangene Signalform der Laserpulse für die Analyse berücksichtigt wird.
Für die Analyse eignen sich Signalverarbeitungsmethoden [A14], beispielsweise Kor-
relation [A9, A11, A13] und Inversfilterung [A12, 99]. Es wurde mit der Wiener-
Filter-Methode ein neues Verfahren zur besseren Unterscheidbarkeit von mehreren
Oberflächen mit geringer unterschiedlicher Entfernung (Abbildung 2.5c) entwickelt
[A12].
Im Folgenden wird kompakt die dafür entwickelte Modellierung des Messsignals
vorgestellt. Die Oberflächenantwort h(t) repräsentiert hierbei die Oberfläche als 1D-
Signal aufgetragen über der Zeit, respektive die Entfernung. Durch Faltung der
gesendeten Signalform s(t) mit der Oberflächenantwort h(t) wird die empfangene
Signalform r(t) modelliert mit

r(t) = s(t) ∗ h(t). (2.9)
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Das Spektrum der Oberflächenantwort H(f) wird bestimmt durch Fouriertransfor-
mation F mit

H(f) = R(f)
S(f) . (2.10)

Zur Berechnung von H(f) müssen die Spektren R(f) und S(f) bekannt sein, also
r(t) und s(t) durch Messung bestimmt werden. Die Messung dieser Signalformen
ist immer durch das Rauschen n(t) des Empfängers gestört, welches als additives
Rauschen modelliert wird mit

sn(t) = s(t) + n(t) F−→ Sn(f) (2.11)

und

rn(t) = r(t) + n(t) F−→ Rn(f). (2.12)

Bei starkem Empfängerrauschen kann es unter Berücksichtigung von Gleichung 2.10
zu großen numerischen Fehlern bei der Berechnung von H(f) kommen. Dieses In-
versproblem kann durch das Wiener Filter [102] gelöst werden, da dieses das Rau-
schen reduziert, möglichst ohne das Spektrum der Oberflächenantwort nachteilig zu
verändern.

Zur Schätzung des Spektrums der Oberflächenantwort Ĥ(f) wird das Wiener Filter
W (f) berücksichtigt mit

Ĥ(f) = Rn(f)
Sn(f) ·W (f). (2.13)

Eingeführte Randbedingungen [A12] ermöglichen die für die Wiener-Filter-Methode
benötigten unbekannten Funktionen durch Messungen direkt zu bestimmen bzw.
indirekt abzuschätzen. N(f) kann sehr einfach mit dem gemessenen Hintergrund-
rauschen des Signals geschätzt werden und man erhält das geschätzte Rauschen
N̂(f). Zudem ist a priori das gesendete Signal s(t) nicht bekannt, es kann jedoch
das gestörte Signal sn(t) respektive Sn(f) gemessen werden (Gleichung 2.11). An-
stelle des im Divisor der Gleichung 2.13 verbleibende Spektrums S(f) könnte dass
durch die Messung gestörte Spektrum Sn(f) verwendet werden, was jedoch wegen
des Rauschanteils zu Problemen führen kann. Daher wird hierfür das durch Tief-
passfilterung ausreichend geschätzte Spektrum Ŝ(f) eingesetzt und es ergibt sich

Ĥ(f) = Rn(f) · {Ŝ(f)}∗∣∣∣Ŝ(f)
∣∣∣2 +

∣∣∣N̂(f)
∣∣∣2

F−1
−−→ ĥ(t), (2.14)
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wobei ({}∗) dem konjugiert komplexen Spektrum entspricht. Zur Berechnung der
geschätzten Oberflächenantwort ĥ(t) muss abschließend nur noch Ĥ(f) durch inverse
Fouriertransformation F−1 in den Zeitbereich zurück transformiert werden.
Durch die Wiener-Filter-Methode kann eine zeitabhängige Oberflächenrepräsentati-
on bestimmt werden, die eine von der gesendeten Signalform unabhängige Beschrei-
bung der Oberfläche ermöglicht. Es konnte experimentell gezeigt werden, dass für
eine typische Pulsdauer w von 5 ns durch das neu entwickelte Verfahren eine Un-
terscheidbarkeit bei zwei Oberflächen mit einem Entfernungsunterschied von 0,15
m (dies ist äquivalent zu einem Zehntel der Pulsdauer) möglich ist (Abbildung 2.8).
Zudem kann mit dieser Methode eine hohe Genauigkeit für die Bestimmung der
Entfernung erreicht werden.

a b c

Abbildung 2.8: Gemessene Signalformen mit Rauschen und geschätzte zeitabhän-
gige Oberflächenrepräsentation: a) Gesendete Signalform sn(t) des emittierten La-
serpulses, b) Empfangene Signalform rn(t) des rückgestreuten Laserpulses, c) Ge-
schätzte Oberflächenantwort ĥ(t) bei zwei Oberflächen mit einem Entfernungsun-
terschied von 0,15 m.

2.1.3 Radiometrische Kalibrierung bei Laserscanner-Daten

Aktive optische Sensoren werden primär zur Erfassung von geometrischen Daten
eingesetzt. Darüber hinaus gewinnt zunehmend die Erfassung von radiometrischen
Daten an Bedeutung (alle TLS, MLS, ALS; Kapitel 1.1), da diese für verschiedene
Anwendungen, wie beispielsweise Registrierung, Segmentierung, Klassifikation und
Visualisierung (Kapitel 2.2, Kapitel 2.3 und Kapitel 2.4), zusätzliche Auswertemög-
lichkeiten eröffnen. Die gemessene Radiometrie unterliegt verschiedenen Einflüssen,
beispielsweise Entfernung, Atmosphäre, Inzidenzwinkel und Oberflächeneigenschaf-
ten, die bei den zuvor genannten Anwendungen eine direkte Verwendung der gemes-
senen Daten erschweren bzw. unmöglich machen. Beispiele für die starke Variation
der Intensitätswerte sind in Abbildung 2.9 dargestellt. Durch unterschiedliche Beob-
achtungsrichtungen, die sich bei der Befliegung (Abbildung 2.10) ergeben, beispiels-
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weise ist bei Flugpfad 3 und Flugpfad 4 die Beobachtungsrichtung entgegengesetzt,
variiert die gemessene Intensität bei den Dachflächen in Abbildung 2.9b und c.

a b

c d

Abbildung 2.9: Radiometrische Kalibrierung bei Airborne Laser Scanning (ALS):
a) Szene als RGB Bild, b) gemessene Intensität bei Flugpfad 3 für gegebene Be-
obachtungsrichtung, c) gemessene Intensität bei Flugpfad 4 für entgegengesetzte
Beobachtungsrichtung, d) Ergebnis für winkelunabhängige Intensität. Hohe Inten-
sitätswerte sind rot dargestellt.

Um radiometrische Daten sinnvoll nutzen zu können, muss ein eindeutiger Zusam-
menhang zwischen den beleuchteten Oberflächenstrukturen (Kapitel 2.1.2) und der
gemessenen Amplitude (Intensität) des Signals der rückgestreuten Strahlung herge-
stellt werden. Ist dieser Zusammenhang hergestellt, kann idealerweise mittels einer
radiometrische Kalibrierung das Signal an die Oberflächeneigenschaften angepasst
werden, wodurch die Oberflächeneigenschaften über verschiedene Aufnahmepositio-
nen, Beleuchtungswinkel und Beobachtungszeiten hinweg vergleichbar werden. Um
den Zusammenhang zu bestimmen, werden meist datengetriebene [42, 45, 46, 52, 74]
jedoch auch modellgetriebene [42] Ansätze verfolgt.
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Abbildung 2.10: Airborne Laser Scanning (ALS) Befliegung: Flugpfade 1-7 und
eingeblendete Laserscanner-Daten aus Abbildung 2.9.

Zur radiometrischen Kalibrierung müssen verschiedene äußere Einflüsse bei der Mo-
dellierung berücksichtigt werden. Die empfangene Intensität IR eines monostatischen
Laserscanners kann bei einer gaußförmigen Signalform des rückgestreuten Laser-
pulses mit der Amplitude a und der Pulsdauer w (Abbildung 2.7) näherungsweise
bestimmt werden mit

IR ≈ a · w ·R−2 · e−2αR · ρm · cos(ϑ), (2.15)

unter Berücksichtigung der Entfernung R, der atmosphärischen Transmission e−2αR

für Hin- und Rückweg, der Reflektanz des Materials ρm, sowie des Inzidenzwin-
kels ϑ zwischen Strahlausbreitungsrichtung und Oberflächennormale nach dem Lam-
bert’schen Kosinusgesetz. Wird der Inzidenzwinkel ϑ über die lokale Nachbarschaft
bestimmt und sind die winkelunabhängigen Komponenten aus der Messung bekannt,
dann kann nach Gleichung 2.15 die winkelunabhängige Intensität berechnet werden.

25



Nach der Signalanpassung ist das Signal idealerweise nur noch von der Oberflächen-
eigenschaft geprägt. Bei homogenen Oberflächen, beispielsweise Dachflächen, ist
nach der Signalanpassung die winkelunabhängige Intensität konstant. Zur Model-
lierung kann neben dem hier vorgestellten Lambert’schen Beleuchtungsmodell das
darauf aufbauende Phong’sche Beleuchtungsmodell [75] herangezogen werden, um
nicht nur diffuse, sondern auch spiegelnde Eigenschaften der Oberfläche [A2,A7, A8]
zu berücksichtigen.
Bereits durch die Verwendung des Lambert’schen Beleuchtungsmodells kann durch
die radiometrische Kalibrierung eine vorteilhafte Signalanpassung erfolgen, wodurch
sowohl die Signalvariation bei spezifischen Oberflächen signifikant eingeschränkt
werden kann, als auch eine verbesserte Winkelinvarianz bei den Signalen erreicht
wird [A7]. Die durch radiometrische Kalibrierung erzielte Verbesserung für eine
homogenen Oberfläche ist in Abbildung 2.9d qualitativ und in Abbildung 2.11 quan-
titativ dargestellt.

a b

Abbildung 2.11: Homogenen Oberfläche und die dazu korrespondierenden Inten-
sitätswerten: a) starke Variation der gemessenen Intensitätswerten, b) geringe Va-
riation der winkelunabhängigen Intensitätswerten nach radiometrischer Kalibrie-
rung.

2.2 Koregistrierung mit 2D- bzw. 3D-Sensoren

Nach der Aufbereitung der Daten in der vorherigen Verarbeitungsstufe werden mit
der zweiten Verarbeitungsstufe unterschiedliche Beobachtungen vereinheitlicht. Bei
dem Einsatz von mehreren Sensoren bzw. von einem bewegten Sensor für eine um-
fassende Szenenerfassung ist, bedingt durch die unterschiedlichen Beobachtungspo-
sitionen und -orientierungen, die Bestimmung der relativen Orientierung zwischen
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den Beobachtungen essentiell. Ist die relative Orientierung bestimmt, können diese
Beobachtungen in ein gemeinsames, übergeordnetes, räumliches, kartesisches Koor-
dinatensystem, auch Weltkoordinatensystem genannt, überführt werden. Die Kore-
gistrierung als Lösungsansatz ermöglicht eine Vereinheitlichung der Beobachtungen
und somit wird nachfolgend eine zweckmäßige Analyse der erfassten Daten ermög-
licht. Im Folgenden werden neue Lösungsansätze zur Bestimmung der relativen Ori-
entierung zwischen aktiven 3D-Sensoren und passiven 2D-Sensoren (Kapitel 2.2.1)
sowie bei bewegten aktiven 3D-Sensoren (Kapitel 2.2.2) vorgestellt.

2.2.1 3D/2D-Koregistrierung

Bei der Kombination von aktiven 3D-Sensoren und passiven 2D-Sensoren ergeben
sich unterschiedliche methodische Herangehensweisen für die 3D/2D Koregistrie-
rung. Anhand der gewählten Beispiele, Entfernungskamera kombiniert mit thermi-
scher Infrarot-Kamera (Kapitel 2.2.1.1) sowie mobilen Laserscanner kombiniert mit
RGB-Kamera (Kapitel 2.2.1.2), wird die methodische Herangehensweisen in den fol-
genden Kapitel verdeutlicht.

2.2.1.1 Entfernungskamera kombiniert mit thermischer Infrarot-Kamera

Zur 3D-Szenenerfassung bei dynamischen Szenen ist eine unverzügliche Aufnahme
vorteilhaft und wird durch aktive Entfernungskameras ermöglicht. Neben dieser geo-
metrischen Beobachtung kann für bestimmte Anwendungen (z.B. Personendetektion
[B3, 64, B13], Gebäudeinspektion [41, 43]) eine zusätzliche radiometrische Beobach-
tung [55] vorteilhaft sein. Hierfür ist eine Erweiterung der Erfassung mittels Sensoren
wie RGB-Kameras oder thermischen Infrarot-Kameras zweckmäßig [2, 13, 93]. Be-
dingt durch eine separate Sensoranordnung (Abbildung 2.12) ergeben sich für die
beiden bildgebenden Sensoren leicht unterschiedliche perspektivische Beobachtun-
gen, die nur dann sinnvoll fusioniert werden können, wenn eine eindeutige Zuord-
nung zwischen den unterschiedlichen Beobachtungen hergestellt wird. Dafür muss
die relative Orientierung der verwendeten Sensoren bestimmt werden.

Abbildung 2.12: Entfernungskamera PMD CamCube 2.0 (links) und thermische
Infrarot-Kamera InfraTec VarioCAM hr (rechts).
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Um die relative Orientierung einer Entfernungskamera (Kapitel 1.1, z.B. PMD Cam-
Cube 2.0) zu einer thermischen Infrarot-Kamera (z.B. InfraTec VarioCAM hr) zu
berechnen, müssen zunächst korrespondierende Bildinhalten einander zugeordnet
werden. Hierfür werden zuerst die Inneren Orientierungen der Kameras durch eine
geometrische Kamerakalibrierung [7, 11, 40] bestimmt. Zur Kalibrierung der Ent-
fernungskamera ist ein planarer Kalibrierkörper mit Schachbrettmuster geeignet.
Das Schachbrettmuster ist jedoch im thermischen Infrarot-Bereich kontrastarm und
somit für die Kalibrierung der thermischen Infrarot-Kamera unzureichend. Daher
wird zur Kalibrierung der thermischen Infrarot-Kamera ein planarer Kalibrierkör-
per mit regelmäßig verteilt angeordneten strahlenden Glühbirnen (Abbildung 2.13)
[54, 60, B5, B6] verwendet, da diese im Intensitätsbild gut zu erkennen sind.

Abbildung 2.13: Planarer Kalibrierkörper mit regelmäßig verteilt angeordneten
strahlenden Glühbirnen.

Aufgrund der verschiedenen Spektralbereiche der Kameras und der daraus resul-
tierenden unterschiedlichen Bildeigenschaften (z.B. unscharfe Kanten und unter-
schiedliche Intensitäten) können zur Ermittlung von korrespondierenden Punkten
keine Standardverfahren wie beispielsweise die Scale Invariant Feature Transform
(SIFT) [59] verwendet werden. Daher wird ein anderer Lösungsweg angegangen,
bei dem zuerst mittels Förstner-Operators [27] für das kalibrierte Intensitätsbild
der Entfernungskamera als auch für das kalibrierte Intensitätsbild der thermischen
Infrarot-Kamera markante Bildbereiche detektiert werden. Basierend auf den mar-
kanten Bildbereiche im Intensitätsbild der Entfernungskamera wird unter Berück-
sichtigung der entsprechenden Entfernungswerte und der gemessenen Basis die zu
erwartenden Koordinaten im Intensitätsbild der thermischen Infrarot-Kamera ge-
schätzt, um den Suchraum bei der Korrespondenzsuche einzuschränken. Ausgehend
von diesen Koordinaten wird im Intensitätsbild der thermischen Infrarot-Kamera der
entsprechende markante Bildbereich mit dem minimalen Abstand ausgewählt und
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eine Zuordnung hergestellt [B4]. Eine zusätzliche Verbesserung wird durch die Ver-
wendung von formbasierten Zuordnungsverfahren (Shape-Based-Matching) [86, 90]
erreicht, da bei diesem Ansatz wellenlängenunabhängige Formeigenschaften für die
Zuordnung berücksichtigt werden [B13].
Unter Verwendung der ermittelten korrespondierenden 2D-Punkte und deren 3D-
Koordinaten sind verschiedene Lösungsansätze zur Bestimmung der relative Orien-
tierung zwischen Entfernungskamera und thermischen Infrarot-Kamera möglich:

• Unter der Annahme, dass die 2D-Punkte auf einer Ebene (z.B. bei planaren
Gebäudefassaden) liegen, kann durch eine Homographie [38] die relative Ori-
entierung geschätzt werden [B10].

• Ist eine gute Anfangsnäherung für die relative Orientierung bekannt, kann
über eine Ausgleichung die relative Orientierung durch den räumlichen Rück-
wärtsschnitt geschätzt werden [B4].

• Unter Berücksichtigung der 3D/2D-Korrespondenzen kann durch die Kombi-
nation von Random-Sample-Consensus (RANSAC) [25] mit dem nicht-iterative
Efficient Perspective-n-Point (EPnP) Verfahren [66] die relative Orientierung
ohne Anfangsnäherung geschätzt werden [B13].

Die geschätzte relative Orientierung aus Intensitätsbildern einer Entfernungskamera
und den Intensitätsbildern einer thermischen Infrarot-Kamera kann beispielsweise
zur Erzeugung von infrarot-texturierten Punktwolken (Abbildung 2.14) verwendet
werden.

Abbildung 2.14: Zentralperspektivische Ansicht (links) und schräge Ansicht
(rechts) der selben infrarot-texturierten Punktwolke zur Verdeutlichung der Qua-
lität der 3D/2D-Korregistrierung.
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2.2.1.2 Mobiler Laserscanner kombiniert mit RGB-Kamera

Bei Unmanned Aerial Systems (UASs) ist die Verwendung von Kameras zur Szenen-
erfassung weit verbreitet. Als zusätzliche Beobachtungsmöglichkeit ist der Einsatz
eines aktiven Sensors besonders bei der Vegetationsanalyse attraktiv. Die Verwen-
dung eines mobilen Laserscanners (Kapitel 1.1, z.B. Hokuyo UTM-30LX-EW) für
Mobile Laser Scanning (MLS) kombiniert mit RGB-Kamera (z.B. GoPro 1080p HD
HERO2) auf einer gemeinsamen Plattform starr fixiert (Abbildung 2.15) bietet neue
Möglichkeiten bei der 3D-Szenenerfassung durch geometrische und radiometrische
Datenfusion. Beispielsweise wird damit die Abschätzung der Skalierung bei Simulta-
neous Localisation and Mapping (SLAM) [23] ermöglicht. Die Herausforderung bei
dieser Sensorkombination ist, dass die unterschiedlichen Sensoren im nahen Infrarot
bzw. sichtbaren Spektralbereichen messen [B7] und folglich eine direkte gegenseitige
Zuordnung der Beobachtungen nicht gegeben ist. Daher wird eine Methodik gesucht,
mit der die relative Orientierung zwischen den Sensoren bestimmt werden kann.

Abbildung 2.15: Mobiler Laserscanner Hokuyo UTM-30LX-EW (links) und RGB-
Kamera GoPro 1080p HD HERO2 (rechts).

Zur Bestimmung der relativen Orientierung zwischen den auf einer gemeinsamen
Plattform starr fixierten Sensoren werden folgende Verfahrensschritte angegangen.
Zuerst werden aus verschiedenen Ansichten synchrone Aufnahme von dem plana-
ren Kalibrierobjekt (Schachbrett) durch den Laserscanner und die Kamera erstellt.
Somit ergeben sich paarweise Aufnahmen mit einzelnen Laserscanner-Zeilen und
dazu korrespondierenden Kamerabildern. Automatisch wird im Folgenden aus jeder
Laserscanner-Zeile das geradlinige Linensegment extrahiert [49], welches den La-
serpunkten auf dem planaren Kalibrierobjekt entsprechen. Nach der Methode von
Zhang und Pless [104], die als Randbedingung ein planares Kalibrierobjekt voraus-
setzt, welches durch mehrere geradlinige Linensegmente beschrieben werden kann,
wird daraus die relative Orientierung zwischen Laserscanner und Kamera bestimmt
[B8]. Die geschätzte relative Orientierung und deren Unsicherheiten für Hebelarm
(Lever-arm) und Relativausrichtung der Systemkomponenten (Bore-sight) [39] ist in
Tabelle 2.1 dargestellt. Die geschätzten Werte entsprechen tendenziell dem gemesse-
nen Referenzwert.
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Estimated values Root mean square error
Lever-arm [mm] -0.63 ±9

67.10 ±47
-6.45 ±12

Bore-sight [deg] 1.08 ±0.84
1.69 ±0.37
-89.30 ±0.14

Tabelle 2.1: Geschätzte relative Orientierung und deren Unsicherheiten für Hebel-
arm (Lever-arm) und Relativausrichtung der Systemkomponenten (Bore-sight).

Um abschließend eine Projektion der Laserpunkte auf ein verzeichnisfreies Bild vor-
nehmen zu können, werden zusätzlich die Verzeichnungsparameter der Kamera durch
eine geometrische Kamerakalibrierung [7, 11, 40] bestimmt und entsprechend berück-
sichtigt. Exemplarisch ist in Abbildung 2.16 die 3D/2D-Koregistrierung zwischen
mobilem Laserscanner und RGB-Kamera dargestellt.

Abbildung 2.16: Visualisierung der 3D/2D-Koregistrierung zwischen mobilem La-
serscanner und RGB-Kamera unter Berücksichtigung der geschätzten relativen
Orientierung (rote Punkte: detektierte 2D-Punkte von auffälligen Bildbereiche;
blaue Punkte, horizontal: Laserpunkte projiziert auf das dazu korrespondierende
Bild; grüne Linien, vertikal: skalierte Repräsentation der Entfernungsmessungen
für jeden projizierten Laserpunkt).
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2.2.2 3D-Koregistrierung

Eine detaillierte Erfassung einer Szene kann durch das Messen von Objektober-
flächen durch eine möglichst dichte, genaue und vollständige Punktwolke erreicht
werden. Die Punktwolke besteht dann üblicherweise aus mehreren Millionen ge-
messenen 3D-Punkten. Optional können den 3D-Punkten noch zusätzliche Attri-
bute wie beispielsweise Intensität oder Farbe zugeordnet werden. Um eine gute
Flächenabdeckung bei der Erfassung der Szene zu erreichen, werden in der Regel
mehrere 2.5D-Messungen, also Entfernungsmessungen, von unterschiedlichen Auf-
nahmestandpunkten erfasst und mittels Koregistrierung in ein gemeinsames, über-
geordnetes Weltkoordinatensystem überführt. Hierbei ist darauf zu achten, dass für
jede der 2.5D-Messungen synchron die absolute Orientierung, also die absolute Po-
sition und Lage bekannt ist. Ist eine Erfassung nicht direkt möglich, kann indirekt
über eine Verkettung von berechneten relativen Orientierungen zwischen jedem ein-
zelnen Aufnahmestandpunkt ein Vereinheitlichung vorgenommen werden.

Des weiteren ist eine Unterscheidung hinsichtlich statischer und dynamischer Szenen
sinnvoll, da je nach Anforderung unterschiedliche Aufnahmestrategien angewandt
werden können. Bei einer statischen Szene kann mit einem stationär positionierten
und scannenden aktiven Sensor (z.B. Leica HDS6000, Z+F Imager 5006h, RIEGL
VZ-4000; Kapitel 1.1) die Szene sukzessive erfasst werden, da keine Szenenänderun-
gen während der Messung gegeben sind. Anders verhält es sich bei dynamischen
Szenen. Erfolgt hier die Erfassung mit einem scannenden aktiven Sensor, kann dies
zu ungewollten Bewegungsartefakten führen [91]. Abhilfe wird ermöglicht, indem
bei einer dynamischen Szene mit einem bildgebenden aktiven 3D-Sensor (z.B. Mi-
crosoft Kinect 1.0, MESA SR-4000 oder PMD CamCube 2.0; Kapitel 1.1) synchrone
2.5D-Messungen durchgeführt werden, wodurch eine momentane Erfassung gewähr-
leistet ist. Bei bewegten 3D-Sensoren ist es zudem sinnvoll, die absolute Position und
Lage synchron mit den Beobachtungen zu erfassen, beispielsweise direkt gemessen
durch zusätzliche Sensoren in Form von einem Positionsbestimmungssystem gekop-
pelt mit inertialem Navigationssystem. Nicht immer ist hiermit eine Position- und
Lagemessung möglich, beispielsweise ist innerhalb von Gebäuden keine direkte Posi-
tionsbestimmung durch ein globales Navigationssatellitensystem (Global Navigation
Satellite System) möglich, daher werden andere Lösungen angegangen.

Im Folgenden werden neue Methoden vorgestellt, bei denen keine zusätzliche Sen-
soren zur Bestimmung der Position und der Lage des aktiven 3D-Sensors verwendet
werden. Hierfür werden ausschließlich die mit den aktiven 3D-Sensoren erfassten
Daten berücksichtigt, um die Aufnahmestandpunkte anhand der geschätzten relati-
ven Orientierung zu ermitteln, d.h. unter Verwendung von Daten die mit scannen-
den aktiven 3D-Sensoren (Kapitel 2.2.2.1) bzw. bildgebenden aktiven 3D-Sensoren
(Kapitel 2.2.2.2) erfasst werden, wird deren Koregistrierung vorgestellt. Die Koregis-
trierung zwischen scannenden und bildgebenden aktiven 3D-Sensoren [B15] ist ein
Spezialfall der im Rahmen dieser Habilitationsschrift nicht vertieft wird.
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2.2.2.1 Koregistrierung bei terrestrischen Laserscanner

Terrestrische Laserscanner (z.B. Leica HDS6000, Z+F Imager 5006h, RIEGL VZ-
4000; Kapitel 1.1) ermöglichen eine dichte und sehr genaue 3D-Erfassung. Jedoch
reicht in der Regel meist ein einzelner Aufnahmestandpunkt aufgrund von Verde-
ckungen bei den 2.5D-Messungen nicht aus, um eine Szene vollständig zu erfassen.
Die 3D-Messwerte der einzeln erfassten Punktwolken beziehen sich jeweils nur auf
das lokale Koordinatensystem des Laserscanners während der Messung und nicht
auf ein gemeinsames, übergeordnetes Weltkoordinatensystem. Infolgedessen muss
die relative Orientierung des Sensors durch die Koregistrierung der einzeln erfass-
ten Punktwolken bestimmt werden, um eine möglichst vollständige Punktwolke zu
erhalten. Die zeitaufwendige Verortung der einzelnen Aufnahmestandpunkt erfolgt
bisher meist manuell bzw. halbautomatisch mittels standardisierten Referenzkör-
pern. Vollautomatische Verfahren zur Koregistrierung sollen daher möglichst eine
geringe Berechnungsdauer und zudem eine sehr hohe Genauigkeit aufweisen.
Eine automatische Koregistrierung kann durch das Iterative Closest Point (ICP)
Verfahren [5, 80] erfolgen. Es handelt sich hierbei um ein zweistufiges Verfahren,
bei dem zuerst eine Grobausrichtung und danach eine Feinausrichtung durchge-
führt wird. Insbesondere die Grobausrichtung von zwei Punktwolken gestaltet sich
schwierig und setzt zudem einschränkende geometrische Nebenbedingungen voraus
[1, 10, 19, 20, 21, 94]. Die Feinausrichtung basiert im einfachsten Fall auf einer
Zuordnung zwischen jedem Punkt aus der einen Punktwolke zum jeweils nächsten
Punkt der anderen Punktwolke. Hierzu ist zu bemerken, dass es sich bei den Punkten
um durch die Messung vorgegebene 3D-Positionen handelt, die nicht notwendiger-
weise einer gemeinsamen Verortung auf der Oberfläche entsprechen müssen. Für die
Berechnung wird durch aufwendige iterative Anpassung der Transformationspara-
meter der Abstand zwischen den zugeordneten Punkten sukzessive minimiert bis
ein globales Optimum erreicht ist bzw. die maximale Anzahl von Iterationen durch-
laufen ist. Neben der einfachen Zuordnung existieren verbesserte und entsprechend
angepasste ICP-Varianten bei denen nicht der Punkt-zu-Punkt-Abstand, sondern
der Punkt-zu-Ebene-Abstand optimiert wird.
Der Nachteil von Zuordnungen, die auf Messpunkten basieren, kann umgangen wer-
den, indem eine direkte Zuordnung von identischen 3D-Oberflächenelementen, al-
so gemeinsam verorteten Oberflächenelementen, erfolgt. Wie kann dies effizient er-
reicht werden? Zweckdienlich hierfür ist eine Bildrepräsentation der sukzessiv er-
fassten korrespondierenden Entfernungs- bzw. Intensitätsmesswerte. Basierend auf
der Nutzung von geometrischer und radiometrischer Bildrepräsentation wurden ver-
schiedene bildbasierte Ansätze zur Registrierung von Punktwolken entwickelt [3, 83].
Aus den einzelnen Intensitätsbildern können charakteristische 2D-Merkmalspunkte
(z.B. mit Scale Invariant Feature Transform (SIFT) Merkmale [59]) ermittelt werden
(Abbildung 2.17), die eindeutig korrespondieren und einer gemeinsamen Verortung
entsprechen [6, 48, 98]. Über den Vergleich von 2D-Merkmalspunkten in verschiede-
nen Intensitätsbildern können 2D/2D- und daraus folglich auch 3D/3D-Punktkor-
respondenzen bestimmt werden.

33



Somit sind verschiedene Lösungsansätze zur Koregistrierung möglich. Ein schnel-
les und robustes Verfahren, welches das Efficient Perspective-n-Point (EPnP) [66]
Verfahren mit dem Random-Sample-Consensus (RANSAC) [25] Verfahren kombi-
niert, liefert basierend auf 3D-zu-2D-Punktkorrespondenzen bereits eine sehr gute
Grobregistrierung der Punktwolken und ist daher für die Koregistrierung beson-
ders geeignet. Sind große 3D/3D-Distanzen zwischen einzelnen Punkten bei den
grob registrierten reduzierten Punktwolken gegeben, werden diese als Ausreißer de-
klariert und entfernen. Abschließend kann für die verbleibenden Korrespondenzen
eine Verfeinerung der Schätzung (Feinregistrierung) durch einen erneuten Durch-
lauf der vorhergehenden Schritte oder eine ICP-basierte Feinregistrierung erfolgen
[B11, B12, B14].

Die entwickelten Methoden wurden an einem frei verfügbaren Datensatz1, bei wel-
chem Referenzwerte für die 11 Aufnahmestandpunkte vorliegen, getestet und zeigen
eine geringe Berechnungsdauer von wenigen Sekunden auf einem Standardrechner,
sowie einen absoluten Positionsfehler zwischen dem geschätzten 3D-Aufnahmestand-
punkt und der Referenz für die untersuchte Szene in Abbildung 2.19, der im niede-
ren Zentimeter-Bereich für die Grobregistrierung (eabs < 5 cm, blau gestrichelt)
bzw. Feinregistrierung (eabs < 3 cm, rot durchgehend) liegt (Abbildung 2.18). In
Abbildung 2.19 sind die geschätzten 11 Aufnahmestandpunkte sowie die Punktwolke
nach der Überführung in ein gemeinsames, übergeordnetes Weltkoordinatensystem
dargestellt.

Abbildung 2.17: 3D-Repräsentation einer Punktwolke (links), entsprechende 2D-
Repräsentationen für Entfernungswerte und Intensitätswerte sowie Intensitätsbild
mit den lokalisierten SIFT-Merkmalen (rechts, von oben nach unten).

1http://www.ikg.uni-hannover.de/index.php?id=413&L=de (Letzter Zugriff April 2015)

34

http://www.ikg.uni-hannover.de/index.php?id=413&L=de


Abbildung 2.18: Absoluter Positionsfehler zwischen dem geschätzten 3D-
Aufnahmestandpunkt und der Referenz für die untersuchte Szene in
Abbildung 2.19: Grobregistrierung (blau gestrichelt) bzw. Feinregistrierung (rot
durchgehend).

2.2.2.2 Koregistrierung bei Entfernungskameras

Entfernungskameras (z.B. Microsoft Kinect 1.0, MESA SR-4000 oder PMD Cam-
Cube 2.0; Kapitel 1.1) erfassen flächenhaft und synchron Entfernungs- und Intensi-
tätswerte. Moderne Entfernungskameras mit hohen Bildraten sind daher auch zur
Erfassung von dynamischen Szenen geeignet [B2, 79]. Die erfassten Punktwolken
beziehen sich auf das lokale Koordinatensystem des aktiven Sensors zum Aufnah-
mezeitpunkt. Durch die bekannte relative Orientierung zwischen den Aufnahme-
standpunkten der Entfernungskamera können die Punktwolken in ein gemeinsames
Koordinatensystem transformiert werden. Infolgedessen muss zur Szenenrekonstruk-
tion eine Registrierung der Punktwolken erfolgen, bei welcher die gesamte, für alle
Aufnahmezeitpunkte erfassten 2.5D-Messungen in ein gemeinsames, übergeordnetes
Weltkoordinatensystem transformiert wird. Diese Registrierung sollte idealerweise
automatisch, schnell und mit hoher Genauigkeit erfolgen.
Um bei der Koregistrierung die Einschränkungen bezüglich des geringen Sichtfeldes
der Entfernungskamera und der im Vergleich zu Laserscannern geringeren Messge-
nauigkeit zu kompensieren, wurde ein modifiziertes Gewichtungsschema basierend
auf der Zuverlässigkeit einzelner 3D-Messungen realisiert [B9]. Durch das reguläre
Scanraster lassen sich die aufgenommenen Entfernungs- und Intensitätsmesswer-
te als Entfernungs- und Intensitätsbilder darstellen. In den zu zwei Beobachtun-
gen zugeordneten Intensitätsbildern können über Scale Invariant Feature Trans-
form (SIFT) [59] zuverlässig korrespondierende Punkte (2D/2D-Korrespondenzen)
detektiert werden. Statt der Verwendung von Intensitätsbildern ist eine erweiter-
te Kombination aus Entfernungs- und Intensitätsbilder möglich, dann können über
Complex Scale-Invariant Feature Transform (CSIFT) [B1] die korrespondierende
Punkte detektiert werden. Mit Hilfe der entsprechenden Entfernungswerte können
daraus wiederum Paare von physikalisch nahezu identischen 3D-Punkten (3D/3D-
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Abbildung 2.19: Punktwolke nach der Überführung in ein gemeinsames, überge-
ordnetes Weltkoordinatensystem.

Korrespondenzen) abgeleitet werden, aus welchen die Transformationsparameter der
relativen Orientierung zwischen den entsprechenden Punktwolken geschätzt werden
können (Abbildung 2.20a). Dabei wird der Beitrag jeder 3D/3D-Korrespondenz an-
hand der Zuverlässigkeit der entsprechenden Entfernungswerte sowie der Zuverläs-
sigkeit der 2D/2D-Korrespondenz, welche die Ähnlichkeit lokaler Intensitätswerte
beschreibt, gewichtet.

Eine Bewertung für jede einzelne Beobachtung ist bei diesen Untersuchungen nur
eingeschränkt möglich, da kein Referenzmesssystem zur Erfassung der Position und
Lage während der Aufnahme verfügbar war. Unter der Annahme, dass eine gerad-
linige Bewegung entlang einer Seilbahn gegeben ist, der Anfangs- und Endpunkt
eingemessen wurde, ergibt sich eine Standardabweichung für die Position quer zur
Bewegungsrichtung mit σy = 0.0378m und ein absoluter Fehler für den Anfangs-
punkt im Schleifenschluss mit eloop = 0.0967m. Es konnte somit gezeigt werden,
dass eine automatisierte und rein bildbasierte Schätzung der Position und Lage
unter Verwendung von bildgebenden aktiven Sensoren möglich ist. Zusätzliche Un-
tersuchungen für jede einzelne Aufnahme hinsichtlich Position und Lage könnten
zukünftig noch angegangen werden, um eine differenzierte Bewertung zu erstellen.
Abschließend kann zusätzlich eine Filterung bezüglich der Zuverlässigkeit der ge-
messenen Entfernungsinformation erfolgen, um unzuverlässige 3D-Messungen aus
der Punktwolke zu entfernen (Abbildung 2.20b und c).
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a b

c d

Abbildung 2.20: Koregistrierung bei Entfernungskameras: a) Szeneninhalt, b) auf
die Grundebene projizierte registrierten Punktwolke im gemeinsamen, übergeord-
neten Weltkoordinatensystem (grün) mit verketteter relativer Orientierung (rot),
c) ungefilterte Punktwolke und d) gefilterte Punktwolke mit anthropogenem Ob-
jekt (mittig).

2.3 Szenenanalyse

Nach der Vereinheitlichung der Daten wird in der dritten Verarbeitungsstufe der
Szeneninhalt analysiert. Um den Inhalt einer Szene bezüglich der darin enthalte-
nen Strukturen möglichst effizient zu analysieren, ist sowohl die schnelle Erfassung
durch aktive Sensoren (alle TLS, MLS, ALS; Kapitel 1.1) als auch eine automatisier-
te Interpretation von Punktwolken von großer Bedeutung. Dabei ist eine wesentli-
che Herausforderung, jeden 3D-Punkt der Punktwolke automatisch ein semantische
Kennzeichnung zuzuweisen (beispielsweise Boden, Gebäudefassade oder Vegetation)
[8, 69].
Zur Automatisierung der Szenenanalyse werden vier wesentliche Verfahrensschrit-
te (Abbildung 2.21) vorgeschlagen. Da aktive Sensoren primär der geometrischen
Erfassung dienen, werden in diesem Kapitel keine radiometrischen Eigenschaften,
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sondern nur geometrische Eigenschaften der Szene in Form von Punktwolken für
die Analyse herangezogen. Um einen 3D-Punkt der Punktwolke entsprechend zu
charakterisieren, ist die Verwendung der lokalen Nachbarschaft zweckmäßig. Da die
Charakterisierung von 3D-Punkten sowohl von der nicht bekannten Szenenstruk-
tur als auch von der zu wählenden Nachbarschaftsanzahl geprägt ist, wird zuerst
die Wahl der optimalen lokalen Nachbarschaft zur Merkmalsberechnung angegan-
gen und erläutert (Kapitel 2.3.1). Aus der optimalen lokalen Nachbarschaft werden
im nächsten Schritt verschiedene geometrische Merkmale extrahiert (Kapitel 2.3.2)
und dem 3D-Punkt zugewiesen. Da die Relevanz der geometrischen Merkmale von
den Szeneninhalten beeinflusst wird, ist es sinnvoll für eine performante Klassifikati-
on eine optimale Auswahl von relevanten Merkmalen (Kapitel 2.3.3) zu bestimmen.
Abschließend wird basierend auf den bestimmten relevanten Merkmalen eine Klas-
sifikation (Kapitel 2.3.4) durchgeführt.

Abbildung 2.21: Szenenanalyse durch semantische Interpretation bei Punktwol-
ken.

2.3.1 Bestimmung der optimalen lokalen Nachbarschaften

Zur Berechnung von Merkmalen für einen 3D-Punkt wird die lokale Nachbarschaft
berücksichtigt, da diese den benachbarten Bereich des Punktes und somit indirekt
den Punkt selbst charakterisiert. Wesentlich hierbei ist die Größe des benachbar-
ten Bereichs, um den 3D-Punkt bestmöglich semantisch zu charakterisieren, ohne
störende Einflüsse von weit entfernten nicht zuträglichen 3D-Punkten einfließen zu
lassen.
Üblicherweise wird die lokale Nachbarschaft basierend auf Vorwissen bzgl. der Szene
und der Daten empirisch bestimmt, wobei für die lokalen Nachbarschaften aller 3D-
Punkte im Datensatz häufig die gleiche Parametrisierung verwendet wird [57, 58,
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69, 71]. Da die Größe des benachbarten Bereichs von der lokalen Punktdichte und
der lokalen Geometrie abhängt [4, 24], wurde ein neues generisches Verfahren zur
automatischen Bestimmung von einer optimalen lokalen Nachbarschaft für jeden
individuellen 3D-Punkt der Punktwolke entwickelt [C4, C5, C7].

Um die optimalen lokalen Nachbarschaften (Abbildung 2.21: Neighborhood Selecti-
on) für jeden 3D-Punkt zu bestimmen wird zuerst die Eigenentropie (Eigenentropy)
Eλ eingeführt. Die Eigenentropie basiert auf der Kovarianzmatrix, wobei die Elemen-
te der Kovarianzmatrix sich aus den Koordinaten eines 3D-Punktes X und der dazu
k nächsten 3D-Punkte berechnen. Die Kovarianzmatrix ist eine symmetrische posi-
tiv definite Matrix, woraus sich drei orthogonale Eigenvektoren mit den Eigenwerten
λ1, λ2, λ3 ∈ R und λ1 ≥ λ2 ≥ λ3 ≥ 0 ableiten lassen. Um einen generischen Ansatz
zu erhalten, wird eine Normalisierung über die drei Eigenwerte durch die Summe∑
λ vorgenommen. Die Eigenentropie Eλ, abgeleitet von der Shannon Entropie [85],

wird bestimmt durch

Eλ = −ε1ln(ε1)− ε2ln(ε2)− ε3ln(ε3), (2.16)

wobei εi durch εi = λi/
∑
λ mit i ∈ {1, 2, 3} gegeben ist.

Anhand der durchgeführten Untersuchungen konnte gezeigt werden, dass die Ver-
wendung von optimalen lokalen Nachbarschaften basierend auf der beschriebenen
Eigenentropy-based Scale Selection zu deskriptiven Merkmalen führt. Im Vergleich
mit konstanter Nachbarschaftsanzahl (N10, N50, N100)2 bzw. mit variabler Nachbar-
schaftsanzahl, beispielsweise bestimmt durch Dimensionality-based Scale Selection
mit der optimalen Nachbarschaftsanzahl Nopt,dim3, konnte das Klassifikationsergeb-
nis durch Eigenentropy-based Scale Selection mit der optimalen Nachbarschaftsan-
zahl Nopt,λ zusätzlich verbessert werden. Das erreichte Klassifikationsergebnis wird
durch das Gütemaß F1-Score [92] bewertet, welches die Genauigkeit (Precision) und
Trefferquote (Recall) in einem Gütemaß kombiniert.

In Abbildung 2.22 ist der F1-Score für die Nachbarschaftsanzahl N10, N50, N100,
Nopt,dim und Nopt,λ aufgetragen. Als Klassifikation wurde bei dem dargestellten Bei-
spiel exemplarisch die Random Forest (RF) [9] Klassifikation verwendet. Die un-
tersuchte Szene (Abbildung 2.26) beinhaltet verschiedene Klassen (Leitung, Pfos-
ten/Stamm, Gebäudefassade, Boden und Vegetation). Für die Nachbarschaftsanzahl
Nopt,λ ist der F1-Score generell für jede der fünf Klassen sehr hoch, meist wird damit
das beste Ergebnis erreicht.

2Nachbarschaft mit 10, 50, 100 nächsten Nachbarn
3Optimale Nachbarschaft nach [17]
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Abbildung 2.22: F1-Score für die Nachbarschaftsanzahl N10, N50, N100, Nopt,dim
und Nopt,λ. Untersuchte Klassen (von links nach rechts) Leitung (wire), Pfos-
ten/Stamm (pole/trunk), Gebäudefassade (façade), Boden (ground) und Vege-
tation (vegetation).

2.3.2 Merkmalsextraktion

Um deskriptive Merkmale aus den 3D-Punkten zu extrahieren (Abbildung 2.21: Fea-
ture Extraction) wird im Folgenden sowohl auf 3D-Merkmale als auch 2D-Merkmale
eingegangen. Zur Beschreibung der lokalen Nachbarschaft eines 3D-Punktes X sind
die in Kapitel 2.3.1 bereits erwähnten Eigenwerte λ1, λ2, λ3 besonders gut geeignet
sind. Aus diesen Eigenwerten lassen sich sowohl 3D-Merkmale (beispielsweise für
lineare, planare und volumetrische Strukturen) [71, 101] als auch spezielle geometri-
sche Formprimitive (beispielsweise Punkt bzw. verschiedene Linien und Flächen aus
Abbildung 2.23) [C1] bestimmen, die zur Beschreibung von bestimmten Szeneninhal-
ten verwendet werden können, unter anderem für natürliche Objekte (Kapitel 2.4.1)
[C2] sowie für anthropogene Objekte (Kapitel 2.4.2) [C3].
In der Literatur werden verschiedene geometrische Eigenschaften zur Berechnung
zusätzlicher Merkmale vorgeschlagen, die wesentlichen Eigenschaften sind beispiels-
weise Winkelstatistiken [67], Höhencharakteristiken und lokale Planaritäten [62],
Schiefe und vertikale Profile [33] bzw. Punktabstände und Höhenunterschiede [97].
Neben diesen vorgestellten Eigenwert-basierten Merkmalen, die alleine auf der Geo-
metrie der lokalen Nachbarschaft basieren, werden zusätzliche radiometrische Merk-
male (Kapitel 2.1.2 bzw. Kapitel 2.1.3) berücksichtigt [12, 62, 69, 82, 97] um die
Klassifikationsleistung zu steigern.
Ohne Anspruch auf Vollständigkeit werden exemplarisch die wesentlichen 3D- und
2D-Merkmale beschrieben, die sich bei der Szenenanalyse bewährt haben [C6, C4,
C5, C7] und bei der in Kapitel 2.3.3 folgenden Auswahl relevanter Merkmale ver-
wendet werden.
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Abbildung 2.23: Spezielle geometrische Formprimitive.

3D-Merkmale

Die aus der lokalen Nachbarschaft, respektive 3D-Punkten, abgeleiteten Merkma-
le werden als 3D-Merkmale bezeichnet. Die 3D-Merkmale Linearity Lλ, Planarity
Pλ und Scattering Sλ eignen sich um lineare 1D-Strukturen, planare 2D-Strukturen
oder volumetrische 3D-Strukturen zu beschreiben. Zusätzliche 3D-Merkmale sind
die Omnivariance Oλ, Anisotropy Aλ, Eigenentropy Eλ und die Sum of eigenva-
lues bezeichnet mit Σλ. Ein Indikator für Krümmung ist das Merkmal Change of
curvature Cλ. Die formale Definition der genannten Merkmale ist gegeben mit

Linearity Lλ = λ1 − λ2

λ1
, (2.17)
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Planarity Pλ = λ2 − λ3

λ1
, (2.18)

Scattering Sλ = λ3

λ1
, (2.19)

Omnivariance Oλ = 3
√
λ1λ2λ3, (2.20)

Anisotropy Aλ = λ1 − λ3

λ1
, (2.21)

Eigenentropy Eλ = −
3∑
i=1

λi ln(λi), (2.22)

Sumof eigenvalues Σλ = λ1 + λ2 + λ3, (2.23)

Change of curvature Cλ = λ3

λ1 + λ2 + λ3
. (2.24)

Weitere wichtige 3D-Merkmale, jedoch nicht weiter spezifiziert, sind die Verticality
V [18] und die modifizierte Local Point Density D [56].

2D-Merkmale

Anthropogene Objekte sind für die Szenenanalyse relevant, da diese Objekte häufig
planare Oberflächen aufweisen und zudem vertikal ausgerichtet sind (beispielswei-
se Gebäudefassade, Pfosten) ist es konsequent, speziell hierfür Merkmale zu ent-
wickeln. Es ist naheliegend, dass hierfür 3D-Punkte auf eine horizontal orientierte
Ebene (Geländeebene) projiziert werden und daraus 2D-Merkmale abgeleitet wer-
den, beispielsweise die Local Point Density D2D und der Radius rk−NN,2D [56]. Ein
Hinweis auf planare 2D-Strukturen wird durch die Eigenwerte λ1,2D, λ2,2D bzw. de-
ren Verhältnis Rλ,2D = λ2,2D

λ1,2D
ermöglicht. Ebenso wird die zweidimensionale Variante

der Sum of Eigenvalues Σλ,2D berücksichtigt. Zudem kann über eine Accumulation
Map [65] die Merkmale Maximum Height Difference 4Z und die Height Variance
σZ bestimmt werden.
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2.3.3 Auswahl relevanter Merkmale

Da jedes einzelne Merkmal die Eigenschaften des benachbarten Bereichs beschreibt,
sind nur bestimmte Merkmale (Abbildung 2.21: Feature Selection) für spezielle An-
wendungen geeignet. Normalerweise ist jedoch kein klassenspezifisches Vorwissen
hinsichtlich der Merkmalseignung bekannt, daher werden prinzipiell alle verfügbaren
Merkmale eingesetzt, um anhand von Trainingsdaten einen Klassifikator zu trainie-
ren. Es ist zu erwarten, dass einige Merkmale irrelevant sind. Durch Reduktion aller
verfügbaren Merkmale auf die relevanten Merkmale kann die Klassifikationsleistung
gesteigert werden und zusätzlich die Rechenzeit als auch die Anforderungen be-
züglich des Speicherbedarfs deutlich reduziert werden [34]. Durch Kombination von
willkürlich gewählten Merkmalen bei der Klassifikation und der dazu korrespondie-
renden Klassifikationsleistung können relevante Merkmale nur mit sehr hohem Re-
chenaufwand bestimmt werden [12, 50, 62]. Im Gegensatz dazu können klassifikati-
onsunabhängige Abschätzungen hinsichtlich der Eignung des Merkmals anhand von
Filter-based Feature Selection Methoden besonders einfach und effizient bestimmt
werden [C8]. Mit der Univariate Filter-based Feature Selection Methode [C6] und
der Multivariate Filter-based Feature Selection Methode [C7] lässt sich dies weiter
spezifizieren.
Univariate Filter-based Feature Selection
Bei der Univariate Filter-based Feature Selection Methode impliziert eine Bewer-
tungsfunktion die Relation zwischen Merkmal und Klasse um die Relevanz der Merk-
male zu bestimmen. Die hierfür am häufigsten eingesetzten Bewertungsfunktionen
sind beispielsweise Pearson Correlation Coefficient [72], Gini Index [31], Fisher Sco-
re [26], Information Gain [78] oder Symmetrical Uncertainty [77].
Multivariate Filter-based Feature Selection
Bei der Multivariate Filter-based Feature Selection Methode impliziert eine Bewer-
tungsfunktion sowohl die Relation zwischen Merkmal und Klasse als auch die Rela-
tion zwischen den Merkmalen selbst, um die Redundanz der Merkmale zu bestim-
men. Das hierfür am häufigsten eingesetzte Bewertungsverfahren ist ReliefF [51],
weitere Bewertungsverfahren sind Correlation-based Feature Selection (CFS) [35],
Fast Correlation-Based Filter (FCBF) [103] oder minimal-Redundancy-Maximal-
Relevance (mRMR) Criterion [73].
Hinsichtlich Relevanz (Maximal Relevance Selection) bzw. Redundanz (Minimal
Redundancy Selection) der analysierten Merkmale ergeben sich hierfür Bewertungen
die in einer übergeordneten Relevanzmetrik vereinheitlicht werden können. Die Re-
levanzmetrik basiert auf verschiedenen Strategien zur Analyse der intrinsischen Ei-
genschaften der gegebenen Trainingsdaten und berücksichtigt verschiedene Aspekte
hinsichtlich Maßen bezüglich Abstand, Information, Abhängigkeit oder Konsistenz.
Die Betrachtung der Merkmale anhand der Relevanzmetrik ermöglicht eine Eintei-
lung in mehr oder weniger relevante Merkmale (Abbildung 2.24), wobei die für die
Klassifikation zu wählende Anzahl von relevanten Merkmalen beispielsweise aus der
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Gesamtgenauigkeit der Klassifikation (Abbildung 2.25) abgeleitet werden kann [C6].
Ferner wird durch Abbildung 2.25 verdeutlicht, dass durch alleinige Hinzunahme von
zusätzlichen Merkmalen nicht notwendigerweise eine zusätzliche Steigerung der Ge-
samtgenauigkeit der Klassifikation ermöglicht wird bzw. durch die Berücksichtigung
von wenigen relevanten Merkmalen im Vergleich zur Verwendung aller Merkmale
die Gesamtgenauigkeit der Klassifikation deutlich gesteigert wird.

Abbildung 2.24: Rangfolge der 3D-Merkmale (blau) und 2D-Merkmale (grün)
entsprechend der Relevanzmetrik aufgetragen, je niedriger der Rang desto rele-
vanter das Merkmal.

Abbildung 2.25: Gesamtgenauigkeit der Klassifikation (Overall Accuracy) von
Nearest Neighbor (NN), k-Nearest Neighbor (k-NN), Naive Bayesian (NB) und
Support Vector Machine (SVM) Klassifikation (Kapitel 2.3.4) aufgetragen über
die akkumulierte Rangfolge der Merkmale.
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2.3.4 Klassifikation

Die in Kapitel 2.3.3 ermittelten relevanten Merkmale werden in einem Merkmals-
vektor zusammengefasst und für jeden 3D-Punkt wird der dazugehörige individuelle
Merkmalsvektor zur Klassifikation (Abbildung 2.21: Classification) eingesetzt. Für
die Untersuchungen sind Verfahren zur überwachten Klassifikaton geeignet [100],
beispielsweise die Nearest Neighbor (NN), k-Nearest Neighbor (k-NN) [15], Nai-
ve Bayesian (NB) [44], Support Vector Machine (SVM) [14] und Random Forest
(RF) [9] Klassifikation. Benachbarte 3D-Punkte weisen sehr häufig gleiche Klassen-
zugehörigkeit auf, durch kontextabhängige Klassifikation (Contextual Classification)
kann diese Interaktion zwischen benachbarten 3D-Punkten zusätzlich berücksichtigt
werden. Insbesondere statistische Modelle sind für kontextabhängige Klassifikation
geeignet und werden beispielsweise bei Conditional Random Field (CRF) Klassifika-
tion [53] angewandt. Es konnte gezeigt werden, dass durch kontextabhängige Klassi-
fikation die Klassifikationsleistung zusätzlich gesteigert werden kann [C9]. Hierzu ist
in Abbildung 2.26 ein Klassifikationsergebnis einer Random Forest (RF) Klassifika-
tion verglichen mit einer Conditional Random Field (CRF) Klassifikation dargestellt
für insgesamt fünf urbane Klassen. Es wird eine bessere Gruppierung mit geringerem
Rauschen (Abbildung 2.26b vs. d) durch kontextabhängige Klassifikation erreicht.

a b

c d

Abbildung 2.26: Klassifikationsergebnis von 3D-Punkten mit optimaler lokaler
Nachbarschaft zur Merkmalsberechnung: Random Forest (RF) Klassifikation (a)
mit Ausschnittsvergrößerung (b), Conditional Random Field (CRF) Klassifikation
(c) mit Ausschnittsvergrößerung (d). Farbkodierung der Klassen: Leitung (blau),
Pfosten/Stamm (rot), Gebäudefassade (grau), Boden (braun), Vegetation (grün).
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2.4 Objektrekonstruktion

Nach der sehr allgemein gehaltenen Szenenanalyse (Kapitel 2.3) wird in der vier-
ten Verarbeitungsstufe eine differenzierte Analyse der Szene hinsichtlich einzelner
Objekte angegangen. Hierbei sollen einzelne Objekt erkannt bzw. rekonstruiert wer-
den. Im Vergleich zu den vorherigen Verarbeitungsstufen werden in diesem Kapitel
hauptsächlich erste Entwicklungen gezeigt die zukünftig weiter vertieft werden kön-
nen. Bei diesem Kapitel wird wegen der speziellen Formen bestimmter Objekte eine
Unterscheidung hinsichtlich natürlicher Objekte (Kapitel 2.4.1) und anthropogener
Objekte (Kapitel 2.4.2) vorgenommen.

2.4.1 Natürliche Objekte

Im Folgenden wird ein Ansatz zur Objektrekonstruktion bei natürlichen Objekten
vorgestellt. Aus der Objekterkennung sind Verfahren bekannt, die statt einzelner Pa-
rameterwerte in Form von 3D-Merkmalen und 2D-Merkmalen (Kapitel 2.3.2) durch
eine höher dimensionierte Parametrisierung eine möglichst repräsentative Vertei-
lung aus der Szene bestimmen, die wiederum als Histogramm repräsentiert werden
[59, 81, 89, 88]. Zu diesen Verfahren zählt auch die Shape Distribution Methode
[70], bei der eine Häufigkeitsverteilung für zufällig gewählte 3D-Punkte vorgenom-
men wird um daraus Histogramme mit spezifischen Eigenschaften zu generieren. In
Anlehnung an die ursprüngliche Idee dieses Ansatzes können unter anderem fünf ver-
schiedene Histogramme berechnet werden, deren Parametrisierung (A3, D1, D2, D3,
D4) auf geometrischen Maßen basiert, beispielsweise Winkeln, Distanzen, Flächen
und Volumen zwischen zufällig gewählten 3D-Punkten:

• Winkel zwischen drei zufällig gewählten 3D-Punkten (A3)
• Distanz eines zufällig gewählten Punktes zum Schwerpunkt aller 3D-Punkte

innerhalb der Nachbarschaft (D1)
• Distanz zwischen zwei zufällig gewählten 3D-Punkten (D2)
• Fläche eines Dreiecks zwischen drei zufällig gewählten 3D-Punkten (D3)
• Volumen eines Tetraeders zwischen vier zufällig gewählten 3D-Punkten (D4)

Die Vorteile der spezifischen Eigenschaften der berechneten Histogramme sind deren
Rotations- und Translationsinvarianz, die Robustheit gegenüber kleinen Störungen
und eine effiziente Berechnung. Aus der Ähnlichkeit zwischen den Häufigkeitsver-
teilungen der Parametrisierung lassen sich Rückschlüsse auf die Ähnlichkeit von
Objekten schließen. Erste Ergebnisse sind vielversprechend und zeigen das Potential
hinsichtlich Objektrekonstruktion bei natürlichen Objekten [D1].
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2.4.2 Anthropogene Objekte

Anthropogene Objekte sind meist von regulären Formen geprägt, weswegen sich
eine Modellierung durch geometrische Formprimitive bzw. einfache Strukturelemen-
te anbietet, beispielsweise durch Punkte, Linien und Flächen. Im Umkehrschluss
ist es daher erstrebenswert basierend auf 3D-Punkten innerhalb einer Punktwol-
ke bestimmte Formprimitive zu bestimmen um Hinweise für anthropogene Objekte
zu erhalten. Eine gesteigerte Klassifikationsleistung bei der Objektdetektion wurde
beispielsweise für Gebäude erreicht, indem mittels Airborne Laser Scanning Da-
ten zwischen flachen und geneigten Dachflächen unterschieden wird [D2]. Zudem
wird eine verbesserte Datengrundlage bei Gebäudedachflächen erreicht, indem zu-
erst eine Modellierung der Gebäudedachs als Fläche erfolgt, um dann bei unsicheren
Messwerten eine nachträgliche Verdichtung der Daten zu ermöglichen [D4, D5]. Für
eine robustere Objektdetektion werden bei Gebäuden stabile Liniensegmente gene-
riert um die Gebäudekanten möglichst vollständig damit zu beschreiben [A8]. Unter
der Annahme, dass Gebäudekanten gerade sind, können diese Kanten als Linien
modelliert werden. Mit speziellen Einschränkungen ist dann eine subpixel-genaue
Lokalisierung von Kanten möglich [D3].

Als Alternative zu dem vorherigen modellbasierten Ansatz kann durch eine merk-
malsbasierte Objektdetektion anhand SIFT [59] ohne Hinzunahme von geometri-
schen Formprimitiven eine Zuordnung zwischen anthropogenem Objekt und Modell
erfolgen. In Abbildung 2.27 ist ein Fahrzeug zu sehen, welches trotz perspektivischer
Änderung als anthropogenes Objekt detektiert wird.

Abbildung 2.27: Detektion und Erkennung von anthropogenen Objekten: Passives
Intensitätsbild mit Fahrzeug aus Abbildung 2.20a, Template aus einer Datenbank
und transformiertes Template (oben, v.l.n.r.) sowie zum transformierten Template
korrespondierende Punktwolke (unten; der rote Punkt entspricht der Sensorposi-
tion).

47



48



3 Diskussion und Ausblick

In diesem Kapitel werden die zuvor beschriebenen Verarbeitungsstufen diskutiert
und es wird davon ausgehend ein Ausblick auf zukünftige Forschungsaktivitäten
gegeben. Zudem wird eine Positionierung der dazu entstandenen Schlüsselpublika-
tionen im wissenschaftlichen Umfeld vorgenommen.

Mit der ersten Verarbeitungsstufe Modellierung und Analyse von Messsigna-
len (Kapitel 2.1) werden die mit aktiven Sensoren erfassten Daten für die nachfolgen-
den Verarbeitungsstufen zweckmäßig aufbereitet. Beim Phase-Unwrapping bei
Entfernungsbildern (Kapitel 2.1.1) stellen die szenenbedingten Diskontinuitäten
eine wesentliche Beschränkung für die Verarbeitung dar, die nicht ohne zusätzli-
chen Aufwand überwunden werden kann. Eine Weiterentwicklung wird ermöglicht,
indem statt einer einzigen Beobachtung mehrere zeitlich aufeinanderfolgende Be-
obachtungen, erfasst von verschiedenen Standorten, analysiert werden und damit
Unzulänglichkeiten beim Phase-Unwrapping ausgeschlossen werden, beispielsweise
durch Eigenbewegung des aktiven optischen Sensors. Zudem wurde mit der Si-
gnaloptimierung bei Full-Waveform-Laserscanner-Daten (Kapitel 2.1.2) ei-
ne neue Möglichkeit für die Verarbeitung von Laserscanner-Daten vorgestellt. Die
hierfür entwickelten Methoden sind nur eingeschränkt bei den aktuell verwendeten
Bandbreiten und Empfindlichkeit der Sensorelemente bei aktiven optischen Sensoren
einsetzbar. Deswegen sind zusätzliche Weiterentwicklung hinsichtlich der Bandbrei-
te und Empfindlichkeit der Sensorelemente bei aktiven Sensoren erforderlich, um
eine noch differenziertere Auswertung der rückgestreuten Strahlung und somit eine
verbesserte Analyse der beleuchteten Oberfläche zu ermöglichen. Die Radiometri-
sche Kalibrierung bei Laserscanner-Daten (Kapitel 2.1.3) zeigt, dass neben
der Erfassung von geometrischen Daten zusätzlich die radiometrischen Daten von
Bedeutung für die Auswertung sind. Auch hier ist eine Verbesserung nur dann mög-
lich, wenn die zuvor definierten Randbedingungen eingehalten werden können und
zudem rauscharme Signale vorliegen. Dies bedeutet, dass hier ebenfalls eine erhöhte
Bandbreite und Empfindlichkeit der Sensorelemente bei aktiven optischen Sensoren
relevant ist. Die zu diesem Thema veröffentlichten Schlüsselpublikationen wurden
zum einen auf renommierten internationalen Konferenzen der International Society
for Photogrammetry and Remote Sensing (ISPRS) als Peer-Reviewed Konferenz-
artikel akzeptiert und präsentiert, beispielsweise bei den Laserscanning [A5] und
Photogrammetric Image Analysis [A10] Konferenzen und zudem als begutachte-
te Artikel in nationalen und internationalen Zeitschriften akzeptiert, beispielsweise
AVN - Allgemeine Vermessungs-Nachrichten [A4], Journal of Photogrammetric En-
gineering & Remote Sensing (PE&RS) [A7], Revue Française de Photogrammétrie
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et de Télédétection [A9] und ISPRS Journal of Photogrammetry & Remote Sen-
sing [A12]. Der letztgenannte Beitrag [A12] wurde als bester Beitrag des ISPRS
Journal of Photogrammetry & Remote Sensing (Volume 61) mit dem U.V. Helava
Award prämiert. Ein Beitrag [A14] wurde als Buchkapitel bei dem internationalen
Standardwerk Topographic Laser Ranging and Scanning: Principles and Processing
berücksichtigt.

Nach der Aufbereitung der Daten werden mit der zweiten Verarbeitungsstufe Kore-
gistrierung mit 2D- bzw. 3D-Sensoren (Kapitel 2.2) unterschiedliche Beobach-
tungen vereinheitlicht. Sowohl bei Entfernungskamera kombiniert mit ther-
mischer Infrarot-Kamera (Kapitel 2.2.1.1) als auch bei Mobiler Laserscan-
ner kombiniert mit RGB-Kamera (Kapitel 2.2.1.2) werden bistatische Sensor-
anordnungen eingesetzt, weswegen sich durch unterschiedliche Perspektiven die kon-
struktionsbedingte Nachteile insbesondere im nahen Entfernungsbereich ergeben.
Abhilfe ist prinzipiell durch aufwendigere monostatische Systeme möglich, jedoch
erscheint eine zeitnahe technische Umsetzung von kombinierten aktiven und pas-
siven Sensoren nur mit großem Aufwand möglich. Deswegen stellen derzeit die
vorgeschlagenen Methoden zur 3D/2D-Koregistrierung mit den perspektivischen
Einschränkungen im nahen Entfernungsbereich hierzu eine gute Alternative dar.
Bei den entwickelten neuen Methoden zu Koregistrierung bei terrestrischen
Laserscanner (Kapitel 2.2.2.1) bzw. Koregistrierung bei Entfernungskame-
ras (Kapitel 2.2.2.2) wird die merkmalsbasierte Zuordnung texturbedingt meist nur
anhand von radiometrischer Bildrepräsentationen durchgeführt, die geometrischen
Messungen bleiben hierfür oft ungenutzt. Deswegen erscheint eine Kombination von
Radiometrie und Geometrie bzw. die zusätzliche Verwendung von generierten Merk-
malsbildern sinnvoll. Erste eigene Ansätze hierzu wurden bereits in der internatio-
nalen Open-Access-Zeitschrift Remote Sensing publiziert [B1]. Weitere Schlüsselpu-
blikationen sind in den internationalen Zeitschriften International Journal of Image
and Data Fusion [B8] und ISPRS Journal of Photogrammetry & Remote Sensing
[B14] erschienen. Zusätzlich wurden auf verschiedenen hochwertigen internationa-
len Konferenzen begutachtete Beiträge vorgestellt, beispielsweise auf dem IEEE -
Joint Urban Remote Sensing Event (JURSE) [B11], der Laserscanning Konferenz
der ISPRS [B12] und dem Technical Commission I Symposium - Sustaining Land
Imaging: UAVs to Satellites der ISPRS [B13].

Nach der Vereinheitlichung der Daten wird in der dritten Verarbeitungsstufe durch
Szenenanalyse (Kapitel 2.3) der Inhalt einer Szene hinsichtlich darin enthaltenen
Strukturen analysiert. Die Bestimmung der optimalen lokalen Nachbarschaf-
ten (Kapitel 2.3.1) eines 3D-Punktes erfolgt in puncto aller 3D-Punkte die inner-
halb einer radialsymmetrischen Nachbarschaft als relevant für eine semantische Cha-
rakterisierung angesehen werden. Die Prozessierung aller 3D-Punkte ist prinzipiell
sehr aufwendig. Bei zukünftigen Untersuchungen könnte anhand von Stichproben
eine Untermenge der 3D-Punkte für eine effiziente Schätzung der optimalen lokalen
Nachbarschaft berücksichtigt werden. In diesem Zusammenhang radialsymmetrische
Nachbarschaften zu verwenden ist naheliegend, jedoch gegebenenfalls nicht optimal,
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deswegen wird eine an die örtlichen Gegebenheiten adaptierte Nachbarschaft postu-
liert, die durchaus asymmetrische Formen annehmen kann. Die Merkmalsextrak-
tion (Kapitel 2.3.2) basiert im wesentlichen auf definierten, vielfältigen und deskrip-
tiven Merkmalen. Diese Merkmale sind generisch, jedoch noch nicht anwendungsspe-
zifisch optimiert. Dies bedeutet, dass zukünftig für spezielle Anwendungen gegebe-
nenfalls spezifische Merkmale sowohl konzipiert als auch untersucht werden müssen.
Die darauf folgendeAuswahl relevanter Merkmale (Kapitel 2.3.3) dient zur Stei-
gerung der Klassifikationsleistung. Die hierfür verwendeten Bewertungsfunktionen
sind nach den bisherigen Untersuchungen zufolge sehr robust, die Berücksichtigung
von zusätzlichen Bewertungsfunktionen ermöglicht gegebenenfalls noch eine verbes-
serte Optimierung, wobei die mögliche Verbesserung nach derzeitigen Erfahrungen
eine sehr große Herausforderung darstellt. Für die Klassifikation (Kapitel 2.3.4)
wurden bekannte Klassifikationsschemen angewandt um eine möglichst hohe Ge-
samtgenauigkeit bei der Verarbeitung zu erreichen, methodische Weiterentwicklun-
gen können bei Bedarf zukünftig angegangen werden. Die Schlüsselpublikationen in
diesem Kapitel sind erschienen bei den angesehenen internationalen Zeitschriften
ISPRS Journal of Photogrammetry & Remote Sensing [C4] und Computers & Gra-
phics Journal [C5]. Zudem wurde ein Peer-Reviewed Konferenzartikel [C7] bei der
internationalen Konferenz ISPRS Technical Commission III Symposium - Photo-
grammetric Computer Vision and Image Analysis (PCV ) mit dem PCV 2014 Best
Paper - Honourable Mention prämiert.

Nach der sehr allgemein gehaltenen Szenenanalyse wird in der vierten Verarbei-
tungsstufe durch Objektrekonstruktion (Kapitel 2.4) eine differenzierte Analyse
der Szene hinsichtlich einzelner Objekte angegangen. Diese Verarbeitungsstufe ist in
der Verfahrensentwicklung noch nicht sehr weit fortgeschritten, da der Schwerpunkt
der Forschungsaktivitäten auf den vorherigen Verarbeitungsstufen lag. Zur Rekon-
struktion bei Natürlichen Ojekten (Kapitel 2.4.1) wird eine höher dimensionier-
te Parametrisierung eingesetzt, um einzelne natürliche Objekte zu bestimmen. Die
ersten Ergebnisse hierzu sind vielversprechend. Es besteht weiterhin Forschungsbe-
darf hinsichtlich der Konzeption von zusätzlichen höher dimensionierten Merkmalen,
die optimal an die Objektcharakteristik angepasst sind. Bei Anthropogenen Ob-
jekten (Kapitel 2.4.2) werden zur Rekonstruktion häufig Verfahren entwickelt die
auf Formprimitiven (Strukturelemente) basieren. Diese Formprimitive gilt es mög-
lichst genau und vollständig zu bestimmen, insbesondere die Vollständigkeit kann
unter Berücksichtigung von Modellwissen bei verrauschten Messungen verbessert
werden, indem schwache bzw. verrauschte Signale zusätzlich extrahiert werden. Eine
Schlüsselpublikation [D4] hierzu ist in der internationalen Zeitschrift ISPRS Journal
of Photogrammetry & Remote Sensing erschienen. Eine weitere Schlüsselpublikati-
on wurde als Peer-Reviewed Konferenzartikel bei der Laserscanning Konferenz der
ISPRS [B12] akzeptiert und präsentiert.

Von übergeordneter Bedeutung für zukünftige Forschungsaktivitäten im Umfeld des
Habilitationsthemas drängen sich verschiedene Fragestellungen zu den vorgestell-
ten Verarbeitungsstufen auf. Beispielsweise erscheint eine generelle Verbesserung
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der Datengrundlage durch die standortoptimierte Erfassung mit Sensoren möglich
indem die bestmögliche nächste Mess- bzw. Beobachtungsposition prädiziert wird
(Next Best View Problem) um durch möglichst wenige Messungen eine vollständige
Objekt- bzw. Szenenerfassung zu erreichen. Hierfür kann sequentiell vorgegangen
werden bzw. durch die zunehmende Verfügbarkeit von preiswerten Sensoren wird
die parallele Erfassung der Szene immer attraktiver, beispielsweise durch den gleich-
zeitigen Einsatz von mehreren Sensoren. Mehrere mit Sensoren ausgestattete UAS
mit kollektiver Intelligenz sind für diese Aufgabe geradezu prädestiniert. Hierbei
sind keine Einschränkungen hinsichtlich andersgearteten Sensoren gegeben, denn ein
Sensorverbund aus aktiven und passiven Sensoren zur Datenerfassung ist wesentlich
geringer anfällig gegenüber sensorspezifischen Limitierungen, wodurch sich zukünftig
neue Möglichkeiten zur automatischen Szenencharakterisierung in der Photogram-
metrie und Fernerkundung ergeben.
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4 Relevante Publikationen als Teil der Habilitationsschrift

Diese kumulative Habilitationsschrift beinhaltet Publikationen des Verfassers zu den
in Kapitel 2 vorgestellten Methoden. Den entwickelten Methoden wurden relevan-
te Publikationen zugeordnet und separat in Kapitel A, Kapitel B, Kapitel C und
Kapitel D aufgeführt. Insgesamt 22 Schlüsselpublikationen, eine Untermenge der
45 relevanten Publikationen, haben eine spezielle Referenzkennung (Schriftstärke
fett) und sind als Abdruck vollständig in der Habilitationsschrift enthalten. Nicht
referenzierte Publikationen des Verfassers im erweiterten Themengebiet sind in Ka-
pitel Z aufgeführt. Des Weiteren lassen sich relevante Publikationen kapitelweise in
begutachtete Zeitschriftenartikel und Peer-Reviewed Konferenzartikel (Full Paper
& Double Blind Review) einteilen und gruppieren. In Tabelle 4.1 sind nur die re-
levanten Publikationen und Schlüsselpublikationen aufgeführt, die diesen Kriterien
entsprechen.

Kapitel 2.1 Kapitel 2.2 Kapitel 2.3 Kapitel 2.4
Kapitel A Kapitel B Kapitel C Kapitel D

Zeitschriftenartikel [A4] [B1] [C4] [D2]
[A7] [B4] [C5] [D4]
[A9] [B8] [C8]
[A12] [B14]
[A14]

Peer-Reviewed [A5] [B11] [C2] [D1]
Konferenzartikel [A8] [B12] [C6] [D3]

[A10] [B13] [C7] [D5]
[A11] [C9]
[A15]

Tabelle 4.1: Relevante Publikationen und Schlüsselpublikationen kapitelweise un-
terteilt in Zeitschriftenartikel und Peer-Reviewed Konferenzartikel.

Für die vorliegende Habilitationsschrift wurden diese relevanten Publikationen nach
folgenden Gesichtspunkten ausgewählt:

• Zu jedem der in den Kapiteln 2.1 bis 2.4 beschriebenen Forschungsthemen
bringt der Verfasser der Habilitationsschrift mindestens einen begutach-
teten Zeitschriftenartikel bzw. Peer-Reviewed Konferenzartikel als
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Erstautor ein. Diese Artikel wurden in namhaften Zeitschriften bzw. bei nam-
haften Konferenzen aus der Photogrammetrie, Fernerkundung und Computer
Vision publiziert.

• Zu jedem der in den Kapiteln 2.1 bis 2.4 beschriebenen Forschungsthemen wur-
den weiterführende Arbeiten publiziert. Die Autorenschaft dieser Artikel
kann variieren, meist erscheint dann der mit dem Thema betraute Doktorand
bzw. Kooperationspartner als Erstautor.

An dieser Stelle sei erwähnt, dass ein begutachteter Zeitschriftenartikel [A12] mit
dem U.V. Helava Award und ein Peer-Reviewed Konferenzartikel [C7] mit dem PCV
2014 Best Paper - Honourable Mention prämiert wurde.
Zudem hat der Verfasser bei mehreren dem Habilitationsthema fachnahen Heraus-
geberschaften [Z7, Z23, Z24, Z25, Z26, Z27] mitgewirkt.
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A. Publikationen zu 2.1 Modellierung und Analyse von
Messsignalen

[A1] Bretar F, Chauve A, Mallet C, Jutzi B (2008) Managing full waveform
LiDAR data: A challenging task for the forthcoming years. In: Chen J, Jiang
J, Baudoin A (Eds) XXIth ISPRS Congress: Silk Road for Information from
Imagery. International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences 37 (Part B1): 415-420

[A2] Gross H, Jutzi B, Thoennessen U (2008) Intensity normalization by inci-
dence angle and range of full-waveform LiDAR data. Chen J, Jiang J, Nayak
S (Eds) XXIth ISPRS Congress: Silk Road for Information from Imagery.
International Archives of Photogrammetry, Remote Sensing and Spatial In-
formation Sciences 37 (Part B4): 405-412

[A3] Jutzi B (2007) Analyse der zeitlichen Signalform von rückgestreuten Laser-
pulsen. Dissertation, Deutsche Geodätische Kommission bei der Bayerischen
Akademie der Wissenschaften (DGK), Reihe C, Nr. 611

[A4] Jutzi B (2010) Extending the range measurement capabilities of modulated
range imaging devices by time-frequency-multiplexing. AVN - Allgemeine
Vermessungs-Nachrichten, Ausgabe 2/2012: 54-62

[A5] Jutzi B (2009) Investigations on ambiguity unwrapping of range images.
In: Bretar F, Pierrot-Deseilligny M, Vosselman G (Eds) Laserscanning 2009.
International Archives of Photogrammetry, Remote Sensing and Spatial In-
formation Sciences 38 (Part 3 / W8): 265-270

[A6] Jutzi B, Eberle B, Stilla U (2002) Estimation and measurement of backscat-
tered signals from pulsed laser radar. In: Serpico SB (Ed) Image and signal
processing for remote sensing VIII. The International Society for Optics and
Photonics (SPIE) Proceedings. Vol. 4885: 256-267

[A7] Jutzi B, Gross H (2010) Investigations on surface reflection models for in-
tensity normalization in airborne laser scanning (ALS) data. In: Heipke C,
Jacobsen K, Müller S, Sörgel U (Eds) Journal of Photogrammetric Enginee-
ring & Remote Sensing (PE&RS), Vol. 76, No. 9, September 2010: 1051-1060

[A8] Jutzi B, Gross H (2009) Normalization of lidar intensity data based on range
and surface incidence angle. In: Bretar F, Pierrot-Deseilligny M, Vosselman
G (Eds) Laserscanning 2009. International Archives of Photogrammetry, Re-
mote Sensing and Spatial Information Sciences 38 (Part 3 / W8): 213-218
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[A9] Jutzi B, Stilla U (2007) Characteristics of the measurement unit of a full-
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[A10] Jutzi B, Stilla U (2003) Laser pulse analysis for reconstruction and classi-
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Extending the Range Measurement
Capabilities of Modulated Range
Imaging Devices by Time-Frequency-
Multiplexing

Erweiterung des Entfernungsmessbereichs
bei modulierten Entfernungskameras durch ein
Zeit-Frequenz-Multiplexverfahren

Boris Jutzi

In diesem Beitrag wird ein Zeit-Frequenz-Multiplexverfahren zur Auflösung der Phasenmehrdeutigkeiten
bei modulierten Entfernungskameras präsentiert, um den Entfernungsmessbereich zu erweitern. Es wird
sowohl Phasen-Unwrapping anhand zweier Modulationsfrequenzen als auch ein Vertrauensmaß für die
Entfernungsmessung vorgestellt. Für die Untersuchungen werden sowohl Innen- als auch Außenauf-
nahmen ausgewertet.
Die vielversprechenden Ergebnisse zeigen, dass Entfernungskameras nicht nur im sehr nahen Nahbereich
eingesetzt werden können. An einem Beispiel wird gezeigt, dass der vom Hersteller spezifizierte Entfer-
nungsmessbereich um das Vierfache erweitert werden kann, ohne Modifikationen am Sensor vornehmen
zu müssen.

Schlüsselbegriffe: Entfernungsbild, Entfernungskamera, Mehrdeutigkeit, Phasen-Unwrapping, Modulationsfrequenz, Nah-
bereich

In this contribution a time-frequency-multiplexing method for unwrapping the range ambiguity of range
imaging device is presented to extend the range measurement capabilities. Beside the phase unwrapping
by multiple frequency modulations a confidence measure for the range measurement is proposed. For the
investigations an indoor and an outdoor scene were analyzed. The results are promising to utilize range
imaging devices not only in very close range. It will be shown that four times of the manufacturers non-
ambiguity range specification could be reached without modifying the sensor or improving the illumination
unit.

Keywords: Range imaging, RIM, ambiguous, phase-unwrapping, modulation frequency, close range
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1 INTRODUCTION

The 3D geometry of the environment is of great interest for a wide
variety of applications. In order to obtain a geometric description
usually the captured image or range data is analyzed, where in gen-
eral a high level of automation is desirable.
By utilizing passive imaging sensors the 3D information is gained

by textured image data indirectly from several images with costly
stereo- or multiple image analysis. These procedures are widely
used, but have indispensable claims due to capturing disposition
and scene contents. For instance, the illumination conditions should
be adequate, the observed materials should be textured and opaque,
and the distance between object and camera as well as between the
camera viewpoints of stereo images should be sufficient large for
gaining a reliable 3D reconstruction.
Beside this, the photogrammetric methods are complemented by

active sensor procedures. For instance, a laser scanner captures a
sequence of singular range values while accomplishing a time-de-
pendent spatial scanning of the environment. In general spaceborne,
airborne as well as terrestrial laser scanner sensors allow a direct and
illumination-independent measurement of 3D objects [Shan & Toth,
2008]. For an accurate data acquisition necessarily the scene con-
tents as well as the sensor platform should be static, otherwise a
deformation of the environment can appear. In general, with an in-
creasing dynamic of the scene contents respectively sensor platform,
the complexity of the analysis increases and the exploitation of 3D
information is more and more challenging. To gain 3D information
from rapid dynamical processes the capturing of the environment
at the same time is essential.
Very recently enhanced types of active imaging sensors have

started to meet these requirements, e. g. MESA with the Swiss Ran-
ger series and PMD Vision with the CamCube series. These close
range sensors allow to capture a range image and a co-registered
monochrome intensity image simultaneously with high repetition rate
up to 100 releases per second. The spatial resolution can be up to
204 � 204 pixels. Beside this the non-ambiguity (sometimes called
unique) range is currently about a few meters. In general the mea-
sured intensity strongly depends on the used wavelength (usually
close infrared) of the laser source and the surface characteristic.
With these new types of sensors for the first time the basic prin-

ciple to unify advantages of active sensors and the simultaneous cap-
turing of an image for an extended area of dynamical 3D applications
is given. Especially the 3D motion or deformation analysis, like auton-
omous navigation of robots, motion control for game consoles, tra-
jectory tracking of pedestrians for surveying, or maker free 3D mea-
surements of crash tests, are of interest. Beside the hardware and
sensor developments [Lange, 2000], nowadays most works focus on
geometric (e. g. [Boehm & Pattinson, 2010]; [Kahlmann et al., 2006])
and radiometric calibration (e. g. [Lichti, 2008]) or tracking of objects
or automatic extraction of object features.
The terminology for scannerless range imaging systems is multi-

farious, where the terms Time-of-Flight (TOF) depth camera, 3D ran-
ge imager, Time-of-Flight Sensors, photonic mixer devices (PMD)
[Schwarte et al., 1997] or a combination of the mentioned terms
are used. Most of the terms are much more related to the range
measurement than to the as well available reflectivity measurement
of the observed area. For the procedure the term range imaging with

the abbreviation RIM is more and more established, particularly in
Europe.
Especially the relatively large noise influence on the measurement,

due to the large amount of ambient radiation in comparison to the
emitted radiation, results in a range measurement which is less reli-
able compared to the performance of airborne laser scanner (ALS) or
terrestrial laser scanner (TLS). The major drawbacks of the known
RIM devices are:

– an absolute range accuracy of a few centimeters
– a range ambiguity of a few meters

It has to be mentioned that the range ambiguity is closely related to
the well-known phase unwrapping problem which is extensively dis-
cussed in the radar interferometry community. It is a inverse problem
which cannot be solved in general and intensive research is going on
this issue until today. To resolve the ambiguity by phase reconstruc-
tion various methods are known in literature. A general overview of
the existing methods is given in Ghiglia & Pritt [1998], where most of
these approaches deal with 2D data sets. By utilizing the Goldstein 2D
unwrapping procedure on RIM data an image-based solution was
proposed by Jutzi [2009]. However, one large drawback of the meth-
ods is the sensitivity of the phase reconstruction to minor measure-
ment errors. Additionally, the reconstruction suffers from multiple in-
teger solutions caused by the unwrapping procedure. Usually the
measured environment is unknown and therefore, multiple integer
solutions are possible if the topography contains large geometrical
discontinuities.
Beside this, from other sensor systems different techniques are

known to solve this problem in order to obtain a range non-ambiguity,
e. g. by utilizing at least two different modulation frequencies as most
continuous-wave (CW) modulated laser scanner and radar systems
do or by (pseudo) random modulation. In general, for high modulation
frequencies the range measurement shows a high accuracy and the
ambiguity range is small, whereas for low modulation frequencies it is
vice versa. Therefore, it is always a trade-off to select the best fre-
quency to gain optimal results.
In this paper a method for unwrapping the range ambiguity of ran-

ge imaging devices is presented to extend the range measurement
capabilities. In Section 2 the methodology is proposed by an overview
for the measurement principle, the utilized phase unwrapping by mul-
tiple frequency modulation, and a confidence measure for the range
measurement. Section 3 shows a brief overview of the utilized range
imaging sensor with the selected indoor scene and the selected out-
door scene. The detailed experiments and results for both scenes are
presented in Section 4. Finally, the derived results are evaluated and
discussed, the content of the entire paper is concluded, and an out-
look is given.

2 METHODOLOGY

In the following the measurement principle (Section 2.1), the phase
unwrapping by multiple frequency modulation (Section 2.2), and a
confidence measure for the range measurement (Section 2.3 are
specified.
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2.1 Measurement principle

The range measurement can be briefly described as follows: A si-
nusoidal CW modulated signal is transmitted by a LED array in
form of monochromatic light (Figure 1a). The emitted light travels
to the object, is backscattered by the surface and captured by a re-
ceiver unit. The receiver unit is usually a CCD or CMOS array. Single
pixels of the array can be subdivided into four collaborating subpixels
(Figure 1b).
Concerning a demodulation of the sinusoidal received signal the

parameters amplitude A and phase shift4u can be determined. For
each measurement per single pixel four neighborhood subpixels are
utilized to measure by time gating four intensities with a relative pha-
se shift of 90�, or with other words an absolute phase shift of 0�,
90�, 180�, and 270� (Figure 2a). For each absolute phase shift the
corresponding intensity is determined by integration. Then the phase
shift4u between the transmitted and received signal can be deter-
mined by the intensity values A0, A90, A180, and A270 (Figure 2b) with

4u ¼ arctan
A270 � A90
A0 � A180

� �
: ð1Þ

Based on the phase shift 4u, the range 4R to the object is given
with respect to the two-way time of flight by

4R ¼ c

2fm

4u
2p

; ð2Þ

where fm is the modulation frequency and c the speed of light.
Unfortunately, the phase shift 4u is a wrapped phase and its

corresponding range 4R is ambiguous due to the measurement
principle with the utilized modulation frequency. Hence the absolute
range R to the object can not be determined directly if the real range
is above the modulation range

Rm ¼ c

2fm
: ð3Þ

Therefore, the unwrapped phase

u ¼ 2pk þ4u ð4Þ

has to be known, where the number of periods k ¼ 0; 1; 2; ::: are
integer valued. Based on this relationship the absolute range R can be
denoted by

R ¼ Rmk þ4R ; ð5Þ

with the number of periods k multiplied by the modulation range Rm
and added by the measured range 4R .

2.2 Phase unwrapping by multiple frequency
modulation

To resolve the ambiguity of the phase measurement two different
modulation frequencies fm1 and fm2 with fm1< fm2 have to be avail-
able, which results in two modulation ranges Rm1 and Rm2. Addition-
ally, two conditions have to be satisfied with k1 ¼ k2 or
k1 þ 1 ¼ k2.
Then the range measurement can be extended to a maximum

range

Rmax ¼ Rm1k1max ¼ Rm2k2max ; ð6Þ

with k1max ¼ f1=ðf2 � f1Þ and k2max ¼ f2=ðf2 � f1Þ.
Due to the two conditions two cases A and B have to be consid-

ered:

Fig. 1 | Function principle of the RIM: a) transmitter, b) receiver.

Fig. 2 | Measurement principle of the RIM sensor: a) utilizing time gating to
measure the phase shift, b) determining intensity by integration.
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Case A

If the measured ranges are4R1 � 4R2 then k1 ¼ k2 ¼ k and the absolute range is

R ¼ Rm1k þ4R1 ¼ Rm2k þ4R2; ð7Þ

with k ¼ ð4R2 �4R1Þ=ðRm1 � Rm2Þ.

Case B

If the measured ranges are 4R1 > 4R2 then k1 þ 1 ¼ k2 ¼ k and the absolute
range is

R ¼ Rm1ðk � 1Þ þ 4R1 ¼ Rm2k þ4R2; ð8Þ

with k ¼ ð4R2 �4R1 þ Rm1Þ=ðRm1 � Rm2Þ.
In general, for both cases the solution for k should be integer valued.

2.3 Confidence measure for the range measurement

Due to measurement inaccuracies small variations can be expected for the calculated
number of periods kq and therefore, non-integer values will be obtained. If the non-
integer value is close to the integer value it can be assumed that the calculated kq is
reliable, if the variation is large the result is not reliable. This is of interest because due
to the measurement principle in general for each pixel a range value is captured even if
no surface was available. Usually the corresponding active intensity value to this range
measurement should be small valued.
In order to avoid unreliable measurements it is obvious to introduce a confidence

measure q for the calculated absolute range R. The confidence measure q within the
intervall 0; 1½ � can be defined by

q ¼ 1� 2 j kq � nintðkqÞ j; ð9Þ

with j � j for the absolute value and nint ð�Þ for the nearest integer.

3 CONFIGURATION

A RIM sensor (Section 3.1) was utilized to capture an indoor and an outdoor scene
(Section 3.2).

3.1 RIM sensor

For the investigations, a PMD Vision CamCube 2.0 sensor was used. The sensor has a
204 � 204 pixel array with a pixel size and pitch (spacing) of about 45 lm. The user
can preselect the modulation frequency fm with 18, 19, 20, and 21 MHz, which results
in a modulation range Rm of 8.33, 7.89, 7.5, and 7.14 m. The maximum frame rate is
about 25 frames per second and the sensor measures per pixel three features: range,
active intensity and passive intensity. Therefore, above three million measurement va-
lues per second can be captured.
An example is depicted in Figure 3. For the preselected modulation frequencies f1

18 MHz and f2 21 MHz the range ambiguity is given by the modulation range Rm1ðf1Þ
8.33m and Rm2ðf2Þ 7.14m. With Formula eq:2.2 the maximum range Rmax 50 m.
Furthermore, the depicted difference between 4R2 and 4R1 helps to understand
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the two different cases of interest A and B with 4R1 � 4R2 as
positive values and4R1 > 4R2 as negative values. At the moment,
to utilize two different modulation frequencies a temporal sequential
capturing of frames by alternating modulation frequencies is realized
by time-frequency-multiplexing.

3.2 Scene

A RIM data set of a static indoor and an outdoor scene was recorded
by a stationary placed sensor. The photo of the observed scenes are
depicted in Figure 4. For the environment no reference data concern-
ing the radiometry or geometry was available.

4 EXPERIMENTS

For the indoor and outdoor experiments the modulation frequencies f1
18 MHz and f2 21 MHz for maximum frequency discrimination were
selected. The integration time was pushed to the maximum of 40 ms

to gain a high signal-to-noise ratio for the measurement. In this case,
saturation could appear in close range or at object surfaces with high
reflectivity. All measurement values were captured in raw mode. Only
a single image without averaging is depicted in the following figures.

4.1 Indoor

The active range measurement of the indoor scene is only sligthly
influenced by additional sunlight illumination from outside and arti-
ficial lighting from the facility ceiling and therefore, a high signal-to-
noise ratio is given. The two range images captured with different
modulation frequencies f1 18 MHz and f2 21 MHz are depicted in
Figure 5. Obviously the depth for modulation range Rm1 is larger
than for Rm2 and range measurement inaccuracies can be observed,
especially at the wrapping discontinuities.
Concerning the formulars in Section 2.2 the numbers of periods k1

and k2 can be estimated. The results for the number of periods k2 are
shown in Figure 6, where the estimated number of periods k are
encoded by gray values. For the close-by ceiling and benches the
estimated parameter k is close to zero. It can be observed that
for larger number of periods the variations of the estimated parameter
k only slightly increase. Large inconsistencies are visible at the dark
colored and polished doors on the left and right side in the back of the
room. Unreliable measurement values appear at the polished sur-
faces in the foreground mainly on the left side where the incidence
angle to the surface is steep. These outliers occur due to the low
reflectivity or specular surface characteristic which can result in mul-
tipath measurements. In general a non-integer value for k is not plau-
sible (Figure 6a), therefore it was rounded to the nearest whole num-
ber (Figure 6b). Due to the size of the room for the indoor scene the

Fig. 3 | Absolute range R to the object compared with measured ranges4R
for different frequencies (dashed red and dotted green line) and calculated
range differences (solid blue line).

Fig. 4 | Scenes captured with the RIM sensor: a) indoor, b) outdoor.

Fig. 5 | Range images captured with different modulation frequencies:
a) f1 18 MHz, b) f2 21. MHz.

Fig. 6 | Estimated number of periods k2: a) non-integer, b) integer.
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number of periods is k2 ¼ ½0; 3�, which can be as well observed in
Figure 6 by the four different gray values.
For the estimated number of periods in Figure 6 up to three dif-

ferent range images can be generated, one for the non-integer and
two different ones for the integer case. For each case an example is
depicted in Figure 7. Concerning the non-integer value of the range
estimation the directly calculated absolute range value is equivalent
with averaging the unwrapped range values of the 18 MHz and
21 MHz measurements (Figure 7a). As one would expect, the abso-
lute range image calculated by the integer number of periods appears

cleaner with less noise. Two different absolut range images can be
calculated by utilizing the 18 MHz and 21 MHz measurements. In
Figure 7b the 21 MHz measurement was selected for visualization.
Due to the higher modulation frequency a more accurate range mea-
surement can be expected. However it has to be stated that it was not
goal of this investigation to validate and compare these two results by
a reference measurement.
The unwrapped range values are spread over large distance,

where it can be assumed that for large range values the reliability
is lower due to the low signal-to-noise ratio. Figure 8a shows a his-
togram of the estimated absolute range values over the maximum
range Rmax , where most range values are below 23 m. Due to a ma-
ximum distance to the central wall at the back of the room of about
23 m, absolute range values above this distance are erroneous.
To evaluate the unwrapping procedure a confidence measure q

was introduced with Formula 9 and the results for the scene are
visualized as image with the corresponding histogram in Figure 9.
Most absolute range values over the entire scene have a high relia-
bility except at the far away ceiling and at the polished surfaces in
front, where the incidence angle to the surface is steep. The histo-
gram shows a widely spread distribution with a very high density close
to 1, where the highest number of elements is above 0.9, but below
1. For the selected scene 77% of the absolute range values have a
confidence measure above 0.75. A sample of the remaining absolute
range values above this empirical preselected threshold for the con-
fidence measure is depicted in Figure 8b.

Fig. 7 | Unwrapped range images generated with different estimated number
of periods parameters: a) non-integer number of periods, b) integer number of
periods and 21 MHz measurements.

Fig. 8 | Histogram of the absolute range values: a) all estimate values,
b) for values with a ,confidence measure above 0.75.

Fig. 9 | Confidence measure q: a) image-based visualization,
b) corresponding histogram.
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4.2 Outdoor

The outdoor scene provides a challenging measurement environment
due to the additional influence of the background illumination by sun-
light which decreases the signal-to-noise ratio of the active range
measurement. The two range images captured with different mod-
ulation frequencies f1 18 MHz and f2 21 MHz are depicted in
Figure 10, where the depth for modulation range Rm1 is larger
than for Rm2.
Again, the numbers of periods k1 and k2 are estimated and the

results for the number of periods k1 are shown in Figure 11. For the
foreground of the image, which is obviously close-by, the estimated
parameter k is close to zero. For larger number of periods the varia-
tions of the estimated parameter k increases. Again, the non-integer
and integer value for k is depicted in Figure 11 for comparison pur-
poses.
For the estimated number of periods Figure 12 shows the un-

wrapped range images generated with the non-integer number of
periods and integer number of periods utilizing 21 MHz. Again,
the range image calculated by the integer number of periods appears
cleaner with less noise.
The unwrapped range values are spread over large distance,

where it can be assumed that for large range values the reliability
decreases. The black bars in Figure 13a show an histogram of
the estimated absolute range values, where most range values
are below 15 m.
The confidence measure q for the outdoor scene is visualized as

image with the corresponding histogram in Figure 14. Again, it can be
stated as it would be expected that the most reliable absolute range

values appear for the close range measurements. Behind the tree,
approximately at a range of 10 m, the reliabiltiy decreases. The his-
togram shows a widely spread distribution with a high density close to
1, where the highest number of elements is above 0.9, but below 1.
For the selected scene 65% of the absolute range values have a
confidence measure above 0.75. A sample of the remaining absolute
range values above this empirical preselected threshold for the con-
fidence measure is depicted in Figure 13b.

Fig. 10 | Range images captured with different modulation frequencies:
a) f1 18 MHz, b) f2 21 MHz.

Fig. 11 | Estimated number of periods k1: a) non-integer, b) integer.

Fig. 12 | Unwrapped range images generated with different estimated
number of periods: a) non-integer number of periods, b) integer number of
periods and 21 MHz measurements.

Fig. 13 | Histogram of the absolute range values: a) all estimate values,
b) for values with a confidence measure above 0.75.
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5 CONCLUSION

The goal of these investigations was to extend the measurement capabilities of the
range. Therefore, an indoor and an outdoor scene were captured and analyzed. Even
without increasing the illumination properties of the system the results are promising to
utilize range imaging devices not only in very close range. Furthermore, the outdoor
capability could be shown even when the results are not as good as for the indoor
scene. However, the results show that four times of the manufacturers non-ambiguity
range specification could be reached without modifying the sensor or improving the
illumination unit, e. g. by additional illumination modules.
The proposed confidence measure is a useful parameter to evaluate the range mea-

surement and gives evidence about the measurement. It could be shown that a large
number of measurements have a high confidence measure, where the highest density
is only slightly below 1 (Figure 9b & 14b). On the depicted histograms it looks like a
systematic error occurs which might be given by a systematic offset between the 18
MHz and 21 MHz range measurements. Therefore, further investigations have to be
done which prove this assumption. However, there are different possibilities to handle
this inconsistency, e. g. one is to eliminate these outliers or another is to average the
two measurements derived by the different modulation frequencies. This decision can
be supported by sub-dividing the confidence measure in different classes.
Usually the range imaging devices have a low range accuracy and the range mea-

surements are sensitive to the signal-to-noise ratio. A simple possibility to increase the
measurement reliability is to stretch the integration time or, with other words, to av-
erage multiple recordings, but this is of course only helpful for a static scene and a
stationary placed sensor.
In future, the extended absolute range values should be validated by resolution and

accuracy. Beside the restrictive static scene and a stationary placed sensor, additional

Fig. 14 | Confidence measure q : a) image-based visualization, b) corresponding histogram.
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investigations on more dynamic aspects should be focused. However,
refined techniques might allow to gain the advantage of an extended
range without loosing much data capturing speed performance.
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ABSTRACT: 
For the first time the basic principle to unify advantages between active sensors and the simultaneous capturing of an image for an 
extended area of dynamical 3D applications in close range is given by range imaging (RIM) sensors. The drawback of data which is 
captured with RIM sensors is the absolute range accuracy and the limited non-ambiguity range. From other sensor systems different 
techniques are known to solve this problem in order to obtain a non-ambiguity range, e.g. by utilizing different modulation 
frequencies as most continuous-wave (CW) modulated laser scanner and radar systems do or by (pseudo) random modulation. In this 
paper a post-processing task is presented. The Goldstein 2D unwrapping procedure for unwrapping the range ambiguities of ranging 
sensors (e.g. RIM sensors or CW-modulated laser scanners) is proposed considering residues, branch cuts and tree estimation 
strategies and additionally confidence criteria. It could be shown that a range restoration for numerous periods of the ambiguity 
range is in principle possible with the presented 2D unwrapping procedure. 
 

1. INTRODUCTION 

Currently the geometrical 3D capturing and description of the 
environment are based on image or range data. By utilizing 
passive imaging sensors the 3D information is gained by 
textured image data indirectly from several images with costly 
stereo- or multiple image analysis. These procedures are widely 
used, but have indispensable claims due to capturing disposition 
and scene contents. For instance the illumination conditions 
should be adequate, the observed materials should be textured 
and opaque, and the distance between object and camera as well 
as between the camera viewpoints of stereo images should be 
sufficient large enough for gaining a reliable 3D reconstruction. 

Beside this the photogrammetric methods are complemented by 
laser scanner procedures. These active sensors capture a 
sequence of singular range values while accomplishing a time 
dependent spatial scanning of the environment. Beside these 
basic range measurements the current commercial airborne laser 
scanner (ALS) developments allow to record the amplitude or 
the waveform of the backscattered laser pulse (Jutzi & Stilla, 
2006). Therefore, laser scanner systems like OPTECH ALTM 
3100, TOPEYE MK II, and TOPOSYS HARRIER 56 can be 
used. The latter system is based on the RIEGL LMS-Q560. 
More and more waveform capturing scanners are available at 
the moment, e.g. RIEGL - one of the leading companies for 
laser scanners - already offers several scanners (LMS-Q560, 
LMS-Q680, and VQ-480). In general spaceborne, airborne as 
well as terrestrial laser scanner sensors allow a direct and 
illumination-independent measurement of 3d objects (Shan & 
Toth, 2008). 

For an accurate data acquisition necessarily the scene contents 
as well as the sensor platform should be static, otherwise a 
deformation of the environment can appear. In general with an 
increasing dynamic of the scene contents respectively sensor 
platform the complexity of the analysis increases and the 
exploitation of 3D information is more and more challenging. 
To gain three-dimensional information from rapid dynamical 
processes the capturing of the environment at the same time is 
essential. Very recently enhanced types of active imaging 
sensors have started to meet these requirements, namely the 
Swiss Ranger (www.mesa-imaging.ch), the PMD Vision 
(www.pmdtec.com), and the O3D series (www.ifm.de). These 
close range sensors (Table 1) allow to capture an range image 
and a co-registered intensity image simultaneously with high 

repetition rate (up to 100 releases per second). The non-
ambiguity range is currently below 7.5m and depends on the 
modulation frequency. The measured intensity strongly depends 
on the used wavelength (usually close infrared) of the laser 
source and the surface characteristic. 

For the first time the basic principle to unify advantages of 
active sensors and the simultaneous capturing of an image for 
an extended area of dynamical 3D applications is given. 
Especially the 3D monitoring in close range with airborne and 
terrestrial platforms in problematic weather and illumination 
conditions or at night is promising with this novel technology. 
Therefore different applications are building surveillance, traffic 
monitoring, and driver assistance. Beside this, the 3D motion or 
deformation analysis, like autonomous navigation of robots, 
trajectory tracking of pedestrians for surveying, or maker free 
3D measurements of crash tests, are of interest. 

Another technical advantage is the monostatic sensor 
configuration, which allows to observe the area of interest from 
a single point of view, in contrast to the classical stereo 
observation techniques with passive sensors, which need at least 
two different viewpoints. The mayor drawbacks are the limited 
non-ambiguity range and the absolute range accuracy of a few 
centimeters. Especially the relatively large noise influence on 
the measurement, due to the large amount of ambient radiation 
in comparison to the emitted radiation, results in a range 
measurement which is less reliable compared to the perform-
ance of airborne or terrestrial laser scanner (TLS). However 
concerning the technical progress, most limitations will be 
overcome soon and in close future systems with expanded 
operating range and improved image size will be available. 

The terminology for scannerless range imaging systems is 
multifarious, the terms Time-of-Flight (TOF) depth camera, 3D 
range imager, Time-of-Flight Sensors, photonic mixer devices 
(PMD; Schwarte, 1997), or often a combination of the 
mentioned terms are used. Unfortunately, most of the terms are 
much more related to the range measurement than on the as well 
available gray value measurement of the observed area. For the 
procedure the term range imaging with the abbreviation RIM is 
more and more established, especially in Europe. 

Various studies about range imaging have been published in the 
literature dealing with different interests. Beside the hardware 
and sensor developments (Lange, 2000), nowadays most works 
focus on geometric and radiometric calibration: 
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• Reulke (2006) introduced a geometrical calibration and 
fused the intensity image derived by the range imaging 
sensor with high resolution RGB data to improve the 
texturing of surfaces. 

• Kahlmann et al. (2007) focused on the geometric 
calibration of range imaging sensors and developed a 
tracking of moving objects (people) approach based on 
recursive Bayesian filter. 

• Lichti (2008) proposed a method for the self-calibration 
by bundle adjustment of range imaging sensors which 
allows a simultaneous calibration concerning the spatial 
distortions and the ranging system. 

Other works focused on tracking of objects and automatic 
extraction of object features: 

• For the tracking of human motion and interaction within a 
range image sequence, Westfeld & Hempel (2008) 
suggested the combination of complementary radiometric 
and geometric information to increase accuracy and 
reliability. 

• For a moving range imaging Karel et al. (2007) specified 
an automatic object segmentation sensor based on a fast 
minimum covariance determinant approach and evaluated 
statistically the quality of the data.  

• Kim et al. (2008) proposed to utilize more than one 
synchronized range imaging system to gain multi views 
for the reconstruction of dynamic scenes. 

As briefly mentioned above one drawback of the RIM sensors is 
the limited non-ambiguity range. From other sensor systems 
different techniques are known to solve this problem in order to 
obtain a non-ambiguity range, e.g. by utilizing different 
modulation frequencies as most continuous-wave (CW) 
modulated laser scanner and radar systems do or by (pseudo) 
random modulation. 

In this paper a post-processing task is investigated in contrast to 
the above mentioned and not yet for RIM sensors available 
technical improvements. It has to be mentioned that the 
ambiguous range subject is close related to the well known 
phase unwrapping problem which is extensively discussed in 
the radar interferometry community. This inverse problem 
cannot be solved in general and intensive research is going on 
this issue until today. For instance one large drawback is the 
sensitivity of the phase reconstruction to minor measurement 
errors. Additionally, the reconstruction suffers from multiple 

integer solutions caused by the unwrapping procedure. Usually 
the measured environment is unknown and, therefore, multiple 
integer solutions are possible, if the topography contains large 
geometrical discontinuities. 

In this paper a method for unwrapping the range ambiguities of 
range imaging sensors is proposed. In Section 2 the 
measurement principle of range imaging sensors, a 1D straight 
forward and the Goldstein 2D unwrapping procedure are 
introduced. In Section 3 the sensor and scene configuration is 
presented and in Section 4 the data are examined. The analysis 
by the mentioned unwrapping procedures is described in 
Section 5 considering residues, branch cuts and tree estimation 
strategies, and the confidence criteria. Finally, the derived 
results are evaluated and discussed, the content of the entire 
paper is concluded, and an outlook is given. 

2. METHODOLOGY 

2.1 Measurement principle 

The range measurement can be briefly described as follows: 
First a sinusoidal CW modulated signal is transmitted by a LED 
array in form of monochromatic light. The emitted light travels 
to the object, is backscattered by the illuminated surface, and 
captured by a receiver array (usually CCD or CMOS arrays). 
Concerning a demodulation of the sinusoidal received signal the 
parameters amplitude A and phase φ can be determined. For 
each measurement four neighborhood pixels are utilized to 
measure the four received intensities with a relative phase shift 
of 90°, or with other words an absolute phase shift of 0°, 90°, 
180°, and 270°. Then the phase shift ∆φ between the 
transmitted and received signal can be determined by the 
intensity values A0, A90, A180, and A270, with 

 270 90

0 180

arctan
 −∆ =  − 

A A

A A
ϕ . (1) 

Based on the phase shift ∆φ the range R to the object is given 
with respect to the two-way time of flight by 
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where fm is the modulation frequency and c the speed of light. 

2.2 Data characteristic & feature convention 

The range ambiguity ∆R can be denoted by 

 MESA Swiss Ranger PMD [Vision] 
Type SR-3000 SR-4000 O3a S3a CamCube 2.0 
URL www.mesa-imaging.ch www.pmdtec.com 
Image size 176x144 176x144 64x48 64x48 204x204 
Focal length [mm] 8 10 TBD - 12.8 
Field of View (FoV) [°] 47.5x39.6 43.6x34.6 40x30 40x30 40x40 
Pixel size [µm] 40x40 40x40 100x100 100x100 TBD 
Wavelength [nm] 850 850 850 850 870 
Power (optical) [W] ≤1 ≤1 ca. 1 ca. 4 TBD 
Frame rate [1/s] max. 15-20 max. 54 max. 25 max. 20 max. 25 
Modulation frequency [MHz] 20 29, 30, 31 20 20 variable 
Non-ambiguity range [m] 7.5 5 7.5 7.5 7.5 
Size [mm] 60x50x65 65x65x68 60x42x54 120x75x95 60x187x60 
Outdoor feasibility no yesb yesb yesb yesb 

Table 1. Specification overview of selected range imaging sensors: MESA Swiss Ranger series (www.mesa-imaging.ch) and PMD 
Vision series (www.pmdtec.com). URLs accessed on June 2009. 
a PMD [Vision] O3/S3 are equivalent to IFM (www.ifm.de) O3D100/ O3D200, bSuppression of background illumination. 
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To estimate the absolute range R for the ambiguity an integer k 
is multiplied with the range ambiguity ∆R 

 = ∆R Rk . (4) 

To resolve the range ambiguity various methods are known in 
literature. A general overview of the existing methods is given 
in Ghiglia & Pritt (1998). Most of these approaches deal with 
2D data sets. In contrast to this, the capturing of a scene with a 
RIM system delivers a 3D data set composed out of voxels with 
two spatial coordinates x,y and one time coordinate t 

 ( , , )Q x y t , (5) 

where for each voxel different features are measured, e.g. range 
R, intensity I, and confidence-of-the-measurement C. Then for 
each feature a single data cube is given by QR, QI, and QC. 

In the following, a stationary sensor setup is assumed for 
observing a high dynamical temporal and spatial scene. Two 
methods were examined and a brief overview is given in the 
following Sections. 

2.3 1D straight forward unwrapping 

With this straight forward approach a separability of the data set 
is assumed based on a sequential accomplished 1D unwrapping. 
Additionally, a mask, which is available from the data cube QC 
with the feature confidence-of-the-measurement, can be used to 
mask out unreliable voxels. 

The drawback of this approach is that only a single voxel in the 
neighborhood of the six connected voxels (joint faces 
connection) is considered and the result depends on the 
processing direction and order. Therefore the topology is 
principally ignored and due to this, the 1D processing causes an 
erroneous unwrapping which results in a striped pattern. This 
inadequate approach was implemented mainly for comparison 
purposes and to visualize the problematic of ambiguity range 
unwrapping. 

2.4 Goldstein 2D unwrapping 

The Goldstein approach is described in detail in various 
publications, e.g. Goldstein et al. 1988. Originally it was 
developed for phase unwrapping in radar interferometry. The 
suggested solutions to reconstruct the unknown phase can be 
analogue transferred to the ambiguous range problematic. A 
brief description of unwrapping the ambiguous range will be 
given in this section. 

The goal of unwrapping is to find integers k which can be added 
to the measured values to gain a continuous representation. The 
measured values are within a cycle of zero and the non-
ambiguity value. In general phase unwrapping approaches are 
based on processing the changes between the pixels or 
respective voxels in the direct neighborhood by gradient 
calculation. Then the values are integrated by predefined rules 
and finally, if a discontinuity is detected, the most likelihood 
integer solution for unwrapping is added. To get a reasonable 
solution it is essential to find an optimal integration path for the 
gradient. 

The unwrapping procedure is highly over determined. 
Therefore, different constraints have to be assumed. The key 
assumption is moderate changes within the neighborhood with 
relative changes below the ambiguity value. Values above are 

called discontinuities and have to be bypassed by the restoration 
procedure. The discontinuities can be reduced to inconsistencies 
within the range values, so-called residues. Residues are given 
if the sum of four neighborhood pixels calculated in circular 
direction is unequal to zero. This procedure is path dependent 
and further it is very sensitive to noise. 

The identified residues are connected to generate so-called 
branch cuts. Usually the length of the branch cuts (distance 
between the residues) should be as short as possible. The idea 
behind the branch cut is to find close by negative and positive 
residues (sometimes called dipoles) which can be compensate 
by each other if the total charge along the branch cut is zero. If 
the total charge is nonzero, the search continues for additional 
close by residues. Each associated residue is connected to the 
tree by means of a branch cut and the total charge is calculated. 
If the total charge is zero the tree is considered. The 
disadvantage of this procedure is that coordinates (position) of 
the branch cuts are arbitrarily chosen leaving out important 
context information. A better solution might be to utilize a more 
expensive approach, like for instance the Mask-cut-algorithm, 
which take into account the quality concerning the position of 
the selected cuts. 

For the continuative search of associated residues, regardless if 
the residues have been previously assigned, they are added to a 
new tree. This results in a dendritic form of the branch cuts. 
Finally, the derived tree has to be bypassed for the integration 
calculation to utilize the unwrapping procedure. 

This procedure can be additionally supported by the confidence-
of-the-measurement to mask out unreliable range values. 

3. CONFIGURATION 

3.1 Sensor 

For the investigations a Swiss Ranger SR-4000 sensor was used 
with the specifications listed in Table 1. The sensor has a 176 x 
144 pixel array with a pixel size and pitch (spacing) of about 
40 µm. The user can preselect the modulation frequency with 
29, 30, and 31 MHz, which results in a maximum non-
ambiguity range of 5.17, 5.00, and 4.84 m. The maximum frame 
rate is about 50 frames per second. Therefore, the number of 3D 
points measured by a range imaging system is above one 
million points per second which is equivalent to the current 
point capturing rate of the fastest close range laser scanners. 

3.2 Scene 

A range image sequence of an indoor scene was recorded by a 
stationary placed sensor. 100 frames were captured with a frame 
rate of 12 frames per second while the person was moving in 
direction to the sensor within a furnished room. A single RGB 
image of the observed scene is depicted in Figure 1. For the 
environment no reference data concerning the radiometry or 
geometry were available. 

 

Figure 1. RGB image of the observed indoor scene. 
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4. DATA EXAMINATION 

To depict the neighborhood relations of the feature range, the 
data cube was sliced in different directions: equivalent to the 
captured frames in y-x slices, vertically in t-y slices, and 
horizontally in x-t slices. The same procedure was done for the 
feature intensity. Figure 2 shows a set of images for the different 
slices in the space-space and space-time domain with the 
corresponding range and intensity images. The images have 
been normalized for visualization purposes and range and 
intensity values are depicted as gray values. 

  
a b 

  
c d 

  
e f 

Figure 2. Corresponding range and intensity images differently 
orientated: a&b) x-y, c&d) t-y, and e&f) x-t slice. 

For the measurements a modulation frequency of 29 MHz was 
selected which results in a range ambiguity of ∆R=5.17 m. The 
range ambiguity is below the extension of the room. Figure 2a 
obviously shows several range ambiguity crossings. The 
discontinuities of the gray values can be seen by comparing 
them with the continuous appearance of the gray values of the 
intensity in Figure 2b, e.g. on the plan wall on left side. Further 
the range and slope dependent measured intensity values, which 
decrease with increasing range, are noticeable on the wall and 
on the ceiling. The intensity I can be normalized by the 
corresponding range r with 

 
2

1∝I
r

. (6) 

Due to the stationary sensor setup the t-y and x-t slices contain 
mainly a stripy pattern, which is typical for a static scene. This 
pattern is interrupted by a specific representation of the dynamic 
procedures within the scene, which can be recognized as motion 
area. In Figure 2c-f the moving person is visible, but the 
representation is obviously deformed. In Figure 2c&e within the 
motion area the black to white crossover of the regions shows 
an object (person) crossing the ambiguity range during the 
measurements. 

Beside the feature range and intensity the confidence-of-the-
measurement is available. In Figure 3a the quality of the 
measurement is coded by gray values, dark values for a low 
confidence (bad) and bright values for a high confidence 
(good). Obviously the measurements close to the ambiguity 
range appear with a bad signal-to-noise ratio and, therefore, the 
confidence is low. Furthermore, the quality of the measurement 
is range dependent, measurements in far range are less reliable 
than in close range. This can be observed for instance at the 
wall on the left side of the room. Further if the measured 
intensity is above the dynamic range, the receiver saturates and 
the measurement is unusable. The statistic of the quality for the 
investigated slice is depicted in Figure 3b. It can be seen that 
most of the measurements are reliable, but about 11% of the 
measurements are unreliable, where the confidence-of-the-
measurement C is equivalent to 0. 
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Figure 3. Confidence-of-the-measurement image (a) and 
corresponding histogram (b) for x-y slice. 

5. ANALYSIS RESULTS 

5.1 1D straight forward unwrapping 

The 1D straight forward unwrapping does not take into account 
all neighborhood relations. An example for the unwrapping 
procedure is depicted, where in Figure 4a the original 
ambiguous range (dashed red line), the ambiguity range (dotted 
green line), and the 1D unwrapped range (solid blue line) are 
shown. Furthermore, the corresponding intensity values are 
presented in Figure 4b. Comparing the characteristic of the 
ambiguous range with the intensity values, the unreliability of 
the measured values is obvious (e.g. at pixel coordinate 25). At 
this range the intensity values are noisy compared to the nearby 
values. After unwrapping the dynamic range interval implies 
about four periods of the range ambiguity ∆R in the depicted 
example. 
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Figure 4. 1D examples for the characteristic of corresponding 
range and intensity values of a single row: a) Original 
ambiguous range (dashed red line), ambiguity range 
(dotted green line), and 1D unwrapped range (solid 
blue line), b) intensity (solid green line). 

Utilizing this approach on the x-y slices it can be shown that the 
derived results depend on the unwrapping direction due to the 
discontinuities of the range values. In Figure 5 the results for 
different processing directions are presented. Most of the 
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failures are induced by unreliable measurements, which will be 
demonstrated in the following Section. 

  
a b 

  
c d 

Figure 5. 1D straight forward unwrapping results for different 
processing directions: a) Right to left, b) bottom to 
top, c) left to right, d) top to bottom. 

5.2 Residues, branch cuts and tree estimation 

First, all residues are calculated for all x-y slices of the data 
cube QR. In Figure 6a the negative and positive residues (black 
and white colored pixels) for the x-y slice in Figure 2a are 
depicted. All in all 64 residues were determined. To proof the 
reliability of the residues for each residue the corresponding 
confidence-of-the-measurement voxel is extracted. A histogram 
with the statistic for the reliability of all residues is depicted in 
Figure 6b. It clearly shows that most of the determined residues 
base on an unreliable measurement, as 26 residues have the 
confidence-of-the-measurement 0 and, therefore, they are 
unreliable. This coincides with the already mentioned statement 
that the procedure to calculate residues is very sensitive to 
noise. 
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Figure 6. Intermediate results: a) Extracted residues, b) 
reliability of the residues, c) branch cuts and trees, d) 
number of gained range offsets ∆R. 

In Figure 6c all connected residues in form of branch cuts are 
shown, where all branch cuts are linked together to the final 
trees. For the following integration procedure to unwrap the 

range areas it is interdicted to cross the branch cuts. The number 
of gained range offsets ∆R coded by integer values are depicted 
in Figure 6d. For the black areas the number is zero, this 
denotes the original range is already non-ambiguous. The gray 
areas show that ambiguous range areas have been detected and 
solutions up to a range ambiguity of four periods (bright gray 
areas) could be determined. 

Concerning the residues on the afore mentioned 1D straight 
forward unwrapping approach in Section 5.1 it can be easily 
shown with Figure 7 that the remaining discontinuities derived 
by the erroneous range unwrapping have their origin at the 
coordinates of the residues (black pixel). 

  
a b 

Figure 7. Visualization of residues (black pixel) and 1D straight 
forward unwrapping results of Figure 5a&b. 

5.3 Goldman 2D unwrapping concerning the confidence 
criteria 

The given data cube QC (confidence-of-the-measurement) 
provides information about the quality of the measurement, 
where the ranking of the quality is within the interval 0-7 and 
the values start from unreliable (value 0) up to excellent (value 
7). A histogram for a single x-y slice is shown in Figure 3. 

In the following the quality of the measurement on the 
reconstruction of the absolute range is investigated. Therefore, 
different tests were carried out to verify the influence of the 
quality of the measurement on the reconstruction of the absolute 
range. Overall seven tests were carried out by utilizing the 
confidence masks to verify the influence of the quality of the 
measurement on the reconstruction for the absolute range by the 
2D unwrapping process. Only the reliable ambiguity range 
values above a given threshold are considered for processing. 
According to this the low quality measurements have been 
rejected. 

Selected results are depicted in Figure 8. In close range, below 
two periods of the ambiguity range and with modest 
discontinuities the range unwrapping is reliable (e.g. the wall on 
the left side). Erroneous range unwrapping can be observed in 
all four results, where most of the wrong unwrapping range 
values appear at far range, above two periods of the ambiguity 
range. At this range the data quality is poor and the range values 
might be noisy. In addition to this, numerous discontinuities are 
at this range. Furthermore, it has to be mention that the results 
mainly depend on the seed point initialization and on the 
connectivity of the segments. 

  
a b 

70



 

  
c d 

Figure 8. Unwrapping results considering confidence masks: a) 
Interval 0-7 (equivalent to all data processing), b) 
interval 2-7, c) interval 4-7, and d) interval 6-7. 

5.4 Range dependent intensity normalization 

Finally, the range dependent correction of the measured 
intensity is calculated by utilizing Formula 4. The measured 
intensity (Figure 2b) can be compared with the range corrected 
intensity (Figure 9a). The derived intensity for the same 
material (e.g. wall on the left) is equalized over the complete 
range area. Of a selected 1D example (dotted white line in 
Figure 9a) the corresponding intensity values (solid blue line) 
are depicted in Figure 9b. For comparison purposes the 
measured intensity (solid green line) and the unwrapped range 
corrected intensity (dashed red line) is shown. Still some 
artifacts are remaining from unreliable pixels at the 1D example 
and within the intensity image (e.g. at the person). 
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Figure 9. Range corrected intensity. a) Image, b) 1D example. 

6. EVALUATION AND DISCUSSION 

The evaluation of the results is difficult because geometric and 
radiometric reference data are not available. Therefore, the 
evaluation was performed by visual criteria. It could be 
observed that the range unwrapping sometimes fails, where 
most of the wrong range values appear at far range, above two 
periods of the ambiguity range, because at this range the data 
quality is poor and the range values might be noisy. However, 
in general an improvement could be gained. 

Obviously the main disadvantage of the Goldman 2D 
unwrapping approach is the way the branch cuts are determined 
because they were selected by the criteria to be as short as 
possible (Figure 6c) and they do not rely on topographical 
aspects. This should be improved by more expensive 
approaches, like e.g. the Mask-cut-algorithm, which take into 
account the quality concerning the position of the selected cuts. 
In general the reconstruction suffers from multiple integer 
solutions if the topography contains large geometrical 
discontinuities. 

By considering the confidence-of-the-measurement the result 
could be further improved, but in this case it is always a trade of 
between incomplete and erroneous results. 

7. CONCLUSION AND OUTLOOK 

It could be shown that a range restoration for numerous periods 
of the ambiguity range is in principle possible with the 
presented 2D unwrapping procedures. For future work the 
confidence-of-the-measurement might be a reliable basis for a 
quality guided unwrapping approach. Furthermore, due to the 
availability of a 3D data set, a 3D unwrapping procedure might 
be promising. Beside these approaches which mainly base on a 
single sensor system, the utilization of more than one 
synchronized range imaging system to gain multi views might 
be of interest to solve the range unwrapping problem. 
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Abstract
The analysis of laser scanner data is of great interest for
gaining geospatial information. Especially for segmentation,
classification, or visualization purposes, the intensity meas-
ured with a laser scanner device can be helpful. For auto-
matic intensity normalization, various aspects are of concern,
like beam divergence and atmospheric attenuation, both
depending on the range. Additionally, the intensity is influ-
enced by the incidence angle between beam propagation
direction and surface orientation. To gain the surface orienta-
tion, the eigenvectors of the covariance matrix for object
points within a nearby environment are determined. After
normalization the intensity does no longer depend on the
incidence angle and is influenced by the material of the
surface only. For surface reflection modeling, (a) the Lambert-
ian, (b) the extended Lambertian, and (c) the Phong reflection
model are introduced, to consider diffuse and specular
backscattering characteristics of the surface. An airborne
measurement campaign was carried out to investigate the
influences of the incidence angle on the measured intensity.
For investigations, 17 urban areas, such as traffic, building,
and vegetation regions were studied and the derived improve-
ments are depicted. The investigation shows that large
intensity variation caused by the object surface orientation
and the distance between sensor and object can be normal-
ized by utilizing the standard Lambertian reflection model.

Introduction
The processing of laser scanner data is of great interest to
gain geospatial information. Spaceborne, airborne as well as
terrestrial laser scanners allow a direct and illumination
independent measurement of 3D objects in a fast, contact
free, and accurate way (Shan and Toth, 2008). Besides the
classical range measurements, the current generation of
airborne laser scanners allows to record the amplitude or the
complete waveform of the backscattered laser pulse. Various
laser scanners and systems provide nowadays these capabili-
ties, such as the OPTECH ALTM 3100, TOPEYE MK II, and RIEGL
LMS-Q560. More and more waveform capturing scanners are
available and tend to be state-of-the-art, e.g., RIEGL, one of
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the leading companies for laser scanners, already offers
several small-footprint full-waveform laser scanners like the
LMS-Q560, LMS-Q680, and VQ-480.

The received waveform of a backscattered laser pulse
depends on the absolute range, range variation, and
reflectance of the illuminated surface. To interpret the
received waveform, a fundamental understanding of the
physical background of pulse propagation and surface
interaction is important. The waveform of each laser pulse
can be described by a distributed series of range values
combined with amplitude values. For a Gaussian shaped
waveform of the emitted laser pulse, the received waveform
can be approximated by one or more parameterized Gauss-
ian curves (Hofton et al., 2000; Persson et al., 2005; Wagner
et al., 2006). Due to this approximation, the temporal
position, width and amplitude caused by the object surfaces
can be estimated (Jutzi and Stilla, 2006). With these parame-
ters, the geometry and reflectance of the illuminated surface
can be investigated, whereby the material reflectance
features from the measured data mainly depend on the
incidence angle of the beam on the surface, the surface
properties and the laser wavelength (Jelalian, 1992).

Related Works
In the terminology of laser scanning, the reflectance is widely
used as a synonym for the amplitude or energy, where the
energy of each pulse is the integral over its waveform. For a
Gaussian pulse, this can be simplified and approximated by
the product of amplitude and width. Besides amplitude or
energy, the term intensity is used. Various studies about
surface reflectance and intensity calibration have been
published in the literature in this context:

• Briese et al. (2008) proposed to use natural surfaces with
known backscattering characteristic measured by a reflec-
tometer for radiometric calibration of full-waveform data.

• Höfle and Pfeifer (2007) showed a data and a model-driven
method for correcting the intensity for specific influences.
The corrected intensity is successfully used to generate
intensity images with lower systematic errors.

• Kaasalainen et al. (2007 and 2009) suggested using labora-
tory-measured reference targets for calibrating the intensity
values of airborne laser scanner sensors.

• Katzenbeisser (2003) observed for flat surfaces that the
measured intensity provide a reasonable mean for the
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reflectance, if the measured intensity is corrected by the
known distance.

• Kukko et al. (2007) measured for various urban materials the
dependency of the intensity on the incidence angle.

• Pfeifer et al. (2007) studied the influence on the intensity for
surfaces with varying incidence angles, known reflectance
and scattering characteristics. It is shown that the range
dependent inverse-square model might be insufficient to
estimate the accurate intensity.

• Pfeifer et al. (2008) proposed the potential of retrieving
material properties from natural surfaces after investigating
radiometric reference targets with terrestrial laser scanners.

• Reshetyuk (2006) investigated the surface reflectance of
various materials and its influences on the measured range
and intensity.

• Wagner et al. (2006) gives a review on their proposed
calibration procedure and scattering model concerning the
cross section and backscattering parameter of an object with
diffuse (Lambertian) surface characteristics.

Especially for registration, segmentation, classification,
or visualization purposes an intensity normalization of the
measurements derived by an airborne laser scanner is of
great interest. Obviously, the variation of the incidence angle
increases if data from several flights with different paths
(flight stripes) are fused. Further, the atmospheric conditions
can change slightly while the measurement is carried out or
change considerably if multi-temporal data is acquired. For
these reasons, the range, the incidence angle and the
atmospheric attenuation has to be taken into account to
normalize the intensity.

To give an example for the dependency of the intensity on
the incidence angle, an airborne image together with the
corresponding intensity values from two different flights are
visualized in Figure 1. The viewing direction of the sensor
system is depicted by a white arrow. The area of interest is the
gabled roof. Obviously, roof areas oriented towards the sensor
system show higher intensity values, while roof areas on the
opposite side show significantly smaller intensity values.

These intensity values, which are estimated from the laser
data, strongly correlated to the incidence angle of the laser
beam on the surface. Therefore, as likewise Höfle and Pfeifer
(2007) showed, the intensity can be normalized by considering
the incidence angle derived by the sensor and object position
as well as its surface orientation. The estimation of the surface
orientation is derived by utilizing the available data concern-
ing the nearby neighborhood of each measured laser point.
Based on the estimated surface orientation diffuse and

specular material reflectance is investigated. Further influ-
ences on the measurement are not studied in this work, like
the non-linear effects on the measured intensity induced by
electronic receiver components or inhomogeneous intensity
distribution of transmitted laser in the footprint or inhomoge-
neous reflectance characteristic within the illuminated area.

The paper is organized as follows. In Section Methodol-
ogy, the physical conditions of the Lambertian and Phong
reflection models, a data-driven parameter estimation
approach, and the methodology for the calculation of the
incidence angle are introduced. In the following section, the
Evaluation of the Intensity Calibration is described. The
Section Test Environment gives a description of the data
set, the regions of interest and the influence of the flight
paths on the incidence angle. The Results for the data-
driven parameter estimation are shown in the following
section, concerning parameter estimation and the normal-
ization results for all investigated regions. The derived
results are discussed in general and in detail for selected
regions in the subsequent Section Discussion. Finally, the
gained experiences are given in the Section Conclusion.

Methodology
In general, each echo from full-waveform laser scanning data
has attributes such as the relative 3D coordinate, signal
amplitude aG, and signal width wG at full-width-at-half-
maximum derived from the Gaussian approximation.
Additionally to these attributes of the measurement, the
corresponding absolute 3D coordinate of the sensor position
by the flight trajectory is available.

The shape and size of the received waveform mainly
depends on the material characteristic, the reflectance
characteristic of the surface, and the inclination angle
between the surface normal and the laser beam direction.
The typical surface attributes which can be extracted from a
waveform are the absolute range, range variation, and
reflectance corresponding to the waveform features: time,
width, and amplitude. A representative reflectance of the
surface can only be extracted for a unique surface area. This
is usually given for single echoes on objects larger than the
laser footprint, for multiple echoes, e.g., derived from a
vegetated environment, it is indistinguishable.

The intensity is estimated with a Gaussian approxima-
tion by multiplying the width with the amplitude, and

Figure 1. Dependency of the intensity from the incidence angle: (a) airborne image, (b) intensity values
of flight 3 measured from left, and (c) intensity values of flight 4 measured from right.
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further it is adapted by the range between sensor and object
with respect to the extinction by the atmosphere and the
divergence of the laser beam. It describes the reflectance
influenced by geometry and material of the object at this
point. For each particular echo caused by partially
illuminated object surfaces, an individual intensity value
influenced by the part of the footprint is received.

Laser Beam, Transmission, and Reflection Model
The received intensity Ir of a monostatic laser scanner
system can be calculated by the amplitude aG and width wG
of the received signal approximation with Ir � aG � wG.
Considering an energy balance, the received intensity Ir
depends on the transmitted intensity It, the distance R to the
object surface, and for a Lambertian reflection model, the
incidence angle q, which is given by the angle between the
transmitter direction and the surface normal vector with:

(1)

where Ct and Cr are constant terms of the transmitter and
the receiver (Kamerman, 1993; Pfeifer et al., 2007). The
atmospheric attenuation along the way from the transmit-
ter to the illuminated object surface and return to the
receiver is e�2aR. The function f(cs) depends on cs, which
encloses all additional influences, e.g., the surface material
or roughness.

Equation 1 is valid for object surface sizes larger than
the footprint of the laser beam. Because the scaling is not
relevant, all constant terms can be ignored. Using the
received amplitude aG and width wG of the signal, the range
corrected intensity can be calculated with:

(2)

The intensity IR does not depend on the distance R anymore. IR
is only influenced by the material properties and the incidence
angle. Non-linear effects of the signal capturing unit (e.g.,
photodiode, amplifier) are not considered by this assumption.

For all points with high planarity concerning the close
neighborhood, the measured intensity is normalized by:

(3)

with respect to the incidence angle. The illumination
direction t is calculated from the sensor to the object
position. For each measured point, the covariance matrix is
calculated by including all points in a predefined environ-
ment. Its eigenvalues are used to estimate the planarity of an
object surface. The eigenvector 3 with respect to the
smallest eigenvalue l3 is the normal vector of the object
surface. Further details about estimating the planarity are
given in Sub-section Surface Orientation. With the normal-
ized vectors the required divisor can be calculated with the
inner product cos(q) � | t � 3|.

With the proposed framework, the radiometric calibra-
tion of the intensity due to atmospheric influences and
surface orientation is feasible. Finally, the normalized
intensity IRc depends on the wavelength of the laser and the
material properties only. The influence of speckle effects on
the measurement is neglected in this framework.

Data-driven Parameter Estimation
In order to adapt the dependency of the intensity on the
object distance, atmospheric attenuation, and incidence
angle, an extended Lambertian reflection model is intro-
duced. Therefore, Equations 2 and 3 are extended for each
single measured point i by:

(4)IAi � IiRi
ae2bRi cosc(�i)fk(i)

ee

e

e

IRc � IR/cos(�)

IR � aG
# wG

# R2 # e2aR.

Ir � It
# Ct

# Cr
# R�2 # e�2aR # cos(�) # f(cs)

with Ii � aG,t � wG,t, Ri the distance between the sensor and
the object, qi the incidence angle, and a, b, c constant
parameters. Herein a describes the beam divergence. The
exponent 2bR concerns the attenuation by the two-way
propagation of the laser beam. The term c models the type
of reflectivity and fk is supposed to be constant inside each
homogeneous region, and normalizes the term to be equal
with 1. Inside a homogeneous region the adapted intensity
should be nearly constant. Set , and let
Nr be the set of the region numbers. The following mini-
mization problem has to solved:

(5)

where �i marks the error of the ith point of the point cloud
with the considered region. For known parameters a, b, c
the region weighting factor is:

(6)

Extended Reflection Model for Diffuse and Specular Material Reflectance
To enhance the above mentioned Lambertian reflection
model and its extended version, the empirical Phong
reflection model (Phong, 1975) is introduced. Besides the
diffuse surface scattering kd the proposed Phong model can
handle also specular surface characteristics ks. The general
Equation is given by:

(7)

where Iin is the incoming intensity and Iout the outgoing inten-
sity. Ignoring the ambient intensity Iamb by setting 
(ka � 0) and considering ka � kd � ks � 1 for the diffuse
reflectance parameter kd � 1 � k, is derived. The remaining free
parameters ks and n are the weighting factors for the specular
part of the reflection. The adaptation of the Equation yields

(8)

with the specular reflectance parameter ks and the degree of
the specular reflectance n, which can be iteratively opti-
mized within a homogeneous region.

The dependency of the backscattered intensity from the
incidence angle is shown in Figure 2 for the Lambert and
the Phong reflection model with the parameters ks � 0.6 and
n � 4. For small incidence angles, the Phong model gives
higher intensity values than the Lambert model and lower
values for greater incidence angles.

Determining the Surface Orientation
The orientation of the illuminated surface has to be estimated
to accomplish the radiometric calibration of the intensity. For
each measured point in the data set, all points in a small
spherical neighborhood are considered to calculate the
covariance matrix and the corresponding eigenvalue and
eigenvector (Gross and Thoennessen, 2006). With the deter-
mined eigenvalues plane surface areas can be segmented and
the orientation of the surface can be estimated. To decide
whether a point belongs to a planar surface or not, the
planarity p � (l2 � l3)/l1 based on descend-sorted eigenval-
ues of the covariance matrix (West et al., 2004) is used.

Evaluation of the Intensity Calibration
For evaluating the adapted intensity typical object types
(e.g., roof, road, grassland, field areas) of a laser scanning

IAP � IRae2bRna (1 � ks)cos(�) � ks cosn(2�)b

Iout � Iambka � Iin ckd cos(�) � ks cosn(2�) d

fk � g
i�region(k)

Tin g
i�region(k)

Ti
2.

g
i�
d

k�Nr

region(k)
�i

2 � g
k�Nr

g
i�region(k)

aTifk(i) � 1b2

: Min

Ti � IiRi
ae2bRi cosc(�i)
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Figure 2. Backscattered intensity
for the Lambertian (dotted grey)
and the Phong (solid black)
reflection model depending on the
incidence angle.

earth observation were selected and different orientated
planar regions with homogeneous surface reflectance have
been investigated. The regions were manually selected by
the criteria to consist of the same material and to have a

large variety of surface slopes. The large variety of surface
slopes enables to evaluate the utilized reflection models.

For the selected regions, the given intensity is normal-
ized by the optimized cosine exponent (reflectance adapta-
tion parameter c) and the division by the cosine of the
incidence angle q. By this division, the normalized intensity
value increases compared to the original one. For the
intensity sample x the mean value m(x) and the standard
deviation s(x) is used for the calculation of the variation
coefficient Vc(x) � s(x)/m(x). This term is scale invariant and
takes into account the dependency of the standard deviation
of the intensity as presented by Pfeifer et al. (2007).

The variance of the incidence angle for each region
increases in general if data from more than one flight are
used. For an assessment, the ratio of the variation parameter
RV(region) � Vc,after(region)/Vc,before(region) for all selected
regions after versus regions before normalization are calcu-
lated. If the ratio is smaller than 1, the intensity could be
improved.

Test Environment
A measurement campaign on a scene containing buildings,
streets, grassland, and trees in an urban environment was
carried out to investigate the influences of the incidence
angle on the measured intensity. The data was captured
with a RIEGL LMS-Q560 full-waveform laser scanner. Several
flight paths with different trajectories to gain overlapping
stripes were performed.

Data Set
The data set is fused by all points gathered within seven
flights. Six flight paths are parallel. Flight path seven
crosses the others (Figure 3a). A square region in the middle

Figure 3. Test environment: (a) flight paths, and (b) investigated regions.
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of the scene with the size of 200 m � 200 m is covered by
an average density of about 11 points per square meter,
where flights 1, 2, 3, 4, 5 have a density of 0.6, 3.1, 3.6, 2.9,
and 0.9 points/m2, respectively.

The calculation of the incidence angle and the planarity
is based on the determination of the covariance for each
point by including all neighbor points inside a sphere with
predefined radius. For a radius of 1 m the average of 25
points are considered if the data of all flight paths are
utilized.

Regions of Interest
For investigations, 17 specific Regions (Figure 3b and Figure 4)
were manually selected from the data set to prove the concept
and usage of the normalization method for different orientated
object regions and different kinds of materials:

• Region 1 and 2: parking areas made of different materials
(Figure 4a),

• Region 3: one building with a flat bright roof,
• Regions 4, 5, 6, and 7: one L-shaped building with different

orientated parts of a gabled roof made of dark tiles (Figure 4b),

(a) (b)

(c) (d)

Figure 4. Examples of investigated regions (within the white boundary): (a) parking
area (Region 1), (b) gabled roof with dark tiles (Regions 4, 5, 6, and 7), (c) pyrami-
dal roof with brown tiles (Regions 8, 9, 10, and 11), (d) forest area (Region 14).
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TABLE 1. MEAN ERRORS FOR THE LAMBERTIAN MODELS

a b[1/m] c mean(�i
2)

Standard 2.0 0.001725 �1.00 0.1365
Extended 2.0 0.001725 �0.79 0.1358

Figure 5. Influence of the incidence angles on the intensity: (a) flight path 2, (b) flight path 3,
(c) flight path 4, and (d) flight path 5.

• Regions 8, 9, 10, and 11: one building with different
orientated parts of a pyramidal roof made of brown tiles
(Figure 4c),

• Regions 12 and 13: two great grassland areas,
• Regions 14 and 15: two forest areas (Figure 4d), and
• Regions 16 and 17: two street areas.

Influence of the Flight Paths on the Incidence Angle
The influences of the flight path respectively of the local
incidence angle on the measured intensity values is shown
in Figure 5. The flight paths 2 to 5 have a distance of about
330 m. Already a small offset (116 m) between the two flight
paths 2 and 3, yields to significant different intensity values
as depicted in Figure 5a and 5b.

The building with four different orientated parts of a
pyramidal roof (Regions 8, 9, 10, and 11) out of the same
material on the left border of the image shows that large
intensity values are given if the plane normal vector points
to the sensor. Smaller intensity values are given for the same
area if the normal vector is directed away from the sensor.
The variation of the intensity in general is depicted in
Figure 5.

Results
Parameter Estimation of the Lambertian Models for the Investigated 
Data Set
For both Lambertian models, the beam divergence of the
laser beam is set to a � 2 due to geometric consideration
and the atmospheric extinction coefficient b � 0.001725
[1/m] was provided with the measured data. Then, the
estimated extinction parameter is equal to the attenuation of
7.5 dB/km. Typically the atmospheric attenuation versus
wavelength (0.7 to 10.6 mm) for lasers is within the range of
0.2[dB/km] for extremely clear weather conditions up to
9[dB/km] for light fog or rain (Jelalian, 1992). For the
standard Lambertian model c � �1.0 is utilized and by
optimization for the extended Lambertian model c � �0.79
is estimated. For the standard Lambertian model according
to Equation 3, a slightly greater mean error than for the
optimized extended version can be observed (Table 1). The
enhancement is not essential.

Normalization Results for the Investigated Regions
To study the influence of the incidence angle on the
intensity, the selected regions, which are shown in Figure
3b, were processed. Table 2 shows the relevant informa-
tion and derived results in the following order: (a) each
selected Region, (b) number of points of the point cloud

per region by 	 Points, (c) mean value mean(Ir) and
(d) standard deviation std(Ir) of the original intensity,
(e) mean value of the normalized intensity derived by
utilizing the Lambertian IRc reflection model by mean(IRc),
(f) corresponding standard deviation std(IRc), (g) coefficient
before VC(Ir) � std(Ir)/mean(Ir) and (h) after the normaliza-
tion VC(IRc), and (i) ratio of the variation coefficients
VC(IRc)/VC(Ir). Ratio values below 1 are improvements
gained for the intensity by considering the extinction by
the atmosphere and the laser beam divergence in depend-
ence on the distance between sensor and object surface as
well as the incidence angle given by the normal vector of
the surface and the beam direction.

In Table 3 for each region, the derived variation coeffi-
cients of the investigated reflection models are listed for
direct comparison. First, the already given variation coeffi-
cients of the Lambertian with cos(q)�1, second, the extended
Lambertian considering the empirically optimized surface
reflectance adaptation parameter c � �0.79 with cos(q)�0.79,
and third, the Phong reflection model considering the
empirically determined parameters ks � 0.2 and n � 4. The
rates of the variation coefficients after versus before the
normalization of the intensity are for the extended Lambert-
ian model for most of the regions better and for the Phong
model in the most of the regions worse than for the standard
version.

Discussion
In the following, a discussion on the intermediate and final
results is given.

Normalization Results for the Investigated Regions
The results derived by the Lambertian reflection model
(Equation 3) in Table 2 have to be discussed. Comparing
the traffic related areas of the given data set, it can be
observed that the parking areas (Region 1 and 2) have
three to five times higher intensities than the street areas
(Region 16 and 17) but nearly the same variation coeffi-
cient before and after the normalization. Due to the small
variation of the incidence angle and the low intensity

6 Sep t embe r  2010 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

Reprinted with permission from the American Society for Remote Sensing, Bethesda, Maryland, www.asprs.org

77

www.asprs.org


PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Sep t embe r  2010 7

TABLE 2. RESULTS DERIVED BY UTILIZING THE LAMBERTIAN REFLECTION MODEL FOR THE SELECTED REGIONS

a b c d e f g h i

Region SPoints mean(Ir) std(Ir) mean(IRc) std(IRc) VC(Ir) VC(IRc) VC(IRc)/VC(Ir)

1 18667 2988 705 1421 243 0.24 0.17 0.72
2 19294 4725 1152 1778 423 0.24 0.24 0.98
3 1398 2907 778 1288 314 0.27 0.24 0.91
4 1016 5287 1086 2885 397 0.21 0.14 0.67
5 943 4836 1316 2724 419 0.27 0.15 0.57
6 798 4354 782 2614 392 0.18 0.15 0.83
7 537 5195 1071 3074 455 0.21 0.15 0.72
8 454 4568 1000 2500 411 0.22 0.16 0.75
9 429 4651 1015 2577 430 0.22 0.17 0.76

10 333 4792 2100 2476 978 0.44 0.39 0.90
11 423 4422 1063 2479 397 0.24 0.16 0.67
12 100261 3180 569 1300 209 0.18 0.16 0.90
13 72065 3021 773 1410 348 0.26 0.25 0.96
14 216597 1758 915 841 446 0.52 0.53 1.02
15 24074 1579 1167 831 558 0.74 0.67 0.91
16 5068 1089 257 489 105 0.24 0.22 0.91
17 5793 1199 269 599 110 0.22 0.18 0.82

values, improvements from 2 percent to 28 percent could
be derived.

In general for the roof areas, significant improvements
up to 43 percent could be gained, especially if the roof parts
were differently orientated and a large incidence angle on
these parts was given, e.g., gabled roof with grey tiles with
Regions 4 to 7, and pyramidal roof with brown tiles with
Regions 8 to 11. It could be observed that the intensity for
all roof parts was nearly in the same range and independent
from the visible colors of the tiles. A lower improvement of
9 percent was given for flat bright roof with Region 3, due to
the small variation of the incidence angle.

For the vegetation environment, no significant improve-
ments were expected, due to the large variation of natural
objects and therefore, the low planarity in close neighbor-
hood. The results for the grassland areas (Region 12 and 13)
and forest area (Region 15) do only show very small
improvements up to 10 percent or no relevant changes for
the forest area in Region 14.

Concerning the extended Lambertian (Equation 4) and
Phong (Equation 7) reflection model, (Table 3) the investiga-
tions show that only for a few cases the extended Lambert-
ian reflection model gives insignificantly better results than
the standard model. With the Phong reflection model, the
results are worse for all regions except for the forest Region
15. Various internal tests showed that other parameter
values do not provide essentially better results for this data
set. Due to the large variation of the intensity measurements
in this data set unfortunately no reliable improvements
could be gained. Therefore, these two reflection models are
not further discussed in this paper.

Detailed Comparison of the Intensity Normalization Results
In Figure 6a, the variation coefficients for all regions are
plotted; diamond symbols mark the values before and
square symbols after the intensity normalization (Table 2,
column VC(Ir) and VC(IRc)). All regions except Region 14 give
better results. The ratios of the variation coefficients
VC(IRc)/VC(Ir) are drawn in Figure 6b. All regions containing
man-made objects show an improvement between 2 percent
to 43 percent due to the intensity normalization. For the
street areas (Region 16 and 17), the original intensity is very
low, but nevertheless a small improvement could be gained.

The following figures show the intensity distribution
depending on the incidence angle before and after the
normalization for a parking area (Figure 7) and the pyrami-
dal roof regions (Figure 8) colored in accordance with the
flight identification. The influence of the incidence angle on
the intensity is obvious, where the theoretical trend of the
intensity is depicted by the black curves. The proposed
normalization can compensate the mean intensity but not
the high variation of the intensity for constant incidence
angle. It can be assumed that the high variation of the
intensity is strongly influenced by the measurement
procedure.

Figure 9 shows the distribution of the intensity values of
a parking area (Region 1, Figure 4a) with incidence angles
from 0° up to 10° before and after the intensity normalization.
It could be shown that in general the intensity variation in
the area is improved with the normalization. In Figure 10 the
high standard deviation for each incidence angle is depicted.
The variation can not be corrected by using the incidence
angle only, it is influenced by the measurement techniques
itself and also some local disturbances.

TABLE 3. RATIOS OF THE VARIATION COEFFICIENTS FOR THE LAMBERTIAN AND

THE PHONG REFLECTION MODELS

VC(IRc)/VC(Ir) VC(IA)/VC(Ir) VC(IAP)/VC(Ir)

Lambert Lambert Phong 
Region (c � �1) (c � �0.79) (ks � 0.2 and n � 4)

1 0.72 0.72 0.80
2 0.98 0.98 1.01
3 0.91 0.90 0.99
4 0.67 0.70 0.67
5 0.57 0.53 0.59
6 0.83 0.82 0.84
7 0.72 0.71 0.72
8 0.75 0.78 0.75
9 0.76 0.75 0.79

10 0.90 0.92 0.91
11 0.67 0.67 0.68
12 0.90 0.88 1.13
13 0.96 0.96 1.01
14 1.02 1.01 1.03
15 0.91 0.94 0.85
16 0.91 0.91 0.97
17 0.82 0.81 0.86
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Figure 6. Evaluation results for all 17 Regions
(diamond before and square after the intensity
normalization): (a) variation coefficients, and
(b) ratio of the variation coefficients.

Figure 7. Intensity distribution marked by the different
flights for the parking area (Region 1):(a) before, and
(b) after the intensity normalization. The black curves
show the mean intensity.

Conclusion
Investigations on airborne laser scanning data for intensity
normalization on man-made and natural areas were done.
The intensity was adapted concerning the influence of the
atmospherical extinction, the laser beam divergence as well
as the incidence angle between laser beam, and normal
vector of the object surface under the assumption that the
material has a Lambertian reflectivity. To refine the surface
model beside the standard Lambertian (Equation 3), the
extended Lambertian (Equation 4) and the Phong (Equation
7) reflection model was introduced. For evaluation, nearly
homogeneous regions were selected interactively. Due to the
dependency of the standard deviation from the mean value
of the intensity, the variation coefficient as measure for the
assessment is recommended.

A significant improvement could be presented in this
paper by utilizing the standard Lambertian reflection model.
Concerning the extended Lambertian and Phong reflection
models, no reliable improvements could be gained even after
parameter optimization. However, for future investigations

data captured in close range might be of interest, e.g., by a
terrestrial laser scanning (TLS) device, where less intensity
variation can be expected.

Our investigation demonstrates that large intensity
variation with respect to the surface orientation and beam
propagation direction can be reduced and the intensity
can be already improved within the standard Lambertian
reflection model. The limitation of this approach is given
for intensity variations depending on the sensor tech-
nique (e.g., low signal-to-noise ratio at the receiver,
variation of the emitted pulse intensity), measurement
technique (e.g., speckle effects), object materials (e.g.,
inhomogeneous material reflectance), and local geometry
(e.g., roughness of the surface, partly illuminated surface
areas). These effects cannot be compensated by the
proposed approach.
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Figure 8. Intensity distribution marked by the
different flights for the pyramidal roof Regions 4, 5,
6, and 7: (a) before, and (b) after the intensity
normalization. The black curves show the mean
intensity.

Figure 10. Mean and standard deviation of the
intensity depending on the incidence angle for the
parking area (Region 1): (a) before and (b) after
the intensity normalization.
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line before and solid line after the intensity normalization).
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ABSTRACT: 

The analysis of data derived by full-waveform laser scanning systems is of great interest. In this study, we estimate the impulse 
response of a laser scanning system capturing the waveform. Considering the impulse response of the system is important for precise 
waveform analysis. The characteristic of the system has to be mentioned to interpret the pulse properties in an accurate way. We 
determined by experiments the impulse responses of the laser scanning system for different bandwidths, namely 250 MHz, 
750 MHz, 1 GHz, and 6 GHz. By considering the impulse response the measured transmitted waveform of the emitted laser pulse 
can be adapted. The similarity of the adapted transmitted and received waveform is compared and discussed. 

 
1. INTRODUCTION 

The automatic generation of 3-d models for a description of 
man-made objects, like buildings, is of great interest in 
photogrammetric research. Laser scanner systems allow a direct 
and illumination-independent measurement of the range. Laser 
scanners capture the range of 3-d objects in a fast, contact free 
and accurate way. Overviews for laser scanning systems are 
given in (Huising & Pereira, 1998; Wehr & Lohr, 1999; 
Baltsavias, 1999). A general overview how to develop and 
design laser systems can be found in textbooks (Jelalian, 1992; 
Kamermann, 1993). 

Current pulsed laser scanner systems for topographic mapping 
are based on time-of-flight techniques to determine the range of 
the illuminated object. The elapsed time between the emitted 
and backscattered laser pulses is typically determined by a 
threshold detection with analogous electronics. Some systems 
capture multiple reflections caused by objects which are smaller 
than the laser beam footprint located in different ranges. Such 
systems usually record the first and the last backscattered laser 
pulse. 

First pulse as well as last pulse exploitation is used for different 
applications like urban planning or forestry surveying. While 
first pulse registration is the optimum choice to measure the 
hull of partially penetrable objects (e.g. canopy of trees), last 
pulse registration should be chosen to measure non-penetrable 
surfaces (e.g. ground surface below vegetation). 

Beside the first or last pulse exploitation the complete 
waveform in between is of interest, because it includes the 
backscattering characteristic of the illuminated field. 
Investigations on the waveform analysis were done to explore 
the vegetation concerning the bio mass, foliage or density (e.g. 
trees, bushes, and ground). NASA has developed a prototype of 
the Laser Vegetation Imaging Sensor (LVIS) recording the 
waveform to determine the vertical density profiles in forests 
(Blair et al., 1999). This experimental airborne system operates 
in altitudes up to 10 km and provides a large footprint diameter 
(up to 80 m) to study different land cover classes. 

The spaceborne Geoscience Laser Altimeter System (GLAS) on 
the Ice, Cloud and Land Elevation Satellite (ICESat) determines 
changes in range through time, height profiles of clouds and 
aerosols, ice sheet and land elevations, and vegetation (Brenner 
et al., 2003; Zwally et al., 2002). It operates with a large 
footprint diameter (70 m) on Earth and measures elevation 
changes with decimeter accuracy (Hoften et al., 2000). Table 1 
gives an overview of additional specifications. 

Beside large footprint systems first developments of small 
footprint systems were done for monitoring the nearshore 
bathymetric environments with the Scanning Hydrographic 
Operational Airborne Lidar Survey system (SHOALS). 
SHOALS has been in full operation since 1994 (Irish & 
Lillycrop, 1999; Irish et al., 2000). Recent developments of 
commercial laser scanner systems led to systems that allow 
capturing the waveform: RIEGL LMS-Q560, OPTECH ALTM 
3100, TOPEYE II. The systems mentioned above are specified 
to operate with a transmitted pulse width of 5 ns and allow 
digitization and capturing the waveform with approximately 
1 GSample/s. Additional specifications of the small footprint 
laser systems mentioned above are shown in Table 2. 

To interpret the received waveform of the backscattered pulse, a 
fundamental understanding of the physical background of pulse 
propagation and surface interaction is important (Jutzi et al., 
2002; Wagner et al., 2003). The influence of the surface on the 
transmitted waveform is discussed by Steinvall (2000) for 
objects with different shapes taking into account different 
reflection characteristics. Gardner (1982) and Bufton (1989) 
investigated the pulse spreading by the impact of the surface 
structure, e.g. surface slope and vertical roughness within the 
laser footprint. 

The recording of the received waveform offers the possibility to 
use different methods for the range determination, e.g. peak 
detection, leading edge detection, average time value detection, 
constant fraction detection. This topic was investigated by 
different authors, e.g. Der et al., 1997; Steinvall & Carlsson, 
2001; Jutzi & Stilla, 2003; Thiel & Wehr, 2004; Wagner et al., 
2004; Vandapel et al., 2004. The analysis of the pulse shape 
increases the reliability, accuracy, and resolution. 
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The range estimation is further improved by the comparison 
between the transmitted and the received waveform. This can 
be done by signal processing methods (e.g. cross-correlation, 
inverse filtering), if the sampling of the waveform is done with 
a high sampling rate. The maximum of the cross-correlation 
between the transmitted and received signal estimates the range 
value with a higher reliability and accuracy than considering the 
received waveform only (Hofton & Blair, 2001; Jutzi & Stilla, 
2005; Thiel et al., 2005). 

Beside the range determination further surface features can be 
studied by waveform analysis, namely reflectance, slope and 
roughness. This specific surface features have an influence on 
the amplitude and width of the received waveform (Brenner et 
al., 2003; Jutzi & Stilla 2002; Steinvall et al., 2004; Wagner et 
al., 2006). For a parametric description of the pulse properties a 
Gaussian decomposition method on the waveform can be used 
(Hofton et al., 2000; Jutzi & Stilla 2005; Persson et al., 2005; 
Söderman et al., 2005). Nowadays, waveform analysis is more 
and more established for remote sensing applications especially 
in forestry (Hug et al., 2004; Reitberger et al., 2006). 

Depending on the application different surfaces have to be 
analyzed, e.g. for urban objects we have to deal with different 
elevated objects. In rural environment we have to deal with 
statistically distributed natural objects. The impact of the scene 
on the received waveform will be discussed using some 
standard examples (Figure 1). Different elevated object surfaces 
within the beam corridor lead to a mixture of different range 
values. A simple situation is given by a horizontal plane surface 
which will lead to a small pulse (Figure 1b). A plane which is 
slanted in relation to the viewing direction shows different 
range values within the footprint. This range interval which is 
given by the size of the footprint and the orientation of the 
plane leads to a spread of the pulse width (Figure 1c). A 
deformation of the pulse form can also be caused by 
perpendicularly oriented plane surfaces shifted by a small step 

in viewing direction (Figure 1d). A large step leads to two 
separate pulses (Figure 1e). Several surfaces with different 
range within the beam can result in multiple pulses. Randomly 
distributed small objects (e.g. by vegetation) spread over 
different range values within the beam leads as well to a spread 
of the pulse width (Figure 1f). These examples show the 
influence on the waveform by standard surface situations. 

Beside the influence of the surface on the waveform the 
waveform is additionally affected by the used system, 
especially by the measurement unit itself. For precise waveform 
analysis it is relevant to consider the system characteristic. This 
system characteristic can be described by the impulse response 
of the used laser scanning system. To investigate the impulse 
response of laser scanning systems experiments are carried out 
by using receivers with various bandwidths. 

In Section 2 an overview on the experimental setup is given. 
We show a method to estimate the impulse response of the laser 
scanning system in Section 3. The adaptation of the transmitted 
waveform by the impulse response and an evaluation for the 
similarity of the transmitted and received waveform is 
presented in Section 4. In Section 5 the method is proofed by 
experiments and results are depicted. 

2. EXPERIMENTAL SETUP 

An experimental setup was built up for exploring the 
capabilities of a laser scanning system, which allows capturing 
the waveform. 
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Figure 1. Effects of the surface on the received waveform. 
 a) transmitted waveform, 
 b) plane surface, 
 c) sloped surface, 
 d) two slightly different elevated areas, 
 e) two significantly different elevated areas, 
 f) randomly distributed small objects. 

Large footprint laser systems LVIS GLAS 
Wavelength [nm] 1064 1064 
Pulse length at FWHM a [ns] 10 6 
Pulse repetition rate [Hz] 100-500 40 
Laser output energy [mJ] 5 75 
Laser beam divergence [mrad] ~5 0.11 
Operating altitude [km] 10 600 
Scan angle [°] ± 7 0 
Detector bandwidth [MHz] 90 0.16 & 1 
Digitizer sampling rate [GSamples] 0.5 1 

Table 1. Specifications of large footprint laser systems 
capturing the waveform: LVIS (Blair et al., 1999), 
and GLAS (Zwally et al., 2002). 

 a Full-width-at-half-maximum 

Small footprint laser systems RIEGL LMS-Q560 OPTECH ALTM 3100 TOPEYE II 
Wavelength [nm] 1550 1064 1064 
Pulse length at FWHMa [ns] 4 - 5 
Pulse repetition rate [kHz] Up to 100 50 50 
Laser output energy [mJ] - - - 
Laser beam divergence [mrad] ≤ 0.5 0.3 or 0.8 1 
Operating altitude [m] < 1500 < 2500 < 1000 
Scan angle [°] ± 22.5 ± 25 ± 20 
Detector bandwidth [MHz] - - - 
Digitizer sampling rate [GSamples] 1 1 1 

Table 2. Specifications of small footprint laser systems capturing the waveform: RIEGL LMS-Q560 (http://www.riegl.com), Optech 
ALTM 3100 with Intelligent Waveform Digitiser (http://www.optech.on.ca), and TopEye Mark II (http://www.topeye.com). 

 a Full-width-at-half-maximum 
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2.1 Laser system 

The laser system has three main components: an emitter unit, a 
motion control unit, and receiver unit. 

2.1.1 Emitter unit 

We use a laser pulse system with a pulse duration of 5 ns at 
full-width-at-half-maximum (FWHM) and a high repetition rate 
(42 kHz). The average power of the laser is up to 10 kW. The 
multi-mode Erbium fiber laser operates at a wavelength of 
1550 nm with a beam divergence of 1 mrad. The transmitted 
waveform of the emitted pulse shows strong random 
modulation for each emitted pulse. In Figure 2 two examples of 
the transmitted waveform are depicted. The shape of the 
waveform depends on the design of the laser system, where the 
system uses a photodiode to pump the multi mode fiber cavity 
and a fiber amplifier. 
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Figure 2. Two samples of the transmitted waveform. 

2.1.2 Motion control unit 

For the 2-d scanning process a moving mirror is used for an 
elevation scan with ±15 degrees in vertical direction (320 raster 
steps) and a rotation stage for an azimuth scan with 360 degree 
rotation in horizontal direction (variable number and spacing of 
the raster steps). 

2.1.3 Receiver unit 

The receiver unit to capture the waveform usually contains 
PIN d or APD e photodiodes. For our investigations we used 
receivers with various bandwidths (250 MHz, 750 MHz, 1 GHz, 
7 GHz, and 12 GHz) containing photodiodes sensitive at 
wavelengths of around 900 to 1700 nm. An overview for the 
specifications of the receivers which were used in the 
experiment is given by Table 3. Furthermore, we use an A/D 
converter with 20 GSamples/s. The A/D conversion and digital 
recording is accomplished by using a digital memory 
oscilloscope (Le Croy - Wavemaster 8600A), where the 
bandwidth of the oscilloscope is limited to 6 GHz. 

3. ESTIMATING THE IMPULSE RESPONSE OF THE 
SYSTEM 

The measured received waveform of the backscattered laser 
pulse depends on the transmitted waveform s[t] of the emitted 
laser pulse, the impulse response hR[t] of the measurement unit 
for the received waveform, the spatial beam distribution of the 
used laser P[x,y], and the illuminated surface S[x,y,z]. The 
received waveform rM[x,y,z,t] can be expressed by a 
convolution of the relevant terms mentioned above and we get 

 [ , , , ] [ ]* [ ]* [ , ]* [ , , ]=M Rr x y z t s t h t P x y S x y z  (1) 

where (*) denotes the convolution operation. The spatial beam 
distribution is typically Gaussian, and the surface characteristic 
can be described by its geometry and its reflectance properties 
(usually a mixture of diffuse and specular). If the transmitted 
waveform s[t] is as well measured it can be described by 

 [ ] [ ]* [ ]=M Ss t s t h t , (2) 

where hS[t] is the impulse response of the measurement unit of 
the transmitted waveform. Both impulse responses are mainly 
affected by the used photodiode(s) and amplifier(s). 

Assuming a perfectly flat surface perpendicular to the 
propagation direction of the laser beam we derive with 
Equation 1 

 [ ] [ ]* [ ]=M Rr t s t h t . (3) 

The measured waveforms sM[t] and rM[t] may not necessarily 
represent the real waveforms of the laser pulses. Depending on 
the bandwidth of the used photodiodes and amplifiers the 
waveforms of the used laser system show more or less detailed 
information. The depicted transmitted waveforms in Figure 2 
are recorded with a high bandwidth of 6 GHz and are sampled 
with 20 GSamples/s. However, we want to characterize the 
system by its impulse response h[t] independent of the 
bandwidth of the measurement unit. But, how can we determine 
the impulse response of the used system? 

For estimating the impulse response h[t] of the measurement 
unit a deconvolution is necessary. The deconvolution can be 
easily formulated by transforming Eq. 2 and 3 in frequency 
domain 

 [ ] [ ][ ]
[ ] [ ]

= =M M

S R

S f R fS f
H f H f

. (4) 

Terms [ ]S f , [ ]MS f , [ ]MR f , [ ]SH f , and [ ]RH f  are the 
Fourier transforms of the corresponding terms s[t], sM[t], rM[t], 

Receivers TTI-TIA 950 a TTI-TIA 950 b New Focus 1611 TTI-TIA 4000 c New Focus 1544 c 
3dB bandwidth [MHz] 250 750 1000 7000@6000 12000@6000 
Detector Material/Type InGaAs/PIN d InGaAs/PIN InGaAs/PIN InGaAs/APD e InGaAs/PIN 
Wavelength [nm] 900-1700 900-1700 900-1700 950–1650 950–1650 

Minimum NEP [pW/ Hz ] 3 3 20 16 33 
Detector Diameter [µm] 100 100 100 30 25 

Table 3. Specifications of the receivers used in the experiment 
 a Gain of 10.0 
 b Gain of 1.0 
 c Bandwidth is limited by the digital oscilloscope to 6 GHz 
 d Positive intrinsic negative diode 
 e Avalanche photodiode
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hS[t], and hR[t]. 

This can be written as  

 [ ][ ] [ ] [ ] [ ]
[ ]

= ⋅ = ⋅R
M M M

S

H fR f S f S f H f
H f

, (5) 

where [ ]H f  is the transfer function of the system. 

To estimate the transfer function [ ]H f  a frequency-domain 
division of [ ] / [ ]M MR f S f  has to be carried out. By the inverse 
Fourier transformation of [ ]H f  we obtain h[t]. 

Usually the measurement of the transmitted and received 
waveforms is affected by noise from photodiode and amplifier. 
Then a straightforward direct division operation leads to a noisy 
transfer function and as well to a noisy impulse response 
(Figure 3a) without any significant information. 

To avoid this, a sample of N single impulse responses is 
averaged and we receive the averaged impulse response 

 
1

1[ ] [ ]
=

= ∑
N

n
n

h t h t
N

, (6) 

which describes the characteristic of the system. An averaged 
impulse response (N=1000) is depicted in Figure 3b.  

0 2 4 6 8 10 12
-0.2

0

0.2

0.4

0.6

0.8

1

Time [ns]

St
an

da
rd

iz
ed

 A
m

pl
itu

de

0 0.5 1 1.5

-0.2

0

0.2

0.4

0.6

0.8

1

Range [m]

0 2 4 6 8 10 12
-0.2

0

0.2

0.4

0.6

0.8

1

Time [ns]

St
an

da
rd

iz
ed

 A
m

pl
itu

de

0 0.5 1 1.5

-0.2

0

0.2

0.4

0.6

0.8

1

Range [m]

0 2 4 6 8 10 12
-0.2

0

0.2

0.4

0.6

0.8

1

Time [ns]

St
an

da
rd

iz
ed

 A
m

pl
itu

de

0 0.5 1 1.5

-0.2

0

0.2

0.4

0.6

0.8

1

Range [m]

 0 2 4 6 8 10 12
-0.2

0

0.2

0.4

0.6

0.8

1

Time [ns]

St
an

da
rd

iz
ed

 A
m

pl
itu

de

0 0.5 1 1.5

-0.2

0

0.2

0.4

0.6

0.8

1

Range [m]

 
 a b 

Figure 3. Impulse response of the system: 
a) Example of a single impulse response 1[ ]h t , 
b) Averaged impulse response [ ]h t . 

4. ADAPTATION OF THE TRANSMITTED 
WAVEFORM AND EVALUATION 

If the impulse response is determined the transmitted waveform 
sM[t] can be adapted to consider the characteristic of the 
measurement system. Therefore the adaptation of the 
transmitted waveform is given by 

 [ ] [ ]* [ ]= Mhs t s t h t , (7) 

where [ ]hs t  describes the adapted transmitted waveform. 

Assuming a perfectly flat surface the shape of the adapted 
transmitted waveform should be closer to the shape of the 
received waveform of the backscattered pulse than the 
transmitted waveform of the emitted pulse. The similarity of the 
adapted transmitted waveform and the received waveform 
should be generally increased with this adaptation. 

To proof the similarity of the adapted transmitted waveform 
[ ]hs t  and the received waveform [ ]Mr t  the correlation is the 

favorite method. Therefore the maximum coefficient of the 
normalized cross-correlation function has to be determined. The 
normalized cross-correlation function is defined with 

 

1

0
1 1

2 2

0 0

[ ] [ ]

'[ ] [ ]

[ ] [ ]

−

=
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= =
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⋅

∑

∑ ∑

M
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t

sr M M

Mh
t t

s t r t

k R t

s t r t

τ

τ τ , (8) 

where M is the length of the correlation function '[ ]k τ  and the 
maximum correlation coefficient 'R  is derived by 

 ' max( ' [ ])=R k τ . (9) 

To compare the transmitted waveform [ ]Ms t  and the received 
waveform [ ]Mr t  the correlation coefficient is calculated in the 
same manner as shown in Equation 8 and 9, where the 
maximum correlation coefficient is denoted with R . Generally 
the correlation coefficient is close to 1 for high similarity of the 
shape of the two waveforms. The result received for 'R  and R  
can be compared with each other and evaluated. 

5. EXPERIMENTS 

To study the impulse response of laser scanning systems 
experiments are carried out by using receivers with various 
bandwidths. Figure 4 depicts a schematic description of the 
processing chain for the experiments. 

First the transmitted and the received waveform are measured 
with the laser scanning system (Figure 4-1) for a sample of 
N=1000 emitted pulses, where the transmitted and the received 
waveforms are recorded by separate receivers of the same type 
and with the same bandwidth. 

It has to be mentioned that the receiver TTI-TIA 950 operates at 
bandwidths of 250 and 750 MHz depending on the pre-selected 
gain factor, which can be set manually. Furthermore, for the 
experiments there wasn’t an equal pair of receivers with the 
supported 6 GHz bandwidth of the digital memory oscilloscope 
available. Therefore we selected two different receivers with a 
higher bandwidth, where the TTI-TIA 4000 (7 GHz) was used 
to capture the transmitted waveform and the New Focus 1544 
(12 GHz) to capture the received waveform of the laser pulse. 

The illuminated target is a flat surface with an orientation 
perpendicular to the laser beam propagation direction and high 
material reflectance positioned at a range of approximately 
80 m. The high material reflectance is necessary to capture the 
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waveform with receivers of low sensitivity. Especially the 
receivers with bandwidths greater than 1 GHz have a very low 
sensitivity. 

To estimate the impulse response of the system (Figure 4-2) the 
measured sample is processed as described in Section 3. The 
average of the single impulse responses derived by the various 
receiver pairs is depicted in Figure 5. Measurements are carried 
out for the following bandwidths: 250 MHz, 750 MHz, 1 GHz, 
and 6 GHz. With increasing bandwidth the width of the impulse 
response decreases. Caused by the small number of the 
measured samples (N=1000) the estimated impulse response 
shows still some noise characteristics, especially the impulse 
responses derived by the receivers with low bandwidths. For 
further processing only the values greater than zero of the 
impulse response itself are considered and the background noise 
is set to zero. Beside this straightforward estimation of the 
impulse response further investigations in frequency-domain for 
noise reduction (e.g. low pass filtering) might be of interest for 
performance optimization, but this was not further investigated 
in this paper. 

However the estimated impulse response is convolved with the 
transmitted waveform for each emitted pulse to determine the 
adapted transmitted waveform [ ]hs t  (Figure 4-3). 

To evaluate the transmitted waveforms [ ]Ms t  and [ ]hs t  the 
correlation coefficient of the transmitted and the received 

waveform is calculated for each single emitted laser pulse 
(Figure 4-4). The correlation coefficient is extracted from the 
correlation function by detecting the local maximum and 
determines the maximum value. To compare the adapted 
(Figure 4-A) and the corresponding measured transmitted 
waveform (Figure 4-B, dashed line), the correlation coefficients 
are determined and compared with each other. Then the average 
values R  ( 'R ) and the standard deviation values Rσ  ( 'Rσ ) 
of the correlation coefficient R  ( 'R ) for 1000 samples is 
calculated for each measurement. The results are presented in 
Table 4. 

For all investigated bandwidths the average value 'R  of the 
correlation coefficient derived by the adapted transmitted 
waveform [ ]hs t  is higher than the average value R  derived by 
the transmitted waveform [ ]Ms t . The standard deviation 'Rσ  
of the correlation coefficient derived by the adapted transmitted 
waveform is lower for three of four measurements. 

6. DISCUSSION 

All experiments are carried out in the same manner, only 
receivers with various bandwidths are used for each 
measurement. The similarity of the shape of the transmitted 
waveform and the received waveform is generally very high, 
but could be increased with the adapted transmitted waveform. 
It has to be mentioned, that the significance is not as high as we 
expected. In relation to the amplitude of the estimated impulse 
response large noise influences could be observed at low 
bandwidths. With increasing the bandwidth the width of the 
impulse response decreases. This might depend on the 
manufacturing accuracy of the used photodiodes. The width of 
the adapted impulse responses [ ]h t  is smaller than the width of 
the transmitted waveform [ ]Ms t  of the emitted laser pulse 
(compare Figure 3 and 5). The convolution of the impulse 
response with the transmitted waveform has a low pass effect 
on the transmitted waveform. 

7. CONCLUSION 

In this work it was shown that the waveform is affected by the 
measurement unit. The influence of the measurement unit on 
capturing the transmitted and received waveforms of the laser 
pulse can be described by the impulse response which 
characterizes the system. To study the measurement unit we 
determined the impulse response of the laser scanning system 
for different bandwidths, namely 250 MHz, 750 MHz, 1 GHz, 
and 6 GHz. Considering the impulse response by calculating the 
adapted transmitted waveform increases the similarity of the 
shape of the transmitted and the received waveform. For precise 
waveform analysis the similarity of both measured waveforms 
is important to determine the influence of the surface in an 
accurate way. This is helpful to extract surface features with 

Receivers TTI-TIA 
950 

TTI-TIA 
950 

New Focus 
1611 

TTI-TIA 3000 a

New Focus 1544 a 
3dB bandwidth [MHz] 250 750 1000 @6000 
A  Average value R  of the correlation coefficient 0.9734 0.9756 0.9737 0.9688 
B  Average value 'R  of the correlation coefficient 0.9782 0.9817 0.9776 0.9745 

A  Standard deviation Rσ  of the correlation coefficient 0.0085 0.0585 0.0072 0.0321 

B  Standard deviation 'Rσ  of the correlation coefficient 0.0075 0.0588 0.0068 0.0320 
Table 4. Evaluation of the experiments. 
 a Bandwidth is limited by the digital oscilloscope to 6 GHz
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Figure 5. Impulse responses of the laser scanning system for 
various receivers: 
a) 250 MHz bandwidth, 

 b) 750 MHz bandwidth, 
 c) 1 GHz bandwidth, 
 d) 6 GHz bandwidth. 
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high accuracy, e.g. range determination by cross-correlation. 
The experiments we carried out are general investigations for a 
laser scanning system which records the full-waveform of laser 
pulses. 
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Abstract

Current pulsed laser scanning systems determine the range to an object surface by a time-of-flight measurement. Critical
measurement situations occur in discriminating the ranges of surfaces close to their edges or of small objects within the beam
footprint which are closely located in range. Capturing the complete waveform of the laser pulse allows discriminating differences
in a range smaller than the length of the laser pulse. The capabilities of this technique can be predicted by modeling the emitted
pulse, the surface, and the backscattered pulse. Due to the varying waveforms of the emitted pulses each individual emitted pulse is
recorded and considered for the determination of the surface features. A deconvolution is used to remove the characteristic of the
transmitted waveform from the received waveform to obtain a surface response. A Wiener Filter reduces the noise of the
determined surface response. For extraction of temporal position, length, and amplitude the corresponding surface features are
approximated by Gaussians using the Levenberg–Marquardt Method. Experiments have shown that a stepped surface within the
beam with a step smaller than ten times of the pulse length can be distinguished.
© 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights
reserved.

Keywords: Laser scanning; Waveform analysis; Signal processing; Feature extraction

1. Introduction

The automatic generation of 3-d models describing
man-made objects like buildings is of great interest in
photogrammetric research (Stilla et al., 2005). In
photogrammetry the distance to a surface is classically
derived from a triangulation of corresponding image
points from two or more pictures of the surface. The
points are chosen manually or detected automatically by
analyzing image structures. Besides this indirect mea-

surement using object characteristics, which depends on
natural illumination, active laser scanning systems allow a
direct and illumination-independent measurement of the
range. Laser scanners capture the range of 3-d objects in a
fast, contactless, and accurate way. An overview of
airborne laser scanning systems is given in Huising and
Gomes Pereira (1998), Wehr and Lohr (1999), Baltsavias
(1999).

Current pulsed laser scanning systems for topographic
mapping are based on time-of-flight ranging techniques to
determine the distance to the illuminated object. The time-
of-flight is derived by the elapsed time between the emitted
and backscattered laser pulses. The signal analysis to
determine this time typically operateswith analog threshold

ISPRS Journal of Photogrammetry & Remote Sensing 61 (2006) 95–107
www.elsevier.com/locate/isprsjprs

⁎ Corresponding author. Tel.: +49 7243 992 337; fax: +49 7243 992
299.

E-mail address: boris.jutzi@fom.fgan.de (B. Jutzi).

0924-2716/$ - see front matter © 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V.
All rights reserved.
doi:10.1016/j.isprsjprs.2006.09.001

94



detection (e.g. peak detection, leading edge detection,
constant fraction detection) (Jutzi and Stilla, 2003). A few
systems capture multiple reflections caused by objects at
different ranges with surfaces smaller than the footprint of
the beam. Most systems capture the first and the last
backscattered laser pulse. First pulse as well as last pulse
exploitation is used for different applications like urban
planning or forestry surveying. While first pulse registra-
tion is the optimal choice to measure the hull of partially
penetrable objects (e.g. canopy of trees), last pulse
registration should be chosen to measure non-penetrable
surfaces (e.g. ground surface). Fig. 1a shows a section of an
image taken in first pulse mode. The foliage of the trees is
visible. Fig. 1b was taken in last pulse mode. The branches
and foliage are not visible anymore.

Critical measurement situations can occur if a single
pulse is strongly deformed or more than one pulse is

backscattered (Fig. 2). The following examples give a
selection of these situations:

i. A sloped surface covers a range interval within the
footprint of the beam and leads to a deformation
(widening) of the backscattered pulse depending
on the slope and the size of the footprint. Analog
detectors, which are for example measuring the
leading edge of the pulse, only find a single range
value which is typically shifted from the mean
distance of the surface towards the sensor.

ii. Two different elevated areas within the footprint of
the beam, as occurring at building walls (ground
and roof) lead to two pulses with a temporal offset.
In this case, analog detectors can measure two
different range values, but the coverage of the areas
within the footprint cannot be determined without
any further information (Vosselman, 2002).
Depending on the processing of first or last pulse
data, building areas dilate or erode. To visualize the
various sizes of the building footprints in first and
last pulse image, a difference image was calculated
(Fig. 1c). The ambiguous pixels of the building are
visible as a bright stripe along the building
contours. A section of this ambiguous area was
enlarged and is depicted in Fig. 1c (bottom left).

iii. Two areas at slightly different elevations within the
footprint of the beamwill lead to two superimposed
backscattered pulses (Wagner et al., 2006) if the
range difference of the areas is smaller than the
length of the laser pulse (Katzenbeisser, 2003). In
general an analog detector measures a single range
value.

iv. Small objects within the footprint distributed
randomly around a mean elevation value (e.g.
average height of crop plants on a field) lead to a
widening of the backscattered pulse depending on
this distribution. This results in a widened pulse
with a low intensity which is difficult to detect
with a fixed threshold of an analog system.

These examples suggest that the complete waveform
in between the first pulse and last pulse might be of
interest, because it includes the backscattering charac-
teristic of the illuminated field.

Prior work on analyzing the full waveform was
carried out by NASA to examine vegetation with respect
to bio mass, foliage, or density (e.g. trees, bushes, and
ground). The Laser Vegetation Imaging Sensor (LVIS)
was used to record the waveform and to determine the
vertical density profiles in forests (Blair et al., 1999). The
spaceborne Geoscience Laser Altimeter System (GLAS)

Fig. 1. Section of an urban scene. a) Elevation images captured by
first pulse mode, b) elevation images captured by last pulse mode,
c) difference image of first and last pulse mode.
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determines the distance to the Earth's surface, and a
profile of the vertical distribution of clouds and aerosols
(Brenner et al., 2003). In the work of both systems the
surface characteristics were determined by comparing a
parametric description of the transmitted and received
waveform. The shape of the surface response was not
determined.

Apart from the range measurement of laser scanning
systems, some systems additionally deliver a single
reflectance value derived from the amplitude or the
power of the backscattered laser light. The amplitude is
defined as the signal maximum and the power by signal
integration of the measured laser light. These values give
radiometric information about the surveyed area. This
amplitude value or power value can be used for separating
segments of artificial objects from vegetation (Hug and
Wehr, 1997; Maas, 2001), classify individual trees or
forest stands according to species (Moffiet et al., 2005) or
to perfectly texture 3-d scene models (Sequeira et al.,
1999). Vosselman (2002) suggested to use the intensity of
the laser beam response in order to estimate and improve
the position of the edge in between areas with different
reflectance properties. Examining the power of the
backscattered pulse allows increasing the position
accuracy of an object edge, too (Jutzi et al., 2005).

To enable an interpretation of the measured waveform
of a backscattered pulse, understanding the physical
background of pulse propagation and surface interaction
is necessary (Der et al., 1997; Jutzi et al., 2002; Steinvall
and Carlsson, 2001; Wagner et al., 2004, 2006).
Especially in the case of multiple backscatters, the
received waveform may be complex. For analysis of the
waveform and to separate fine structures, models for pulse
propagation and surface interaction have to be introduced.

In this paper, we propose a method for a detailed
analysis of the full waveform of laser pulses. The

presented approach improves the range resolution and
allows discriminating multiple surface responses. In
Section 2, the waveform of the emitted and back-
scattered pulse, the laser beam, and the illuminated
surface are modeled for capturing the measurement
situation. The algorithms for gaining and discriminating
surface responses are described in Section 3. In Section
4 outdoor experiments with different surface configura-
tions are presented. Finally in Section 5, the received
discrimination results of the surface responses are
discussed concerning accuracy and reliability.

2. Modeling

In this section, a model for the waveform of the
backscattered laser pulse is derived. This waveform
depends on the transmitted waveform of the emitted
laser pulse, the spatial energy distribution of the beam,
and the material and geometric reflectance properties of
the surface.

2.1. Modeling the transmitted waveform of the emitted
pulse

Depending on the laser system, the waveform of a
pulse may appear in different shapes. Different models
of the waveform are known from the literature. Brenner
et al. (2003) proposed a simple temporal symmetric
Gaussian distribution for modeling the waveform of the
spaceborne Geoscience Laser Altimeter System
(GLAS). A waveform with an exponential distribution
is applied by Steinvall (2000), while Wagner et al.
(2004) uses a rectangular distribution. The laser source's
modulation effect was not captured in the mentioned
models. Some laser systems, like the used multi mode
Erbium fiber laser, typically show variations of the

Fig. 2. Surface characteristic and pulse form. a) Plane surface, b) sloped surface, c) two significantly different elevated areas, d) two slightly different
elevated areas, e) randomly distributed small objects.
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waveform, which cannot be neglected for a detailed
analysis. Fig. 3a–c gives examples of emitted pulses of
our laser system.

Generally, the basic waveform depends on the pulse
generation process of the laser source. A strong random
intensity fluctuation is caused by the mode-beating of
the multi mode laser light, which is generated by
interference of neighboring longitudinal modes within
the laser resonator. Furthermore, external disturbances,
fluctuations of relaxation oscillation, and inharmonic
oscillation (spiking) randomly modulate the waveform.

The basic waveform s(t) of the used laser system can
be described by a time delayed Gaussian with the
amplitude a and the pulse length w:

sðtÞ ¼ 2a
w

d

ffiffiffiffiffiffiffiffi
ln 2
p

r
d expf−4d ln 2d ðt−sÞ

2

w2
gd ð1Þ

The length of a pulse is defined by one-half of the
pulse's maximum amplitude, known as Full-width-at-
half-maximum (FWHM).

The random modulation of the basic waveform,
caused by intensity fluctuations, is modeled by noise
following a Gaussian distribution m(t). This multipli-
cative component is defined by the parameters μ for
the modulation offset and σ representing the modula-
tion standard deviation. Finally, the modulated wave-
form sm(t) is

smðtÞ ¼ sðtÞd mðtÞ with mðtÞfNðl; r2Þ: ð2Þ
Other laser systems may generate waveforms which

appear with different shapes, e.g. a Q-switched laser
with an exponential shape. The exponential waveform
can be described by s(t)=t2 . exp{− t /w}. If the shape of
the transmitted waveform differs from the presented the
model has to be adapted.

2.2. Modeling the spatial energy distribution of the
emitted pulse

The spatial energy distribution of a laser pulse (beam
profile) depends on the used pump source, the optical
resonator, and the laser medium. Often, these profiles
are modeled by a cylindrical distribution (top-hat form)
or by a 2d-symmetric Gaussian distribution (Kamer-
mann, 1993). Measurements of the beam profile in the
near field have shown that a cylindrical distribution fits
our data best (Fig. 4). For the treatment of monostatic
systems it is convenient to use a spherical coordinate
system with origin in the detector and emitter lens. We
take the optical axis as the polar axis of the coordinate

system and call the range r, the zenith angle ε, and the
azimuth angle α. In this case the spatial irradiance
distribution K of the laser beam over the angle ε is
described by

KðeÞ ¼ Ece20k if 0V eV e0 ¼ beam radius;
0 otherwise:

�
ð3Þ

2.3. Modeling of the surface

In this section, we describe the influence of the
surface on the laser beam by geometrical shape and
material properties. Capturing the interaction of the
emitted pulse with the illuminated surface is relevant to
analyze the received waveform. The effects on the
observed data of the surface structure are dependent on
their scale. Structures with scales below the laser
wavelength may result in interference effects (speckle).
If the receiver aperture is large compared to the
correlation size of the speckle pattern, the intensity
fluctuations due to speckle will be smoothed by aperture

Fig. 3. Examples of the transmitted waveform.
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averaging. In this case only insignificant fluctuations of
the waveform with slightly lower amplitude are
measured. Because these conditions are often met,
speckle effects will be neglected in this paper.

2.3.1. Geometrical reflectance
For handling the imaging properties of extended

surfaces, we assume the following: (i) object and sensor
are stationary, (ii) the illuminated part of the object is
locally plane, (iii) the distance from the sensor is very
large compared to the beam footprint. In this case we
assume for the area of the footprint that the plane surface
differs from the corresponding sphere only marginally.
Let us denote the range of a unbounded surface A along
the optical axis by r0A, the angle between the surface
normal and the optical axis by φ, the slope direction by
αA, and the beam radius by b. The observation geometry
is depicted in Fig. 5a and b. The range rA(ε,α) of an
illuminated surface point depends on zenith angle ε and
azimuth angle α and is given by

rAðe; aÞ ¼ r0Að1þ e d tanðuÞ d cosða−aAÞÞ: ð4Þ

2.3.2. Material reflectance
Using a monostatic system, the angles of the incident

and reflected light coincides, but the beam attenuation is
still related to the angle of incidence φm. A special case
is given for specular surfaces with material reflectance
ρm=1:

qspecularðuÞ ¼ 1 if u ¼ 0;
0 if u p 0:

�
ð5Þ

For many surfaces the reflectance is assumed to be
uniform and isotropic, also known as Lambertian

diffuser. In this case the observed reflectance depends
on material reflectance ρm and the angle of incidence φ:

qdiffuseðuÞ ¼ qmd cos
2ðuÞ: ð6Þ

A discussion of reflectance measurements for dif-
ferent materials is shown in Jelalian (1992). There are
strong variations within the reflectance ρm for the same
material, caused by the measurement situation. These

Fig. 4. Spatial energy distribution of the system: measured profile (left)
and modeled profile (right).

Fig. 5. Schematic illustration of the surface geometry. a) Side view of a
single surface, b) oblique view of a single surface, c) oblique view of
two differently elevated surfaces.
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values should be treated with some caution if they are to
be used for material discrimination.

Combining the information presented in Sections
2.3.1 and 2.3.2 we finally get the general expression for
the reflectance density function ρA of a diffuse or
specular surface with respect to the geometry and
material:

qAðr; e; aÞ ¼ qdiffuseðuÞd dðrAðe; aÞ; rÞ
¼ qmd cos

2ðuÞd dðrAðe; aÞ; rÞ; or
qAðr; e; aÞ ¼ qspecularðuÞd dðrAðe; aÞ; rÞ;

ð7Þ

where δ represents the delta function with dðrA;rÞ ¼
1 if r ¼ rA;
0 if r p rA:

�
The delta function δ(rA,r) is used to

describe the surface in range rA.

2.3.3. Multiple surface reflections
We have assumed that just one plane object surface

occurs within the laser beam. If differently elevated
object surfaces are partly illuminated by the laser beam,
we will receive a mixture of reflections at different
ranges. Multiple reflections of the surfaces A1, A2, …,
An within the beam corridor are calculated by:

qmultipleðr; e; aÞ ¼
Xn
i¼1

qAi
ðr; e; aÞ

�dðrAiðe; aÞ;minðfrAi
ðe; aÞji ¼ 1:::ngÞÞ:

ð8Þ
The delta function δ is used to describe each single

surface Ai in range rAi
. Illuminated surface areas are

described by min({rAi
(ε,α)|i=1… n}) which considers

the line of sight and disregards the occluded areas. The
complete reflection ρmultiple is given by the sum of all
partial surface reflections.

2.4. Atmospheric transmission

The one-way propagation path for the atmospheric
transmission ηa with the atmospheric extinction coeffi-
cient σa (Kamermann, 1993) is given by

gaðrÞ ¼ expf−rad rg: ð9Þ
This formula is seldom used, but might be of impor-

tance for measurements under bad weather conditions.

2.5. Receiver efficiency

The receiver attenuates the perceived radiant inten-
sity which is described by S and depends on the aperture

diameter D and object range r. Assuming D≪ r, the
receiver characteristic is given by

SðD; rÞ ¼ kD2

4kr2
dgr; ð10Þ

with ηr being the receiver efficiency.

2.6. Calculating the received waveform of the back-
scattered pulse

The received power P(t) depends on the modulated
waveform of the transmitted laser pulse (Eq. (2)), the
spatial energy distribution of the laser beam (Eq. (3)),
the atmospheric transmission on the way from the sensor
to the surface (Eq. (9)), the reflectance density function
(geometrical and material) (Eq. (7)), the atmospheric
transmission on the way from the surface to the sensor
(Eq. (9)), the receiver attenuation (Eq. (10)), and the
illuminated surface area over the infinitesimal volume
element r2sin(ε)dαdεdr:

PðtÞ ¼
Z l

r¼0

Z k=2

e¼0

Z 2k

a¼0
smðt− 2r

c
Þ

�KðeÞdgaðrÞdqAðr; e; aÞd gaðrÞdS
�ðD; rÞd r2sinðeÞdadedr; ð11Þ

where c is the speed of light. This can be written in the
form

PðtÞ ¼
Z l

r¼0
smðt− 2r

c
Þd HðrÞ dr; with

HðrÞ ¼
Z p=2

e¼0

Z
a¼0

2p

KðeÞd gaðrÞdqAðr; e; aÞ

�gaðrÞd SðD; rÞd r2sinðeÞdade: ð12Þ
Under the assumption (iii) of Section 2.3.1, that the

general range r0A of the system origin to the surface is
much greater than the geometrical reflectance properties
inside the range interval [r0A−Δr, r0A+Δr] the formula
H(r) can be simplified

HðrÞcCr0A

Z p=2

e¼0

Z 2p

a¼0
KðeÞdqAðr; e; aÞd r 2sinðeÞdade;

with Cr0A ¼ g2aðr0AÞdSðD; r0AÞ
¼ expf−rad2r0Agd pD2

4pr20A
gr:

ð13Þ

With this approximation, P(t) depends on the trans-
mitted waveform sm(t), the spatial energy distribution of
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the laser beam K(ε) and the reflectance density function
ρA(r,ε,α) integrated over the illuminated surface area,
only.

Assume the geometry according to Fig. 5c the two
differently elevated specular plane plates A1 and A2 are
partly illuminated by the laser beam. Now let the surface
A2 be bounded by a straight line and xd =[r0d, ε0d, α0d]
be the point on the line with the lowest distance to the
optical axis we obtain

HðrÞ¼Cr0A

Z p=2

e¼0

Z 2p

a¼0
KðeÞ

�½dðrA1ðe; aÞ; rÞddðrA1ðe; aÞ;minðfr0A2 ; rA1ðe; aÞgÞÞ
þdðr0A2 ; rÞddðr0A2 ;minðfr0A2 ; rA1ðe; aÞgÞÞ�
�r2sinðeÞdade with

rA1ðe; aÞ ¼
r0A1 if e Nasin

sinðe0dÞ
cosða−a0dÞd cosðe0dÞ

� �

c
e0d

cosða−a0dÞ ;

l otherwise:

8>>>>>>><
>>>>>>>:

ð14Þ

3. Analyzing the waveform

Analyzing the waveform of the backscattered pulse
is useful to obtain information about the illuminated
surface. For this analysis, very short pulses compared
to the illuminated structures in range are advanta-
geous, e.g. for resolving fine structures of branches the
pulse length has to be shorter than some nanoseconds.
In general, short pulses have a lower pulse power and
are more difficult to detect. In the case of a bad
signal to noise ratio, a matched filter approach can be
used (Jutzi and Stilla, 2004). However, this results in
only a single estimate of the travel time of the pulse
without further features. In this paper we focus on
pulses wider than a nanosecond and a moderate pulse
power (10 kW).

For analyzing the surface response it has to be
extracted from the measured signal. The following steps
have to be carried out: (i) detection of the backscattered
pulse, (ii) deconvolution of the transmitted with the
received waveform, and (iii) Wiener filtering to estimate
the surface function.

3.1. Detection of the backscattered pulses

First, in order to analyze the waveform, the back-
scattered pulse of interest has to be detected and extracted.

For pulse detection, a noise dependent threshold is
estimated to discriminate a single pulse from the
background noise. A signal interval without pulses is
processed to estimate the noise and to characterize it by
its mean and its standard deviation. In practice, this can
also be done from a signal including pulses, as the
pulse duration is negligible compared to the signal
duration. If the signal is higher than three times of the
noise's standard deviation for at least 5 ns, a pulse will
be assumed to have been found and a waveform in-
terval including the pulse will be accepted for further
processing.

3.2. Deconvolution

The received waveform p(t) corresponds to a
convolution of the transmitted waveform sm(t) and the
surface response h(t):

pðtÞ ¼ smðtÞ⁎hðtÞ: ð15Þ

By transforming p(t) into the Fourier domain and
solving the resulting equation for the spectral surface
function H

¯
( f ) we obtain

H�ð f Þ ¼
P� ð f Þ
S�mð f Þ

: ð16Þ

For calculating H
¯
( f ), the functions P

¯
( f ) and S

¯
m( f )

have to be known, which means that p(t) and sm(t) have
to be measured. Measurements of the waveform are
always associated with a receiver noise term n(t), which
is added to the signal

sm;nðtÞ ¼ smðtÞ þ nðtÞ ¼ sðtÞd mðtÞ þ nðtÞ ð17Þ

and

pnðtÞ ¼ pðtÞ þ nðtÞ: ð18Þ

Depending on the receiver noise, large numerical
errors may appear for H

¯
( f ). Therefore, we need a filter

that reduces the noise, without smearing the surface
function.

3.3. Wiener Filter

For the estimation of the surface function, we use the
Wiener Filter (Wiener, 1949). This Optimal Filter mini-
mizes the mean squared error between the uncorrupted
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surface function H
¯
( f ) and the estimated surface function

H
¯
ˆ ( f ):Z þl

−l
jhðtÞ− h ̂ðtÞj2dt ¼

Z þl

−l
jH� ð f Þ−Ĥ

� ð f Þj2df

is minimized:

ð19Þ

A solution has to be found where the Wiener Filter
W( f ) is a real function

W ð f Þ ¼
jP�ð f Þj2

jP�ð f Þj2 þ jN�ð f Þj2:
ð20Þ

N
¯
( f ) can be easily estimated from the background

noise. P
¯
( f ) depends on the received waveform and the

surface function. For designing a Wiener Filter, |P
¯
( f )|2

has to be estimated.
Assuming that a plane surface is perpendicular to the

pulse propagation direction and the surface is illumi-
nated by an infinitesimal footprint, then h(t)=δ(t) (Dirac
delta function) and P

¯
( f )=S

¯
m( f ). Instead of sm(t)

(Eq. (2)), we measure sm(t)+n(t). For the estimation of
sm(t), we low-pass-filter the received signal in time
domain using a linear binominal filter. In this case, we
receive for the Wiener Filter

W ð f Þ ¼
jS�mð f Þj2

jS�mð f Þj2 þ jN�ð f Þj2
: ð21Þ

The estimation of the surface function is then given by

̂H� ð f Þ ¼
P�nð f Þ
S�mð f Þ dW� ð f Þ ð22Þ

and the estimated surface response ĥ(t) is obtained by
transforming H

¯
ˆ ( f ) into time domain.

3.4. Approximation of the surface response

By determining the temporal position, length, and
amplitude of the waveform, surface features like the
range, elevation variations, and reflectivity of the
surface can be derived from the extracted surface
response. These surface features are extracted by fitting
a Gaussian h̃(t) to the estimated surface response

h ̂ðtÞY h̃ðtÞ ¼
Xn
i¼1

h̃AiðtÞ

¼ aAi d expf−4dln2d
ðt−tAiÞ2
w2
Ai

g: ð23Þ

For the estimation of the three parameters (i) time
value tAi

, (ii) temporal pulse length wAi
, and (iii)

maximum amplitude aAi
of the Gaussian, the iterative

Levenberg–Marquardt Method is used (Marquardt,
1963). For n total number of responses, i presents the
current response to process. The generalized iteration
rule to estimate the parameters q̃Ai

=[tAi
, wAi

, aAi
] is

described by

fq̃Ai;k−q̃Ai;kþ1g
¼ fJTR−1Jg−1JTR−1f ̂hðtÞ−h̃Ai;kðtÞg; ð24Þ

where q̃Ai,k are the pulse parameters tAi,k, wAi,k, and aAi,k

of the current iteration step k, J is the Jacobian matrix of
the estimated Gaussian h̃(t), and Σ is the covariance
matrix of the estimated pulse parameters.

The iteration starts with tAi,1 as the temporal position
of the surface response maximum, wAi,1 as the length of
the surface response, and aAi,1 as the surface response
maximum. The iteration is repeated until the change in
h̃Ai,k(t) is below a specified tolerance. From the estimated
position tAi

the range value rAi
to the object is determined

by evaluating rAi
= tAi

c / 2, where c is the speed of light.
From the estimated wAi

the varying elevations of the
object can be derived by dAi

=wAi
c / 2, where the

determined elevation variations due to vegetation and
slopes depend on the lasers footprint size. Skew
waveforms of the surface response are not considered
in this approach.

A measure describing the quality of the estimated
parameters tAi

, wAi
, and aAi

is given by their variances
r2tAi , r

2
wAi

, and r2aAi . These variances can be determined
directly from the main diagonal of the covariance
matrix. If the variances are all below a given threshold,
the surface response will be accepted. Then the
estimated Gaussian h̃(t) will be subtracted from the
estimated surface response ĥ (t) and the remaining
waveform will be processed again in the same manner.
This kind of processing is repeated until all responses
with high quality (low values for the variances r2tAi , r

2
wAi

,
and r2aAi ) are detected.

If the temporal distance ΔT in between the single
responses ĥ Ai

(t) and ĥ Ai+1
(t) is close to 0.85 wc, then the

estimated parameters for each single surface will have to
be revised, because of the overlapping single responses.
wc is derived from the system and will be explained in
the next paragraph. Fig. 6 shows a simulation of two
overlapping single responses (dotted lines) for different
distances together with the received surface response
(solid line). In Fig. 6a the temporal distance ΔT in
between the single responses is 2 wc (wc=7.5 cm), then
the maxima position of the surface response and the
single responses are very close to each other. In Fig. 6b
the temporal distance ΔT of the single responses is wc.
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The surface response has two small peaks, whereas the
maxima positions of the peaks are closer to each other
than the maxima positions of the single responses. For a
temporal distance 0.85 wc the surface response shows
only a single maximum (Fig. 6c). In the case of two
close located responses, the estimation is performed by
two Gaussians with 6 parameters (tA1

, wA1
, aA1

, tA2
, wA2

,
aA2

); for three responses, 9 parameters (tA1
, wA1

, aA1
, tA2

,
wA2

, aA2
, tA3

, wA3
, aA3

) have to be estimated; and so on.

3.5. Impulse response of the measurement unit

If data from a real system is used the impulse
response of the measurement unit has to be taken into
account in the parameter estimation, as the properties of
the measurement unit affect the detected signal. This
means that the measured waveform, which is originally
defined by a convolution of the transmitted waveform
and the surface response is additionally convolved with

the impulse response. The length of the impulse
response is influenced by the bandwidth of the used
receiver unit. A given bandwidth for a Gaussian
frequency function with a cutoff frequency fc leads to
an impulse response length wc:

wc ¼ 2
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

ffiffiffi
2

p
dln2d

1
fc

s
: ð25Þ

wc is the impulse response length of the system and
defines the length of the signal measured by a given
system when the surface response is an ideal Dirac delta
function δ(t).

4. Experiments

An experimental setup with a pulsed Erbium fiber
laser (wavelength: 1.55 μm, beam divergence: 1 mrad,
pulse length: 5 ns at FWHM) was built up for exploring
the capabilities of waveform analysis for discriminating
objects close in range. For capturing the transmitted and
the received waveforms, two InGaAs detectors and two
amplifiers with an overall bandwidth fc=1 GHz were
used. Both analog signals were sampled with a rate of 20
GSample/s.

The used bandwidth results in an impulse response
length ofwc=0.3 ns (Eq. (25)). An example of an impulse
response derived by averaging 1000 samples of a signal

Fig. 6. Overlapping responses (dotted lines) and received surface
response (solid line) with different temporal distances ΔT between
single responses. a) ΔT=2 wc, b) ΔT=wc, c) ΔT=0.85 wc.

Fig. 7. Impulse response. a) Averaged impulse response estimated by
1000 samples, b) single impulse response with noise.
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scattered by a specular surface (plane metal plate) is
shown in Fig. 7a.

For reducing the noise of a single impulse response
(Fig. 7b), a low pass filter is used. As the low pass filter
reduces the signal bandwidth, the length of the shown
impulse response increases fromwc=0.3 ns to w̄ c=0.5 ns.
The length w̄ c of the low pass filtered impulse response is

the lower bound of the length of the surface response to
resolve a single surface. This length is relevant to
discriminate multiple surfaces which are located close to
each other.

The investigations explore the reliability of a range
measurement for a single surface (Section 4.1) and the
range discrimination of two surfaces (Section 4.2). For
both experiments, 500 samples of the transmitted and
received waveform from a plane plate with specular
scattering characteristic are captured. The range accu-
racy is measured by the standard deviation σrA of the
range estimation. The ability of discriminating two
nearby surfaces is tested by using two plates arranged
behind each other in propagation direction of the laser
beam (Eq. (14)) with a distance below the pulse length.
Each surface was illuminated partly by half of the beam
footprint. The range of the plates to the laser was about
100 m and the distance in between them 0.15 m, which
corresponds to 2w̄ c of the example in Fig. 7a.

4.1. Single surface

For estimating the range accuracy to a plane surface
at the range of 100 m a single surface response is
estimated. Fig. 8a and b show an example of a single
measurement illustrating the emitted and the back-
scattered pulse. In this figure, the depicted area of
interest has a range interval of 2 m. Fig. 8b shows the
shape of the received waveform which is similar to the
transmitted waveform in Fig. 8a, but different in
amplitude. The estimated surface response obtained by
the Wiener Filter is depicted in Fig. 8c. It shows a single
strong peak with a maximum at the range of 100 m
surrounded by small signal ripples. The result of Fig. 8c
is further processed by the Levenberg–Marquardt
Method for gaining the parameters of the surface
response. From the estimated parameters, the waveform
of the surface response is calculated. An example of this
waveform is shown in Fig. 8d.

The distribution of the range values is depicted in
Fig. 10a by a histogram. All of the 500 emitted pulses
which were backscattered at the plane surface located
approximately at 100 m in range were detected and the
surface responses were calculated. The range distribu-
tion shows a standard deviation of σrA=6.2 mm.

4.2. Two surfaces

Two plane plates are positioned at 100 m and
100.15 m, and the transmitted and the received waveform
are captured. In this case, the goal of processing the
waveform is to detect, discriminate and estimate the range

Fig. 8. Example of the measurements and results for the response of a
single surface. a) Transmitted waveform of the emitted pulse, b) received
waveform of the backscattered pulse, c) estimated surface response,
d) approximated surface response.
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of the two surface responses (i=1,2) as accurate as
possible.

Fig. 9a and b shows examples of a single measure-
ment with the emitted and the backscattered pulse. The
small range shift of the plates generates an overlap of the
returned waveforms. This mixed signal is slightly longer
than the transmitted one with a dissimilar shape. The
result of the Wiener Filter is depicted in Fig. 9c. It shows

two strong peaks at the range of 100 m and 100.15 m.
The two estimated surface responses are visualized in
Fig. 9d. The curves of the estimated surface responses get
in touch at the bottom, and the single responses overlap
slightly in between each other. The overlapping of the
single surface responses is a problem for accurate range
estimation. Because the overlap of the responses
generates an overlay of the surface responses, the original
maxima position of the single responses are shifted apart
from each other. Thus the maximum position which is
usually used for range estimation gives inaccurate range
values. By using an improved estimation (Section 3.4) of
the single surface responses, this inaccuracy can be
eliminated.

The amount of 500 pulses was measured from two
plane surfaces with a range distance of 0.15 m located at
100m in range. The histogram of the range values shows a
bimodal distributionwith two significant peaks (Fig. 10b).
The left range distribution shows a standard deviation of
rrA1 ¼ 5:5 mm and the right range distribution shows a
standard deviation of rrA2 ¼ 6:6 mm. The average
distance for 500 measurements is Δr̄ =0.149 m with the
standard deviation of σΔr=5.9 mm.

5. Discussion

In general, analog techniques for range determination
by measuring the time-of-flight of laser pulses have a
strong limitation regarding their capability of discriminat-
ing surfaces which are very close located in range.

Fig. 10. Histograms of the estimated range values. a) Single surface, b) two
surfaces (distance 0.15 m).

Fig. 9. Example of the measurements and results for the response of two
surfaces (distance 0.15m). a) Transmittedwaveformof the emitted pulse,
b) received waveform of the backscattered pulse, c) estimated surface
response, d) approximated surface responses.
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Katzenbeisser (2003) has shown that the discrimination of
nearby pulses will only be possible if the distance of two
backscattering object surfaces is at least greater than half of
the pulse length. By recording the waveform with a high
bandwidth of the receiver unit, an adequate sampling rate of
the analog-to-digital converter, and the proposed algo-
rithms for discriminating multiple surface responses, the
range resolution can be significantly improved. Therefore,
the received as well as the transmitted waveform have to be
recorded. We have shown that surfaces with a distance
corresponding to a tenth of the emitted pulse length can be
resolved. The used laser system allows discriminating two
surface responses with a distance of 0.15 m. It has to be
mentioned that in the experiments specular sufaces were
used. Only a few natural surfaces are specular. But, for
investigating the limitations of the laser system, e.g.
discriminating stepped surfaces (objects with small
distances) specular surfaces seems to be the best choice
due to the proper signal-to-noise-ratio.

Furthermore, recording of the transmitted waveform
enables to isolate the surface response from the received
waveform. By applying the Levenberg–Marquardt
Method to the surface response, three properties of the
response can be estimated, namely time value, temporal
pulse length, and maximum amplitude. From these
properties we derive the corresponding surface features,
namely range, elevation variations, and reflectivity.

The spatial energy distribution was modeled and
measured in the near field. For the far field different
profiles for modeling are used (Section 2.2). The
transition from near-field to far-field is given by the
Rayleigh range zRay

kx2
0

k , where the wavelength is λ and
the beam waist is ω0 (Siegman, 1986). Assuming a
wavelength of λ=1.55 μm and a beam-waist diameter
of D=2ω0≈60 mm we receive a Rayleigh range of
approximately 1800 m.

For investigating the limits in resolving small
distances in range within the beam we have chosen
plane metal plates with specular surfaces. These specific
surfaces with high reflectivity and minimum surface
slope were used for the experiments to capture a
waveform with high quality. Diffuse surfaces with high
material reflectance might deliver similar results but
were not investigated in this paper. For the range
measurements in 100 m, the results of the experiments
show a high reliability (σrA≤6.6 mm). The plates which
were shifted by 0.15 m were supposed to reflect half of
the pulse energy, each. The configuration was not
adjusted in an optimal way so that the maxima
amplitudes of the surface responses differ (Fig. 9c).
The measurement of the average distance Δr̄ =0.149 m
was obtained with a high reliability (σΔr=5.9 mm).

The limits to resolve small distances in range generally
depend on the length of the impulse response wc and the
corresponding bandwidth fc of the used measurement
unit. Discriminating two responses by peak detection will
be possible if the temporal distance in between single
responses is greater than 0.85 wc. Otherwise, the shape of
the waveform of the overlapping responses resembles a
single widened peak. If the temporal distance in between
single responses is close to 0.85 wc, range estimation by
the maxima positions of the surface response will be
inaccurate, because of the overlapping single responses
(Section 3.4). The range estimation can be revised with
the Levenberg–Marquardt Method considering multiple
surfaces to increase the accuracy.

The temporal pulse length and amplitude of the
waveform were not investigated further in this paper.
The temporal pulse length seems to be of special interest
for distinguishing natural from man-made surfaces.
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7.1 Introduction

Aerial photogrammetry and airborne laser scanning (ALS) are the two most widely used 
methods for generating digital elevation models (DEMs), including digital terrain models 
(DTMs) that depict ground topography and digital surface models (DSMs) that depict the 
height of the ground, structures, and vegetation cover. In photogrammetry, the distance to 
a spatial surface is classically derived from a triangulation of corresponding image points 
from two or more overlapping images of the surface. These points are chosen manually or 

107



216 Topographic Laser Ranging and Scanning: Principles and Processing

detected automatically by analyzing image structures. In contrast to photogrammetry, 
active laser scanner systems allow a direct and illumination-independent measurement of 
the  distance to a surface, otherwise known as the range.

The interrelationship between aerial photogrammetry and ALS has been intensely 
 discussed within the aerial surveying community in the last decade. Different  comparison 
factors concerning data acquisition (e.g., coverage, weather conditions, costs, etc.) and sur-
face reconstruction (e.g., accuracy, redundancy, post-processing time, etc.) have to be taken 
into account to choose the optimal method for a certain mapping campaign. An example of a 
study comparing photogrammetric image matching versus laser scanning for generation of 
high-quality DEMs for glacier monitoring (Lenhart et al., 2006) is given in  Wuerlaender 
et al. (2004). In contrast to a decision to use one or the other technique, in some � elds of 
applications a combined processing of laser data and stereo images is advantageous as 
shown in the generation of the extraterrestrial DTMs of Mars (Albertz et al., 2005; Spiegel 
et al., 2006) or DSMs for building characterization.

Conventional pulsed laser scanner systems for topographic mapping are based on time-of-
� ight ranging techniques to determine the range to the illuminated object. The time-of-� ight 
is measured by the elapsed time between the emitted and backscattered laser pulses. The 
signal analysis to determine this time typically operates with analog threshold detection. 
For targets that have surfaces at different ranges illuminated by a single laser pulse, more 
than one backscattered pulse may be detected per emitted pulse. Most ALS systems are 
able to capture, at a minimum, the range for the � rst- and last-detected backscattered 
pulses. Some systems acquire ranges up to as many as � ve per emitted pulse for multiple 
backscattered pulses. First-pulse detection is the optimal choice to measure the hull of 
 partially penetrable objects or the so-called volume scattering targets (e.g., canopy of trees). 
Last-pulse detection should be chosen to measure nonpenetrable surfaces (e.g., ground 
surfaces).

Currently, some commercial ALS systems not only capture the range for multiple pulse 
re� ections but also digitize and record the received signal of the re� ected laser energy, 
which allows for the so-called full-waveform analysis. This offers the possibility of 
 analyzing the waveform off-line using digital signal processing methods in order to 
extract different surface attributes from the received signal based on the shape of the 
return pulses.

In the last decade, some waveform analysis investigations were carried out to explore the 
structure of vegetation and estimate aboveground biomass. For example, NASA  developed 
the waveform-recording laser vegetation imaging sensor (LVIS) to measure vertical  density 
pro� les in forests (Blair et al., 1999). This experimental airborne system operates at  altitudes 
up to 10 km and acquires waveforms for large diameter laser footprints ( nominally 20 m) 
acquired across a wide swath. Another NASA system operating with a large footprint is 
the spaceborne geoscience laser altimeter system (GLAS) mounted on the ice, cloud, and 
land elevation satellite (ICESat). GLAS measures height distributions of  atmospheric clouds 
and aerosols, and surface elevations of ice sheets, land topography, and vegetation (Brenner 
et al., 2003; Zwally et al., 2002). It is a pro� ling system that operates with a footprint diam-
eter of 70 m and measures elevation changes with decimeter accuracy (Abshire et al., 2005; 
Schutz et al., 2005). In the analysis of data from both systems, surface characteristics are 
determined by comparing a parametric description of the transmitted and received wave-
forms (Hofton et al., 2000; Harding and Carabajal, 2005). Because the laser footprint is 
large and illuminates multiple surfaces, the resulting return waveform is an integrated, 
spatially nonexplicit representation of the range to illuminated  surfaces  separated both 
vertically and horizontally. The geometric organization of  surfaces within a single foot-
print can therefore not be determined.
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In contrast to large-footprint systems, small-footprint ALS systems illuminate only one 
or a few surfaces within the footprint, yielding waveforms with distinct return pulses 
 corresponding to speci� c surfaces. One of the � rst developed small-footprint waveform-
recording systems is the scanning hydrographic operational airborne lidar survey 
(SHOALS) instrument used for monitoring nearshore bathymetric environments. SHOALS 
has been in full operation since 1994 (Irish and Lillycrop, 1999; Irish et al., 2000). More 
recently commercial full-waveform ALS systems for terrestrial mapping have been devel-
oped (Jutzi and Stilla, 2006b; Wagner et al., 2006), which operate with a transmitted pulse 
width of 4–10 ns and allow digitization and acquisition of the waveform with  approximately 
0.5–1 GSample/s. Reitberger et al. (2006, 2007) have recently reported results that show 
clearly the potential of airborne, small-footprint, full-waveform data for the comprehen-
sive analysis of tree structure and species classi� cation. A set of key attributes have been 
de� ned and extracted based on the 3D distribution of the returns in combination with 
their characteristics in the full-waveform signal, providing information about tree 
 microstructure such as the organization of the trunk and branches.

In this chapter, we focus not on a given application in the context of a data set from a 
given sensor rather than on general principles. Speci� cally, we describe the  different 
approaches for designing a laser system, modeling the spatial and temporal properties of 
the  emitted lasers pulses, detecting return pulses, and deriving attributes from the  waveform. 
We emphasize aspects of the received waveform that are especially relevant for the newly 
available small-footprint, full-waveform commercial systems that yield distinct return 
pulses when multiple surfaces are illuminated by a laser pulse.

The design of a laser system impacts its measurement capabilities and the manner in 
which the signal has to be modeled and analyzed. Section 7.2 gives a brief overview of the 
features that characterize the design of laser ranging systems. Section 7.3 focuses on 
 modeling of the temporal waveform and the spatial beam distribution. Different strategies 
for pulse detection are explained in Section 7.4. Section 7.5 describes the attributes that can 
be extracted from a single laser shot and presents an analysis of an entire scene that was 
recorded with an experimental small-footprint, full-waveform laser ranging system. 
A summary and outlook is given in Section 7.6.

7.2 Characterization of a Laser System

Depending on the application, laser systems can be designed in different ways. They may 
differ in techniques concerning the type of laser used, the modulation, type of measured 
features, detection method, or design of beam paths (construction). Figure 7.1 sketches a 
simpli� ed overview of features characterizing a laser system. More detailed descriptions 
can be found in Kamermann (1993).

7.2.1 Laser Type

A laser works as an oscillator and an ampli� er for monochromatic radiation (infrared, 
 visible light, or ultraviolet). The operative wavelength of available lasers is located between 
0.1 µm und 3 mm. For comparison, it should be mentioned that the visible domain is from 
0.37 to 0.75 µm. To achieve a good signal-to-noise ratio (SNR) over long ranges,  conventional 
scanning laser systems emit radiation with high energy. However, this could endanger 
the health of humans due to the focusing of laser radiation on the retina, which is most 
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 susceptible to damage at visible wavelengths. For this reason, most eye-safe laser systems 
used for mapping purposes operate with a wavelength outside the visible spectrum. This 
allows working with an emitted energy that is many times higher (up to 106) compared to 
the visible domain without the potential for retinal damage. Eye-safe lasers of greatest 
interest for long-range laser scanning are erbium-� ber lasers, carbon dioxide (CO2) lasers, 
and neodymium:YAG (Nd:YAG) lasers.

Erbium-� ber lasers are optically pumped by a semiconductor diode and the active 
medium is an erbium-doped � ber. Their construction can be compact while still achieving 
a high output power. CO2 lasers use carbon dioxide in gas form as the active medium. 
Although their construction is simple, their large size and mass are signi� cant disad-
vantages. Solid-state Nd:YAG lasers can be pumped by various sources that de� ne the 
 characteristics of the emitted laser radiation. In this contribution we focus on erbium-� ber 
lasers (Figure 7.1).

7.2.2 Modulation Technique

Concerning modulation techniques, laser systems can be divided into two groups:  continuous 
wave (cw) and pulsed lasers. A cw laser continuously emits electromagnetic radiation. 
The temporal energy distribution of the transmitted signal is in! uenced by amplitude modu-
lation (AM) or frequency modulation (FM). Depending on the applied modulation  technique, 
speci� c measurement techniques (Section 7.2.3) are required. A pulsed laser emits electro-
magnetic radiation in pulses of short duration. For laser ranging it is desirable to emit a 
pulse as short as possible and with a pulse energy as high as possible in order to obtain a 
precise range with a high probability of detection. However, design limitations on maxi-
mum peak power introduce a trade-off that requires a compromise between the length and 
the energy of the pulse. The length of the pulse (full width at half maximum, FWHM) is 
typically between 2 and 10 ns. For applications in remote sensing with long ranges, pulsed 
lasers with higher power density as compared to cw lasers are advantageous. In this contri-
bution we focus on pulsed laser systems (Figure 7.1).

7.2.3 Measurement Technique

Measurement techniques using laser systems can be distinguished by the exploited signal 
properties such as phase, amplitude, frequency, polarization, time, or any combination 

FIGURE 7.1
Features characterizing a laser system (with shaded boxes indicating the characteristics that are the focus of 
this chapter).
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of them. An amplitude modulated cw laser system is used to measure the range by 
exploiting the phase of a sinusoidal modulated signal. A phase difference Φd can be 
 determined from a given phase of the transmitted signal and the measured phase of the 
received signal. With wavelength lm of the modulated signal, a corresponding range r can 
be calculated by r = lm . Φd/4π. If the measurement of the phase difference Φd cannot be 
distinguished from Φd + nπ, the unambiguity interval of the range measurement will be 
limited to a maximum range rmax = lm/2. Assuming that the system is able to resolve an 
angle difference ∆Φd, the range resolution ∆r corresponds according to ∆r = lm . ∆Φd/4π. 
To increase the range resolution for a given ∆Φd, the modulation wavelength lm has to be 
decreased. However, this results in a reduction of the unambiguity interval of the range 
determination.

The problem of ambiguity can be solved by using multiple simultaneous offset 
 sinusoidal modulation frequencies (multiple-tone sinusoidal modulation). In this case the 
maximum modulation wavelength de" nes the unambiguity and the minimum  modulation 
wavelength de" nes the range resolution. In addition to this, partially illuminated sur-
faces with different ranges within the beam corridor result in a superimposed signal 
depending on the range and the re# ectance of the surface. Because only a single phase 
value can be  determined at the receiver, the ambiguities caused by the partially  illuminated 
surfaces cannot be resolved (Thiel and Wehr, 2004). An incorrect intermediate value is 
measured.

The measurement of the amplitude value is feasible for cw lasers as well as for pulsed 
lasers. The amplitude is in# uenced by background radiation, the range of the object to the 
laser system, and the size, re# ectance, slope, and roughness of the illuminated surface. 
In this chapter, we are interested in measuring and analyzing the received pulse wave-
form, i.e., the dependence of the intensity over time (Figure 7.1).

7.2.4 Detection Technique

Detection techniques can be divided into coherent detection and direct detection (Jelalian, 
1992). Coherent detection is based on signal ampli" cation due to constructive interference 
of the wave front of the received signal with that of the reference signal emitted from a cw 
laser. In direct detection laser systems, the received optical energy is focused onto a pho-
tosensitive element that generates an output signal that depends on the received optical 
power. Two direct detection techniques are appropriate for recording the temporal charac-
teristics of the backscattered signal: multiphoton detection and single-photon detection.

7.2.5 Multiphoton Detection

The classical measurement technique for direct detection operates with a photodiode. For 
optical detectors, a positive intrinsic negative diode (PIN) or the more sensitive avalanche 
photodiode (APD) is used. The photodiode generates an electrical signal (voltage or 
 current) that is directly proportional to the optical power of incident light composed of 
multiple photons. Figure 7.2 sketches a pulse resulting from a varying number of photons n 
over time t. For a detailed analysis of the analog signal a digitizing receiver unit is  essential. 
To analyze the signal of the emitted short duration laser pulse with only a few nanosec-
onds pulse width, a high bandwidth receiver that resolves the signal at gigahertz rates and 
a correspondingly high digitizer sampling rate is required. Increasing bandwidth results 
in decreasing sensitivity of the photodiode, which can be compensated by increasing the 
power of the emitting laser source. An example of an Nd:YAG laser pulse sampled with 
5 GSample/s is given in Figure 7.4a.
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7.2.6 Single-Photon Detection

The principle of single-photon detection is depicted in Figure 7.3. A short duration pulse is 
emitted by the laser source. A single photon of the backscattered pulse is detected by the 
receiver after time interval t1. This event blocks the receiver for a certain period of time 
during which no further photons are able to trigger the receiver. The time-of-� ight of this 
single event is collected into a corresponding time bin of a histogram. After the period of 
blocking, the receiver is open to detect a new single-photon event. Multiple measurements 
are repeated and the time-of-� ight of each single event (t2, t3, …) is registered into the 
 corresponding time bin of the histogram.

Let us assume a stationary scene and a stationary sensor platform. In this case, the 
 statistical properties of the laser radiation do not change with the time and time-average 
quantities are equal to the ensemble quantities. Under these assumptions, the radiation 
ensembles are stationary and ergodic (Papoulis, 1984; Troup, 1972). The counting of single-
photon events with assignment of their time-of-� ight into time bins of a histogram is 
closely related to the integration of multiphotons over time (Alexander, 1997; Gagliardi and 
Karp, 1976; Loudon, 1973). In other words, the temporal waveform of the pulse can be 
reconstructed from a histogram of single-photon arrivals over time.

Many transmit pulses are necessary to obtain the waveform with single-photon 
 detection. The quality of the sampled waveform depends on the number of photon 
counts. Various optical detectors can be used for this purpose, namely, PMT (photomul-
tiplier tubes), MCP (microchannel plate), or APD detectors. Figure 7.4b shows a pulse 
plotted from a histogram containing the time-of-� ight measurements from 16252 pho-
tons distributed in 50 bins, where the bin width is 40 ps. Note that the FWHM of the pulse 
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FIGURE 7.3
Digital recording of the signal with single-photon detection.

FIGURE 7.2
Digital recording of the signal with multiphoton detection.
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in Figure 7.4a is about � ve times of the pulse in Figure 7.4b. In this chapter, we focus on 
multiphoton  detection (Figure 7.1).

7.2.7 Construction

Depending on the construction of the transmitter and receiver optics, monostatic and 
bistatic laser systems can be distinguished.

Monostatic laser systems have transmitter and receiver optics collocated on the same 
optical axis. A disadvantage of this construction is the higher number of components com-
pared to a bistatic laser system, increasing the effort needed to optimally align the 
 components. Advantages of this construction are the isogonal measurement of angles and 
the exact measurement of ranges, because the illuminated surface area and the observed 
� eld of view of the receiver are coincident for all ranges.

Bistatic laser systems have a transmitter and receiver optics that are spatially separated 
and thus the illumination and view angles are divergent. In general, both optics are close 
together and oriented in nearly the same direction. Objects are illuminated via a lens from 
the transmitter optic and the backscattered radiation is transferred via a separate lens to 
the receiver optic. An advantage of this measurement system is that the design can be 
easily constructed. A disadvantage of this design is that depending on the range to the 
illuminated surface the angle between the transmitter and the receiver optic varies. 
 Furthermore, depending on the range, only a partial overlap is obtained between the 
 illuminated surface and the observed � eld of view.

7.3 Modeling

The received waveform depends on the transmitted waveform of the emitted laser pulse, 
the spatial energy distribution of the beam, and the geometric and re! ectance properties 
of the surface. In order to describe the temporal and spatial properties of a pulse, appropri-
ate models that parameterize the pulse attributes have to be introduced.

7.3.1 Waveform of the Laser Pulse

Mathematical functions can be used to approximate the shape of laser pulse waveforms. 
Depending on the system, the shape may be best represented by a rectangular,  exponential, 
or Gaussian distribution. A simple model is given by a rectangular distribution s(t) with an 
amplitude a, pulse width w, and time delay t
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FIGURE 7.4

Examples for pulses backscattered from a diffuse surface. (a) Multiphoton detection (FWHM = 2.1 ns) and 
(b) single-photon detection (FWHM = 0.4 ns).
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Especially for short laser pulses a rectangular model often differs from the measured 
shape. A waveform with an exponential distribution (e.g., for a Q-switched laser) is applied 
by Steinvall (2000)
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A temporally symmetric Gaussian distribution for modeling the waveform of the 
 spaceborne GLAS is proposed by Brenner et al. (2003). The basic waveform s(t) of the used 
laser system can be described by
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The width of a pulse w is commonly de! ned as one-half of the pulse’s maximum  amplitude 
known as FWHM.

7.3.2 Spatial Energy Distribution

The spatial energy distribution of a laser (also known as the beam pro! le) depends on the 
pump source, the optical resonator, and the laser medium. In general, beam pro! les are 
modeled by a cylindrical distribution (top-hat form) or by a 2D-symmetric Gaussian 
distribution (Kamermann, 1993). The measured cylindrical beam distribution of a pulsed 
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erbium � ber laser that operates at a wavelength of 1550 nm is depicted in Figure 7.5. 
A Gaussian beam distribution of a Raman shifted Nd:YAG laser that operates at a wave-
length of 1543 nm is depicted in Figure 7.6. Both measurements differ more or less from 
these  idealized distributions.

7.4 Analyzing the Waveform

Various detection methods are used to extract attributes of the re! ecting surface from 
the waveform. To obtain the surface attributes, each waveform s(t) is analyzed. The 
surface within the beam corridor generates a return pulse. To detect and separate this 
pulse from the noise, a signal-dependent threshold is estimated using the signal back-
ground noise. For example, in one particular implementation if the intensity of the 
waveform is above three times the noise standard deviation (3sn) for a duration of at 
least the full-width-half-maximum of the pulse, a pulse is assumed to be found. The 
section of the waveform  including the detected pulse is passed onto the subsequent 
processing steps.

Typical surface attributes to extract from a waveform are range, elevation variation, and 
re! ectance corresponding to the waveform attributes of time, width, and amplitude.

A rough surface, i.e., a surface of a certain vertical extent, will widen the laser pulse 
upon re! ection. Therefore, the width of the pulse is a measure of the elevation varia-
tion of the surface. In addition, the widening of the pulse causes the re! ected photons 
to be spread over a greater amount of time, thus reducing the peak amplitude. There-
fore, to estimate the elevation variation or re! ectance attributes of a surface, the pulse 
width and amplitude have to be known. Estimating just the amplitude of a pulse with-
out considering this dependency will lead to inaccurate and noisy re! ectance values. 
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Determination of the range to a surface can be accomplished with different schemes 
that include peak detection, leading edge ranging, constant fraction detection, center 
of gravity detection, and Gaussian decomposition and deconvolution. A discussion of 
key elements of each approach follows.

7.4.1 Peak Detection

The values of range rP,s and amplitude are determined at the maximum pulse amplitude 
aP,s (Figure 7.7), and the width wP,s is estimated at full-width-half-maximum of the pulse. 
Local spikes on the pulse waveform strongly effect the attribute extraction. Therefore, for 
noisy signals, a smoothing ! lter is recommended to determine the global maxima.

7.4.2 Leading Edge Detection

A threshold crossing of the pulse waveform leading edge determines the range value rLE,s 
(Figure 7.8). The threshold value can be a prede! ned ! xed value, but then the ranging 
detection strongly depends on the amplitude and width of the pulse waveform, intro-
ducing a ranging bias dependent on pulse shape referred to as range walk. The half 
of the maximum amplitude aLE,s of the pulse for a threshold is used for range deter-
mination.

FIGURE 7.7
Attribute extraction with peak detection.
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7.4.3 Constant Fraction Detection

A ranging implementation designed to be insensitive to amplitude-dependent biases 
applies a constant fraction detection circuit in which the pulse waveform s(t) is inverted 
and delayed by a ! xed time τ and added to the original pulse (Figure 7.9). The combined 
signal sCFD(t) gives a constant fraction signal with a zero crossing point at tCFD (see 
Figure 7.10).

 with  CFD CFD CFD( ) 0 ( ) ( ) ( )s t s t s t s t= = − +t  
(7.4)

The determined tCFD is insensitive to the pulse amplitude, but depends on the pulse  waveform 
and width (Kamermann, 1993). A suitable value for the delay time t is the FWHM of the 
waveform.

FIGURE 7.9
Simpli! ed schematic visualization of the processing steps for the constant fraction detection.

Inverter

Sum

t t

Delay

t

t

tt

t

A
m

p
lit

u
d
e

t

1

2
aCFD,s

tCFD,s

aCFD,s
s(t )

wCFD,s

FIGURE 7.10
Attribute extraction with constant fraction detection.

117



226 Topographic Laser Ranging and Scanning: Principles and Processing

For symmetric waveforms, the traditional constant fraction algorithm delivers unbiased 
ranging results. However, for an asymmetric noisy waveform the delayed signal should be 
reversed in time as well, to avoid ambiguities of the zero crossing point.

7.4.4 Center of Gravity Detection

The temporal center of gravity of the pulse waveform is tCoG,s (Figure 7.11). The time value 
(range) is determined by integrating the pulse waveform s(t)
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It delivers good results for returns with various pulse amplitudes and pulse widths that 
have low noise. For returns with an asymmetric pulse shape skewed to longer ranges, this 
method results in a detected range that is slightly longer than the range value obtained 
with the peak detection.

The following methods to further process the pulse properties are not part of the center 
of gravity algorithm, but are well suited to complement it. Generally, integration over a 
section of the signal has the advantage of reducing the noise dependence compared to the 
aforementioned methods relying on single samples. We call the integral of the waveform 
s(t) shown in the denominator of Equation 7.4 as the pulse strength. From this, the value 
aCoG can be calculated assuming a Gaussian and using the Inverse error function (erf−1) and 
the width w
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Furthermore, the width WCoG,s is approximated by the width of the central pulse area 
 contributing 0.76 of this pulse strength with
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7.4.5 Gaussian Decomposition

Assuming a Gaussian function for the waveform (Equation 7.3), the surface attributes can 
be extracted by estimating the parameters of the adapted function:
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For a parametric description of the pulse properties, a Gaussian decomposition on the 
waveform can be used. Different methods are known, for example, Expectation  Maximation 
(EM) algorithm (Persson et al., 2005) and Gauss–Newton or Levenberg–Marquardt 
 algorithm (Hofton et al., 2000; Jutzi and Stilla, 2005; Reitberger et al., 2006). In Figure 7.12, 
the estimated attributes of the received waveform are depicted.

7.4.6 Deconvolution

Analysis of a received waveform in order to extract the attributes of the illuminated 
 surface is a dif! cult task because different processes impact the shape of the waveform. 
The received waveform s(t) of a laser pulse depends on the transmitted waveform r(t), the 
impulse response of the receiver, the spatial beam distribution of the laser pulse, and 
the geometric and re" ectance properties of the illuminated surface. The impulse response 
of the receiver is mainly affected by the photodiode and ampli! er, and the spatial beam 
 distribution typically has a Gaussian distribution. Let us assume that a receiver consists 
of an ideal photodiode and that the ampli! er has an in! nite bandwidth with a linear 
response. In that case the received waveform depends mainly on the transmitted  waveform 
r(t) and the properties of the illuminated surface. The 3D characteristics of the  surface can 
be  captured by a time-dependent surface representation, referred to as the surface 
response h(t). In this case the received waveform s(t) can be expressed as

 ( ) ( ) ( )s t h t r t= ∗  
(7.9)

where (∗) denotes the convolution operation. By transforming s(t) into the Fourier domain 
and solving the resulting equation for the spectral surface function H(f), we obtain

 ( ) ( ) ( )H f S f R f=  
(7.10)

FIGURE 7.12
Attribute extraction with Gaussian decomposition algorithm.
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The surface response h(t) is obtained by transforming H(f) into the time domain. By  applying 
a Gaussian decomposition method to the surface response, surface attributes can be 
extracted. The deconvolution removes the characteristics of the transmitted waveform from 
the received waveform and enables a description of the observed surface.

For a reliable deconvolution a high SNR for the received waveform is essential. 
In  addition to this, the waveform has to be captured with a high bandwidth receiver and 
with an adequate sampling rate of the analog-to-digital converter. Furthermore, it has to 
be mentioned that large numerical errors may appear depending on the receiver noise. 
A Wiener ! lter used for deconvolution reduces the noise of the determined surface 
response (Jutzi and Stilla, 2006a). This method allows discriminating differences in 
range, e.g., given by a stepped surface within the beam, which are smaller than the 
length of the laser pulse. Experiments have shown that a step smaller than 10 times of 
the pulse length can be distinguished.

7.5 Attribute Extraction

An example of a signal pro� le applied to multiple pulses is depicted in Figure 7.13. The 
waveform parameters for each detected pulse of this signal pro� le are estimated by a 
Gaussian decomposition method using the Levenberg–Marquardt algorithm. The extracted 
attributes are described in the table. The estimated waveform is shown below the original 
waveform in Figure 7.13.

By comparing the range values in the table, we can observe that the distance between the 
� rst and second pulse is about 10 m and between the third and fourth pulse about 2.5 m. 
The third pulse shows the highest maximum amplitude and the pulse width of the � rst and 

FIGURE 7.13
Signal pro� le with multiple re! ections.
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second pulse is slightly lower than the third and fourth pulse. It is not possible to classify 
the type of surfaces illuminated within the single-beam corridor using the amplitude, pulse 
width, and range properties alone. For assigning each return pulse to a speci� c surface type 
additional information is required, which can result from the 3D geometrical relationships 
of the returns within a point cloud.

As an example of information retrieval achieved by combining return pulse properties 
and the spatial relationship of the returns, a full-waveform data set of a test scene was 
captured by scanning along the azimuth and elevation and recording the return intensity 
sampled over time t. Neglecting angular variations of the scan, the measured intensities as 
a function of time t sampled over the azimuth and elevation can be interpreted as a 3D data 
set forming a cuboid with Cartesian coordinates x, y, and t. The sampling along the time 
axis can be recalculated into corresponding range values z. These data cuboid can be ana-
lyzed in several different ways.

Figure 7.14 shows a set of image slices (y – t planes). The second slice from the left 
(x = 4) shows vegetation in the center (near range) and building structures on the right 
side (far range). The grey values correspond to the intensity of the signal. The intensity 
values along the marked solid line are the intensity values of the waveform shown in 
Figure 7.13.

Note that although this way of displaying the data suggests that a full 3D representation 
of the scene has been obtained, this is in fact not the case. Just as with point clouds  measured 
by conventional laser scanners, the data cube represents only 2.5d information. This is 
because of occlusion effects that are dependent on the target size in relation to the beam 
footprint size. It is possible that the laser pulse is mostly intercepted by and backscattered 
from the � rst illuminated surface along the propagation direction and that the following 
surfaces along the laser vector are hidden, giving weak or no re! ections. For instance, a 
tree with dense foliage may return only a single re! ection response per laser pulse even 
though multiple surfaces are present after the � rst detected return along the path of the 
laser vector.

In the following, we use the Wiener � lter method to extract attributes from re   ceived wave-
forms. The extraction is carried out without considering spatial neighborhood  relations. The 
results of the extracted surface attributes from the data cuboid are shown in xy plane by 

FIGURE 7.14
Vertical image slices with ground, vegetation, and building structures.
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images of 320 × 600 pixels (Figure 7.15). Figure 7.15a shows the range image, Figure 7.15b 
shows the width of the pulse, and Figure 7.15c shows the intensity of the pulse. Larger 
values for an attribute are displayed by brighter pixels. Due to the fact that only a single 
value can be shown in the 2D images, only the � rst re� ection is considered in cases where 
multiple re� ections are present for a laser pulse.

The attributes maximum amplitude and pulse width were extracted using the Wiener 
� lter and examined for their ability to discriminate different object classes. The entire scene 
and three objects classes, namely, buildings, trees, and meadow, are shown in Figure 7.16. 
Column A of the � gure depicts range images of the entire scene (Figure 7.16a, column A) 
and of the selected objects classes (Figure 7.16b through d (column A) ). Column B depicts 
scatter plots of maximum amplitude versus pulse width for the entire scene and the object 
classes (Figure 7.16, column B).

In Figure 7.16a, it can be observed that for the entire scene small values of the maxi-
mum amplitude have a large spreading of the pulse width. By decomposing the scene 
into the three object classes, it is apparent that the vegetation (trees and meadow) in 
most cases produces the signal returns with small maximum amplitudes but high 
values for the pulse width. The building in Figure 7.16b shows small values for the 
pulse width with little variation and a large range in the maximum amplitude values. 
Furthermore, the maximum amplitude of the building shows a cluster of higher 
values than that from the trees and meadow. These high values may result from high 
reflectance by the white façade. The trees are depicted in Figure 7.16c, where the pulse 
width shows high variation with mostly small maximum amplitude values. The 
meadow (Figure 7.16d) induces large variations of the pulse width and small maxi-
mum amplitude values. In general, the trees and the meadow produce larger pulse 
widths than the building.

(a) (b)

(c)

FIGURE 7.15
Extracted attributes of pulses: (a) range, (b) pulse width, and (c) intensity.
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FIGURE 7.16
Comparison of maximum amplitude versus pulse width for selected objects of the measured scene. (a) Scene, 
(b) building, (c) trees, and (d) meadow. Column (A) denotes range images, and column (B) denotes maximum 
amplitude versus pulse width.
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7.6 Summary and Outlook

It has been shown that full-waveform analysis enables extraction of more information 
compared to classical analogous pulse detection methods. First, recording of the received 
waveform offers the possibility for the end-user to select different methods to extract range 
information. The shape of the pulse and the entire signal can be considered for determin-
ing the range more accurately. Further improvements on reliability and accuracy can be 
derived by signal-processing methods based on the transmitted and the received wave-
form, e.g., deconvolution. Additionally, attributes of the surface can be derived from a 
parametric description of the waveform. The attributes maximum amplitude and pulse 
width may support the discrimination between volume scatterer (vegetation) and hard 
targets (man-made objects) (Kirchhof et al., 2007).

In the preceding description laser pulses were analyzed without considering the 
 information of neighboring measurements. For reconstructing man-made objects, the 
introduction and test of hypotheses about the shape of the surface (e.g., plane, sphere) may 
ef� ciently support the analysis of single waveforms. Two different strategies assuming a 
planar shape in the local neighborhood of the surface and introducing this assumption 
into the signal analysis should be addressed. Both strategies combine information from 
top-down (surface primitives) and bottom-up (signal processing) for an extended analysis 
of full waveform laser data.

The � rst strategy (Kirchhof et al., 2007) uses an iterative processing of waveforms 
 considering a predicted shape of the waveform from the local neighborhood. A preseg-
mentation based on surface attributes is carried out to distinguish between partly penetra-
ble objects (e.g., trees, bushes) and impenetrable surfaces (e.g., roof, wall). Derived range 
values from presegmentation of the impenetrable surfaces are used to automatically 
 generate surface primitives (e.g., planes).

This allows a re� nement of each range value, considering the surface geometry in a close 
neighborhood. Furthermore, partly occluded surface areas are extended by  prediction of 
the expected range values. This prediction is further improved by considering the surface 
slope for the estimated received waveform. Expected pulses are simulated and correlated 
with the received waveforms. Accepted points that were missed in the � rst processing step 
due to weak signal response are associated to the point cloud. The procedure is repeated 
several times until all appropriate range values are considered to  estimate the surface.

The second strategy (Stilla et al., 2007) uses a slope compensated stacking of wave-
forms. Weak pulses with a low SNR are discarded by classic threshold methods and get 
lost. In signal and image processing, different stacking techniques are used to improve 
the SNR.

For detection of weak laser pulses, hypotheses for planes of different slopes (e.g., angle 
difference 5°) are generated. According to the slope of the hypothesis, the waveforms in 
the local neighborhood are shifted in range. A superimposed signal is calculated from the 
stack of shifted waveforms. The maxima of superimposed signals from all hypotheses are 
compared to verify a hypothesis. Each signal is assessed by a likelihood value with respect 
to its contribution to the accepted hypothesis. Finally, signals are classi� ed according to 
the likelihood values obtained using two thresholds and visualized by the traf� c-light 
paradigm. The results contain detected pulses re� ected from objects, which cannot be 
predicted by the previously detected point cloud.

Both strategies show promising results that encourage the continuity of work on the 
analysis of full-waveform laser pulses.
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Abstract: The real and imaginary parts are proposed as an alternative to the usual Polar
representation of complex-valued images. It is proven that the transformation from Polar to
Cartesian representation contributes to decreased mutual information, and hence to greater
distinctiveness. The Complex Scale-Invariant Feature Transform (CSIFT) detects distinctive
features in complex-valued images. An evaluation method for estimating the uniformity
of feature distributions in complex-valued images derived from intensity-range images is
proposed. In order to experimentally evaluate the proposed methodology on intensity-range
images, three different kinds of active sensing systems were used: Range Imaging, Laser
Scanning, and Structured Light Projection devices (PMD CamCube 2.0, Z+F IMAGER
5003, Microsoft Kinect).

Keywords: image-based registration; SIFT; complex-valued image; mutual information;
active sensor; range imaging; laser scanning; structured light projection

1. Introduction

The detection of local features in data is of general interest in several disciplines, e.g., Photogrammetry,
Remote Sensing, and Computer Vision. According to [1], good features should have the following
properties: repeatability, distinctiveness/informativeness, locality, quantity, accuracy, and efficiency. A
general overview of the performance of some important algorithms and resulting descriptors at points of
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interest is given by [2]. If points of interest are detected they can be utilised to locate correspondences
between images. Various applications are known that are based on such points of interest,
e.g., image-based registration, object recognition and segmentation, image stitching, self localisation,
egomotion and trajectory estimation, as well as 3D reconstruction.

Typically, image-based registration methods focus on intensity images, which gives rise to the question
of how to treat combined intensity-range data that can be obtained from particular sensors. For instance,
existing registration methods for such data use either the intensity information or the range information,
which is treated either as a point cloud, e.g., by applying the costly Iterative Closest Point (ICP)
algorithm [3], or as an image, e.g., by applying the Scale-Invariant Feature Transform (SIFT) [4,5].

One might suggest that a separate treatment of the intensity and range data might be a sufficiently
combined method. Indeed, some authors use the classical SIFT on range and intensity images
separately [6–10]. This combined concept can in fact be viewed as representing the data with complex
numbers which are close to the nature of the data itself: range measurements are often in fact phase
measurements and intensity is obtained by measuring the amplitude. A possible dependence between range
and intensity due to significant mutual information cannot be excluded. Depending on the application,
greater mutual information can be desirable [11]. However, in feature detection low mutual information
is important, and also fulfills the requirement “Distinctiveness/informativeness: The intensity patterns
underlying the detected features should show a lot of variation, such that features can be distinguished
and matched.”, as outlined by [1]. Therefore, considering the other traditional representation of complex
numbers by the real and imaginary parts becomes important for fused intensity-range images. The
fusion of intensity-range data asks for their holistic treatment. In the case of the Polar or Cartesian
representation of such images, the Complex Scale-Invariant Feature Transform (CSIFT) is a natural
generalisation of SIFT. Any particular interest detector, e.g., SURF, MSER, Harris, can be generalised
to complex-valued images, SIFT has been chosen for reasons of example only.

Traditionally, the data consist of radiometric images captured with a passive sensor, e.g., a digital
camera. Most active sensors, e.g., range imaging, laser scanning, or structured light projection devices
provide additional intensity information beside the range. The measured intensity of active sensors
can generally be separated in an active and passive intensity. The active intensity is often described
as an amplitude and depends just on the measured scattering received by the active illumination with
the sensor, e.g., a laser or diode. The passive intensity measured with an active sensor is often called
background illumination, and depends on the illumination given by available extraneous light, e.g., sun
light. The passive illumination captured with an active sensor might usually have low spectral information,
due to the spectral bandpass filters which are in general used. Further, the range is measured which is
for most users of main interest. Sometimes only a phase measurement is utilised to determine the range,
where a limited uniqueness range is given by the lowest modulation frequency. These data can be
described in a unified manner using complex numbers. This has the advantage of providing a general
framework for passive and active sensors, without restrictions.

The aim of this article is to provide a method for obtaining in complex-valued images more independent
real-valued representations by transformations which decrease mutual information. At the same time the
method is aimed at increasing the number of features as well as the uniformity of their distribution.
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2. Methodology

The complex-valued image description is introduced. Different representations of complex-valued
images are compared with respect to mutual information. An evaluation method for estimating the
uniformity of feature distributions is proposed.

2.1. Complex-Valued Image Description

The data provided by active sensors consists of the active and passive intensities together with the
range information. In this article, it is assumed that the latter is given by a phase measurement. In
this wide-spread method, the phase is usually interpreted as actual distance. However, this approach
causes problems if the observed object is at a distance beyond the uniqueness range. For this reason, we
will always interpret that information as what it is: namely a phase value (Note: The measured phase
difference (a physical quantity) can be represented by a phase value (a mathematical quantity).). Hence,
a description of an active-passive image using complex numbers becomes quite natural.

Throughout this article, x, y are image coordinates, r = r(x, y) is the range image, Ia(x, y, r) the
active intensity image, and Ip(x, y) the passive intensity image. The latter does not depend on the range
r. The complex-valued image function is now defined as:

f(x, y, r) = Ip(x, y) + Ia(x, y, r)e
iφ(x,y,r(x,y)) (1)

where the phase φ = φ(x, y, r) ∈ [0, 2π) is defined via the range

r = n · 2π`+ φ` (2)

with n ∈ N. Notice that passive intensity is treated here as an offset. In this setting, 2π` is the uniqueness
range of the camera with ` ∈ N. The natural number ` is a multiple of some unit of length, and n is the
“wrapping number”.

The two standard ways of representing complex numbers yield two different image representations:
the Polar representation

f = |f | ei arg(f) (3)

where

|f | =
√
I2p + 2IpIa cosφ+ I2a (4)

arg(f) = arctan
Ia sinφ

Ip + Ia cosφ
(5)

and the Cartesian representation

f = Re(f) + iIm(f) (6)

where

Re(f) = Ip + Ia cosφ (7)

Im(f) = Ia sinφ (8)
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Throughout the article, it is assumed that

max |f | = 1 (9)

for all complex images. This normalisation can be achieved through division by the maximal value of
|f |. The remainder of this article will discuss these two different representations of complex images
coming from different types of sensors from the entropy perspective.

2.2. Mutual Information in Complex-Valued Images

If a representation of complex-valued images f with real values is given, the image-value dimension
is at least two. However, the information content of data is known to depend on their representation. For
complex-valued images, this means that some real-valued representations could be more preferred than
others from the viewpoint of information theory. For this purpose, the differential entropy is defined as

Eq = −
∫

R

ρ(q) log ρ(q) dq (10)

where R is the range of quantity q, dq is a probability measure and ρ(q) is the distribution function of q.
If q = (A, ω), thenEq = EA,ω becomes the joint entropy of amplitudeA = |f | and phase ω = arg(f).

Likewise, EX,Y is the joint entropy of the real and imaginary parts X = Re(f), Y = Im(f) of the
complex-valued image:

f = A cosω + iA sinω (11)

It is a fact that the entropy of a system depends on the choice of coordinates, the change in entropy
being dependent on the Jacobian of the transformation (cf. e.g., [12]). In the case of complex-valued
images, this general result specialises to a preference of Cartesian over Polar coordinates:

Theorem 2.1. The transformation from the Polar to the Cartesian image representation increases the
entropy. More precisely, it holds true that

EA,ω = EX,Y + 〈logA〉 (12)

where

〈logA〉 =

∫
ρ(X, Y ) logA(X, Y ) dXdY < 0 (13)

and ρ(X, Y ) is the joint distribution function of X = Re(f) and Y = Im(f).

Proof. The statement follows from the well-known transformation rule of the distribution function:

ρ(X, Y ) = ρ(A, ω) · |J | (14)

where J is the Jacobian of (A, ω) → (X, Y ), the transformation from the Polar to the Cartesian image
representation. In this case, J = A(X, Y ) =

√
X2 + Y 2 ≤ 1, since A is normalised amplitude by

Equation (9). It follows that the mean 〈logA〉 is negative.
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As a consequence, Theorem 2.1 allows to compute the difference in mutual information

MI(a, b) = Ea + Eb − Ea,b (15)

for the pairs (X, Y ) and (A, ω) from the individual entropies:

µ := MI(X, Y )−MI(A, ω)

= (EX + EY )− (EA + Eω) + 〈logA〉 (16)

and the quantity µ becomes a measure for the gain of independence by transforming from Polar to
Cartesian image representation. Namely, MI(a, b) = 0 if and only if the quantities a and b are independent,
and MI(a, b) can be interpreted as the degree of dependence between a and b. This allows to formulate:

Conjecture 2.2. For almost all complex-valued images, there is a gain of independence by transforming
from the Polar to the Cartesian image representation. In other words: µ < 0 for almost all complex-valued
images.

In fact, the experiments of Section 3 indicate that

EX + EY ≤ EA + Eω (17)

which means that ≤ 〈logA〉 ≤ 0.

2.3. Naive Approach

For range measurements within the uniqueness range, the well-known inverse-square law of active
intensity implies the approximation:

Ia ≈
Ip
φ2

(18)

where the phase φ is identified with the range r (w.l.o.g. ` = 1 in Equation (2)). This means that it does
make sense to consider Ia and Ip as correlated and detect features only in the pair (Ia, φ). This is called
the naive approach. Hence, there are two successive transformations leading to our complex image in
Polar representation:

Iae
iφ → |f | ei arg(f) → Re(f) + iIm(f) (19)

where

|f |2 = I2a
(
φ4 + 2φ2 cosφ+ 1

)
(20)

arg(f) = arctan
sinφ

φ2 + cosφ
(21)

Re(f) = Ia(φ
2 + cosφ) (22)

Im(f) = Ia sinφ (23)

with Jacobian of the composite map being

J ′′ = Ia
(
φ2 cosφ− 2φ sinφ+ 1

)
(24)
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We wish to exclude the possibility that the benefit from 〈log |f |〉 ≤ 0 of the second transformation (Polar
to Cartesian image representation with Jacobian J = |f |) is jeopardised by the first transformation with
Jacobian J ′.

The relation between J, J ′ and J ′′ for general composed transformations (a, b) → (a′, b′) → (a′′, b′′)

is known to be

J ′′ = J · J ′ (25)

Hence,

Ea,b = Ea′′,b′′ + 〈log |J |〉+ 〈log |J ′|〉 (26)

and it follows that

〈log |J ′′|〉 = 〈log |J |〉+ 〈log |J ′|〉 (27)

where the means are each taken over the corresponding probability distribution. Hence, we would like
to exclude large positive values of 〈log |J ′|〉. From Equations (20), (24) and (25), it follows that

J ′ =
φ2 cosφ− 2φ sinφ+ 1√

φ4 + 2φ2 cosφ+ 1
(28)

which depends only on φ. Notice that the denominator is strictly positive, and a closer look reveals that
〈log |J |〉 < 0 if φ is not concentrated in some specific small neighbourhood of π.

Notice, that the inverse-square law in Equation (18) can be used to estimate missing values of Ia or Ip
in order to obtain our complex image representation. Use of this will be made in the following section.

2.4. Feature Distribution in Complex-Valued Images

Scale-space feature detection usually involves finding extrema in real-valued functions, and these
are obtained from the image through filtering. In the case of complex-valued images f , it makes
sense to detect features individually in the components of a representation over the real numbers. This
means, for the Polar representation, the detection of features in |f | and in arg(f), and for the Cartesian
representation in Re(f) and Im(f). The classical SIFT can be applied to any kind of real-valued images.
In particular, applying SIFT to the pairs (|f | , arg(f)) or (Re(f), Im(f)) componentwise defines CSIFT.
If the complex-valued image is represented by the pair (u, v) of real values, a feature for CSIFT is
defined as a point which is a classical SIFT-feature for u or v.

The preferred representation usually has the desired property that it contains more features, and these
are also more uniformly distributed over the image grid than in other representations. More texture
in an image can be obtained by increasing the entropy. Hence, a transformation whose Jacobian has
absolute value less than one yields more texture by Equation (14), and Theorem 2.1 then says that the
Cartesian representation yields more structure than the Polar representation. On the other hand, using
the scale-space equation ∂

∂t
f = ∆f aims at finding texture which is sufficiently persistent through the

filtering cascade. Hence, increasing entropy of the image derivative leads to more persistent texture. And
also from this persistence point of view, the Cartesian representation turns out more advantageous than
the Polar representation:
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Theorem 2.3. Transforming from Polar to Cartesian image representation increases the entropy of the
scale-space derivatives:

EȦ,ω̇ = EẊ,Ẏ + 〈A · |cos ω̇ sinω − sin ω̇ cosω|〉 (29)

with

〈A · |cos ω̇ sinω − sin ω̇ cosω|〉 < 0 (30)

where the expectation value is taken over the joint probability distribution of Ẋ and Ẏ .

Proof. In the light of Theorem 2.1, the statement follows from the Jacobian

J = A · (cos ω̇ sinω − sin ω̇ cosω) (31)

of the transformation of derivatives.

A Cartesian feature in a complex-valued image is defined to be a scale-space feature for Re(f) or
Im(f), and, similarly, a Polar feature of f is a scale-space feature for |f | or arg(f). Consequently, one
can formulate:

Conjecture 2.4. The expected number of Cartesian features is larger than the expected number of Polar
features for almost all complex-valued images f .

It is natural that a mere increase in the number of features is not sufficient for many applications,
e.g., the more the points of interest are concentrated in one small portion of the image, the less relevant
their number becomes for estimating the relative camera pose. Hence, an important issue is the distribution
of features on the image grid. In fact, it is often desired to know that they are sampled from a uniform
distribution.

For n independent, identically distributed random variables Xi, the empirical distribution function
Fn(x) is defined as

Fn(x) =
1

n

n∑

i=1

δ(−∞,x](Xi) (32)

where δ(−∞,x] is the indicator function

δ(−∞,x](Y ) =





1, Y ≤ x

0 otherwise
(33)

Then, by the Glivenko-Cantelli Theorem [13,14], theFn converge uniformly to their common cumulative
distribution function F :

‖Fn − F‖∞ = sup
x∈R
|Fn(x)− F (x)| −→ 0 a.s. (34)
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with increasing numbernof observations. For arbitrary cumulative distribution functionsF , the expression
‖Fn − F‖∞ is known as the Kolmogorov-Smirnov statistic. It has the general properties of a distance
between cumulative distribution functions. Therefore, it will be called here the KS-distance.

In the case of a snapshot taken from a scene, one can assume that the observed n features are produced
by the scene independently from another. By viewing the scene as the single source of features, one can
further assume that the features are identically distributed. In other words, they can be assumed taken
from a common cumulative distribution function F .

However, there seems to be no straightforward generalisation of the KS-distance to the multivariate
case, as indicated by [15], in particular the proposed generalisations seem to lack robustness. Therefore,
we simply propose the Euclidean norm of the two coordinate-wise KS-distances:

d(S, λ) :=

√
‖F x

n − λx‖2 + ‖F y
n − λy‖2 (35)

where S is a sample of n points in the plane, F i
n is the empirical distribution function, λi and λ are

the cumulative density functions of the uniform distribution on the i-coordinate axis and on the plane,
respectively. This will be called the Euclidean KS-distance to uniformity. Conjecturally, there will be
more uniformity in the detected scale-space features for the Cartesian representation than in those for the
Polar representation. Let SCartesian be the sample of Cartesian features, and SPolar the sample of Polar
features of a given complex-valued image f . Then:

Conjecture 2.5. For almost all complex images f , the transformation from Cartesian to Polar image
decreases the Euclidean KS-distance to uniformity:

d(SCartesian, λ) < d(SPolar, λ) (36)

where λ is the uniform distribution on the image plane.

Conjecture 2.2 says that the pair SRe(f), SIm(f) will be more independent than S|f |, Sarg(f).
Conjecture 2.4 says that there will be more Cartesian than Polar features. Intuitively, these conjectures
together support Conjecture 2.5.

3. Experiments

In order to experimentally evaluate the proposed methodology, three different kinds of active sensing
systems were used to capture data from three different scenes: Range Imaging (RIM), Terrestrial Laser
Scanning (TLS), and Structured Light Projection (SLP) devices.

3.1. Range Imaging (RIM)

The PMD [Vision] CamCube 2.0 captures range and intensity simultaneously. The former is obtained
through phase measurements, and the latter is differentiated between active and passive intensity. The
measured active intensity depends on the illumination by the sensor, whereas the passive intensity
depends on the background illumination (e.g., the sun or other light sources). The uniqueness range
of 7.5 m is defined by the utilized modulation frequency of 20 MHz.

The data meet exactly the requirements of the methodology. The image size for all data is 204 × 204
pixels. Figure 1 shows the values of Ip, Ia, and φ, respectively.
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Figure 1. RIM. Ip, Ia, φ (from left to right).

3.2. Terrestrial Laser Scanning (TLS)

The Z+F IMAGER 5003 is a standard phase-based laser scanner with survey-grade accuracy within
the mm range. While scanning the scene a phase is measured and by using the modulation frequency
the range between scanner and object surface is calculated. Again the uniqueness range of 79 m is given
by the lowest utilized modulation frequency. Also measured is the intensity Iraw which is a mixture of
active and passive intensity, because the different intensities are not distinguished.

To adapt the measured data to the methodology, the range image is converted to a phase image φ, and
the intensity is separated to active and passive intensity using the inverse-square law in Equation (18).
The indoor scene in Figure 2 guarantees that all range values lie within the uniqueness range. The
selected image area has 532 × 468 pixels. The Iraw and φ are shown.

Figure 2. TLS. Left: Iraw, Right: φ.

3.3. Structured Light Projection (SLP)

In Microsoft’s Kinect for the Xbox 360, active range measurement is based on continuously-projected
infrared structured light. Additionally an RGB image is synchronously captured. Due to the multi-static
sensor design where the sensors are at different locations, the data are captured with a slight parallax.
Through a calibration, the images are properly aligned.

Finally, in order to adapt the measured data to the methodology, the measured range image is interpreted
as a phase image with uniqueness range given by the measured maximal range value. The RGB image,

137



Remote Sens. 2011, 3 2085

after conversion to gray values, is interpreted as the passive intensity image Ip. In the same way as with
the TLS data, Equation (18) is used to estimate Ia. The images have 480 × 640 pixels. Figure 3 shows
Ip and φ.

Figure 3. SLP. Left: Ip, right: φ.

4. Results

Table 1 shows the entropy results for the various images. A first observation is that the real parts
Re(f) have similar entropies as the absolute values |f | and are relatively high, whereas the entropies of
the imaginary parts Im(f) are relatively low and similar to those of the angle values arg(f). The last two
columns show firstly that the main contribution to the gain of independence µ comes from the Jacobian
of the transformation. Secondly, there is an extra gain due to the observed validity of inequality (17). In
all examples, the Cartesian images are more independent than the Polar images.

Table 1. Entropy, mean log-Jacobian, and mutual information.

Polar Cartesian
EIraw E|f | Earg(f) ERe(f) EIm(f) −〈log |f |〉 −µ

RIM 7.4184 6.6761 1.0976 7.0763 1.2991 0.9494 1.2929
TLS 7.2282 7.213 4.9165 6.6763 4.6484 1.2193 1.4772
SLP 7.8106 7.1925 1.0543 7.2595 0.9879 0.8303 0.8309

For the feature detection with CSIFT, Vedaldi’s Matlab implementation of SIFT [16] was used.
CSIFT was applied on two snapshots of the same scene. A pair of homologous matched feature points
is given by a successful CSIFT matching of candidate keypoints at most one pixel apart. Table 2 reveals
that complex images contain more homologous matched feature points than the sole intensity image, and
the Cartesian representation contains more than the Polar representation.
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Table 2. Number of homologous matched feature points.

Iraw |f | arg (f) Polar Re(f) Im(f) Cartesian

RIM 159 159 59 218 156 119 275
TLS 1335 1335 222 1557 567 1133 1700
SLP 1004 1004 81 1085 967 1084 2051

Table 3 indicates that the complex feature points are more uniformly distributed than those in the
corresponding intensity image. In all examples, the Cartesian representation has the smallest Euclidean
KS-distance to uniformity. Figure 4 depicts the locations of the homologous matched feature points in the
SLP case. It can be observed that the raw intensity has no valid detections in the left sector consisting of
a homogeneous surface. Both complex image representations have more texture in that sector, therefore
valid features are detected. The Polar image contains a cluster in the left border between the left and the
bottom sector which is likely responsible for the relatively large horizontal KS-distance to uniformity.
The right sector has a large amount of texture in all cases. However, in contrast to the others, the
Cartesian image contains valid features very near the right boundary of that sector.

Table 3. KS-distances to uniformity of homologous matched feature points.

horizontal vertical Euclidean

Sraw SPolar SCartesian Sraw SPolar SCartesian Sraw SPolar SCartesian

RIM 0.18294 0.17035 0.16402 0.12487 0.11194 0.12745 0.22149 0.2039 0.20754
TLS 0.1699 0.18024 0.1815 0.17369 0.16188 0.15585 0.24297 0.24264 0.23921
SLP 0.04855 0.064263 0.059843 0.051329 0.033411 0.036508 0.070652 0.072429 0.0701

Figure 4. Homologous matched feature points in SLP image: Sraw, SPolar, SCartesian (from
left to right).

5. Conclusions

High mutual information of variables a, b means that they are redundant. Therefore, it is of interest
to compare the two standard representations of complex-valued images: the Polar and the Cartesian
representation. We have deduced through theoretical considerations the general conjecture that the
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mutual information of the real and imaginary parts of an information is lower than the amplitude and
phase parts. We have verified this experimentally by applying CSIFT, and have found that not only
does the number of valid detected features increase through transforming from the Polar to the Cartesian
image representation, but also the uniformity of their distribution.

The implication is that in feature detection within fused intensity-range images, as e.g., obtained by
Range Imaging, Laser Scanning or Structured Light Projection devices, the Cartesian representation is to
be preferred over the Polar representation in order to achieve more distinctiveness and informativeness,
one of the requirements for local features from [1].

Acknowledgements

The authors would like to thank Sven Wursthorn and Martin Weinmann for fruitful discussions.

References

1. Tuytelaars, T.; Mikolajczyk, K. Local invariant feature detectors: A survey. Found. Trends Comput.
Graph. Vis. 2008, 3, 177–280.

2. Mikolajczyk, K.; Schmid, C. A performance evaluation of local descriptors. IEEE Trans. Pattern
Anal. Mach. Intell. 2005, 10, 1615–1630.

3. Rusinkiewicz, S.; Levoy, M. Efficient Variants of the ICP Algorithm. In Proceedings of the 3rd
International Conference on 3D Digital Imaging and Modeling (3DIM), Quebec City, QC, Canada,
28 May–1 June 2001; pp. 145–152.

4. Lowe, D. Object Recognition from Local Scale-Invariant Features. In Proceedings of the
International Conference on Computer Vision (ICCV 1999), Corfu, Greece, 20–23 September
1999; pp. 1150–1157.

5. Lowe, D. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60,
91C110.
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ABSTRACT: 
Obtaining a 3D description of man-made and natural environments is a basic task in Computer Vision and Remote Sensing. To this 
end, laser scanning is currently one of the dominating techniques to gather reliable 3D information. The scanning principle 
inherently needs a certain time interval to acquire the 3D point cloud. On the other hand, new active sensors provide the possibility 
of capturing range information by images with a single measurement. With this new technique image-based active ranging is 
possible which allows capturing dynamic scenes, e.g. like walking pedestrians in a yard or moving vehicles. Unfortunately most of 
these range imaging sensors have strong technical limitations and are not yet sufficient for airborne data acquisition. It can be seen 
from the recent development of highly specialized (far-)range imaging sensors – so called flash-light lasers – that most of the 
limitations could be alleviated soon, so that future systems will be equipped with improved image size and potentially expanded 
operating range. The presented work is a first step towards the development of methods capable for application of range images in 
outdoor environments. To this end, an experimental setup was set up for investigating these proposed possibilities. With the 
experimental setup a measurement campaign was carried out and first results will be presented within this paper. 

 

1. INTRODUCTION AND MOTIVATION 

Currently the 3D geometrical capturing and description of the 
environment is based on (multi-view) image or range data. By 
utilizing passive imaging sensors the 3D information is gained 
indirectly from several images with stereo- or multiple image 
analysis. These procedures are widely used but, for certain 
kinds of applications, they have indispensable limitations due to 
the constrained camera set-up, the scene contents, and last but 
not least because of the inherently ill-posed problem of 3D 
reconstruction from 2D images. For instance the illumination 
conditions should be adequate, the observed materials need to 
be textured and opaque, and the distance between object and 
camera as well as between the camera observation points of 
stereo images should be sufficiently large enough for gaining a 
reliable 3D reconstruction. 

The photogrammetric methods are complemented by direct 
measurement procedures like laser scanning. These active 
sensors capture a sequence of single range values while 
conducting a time dependent spatial scanning of the 
environment. In general space-borne, airborne (ALS) as well as 
terrestrial laser scanners (TLS) provide a direct and 
illumination-independent measurement of 3D objects (Shan & 
Toth, 2008; Vosselman & Maas, 2009). For continuous-wave 
(CW) modulated laser scanning devices the measuring rate is 
currently between 150000 and 700000 measurements per 
second and the operating distance is up to 100m. For pulse 
modulated laser scanning devices the measuring rate is currently 
between 10000 and 300000 measurements per second and the 
operating distance is up to 3000m. However, it must be 
considered that the time-dependent acquisition of the 3D laser 
points can cause significant artefacts in the point cloud in case 
the captured scene contains moving objects. 

2. STATE OF THE ART AND CHALLENGES 

For deriving accurate 3D world coordinates from range 
measurements, scene as well as the sensor platform must be 
static or their relative motions must be known precisely. 

Otherwise deformation artefacts of the environment will appear 
and have to be considered before transferring the measured data 
in a 3D model. In general with an increasing dynamic of the 
scene contents, respectively sensor platform, the complexity of 
the analysis increases and the exploitation of three-dimensional 
information is more and more challenging, especially for laser 
scanning systems (Toth & Grejner-Brzezinska, 2006; Yao et al., 
2010). 

Very recently, enhanced types of active imaging sensors are 
available, namely Swiss Ranger (www.mesa-imaging.ch) and 
PMD Vision (www.pmdtec.com). These close-range sensors 
allow to capturing a range image and a co-registered intensity 
image simultaneously with a high frame rate up to 100 frames 
per second, so that not just one (or few) points are captured at 
the same time but a whole frame. The use of both active and 
passive illumination provides furthermore information of the 
ambient light, yet allows also to controlling and adjusting the 
measurement signal – most prominently regarding frame rate, 
integration time and modulation frequency – to accommodate 
for the current acquisition conditions in the best manner 
possible. Another technical advantage is the monostatic sensor 
configuration, which allows for observing the area of interest 
from a single point of view, in contrast to the classical stereo 
observation techniques with passive sensors, which need at least 
two different observation points. Henceforth, the advantages of 
active 3D measurement sensors over images and the 
simultaneous acquisition of areal data have been unified. This 
concept thus contains much potential for the automatic analysis 
dynamic scenes in fully 3D. Especially the 3D monitoring with 
terrestrial or even airborne platforms in challenging weather and 
illumination conditions is promising with this novel technology.  

The major drawbacks are the limited absolute range accuracy of 
a few centimeters and the limited unambiguous range: 
Especially the relatively large noise influence on the 
measurement – which stems from to the large amount of 
ambient radiation in comparison to the emitted radiation – 
causes significant inaccuracies of the range measurement. 
Regarding this aspect, the performance of range imaging (RIM) 
is usually less reliable than airborne or terrestrial laser scanners. 
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The unique range of the most commercial systems is currently 
less than 10m and depends on the user-specified modulation 
frequency. This range measurement restriction can however be 
significantly relaxed by image- or hardware-based unwrapping 
procedures, which operate also in far range (Jutzi, 2009; Jutzi, 
2011). It could be shown that a range maximum of more than 
four times of the manufacturers non-ambiguity range 
specification could be reached without modifying the sensor or 
improving the illumination unit, e.g. by additional illumination 
modules. An outdoor example is given by Figure 1: the range 
images are captured with different modulation frequencies (18 
& 21 MHz) and the unwrapped range image is depicted below. 
The maximum distance within the scene is about 30m. 

 

Range image captured with 18MHz 

 

Range image captured with 21MHz 

 

Unwrapped range image 

Figure 1. Range images captured with different modulation 
frequencies (top: 18MHz; center: 21 MHz) and corresponding 
unwrapped range image (bottom). 

It can be seen from Figure 1 that, although the unwrapped range 
image is quite noisy concerning the absolute range 
measurement, the artificial gray value edges of back-folded 
range measurements have disappeared. With the current 
technical progress, it can be assumed that the mentioned 
limitations will be alleviated soon and future systems might be 
featured by expanded operating range and improved image size. 

Beside this the registration procedure is challenging. Usually 
additional sensor components, e.g. like INS (Inertial Navigation 
System) and GPS (Global Positioning System), to gain 
orientation and position of the sensor. Direct measurement of 
position and attitude of the sensor might still contain systematic 
errors as it is for instance well-known from strip-adjustment of 
ALS data. Hence, image-based registration techniques like 
shown in our previous work (Weinmann et al., 2011; 
Weinmann & Jutzi, 2011), possibly combined with a bundle 
approach, should be included to improve accuracy. 

In following, some conceptional perspectives regarding the 
acquisition of dynamic scenes with RIM sensors are described 
(Section 3). In Section 4, the constructed multi-view range 
imaging device is introduced, while a “toy scene” for the 
investigations is shown in Section 5. First results of the 
measurement campaign and recommendations are given in 
Section 6. The paper closes with a brief conclusion and outlook. 

 

3. CONCEPTIONAL PERSPECTIVES 

While active range scanning devices are more and more 
established in close-range photogrammetry and computer 
vision, first – still experimental – developments such as flash-
light lasers already show the potential that range imaging 
devices can be applied to capture larger scenes in the near 
future. Hence, also the basis for monitoring of highly dynamic 
scenes can be envisioned. In contrast to the 3D geometry 
derived by passive sensing techniques (e.g. photogrammetry) 
the range information is available directly without processing 
delays. Yet it should be noticed that the range information 
captured with a single static device is not fully 3D, as only 
range information corresponding to the well-known bundle of 
viewing rays can be measured. Still, when using a multi-view 
camera set-up the observed object or monitored scene can be 
captured from different directions so that also real 3D 
descriptions can be derived, even with fewer restrictions than in 
photogrammetry. In general the multi-view active range 
imaging can strongly support navigation, (co-)registration, and 
observing temporal scene changes if a reliable matching 
procedure is available. 

To simulate a future operation of RIM sensors in airborne scene 
monitoring fairly realistically, a scaled test scenario has been set 
up. Instead of mounting RIM sensors at unmanned aerial 
vehicles (UAVs), which involves much efforts and expenses 
due to the large payload of several kilograms for both the RIM 
sensors and the data recording system, a sort of cable-car has 
been constructed (see Figures 3 and 4), on which two RIM 
sensors and the recording unit have been mounted. This allows 
(quasi-)airborne monitoring in low altitudes, as they also appear 
in UAV videos, for capturing dynamic 3D observations like 
walking pedestrians in a yard or ohter moving objects. 

The RIM sensors can be turned into different pointing 
directions. For the current tests mainly the over-head option was 
of used, whereby two general constellations were of main 
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interest: the convergent (a) and the parallel (b) acquisition 
geometries (see Figure 2): 

a) The convergent acquisition geometry (in over-head pointing 
direction) provides a wider range of viewing directions due to 
the oblique optical axes, which can be very helpful for 3D 
object reconstruction and characterization. On the other side, 
this concept is very challenging for image-based registration 
due to the different perspectives and the different object 
appearance in the two images. 

b) The parallel acquisition geometry adapts the so-called normal 
case of photogrammetry and eases many tasks such as co-
registration and mosaiking. Especially for image based 
registration, this constellation is more cooperative due to the 
similar viewing geometry and similar object appearance in both 
images. The point density in scenes with steep relief reduces 
however. 

  

a b 

Figure 2. Image acquisition geometry: a) convergent, b) 
parallel. 

 

4. MULTI-VIEW ACTIVE RANGE IMAGING SYSTEM 

To investigate the potentials of multi-view range imaging 
systems, an experimental setup based on the above-mentioned 
cable car concept was developed. The system includes various 
components of the main sensor rack (Figures 3 and 4):  

- two RIM sensors (PMD Vision CamCube 2.0) 

- unit for variable multi-view options (viewing 
possibilities are approximately ± 90° wrt. nadir 
direction) 

- data recording unit for both sensors (notebook with 
solid state hard disk) 

- independent power supply (12V battery with 6.5Ah), 

- cable car wheels,  

- ropes (100m length).  

The measurement staying power is at least 60 minutes and can 
easily be extended to several hours by utilizing a battery with a 
larger capacity. For instance, the power consumption of a single 
PMD Vision CamCube 2.0 is typically between 17W (@2.5ms 
integration time) and 35W (@10ms integration time). A 
navigation system to record the absolute position and viewing 
direction is not on board, as image-based navigation is of our 
main interest for further investigation. Therefore more focus 
was put on accurately synchronized image acquisition. To 
measure the position of the cameras externally, an in-house 
laser-tracker system could be optionally used. 

 

Figure 3. Visualized CAD model of the experimental device: 
sensor rack carrying two RIM sensors, capturing unit, and 
power supply. 

The RIM sensors are two PMD Vision CamCube 2.0. The 
sensors have a 204 x 204 pixel array with a pixel size and pitch 
(spacing) of about 45 µm. The field of view is 40x40°. The 
maximum frame rate is about 25 frames per second and the 
sensor measures three features per pixel: range, active intensity 
and passive intensity. Therefore, above three million 
measurement values per second can be captured. 

 

Figure 4. Experimental device ready for measurement. 

 

5. EXPERIMENTS 

To obtain first tests and assessments, an outdoor “toy scene” has 
been set up. It contains bare soil, concrete, a small movable 
model vehicle and a plant (see Figure 6), where the cable-car 
with the experimental device could pass by. The scene has been 
captured with an integration time of 10ms to gain a reasonable 
signal-to-noise ratio, which is important especially for outdoor 
measurements. Furthermore various acquisition geometries have 
been tested. Therefore the rope for the cable-car was mounted at 
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two points of approximately 3 to 5m height for recording the 
scene (Figure 5). Please note, that in case of using a convergent 
viewing geometry as shown in Figure 2a, this height allows 
already to exceeding the ambiguity range of the PMD sensors. 

All tests proved the functionality of the multi-view 
measurement system. 

 

Figure 5. Experimental device while recording a scene. 

 

Figure 6. Experimental device while recording with scene 
content. 

6. CAPTURED DATA 

The captured data can be interpreted in different ways. The 
measured intensity of active sensors can be generally separated 

in an active and passive intensity. The active intensity is often 
described as amplitude and depends just on the measured 
scattering received by the active illumination with the sensor, 
e.g. a laser or diode. The passive intensity measured with an 
active sensor is often called background illumination, and 
depends on the illumination given by available extraneous light, 
e.g. sun light. The passive illumination captured with an active 
sensor might usually have low spectral information, due to the 
spectral bandpass filters which are in general used. Further, the 
range is measured which is for most users of main interest. 
Sometimes only a phase measurement is utilized to determine 
the range, where a limited uniqueness range is given by the 
lowest modulation frequency. 

However the captured data for the two acquisition geometries is 
shown in Section 6.1 (convergent) and Section 6.2 (parallel). 
For each acquisition geometry, two nearly aligned scene images 
are depicted. A reliable synchronization of the data is currently 
an open task which has to be investigated in the future. 

6.1 Convergent acquisition geometry 

The front sensor is backward looking and the back sensor is 
forward looking. Obviously with this acquisition geometry more 
data from the objects side is captured. Active intensity, passive 
intensity, and phase are depicted in Figure 7. In this case the 
intensity images look similar except of the different selected 
dynamic range. 

  

Active intensity (front sensor) Active intensity (back sensor) 

  

Passive intensity (front sensor) Passive intensity (back sensor) 

  

Range (front sensor) Range (back sensor) 

Figure 7. Image results of the convergent acquisition geometry. 
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With the captured images a point cloud can be generated and 
visualized (Figure 8). Obviously the point cloud is affected by 
some noise so that – although visible in principle – the vehicle 
type is hard to recognize in the range data only, due to the low 
spatial resolution. As can be seen from Figure 7, a combined 
image and range data analysis seems very promising. 

 

 

 

 

Range (front sensor) Range (back sensor) 

Figure 8. Single shot point cloud results of the convergent 
acquisition geometry. 

6.2 Parallel acquisition geometry 

Both sensors are nadir looking with a stereo base of a few 
decimetres. As expected the images look very similar. Active 
intensity, passive intensity, and phase are depicted in Figure 9. 

  

Active intensity (front sensor) Active intensity (back sensor) 

  

Passive intensity (front sensor) Passive intensity (back sensor) 

  

Range (front sensor) Range (back sensor) 

Figure 9. Image results of the parallel acquisition geometry. 

Again the captured images are converted to a point cloud and 
visualized now in Figure 10. Similar to the convergent case, the 

point cloud shows considerable noise and the vehicle type is 
hard to recognize due to the low image resolution. However, 
again, as can be seen from Figure 9, a combined image and 
range data analysis is very promising and, of course, easier as 
for the convergent case. 

 

 

 

Range (front sensor) Range (back sensor) 

Figure 10. Single shot point cloud results of the parallel 
acquisition geometry. 

 

7. CONCLUSION AND OUTLOOK 

In this paper the first results for a multi-view range imaging 
device are presented. The captured data looks very promising. 
However the data has to be further investigated and it has to be 
shown that range imaging is superior to range scanning devices, 
especially for dynamic environments. Therefore a lot of tasks 
like, e.g., co-registration, have to tackled in the future. 
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Unmanned aerial vehicles (UAVs) equipped with adequate sensors have nowadays
become a powerful tool for capturing spatial information. In this article, we introduce a
concept for weighted data fusion in order to enable an improved UAV-borne 3D
mapping with a camera and a lightweight line laser scanner. For this purpose, we
carry out geometric camera calibration as well as lever-arm and bore-sight calibration
and subsequently present a new methodology for incorporating camera images and
laser scanner data into an adjustment process. This adjustment is based on the concept
of variance components in order to obtain a reasonable weight ratio for data fusion and
accurately estimate the poses of the sensors. We demonstrate the feasibility of the
proposed approach and show that the consideration of range measurements clearly
improves the pose estimation.

Keywords: camera; laser scanner; UAV; sensor calibration; self-localisation; 3D
mapping

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) equipped with adequate sensors have

become a powerful tool for capturing spatial information. They represent mobile and

automatically operating low-cost solutions, are easy to handle and easy to transport to the

surveying field. Typically, these devices are equipped with optical sensors in order to

provide images for the operator, to support the localisation of the platform, or to facilitate

3D mapping of the environment. For mapping with optical sensors, a successful and

precise localisation of the UAV and a simultaneous 3D mapping of the environment,

referred to as simultaneous localisation and mapping (SLAM), can be gained by sensing

distinctive elements of the environment. These elements are commonly known as 3D

landmarks. Unfortunately, for 3D landmarks usually no prior knowledge about their

location is given and therefore the 3D positions of the landmarks have to be estimated

by utilising descriptive 2D image features from various observations as accurate as

possible. Instead of estimating the 3D positions of the landmarks with passive sensors,

an accurate measurement with active sensors could be practicable (Weinmann et al. 2011).

For this purpose, laser range measurements are typically the first choice, but laser

scanners are generally bulky and heavy.

Due to the rapid and substantial progress in miniaturising technology, the latest

developments allow to mount suitable laser scanners on UAVs. For instance, Nagai
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et al. (2009) presented a UAV-borne 3D mapping system equipped with inertial measure-

ment unit (IMU) and global positioning system (GPS) receiver, two digital cameras, two

IR cameras and a laser scanner. Together, the components have a weight of more than

7 kg, and for this reason a helicopter-like UAV has been utilised. The system is able not

only to simultaneously capture geometric 3D information and radiometric information, i.e.

textures, but also to derive a vegetation index due to the use of IR cameras as well as to

operate for a duration of about 1 h. However, the total weight of the platform is 330 kg.

Hence, the system is neither low-cost nor easy to bring to the surveying field. A smaller

UAV for rapid close-range monitoring which integrates different types of sensors and

supporting modules has been proposed by Choi and Lee (2011). Among these compo-

nents, there are GPS receiver and IMU as well as two digital cameras and a laser scanner.

The whole system for data acquisition has a weight of above 10 kg. As a result, a high-

quality digital elevation model and orthophotos can be obtained, but the use of a relatively

large UAV is required due to the heavy payload. A further platform equipped with IMU,

GPS receiver, camera and laser scanner has been presented by Wallace et al. (2012) and

specially designed with respect to low costs and maximum flying time. However, the

system only allows short flights of several minutes for a relatively heavy payload of up to

2.8 kg. Hence, the system is only suitable for acquiring point cloud data for a relatively

small area. Recently, Conte et al. (2013) presented a system consisting of a high-precision

GPS receiver, an IMU, a compass and a multi-echo lidar sensor for airborne terrain

mapping. The components have a total weight of more than 4 kg, and they are carried

by an industrial unmanned helicopter with a maximum take-off weight of 95 kg.

In contrast to all the aforementioned systems, lightweight systems are desirable for

capturing larger 3D environments with low costs. Such systems can be established by

reducing the number of components and, for being able to use mini UAVs, by selecting

lightweight devices for the relevant components. In this context, the applied laser scanner

has been a critical component for a long time. Since only a few months, the new

lightweight single-line laser scanner Hokuyo UTM-30LX-EW is available (210 g without

cable), which allows to capture multiple reflections and their corresponding intensity

values for each transmitted laser pulse. Whereas line laser scanners are often used for

navigation of mobile ground vehicles, particularly in indoor environments with flat

ground, their use for UAVs has rarely been addressed in recent years. Devices providing

2D scans have, for instance, been used within indoor environments for obtaining 3D

measurements in a plane around the UAV (Bachrach et al. 2009, Grzonka et al. 2009). For

more complex environments, full 3D scans are required, or additional data has to be taken

into account. In order to obtain 3D scans with a line laser scanner, a system exploiting an

actuator for continuously rotating a Hokuyo UTM-30LX-EW laser range finder has

recently been proposed for omnidirectional obstacle perception and flight trajectory

estimation (Droeschel et al. 2013, Holz et al. 2013). Involving further devices, Kuhnert

and Kuhnert (2013) focused on a system for mapping or monitoring purposes in outdoor

environments, particularly for monitoring high-voltage power lines. Their system includes

IMU, GPS receiver, digital camera and laser scanner. As the total weight of all compo-

nents is relatively small, a mini UAV is used which is able to carry a payload of 1.5 kg.

For laser scanning, the authors tested a Hokuyo UTM-30LX-EW with range measure-

ments up to 30 m and a more expensive SICK LD-MRS-400001 with range measure-

ments up to 200 m, both with an angular resolution of 0.25°.

In this article, an extension of the method presented by Jutzi et al. (2013) is proposed

for fusing optical and laser scanner data. The main contribution is the introduction of a

concept for weighted data fusion in order to enable an improved UAV-borne 3D mapping
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with an appropriate camera and a lightweight line laser scanner. For this purpose, different

kinds of data in the form of images and laser scanner measurements are fused by

● geometrically calibrating the camera for determining its intrinsic parameters,

● estimating the relative orientation between camera and laser scanner, i.e. lever-arm

and bore-sight calibration,

● applying the Lucas-Kanade tracker for tracking distinctive image points across

consecutive image frames, where a significant advantage is achieved by utilising

laser range measurements for determining the scale of the observations, and

● bundle adjustment providing variance components for camera and laser scanner

data in order to accurately estimate the pose of the UAV sensor platform.

The latter is essential for weighting measurements of different types appropriately.

Already Helmert (1924) provided methods to check and improve the assumptions on

the precision of the observations. Later various estimators for variance components based

on statistical criteria have been devised, e.g. Koch (1986) or Rao (1973). The minimum

norm quadratic unbiased estimation (MINQUE), for example, has successfully been

applied for the analysis of GPS signals (Satirapod et al. 2002).

The article is organised as follows. In Section 2, we first describe the proposed

methodology for weighted data fusion in order to enable UAV-borne 3D mapping with

camera and line laser scanner. The weighting is achieved by introducing variance com-

ponents and supports reliable pose estimation. Subsequently, in Section 3, we describe the

automatic procedure for calibrating the sensor platform. This involves geometric camera

calibration as well as lever-arm and bore-sight calibration. In Section 4, the indoor and

outdoor experiments are described and the derived results, e.g. 3D laser points projected

onto images, are presented. After discussing the results in Section 5, the concluding

remarks and suggestions for future work are finally provided in Section 6.

2. Methodology

For weighted data fusion, we propose the incorporation of camera images and laser

scanner data into an adjustment process which takes into account different types of

observations by using the concept of variance components. Our methodology exploits

● range measurements,

● tracking of salient image points, and

● tracking of image points obtained by the projection of laser points onto the image

plane.

In the following, we describe the workflow of our methodology in detail.

2.1. Adjustment model

For the proper fusion of measured image and range information, we utilise a standard

bundle adjustment, augmented by the observational equations for the measured ranges.

Since we have metric information at hand, we have to fix six degrees of freedom for the

resulting scene model because of the gauge freedom. For the solution of the optimisation

problem by exploiting the sparse structure of the involved matrices, we refer to Triggs

et al. (2000). To account for the different kinds of measurements stemming from
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heterogeneous sensors, we refine the stochastic model by introducing the so-called

variance components which allow a proper weighting of the two groups of measurements

(McGlone et al. 2004).

2.1.1. Functional model: observational equations

Image coordinates. For each extracted or tracked image point, the corresponding

unknown 3D point Xi in the object coordinate system So is mapped into the image

plane by the collinearity equations, in homogeneous representation

xit ¼ PtX
oð Þ
i (1)

for each pose t with the 3 × 4 projection matrix Pt and the resulting image point xit = [uit,

vit, wit]
T in homogeneous coordinates, too. The projection matrix Pt = KRt[I3×3, −Ct

(o)]

contains the exterior orientation of the camera, i.e. the pose represented by the position of

the projection centre Ct
(o) in the world coordinate system So and the rotation matrix Rt

from the world to the camera coordinate system. The intrinsic camera parameters are

compiled in the homogeneous calibration matrix K, including a model for lens distortion.

Given a measured range sl
(l) and the corresponding direction, the 3D point Xl is

obtained by polar point determination in the coordinate system Sl of the laser scanner. The

projection of such a 3D laser point into the image plane is then

xl ¼ KX
ðcÞ
l ¼ KR I3"3; #T½ %X

ðlÞ
l (2)

with the six parameters of the laser-to-camera transformation, expressed by the rotation

matrix R and the lever-arm T, with the laser point Xl
(c) in the camera coordinate system Sc

as an intermediate result. In Section 3.2.2, we explicate the determination of the lever-arm

and bore-sight parameters.

The Euclidean image points x = [x, y]T are obtained by x = u/w and y = v/w for each

3D point, determined either by laser scanning or by spatial forward intersection.

Laser ranges. For convenience, we do not use the original measurements sl
(l) provided

in the laser coordinate system but the slightly different ranges from the 3D laser points to

the camera projection centres. These are identical in Sc and So and can easily be

computed by

s
cð Þ
l ¼ X

cð Þ
l

 

 

 

 

 

 ¼ s
oð Þ
l ¼ X

oð Þ
l # C

oð Þ
t

 

 

 

 

 

 (3)

with the laser-to-camera transformation X
cð Þ
l ¼ R X

lð Þ
l # T

! "

used in Equation (2), too.

2.1.2. Stochastic model: variance components

The assembled sensor system provides heterogeneous observations: image coordinates

and measured laser ranges (Section 2.1.1). For the variances of these observations,

initially only a rough guess exists: the assumed uncertainty of the image coordinates is

given by the precision of feature extraction and tracking, respectively; the uncertainty of

the laser ranges is taken from the technical specifications. This implies that the ratio of the

variances for both observation groups is unknown. To obtain reasonable variances and
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weights, respectively, we apply the concept of variance components (Förstner 1987,

McGlone et al. 2004).

The stochastic model is obtained by categorising the observations into image coordi-

nates l1 and laser ranges l2. The corresponding covariance matrix

l ¼
l1
l2

 !
; Sll ¼

s
2
01S11 O

O s
2
02S22

 !
(4)

implies statistical independence between both groups, and the matrices Σ11 and Σ22

contain the initially assumed covariances for the observations. Without loss of generality,

we assume Σ11 = σ1
2I and Σ22 = σ2

2I with an assumed identical standard deviation σ1 for

all image coordinates and σ2 for all laser ranges, respectively.

During the iterative estimation process, these covariance matrices become corrected

by the so-called estimated variance components which converge to 1. For the estimation

of these factors, the covariance matrix

Sv̂v̂ ¼ Sll  ASx̂x̂A
T (5)

of the residuals v̂ ¼ Δl  AcΔx is needed, provided by the linear model Δl þ v̂ ¼  AcΔx
with the Jacobian A and the update Δx for the unknown parameters x. The estimates for

the two variance factors are then

ŝ
2
0i ¼

v̂Ti S
 1

ii
v̂i

tr Sv̂i v̂i S
 1
ii

# $ (6)

within each iteration step with the residuals v̂i for both groups. The denominators in

Equation (6) are the so-called redundancy numbers which sum up to the total redundancy

of the problem, i.e. the model’s degrees of freedom, see Förstner (1987) for details. With

Equation (6) we get improved covariance matrices Sii ¼
:

ŝ
2
0iSii for the observation groups.

2.1.3. Parameterisation, approximate values and gauge freedom

The ratio of baseline length and depth of scene points is usually critical for mobile

applications such as UAV scenarios with rather short tracks of image points. Therefore,

we apply a bundle adjustment which allows for 3D points far away as proposed in

Schneider et al. (2012).

Approximate values for the landmark positions can be obtained by spatial forward

sectioning and for the 3D laser points by polar point determination. For the calculation of

approximate poses, a simple motion model and the corresponding extrapolation are

sufficient in most cases.

Using image observations only, the obtained photogrammetric model is determined up

to a spatial similarity transformation with seven parameters. This gauge freedom can be

fixed by applying the centroid constraints for the approximate parameters, i.e. scale,

position and orientation of the approximate values are preserved (McGlone et al. 2004).

But with the available range measurements, the scale of the reconstruction becomes fixed

and we have only position and orientation at our disposal.
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2.2. Feature extraction and tracking

The extraction of salient features in each image is the starting point for the determination

of unknown 3D points, sometimes called landmarks, too. We utilise the Förstner operator

(Förstner and Gülch 1987) to accomplish this task; however, derivatives and alternatives –

especially scale invariant feature operators (Lowe 2004) – are conceivable, too. Since we

are dealing with a video stream, the application of the pyramidal Lucas-Kanade tracker

(Lucas and Kanade 1981) appears to be adequate to retrieve these points in the subsequent

images.

The 3D laser points can be projected into each corresponding image with subpixel

precision due to the known camera-to-laser scanner transformation (Equation (2)). Beside

the extracted salient image points, this yields an additional set of image points, which

have to be tracked. We cannot expect these points to appear in textured image regions,

yielding points, which can easily be tracked. Therefore, an assessment of the ‘trackability’

of these image points is mandatory. This can be accomplished by considering the

precision of the point coordinates. We truncate a track if an image point with a positional

uncertainty above a threshold appears.

Of course, depending on the computational resources, the tracking can be made more

robust and reliable by enforcing the epipolar constraints, potentially with a subsequent

guided matching. This can be achieved by applying the random sample consensus

(RANSAC) algorithm to account for outliers (Fischler and Bolles 1981). In general, the

RANSAC algorithm iteratively estimates the parameters of a mathematical model from a

given data set including outliers which do not fit to this model. Therefore, instead of using

all data, a minimal subset of the data is randomly chosen to estimate the model parameters

and the remaining data is checked for consistency. Data supporting the given model

results in inliers, whereas data not supporting the model results in outliers which are

discarded. Finally, the choice yielding the maximum number of inliers is selected (Hartley

and Zisserman 2008). Furthermore, specific reliability measures have been proposed for

handling multiple outliers (Knight et al. 2010).

2.3. Simultaneous localisation and mapping

The solution provided by the bundle adjustment yields the poses (exterior orientations)

and the new 3D points (landmarks) in a batch process with a fixed set of observations and

unknown parameters. But with an exploration task in mind, we have to cope with a

continuous – virtual endless – data stream of images and laser ranges. Thus the task is to

enable online processing for a dynamic system of observations and unknown parameters,

a task which is commonly known as SLAM in robotics (Durrant-Whyte and Bailey 2006).

With the assumption of a static scene, we adopt a sliding window bundle adjustment

(e.g. Beder and Steffen 2008) for the solution of the SLAM problem. An alternative is the

incremental bundle adjustment for sparse nonlinear incremental optimisation proposed by

Kaess et al. (2012). These approaches offer the possibility of re-linearisation within

windows consisting of several consecutive frames with images and laser range

measurements.

The ongoing incorporation of the range measurements into adjustment introduces

scale information permanently and avoids a drift in the scale of the reconstruction.

Furthermore, the result is expected to be more accurate due to the improved geometry

and determinability of parameters. The measured laser ranges are considered simply by

additional observational equations.
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3. Sensor platform and calibration

In this section, the sensor platform (Section 3.1) with the utilised sensors and their

calibration (Section 3.2) is described. For further processing, an adequate calibration is

essential in order to fuse camera and laser scanner data.

3.1. Sensor platform

For the experiments, we select the involved sensors with respect to the application of UAV-

borne 3D mapping where lightweight components are required. We propose to equip the

UAV with a small sensor platform (Figure 1) carrying two sensors: a digital camera of type

GoPro 1080p HD HERO2 and a laser scanner device of type Hokuyo UTM-30LX-EW.

3.1.1. Digital camera – GoPro 1080p HD HERO2

For obtaining optical data, a low-cost digital camera of type GoPro 1080p HDHERO2 is used.

The device has a size of 42 mm× 60mm× 30mm, and a weight of 94 g including battery. Due

to its low weight, it is often mounted on UAVs in order to capture a sequence of images during

the flight. The GoPro 1080p HDHERO2 contains a 1/2.3ʺHDCMOS chip with rolling shutter

exposure. Various photo capturing modes can be selected. For the experiments, we chose a

moderate field-of-view with 127° and captured images with a size of 3200 × 2400 pixels.

3.1.2. Laser scanner device – Hokuyo UTM-30LX-EW

For obtaining accurate 3D measurements, a Hokuyo UTM-30LX-EW laser range finder is

used. With a size of 62 mm × 62 mm × 87.5 mm and a weight of 210 g (without cable),

the Hokuyo UTM-30LX-EW is well suited for UAV-borne scene monitoring and 3D

mapping. According to the specifications, this device emits laser pulses with a wavelength

of λ = 905 nm, and the laser safety is class 1. It provides 2D scans covering a scan angle

of 270° with an angular resolution of 0.25°. The range measurement resolution is 1 mm,

Figure 1. Sensor platform with two sensors: laser scanner (left: Hokuyo UTM-30LX-EW) and
digital camera (right: GoPro 1080p HD HERO2).
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and the accuracy is specified with ±30 mm within a range of 0.1–10 m and ±50 mm

within a range of 10–30 m (with an accuracy of σ < 30 mm for indoor environments with

less than 1000 lx). The specified pulse repetition rate is 43 kHz. For each reflected laser

pulse, the range and the corresponding intensity value are measured. Furthermore, the

Hokuyo UTM-30LX-EW provides the capability to measure up to three echoes of a

single-emitted laser pulse, where the number of echoes depends on the surface properties

of the respective objects, i.e. shape and reflectivity. In particular, transparent materials,

edges of objects or vegetation typically cause more than one echo. In these cases, the

second echo can be assumed to result from a structure in the original pulse direction

which is located behind a partially occluding object, i.e. the second echo can be treated as

an additional range measurement (Droeschel et al. 2013).

3.2. Calibration

The calibration includes the estimation of the intrinsic behaviour, i.e. the interior orienta-

tion, of the camera as well as the estimation of the position and orientation offset between

camera and laser scanner. In photogrammetry, this position and orientation offset is known

as exterior orientation, whereas the synonyms lever-arm (position) and bore-sight (orien-

tation) are commonly used for active vision systems such as laser scanners. Hence, we

separate the calibration process into geometric camera calibration (Section 3.2.1) for

estimating the intrinsic camera parameters, and lever-arm and bore-sight calibration

(Section 3.2.2) for estimating the relative orientation between the two sensors.

3.2.1. Geometric camera calibration

For automatically estimating the intrinsic behaviour of the camera with respect to the

geometric mapping of a scene onto the image plane, we assume a standard camera model

considering both radial and tangential distortion (Brown 1971, Heikkilä and Silvén 1997).

Accordingly, this geometric mapping is parameterised with the focal lengths in x- and y-

direction, the image coordinates of the principal point, a skew coefficient, and the image

distortion coefficients describing radial and tangential distortion.

3.2.2. Lever-arm and bore-sight calibration

As mentioned above, the laser of the laser scanner device operates in the near-infrared

domain with a wavelength of λ = 905 nm, which is above the visibility of the utilised

camera. Therefore, radiometric aspects might not be appropriate for calibration and conse-

quently only geometric aspects are considered for lever-arm and bore-sight calibration.

The lever-arm and bore-sight calibration is based on augmenting an algorithm for

automatic extraction of straight line segments in the line scans (Kassir and Peynot 2010)

to a method for extrinsic calibration of a camera and laser scanner (Zhang and Pless

2004). Accordingly, the first step consists of automatically extracting straight lines from

the line scans. For this purpose, a robust method is desirable which is able to reliably

extract the longest lines. Hence, we follow the strategy proposed by Kassir and Peynot

(2010) which is based on recursively testing every combination of two points in the scan

with respect to a straightness criterion, and then recursively taking out the longest line.

The selected straightness criterion involves all points between the two selected points.

Since some of the extracted lines arise from walls, tables or other objects present in the

structured environment, the next step focuses on the classification of the extracted lines
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into (1) lines resulting from the calibration plane (i.e. from the checkerboard) and (2) lines

resulting from background objects. Kassir and Peynot (2010) proposed to exploit an

iterative scheme involving different metrics for successfully selecting the respective line

from each scan which results from the calibration board. These metrics also deliver an

estimate for the size of the checkerboard. From the board lines, an estimation of the

exterior orientation is derived with the algorithm proposed by Zhang and Pless (2004) and

iteratively refined until convergence.

Since the applied algorithm for estimating the relative orientation between the sensors

is crucial for obtaining an adequate data fusion, we briefly summarise the basic principle

according to Zhang and Pless (2004). Assuming a rigid transformation between points

X
cð Þ
i in the camera coordinate frame and points X

lð Þ
i in the laser coordinate frame, the

respective transformation can formally be described with

X
lð Þ
i ¼ ΦX

cð Þ
i þ Δ (7)

whereΦ represents a rotation matrix and Δ is a translation vector. Since the measured points

X
lð Þ
i are located on the calibration plane, we first transform them to camera coordinates with

X
cð Þ
i ¼ Φ

"1 X
lð Þ
i " Δ

 !
¼ Φ

T X
lð Þ
i " Δ

 !
(8)

and then substitute X
cð Þ
i in the equation

nTX
cð Þ
i ¼ N (9)

describing the calibration plane in camera coordinates, where n denotes the normal vector

of the calibration plane and N describes the distance of the calibration plane from the

origin of the respective camera coordinate frame:

nTΦ
"1

X
lð Þ
i " Δ

 !
¼ N (10)

The normal vector n and the distance N are already known as they result from

geometric camera calibration. Further assuming that the points X
lð Þ

i are located on the

plane Y lð Þ ¼ 0 in the laser coordinate system and representing laser points with

bX
lð Þ

i ¼ X
lð Þ

i ; Z
lð Þ

i ; 1
h iT

, we can transform this equation according to

nTΦ
"1

Xi

0

Zi

2

4

3

5
lð Þ

"
ΔX

ΔY

ΔZ

2

4

3

5

0

B@

1

CA ¼ N (11)

nT Φ
"1

1 0 "ΔX

0 0 "ΔY

0 1 "ΔZ

2

4

3

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

Xi
ðlÞ

Zi
ðlÞ

1

2

4

3

5 ¼ N (12)
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nTH bX
lð Þ
¼ N (13)

where H is a 3×3 matrix describing the transformation from the laser coordinate system to

the camera coordinate system. Concatenating the respective equations for all the scans, a

linear equation system can be derived which is solved for H with a standard least squares

estimation. From the resulting matrix H , the rotation matrix Φ and the translation vector Δ

are derived according to

Φ ¼ h1;  h1 ! h2; h2½ #T (14)

Δ ¼  h1;  h1 ! h2; h2½ #Th3 (15)

where hi represents the ith column of H . Since Φ may not meet the properties of a

rotation matrix, an approximated rotation matrix Φ̂ can be derived by minimising the

Frobenius norm of Φ̂ - Φ subject to Φ̂ Φ̂
T ¼ I3!3. Although other methods for extrinsic

calibration have recently been proposed which provide more robustness in case of a lower

number of scans, it has been demonstrated that the stability of the used method tends to

become similar for n > 8 involved scans (Vasconcelos et al. 2012).

4. Experiments

By performing an indoor experiment (Section 4.1) and an outdoor experiment (Section

4.2), the proposed concept is proved.

4.1. Calibration

To calculate the image coordinates of the projected 3D laser points, a calibration has to be

carried out. Therefore, the intrinsic parameters of the camera have to be estimated by

geometric camera calibration (Section 4.1.1), and the position and orientation offset

between the camera and the laser scanner is estimated by lever-arm and bore-sight

calibration (Section 4.1.2). For this purpose, a synchronised pairwise capturing of a

calibration plane (checkerboard) with the camera and the laser scanner has to be guaran-

teed (Figure 2). This can be achieved with a software or hardware trigger (Weinmann and

Jutzi 2012).

4.1.1. Geometric camera calibration

For estimating the intrinsic camera parameters, we apply the camera calibration toolbox

for Matlab (Bouguet 2010). The estimated parameters are used to derive undistorted

images.

4.1.2. Lever-arm and bore-sight calibration

For calibrating the platform, 15 synchronised pairwise recordings of the calibration plane

have been carried out with the camera and the laser scanner. It has to be mentioned that

the sensors on the platform have been arranged with a minimum lateral shift and

maximum alignment (Figure 1) to each other. Unfortunately, neither the laser scanner
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origin nor the camera’s image sensor location relative to the housing is provided by the

manufacturer. Therefore, only a coarse evaluation of the estimated results can be provided.

As expected, the results (Table 1) reflect the same trend.

4.2. Data fusion

For a proof of the concept and for convenience, we performed an experiment with our

calibrated sensor platform. We used the sensor platform depicted in Figure 1 and captured

a sequence of four images and corresponding laser scans in front of the Karlsruhe Palace

located in the city of Karlsruhe, Germany. After each acquisition (pose), the system was

moved 2 m along a straight line (Figure 3).

Figure 4 shows the first image of the sequence of images with the projected laser

points. The red dots denote the extracted salient image points, the projected laser points

are depicted in blue. Additionally, a scaled representation of range measurements is

illustrated in green. Obviously, the range measurements fit well with the geometry of

the building façade. The salient points and the laser points have been tracked through the

sequence. Figures 5 and 6 show exemplary results.

Table 1. Estimates of the lever-arm and bore-sight calibration.

Estimated values RMS error

Lever-arm (m) −0.000625 ±0.009
0.067100 ±0.047

−0.006450 ±0.012
Bore-sight (°) 1.08 ±0.838

1.69 ±0.373
−89.3 ±0.140

Figure 2. Example of a distorted image with a calibration plane (checkerboard).
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The observations are summarised in Table 2, with the number of observations, the

redundancy parts summing up to the total redundancy of 2275, the assumed standard

deviations, and the estimated standard deviations for observed image coordinates and laser

ranges.

Table 3 summarises the pairwise distances between the four estimated projection

centres. The distances are slightly shorter than expected (preset 2 m shifts) pointing to

the possible need of a scale factor larger than one for the range measurements. Apart from

this, the distances indicate that the system had been moved along a straight line which is

in accordance with the ground truth provided by the design of the experiment.

Histograms of the residuals for the image observations and for the laser ranges are

provided in Figure 7. The histogram of the laser ranges reveals at least two outliers,

possibly stemming from reflections at window glass.

Figure 3. Data acquisition.
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5. Discussion

The experiments revealed that additional aspects may be considered to further improve the

proposed concept. In the following, we briefly discuss the main findings in this study.

Usually, a proper calibration of the sensor platform has to be done only once before

using the platform for monitoring purposes. Due to external influences (e.g. mechanical

Figure 4. First image of the sequence captured in front of the Karlsruhe Palace (red: extracted
salient image points; blue: laser points projected onto the image; green: scaled representation of
range measurements).

Figure 5. The result for the tracking from the second to the third image using the features
extracted at the first pose (red: tracked salient image points; blue: tracked laser points).
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stress or atmospheric variations), the relative orientation between the two sensors might

significantly change during the recordings. Therefore, we recommend to apply multiple

calibrations before and after the recordings, in particular for lever-arm and bore-sight

estimation.

Furthermore, the results in Table 2 reveal that the assumed standard deviations of the

image coordinates (a priori assumed: 0.5 pixels) had been slightly too pessimistic

Table 3. Estimated pairwise distances of the camera projection centres.

Pose 2 3 4

1 1.9561 m 3.9067 m 5.8622 m
2 0 m 1.9506 m 3.9061 m
3 – 0 m 1.9556 m

Note: The three pairwise distances 1-2, 2-3 and 3-4 sum up to 5.8623 m, which coincides with
the estimated distance 5.8622 m for 1-4.

Table 2. Observations and their quality.

Observations

Image
coordinates

Laser
ranges

Number of observations 3544 78
Redundancy parts 2199.1 75.9
A priori assumed standard deviations 0.50 pixel 0.10 m
Estimated standard deviations 0.44 pixel 0.12 m
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Figure 6. The results of the bundle adjustment for four poses, i.e. the estimated 3D points and the
estimated camera poses. Furthermore, the rays of the laser scan are depicted (green lines).
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(estimated: 0.44 pixels) while the assumed standard deviations of the laser range mea-

surements (a priori assumed: 0.1 m) had been too optimistic (estimated: 0.12 m). It is

noteworthy that these results only hold for valid models and error free observations.

Actually, outliers and model violations affect the estimation of the variance components

considerably so that a robust estimation is advisable.

It also has to be considered that the manufacturer of the lightweight laser scanner only

provides information with respect to the range measurement, i.e. values for range accu-

racy, measurement resolution and repeated accuracy, but unfortunately not for the scan

angles. Although the accuracies for the range measurements are specified in the sensor

specifications, inconsistencies can be observed. In our experiments, obviously a systema-

tic distance shift occurred (Table 3), which might be indirectly caused by range shifts.

Therefore, further investigations on the range measurement accuracy of the utilised laser

scanner might be worth to consider. Beside this, the scan angle accuracies should

generally be deeply investigated, e.g. by also applying variance components.

6. Conclusions and outlook

Due to the availability of small and lightweight laser scanners for mobile applications,

new innovative concepts are needed to fuse image and range measurements properly.

Necessary prerequisites are an accurate camera calibration as well as lever-arm and bore-

sight determination, respectively, for the sensor platform. In this contribution, we pro-

posed a straightforward approach to integrate different kinds of measurements within a

bundle adjustment. This framework is known to provide optimal results in terms of

statistics since in principle different variances and correlations for the observations can

be considered. To account for the different groups of measurements, we introduced a

variance components estimation in order to obtain a reasonable weight ratio between both

groups of observations.

The conducted experiments prove the feasibility and applicability of the proposed

approach; the results are in accordance with the reference data provided by the design of

the experiment with controlled conditions. The consideration of range measurements

introduces and preserves scale information, eases initialisation procedures, and clearly
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Figure 7. Histograms of the residuals for the image observations (left, with superimposed
estimated normal distribution) and for the laser ranges (right).
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improves the adjustment result. Furthermore, the additional 3D laser points densify the

scene information, and the points’ distribution on the surfaces becomes more uniform.

Conceptually, the approach can be extended to cope with a continuous data stream.

This leads to an incremental bundle adjustment within a sliding window of data frames.

Furthermore, the approach can be made more robust in order to treat outliers properly.

With the proposed method, the main contribution for an improved UAV-borne map-

ping is given. Based on the accurate data fusion, this approach can be extended by

considering dense matching techniques, e.g. given by the semi-global matching approach

(Hirschmüller 2008) to gain a precise 3D model of the environment or by the use of

different types of cameras such as the combination of RGB, multispectral and thermal

infrared cameras (Lucieer et al. 2012) for mapping different environmental characteristics.
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ABSTRACT:

The automatic and accurate alignment of multiple point clouds is a basic requirement for an adequate digitization, reconstruction and
interpretation of large 3D environments. Due to the recent technological advancements, modern devices are available which allow for
simultaneously capturing intensity and range images with high update rates. Hence, such devices can even be used for dynamic scene
analysis and for rapid mapping which is particularly required for environmental applications and disaster management, but unfortu-
nately, they also reveal severe restrictions. Facing challenges with respect to noisy range measurements, a limited non-ambiguous range,
a limited field of view and the occurrence of scene dynamics, the adequate alignment of captured point clouds has to satisfy additional
constraints compared to the classical registration of terrestrial laser scanning (TLS) point clouds for describing static scenes. In this
paper, we propose a new methodology for point cloud registration which considers such constraints while maintaining the fundamental
properties of high accuracy and low computational effort without relying on a good initial alignment or human interaction. Exploiting
2D image features and 2D/2D correspondences, sparse point clouds of physically almost identical 3D points are derived. Subsequently,
these point clouds are aligned with a fast procedure directly taking into account the reliability of the detected correspondences with
respect to geometric and radiometric information. The proposed methodology is evaluated and its performance is demonstrated for data
captured with a moving sensor platform which has been designed for monitoring from low altitudes. Due to the provided reliability and
a fast processing scheme, the proposed methodology offers a high potential for dynamic scene capture and analysis.

1 INTRODUCTION

An adequate description of a 3D scene is typically derived in the
form of point clouds consisting of a large number of measured
3D points and, optionally, different attributes for each point such
as intensity or color. The sampling of observed object surfaces
should be as dense and complete as possible. Due to occlusions
resulting from objects in the scene or areas with low point density,
typically multiple point clouds have to be captured from different
locations in order to obtain complete objects and full scene cov-
erage. However, as the spatial coordinates of each point cloud
are only determined with respect to a local coordinate frame of
the sensor, all captured point cloud data has to be transferred into
a common coordinate frame which is commonly referred to as
point cloud registration or 3D scan matching.

The approaches for point cloud registration can be categorized
by considering the data they exploit. Standard approaches such
as the Iterative Closest Point (ICP) algorithm (Besl and McKay,
1992) or Least Squares 3D Surface Matching (LS3D) (Gruen and
Akca, 2005) only exploit spatial 3D information and minimize ei-
ther the difference between point clouds or the distance between
matched surfaces. The use of point distributions or geometric
primitives such as planes has also been proposed in literature (e.g.
(Magnusson et al., 2007; Brenner et al., 2008)) and belongs to this
category. Considering that the captured scans typically represent
data measured on a regular scan grid, the spatial 3D information
can also be represented as range image. Exploiting visual fea-
tures in this range image significantly alleviates the registration
process. As most of the modern active 3D sensors provide inten-
sity or color information in addition to the spatial 3D informa-
tion, respective intensity or color images may also be available.
The intensity images are typically derived from reflectance in-
formation representing the respective energy of the backscattered

laser light, whereas color information is usually obtained from
co-registered camera images. Such intensity or color images pro-
vide a higher level of distinctiveness and allow for detecting reli-
able correspondences between visual features.

Nowadays, many approaches for point cloud registration exploit
visual features derived from intensity or color images in order
to obtain sparse point clouds. Detected feature correspondences
between the respective images indicate corresponding 3D points.
Hence, the registration of such sparse point clouds may for in-
stance be based on a standard rigid transformation (Eggert et
al., 1997) which is typically combined with the RANSAC algo-
rithm for increased robustness in case of existing outlier corre-
spondences (Seo et al., 2005; Boehm and Becker, 2007; Barnea
and Filin, 2007). As a powerful alternative, the transfer to solving
the Perspective-n-Point (PnP) problem has been proposed (Wein-
mann et al., 2011; Weinmann and Jutzi, 2011).

Recently, an experimental setup for surveillance applications in
indoor and outdoor environments has been presented which is
suited for simulating airborne scene monitoring from low alti-
tudes fairly realistically (Hinz et al., 2011). The first results pre-
sented in (Weinmann and Jutzi, 2012) indicate a high potential for
dynamic scene capture and analysis, but they also reveal that ad-
ditional effort is required to obtain satisfying results. For dynamic
scene capture, highly accurate 3D measurements as provided by a
terrestrial laser scanner cannot be assumed, but the modern scan-
ning devices offer a simultaneous image-based acquisition of in-
tensity and range information with high update rates. Hence, the
registration process has to provide high-quality estimates of the
transformation parameters, low computational effort and robust-
ness with respect to noisy range measurements. Furthermore, the
limited field of view and the limited non-ambiguous range have to
be taken into account. An important and meanwhile commonly
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used first step is the reduction of captured point cloud data to
sparse point clouds by using visual features in 2D imagery. A
reliable feature matching yields 2D/2D correspondences and the
respective 3D/3D correspondences. In contrast to previous work
(Weinmann and Jutzi, 2011; Weinmann and Jutzi, 2012), the pro-
posed methodology involves an improved scheme for outlier re-
jection and estimation of inlier reliability. This scheme exploits
information derived from the reliability of range measurements as
well as the reliability of feature correspondences which is based
on intensity measurements. With the further consideration of
the plausibility of corresponding 3D points, a straightforward ap-
proach for aligning point clouds can be applied which would not
be suitable without a reliable outlier removal. The contribution of
this paper is a new methodology for fast and accurate point cloud
registration which

• exploits sparse point clouds with additional point attributes
in form of quality measures based on geometric and radio-
metric information,

• introduces an improved weighting scheme considering the
derived quality measures, and

• involves a plausibility check taking into account the detected
3D/3D correspondences.

After presenting the methodology for successive pairwise regis-
tration in Section 2, the configuration of the sensor platform is
described in Section 3. Subsequently, in Section 4, an evaluation
is carried out which demonstrates the performance of the new
approach for a realistic test scenario. In Section 5, the derived
results are discussed with respect to basic requirements and other
approaches. Finally, the content of the entire paper is concluded
in Section 6 and suggestions for future work are outlined.

2 METHODOLOGY

The proposed methodology focuses on airborne scene monitor-
ing with a moving sensor platform. After data acquisition (Sec-
tion 2.1), a preprocessing is carried out in order to get normalized
intensity images and the respective 3D point cloud (Section 2.2).
As the captured point clouds are corrupted with noise, a quality
measure is derived for each 3D point (Section 2.3). Subsequently,
distinctive features are extracted from 2D intensity images (Sec-
tion 2.4). A comparison of these features yields reliable 2D/2D
correspondences between different frames as well as a quality
measure taking into account the distinctiveness of matched fea-
tures. Additionally, the projection of the respective 2D points
into 3D space yields 3D/3D correspondences. As the influence
of each 3D/3D correspondence on the registration process should
rely on a respective quality measure, a weighting scheme consid-
ering geometric and radiometric information is introduced (Sec-
tion 2.5). Finally, the point cloud registration is carried out by es-
timating the rigid transformation between two sparse point clouds
with a weighted least squares alignment (Section 2.6).

2.1 Data Acquisition

The proposed concept focuses on the use of range imaging de-
vices which are also referred to as range cameras, i.e. devices
which provide 2D image representations of captured range and
intensity/color. These devices should additionally provide a high
update rate for capturing dynamic scenes or for rapid mapping.

2.2 Preprocessing

The first step consists of adapting the recorded data according to
(Weinmann and Jutzi, 2012), where a histogram normalization is
carried out which maps the captured intensity information to the

interval [0, 255]. For color images, a conversion to gray-valued
images could be applied in order to obtain intensity images. Fur-
thermore, the lens distortion has to be taken into account which
involves an initial camera calibration and the respective correc-
tion of the captured 3D information.

2.3 Point Quality Assessment

As the range measurements might be corrupted with noise, it
is suitable to add a quality measure as attribute for each mea-
sured 3D point. Considering the 2D representation of the mea-
sured range information, the variation of the range values within
small and local image neighborhoods has a strong influence on
the reliability of measured 3D points (Weinmann and Jutzi, 2011;
Weinmann and Jutzi, 2012). Hence, for each point on the regu-
lar 2D grid, the reliability of the respective range information is
described with the standard deviation σ ∈ R of all range values
within a 3 × 3 neighborhood. Low values σ indicate a 3D point
on a smooth surface and are assumed to be reliable, whereas high
values indicate noisy and unreliable range measurements. Result-
ing from this, a confidence map MC is available. In addition to
this, the quality measure could further exploit the active intensity
measurements representing the energy of the backscattered laser
light if these are available, e.g. for range imaging devices such as
PMD[vision] CamCube 2.0 or MESA Imaging SR4000.

2.4 2D Feature Extraction and Projection to 3D

Once the measured information has been assigned additional at-
tributes, the registration process can rely on both range and inten-
sity information, and a confidence map providing the respective
quality measure. For detecting corresponding information, the
Scale Invariant Feature Transform (SIFT) (Lowe, 2004) is ap-
plied on the intensity images. This yields distinctive keypoints at
2D image locations xi ∈ R2 as well as the respective local de-
scriptors which are invariant to image scaling and image rotation,
and robust with respect to image noise, changes in illumination
and small changes in viewpoint. These properties of the descrip-
tors allow a reliable feature matching relying on the ratio ρ ∈ R
with

ρ =
d(N1)

d(N2)
(1)

where d(Ni) with i = 1, 2 denotes the Euclidean distance of a
descriptor belonging to a keypoint in one image to the i-th near-
est neighbor in the other image. A low value of ρ indicates a high
similarity to only one of the derived descriptors belonging to the
other image. Thus, the ratio ρ ∈ [0, 1] describes the distinc-
tiveness of the occurring features. Meaningful feature correspon-
dences arise from a greater difference between d(N1) and d(N2)
and hence, the ratio ρ has to satisfy the constraint ρ ≤ tdes, where
tdes is a certain threshold typically chosen within the interval
[0.6, 0.8]. As the SIFT features are localized with subpixel ac-
curacy, the assigned information has to be interpolated from the
information available for the regular and discrete 2D grid, e.g. by
applying a bilinear interpolation. Subsequently, the 2D/2D corre-
spondences xi ↔ x′i between these visual features are used to re-
duce the captured point cloud data to sparse point clouds of phys-
ically almost identical 3D points Xi ↔ X′i with Xi,X

′
i ∈ R3.

Including the assigned attributes, each correspondence can be de-
scribed with two samples of corresponding information accord-
ing to

si = (xi,Xi, σi, ρi) ↔ s′i =
(
x′i,X

′
i, σ
′
i, ρ
′
i

)
(2)

where σi and σ′i indicate the quality of the derived 3D points with
respect to measured range information, and ρ∗i = ρi = ρ′i are the
assigned quality measures with respect to the distinctiveness of
the used intensity information.
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2.5 Weight Calculation

For weighting the influence of each 3D/3D correspondences on
the estimated transformation, a weight parameter has to be de-
rived for each 3D/3D correspondence. Given the calculated val-
ues σi, σ

′
i ∈ [0,∞) and ρ∗i ∈ [0, tdes], which are considered

as quality measures for the respective 3D points Xi and X′i, the
influence of the i-th 3D/3D correspondence Xi ↔ X′i on the
registration process can be weighted by applying a histogram-
based approach (Weinmann and Jutzi, 2012). First, the interval
[0m, 1m] is divided into nb = 100 bins of equal size, and the
values σi and σ′i are mapped to the respective bin. Those val-
ues above the upper boundary of 1m are mapped to the last bin.
The occurrence of mappings to the different bins is stored in his-
tograms h = [hj ]j=1,...,100 and h′ =

[
h′j
]
j=1,...,100

. From
these, the cumulative histograms hc and h′c are subsequently de-
rived, where the entries reach from 0 to the number n of detected
3D/3D correspondences. For assigning those 3D points with a
lower σ a higher weight, as these are more reliable according to
the definition, the inverse cumulative histograms (ICHs)

hc,inv =

[
n−

i∑
j=1

hj

]
i=1,...,100

(3)

and

h′c,inv =

[
n−

i∑
j=1

h′j

]
i=1,...,100

(4)

are established. The quality measure ρ∗i encapsulating the relia-
bility of the matching process is also used for such a weighting
scheme based on nb = 100 bins of equal size covering the inter-
val [0, 1]. Resulting from this, a histogram h∗ =

[
h∗j
]
j=1,...,100

and a cumulative histogram h∗c are available as well as an inverse
cumulative histogram h∗c,inv with

h∗c,inv =

[
n−

i∑
j=1

h∗j

]
i=1,...,100

(5)

from which additional weight parameters are derived. Thus, the
new weighting scheme yields three weight parameters hc,inv(σi),
h′c,inv(σ′i) and h∗c,inv(ρ∗i ) for each 3D/3D correspondence. From
these, the respective weight wi is finally determined with

wi = min
{
hc,inv(σi),h

′
c,inv(σ′i),h

∗
c,inv(ρ∗i )

}
(6)

as the minimum of these values.

2.6 Point Cloud Registration

Introducing a rotation matrix R = [rpq] ∈ R3×3 and a transla-
tion vector t = [tp] ∈ R3, the spatial relation between two points
Xi,X

′
i ∈ R3 representing a 3D/3D correspondence Xi ↔ X′i

can formally be described as

X′i = RXi + t (7)

or more detailed as

X ′i = r11Xi + r12Yi + r13Zi + t1 (8)
Y ′i = r21Xi + r22Yi + r23Zi + t2 (9)
Z′i = r31Xi + r32Yi + r33Zi + t3 (10)

where a perfect mapping is achieved in the ideal case. How-
ever, the 3D/3D correspondences typically do not fit perfectly
and therefore, a fully automatic estimation of the transformation
parameters can be derived by minimizing the error between the

point clouds in the least squares sense. For this purpose, the three
equations resulting from each of the n 3D/3D correspondences
are concatenated. Subsequently introducing vector-matrix nota-
tion and separating the vector u ∈ R12 containing the unknown
parameters according to

u = [r11, r12, r13, r21, r22, r23, r31, r32, r33, t1, t2, t3]
T (11)

yields a linear equation system of the form

l = Au (12)

with l ∈ R3n and A ∈ R3n×12. For solving this linear equation
system, the least squares estimate can be derived as

û =
(
AT PA

)−1

AT Pl (13)

where the matrix P ∈ R3n×3n is used for weighting the im-
portance of the respective observations. As the observations are
assumed to be independent, the weight matrix P is considered
as diagonal matrix. Exploiting the weights wi defined in Section
2.5, which are stored in the vector w ∈ Rn, an initialization of
the weight matrix P according to

P = P0 = diag


(

w∗
i

‖w∗‖

)2

(
di
‖d‖

)2


i=1,...,3n

(14)

is introduced, where w∗ ∈ R3n contains the weights for each co-
ordinate. The parameters di describe the difference between the
respective change of a coordinate value and the mean change of
the coordinate over all correspondences. The introduction of the
parameters di is only possible for very small rotations of the sen-
sor platform, but they ensure a weighting according to the plausi-
bility of the respective 3D/3D correspondences which is derived
from considering the major trend of all correspondences. Ad-
ditionally, those correspondences whose 3D coordinates do not
even fit to the confidence interval within at least two standard de-
viations of the mean coordinates, i.e. a confidence level of 95%,
are removed. By considering the estimated improvement v̂ ac-
cording to v̂ = Aû− l with v̂ ∈ R3n, an iterative update

P = Pk = diag

 1(
v̂i
‖v̂‖

)2


i=1,...,3n

(15)

is applied until the estimated transformation converges to changes
below a certain threshold or until a maximum number of kmax

iterations is reached.

3 ACTIVE MULTI-VIEW RANGE IMAGING SYSTEM

For demonstrating the performance of the proposed methodology,
a sensor platform is used which allows for monitoring from low
altitudes (Hinz et al., 2011). This platform is shown in Figure 1,
and it is equipped with

• two range imaging devices (PMD[vision] CamCube 2.0) for
data acquisition,

• a notebook with a solid state drive for efficient data storage,
and

• a 12V battery with 6.5Ah for independent power supply.
power supply

As the relative orientation of the two range imaging devices can
easily be changed, the system allows for different multi-view op-
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Figure 1: Sensor platform.

tions with respect to parallel, convergent or divergent data ac-
quisition geometries. Due to the large payload of several kilo-
grams, mounting the components for data acquisition and data
storage on an unmanned aerial vehicle (UAV) is still impractica-
ble. Hence, for scene capture, the sensor platform is moved along
a rope. Considering typical surveillance applications, the combi-
nation of the sensor platform with a scaled test scenario allows a
fairly realistic simulation of a future operational system.

A closer consideration of the devices used for data acquisition
reveals the potential as well as the challenges of the proposed
system. A PMD[vision] CamCube 2.0 simultaneously captures
geometric and radiometric information in form of images with
a single shot, and hence, the captured information can be orga-
nized in frames. Each frame consists of a range image IR, an
active intensity image Ia and a passive intensity image Ip. The
active intensity depends on the illumination emitted by the sen-
sor, whereas the passive intensity depends on the background il-
lumination arising from the sun or other external light sources.
As the captured images have a size of 204 × 204 pixels which
corresponds to a field of view of 40◦ × 40◦, measurements with
an angular resolution of approximately 0.2◦ are provided. The
frame can be updated with high frame rates of more than 25 re-
leases per second. Hence, the device is well-suited for capturing
dynamic scenes. A great advantage of the chosen range imaging
device is that it can also be used within outdoor environments,
but due to the relatively large influence of noise effects arising
from multipath scattering as well as the large amount of ambient
radiation in comparison to the amount of emitted radiation, a lim-
ited absolute range accuracy of a few centimeters and thus noisy
point clouds can be expected. A visualization of captured data is
shown in Figure 2.

Figure 2: Visualization of captured data: normalized passive in-
tensity image (left), range image (center) and textured 3D point
cloud (right).

As the whole system involves multiple range imaging devices for
extending the field of view, it has to be considered that these may
influence each other and that interferences are likely to occur.
This is overcome by choosing different modulation frequencies.
Furthermore, a synchronization of both range imaging devices is
required in order to obtain corresponding frames with respect to
a temporal reference. For this purpose, a software-based trigger
is introduced. Optionally, the range measurement restriction can

also be resolved with a hardware-based unwrapping procedure
(Jutzi, 2012), which requires the use of different modulation fre-
quencies for each of the two range imaging devices.

4 EXPERIMENTAL RESULTS

The experiments refer to the scene depicted in Figure 3. First, a
local coordinate frame is defined in the center between both range
imaging devices with fixed orientation with respect to the sensor
platform. This coordinate frame is referred to as body frame (su-
perscript b). The Xb-direction is oriented to the forward direc-
tion tangential to the rope, the Y b-direction to the right and the
Zb-direction downwards. Subsequently, a global reference frame
(superscript g) is defined which coincides with the initial position
and orientation of the sensor platform. As the relative orientation
between the devices and the platform is already known from a
priori measurements, the projected 3D points Xc

i which are re-
lated to the respective local coordinate frame of a range imaging
device (superscript c) can directly be transformed into the body
frame (superscript b) of the sensor platform according to

Xb
i = Rb

cX
c
i + tb

c (16)

where Rb
c and tb

c describe the rotation and translation between
the respective coordinate frames.

Figure 3: Illustration of the observed scene.

During the whole movement of the sensor platform, a total num-
ber of 116 frames is captured. Each frame contains simultaneous
measurements of the two range imaging devices. Although there
are no measured reference values for each single position in or-
der to check the deviation of the position estimates from the real
positions, a validation of the proposed methodology is still possi-
ble. As the sensor platform moves along a rope, the projection of
the real trajectory onto theXgY g-plane represents a straight line.
Furthermore, a loop closure constraint may be considered, where
start position and end position of the sensor platform are identi-
cal. This is reached by repeating the first frame at the end of the
movement. Additional criteria may involve a visual impression
of several registered point clouds which yields insights about the
scene and the quality of captured data. Hence, the evaluation of
the proposed methodology involves

• the deviation σY from the straight line in the XgY g-plane
with Xg = 0m,

• the absolute error eloop occurring when assuming an identi-
cal start and end position of the sensor platform, and

• a visual inspection of the registered point clouds.

For feature matching, a threshold of tdes = 0.8 is selected. The
estimated trajectory obtained via successive pairwise registration
is shown in Figure 4 in nadir view. The standard deviation σY
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of the position estimates projected into theXgY g-plane from the
straight line with Xg = 0m is σY = 0.0378m, and the absolute
error when considering a closed loop is eloop = 0.0967m. A
visualization of registered point clouds in a common coordinate
frame is illustrated in Figure 5. The figure also shows that the raw
point clouds contain many noisy 3D measurements which have to
be removed for a subsequent scene analysis.

Figure 4: Projection of the estimated trajectory onto the XgY g-
plane (red) and visualization of the distribution of measured 3D
scene points (green).

Figure 5: Visualization of registered point clouds: raw point
cloud data (top) and those 3D points Xi satisfying σi ≤ 0.03m
(bottom).

For data captured at two successive time steps during the move-
ment of the sensor platform, the general appearance of the calcu-
lated histograms, cumulative histograms and inverse cumulative
histograms is visualized in Figure 6, Figure 7 and Figure 8. The
example is based on n1 = 480 detected SIFT correspondences
between the normalized active intensity images and n2 = 508
detected SIFT correspondences between the normalized passive
intensity images, i.e. a total number of n = 928 SIFT corre-

Figure 6: Histograms depicting the occurrence of range reliabil-
ities σi and σ′i (left and center), and the occurrence of SIFT cor-
respondences with a SIFT ratio ρ∗i (right).

Figure 7: The respective cumulative histograms for the his-
tograms depicted in Figure 6.

Figure 8: The respective inverse cumulative histograms (ICHs)
for the histograms depicted in Figure 6.

spondences resulting in the same number of 3D/3D correspon-
dences after the respective projection into 3D space. Finally,
the required time effort for processing each frame and the rela-
tions between two frames has to be considered. The methodology
has been implemented in Matlab and tested on a standard note-
book (2.3GHz, 4GB RAM). For each frame, the average time
required for preprocessing, point quality assessment, feature ex-
traction and point projection is 1.6408s (Table 1). For obtaining
the relations between two frames, the average time required for
feature matching, calculation of weights and point cloud regis-
tration is 0.4821s (Table 2). The separate consideration of the
average time required for the single tasks reveals that feature ex-
traction and feature matching contribute to more than 90% of the
whole time effort. This can significantly be reduced by applying
a GPU-based implementation of SIFT or more efficient feature
detectors and descriptors.
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Task Time
Preprocessing 0.0766s
Point Quality Assessment 0.0250s
Feature Extraction 1.5295s
Point Projection 0.0097s∑

1.6408s

Table 1: Average time effort for the processing of a single frame.

Task Time
Feature Matching 0.4706s
Weighting Scheme 0.0022s
Registration Process 0.0092s∑

0.4821s

Table 2: Average time effort for aligning two point clouds.

5 DISCUSSION

In contrast to standard approaches such as the ICP algorithm, the
presented approach does not require a good a priori alignment
of the scans. Furthermore, it can be applied for very general
scenes without assuming the presence of regular surfaces such
as planes and can even cope with noisy measurements arising
from monitoring within outdoor environments. The experimen-
tal results show that the proposed methodology is suited to re-
cover the transformation parameters fast and accurately by ex-
ploiting synergies arising from the combined use of geometric
and radiometric information. The proposed methodology directly
takes into account the reliability of the 3D information captured
with the two range cameras. Thus, it is even possible to stronger
rely on the measurements of one range imaging device if the
second range imaging device captures spatial information with
more noise. Additionally considering how good the correspond-
ing 3D/3D points fit together with respect to the gradient infor-
mation of the local neighborhood in the 2D intensity representa-
tions strengthens the reliability with a further and complementary
quality measure assigned to each 3D/3D correspondence. Sub-
sequently, in the registration process, the plausibility of the re-
spective 3D/3D correspondences and the iterative improvement
of the geometric alignment of each coordinate are involved. If
the estimated improvement v̂i is relatively large for a coordinate,
the coordinate is considered as rather unreliable and the respec-
tive influence on the estimated transformation is assigned a lower
weight. Due to all these considerations, a high reliability of the
estimated flight trajectory can be expected. The only assumption
of the registration process is the existence of structured 2D inten-
sity representations in order to derive corresponding points via
local image features. This, however, is a common assumption for
all image-based approaches exploiting distinctive points or lines
for point cloud registration.

6 CONCLUSIONS AND FUTURE WORK

In this paper, a new concept for data acquisition with a moving
active multi-view range imaging system and a successive regis-
tration of the captured point clouds has been presented. Thus,
the system is able to face the challenges arising from noisy range
measurements, a limited non-ambiguous range and a limited field
of view in dynamic environments. The proposed methodology
focuses on the use of sparse point clouds and additional attributes
from which a common quality measure considering geometric
and radiometric information is derived via inverse cumulative his-
tograms. This quality measure allows for weighting the influence
of each 3D/3D correspondence on the estimated transformation

according to its reliability. Further applying a plausibility check
for the detected 3D/3D correspondences, the registration process
can be carried out with a weighted least squares adjustment. For
future work, it would be desirable to detect relevant objects in
the scene and describe their behavior by estimating the respective
motion trajectories. This can also be achieved by exploiting the
combined use of geometric and radiometric information as well
as the respective consideration of 3D point cloud data and 2D
image representations. Promising results can be expected.
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Abstract— The automatic and accurate alignment of captured
point clouds is an important task for digitization, reconstruction
and interpretation of 3D scenes. Standard approaches such as
the ICP algorithm and Least Squares 3D Surface Matching
require a good a priori alignment of the scans for obtaining
satisfactory results. In this paper, we propose a new and fast
methodology for automatic point cloud registration which does
not require a good a priori alignment and is still able to recover
the transformation parameters between two point clouds very
accurately. The registration process is divided into coarse reg-
istration based on 3D/2D correspondences and fine registration
exploiting 3D/3D correspondences. As the reliability of single
3D/2D correspondences is directly taken into account by applying
Inverse Cumulative Histograms (ICHs), this approach is also
capable to detect reliable tie points, even when using noisy raw
point cloud data. The performance of the proposed methodology
is demonstrated on a benchmark dataset and therefore allows
for direct comparison with other already existing or future
approaches.

I. INTRODUCTION

Terrestrial laser scanners (TLSs) are well-suited for dense
and high-quality 3D reconstruction of static scenes and hence,
for applications such as the digitization of urban environments
or cultural heritage. A captured scan is typically represented as
point cloud representing object surfaces in the local environ-
ment. Due to limitations with respect to range measurement
and occlusions resulting from objects in the scene, however, a
single scan is not sufficient for adequately describing complete
objects. These circumstances demand for capturing multiple
point clouds from different locations. As a consequence, these
point clouds have to be aligned correctly in a common coor-
dinate frame which is referred to as point cloud registration.

Standard approaches such as the Iterative Closest Point
(ICP) algorithm [1] or Least Squares 3D Surface Matching
(LS3D) [3] only exploit spatial 3D information. Whereas the
ICP algorithm iteratively minimizes the difference between
two point clouds, which can be very time-consuming for
large point clouds, the LS3D approach minimizes the distance
between matched surfaces. Both methods focus on a local
optimization and require a good initial alignment in order
to converge to the correct transformation. Other approaches
are based on the distribution of 3D points (e.g. [5]) or on
geometric primitives such as planes, spheres, cylinders or tori
(e.g. [7]).

Whereas some techniques for point cloud registration only
exploit 3D geometry, other techniques rely on either 3D geom-
etry combined with its 2D representation as range image or 3D
geometry combined with the respective 2D representation of
intensity information. Involving additional information, which
in fact is already available, is valuable and therefore signifi-
cantly alleviates the registration process. The representations
of the captured range and intensity information on the regular
2D scan grid, for instance, allow for applying image-based
techniques. In general, features in the intensity image provide
a higher level of distinctiveness than features in the respective
range image [8] and, probably, information not represented in
the range measurements. For both types of images, the image-
based techniques are able to recover reliable correspondences
between different images, and point correspondences are par-
ticularly useful for scenes without regular object surfaces.
Projecting the information of distinctive 2D points to 3D space
according to the respective range information yields sparse
point clouds describing physically almost identical 3D points.
Such reliable 3D/3D correspondences allow for applying the
estimation of a rigid transformation which represents the least
squares method in 3D and is typically combined with the
RANSAC algorithm [2] for obtaining more robust results if
there are still some outlier correspondences left [8]. Instead
of using 3D/3D correspondences, the techniques presented
in [9] and [10] introduce virtual planes and establish 3D/2D
correspondences which allow for efficiently registering point
clouds by applying a RANSAC-based scheme involving the
EPnP algorithm [6].

In this paper, we propose a methodology which is based
on a combined range and intensity representation. Similar to
many techniques, the whole registration process is divided into
coarse and fine registration. The coarse registration is compa-
rable to the approach presented in [10] and uses 3D/2D cor-
respondences, but it includes an additional measure indicating
the quality of each point correspondence. This measure is used
for weighting the influence of single point correspondences
on the estimated transformation and already removing unre-
liable point correspondences. The resulting coarse estimate
provides a high accuracy, so that a second outlier removal
based on 3D distances between corresponding and coarsely
aligned 3D points is sufficient to obtain the most promising
3D/3D correspondences. Hence, at this stage, a simple rigid

26.00 c©2013 IEEE978-1-4799-0211-8/13/$31.00 ©2013 IEEE
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transformation is applicable for fine registration based on the
remaining inlier correspondences and thus, the standard 3D
Least Squares method which minimizes the difference between
the respective point correspondences.

The contribution of this paper is a new methodology for
point cloud registration which directly involves a quality
measure for weighting the influence of corresponding infor-
mation on the estimated transformation parameters in coarse
registration, and replaces typical iterative schemes for fine
registration by combining very reliable correspondences with
a straight-forward approach.

II. METHODOLOGY

A. Feature Extraction and Matching

In a first step, the measured intensity information of each
scan is adapted to the interval [0, 255] by applying a histogram
normalization. Image representations of this intensity infor-
mation allow for efficiently comparing the scans via visual
2D features and, consequently, for preparing an unorganized
set of TLS point clouds for a successive pairwise registration
scheme. In order to ensure a reliable detection of correspond-
ing information, the Scale Invariant Feature Transform (SIFT)
[4] is used. This algorithm yields distinctive keypoints at blob-
like structures of an image as well as the respective local fea-
ture descriptors which are invariant to image scaling and image
rotation, and robust with respect to image noise, changes
in illumination and small changes in viewpoint. The vector
representation of the descriptors allows a consideration of the
Euclidean distance between two descriptors for deriving their
similarity. In order to obtain only the distinctive descriptors,
the ratio of the Euclidean distances of a descriptor belonging to
a keypoint in one image to the nearest neighbor and the second
nearest neighbor in the other image is considered. This ratio
can vary between 0 and 1. If it is below a certain threshold
tdes = 0.6 . . . 0.8, there is only one similar descriptor in the
other image and hence, the respective feature correspondence
is considered to be distinctive.

Comparing any pair of intensity image representations
belonging to different scans i and j, the confusion matrix
C = [cij ] can be derived where the entry cij represents
the total number of detected feature correspondences. Once
the confusion matrix is available, the graph-based algorithm
presented in [10] is used to derive the minimum spanning
tree and sort the scans according to their similarity for the
successive pairwise registration process.

B. Point Quality Assessment and Interpolation

The raw data of a typical scan is partially corrupted with
noise, i.e. only points which arise from objects in the scene
will probably provide a smooth surface whereas points corre-
sponding to the sky or points along edges of the objects might
be very noisy. In order to detect such noisy measurements,
the standard deviation σ of all range values within a 3 × 3
neighborhood is calculated for each point on the regular 2D
grid and used as a measure describing the reliability of the

respective range information [10]. This yields a confidence
map MC .

In feature extraction, the image locations of SIFT features
are determined with subpixel accuracy. The spatial 3D in-
formation, the intensity information and the measure for the
point quality however are only available for discrete points
on a regular scan grid. For this reason, the respective 3D
points belonging to the SIFT feature correspondences xi ↔ x′

i

and the assigned quality measures σi and σ′
i have to be

interpolated from the existing data, e.g. by applying a bilinear
transformation. Thus, by exploiting meaningful 2D points xi

and x′
i, the large and dense point cloud data is reduced

to sparse point clouds where 3D/3D point correspondences
Xi ↔ X′

i indicate physically almost identical 3D points Xi

and X′
i. Besides, the reliability of each of the remaining 3D

points Xi and X′
i is specified with the quality measure σi and

σ′
i.

C. Weight Calculation with Inverse Cumulative Histograms

Given a set of derived 2D points xi, the respective 3D points
Xi and a measure σi describing the respective reliability, the
importance of each of these points can be weighted. A measure
suited for such a weighting can be derived by applying Inverse
Cumulative Histograms (ICHs) [11]. The creation of an ICH is
initialized by dividing the interval [0m, 1m] into nb = 100 bins
of equal size. For all points, the respective quality measure
σi is mapped to the respective bin bj . Due to the upper
limitation, points with σi > 1m are mapped to the last bin.
The occurrence of mappings to the different bins is stored in
a histogram h = [hj ]j=1,...,100. The cumulative histograms

hc =

⎡
⎣

i∑

j=1

hj

⎤
⎦
i=1,...,100

(1)

then reach from 0 to the number n of detected correspon-
dences. However, points with a low standard deviation σi are
more reliable and should therefore be assigned a higher weight
than those points with a higher standard deviation. For this
reason, the ICH

hc,inv =

⎡
⎣n−

i∑

j=1

hj

⎤
⎦
i=1,...,100

(2)

is derived which satisfies this constraint. As point correspon-
dences have already been derived at this stage, this scheme
is applied for samples si = (Xi, σi) and the corresponding
samples s′i = (X′

i, σ
′
i). For finally weighting the influence

of each correspondence on the estimated transformation, the
minimum weight of both values for a correspondence is used,
and in order to keep the difference between maximum and
minimum possible weight reasonable, this measure is modified
to

wi =
√
min{hc,inv(σi),h′

c,inv(σ
′
i)}. (3)
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D. Point Cloud Registration

The spatial transformation between two point clouds with
3D/3D correspondences Xi ↔ X′

i can formally be described
as X′

i = RXi + t, where R and t denote the difference in
rotation and translation between two point clouds. Additional
information, however, can be exploited to reduce the effect of
outlier correspondences which might still be present at this
stage. Hence, similar to [9] and [10], the coarse registration
is based on transferring the point cloud registration to solving
the PnP problem. This can be achieved by introducing virtual
image planes PC assigned to each scan according to

xi = KC [RC |tC ]Xi, (4)

where KC can be considered as calibration matrix of a virtual
camera C and the parameters RC and tC describe its fixed
relative orientation with respect to the local coordinate frame
of the scanning device. As a virtual camera is assumed, any
values for focal length or principal point are possible and the
image plane does not necessarily have to be limited on a finite
area. Without loss of generality, one position of the scanner
can be assumed to be known, and hence, the projections
of the 2D locations of SIFT features to 3D space are also
known. Combining the known 3D points of this scan with the
2D observations on the virtual plane assigned to a new scan
yields 3D/2D correspondences. These 3D/2D correspondences
are required for solving the PnP problem, and the Efficient-
Perspective-n-Point (EPnP) algorithm [6] provides an accurate
solution with only linear complexity. For increased robustness,
the EPnP algorithm is typically combined with a RANSAC-
based scheme. The resulting estimate usually provides a high
reliability.

However, as there might still be some outlier correspon-
dences due to periodic shapes of façades, a subsequent outlier
removal is carried out which focuses on the 3D distances
d(Xi,X

′
i) after aligning the sparse point clouds according

to the coarse estimate. As small 3D distances indicate the
most promising point correspondences, only the reliable point
correspondences with d(Xi,X

′
i) < d̄, where d̄ denotes the

median value of all 3D distances, are used for the subsequent
fine registration. Here, the high reliability of the remaining
3D/3D correspondences is sufficient to apply a standard rigid
transformation minimizing the difference between the sparse
point clouds in the standard Least Squares sense. For calcu-
lating a rigid transformation, at least three non-collinear point
correspondences are required. The presence of more 3D/3D
correspondences increases the accuracy of the transformation,
and the presence of outlier correspondences causing erroneous
estimates is very unlikely at this stage.

III. EVALUATION AND DISCUSSION

A. Dataset

The performance of the proposed methodology is demon-
strated on a benchmark TLS dataset acquired in the German
city of Hanover in an area called Holzmarkt [12]. It consists
of several scans and the respective reference values for the

Fig. 1. Image representations for intensity and range information for the
scan with the scan ID 01.

Fig. 2. Scene with the different scan positions (left) and the derived minimum
spanning tree for successive pairwise registration (right).

relative orientation between these scans. The scans have been
recorded with a Riegl LMS-Z360i and contain information
about the spatial 3D coordinates of object points as well
as the corresponding intensity information (Fig. 1). Each
scan covers 360◦ in the horizontal direction and 90◦ in the
vertical direction with a single shot measurement accuracy
of 12mm and an angular resolution of 0.12◦ up to a range
of approximately 200m. Thus, a scan is represented by 2.25
million 3D points at a regular scan grid of 3000× 750 points
which allows a 2D representation for intensity and range data.
For the tests, the subset of the 12 upright scans is used.

B. Experimental Results

First, the scans are ordered according to their similarity for
the successive pairwise registration process. The scene, the
scan positions named according to the respective scan ID,
and the scheme derived via the minimum spanning tree are
illustrated in Fig. 2. The arrows in the right part of Fig. 2 are
labeled with the number of SIFT correspondences between the
respective intensity images. For the first pair of scans, 217
SIFT correspondences have been detected with tdes = 0.66.
As only the filtered point clouds are available, only 182 of
them can be assigned the corresponding range information.
The point quality of the 182 respective 3D points belonging to
scan 01 is depicted in Fig. 3 as well as the derived cumulative
histogram and the ICH. As the entry of the last bin of the ICH
equals 0 (Fig. 3, right), very unreliable point correspondences
have no influence on the registration process. The results after
coarse and fine registration are shown in Fig. 4 and Fig. 5 (blue
and red curve). It becomes visible that the coarse registration
already provides a high accuracy, except for the last scan pair
where the distance between the respective scan positions is
almost 12m. After fine registration, the absolute position error
can further be reduced to 0.5 . . . 3.2cm.

© 2013 IEEE. Reprinted, with permission.
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Fig. 3. Histogram based on the range reliability of derived 3D points for the
scan with the scan ID 01 (left), the respective cumulative histogram (center)
and the respective ICH (right).

C. Discussion

Whereas the ICP algorithm is not applicable due to the re-
quired, but not available good a priori alignment, the standard
rigid transformation is strongly influenced by outlier corre-
spondences. These might be caused by repetitive patterns on
building façades, e.g. around windows, or by unreliable range
information assigned to a SIFT feature. The resulting estimates
hence are not reliable (Fig. 4, black curve). Combining the pro-
posed weighting scheme with a rigid transformation improves
the results (Fig. 4, green curve) as the outlier correspondences
providing a low quality of range information get reduced influ-
ence. In contrast to this, the presented methodology recovers
the transformation parameters much more accurately for both
coarse registration (Fig. 4 and Fig. 5, blue curve) and fine
registration (Fig. 4 and Fig. 5, red curve).

Fig. 4. Absolute position error when applying a rigid transformation (black
curve), a rigid transformation combined with the new weighting scheme (green
curve), and the new methodology (blue curve: result after coarse registration;
red curve: result after fine registration).

Fig. 5. Closer consideration of the results after coarse registration (blue
curve) and fine registration (red curve).

Additionally, the registration process for two point clouds
with millions of points takes 7.97s for feature matching, which
can significantly be reduced by using a GPU-implementation,
and only 7.14s for weight calculation, coarse registration,
outlier removal and fine registration on a standard notebook
(2.3GHz, 4GB RAM, Matlab implementation).

IV. CONCLUSION

In this paper, we propose a new and fast methodology for
point cloud registration which provides reliable and accurate
results without the need of a priori information about the
order of scans, the presence of regular surfaces or human
interaction. The registration process exploits a quality measure
derived from the 2D range representation. By applying a
weighting scheme based on Inverse Cumulative Histograms
(ICHs), the proposed approach is even capable to detect
reliable tie points when only noisy raw point cloud data is
available. This new weighting scheme simultaneously allows
for weighting the importance of single point correspondences
and already removing very unreliable ones. Without the need
for adaptations, this approach can directly be applied when
using different scanning devices such as Microsoft Kinect or
Time-of-Flight cameras. For future work, it would be desirable
to compare different approaches for registering point clouds
on a benchmark dataset.
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ABSTRACT: 
The estimation of the transformation parameters between different point clouds is still a crucial task as it is usually followed by scene 
reconstruction, object detection or object recognition. Therefore, the estimates should be as accurate as possible. Recent 
developments show that it is feasible to utilize both the measured range information and the reflectance information sampled as 
image, as 2D imagery provides additional information. In this paper, an image-based registration approach for TLS data is presented 
which consists of two major steps. In the first step, the order of the scans is calculated by checking the similarity of the respective 
reflectance images via the total number of SIFT correspondences between them. Subsequently, in the second step, for each SIFT 
correspondence the respective SIFT features are filtered with respect to their reliability concerning the range information and 
projected to 3D space. Combining the 3D points with 2D observations on a virtual plane yields 3D-to-2D correspondences from 
which the coarse transformation parameters can be estimated via a RANSAC-based registration scheme including the EPnP 
algorithm. After this coarse registration, the 3D points are again checked for consistency by using constraints based on the 3D 
distance, and, finally, the remaining 3D points are used for an ICP-based fine registration. Thus, the proposed methodology provides 
a fast, reliable, accurate and fully automatic image-based approach for the registration of unorganized point clouds without the need 
of a priori information about the order of the scans, the presence of regular surfaces or human interaction. 
 

1. INTRODUCTION 

The automatic registration of point clouds acquired with a 
terrestrial laser scanner (TLS) is still of great interest. Each 
point cloud represents dense and accurate 3D information about 
surfaces of objects in the local area around the scanner with 
respect to a local coordinate frame. However, usually multiple 
scans from different locations have to be recorded to obtain a 
full scene coverage. Hence, a registration process has to be 
carried out which transforms all point clouds into a common 
coordinate frame. 

Standard approaches for calculating the transformation 
parameters between two partially overlapping point clouds are 
based on the Iterative Closest Point (ICP) algorithm (Besl & 
McKay, 1992) and different variants of it (Rusinkiewicz & 
Levoy, 2001). The ICP algorithm minimizes the difference 
between two point clouds. For large numbers of points, 
however, the ICP algorithm shows a high computational effort 
which is due to the iterative processing scheme. Hence, it seems 
quite feasible to extract relevant information from the point 
clouds which can be used for registration. Such relevant 
information may for example be derived via the distribution of 
the points within each point cloud by using the normal 
distributions transform (NDT) either on 2D scan slices (Brenner 
et al., 2008) or in 3D (Magnusson et al., 2007). 

Urban environments or scenes containing industrial installations 
usually contain regular surfaces of which various types of 
geometric features might arise. Simple features which are likely 
to occur and useful for registration are lines (Stamos & 
Leordeanu, 2003) derived from the range information sampled 
as range images. Other commonly used features which are 
extracted directly from the point clouds are planes (Dold & 
Brenner, 2004; Brenner et al., 2008; Pathak et al. 2010a; Pathak 
et al. 2010b) or more complex geometric features like spheres, 
cylinders or tori (Rabbani et al., 2007). However, all these 
feature types representing geometric primitives are not suited in 
scenes without regular surfaces. In addition to regular surfaces, 
scans in urban scenes might also contain a typical skyline. This 
border between the sky and a set of buildings shows special 

features when using a cylindrical projection model for sampling 
the range information to panoramic range images covering 360° 
in the horizontal direction, e.g. extrema or flat regions which 
are suited for a coarse alignment of two scans (Nüchter et al., 
2011). As such features strongly depend on the scene content, 
this approach is not suited if the skyline is less distinctive and 
thus not sufficient for registration purposes. 

In the presence of cluttered scenes, descriptors representing 
local surface patches are more appropriate. Such descriptors 
may be derived from geometric curvature or normal vectors of 
the local surface (Bae & Lichti, 2004; Bae & Lichti 2008). 
Further approaches which are suitable for more complex scenes 
are based on extracting special feature points in the range 
images in order to support the registration process (Barnea & 
Filin, 2008; Steder et al., 2010). 

Currently, most of the terrestrial laser scanners can not only 
measure the distance to 3D scene points but also capture either 
co-registered camera images or panoramic reflectance images 
representing the respective energy of the backscattered laser 
light. Therefore, several approaches are based on the use of 2D 
imagery as the images provide additional information about the 
local area around the scanner which might not always be 
represented in the range measurements. Hence, the registration 
of two point clouds can be supported by using reliable feature 
correspondences between the respective camera or reflectance 
images. For this purpose, different kinds of features can be 
used, but most of the current image-based approaches are based 
on the use of feature points or keypoints. Many of the image-
based approaches use SIFT features to detect distinctive 2D 
feature points by which point correspondences between two 
images can be detected. These features can be extracted from 
the co-registered camera images (Bendels et al., 2004; Al-
Manasir & Fraser, 2006; Barnea & Filin, 2007) or from the 
reflectance images (Böhm & Becker, 2007; Wang & Brenner 
2008; Kang et al., 2009). For all point correspondences, the 
respective feature points are projected into 3D space and thus 
lead to a much smaller set of 3D points used for registration. 

In this paper, a method for a fully automatic registration of a 
large number of unorganized scans is proposed. Reaching a 
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high level of automation also including the sorting of the scans 
is essential as most of the current approaches are based on 
pairwise registration for which an already known order of the 
scans is assumed. For pairwise registration, a modification of a 
fast and automatic image-based registration approach which has 
been published recently (Weinmann et al., 2011) and which is 
also suited for scenes without regular surfaces is presented. In 
contrast to this approach, only those correspondences with 
reliable range information are used and, instead of a refinement 
step, an ICP-based fine registration is introduced. Thus, besides 
being very fast, the proposed algorithm does neither depend on 
a priori information about the order of the scans nor on the 
presence of regular surfaces. 

The paper is organized as follows. In Section 2, the processing 
chain of the proposed algorithm is outlined. As it will be shown, 
the algorithm can be divided into the two major steps of 
organizing the TLS data and carrying out a successive pairwise 
registration which are presented in Section 3 and Section 4 in 
detail. In Section 5, the performance of the proposed algorithm 
is proved by processing 11 point clouds of a benchmark TLS 
data set. The capability of the proposed method is discussed in 
Section 6 with respect to accuracy, reliability and performance. 
Finally, conclusions and suggestions for future work are 
outlined in Section 7. 

2. METHODOLOGY 

The registration approach proposed in this paper aims at 
reaching a high level of automation and simultaneously getting 
fast, reliable and accurate results. As illustrated in Figure 1, the 
approach can be divided into two major parts. The first part 
deals with the organization of unorganized point clouds which 
is later required for a successive pairwise registration. Hence 
after the acquisition of TLS data, special features have to be 
extracted which are suitable for organizing the scans. The 
second part focuses on the registration of the point clouds. 
Using reliable 3D points derived via the previously extracted 
features and introducing their projections onto a virtual plane 
yields 3D-to-2D correspondences. These are used for receiving 
a coarse registration of the point clouds which is followed by a 
fine registration in order to improve the accuracy of the results. 
The scheme of this briefly summarized methodology is 
presented in detail in Section 3 and Section 4. 

3. ORGANIZATION OF TLS DATA  

The current registration approaches address a fully automatic 
registration of different scans of a scene. To further increase the 
level of automation, the proposed algorithm first organizes the 
scans automatically, which yields a structure for successive 
pairwise registration. This is done by considering the recorded 
scans (Section 3.1), extracting distinctive features and feature 
correspondences between the scans (Section 3.2) and using a 
graph-based approach (Section 3.3). 

3.1 Data Set and Reference Values 

In the following, the quality of the proposed registration 
approach is demonstrated with a benchmark TLS data set 
provided by the University of Hanover. This set consists of 12 
upright scans and 8 tilted scans which were acquired in the 
German city of Hanover in an area called Holzmarkt, and the 
respective reference values for the relative orientation between 
the scans. The scans were recorded with a Riegl LMS-Z360i 
scanner and contain information about the 3D coordinates of 
object points as well as the corresponding reflectance 

information. Covering 360° in the horizontal direction and 90° 
in the vertical direction with a single shot measurement 
accuracy of 12mm and an angular resolution of 0.12° up to a 
range of approximately 200m, each scan returns 2.25 million 
3D points from a regular scan area of 3000 x 750 points being 
represented as panoramic reflectance image (Wang & Brenner, 
2008). The reflectance and range information derived from the 
scan at scan position 01 are visualized in Figure 2. 

In order to check the quality of the automatically calculated 
registration results, accurate reference values are needed. The 
provided reference values are based on the use of artificial 
targets and a manual alignment which yields an expected 
accuracy of the scan positions in the low millimeter range. For 
testing the proposed algorithm, a subset consisting of 11 upright 
scans with a spacing of approximately 5m is used. 

 

Figure 1. Processing chain of the proposed approach. 

3.2 Feature Extraction 

Once several scans have been acquired, the next step consists of 
extracting distinctive features. Here, the Scale Invariant Feature 
Transform (SIFT) (Lowe, 2004) is utilized for detecting such 
distinctive keypoints in an image derived from the TLS data and 
extracting local feature descriptors which are invariant to image 
scaling and image rotation, and robust with respect to image 
noise, changes in illumination and small changes in viewpoint. 
These descriptors allow for locating correspondences between 
different images and, finally, to derive common image objects. 
As the descriptors are represented as vectors, they can be 
compared by considering Euclidean distances. An effective 
measure describing the distinctiveness of a keypoint can be 
derived from the ratio of the Euclidean distances of a descriptor 
belonging to a keypoint in one image to the nearest neighbor 
and the second nearest neighbor in the other image. This ratio 
has to be below a given threshold tdes, which can vary between 0 
and 1. For practical purposes and different applications, 
distinctive features arise when using a threshold between tdes = 
0.6 and tdes = 0.8. As the feature correspondences used for 
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registration should be reliable, a threshold of tdes = 0.66 is used. 
This means that the distance of a descriptor belonging to a SIFT 
feature in image i to the nearest neighbor in image j is only 
about 2/3 of the distance to the second nearest neighbor. 

 
(a) 

 
(b) 

Figure 2. Visualization of the captured TLS data: (a) reflectance 
and (b) range information. 

In order to check the similarity of the scans, the number of SIFT 
features between image pairs from all available positions is 
calculated and stored in the confusion matrix C. For this 
purpose, the same scan IDs are used as in the provided data set. 
The diagonal elements C(i,i) represent the the total number of 
SIFT features extracted in the respective reflectance image i. As 
can be seen in Table 1, the confusion matrix is not necessarily 
symmetric which depends on the calculated ratio of the 
Euclidean distances of a feature descriptor to the nearest and 
second nearest neighbor. If, for a feature descriptor derived 
from image i, the nearest neighbor and the second nearest 
neighbor in image j are a little more distinctive as required, this 
ratio is below the threshold tdes and thus meets the constraint. In 
the reverse case, when comparing a feature descriptor derived 
from image j to feature descriptors derived from image i, it 
might occur that the nearest neighbor and the second nearest 
neighbor are more similar which causes a ratio above the 
threshold tdes. 

3.3 Organizing Large Numbers of Scans by Similarity 

When dealing with a large number of scans, it might be 
desirable to reach a high level of automation. This will also 
include automatically sorting the scans for pairwise registration 
so that the error between estimated and real position is minimal. 
Therefore, a graph-based algorithm is proposed here.  

Any set of unorganized point clouds can directly be represented 
as a graph, where the nodes represent the scans and the edges 

are weighted with the total number of SIFT correspondences 
between the respective scans. In the most general case, every 
node is connected with every other node which results in a 
complete graph. As mentioned before, the confusion matrix C is 
not necessarily symmetric and therefore, a directed graph is 
used instead of an undirected graph. Hence, the entry C(i,j) of 
the confusion matrix represents the weight of an unidirectional 
edge from node i to node j. 

The first step towards organizing the point clouds consists of an 
initialization which can be done via selecting a defined initial 
scan. Alternatively, it would be possible to use other criterions 
if only the relations between the scans are of importance, e.g. 
the node from which the edge with the maximum weight within 
the graph starts. This initial set containing exactly one node is 
then iteratively expanded until it contains all nodes of the graph. 
Each iteration starts with searching unidirectional edges from 
the actual set of nodes to the remaining nodes and the edge with 
the maximum weight leads to the node by which the actual set is 
expanded. Resulting from the selected connections, a structure 
can be generated which represents the order of the scans for the 
automatic pairwise registration. For the given confusion matrix 
C (Table 1), the resulting structure for a successive pairwise 
registration process is shown in Figure 3. 

 

 

Figure 3. Resulting scheme for successive pairwise registration: 
The scans are labeled with their ID and the 
connections used for further calculations are labeled 
with the number of detected SIFT correspondences 
between the respective reflectance images. 

4. REGISTRATION OF TLS DATA  

After calculating the order of the scans by checking the 
similarity of the respective reflectance images, a pairwise 
registration of successive scans can be carried out. For this 
purpose, the already calculated 2D SIFT features leading to 

Scan ID 01 02 03 05 06 08 09 11 15 17 19 
01 4986 217 63 45 33 58 41 28 44 62 39 
02 229 5663 319 100 59 80 43 48 35 46 38 
03 88 308 5967 253 120 56 47 68 57 38 56 
05 70 114 277 6200 484 78 58 68 131 68 84 
06 31 70 124 466 6682 169 68 56 477 134 71 
08 86 96 53 78 163 6867 205 64 328 404 99 
09 39 34 37 56 68 158 5571 330 78 577 656 
11 17 24 37 40 44 41 277 4061 24 134 408 
15 61 40 59 129 503 344 82 30 7154 211 53 
17 53 56 34 60 121 379 590 169 240 6159 361 
19 21 25 43 51 54 84 629 482 42 344 4852 

Table 1. Number of SIFT correspondences between the reflectance images of different scans within the chosen subset. The 
values can be summarized in the confusion matrix C and the entry C(i,j) of this matrix denotes the number of point 
correspondences found when all descriptors derived from image i are compared to the nearest neighbor and the second 
nearest neighbor derived from image j.  
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correspondences have to be projected to 3D space, and the 
reliability of the calculated 3D points has to be checked with 
respect to range information (Section 4.1) before registration. 
The following registration is based on 2D projections of the 
reliable 3D points onto a virtual plane (Section 4.2), and 
divided into a coarse registration (Section 4.3) and a fine 
registration (Section 4.4). 

4.1 3D Point Estimation 

As SIFT features are determined with subpixel accuracy, the 
respective 3D information has to be interpolated as the 
measured values are only available on the regular scan raster. A 
reliable 3D point corresponding to a SIFT feature can however 
only be generated, if all of the four nearest points on the scan 
raster contain valid range information. The measured points 
which arise from objects in the scene will probably provide a 
smooth surface whereas points corresponding to the sky or 
points along edges of the objects might be very noisy. 
Therefore, points have to be discarded if they do not lie on the 
surface of any object in the scene. 

The provided scans are already filtered with respect to minimum 
values of the backscattered energy (Figure 4a). Additionally, the 
proposed algorithm considers the standard deviation σ of the 
values within a 3 x 3 neighborhood of each pixel in the range 
image in order to avoid unreliable range information at edges of 
scene objects. If the standard deviation σ of the respective range 
values is larger than a predefined threshold tstd which is selected 
to tstd = 0.1m, the range information of the center pixel is not 
reliable, otherwise the range information of the center pixel is 
assumed to be reliable (Figure 4b). Combining these constraints 
yields a 2D confidence map MC which is illustrated in Figure 
4c. 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Confidence map for the scan at scan position 01: (a) 
information filtered with respect to reflectance, (b) 
information filtered with respect to the standard 
deviation σ using a threshold value of tstd = 0.1m and 
(c) the resulting confidence map MC. The reliable 
points are shown in green, the unreliable ones in red. 

4.2 Perspective Plane Projection 

The reflectance images have been sampled using a spherical 
projection. For the registration, however, it is useful to get the 
coordinates of the extracted and reliable 3D points Xi projected 

onto a 2D image plane of a virtual camera in order to use 
powerful algorithms of computer vision applications. The 
respective transformation can be described via 

 [ ]|i i=x K R t X  (1) 

where the matrix K is the calibration matrix of a virtual camera, 
and the matrix R and the vector t describe the rotation and the 
translation of this virtual camera with respect to the local 
coordinate frame of the laser scanner. In the registration 
process, R refers to the local coordinate frame so that the virtual 
camera has the same orientation as the laser scanner and looks 
into the horizontal direction (Weinmann et al., 2011). Besides, 
the position of the virtual camera is assumed to equal the 
location of the laser scanner and therefore, the translation vector 
is set to t = 0. As a consequence of introducing a virtual camera 
plane, any parameters can be used for the focal lengths of the 
camera in x- and y- direction as well as for the coordinates of 
the principal point. Furthermore, the image plane has not 
necessarily to be limited on a finite area and all points behind 
the camera may also be included by mapping them onto the 
virtual plane via symmetric constraints as they represent the 2D 
projections onto the virtual plane of a second camera looking in 
the opposite direction. Thus, instead of creating synthetic 
camera images and using these for registration (Forkuo & King, 
2004), only a few points are projected with subpixel accuracy. 

4.3 Coarse Registration using EPnP and RANSAC 

Once 3D-to-2D correspondences are known, the problem of 
pose estimation is the same as when using a camera instead of a 
laser scanner. Recently, the Efficient Perspective-n-Point 
(EPnP) algorithm has been proposed as a non-iterative method 
to estimate the exterior orientation or pose of a camera from a 
set of n correspondences between 3D points Xi of a scene and 
their 2D projections xi onto the image plane (Moreno-Noguer et 
al., 2007; Lepetit et al., 2009). The EPnP algorithm is based on 
the idea of expressing the n known 3D scene points Xi as a 
weighted sum of four virtual and non-coplanar control points Cj 
for general configurations. The weights αij remain unchanged 
when transferring this relation to camera coordinates and 

therefore, the points c
iX  can be expressed via the control points 

c
jC  which leads to 
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for i = 1, …, n, where K describes the camera matrix. The scalar 
projective parameters wi can be substituted by 
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via the cZ coordinates of the control points. Concatenating the 
resulting equations for all n 3D-to-2D correspondences yields a 

linear system =M x 0  with 1 2 3 4, , ,
TcT cT cT cT =

 
x C C C C  and a 

2n x 12 matrix M. The solution x then leads to the camera 

coordinates c
iX . Once the world coordinates and the camera 

coordinates of the 3D points are known, the rotation and 
translation parameters aligning both coordinate systems can be 
retrieved via standard methods (Horn et al., 1988). As the EPnP 
algorithm considers all 3D-to-2D correspondences without 
checking their reliability, the quality of the registration results 
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can be increased by introducing further constraints. The 
RANSAC algorithm (Fischler & Bolles, 1981) provides a good 
possibility for eliminating outliers and thus reaching a more 
robust pose estimation. This combination of EPnP and 
RANSAC is based on randomly selecting small, but not 
minimal subsets of seven correspondences for estimating the 
model parameters, and checking the whole set of 
correspondences for consistent sample points (Moreno-Noguer 
et al., 2007; Lepetit et al., 2009). 

4.4 Fine Registration using Outlier Removal and ICP 

The results from the previous coarse registration provide a good 
a priori alignment which is required for using the ICP algorithm 
in order to get a fine registration. However, the RANSAC 
algorithm only considers the quality of the 3D-to-2D 
correspondences. Hence, the quality of the 3D points has to be 
considered separately. This is done by eliminating those 3D-to-
3D correspondences for which at least one 3D point arises from 
periodic shapes of façades and thus from ambiguities in the 
scene via geometric constraints (Weinmann et al., 2011). The 
resulting points used for fine registration are very reliable as 
they have been checked with respect to the reliability of their 
range information, the quality of the 3D-to-2D correspondences 
and the quality of the 3D-to-3D correspondences. Therefore, the 
ICP algorithm is expected to yield very accurate results. 

5. EVALUATION 

The first part of the presented approach can easily be verified if 
the nodes belonging to the scans are projected onto the 
reference positions of the respective scans in the scene, which is 
done in Figure 5. 

 

Figure 5. Scans sorted with respect to their reference position in 
the nadir view of the scene: The streets are colored in 
bright gray, buildings in dark gray. 

Once the scans are sorted, a successive pairwise registration can 
be carried out. Between the reflectance images of the scans 01 
and 02, a total number of 217 SIFT correspondences has been 
detected (Table 1) of which 89 are reliable with respect to the 
range information of the corresponding SIFT features. The 
respective 3D points of those reliable SIFT correspondences are 
projected to 3D space using bilinear interpolation. If for one 
scan, the absolute transformation parameters with respect to the 
world coordinate frame are known which is assumed for scan 
position 01, the 3D world coordinates of the calculated 3D 
points can easily be determined. For a new scan, the 
corresponding 2D features with reliable range information are 
also projected to 3D space and backprojected onto a virtual 
plane assigned to the local coordinate frame which yields 2D 
observations. Establishing 3D-to-2D correspondences from the 
3D information derived from the first scan and the 2D 
observations derived from the new scan allows for using the 

EPnP algorithm which has been extended by the RANSAC 
algorithm for an increased robustness. Subsequently, a 
consistency check with respect to 3D distances between the 3D 
points transformed into a common coordinate frame via the 
coarse estimate of the transformation parameters is carried out.  
After this geometric outlier removal, the remaining 3D-to-3D 
correspondences (29 between the scans 01 and 02) are used for 
an ICP-based fine registration. As shown in Figure 6, the 
absolute position errors after coarse registration are in the range 
between 12mm and 49mm, and the fine registration yields 
accurate results with absolute position errors between 9mm and 
32mm.  

 

Figure 6. Absolute error between reference and estimated 
positions for coarse (dotted line with diamonds) and 
fine registration (solid line with squares). 

6. DISCUSSION 

The presented registration approach was tested in Matlab on a 
standard PC with 2.83GHz. Although the code is not fully 
optimized with respect to a possible parallelization on multiple 
cores and thus only one core is used, the average time required 
for pairwise registration is about 13s. Of this time, about 5s are 
needed for calculating the SIFT correspondences, about 7s for 
coarse estimation using a RANSAC-based scheme including 
EPnP and only 1s for consistency checks and ICP on two 
relatively small subsets each consisting of approximately 100 
points. If the ICP algorithm is used for larger subsets, the 
computational effort increases highly. 

Concerning accuracy and performance, the proposed approach 
is comparable to other image-based approaches (Wang & 
Brenner, 2008; Weinmann et al., 2011). As the approach 
focuses on using only reliable information concerning range, 
3D-to-2D correspondences and 3D-to-3D correspondences, the 
estimated transformation parameters are very reliable which can 
be seen when comparing them to the reference values (Figure 
6). The approach is suited for both urban environments and 
scenes containing vegetation and does neither depend on 
regular surfaces nor human interaction. However, one constraint 
concerning the scene arises as point-like features have to be 
extracted. Hence, the scene has to be well-structured which is 
assumed in all image-based approaches using SIFT features. 

As the total number of SIFT correspondences decreases with an 
increasing distance between the respective scan positions which 
can be seen when considering the entries in the confusion 
matrix (Table 1) and the reference positions (Figure 5), the 
presented approach as well as other image-based approaches 
will not lead to optimal results for larger distances between the 
scans. For this purpose, approaches based on geometric 
primitives (Brenner et al., 2008; Rabbani et al., 2007) might be 
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more robust in direct comparison, but they assume that regular 
surfaces can be found in the scene and thus less general scenes. 

7. CONCLUSION AND OUTLOOK 

In this paper, a fully automatic registration approach is 
presented which is based on both the range information and the 
reflectance information of terrestrial laser scans. Automatically 
sorting any number of unorganized scans by means of their 
similarity and then carrying out a successive fast and accurate 
pairwise registration, the approach provides a powerful 
framework suited for typical environments. The approach has 
been successfully applied to a benchmark TLS data set 
containing millions of points and been discussed concerning 
accuracy, reliability and performance. For future work, the 
approach could be extended by introducing a final global 
registration over all scans or at least considering those parts of 
the confusion matrix arising from the similarity of a new scan to 
all of the already registered scans. This might improve the 
quality of the estimated transformation parameters and yield an 
even further increased robustness. 
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ABSTRACT:

The automatic analysis of 3D point clouds has become a crucial task in photogrammetry, remote sensing and computer vision. Whereas
modern range cameras simultaneously provide both range and intensity images with high frame rates, other devices can be used to
obtain further information which could be quite valuable for tasks such as object detection or scene interpretation. In particular thermal
information offers many advantages, since people can easily be detected as heat sources in typical indoor or outdoor environments
and, furthermore, a variety of concealed objects such as heating pipes as well as structural properties such as defects in isolation may
be observed. In this paper, we focus on thermal 3D mapping which allows to observe the evolution of a dynamic 3D scene over
time. We present a fully automatic methodology consisting of four successive steps: (i) a radiometric correction, (ii) a geometric
calibration, (iii) a robust approach for detecting reliable feature correspondences and (iv) a co-registration of 3D point cloud data and
thermal information via a RANSAC-based EPnP scheme. For an indoor scene, we demonstrate that our methodology outperforms
other recent approaches in terms of both accuracy and applicability. We additionally show that efficient straightforward techniques
allow a categorization according to background, people, passive scene manipulation and active scene manipulation.

1. INTRODUCTION

The automated description and analysis of static and dynamic 3D
scenes represents a topic of major interest in photogrammetry,
remote sensing and computer vision. Due to the recent techno-
logical advancements, a variety of devices is currently available
which can be used for acquiring different types of information
such as color, temperature or spatial 3D geometry. Thus, the use
of different devices on a common sensor platform allows to col-
lect multidimensional spatial data.

In particular those devices delivering complementary types of in-
formation offer a high potential for numerous applications. Mod-
ern range cameras such as Microsoft Kinect, PMD[vision] Cam-
Cube 2.0 or MESA Imaging SR4000 simultaneously provide ge-
ometric information as well as radiometric information in form
of range and intensity images, and they are also applicable for
adequately capturing dynamic scenes. Whereas the radiometric
information is typically represented as color or gray-valued im-
ages, other devices such as thermal cameras offer to capture com-
plementary information which can be helpful for describing and
analyzing the observed scene and its evolution over time.

A fusion of intensity and thermal information for instance seems
desirable, since the respective images reveal a very different be-
havior:

• Standard intensity images (i.e. color or gray-valued im-
ages) typically represent information of the visual domain
and thus radiometric surface properties of observed objects.
This information may strongly depend on the material and
reflectance behavior of respective objects as well as the rel-
ative geometric orientation of the surface to the camera.

• Thermal infrared images represent thermal radiation in the
infrared spectrum. This radiation is emitted by objects in the

scene and not visible in the visual domain. Consequently,
the thermal infrared images allow a different look on objects
and the extraction of additional information like temperature
and different materials of observed objects.

Accordingly, objects visible in the visual domain may be invisi-
ble in the infrared domain if they have the same temperature and
emissivity coefficient as the respective background. In contrast,
in infrared images, even further objects below the surface of an
object may be visible which certainly remain invisible in the vi-
sual domain. Note that two different materials with the same tem-
perature can appear with different intensity if they have a signif-
icantly different emissivity coefficient. Interestingly, two objects
with different temperature and emissivity coefficient can even co-
incidentally appear with very similar intensity in thermal images.
As a consequence, a fusion of intensity images and thermal in-
frared images can reveal information which may not be present
in either intensity images or thermal infrared images (Chen and
Leung, 2009; Bai et al., 2011). This is for instance of special
interest for enhancing contrast in environments of poor visibility
or inadequate illumination (Liu and Laganière, 2007), for target
detection (Yao and Sekmen, 2008) or for concealed weapon de-
tection (Xue et al., 2002). More importantly, however, infrared
thermography allows for building diagnostics (Balaras and Ar-
giriou, 2002) which, due to current attempts for saving energy,
has become a research topic itself.

Whereas the fusion of intensity images and thermal infrared im-
ages provides different types of information, it does not account
for the respective spatial dimensions. Recent technological ad-
vancements however allow a thermal 3D mapping in terms of
projecting the captured image data onto 3D point clouds acquired
with a terrestrial laser scanner, mobile laser scanner or range cam-
era. The metric information, in turn, allows the quantification
of thermal studies if the point clouds are texturized with ther-
mal information (Lagüela et al., 2011b). Especially in building
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observation (Hoegner et al., 2007a; Iwaszczuk et al., 2011), the
joint representation of building façades and thermal information
allows a reconstruction of the surface temperature and thus a look
into the interior behavior of a wall. Valuable insights about differ-
ent materials, heating pipes and leakages can easily be obtained
and added as semantic or geometric information to the respective
building model.

In order to capture co-registered intensity information, thermal
information and spatial 3D geometry, the combination of data
captured with a terrestrial laser scanner and images acquired by
a bi-camera system, i.e. a system consisting of an optical camera
and a thermal camera, has recently been proposed (Alba et al.,
2011). Furthermore, a robot equipped with a 3D laser scanner,
a thermal camera and a digital camera has been presented which
is capable to generate a precise 3D model showing the heat dis-
tribution in the scene (Borrmann et al., 2012a; Borrmann et al.,
2012b). The additional color information can for instance be used
for identifying heat sources or for obtaining photo-realistic 3D
models. Focusing on the acquisition of dynamic scenes, respec-
tive systems addressing thermal 3D mapping involve range cam-
eras such as RGB-D cameras or Time-of-Flight (ToF) cameras.
For instance, the use of a low-cost RGB-D camera in combina-
tion with a thermal camera has recently been proposed for acquir-
ing dense 3D models of environments with both appearance and
temperature information (Vidas et al., 2013). Involving a Time-
of-Flight camera, an approach for gaining infrared-textured 3D
models has been proposed (Weinmann et al., 2012) which addi-
tionally focuses on sharpening the blurry thermal information by
exploiting the high quality of intensity information acquired with
the range camera.

In this paper, we focus on thermal 3D mapping which allows to
observe the evolution of a dynamic 3D scene over time. The main
contribution presented in our paper is a fully automatic method-
ology for thermal 3D mapping which involves

• a geometric calibration of both the range camera and the
thermal camera based on a common strategy,

• a robust approach for detecting 2D/2D feature correspon-
dences via shape-based matching,

• a removal of unreliable 2D/2D feature correspondences by
considering the reliability of the respective range informa-
tion, and

• a novel approach exploiting 3D/2D feature correspondences
for the co-registration of 3D point cloud data and thermal
information.

After reflecting the related work in Section 2, we provide a de-
tailed explanation of the different steps of our new methodology
in Section 3. For an experimental setup described in Section 4,
we present the derived results in Section 5 and discuss these with
respect to different aspects in Section 6. Finally, Section 7 con-
tains conclusions as well as ideas for future work.

2. RELATED WORK

For thermal 3D mapping involving a range camera, respective 3D
coordinates are available for each pixel of the intensity image.
Accordingly, feature correspondences have to be derived either
between standard intensity images (i.e. color or gray-valued im-
ages) and thermal infrared images (Section 2.1), or between 3D
point clouds and thermal infrared images (Section 2.2). For the
sake of completeness, we also briefly reflect approaches generat-
ing 3D point clouds from thermal infrared images (Section 2.3).

2.1 Co-Registration of Intensity and Thermal IR Images

One category of approaches directly leads to basic image pro-
cessing in terms of image registration (Zitová and Flusser, 2003).
Once the respective transformation model has been estimated, the
thermal infrared image can be warped onto the intensity image of
the range camera, and thus also be projected to 3D space by for-
ward projection according to the respective 3D information.

Among the approaches for image registration, the feature-based
approaches are most widely spread. In general, we may consider
any feature present in an image as visual feature. More specifi-
cally, according to a recent survey on visual features (Weinmann,
2013), different types of visual features can be categorized, where
texture, shape and local features are the most prominent types
due to their applicability for numerous applications such as im-
age registration, data retrieval, scene analysis and the autonomous
navigation of aerial and ground vehicles. Typically, approaches
for feature extraction and matching are tailored for images ac-
quired by either identical or similar sensors from various posi-
tions. However, a matching between different image domains –
e.g. a co-registration of satellite imagery and LiDAR intensity
images (Toth et al., 2011) – can be quite challenging as the re-
spective images may have very different characteristics due to
which many standard approaches for deriving feature correspon-
dences tend to fail.

In particular, an automatic matching between the visual domain
and the thermal domain still remains challenging. Intensity im-
ages in the visual domain often provide abrupt changes of proper-
ties like intensity or texture at the edges of objects in the observed
scene. In thermal infrared images, however, we might face chal-
lenges arising from (i) the low geometric resolution compared
to classical optical camera systems and (ii) the fact that features
such as lines or contours do not show strong edges, but rather
appear blurred. As a consequence, even powerful standard meth-
ods for deriving feature correspondences, e.g. the Scale Invariant
Feature Transform (SIFT) (Lowe, 1999; Lowe, 2004), are not ap-
plicable for automatically detecting feature correspondences be-
tween the visual domain and the thermal domain.

For registration of image data representing information in these
different spectral bands, different approaches have been proposed
such as a segment-based approach (Coiras et al., 2000) or an
approach involving normalized mutual information (Park et al.,
2008). Furthermore, approaches for generating textured 3D point
clouds often rely on a matching between images followed by for-
ward projection to 3D space. For flat building façades and al-
most planar scenes, the transformation model of a homography
(Hartley and Zisserman, 2008) can be applied. Such a transfor-
mation may for instance be exploited for mapping thermal IR in-
formation on existing building models (Hoegner et al., 2007b) or
thermal 3D mapping involving a range camera (Weinmann et al.,
2012). The latter approach relies on deriving feature correspon-
dences between the respective images via shape-based matching,
a respective image registration and a subsequent forward projec-
tion to 3D space. Considering mutual information between im-
ages has also been proposed for mapping multispectral texture
information onto 3D models (Pelagotti et al., 2009) and for co-
registration of intensity images and 3D LiDAR data (Parmehr et
al., 2013).

2.2 Direct Co-Registration of Point Clouds and Thermal In-
formation

One of the simplest approaches for directly acquiring colored 3D
objects consists of using co-registered devices with known fixed
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relative orientation (Pulli et al., 1998). If the relative orientation
is unknown, the standard approach consists of the manual selec-
tion of tie points and a subsequent bundle adjustment based on
the collinearity equations, which has recently been used for co-
registering 3D point clouds and thermal infrared images (Hoeg-
ner et al., 2014).

For automatically estimating the relative orientation between the
used devices, silhouette-based approaches may be applied, which
focus on minimizing the error between the contour of an object in
the image and the contour of the respective projected 3D model
(Lowe, 1991). In particular, linear features are often used as they
typically occur in man-made environments such as urban areas.
For such scenes, lines can be extracted at edges in 2D imagery,
and clusters of vertical and horizontal lines can be detected in the
respective 3D point cloud. This allows a registration based on the
matching of corresponding 2D and 3D linear features (Liu and
Stamos, 2005; Liu and Stamos, 2012).

As interesting alternative, which could potentially be applicable
also for co-registering thermal information and 3D point cloud
data, a recent approach focused on the mapping of iPhone im-
ages onto LiDAR point clouds (Sirmacek et al., 2013). In this
work, the extraction of shape features from iPhone images is
based on conducting mean shift segmentation, nonlinear smooth-
ing and applying steerable filters in different orientations. Further
exploiting the metafile, the GPS position and the looking angle of
the iPhone camera are available. These are used for defining the
orientation of a virtual plane. The extraction of shape features
from point cloud data is based on the perpendicular projection of
LiDAR points onto the derived virtual plane, which yields a rep-
resentation for those façade and roof points of a building which
are the closest to the virtual plane. Extracting the alpha shape
around the points, sharp corners of the alpha shape may be used
as discriminative features. Finally, a co-registration of image and
point cloud data is conducted by estimating an affine transforma-
tion based on the extracted features.

2.3 Direct Generation of Point Clouds from Thermal IR Im-
ages

In contrast to approaches involving range cameras, the direct gen-
eration of 3D models from thermal images via Structure-from-
Motion (SfM) techniques has been proposed (Markov and Birk,
2007). Such image-based techniques may be applied for simulta-
neously recovering both 3D structure of the scene and the respec-
tive pose (i.e. position and orientation) of the camera (Szeliski,
2010). Furthermore, a thermal stereo system for recovering a 3D
surface temperature map of the scene has been presented (Prakash
et al., 2006) which is even able to estimate object depth within a
dark environment. This system is based on exploiting isotherms
(i.e. lines connecting points of equal temperature) and epipolar
geometry (Hartley and Zisserman, 2008), whereby the epipolar
constraints reduce the correspondence search space to the inter-
secting points between epipolar lines and isotherms.

3. METHODOLOGY

For thermal 3D mapping, we propose a methodology which auto-
matically recovers the relative orientation between a range cam-
era and a thermal camera (Figure 1). After conducting a radio-
metric correction (Section 3.1), a geometric calibration (Section
3.2) is applied in order to obtain undistorted 2D imagery. Subse-
quently, a shape-based technique for detecting feature correspon-
dences between intensity images and thermal infrared images is

exploited (Section 3.3) and, due to the acquired range informa-
tion, each 2D/2D correspondence can directly be assigned a re-
spective 3D point which yields 3D/2D correspondences. Those
correspondences containing unreliable range information are dis-
carded via an image-based rejection strategy. The remaining cor-
respondences can efficiently be used for co-registering 3D point
cloud data and thermal information (Section 3.4), i.e. mapping
the thermal information onto the 3D point cloud.

Raw 3D and 2D 
Measurements 

Radiometric 
Correction 

Geometric 
Calibration 

Feature 
Matching 

Co-Registration 

Figure 1: The components of our methodology.

3.1 Radiometric Correction

For range cameras, the captured intensity information corresponds
to the energy of the laser light reaching the device. Due to internal
processes such as conversion to a digital signal and signal ampli-
fication (which are not identical for different range cameras), this
intensity information has to be adapted for applying standard im-
age processing techniques. This is done by applying a histogram
normalization of the form

In =
I − Imin

Imax − Imin · 255 (1)

which adapts the intensity information I of each pixel to the in-
terval [0, 255] and thus yields gray-valued images. Here, the min-
imal and maximal intensity within all intensity measurements on
the regular 2D grid are denoted as Imin and Imax, respectively.
The histogram normalization can be conducted for both active
and passive intensity images. For the example of an indoor scene,
the recorded information is visualized in Figure 2.

For thermal cameras, there is no need to apply a histogram nor-
malization as the captured thermal information of each pixel is
already assigned a color value according to a certain colorbar. A
respective visualization of thermal information for the provided
example is depicted in Figure 3.

3.2 Geometric Calibration

For calibration, we follow a recent strategy focusing on the gener-
ation of infrared-textured 3D models (Weinmann and Jutzi, 2012).
This strategy involves a geometric calibration for both range cam-
era and thermal camera.

When using range cameras, it has to be taken into account that
the captured range and intensity images are distorted (Figure 2).
Consequently, a camera calibration has to be carried out for such
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Figure 2: Visualization of the data captured with a PMD[vision]
CamCube 2.0: Normalized active intensity image, normalized
passive intensity image and range image (from left to right). The
range is encoded in terms of a color scale reaching from red (near)
via yellow, green, cyan and blue to violet (far).

Figure 3: Visualization of thermal information captured with an
InfraTec VarioCAM hr.

devices. For this purpose, we assume that the geometric mapping
of a scene onto the image plane can be described with a stan-
dard camera model representing the intrinsic behavior of a digital
camera. This standard model considers both radial and tangential
distortion (Brown, 1971; Heikkilä and Silvén, 1997). Accord-
ingly, the geometric mapping can be parameterized with the fo-
cal lengths in x- and y-direction, the image coordinates (x0, y0)
of the principal point, a skew coefficient s, and the image distor-
tion coefficients describing radial and tangential distortion. The
well-known standard methodology then consists of using a rect-
angular checkerboard pattern with known size, capturing respec-
tive intensity images with the device, extracting the grid corners
of the checkerboard pattern in the intensity images, and finally
applying the calibration procedure (Bouguet, 2010). For the ex-
ample depicted in Figure 2, the derived undistorted images are
provided in Figure 4. Subsequently, the respective 3D informa-
tion in the local coordinate frame can be derived (Weinmann and
Jutzi, 2012).

Figure 4: Visualization of the undistorted images for normalized
active intensity, normalized passive intensity and range informa-
tion (from left to right).

Since the checkerboard pattern is not visible in the thermal in-
frared domain, the calibration of thermal cameras is based on a
planar testfield with lamps (Luhmann et al., 2010; Lagüela et al.,
2011a; Borrmann et al., 2012b; Hoegner et al., 2014). The lamps
are clearly visible in the thermal infrared images (Figure 5) and
can thus easily be detected. Using a regular grid of lamps also al-
lows for using the aforementioned standard calibration procedure
for digital cameras (Figure 6).

Figure 5: Captured thermal information for the planar testfield
with lamps. The distortion of the thermal infrared image is clearly
visible.

Figure 6: Visualization of the undistorted thermal infrared image.

3.3 Detection of 2D/2D and 3D/2D Correspondences

For deriving feature correspondences between the image repre-
sentations of intensity and thermal infrared information, we use
local features in terms of keypoints with characteristic descrip-
tors. Due to the different characteristics of the compared im-
ages, commonly used keypoint descriptors obtained from algo-
rithms such as SIFT (Lowe, 1999; Lowe, 2004) or SURF (Bay
et al., 2011) fail in the automatic detection of point correspon-
dences. Hence, we apply the shape-based matching algorithm
proposed in (Steger, 2001) and (Ulrich, 2003) which matches
image patches of a user-defined size by exploiting wavelength
independent properties in terms of shape information. Thereby,
the surrounding of a keypoint is described by a generated model.
Thus, the algorithm is able to derive feature correspondences of
which a certain percentage provides a high reliability.

In our case, a model image is generated by selecting quadratic
areas of 100× 100 pixels around points on a discrete grid with a
spacing of 10 pixels in the intensity image provided by the range
camera. The values for the size of the model image and the grid
spacing were selected empirically (Weinmann et al., 2012). Sub-
sequently, a Sobel filter is applied to the model image (Figure 7,
left), and the associated gradient directions are determined for
pixels with high gradient magnitude (Figure 7, center). Finally,
the model image is matched to the gradients of the search image
– which is represented by the thermal infrared image – by com-
paring the respective gradient directions (Figure 7, right). More
specifically, a similarity measure is calculated which represents
the normalized dot product of vector representations for the gra-
dient directions of the transformed model and the search image
(Ulrich, 2003), according to which a score can be obtained for
each pixel in the search image. This similarity measure is robust
in case of noise, illumination changes and partial occlusions, but
not in case of changes in rotation and scale. Hence, the search
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space is extended to a predefined range of rotations and scales.
If the derived similarity measure is above a certain threshold, a
point correspondence is detected (Figure 8). For each correspon-
dence, the coordinates of the center, the rotation angle and the
similarity measure itself are assigned. We use the HALCON 11
implementation (MVTec Software) of the shape-based matching
algorithm for our experiments.

Figure 7: Principle of shape-based matching (Ulrich, 2003):
model image (left), model edges (center) and search image
(right).

Figure 8: Automatically detected feature correspondences be-
tween an intensity image and a thermal infrared image for a static
scene.

Since the range camera also provides range information in terms
of a range image, we can easily assign each of the derived 2D/2D
correspondences a respective 3D scene point whose coordinates
are known in the local coordinate frame of the range camera. For
estimating the relative orientation between the two utilized de-
vices, we do not want to make strong assumptions on the scene
structure, but rather exploit a general solution which relies on
3D/2D correspondences, where the 3D information is derived
via the range camera and the 2D information is derived via the
thermal camera. Depending on the surface properties of the re-
spective objects, i.e. shape and reflectivity, the range camera
provides more or less noisy range information. Note that many
points which arise from objects in the scene will probably provide
a smooth surface. However, range information of points along
edges of the respective objects might be very noisy. In order to
detect such noisy measurements, the standard deviation σ of all
range values within a 3 × 3 neighborhood is calculated for each
point on the regular 2D grid and used as a measure describing
the reliability of the respective range information (Weinmann and
Jutzi, 2011). Combining these constraints for all points on the 2D
grid yields a 2D confidence map which is illustrated in Figure 9
for two exemplary scenes.

In order to remove unreliable feature correspondences, a simple
thresholding is conducted. If the parameter σ of the respective
range values is larger than a predefined threshold tσ , the range
information of the center pixel is assumed to be unreliable, oth-
erwise the range information of the center pixel is assumed to be
reliable. Following (Weinmann and Jutzi, 2012), we select this
threshold to tσ = 0.05m.

Figure 9: Confidence maps indicating the reliability of the re-
spective range information. The reliability is encoded in terms of
a color scale reaching from red (reliable) via yellow, green, cyan
and blue to violet (unreliable).

3.4 Co-Registration of 3D and 2D Information

Once 3D/2D correspondences have been detected, the task of co-
registering 3D and 2D information may be related to the well-
known Perspective-n-Point (PnP) problem where the aim is to
estimate the exterior orientation or pose of a camera from a set
of n correspondences between 3D points Xi of a scene and their
2D projections xi onto the image plane, where i = 1, . . . , n.
In recent years, the Efficient Perspective-n-Point (EPnP) algo-
rithm (Moreno-Noguer et al., 2007) has been proposed as a non-
iterative method which provides an accurate solution to the PnP
problem with only linear complexity. Compared to other ap-
proaches for solving the PnP problem, this algorithm is not only
fast and accurate, but also designed to work with a large number
of correspondences and it does not require an initial estimate.

The EPnP algorithm is based on the idea of expressing the n
known 3D scene points Xi as a weighted sum of four virtual and
non-coplanar control points Cj for general configurations. De-
noting the weights as αij and introducing a superscript c which
indicates coordinates in the camera coordinate frame, each 3D/2D
correspondence provides a relation of the form

wi

[
xi
1

]
= K Xc

i = K
4∑
j=1

αijC
c
j (2)

where K describes the calibration matrix. Considering the re-
spective three equations, the scalar projective parameters wi can
be determined according to the third equation and substituted into
the other two equations. Concatenating the two modified equa-
tions for i = 1, . . . , n yields a linear equation system M x = 0,
where x contains the 3D coordinates of the four control points
Cj . For more details on the efficient solution of this equation
system, we refer to the respective paper (Moreno-Noguer et al.,
2007). Once both world coordinates and camera coordinates of
the 3D points are known, the transformation parameters aligning
both coordinate systems can be retrieved via standard methods
involving a closed-form solution in the least-squares sense (Horn
et al., 1988; Arun et al., 1987; Umeyama, 1991).

For a robust estimation in case of existing outlier correspondences,
the RANSAC algorithm (Fischler and Bolles, 1981) represents
the method of choice as it completely eliminates the influence
of outlier correspondences which are not in accordance with the
largest consensus set supporting the given transformation model
(i.e. a 3D rigid-body transformation). Following the original im-
plementation (Moreno-Noguer et al., 2007), the RANSAC-based
EPnP scheme relies on selecting small, but not minimal subsets
of seven correspondences for estimating the model parameters
and checking the whole set of correspondences for consistent
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samples. In comparison to minimal subsets, this further reduces
the sensitivity to noise. In order to avoid testing all possible sub-
sets, which would be very time-consuming, we exploit an effi-
cient variant, where the number of iterations – which equals the
number of randomly chosen subsets – is selected high enough,
so that a subset including only inlier correspondences is selected
with a certain probability p (Hartley and Zisserman, 2008).

In our case, we may assume that the local coordinate frame of the
range camera represents the reference coordinate frame. Conse-
quently, the derived 3D coordinates are known with respect to the
reference frame. Together with the respective observed 2D image
locations in the thermal infrared image, they form the required
3D/2D correspondences. Note that, for this reason, the matrix K
in Equation (2) refers to the thermal camera.

4. EXPERIMENTAL SETUP

For thermal 3D mapping, we use a sensor platform equipped with
a range camera and a thermal camera (Figure 10), where a fixed
relative orientation between the two devices is preserved.

Figure 10: Sensor platform equipped with a range camera (left)
and a thermal camera (right).

4.1 Range Camera: PMD[vision] CamCube 2.0

Modern range cameras capture geometric information as well as
radiometric information and thus complementary types of data
in form of images, where the information is acquired simultane-
ously for all pixels on the regular 2D grid. Due to the high frame
rates of more than 25 releases per second, range cameras also al-
low to capture dynamic scenes. For our experiments, the choice
of the utilized device is motivated by a possible use in outdoor en-
vironments, where range cameras based on the use of structured
light are not applicable. We hence use a Time-of-Flight camera
of type PMD[vision] CamCube 2.0, which measures three fea-
tures for each pixel: range, active intensity and passive intensity.
Note that the active intensity depends on the illumination emitted
by the sensor, whereas the passive intensity depends on the back-
ground illumination arising from the sun or other external light
sources. The resulting images have a size of 204 × 204 pixels
which corresponds to a field-of-view of 40◦ × 40◦. This in turn
represents an angular resolution of approximately 0.2◦.

Due to the measurement principle of such Time-of-Flight cam-
eras, the non-ambiguous range depends on the modulation fre-
quency. A modulation frequency of 20MHz for instance corre-
sponds to a non-ambiguous range of 7.5m. In order to overcome
this range measurement restriction, image- or hardware-based un-
wrapping procedures have recently been introduced (Jutzi, 2009;
Jutzi, 2012).

4.2 Thermal Camera: InfraTec VarioCAM hr

As thermal camera, we use a bolometer-based InfraTec Vario-
CAM hr which records in the wavelength interval from 7.5-14µm

Figure 11: Visualization of thermal information mapped onto the
respective 3D point cloud for two different scenes: 2D image pro-
jections (top) and colored 3D point clouds (center and bottom).

with a radiometric resolution of 0.05K. The captured thermal in-
formation is represented as images with a size of 384× 288 pix-
els. The angular resolution is approximately 0.16◦, and thus a
captured thermal infrared image corresponds to a field-of-view
of 61◦ × 46◦. As the frame rate is 25fps, this device can also be
applied for observing dynamic scenes.

5. EXPERIMENTAL RESULTS

For testing the proposed methodology, we only have to estimate
the relative orientation between the utilized devices once, which
is done for the example of a static scene (Figure 1). Afterwards,
co-registered data can be recorded continuously when using a
(hardware or software) trigger for synchronization, since the rel-
ative orientation between the utilized devices is known.

When using the sensor platform shown in Figure 10 for observ-
ing the static indoor scene, we obtain a total number of 151 point
correspondences via shape-based matching as shown in Figure 8.
Of these, 14 point correspondences are discarded since the re-
spective range information is considered to be unreliable accord-
ing to the applied rejection strategy (Figure 9, left). The remain-
ing point correspondences are exploited by the RANSAC-based
EPnP scheme, and the results in terms of thermal 3D mapping
are shown in Figure 11 (left). Once the relative orientation is
known, we can also conduct thermal 3D mapping by exploiting
the known transformation parameters for other, possibly also dy-
namic scenes, e.g. as shown in Figure 11 (right).
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6. DISCUSSION

The derived results (Figure 11) clearly reveal that the presented
methodology is well-suited for thermal 3D mapping. In particu-
lar, the quality is rather high due to a robust mapping between im-
age data with different characteristics, where standard approaches
typically tend to fail in finding reliable feature correspondences.
Only a few pixels at the edges between the right person and the
background are observable as being erroneous.

Without making strong assumptions on the 3D scene structure
and without human interaction for selecting corresponding fea-
tures, our proposed methodology is capable to fully automatically
perform thermal 3D mapping in dynamic scenes. Thus, the pro-
posed methodology outperforms other recent approaches which,
in turn, reveal limitations as they partially rely on human interac-
tion (Hoegner et al., 2014) or as they are only tailored for planar
scene structures (Weinmann et al., 2012). Note that – without
loss of generality – the methodology could also be applied for
co-registering 3D point cloud data and color information, where
the latter is acquired with a digital camera. This may even be
significantly easier since the contours in both intensity images of
the range camera and color images of the digital camera are not
as blurry as in thermal infrared images.

For the sake of clarity, we also want to demonstrate that the pro-
posed methodology for thermal 3D mapping for instance allows
to observe the evolution of a 3D scene over time. Considering
the two scenes depicted in Figure 11 (center and bottom), the
respective projections onto the image plane of the range camera
(Figure 11, top) and further involving the undistorted intensity
and range images acquired with the range camera (e.g. Figure 4)
allows a categorization of (i) background where no significant
changes with respect to intensity, range or thermal information
are observed, (ii) people in the scene which can be observed from
a change in intensity, range and thermal information, (iii) passive
scene manipulation which is indicated only by a change of in-
tensity information, and (iv) active scene manipulation caused by
interactions between people and scene objects which is indicated
only by a change of thermal information. Note that already the
exploitation of thresholded difference images and a connection
of logical operations allows a respective statement on change de-
tection (Figure 12). From the respective rule-based classification
results according to the four considered classes of changes (Fig-
ure 13), a small error in the co-registration becomes visible which
can also be observed in Figure 11. Accordingly, a respective seg-
mentation of people in the 3D point cloud becomes trivial.

Figure 12: Thresholded difference images for intensity, range and
thermal information (from left to right). Changes are indicated in
white. Note the noisy behavior of range measurements.

7. CONCLUSIONS

In this paper, we focused on thermal 3D mapping as an impor-
tant prerequisite for object detection in dynamic scenes. For this
purpose, we presented a fully automatic methodology which in-
volves (i) a radiometric correction, (ii) a common geometric cali-
bration procedure for both range camera and thermal camera, (iii)

Figure 13: Results of rule-based classification based on logical
operators: a clear distinction between background (blue), people
(red), passive scene manipulation (yellow) and active scene ma-
nipulation (green) is possible. Note that passive and active scene
manipulation are also detected at edges which indicates a small
error in the co-registration.

a robust approach for detecting reliable feature correspondences
between different image domains by exploiting wavelength inde-
pendent properties as well as an image-based rejection strategy,
and (iv) a co-registration of 3D point cloud data and thermal in-
formation based on an efficient and robust technique designed
to work with a large number of 3D/2D correspondences. We
have demonstrated that our methodology outperforms other re-
cent approaches in terms of both applicability and accuracy, due
to avoiding both human interaction and strong assumptions on
the 3D scene structure. We have also provided an example for a
possible use in order to observe the evolution of a 3D scene over
time which can easily be conducted by involving straightforward
techniques in terms of thresholding followed by rule-based clas-
sification.

For future research, it would be desirable to not only observe a
static or dynamic scene with devices mounted on a static sensor
platform, but also move the sensor platform in order to capture
3D environments of larger scale and extract complete 3D models.
This could for instance be valuable for building diagnostics in
both indoor and outdoor environments.
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The fast and automatic registration of laser scanner data is of great interest in photogrammetric research.
Recent developments show that for registration purposes characteristic 3D points can be extracted from
the measured laser data, where the data are also represented as image. In this paper, radiometric and geo-
metric information derived from TLS data are utilized for estimating the transformation parameters
between two unregistered point clouds. After the extraction of characteristic 2D points based on SIFT fea-
tures, these points are projected into 3D space by using interpolated range information. From these 3D
conjugate points and their corresponding 2D projections onto a virtual plane 3D-to-2D correspondences
are established. The fast, accurate and robust RANSAC-based registration scheme including the EPnP algo-
rithm provides a framework to estimate the coarse transformation parameters from these 3D-to-2D cor-
respondences. The coarse estimates are further refined by a single step outlier removal to gain a higher
accuracy by introducing additional geometric constraints. These new constraints are based on 3D-to-3D
correspondences which are much stronger than the 3D-to-2D correspondences alone. It will be shown
that the presented approach is successfully applied to a benchmarked data set with millions of points
resulting in a fast and accurate estimation of the transformation parameters with a processing speed
of several seconds on a standard PC and an accuracy in the low centimeter range.
� 2011 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.

1. Introduction

The automatic generation of accurate 3D models from laser
scanning data for a detailed description of objects is of great interest
in photogrammetric research (Wehr and Lohr, 1999; Lichti et al.,
2008). The description of objects requires a sampling of the surface
as a point cloud as dense and complete as possible. Terrestrial laser
scanners (TLSs) provide a dense and accurate three-dimensional
representation of object surfaces in the local environment. In most
cases, one scan is not sufficient to obtain a full scene coverage, and
therefore, partially overlapping point clouds with high spatial infor-
mation are typically collected from different locations via multiple
scans. As each of the captured data sets refers to its own local coor-
dinate frame, usually a registration step transforming all data into a
common reference frame has to be carried out.

This registration can either be done fully automatically or by
placing artificial markers into the scene, which provide clearly
demarcated corresponding points in the different scans, and a suc-
cessive manual alignment. For a large number of scans, such a
manual alignment is very time-consuming and therefore, it is
desirable to use a fully automatic registration. The automatic
registration is usually divided into a coarse registration, which

leads to a pre-alignment of the scans, and a fine registration, which
increases the accuracy of the estimated parameters. For fine regis-
tration, the Iterative Closest Point (ICP) algorithm and its variants,
being described in Besl and McKay (1992) and Rusinkiewicz and
Levoy (2001), are the commonly used standard approaches. The
ICP algorithm iteratively estimates the transformation parameters
between two partially overlapping point clouds and converges to a
local minimum, but a good a priori alignment of the point clouds is
required in order to reach an appropriate solution. Due to the iter-
ative processing of the usually large number of points, the algo-
rithm shows a high computational effort.

In general, the registration approaches use distinctive features
to recover the translation and rotation parameters for the align-
ment of two point clouds, as such features may provide additional
and useful information. These features have to be extracted from
the TLS data and a whole variety of feature types may be consid-
ered. In the following, the prior works will be distinguished by
range-based approaches (Section 1.1) and image-based approaches
(Section 1.2).

1.1. Related work focusing on range-based registration

Characteristic point features are extracted in Barnea and Filin
(2008) by using the so-called min-max operator adapted to
panoramic range images, and thus to 3D point clouds being
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projected onto a 2D plane showing the distance of each point,
which yields features being located at corners. The resulting subset
of points with distinctive characteristics in their surrounding areas
is then used for a RANSAC-based matching of the point clouds
which, however, only leads to a coarse estimation of the transfor-
mation parameters. Hence, an additional ICP-based refinement
starting with this estimate is utilized.

Instead of point features, line features can also be used for the
registration process like in Stamos and Leordeanu (2003). There-
fore, planar surfaces are extracted from the point clouds and the
intersection of neighboring planar regions yields line features.
Moreover, line features representing the boundaries of the recov-
ered planes are also taken into consideration and, finally, the trans-
formation parameters between two point clouds are calculated
from at least two corresponding line pairs.

According to Dold and Brenner (2004), the transformation
parameters between two point clouds can also be calculated based
on three plane matches. A comparison of this method to a method
which is based on a modification of the Normal Distributions Trans-
form (NDT) is carried out in Brenner et al. (2008). Whereas the lat-
ter one is conceptually simple and therefore fast, the approach
based on planar patches tends to be more accurate and works for
larger distances between the scans. In Dold (2005), the normal vec-
tors of local or segmented planes of the TLS data are projected onto
a unit sphere and clustered through their tessellation which yields
extended Gaussian images. These are used to recover the rotation
parameters between different scans. Further improvements to re-
duce the search area by excluding implausible correspondences
based on geometric constraints are described in Dold and Brenner
(2006) as well as the use of a calibrated hybrid sensor system in or-
der to get textured patches. The additional texture information is
used for determining the translation parameters between two
scans via correlation.

With some additional assumptions made in von Hansen (2006),
single plane correspondences are sufficient to recover the transfor-
mation parameters between two scans. So single surface elements
are extracted from the TLS data and grouped to planes. Then, a
coarse registration is carried out returning a set of corresponding
planes and coarse parameter estimates, which are finally refined
by using a least-squares adjustment over all scan positions.

In some applications, it is feasible to extract several different
geometric primitives from the TLS data. Scenes containing indus-
trial installations offer a variety of features like planes, spheres,
cylinders and tori which are used in Rabbani et al. (2007). Once
such primitives have been extracted from the point clouds, the reg-
istration is carried out via corresponding object models in different
scans. This indirect method, however, leads to a coarse estimate of
the transformation parameters and therefore, the successive stage
consists of a direct method extending the idea of bundle adjust-
ment for global registration. As the refinement stage estimates
the transformation parameters of all scans simultaneously as well
as the shape parameters of all the objects used for registration, an
accumulation of errors resulting from pairwise registration is
avoided.

Extracting line features, plane patches or geometric objects
from TLS data, however, can be a quite difficult task in the presence
of cluttered scenes and variable point density. Therefore, other ap-
proaches use local descriptors representing surface patches. In Bae
and Lichti (2004) for example, the change of geometric curvature
and approximate normal vector of the local surface formed by a
point and its neighborhood are used for the registration of two par-
tially overlapping point clouds yielding only small registration er-
rors without the need of a good a priori alignment. Modifications
based on these features and neighborhood search are presented
in Bae and Lichti (2008) and include the radial and angular
uncertainty of laser scanner measurements. However, the pro-

posed Geometric Primitive ICP (GP-ICP) and its extension using the
RANSAC algorithm require an initial alignment.

1.2. Related work focusing on image-based registration

Recent developments show that local features can also be
extracted from the point clouds by using images which are usually
acquired simultaneously with the range data by recording either
co-registered camera images or reflectance images representing
the energy of the backscattered laser light of an active sensor. These
images provide additional information about the local area around
the scanner which might not always be represented in the range
measurements. The fusion of range data and 2D imagery is investi-
gated in Forkuo and King (2004). There, three different approaches
are presented. The first one is based on using the 3D range data
and synthetic camera images (SCIs) which are generated from the
respective reflectance values via backprojection into a regular grid.
By contrast, the second approach is based on comparing synthetic
camera images to real camera images (RCIs) acquired with a digital
camera from a different viewpoint. This involves feature detection
as well as feature matching. Finally, a third approach is presented
for relating each pixel in the 2D camera image to the corresponding
3D point in space which can be used to produce a photo-realistic
model. These approaches show that the registration of two point
clouds can be supported by using reliable features of the images
but, in general, it has to be taken into account that the images might
be based on polar geometry instead of central projection. As the fea-
tures have to be robust in case of changes in viewpoint resulting in
changes of scale, rotation and various image distortions as well as
changes in illumination, features resulting from the SIFT algorithm
described in Lowe (2004) are considered to be well-suited and there-
fore widely used. These features are based on a close approximation
to the scale-normalized Laplacian-of-Gaussian function (Lindeberg,
1994) and, according to Mikolajczyk (2002), the extrema of this
function produce the most stable feature points in 2D images.

SIFT features have been introduced for the registration of TLS
data in Bendels et al. (2004) where both range information and
information from co-registered camera images are used. Combin-
ing the information of SIFT features extracted from the color
images and the corresponding surface elements extracted from
the range data leads to special tie points representing the centers
of gravity of the respective surface elements. The calculated points
are used for registration which is divided into a coarse registration
using a least-squares alignment of the point clouds and a fine reg-
istration by an ICP-based alignment of the feature surface ele-
ments. Finally, a graph relaxation algorithm is presented for
multiview registration.

In Al-Manasir and Fraser (2006) as well, a digital camera
mounted on the TLS is used for image-based registration. The ap-
proach is based on the extraction of SIFT features as reliable feature
points, the model of coplanarity for calculating the relative orien-
tation between two images and the Helmert transformation for
determining the relationship between two scans. Assuming
coplanarity, however, is not possible in the case of panoramic
images.

Such panoramic images are used for supporting the registration
process in Barnea and Filin (2007). There, SIFT features being ex-
tracted with respect to image information are projected into the lo-
cal 3D space by using range information. Subsequently, the
rotation and translation parameters between the scans are esti-
mated using the RANSAC algorithm.

However, traditional SIFT features can also be modified via im-
age rectification which is presented in Seo et al. (2005) and reduces
effects of various distortions caused by changes in viewpoint and
illumination.
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The transfer of the SIFT algorithm to reflectance images derived
directly from the reflectance values of the TLS data is proposed in
Böhm and Becker (2007). There, the features are filtered with respect
to both their distinctiveness and their geometric relationship, and
the remaining feature points are used as tie points for registration.

Reflectance images are also used in Wang and Brenner (2008),
where the SIFT feature descriptor is modified with additional en-
tries. Each entry added represents the mean geometric curvature
of a surface formed by the projection of a 2D SIFT feature into local
3D space and its 3D neighborhood in the point cloud. The transfor-
mation parameters are then estimated by using the RANSAC algo-
rithm and can be refined by using the ICP algorithm.

An approach including both pairwise and global registration is
presented in Kang et al. (2009). Based on corresponding SIFT fea-
tures, the respective 3D points and the removal of outliers by a
geometric invariance check, a least-squares adjustment of the
point clouds is carried out. The following step for global registra-
tion utilizes bundle adjustment strategies in form of self-closure
constraints.

1.3. Contribution of this paper

In this paper, we propose a method for fast and automatic im-
age-based registration of terrestrial laser scanning data. For esti-
mating the transformation parameters between two point clouds,
radiometric and geometric information are utilized. After the
extraction of characteristic feature points from the reflectance
images of two scans, these features are projected into 3D space
using range information interpolated from surrounding points.
The projection of these 3D points onto virtual planes allows for a
fast and fully automatic registration which utilizes both 2D and
3D observations of the respective point clouds. In order to detect
outliers, a refinement based on the idea of using the Euclidean dis-
tances between the matched point pairs in 3D space is applied. The
presented approach cuts down the processing speed for the regis-
tration of large point clouds, consisting of millions of points, to a
few seconds on a standard computer. Furthermore, the fully auto-
matic approach handles a marker-less registration without any
prior knowledge of the scene.

The paper is organized as follows. In Section 2, the scheme of
the above briefly mentioned methodology is presented in detail.
The capability of the proposed approach is proved by processing
11 point clouds of an urban environment in Section 3. In Section 4,
the received transformation parameters for the registration are
discussed concerning accuracy, reliability and performance. Con-
clusions and suggestions for future work are outlined in Section 5.

2. Methodology

The general overview of the registration approach proposed in
this paper is illustrated in Fig. 1. First, from the two unregistered
point clouds PCn and PCn+1 the corresponding reflectance images
In and In+1 and range images Rn and Rn+1 have to be generated. Then,
SIFT features are extracted from both reflectance images and only
the matching features, i.e. the homologous points, are considered
for the further processing. As these features are located with sub-
pixel accuracy and only each pixel represents a measured 3D point
around the scan position, a bilinear transformation based on the
information of a local neighborhood is carried out in order to as-
sign each 2D location of a SIFT feature the corresponding 3D loca-
tion. This is done for In and Rn as well as for In+1 and Rn+1. The
resulting 3D points are the conjugate points CPi, n and CPi,n+1.

Furthermore, a step called Projective Plane Projection (PPP)
which yields 2D backprojections xi, n and xi, n+1 of the conjugate
points CPi, n and CPi, n+1 onto virtual planes Pn and Pn+1 is introduced.

Together with the conjugate points CPi, n, the backprojections xi, n+1

are then used for a pre-alignment of both scans involving the EPnP
algorithm combined with the RANSAC algorithm.

The coarse estimate allows for a propagation of the conjugate
points CPi, n and therefore, both sets of conjugate points can be
transformed into one common coordinate frame. In order to refine
the previous estimate, the geometric distance between matching
3D points is considered and outlying correspondences are removed
from both sets of conjugate points resulting in their modifications
CP�i; n and CP�i; nþ1 and the respective 2D backprojections x�i; n and
x�i; nþ1. As before, 3D-to-2D correspondences are built from the con-
jugate points CP�i; n and the corresponding backprojections x�i; nþ1.
These 3D-to-2D correspondences are of a significant better quality
than those utilized in the coarse estimation. Hence, using the EPnP
algorithm combined with the RANSAC algorithm yields a more
accurate result for the estimated transformation parameters.

The basic ideas of the more complex algorithms used here are
described in the following paragraphs.

2.1. 3D point estimation using SIFT

The Scale Invariant Feature Transform (SIFT) introduced in Lowe
(1999) and later improved in Lowe (2004) can be utilized for
detecting distinctive keypoints in an image and extracting local
feature descriptors which are invariant to image scaling and image
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rotation, and robust with respect to image noise, changes in illumi-
nation and small changes in viewpoint. With these descriptors it is
possible to locate correspondences between different images and,
finally, to derive common image objects. Therefore, the SIFT algo-
rithm can be applied to images derived from TLS data. In general,
the computation of SIFT features is carried out in four major steps:

� Scale-space extrema detection
At first, the image I is convolved with Gaussian kernels of vari-
able scale, reduced in size and again convolved with Gaussian
kernels of variable scale in order to build the Gaussian scale-
space. The blurred images are grouped according to their size
and sorted according to their scale. Subtracting neighboring
images yields the scale-space of Gaussian differences and stable
keypoint locations can then be determined by comparing each
sample point to its eight neighbors in the same scale and its
nine neighbors in both neighboring scales. Resulting from this,
local extrema are selected as keypoint candidates.

� Keypoint localization
Once keypoint candidates have been detected, the next step is
to improve their location to subpixel accuracy and to remove
keypoint candidates with a low stability.

� Orientation assignment
Based on the local image gradient directions of the closest
smoothed image, each remaining keypoint is assigned a charac-
teristic orientation.

� Generation of keypoint descriptors
The descriptor of each remaining keypoint is also derived from
the local image gradients, but in order to achieve rotational
invariance, this gradient information is aligned with the
assigned keypoint orientation.

For two images of a scene, corresponding SIFT features can then
be detected by comparing the Euclidean distances of a keypoint
descriptor in the first image to the nearest neighbor and to the sec-
ond nearest neighbor in the second image. The ratio of these dis-
tances has to be below a given threshold t, which can vary
between 0 and 1. In order to get reliable correspondences, distinc-
tive features have to be detected and therefore, a threshold of
t = 0.66 is used. This means that the distance of a descriptor
belonging to a SIFT feature in the first image to the nearest neigh-
bor in the second image is only about 2/3 of the distance to the sec-
ond nearest neighbor. Using a higher threshold means that the
feature descriptors of the nearest and second nearest neighbor in
the second image may be more similar and thus, the considered
feature in the first image is less distinctive. So a higher threshold
usually leads to additional, but less reliable correspondences.

As these homologous points are located with subpixel accuracy,
the corresponding 3D location has to be determined via nearby range
measurements. Therefore, a bilinear interpolation is carried out in
order to derive 3D points which are not necessarily equal to the mea-
sured points within a given scan grid. If the range information is not
available for all four neighboring points in the regular scan grid, the
corresponding point pair is discarded. The resulting 3D points for
two successive scans are introduced as conjugate points CPi, n and
CPi, n+1.

2.2. Projective Plane Projection

Unlike the transformation used by the laser scanner, which
maps each measured 3D point with its reflectance information

onto a cylinder or a sphere, the Projective Plane Projection (PPP) is
a camera-like projection, mapping a set of 3D points Xi, which
are actually the conjugate points in our case, onto points xi of a vir-
tual plane. Hence, this mapping can formally be described via a
projective projection model of the form

xi ¼ K Rjt½ �Xi; ð1Þ

where the matrix K is the calibration matrix of a virtual camera. The
matrix R and the vector t describe the rotation and the translation
of the virtual camera with respect to the local coordinate system of
the laser scanner. In the registration process, the matrix R is chosen
so that the virtual camera has the same orientation as the laser
scanner with respect to the local scan and that the camera looks
into the horizontal direction. As it can be assumed that there is
no difference between the position of the virtual camera and the la-
ser scanner, the translation vector is set to t = 0. Using a virtual
plane means that any parameters can be used for the focal lengths
in x- and y-direction as well as for the coordinates of the principal
point. Therefore, the image plane has not necessarily to be limited
on a finite area. Instead of creating a synthetic camera image, as it
is done in Forkuo and King (2004), and then extracting features
from this synthetic camera image, only subpixel accurate 2D projec-
tions of specific 3D points are considered. Thus, the virtual plane
only serves for getting 2D observations of 3D points. Expanding
the virtual plane to infinity leads to visible 3D points within the
whole area in front of the virtual camera. All points behind the cam-
era may also be included in this approach as they represent the 2D
projections onto the virtual plane of a second camera looking in the
opposite direction. These 2D projections are mapped onto the first
virtual plane via symmetric constraints.

2.3. Laser scanner pose estimation using EPnP

In Moreno-Noguer et al. (2007) and Lepetit et al. (2009), the Effi-
cient Perspective-n-Point (EPnP) algorithm has been proposed as a
non-iterative solution to the Perspective-n-Point (PnP) problem
where the aim is to estimate the exterior orientation or pose of a
camera from a set of n correspondences between 3D points Xi of
a scene and their 2D projections xi onto the image plane. Showing
a computational complexity of O(n), using a system with both lin-
ear and quadratic equations and being applicable for both planar
and non-planar configurations, the EPnP algorithm is much faster
and even more accurate than other non-iterative methods and
much faster than iterative methods with only little loss in accu-
racy. Furthermore, this algorithm is less sensitive to noise and it
does not require an initial estimate.

The EPnP algorithm is based on the idea of expressing the n 3D
scene points Xi whose coordinates are known in the world coordi-
nate system as a weighted sum of four virtual and non-coplanar
control points Cj for general configurations, which means that

Xi ¼
X4

j¼1

aijCj ð2Þ

with

X4

j¼1

aij ¼ 1 ð3Þ

holds true, where the aij are homogeneous barycentric coordinates.
As, in the world coordinate system, the points Xw

i are known as well
as the control points Cw

j , the parameters aij are known for the same
equation in camera coordinates. Hence, the points Xc

i can be ex-
pressed via the control points Cc

j which leads to

wi
xi

1

� �
¼ KXc

i ¼ K
X4

j¼1

aijC
c
j ð4Þ
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for i = 1, . . . , n, where wi are scalar projective parameters and K de-
scribes the camera matrix. This relationship between 3D points and
2D points is illustrated in Fig. 2. Expanding the previous expression
yields

wi

xi

yi

1

2
64

3
75 ¼

fx 0 x0

0 fy y0

0 0 1

2
64

3
75X

4

j¼1

aij

Xc
j

Yc
j

Zc
j

2
664

3
775 ð5Þ

with the focal length coefficients fx and fy, the coordinates x0 and y0

of the principal point and the coordinates Xc
j ;Y

c
j ; Z

c
j

h iT
of the control

points. This linear system has 12 unknown parameters from the
control points and, additionally, n unknown parameters wi. As can
be seen from the third row,

wi ¼
X4

j¼1

aijZ
c
j ð6Þ

holds true which can be substituted into the other two rows. Con-
catenating the resulting equations for all n 3D-to-2D correspon-
dences yields a linear system

Mx ¼ 0 ð7Þ

with x ¼ CcT
1 ; CcT

2 ; CcT
3 ; CcT

4

h iT
and a 2n � 12 matrix M. The solution x

then leads to the camera coordinates Xc
i of the 3D points. Once the

world coordinates and the camera coordinates of the 3D points are
known, the rotation and translation parameters aligning both coor-
dinate systems can be retrieved via standard methods (Horn et al.,
1988).

Thus, only the coordinates of the control points in the camera
coordinate system have to be estimated as they are directly linked
with the coordinates of all 3D points which is the main reason for
the efficiency of the EPnP algorithm. A further optimization step
using the Gauss–Newton algorithm is described in Lepetit et al.
(2009).

2.4. Robust estimation using RANSAC

The data used for testing is derived from measurements and so
the quality of the used 3D-to-2D correspondences depends on the
scanner accuracy with respect to both distance and angular resolu-
tion. Hence, the performance increases if only the reliable 3D-to-
2D correspondences are used instead of all correspondences. For
this purpose, the RANSAC algorithm presented in Fischler and
Bolles (1981) is adapted to the EPnP algorithm. In this step, it is
important to notice that the distinctive 3D conjugate points CPi, n

are detected via SIFT features in the reflectance image In, whereas

the observed 2D backprojections of these distinct 3D points are
derived from projecting the matching 3D conjugate points CPi, n+1

onto the virtual plane Pn+1. The geometrical quality of correspond-
ing 3D points in both point clouds has to be considered separately.

Generally, the RANSAC algorithm iteratively estimates the
parameters of a mathematical model from a data set including out-
liers which do not fit to this model. Instead of using all the data
available to get an initial solution and then attempting to eliminate
the outliers, the RANSAC algorithm starts with a minimal subset of
the data. This subset is sufficient to estimate the model parameters
and randomly chosen, and then it is enlarged with consistent sam-
ple points when possible. According to Moreno-Noguer et al.
(2007), a small, but not minimal subset of seven correspondences
is randomly selected to reduce the sensitivity to noise. In order
to avoid testing all possible subsets, which would be time-consum-
ing, an efficient variant described in Hartley and Zisserman (2008)
is used. There, the number of iterations which equals the number
of randomly chosen subsets is selected high enough, so that a sub-
set including only inliers is selected with a certain probability p.

2.5. Single step outlier removal

When dealing with measurements and applying the SIFT algo-
rithm on the reflectance images, it seems quite feasible to check
if all detected correspondences are really suitable with respect to
the corresponding 3D points or if there are uncertainties concern-
ing some of the correspondences. In the registration process, such
uncertainties might arise from SIFT features being detected in the
reflectance images at periodic shapes of façades which are likely
to occur in urban environments. As a threshold value of t = 0.66
is used for a reliable matching of SIFT features, a feature detected
in one image is very similar to only one feature detected in the
other image. Despite this visual similarity, however, periodically
appearing features could lead to obviously wrong correspondences
in case of the local 3D geometry around the scan positions and so
this kind of wrong correspondences has to be excluded from the
set of all correspondences. This can be done by introducing geo-
metric constraints based on the 3D distances between the propa-
gated conjugate points CPi, n and CPi, n+1.

The propagation transforms both sets of conjugate points into
the world coordinate system. As the transformation matrix con-
taining R and t with respect to the world coordinate system is as-
sumed to be already known for the point cloud PCn, the world
coordinates of the conjugate points CPi, n are also known. For calcu-
lating the world coordinates of the points CPi, n+1, the transforma-
tion matrix used is derived directly from the rotation and
translation parameters which are estimated in the coarse registra-
tion step with respect to the world coordinate system. Thus, a com-
parison of the 3D points with respect to their 3D distances is
possible. Especially large distances caused by erroneous correspon-
dences have to be discarded as they influence the robustness of the
EPnP algorithm and the time needed to find a useful solution.

Hence, the border between smaller and larger distances has to
be determined and all matching 3D-to-2D correspondences with
a large distance between their 3D points have to be rejected. To
get the most promising correspondences for further calculations,
a criterion based on the distribution of the distance between
matching 3D points is introduced. Sorting the matching points
with respect to their 3D distances, building a set consisting of
the third of the smallest distances and iteratively adding the corre-
spondence with the next greater distance allows for checking
whether the new sample takes a strong influence on the mean va-
lue of the set which is done by considering the first derivative of

qðiÞ ¼meanactual setðiÞ
meancomplete set

: ð8ÞFig. 2. Relationship between 3D points and the respective 2D projections onto the
image plane.

S66 Ma. Weinmann et al. / ISPRS Journal of Photogrammetry and Remote Sensing 66 (2011) S62–S70

193



3. Experiments

In the following, the TLS data (Section 3.1) used for testing the
presented approach to pairwise registration is described as well as
the registration results (Section 3.2).

3.1. Data set

For processing and evaluating the proposed approach, the
benchmark TLS data set from the University of Hanover is used
which has been acquired at a district in Hanover called Holzmarkt.
The complete data set was obtained by using a Riegl LMS-Z360i
scanner and consists of several scans being captured from various
positions. It includes the 3D coordinates of object points as well as
the corresponding reflectance information. According to Wang and
Brenner (2008), the laser scanner covers a field of view of 360 de-
grees in the horizontal direction and only 90 degrees in the vertical
direction up to a range of approximately 200 m for each scan. The
angular resolution of the TLS is 0.12 degrees and a measurement
accuracy of 12 mm can be expected. Hence, a single scan returns
2.25 million 3D points from a regular scan area of 3000 � 750
points being represented as panoramic reflectance image. The pro-
vided reference values for the rotation and translation parameters
of the TLS are based on a manual alignment using artificial targets
which were placed in the scene. Thus, an accuracy in the low mil-
limeter range can be expected for the reference positions.

3.2. Pairwise registration

As illustrated in Fig. 3, the scans recorded at 11 different loca-
tions were used and the distance between successive scanner posi-
tions is approximately 5 m. The figure shows the single scans after
registration into a common coordinate system using the reference
data. However, only a few points which are determined via SIFT
features in the reflectance images are used for registration. To illus-
trate the density of these points, Fig. 4 shows the projections of the
2D SIFT features of each scan to 3D space separating neighboring
scans by color. As a result from this nadir view onto the scene,
the rough structure of the scene can be interpreted showing faç-
ades of houses and the coarse direction of streets. In the area be-
tween these plain structures, features from static objects or
moving people are detected, but these features do not show a lar-
ger regular surface patch. For comparison purposes, all absolute
distances between the scanner positions are shown in Table 1.

For the pairwise registration of two successive scans, the pro-
posed algorithm first extracts SIFT features in the reflectance

images and searches for reliable point correspondences by using
a threshold value of t = 0.66. Using the scans from scan position
01 and scan position 02, a total number of 217 SIFT correspon-
dences is found which is illustrated in Fig. 5. The number of
matched SIFT features between image pairs from all available posi-
tions is shown in Table 2, where the diagonal elements represent
the total number of extracted SIFT features in the respective image.
As can be seen in Table 2, the confusion matrix is not necessarily
symmetric. This depends on the ratio of the distances of a feature
descriptor in one image to the nearest neighbor and the second
nearest neighbor in the other image. If a feature descriptor derived
from the first image is compared to the feature descriptors derived
from the second image, it might occur that the nearest neighbor
and the second nearest neighbor in the second image are a little
more distinctive as required and therefore, the ratio is below the
threshold t and meets the constraint. In the reverse case, in which
a feature descriptor derived from the second image is compared to
the feature descriptors derived from the first image, the nearest
neighbor and the second nearest neighbor in the first image might
be more similar which causes a ratio above the threshold t.

Subsequently, the respective SIFT features are projected to 3D
space yielding a point cloud much smaller than those point clouds
of the scans. This however can only be done if the corresponding
range information is available. As the SIFT features are located with
subpixel accuracy and a bilinear transformation is carried out, the
range information has to be available for all four surrounding
points in the regular grid. This constraint is met by 175 of the
217 conjugate point pairs. Assuming that position and orientation
are known for the first scan at scan position 01 results in known
coordinates of the 3D conjugate points CPi, n. The 2D backprojec-
tions of the conjugate points CPi, n+1 onto the camera-like virtual
plane assigned to scan position 02 are observed. In this step, it is
assumed that the virtual plane is expanded to infinity and that
3D points in front of the virtual camera and behind the virtual
camera are included. Hence, all of the previously extracted 3D
points are observed on the virtual plane. The 3D coordinates of
these points are known from the first scan and their 2D backpro-
jections from the observation in the second scan. Thus, the EPnP

Fig. 3. View on the scene using the scans after registration into a common
coordinate system via the reference data.

Fig. 4. Nadir view depicting the spatial distribution of the significant points in the
investigated 3D environment and the numbered scan locations (01–11) of the TLS
after registration into a common coordinate system via the reference data.
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algorithm can be used for estimating the actual transformation
parameters. The results from this coarse estimation are shown in
Table 3.

This coarse estimate is used to compare the 3D points in a com-
mon coordinate frame. According to the criterion introduced for
removing outliers based on the geometric 3D distance, only the
most promising 3D points remain, in this case 74 between scan po-
sition 01 and scan position 02. Based on the 2D and 3D observa-
tions of these points, the EPnP algorithm is again used to get a
refinement of the previous estimate which is shown in Table 4.
The result after the registration of the scans from scan position
01 and scan position 02 is illustrated in Fig. 6. For a better visual-
ization, the point clouds were thinned and points below the scan
positions were removed. The improvements of the refinement step
are finally shown in Fig. 7.

Table 1
Absolute 3D distance between the single scan positions in meters.

Position 01 02 03 04 05 06 07 08 09 10 11

01 0 5.58 10.85 16.95 21.47 24.86 30.40 31.79 34.45 35.55 38.32
02 5.58 0 5.27 11.37 15.89 19.30 24.85 26.46 29.41 30.82 34.02
03 10.85 5.27 0 6.11 10.62 14.05 19.62 21.54 24.86 26.66 30.34
04 16.95 11.37 6.11 0 4.60 7.95 13.53 15.93 19.78 22.12 26.41
05 21.47 15.89 10.62 4.60 0 3.96 9.42 12.93 17.48 20.42 25.24
06 24.86 19.30 14.05 7.95 3.96 0 5.59 9.11 13.90 17.11 22.18
07 30.40 24.85 19.62 13.53 9.42 5.59 0 5.81 10.97 14.77 20.16
08 31.79 26.46 21.54 15.93 12.93 9.11 5.81 0 5.18 8.95 14.35
09 34.45 29.41 24.86 19.78 17.48 13.90 10.97 5.18 0 3.92 9.31
10 35.55 30.82 26.66 22.12 20.42 17.11 14.77 8.95 3.92 0 5.40
11 38.32 34.02 30.34 26.41 25.24 22.18 20.16 14.35 9.31 5.40 0

Fig. 5. Visualization of the connected interest points between two consecutive scans.

Table 2
Number of SIFT correspondences between the reflectance images of different scans.

Position 01 02 03 04 05 06 07 08 09 10 11

01 4986 217 63 45 33 44 58 62 41 39 28
02 229 5663 319 100 59 35 80 46 43 38 48
03 88 308 5967 253 120 57 56 38 47 56 68
04 70 114 277 6200 484 131 78 68 58 84 68
05 31 70 124 466 6682 477 169 134 68 71 56
06 61 40 59 129 503 7154 344 211 82 53 30
07 86 96 53 78 163 328 6867 404 205 99 64
08 53 56 34 60 121 240 379 6159 590 361 169
09 39 34 37 56 68 78 158 577 5571 656 330
10 21 25 43 51 54 42 84 344 629 4852 482
11 17 24 37 40 44 24 41 134 277 408 4061

Table 3
Error between reference and estimated transformation parameters for coarse
registration.

Position Dx [�] D/ [�] Dj [�] DX [m] DY [m] DZ [m] eabs [m]

01–02 �0.001 �0.041 0.057 �0.023 0.030 �0.002 0.038
02–03 0.009 0.007 0.053 �0.011 �0.014 �0.003 0.018
03–04 �0.014 �0.072 0.029 0.015 0.024 �0.022 0.036
04–05 0.002 �0.007 0.002 0.016 �0.025 �0.003 0.030
05–06 0.038 �0.009 0.003 �0.004 �0.008 �0.013 0.016
06–07 0.046 0.035 0.018 0.012 �0.023 0.005 0.026
07–08 0.037 �0.000 �0.017 0.027 �0.013 0.010 0.032
08–09 �0.013 �0.002 0.031 �0.017 �0.010 0.007 0.021
09–10 �0.067 �0.009 0.043 �0.035 0.008 �0.022 0.042
10–11 0.025 �0.064 �0.011 0.037 �0.001 0.007 0.038
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4. Discussion

Although the proposed algorithm only uses a refinement and no
fine registration method like ICP, the quality of the resulting esti-
mate for pairwise registration of two consecutive scans is in the

same range as in Wang and Brenner (2008). For larger distances
between the scan positions (Table 1), however, the total number
of corresponding SIFT features decreases which is summarized in
the confusion matrix (Table 2). It has also to be mentioned that
the number of detected and corresponding SIFT features strongly
depends on the scene content. Therefore, as all other methods
based on SIFT features, the proposed algorithm is suited for well-
textured scenes, whereas scenes with less correspondences will
probably not lead to optimal results.

The first approach presented in Brenner et al. (2008) can cope
with larger distances, but it is based on extracting planes and
therefore, this approach is restricted on environments with regular
surfaces like urban environments. Such regular surfaces are also
used in von Hansen (2006) and Rabbani et al. (2007), a variety of
geometric primitives is used for registration. By contrast, the pro-
posed approach is not restricted on environments with regular sur-
faces and can also be used in areas with vegetation.

Furthermore, it is an advantage to use distinctive feature points
with subpixel accuracy derived from the regular measured grid to
avoid scanning limitations. For an accurate subpixel localization,
the interpolated range estimation could be further improved by
substituting the bilinear interpolation with a higher-order interpo-
lation, e.g. using splines or geometric curvature as suggested in Bae
and Lichti (2004).

Generally, well-distributed points in 3D space are essential to
obtain a high-quality estimate of the transformation parameters.
With an already given distribution of the processed data, the
coarse registration with an absolute position error in the range be-
tween 16 and 42 mm is achieved (Table 3, last column). This can be
refined to an absolute position error in the range between 8 and
29 mm (Table 4, last column) which is close to the TLS measure-
ment accuracy of 12 mm. For all results shown, an improvement
in the absolute position estimate is obtained by the refinement
step (Fig. 7). However, it has to be stated that the solutions depend
on the RANSAC algorithm estimates. If the coarse estimate already
shows a high accuracy, the refinement may lead to an improve-
ment, but not necessarily. In some cases, despite an improvement
of the position estimate single rotation parameters are affected in a
negative way. But still most of the deviations in orientation are be-
low 0.065 degrees except one value of 0.079 degrees.

The proposed algorithm was tested on a standard PC with
2.83 GHz and, for the implementation is not fully optimized with
respect to a possible parallelization on multiple cores, only one
core was used. Thus, the matching of corresponding SIFT features
takes an average time of about 5 s and the total time required for
pairwise registration of two scans is approximately 18 s. As Matlab
was used, the speed can further be optimized. A comparison with a
fully Matlab-based implementation of the standard ICP algorithm
with 10 iterations was carried out on the same PC using a single
core again. Assuming a good a priori alignment of the point clouds,
the ICP algorithm needed a time of 56.1 s for two subsets consisting
of 22,500 points, i.e. only 1% of the respective point clouds, and
approximately 2.8 h for two subsets consisting of 225,000 points,
i.e. 10% of the respective point clouds.

Concerning EPnP and dealing with noisy points, in Moreno-No-
guer et al. (2007) it is suggested to use the RANSAC algorithm on
small subsets consisting of seven correspondences which is used
in the proposed algorithm. Larger subsets are motivated as they
introduce redundancy and therefore reduce the sensitivity to noise.
In this context, the RANSAC scheme is utilized for selecting the
most reliable 3D-to-2D correspondences.

The advantage of the proposed refinement is that additional
geometric constraints are introduced with respect to 3D distances
in order to check the SIFT correspondences for consistency, for in-
stance in case of periodic shapes of façades in urban environments.
Thus, reliable 3D-to-3D correspondences are remaining. These are

Table 4
Error between reference and estimated transformation parameters for refined
registration.

Position Dx [�] D/ [�] Dj [�] DX [m] DY [m] DZ [m] eabs [m]

01–02 �0.047 �0.011 0.004 0.019 �0.001 �0.005 0.019
02–03 0.044 �0.013 0.035 �0.004 �0.009 �0.003 0.010
03–04 0.034 �0.004 0.079 �0.015 �0.006 0.010 0.019
04–05 �0.021 0.022 0.008 �0.002 �0.012 0.005 0.013
05–06 0.031 �0.002 0.009 �0.001 �0.005 �0.008 0.010
06–07 0.017 0.032 0.053 0.004 �0.011 0.010 0.015
07–08 0.054 �0.044 0.012 0.002 0.006 �0.005 0.008
08–09 0.015 �0.027 0.031 0.009 0.005 �0.008 0.013
09–10 �0.043 �0.004 0.029 �0.008 0.003 �0.012 0.015
10–11 0.016 �0.065 �0.014 0.025 �0.012 0.009 0.029

Fig. 6. Nadir view depicting two point clouds after registration. The 3D points of the
first scan from scan position 01 are illustrated as red points and the 3D points of the
second scan from scan position 02 as blue points.
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Fig. 7. Absolute error between reference and estimated position for coarse (dotted
line with diamonds) and refined (solid line with squares) registration.
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much stronger than reliable 3D-to-2D correspondences which can
be observed by comparing the improvements between coarse reg-
istration and its refinement.

5. Conclusions

In this paper, a fast and fully automatic method for pairwise
registration of TLS data is presented. The method is based on both
reflectance images and range information which are commonly
used to derive simple, but characteristic points in 3D space. For a
new scan, the observation of these points on a virtual plane aligned
with the scanner allows for a fast and accurate RANSAC-based reg-
istration scheme including a single step outlier removal for check-
ing consistency.

Instead of a registration for consecutive scans where the regis-
tration of each scan is based on comparing it to the previous scan,
the idea of the proposed algorithm might be extended to multiview
registration. This means that for each new scan all previous scans
could be considered which will probably improve the registration
results. Thus, a growing subset of scans is considered as the num-
ber of available scans increases. The 3D coordinates of specific
points, detected by comparing the actual reflectance image with
all previous reflectance images and generating the respective con-
jugate points via bilinear transformation, are known from the pre-
vious scans and their 2D projections onto the actual virtual plane
are observed. This concept including parts of the confusion matrix
instead of single entries increases the total number of conjugate
points and, probably, also improves their distribution in local
space, which should result in a higher accuracy.

Acknowledgement

The authors would like to thank Dr. Claus Brenner from the Insti-
tute of Cartography and Geoinformatics at the University of Hanover
for providing the TLS data. The data is available at http://www.ikg.
uni-hannover.de/index.php?id=413&L=de (Accessed October, 2010).

References

Al-Manasir, K., Fraser, C.S., 2006. Registration of terrestrial laser scanner data using
imagery. The Photogrammetric Record 21 (115), 255–268.

Bae, K.-H., Lichti, D.D., 2004. Automated registration of unorganised point clouds
from terrestrial laser scanners. International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences 35 (Part B5), 222–227.

Bae, K.-H., Lichti, D.D., 2008. A method for automated registration of unorganised
point clouds. ISPRS Journal of Photogrammetry and Remote Sensing 63 (1), 36–
54.

Barnea, S., Filin, S., 2007. Registration of terrestrial laser scans via image based
features. International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences 36 (Part 3), 32–37.

Barnea, S., Filin, S., 2008. Keypoint based autonomous registration of terrestrial laser
point-clouds. ISPRS Journal of Photogrammetry and Remote Sensing 63 (1), 19–
35.

Bendels, G.H., Degener, P., Körtgen, M., Klein, R., 2004. Image-based registration of
3D-range data using feature surface elements. In: Chrysanthou, Y., Cain, K.,
Silberman, N., Niccolucci, F. (Eds.), The 5th International Symposium on Virtual
Reality, Archaeology and Cultural Heritage, pp. 115–124.

Besl, P.J., McKay, N.D., 1992. A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence 14 (2), 239–256.

Böhm, J., Becker, S., 2007. Automatic marker-free registration of terrestrial laser
scans using reflectance features. In: Gruen, A., Kahmen, H. (Eds.), Optical 3-D
Measurement Techniques VIII, pp. 338–344.

Brenner, C., Dold, C., Ripperda, N., 2008. Coarse orientation of terrestrial laser scans
in urban environments. ISPRS Journal of Photogrammetry and Remote Sensing
63 (1), 4–18.

Dold, C., 2005. Extended Gaussian images for the registration of terrestrial scan
data. International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences 36 (Part 3/W19), 180–185.

Dold, C., Brenner, C., 2004. Automatic matching of terrestrial scan data as a basis for
the generation of detailed 3D city models. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences 35 (Part
B3), 1091–1096.

Dold, C., Brenner, C., 2006. Registration of terrestrial laser scanning data using
planar patches and image data. International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences 36 (Part 5), 78–83.

Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography.
Communications of the ACM 24 (6), 381–395.

Forkuo, E.K., King, B., 2004. Automatic fusion of photogrammetric imagery and laser
scanner point clouds. International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences 35 (Part B4), 921–926.

Hartley, R.I., Zisserman, A., 2008. Multiple view geometry in computer vision.
University Press, Cambridge.

Horn, B.K.P., Hilden, H.M., Negahdaripour, S., 1988. Closed-form solution of absolute
orientation using orthonormal matrices. Journal of the Optical Society of
America A 5, 1127–1135.

Kang, Z., Li, J., Zhang, L., Zhao, Q., Zlatanova, S., 2009. Automatic registration of
terrestrial laser scanning point clouds using panoramic reflectance images.
Sensors 9 (4), 2621–2646.

Lepetit, V., Moreno-Noguer, F., Fua, P., 2009. EPnP: an accurate O(n) solution to the
PnP problem. International Journal of Computer Vision 81 (2), 155–166.

Lichti, D.D., Pfeifer, N., Maas, H.-G. (Eds.), 2008. Terrestrial laser scanning. ISPRS
Journal of Photogrammetry and Remote Sensing 63 (1).

Lindeberg, T., 1994. Scale-space theory: a basic tool for analysing structures at
different scales. Journal of Applied Statistics 21 (2), 224–270.

Lowe, D.G., 1999. Object recognition from local scale-invariant features.
Proceedings of the International Conference on Computer Vision, 1150–1157.
doi:10.1109/ICCV.1999.790410.

Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision 60 (2), 91–110.

Mikolajczyk, K., 2002. Detection of local features invariant to affine transformations.
Institut National Polytechnique de Grenoble, France, Dissertation.

Moreno-Noguer, F., Lepetit, V., Fua, P., 2007. Accurate non-iterative O(n) solution to
the PnP problem. In: IEEE 11th International Conference on Computer Vision,
pp. 1–8.

Rabbani, T., Dijkman, S., van den Heuvel, F., Vosselman, G., 2007. An integrated
approach for modelling and global registration of point clouds. ISPRS Journal of
Photogrammetry and Remote Sensing 61 (6), 355–370.

Rusinkiewicz, S., Levoy, M., 2001. Efficient variants of the ICP algorithm. In:
Proceedings of the Third International Conference on 3D Digital Imaging and
Modeling (3DIM 2001), 28 May–1 June 2001, Quebec City, Canada. IEEE
Computer Society, Los Alamitos, CA, pp. 145–152.

Seo, J.K., Sharp, G.C., Lee, S.W., 2005. Range data registration using photometric
features. In: Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition 2, pp. 1140–1145.

Stamos, I., Leordeanu, M., 2003. Automated feature-based range registration of
urban scenes of large scale. In: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Vol. II, IEEE CS Press 2003, pp. 555–561.

von Hansen, W., 2006. Robust automatic marker-free registration of terrestrial scan
data. International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences 36 (Part 3), 105–110.

Wang, Z., Brenner, C., 2008. Point based registration of terrestrial laser data using
intensity and geometry features. International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences 37 (Part B5), 583–589.

Wehr, A., Lohr, U. (Eds.), 1999. Airborne laser scanning. ISPRS Journal of
Photogrammetry and Remote Sensing 54 (2–3).

S70 Ma. Weinmann et al. / ISPRS Journal of Photogrammetry and Remote Sensing 66 (2011) S62–S70

197



198



C. Publikationen zu 2.3 Szenenanalyse

[C1] Gross H, Jutzi B, Thoennessen U (2009) Classification of Elevation Da-
ta based on analytical versus trained Feature Values to determine Object
Boundaries. In: Seyfert E (Ed) Geoinformatik und Erdbeobachtung: 29.
Wissenschaftlich-Technische Jahrestagung der DGPF, 2009 (18): 315-326

[C2] Gross H, Jutzi B, Thoennessen U (2007) Segmentation of tree regions using
data of a full-waveform laser. In: Stilla U, Mayer H, Rottensteiner F, Heipke
C, Hinz S (Eds) Photogrammetric Image Analysis PIA07. International Ar-
chives of Photogrammetry, Remote Sensing and Spatial Information Sciences
36 (Part 3/W49A): 57-62

[C3] Jutzi B, Gross H (2009) Nearest neighbour classification on Laser point
clouds to gain object structures from buildings. In: Heipke C, Jacobsen K,
Müller S, Sörgel U (Eds) High-resolution Earth Imaging for Geospatial In-
formation. International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences 38 (Part 1-4-7/W5) (on CD)

[C4] Weinmann M, Jutzi B, Hinz S, Mallet C (2015) Semantic point cloud in-
terpretation based on optimal neighborhoods, relevant features and efficient
classifiers. ISPRS Journal of Photogrammetry & Remote Sensing 105: 286-
304 doi:10.1016/j.isprsjprs.2015.01.016

[C5] Weinmann M, Urban S, Hinz S, Jutzi B, Mallet C (2015) Distinctive 2D
and 3D Features for Automated Large-Scale Scene Analysis in Urban Areas.
Special Section on Processing Large Geospatial Data. Computers & Graphics
49: 47-57 doi:10.1016/j.cag.2015.01.006

[C6] Weinmann M, Jutzi B, Mallet C (2013) Feature relevance assessment for
the semantic interpretation of 3D point cloud data. In: Scaioni M, Linden-
bergh RC, Oude Elberink S, Schneider D, Pirotti F (Eds) ISPRS Workshop
Laserscanning 2013. ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences II-5/W2, 2013: 313-318

[C7] Weinmann M, Jutzi B, Mallet C (2014) Semantic 3D Scene Interpretation: A
Framework Combining Optimal Neighborhood Size Selection with Relevant
Features. In: Schindler K, Paparoditis N (Eds) ISPRS Technical Commissi-
on III Symposium. ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences II-3, 2014: 181-188 PCV 2014 Best Paper -
Honourable Mention

199

http://dx.doi.org/10.1016/j.isprsjprs.2015.01.016
http://dx.doi.org/10.1016/j.cag.2015.01.006


[C8] Weinmann M, Mallet C, Hinz S, Jutzi B (2015) Efficient interpretation of 3D
point clouds by assessing feature relevance. AVN - Allgemeine Vermessungs-
Nachrichten

[C9] Weinmann M, Schmidt A, Mallet C, Hinz S, Rottensteiner F, Jutzi B (2015)
Contextual classification of point cloud data by exploiting individual 3D
neighborhoods. In: Stilla U, Heipke C (Eds) Photogrammetric Image Ana-
lysis PIA15 + High-Resolution Earth Imaging for Geospatial Information
HRIGI15 - Joint ISPRS conference. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences II-3/W4, 2015: 271-278

200



NEAREST NEIGHBOUR CLASSIFICATION ON LASER POINT CLOUDS 
TO GAIN OBJECT STRUCTURES FROM BUILDINGS 

B. Jutzi a, H. Gross b 

a Institute of Photogrammety and Remote Sensing, Universität Karlsruhe, Englerstr. 7, 76128 Karlsruhe, Germany 
boris.jutzi@ipf.uni-karlsruhe.de 

b FGAN-FOM, Research Institute for Optronics and Pattern Recognition, Gutleuthausstraße 1, 76275 Ettlingen, Germany 
gross@fom.fgan.de 

KEY WORDS: Laser data, point cloud, classification, nearest neighbour, covariance, eigenvalues. 

ABSTRACT: 
The application of three dimensional building models has become more and more important for urban planning, enhanced navigation 
and visualization of touristy or historic objects. 3D models can be used to describe complex urban scenes. The automatic generation 
of 3D models using elevation data is a challenge for actual research. Especially extracting planes edges and corners of man made 
objects is of great interest. This paper deals with the automatic classification of points by utilizing the eigenvalues of the covariance 
within the close neighbourhood. The method is based on the analysis of 3D point clouds derived from Laser scanner data. For each 
3D point additional structural features by considering the neighbourhood are calculated. Invariance with respect to position, scale 
and rotation is achieved by normalization of the features. For classification the derived features are compared with analytical 
calculated as well as trained feature values for typical object structures. For the generation of a training data set several point sets 
with different density and varying noise are generated and exploited. The result of the investigations is that the quality of the 
classification using the analytical eigenvalues as reference is not harmful in comparison to the trained data set for a small noise. 
Therefore for all structures presented here it is not necessary to use training data sets instead of an unsupervised classification based 
on the analytical eigenvalues. Weighting the calculated distances in the eigenvalue space dependent on the structure type improves 
the classification result. Due to this classification all points which may belong to a building edge are selected. Assembling these 
points to lines the 3D borders of the objects were achieved. The algorithm is tested for several urban scenes and the results are 
discussed. 
 

1. INTRODUCTION 

Three-dimensional building models have become important 
during the past for various applications like urban planning, 
enhanced navigation or visualization of touristy or historic 
objects. They can increase the understanding and explanation of 
complex scenes and support the decision process of operation 
planning. The benefit for several applications by utilizing 
LIDAR data was demonstrated for instance by Brenner et al. 
(2001). For decision support and operation planning the real 
urban environment should be available. In most cases the object 
models of interest are not obtainable and especially in time 
critical situations the 3D models must be generated as fast and 
accurate as possible. 

Different approaches to generate the 3D models of urban scenes 
are discussed in the literature (Shan & Toth, 2008). Building 
models are typically acquired by (semi-) automatic processing 
of Laser scanner elevation data or aerial imagery (Baillard et al., 
1999; Geibel & Stilla, 2000). LIDAR data can be utilized for 
large urban scenes (Gross & Thoennessen, 2005). The 
processing of raw full-waveform data to gain object structures 
of buildings was investigated by Jutzi et al. (2005) and the 
iterative processing to increase the set of 3D points of buildings 
by Kirchhof et al. (2008). Pollefeys (1999) uses projective 
geometry for a 3D reconstruction from image sequences. Fraser 
et al. (2002) use stereo approaches for 3D building 
reconstruction. Vosselman et al. (2004) describes a scan line 
segmentation method grouping points in a 3D proximity. 
Airborne systems are widely used but also terrestrial Laser 
scanners are increasingly available. The latter ones provide a 
much higher geometrical resolution and accuracy (mm vs. dm) 
and they are able to acquire fine building facade details which 
are an essential requirement for a realistic virtual visualization. 

In Section 2 the calculation of additional point features is 
described. The features are normalized with respect to 
translation, scale and rotation. In Section 3 typical 
constellations of points are discussed and discriminating 
features are presented. Examples for the combination of 
eigenvalues and structure tensor are shown. For typical 
situations analytical feature values are derived. For the 
classification procedure the results of the trained feature values 
are discussed in Section 4 and the trained values are compared 
with the analytical values. The generation of lines is described 
in Section 5. Points with the same eigenvectors are assembled 
and approximated by lines. The resulting 3D structures 
(boundaries) of objects are shown for the selected laser point 
cloud. In Section 6 the possibilities using additional features are 
summarized. Outstanding topics and aspects of the realized 
method are discussed. 

2. EIGENVALUE ESTIMATION TO GAIN OBJECT 
STRUCTURES 

A Laserscanning device delivers 3D point measurements in an 
Euclidian coordinate system. For airborne systems mostly the 
height information is stored in a raster grid with a predefined 
resolution. Image cells without a measurement are interpolated 
by considering their neighbourhood. 

An example data set gathered by an airborne Laser scanner 
system (TopoSys®) as 3D points is shown in Figure 1a. The 
color corresponds to the height. A transformation to a raster 
image, selecting the highest value for each pixel and after filling 
missing pixels with a Median operation, yields to Figure 1b. 
Due to the filtering the image does not represent the original 3D 
information anymore. The horizontal position is slightly 
different and some of the height values are interpolated to fill 
the gaps even if there was no measured value available. 
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Additionally, sometimes more than one measurement for a 
resolution cell exists considering first and last echo or 
combining data of several measurement campaigns. 

 

 a    b 

Figure 1.  Point clouds measured with TopoSys® Laser scanner 
a) colored by height, b) raster image based on point 
clouds with interpolated values. 

An example of data received by a terrestrial Laser scanner (Z+F 
sensor) for a dense point cloud colored by intensity is shown in 
Figure 2. 

In contrary to the airborne data the projection of terrestrial 
Laser data along any direction is not very reasonable. Especially 
the combination of airborne (Figure 1) and terrestrial (Figure 2) 
Laserscanning data requires directly the analysis in the 3D data. 

 

Figure 2.  Point clouds of a Z+F sensor colored by intensity. 

2.1 Calculation of the covariance matrix utilizing a 3D 
spherical volume cell  

A 3D spherical volume cell with radius R  is assigned to each 
point of the cloud. All points in a spherical cell will be 
analyzed. The 3D covariance matrix as described by Maas & 
Vosselman (1999) are discussed and further improved as 
described in Gross & Thoennessen (2006). 

In a continuous domain, moments are defined by: 

 ( ), ,= ∫
i j k

ijk

V

m x y z f x y z dv , (1) 

where , , ∈ℕi j k , and i j k+ +  is the order of the moments 

integrated over a predefined volume weighted by ( ), ,f x y z . As 

weighting function the mass density can be used. It reduces to a 
constant value if homogeneous material is assumed. Another 
possibility is to use the measured intensity as weighting 
function as discussed in earlier works. To normalize the terms 

they have to divide by the volume ( )000 , ,
V

m f x y z dv= ∫ . 

Considering only surfaces of objects all moments have to be 
calculated with a constant but small thickness for the volume 
vanishing by the normalization. After discretization of the 
integrand and setting ( ), , 1    pointsf x y z = ∀ the integral is 

approximated by a sum. The mean values , ,x y z  and the 

moments of the second order 2i j k+ + =  have been calculated. 

The normalized and dimensionless moments of second order for 
discrete points are given by 

 
( ) ( ) ( )

1

N i j k

l l l
l

ijk i j k

x x y y z z
m

R N
=

+ +=
− − −∑

ɶ . (2) 

Neither the number of points nor the chosen physical unit for 
the coordinates, the radius and the weighting factor influences 
the values of the covariance matrix. 

For each point of the whole data set a symmetrical covariance 
matrix is calculated by 
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ɶ ɶ ɶ

ɶ ɶ ɶ

.  (3) 

The calculation of the eigenvalues iλ  and eigenvectors 
�

ie  with 

i=1,2,3 delivers additional features for each point. The 
eigenvalues are invariant concerning translation, rotation, and 
scaling. 

2.2 Point distribution in 3D space 

In this section the influence of the measurement and the related 
point distribution on the investigated structures is described. 

 

Figure 3. Illustration of a point cloud captured by a terrestrial 
Laser scanner with typical scan pattern (color 
indicates the reflected intensity). 

Figure 3 shows as an example for the point distribution derived 
by a terrestrial Laser scanner (Zoller+Fröhlich). The point 
density depends on the distance of the object to the sensor and 
also on the incidence angle between laser beam and normal 
vector onto the object surface. For the airborne Laser scanner 
(TopoSys®) mounted on an aircraft the point density can be 
much higher in flight direction than perpendicular to the flight 
direction. In both cases there is no uniform distribution of the 
measured points. 

The investigations show that an inhomogeneous distribution 
does not influence the eigenvalues essentially as long as the 
radius of the neighbourhood is large enough. This means points 
inside a plane are characterized as plane points if the 
neighbourhood encloses at least five points in all directions and 
the rate of the point distances for any two different directions is 
smaller than 5:1. 

2.3 Analytical eigenvalues for object structures 

For specific object structures analytical eigenvalues can be 
determined. Table 1 show some typical object structures with 
their corresponding eigenvalues, where all values are 
determined by utilizing all required integrations of formula (1). 
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Eigenvalues

Structure 
1λ  2λ  3λ  

 

Isolated 
point 

0 0 0 

 

End of a  
line 

1

12  
0 0 

 
Line 1

3  
0 0 

 
Half plane 1

4  
2

1 64
1 0.07

4 9
 − = π   

0 

 
Plane 1

4  

1

4  
0 

 

Quarter 
plane 

1 2
1 0.09

4
 − = π   

2

1 1 32
0.05

4 2 9
+ − =

π π  
0 

 
Two planes 1

4  

1

8  
2

1 8
0.03

8 9
− =

π  

 
Three planes 1 1

1 0.11
6
 − = π   

1 1
1 0.11

6
 − = π   

6

3 2

1 2 2
1 0.03

6 3

 + − = π π   

 

Two planes 
30° 

0.25 0.1875 0.01747 

Table 1.  Eigenvalues for some selected object structures. 

For all possible values of the roof slope the eigenvalues are 
drawn in Figure 4. The greatest eigenvalue is 0.25 and constant. 
The second eigenvalue starts from 0.125 and increases with 
increasing slope until 0.25. The smallest eigenvalue decreases 
from 0.03 to zero. For a slope of 30° the eigenvalues reaches the 
mean values for a flat roof and a plane. Therefore an own class 
for this structure is defined. 

                

 

Figure 4. Eigenvalues of the eave points for different roof 
slopes (0°, 30°, and 90°); the colored arrows visualize 
the direction of the eigenvectors. 

3. MONTE CARLO SIMULATION 

The analytical calculated values in Table 1 do not correspond to 
the statistical averages, which can be expected for the relevant 
structures of real data. Usually, for an example, the smallest 
eigenvalue of points belonging to a plane do not converge to 

3 0λ = . Already very small deviations of points from a flat 

surface yield to 
3 0λ > . Therefore for all the structures in 

Table 1 inside a spherical neighbourhood with radius R points 

with the different distances, normalized by the radius of the 
sphere { }0.03,0.1,0.2,0.3,0.4∈dx R  are generated. Each 

coordinate of the position of the points is modified by a 
Gaussian distributed noise with the normalized standard 
deviation { }0.0,0.01,0.02,0.03,0.04Rσ ∈ . 

For each parameter combination and structure 1000 point 
clouds have been generated by random 3D points. The mean 
value and the standard deviation of every 3 eigenvalues were 
determined. The histograms of one test set for each structure are 
drawn in Figure 5. The distribution of the eigenvalues seems to 
be Gaussian with center near by the analytical values. 

 

    

Figure 5. Histograms of the eigenvalues and comparison with 
the analytical values (dashed lines) for 0.4dx R=  and 

0.04Rσ =  for all structures (red: first, green: 
second, blue: third eigenvalue). 

1e
2e

3e
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Figure 6.  Eigenvalue point cloud projection along the axis of 
the smallest eigenvalue. 

In the next steps the 3 eigenvalues are considered as a point of a 
3D space. For a small standard deviation σ the point cloud of 
eigenvalues results in a small accumulation of points. If σ is 
increasing the clusters are extending and nearby clusters may 
overlap. Figure 6 shows the 2D-projection along the axis of the 
eigenvalue 

3λ . Projections along the two other eigenvalues 

demonstrate the separability of the cluster for each structure. 

 

  

Figure 7.  Distances of the eigenvalue points to all classes. 

The eigenvalues of the points for each structure define a 
training record from which the three mean values 

1 N
S p

p S
λ λ= ∑

∈
 as well as the associated eigenvalue-covariance-

matrix ( )( )T

S p p
p S

C λ λ λ λ
∈

= − −∑  can be calculated, where N  is the 

number of eigenvalue-points of the structure. The distance of 
any test point λ  of the eigenvalue space is determined by using 

the Mahalanobis-distance ( ) ( ) ( )1,
T

S S Sd S Cλ λ λ λ λ−= − − . This 

measure gives a distance for any test eigenvalue-point to the 
different structures. These eight distances of every point against 
their own and all other structures (except for isolated point) are 
listed in the Figure 7. The points of a structure are plotted and 
colored in accordance to their membership S and drawn in the 
interval [ 1, ]−S S  (horizontal axis). The vertical axis represents 
the logarithm of the distance of each eigenvalue point to each 
structure. In the 1st picture the distances between the 
eigenvectors of all test records of all structures against the 
structure "End of line" are drawn. The remaining pictures show 
the respective distance of all test points to the other structures. 
The green line mark the value of the Chi-square tests 2

0.01,2χ . The 

percentage number of points of each structure with a smaller 
distance has been indicated. With increasing noise the distance 
of a point of a structure to a different structure decreases. 
Therefore false classification increases. 

Figure 8 shows the mean value and the standard deviation of the 
eigenvalues of the training set for a plane dependent on the 
point density and the noise. The mean values approximate the 
analytical eigenvalues with a very small standard deviation. 

 

Figure 8. Mean value and standard deviation of the three 
eigenvalues of the training set for a plane. 

A comparison between the mean value of the eigenvalues of the 
training set for a plane and the analytical values is shown in 
Figure 9. The differences depend on the point density and the 
noise. A high point density delivers nearly the analytical 
eigenvalues. The non monotonic behaviour of the curve for 

2λ  

may be caused by the approximation of a plane by nearly 
equidistant points (discretization effects). The mean value of the 
third eigenvalues is positive but very small. 

 

Figure 9. Differences between the mean value of the eigen-
values of the training set for a plane and the  
analytical values. 

For the same points the Euclidean distances in the eigenvalue 
space against the analytical eigenvalues were calculated. Within 
the tested mean point intervals and the investigated noise all the 
points were assigned to the correct structure. Based on this 
investigation the classification of elevation points can be 
realized by nearest neighbour classification in the eigenvalue 
space of the structures of Table 1. This is possible as far the 
noise is lower than 4% of the radius of the neighbourhood 
environment. 
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4. NEAREST NEIGHBOUR CLASSIFICATION OF 3D 
POINTS 

After calculating the covariance matrix for each point in the 
data set by considering the local environment defined by a 
sphere additional features for each point are derived. These 
features are the centre of gravity, the geometrical distance 
between centre of gravity to the point, the eigenvectors, the 
eigenvalues and the number of points inside the sphere. The 
same features can be used to determinate the object 
characteristics. 

Table 1 shows the eigenvalues of the covariance matrix of some 
special point configurations. The first six rows present 2D and 
the last three rows 3D object structures. The eigenvalues for the 
typical object structures are calculated analytically. For an ideal 
line two eigenvalues are zero and one of it is greater than zero. 
If test points inside a plane are of interest their eigenvalues have 
to be compared with the analytical eigenvalues 

1 2 30.25      0λ = λ = ∧ λ =  for a correct plane. 

The eigenvalues in Table 1 are considered as reference points in 
the 3D eigenvalue space for each structure. The classification of 
any test point by the nearest neighbour method was performed, 
were all distances were measured in the eigenvalue space. 

For the following steps we define the dimensionality ( )dim S  

for each structure, which means the dimension of all points 
belonging to the same structure of a contiguous object. The 
dimensionalities for each structure are given in Table 2. Corner 
like points have the dimensionality 0, edge like points 1 and 
plane like points 2. 

Structure Dimensionality 

Isolated point 0 

End of a line 0 

Line 1 

Half plane 1 

Plane 2 

Quarter plane 0 

Two planes 1 

Three planes 0 

Two planes 30° 1 

Table 2. Dimensionality for each structure. 

By utilizing the empirically derived weighting factors 

( ) ( )( )1 1 dimw S S= +  for the distance ( )d S  between the test 

point and the analytically calculated eigenvalues of structure S  
the classification result was refined. This weighting of the 
distances between test and reference points introduces non-
planar separation surfaces defined by 

( ) ( ) ( ) ( )i i j jd S w S d S w S=  between two structures. Ignoring 

the influence of all other structures, the separation surface 
between the structures i  and j  is given by the constant ratio of 

both distances ( ) ( ) ( ) ( )i j j i jid S d S w S w S w= = . For 1jiw =  

we get the intermediate plane between both structures as 
separation surface. For 1jiw ≠  the separation is described by a 

sphere. Radius and centre point depend only on jiw  and the 

distance between the two structures in the 3D eigenvalue space. 

 

Figure 10.Equipotential surface between line and plane in the 
eigenvalue space. 

As an example Figure 10 illustrates the situation between the 
structures line and plane with weighted distances. All test 
points with eigenvalues inside the red region are classified as 
line points meanwhile all points in the grey region are classified 
as points belonging to a plane. Without weighting the cyan 
marked horizontal line (hyper plane) separates the two classes. 

 

   a 

 

   b 

 

   c 

Figure 11.Classified object points. a) All points colored by their 
classification, b) Points identified as plane points 
(colored by their height), c) Points with one high and 
two small eigenvalues representing edges of objects. 

By utilizing the weighted distance calculation during the 
classification procedure for all points the derived results are 
shown in Figure 11a. Figure 11b shows all points with 
eigenvalues fulfilling the criteria for planes. The color indicates 
the object height. In Figure 11c only the edge points are 
depicted corresponding to Table 1 rows 3, 4, and 7. 

For the introduced classification further results are shown for 
comparison purposes of a more complex building. The results 
are depicted in Figure 12 with an oblique view to demonstrate 
the geometrical relation of the 3D points. 
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 a    b 

Figure 12.Classification result of a laser point cloud for a 
complex urban building. a) with all points, b) without 
points inside a plane. 

5. LINE GENERATION 

All points marked as edge point may belong to a line. These 
points are assembled to lines by a grouping process (Gross & 
Thoennessen, 2006). Therefore the greatest eigenvalue and its 
eigenvector are considered. Consecutive points with a similar 
eigenvector, lying inside a small cylinder are grouped together 
and approximated by a line.  

The procedure starts with any arbitrary point of the point cloud 
classified as edge-like point (line, halfplane, two_planes). This 
trigger point is compared with all points which have nearly the 
same or opposite eigenvector of the largest eigenvalue. 
Furthermore only points with very small distance to the straight 
line defined by the trigger point and its first eigenvector are 
included in the next consideration. Finally it is focused on the 
first two gaps starting from the trigger point going along the 
first eigenvector and also its opposite direction. Only points 
inside these gaps and fulfilling all those conditions are selected 
and used to determine a regression line and its endpoints. 

The same procedure is repeated for all points not assigned to a 
line until each point belongs to a line or can not generate an 
acceptable line. 

Figure 13 shows the results of the line generation for the data 
set shown in figure 1. The color indicates the length of the lines. 
The eaves as well as the ground plan of the buildings are 
approximated by lines. For the detection of the ridge of the 
saddle roof a readjustment of the thresholds for the eigenvalues 
might be recommended to improve the results especially for 
roofs with small inclination. 

 

Figure 13.Lines generated by using the classified laser elevation 
points. 

6. CONCLUSION AND OUTLOOK 

For exploiting Laser scanning data the processing of the 
original 3D point clouds is proposed. Additional features for 
each point of the cloud can be calculated from the covariance 
matrix including all neighbour points. The neighbourhood can 
be investigated by considering a sphere. The quality of the 
resulting eigenvalues and the eigenvectors of the matrix 
strongly depend on the spatial resolution and the number of 
points inside the sphere. The new features are invariant with 
respect to position, rotation and scale. 

The additional features are appropriate for classification of the 
points as edge, corner, plane or tree points. For some typical 
situations analytically determined eigenvalues are opposed to 
calculated eigenvalues of real data for comparison. The greatest 
eigenvalue can be used for filtering edge like points. 

The described method for generation of lines combines 
consecutive points with the same eigenvector inside a small 
cylinder without any gap. The presented results are promising.  

Further investigations are planned concerning the fusion of the 
data on basis of the point clouds and/or on a higher level of 
lines. Especially the construction of planes assembling plane 
like points should be investigated in future.  
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a b s t r a c t

3D scene analysis in terms of automatically assigning 3D points a respective semantic label has become a
topic of great importance in photogrammetry, remote sensing, computer vision and robotics. In this
paper, we address the issue of how to increase the distinctiveness of geometric features and select the
most relevant ones among these for 3D scene analysis. We present a new, fully automated and versatile
framework composed of four components: (i) neighborhood selection, (ii) feature extraction, (iii) feature
selection and (iv) classification. For each component, we consider a variety of approaches which allow
applicability in terms of simplicity, efficiency and reproducibility, so that end-users can easily apply
the different components and do not require expert knowledge in the respective domains. In a detailed
evaluation involving 7 neighborhood definitions, 21 geometric features, 7 approaches for feature selec-
tion, 10 classifiers and 2 benchmark datasets, we demonstrate that the selection of optimal neighbor-
hoods for individual 3D points significantly improves the results of 3D scene analysis. Additionally, we
show that the selection of adequate feature subsets may even further increase the quality of the derived
results while significantly reducing both processing time and memory consumption.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Due to the increasing availability of 3D point cloud data and
respective acquisition systems, the automated analysis of 3D point
clouds has become a topic of great importance in photogrammetry,
remote sensing, computer vision and robotics. Exploiting such
data, recent investigations address a variety of different tasks such
as the extraction of building structures (Vanegas et al., 2012), the
recognition of power-line objects (Kim and Sohn, 2011), the extrac-
tion of roads and curbstones or road markings (Boyko and
Funkhouser, 2011; Zhou and Vosselman, 2012; Guan et al.,
2014), the mapping of vegetation (Wurm et al., 2014), the detec-
tion of numerous different objects (Kim and Medioni, 2011;Pu
et al., 2011;Velizhev et al., 2012;Bremer et al., 2013;Serna and
Marcotegui, 2014), the accessibility analysis in urban environ-
ments (Serna and Marcotegui, 2013), the creation of large-scale
city models (Poullis and You, 2009; Lafarge and Mallet, 2012;
Zhou and Neumann, 2013), or the semantic perception for ground
robotics (Hebert et al., 2012). However, many of these tasks are

based on the results of a 3D scene analysis in terms of uniquely
assigning a semantic label (e.g. ground, building or vegetation) to
each 3D point of a given point cloud.

When addressing the task of 3D scene analysis, we have to
account for the general ideas shared by many respective approach-
es. Typically, 3D scene analysis involves (i) the recovery of a local
neighborhood for each 3D point, (ii) the extraction of geometric
features based on all 3D points within the local neighborhood,
and (iii) the classification of all 3D points based on the respective
features. Since often as many features as possible are exploited
due to a lack of knowledge, recent investigations also addressed
the selection of meaningful features as additional step between
feature extraction and classification (Chehata et al., 2009; Mallet
et al., 2011; Khoshelham and Oude Elberink, 2012; Weinmann
et al., 2013; Weinmann et al., 2014). For all steps, however, a vari-
ety of challenges results from the complexity of 3D scenes caused
by irregular point sampling, varying point density and very differ-
ent types of objects. Furthermore, the computational burden aris-
ing from large 3D point clouds and many available features has
to be taken into account.

In this paper, we focus on individual point classification, i.e. we
only exploit feature vectors for assigning class labels, since respec-
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tive improvements also represent an important issue for methods
involving contextual information. Besides revisiting foundations
and trends in 3D scene analysis, we also provide new insights
addressing all major steps in the respective data processing. These
insights are based on our previous work involving feature rele-
vance assessment (Weinmann et al., 2013), recovery of optimal
3D neighborhoods (Weinmann et al., 2014) and large-scale capa-
bility (Weinmann et al., 2015). Resulting from these investigations,
we may easily derive a fully automatic, efficient and general frame-
work for 3D scene analysis which involves

� neighborhoods of optimal size,
� low-level geometric 3D and 2D features,
� different strategies for feature selection, and
� efficient methods for supervised classification

while preserving both reproducibility and applicability of the
involved methods. Hereby, we want to emphasize that neighbor-
hood size selection and feature extraction are strongly interleaved
issues, since the distinctiveness of geometric features strongly
depends on the respective neighborhood encapsulating those 3D
points which are taken into consideration for feature extraction.
We further extend the framework by adding several approaches
to different components, so that a variety of approaches is available
for each component (Fig. 1). By providing a detailed evaluation
involving two standard benchmark datasets, we are able to derive
general statements on the suitability of the different approaches.
Since only the spatial 3D geometry in terms of an appropriate rep-
resentation of object surfaces as measured counterpart of the real
world serves as input, our framework is generally applicable for
interpreting 3D point cloud data obtained via different acquisition
techniques such as terrestrial laser scanning (TLS), mobile laser
scanning (MLS) or airborne laser scanning (ALS). Furthermore, the
framework may be applied for point clouds captured with 3D cam-
eras or point clouds obtained via 3D reconstruction from images.

In the following, we first reflect related work in Section 2. Sub-
sequently, in Section 3, we explain the single components of our
framework and respective methods in detail. For demonstrating
the performance of our framework, we describe the involved pub-
licly available datasets, the conducted experiments and the respec-
tive results in Section 4. Additionally, we discuss the derived
results in Section 5. Finally, in Section 6, we provide concluding
remarks and suggestions for future work.

2. Related work

In this section, we reflect the related work on 3D scene analysis
and group respective approaches according to the single steps of
3D scene analysis.

2.1. Neighborhood selection

For being able to describe the local 3D structure around a
given point X via geometric features, a respective neighborhood

definition encapsulating all considered 3D points is required. Gen-
erally, different strategies may be applied for defining the local
neighborhoodN around a given 3D point X. Among these, the most
commonly applied neighborhood definitions are represented by

� a spherical neighborhood definition N s, where the neighbor-
hood is formed by all 3D points in a sphere of fixed radius
rs 2 R around the point X (Lee and Schenk, 2002),
� a cylindrical neighborhood definition N c , where the neighbor-

hood is formed by all those 3D points whose 2D projections
onto a plane (e.g. the ground plane) are within a circle of fixed
radius rc 2 R around the projection of X (Filin and Pfeifer, 2005),
and
� a neighborhood definition N k based on a fixed number of the

k 2 N closest neighbors of X in 3D (Linsen and Prautzsch,
2001) or in 2D (Niemeyer et al., 2014).

Hereby, the third definition also results in a spherical neighbor-
hood if 3D distances are evaluated for finding the closest neigh-
bors, but – in contrast to the first definition – a variable absolute
size is taken into account. Whereas these definitions with a con-
stant scale parameter (i.e. either a fixed radius or a constant value
k) across all 3D points provide a straightforward solution to neigh-
borhood selection, it has to be taken into account that the scale
parameter is typically selected with respect to heuristic or empiric
knowledge on the scene and thus specific for each dataset. Further-
more, the scale parameter may not be identical across all consid-
ered 3D points, since it intuitively rather depends on the local 3D
structure and point density. This holds particularly for MLS data,
where due to the process of data acquisition dense and accurate
3D point clouds with significant variations in point density may
be expected.

In order to avoid strong assumptions on local 3D neighbor-
hoods, more recent investigations focused on introducing an opti-
mal neighborhood size for each individual 3D point and thus
increasing the distinctiveness of derived features. Most of the
presented approaches exploit the idea of a neighborhood based
on the k closest 3D points and optimize k for each individual
3D point. This optimization may for instance be based on itera-
tive schemes relating neighborhood size to curvature, point den-
sity and noise of normal estimation (Mitra and Nguyen, 2003;
Lalonde et al., 2005) which is particularly relevant for rather
densely sampled and thus almost continuous surfaces. Other
alternatives also account for more cluttered surface representa-
tions and are based on surface variation (Pauly et al., 2003;
Belton and Lichti, 2006), dimensionality-based scale selection
(Demantké et al., 2011) or eigenentropy-based scale selection
(Weinmann et al., 2014). Even though deriving individual neigh-
borhoods causes additional effort, the need for such concepts
clearly becomes visible when considering the suitability of
respective geometric features for neighborhoods of different size
(Blomley et al., 2014) or the significant improvement in compar-
ison to neighborhoods with a constant scale parameter across all
3D points (Weinmann et al., 2014).

3D Point
Cloud 

Feature
Selection

Feature
Extraction
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Selection
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Supervised
Classification

…   …   …
…   …   …
…   …   …

N × d 

…   …   …
…   …   …
…   …   …

N × d 
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7 approaches21 features7 approaches 10 classifiers

Fig. 1. The proposed framework and the quantity of attributes/approaches taken into account for evaluation.
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Instead of focusing on the concept of an optimal 3D neighbor-
hood for each individual 3D point, geometric features may also
be derived for different scales, since – by varying the size of the
local neighborhood and calculating all features for each scale – it
is possible to involve information on how the local 3D geometry
behaves across scales (Brodu and Lague, 2012) which, in turn,
may support the discrimination between different classes and thus
improve the classification results (Niemeyer et al., 2014). In this
context, neighborhoods of small size are suitable to analyze fine
details of the local 3D structure, whereas increasing the size of
the local neighborhood is similar to applying a smoothing filter
(Pauly et al., 2003), since with increasing neighborhood size each
individual 3D point will contribute less to the surface variation
estimate. By directly providing all features over a range of scales
to the classifier, a training procedure can later be used to define
which combination of scales allows the best separation of different
classes (Brodu and Lague, 2012). However, the number of scales
and their distance are typically selected based on heuristic or
empiric knowledge on the scene and thus specific for each dataset
(Brodu and Lague, 2012; Niemeyer et al., 2014; Schmidt et al.,
2014). Consequently, it would be desirable to combine generic
approaches for selecting a single optimal scale with a generic mul-
ti-scale representation. For the latter, a transfer of concepts from
2D scale space theory could be applied in analogy to scale space
representations for detecting 3D interest points (Yu et al., 2013)
or 3D interest regions (Unnikrishnan and Hebert, 2008). More gen-
erally, the extraction of geometric features may not only rely on
different scale parameters, but also on different entities such as
points and regions (Xiong et al., 2011; Xu et al., 2014). Note that
this is in analogy to the labeling paradigm, where the labels of sin-
gle 3D points and their closest neighbors are exploited for a struc-
tured prediction.

In contrast to considerations on point-level, 3D scene analysis
may also be based on voxels or 3D segments. For instance, it has
recently been proposed to exploit voxels which carry geometric,
textural and color information collected from airborne imagery
and point clouds derived via dense image matching (Gerke and
Xiao, 2013). Furthermore, a multi-stage inference procedure
exploiting a hierarchical segmentation based on voxels, blocks
and pillars has recently been presented (Hu et al., 2013). Alterna-
tively, a 3D segmentation of the given point cloud data could be
introduced in order to support 3D scene analysis (Vosselman,
2013), where attributes of single 3D points can be exploited for a
better separation of neighboring objects (Oude Elberink and
Kemboi, 2014). Even the combination of generic scale selection
and voxelization has been proposed with an approach based on
supervoxels resulting from an oversegmentation of a 3D point
cloud (Lim and Suter, 2009), where the size of supervoxels is deter-
mined based on an iterative scheme involving curvature, point
density, noise and point intensities. However, results based on a
simple voxelization of 3D space strongly depend on the empirically
or heuristically selected voxel size and, typically, a generic seg-
mentation significantly increases the computational burden.

2.2. Feature extraction

For extracting discriminative features from point clouds with
possibly varying point density, a variety of approaches has been
proposed. Focusing on the characterization of a local 3D neighbor-
hood around a given point X, one strategy consists of deriving suit-
able 3D descriptors such as spin image descriptors (Johnson and
Hebert, 1999) which are based on spinning a planar image patch
around the surface normal at a given 3D point X and counting
the number of points per pixel. A powerful alternative is represent-
ed by shape distributions (Osada et al., 2002) which are based on
randomly sampling geometric relations such as distances and

angles and may thus be applied for characterizing the local neigh-
borhood of a 3D point X (Blomley et al., 2014). A similar strategy
has been presented with Point Feature Histograms (PFHs) (Rusu
et al., 2008; Rusu et al., 2009) which are based on sampling
geometric relations such as point distances and angular variations
between the closest neighbors relative to the local normal vector at
X into histograms. In contrast, the Signature of Histograms of
OrienTations (SHOT) descriptor (Tombari et al., 2010) is based on
exploiting a spherical grid centered on the point X, where each
3D bin of the grid is represented as weighted histogram of normals.
For all these approaches, however, single entries of the resulting
feature vector are hardly interpretable.

Consequently, a variety of approaches for 3D scene analysis
relies on the 3D structure tensor which is represented by the 3D
covariance matrix derived from the 3D coordinates of all points
within the local neighborhood of a given 3D point X. Based on this
3D structure tensor, the analytical consideration of its eigenvalues
has been proposed for characterizing specific shape primitives
(Jutzi and Gross, 2009). Furthermore, the eigenvalues may be
exploited to derive a set of local 3D shape features (West et al.,
2004; Pauly et al., 2003) which contains more intuitive descrip-
tions (e.g. about linear, planar or volumetric structures) and is
therefore nowadays commonly applied in lidar data processing.
Such features are often complemented with other geometric fea-
tures based on angular statistics (Munoz et al., 2009), height and
local plane characteristics (Mallet et al., 2011), basic properties of
the neighborhood and characteristics of a 2D projection
(Weinmann et al., 2013), descriptors involving surface properties,
slope, height characteristics, vertical profiles and 2D projections
(Guo et al., 2014) or point distances and height differences
(Waldhauser et al., 2014). Moreover, eigenvalue-based 3D features
are often combined with additional full-waveform and echo-based
features (Chehata et al., 2009; Mallet et al., 2011; Niemeyer et al.,
2012; Schmidt et al., 2014; Waldhauser et al., 2014).

2.3. Feature selection

Whereas often as many features as possible are exploited in
order to compensate a lack of knowledge, it has to be considered
that some of these features may be more and others less suitable.
Consequently, the interest in feature selection techniques emerged
for finding compact and robust subsets of relevant and informative
features in order to gain predictive accuracy, improve computa-
tional efficiency with respect to both time and memory consump-
tion, and retain meaningful features (Guyon and Elisseeff, 2003;
Saeys et al., 2007; Liu et al., 2010). Respective strategies for feature
selection can be categorized into filter-based methods, wrapper-
based methods and embedded methods. The main characteristics,
advantages and disadvantages of these strategies are provided in
Table 1. For more details and further reading, we recommend a
comprehensive review of feature selection techniques (Saeys
et al., 2007).

In 3D point cloud processing, however, feature selection has
only rarely been applied and different aspects have to be taken into
account. Since both wrapper-based methods and embedded meth-
ods involve a classifier, they tend to yield a better performance
than filter-based methods. Wrapper-based methods typically
involve a classifier either via Sequential Forward Selection (SFS)
which is based on finding the feature yielding the highest predic-
tive accuracy and successively adding the feature that improves
performance the most, or via Sequential Backward Elimination
(SBE) which is based on starting with the whole feature set and
repeatedly deleting the feature that reduces performance the least
(Mallet et al., 2011; Khoshelham and Oude Elberink, 2012). Where-
as SFS tends to result in smaller feature subsets, SBE tends to yield
larger feature subsets. Due to the involved classifier, however, such
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methods reveal a rather high computational effort. In contrast,
embedded methods such as Random Forests or AdaBoost provide
the capability of dealing with exhaustive feature sets as input
and letting the classifier internally select a suitable feature subset
during the training phase (Chehata et al., 2009; Tokarczyk et al.,
2013). However, both wrapper-based methods and embedded
methods provide feature subsets which are only optimized with
respect to the applied classifier. In contrast, filter-based methods
are classifier-independent (thus they tend to provide a slightly
weaker performance) and only exploit a score function directly
based on the training data which, in turn, results in simplicity
and efficiency (Weinmann et al., 2013; Weinmann et al., 2014).
Depending on the use of (i) only feature-class relations for deter-
mining relevant features or (ii) both feature-class relations and fea-
ture-feature relations for also removing redundancy, such
techniques may further be categorized into univariate and multi-
variate techniques.

2.4. Classification

Concerning 3D scene analysis, the most effort has recently been
spent in the design and improvement of the classification proce-
dure. In order to obtain interpretable results, supervised classifica-
tion is commonly applied which involves a set of training
examples. Generally, approaches for supervised classification can
be categorized into (i) individual point classification where each
3D point is classified based on the respective feature vector or
(ii) contextual classification where each 3D point is classified based
on the respective feature vector as well as the labels of neighboring
3D points.

For 3D scene analysis based on individual point classification, a
variety of standard classification approaches has been applied such
as classical Maximum Likelihood classifiers based on Gaussian
Mixture Models (Lalonde et al., 2005), Support Vector Machines
(Secord and Zakhor, 2007), AdaBoost (Lodha et al., 2007), a cascade
of binary classifiers (Carlberg et al., 2009), Random Forests
(Chehata et al., 2009) and Bayesian Discriminant Classifiers
(Khoshelham and Oude Elberink, 2012). Whereas many respective
approaches are publicly available in various software tools and fur-
thermore easily applicable, the derived results appear to be noisy
since it is not taken into account that semantic labels of neighbor-
ing 3D points tend to be correlated.

In order to account for correlated labels of neighboring 3D
points, contextual classification approaches also involve relation-
ships among 3D points in a local neighborhood which have to be
inferred from the training data. Hereby, it is important to notice
that the local neighborhood for inferring relationships among 3D
points is typically different from the one used for feature extrac-
tion. Addressing different strategies for modeling interactions

between neighboring 3D points, for 3D scene analysis, respective
methods have been proposed with Associative and non-Associative
Markov Networks (Munoz et al., 2009; Shapovalov et al., 2010;
Najafi et al., 2014), Conditional Random Fields (Niemeyer et al.,
2012; Niemeyer et al., 2014), multi-stage inference procedures
focusing on point cloud statistics and relational information over
different scales (Xiong et al., 2011), and spatial inference machines
modeling mid- and long-range dependencies inherent in the data
(Shapovalov et al., 2013). Due to focusing on a smooth labeling,
contextual classification approaches tend to yield higher classifica-
tion accuracies than approaches for individual point classification.

Even though a spatially smooth labeling is desirable, the use of
contextual classification approaches typically causes a high com-
putational effort for modeling interactions between neighboring
3D points and thus often tends to be impracticable. More
specifically, an exact inference is computationally intractable, since
the training data is limited and modeling relationships across the
whole training data results in too many degrees of freedom. For
this reason, approximate inference techniques have been proposed
which infer the spatial relationships among 3D points within a
local 3D neighborhood. Whereas modeling long-range dependen-
cies is feasible in order to improve the predictive power of the clas-
sifier and rather time-consuming, many approaches focus on
modeling only short-range interactions in order to improve com-
putational efficiency. Generally, however, there is no indication
towards an optimal inference strategy, and an efficient alternative
solution may consist of a decoupling in terms of first labeling with-
out smoothness constraint via individual point classification and
subsequently smoothing the labels via probabilistic relaxation or
smooth labeling techniques (Schindler, 2012). This further moti-
vates to investigate sources for potential improvements in indi-
vidual point classification.

3. Methodology

In this section, we present our framework shown in Fig. 1 and
explain its components as well as respective methods in detail.
These components address neighborhood selection (Section 3.1),
feature extraction (Section 3.2), feature selection (Section 3.3)
and classification (Section 3.4).

3.1. Neighborhood selection

Generally, neighborhood selection may focus on the selection of
a single scale or the selection of multiple scales. While the latter
strategy accounts for the behavior of features across different
scales by delaying the decision about the suitability of a neighbor-
hood to the classifier, there are many further aspects which have to
be taken into consideration. For instance, it is important to know

Table 1
Feature selection (FS) techniques and their main characteristics.

Strategy Advantages Disadvantages Examples

Filter-based FS
–Univariate Simple No feature dependencies Fisher score

Fast No interaction with the classifier Information gain
Classifier-independent Symmetrical uncertainty

–Multivariate Classifier-independent Slower than univariate techniques CFS
Models feature dependencies No interaction with the classifier FCBF
Faster than wrapper-based FS mRMR

Wrapper-based FS Interaction with the classifier Classifier-dependent SFS
Models feature dependencies Computationally intensive SBE

Simulated annealing

Embedded FS Interaction with the classifier Classifier-dependent Random Forests
Models feature dependencies AdaBoost
Faster than wrapper-based FS
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how the scale space is designed, how many scales are involved and
how the distance between scales is determined. Such decisions are
still typically based on a heuristic or empiric selection (Brodu and
Lague, 2012; Niemeyer et al., 2014; Schmidt et al., 2014) and thus
specific for each dataset. In contrast, the selection of a single scale
also offers a generic selection which even allows a generalization
between datasets since variations in point density may be handled.
For these reasons, we focus on a single-scale approach.

Accordingly, for being able to describe the local 3D structure
around a given 3D point X ¼ X;Y; Zð ÞT 2 R3, the fundamental task
consists of recovering the neighboring 3D points. This, in turn,
involves (i) a suitable neighborhood definition, (ii) an efficient
recovery of neighboring 3D points and (iii) an adequate
parameterization in terms of neighborhood size. In the following,
we consider these three issues in detail.

3.1.1. Neighborhood definition
The adequate choice of a neighborhood definition and the

respective scale parameter certainly depends on the characteristics
of the respective point cloud data. Whereas, according to Section 2,
the spherical and cylindrical neighborhood definitions N s and N c

directly involve empiric or heuristic knowledge on the scene in
order to obtain a suitable radius, the neighborhood definition N k

accounts for more flexibility in case of varying point density. Since
we intend to provide a versatile framework without being restrict-
ed to a specific dataset, we employ the neighborhood definition N k

based on the k closest neighbors of a given 3D point X. Thereby, we
select the closest neighbors based on 3D distances and thus a sphe-
rical neighborhood with flexible radius. Consequently, we first
need to involve a strategy to recover the closest neighbors of X
and then select a suitable number k of considered neighbors.

3.1.2. Neighborhood recovery
In order to find the closest neighbors for a given 3D point X, the

most commonly used approach is based on a Kd-tree (Friedman
et al., 1977). Generally, a Kd-tree represents a compact hierarchical
data structure for point sets sampled from a K-dimensional mani-
fold and thus allows an efficient recovery of neighboring points. If
required, the computational efficiency can further be increased by
replacing the exact nearest neighbor search by an approximate
nearest neighbor search (Arya et al., 1998). This, in turn, introduces
little loss in accuracy since non-optimal neighbors may be
returned. A good trade-off between computational efficiency and
accuracy has been presented with the Fast Library for Approximate
Nearest Neighbors (FLANN) (Muja and Lowe, 2009) which is pub-
licly available (e.g. in OpenCV) and based on either (i) searching
hierarchical K-means trees with a priority search order or (ii) using
multiple randomized Kd-trees.

3.1.3. Neighborhood parameterization
When selecting a suitable number k of considered neighbors,

the simplest and straightforward approach would be to select a
fixed value k for all points of the point cloud. This way, the choice
of k still relies on empiric or heuristic knowledge on the scene.
Intuitively, however, we may prefer a choice where the parameter
k (which is also commonly referred to as scale) is more flexible and
thus allowed to vary within a dataset. This idea is further strength-
ened by the fact that k certainly depends on the respective 3D
structures and the local point density within a dataset. Conse-
quently, a generic method for deriving locally optimal neighbor-
hoods would be desirable. A respective method would even
completely avoid the use of a priori knowledge on the scene.

In order to obtain suitable and individual neighborhoods, semi-
nal work (Pauly et al., 2003; Demantké et al., 2011) is based on the
well-known 3D structure tensor S 2 R3�3 with

S ¼ 1
kþ 1

Xk

i¼0

Xi � �X
� �

Xi � �X
� �T ð1Þ

which represents a 3D covariance matrix constructed for a given 3D
point X ¼ X0 by involving its k closest neighbors Xi with i ¼ 1; . . . ; k.
The geometric center �X is thereby defined as

�X ¼ 1
kþ 1

Xk

i¼0

Xi ð2Þ

and may thus slightly vary from the considered 3D point X0. Since
the 3D structure tensor represents a symmetric positive-definite
matrix, its three eigenvalues exist, are non-negative and correspond
to an orthogonal system of eigenvectors. Further assuming that
there may not necessarily be a preferred variation with respect to
the eigenvectors, we consider the general case of a structure tensor
with rank 3. Consequently, the three eigenvalues k1; k2 and k3 with
k1; k2; k3 2 R and k1 P k2 P k3 P 0 represent the extent of a 3D
ellipsoid along its principal axes. Thus, the eigenvalues may be
exploited in order to characterize the local 3D shape. In the context
of neighborhood size selection, three approaches based on the
eigenvalues of the structure tensor have been proposed.

Firstly, the eigenvalues can be exploited in order to estimate the
local surface variation with

Ck ¼
k3

k1 þ k2 þ k3
ð3Þ

which is also referred to as change of curvature. By starting with
small values and successively increasing the neighborhood size,
i.e. the scale parameter k 2 N, a critical neighborhood size and thus
a respective value for k corresponds to a significant increase of Ck

(Pauly et al., 2003; Belton and Lichti, 2006), since occurring jumps
indicate strong deviations in the normal direction.

Secondly, the eigenvalues can be exploited in order to derive
the dimensionality features represented by linearity Lk, planarity
Pk and scattering Sk with

Lk ¼
k1 � k2

k1
ð4Þ

Pk ¼
k2 � k3

k1
ð5Þ

Sk ¼
k3

k1
ð6Þ

which represent 1D, 2D and 3D features. More specifically, the
dimensionality features Lk; Pk; Sk 2 R with Lk; Pk; Sk 2 0;1½ � sum up
to 1 and thus satisfy two of three probability axioms according to
(Kolmogorov, 1933). Further taking into account that quasiprobabil-
ity distributions generally relax the third axiom addressing the
junction of mutually disjoint random events, the dimensionality
features may be considered as the ‘‘probabilities’’ of a 3D point to
be labeled as 1D, 2D or 3D structure (Demantké et al., 2011).
Accordingly, the task of finding a suitable neighborhood size may
be transferred to favoring one dimensionality the most which, in
turn, corresponds to minimizing a measure of unpredictability
given by the Shannon entropy (Shannon, 1948) as

Edim ¼ �Lk lnðLkÞ � Pk lnðPkÞ � Sk lnðSkÞ ð7Þ

across different scales k 2 N. For this purpose, in the original imple-
mentation (Demantké et al., 2011), the neighborhood radius r has
been taken into account and the interval r 2 rmin; rmax½ � has been
sampled in 16 scales. Thereby, the radii are not linearly increased
since the radius of interest is usually closer to rmin. Thus, the optimal
neighborhood size corresponds to the radius which yields the mini-
mum Shannon entropy. Since the values rmin and rmax depend on
various characteristics of the given data, they are specific for each
dataset. In order to avoid a heuristic parameter selection, directly
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varying the scale parameter k (e.g. between kmin ¼ 10 and
kmax ¼ 100 with Dk ¼ 1) has recently been proposed (Weinmann
et al., 2014) which results in an increase of the computational effort.

Thirdly, the eigenvalues can directly be exploited in order to
estimate the order/disorder of 3D points within the local 3D neigh-
borhood (Weinmann et al., 2014). For this purpose, the three
eigenvalues k1; k2 and k3 are normalized by their sum Rk. The nor-
malized eigenvalues ei ¼ ki=Rk with i 2 1;2;3f g and ei 2 0;1½ � thus
sum up to 1 and, consequently, the measure of eigenentropy is
defined via the Shannon entropy as

Ek ¼ �e1 lnðe1Þ � e2 lnðe2Þ � e3 lnðe3Þ ð8Þ

where the occurrence of eigenvalues identical to zero has to be
avoided by adding an infinitesimal small value e. The eigenentropy
represents a measure describing the order/disorder of 3D points
within the local 3D neighborhood. Favoring a minimum disorder
of 3D points corresponds to minimizing Ek across different scales
k 2 N. Accordingly, the optimal neighborhood size can be deter-
mined by varying the scale parameter k and selecting the value
which yields the minimum Shannon entropy. In accordance with
other investigations (Demantké et al., 2011; Weinmann et al.,
2014), we consider relevant statistics to start with kmin ¼ 10 neigh-
bors and vary k with Dk ¼ 1 up to a relatively high number of
kmax ¼ 100 neighbors. This approach for neighborhood size selec-
tion is generally applicable, since it does neither involve parameters
which are specific for each dataset nor rely on the assumption of
particular shapes being present in the observed scene.

Even though such approaches for optimal neighborhood size
selection cause additional computational effort, involving optimal
neighborhoods has a significantly positive impact on 3D scene ana-
lysis (Weinmann et al., 2014) and should therefore be taken into
account. More specifically, by exploiting optimal neighborhoods
– which may be different for each individual 3D point – we may
expect that, in the subsequent step of feature extraction, the dis-
tinctiveness of geometric features calculated from the neighboring
points is increased.

3.2. Feature extraction

Most of the publicly available 3D point cloud datasets only con-
tain geometric information in terms of spatial 3D coordinates. For
this reason, we only involve geometric features in our investiga-
tions. Consequently, all types of point clouds with an adequate
point density may serve as input for our framework. In particular,
point clouds acquired via mobile laser scanning or dense matching
provide an appropriate representation of object surfaces as mea-
sured counterpart of the real world. Further information such as
intensity/color or full-waveform features can easily be added, but
this does not influence the presented methodology and is therefore
not in the scope of this work.

Considering a given 3D point X, respective geometric features
typically rely on a local neighborhood. Thus, neighborhood selec-
tion and feature extraction are interleaved issues, since the distinc-
tiveness of geometric features strongly depends on the respective
neighborhood encapsulating those 3D points which are taken into
consideration for feature extraction. Whereas some features will be
more distinctive for larger neighborhoods (e.g. features addressing
planarity or curvature), other features will be more distinctive for
smaller neighborhoods (e.g. features addressing fine details of the
local 3D structure). In order to avoid optimizing the neighborhood
size for each feature, we focus on the concept of decoupling neigh-
borhood selection and feature extraction. Consequently, we treat
feature extraction independent from neighborhood selection since
an interaction of these components in terms of optimization is
not taken into account, and we furthermore assume that the

consideration of locally adaptive neighborhoods is sufficient for
retrieving distinctive features. Thus, in analogy to our previous
work (Weinmann et al., 2013; Weinmann et al., 2014;
Weinmann et al., 2015), we exploit eigenentropy-based scale
selection and derive fundamental geometric 3D properties as well
as local 3D shape features from this local 3D neighborhood (Sec-
tion 3.2.1). Furthermore, we also consider 2D neighborhoods
resulting from a 2D projection and derive geometric 2D features
(Section 3.2.2). In total, this yields a set of 21 low-level geometric
3D and 2D features which are briefly described in the following
subsections. A respective toolbox1 (Matlab, C++ and binaries) for
calculating these geometric features has recently been released
(Weinmann et al., 2015). Since the geometric features address differ-
ent quantities with possibly different units, a normalization across
all feature vectors is involved which maps the values of each dimen-
sion to the interval 0;1½ �.

3.2.1. 3D features
A variety of 3D features can be derived by considering basic

properties of the local 3D neighborhood and local 3D shape fea-
tures arising from the spatial arrangement of 3D points within
the neighborhood.

3.2.1.1. Geometric 3D properties. For 3D scene analysis, valuable
information about a given 3D point X ¼ ðX;Y ; ZÞT for which the
XY-plane represents a horizontally oriented plane might arise from
its absolute height Z. Additionally, fundamental geometric 3D
properties of the local 3D neighborhood are represented by the
radius rk�NN of the spherical neighborhood encapsulating the k
closest neighbors as well as the maximum difference DZk�NN and
standard deviation rZ;k�NN of height values within the neighbor-
hood. Further basic properties of the local neighborhood arise from
the local point density D (Weinmann et al., 2013) given by

D ¼ kþ 1
4
3 p r3

k�NN

ð9Þ

and the verticality V ¼ 1� nZ (Demantké et al., 2012) which is
derived from the vertical component nZ of the normal vector n 2 R3.

3.2.1.2. Local 3D shape features. For a given 3D point X and its k
closest neighbors, the respective derived normalized eigenvalues
ei with i 2 1;2;3f g may be exploited in order to obtain a set of 8
local 3D shape features (West et al., 2004; Pauly et al., 2003). This
feature set encapsulates linearity Lk, planarity Pk, scattering Sk,
omnivariance Ok, anisotropy Ak, eigenentropy Ek, sum Rk of eigen-
values and change of curvature Ck according to

Lk ¼
e1 � e2

e1
ð10Þ

Pk ¼
e2 � e3

e1
ð11Þ

Sk ¼
e3

e1
ð12Þ

Ok ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 e2 e3

3
p

ð13Þ

Ak ¼
e1 � e3

e1
ð14Þ

Ek ¼ �
X3

i¼1

ei ln eið Þ ð15Þ

Rk ¼ e1 þ e2 þ e3 ð16Þ

Ck ¼
e3

e1 þ e2 þ e3
ð17Þ

1 This toolbox is available at http://www.ipf.kit.edu/code.php.
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which are meanwhile commonly applied in 3D lidar data
processing.

3.2.2. 2D features
Generally, point clouds representing an observed 3D scene do

not provide a completely random point distribution since the 3D
points are the measured or derived counterpart of real object sur-
faces. For instance, urban environments are composed of a variety
of man-made objects, where geometric constraints in terms of
symmetry and orthogonality are likely to be satisfied. Since such
man-made objects often tend to provide almost perfectly vertical
structures (e.g. building façades, poles, traffic signs or curbstone
edges), we may also involve geometric features resulting from a
2D projection of the 3D point cloud onto a horizontally oriented
plane, i.e. the XY-plane. Such 2D features might reveal complemen-
tary information compared to the aforementioned 3D features and
can also be categorized into different groups.

3.2.2.1. Geometric 2D properties. In analogy to the 3D case, basic
geometric properties are given by the radius rk�NN;2D of the circular
neighborhood defined by a 2D point and its k closest neighbors or
the local point density D2D (Lari and Habib, 2012). In order to assess
2D properties corresponding to the optimized neighborhood, we
again use the closest neighbors based on 3D distances.

3.2.2.2. Local 2D shape features. Exploiting the XY-coordinates of a
point X and its k closest neighbors, the 2D structure tensor S2D

can be derived in analogy to the 3D structure tensor. From its
eigenvalues, the sum Rk;2D and the ratio Rk;2D of eigenvalues may
be calculated and exploited as 2D features.

3.2.2.3. Features based on an accumulation map. Since the aforemen-
tioned 2D features are based on the spherical neighborhood encap-
sulating a point X and its k closest neighbors, we may also involve
neighborhoods resulting from a spatial binning. For this purpose, it
has been proposed to introduce a second neighborhood definition
by discretizing the 2D projection plane and deriving a 2D accumu-
lation map with quadratic bins (Monnier et al., 2012; Weinmann
et al., 2013), e.g. with a side length of 0:20 . . . 0:25 m. Within each
bin, respective features arise from the number M of points falling
into the bin as well as the maximum height difference DZ and
the standard deviation rZ of height values within the bin.

3.3. Feature selection

Particularly when dealing with many features or many training
examples, simpler and more efficient methods are favorable and,
consequently, filter-based methods are often applied for selecting
a subset of relevant features. These filter-based methods address
simple and more intuitive relations between features and classes
and possibly also among features (i.e. relations based on well-
known concepts of distance, information, dependency or consis-
tency), whereas the relations exploited by embedded methods
are more sophisticated and thus hardly interpretable. By repre-
senting these relations in the form of score functions, one could
argue that – in the sense of statistical learning or machine learning
– embedded methods are most appropriate, since the respective
score function focuses on minimizing the classification error. How-
ever, embedded methods would directly introduce a dependency
between selected features and the settings of a classifier, e.g. the
number of involved weak learners, their type and the (ideally high)
number of considered choices per variable. In order to avoid an
exhaustive classifier tuning and thus preserve applicability for
non-expert users, we focus on filter-based methods and accept if
these tend to provide a (slightly) weaker performance. Since we

apply both univariate and multivariate filter-based methods, we
briefly explain the basic ideas in the following subsections. Most
of these techniques, however, should be conducted for training
data with an equal number of training examples per class in order
to avoid a bias in feature selection.

3.3.1. Univariate filter-based feature selection
A univariate filter-based feature selection method relies on a

score function which evaluates feature-class relations in order to
discriminate between relevant and irrelevant features. More
specifically, the score function evaluates the relation between the
vector containing values of a single feature across all observations
and the respective label vector. Thereby, the score function may
address different intrinsic properties of the given training data
such as distance, information, dependency or consistency. Among
a variety of possible score functions addressing a specific intrinsic
property (Guyon and Elisseeff, 2003; Zhao et al., 2010), the most
popular ones are represented by simple metrics such as Pearson
correlation coefficient (Pearson, 1896), Gini index (Gini, 1912),
Fisher score (Fisher, 1936), information gain (Quinlan, 1986) or
symmetrical uncertainty (Press et al., 1988). Since some of these
score functions are only defined for discrete features, a respective
discretization of continuous-valued features is introduced if
required (Fayyad and Irani, 1993). Thus, a variety of score functions
allows to rank the extracted features according to their relevance.
By exploiting a separate ranking with respect to different score
functions and subsequently assessing the mean rank, we recently
proposed a general relevance metric addressing different intrinsic
properties of the given training data (Weinmann et al., 2013).

3.3.2. Multivariate filter-based feature selection
A multivariate filter-based feature selection method relies on a

score function which evaluates both feature-class and feature-fea-
ture relations in order to discriminate between relevant, irrelevant
and redundant features. A respective score function has been pro-
posed with ReliefF (Kononenko, 1994). However, the score function
may also be based on standard score functions applied for univari-
ate filter-based feature selection. For instance, an approach taking
the symmetrical uncertainty as correlation metric is represented
by Correlation-based Feature Selection (CFS) (Hall, 1999). Consid-
ering random variables Xi for the features and C for the class labels
and further defining �qXC as average correlation between features
and classes as well as �qXX as average correlation between different
features, the relevance R of a feature subset comprising n features
results in

RðX1...n;CÞ ¼
n�qXCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ nðn� 1Þ�qXX

p ð18Þ

which can be maximized by searching the feature subset space
(Hall, 1999), i.e. by iteratively adding a feature to the feature subset
(forward selection) or removing a feature from the feature subset
(backward elimination) until R converges to a stable value.

For comparison only, we also consider feature selection exploit-
ing a Fast Correlation-Based Filter (FCBF) (Yu and Liu, 2003) which
involves heuristics and thus does not meet our intention of a fully
generic methodology. For deciding whether features are relevant
to the class or not, a typical feature ranking based on symmetrical
uncertainty is conducted in order to determine the feature-class
correlation. If the symmetrical uncertainty is above a certain
threshold, the respective feature is considered to be relevant. For
deciding whether a relevant feature is redundant or not, the sym-
metrical uncertainty among features is compared to the symmetri-
cal uncertainty between features and classes in order to remove
redundant features and only keep predominant features.
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Finally, we also apply an approach addressing the aims of both
univariate and multivariate filter-based feature selection methods.
Whereas univariate filter-based methods focus on selecting the
best-ranked features with the highest relevance (i.e. maximal rele-
vance selection), multivariate filter-based methods focus on select-
ing features with the minimal redundancy (i.e. minimal
redundancy selection). Accordingly, an approach combining two
constraints for (i) minimal redundancy selection and (ii) maximal
relevance selection has been presented with the minimal-redun-
dancy-maximal-relevance (mRMR) criterion (Peng et al., 2005).
However, a remaining issue is how to determine the optimal num-
ber of features which can be done either heuristically or by apply-
ing wrapper-based schemes. Since we focus on efficiency and
therefore do not want to apply a classifier-dependent feature selec-
tion, the method of choice involves heuristics and we select a set
comprising 10 features. Thus, the approach does also not meet
our intention of a fully generic, classifier-independent method-
ology and, consequently, it only serves for comparison.

3.4. Classification

In the last step, either all or only the selected features are pro-
vided to a classifier which returns a respective assignment to one
of the specified (semantic) classes. For a wide range of applications,
most approaches focus on a supervised classification scheme,
where the fundamental idea consists of exploiting given training
data in order to train a classifier which afterwards is able to gener-
alize to new data. Thereby, the training data is represented by a set
X of training examples which, in turn, consist of an assignment
between a feature vector in a d-dimensional feature space and a
respective class label. In contrast, the test set Y containing new
data to be classified may only consist of feature vectors in the d-di-
mensional feature space.

For the sake of applicability in terms of simplicity, efficiency
and reproducibility, we focus on individual point classification
for which many respective approaches are available in a variety
of software tools. Since different learning principles may be
involved for inferring a function between feature vectors and class
labels in the training phase, we use a variety of classifiers and
briefly present the main ideas in the following subsections. Hereby,
we take into account that an unbalanced distribution of training
examples per class in the training set may often have a detrimental
effect on the training process (Criminisi and Shotton, 2013). In
order to avoid this, we introduce a class re-balancing by randomly
sampling the same number of training examples per class which
yields a reduced training set. Thus, end-users will not only get an
impression of the performance of single approaches, but also a
comprehensive comparison.

3.4.1. Instance-based learning
Instance-based learning does neither require parameter estima-

tion nor the assumption of a certain model, since unseen feature
vectors are directly compared to the feature vectors in the training
set. Accordingly, a similarity metric has to be defined which may
be based on the Euclidean distance, a general Minkowski metric
or other distance metrics. A very simple method and straightfor-
ward example for instance-based learning is represented by a
Nearest Neighbor (NN) classifier which assigns each feature vector
the class label of the most similar training example. The more gen-
eral definition represented by a k Nearest Neighbor (k-NN) classi-
fier (Cover and Hart, 1967) selects the k nearest samples in the
training data and classifies according to the majority vote of their
class labels.

3.4.2. Rule-based learning
Rule-based learning focuses on the representation of acquired

knowledge in terms of (mostly binary) decisions. As most promi-
nent example, decision trees (DTs) conduct a series of simple tests
which are organized hierarchically in a tree structure (Quinlan,
1986). The construction of a decision tree is typically based on a
top-down strategy, where at each step the variable is chosen which
best splits the given training examples. This recursive partitioning
strongly depends on the definition of a split function and a respec-
tive stopping criterion. For both criteria, we use standard settings.

3.4.3. Probabilistic learning
Probabilistic learning focuses on deriving an explicit underlying

probabilistic model and inferring the most probable class label for
each observed feature vector. The Naive Bayesian (NB) classifier
(John and Langley, 1995), for instance, is a probabilistic classifier
which is based on Bayes’ theorem and the naive assumption of
all features being conditionally independent. Consequently, a set
of class probabilities and conditional probabilities for the occur-
rence of a class given a specific class label have to be determined
based on the training set X . Thus, in the classification process, a
new feature vector of a test set Y is assigned the most likely class
label. However, since conditional independence is assumed, corre-
lated features cannot be modeled appropriately. Alternatively, a
classical maximum likelihood (ML) classifier can be derived by
considering distribution-based Bayesian Discriminant Analysis. In
the training phase, a multivariate Gaussian distribution is fitted
to the given training data, i.e. the parameters of a Gaussian distri-
bution are estimated for each class by parameter fitting. For a Lin-
ear Discriminant Analysis (LDA) classifier, the same covariance
matrix is assumed for each class and therefore only the means
vary. For a Quadratic Discriminant Analysis (QDA) classifier, the
covariance matrix of each class may also vary. For classifying a
new feature vector, the probability of belonging to the different
classes is evaluated, and the class with maximum probability is
assigned.

3.4.4. Max-margin learning
Max-margin learning focuses on maximizing the distance

between samples of different classes in the feature space. A respec-
tive approach has been presented with Support Vector Machines
(SVMs) (Cortes and Vapnik, 1995). In general, a SVM is a binary
classifier trained to linearly separate two classes by constructing
a hyperplane or a set of hyperplanes in a high-dimensional feature
space. However, often a linear separation in the feature space is not
possible and hence a kernel function is introduced which implicitly
maps the training data into a new feature space of higher dimen-
sionality where the data is linearly separable. For solving the prob-
lem of multi-class classification, we apply a SVM classifier
composed of several binary SVMs and provided in the LIBSVM
package (Chang and Lin, 2011). This classifier is based on a one-a-
gainst-one approach and a (Gaussian) radial basis function (RBF) as
kernel. Thus, for each pair of classes, a SVM is trained to distinguish
samples of one class from samples of the other class. Since with TLS
and MLS, many objects with similar shapes or at least similar
geometrical behavior are typically acquired (e.g. poles, wires,
trunks or traffic lights), such a strategy may allow a better training
and subsequent discrimination of classes closely located in the fea-
ture space. However, the classification results strongly depend on
(i) the parameter c representing the width of the RBF kernel and
(ii) the parameter C penalyzing classification errors. In order to
optimally select these parameters, we conduct a grid search in a
suitable subspace c;Cð Þ.
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3.4.5. Ensemble learning
Ensemble learning is based on the idea of strategically generat-

ing a set of weak learners and combining them in order to create a
single strong learner. An intuitive way for this combination is rep-
resented by bagging (Breiman, 1996). Using bootstrapped replica
of the training data, i.e. subsets of the complete training data which
are randomly drawn with replacement (Efron, 1979), diversity is
obtained by training a weak learner of the same type for each sub-
set of the training data. Consequently, the weak learners are all
randomly different from one another which results in a de-correla-
tion between individual hypotheses and thus improved generaliza-
tion and robustness when taking the respective majority vote over
all hypotheses (Criminisi and Shotton, 2013). The most popular
example for bagging is represented by a Random Forest (RF) clas-
sifier (Breiman, 2001) which relies on decision trees as weak learn-
ers. A respective modification in terms of a non-hierarchical
structure consisting of a set of ferns as weak learners whose
hypotheses are combined in a Naive Bayesian way has been pre-
sented with a Random Fern (RFe) classifier (Özuysal et al., 2007),
where a fern can be considered as simplified decision tree. For both
classifiers, the settings have been determined via respective
experiments. Accordingly, we use 100 decision trees for the Ran-
dom Forest classifier and 100 ferns for the Random Fern classifier.

In contrast to bagging, boosting (Schapire, 1990) is based on
incrementally generating a set of weak learners over consecutive
iterations and different distributions of the training data. In each
iteration, a subset of the complete training data is selected to train
a weak learner and get a weak hypothesis with low error with
respect to the true labels. After a certain number of iterations, all
hypotheses are combined by taking the majority vote over all
hypotheses. Since boosting was originally proposed for binary clas-
sification problems, an extension to multiclass classification has
been proposed with Adaptive Boosting (Freund and Schapire,
1997) which is commonly referred to as AdaBoost (AB). As a result
of respective tests, we use AdaBoost based on 100 decision trees as
weak learners.

3.4.6. Deep learning
Deep learning has been inspired by biological neural networks

which are capable to model high-level abstractions in given data.
As most prominent example, the Multi-Layer Perceptron (MLP)
consists of multiple layers of neurons: an input layer, one or two
hidden layers and an output layer. Each layer is fully connected
to the next one, and each connection is characterized by a weight
factor. Thus, a number of weighted inputs is provided to each neu-
ron which, in turn, maps these inputs to its output via an activation
function. Whereas the number of neurons for input and output lay-
er is given with the respective training examples, a suitable num-
ber of neurons in the hidden layer has to be determined
heuristically. In the training phase, the weights are learned via
backpropagation (Rumelhart et al., 1986) which represents a gradi-
ent descent technique for minimizing an error function in a high-
dimensional space. Based on various tests, we select a Multi-Layer
Perceptron with 11 neurons in the hidden layer, linear activation
functions for input and output layer, logistic sigmoid functions
for the hidden layer and the Resilient Backpropagation algorithm
(Riedmiller and Braun, 1993) for learning the parameters in the
training phase.

4. Experimental results

In the following, we focus on the performance of our frame-
work. For this purpose, we first describe the two involved and pub-
licly available benchmark datasets in Section 4.1. Subsequently, we
outline the conducted experiments in Section 4.2. Accordingly, in

Section 4.3, we provide the derived results for optimal neighbor-
hood size selection in comparison to standard neighborhood
definitions and thereby focus on a comparison of single approaches
for both individual point classification and feature selection.

4.1. Datasets

Since our main goal consists of applicability of involved meth-
ods and reproducibility of derived results, we want to facilitate
an objective comparison to other methodologies. Hence, we test
our framework on two publicly available and labeled 3D point
cloud datasets which are described in the following subsections.

4.1.1. Oakland 3D Point Cloud Dataset
One of the most widely used MLS datasets has been presented

with the Oakland 3D Point Cloud Dataset2 (Munoz et al., 2009). This
dataset represents an urban environment and it has been acquired
with a mobile platform equipped with side looking SICK LMS laser
scanners used in push-broom mode. A separation of the dataset into
training set X , validation set V and test set Y is provided, and each
3D point is assigned one of the five semantic labels wire, pole/trunk,
façade, ground and vegetation. In order to get an impression of the
dataset, the respective number of samples per class is provided in
Table 2. After class re-balancing, the reduced training set encapsu-
lates 1000 training examples per class.

4.1.2. Paris-rue-Madame database
As second dataset, we consider the Paris-rue-Madame

database3 (Serna et al., 2014) which has been acquired in the city
of Paris, France. This dataset consists of 20 million 3D points and cor-
responds to a street section with a length of approximately 160 m.
For data acquisition, the Mobile Laser Scanning system L3D2
(Goulette et al., 2006) equipped with a Velodyne HDL32 was used,
and annotation has been conducted in a manually assisted way.
Since the annotation includes both point labels and segmented
objects, the database contains 642 objects which, in turn, are catego-
rized in 26 classes. For our experiments, we only exploit those 3D
points belonging to one of the six dominant semantic classes façade,
ground, cars, motorcycles, traffic signs and pedestrians, since the
remaining classes are smaller than 0.05% of the complete dataset
(Table 3). Again, we conduct a class re-balancing and randomly
select a training set X with 1000 training examples per class, while
the remaining data is used as test set Y.

4.2. Experiments

In the experiments, we first consider the general behavior of the
proposed method for optimal neighborhood size selection in Sec-
tion 4.3.1. Subsequently, in Section 4.3.2, we focus on the impact
of 7 different neighborhood definitions on the classification results
of 10 standard classifiers of different categories:

� the neighborhood N 10 formed by the 10 closest neighbors,
� the neighborhood N 25 formed by the 25 closest neighbors,
� the neighborhood N 50 formed by the 50 closest neighbors,
� the neighborhood N 75 formed by the 75 closest neighbors,
� the neighborhood N 100 formed by the 100 closest neighbors,

2 The Oakland 3D Point Cloud Dataset is publicly available at http://www.cs.cmu.
edu/�vmr/datasets/oakland_3d/cvpr09/doc/ (last access: 30 October 2014).

3 Paris-rue-Madame database: MINES ParisTech 3D mobile laser scanner dataset from
Madame street in Paris. � 2014 MINES ParisTech. MINES ParisTech created this special
set of 3D MLS data for the purpose of detection-segmentation-classification research
activities, but does not endorse the way they are used in this project or the
conclusions put forward. The database is publicly available at http://cmm.ensmp.fr/
�serna/rueMadameDataset.html (last access: 30 October 2014).
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� the optimal neighborhood N opt;dim for each individual 3D point
when considering dimensionality-based scale selection, and
� the optimal neighborhood N opt;k for each individual 3D point

when considering our proposed approach of eigenentropy-
based scale selection.4

The latter two definitions involving optimal neighborhoods are
based on varying the scale parameter k between kmin ¼ 10 and
kmax ¼ 100 with a step size of Dk ¼ 1, and selecting the value with
the minimum Shannon entropy of the respective criterion. Since
training a classifier strongly depends on the given training data,
we further consider the influence of a varying amount of training
data on the classification results in Section 4.3.3. Subsequently,
in Section 4.3.4, we focus on feature selection and test 7 different
feature sets for each neighborhood definition:

� the whole feature set Sall with all 21 features,
� the feature subset Sdim covering the 3 dimensionality features

Lk; Pk and Sk,
� the feature subset Sk;3D covering the 8 eigenvalue-based 3D

features,
� the feature subset S5 consisting of the 5 best-ranked features

according to a general relevance metric (Weinmann et al.,
2013),
� the feature subset SCFS derived via Correlation-based Feature

Selection,
� the feature subset SFCBF derived via the Fast Correlation-Based

Filter, and
� the feature subset SmRMR derived via the minimal-redundancy-

maximal-relevance (mRMR) criterion.

The latter four feature subsets are based on either explicitly or
implicitly assessing feature relevance. Note that the full feature set
only has to be calculated and stored for the training data, whereas
a smaller feature subset automatically selected during the training
phase has to be calculated for the test data. Finally, in Section 4.3.5,
we focus on the transfer of the derived feature selection results to
other datasets.

For evaluation, we consider five commonly used measures: (i)
precision which represents a measure of exactness or quality, (ii)
recall which represents a measure of completeness or quantity,
(iii) F1-score which combines precision and recall with equal
weights, (iv) overall accuracy which reflects the overall perfor-
mance of the respective classifier on the test set, and (v) mean class
recall which reflects the capability of the respective classifier to
detect instances of different classes. In order to facilitate an objec-
tive comparison, all results are averaged over 20 runs since the
results for classification may slightly vary for different runs. Addi-
tionally, we consider that, when involving filter-based feature
selection, the derived feature subsets may slightly vary due to
the random selection of training data in each run, and hence deter-
mine them as the most often occurring feature subsets over 20
runs.

All implementation and processing was done in Matlab. In the
following, the main focus is put on the impact of both optimal
neighborhood size selection and feature selection on the classifica-
tion results. We may expect that (i) optimal neighborhoods for
individual 3D points significantly improve the classification results
and (ii) feature subsets selected via feature relevance assessment
provide an increase in classification accuracy.

4.3. Results

In the following, we present the results derived by applying our
framework.

4.3.1. Insights in the process of neighborhood selection
First, we want to provide more insights in the process of opti-

mal neighborhood size selection. For this purpose, we utilize the
Oakland 3D Point Cloud Dataset. Since our approach for selecting
an optimal scale parameter k involves an upper boundary of
kmax ¼ 100 in order to limit the computational costs, we might
expect that it is likely to have a certain percentage of points which
favor a higher value of k. Consequently, we consider the distribu-
tion of k across the full dataset over the interval between
kmin ¼ 10 and kmax ¼ 100 with Dk ¼ 1. The respective distribution
for N opt;k is shown in Fig. 2 and quite similar for N opt;dim. The figure
reveals a clear trend towards smaller neighborhoods, and the per-
centage of 3D points which are assigned neighborhoods with
k < 100 is 98.08% and 98.13% for N opt;k and N opt;dim. For the last
bin corresponding to kmax ¼ 100, a slight increase can be observed.
The distributions per class are provided in Fig. 3 for N opt;k and fol-
low the major trend with only a slight difference between different
classes.

However, it has to be taken into account that – when consider-
ing optimal neighborhoods N opt;k and N opt;dim – an additional pro-
cessing time of approximately 21 s and 758 s is required on a high-
performance computer (Intel Core i7-3820, 3.6 GHz, 64 GB RAM)

Table 2
Number of samples per class for the Oakland 3D Point Cloud Dataset.

Class Training set Test set

Wire 2571 3794
Pole/trunk 1086 7933
Façade 4713 111,112
Ground 14,121 934,146
Vegetation 14,441 267,325

R 36,932 1,324,310

Table 3
Number of samples per class for the Paris-rue-Madame database: both training set
and test set have been derived by splitting the whole dataset.

Class Training set Test set

Façade 1000 9,977,435
Ground 1000 8,023,295
Cars 1000 1,834,383
Motorcycles 1000 97,867
Traffic signs 1000 14,480
Pedestrians 1000 9048

R 6000 19,956,508
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Fig. 2. Distribution of the assigned optimal neighborhood size k for all 3D points in
the Oakland 3D Point Cloud Dataset.4 The code is available at http://www.ipf.kit.edu/code.php.
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for the full training set and the test set, respectively. The additional
effort is significant in comparison to feature extraction, where
approximately 4 s and 2793 s are required for calculating all fea-
tures for the training set and the test set. This raises the question
if individual neighborhoods of optimal size are really necessary.
We focus on this issue in the next subsection.

4.3.2. Impact of neighborhood selection
In order to reason about the impact of neighborhood selection

on individual point classification, we consider all 21 geometric fea-
tures for each of the 7 different neighborhood definitions and pro-
vide them to 10 classifiers of different categories. The obtained
overall accuracy and mean class recall values are provided in
Tables 4 and 5. For an in-depth analysis concerning the impact of
neighborhood selection on the classification results, the recall

and precision values for the different neighborhood definitions
and different classifiers are provided in Tables 6 and 7. The corre-
sponding F1-scores are visualized in Fig. 4. In order to argue about
the efficiency of the involved classifiers, we also provide the abso-
lute and relative processing times for training phase and testing
phase in Table 8.

Note that the combination of optimal neighborhoods N opt;k and
a Random Forest provides a good solution with respect to both
accuracy and computational efficiency. A visualization of respec-
tive classification results is provided in Fig. 5 for different parts
of the scene.

4.3.3. Impact of training data
Since we introduce a class re-balancing by randomly sampling

the same number of 1000 training examples per class, we also have
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Fig. 3. Distribution of the assigned optimal neighborhood size k for the different classes of the Oakland 3D Point Cloud Dataset.

Table 4
Overall accuracy (in %) for different neighborhood definitions and different classifiers. Bold values indicate the highest overall accuracy obtained with the respective classifier.

Oakland NN DT NB LDA QDA SVM RF RFe AB MLP

N 10 73.86 65.64 78.88 87.38 78.93 82.93 87.53 81.94 86.78 80.54
N 25 86.25 69.30 83.64 90.08 83.62 88.88 90.50 88.77 89.99 78.59
N 50 88.89 75.47 85.03 92.83 84.95 92:00 91.54 90.42 91.80 85.68
N 75 89:97 76.87 85.00 93:05 84.99 91.99 91.06 91:16 90.56 87.07
N 100 89.90 84:45 84.33 92.60 84.43 91.76 90.16 90.59 87.01 84.39
N opt;dim 79.34 70.71 83.75 91.01 83.80 90.15 91.89 90.12 91.62 85.69
N opt;k 79.87 75.76 85:63 90.39 85:69 89.10 92:25 90.45 92:28 87:29

Table 5
Mean class recall values (in %) for different neighborhood definitions and different classifiers. Bold values indicate the highest mean class recall value obtained with the respective
classifier.

Oakland NN DT NB LDA QDA SVM RF RFe AB MLP

N 10 63.40 54.19 62.29 70.68 62.33 58.86 70.78 63.75 67.52 64.20
N 25 70.01 57.41 68.46 75.54 68.47 68.50 74.65 71.48 68.64 68.03
N 50 69.47 59.99 67.12 72.76 66.98 68.47 72.72 69.22 71.46 69.13
N 75 68.29 57.82 65.49 73.05 65.44 68.00 69.99 68.88 68.19 70.47
N 100 66.66 57.96 63.44 72.35 63.46 64.76 68.51 67.16 59.58 68.98
N opt;dim 74:17 62.15 74.49 81.36 74.35 79.58 81.70 78.35 77.63 78.61
N opt;k 73.98 66:99 76:19 82:05 76:15 79:97 82:59 78:70 79:49 79:92
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to consider what happens when involving more or less training
examples. This is of particular interest when dealing with datasets
where small classes are only represented by a few hundreds of 3D
points.

From the previous experiment, it becomes visible that a Ran-
dom Forest provides a good solution when considering a trade-
off between accuracy and efficiency. Hence, we take such a classi-
fier and exploit various numbers of training examples per class.
The respective recall and precision values are given in Tables 9
and 10. Note that, for less training examples per class, the recall
values tend to decrease for the smaller classes of wire and pole/
trunk while the respective precision values tend to increase. The
same characteristic holds when involving all training examples
per class, but with a more significant impact.

4.3.4. Impact of feature selection
Focusing on the capability towards large-scale 3D scene analy-

sis with significantly larger datasets, we also want to provide a
solution for selecting relevant features and discarding irrelevant
ones in order to reduce the computational burden with respect
to processing time and memory consumption. Accordingly, we
again use a Random Forest classifier and provide the results
obtained when using the 7 different neighborhood definitions
and 7 different feature sets. This yields a total number of 49 possi-
ble combinations. For each combination, the respective overall
accuracy and mean class recall values are provided in Tables 11
and 12. Note that for this experiment

� Sall contains all 21 features,
� Sdim contains 3 features (which represents about 14% of the

available features),
� Sk;3D contains 8 features (about 38%),
� S5 contains 5 features (about 24%),
� SCFS contains between 12 and 16 features (about 57–76%),
� SFCBF contains between 6 and 9 features (about 29–43%), and
� SmRMR contains 10 features (about 48%).

The latter four subsets contain features which are distributed
across both 3D and 2D features.

4.3.5. Transfer between datasets
Finally, we focus on the transfer of the feature selection results

for classifying a different point cloud represented by the Paris-rue-
Madame database. For this purpose, we again select a Random For-
est representing an efficient classifier with respect to both accura-
cy and time consumption. Since in all previous experiments, our
approach for selecting individual neighborhoods of optimal size
(N opt;k) has proven to have a beneficial impact on the respective
results, we select this neighborhood definition for extracting the
geometric 3D and 2D features. For the same training data and test
data, we compare the results obtained for the full feature set Sall

and the most powerful feature selection approaches yielding the
feature sets SCFS and SFCBF in Table 13. Corresponding to the provid-
ed recall and precision values, we obtain

Table 6
Recall values (in %) for different neighborhood definitions and different classifiers. Bold values indicate the highest recall value obtained with the respective classifier for the
respective class.

Oakland N NN DT NB LDA QDA SVM RF RFe AB MLP

Wire N 10 65.51 55.20 65.92 77.06 65.69 62.21 70.46 72.24 58.66 65.61
N 25 64.63 50.50 70.78 73.30 70.97 60.11 69.48 68.14 52.24 63.70
N 50 50.40 42.09 66.88 48.57 66.69 41.13 56.86 55.82 53.55 51.81
N 75 49.68 35.22 63.10 48.48 63.29 43.06 49.71 51.72 51.94 48.84
N 100 50.09 26.62 60.54 46.74 60.35 34.91 49.67 52.51 54.69 47.41
N opt;dim 77.91 69.30 75.72 82.51 75.24 80.19 85.16 76.58 78.58 78.54
N opt;k 80:13 73:48 79:15 87:00 79:13 82:99 86:05 82:01 80:40 81:11

Pole/trunk N 10 61.74 60.45 52.05 61.55 52.29 35.88 68.49 47.56 66.92 58.24
N 25 66.72 63.62 57.98 69.92 58.21 55.67 69.59 63.79 58.97 71.77
N 50 61.11 60.23 50.70 60.56 50.62 55.32 62.64 56.39 53.76 67.73
N 75 55.96 52.98 45.81 59.80 45.95 50.83 58.63 50.82 46.89 69.23
N 100 47.35 49.51 41.76 60.62 41.60 41.49 58.27 45.24 38.91 69.60
N opt;dim 73.91 70.57 75.22 78.81 75.11 78:42 78.90 75:41 65.90 81.61
N opt;k 74:49 71:36 76:33 79:85 76:28 78.10 79:99 73.25 70:17 82:07

Façade N 10 46.16 29.42 43.35 48.21 43.45 43.45 50.29 41.94 48.62 42.42
N 25 52.10 39.51 46.70 59.97 46.49 54.15 60.98 52.35 55.89 49.72
N 50 65.27 51.29 47.32 73.81 47.29 65.00 68:13 55.96 74:19 58.94
N 75 65.19 51.16 48.47 75:85 48.36 65.22 67.51 63.75 70.07 66:78
N 100 65:93 52:90 47.06 73.97 47.28 66:14 62.69 61.09 34.41 65.56
N opt;dim 61.65 33.57 54:37 68.82 54:34 64.48 65.90 65:77 63.91 65.75
N opt;k 55.82 46.63 51.88 67.12 52.15 64.39 67.01 58.87 65.73 66.43

Ground N 10 80.32 73.96 88.26 97.55 88.30 95.44 98.23 91.84 97.61 89.79
N 25 94.66 76.50 90.34 97.69 90.42 97.31 98:91 97.02 97.81 84.45
N 50 96.25 81.71 91.58 98:55 91.56 98:47 98.84 97.93 98:52 92.23
N 75 98.48 83.27 91:66 98:55 91:83 98:47 98.81 98:12 98.35 93:55
N 100 98:58 93:72 91.51 98.25 91.59 97.86 98.71 97.97 98.19 90.49
N opt;dim 82.88 78.55 88.95 97.04 89.07 96.83 98.52 96.93 98.00 90.80
N opt;k 84.06 83.90 90.47 96.24 90.70 94.92 98.48 96.58 98.41 92.70

Vegetation N 10 63.27 51.90 61.86 69.03 61.91 57.31 66.45 65.15 65.79 64.94
N 25 71.95 56.95 76.49 76.83 76.24 75.27 74.29 76.11 78.28 70.53
N 50 74.32 64.62 79.09 82.33 78.76 82.44 77.10 80.00 77.29 74.92
N 75 72.13 66.48 78.41 82:59 77.76 82.43 75.31 79.96 73.70 73.92
N 100 71.36 67:06 76.32 82.19 76.48 83:38 73.20 78.96 71.69 71.87
N opt;dim 74.51 58.76 78.17 79.62 78.00 77.99 79.99 77.05 81.78 76.34
N opt;k 75:38 59.56 83:09 80.02 82:49 79.46 81:41 82:79 82:74 77:26
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� an overall accuracy of 88.76% and a mean class recall of 83.56%
for the full feature set Sall,
� an overall accuracy of 88.98% and a mean class recall of 84.66%

for the feature set SCFS, and
� an overall accuracy of 89.16% and a mean class recall of 83.83%

for the feature set SFCBF.

For obtaining an impression on the quality of the derived
results, the results when involving the full feature set Sall are visu-
alized in Fig. 6.

5. Discussion

Certainly, a huge advantage of our framework consists of its
composition of four successive components, where each compo-
nent may be treated independently from the others which, in turn,
allows to exhaustively test all conceivable configurations. For each
of these components, we briefly discuss the main conclusions
derived from our experiments.

For the first component of neighborhood selection, the use of
individual neighborhoods of optimal size provides a general
approach, since it completely avoids the use of empiric or heuristic
a priori knowledge on the scene which would be necessary when
specifying neighborhoods according to standard approaches. The
use of individual 3D neighborhoods is also in accordance with
the idea that the optimal neighborhood size may not be the same
for different classes and that it may furthermore depend on the

respective point density. Note that the class-specific classification
results clearly reveal that, for neighborhood definitions with fixed
scale parameter, the suitability may vary from one class to the
other (Tables 6 and 7). In contrast, the proposed method of eige-
nentropy-based scale selection directly adapts to the given 3D
point cloud data. Consequently, this method significantly improves
the classification results, in particular when considering the mean
class recall values. This improvement becomes visible for a variety
of different classifiers (Tables 4 and 5). Note that for all classifiers,
the significantly beneficial impact of individual neighborhoods of
optimal size on the mean class recall values results from a consid-
erable impact for the smaller classes wire and pole/trunk (Tables 6
and 7). Consequently, we may state that the respective classifiers
are less prone to overfitting when introducing individual neighbor-
hoods of optimal size. This is in accordance with the fact that, for
the Oakland 3D Point Cloud Dataset, we have an unbalanced test
set and an overall accuracy of 70.5% could be obtained if only the
instances of the class ground are correctly classified. This clear
trend to overfitting becomes visible when considering the respec-
tive mean class recall of only 20.0%. Thus, in our experiments, the
strongest indicator for the quality of the derived results is repre-
sented by the mean class recall, as only a high overall accuracy
may not be sufficient.

For the second component of feature extraction, we focus on
both 3D and 2D features. Whereas the 3D features provide infor-
mation about the spatial arrangement of neighboring 3D points
in terms of linear, planar or volumetric behavior, the projection

Table 7
Precision values (in %) for different neighborhood definitions and different classifiers. Bold values indicate the highest precision value obtained with the respective classifier for
the respective class.

Oakland N NN DT NB LDA QDA SVM RF RFe AB MLP

Wire N 10 1.61 1.00 3.21 6.14 3.24 5.15 5.51 4.15 4.89 2.59
N 25 4.28 1.05 3.83 5.93 3.87 4.54 7.12 5.65 6.62 4.89
N 50 3.63 1.34 3.50 5.17 3.50 5.06 4.81 4.91 6.16 4.79
N 75 5.19 1.47 3.34 5.18 3.35 5.78 4.00 4.88 4.25 5.29
N 100 5:29 2:72 3.26 4.95 3.24 5:79 3.98 5.15 4.13 5:49
N opt;dim 1.85 1.70 5.02 6:27 4.93 5.63 7.98 5.90 8.09 4.09
N opt;k 2.97 1.72 6:49 5.76 6:46 5.60 9:03 7:86 9:34 5.01

Pole/trunk N 10 4.48 5.18 3.75 8.10 3.67 2.43 7.99 3.00 6.60 5.51
N 25 6.28 6.38 5.78 9.32 5.68 5.99 9.46 6.24 6.36 4.77
N 50 8.66 8.46 7.97 16.61 7.90 9.02 19.47 7.53 10.02 6.71
N 75 8.17 11.09 7.91 19.26 7.89 8.85 18.25 8.84 11.10 8.14
N 100 7.19 9.04 8.27 18.55 7.97 8.17 13.55 7.42 5.06 7.50
N opt;dim 9:97 6.85 18:90 34:65 18:88 12:91 22.09 11:58 14.86 13.55
N opt;k 9.13 11:62 18.22 34.52 18.38 11.46 24:13 11.10 18:71 14:54

Façade N 10 63.54 47.59 60.86 66.03 61.41 52.59 77.62 62.50 72.56 60.01
N 25 73.20 49.82 79.54 78.49 79.22 79.85 83.88 79.40 80.79 54.33
N 50 78:61 64.97 82:78 83.42 82:83 83:16 83.43 81:41 89:05 74.60
N 75 77.38 65.10 78.84 87:48 77.71 81.60 80.28 80.22 85.71 76:78
N 100 76.56 68:74 65.27 84.63 67.69 72.93 76.19 74.78 71.15 68.03
N opt;dim 73.45 45.95 79.62 79.73 79.63 77.27 83.71 77.04 82.92 74.88
N opt;k 71.56 51.84 82.71 80.75 81.80 76.14 84:69 76.69 84.21 76.42

Ground N 10 98.76 98.40 96.68 96.78 96.73 98.68 96.82 99.64 97.57 96.47
N 25 99.01 98.24 99:67 99.58 99:67 99.68 98:58 99.75 99:16 98.57
N 50 98.84 98.23 98.27 99.51 97.98 99.75 97.77 99.74 98.66 98.83
N 75 98.66 97.70 98.63 99.42 98.27 99.73 97.86 99.66 97.67 99:28
N 100 98.56 96.67 97.84 99:64 97.93 99:82 97.92 99.74 96.45 99.19
N opt;dim 99:16 98:78 96.58 96.62 96.60 99.39 97.67 99:76 98.15 97.97
N opt;k 99.04 98.45 96.72 96.25 96.60 99.22 97.18 99.60 97.57 97.57

Vegetation N 10 77.23 76.16 81:06 95.34 81:59 92.46 94.79 91.73 93.32 93.84
N 25 91.55 77.87 78.06 94.89 78.20 94.47 94.87 94:79 94.29 90.67
N 50 93:06 82.52 79.23 93.16 79.71 93.47 94.40 94.18 93.36 90.37
N 75 92.93 80.16 77.69 91.32 78.79 92.08 93.84 93.30 93.34 86.55
N 100 92.58 79.16 78.91 89.95 78.69 91.14 93.55 92.88 92.82 81.99
N opt;dim 87.28 78.70 69.87 95.87 70.11 95:12 94.97 93.75 94.65 93.06
N opt;k 75.77 84:53 73.77 96:27 74.32 93.96 95:87 92.83 95:19 93:96
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Fig. 4. F1-scores for different classifiers applied on the Oakland 3D Point Cloud Dataset.
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Table 8
Absolute and relative processing times for training and testing when using different classifiers on a standard notebook (Intel Core i5-2410M, 2.3 GHz, 4 GB RAM). The reference
for relative values is represented by the Random Forest classifier. Note that, for the training, additional time is required for tuning the settings of some classifiers (SVM, RF, RFe, AB
and MLP).

Oakland NN DT NB LDA QDA SVM RF RFe AB MLP

ttrain (s) 00.00 0.11 0.01 0.05 0.07 1.39 0.44 0.03 6.20 2.28
ttrain (%) 00.00 24.54 3.13 10.74 15.18 317.19 100.00 6.96 1410.66 518.13
ttest (s) 167.52 0.65 3.71 4.45 3.92 319.48 6.33 8.12 76.31 1.80
ttest (%) 2645.77 10.22 58.64 70.34 61.96 5045.68 100.00 128.22 1205.24 28.45

Fig. 5. Exemplary classification results when using optimal neighborhoods N opt;k and a Random Forest (wire: blue, pole/trunk: red, façade: gray, ground: brown, vegetation:
green).

Table 9
Recall values (in %) for eigenentropy-based scale selection combined with a Random Forest classifier.

Oakland 250 samples 500 samples 750 samples 1000 samples All samples

Wire 84.22 85.07 85.91 86.05 82.31
Pole/trunk 76.47 77.98 78.77 79.99 70.52
Façade 66.50 67.14 67.47 67.01 65.80
Ground 98.50 98.55 98.49 98.48 97.89
Vegetation 81.82 81.34 81.78 81.40 93.35

Table 10
Precision values (in %) for eigenentropy-based scale selection combined with a Random Forest classifier.

Oakland 250 samples 500 samples 750 samples 1000 samples All samples

Wire 9.06 9.21 9.05 9.03 10.19
Pole/trunk 32.38 28.53 27.83 24.14 45.75
Façade 82.22 82.52 84.32 84.69 92.73
Ground 96.77 96.94 97.01 97.18 98.98
Vegetation 95.48 95.72 95.73 95.87 89.82

300 M. Weinmann et al. / ISPRS Journal of Photogrammetry and Remote Sensing 105 (2015) 286–304

221



onto a horizontally oriented plane clearly provides evidence about
the presence of building façades, which appear as a line in the 2D
projection. Furthermore, the sampling via the discrete accumula-
tion map with quadratic bins introduces a second neighborhood
definition with infinite extent in the vertical direction. In this
neighborhood definition, the maximal difference and standard
deviation of height values provide further insights about the local
3D structure, which are not represented by the other features.

For the third component of feature selection, it becomes visible
that the use of individual neighborhoods tends to provide the best

classification results for all feature sets. Furthermore, the results
clearly reveal that, in comparison to the whole feature set Sall,
the feature set Sdim consisting of the three dimensionality features
Lk; Pk and Sk is not sufficient for obtaining adequate classification
results (Tables 11 and 12). This might be due to ambiguities, since
the classes wire and pole/trunk provide a linear behavior, whereas
the classes façade and ground provide a planar behavior. For
adequately handling this issue, additional features have to be taken
into account. The feature set Sk;3D of the eigenvalue-based 3D fea-
tures performs significantly better with respect to both overall
accuracy and mean class recall, but the results are still not compa-
rable to those obtained for Sall. In contrast, the feature sets derived
via the four filter-based methods for feature selection provide clas-
sification results of better quality. Whereas the feature set SmRMR

performs worst of the filter-based feature selection methods, the
feature set S5 performs considerably well when taking into
account that only 5 features of all 21 features are used (which
reduces the required memory for data storage to only about
24%). The feature sets SCFS and SFCBF provide a performance close
to the full feature set Sall or even better while simultaneously
reducing the required memory for data storage to about 29–76%
which, in turn, is an important aspect for large-scale consid-
erations. These results are in accordance with the general aim of
feature selection to improve the classification results while reduc-
ing the computational effort. Since the selection of SFCBF is based on
heuristics, the feature set SCFS derived via Correlation-based Fea-
ture Selection provides the method of choice. Note that we only
account for filter-based feature selection, since the use of classi-
fier-independent filter-based methods results in simplicity and
efficiency compared to other methods interacting with a classifier.

For the forth component of supervised classification, it becomes
visible that the classifiers based on rule-based learning cannot
compete with the other classifiers (Tables 4–7). Instance-based
learning significantly improves the classification results, but the
computational effort for the testing phase is relatively high due
to the delayed induction process instead of a training phase
(Table 8). The more sophisticated classifiers based on probabilistic
learning, max-margin learning, ensemble learning and deep learn-
ing yield classification results of better quality. However, it has to
be taken into account that max-margin learning, ensemble learn-
ing and deep learning require additional time for tuning the set-
tings of a respective classifier. Thus, the use of Support Vector
Machines – for which the computational effort is already high
without a parameter tuning – does not really satisfy the constraint
with respect to efficiency. Since deep learning relies on heuristical-
ly determining the number of nodes in the hidden layer,
probabilistic learning and ensemble learning via bagging seem to

Table 11
Overall accuracy (in %) for a Random Forest, different neighborhood definitions and
different feature sets. Bold values indicate the highest overall accuracy obtained with
the respective feature set.

Oakland Sall Sdim Sk;3D S5 SCFS SFCBF SmRMR

N 10 87.50 58.36 74.33 85.66 87.43 87.29 82.11
N 25 90.78 68.80 82.48 89.60 90.59 91.78 84.70
N 50 91.64 73.19 81.38 91.01 91.71 92.69 85.64
N 75 91.00 73:63 80.12 90.24 91.17 91.47 85.99
N 100 90.11 72.99 81.96 89.84 90.31 90.94 85.76
N opt;dim 91.92 69.59 77.69 91.41 91.83 91.55 86:82
N opt;k 92:28 63.61 84:88 91:44 92:27 92:78 84.28

Table 12
Mean class recall values (in %) for a Random Forest, different neighborhood
definitions and different feature sets. Bold values indicate the highest mean class
recall value obtained with the respective feature set.

Oakland Sall Sdim Sk;3D S5 SCFS SFCBF SmRMR

N 10 70.83 48.41 59.95 58.24 69.28 70.08 62.46
N 25 75.48 55.68 65.22 73.30 74.24 76.58 63.61
N 50 72.71 54.41 64.43 65.91 72.64 74.14 60.90
N 75 69.75 52.12 61.37 59.86 70.19 68.66 58.35
N 100 68.49 50.33 61.37 60.22 69.02 66.34 56.05
N opt;dim 81.79 61:53 67.65 75.57 81.33 80.83 74:72
N opt;k 82:60 59.48 69:17 78:50 82:39 82:93 69.37

Table 13
Recall R and precision P (in %) for eigenentropy-based scale selection, different feature
sets and a Random Forest classifier.

Paris Rall Pall RCFS PCFS RFCBF PFCBF

Façade 95.29 96.45 95.11 96.61 95.23 96.89
Ground 86.69 97.92 86.38 98.70 87.44 98.66
Cars 63.13 78.96 67.71 77.42 64.42 79.82
Motorcycles 71.52 9.25 73.68 9.51 73.30 8.45
Traffic signs 95.82 4.76 95.88 4.90 96.26 5.34
Pedestrians 88.89 1.67 89.21 1.74 86.32 1.75

Fig. 6. Exemplary classification results when using optimal neighborhoods N opt;k , the full feature set Sall and a Random Forest (façade: gray, ground: brown, cars: blue,
motorcycles: green, traffic signs: red, pedestrians: pink).
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be favorable. Considering the derived results, the Random Forest
classifier provides a good trade-off between accuracy and efficien-
cy. Note that the selection of a Random Forest as classifier can fur-
ther be motivated by its simplicity, since it is relatively easy to
understand and use for non-expert users.

In total, our framework reveals that, based on fully generic solu-
tions, the consideration of optimal neighborhoods improves the
classification results in terms of accuracy and less overfitting,
whereas the selection of relevant features reduces the computa-
tional burden with respect to both processing time and memory
consumption without reducing the quality of the classification
results. By providing our implementations for neighborhood recov-
ery and feature extraction (in Matlab, C++ and as binaries), we
allow end-users to apply the code on their platform and experi-
enced users to involve the code in their investigations. These com-
ponents may not only be used for point cloud classification, but
also for a variety of other applications such as object segmentation
or urban accessibility analysis.

6. Conclusions

In this paper, we addressed the issue of 3D scene analysis in
terms of 3D point cloud classification. We presented a new, fully
automated and versatile framework involving four successive com-
ponents and a variety of approaches per component which, in turn,
satisfy the constraints of simplicity, efficiency and reproducibility.
As main focus of our work, we considered the interleaved issue of
(i) using individual neighborhoods of optimal size for extracting
features with increased distinctiveness and (ii) selecting a subset
consisting of the most relevant features. In a detailed evaluation
involving 7 neighborhood definitions, 21 geometric features, 7
approaches for feature selection and 10 classifiers, we demonstrat-
ed the significantly beneficial impact of using individual neighbor-
hoods of optimal size as well as the advantages of feature selection
in terms of increasing the classification accuracy while simultane-
ously reducing the computational burden. In particular, the neigh-
borhood selection based on minimizing the measure of
eigenentropy over varying scales provided a positive impact, inde-
pendent of the respective classifier. Furthermore, those approaches
for feature selection which are based on the measure of symmetri-
cal uncertainty for evaluating both feature-class and feature-fea-
ture relations proved to provide the most suitable feature
subsets, since they do not only discard irrelevant features but also
reduce redundancy among features.

For future work, we plan to further improve the results of 3D
scene analysis by introducing a spatially smooth labeling. This
may be achieved by involving either smoothing techniques or tech-
niques exploiting contextual information. Since both options are
based on the results of individual point classification, however,
the presented methodology provides an important prerequisite
for these.
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a b s t r a c t

We propose a new methodology for large-scale urban 3D scene analysis in terms of automatically
assigning 3D points the respective semantic labels. The methodology focuses on simplicity and
reproducibility of the involved components as well as performance in terms of accuracy and
computational efficiency. Exploiting a variety of low-level 2D and 3D geometric features, we further
improve their distinctiveness by involving individual neighborhoods of optimal size. Due to the use of
individual neighborhoods, the methodology is not tailored to a specific dataset, but in principle designed
to process point clouds with a few millions of 3D points. Consequently, an extension has to be
introduced for analyzing huge 3D point clouds with possibly billions of points for a whole city. For this
purpose, we propose an extension which is based on an appropriate partitioning of the scene and thus
allows a successive processing in a reasonable time without affecting the quality of the classification
results. We demonstrate the performance of our methodology on two labeled benchmark datasets with
respect to robustness, efficiency, and scalability.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The automated analysis of 3D point clouds has become a topic
of great importance in photogrammetry, remote sensing, compu-
ter vision and robotics. One avenue of research directly addresses
the analysis of urban environments, where recent investigations
focus on 3D reconstruction [1–3], consolidation of imperfect scan
data [4,5], object detection [6–9], extraction of roads and curb-
stones or road markings [10–12], urban accessibility analysis [13],
recognition of power-line objects [14], extraction of building
structures [15], vegetation mapping [16], large-scale city modeling
[17], semantic perception for ground robotics [18] and semantiza-
tion of complex 3D scenes [19]. A common task for many of these
different applications consists of point cloud classification [20,21],
where each 3D point is assigned a specific (semantic) class label.

Addressing the task of urban point cloud classification – where
the spatial 3D data may be collected via dense matching as well as
airborne, terrestrial and/or mobile laser scanning – we face a
variety of challenges arising from the complexity of respective 3D
scenes caused by an irregular sampling and very different types of
objects. Since the results of urban 3D scene analysis may vary from

one dataset to another, publicly available standard datasets are
desirable in order to compare the performance of different
methodologies. Consequently, there has been a steadily increasing
availability of 3D point cloud datasets in recent years [22].
However, urban point clouds with respective point-wise manual
annotations in terms of semantic class labels are still rarely available,
although this represents a prerequisite for supervised point cloud
classification. One of the most widely used datasets is the Oakland
3D Point Cloud Dataset [23] which, however, only contains approxi-
mately 1.6 million labeled 3D points. Hence, this dataset is not
tailored to designing large-scale processing pipelines.

Due to the recent technological advancements, it is meanwhile
possible to collect geospatial data in a fast and efficient way via
terrestrial and mobile laser scanning. In order to foster research in
advanced 3D point cloud processing, two labeled point cloud
datasets representing densely sampled urban environments with
a significantly higher number of 3D points have been presented
recently [24,25]. These can be considered as a first step towards
large geospatial datasets in terms of city-scale or even larger. The
availability of such datasets is important for comparing large-scale
processing workflows which is the core issue of a recent bench-
mark [25] and addressed in this paper.

In our work, we consider each individual 3D point and its local 3D
neighborhood for extracting respective geometric features. By
exploiting a fully generic approach for optimizing the neighborhood
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size, our approach is generally applicable and not tailored to a specific
dataset. Furthermore, our approach represents a basic requirement for
either smooth labeling techniques or methods involving contextual
information, since both of them are based on the results of individual
point classification. In summary, our contributions extend [26] and
consist of

� a new methodology for large-scale urban 3D point cloud
classification,

� an in-depth analysis of a powerful strategy for recovering
individual 3D neighborhoods of optimal size,

� efficient feature extraction and classification, and
� an extension towards data-intensive processing.

In the following, we first reflect related work in Section 2 and
provide an up-to-date view of approaches for processing 3D point
cloud data in order to efficiently obtain significant information
contained in the data. Subsequently, in Section 3, we present a
methodology which is closely linked to recent investigations on
3D scene analysis involving optimal neighborhoods and different
classifiers [27,28]. Based on these investigations with a very
detailed evaluation, we can directly select the most appropriate
solution with respect to urban 3D scene analysis. The considered
criteria address feasibility in terms of simplicity and reproduci-
bility of the involved components as well as performance in terms
of accuracy and computational effort. We further introduce an
increase in efficiency resulting from efficient neighborhood recov-
ery. In order to extend the applicability of the selected methodol-
ogy towards huge datasets, in Section 4, an extension towards
large-scale urban point cloud classification is presented which
does not affect the quality of the results, but allows the successive
processing of huge point clouds in a reasonable time. Afterwards,
the datasets involved in our experiments and the experimental
results are presented in Sections 5 and 6. The derived results are
subsequently discussed in Section 7. Finally, in Section 8, conclud-
ing remarks are provided and suggestions for future work are
outlined.

2. Related work

Although modern devices nowadays allow the acquisition of
additional information such as echo-based features or full-
waveform features [29,30] which may alleviate 3D scene analysis,
we focus on the use of geometric features as most of the available
point cloud datasets only contain spatial 3D information. Other
features may however easily be appended to the feature vectors
defined in the scope of our work. In the following, we first present
fundamental concepts for defining appropriate features for 3D
scene analysis. Subsequently, we discuss approaches for (i) opti-
mizing the derived feature vectors by involving feature relevance
or (ii) describing the local 3D structure either at a single, but
optimized neighborhood or at multiple neighborhoods of different
size. Finally, we briefly reflect related work on classification
methods for 3D scene analysis.

2.1. Feature design

A crucial issue for 3D scene analysis consists of designing
appropriate features. For this purpose, numerous histogram-
based methods have been proposed which accumulate informa-
tion about the spatial 3D geometry into a histogram according to a
specific quantized domain [31]. A still popular approach has been
presented with Spin Images [32], where 2D histograms are derived
by spinning a 2D plane patch around the surface normal and
counting the number of points falling into each bin of the 2D

patch. Powerful alternatives have recently been presented with
Point Feature Histograms (PFHs) [33] and their modification
denoted as Fast Point Feature Histograms (FPFHs) [34]. Consider-
ing a point X and all points within its local neighborhood, these
approaches first assign the respective surface normal to X and
then sample geometric relations between the nearest neighbors in
terms of angular variations and point distances into histograms. A
different strategy has been presented with shape distributions [35]
which are based on the idea of randomly sampling simple
geometric measures such as distances or angles in order to obtain
a descriptor characterizing the neighborhood around a point X
[36]. Furthermore, a combination of histograms with signatures
has been presented with the Signature of Histograms of OrienTa-
tions (SHOT) descriptor [31] in order to achieve a better balance
between descriptiveness and robustness. The performance of
different histogram descriptors has been compared in [37]. How-
ever, for all these approaches, single entries of the derived feature
vectors are hardly interpretable.

Alternatively, the local 3D structure can be described by
deriving the 3D covariance matrix from the spatial coordinates
of a point X and its neighbors. Based on the respective eigenvalues,
a direct scene analysis may be conducted [38], or a set of features
may be defined [39] which encapsulate geometric information
about the local 3D structure. In particular the latter approach is
nowadays commonly applied in lidar data processing, and the
respective features or feature subsets are typically complemented
with other geometric features [40,23,41,27,42,43]. A specific
advantage consists of the fact that the respective entries in the
feature vector are interpretable as they address local 3D shape
primitives. In contrast to 3D covariance matrices encoding the
relationships among points within a local neighborhood, covar-
iance matrices of higher dimension have been used to combine
multiple features such as angular measures and point distances to
a compact representation [44]. Further information such as radio-
metric information may also be taken into account in this
representation.

2.2. Feature relevance assessment

For compensating a lack of knowledge, often as many features as
possible are extracted and involved in the classification process,
although some of these features may be more and others less
suitable. Consequently, investigations focusing on feature selection
have also been introduced for 3D point cloud processing in order to
improve the classification accuracy while simultaneously reducing
both computational effort and memory consumption. Respective
approaches allow a ranking of single features according to their
relevance and the selection of a subset of the best-ranked features.
Whereas the ranking can be obtained by involving a classifier
[29,30,45], classifier-independent approaches are in the focus of
filter-based feature selection which offers both simplicity and effi-
ciency. Herein, univariate filter-based feature selection methods rely
on a score function which simply evaluates feature-class relations
based on the training data. A general relevance metric composed of
several score functions addressing different intrinsic properties of the
given training data has recently been proposed [27]. In contrast,
multivariate filter-based feature selection methods rely on both
feature-class and feature-feature relations in order to discriminate
between relevant, irrelevant and redundant features [28].

2.3. Single-scale vs. multi-scale representation

The heuristic determination of local 3D neighborhoods is
conducted either with respect to the absolute size [38,46] or with
respect to the scale parameter [27]. However, in order to avoid
heuristically determining a suitable neighborhood size – which
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may even be specific for each dataset and which may not be
identical across all 3D points in consideration – there have been
few attempts to automatically derive individual neighborhoods of
optimal size. Respective approaches rely on the local surface
variation [47,48], a combination involving curvature, point density
and noise of normal vector estimation [49,40], dimensionality
features [41] or the measure of eigenentropy [28]. The need for
involving such techniques becomes for instance apparent when
analyzing the behavior of features derived from the 3D structure
tensor and shape distribution features across different scales [36]
or when observing a significant improvement in comparison to
neighborhoods of fixed scale [28].

Instead of focusing on the concept of optimal neighborhoods, a
consideration of features at multiple scales may be applied. For
instance, it has been proposed to calculate features at different
scales and involve a training procedure in order to define which
combination of scales allows the best separation of different
classes [50]. Further approaches even extract features based on
different entities such as points and regions [51,52].

2.4. Individual vs. contextual classification

When selecting an appropriate classifier, we may follow the
strategy of individual point classification by exploiting respective
feature vectors, where Support Vector Machines [53], Random
Forests [29], AdaBoost [54] or classical Maximum Likelihood (ML)
classifiers exploiting Gaussian Mixture Models (GMMs) [40]
represent the most commonly applied approaches for point cloud
classification. Alternatively, contextual learning approaches may
be applied which address the idea that semantic labels of nearby
3D points tend to be correlated and hence involve relationships
among 3D points within a local neighborhood in addition to the
respective feature vectors. Respective approaches applied for point
cloud classification are represented by Associative and non-
Associative Markov Networks [23,55,56], Conditional Random
Fields [21], multi-stage inference procedures focusing on point
cloud statistics and relational information over different scales
[51], and spatial inference machines modeling mid- and long-
range dependencies inherent in the data [57].

When applying contextual learning approaches, it has to be
taken into account that the relationships are inferred from the
training data. Hereby, the local neighborhood is typically different
from the neighborhood used for feature extraction. Furthermore,
since the training data is limited, exact inference is computationally
intractable and therefore either approximate inference techniques
or smoothing techniques are commonly applied. The selection of an
approximate inference technique remains challenging as there is no
indication towards an optimal inference strategy, and such techni-
ques quickly reach their limitations if the considered neighborhood
becomes too large. In contrast, smoothing techniques enforce the
desirable smooth labeling of nearby 3D points and may thus
provide a significant improvement with respect to classification
accuracy [58]. Such smoothing techniques, however, exploit either

the estimated probability of a 3D point belonging to each of the
defined classes or the direct assignment of the respective label, and
thus the results of an individual point classification.

3. Methodology

For 3D scene analysis in terms of uniquely assigning each 3D
point a semantic label, we propose a fully automatic and generic
methodology which consists of three successive steps (Fig. 1). In
the first step, each 3D point is characterized with an individual
local 3D neighborhood of optimal size (Section 3.1). This allows an
extraction of highly distinctive features which is pursued in the
second step, where various geometric 3D and 2D features are
taken into consideration (Section 3.2). Finally, in the third step, the
distinctive features and a given set of training examples are
provided to a supervised classification scheme (Section 3.3). The
main focus of our investigations is put on feature design in terms
of deriving distinctive geometric features from individual neigh-
borhoods of optimal size.

3.1. Neighborhood selection

Considering a point X in a point cloud P, the respective
neighborhood selection generally involves (i) a suitable neighbor-
hood definition, (ii) an efficient recovery of the local neighborhood
and (iii) an optimal parameterization of the neighborhood in terms
of neighborhood size. These aspects are addressed in the following
subsections.

3.1.1. Neighborhood definitions
In general, very different approaches may be applied in order to

define the local 3D neighborhood N of a given 3D point XAR3. For
instance, a spherical neighborhood definition may be applied,
where the local neighborhood is formed by all 3D points in a
sphere with a fixed radius [59]. An alternative consists of applying
a cylindrical neighborhood definition, where the local neighbor-
hood is formed by all those 3D points whose 2D projections onto
the ground plane are within a circle with a fixed radius [60].
A further neighborhood definition involves a fixed number of k
closest 3D points for a given query point [61], which results in
spherical neighborhoods of variable absolute size. Note that all
these neighborhood definitions rely on the specification of one
free scale parameter.

Since we want to account for more flexibility in case of varying
point density and thereby avoid including a-priori knowledge on
the scene, we employ a neighborhood definition based on the k
closest neighbors of a given 3D point. Consequently, the nearest
neighbors have to be recovered and an appropriate k has to be
selected.

3.1.2. Exact vs. approximate nearest neighbors
As a consequence of the selected neighborhood definition, a

computationally quite expensive part consists of the calculation of

3D Point
Cloud

Labeled
3D Point Cloud

Supervised
Classification

Feature
Extraction

…   …   …
…   …   …
…   …   …

Neighborhood
Selection * *

Fig. 1. The proposed methodology: after calculating an individual local 3D neighborhood of optimal size for each 3D point, highly distinctive 3D and 2D features are
extracted and provided to a supervised classification scheme in order to obtain a semantically labeled 3D point cloud (nThe respective implementation (Matlab, C++ and
binaries) is released with this paper and available at http://www.ipf.kit.edu/code.php).
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the nearest neighbors for each 3D point. This nearest neighbor
search can formally be described as follows: given a point set
P ¼ X1;…;XNf g in a 3-dimensional Euclidean vector space, those
points XAP that are nearest to a given query point XQ should be
recovered efficiently. The commonly used approach for nearest
neighbor search is based on a Kd-tree [62] which represents a
compact, hierarchical data structure for point sets sampled from a
K-dimensional manifold. A point in a Kd-tree with N points can
thus be localized with an average complexity of Oðlog NÞ and, in
the worst case, with a complexity of O(N) [63]. In order to further
increase efficiency, an approximate nearest neighbor search has
been proposed [64] which can be much faster than the exact
nearest neighbor search with only little loss in accuracy since non-
optimal neighbors may be returned. For details on these
approaches, we refer to an extensive survey on data structures
[65]. Addressing the criteria of query time and accuracy, a power-
ful approach with public availability and fully automatic parameter
selection has been presented in the Fast Library for Approximate
Nearest Neighbors (FLANN) [66] which is based on either search-
ing hierarchical K-means trees with a priority search order or
using multiple randomized Kd-trees. Hence, we apply the FLANN
for nearest neighborhood search.

3.1.3. Optimal parameterization
Besides an efficient nearest neighbor search, it is desirable to

automatically find the optimal parameterization for the selected
neighborhood definition which is based on the k closest neighbors
in our case. When addressing this issue, we may also take into
account that the optimal choice of the parameter k (which is also
commonly referred to as scale) may vary within a dataset since k
certainly depends on the respective 3D structures and thus also on
the respective class label.

Seminal work addressing the selection of an optimal value for
the scale parameter k and thus the selection of the optimal
neighborhood size is based on fundamental geometric properties
of the point cloud data. For instance, the local surface variation (i.e.
the change of curvature) may be exploited since a critical neigh-
borhood size is indicated by a significant change of curvature
when successively increasing the neighborhood by adding the
next closest 3D point [47,48]. Furthermore, an iterative scheme
involving curvature, point density and noise of normal vector
estimation has been proposed [49,40]. Whereas these approaches
are tailored for smoothly varying surfaces, they may face severe
challenges when considering surfaces acquired with lidar systems
or dense matching. Consequently, we focus on the use of multiple
low-level geometric features which adequately capture the varia-
bility of natural environments.

Our approach is inspired by dimensionality based scale selec-
tion [41], where optimal neighborhood size selection is based on
the idea that the optimal neighborhood size favors one dimen-
sionality the most. More specifically, for describing the local 3D
structure around a 3D point X¼X0, the dimensionality features of
linearity Lλ, planarity Pλ and scattering Sλ are derived from the set
of neighboring 3D points Xi with i¼ 1; :::; k by considering the
respective 3D covariance matrix

C¼ 1
kþ1

Xk

i ¼ 0

Xi�X
� �

Xi�X
� �T ð1Þ

with

X ¼ 1
kþ1

Xk

i ¼ 0

Xi ð2Þ

which is also known as the 3D structure tensor. This 3D structure
tensor C represents a symmetric positive-definite matrix. Conse-
quently, its eigenvalues exist, are non-negative and correspond to

an orthogonal system of eigenvectors. For the sake of generality,
we assume that there might not necessarily be a preferred
variation with respect to the eigenvectors. This results in the
general case of a structure tensor with rank 3 as well as
eigenvalues λ1, λ2 and λ3 with λ1; λ2; λ3AR and λ1Zλ2Zλ3Z0.
Based on these eigenvalues, the dimensionality features are
defined as

Lλ ¼ λ1�λ2
λ1

Pλ ¼ λ2�λ3
λ1

Sλ ¼ λ3
λ1

ð3Þ

and, as these features sum up to 1, they may be considered as the
probabilities of a 3D point to be labeled as 1D, 2D or 3D structure
[41]. Favoring one dimensionality the most thus corresponds to
minimizing a measure given by the Shannon entropy [67] as

ED ¼ �Lλ lnðLλÞ�Pλ lnðPλÞ�Sλ lnðSλÞ ð4Þ
across different scales k, and the optimal neighborhood size
corresponds to the respective k with the minimal Shannon
entropy. Instead of directly varying the scale parameter k as later
tested in [28], however, the respective radius has been taken into
account in [41]. Sampling the interval r1; r2½ � between specified
radii r1 and r2 into 16 scales, where the radii are not linearly
increased since the radius of interest is usually closer to r1, the
optimal neighborhood size corresponds to the radius yielding the
minimal Shannon entropy. However, the two radii r1 and r2
depend on various characteristics of the given data and are
therefore specific for each dataset [41].

In order to avoid strong assumptions on the presence of specific
geometric structures in the scene and to get rid of heuristic
parameter selection, a more general solution for optimal neighbor-
hood size selection has been proposed very recently [28] which
has proven to outperform dimensionality based scale selection.
Instead of exploiting the three dimensionality features, this
approach directly exploits the eigenvalues of the 3D structure
tensor which correspond to the principal components and thus
span a 3D covariance ellipsoid. Normalizing the three eigenvalues
λ1, λ2 and λ3 by their sum Σλ yields normalized eigenvalues e1, e2
and e3 summing up to 1. Thus, in analogy to the dimensionality
based scale selection, the measure of eigenentropy Eλ given by the
Shannon entropy according to

Eλ ¼ �e1 lnðe1Þ�e2 lnðe2Þ�e3 lnðe3Þ ð5Þ
is calculated and minimized across different scales k which, in
turn, relates to minimizing the disorder of points within a 3D
covariance ellipsoid. The optimal neighborhood size finally corre-
sponds to the respective k with the minimal eigenentropy. For our
experiments, we consider relevant statistics to start with k1 ¼ 10 –

which is in accordance to [41] – and successively increase the scale
parameter k with a step size of Δk¼ 1 up to an upper bound of
k2 ¼ 100 as proposed in [28], which already represents a relatively
high number. Note that k2 can be arbitrary, and hence we will later
focus on this issue in the experimental results.

The resulting optimal neighborhood size thus depends on
contextual information preserved in the spatial arrangement of
neighboring 3D points and may even be different for each
individual 3D point. Even though optimal neighborhood size
selection causes a higher computational effort with respect to
both processing time and memory consumption, it should be
taken into consideration since the classification accuracy is sig-
nificantly improved according to recent investigations [28].

3.2. Feature extraction

Since many of the publicly available 3D point cloud datasets
only contain information about the spatial 3D geometry in terms
of XYZ coordinates, we focus on the use of geometric features. Such
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geometric features typically rely on a local 3D neighborhood
which has already been derived in the previous step. Involving
the optimal neighborhood size for a respective 3D point, we may
assume that highly distinctive geometric features can be derived
from the set of 3D points within the neighborhood. Due to the
high point density of recently published lidar point cloud datasets,
the selected scale k tends to correspond to a relatively small
absolute size, and the respective local 3D structure can therefore
only be described with low-level geometric features. Such features
show a specific behavior for planar patches, ridges, edges and
vertices. By involving a 2D projection, we may also account for
structures with larger extent, e.g. in the vertical direction.

In order to define adequate low-level geometric features, we
follow the strategy involving a variety of geometric 3D and 2D
features [27], but we additionally increase their distinctiveness by
taking into account the optimal neighborhood size for each
individual 3D point [28]. In total, a set of 21 distinctive low-level
geometric features is thus calculated for each 3D point. For the
sake of clarity, we briefly describe the involved 3D and 2D features
in the following subsections. The respective code (Matlab, C++ and
binaries) is released with this paper.

3.2.1. 3D features
Obviously, a variety of 3D features can directly be derived by

describing basic geometric properties of the considered 3D neigh-
borhood such as the absolute height Z of the considered 3D point
X, the radius rk�NN of the sphere encompassing the local 3D
neighborhood, the local point density D defined as number of
points per unit volume and the verticality V which is based on the
vertical component of the local normal vector. Hereby, the local
normal vector is related to the eigenvector corresponding to the
smallest eigenvalue of the respective 3D structure tensor. Further-
more, all 3D points within the neighborhood may be considered in
order to calculate the maximum height difference ΔZk�NN and the
standard deviation σZ;k�NN of height values.

Additionally, we take into account that the 3D structure tensor
encodes the general distribution of 3D points within the local
neighborhood. Consequently, the normalized eigenvalues e1, e2
and e3 of the 3D structure tensor may also be exploited to define
local 3D shape features. Besides the aforementioned dimension-
ality features of linearity Lλ, planarity Pλ and scattering Sλ, further
features are represented by omnivariance Oλ, anisotropy Aλ,
eigenentropy Eλ, the sum Σλ of eigenvalues and the local surface
variation Cλ.

3.2.2. 2D features
Taking into account that urban areas are typically characterized

by an aggregation of man-made structures, specific geometric
relations in terms of symmetry and orthogonality are likely to
occur. In particular, we may face a large number of structures
which are oriented perpendicular to a horizontally oriented plane,
e.g. building façades, traffic signs or curbstone edges. Conse-
quently, a projection of the 3D point cloud onto a horizontally
oriented plane might reveal additional information and possibly
also clear evidence about the presence of specific structures in the
observed scene. Respective features which are based on this 2D
projection can easily be defined as 2D properties of the neighbor-
hood such as the radius rk�NN;2D and the local point density D2D.

Furthermore, the coordinates resulting from the 2D projection
of all 3D points within the neighborhood may be exploited to
derive the 2D covariance matrix also known as the 2D structure
tensor. In analogy to the 3D case, the respective two eigenvalues
may be used to define characteristic features such as the sum Σλ;2D

of the eigenvalues and their ratio Rλ;2D.

Interestingly, the aforementioned 2D features are based on
spherical neighborhoods of relatively small absolute metric size,
whereas man-made structures tend to provide a similar behavior
across different height levels, i.e. across several meters of height.
Consequently, a discretization of the 2D projection in terms of a 2D
accumulation map [68] with discrete, quadratic bins (here with a
side length of 0.25 m) may provide further interesting properties
about local 3D structures which are not yet covered by the already
defined features. Respective features based on the accumulation
map have been proposed with the number M of points falling in
the respective bin as well as the maximum height difference ΔZ
and standard deviation σZ of height values within the respective
bin. Particularly, the feature M provides clear evidence on the
existence of building façades and, if the point density is sufficiently
high, also on the existence of curbstone edges. The detection of
such man-made structures, in turn, is important for urban acces-
sibility analysis which is one of the main intentions of current
research.

3.3. Supervised classification

For classification, we apply a standard supervised classification
scheme involving a set of training examples which, in turn,
encapsulate feature vectors as well as the respective class labels.
An adequate choice among a variety of classification strategies and
respective approaches, however, should directly address applic-
ability, reproducibility, and scalability in order to facilitate 3D
scene analysis in large-scale urban environments. In the following,
we first motivate our choice for the classifier and subsequently
address the issue of how to obtain suitable training data.

3.3.1. Classifier selection
Since we focus on the applicability and reproducibility of all

involved components, the involved classification strategy should
be easy-to-use without crucial parameter selection, and respective
implementations should be available in different software
packages. For this reason, we focus on individual point classifica-
tion based on a set of derived features. With the intention of
processing huge point clouds, it is mandatory to apply a powerful
but still computationally efficient classifier. In particular for scal-
ability towards huge datasets, combining a set of weak classifiers
such as decision trees via bootstrap aggregating which is com-
monly referred to as bagging [69] has proven to be successful.
Using bootstrapped replica of the training data, i.e. subsets of the
complete training data which are randomly drawn with replace-
ment [70], diversity is obtained by training a weak learner of the
same type for each subset of the training data.

The most popular example for bagging is represented by
Random Forests [71] which represent a modern discriminative
method and provide efficiency in case of a large amount of input
data. Efficiency in this context covers simplicity and a high degree
of parallelization which results in a fast classification scheme.
Additionally, robustness to outliers, noise and missing data is
provided. More specifically, a Random Forest represents an
ensemble of randomly trained decision trees and thus aggregates
hypotheses derived via decision trees which, in turn, are trained
over different distributions of the training data. Thereby, each
decision tree is constructed based on a top-down strategy succes-
sively selecting the variable which best splits the respective
training data. Consequently, a split function and a stopping
criterion have to be defined. Since, in the training phase, individual
decision trees are assumed to be trained on randomly selected
subsets of the given training data, the trees may be expected to be
randomly different from one another which results in a de-
correlation between individual tree predictions and thus improved
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generalization and robustness [72]. Once a Random Forest is
trained, the classification phase consists of letting each decision
tree vote for a single class and assigning the respective label
according to the majority vote of all decision trees. The parameters
to be specified are the number of involved decision trees and the
tree depth. In the experiments, we use a Random Forest with 100
trees and a tree depth of ⌊

ffiffiffi
d

p
c, where d equals the number of

extracted features, i.e. d¼21.

3.3.2. Training data
Given a set of training examples, we have to take into account

that an unbalanced distribution of training examples across all
classes may have a detrimental effect on the training process [72].
Consequently, we involve a class re-balancing in terms of ran-
domly selecting the same number of training examples for each
class. Alternatively, the known prior class distribution of the
training set could be used for weighting the contribution of
each class.

4. Extension towards large-scale urban point cloud
classification

Recent investigations clearly show that the use of individual
neighborhoods with optimal size has a significant, beneficial
impact on the classification results [28]. However, the additional
calculations cause a drastic increase in computational effort.
Consequently, the described methodology is suited to process
point clouds containing only up to a few millions of 3D points.
When considering huge point clouds at city scale with possibly
billions of points – which is the aim of recent effort in order to
obtain an adequate 3D model of a whole city like Paris – an
extension of the presented methodology has to be introduced.

The extension described in this paper does not affect the
quality of 3D scene analysis, but only the scalability of the
methodology in order to process larger datasets. Specifically, it
focuses on successively processing a huge point cloud by applying
a 2D sliding window function which is shifted within a horizon-
tally oriented plane in discrete steps and involves a small padding
region in order to avoid discontinuities at its borders. The size of
the window should be chosen in a way that, for each step, a still
reasonable number of 3D points is in consideration since the
window size is practically limited depending on the available
memory size. The partial results are subsequently merged together
to obtain the results for the full scene. Accordingly, the approach
represents a partitioning of the scene into subparts which, in turn,
are extended by small padding regions at the borders and can be
processed in parallel. For the sake of simplicity, we focus on two
specific scenarios and select the one which is suited best with
respect to the given data:

� For the more general scenario, we propose the use of a tiling
approach. Taking a defined area within a horizontally oriented
plane, e.g. a small quadratic area of 10 m � 10 m, allows a
successive processing of data and thus also the analysis of huge
point clouds at city-scale, where directly applying the metho-
dology is intractable due to the computational burden with
respect to computational effort and memory consumption.

� Without loss of generality, we may also take into account that
the recently published benchmark datasets describe straight
street sections with a length of approximately 160–200 m
[24,25]. Consequently, the tiling approach can be substituted
by a slicing approach, where the slices have a specified width,
e.g. a width of 10 m, along the street direction and infinite
extent along the two perpendicular directions.

Note that for both partitioning schemes, those 3D points within
the small padding around the considered tile or slice are also used
if they are within the neighborhood of other 3D points within the
considered part of the scene in order to avoid artifacts at
boundaries between tiles or slices. Due to the high point density
of recent point cloud datasets, a padding with a width of 0.50 m is
considered to be sufficient. As alternative to scene partitioning,
streaming methods could be applied [73].

Consequently, we may repeat the proposed workflow consist-
ing of (i) optimal neighborhood selection, (ii) feature extraction
and (iii) classification independently for each tile or for each slice.
Thus, large-scale urban 3D scene analysis is composed of succes-
sive steps which exploit the same methodology and could be
parallelized if respective hardware is available.

5. Datasets

Since we focus on the issue of urban 3D point cloud classifica-
tion and want to facilitate an objective comparison to other
methodologies, we consider two publicly available and labeled
3D point cloud datasets representing densely sampled urban
environments. Both datasets have been acquired in the city of
Paris, France, via mobile laser scanning (MLS) systems:

Paris-rue-Madame database1 [24]: This 3D point cloud dataset
has been acquired with the mobile laser scanning system L3D2
[74] equipped with a Velodyne HDL32. It contains 20 million
points corresponding to a digitized street section with a length of
approximately 160 m. A respective annotation has been conducted
in a manually assisted way and includes both point-wise labels (26
different classes) and segmented objects (642 objects in total). This
annotation relies on an initial segmentation based on elevation
images [9] which is followed by a manual refinement [24].

Paris-rue-Cassette database [25]: This point cloud dataset has
been acquired with the mobile laser scanning system called
Stereopolis II [75] in January 2013. This system captures the local
3D geometry of the scene with two plane sweep lidars (Riegl LMS-
Q120i) placed on each side of the vehicle in order to mainly
observe the building façades with a centimeter accuracy and a 3D
lidar (Velodyne HDL-64E) to observe the bottom part in between.
The dataset contains 12 million points corresponding to a digitized
street section with a length of approximately 200 m, and a
manually assisted annotation is available which includes both
point-wise labels and segmented objects. The respective annota-
tion is based on recovering a regular 2D topology for the point
cloud stream during data acquisition and an offline human
interaction via a graph editing tool based on standard 2D image
segmentation techniques [76]. A further extension in the form of
10 different zones with a total number of about 100 million points
has been released in the scope of a recent contest [25].

6. Experimental results

In the following, we first provide an in-depth analysis addres-
sing the results of optimal neighborhood size selection for both
involved datasets. Afterwards, we focus on the respective results
for individual point classification and, finally, we demonstrate the
performance of the new approach with respect to computational
effort.

1 Paris-rue-Madame database: MINES ParisTech 3D mobile laser scanner dataset
from Madame street in Paris. ©2014 MINES ParisTech. MINES ParisTech created this
special set of 3D MLS data for the purpose of detection-segmentation-classification
research activities, but does not endorse the way they are used in this project or the
conclusions put forward. The database is publicly available at http://cmm.ensmp.fr/
�serna/rueMadameDataset.html (last access: 30 August 2014).
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6.1. Optimal neighborhood size selection

In order to obtain more insights into the process of optimal
neighborhood size selection, we first focus on a detailed analysis of
the respective results. Note that each 3D point is assigned an
individual value for k and that all integer values in k1; k2

� �
with

k1 ¼ 10 and k2 ¼ 100 are taken into consideration. Since the upper
boundary k2 has been selected for reasons of computational costs
and may principally be set to an arbitrary value, we first consider the
distribution of the parameter k across all 3D points. For this purpose,
the respective distributions of the assigned optimal neighborhood
size across all 3D points obtained for the Paris-rue-Madame database
with 20 million 3D points and the Paris-rue-Cassette database with
12 million 3D points are visualized as histograms in Figs. 2 and 3.
These figures clearly reveal a trend towards small values of k. Since
the last bin in the histograms ðk2 ¼ 100Þ is likely to also represent
those 3D points which might have a higher value than k2 ¼ 100, a
small increase can be observed. However, the percentage of 3D
points which are assigned an optimal neighborhood with less than k2
neighbors is 95.44% and 98.72% for the Paris-rue-Madame database
and the Paris-rue-Cassette database, respectively. This shows that our
selection of k2 is appropriate.

A qualitative visualization of the distributions of the assigned
optimal neighborhood size across all 3D points of both involved
datasets is depicted in Figs. 4 and 5. For the Paris-rue-Cassette
database, a significantly smoother behavior can be observed.

6.2. Individual point classification

In order to assign a semantic label to each individual 3D point,
we exploit only those 3D points with labels corresponding to the
most dominant semantic classes façade, ground, cars, motorcycles/
2 wheelers, traffic signs/road inventory, pedestrians and vegetation
(Table 1), which represent a fraction of 99.81% of the Paris-rue-
Madame database and 99.56% of the Paris-rue-Cassette database.
All 3D points belonging to the other classes are removed since the
respective number of samples per class is not considered to be

representative. For training, we randomly select a small, balanced
training set X with 1,000 training examples per class, and the
remaining data is used as test set Y.

In order to allow a comparison to recent work, we design the
evaluation scheme in analogy to [28]. Thus, our evaluation is based
on (i) overall accuracy which indicates the performance of the
classifier on the test set, (ii) recall which represents a measure of
completeness or quantity, (iii) precision which represents a mea-
sure of correctness or quality, (iv) F1-score which combines recall
and precision with equal weights, (v) mean class recall which
represents an averaged measure of completeness/quantity across
all classes and (vi) a visual inspection of the derived results.

Evaluating our approach on both datasets, the overall accuracy
is 88.82% for the Paris-rue-Madame database and 89.60% for the
Paris-rue-Cassette database. The resulting recall and precision
values as well as the corresponding F1-scores are provided in
Tables 2 and 3. Accordingly, mean class recall values of 83.53% and
81.78% are obtained for the Paris-rue-Madame database and the
Paris-rue-Cassette database, respectively. Finally, a visual impres-
sion on the quality of the derived results for individual point
classification is depicted in Figs. 6 and 7.

6.3. Computational effort

The experiments have been conducted on an Intel Core i7-3820
with 3.6 GHz and 64GB RAM. We use the proposed slicing approach,
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Fig. 2. Distribution of the assigned optimal neighborhood size k for all 3D points in
the Paris-rue-Madame database.
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Fig. 3. Distribution of the assigned optimal neighborhood size k for all 3D points in
the Paris-rue-Cassette database.
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Fig. 4. Qualitative distribution of the assigned optimal neighborhood size k for all
3D points in the Paris-rue-Madame database.
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Fig. 5. Qualitative distribution of the assigned optimal neighborhood size k for all
3D points in the Paris-rue-Cassette database.
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where the slices have a width of 10 m and the padding has awidth of
0.50 m. Whereas the prototype released with [28] is based on a full
and straightforward Matlab implementation, our investigations
revealed that a significant speedup can be achieved in two ways.
Firstly, for the considered small point sets formed by up to k2 ¼ 100
neighboring 3D points, a considerable speedup in the calculation of
the respective 3D covariance matrices results from simply replacing

the internal Matlab function cov with the respective vectorized
straightforward implementation. Secondly, our new optimized
approach can be used which has been implemented in C++ and,
for comparison, we used the respective binaries in the test environ-
ment in Matlab. We consider both approaches. For the example
involving the Paris-rue-Cassette database, the respective speedup
achieved with the latter implementation clearly becomes visible in
Table 4, where the processing times for the different subtasks are
listed. Since the training phase will not change with larger datasets,
the respective classification will only remain a question of computa-
tional and not human effort.

Taking a tile of defined size as a reference area would even
allow us to extrapolate the resulting computational effort for data
processing (which also accounts for those points in the padding).
Thus, we would even be able to extrapolate the computational
effort to full cities.

7. Discussion

In the experiments, it becomes apparent that particularly for
the smaller classes a decrease in performance can be observed
(Tables 2 and 3). This might indicate that those classes are still not
covered representatively for the complexity of urban 3D scenes.
However, the derived mean class recall values for both datasets
indicate that completeness/quantity across all classes is relatively
high compared to other approaches focusing on individual point
classification [27,28]. Thus, the methodology is less prone to
overfitting. Consequently, the decrease in performance might
mainly arise from the similarity of local 3D structures belonging
to respective classes. Additionally, for the Paris-rue-Cassette data-
base, we can observe that vegetation is detected at the balconies

Table 1
Number of points in the most dominant classes. These classes cover 99.81% of the
Paris-rue-Madame database and 99.56% of the Paris-rue-Cassette database.

Class Paris-rue-Madame
database [24]

Paris-rue-Cassette
database [25]

Façade 9,978,435 7,026,016
Ground 8,024,295 4,228,639
Cars 1,835,383 367,271
Motorcycles/ 98,867

2 wheelers 39,331
Traffic signs/ 15,480

road inventory 45,105
Pedestrians 10,048 22,999
Vegetation – 211,131

Table 2
Recall, precision and F1-scores for the Paris-rue-Madame database.

Paris-rue-Madame Recall Precision F1

Façade 0.9527 0.9620 0.9573
Ground 0.8650 0.9782 0.9182
Cars 0.6476 0.7948 0.7137
Motorcycles 0.7198 0.0980 0.1725
Traffic signs 0.9485 0.0491 0.0934
Pedestrians 0.8780 0.0163 0.0320

Table 3
Recall, precision and F1-scores for the Paris-rue-Cassette database.

Paris-rue-Cassette Recall Precision F1

Façade 0.8721 0.9928 0.9285
Ground 0.9646 0.9924 0.9783
Cars 0.6112 0.6767 0.6423
2 wheelers 0.8285 0.1774 0.2923
Road inventory 0.7657 0.1495 0.2501
Pedestrians 0.8225 0.0924 0.1661
Vegetation 0.8602 0.2566 0.3953

Fig. 6. Paris-rue-Madame database: classified point cloud with assigned semantic
labels (façade: gray, ground: brown, cars: blue, motorcycles: yellow, traffic signs:
red, pedestrians: pink). The points represented in cyan are those points which are
not considered as the respective classes are not covered representatively. The noisy
appearance results from individual point classification. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this article.)

Fig. 7. Paris-rue-Cassette database: classified point cloud with assigned semantic
labels (façade: gray, ground: brown, cars: blue, 2 wheelers: yellow, road inventory:
red, pedestrians: pink, vegetation: green). The points represented in cyan are those
points which are not considered as the respective classes are not covered
representatively. The noisy appearance results from individual point classification.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)

Table 4
Computational effort for processing the Paris-rue-Cassette database: the required
processing times t1 for optimal neighborhood size selection, t2 for feature extrac-
tion, t3 for training on the small training set and t4 for testing on the respective test
set are listed for different approaches. Note that t1 and t2 correspond to a successive
processing of all slices, and that t3 and t4 do not change since they are not affected
by our optimization.

Time Prototype [28] Optimized Matlab version Proposed approach

t1 27.45 h 10.90 h 2.11 h
t2 11.84 h 10.75 h 4.28 h
t3 �1–2 s �1–2 s �1–2 s
t4 �90 s �90 s �90 s
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which is in contradiction to the reference labels, but maybe not
always in contradiction to the real scene (Fig. 7). Note that the
Paris-rue-Madame database contains more noise than the Paris-
rue-Cassette database (Figs. 4 and 5) which might be a further
reason for relatively low precision values obtained for the respec-
tive smaller classes (Table 2). In order to increase the precision
values, introducing further features and/or multi-scale considera-
tions seem to be necessary. Furthermore, due to the individual
point classification, a noisy labeling can be expected which indeed
can be observed in Figs. 6 and 7.

Concerning the computational complexity, we may consider
the computation times required for processing different numbers
of points. In Figs. 8 and 9, this is done for the separate slices (with
the respective padding) as well as separately for optimal neighbor-
hood size selection and feature extraction. It becomes apparent
that optimal neighborhood size selection has a linear complexity
for increasing numbers of considered 3D points, whereas feature

extraction shows a non-linear dependency. In this case, we have a
superposition of (i) a linear behavior for calculating 3D features in
terms of basic geometric properties or eigenvalue-based features,
(ii) a linear behavior for 2D features in terms of basic geometric
properties or eigenvalue-based features and (iii) a non-linear
behavior for 2D features based on the accumulation map.

The most crucial issue of the whole methodology remains an
appropriate selection of the scale parameter k. The motivation of
the applied approach is to avoid the use of empiric or heuristic
knowledge on the scene with respect to neighborhood size and to
obtain an automated, appropriate selection instead. Consequently,
the approach is generally applicable and not tailored to a specific
dataset. The consideration of individual neighborhoods even
accounts for the idea that an optimal neighborhood size depends
on the respective 3D structure and thus varies within a dataset. In
order to provide further insights in addition to the clear trend of
the scale parameter towards smaller values (Figs. 2 and 3), the
behavior for the different classes is visualized in Fig. 10. Even
though the analysis per class reveals a slight difference between
the different classes, there is no clear indication of a characteristic
which is specific for a certain class. Furthermore, we may state that
the behavior of individual neighborhoods across a dataset indi-
cates the quality of a dataset, since a much smoother behavior can
be observed for the dataset with less noise (Figs. 4 and 5).

8. Conclusions

In this paper, we have presented a methodology for automated
3D scene analysis and its extension towards huge point clouds. The
methodology generally requires a higher computational effort due
to the consideration of individual 3D neighborhoods of optimal
size which, in turn, is justified as it significantly improves the
classification results in comparison to state-of-the-art approaches
[28] and furthermore avoids human interaction guided by empiric
or heuristic knowledge. Specifically, involving such optimal neigh-
borhoods for feature extraction results in distinctive low-level
geometric 3D and 2D features as important prerequisites for
obtaining appropriate classification results. The further extension
towards data-intensive processing via scene partitioning over-
comes the limitation with respect to the computational burden
and also allows large-scale 3D scene analysis. For two recently
published point cloud datasets captured in urban areas, the
derived results clearly reveal the potential of our methodology.
For future work, we plan to involve spatial smoothing techniques,
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Fig. 8. Required computation times per slice for optimal neighborhood size
selection: a linear behavior can be observed for increasing numbers of points.
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Fig. 9. Required computation times per slice for feature extraction: a non-linear
behavior can be observed for increasing numbers of points.
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since neighboring 3D points tend to have correlated labels.
Furthermore, an extended analysis up to object level would be
desirable.
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ABSTRACT:

3D scene analysis by automatically assigning 3D points a semantic label has become an issue of major interest in recent years. Whereas
the tasks of feature extraction and classification have been in the focus of research, the idea of using only relevant and more distinctive
features extracted from optimal 3D neighborhoods has only rarely been addressed in 3D lidar data processing. In this paper, we focus on
the interleaved issue of extracting relevant, but not redundant features and increasing their distinctiveness by considering the respective
optimal 3D neighborhood of each individual 3D point. We present a new, fully automatic and versatile framework consisting of four
successive steps: (i) optimal neighborhood size selection, (ii) feature extraction, (iii) feature selection, and (iv) classification. In a
detailed evaluation which involves 5 different neighborhood definitions, 21 features, 6 approaches for feature subset selection and 2
different classifiers, we demonstrate that optimal neighborhoods for individual 3D points significantly improve the results of scene
interpretation and that the selection of adequate feature subsets may even further increase the quality of the derived results.

1 INTRODUCTION

The automatic interpretation of 3D point clouds represents a fun-
damental issue in photogrammetry, remote sensing and computer
vision. Nowadays, different subtopics are in the focus of research
such as point cloud classification (Hu et al., 2013; Niemeyer et
al., 2014; Xu et al., 2014), object recognition (Pu et al., 2011;
Velizhev et al., 2012), creation of large-scale city models (La-
farge and Mallet, 2012) or urban accessibility analysis (Serna and
Marcotegui, 2013). For all of them, it is important to cope with
the complexity of 3D scenes caused by the irregular sampling
and very different types of objects as well as the computational
burden arising from both large 3D point clouds and a variety of
available features.

For scene interpretation in terms of uniquely assigning each 3D
point a semantic label (e.g. ground, building or vegetation), the
straightforward approach is to extract respective geometric fea-
tures from its local 3D structure. Thus, the features rely on a
local 3D neighborhood which is typically chosen as spherical
neighborhood with fixed radius (Lee and Schenk, 2002), cylin-
drical neighborhood with fixed radius (Filin and Pfeifer, 2005)
or spherical neighborhood formed by a fixed number of the k
closest 3D points (Linsen and Prautzsch, 2001). Once features
have been calculated, the classification of each 3D point may be
conducted via standard supervised learning approaches such as
Gaussian Mixture Models (Lalonde et al., 2005), Support Vec-
tor Machines (Secord and Zakhor, 2007), AdaBoost (Lodha et
al., 2007), a cascade of binary classifiers (Carlberg et al., 2009),
Random Forests (Chehata et al., 2009) and Bayesian Discrimi-
nant Classifiers (Khoshelham and Oude Elberink, 2012). In con-
trast, contextual learning approaches also involve relationships
among 3D points in a local neighborhood1 which have to be in-
ferred from the training data. Respective methods for classifying

1This local neighborhood is typically different from the one used for
feature extraction.

Figure 1: 3D point cloud with assigned labels (wire: blue,
pole/trunk: red, façade: gray, ground: brown, vegetation: green).

point cloud data have been proposed with Associative and non-
Associative Markov Networks (Munoz et al., 2009a; Shapovalov
et al., 2010), Conditional Random Fields (Niemeyer et al., 2012),
multi-stage inference procedures focusing on point cloud statis-
tics and relational information over different scales (Xiong et al.,
2011), and spatial inference machines modeling mid- and long-
range dependencies inherent in the data (Shapovalov et al., 2013).

Since the semantic labels of nearby 3D points tend to be cor-
related (Figure 1), involving a smooth labeling is often desir-
able. However, exact inference is computationally intractable
when applying contextual learning approaches. Instead, either
approximate inference techniques or smoothing techniques are
commonly applied. Approximate inference techniques remain
challenging as there is no indication towards an optimal inference
strategy, and they quickly reach their limitations if the considered
neighborhood is becoming too large. In contrast, smoothing tech-
niques may provide a significant improvement concerning classi-
fication accuracy (Schindler, 2012). All of these techniques ex-
ploit either the estimated probability of a 3D point belonging to
each of the defined classes or the direct assignment of the respec-
tive label, and thus the results of a classification for individual 3D
points. Consequently, it seems desirable to investigate sources for
potential improvements with respect to classification accuracy.

One potential improvement may address the design of utilized
features as, despite the different neighborhood definitions, the pa-
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rameterization of the neighborhood is still typically selected with
respect to empirical a priori knowledge on the scene and identi-
cal for all 3D points. This raises the question about estimating
the optimal neighborhood for each individual 3D point and thus
increasing the distinctiveness of derived features. Respective ap-
proaches addressing this issue are based on local surface variation
(Pauly et al., 2003; Belton and Lichti, 2006), iterative schemes
relating neighborhood size to curvature, point density and noise
of normal estimation (Mitra and Nguyen, 2003; Lalonde et al.,
2005), or dimensionality-based scale selection (Demantké et al.,
2011). Instead of mainly focusing on optimal neighborhoods, fur-
ther approaches extract features based on different entities such
as points and regions (Xiong et al., 2011; Xu et al., 2014). Al-
ternatively, it would be possible to calculate features at different
scales and later use a training procedure to define which com-
bination of scales allows the best separation of different classes
(Brodu and Lague, 2012).

Considering the variety of features which have been proposed for
classifying 3D points, it may further be expected that there are
more and less suitable features among them. For compensating
lack of knowledge, however, often all extracted features are in-
cluded in the classification process, and a respective feature se-
lection has only rarely been applied in 3D point cloud process-
ing. The main idea of such a feature selection is to improve the
classification accuracy while simultaneously reducing both com-
putational effort and memory consumption (Guyon and Elisseeff,
2003; Liu et al., 2010). Respective approaches allow to assess
the relevance/importance of single features, rank them according
to their relevance and select a subset of the best-ranked features
(Chehata et al., 2009; Mallet et al., 2011; Khoshelham and Oude
Elberink, 2012; Weinmann et al., 2013).

In this paper, we use state-of-the-art approaches for classifying
3D points and focus on the interleaved issue of deriving an op-
timal subset of relevant, but not redundant, features extracted
from individual neighborhoods with optimal size. In compari-
son to seminal work addressing optimal neighborhood size selec-
tion (Pauly et al., 2003; Mitra and Nguyen, 2003; Demantké et
al., 2011), we directly assess the order/disorder of 3D points in
the local neighborhood from the eigenvalues of the 3D structure
tensor. In comparison to recent work on feature selection for 3D
lidar data processing (Mallet et al., 2011; Weinmann et al., 2013),
we exploit entropy-based measures for (i) determining the opti-
mal neighborhood size for each 3D point and (ii) removing irrele-
vant and redundant features in order to derive an adequate feature
subset. Both of these issues are crucial for the whole processing
chain, and it is therefore of great importance to avoid parameters
or thresholds which are explicitly selected by human interaction
based on empiric or heuristic knowledge.

In summary, the main contribution of our work is a fully auto-
matic versatile framework which is based on

• determining the optimal neighborhood size for each individ-
ual 3D point by considering the order/disorder of 3D points
within a covariance ellipsoid,

• extracting optimized 3D and 2D features from the derived
optimal neighborhoods in order to optimally describe the lo-
cal structure for each 3D point,

• selecting a compact and robust feature subset by address-
ing different intrinsic properties of the given training data
via multivariate filter-based feature selection (based on both
feature-class and feature-feature relations) in order to re-
move feature redundancy, and

• improving the classification accuracy by exploiting the de-
rived feature subsets and state-of-the-art classifiers.

Our framework is generally applicable for interpreting 3D point
cloud data acquired via airborne laser scanning (ALS), terrestrial
laser scanning (TLS), mobile laser scanning (MLS), range imag-
ing by 3D cameras or 3D reconstruction from images. While the
selected feature subset may vary with respect to different datasets,
the beneficial impact of both optimal neighborhood size selection
and feature selection remains. Further extensions of the frame-
work by involving additional features such as color/intensity or
full-waveform features can easily be taken into account.

The paper is organized as follows. In Section 2, we explain the
single components of our framework in detail. Subsequently, in
Section 3, we evaluate the proposed methodology on MLS data
acquired within an urban environment. The derived results are
discussed in Section 4. Finally, in Section 5, concluding remarks
are provided, and suggestions for future work are outlined.

2 METHODOLOGY

For semantically interpreting 3D point clouds, we propose a new
methodology which involves neighborhood selection with opti-
mal neighborhood size for each individual 3D point (Section 2.1),
3D and 2D feature extraction (Section 2.2), feature subset se-
lection via feature-class and feature-feature correlation (Section
2.3), and supervised classification of 3D point cloud data (Sec-
tion 2.4). A visual representation of the whole framework and its
components is provided in Figure 2.

3D Point 
 Cloud Data 

Neighborhood 
Selection 

Feature 
Extraction 

Feature 
Selection 

Classification 

Neighborhoods 
of optimal size 

Distinctive 
features 

Relevant, but 
not redundant 

features 

5 Strategies 

21 Features 

6 Approaches 

2 Classifiers 

Figure 2: The proposed framework: the contributions are high-
lighted in red, and the quantity of attributes/approaches used for
evaluation is indicated in green.

2.1 Neighborhood Selection

In general, we may face a varying point density in the captured
3D point cloud data. Since we do not want to assume a priori
knowledge on the scene, we exploit the spherical neighborhood
definition based on a 3D point and its k closest 3D points (Lin-
sen and Prautzsch, 2001), which allows more flexibility with re-
spect to the geometric size of the neighborhood. In order to avoid
heuristically selecting a certain value for the parameter k, we fo-
cus on automatically estimating the optimal value for k.

Assuming a point cloud formed by a total number ofN 3D points
and a given value k ∈ N, we may consider each individual 3D
point X = (X,Y, Z)T ∈ R3 and the respective k neighbors
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defining its scale. For describing the local 3D structure around
X, the respective 3D covariance matrix also known as 3D struc-
ture tensor S ∈ R3×3 is derived which is a symmetric positive-
definite matrix. Thus, its three eigenvalues λ1, λ2, λ3 ∈ R ex-
ist, are non-negative and correspond to an orthogonal system of
eigenvectors. Since there may not necessarily be a preferred vari-
ation with respect to the eigenvectors, we consider the general
case based on a structure tensor with rank 3. Hence, it follows
that λ1 ≥ λ2 ≥ λ3 ≥ 0 holds for each 3D point X.

From the eigenvalues of the 3D structure tensor, the surface vari-
ation Cλ (i.e. the change of curvature) with

Cλ =
λ3

λ1 + λ2 + λ3
(1)

can be estimated. For an increasing neighborhood size, the heuris-
tic search for locations with significant increase of Cλ allows to
find the critical neighborhood size and thus to select a respec-
tive value for k (Pauly et al., 2003). This procedure is motivated
by the fact that occurring jumps indicate strong deviations in the
normal direction. As alternative, it has been proposed to select
the neighborhood size according to a consistent curvature level
(Belton and Lichti, 2006).

Further investigations focus on extracting the dimensionality fea-
tures of linearity Lλ, planarity Pλ and scattering Sλ according
to

Lλ =
λ1 − λ2

λ1
Pλ =

λ2 − λ3

λ1
Sλ =

λ3

λ1
(2)

which represent 1D, 2D and 3D features. As these features sum
up to 1, they may be considered as the probabilities of a 3D
point to be labeled as 1D, 2D or 3D structure (Demantké et al.,
2011). Accordingly, a measure Edim of unpredictability given by
the Shannon entropy (Shannon, 1948) as

Edim = −Lλln(Lλ)− Pλln(Pλ)− Sλln(Sλ) (3)

can be minimized across different scales k to find the optimal
neighborhood size which favors one dimensionality the most. For
this purpose, the radius has been taken into account, and the inter-
val [rmin, rmax] has been sampled in 16 scales, where the radii are
not linearly increased since the radius of interest is usually closer
to rmin. The values rmin and rmax depend on various characteris-
tics of the given data and are therefore specific for each dataset.
However, the results are based on the assumption of particular
shapes being present in the observed scene.

In order to avoid assumptions on the scene, we propose a more
general solution to optimal neighborhood size selection. Since
the eigenvalues correspond to the principal components, they span
a 3D covariance ellipsoid. Consequently, we may normalize the
three eigenvalues by their sum Σλ and consider the measure of
eigenentropy Eλ given by the Shannon entropy according to

Eλ = −e1ln(e1)− e2ln(e2)− e3ln(e3) (4)

where the ei with ei = λi/Σλ for i ∈ {1, 2, 3} represent the
normalized eigenvalues summing up to 1. The eigenentropy thus
provides a measure of the order/disorder of 3D points within the
covariance ellipsoid2. Hence, we propose to select the param-
eter k by minimizing the eigenentropy Eλ over varying values
for k. For this purpose, we consider relevant statistics to start
with kmin = 10 samples which is in accordance to similar in-
vestigations (Demantké et al., 2011). As maximum, we select a

2Note that the occurrence of eigenvalues identical to zero has to be
avoided by adding an infinitesimal small value ε.

relatively high number of kmax = 100 samples, and all integer
values in [kmin, kmax] are taken into consideration.

2.2 Feature Extraction

For feature extraction, we follow the strategy of deriving a va-
riety of both 3D and 2D features (Weinmann et al., 2013), but
we optimize their distinctiveness by taking into account the op-
timal neighborhood size of each individual 3D point. Based on
the normalized eigenvalues e1, e2 and e3 of the 3D structure ten-
sor S, we extract a feature set consisting of 8 eigenvalue-based
features for each 3D point X (Table 1). Additionally, we derive
6 further 3D features for characterizing the local neighborhood:
absolute height Z, radius rk-NN of the spherical neighborhood,
local point density D, verticality V which is derived from the
vertical component of the normal vector, and maximum height
difference ∆Zk-NN as well as height variance σZ,k-NN within the
local neighborhood.

Linearity: Lλ = e1−e2
e1

Planarity: Pλ = e2−e3
e1

Scattering: Sλ = e3
e1

Omnivariance: Oλ = 3
√
e1 e2 e3

Anisotropy: Aλ = e1−e3
e1

Eigenentropy: Eλ = −
3∑
i=1

ei ln (ei)

Sum of eigenvalues: Σλ = e1 + e2 + e3

Change of curvature: Cλ = e3
e1+e2+e3

Table 1: Eigenvalue-based 3D features.

Finally, we consider 7 features arising from the 2D projection
of the 3D point cloud data onto a horizontally oriented plane.
Four of them are directly derived: radius rk-NN,2D, local point
density D2D and sum Σλ,2D as well as ratio Rλ,2D of eigenval-
ues. The other three features are derived via the construction of a
2D accumulation map with discrete, quadratic bins of side length
0.25 m as number M of points, maximum height difference ∆Z
and height variance σZ within the respective bin.

2.3 Feature Selection

The definition of adequate feature vectors remains a common and
crucial issue for classification problems. Hence, the interest in
feature selection techniques emerged for finding compact and ro-
bust subsets of relevant and informative features in order to gain
predictive accuracy, improve computational efficiency with re-
spect to both time and memory consumption, and retain mean-
ingful features (Guyon and Elisseeff, 2003; Liu et al., 2010). By
definition, a feature is statistically relevant if its removal from
a feature set will reduce the prediction power. In general, fea-
ture selection methods can be categorized into filter-based meth-
ods, wrapper-based methods and embedded methods. As both
wrapper-based and embedded feature selection methods involve
a classifier, they generally yield a better performance than filter-
based methods. In particular, embedded methods provide the ca-
pability of dealing with exhaustive feature sets as input and let-
ting the classifier internally select a suitable feature subset during
the training phase (Chehata et al., 2009; Tokarczyk et al., 2013).
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However, they face a relatively high computational effort and pro-
vide feature subsets which are only optimized with respect to the
applied classifier. Hence, we focus on a filter-based method.

Due to their simplicity and efficiency, such filter-based methods
are commonly applied. These methods are classifier-independent
and only exploit a score function directly based on the training
data. Univariate filter-based feature selection methods rely on
a score function which evaluates feature-class relations and thus
the relation between the values of each single feature across all
observations and the respective label vector. In general, the score
function may address different intrinsic properties of the given
training data such as distance, information, dependency or con-
sistency. Accordingly, a variety of possible score functions ad-
dressing a specific intrinsic property (Guyon and Elisseeff, 2003;
Zhao et al., 2010) as well as a general relevance metric addressing
different intrinsic properties (Weinmann et al., 2013) have been
proposed. Multivariate filter-based feature selection methods rely
on both feature-class and feature-feature relations in order to dis-
criminate between relevant, irrelevant and redundant features.

Defining random variables X for the feature values and C for
the classes, we can apply the general definition of the Shannon
entropy E(X) indicating the distribution of feature values xa as

E(X) = −
∑
a

P (xa) lnP (xa) (5)

and the Shannon entropy E(C) indicating the distribution of (se-
mantic) classes cb as

E(C) = −
∑
b

P (cb) lnP (cb) (6)

respectively. The joint Shannon entropy results in

E(X,C) = −
∑
a,b

P (xa, cb) lnP (xa, cb) (7)

and can be used for deriving the mutual information

MI(X,C) = E(X) + E(C)− E(X,C) (8)
= E(X)− E(X|C) (9)
= E(C)− E(C|X) (10)
= IG(X|C) (11)
= IG(C|X) (12)

which represents a symmetrical measure defined as information
gain (Quinlan, 1986). Thus, the amount of information gained
about C after observing X is equal to the amount of information
gained about X after observing C. Following the definition, a
feature X is regarded as more correlated to the classes C than a
feature Y if IG(C|X) > IG(C|Y ). For feature selection, in-
formation gain is evaluated independently for each feature and
features with a high information gain are considered as relevant.
Consequently, those features with the highest values may be se-
lected as relevant features. Information gain can also be derived
via the conditional entropy, e.g. via E(X|C) which quantifies
the remaining uncertainty in X given that the value of the ran-
dom variable C is known.

However, information gain is biased in favor of features with
greater numbers of values since these appear to gain more infor-
mation than others, even if they are not more informative (Hall,
1999). The bias can be compensated by considering the measure

SU(X,C) = 2
MI(X,C)

E(X) + E(C)
(13)

defined as symmetrical uncertainty (Press et al., 1988) with val-
ues in [0, 1]. Information gain and symmetrical uncertainty how-
ever are only measures for ranking features according to their
relevance to the class and do not eliminate redundant features.

In order to remove redundancy, Correlation-based Feature Selec-
tion (CFS) has been proposed (Hall, 1999). Considering a subset
of n features and taking the symmetrical uncertainty as correla-
tion measure, we may define ρ̄XC as average correlation between
features and classes as well as ρ̄XX as average correlation be-
tween different features. The relevance R of the feature subset
results in

R(X1...n, C) =
nρ̄XC√

n+ n(n− 1)ρ̄XX
(14)

which can be maximized by searching the feature subset space
(Hall, 1999), i.e. by iteratively adding a feature to the feature
subset (forward selection) or removing a feature from the feature
subset (backward elimination) untilR converges to a stable value.

For comparison only, we also consider feature selection exploit-
ing a Fast Correlation-Based Filter (FCBF) (Yu and Liu, 2003)
which involves heuristics and thus does not meet our intention
of a fully generic methodology. For deciding whether features
are relevant to the class or not, a typical feature ranking based on
symmetrical uncertainty is conducted in order to determine the
feature-class correlation. If the symmetrical uncertainty is above
a certain threshold, the respective feature is considered to be rele-
vant. For deciding whether a relevant feature is redundant or not,
the symmetrical uncertainty among features is compared to the
symmetrical uncertainty between features and classes in order to
remove redundant features and only keep predominant features.

2.4 Classification

Based on given training data, a supervised classification of indi-
vidual 3D points can be conducted by using the training data to
train a classifier which afterwards should be able to generalize
to new, unseen data. Introducing a formal description, the train-
ing set X = {(xi, li)} with i = 1, . . . , NX consists of NX
training examples. Each training example encapsulates a fea-
ture vector xi ∈ Rd in a d-dimensional feature space and the
respective class label li ∈ {1, . . . , NC}, where NC represents
the number of classes. In contrast, the test set Y = {xj} with
j = 1, . . . , NY only consists of NY feature vectors xj ∈ Rd. If
available, the respective class labels may be used for evaluation.
For multi-class classification, we apply different classifiers. Fol-
lowing recent work on smooth image labeling (Schindler, 2012),
we apply a classical (Gaussian) maximum-likelihood (ML) clas-
sifier as well as Random Forest (RF) classifier as representative
of modern discriminative methods.

The classical ML classifier represents a simple generative model
– the Gaussian Mixture Model (GMM) – which is based on the
assumption that the classes can be represented by different Gaus-
sian distributions. Hence, in the training phase, a multivariate
Gaussian distribution is fitted to the given training data. For each
new feature vector, the probability of belonging to the different
classes is evaluated and the class with maximum probability is
assigned. Since the decision boundary between any two classes
in such a model represents a quadratic function (Schindler, 2012),
the resulting classifier is also referred to as Quadratic Discrimi-
nant Analysis (QDA) classifier.

A Random Forest (Breiman, 2001) is an ensemble of randomly
trained decision trees. In the training phase, individual trees are
trained on randomly selected feature subsets of the given training
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data. Thus, the trees are all randomly different from one another
which results in a de-correlation between individual tree predic-
tions and thus improved generalization and robustness (Criminisi
and Shotton, 2013). For a new feature vector, each tree votes for
a single class and a respective label is subsequently assigned ac-
cording to the majority vote of all trees. We use a RF classifier
with 100 trees and a tree depth of b√dc, where d is the dimension
of the feature space.

Since we may often face an unbalanced distribution of training
examples per class in the training set, which may have a detrimen-
tal effect on the training process (Criminisi and Shotton, 2013),
we apply a class re-balancing which consists of resampling the
training data in order to obtain a uniform distribution of randomly
selected training examples per class. The alternative would be to
exploit the known prior class distribution of the training set for
weighting the contribution of each class.

3 EXPERIMENTAL RESULTS

We demonstrate the performance of the proposed methodology
for two publicly available MLS benchmark datasets which are
described in Section 3.1. The conducted experiments are outlined
in Section 3.2. A detailed evaluation and a comparison of single
approaches are presented in Section 3.3.

3.1 Datasets

For our experiments, we use the Oakland 3D Point Cloud Dataset3

(Munoz et al., 2009a) which is a labeled benchmark MLS dataset
representing an urban environment. The dataset has been ac-
quired with a mobile platform equipped with side looking SICK
LMS laser scanners used in push-broom mode. A separation
into training set X , validation set V and test set Y is provided,
and each 3D point is assigned one of the five semantic labels
wire, pole/trunk, façade, ground and vegetation. After class re-
balancing, the reduced training set encapsulates 1,000 training
examples per class. The test set contains 1.3 million 3D points.

Additionally, we apply our framework on the Paris-rue-Madame
database4 (Serna et al., 2014) acquired in the city of Paris, France.
The point cloud data consists of 20 million 3D points and corre-
sponds to a street section with a length of approximately 160 m.
For data acquisition, the Mobile Laser Scanning (MLS) system
L3D2 (Goulette et al., 2006) equipped with a Velodyne HDL32
was used, and annotation has been conducted in a manually as-
sisted way. Since the annotation includes both point labels and
segmented objects, the database contains 642 objects which are
in turn categorized in 26 classes. We exploit the point labels of
the six dominant semantic classes façade, ground, cars, motor-
cycles, traffic signs and pedestrians. All 3D points belonging to
the remaining classes are removed since the number of samples
per class is less than 0.05% of the complete dataset. For class re-
balancing, we take into account that the smallest of the selected
classes comprises little more than 10,000 points. In order to pro-
vide a higher ratio between training and testing samples across all

3The Oakland 3D Point Cloud Dataset is available online at
http://www.cs.cmu.edu/∼vmr/datasets/oakland 3d/cvpr09/doc/ (last ac-
cess: 30 March 2014).

4Paris-rue-Madame database: MINES ParisTech 3D mobile laser
scanner dataset from Madame street in Paris. c©2014 MINES Paris-
Tech. MINES ParisTech created this special set of 3D MLS data
for the purpose of detection-segmentation-classification research ac-
tivities, but does not endorse the way they are used in this project
or the conclusions put forward. The database is publicly available
at http://cmm.ensmp.fr/∼serna/rueMadameDataset.html (last access: 30
March 2014).

classes, we randomly select a training set X with 1,000 training
examples per class, and the remaining data is used as test set Y .

3.2 Experiments

In the experiments, we first consider the impact of five different
neighborhood definitions on the classification results:

• the neighborhoodN10 formed by the 10 nearest neighbors,
• the neighborhoodN50 formed by the 50 nearest neighbors,
• the neighborhood N100 formed by the 100 nearest neigh-

bors,
• the optimal neighborhood Nopt,dim for each individual 3D

point when considering dimensionality features, and
• the optimal neighborhoodNopt,λ for each individual 3D point

when considering our proposed approach5.

The latter two definitions involving optimal neighborhoods are
based on varying the scale parameter k between kmin = 10 and
kmax = 100 with a step size of ∆k = 1, and selecting the value
with minimum Shannon entropy of the respective criterion. Sub-
sequently, we focus on testing six different feature sets for each
neighborhood definition:

• the whole feature set Sall with all 21 features,
• the feature subset Sdim covering the three dimensionality

features Lλ, Pλ and Sλ,
• the feature subset Sλ,3D covering the 8 eigenvalue-based 3D

features,
• the feature subset S5 consisting of the five features Rλ,2D,
V , Cλ, ∆Zk-NN and σZ,k-NN proposed in recent investiga-
tions (Weinmann et al., 2013),

• the feature subset SCFS derived via Correlation-based Fea-
ture Selection, and

• the feature subset SFCBF derived via the Fast Correlation-
Based Filter.

The latter three feature subsets are based on either explicitly or
implicitly assessing feature relevance. In case of combining fea-
ture subsets with RF-based classification, the tree depth of the
Random Forest is determined as max{b√dc, 3}, since at least 3
features are required for separating 5 or 6 classes. Note that the
full feature set only has to be calculated and stored for the train-
ing data, whereas a smaller feature subset automatically selected
during the training phase has to be calculated for the test data.

All implementation and processing was done in Matlab. In the
following, the main focus is put on the impact of both optimal
neighborhood size selection and feature selection on the classi-
fication results. We may expect that (i) optimal neighborhoods
for individual 3D points significantly improve the classification
results and (ii) feature subsets selected according to feature rele-
vance measures provide an increase in classification accuracy.

3.3 Results and Evaluation

For evaluation, we consider five commonly used measures: (i)
precision which represents a measure of exactness or quality, (ii)
recall which represents a measure of completeness or quantity,
(iii) F1-score which combines precision and recall with equal
weights, (iv) overall accuracy (OA) which reflects the overall per-
formance of the respective classifier on the test set, and (v) mean
class recall (MCR) which reflects the capability of the respective
classifier to detect instances of different classes. Since the results
for classification may slightly vary for different runs, the mean

5The code is publicly available at http://www.ipf.kit.edu/code.php
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Figure 3: F1-scores for QDA-based classification.

values across 20 runs are used in the following in order to allow
for more objective conclusions. Additionally, we consider that,
for CFS and FCBF, the derived feature subsets may vary due to
the random selection of training data, and hence determine them
as the most often occurring feature subsets over 20 runs.

First, we test our framework on the Oakland 3D Point Cloud
Dataset. Since the upper boundary k = 100 has been selected
for reasons of computational costs, we have to take into account
that it is likely to also represent 3D points which might favor
a higher value. Accordingly, we consider the percentage of 3D
points which are assigned neighborhoods with k < 100 neigh-
bors which is 98.12% and 98.08% for Nopt,dim and Nopt,λ. For
QDA-based classification based on all 21 features, the derived
recall and precision values for different neighborhood definitions
are provided in Table 2 and Table 3, and the respective F1-scores
are visualized in Figure 3. The recall and precision values when
using a RF classifier are provided in Table 4 and Table 5, and the
respective F1-scores are visualized in Figure 4. For both clas-
sifiers, it becomes visible that introducing an optimal neighbor-
hood size for each individual 3D point has a beneficial impact on
both recall and precision values, and consequently also on the F1-
score. Exemplary results for RF-based classification usingNopt,λ

and all 21 features are illustrated in Figure 1 and Figure 5.

Oakland wire pole/trunk façade ground vegetation
N10 0.662 0.522 0.434 0.882 0.616
N50 0.667 0.507 0.473 0.916 0.788
N100 0.606 0.417 0.472 0.916 0.767
Nopt,dim 0.754 0.750 0.543 0.890 0.778
Nopt,λ 0.791 0.765 0.519 0.906 0.829

Table 2: Recall values for QDA-based classification using all fea-
tures and different neighborhood definitions.

Oakland wire pole/trunk façade ground vegetation
N10 0.032 0.037 0.614 0.967 0.812
N50 0.035 0.079 0.832 0.977 0.805
N100 0.033 0.082 0.659 0.979 0.791
Nopt,dim 0.048 0.187 0.793 0.966 0.701
Nopt,λ 0.065 0.181 0.829 0.966 0.742

Table 3: Precision values for QDA-based classification using all
features and different neighborhood definitions.

Oakland wire pole/trunk façade ground vegetation
N10 0.705 0.684 0.503 0.981 0.668
N50 0.578 0.617 0.679 0.988 0.779
N100 0.513 0.579 0.631 0.987 0.724
Nopt,dim 0.850 0.791 0.659 0.985 0.794
Nopt,λ 0.862 0.798 0.672 0.985 0.809

Table 4: Recall values for RF-based classification using all fea-
tures and different neighborhood definitions.

If, besides the neighborhood definitions, the different feature sets
are also taken into account, we get a total number of 30 possible
combinations. For each combination, the resulting overall ac-
curacy and mean class recall value are provided in Table 6 and

Oakland wire pole/trunk façade ground vegetation
N10 0.054 0.079 0.786 0.970 0.946
N50 0.048 0.196 0.845 0.979 0.942
N100 0.041 0.134 0.742 0.980 0.938
Nopt,dim 0.080 0.219 0.832 0.976 0.950
Nopt,λ 0.091 0.236 0.846 0.972 0.959

Table 5: Precision values for RF-based classification using all
features and different neighborhood definitions.

wire

po
le/

tru
nk

faç
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Figure 4: F1-scores for RF-based classification.

Figure 5: 3D point cloud with semantic labels assigned by the
RF classifier (wire: blue, pole/trunk: red, façade: gray, ground:
brown, vegetation: green).

Table 7 for QDA-based classification. The respective values for
RF-based classification are provided in Table 8 and Table 9. Here,
SCFS contains between 12 and 14 features, whereas SFCBF con-
tains between 6 and 8 features. For both subsets, the respective
features are distributed across all types of 3D and 2D features.
The derived results clearly reveal that the feature subset Sdim is
not sufficient for obtaining adequate classification results. In con-
trast, using the feature subsets S5, SCFS and SFCBF which are all
based on feature relevance assessment yields classification results
of better quality and, in particular when using a RF classifier, par-
tially even a higher quality than the full feature set Sall.

Oakland Sall Sdim Sλ,3D S5 SCFS SFCBF
N10 0.788 0.689 0.741 0.867 0.667 0.678
N50 0.850 0.771 0.822 0.927 0.725 0.762
N100 0.845 0.758 0.823 0.924 0.713 0.903
Nopt,dim 0.837 0.371 0.798 0.910 0.715 0.687
Nopt,λ 0.857 0.480 0.801 0.920 0.851 0.723

Table 6: Overall accuracy for QDA-based classification using dif-
ferent neighborhood definitions and different feature sets.

Oakland Sall Sdim Sλ,3D S5 SCFS SFCBF
N10 0.623 0.365 0.454 0.583 0.570 0.618
N50 0.670 0.509 0.588 0.673 0.633 0.699
N100 0.636 0.474 0.555 0.668 0.600 0.708
Nopt,dim 0.743 0.440 0.561 0.666 0.694 0.703
Nopt,λ 0.762 0.477 0.576 0.704 0.755 0.739

Table 7: Mean class recall values for QDA-based classifica-
tion using different neighborhood definitions and different feature
sets.

Since the RF classifier in combination with our approach for op-
timal neighborhood size selection (Nopt,λ) yields high values for
both overall accuracy and mean class recall, we select this combi-
nation for a test on the Paris-rue-Madame database. The obtained
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Oakland Sall Sdim Sλ,3D S5 SCFS SFCBF
N10 0.875 0.579 0.742 0.887 0.873 0.857
N50 0.917 0.734 0.805 0.912 0.916 0.924
N100 0.901 0.728 0.814 0.901 0.902 0.920
Nopt,dim 0.918 0.696 0.773 0.915 0.918 0.907
Nopt,λ 0.922 0.628 0.851 0.911 0.924 0.923

Table 8: Overall accuracy for RF-based classification using dif-
ferent neighborhood definitions and different feature sets.

Oakland Sall Sdim Sλ,3D S5 SCFS SFCBF
N10 0.708 0.483 0.598 0.686 0.699 0.702
N50 0.728 0.544 0.642 0.655 0.728 0.742
N100 0.687 0.504 0.612 0.638 0.693 0.697
Nopt,dim 0.816 0.615 0.676 0.754 0.812 0.808
Nopt,λ 0.825 0.596 0.692 0.759 0.827 0.825

Table 9: Mean class recall values for RF-based classification us-
ing different neighborhood definitions and different feature sets.

recall and precision values using the feature sets Sall and SCFS are
provided in Table 10 as well as the resulting F1-scores. Based on
the full feature set Sall, the RF classifier provides an overall accu-
racy of 90.1% and a mean class recall of 77.6%, whereas based
on the feature subset SCFS, a slight improvement to an overall
accuracy of 90.5% and a mean class recall of 77.8% can be ob-
served. A visualization for RF-based classification using Nopt,λ

and all 21 features is provided in Figure 6.

Paris R P F1 R P F1
façade 0.957 0.962 0.960 0.958 0.964 0.961
ground 0.902 0.964 0.932 0.911 0.960 0.935
cars 0.606 0.755 0.672 0.603 0.768 0.676
motorcycles 0.639 0.123 0.206 0.657 0.136 0.225
traffic signs 0.974 0.055 0.105 0.978 0.058 0.109
pedestrians 0.575 0.019 0.036 0.559 0.020 0.038

Table 10: Recall (R), precision (P) and F1-score for RF-based
classification involving all 21 features (left) and only the features
in SCFS (right).

Figure 6: 3D point cloud with semantic labels assigned by the RF
classifier (façade: gray, ground: brown, cars: blue, motorcycles:
green, traffic signs: red, pedestrians: pink).

4 DISCUSSION

Certainly, a huge advantage of the proposed methodology is that
it avoids the use of empiric or heuristic a priori knowledge on
the scene with respect to neighborhood size. For the sake of gen-
erality, involving such data-dependent knowledge should not be
an option and the optimal neighborhood of each individual 3D
point should be considered instead. This is in accordance with the
idea that the optimal neighborhood size may not be the same for
different classes and furthermore depend on the respective point
density. In the provided Tables 2-5, the class-specific classifica-
tion results clearly reveal that the suitability of all three neighbor-
hood definitions based on a fixed scale parameter may vary from
one class to the other. Instead, the approaches based on optimal
neighborhood size selection address this issue and hence provide
a significant improvement in recall and precision, and thus also
in the F1-score over all classes (Figure 3 and Figure 4).

In particular, the detailed evaluation provides a clear evidence
that the proposed approach for optimal neighborhood size selec-
tion is beneficial in comparison to the other neighborhood defini-
tions, since it often yields a significant improvement with respect
to performance and behaves close to the best performance oth-
erwise. A strong indicator for the quality of the derived results
has been defined by the mean class recall, as only a high overall
accuracy may not be sufficient for analyzing the derived results.
For the Oakland 3D Point Cloud Dataset, for instance, we have
an unbalanced test set and an overall accuracy of 70.5% can be
obtained if only the instances of the class ground are correctly
classified. This clear trend to overfitting becomes visible when
considering the respective mean class recall of only 20.0%.

In comparison to other recent investigations based on a fixed scale
parameter k (Weinmann et al., 2013), the recall values are signif-
icantly increased, and a slight improvement with respect to the
precision values can be observed. Even in comparison to inves-
tigations involving approaches of contextual learning (Munoz et
al., 2009b), our methodology yields higher precision values with
approximately the same recall values over all classes.

Considering the different feature sets (Tables 6-9), it becomes
visible that the feature subset Sdim of the three dimensionality
features Lλ, Pλ and Sλ is not sufficient for 3D scene interpreta-
tion. This might be due to ambiguities, since the classes wire and
pole/trunk provide a linear behavior, whereas the classes façade
and ground provide a planar behavior. This can only be ade-
quately handled by considering additional features. Even when
only using the feature subset Sλ,3D of the eigenvalue-based 3D
features, the results are significantly worse than when using the
full feature set Sall. In contrast, the feature subsets derived via
the three approaches for feature selection provide a performance
close to the full feature set Sall or even better. In particular, the
feature subset SCFS derived via Correlation-based Feature Selec-
tion provides a good performance without being based on manu-
ally selected parameters such as the feature subset SFCBF derived
via the Fast Correlation-Based Filter.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the interleaved issue of optimally
describing 3D structures by geometrical features and selecting
the best features among them as input for classification. We have
presented a new, fully automatic and versatile framework for se-
mantic 3D scene interpretation. The framework involves optimal
neighborhood size selection which is based on minimizing the
measure of eigenentropy over varying scales in order to derive
optimized features with higher distinctiveness in the subsequent
step of feature extraction. Further applying the measure of en-
tropy for feature selection, irrelevant and redundant features are
recognized based on a relatively small training set and, conse-
quently, these features do not have to be calculated and stored for
the test set. In a detailed evaluation, we have demonstrated the
significant and beneficial impact of optimal neighborhood size
selection, and that the selection of adequate feature subsets may
even further increase the quality of 3D scene interpretation.

For future work, we plan to address the step from individual 3D
point classification to a spatially smooth labeling of nearby 3D
points. This could be based on probabilistic relaxation or smooth
labeling techniques adapted from image processing.
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ABSTRACT:

Laser range data is of high interest in photogrammetry. However, compared to passive imagery, it usually has a lower image 
resolution, making geometry extraction and modeling challenging. A method to overcome this handicap using a laser scanner 
capable of full waveform analysis is proposed. The recorded pulse waveform is analyzed to find range and intensity values for all of 
the surfaces in the beam footprint. Sub-pixel edge localization is implemented and tested for straight edges of man-made objects, 
allowing a much higher precision of geometry extraction in urban areas. The results show that it is possible to find edges with an 
accuracy of at least one tenth of a pixel. 

1. INTRODUCTION

The automatic generation of 3-d models for a description of 
man-made objects, like buildings, is of great interest in 
photogrammetric research. In photogrammetry, a spatial surface 
is classically measured by triangulation of corresponding image 
points from two or more pictures of the surface. The points are 
manually chosen or automatically detected by analyzing image 
structures. Besides this indirect measurement using object 
characteristics dependant on natural illumination, active laser 
scanner systems allow a direct and illumination-independent 
measurement of range. Laser scanners capture the range of 3-d 
objects in a fast, contactless and accurate way. Overviews for 
laser scanning systems are given in (Huising & Pereira, 1998; 
Wehr & Lohr, 1999; Baltsavias, 1999). 

For the task of automatic model generation, a precise 
measurement of the edges and vertices of regularly shaped 
objects is paramount. Often, the spatial resolution of laser 
scanners used in urban surveying is not sufficient for this. In 
this case, an approach to locate the edges with sub-pixel 
accuracy is desirable. To achieve this, as much information as 
possible should be gained per pixel1 to offset the low number of 
pixels in the image. 

Current pulsed laser scanner systems for topographic mapping 
are based on time-of-flight ranging techniques to determine the 
range of the illuminated object. The signal analysis to determine 
the elapsed time between the emitted and backscattered laser 
pulses typically operates by analogous threshold detection. 
Some systems capture multiple reflections caused by objects 
which are smaller than the footprint located in different ranges. 
Such systems usually record the first and the last backscattered 
laser pulse (Baltsavias, 1999). 

First pulse as well as last pulse exploitation is used for different 
applications like urban planning or forestry surveying. While 
first pulse registration is the optimum choice to measure the 
hull of partially penetrable objects (e.g. canopy of trees), last 
pulse registration should be chosen to measure non-penetrable 
surfaces (e.g. ground surface). Due to multiple pulse reflection 
at the boundary of buildings and the processing by first or last 
                                                                
1 Note that in this paper the label pixel describes the conical region in space 
illuminated by a single laser beam. During visualization, this region is 
compressed into a single pixel of a displayed image, hence the name. 

pulse mode, building areas dilate or erode. For visualizing the 
various sizes of the building footprints in first and last pulse 
images a difference image can be calculated. The actual 
building edges are then expected within the bright areas in this 
image (Figure 1). 

Apart from the range measurement of laser scanner systems 
some systems deliver a single reflectance value derived from 
the intensity or the power of the backscattered laser light. The 
intensity is determined by the signal maximum and the power 
by signal integration of the measured laser light and gives 
radiometric information about the surveyed area. This intensity 
(power) value can be used for separating segments of artificial 
objects from vegetation (Hug & Wehr, 1997; Maas, 2001). 

One step further, the complete waveform of the recorded signal 
might be of interest, because it includes the backscattering 
characteristic of the illuminated field. Investigations on 
analyzing the waveform were done to explore the vegetation 
concerning the bio mass, foliage or density (e.g. trees, bushes, 
and ground). Recent laser scanner system developments provide 
commercial airborne laser scanning systems that allow 
capturing the waveform: RIEGL LMS-Q560, LITEMAPPER 
5600, OPTECH ALTM 3100, TOPEYE II. To interpret the 
backscattered waveform, a better understanding of the physical 
principles is important and has to be developed. The physical 
measurement process and the influence of the surface on the 
emitted waveform are discussed by (Jutzi & Stilla, 2002; 
Wagner et al., 2004). 

By analyzing the backscattered waveform for the received 
pulses it is possible to determine specific surface properties for 
each received pulse. Typical surface properties of interest can 
be distance, roughness, reflectance and number of surface 
responses. The estimates of these properties can be used for 
further processing. Vosselman (2002) suggested considering the 
reflectance strength of the laser beam response to estimate and 
improve the accuracy of reflectance edge positions. Besides the 
edge positions of planimetric offsets, the estimation of edges in 
different heights is investigated by considering the reflectance 
strength to increase the accuracy of boundaries at plane 
surfaces, where the height data captured with laser scanner 
systems generally suffers by unresolved ambiguity. 

In this paper we describe investigations for a detailed analysis 
of laser pulses. In Section 2, our method for generation of 
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synthetic test data is discussed. A description of the general
waveform analysis, image segmentation and surface boundary
extraction can be found in Section 3. The actual sub-pixel edge 
localization algorithms are developed in Section 4. Section 5 
presents results and a discussion of the merits and flaws of the
method.

2. DATA GENERATION 

To simulate the temporal waveform of the backscattered pulses 
a scene model (i) and a sensor model (ii) is required (Jutzi & 
Stilla, 2004). 

2.1

2.1.1

2.1.2

2.2

2.2.1

2.2.2

2.2.3

2.2.4

3.1

Scene modeling

Scene representation

For a 3-d scene representation, our simulation setup considers 
geometric and radiometric features of the illuminated surface in
the form of a 3-d object model with homogeneous surface
reflectance.

Sampling

The object model with homogeneous surface reflectance is then 
sampled at a higher spatial resolution than the scanning grid we 
simulate and process, to enable us to simulate the spatial 
distribution of the laser beam. Considering the position and
orientation of the sensor system we receive high-resolution
range and intensity images (45-fold oversampling, i.e. one
image pixel is produced by averaging over 45x45 high-
resolution sub-pixels. The oversampling window size does not
have any practical relevance if it is sufficiently large to not 
induce errors in a higher magnitude as those incurred by our
discretized beam profile). Depending on the predetermined 
position and orientation of the sensor system, various range 
images can be captured. 

Sensor modeling

a b

c d
Figure 1. Sections of an urban scene (Test area Karlsruhe, 

Germany).
a) elevation images captured by first pulse mode,
b) elevation images captured by last pulse mode, 
c) difference image of first and last pulse mode, 
d) section of the difference image (building
 boundary).

The sensor modeling takes into account the specific properties 
of the sensing process: the position and orientation of the 
sensor, the laser pulse description, scanning and the receiver
properties.

Orientation

To simulate varying perspectives, a description of the extrinsic 
orientation of the laser scanning system with the help of a
GPS/INS system is used.

Laser pulse description 

The transmitted laser pulse of the system is characterized by
specific pulse properties (Jutzi et al., 2002). We assume a 
Gaussian pulse energy distribution in both space and time, the 
spatial distribution thus being radially symmetric. With real
data, the sampled actual pulse distribution depending on the 
used laser type can be used to model the edge appearance in the
image (q.v. Section 4.1). 

Scanning

Depending on the scan pattern of the laser scanner system, the 
grid spacing of the scanning, and the divergence of the laser
beam, a sub-area of the high-resolution range image is 
processed. By convolving this sub-area with the temporal 
waveform of the laser pulse, we receive a high-resolution
intensity cube. Furthermore, the corresponding sub-area of the
high-resolution intensity image is weighted with the spatial 
energy distribution of the laser beam, where the grid spacing is
taken to be 6  of the spatial beam energy distribution (i.e. the 
grid lines are at ±3  relative to the beam center) to take into
account the amount of backscattered laser light for each 
reflectance value. Then we have a description of the
backscattered laser beam with a higher spatial resolution than 
necessary for processing. 

Receiver

By focusing the beam with its specific properties on the 
detector of the receiver, the spatial resolution is reduced and 
this is simulated with a spatial undersampling of the sub-areas. 

Finally we receive an intensity cube spaced with the scanning
width of the simulated laser scanner system and containing the 
temporal description of the backscattered signal. Because each
intensity value in the sub-area is processed by undersampling, 
multiple reflections can be observed in the backscattered signal. 

3. DATA ANALYSIS 

Algorithms are developed and evaluated with simulated signals 
of synthetic objects. First, a signal preprocessing of the 
intensity cube with a matched filter is implemented to improve
the detection rate. These results are used to analyze the 
waveform of each pulse for gaining the surface properties:
range, reflectance and number of peaks. Then the surface
properties are processed with a region based segmentation
algorithm. By the use of images the region boundary pixels
derived from multiple reflections at the same spatial position
are shared by separate regions. 

Pulse property extraction

Depending on the size of the observed surface geometry in 
relation to the laser beam (footprint and wavelength) different 
properties can be extracted (Jutzi & Stilla, 2003). In this paper
we focus on the pulse properties average time value, maximum
intensity and number of peaks. 
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The average time value is processed to determine the
distance from the system to the illuminated surface. 

The maximum intensity value is computed to get a
description for the reflectance strength of the illuminated
area.

Multiple peaks in one signal indicate multiple surfaces at 
differing ranges illuminated by the beam. Therefore, they
are clues to object boundaries. 

For determining the property values for each pulse of the whole
waveform the intensity cube is processed in different ways.
First, the pulse has to be detected in the signal profile by using a 
matched filter. Then, a neighborhood area of interest in the 
temporal waveform is selected for temporal signal analysis.

For obtaining surface characteristics, each waveform of the
cube is analyzed for pulse property values. For pulse detection 
it is necessary to separate each single pulse from the
background noise. The number of detected pulses depends 
critically on this separation method. Therefore the signal
background noise is estimated, and where the intensity of the 
waveform is above three times the noise standard deviation for 
a duration of at least 5 ns (full-width-half-maximum of the 
pulse), a pulse is assumed to have been found and a waveform 
interval including the pulse is accepted for further processing.

Typical surface features we wish to extract from a waveform
are range, roughness, and reflectance. The corresponding pulse
properties of these surface features are: time, width and 
intensity. Because of the strong fluctuations of the waveform,
extracting the relevant properties of the waveform can be
difficult. Therefore, the recorded waveform is approximated by
a Gaussian to get a parametric description. Fitting a Gaussian to 
the complete waveform instead of quantizing a single value of 
the waveform has the advantage of decreasing the influence of 
noise and fluctuation. To solve the Gaussian mixture problem, 
the Gauss-Newton method (Hartley & Zisserman, 2000) with 
iterative parameter estimation is used. The estimated parameters
for pulse properties are the averaged time value , standard 
deviation   and maximum intensity a:

2

22

( )exp( )
22

( ) a tw t (1)

To start the iteration, we use the actual parameter values (time
at pulse maximum, width of signal at half pulse height, and 
pulse maximum) of the original waveform. 

The averaged time value  of the estimated waveform is used to 
exploit the temporal form of the received pulses. The averaged
range value r can then easily be determined by

2
cr (2)

where c is the speed of light. 

3.2
4.1

Segmentation

General approaches for segmenting laser range data, as those 
described by Besl (1988), usually do not take into account the
additional information acquired by full waveform processing 
and therefore have to be expanded upon. 

By using waveform processing, we are not only generating a 
range image, but in fact a whole set of data for each pixel. For
the purposes of this paper, the features of particular importance

will be: range for each return pulse, intensity for each return
pulse, and number of return pulses. The number of return pulses 
is used as a clue to region boundaries, while range and intensity
further facilitate identifying homogeneous regions inside these 
boundaries. Without these multiple pulse clues, the region
boundaries can not reliably be pinpointed with pixel accuracy.
Since the sub-pixel localization scheme works on the intensity
of pixels partially covering a surface, this pixel precision is
necessary for the accuracy of the resulting edges.

Proceeding from these boundary clues, an iterative region
growing algorithm examines the range properties of all pulses
in the spatial neighborhood: if the range difference of a pulse
and the proofing pulse is below a given threshold, then the 
pulse is connected and grouped as a new element to this region. 

The segmentation leads to a description of image pixels as 
region interior or region boundary. The region interior is 
characterized by single reflections and fills up the region to the
boundary. For each homogeneous region found in this manner,
the average return pulse power P0 inside this region is 
calculated and stored. The region boundary pixels are 
connected in a 4-neighbor fashion, i.e. each boundary pixel has 
at least one neighbor in horizontal or vertical direction which 
also belongs to the boundary.

4. BOUNDARY REFINEMENT 

To achieve a higher precision for object localization and
reconstruction, it is desirable to further refine these
measurements (Figure 2a). Standard sub-pixel edge localization 
approaches use the intensity of grayscale images to obtain 
improved edge information. The intensity values acquired may
form a grayscale image and thus permit the application of these
algorithms to our data. But we will go one step further since the
full waveform laser data has several advantages over passive
optical images for this purpose.

For precise edge localization, it is important to know the 
properties of the data acquisition unit very well and be able to 
model the effects of a beam being only partially reflected by a 
given surface. This modeling will be explained in the first
subsection. In the second subsection, we will show how this 
model enables us to determine the sub-pixel location of an edge
in each pixel. The third subsection will examine a
straightforward approach to determine edge direction using 
neighborhood information. Then we will detail our proposed 
scheme to use the complete edge information to fortify the edge
estimate in the fourth subsection. The last subsection will deal 
with vertices and the problem of their precise localization in the
image.

For the purposes of this paper, we will call the measured edge 
pixels of the image boundary pixels, or corners, if they do not
belong to a straight edge. Furthermore, let the true geometry be 
denoted by edges and vertices, to clear up the description of our 
approach.

Modeling the rasterized edge intensity profile

As shown in the introduction to this Section, it is necessary to
be aware of the meaning of the intensity values acquired 
alongside the range measurements. Therefore we will examine
the results of a beam hitting a homogeneous surface
perpendicular to the beam propagation direction assuming
uniform reflectance for the surface.

An analysis of the spatial beam profile (Jutzi et al., 2002) has 
shown that it can be approximated by a radially symmetric
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Figure 2. Edge estimation (Pixels labelled I are inner region pixels, O are outside pixels, and B are boundary pixels):

a) sample of edges 1, 2 and 3, b) estimated edges by considering the distance from the beam center d,
c) possible edges tangential to two circles, d) final edge by using the signs of di

Gaussian distribution for the sake of simplicity. For the case of 
the beam partially hitting the surface, we assume the object
edge to be straight. In reality, this is not a very strong demand,
since the edge has to be essentially straight only for the extent 
of the beam. Furthermore, we let the edge be parallel to the y-
coordinate axis. Because of the radial symmetry of the beam
profile, the results can then be generalized to arbitrary edge 
orientations. If we let d the distance of the surface edge to the
beam center, the standard deviation of the beam profile and P0
the average beam power inside the region (q.v. Section 3.2), we
find the reflected beam power to be 

2 2 2

2 2

2 2
( )

x y xd d
o o

B
P PP d e dx dy e dx  (3) 

This integral can be described by the complementary error 
function

( ) ( )
2
o

B
PP d erfc d  (4) 

Figure 3a shows a plot of the beam intensity versus the edge 
offset. Here, the grid spacing is 2f and the standard deviation of 
the Gaussian used to model the beam profile is f/3.

4.2

4.3 4.4

Sub-pixel edge localization in each pixel

Looking at a boundary pixel, we can easily acquire the edge 
distance from the beam center dS by inverting the above 
relationship (using standard numerical procedures) and 
applying it to the measured return pulse power PB. However, it
is impossible to estimate the edge orientation using only a
single pixel (Figure 2b). Therefore we now have a circle with 
radius dS around the beam center and know that the edge has to
be a tangent to this circle (Figure 3b). 

To determine the orientation of this tangent, and along with it
the orientation of the edge, we have to use neighborhood
information to further restrict the edge hypotheses.

Estimating tangents in 2 neighborhood edge pixels

A very simple approach consists of using a neighborhood 
boundary pixel to reduce the problem’s degrees of freedom. If 
we have hints that both of these pixels belong to the same
straight object edge, we can use their combined information to
estimate the edge. We are looking for a line that is tangential to 
two circles (radii d1 and d2, respectively). This problem
generally has four different solutions (Figure 2c),
mathematically. From the intensity response, we know which 
side of the beam center the tangent passes through, since we 

actually get a signed result for d1 and d2, corresponding to the 
measured intensity being smaller or larger than 50% of the 
intensity inside the region (Figure 3a & b). If the signs of these 
two radii are different, the correct edge solution is one of the
two tangents crossing between the circles, else one of the outer 
tangents.

From the segmentation step it is already known which side is
the inner and which is the outer side of the boundary, i.e. we 
know where the boundary is connected to the region. Again,
watching the signs of d1 and d2, we know which of the two 
remaining solutions to choose (Figure 2d, in this case both of 
the signs are negative). 

However, this straightforward approach is very sensitive to
noisy data, since it does not use an over-determined system of 
equations. We will be applying our method to urban areas,
where we assume much longer edges to be present. This full
edge information can be used to gain higher precision results. 

Figure 3. a) Edge  with distance dS, b) Integration over the 
spatial beam profile (the grid spacing is 2f)

Complete edge localization

To use the complete information available for any given edge, 
we first have to determine the set of boundary pixels belonging 
to that edge. In the description of the segmentation algorithm,
we already explained how to find region boundaries (Section 
3.3). This boundary is transformed into a polygon, at first
taking each pixel as a vertex (solid line in Figure 4). If there are
any pixels in this list occurring more than once, all of their 
instances are removed. We do this because we assumed each 

d
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pixel to belong to only one edge, therefore mixed pixels are not
allowed to appear in our calculation. 

This vertex list is then pruned by removing all vertices not 
significantly affecting the polygon contour. This is achieved by
tentatively removing each vertex in turn from the contour
(dashed line) and calculating the distance of the new polygon
(dotted line) to all boundary pixels along this edge. If the largest 
of these distances g is smaller than one half pixel, the vertex is
removed permanently. This step is repeated until no more
vertices can be removed.

Figure 4. Region boundary simplification

The last polygon found in this fashion is now a pixel-precise
estimate of the region boundary, composed of a minimal
number of vertices and edges of maximal length. To increase 
the precision of our estimates for each of these edges, we select
the set of all boundary pixels along this edge, leaving out the 
vertices themselves because of our assumption of pixels fully
belonging to straight edges. 

For this set of k points, 

 (5) 2
{1,2,3, , }( )i i kp

we calculate the edge distances di from the pixel intensity and
solve the optimization problem

2

1

1 (
2

k

i
i

)iJ np c d
k

 (6) 

for the edge normal and the edge offset to the coordinate 
origin c.

n

As we see, the functional connection between PB and d does not 
appear in the formula. Therefore the above problem is a fairly
standard optimization problem. Going back to the image, if we 
replace each intensity value PB by the associated value d,
Equation 6 corresponds to a standard edge localization problem
in grayscale images. However, we now have the advantage of 
knowing our edge models exactly and can present a finer 
solution than those typically found for passive imagery.
Parameterizing the edge normal n by its direction ( n = (cos ,
sin )), we have a simple two-dimensional optimization
problem, though it is nonlinear in . We solve for  using the 
trust region approach by Coleman & Li (1996). The edge offset
to the origin c can then be estimated by

1

1ˆ ( ) :
k

i i
i

c np d n p
k

d

4.5

 (7) 

which is very simple to solve. 

Estimating vertices 

Due to the modeling approach, our edge model is correct only
for straight edges and incorrect for vertices or curves. Therefore 
we have been explicitly leaving out corner pixels in the edge
localization step. Do determine the vertices of the depicted
geometry, we calculate the intersections of every pair of 
neighboring edges. 

We chose this approach since the connection of vertex location 
with the measured intensity is very ambiguous. Furthermore,
corners are usually darker and thus more strongly affected by
the detector noise. Tying their information in to our
optimization problem would complicate matters, remove the
independence of neighboring edge localization problems, and 
does not promise much gain. 

5. EXPERIMENTAL VALIDATION 

To test the algorithms, we created several images with various
resolutions, by the method described in Section 2. The example
presented here has a size of ten by ten pixels. In all of the 
images, the solid line is the ground truth geometry used for 
image generation, whereas the dashed line shows the result of 
the individual processing steps. 

The range image depicted in Figure 5a is actually a range 
segmentation result, i.e. the white pixels designate returns from
the examined surface. Figure 5b shows the intensity
measurement at the range of the surface. The image was
brightened to enhance the visibility of the overlay lines – the 
darkest gray actually stands for zero measured intensity.

The boundary segmentation algorithm presented in Section 3.3
results in the boundary polygon shown in Figure 5c. The
boundary simplification method (Section 4.4) reduces this
polygon to the correct five vertices, resulting in Figure 5d.
These two images are typical results using only pixel-precise 
edge localization (for example, if no intensity information is 
available).

The next image (Figure 5e) shows the corner and boundary
masks used for the sub-pixel edge localization algorithm. The 
black pixel [3|2] is a boundary pixel, but it was not used for
boundary simplification and edge localization, since it belongs 
to two of our edges (compare Figure 5c). The image in 
Figure 5f shows the result of the sub-pixel edge localization. 

Figure 6a and b show two tests with noisy images. For both of
these images, it has been assumed that the proper region 
boundary pixels can still be extracted from the waveform
information. For Figure 6a, Gaussian noise with standard
deviation 0.1 has been applied to the image. Figure 6b shows 
the limits of the algorithm at a noise level of 0.3. 

Orientation error [°] A B C D E
 Noiseless case 0.00 0.64 1.21 0.04 0.00
Noise 0.1 2.33 1.86 0.19 0.13 2.77
Noise 0.3 12.6 0.34 39.7 15.9 1.84

Table 1. Edge orientation errors in degrees; Edge A is the
horizontal edge at the top of the image, the remaining
edges follow clockwise. 

Localization error [pixels] A B C D E
 Noiseless case 0.09 0.05 0.06 0.05 0.03
Noise 0.1 0.24 0.20 0.13 0.12 0.21
Noise 0.3 0.72 0.30 1.04 0.68 0.09

Table 2. Edge localization errors in pixels; The localization
error measures the maximum distance of the vertices
of the edge estimate to the straight line extension of
the ground truth edge. 

The results of the edge localization are very accurate, despite
the low resolution. The vertex positions are generally precise up 
to about a tenth to a twentieth of a pixel. Tables 1 and 2 give a 
detailed result of the errors acquired for the edges. While the
performance of the algorithm degrades with noisy data, it is 

g
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evident that longer edges serve to stabilize the results. Edge B, 
being the longest edge in the test image, gets quite acceptable 
results even at very high noise levels. 

In this work we only considered plane surfaces, fully ignoring 
the range information except for segmentation purposes. The
problems of edge localization in lateral and in range direction 
are independent of each other and can therefore be tackled
separately. Especially in the case of roofs, where the ridge can
sometimes not be extracted in the intensity image, a further 
examination of the geometry in range direction is important.

Also, adjoining surfaces sharing a common edge should be 
investigated. In this case, we might want to determine one edge 
using the information from both surfaces instead of two
different edges. A typical example for this is a building roof
edge, which is usually exactly above an edge between the wall 
of the building and the ground. 

6. CONCLUSION

We have presented a scheme to extract the geometry of man-
made objects from laser scanning images under the
consideration of the intensity value for each received laser
pulse. We have shown that using a laser scanner capable of full
waveform processing, edge localization precision can be 
increased by a factor of at least ten. For the actual sub-pixel

localization algorithm the knowledge of a first pulse intensity
image would be sufficient. However, the additional information
leads to a much more stable segmentation and consequently
higher precision edges. The data generation and analysis we 
carried out are general investigations for a laser system which 
records the waveform of laser pulses. The method remains to be 
tested with real data, and expanded to handle more complex
geometries (e.g. vehicles, buildings). 

a b

c d

e f
Figure 5. 10x10 source images and results: 

a) Range image with overlaid ground truth
geometry

b) Brightened intensity image with ground truth 
c) Boundary extraction result 
d) Boundary simplification result (dashed) versus 

ground truth (solid) 
e) Boundary and corner masks
f) Result of sub-pixel edge localization 

a b
Figure 6. Noisy source images and results: 

a) Noise standard deviation 0.1 
b) Noise standard deviation 0.3 
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Abstract

The latest developments in laser scanners allow capturing and digitizing of the full waveform of the backscattered pulse. The
waveform can be analyzed for measurement features such as range, reflectance values and spreading of the pulse. These features
are used to distinguish between locally planar surface elements and partly penetrable objects caused by partial occlusions. This pre-
segmentation and the derived range values are used to automatically generate surface primitives in the form of planes. This allows
refining each range value taking the surface geometry in a close neighborhood into account. To refine the modeling of the surface,
partly occluded surface areas are extended by prediction of the expected range values. This prediction is further improved by
considering the surface slope for the estimated received waveform. Then the point cloud associated with the surface is enhanced by
additional range values that were missed in the first processing step due to weak signal response. This procedure is repeated several
times until all useful range values are considered to estimate the surface.
© 2007 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

Keywords: Laser scanning; Waveform analysis; Feature extraction

1. Introduction

The generation of accurate 3D models from laser
scanning data for a description of man-made objects is of
great interest in photogrammetric research. Detailed
description of objects such as buildings requires sampling
the surface as a point cloud as dense and complete as
possible. However, depending on the scene and the point
of view of the laser scanning system, foreground objects
like trees in the line of sight of the laser beam interrupt the
uniform sampling of the surfaces. These gaps in the
sampling of the surface are called partly occluded regions.
Maas (2000) included a discussion about partly occluded

regions in his work on TIN (Triangulated Irregular
Network) structures and least-squares matching. A
different strategy to handle gaps in the point cloud is the
application of morphological operations (Gorte and
Pfeifer, 2004). Morphological operations can also be
used in the case that no reflections of the region can be
measured due to total occlusion by an impervious object.
However, vegetation often shows a semi-penetrable
property.

State of the art laser scanning systems allow recording
the first and last pulse or a given number of pulses. While
first pulse registration is the optimum choice to measure
the hull of partially penetrable objects, e.g. canopy of
trees, last pulse registration should be chosen to measure
impenetrable surfaces, e.g. ground surface below vegeta-
tion for airborne applications or a building behind
vegetation for terrestrial applications.
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Recent developments in commercial airborne laser
scanning systems have led to systems such as OPTECH
ALTM 3100, TOPEYE MK II, and TOPOSYS HAR-
RIER 56 (based on RIEGL LMS-Q560) that allow
capturing the waveform:. These systems are specified to
operate with a transmitted pulse width of 4–10 ns at full-
width-at-half-maximum (FWHM) and allow digitization
and acquisition of the waveform with approximately
0.5–1 GSample/s. Detailed overviews for laser scanning
systems are given in (Huising and Gomes Pereira, 1998;
Wehr and Lohr, 1999; Baltsavias, 1999).

In contrast to airborne systems, the prototype of the
terrestrial laser scanning system ECHIDNA (Lovell
et al., 2003) allows to capture the waveform of the
backscattered pulse. Terrestrial applications often show
a distribution of objects that range from several meters
in the foreground to hundreds of meters in the back-
ground. Multiple reflections of objects within the beam
corridor can be extracted from the full waveform data
(Reitberger et al., 2006; Ullrich and Reichert, 2005).

Assuming that waveforms are sampled with suffi-
ciently high frequency, techniques of digital signal
processing can be applied. Comparing the transmitted
and the received waveform by the cross-correlation
function can improve the range estimation. The argument
of the maximum of the cross-correlation function esti-
mates the range value with higher reliability and accuracy
than the amplitude of the received waveform alone. De-
tails of the improvement can be found in Hofton and Blair
(2002), Jutzi and Stilla (2005), and Thiel et al. (2005).

Different surfaces have to be analyzed for different
applications. For example for urban objects, it is relevant
to deal with objects at different elevations (Brenner et al.,
2001). In rural environments it is relevant to deal with
randomly distributed natural objects (Reitberger et al.,
2006). The impact of the scene on the received waveform
has been discussed using standard examples (Jutzi et al.,
2002; Wagner et al., 2004; Jutzi and Stilla, 2006).

The focus of this work is reconstruction of man-made
objects that can be approximated by planar surfaces. A
robust algorithm for finding planes can be implemented
using the RANSAC algorithm (Fischler and Bolles, 1981;
Hartley and Zisserman, 2000). Many authors have used
RANSAC in 2D for extraction of low parameterized
transformationmodels (Workshop 25Years of RANSAC,
2006). However RANSAC can also be used to fit planes
(Brenner et al., 2001) or cylinders (Beder and Förstner,
2006) to 3D point clouds. While Brenner et al. (2001)
exploit well defined neighborhood relations to bound the
search region for plane primitives, Beder and Förstner
(2006) make no assumptions about the search regions. In
both approaches a coarse estimation of the variance of

point distances to the fitted model is required. The
membership of points to the fitted model is determined by
a constant threshold. Local distortions of the point
distribution caused by details of the object that are not
represented by the model at the given level of detail
(LOD) lead to exclusion of the points related to these
details. This disadvantage can be overcome by an im-
provedRANSACbased on automatic threshold detection.
Speaking precisely, it is possible to capture all points of
the object even when the current model does not fit the
corresponding point cloud exactly at the current LOD.

In this paper, we propose a method for iterative
knowledge-based processing of terrestrial laser scanning
data by full waveform analysis. The approach that we
present improves the point density and accuracy of the
range values. Furthermore, it allows closing gaps in partly
occluded surface regions by knowledge-based search.

In Section 2, the surface response of a planar surface
with slope is derived. Using this surface response, the
corresponding range value is estimated and the
correlation function is analyzed. The derived property
values are used in a pre-segmentation to separate locally
planar surface elements from partly penetrable objects.
The result of this process is used to extract surface
primitives by RANSAC with automatic threshold
selection. In an iterative processing step the slope of
the surface is used to improve the accuracy of the range
value by increasing the cross-correlation between the
received waveform and the expected surface response.
This procedure requires the assumption that the surface
is locally planar. In Section 3, outdoor experiments with
an experimental laser scanning system capturing an
urban scene are described. The results of the iterative
processing are presented in Section 4. In Section 5 the
improvement of the point clouds and the pre-segmen-
tation are discussed. Section 6 completes the contribu-
tion with a summary of the advantages of our approach
and directions of further research.

2. Methods

The following section describes the whole processing
chain. An overview of the processing chain is depicted
in Fig. 1. First we introduce the concept of estimating
the surface response in Section 2.1. The general
interaction between a surface and a laser pulse is
analyzed. The output of the analysis is the reduction of
the 3D surface characteristic to a 1D range dependent
signal. In the following this signal will be called the
surface response. A theoretical derivation of the surface
response as a function of the slope of a planar surface is
given in Section 2.2. In Section 2.3, we introduce a
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matched filter approach that is used to estimate the range
value and additional features of the response. A method
for pre-segmenting partly penetrable objects is de-
scribed in Section 2.4. The result is a set of 3D points
that are expected to be located on one surface of a
building, e.g. facades or roofs. Here we assume that these
surfaces are locally planar. A method for detecting these
surface primitives using RANSAC is presented in Section

2.5. Section 2.6 addresses the problem of missing
knowledge about the distribution of the 3D points located
on a surface primitive. Section 2.7 closes the processing
loop and gives initial estimates of the surface response for
the matched filter in the next iteration loop.

2.1. Estimating the surface response

The received waveform of a laser pulse depends on
the transmitted waveform s(t), the impulse response h(t)
of the receiver unit, the spatial beam profile of the used
laser P(x,y), and the illuminated surface S(x,y,z).
Specifically the received waveform r(x,y,z,t) can be
expressed by a convolution of these terms,

r x;y;z;tð Þ ¼ s tð Þ⁎h tð Þ⁎P x;yð Þ⁎S x;y;zð Þ; ð1Þ
where (⁎) denotes the convolution operation. The
impulse response consists mainly of the receiving
properties of the photodiode and amplifier that are
used. The spatial beam profile typically takes the shape
of a Gaussian or uniform distribution and the surface
characteristics can be described by the geometry of the
surface and reflectance properties (mixture of diffuse
and specular). We assume a receiver unit consisting of
an ideal photodiode and amplifier with an infinite
bandwidth and a linear frequency characteristic. The 3D
surface characteristic can thus be reduced to the range-
dependent 1D surface response S(z).

An analytical description of the surface response for a
sloped plane surface is derived in the following section.

2.2. Plane surface with slope

We assume the beam profile of our laser to be
uniform (top-hat form), because measurements of the
beam profile in the near field have shown that a uniform
distribution fits our data best (Jutzi and Stilla, 2006).
This is in contrast to the commonly used Gaussian
distribution for the beam profile. The divergence of the
beam is denoted by Θ. The range from the origin to the
idealized plane surface A is denoted by r0A. The angle
between the normal nY of the surface and the optical axis
at the centre of the beam is φ (Fig. 2b).

We use a Cartesian coordinate system for which the
z-axis points in the direction of propagation of the
beam and x is chosen such that nY coincides with the x–z
plane. This implies that small variations in the y direction
have negligible influence on the range value z. The
general form of the beam cone is

x2 þ y2V z tan
H
2

� �2

: ð2Þ

Fig. 1. Flowchart of the processing procedure.
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The illuminated surface area can be parameterized by
Inequality (2) combined with

x sinuþ z cosu ¼ r0A cosu: ð3Þ
Eq. (3) represents the orientation of the surface (Fig. 2).

With

x ¼ r0A � zð Þcotu ð4Þ
and Inequality (2) y is bounded by ymin ¼ � ztanH

2

�� �2�
r0A � zð Þcotuð Þ2Þ0:5 and ymax ¼ ztanH

2

�� �2 � r0A �ðð
zÞcotuÞ2Þ0:5.

The surface response S(z) is directly related to the area
of the illuminated surface at depth z. The choice of the
coordinate system ensures that the range value z is in-
dependent of y. Therefore the surface response is given by

SðzÞ ¼ ymax � ymin

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z tan

H
2

� �2

� r0A � zð Þcotuð Þ2:
s

ð5Þ

As can be seen in Fig. 2a the limits for the range z are
given by the equation ymin=ymax=0. It follows that the
range z is only valid within the range interval

za zmin; zmax½ � ¼ r0A cotu

cotuþ tan H
2

;
r0A cotu

cotu� tan H
2

" #
:

ð6Þ
Substituting z=ct / 2, where c is the speed of light

and t is the travel time, we obtain a temporal description

of the surface response S(t). If the range to the surface is
large compared to the beam diameter, then the surface
response is symmetric.

2.3. Estimating the range value by processing the
correlation coefficient

First the transmitted waveform s(t) and the received
waveform r(t) have to be measured with the receiver
unit of the laser system (Fig. 1(2) and (3)). Then, by the
use of the transmitted waveform s(t) and the modeled
surface response S(t) (Fig. 1(1)) of the known surface
for each position on the surface, the estimated received
waveform r̂ (t) (Fig. 1(3)) is calculated by a convolution
to derive the matched filter. If the surface is unknown, a
sub-optimal matched filter based on the transmitted
waveform s(t) has to be used (dotted line). If the surface
is known, the estimated received waveform r̂ (t) is
compared with the measured waveform r(t) by deter-
mining the normalized cross-correlation function k(τ).
The maximum coefficient of the normalized cross-
correlation function yields accurate range (Fig. 1(3)).

2.3.1. Matched filter approach
The data analysis starts with the detection of the

backscattered pulses in the temporal signal. This signal
is usually disturbed by various noise components:
background radiation, amplifier noise, photo detector
noise, etc. Detecting the received waveform of the
backscattered pulse in noisy data and extracting the
associated travel time is a well-known problem and is
discussed in detail in radar techniques (Skolnik, 1980)
and system theory (Papoulis, 1984). In radar techniques,
these problems are tackled by a matched filter.

To improve the range accuracy and the signal-to-noise
ratio (SNR), the matched filter for the waveform of the
backscattered pulse has to be determined. In practice, it is
difficult to determine the optimal matched filter. In cases
where no optimal matched filter is available, sub-optimal
filters may be used at the cost of decreasing the SNR.

In the simplest case, the received waveform is the
uniformly attenuated (isotropic attenuation by reflection
or transmission of the pulse) copy of the transmitted
waveform. In this case, the transmitted waveform of the
emitted pulse is the best choice for the matched filter.
This is assumed in the first iteration step, where the
surface is unknown. In practice, the received waveform
is influenced by the interaction between the laser beam
and the illuminated surface.

If the surface is known by prior knowledge or rough
estimation from previous iteration, the estimated received
waveform can be determined (Section 2.1). This estimated

Fig. 2. Schematic description of the projected beam (footprint) at a
plane surface. a) Oblique view, b) side view.
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received waveform can be used to improve the matched
filter. To be precise, the estimated received waveform is the
best matched filter if the surface properties are exactly
known.

Let us assume that the noise components of the
system mentioned above are sufficiently described by
white noise with a constant factor N. Let the signal
energy of the pulse be E. The maximum SNR occurs if
the signal and the filter match. In this case, the asso-
ciated travel time t of the delayed pulse is τ and the
SNR is described by

SNR sð Þ ¼ 2E
N

: ð7Þ
An interesting fact of this postulate is that the

maximum of the instantaneous SNR depends only on
the signal energy of the emitted pulse and the noise.

Generally, if the surface is unknown, the matched
filter is computed by the normalized cross-correlation
function Rsr between the transmitted waveform s(t) of
the emitted pulse and the received waveform r(t) of the
backscattered pulse (Fig. 1(2), dotted line). Assuming
zero-mean waveforms, we obtain the output signal Rsr

with a local maximum Isr at the delay time τ via

RsrðsÞ ¼

Z l

t¼�l
s tð Þ � r t þ sð ÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ l

t¼�l
s2 tð Þdt �

Z l

t¼�l
r2 tð Þdt

r : ð8Þ

If the surface is known, the estimated received
waveform r̂ (t) is substituted for the transmitted waveform
s(t) and the normalized cross-correlation function Rr̂ r is
calculated in an analogousmanner. The localmaximumof
Rr̂ r is denoted by Ir̂ r .

2.3.2. Processing the range value
The output signal Rsr with improved SNR is analyzed

by searching for the local maximum to determine the
travel time of the pulse. By using the correlation signal to
calculate the travel time t, higher accuracy is reached than
by operating on the waveform alone (Jutzi and Stilla,
2005). Instead of using a single value of the waveform,
the shape of the waveform can be used to increase the
accuracy. This is because the specific pulse properties
(e.g., asymmetric shape, intensity fluctuations) are taken
into account and so less time-varying influence (jitter) is
expected on range estimation.

2.4. Pre-segmentation

Pre-segmentation (Fig. 1(4)) is used to compute an
initial cue for partially penetrable or partially illuminat-
ed objects and impenetrable surfaces. These surfaces are
the focus of interest in this contribution.

Partially penetrable objects like vegetation spread the
received waveform (Wagner et al., 2004). It is straight-
forward to show that this spreading propagates to the
width W of the cross-correlation function. Since energy
is conserved, the spreading also leads to decreased signal
amplitude. It is again straightforward that the decreased
signal amplitude leads to a decreased maximum I of the

Fig. 4. Transmitted waveform. a) Single example, b) adaptive overlay
of 500 waveforms.

Fig. 3. Example for the automatic threshold detection. a) Smoothed
histogram function: ghist(x_), b) first derivation of the smoothed histogram
function: ghist′(x_), c) normalized histogram function fhist(x_), and
d) mixture fit function f (x_).
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cross-correlation function. Thus a decreased cross-
correlation maximum I and increased width W of the
cross-correlation function will indicate partially pene-
trable objects. From these twomeasures we can compose
the feature

F ¼ 1� Ið ÞW : ð9Þ
The new featureF has the physical interpretation of lost

energy. An energy difference occurs if a surface is only
partially illuminated or the object is partially penetrable.
Using a single threshold we use the new feature F to sepa-
rate points located on impenetrable surfaces from partially
illuminated or partially penetrable objects. This threshold
is derived manually from the histogram of the feature F.

As it will be shown in the next section it is not
important to detect every 3D point located on the
building's surface by the pre-segmentation with a single

threshold. It is more important to exclude the vegetation
from further processing to reduce ambiguities, because,
for example, a virtual plane could be fitted through a
large subset of 3d-points located on aligned trees.
However this plane could have no physical reality and
would therefore belong to no surface primitive.

2.5. Extraction of geometric primitives

The segmentation of Section 2.4 produces a set of 3D
points that are expected to be located on a surface
primitive of a building (Fig. 1(4)). From this set we
generate hypotheses for possible planes in the scene
(Fig. 1(5)) based on the random sample consensus algo-
rithm RANSAC (Fischler and Bolles, 1981). RANSAC
is an architecture for hypothesis generation and testing.
Hypotheses are generated from a minimal set of

Fig. 5. a) Photo of the test SCENE_Awith different urban objects, b) complete 3D point cloud of SCENE_A (APR), c) photo of SCENE_B, d) complete
3D point cloud of SCENE_B.
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correspondences. At least three 3D points are needed to
compute an unique plane. The hypotheses are computed
from a homogeneous representation of the 3D points xYi by
the formula:

B
nY

d

� �
¼ 0

Y
; with B ¼ xY1

1

� �
;
xY2
1

� �
N

xYi
1

� �� �T
;

or
nY

d

� �
¼ argmin

jxj¼1
jjBx jjð Þ:

ð10Þ

The second formulation has to be used in the over
determined case. Here {xY1, xY2, …, xYi} can be any
arbitrary subset of the 3D point cloud with cardinality
iN2. Following the exact RANSAC idea, we use i=3
for the hypothesis generation combined with least
squares optimization (guided matching). The optimiza-
tion is computed from the subset of 3D points that are
initially layered as inliers to the current hypothesis. The
vector [nYT d ]T is the hypothesis of the plane. The first
three components nY describe the orientation of the plane
while d represents the distance to the origin if nY is a unit
vector. With this parameterization, the geometric
distance between the plane and a 3D point xYi is given
by |[nYT d ][ xYi

T 1]T|. Eq. (10) for [nYT d]T is linear and can
be solved directly using singular value decomposition.

Suitable hypotheses are then evaluated by the
number of inliers in the dataset. An initial threshold is
set (0.5 m) and each point is initially called an inlier if
the geometric distance between the plane and the point
is smaller than this threshold. The hypothesis with the
largest number of inliers is our solution. The procedure
of generating and testing is stopped if the probability
that at least one hypothesis was computed only from
inliers is greater than p=95%. The number NH of
needed hypotheses is computed from the formula
(Hartley and Zisserman, 2000):

NH ¼ log 1� pð Þ
log 1� finlier

fpoints

	 
3
� � : ð11Þ

Here #inlier denotes the size of the currently largest
inlier set and #points the size of the 3D point set. The

number finlier
fpoints

	 

is the current estimate for the probability

that a 3D point lies on the largest remaining plane.

2.6. Automatic threshold selection

The computation of the planar surface primitives
(Fig. 1(5)) is based on an initial threshold (0.5 m) for the
distance of points to the plane. The threshold can be
chosen arbitrarily between the accuracy of the range
values and the extension of the smallest plane to detect.
This is sufficient to determine a suitable hypothesis for the
plane but now we have to decide which of the points are
parts of the plane and which are not. This is achieved by
an automatic threshold detection algorithm (Fig. 1 (6)).

We assume that the distribution of the distances ρ
between the estimated plane and the 3D points in the
interval [0; ρmax] is a mixture composed of a narrow
Gaussian with mean μ=0 for the inliers and a uniform
distribution for the outliers. Here ρmax is an arbitrary limit
for the range of interest greater than 2 m. The function

f qð Þ ¼ ae�
q
bð Þ2 þ c for qa 0;qmax½ � ð12Þ

is fitted to the histogram function fhist(ρ) by nonlinear
optimization using the Levenberg–Marquardt algorithm
(Marquardt, 1963). The function fhist(ρ) is constructed
from piecewise linear interpolation of the histogramR,
normalized to

R
ℝ fhist qð Þdq ¼ 1 to be independent of the

number of bins. The residuals f (ρ)− fhist(ρ) are weighted
by the term 3� q

qmax

	 

representing the increasing

uncertainty of our assumption with increasing range to
the plane. Then the resulting equation fcost q;a;b;cð Þ ¼PNB

i¼1
ae�

qi
bð Þ2 þ c� fhist qið Þ

	 
2

3� qi
qmax

	 

is minimized, where ρi

are the bins of the histogram andNB is the number of bins.
Let ghist(ρ) be the convolution of fhist(ρ) with a Gaussian

Table 3
SCENE_B: Surfaces areas and distances between surfaces and the
sensor

SCENE_B surface number 5–8 5 6 7 8

Estimated area of the surface [m2] 134 129 93 16
Distance to center of gravity [m] 63 59 63 93

Table 2
SCENE_B: Surfaces areas and distances between surfaces and the
sensor

SCENE_B surface number 1–4 1 2 3 4

Estimated area of the surface [m2] 59 42 143 42
Distance to center of gravity [m] 113 92 58 98

Table 1
SCENE_A: Surfaces areas and distances between surfaces and the sensor

SCENE_A
FACADE1

SCENE_A
ROOF1

SCENE_A
FACADE2

SCENE_A
ROOF2

Estimated area of
the surface [m2]

232 221 132 60

Distance to center
of gravity [m]

115 118 110 112
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Fig. 6. Oblique view of the pre-segmentation results: Partly penetrable objects (left side) and 3D points corresponding to planar surfaces (right side).
a) and b) APR, c) and d) MAY, e) and f) OCT, g) and h) NOV.
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function with mean μ=0 cm and a standard deviation of
σ=0.1 cm. Then the optimization is initialized by

a0 ¼max fhist qð Þjxa 0; qmax½ �f gð Þ;
b0 ¼ arg max

qa 0;qmax½ �

Aghist qð Þ
Aq

� �
; and

c0 ¼
Z qmax

q¼0m

fhist qð Þ
qmax

dq:

ð13Þ

A typical example for the automatic threshold
detection is depicted in Fig. 3. The solid curve shows

the piecewise linear approximation of the histo-
gram fhist(ρ), the smoothed histogram function ghist
(ρ) is depicted by a dashed curve, the dash–dot
curve shows the first derivative of ghist(ρ) and the
resulting mixture fit function f (ρ) is drawn as a
dotted curve.

The histogram is computedwith 1000 bins. Because of
the normalization used for the histogram, the result f(ρ) is
independent of the number of bins but depends on
quantization effects. These effects are suppressed by low
pass filter, namely the convolution with the Gaussian
function above.

2.7. Computation of the relative surface normal and the
iterative loop

The surface primitives and the corresponding
point sets computed by RANSAC combined with
the automatic threshold detection give us an initial
guess for the scene geometry (Fig. 1 (5) and (6)).
Since high level modeling methods require dense
point clouds, we use this initial cue to improve our
results. The convex hull of a point set is increased
within the surface primitive to estimate the search
region for new points in the scene. The process is
similar to a morphological dilation within the plane
in 3D. The range value z0 of a beam hitting the

Fig. 8. Examples of four different surface primitives. a) SCENE_A{FAÇADE}, b) SCENE_A{ROOF}, c) SCENE_A façade of the second building,
d) SCENE_A roof of the second building.

Fig. 7. Pre-segmentation result of the points labeled impervious
without the main plane of the scene (APR).
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geometric primitive within the increased convex hull
is computed by the formula

z0 ¼ �d= vYT nY: ð14Þ
Again the vector [nYT d ]T represents the geometric

primitive as described in Section 2.5 and vY is the
normalized direction of the laser beam.

The computed angle between the normal vector of
the surface and the laser beam is used to calculate
the expected surface response (Fig. 1 (7) and (1)).
This surface response is used to increase the cross
correlation function between the expected and the
measured waveform. Since we have already computed
the direction vector of the laser beam vY, the angle

Fig. 9. Complete set of surface primitives detected in the SCENE_A (APR). a) Before iteration, b) after iteration. Complete set of surface primitives detected in
the SCENE_A (MAY). c)Before iteration, d) after iteration. The complete set of evaluated surface primitives in SCENE_B. e)Before iteration, f) after iteration.
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between the laser beam and the surface normal nY is
given by

u
w ¼ arc cos vYT nY

� �
: ð15Þ

This can be used with Eq. (5) and z0 from Eq. (14) to
compute the resulting surface response

S z;u
w� � ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z tan

H
2

� �2

� z0 � zð Þcotuw� �2
:

s
ð16Þ

The estimated surface response S(z,uw) can now be
used as prior knowledge in the matched filter approach
described in Section 2.3.1.

3. Experiments

3.1. Laser scanning system

An experimental setup that allows capturing the
waveform was built to explore the capabilities of the
laser scanning system described in Section 2. The laser
scanning system has three main components: an emitter
unit, a motion control unit, and a receiver unit.

We use a laser pulse system with a pulse duration of
5 ns at full-width-at-half-maximum (FWHM) and a high
repetition rate (42 kHz). The peak power of the laser is
up to 10 kW. The multi-mode erbium fiber laser operates
at a wavelength of 1550 nm with a beam divergence of
1 mrad. The system uses a photodiode to pump the
multi-mode fiber cavity and a fiber amplifier. The
transmitted waveform shows strong random modulation
for each emitted pulse. In Fig. 4 a single example of the
transmitted waveform and an adaptive overlay of 500
transmitted waveforms is depicted to make the strong
random modulation clear.

For the 2D scanning process, a moving mirror is used
for an elevation scan with ±15 degrees in vertical
direction (320 raster steps) and a rotation stage for an
azimuth scan with 360 degree rotation in the horizontal
direction (variable number and spacing of the raster
steps). For the experiments, we selected 60° (600 raster

steps) for equiangular spacing of approximately 0.1° in
vertical and horizontal direction.

For our investigations we use a receiver with a
bandwidth of 250 MHz containing a PIN photodiode
sensitive at wavelengths of around 900 to 1700 nm.
Furthermore, we use an A/D converter with 20 GSam-
ples/s. The A/D conversion and digital recording is
accomplished by using a digital memory oscilloscope
(Le Croy – Wavemaster 8600A), where the bandwidth
of the oscilloscope is limited to 6 GHz.

3.2. Data acquisition

We used four datasets of SCENE_A (Fig. 5a, b) and
one dataset of SCENE_B (Fig. 5 c, d) to assess the
algorithms and to demonstrate the performance of our
methodology. The datasets were taken in April (APR),
May (MAY), October (OCT), and November (NOV) for
SCENE_A and in February for SCENE_B. The sensor
platform were placed at a height of 15 m for SCENE_A
and 23 m for SCENE_B. Objects in the scene are
buildings, streets, vehicles, parking lots, meadow,
bushes, and trees. The scenes do not include coniferous
trees but do include deciduous trees (birches and
chestnuts). Some objects are partly occluded and the
materials have different reflectance properties.

Since the evaluation would not be reliable on small
surface patches (Fig. 10), we focus on two large surfaces
in SCENE_A: SCENE_A{ROOF} and SCENE_A
{FAÇADE}. The area size of the evaluated surfaces
and their distances (center of gravity) to the sensor are
depicted in Tables 1, 2 and 3.

The pre-segmentation is influenced by the foliage of
the trees. Fig. 6 shows an oblique view of the partial
penetrable 3D point cloud (left side) and the pre-
segmentation results (right side) of all SCENE_A
datasets. The evaluation shows that pre-segmentation
is much easier if the trees are leafy. This was expected
since leafy trees spread the waveform. For clarity the
pre-segmentation result of the APR scene is shown
without the main scene plane in Fig. 7. The detected

Table 4
Results of the evaluation methods for the surface primitive SCENE_A{FAÇADE}

SCENE_A{FAÇADE} APR MAY OCT NOV

Median angle uw between surface and beam 10.4° 8.7° 8.3° 8.5°
μ mean of the improvements Ui [10–3] 0.752 [10–3] 0.637 [10–3] 0.537 [10–3] 0.705
r standard deviation of the improvements Ui [10–3] 0.629 [10–3] 0.479 [10–3] 0.384 [10–3] 0.583
Probability P(lN0) (Eq. (17)) 90% 90% 92% 89%
# points on plane without iteration 4038 1830 3207 4102
# points on plane after iteration 6013 3641 4398 4588
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surface primitives SCENE_A{ROOF} and SCENE_A
{FAÇADE} of the two buildings are shown in Fig. 8.
Beside SCENE_A, a second urban scene was processed.
SCENE_B is more complex, with many occlusions and
objects of various sizes with dimensions of 15–400 m.

4. Results

We evaluate our results quantitatively with the
evaluation methods described in Section 4.1. A visual
impression of the results is presented in Fig. 9. All 3D
points located on the evaluated surfaces and the main
scene plane are shown before and after the iteration
procedure. The ground surface is only shown for
visualization purposes. In Section 4.3, we focus on the
influence of the surface response on the maximum of the
cross-correlation function.

4.1. Evaluation methods

We evaluate our results using two different measures.
The first measure quantifies the increase of the cross-

correlation value computed in the matched filter by
using the estimated surface normal. This evaluation also
tests our theory of the surface response. If the surface
response is modeled correctly, the use of the surface
normal should increase the cross-correlation value
between the estimated received waveform and the
measured received waveform. The evaluation is con-
ducted using the 3D points located on the detected
planes. If the estimation is not improved, the “improve-
ments” Φi= Ir̂ r− IST will be normally distributed with
zero mean. The improvements Φi are defined by the
local maxima of the cross-correlation functions de-
scribed in Section 2.3.1. The first measure is the mean μ
of the improvements Φi for each surface.

We now assume that the improvements Φi are
normally distributed and we compute their standard
deviation σ. Combining μ and σ into the cumulative
probability density function Φμσ for the normal
distribution, we can compute the probability of the
hypothesis that the improvements Φi have a positive
mean μN0 by

PðlN0Þ ¼ 1� Ulrð0Þ ¼ 1�
Z 0

�l

1

r
ffiffiffiffiffiffi
2p

p e
� x�lð Þ2

2r2 dx

ð17Þ
The second measure is the power of the 3D point set

(number of elements) located on the estimated planes.
Tables 4–6 show the power of the 3D point sets before
and after iteration. The additional points were not
detected in the initial processing step.

4.2. Numerical results

Tables 4–6 are computed with the method described
in Section 4.1. In SCENE_A we focus on the surfaces
SCENE_A{FAÇADE} and SCENE_A{ROOF}. They
provide reliable results because of their large size.
The dependence of the reliability of the results on the
size can be seen in Fig. 10 and is further analyzed
in Section 4.3. Table 6 shows the results for eight

Table 6
Results of the evaluation methods for the SCENE_B

SCENE_B 1 2 3 4 5 6 7 8

Median angle uw 6.8° 7.8° 15.9° 16.3° 27.8° 35.8° 37.5° 38.4°
l mean [10–3] 0.40 [10–3] 0.36 [10–3] 0.49 [10–3] 0.96 [10–3] 1.3 [10–3] 1.8 [10–3] 2.3 [10–3] 4.1
r standard deviation [10–3] 0.17 [10–3] 0.12 [10–3] 0.22 [10–3] 0.48 [10–3] 0.9 [10–3] 1.2 [10–3] 1.6 [10–3] 3.2
Probability P(lN0) 99% 99.8% 98% 98% 93% 92% 92% 90%
# without iteration 682 1306 10912 1114 7839 6364 4219 371
# after iteration 889 1494 13502 1390 9976 7986 5342 525

Table 5
Results of the evaluation methods for the surface primitive SCENE_A
{ROOF}

SCENE_A
{ROOF}

Apr May Oct Nov

Median angle uw

between surface
and beam

37.2° 40.2° 40.55° 40.3°

l mean of the
improvements Ui

[10–3] 6.9 [10–3] 9.9 [10–3] 7.4 [10–3] 6.6

r standard
deviation of the
improvements Ui

[10–3] 4.2 [10–3] 3.2 [10–3] 3.9 [10–3] 3.5

Probability
P(lN0)
(Eq. (17))

94.5% 99% 97% 98%

# points on plane
without iteration

4701 4615 5565 2814

# points on plane
after iteration

5543 5259 6037 4025
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randomly chosen surfaces of SCENE_B. Tables 4–6
show the results of the evaluation methods described in
Section 4.1.

4.3. Improvements depending on the surface response

Fig. 10 shows the 8 histograms of the improvements
Φi evaluated for the surfaces of SCENE_B. The
improvements Φi are approximately normally distribut-
ed. Mean and standard deviation rise with increasing
surface slope.

Surfaces elements with a large area (Fig. 10 c, e, f, g)
provide many 3D points that can be analyzed. Therefore
the histogram is similar to a continuous distribution of
the improvements Φi. In addition to this it is known that
the standard deviation of the mean estimation decreases
with 1ffiffiffiffiffiffi

n�1
p where n is the number of measurements that

contribute to the mean.
Fig. 11. Histogram of the angles estimated by the surface responses
(SCENE_A{ROOF}).

Fig. 10. Histograms of the cross-correlation improvements Φi for all evaluated surfaces of SCENE_B with the angles a) 7°, b) 8°, c) 16°, d) 16.5°,
e) 28°, f) 36°, g) 37°, and h) 38°.
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To test the validity of the results we conducted
another experiment: Each range value of SCENE_A
{ROOF} taken in November was reprocessed with
varying assumed surface slope uw in the interval [1°;90°]
and the angle with the maximal cross-correlation was
recorded. The results are shown in Fig. 11. The mean
surface angle was about 40° as can be seen in Table 5.

5. Discussion

The experiments show that the use of the estimated
surface response from the surface normal can increase
the response of the matched filter for feature extraction.
They also show that the methodology still holds in real
life scenarios with low SNR. Tables 4, 5, and 6 show
that the mean μ of the improvements Φi in row 3 is
correlated with the surface slope uw in row 2. But the
standard deviation σ of the improvements Φi in row 4 is
correlated with the slope uw as well. More precisely, if we
can achieve larger improvements Φi by considering the
estimated slope uw, then the variations of the improve-
ments Φi increase (Fig. 10).

As mentioned in Section 2, an increased surface
slope u has the effect of spreading the waveform, which
decreases the amplitude of the waveform due to
conservation of the energy. Therefore the estimated
range value becomes less accurate, independent of the
detection method used, for increasing the surface slope.
Nevertheless the algorithm proposed improves the
detection rate as demonstrated in rows 6 and 7 of
Tables 4–6.

This results show that the surface slope is relevant for
almost every application. For example, actual sensors
like RIEGL LMS-Q560 have a maximum field of view
of 60°. Even if we assuming further a planar scene, the
range variation increases with the angle between the

direction of propagation of the beam and the surface
normal and becomes at least 30°.

In Section 4.1 we assumed that the improvements Φi

can be approximated by a normal distribution. This was
required to compute our evaluation measure, the
probability P(μN0). All histograms in Fig. 10 are
obviously close to a normal distribution which matches
our assumption. Due to noise and numerical effects,
negative improvements Φi can be observed.

The set of points associated with a surface primitive
can be increased between by 10% and 100%. A huge
number of the additional 3D points are located near the
boundaries of the surface, which are the edges of the
object (Fig. 12). If the surfaces are curved, the 3D points
in these regions describe the edges more accurately than
the intersections of the computed planes. Again, we
would like to point out that we see our contribution as an
input for high-level modeling which requires as few
gaps as possible. For example, a method based on 3D
morphological operations, such as that of Gorte and
Pfeifer (2004), would benefit from additional points in
partly occluded regions.

Fig. 9 shows the point sets belonging to the detected
planar surface primitives. Beside these the remaining
points, which were initially detected, might correspond
to partially penetrable objects like vegetation (e.g.,
foliage of trees) but could although correspond to man-
made objects (e.g., fences or street lamps).

The segmentation of vegetation and man-made objects
is required for many applications in urban environments
(Maas and Vosselman, 1999). The application of full-
waveform laser scanning systems in forestry environ-
ments has been demonstrated (Wynne and Nelson, 2006).
In addition to laser scanning data, additional data like
close infrared thermal images are typically used (Haala
and Brenner, 1999) for segmentation.

Fig. 12. Enlargement of the surface boundaries. a) Before iteration data was incomplete at interesting regions like windows, b) after iteration an
improvement is visible with additional points at interesting regions.
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The comparison of the pre-segmentation results of an
identical scene at different times (Fig. 9) shows that the
denser vegetation in summer makes the pre-segmenta-
tion more accurate. This might be caused by the foliage
which leads to a spreading of the received waveform.
This effect can be seen in Fig. 6c and d. For the same
reason, we could detect only a few 3D points occluded
by trees in summer. The effect is visible in Fig. 9c and d
when compared with Fig. 6c. The trees become almost
impervious in leaf-on situations. No reflections can be
measured from the occluded regions.

6. Conclusion

The iterative processing of full waveform laser data
increases the set of 3D points associated with each
surface. Additional 3D points can be detected in partially
occluded and partly illuminated regions. A rough pre-
segmentation can be achieved by a single threshold using
a combination of the width and the amplitude of the cross
correlation function. The use of prior knowledge of the
surface normal improves the range and correlation value.
Vice versa the surface response can be used to compute
the surface normal without prior knowledge but at the cost
of high computational effort. Local plane fitting with
RANSAC is a useful method to compute this surface
normal. The method presented requires full waveform
laser data but is not restricted to terrestrial or airborne laser
scanning systems.

Additional work could be done on analyzing the
improvements of the cross-correlation maximum Φi

depending on the surface slope and reflectance proper-
ties. The next step for a more detailed description of the
scene is to fit quadrics (e.g., cylinders, spheres,
ellipsoids, hyperboloids) to the point clouds. Note here
that planes are degenerate versions of a quadric and are
therefore also described by the same mathematical
model. This means that planes and curved surfaces can
be determined using the same model without detection
of planarity or curvature. Further, the performance of the
RANSAC approach can be improved by using sets of
points in the hypothesis generation step that are
neighbored in a general way, e.g. the distances between
pairs of points in the generation set is bounded.
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ABSTRACT:

Obtaining an appropriate 3D description of the local environment remains a challenging task in photogrammetric research. As terrestrial
laser scanners (TLSs) perform a highly accurate, but time-dependent spatial scanning of the local environment, they are only suited for
capturing static scenes. In contrast, new types of active sensors provide the possibility of simultaneously capturing range and intensity
information by images with a single measurement, and the high frame rate also allows for capturing dynamic scenes. However, due to
the limited field of view, one observation is not sufficient to obtain a full scene coverage and therefore, typically, multiple observations
are collected from different locations. This can be achieved by either placing several fixed sensors at different known locations or by
using a moving sensor. In the latter case, the relation between different observations has to be estimated by using information extracted
from the captured data and then, a limited field of view may lead to problems if there are too many moving objects within it. Hence,
a moving sensor platform with multiple and coupled sensor devices offers the advantages of an extended field of view which results
in a stabilized pose estimation, an improved registration of the recorded point clouds and an improved reconstruction of the scene.
In this paper, a new experimental setup for investigating the potentials of such multi-view range imaging systems is presented which
consists of a moving cable car equipped with two synchronized range imaging devices. The presented setup allows for monitoring
in low altitudes and it is suitable for getting dynamic observations which might arise from moving cars or from moving pedestrians.
Relying on both 3D geometry and 2D imagery, a reliable and fully automatic approach for co-registration of captured point cloud data
is presented which is essential for a high quality of all subsequent tasks. The approach involves using sparse point clouds as well as a
new measure derived from the respective point quality. Additionally, an extension of this approach is presented for detecting special
objects and, finally, decoupling sensor and object motion in order to improve the registration process. The results indicate that the
proposed setup offers new possibilities for applications such as surveillance, scene reconstruction or scene interpretation.

1 INTRODUCTION

An appropriate 3D description of the local environment is repre-
sented in the form of point clouds consisting of a large number of
measured 3D points and, optionally, different attributes for each
point. Such point clouds can directly be acquired with different
scanning devices such as terrestrial laser scanners (TLSs), time-
of-flight (ToF) cameras or devices based on the use of structured
light. However, a single scan often is not sufficient and hence,
multiple scans have to be acquired from different locations in or-
der to get a full scene coverage. As each captured point cloud
represents 3D information about the local area only with respect
to a local coordinate frame, a basic task for many applications
consists of a point cloud registration. This process serves for es-
timating the transformation parameters between different point
clouds and transforming all point clouds into a common coordi-
nate frame. Existing techniques for point cloud registration rely
on

• 3D geometry,

• 3D geometry and the respective 2D representation as range
image and

• 3D geometry and the corresponding 2D representation of
intensity values.

Standard approaches involving only the spatial 3D information
for calculating the transformation parameters between two par-
tially overlapping point clouds are based on the Iterative Closest
Point (ICP) algorithm (Besl and McKay, 1992) and its variants

(Rusinkiewicz and Levoy, 2001). Iteratively minimizing the dif-
ference between two point clouds however shows a high compu-
tational effort for large numbers of points. Hence, other regis-
tration approaches are based on information extracted from the
point clouds. This information may for instance be derived from
the distribution of the points within each point cloud by using the
normal distributions transform (NDT) either on 2D scan slices
(Brenner et al., 2008) or in 3D (Magnusson et al., 2007). If the
presence of regular surfaces can be assumed in the local environ-
ment, various types of geometric features are likely to occur, e.g.
planes, spheres and cylinders. These features can directly be ex-
tracted from the point clouds and strongly support the registration
process (Brenner et al., 2008; Pathak et al., 2010; Rabbani et al.,
2007). In cluttered scenes, descriptors representing local surface
patches are more appropriate. Such descriptors may be derived
from geometric curvature or normal vectors of the local surface
(Bae and Lichti, 2008).

As the scans are acquired on a regular grid resulting from a cylin-
drical or spherical projection, the spatial 3D information can also
be represented as range image. This range image provides addi-
tional features such as distinctive feature points which strongly
support the registration process (Barnea and Filin, 2008; Steder
et al., 2010).

Currently, most of the scanning devices can not only capture
3D information but also either co-registered camera images or
panoramic reflectance images representing the respective energy
of the backscattered laser light. The additional information typ-
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ically is represented as intensity image. This intensity image
might provide a higher level of distinctiveness than shape fea-
tures (Seo et al., 2005) and thus information about the local en-
vironment which is not represented in the range measurements.
Hence, the registration process can efficiently be supported by
using reliable feature correspondences between the respective in-
tensity images. Although different kinds of features can be used
for this purpose, most of the current approaches are based on the
use of feature points or keypoints as these tend to yield the most
robust results for registration without assuming the presence of
regular surfaces in the scene. Distinctive feature points simplify
the detection of point correspondences and for this reason, SIFT
features are commonly used. These features are extracted from
the co-registered camera images (Al-Manasir and Fraser, 2006;
Barnea and Filin, 2007) or from the reflectance images (Wang and
Brenner, 2008; Kang et al., 2009). For all point correspondences,
the respective 2D feature points are projected into 3D space us-
ing the spatial information. This yields a much smaller set of 3D
points for the registration process and thus a much faster estima-
tion of the transformation parameters between two point clouds.
Furthermore, additional constraints considering the reliability of
the point correspondences (Weinmann et al., 2011; Weinmann
and Jutzi, 2011) allow for increasing the accuracy of the registra-
tion results.

Once 2D/2D correspondences are detected between images of
different scans, the respective 3D/3D correspondences can be de-
rived. Thus knowledge about the closest neighbor is available
and the computationally expensive ICP algorithm can be replaced
by a least squares adjustment. Least squares methods involv-
ing all points of a scan have been used for 3D surface matching
(Gruen and Akca, 2005), but since a large overlap between the
point clouds is required which can not always be assumed, typi-
cally sparse 3D point clouds consisting of a very small subset of
points are derived from the original 3D point clouds (Al-Manasir
and Fraser, 2006; Kang et al., 2009). To further exclude unre-
liable 3D/3D correspondences, filtering schemes based on the
RANSAC algorithm (Fischler and Bolles, 1981) have been pro-
posed in order to estimate the rigid transformation aligning two
point clouds (Seo et al., 2005; Böhm and Becker, 2007; Barnea
and Filin, 2007).

For dynamic environments, terrestrial laser scanners which per-
form a time-dependent spatial scanning of the scene are not suited.
Furthermore, due to the background illumination, monitoring out-
door environments remains challenging with devices based on
structured light such as the Microsoft Kinect device which uses
random dot patterns of projected infrared points for getting re-
liable and dense close-range measurements in real-time. Hence,
this paper is focused on airborne scene monitoring with range
imaging devices mounted on a sensor platform. Although the
captured point clouds are corrupted with noise and the field of
view is very limited, a fast, but still reliable approach for point
cloud registration is presented. The approach involves an ini-
tial camera calibration for increased accuracy of the respective
3D point clouds and the extraction of distinctive 2D features.
The detection of 2D/2D correspondences between two succes-
sive frames and the subsequent projection of the respective 2D
points into 3D space yields 3D/3D correspondences. Using such
sparse point clouds significantly increases the performance of the
registration process, but the influence of outliers has to be con-
sidered. Hence, a new weighting scheme derived from the re-
spective point quality is introduced for adapting the influence of
each 3D/3D correspondence on a weighted rigid transformation.
Additionally, an extension of this approach is presented which is
based on the already detected features and focuses on a decou-
pling of sensor and object motion.

The remainder of this paper is organized as follows. In Section 2,
the proposed methodology for successive pairwise registration in
dynamic environments is described as well as a simple extension
for decoupling sensor and object motion. The configuration of
the sensor platform is outlined in Section 3. Subsequently, the
performance of the presented approach is tested in Section 4. The
derived results are discussed in Section 5. Finally, in Section 6,
the content of the entire paper is concluded and suggestions for
future work are outlined.

2 METHODOLOGY

The proposed methodology provides fast algorithms which are
essential for time-critical surveillance applications and should be
capable for a real-time implementation on graphic processors.
After data acquisition (Section 2.1), a preprocessing has to be
carried out in order to get the respective 3D point cloud (Section
2.2). However, the point cloud is corrupted with noise and hence,
a quality measure is calculated for each point of the point cloud
(Section 2.3). Subsequently extracting distinctive features from
2D images allows for detecting reliable 2D/2D correspondences
between different frames (Section 2.4), and projecting the respec-
tive 2D points into 3D space yields 3D/3D correspondences of
which each 3D point is assigned a value for the respective point
quality (Section 2.5). The point cloud registration is then carried
out by estimating the rigid transformation between two sparse
point clouds where the weights of the 3D/3D correspondences are
derived from the point quality of the respective 3D points (Sec-
tion 2.6). Finally, a feature-based method for object detection and
segmentation is introduced (Section 2.7) which can be applied for
decoupling sensor and object motion.

2.1 Data Acquisition

In contrast to the classical stereo observation techniques with pas-
sive sensors, where data from at least two different viewpoints
has to be captured, the monostatic sensor configuration of the
PMD[vision] CamCube 2.0 preserves information without the
need of a co-registration of the captured data. A PMD[vision]
CamCube 2.0 simultaneously captures various types of data, i.e.
geometric and radiometric information, by images with a single
shot. The images have a size of 204 × 204 pixels which corre-
sponds to a field of view of 40◦× 40◦. Thus, the device provides
measurements with an angular resolution of approximately 0.2◦.
For each pixel, three features are measured, namely the respec-
tive range R, the active intensity Ia and the passive intensity Ip.
The active intensity depends on the illumination emitted by the
sensor, whereas the passive intensity depends on the background
illumination arising from the sun or other external light sources.
As a single frame consisting of a range image IR, an active in-
tensity image Ia and a passive intensity image Ip can be updated
with high frame rates of more than 25 releases per second, this
device is well-suited for capturing dynamic scenes.

2.2 Preprocessing

In a first step, the intensity information of each frame, i.e. Ia and
Ip, has to be adapted. This is achieved by applying a histogram
normalization of the form

In =
I − Imin

Imax − Imin
· 255 (1)

which adapts the intensity information I of each pixel to the in-
terval [0, 255]. The modified frames thus consist of a normalized
active intensity image In,a, a normalized passive intensity image
In,p and the range image IR which are illustrated in Figure 1.
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For all subsequent tasks, it is essential to get the 3D informa-
tion as accurate as possible. Due to radial lens distortion and
decentring distortion, however, the image coordinates have to
be adapted in order to be able to appropriately capture a scene.
Hence, a camera calibration is carried out for the used devices.
This yields a corrected grid of image coordinates with the prin-
cipal point as origin of the new 2D coordinate frame. For each
point x = (x, y) on the new grid, the respective 3D informa-
tion in the local coordinate frame can then be derived from the
measured range value R with

R =
√
X2 + Y 2 + Z2 (2)

and a substitution of X and Y with

X =
x

fx
· Z and Y =

y

fy
· Z (3)

where fx and fy are the focal lengths in x- and y-direction. Solv-
ing for the depth Z along the optical axis yields

Z =
R√(

x
fx

)2
+
(

y
fy

)2
+ 1

(4)

and thus, the 3D point X = (X,Y, Z) corresponding to the 2D
point x = (x, y) has been calculated. Consequently, the undis-
tortion of the 2D grid and the projection of all points onto the new
grid lead to the respective point cloud data.

Figure 1: Image representation of normalized active intensity,
normalized passive intensity and range data.

2.3 Point Quality Assessment

For further calculations, it is feasible to derive a measure which
describes the quality of each 3D point. Those points which arise
from objects in the scene will probably provide a smooth surface,
whereas points corresponding to the sky or points along edges of
the objects might be very noisy. Hence, for each point on the reg-
ular 2D grid, the standard deviation σ of all range values within a
3× 3 neighborhood is calculated and used as a measure describ-
ing the reliability of the range information of the center point.
This yields a 2D confidence map according to which the influ-
ence of a special point on subsequent tasks can be weighted. For
the example depicted in Figure 1, the corresponding confidence
map is shown in Figure 2.

Figure 2: Range image, confidence map (pseudo-color represen-
tation where reliable points are marked in red and unreliable ones
in blue) and thresholded confidence map (green: σ ≤ 0.05 m).

2.4 2D Feature Extraction

As each frame consists of range and image data acquired on a reg-
ular grid, the alignment of two point clouds is based on using both

kinds of information. However, instead of using the whole 3D in-
formation available which results in a high computational effort,
the intensity information is used to derive a much smaller set of
3D points. Hence, distinctive 2D features are extracted from the
intensity information which later have to be projected into 3D
space. For this purpose, the Scale Invariant Feature Transform
(SIFT) (Lowe, 2004) is carried out on the normalized active in-
tensity image as well as on the normalized passive intensity im-
age. This yields distinctive keypoints and the respective local
descriptors which are invariant to image scaling and image rota-
tion, and robust with respect to image noise, changes in illumina-
tion and small changes in viewpoint. The vector representation
of these descriptors allows for deriving correspondences between
different images by considering the ratio

r =
d(N1)

d(N2)
(5)

where d(Ni) with i = 1, 2 denotes the Euclidean distance of a
descriptor belonging to a keypoint in one image to the i-th near-
est neighbor in the other image. This ratio r ∈ [0, 1] describes
the distinctiveness of a keypoint. Distinctive keypoints arise from
low values and hence, the ratio r has to be below a certain thresh-
old tdes. Typical values for this threshold are between 0.6 and
0.8. This procedure yields na correspondences between the nor-
malized active intensity images of the two frames and np corre-
spondences between the normalized passive intensity images. For
the registration process, it is not necessary to distinguish between
the two types of correspondences as only the spatial relations are
of interest. Hence, a total number of n = na + np correspon-
dences is utilized for subsequent tasks.

2.5 Point Projection

In contrast to the measured range and intensity data which are
only available on a regular grid, the location of SIFT features is
determined with subpixel accuracy. Hence, an interpolation has
to be carried out in order to obtain the respective 3D information
as well as the respective range reliability. For this purpose, a bi-
linear interpolation is used. Assuming a total number of m SIFT
features extracted from an image, this yields a set of samples si
with i = 1, . . . ,m which are described by a 2D location xi, a 3D
location Xi and a quality measure σi. Compared to the original
point cloud, the derived 3D points Xi represent a much smaller
point cloud where each point is assigned a quality measure σi.

Extending this on two frames with m1 and m2 SIFT features,
between which n ≤ min{m1,m2} correspondences have been
detected, yields additional constraints. From the set of all n cor-
respondences, it is now possible to derive subsets of

• 2D/2D correspondences xi ↔ x′i which can be used for
image-based techniques, e.g. using the fundamental matrix
(Hartley and Zisserman, 2008),

• 3D/3D correspondences Xi ↔ X′i which can be used for
techniques based on the 3D geometry such as the ICP algo-
rithm (Besl and McKay, 1992) and approaches estimating a
rigid or non-rigid transformation, or

• 3D/2D correspondences Xi ↔ x′i which can be used for
hybrid techniques such as the methods presented in (Wein-
mann et al., 2011) and (Weinmann and Jutzi, 2011) which
involve the EPnP algorithm (Moreno-Noguer et al., 2007).

The additional parameters σi can also be included for weighting
the influence of each correspondence on any of the algorithms
described above.
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2.6 Point Cloud Registration

The spatial relation between two point clouds with n 3D/3D cor-
respondences Xi ↔ X′i with Xi,X

′
i ∈ R3 can formally be

described as
X′i = RXi + t (6)

where R ∈ R3×3 represents a rotation matrix and t ∈ R3 rep-
resents a translation vector. A fully automatic estimation of the
transformation parameters can be derived from minimizing the
error between the point clouds. Including a weightingwi ∈ R for
each 3D/3D correspondence Xi ↔ X′i yields an energy function
E with

E =

n∑

i=1

wi‖X′i − (RXi + t) ‖2 (7)

for the registration process. For minimizing this energy function
E, the registration is carried out by estimating the rigid trans-
formation from all 3D/3D correspondences and the weigths are
derived from a histogram-based approach. This approach is ini-
tialized by dividing the interval [0m, 1m] into nb = 100 bins of
equal size. For all detected correspondences, the calculated qual-
ity measures σi and σ′i assigned to the 3D points Xi and X′i are
mapped to the respective bins bj and b′j . Points with standard
deviations greater than 1 m are mapped to the last bin. The oc-
currence of mappings to the different bins is stored in histograms
h = [hj ]j=1,...,100 and h′ =

[
h′j
]
j=1,...,100

. Subsequently, cu-
mulative histograms

hc =

[
i∑

j=1

hj

]

i=1,...,100

and h′c =

[
i∑

j=1

h′j

]

i=1,...,100

are derived. The entries of the cumulative histograms reach from
0 to the number n of detected correspondences. As points with
a low standard deviation are more reliable, they should be as-
signed a higher weight. For this reason, the inverse cumulative
histograms

hc,inv =

[
n−

i∑

j=1

hj

]

i=1,...,100

(8)

and

h′c,inv =

[
n−

i∑

j=1

h′j

]

i=1,...,100

(9)

are calculated. Finally, the weight wi of a 3D/3D correspondence
Xi ↔ X′i is set to

wi = min{hc,inv(σi),h
′
c,inv(σ′i)} (10)

where σi and σ′i are considered as quality measures for the re-
spective 3D points Xi and X′i. Estimating the transformation
parameters can thus be carried out for both range imaging de-
vices separately. However, as the relative orientation between the
devices is already known from a priori measurements and both
devices are running synchronized, the rigid transformation can be
estimated from the respective correspondences detected by both
devices between successive frames. Combining information from
both devices corresponds to extending the field of view and this
yields more reliable results for the registration process. The ex-
tension can be expressed by transforming the projected 3D points
Xi which are related to the respective camera coordinate frame
(superscript c) into the body frame (superscript b) of the sensor
platform according to

Xb
i = Rb

c ·Xc
i + tbc (11)

where Rb
c describes the rotation and tbc denotes the translation

between the respective coordinate frames. For this, it is assumed
that the origin of the body frame is in the center between both
range imaging devices.

2.7 Object Detection and Segmentation

As 2D SIFT features have already been calculated for the reg-
istration process, they can also be utilized for detecting special
objects in the scene. This allows for calculating the coarse area
of an object and for automatically selecting features which should
not be included in the registration process as they arise from ob-
jects which are likely to be dynamic. These features have to be
treated in a different way as the static background being relevant
for registration. For this purpose, image representations of sev-
eral objects have to be stored in a database before starting the
surveillance application. One of these images contains a tem-
plate for the object present in the scene, but from a different
measurement campaign at a different place and at a different sea-
son. Due to a similar altitude, the active intensity images show a
very similar appearance. Comparing the detected SIFT features
of the normalized active intensity image to the object templates
in the database during the flight yields a maximum similarity to
the correct template. Defining a spatial transformation based on
the SIFT locations as control points, the template is transformed.
The respective area of the transformed template is then assumed
to cover the detected object. This procedure allows for detecting
both static and moving objects in the scene as well as for decou-
pling sensor and object motion. Hence, the presented approach
for registration also remains reliable in case of dynamic environ-
ments if representative objects are already known.

3 ACTIVE MULTI-VIEW RANGE IMAGING SYSTEMS

The proposed concept focuses on airborne scene monitoring with
range imaging devices. For simulating a future operational sys-
tem involving such range imaging devices fairly realistically, a
scaled test scenario has been set up. However, due to the large
payload of several kilograms for the whole system, mounting the
required components for data acquisition and data storage on an
unmanned aerial vehicle (UAV) still is impracticable. Hence,
in order to investigate the potentials of active multi-view range
imaging systems, a cable car moving along a rope is used as
sensor platform which is shown in Figure 3. The components
mounted on this platform consist of

• two range imaging devices (PMD[vision] CamCube 2.0) for
recording the data,

• a notebook with a solid state hard disk for efficiently storing
the recorded data and

• a 12 V battery with 6.5 Ah for independent power supply.

As the relative orientation of the two range imaging devices can
easily be changed, the system allows for variable multi-view op-
tions with respect to parallel, convergent or divergent data acqui-
sition geometries.

However, due to the relatively large influence of noise effects aris-
ing from the large amount of ambient radiation in comparison to
the emitted radiation as well as from multipath scattering, the uti-
lized devices only have a limited absolute range accuracy of a few
centimeters and noisy point clouds can be expected. Furthermore,
due to the measurement principle of such time-of-flight cameras,
the non-ambiguous range Rn with

Rn =
1

2

c

fm
(12)
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Figure 3: PMD[vision] CamCube 2.0 and model of a cable car
equipped with two range imaging devices.

depends on the modulation frequency fm, where c0 denotes the
speed of light. A modulation frequency of 20 MHz thus corre-
sponds to a non-ambiguous range of 7.5 m. In order to overcome
this range measurement restriction, image- or hardware-based un-
wrapping procedures have been introduced (Jutzi, 2009; Jutzi,
2012). When dealing with multiple range imaging devices, it also
has to be taken into account that these may influence each other
and that interferences are likely to occur. This can be overcome
by choosing different modulation frequencies.

4 EXPERIMENTAL RESULTS

The estimation of the flight trajectory of a sensor platform re-
quires the definition of a global world coordinate frame. This
world coordinate frame is assumed to equal the local coordinate
frame of the sensor platform at the beginning. The local coor-
dinate frame has a fixed orientation with respect to the sensor
platform. It is oriented with the X-direction in forward direction
tangential to the rope, the Y -direction to the right and the Z-
direction downwards. For evaluating the proposed methodology,
a successive pairwise registration is performed. The threshold for
the matching of 2D features is selected as tdes = 0.7. The result-
ing 2D/2D correspondences are projected into 3D space which
yields 3D/3D correspondences. Including the weights in the esti-
mation of the rigid transformation yields position estimates and,
finally, an estimated trajectory which is shown in Figure 4 in nadir
view and in Figure 5 from the side. The green and blue points
describe thinned point clouds captured with both range imaging
devices and transformed to the global world coordinate frame.

Figure 4: Projection of the estimated trajectory and thinned point
cloud data onto the XY -plane.

A limitation of the experimental setup seems to be the fact that
no reference values are available for checking the deviation of
the position estimates from the real positions. However, due to
the relative orientation of the sensor platform to the rope, the
projection of the real trajectory onto the XY -plane should ap-
proximately be a straight line. Additionally, the length of the real
trajectory projected onto the ground plane can be estimated from
aerial images or simply be measured. Here, the distance ∆ground

between the projections of the end points onto the ground plane
has been measured as well as the difference ∆altitude between
maximum and minimum altitude. From the measured values of
∆ground = 7 m and ∆altitude = 1.25 m, a total distance of

Figure 5: Projection of the estimated trajectory and thinned point
cloud data onto the XZ-plane.

approximately 7.11 m can be assumed. A comparison between
the start position and the point with the maximum distance on the
estimated trajectory results in a distance of 6.90 m. As a con-
sequence, the estimated trajectory can be assumed to be of rela-
tively high quality. The results for a subsequent object detection
and segmentation is illustrated for an example frame in Figure 6.

Figure 6: SIFT-based object detection and segmentation: normal-
ized active intensity image, template and transformed template
(upper row, from left to right). The corresponding point cloud for
the area of the transformed template and the sensor position (red
dot) are shown below.

5 DISCUSSION

The presented methodology is well-suited for dynamic environ-
ments. Instead of considering the whole point clouds, the prob-
lem of registration is reduced on sparse point clouds of physically
almost identical 3D points. Due to this fact and the non-iterative
processing scheme, the proposed algorithm for point cloud reg-
istration is very fast which is required for monitoring in such
demanding environments. Although the current Matlab imple-
mentation is not fully optimized with respect to parallelization of
tasks, a total time of approximately 1.63 s is required for pre-
processing, point quality assessment, feature extraction and point
projection. Further 0.46 s are required for feature matching, cal-
culation of weights and point cloud registration. This can signif-
icantly be reduced with a GPU-implementation of SIFT, as the
calculation of SIFT features already takes approximately 1.54 s.

Furthermore, the simple estimation of a rigid transformation is
not sufficient, as used 3D/3D correspondences have the same
weight, even if the uncertainty of the respective 3D points is very
high or if outlier correspondences not fitting to the transforma-
tion have been detected. Hence, a quality measure for 3D/3D
correspondences has been introduced which is based on the qual-
ity of the respective 3D points. This quality measure is used for
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weighting the influence of each 3D/3D correspondence on the es-
timation of the rigid transformation. As most of the 3D points
of a frame are assigned a higher quality, the introduced weights
of 3D/3D correspondences with low quality are approximately 0.
Consequently, the presented approach shows similar characteris-
tics as a RANSAC-based approach, but it is faster and a deter-
ministic solution for the transformation parameters is calculated.

6 CONCLUSIONS AND FUTURE WORK

In this paper, an experimental setup involving a moving sensor
platform with multiple and coupled sensor devices for monitor-
ing in low altitudes has been presented. For successive pair-
wise registration of the measured point clouds, a fast and reliable
image-based approach has been presented which can also cope
with dynamic environments. The concept is based on the extrac-
tion of distinctive 2D features from the image representation of
measured intensity information and the projection into 3D space
with respect to the measured range information. Detected 2D/2D
correspondences between two frames, which have a high reliabil-
ity, thus yield sparse 3D point clouds of 3D/3D correspondences.
For increased robustness, the influence of each 3D/3D correspon-
dence is weighted with a new measure derived from the quality
of the respective 3D points. Finally, the point cloud registration
is carried out by estimating the rigid transformation between two
sparse point clouds which involves the calculated weights. As
demonstrated, this approach can easily be extended towards us-
ing the already detected features for object detection and, even
further, decoupling sensor and object motion which significantly
improves the registration process in dynamic environments. The
results indicate that the presented concept of active multi-view
range imaging strongly supports navigation, point cloud registra-
tion and scene analysis.

The presented methodology can further be extended towards the
detection, the segmentation and the recognition of multiple static
or moving objects. Furthermore, a tracking method for estimating
the trajectory of a moving object could be introduced as well as a
model for further stabilizing the estimated trajectory of the sensor
platform. Hence, active multi-view range imaging systems have
a high potential for future research on dynamic scene analysis.
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Böhm, J. and Becker, S., 2007. Automatic marker-free registra-
tion of terrestrial laser scans using reflectance features. Optical
3-D Measurement Techniques VIII, pp. 338–344.

Brenner, C., Dold, C. and Ripperda, N., 2008. Coarse orientation
of terrestrial laser scans in urban environments. ISPRS Journal of
Photogrammetry and Remote Sensing 63(1), pp. 4–18.

Fischler, M. A. and Bolles, R. C., 1981. Random sample con-
sensus: A paradigm for model fitting with applications to im-
age analysis and automated cartography. Communications of the
ACM 24(6), pp. 381–395.

Gruen, A. and Akca, D., 2005. Least squares 3D surface and
curve matching. ISPRS Journal of Photogrammetry and Remote
Sensing 59(3), pp. 151–174.

Hartley, R. I. and Zisserman, A., 2008. Multiple view geometry
in computer vision. University Press, Cambridge.

Jutzi, B., 2009. Investigations on ambiguity unwrapping of range
images. The International Archives of the Photogrammetry, Re-
mote Sensing and Spatial Information Sciences 38 (Part 3 / W8),
pp. 265–270.

Jutzi, B., 2012. Extending the range measurement capabilities of
modulated range imaging devices by time-frequency multiplex-
ing. AVN - Allgemeine Vermessungs-Nachrichten 2 / 2012.

Kang, Z., Li, J., Zhang, L., Zhao, Q. and Zlatanova, S., 2009. Au-
tomatic registration of terrestrial laser scanning point clouds us-
ing panoramic reflectance images. Sensors 9(4), pp. 2621–2646.

Lowe, D. G., 2004. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vision
60(2), pp. 91–110.

Magnusson, M., Lilienthal, A. and Duckett, T., 2007. Scan regis-
tration for autonomous mining vehicles using 3D-NDT. Journal
of Field Robotics 24(10), pp. 803–827.

Moreno-Noguer, F., Lepetit, V. and Fua, P., 2007. Accurate non-
iterative O(n) solution to the PnP problem. IEEE 11th Interna-
tional Conference on Computer Vision, pp. 1–8.

Pathak, K., Birk, A., Vaskevicius, N. and Poppinga, J., 2010.
Fast registration based on noisy planes with unknown correspon-
dences for 3-D mapping. IEEE Transactions on Robotics 26(3),
pp. 424–441.

Rabbani, T., Dijkman, S., van den Heuvel, F. and Vosselman, G.,
2007. An integrated approach for modelling and global regis-
tration of point clouds. ISPRS Journal of Photogrammetry and
Remote Sensing 61(6), pp. 355–370.

Rusinkiewicz, S. and Levoy, M., 2001. Efficient variants of the
ICP algorithm. Proceedings of the Third International Confer-
ence on 3D Digital Imaging and Modeling, pp. 145–152.

Seo, J. K., Sharp, G. C. and Lee, S. W., 2005. Range data reg-
istration using photometric features. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition 2, pp. 1140–1145.

Steder, B., Grisetti, G. and Burgard, W., 2010. Robust place
recognition for 3D range data based on point features. IEEE In-
ternational Conference on Robotics and Automation, pp. 1400–
1405.

Wang, Z. and Brenner, C., 2008. Point based registration of ter-
restrial laser data using intensity and geometry features. The In-
ternational Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences 37 (Part B5), pp. 583–589.

Weinmann, Ma. and Jutzi, B., 2011. Fully automatic image-based
registration of unorganized TLS data. The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information
Sciences 38 (Part 5 / W12).

Weinmann, Ma., Weinmann, Mi., Hinz, S. and Jutzi, B., 2011.
Fast and automatic image-based registration of TLS data. ISPRS
Journal of Photogrammetry and Remote Sensing 66(6), pp. S62–
S70.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

438 273



274



Z. Nicht referenzierte Publikationen des Verfassers

[Z1] Braun AC, Weidner U, Jutzi B, Hinz S (2011) Integrating external know-
ledge into SVM classification - Fusing hyperspectral and laserscanning data
by kernel composition. In: Heipke C, Jacobsen K, Rottensteiner F, Müller
S, Sörgel U (Eds) High-resolution earth imaging for geospatial information.
International Archives of Photogrammetry, Remote Sensing and Spatial In-
formation Sciences 38 (Part 4 / W19) (on CD)

[Z2] Centeno J, Jutzi B (2010) Evaluation of a range imaging sensor concer-
ning resolution and illumination. ISPRS TCI Symposium 2010. Symposium
of ISPRS Commission I: Image Data Acquisition - Sensors & Platforms. In-
ternational Archives of Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences 38 (Part 1) (on CD)

[Z3] Centeno J, Jutzi B, De Oliveira A (2010) Noise reduction for range imaging
devices. In: Mayer M, Krueger CP, Heck B (Eds) Highly Precise Positioning
and Height Determination using GPS. Karlsruhe: KIT Scientific Publishing,
KIT Scientific Reports 7604: 53-57

[Z4] De Oliveira A, Centeno J, Jutzi B (2010) Tratamento de ruído em imagens de
distância obtidas com a câmara PMD[VISION]®CAMCUBE 2.0. SIMGEO
- III Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinfor-
mação, Recife-PE, 27-30 de Julho de 2010: 001-007

[Z5] Ðuričić A, Jutzi B (2013) Supporting UAVs in low visibility conditions by
multiple-pulse laser scanning devices. In: Heipke C, Jacobsen K, Rottenstei-
ner F, Sörgel U (Eds) High-resolution earth imaging for geospatial informati-
on. International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences XL-1/W1, 2013: 93-98

[Z6] Ðuričić A, Weinmann M, Jutzi B (2013) Potentials of Small, Lightweight,
and Low Cost Multi-Echo Laser Scanners for Detecting Grape Berries. In: Re-
mondino F, Menna F (Eds) ISPRS Technical Commission V Symposium. The
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Volume XL-5, 2014: 211-216

[Z7] Heipke C, Sörgel U, Rottensteiner F, Jutzi B (Eds) (2015) Theme Issue:
High-Resolution Earth Imaging for Geospatial Information. ISPRS Journal
of Photogrammetry & Remote Sensing 100 (2015): 1-128

[Z8] Hinz S, Jutzi B, Kron A, Leitloff J, Musall M, Nestmann F, Brock-
mann H (2015) Ableitung von Flussvorlandrauheiten aus Laserdaten für die

275



hydrodynamisch-numerische Modellierung. Wasserstraßenbezogene geodäti-
sche Anwendungen und Produkte der Fernerkundung, BfG Schriftenreihe
Veranstaltungen 2/2015: 28-34

[Z9] Jutzi B (2010) Architectural applications - a challenge for active sensing.
In: Amorim AL (Ed) Documentação do Patrimônio Arquitetônico Vol. 8, No
2 (2009)

[Z10] Jutzi B (2011) Grundlagen der elektrooptischen Lasermesstechnik. Optro-
nische Informationssysteme. In: Schmidtke H (Ed) Handbuch der Ergonomie
(HdE). Zweite, überarbeitete und erweiterte Auflage. BWB (Hrsg), Koblenz
(Nachf. auf CD-ROM)

[Z11] Jutzi B (2011) Potenziale des Full-Waveform-Laserscanning zur Erfassung
von Flussvorlandrauheiten. Zeitgemäße Erfassung und Bereitstellung von
Geobasisdaten für die WSV, BfG Schriftenreihe Veranstaltungen 3/2011: 118-
124

[Z12] Jutzi B, Gabler R, Jäger K (2001) Stereo vision for small targets in IR image
sequences. In: Drummond OE (Ed) Signal and data processing of small tar-
gets 2001. The International Symposium on Optical Science and Technology.
The International Society for Optics and Photonics (SPIE) Proceedings. Vol.
4473: 361-370

[Z13] Jutzi B, Neulist J, Stilla U (2005) High-Resolution waveform acquisition
and analysis for pulsed laser. In: Heipke C, Jacobsen K, Gerke M (Eds) High-
resolution Earth Imaging for Geospatial Information. International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences 36
(Part 1 W3) (on CD)

[Z14] Jutzi B, Stilla U (2003) Analysis of laser pulses for gaining surface features of
urban objects. 2nd IEEE GRSS/ISPRS Joint Workshop on Remote Sensing
and data fusion on urban areas, URBAN 2003. IEEE: 13-17 [ISBN 0-7803-
7719-2]

[Z15] Jutzi B, Stilla U (2006) Characteristics of the measurement unit of a full-
waveform laser system. Symposium of ISPRS Commission I: From Sensors
to Imagery. International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences 36 (Part 1/A) (on CD)

[Z16] Jutzi B, Stilla U (2005) Erfassung und Analyse der zeitlichen Signalform
bei gepulsten Lasersystemen. In: Luhmann T (Hrsg) Photogrammmetrie -
Laser-Scanning - Optische 3D-Messtechnik. Beiträge der Oldenburger 3D-
Tage 2005. Herbert Wichmann Verlag, Heidelberg: 203-213

[Z17] Jutzi B, Stilla U (2004) Extraction of features from objects in urban areas
using space-time analysis of recorded laser pulses. In: Altan MO (Ed) XXth
ISPRS Congress: Geo-Imagery Bridging Continents. International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences 35
(Part B2): 1-6

276



[Z18] Jutzi B, Stilla U (2005) Measuring and processing the waveform of laser
pulses. In: Gruen A, Kahmen H (Eds) Optical 3D Measurement Techniques
VII. Vol. I: 194-203

[Z19] Jutzi B, Stilla U (2005) Waveform analysis of laser pulses for gaining range
accuracy. ISPRS WGI/2 Workshop on 3D Mapping from InSAR and LiDAR
(on CD)

[Z20] Jutzi B, Stilla U (2005) Waveform processing of laser pulses for reconstructi-
on of surfaces in urban areas. In: Moeller M, Wentz E (Eds) 3rd International
Symposium: Remote sensing and data fusion on urban areas, URBAN 2005.
International Archives of Photogrammetry, Remote Sensing and Spatial In-
formation Sciences 36 (Part 8 W27) (on CD)

[Z21] Jutzi B, Thiele A, Meyer F, Hinz S (2010) Relations between SAR tomo-
graphy and full-waveform LIDAR for structural analysis of forested areas.
Proceedings of the 2010 IEEE International Geoscience and Remote Sensing
Symposium: 3267-3270

[Z22] Kron A, Jutzi B, Leitloff J, Musall M, Nestmann F, Hinz S, Brockmann H
(2015) Ableitung von Vorlandrauheiten für Strömungssimulationen auf der
Basis von Full-Waveform-Airborne-Laserscannerdaten (FW-ALS). Dresdner
Wasserbauliche Mitteilungen - Messen und Überwachen im Wasserbau und
am Gewässer. Heft 53: 161-171 [ISSN 0949-5061]

[Z23] Stilla U, Rottensteiner F, Mayer H, Jutzi B, Butenuth M (Eds) (2011) Pho-
togrammetric Image Analysis. Lecture Notes in Computer Science - LNCS
6952, Springer: Heidelberg doi:10.1007/978-3-642-24393-6

[Z24] Stilla U, Rottensteiner F, Mayer H, Jutzi B, Butenuth M (Eds) (2011) Pho-
togrammetric Image Analysis PIA11. International Archives of Photogram-
metry, Remote Sensing and Spatial Information Sciences 36 (Part 3/W22)
(CD only)

[Z25] Stilla U, Rottensteiner F, Mayer H, Jutzi B, Schmitt M (Eds) (2012) Special
Issue: Photogrammetric Image Analysis. PFG Photogrammetrie - Fernerkun-
dung - Geoinformation. Stuttgart: Schweizerbartsche Verlagsbuchhandlung
2012 (5)

[Z26] Toth C, Holm T, Jutzi B (Eds) (2014) ISPRS Technical Commission I Sym-
posium. ISPRS Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences XL-1, 2014

[Z27] Toth C, Jutzi B (Eds) (2014) ISPRS Technical Commission I Symposium.
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences II-1, 2014

[Z28] Weinmann M, Jutzi B, Mallet C (2014) 3D Scene Analysis Based on Op-
timal Neighborhoods and Relevant Features. International Computer Vision
Summer School 2014 - From Fundamentals to Applications: 76

277

http://dx.doi.org/10.1007/978-3-642-24393-6


[Z29] Weinmann M, Jutzi B, Mallet C (2014) Describing Paris: Automated 3D
Scene Analysis via Distinctive Low-Level Geometric Features. Proceedings
of the IQmulus Workshop on Processing Large Geospatial Data: 1-8

278



Literaturverzeichnis

[1] Bae KH, Lichti DD (2008) A method for automated registration of unorga-
nised point clouds. ISPRS Journal of Photogrammetry and Remote Sensing
63 (1): 36-54

[2] Bai X, Zhou F, Xue B (2011) Fusion of infrared and visual images through
region extraction by using multi scale center-surround top-hat transform.
Optics Express 19 (9): 8444-8457

[3] Barnea S, Filin S (2008) Keypoint based autonomous registration of terrestri-
al laser point-clouds. ISPRS Journal of Photogrammetry and Remote Sensing
63 (1): 19-35

[4] Belton D, Lichti D (2006) Classification and segmentation of terrestrial la-
ser scanner point clouds using local variance information. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences 36 (5): 44-49

[5] Besl PJ, McKay ND (1992) A Method for Registration of 3-D Sha-
pes. IEEE Transaction on Pattern Analysis and Machine Intelligence (Los
Alamitos, CA, USA: IEEE Computer Society Press) 14 (2): 239-256.
doi:10.1109/34.121791

[D1] Blomley R, Weinmann M, Leitloff J, Jutzi B (2014) Shape Distribution Fea-
tures for Point Cloud Analysis - A Geometric Histogram Approach on Multi-
ple Scales. In: Schindler K, Paparoditis N (Eds) ISPRS Technical Commission
III Symposium. ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences II-3, 2014: 9-16

[6] Böhm J, Becker S (2007) Automatic marker-free registration of terrestrial
laser scans using reflectance features. In: Gruen A, Kahmen H (Eds) Optical
3-D Measurement Techniques VIII: 338-344

[7] Bouguet JY (2010) Camera calibration toolbox for Matlab [online]. Computer
Vision Research Group, Department of Electrical Engineering, California In-
stitute of Technology, Pasadena, USA. Available from: http://www.vision.
caltech.edu/bouguetj/calib_doc/ [Accessed 31 December 2014]

[8] Boulch A, Houllier S, Marlet R, Tournaire O (2013) Semantizing complex 3d
scenes using constrained attribute grammars. Computer Graphics Forum 32
(5): 33-42

279

http://dx.doi.org/10.1109/34.121791
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/


[B1] Bradley PE, Jutzi B (2011) Improved feature detection in fused intensity-
range images with Complex SIFT (CSIFT). Remote Sensing - Open Access
Journal 2011, 3 (9): 2076-2088 doi:10.3390/rs3092076

[D2] Braun AC, Weidner U, Jutzi B, Hinz S (2012) Kernel Composition and
the One-against-one cascade for integrating model knowledge into SVM clas-
sification. In: Heipke C, Jacobsen K, Rottensteiner F, Müller S, Sörgel U
(Eds) PFG Photogrammetrie - Fernerkundung - Geoinformation. Stuttgart:
Schweizerbartsche Verlagsbuchhandlung 2012 (4): 371-384

[9] Breiman L (2001) Random forests. Machine Learning 45 (1): 5-32
[10] Brenner C, Dold C, Ripperda N (2008) Coarse orientation of terrestrial laser

scans in urban environments. ISPRS Journal of Photogrammetry & Remote
Sensing 63 (1): 4-18

[A1] Bretar F, Chauve A, Mallet C, Jutzi B (2008) Managing full waveform
LiDAR data: A challenging task for the forthcoming years. In: Chen J, Jiang
J, Baudoin A (Eds) XXIth ISPRS Congress: Silk Road for Information from
Imagery. International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences 37 (Part B1): 415-420

[11] Brown DC (1971) Close-range camera calibration. Photogrammetric Engi-
neering 37 (8): 855-866

[12] Chehata N, Guo L, Mallet C (2009) Airborne lidar feature selection for urban
classification using random forests. International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences 38-3/W8: 207-212

[13] Chen S, Leung H (2009) An EM-CI based approach to fusion of IR and visual
images. Proceedings of the 12th International Conference on Information
Fusion: 1325-1330

[14] Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20
(3): 273-297

[15] Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Tran-
sactions on Information Theory 13 (1): 21-27

[16] Dal Mutto C, Zanuttigh P, Cortelazzo GM (2012) Time-of-Flight Cameras
and Microsoft Kinect - A user perspective on technology and applications.
SpringerBriefs in Electrical and Computer Engineering, Springer ISBN 978-
1-4614-3806-9

[17] Demantké J, Mallet C, David N, Vallet B (2011) Dimensionality based scale
selection in 3d lidar point clouds. International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences 38 (5/W12): 97-102

[18] Demantké J, Vallet B, Paparoditis N (2012) Streamed vertical rectangle
detection in terrestrial laser scans for facade database production. ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences Vol. I-3: 99-104

280

http://dx.doi.org/10.3390/rs3092076


[19] Dold C (2005) Extended Gaussian images for the registration of terrestrial
scan data. International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences

[20] Dold C, Brenner C (2004) Automatic matching of terrestrial scan data as a
basis for the generation of detailed 3D city models. International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences 35
(Part B3): 1091-1096

[21] Dold C, Brenner C (2006) Registration of terrestrial laser scanning data using
planar patches and image data. International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sciences 36 (Part 5): 78-83

[22] Droeschel D, Holz D, Behnke S (2010) Probabilistic Phase Unwrapping for
Time-of-Flight Cameras. In Proceedings of the joint conference of the 41st
International Symposium on Robotics (ISR 2010) and the 6th German Con-
ference on Robotics (ROBOTIK 2010), Munich, Germany: 318-324

[23] Durrant-Whyte H, Bailey T (2006) Simultaneous localization and map-
ping: Part I. IEEE Robotics & Automation Magazine 13 (2): 99-110
doi:10.1109/MRA.2006.1638022

[24] Filin S, Pfeifer N (2005) Neighborhood systems for airborne laser data. Pho-
togrammetric Engineering & Remote Sensing 71 (6): 743-755

[25] Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM 24 (6): 381-395

[26] Fisher RA (1936) The use of multiple measurements in taxonomic problems.
Ann. Eugen 7 (2): 179-188

[27] Förstner W, Gülch E (1987) A Fast Operator for Detection and Precise Loca-
tion of Distinct Points, Corners and Centers of Circular Features. Proceedings
of the ISPRS Intercommission Workshop on Fast Processing of Photogram-
metric Data: 281-305

[28] Frey BJ, Koetter R, Petrovic N (2001) Very loopy belief propagation for
unwrapping phase images. In Advances in Neural Information Processing
Systems 14: 737-743

[29] Fröhlich C (1996) Aktive Erzeugung korrespondierender Tiefen- und Reflek-
tivitätsbilder und ihre Nutzung zur Umgebungserfassung. Technische Uni-
versität München, Dissertation

[30] Ghiglia DC, Pritt MD (1998) Two-Dimensional Phase Unwrapping: Theory,
Algorithms, and Software. John Wiley & Sons: New York

[31] Gini C (1912) Variabilite e mutabilita. Memorie di metodologia statistica
[32] Goldstein RM, Zebker HA, Werner CL (1988) Satellite radar interferometry:

two-dimensional phase unwrapping. Radio Science 23: 713-720

281

http://dx.doi.org/10.1109/MRA.2006.1638022


[C1] Gross H, Jutzi B, Thoennessen U (2009) Classification of Elevation Da-
ta based on analytical versus trained Feature Values to determine Object
Boundaries. In: Seyfert E (Ed) Geoinformatik und Erdbeobachtung: 29.
Wissenschaftlich-Technische Jahrestagung der DGPF, 2009 (18): 315-326

[A2] Gross H, Jutzi B, Thoennessen U (2008) Intensity normalization by inci-
dence angle and range of full-waveform LiDAR data. Chen J, Jiang J, Nayak
S (Eds) XXIth ISPRS Congress: Silk Road for Information from Imagery.
International Archives of Photogrammetry, Remote Sensing and Spatial In-
formation Sciences 37 (Part B4): 405-412

[C2] Gross H, Jutzi B, Thoennessen U (2007) Segmentation of tree regions using
data of a full-waveform laser. In: Stilla U, Mayer H, Rottensteiner F, Heipke
C, Hinz S (Eds) Photogrammetric Image Analysis PIA07. International Ar-
chives of Photogrammetry, Remote Sensing and Spatial Information Sciences
36 (Part 3/W49A): 57-62

[33] Guo B, Huang X, Zhang F, Sohn G (2014) Classification of airborne laser
scanning data using JointBoost. ISPRS Journal of Photogrammetry & Re-
mote Sensing 92: 124-136

[34] Guyon I, Elisseeff A (2003) An introduction to variable and feature selection.
Journal of Machine Learning Research 3 (2003): 1157-1182

[35] Hall MA (1999) Correlation-based feature subset selection for machine lear-
ning. Ph.D. thesis, Department of Computer Science, University of Waikato,
New Zealand

[36] Hansard M, Lee S, Choi O, Horaud R (2013) Time-of-Flight Cameras: Prin-
ciples, Methods and Applications. SpringerBriefs Series in Computer Science,
Springer ISBN 978-1-4471-4658-2

[37] Hanssen RF (2001) Radar Interferometry: Data Interpretation and Error
Analysis. Kluwer Academic Publishers, Dordrecht

[38] Hartley RI, Zisserman A (2008) Multiple view geometry in computer vision.
University Press, Cambridge, UK

[39] Hebel M (2012) Änderungsdetektion in urbanen Gebieten durch objektba-
sierte Analyse und schritthaltenden Vergleich von Multi-Aspekt ALS-Daten.
Dissertation, Deutsche Geodätische Kommission bei der Bayerischen Akade-
mie der Wissenschaften (DGK), Reihe C, Nr. 690

[40] Heikkilä J, Silvén O (1997) A four-step camera calibration procedure with
implicit image correction. Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, 17-19 June, San Juan:
1106-1112

[B2] Hinz S, Weinmann M, Runge P, Jutzi B (2011) Potentials of image ba-
sed active ranging to capture dynamic scenes. In: Heipke C, Jacobsen K,

282



Rottensteiner F, Müller S, Sörgel U (Eds) High-resolution earth imaging for
geospatial information. International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences 38 (Part 4 / W19) (on CD)

[B3] Hoegner L, Hanel A, Weinmann M, Jutzi B, Hinz S, Stilla U (2014) To-
wards People Detection from Fused Time-Of-Flight and Thermal Infrared
Images. In: Schindler K, Paparoditis N (Eds) ISPRS Technical Commission
III Symposium. ISPRS Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences XL-3, 2014: 121-126

[41] Hoegner L, Kumke H, Meng L, Stilla U (2007) Automatic extraction of textu-
res from infrared image sequences and database integration for 3D building
models. PFG Photogrammetrie, Fernerkundung, Geoinformation 2007 (6):
459-468

[B4] Hoegner L, Roth L, Weinmann M, Jutzi B, Hinz S, Stilla U (2013) Fusi-
on von Time-of-Flight-Entfernungsdaten und thermalen IR-Bildern. AVN -
Allgemeine Vermessungs-Nachrichten, Ausgabe 5/2014: 192-197

[B5] Hoegner L, Weinmann M, Jutzi B, Hinz S, Stilla U (2013) Co-registration of
Time-of-Flight (TOF) camera generated 3d point clouds and thermal infrared
images (IR). In: Seyfert E (Ed) 33. Wissenschaftlich-Technische Jahrestagung
der DGPF, 2013 (22): 481-488

[B6] Hoegner L, Weinmann M, Jutzi B, Hinz S, Stilla U (2012) Synchrone
Koregistrierung von 3d Punktwolken und thermischen Infrarotbildern. In:
Luhmann T (Hrsg) Optische 3D-Messtechnik - Photogrammmetrie - Laser-
Scanning. Beiträge der 12. Oldenburger 3D-Tage 2013. Herbert Wichmann
Verlag, Heidelberg

[42] Höfle B, Pfeifer N (2007) Correction of laser scanning intensity data: Data
and model-driven approaches. ISPRS Journal of Photogrammetry & Remote
Sensing 62 (6): 415-433

[43] Iwaszczuk D, Hoegner L, Stilla U (2011) Detection of windows in IR buil-
ding textures using masked correlation. In: Stilla U, Rottensteiner F, Mayer
H, Jutzi B, Butenuth M (Eds), Photogrammetric Image Analysis, ISPRS
Conference - Proceedings. Lecture Notes in Computer Science, Vol. 6952,
Springer, Heidelberg, Germany: 133-146

[44] John GH, Langley P (1995) Estimating continuous distributions in Bayesian
classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artifi-
cial Intelligence: 338-345

[A3] Jutzi B (2007) Analyse der zeitlichen Signalform von rückgestreuten Laser-
pulsen. Dissertation, Deutsche Geodätische Kommission bei der Bayerischen
Akademie der Wissenschaften (DGK), Reihe C, Nr. 611

[A4] Jutzi B (2010) Extending the range measurement capabilities of modulated
range imaging devices by time-frequency-multiplexing. AVN - Allgemeine
Vermessungs-Nachrichten, Ausgabe 2/2012: 54-62

283



[A5] Jutzi B (2009) Investigations on ambiguity unwrapping of range images.
In: Bretar F, Pierrot-Deseilligny M, Vosselman G (Eds) Laserscanning 2009.
International Archives of Photogrammetry, Remote Sensing and Spatial In-
formation Sciences 38 (Part 3 / W8): 265-270

[A6] Jutzi B, Eberle B, Stilla U (2002) Estimation and measurement of backscat-
tered signals from pulsed laser radar. In: Serpico SB (Ed) Image and signal
processing for remote sensing VIII. The International Society for Optics and
Photonics (SPIE) Proceedings. Vol. 4885: 256-267

[A7] Jutzi B, Gross H (2010) Investigations on surface reflection models for in-
tensity normalization in airborne laser scanning (ALS) data. In: Heipke C,
Jacobsen K, Müller S, Sörgel U (Eds) Journal of Photogrammetric Enginee-
ring & Remote Sensing (PE&RS), Vol. 76, No. 9, September 2010: 1051-1060

[C3] Jutzi B, Gross H (2009) Nearest neighbour classification on Laser point
clouds to gain object structures from buildings. In: Heipke C, Jacobsen K,
Müller S, Sörgel U (Eds) High-resolution Earth Imaging for Geospatial In-
formation. International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences 38 (Part 1-4-7/W5) (on CD)

[A8] Jutzi B, Gross H (2009) Normalization of lidar intensity data based on range
and surface incidence angle. In: Bretar F, Pierrot-Deseilligny M, Vosselman
G (Eds) Laserscanning 2009. International Archives of Photogrammetry, Re-
mote Sensing and Spatial Information Sciences 38 (Part 3 / W8): 213-218

[D3] Jutzi B, Neulist J, Stilla U (2005) Sub-pixel edge localization based on
laser waveform analysis. In: Vosselman G, Brenner C (Eds) Laserscanning
2005. International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences 36 (Part 3/W19): 109-114

[A9] Jutzi B, Stilla U (2007) Characteristics of the measurement unit of a full-
waveform laser system. Revue Française de Photogrammétrie et de Télédétec-
tion 182 (2006-2): 17-22

[A10] Jutzi B, Stilla U (2003) Laser pulse analysis for reconstruction and classi-
fication of urban objects. In: Ebner H, Heipke C, Mayer H, Pakzad K (Eds)
Photogrammetric Image Analysis PIA03. International Archives of Photo-
grammetry, Remote Sensing and Spatial Information Sciences 34 (Part 3 /
W8): 151-156

[A11] Jutzi B, Stilla U (2006) Precise range estimation on known surfaces by ana-
lysis of full-waveform laser. In: Förstner W, Steffen R (Eds) Symposium of
ISPRS Commission III: Photogrammetric Computer Vision PCV06. Interna-
tional Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences 36 (Part 3): 234-239

[A12] Jutzi B, Stilla U (2006) Range determination with waveform recording laser
systems using a Wiener Filter. ISPRS Journal of Photogrammetry & Remote

284



Sensing 61 (2): 95-107 doi:10.1016/j.isprsjprs.2006.09.001 U.V. Helava Award
2006

[A13] Jutzi B, Stilla U (2007) Simulation and analysis of full-waveform laser data
of urban objects. Remote sensing and data fusion on urban areas, URBAN
2007. IEEE 07EX1577 (on CD) [ISBN 1-4244-0712-5]

[B7] Jutzi B, Weinmann M, Meidow J (2013) Improved UAV-borne 3D mapping
by fusing optical and laserscanner data. In: Grenzdörffer G, Bill R (Eds)
UAV-g2013. The International Archives of the Photogrammetry, Remote Sen-
sing and Spatial Information Sciences XL-1/W2, 2013: 223-228

[B8] Jutzi B, Weinmann M, Meidow J (2013) Weighted Data Fusi-
on for UAV-borne 3D Mapping with Camera and Line Laserscan-
ner. International Journal of Image and Data Fusion 5 (3): 226-243
doi:10.1080/19479832.2014.889228

[45] Kaasalainen S, Hyyppä J, Litkey P, Hyyppä H, Ahokas E, Kukko A, Kaar-
tinen H (2007) Radiometric calibration of ALS intensity. In: Rönnholm P,
Hyyppä H, Hyyppä J (Eds) Proceedings of Laserscanning 2007. Internatio-
nal Archives of Photogrammetry, Remote Sensing, and Spatial Information
Sciences 36 (Part 3-W52): 201-205

[46] Kaasalainen S, Krooks A, Kukko A, Kaartinen H (2009) Radiometric cali-
bration of terrestrial laser scanners with external reference targets. Remote
Sensing 2009 1 (3): 144-158 doi:10.3390/rs1030144

[47] Kamerman GW (1993) Laser radar. In: Fox CS (Ed), Active Electro-Optical
Systems, The Infrared & Electro-Optical Systems Handbook, SPIE Optical
Engineering Press, Michigan

[48] Kang Z, Li J, Zhang L, Zhao Q, Zlatanova S (2009) Automatic registration
of terrestrial laser scanning point clouds using panoramic reflectance images.
Sensors 9 (4): 2621-2646

[49] Kassir A, Peynot T (2010) Reliable automatic camera-laser calibration. Pro-
ceedings of the Australasian conference on robotics and automation (ACRA
2010), 1-3 December, Brisbane

[50] Khoshelham K, Oude Elberink SJ (2012) Role of dimensionality reduction in
segment-based classification of damaged building roofs in airborne laser scan-
ning data. Proceedings of the international conference on geographic object
based image analysis: 372-377

[D4] Kirchhof M, Jutzi B, Stilla U (2008) Iterative processing of laser scanning
data by full waveform analysis in close neighborhood. In: Lichti D, Pfeifer N,
Maas HG (Eds) ISPRS Journal of Photogrammetry & Remote Sensing 63
(1): 99-114 doi:10.1016/j.isprsjprs.2007.08.006

285

http://dx.doi.org/10.1016/j.isprsjprs.2006.09.001
http://dx.doi.org/10.1080/19479832.2014.889228
http://dx.doi.org/10.3390/rs1030144
http://dx.doi.org/10.1016/j.isprsjprs.2007.08.006


[51] Kononenko I (1994) Estimating attributes: analysis and extensions of RE-
LIEF. In: Proceedings of the European Conference on Machine Learning.
Springer, Catania, Italy, 6-8 April: 171-182

[52] Kukko A, Kaasalainen S, Litkey P (2007) Effect of incidence angle on laser
scanner intensity and surface data. Applied Optics 47 (7): 986-992

[53] Lafferty JD, McCallum A, Pereira FCN (2001) Conditional random fields:
probabilistic models for segmenting and labeling sequence data. Proceedings
of the International Conference on Machine Learning: 282-289

[54] Lagüela S, González-Jorge H, Armesto J, Arias P (2011) Calibration and
verification of thermographic cameras for geometric measurements. Infrared
Physics & Technology 54: 92-99

[55] Lagüela S, Martínez J, Armesto J, Arias P (2011) Energy efficiency studies
through 3D laser scanning and thermographic technologies. Energy and Buil-
dings 43: 1216-1221

[56] Lari Z, Habib A (2012) Alternative methodologies for estimation of local
point density index: Moving towards adaptive lidar data processing. The
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences 39 (Part B3): 127-132

[57] Lee I, Schenk T (2002) Perceptual organization of 3d surface points. In-
ternational Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences 34 (3A): 193-198

[58] Linsen L, Prautzsch H (2001) Natural terrain classification using three-
dimensional ladar data for ground robot mobility. Proceedings of Eurogra-
phics: 257-263

[59] Lowe D (2004) Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision 60 (2): 91-110

[60] Luhmann T, Ohm J, Piechel J, Roelfs T (2010) Geometric calibration of
thermographic cameras. The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences 38-5: 411-416

[61] Mallet C, Bretar F (2009) Full-waveform topographic lidar: State-of-the-art.
ISPRS Journal of Photogrammetry & Remote Sensing 64 (1): 1-16

[62] Mallet C, Bretar F, Roux M, Soergel U, Heipke C (2011) Relevance assess-
ment of full-waveform lidar data for urban area classification. ISPRS Journal
of Photogrammetry & Remote Sensing 66 (6): S71-S84

[63] Mallet C, Bretar F, Soergel U (2008) Analysis of Full-Waveform Lidar Data
for Classification of Urban areas. Photogrammetrie - Fernerkundung - Geo-
information (PFG) 2008 (5): 337-349

[64] Markov S, Birk A (2007) Detecting humans in 2D thermal images by genera-
ting 3D models. In: Hertzberg J, Beetz M, Englert R (Eds) KI 2007: Advances

286



in Artificial Intelligence. Lecture Notes in Artificial Intelligence, Vol. 4667,
Springer, Heidelberg, Germany: 293-307

[65] Monnier F, Vallet B, Soheilian B (2012) Trees detection from laser point
clouds acquired in dense urban areas by a mobile mapping system. ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences I-3 2012: 245-250

[66] Moreno-Noguer F, Lepetit V, Fua P (2007) Accurate non-iterative O(n) so-
lution to the PnP problem. Proceedings of the International Conference on
Computer Vision: 1-8

[67] Munoz D, Bagnell JA, Vandapel N, Hebert M (2009) Contextual classifica-
tion with functional max-margin Markov networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Mia-
mi, USA, 20-25 June: 975-982

[68] Niemeyer J, Rottensteiner F, Soergel U (2012) Conditional random fields for
lidar point cloud classification in complex urban areas. In: ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information Sciences I-3
2012: 263-268

[69] Niemeyer J, Rottensteiner F, Soergel U (2014) Contextual classification of
lidar data and building object detection in urban areas. ISPRS Journal of
Photogrammetry & Remote Sensing 87: 152-65

[70] Osada R, Funkhouser T, Chazelle B, Dobkin D (2002) Shape distributions.
ACM Transactions on Graphics 2 1(4): 807-832

[71] Pauly M, Keiser R, Gross M (2003) Multi-scale feature extraction on point-
sampled surfaces. Computer Graphics Forum 22 (3): 281-289

[72] Pearson K (1896) Mathematical contributions to the theory of evolution. III.
Regression, heredity and panmixia. Philosophical Transactions of the Royal
Society of London A 187: 253-318

[73] Peng H, Long F, Ding C (2005) Feature selection based on mutual informa-
tion criteria of max-dependency, max-relevance, and min-redundancy. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27 (8): 1226-1238

[74] Pfeifer N, Dorninger P, Haring A, Fan H (2007) Investigating terrestrial la-
ser scanning intensity data: Quality and functional relations. In: Gruen A,
Kahmen H (Eds) Proceedings of the International Conference on Optical
3D Measurement Techniques VIII, Zürich, Switzerland, ISBN 3-906467-67-8:
328-337

[75] Phong BT (1975) Illumination for computer generated pictures. Communi-
cations of the ACM 18 (6): 311-317

[76] Pirotti F (2011) Analysis of full-waveform LiDAR data for forestry applica-
tions: A review of investigations and methods. Journal of Biogeosciences and
Forestry 2011 (4): 100-106 doi:10.3832/ifor0562-004

287

http://dx.doi.org/10.3832/ifor0562-004


[77] Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical
Recipes in C. Cambridge University Press, Cambridge, UK

[78] Quinlan JR (1986) Induction of decision trees. Machine Learning 1: 81-106
[79] Remondino F, Stoppa D (Eds) (2013) TOF Range-Imaging Cameras.

Springer-Verlag Berlin Heidelberg doi:10.1007/978-3-642-27523-4
[80] Rusinkiewicz S, Levoy M (2001) Efficient variants of the ICP algorithm. In:

Proceedings of the Third International Conference on 3D Digital Imaging
and Modeling (3DIM 2001), 28 May-1 June 2001, Quebec City, Canada.
IEEE Computer Society, Los Alamitos, CA: 145-152

[81] Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms (FPFH)
for 3D registration. Proceedings of the IEEE International Conference on
Robotics and Automation: 1848-1853

[82] Schmidt A, Niemeyer J, Rottensteiner F, Soergel U (2014): Contextual Clas-
sification of Full Waveform Lidar Data in the Wadden Sea. IEEE Geoscience
and Remote Sensing Letters 11(9): 1614-1618

[83] Seo JK, Sharp GC, Lee SW (2005) Range data registration using photome-
tric features. In: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition 2: 1140-1145

[84] Shan J, Toth CK (Eds) (2008) Topographic Laser Ranging and Scanning:
Principles and Processing. Boca Raton, FL: Taylor & Francis

[85] Shannon CE (1948) A mathematical theory of communication. The Bell Sys-
tem Technical Journal 27 (3): 379-423

[86] Steger C (2001) Similarity measures for occlusion, clutter, and illumination
invariant object recognition. In: Radig B, Florczyk S (Eds) Pattern Recogni-
tion, DAGM 2001. Lecture Notes in Computer Science Vol. 2191, Springer:
148-154

[87] Steinvall O (2000) Effects of Target Shape and Reflection on Laser Radar
Cross Sections. Applied Optics 39 (24): 4381-4391

[A14] Stilla U, Jutzi B (2008) Waveform analysis for small-footprint pulsed laser
systems. In: Shan J, Toth CK (Eds) Topographic Laser Ranging and Scan-
ning: Principles and Processing. CRC Press, Boca Raton: 215-234

[A15] Stilla U, Jutzi B, Reitberger J, Yao W, Krzystek P (2009) Full Waveform
Laserscanning - Auswertemethoden und Anwendungen. Terrestrisches Lasers-
canning (TLS2009), Schriftenreihe des DVW, Band 60: 49-67 (eingeladener
Beitrag)

[D5] Stilla U, Yao W, Jutzi B (2007) Full waveform stacking of weak laser pulses
by exploiting neighbourhood relation. In: Stilla U, Mayer H, Rottensteiner F,
Heipke C, Hinz S (Eds) Photogrammetric Image Analysis PIA07. Internatio-
nal Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences 36 (Part 3/W49A): 25-30

288

http://dx.doi.org/10.1007/978-3-642-27523-4


[88] Tombari F, Salti S, Di Stefano L (2013) Performance evaluation of 3D key-
point detectors. International Journal of Computer Vision 102: 198-220

[89] Tombari F, Salti S, Di Stefano L (2010) Unique signatures of histograms
for local surface description. In: Daniilidis K, Maragos P, Paragios N (Eds)
ECCV 2010 Part III. Lecture Notes in Computer Science Vol. 6313, Springer,
Heidelberg, Germany: 356-369

[90] Ulrich M (2003) Hierarchical real-time recognition of compound objects in
images. Dissertation, Deutsche Geodätische Kommission bei der Bayerischen
Akademie der Wissenschaften (DGK), Reihe C, Nr. 568

[91] Vallet B, Xiao W, Brédif M (2015) Extracting mobile objects in images using
a velodyne LiDAR point cloud. In: Stilla U, Heipke C (Eds) Photogrammetric
Image Analysis PIA15 + High-Resolution Earth Imaging for Geospatial In-
formation HRIGI15. ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences II-3/W4, 2015: 247-253

[92] van Rijsbergen CJ (1979) Information retrieval. Butterworths, London
[93] Vidas S, Moghadam P, Bosse M (2013) 3D thermal mapping of building

interiors using an RGB-D and thermal camera. Proceedings of the IEEE
International Conference on Robotics and Automation: 2311-2318

[94] von Hansen W (2006) Robust automatic marker-free registration of terrestrial
scan data. International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences 36 (Part 3): 105-110

[95] Vosselman G, Maas HG (Eds) (2010) Airborne and Terrestrial Laser Scan-
ning. Whittles Publishing, CRC Press

[96] Wagner W, Ullrich A, Briese C (2003) Der Laserstrahl und seine Interaktion
mit der Erdoberfläche. Österreichische Zeitschrift für Vermessung & Geoin-
formation, VGI 4/2003: 223-235

[97] Waldhauser C, Hochreiter R, Otepka J, Pfeifer N, Ghuffar S, Korzeniowska K,
Wagner G (2014) Automated classification of airborne laser scanning point
clouds. In: Koziel S, Leifsson L, Yang XS (Eds) Solving Computationally
Expensive Engineering Problems: Methods and Applications. Springer, New
York, USA: 269-292

[98] Wang Z, Brenner C (2008) Point based registration of terrestrial laser data
using intensity and geometry features. International Archives of Photogram-
metry, Remote Sensing & Spatial Information Sciences 37 (Part B5): 583-589

[99] Wanga C, Li Q, Liu Y, Wu G, Liu P, Ding X (2015) A comparison of wave-
form processing algorithms for single-wavelength LiDAR bathymetry. ISPRS
Journal of Photogrammetry & Remote Sensing 101: 22-35

[100] Weinmann M (2015) Reconstruction and Analysis of 3D Scenes: From Irre-
gularly Distributed 3D Points to Object Classes. Dissertation, Springer

289



[B9] Weinmann M, Dittrich A, Hinz S, Jutzi B (2013) Automatic feature-based
point cloud registration for a moving sensor platform. In: Heipke C, Jacobsen
K, Rottensteiner F, Sörgel U (Eds) High-resolution earth imaging for geospa-
tial information. International Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences XL-1/W1, 2013: 373-378

[B10] Weinmann M, Hoegner L, Leitloff J, Stilla U, Hinz S, Jutzi B (2012) Fusing
passive and active sensed images to gain infrared-textured 3D models. In:
Shortis M, El-Sheimy N (Eds) XXII ISPRS Congress: Imaging a sustainable
future. International Archives of Photogrammetry, Remote Sensing and Spa-
tial Information Sciences 39 (B1): 71-76 doi:10.5194/isprsarchives-XXXIX-
B1-71-2012

[D6] Weinmann M, Jutzi B (2012) A step towards dynamic scene analysis with
active multi-view range imaging systems. In: Shortis M, Paparoditis N, Mal-
let C (Eds) XXII ISPRS Congress: Imaging a sustainable future. Internatio-
nal Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences 39 (B3): 433-438 doi:10.5194/isprsarchives-XXXIX-B3-433-2012

[B11] Weinmann M, Jutzi B (2013) Fast and Accurate Point Cloud Registration
by Exploiting Inverse Cumulative Histograms (ICHs). Joint Urban Remote
Sensing Event, JURSE 2013. IEEE CFP13RSD (on USB) [ISBN 978-1-4799-
0212-5]: 218-221

[B12] Weinmann M, Jutzi B (2011) Fully automatic image-based registration of
unorganized TLS data. In: Lichti DD, Habib AF (Eds) Laserscanning 2011.
International Archives of Photogrammetry, Remote Sensing and Spatial In-
formation Sciences 38 (Part 5 / W12) (on CD)

[C4] Weinmann M, Jutzi B, Hinz S, Mallet C (2015) Semantic point cloud in-
terpretation based on optimal neighborhoods, relevant features and efficient
classifiers. ISPRS Journal of Photogrammetry & Remote Sensing 105: 286-
304 doi:10.1016/j.isprsjprs.2015.01.016

[C6] Weinmann M, Jutzi B, Mallet C (2013) Feature relevance assessment for
the semantic interpretation of 3D point cloud data. In: Scaioni M, Linden-
bergh RC, Oude Elberink S, Schneider D, Pirotti F (Eds) ISPRS Workshop
Laserscanning 2013. ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences II-5/W2, 2013: 313-318

[C7] Weinmann M, Jutzi B, Mallet C (2014) Semantic 3D Scene Interpretation: A
Framework Combining Optimal Neighborhood Size Selection with Relevant
Features. In: Schindler K, Paparoditis N (Eds) ISPRS Technical Commissi-
on III Symposium. ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences II-3, 2014: 181-188 PCV 2014 Best Paper -
Honourable Mention

[B13] Weinmann M, Leitloff J, Hoegner L, Jutzi B, Stilla U, Hinz S (2014) Ther-
mal 3D Mapping for Object Detection in Dynamic Scenes. In: Toth CK,

290

http://dx.doi.org/10.5194/isprsarchives-XXXIX-B1-71-2012
http://dx.doi.org/10.5194/isprsarchives-XXXIX-B1-71-2012
http://dx.doi.org/10.5194/isprsarchives-XXXIX-B3-433-2012
http://dx.doi.org/10.1016/j.isprsjprs.2015.01.016


Jutzi, B (Eds) ISPRS Technical Commission I Symposium. ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information Sciences II-1,
2014: 53-60

[C8] Weinmann M, Mallet C, Hinz S, Jutzi B (2015) Efficient interpretation of 3D
point clouds by assessing feature relevance. AVN - Allgemeine Vermessungs-
Nachrichten

[C9] Weinmann M, Schmidt A, Mallet C, Hinz S, Rottensteiner F, Jutzi B (2015)
Contextual classification of point cloud data by exploiting individual 3D
neighborhoods. In: Stilla U, Heipke C (Eds) Photogrammetric Image Ana-
lysis PIA15 + High-Resolution Earth Imaging for Geospatial Information
HRIGI15 - Joint ISPRS conference. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences II-3/W4, 2015: 271-278

[C5] Weinmann M, Urban S, Hinz S, Jutzi B, Mallet C (2015) Distinctive 2D
and 3D Features for Automated Large-Scale Scene Analysis in Urban Areas.
Special Section on Processing Large Geospatial Data. Computers & Graphics
49: 47-57 doi:10.1016/j.cag.2015.01.006

[B14] Weinmann M(artin), Weinmann M(ichael), Hinz S, Jutzi B (2011) Fast and
automatic image-based registration of TLS data. In: Bretar F, Wagner W,
Paparoditis N (Eds) ISPRS Journal of Photogrammetry & Remote Sensing
66 (6): 62-70 doi:10.1016/j.isprsjprs.2011.09.010

[B15] Weinmann M, Wursthorn S, Jutzi B (2011) Semi-automatic image-based
co-registration of range imaging data with different characteristics. In: Stilla
U, Rottensteiner F, Mayer H, Jutzi B, Butenuth M (Eds) Photogrammetric
Image Analysis PIA11. International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences 36 (Part 3/W22): 119-124

[101] West KF, Webb BN, Lersch JR, Pothier S, Triscari JM, Iverson AE (2004)
Context-driven automated target detection in 3d data. In: Sadjadi FA (Ed)
Automatic Target Recognition XIV. Proceedings of SPIE Vol. 5426: 133-143

[102] Wiener N (1949) Extrapolation, Interpolation, and Smoothing of Stationary
Time Series. MIT Press, Cambridge, MA.

[103] Yu L, Liu H (2003) Feature selection for high-dimensional data: a fast
correlation-based filter solution. Proceedings of the International Conference
on Machine Learning. AAAI Press, Washington, USA, 21-24 August: 856-863

[104] Zhang Q, Pless R (2004) Extrinsic calibration of a camera and laser range
finder (improves camera calibration). Proceedings of the IEEE/RSJ interna-
tional conference on intelligent robots and systems, 28 September-2 October,
Sendai 3: 2301-2306

291

http://dx.doi.org/10.1016/j.cag.2015.01.006
http://dx.doi.org/10.1016/j.isprsjprs.2011.09.010




Danksagung

Die Habilitationsschrift entstand während meiner Zeit am Institut für Photogram-
metrie und Fernerkundung (IPF) des Karlsruher Institut für Technologie (KIT).
Mein besonderer Dank gilt meinem Fachmentor Prof. Dr.-Ing. habil. Stefan Hinz,
der mich bestärkte eine Habilitation anzugehen und mir stets vollstes Vertrauen bei
meinen Forschungsaktivitäten entgegenbrachte. Ebenso bedanke ich mich bei Prof.
Dr.-Ing. habil. Richard Bamler von der Technische Universität München (TUM) und
Prof. Dr. sc. techn. habil. Hans-Gerd Maas von der Technische Universität Dresden
für die Übernahme des Fachmentorats.
Zudem danke ich meinen Kollegen, insbesondere Jens Leitloff, Steffen Urban, Uwe
Weidner, Martin Weinmann und Sven Wursthorn, die Diskussionen mit Ihnen waren
und sind immer sehr anregend und bereichernd.
Allen Studierenden die mit ihren studentischen Arbeiten zu der Habilitation beige-
tragen haben spreche ich meinen Dank aus.
Ein besonderer Dank für die erfolgreiche Zusammenarbeit gilt meinen Koautoren:
Rosmarie Blomley, Patrick Bradley, Andreas Braun, Frédéric Bretar, Herbert Brock-
mann, Jorge Centeno, Adrien Chauve, André Dittrich, Ana Ðuričić, Bernd Eberle,
Richard Gabler, Hermann Gross, Alexander Hanel, Stefan Hinz, Ludwig Hoegner,
Aarne Hovi, Klaus Jäger, Michael Kirchhof, Ilkka Korpela, Andreas Kron, Peter
Krzystek, Jens Leitloff, Clément Mallet, Jochen Meidow, Franz Meyer, Mark Mu-
sall, Franz Nestmann, Jörg Neulist, Andrey Oliveira, Josef Reitberger, Lukas Roth,
Franz Rottensteiner, Peter Runge, Alena Schmidt, Uwe Stilla, Antje Thiele, Ul-
rich Thoennessen, Charles Toth, Steffen Urban, Uwe Weidner, Martin Weinmann,
Michael Weinmann, Sven Wursthorn und Wei Yao.
Meiner Familie, insbesondere meiner Frau Pamela, meinen Kindern Lewin und Quen-
tin danke ich für die Unterstützung und das Verständnis, dass ich stets meinen
persönlichen Zielen nachgehen kann.


	Inhaltsverzeichnis
	1 Motivation
	1.1 Taxonomie der aktiven Sensoren
	1.2 Aufbau der Habilitationsschrift
	1.3 Konzeption der Forschungsaktivitäten

	2 Zusammenfassung der entwickelten Methoden
	2.1 Modellierung und Analyse von Messsignalen
	2.1.1 Phase-Unwrapping bei Entfernungsbildern
	2.1.2 Signaloptimierung bei Full-Waveform-Laserscanner-Daten
	2.1.3 Radiometrische Kalibrierung bei Laserscanner-Daten

	2.2 Koregistrierung mit 2D- bzw. 3D-Sensoren
	2.2.1 3D/2D-Koregistrierung
	2.2.2 3D-Koregistrierung

	2.3 Szenenanalyse
	2.3.1 Bestimmung der optimalen lokalen Nachbarschaften
	2.3.2 Merkmalsextraktion
	2.3.3 Auswahl relevanter Merkmale
	2.3.4 Klassifikation

	2.4 Objektrekonstruktion
	2.4.1 Natürliche Objekte
	2.4.2 Anthropogene Objekte


	3 Diskussion und Ausblick
	4 Relevante Publikationen als Teil der Habilitationsschrift
	A. Publikationen zu 2.1 Modellierung und Analyse von Messsignalen
	B. Publikationen zu 2.2 Koregistrierung mit 2D- bzw. 3D-Sensoren
	C. Publikationen zu 2.3 Szenenanalyse
	D. Publikationen zu 2.4 Objektrekonstruktion
	Z. Nicht referenzierte Publikationen des Verfassers
	Literaturverzeichnis

